A Fast Implementation of the ISOCLUS Algorithm
NASA Technical Reports Server (NTRS)
Memarsadeghi, Nargess; Mount, David M.; Netanyahu, Nathan S.; LeMoigne, Jacqueline
2003-01-01
Unsupervised clustering is a fundamental building block in numerous image processing applications. One of the most popular and widely used clustering schemes for remote sensing applications is the ISOCLUS algorithm, which is based on the ISODATA method. The algorithm is given a set of n data points in d-dimensional space, an integer k indicating the initial number of clusters, and a number of additional parameters. The general goal is to compute the coordinates of a set of cluster centers in d-space, such that those centers minimize the mean squared distance from each data point to its nearest center. This clustering algorithm is similar to another well-known clustering method, called k-means. One significant feature of ISOCLUS over k-means is that the actual number of clusters reported might be fewer or more than the number supplied as part of the input. The algorithm uses different heuristics to determine whether to merge lor split clusters. As ISOCLUS can run very slowly, particularly on large data sets, there has been a growing .interest in the remote sensing community in computing it efficiently. We have developed a faster implementation of the ISOCLUS algorithm. Our improvement is based on a recent acceleration to the k-means algorithm of Kanungo, et al. They showed that, by using a kd-tree data structure for storing the data, it is possible to reduce the running time of k-means. We have adapted this method for the ISOCLUS algorithm, and we show that it is possible to achieve essentially the same results as ISOCLUS on large data sets, but with significantly lower running times. This adaptation involves computing a number of cluster statistics that are needed for ISOCLUS but not for k-means. Both the k-means and ISOCLUS algorithms are based on iterative schemes, in which nearest neighbors are calculated until some convergence criterion is satisfied. Each iteration requires that the nearest center for each data point be computed. Naively, this requires O
NASA Astrophysics Data System (ADS)
Hauth, T.; Innocente and, V.; Piparo, D.
2012-12-01
The processing of data acquired by the CMS detector at LHC is carried out with an object-oriented C++ software framework: CMSSW. With the increasing luminosity delivered by the LHC, the treatment of recorded data requires extraordinary large computing resources, also in terms of CPU usage. A possible solution to cope with this task is the exploitation of the features offered by the latest microprocessor architectures. Modern CPUs present several vector units, the capacity of which is growing steadily with the introduction of new processor generations. Moreover, an increasing number of cores per die is offered by the main vendors, even on consumer hardware. Most recent C++ compilers provide facilities to take advantage of such innovations, either by explicit statements in the programs sources or automatically adapting the generated machine instructions to the available hardware, without the need of modifying the existing code base. Programming techniques to implement reconstruction algorithms and optimised data structures are presented, that aim to scalable vectorization and parallelization of the calculations. One of their features is the usage of new language features of the C++11 standard. Portions of the CMSSW framework are illustrated which have been found to be especially profitable for the application of vectorization and multi-threading techniques. Specific utility components have been developed to help vectorization and parallelization. They can easily become part of a larger common library. To conclude, careful measurements are described, which show the execution speedups achieved via vectorised and multi-threaded code in the context of CMSSW.
Logical foundations and fast implementation of probabilistic tractography.
Zhang, Myron; Sakaie, Ken E; Jones, Stephen E
2013-08-01
Although tractography can noninvasively map axonal pathways, current approaches are typically incomplete or computationally intensive. Fast, complete maps may serve as a useful clinical tool for assessing neurological disorders stemming from pathological anatomical connections such as epilepsy. We re-frame tractography in terms of logic and conditional probabilities. The formalism inherently includes global constraints and can compute connections between any two arbitrary regions of the brain. The formalism also lends itself to a fast implementation using standard partial differential equation solvers, which makes whole-brain probabilistic maps of anatomical connectivity feasible. We demonstrate results of our implementation on in vivo data and show that it outperforms Monte Carlo approaches in both computation time and identification of pathways.
Implementation and parallelization of fast matrix multiplication for a fast Legendre transform
Chen, Wentao
1993-09-01
An algorithm was presented by Alpert and Rokhlin for the rapid evaluation of Legendre transforms. The fast algorithm can be expressed as a matrix-vector product followed by a fast cosine transform. Using the Chebyshev expansion to approximate the entries of the matrix and exchanging the order of summations reduces the time complexity of computation from O(n{sup 2}) to O(n log n), where n is the size of the input vector. Our work has been focused on the implementation and the parallelization of the fast algorithm of matrix-vector product. Results have shown the expected performance of the algorithm. Precision problems which arise as n becomes large can be resolved by doubling the precision of the calculation.
Freddi: Fast Rise Exponential Decay accretion Disk model Implementation
NASA Astrophysics Data System (ADS)
Lipunova, G. V.; Malanchev, K. L.
2016-10-01
Freddi (Fast Rise Exponential Decay: accretion Disk model Implementation) solves 1-D evolution equations of the Shakura-Sunyaev accretion disk. It simulates fast rise exponential decay (FRED) light curves of low mass X-ray binaries (LMXBs). The basic equation of the viscous evolution relates the surface density and viscous stresses and is of diffusion type; evolution of the accretion rate can be found on solving the equation. The distribution of viscous stresses defines the emission from the source. The standard model for the accretion disk is implied; the inner boundary of the disk is at the ISCO or can be explicitely set. The boundary conditions in the disk are the zero stress at the inner boundary and the zero accretion rate at the outer boundary. The conditions are suitable during the outbursts in X-ray binary transients with black holes. In a binary system, the accretion disk is radially confined. In Freddi, the outer radius of the disk can be set explicitely or calculated as the position of the tidal truncation radius.
Maintenance implementation plan for the Fast Flux Test Facility
Boyd, J.A.
1997-01-30
This plan implements the U.S. Department of Energy (DOE) 4330.4B, Maintenance Management Program (1994), at the Fast Flux Test Facility (FFTF). The FFTF is a research and test reactor located near Richland, Washington, and is operated under contract for the DOE by the B&W Hanford Company (BWHC). The intent of this Maintenance Implementation Plan (MIP) is to describe the manner in which the activities of the maintenance function are executed and controlled at the FFTF and how this compares to the requirements of DOE 4330.4B. The MIP ii a living document that is updated through a Facility Maintenance Self- Assessment Program. During the continuing self-assessment program, any discrepancies found are resolved to meet DOE 4330.4B requirements and existing practices. The philosophy of maintenance management at the FFTF is also describe within this MIP. This MIP has been developed based on information obtained from various sources including the following: * A continuing self-assessment against the requirements of the Conduct of Maintenance Order * In-depth reviews conducted by the members of the task team that assembled this MIP * Inputs from routine audits and appraisals conducted at the facility The information from these sources is used to identify those areas in which improvements could be made in the manner in which the facility conducts maintenance activities. The action items identified in Rev. 1 of the MIP have been completed. The MIP is arranged in six sections. Section I is this Executive Summary. Section 2 describes the facility and its 0683 history. Section 3 describes the philosophy of the graded approach and how it is applied at FFTF. Section 3 also discusses the strategy and the basis for the prioritizing resources. Section 4 contains the detailed discussion of `the elements of DOE 4330.4B and their state of implementation. Section 5 is for waivers and requested deviations from the requirements of the order. Section 6 contains a copy of the Maintenance
Implementation of pipelined FastICA on FPGA for real-time blind source separation.
Shyu, Kuo-Kai; Lee, Ming-Huan; Wu, Yu-Te; Lee, Po-Lei
2008-06-01
Fast independent component analysis (FastICA) algorithm separates the independent sources from their mixtures by measuring non-Gaussian. FastICA is a common offline method to identify artifact and interference from their mixtures such as electroencephalogram (EEG), magnetoencephalography (MEG), and electrocardiogram (ECG). Therefore, it is valuable to implement FastICA for real-time signal processing. In this paper, the FastICA algorithm is implemented in a field-programmable gate array (FPGA), with the ability of real-time sequential mixed signals processing by the proposed pipelined FastICA architecture. Moreover, in order to increase the numbers precision, the hardware floating-point (FP) arithmetic units had been carried out in the hardware FastICA. In addition, the proposed pipeline FastICA provides the high sampling rate (192 kHz) capability by hand coding the hardware FastICA in hardware description language (HDL). To verify the features of the proposed hardware FastICA, simulations are first performed, then real-time signal processing experimental results are presented using the fabricated platform. Experimental results demonstrate the effectiveness of the presented hardware FastICA as expected.
Scheins, J J; Vahedipour, K; Pietrzyk, U; Shah, N J
2015-12-21
For high-resolution, iterative 3D PET image reconstruction the efficient implementation of forward-backward projectors is essential to minimise the calculation time. Mathematically, the projectors are summarised as a system response matrix (SRM) whose elements define the contribution of image voxels to lines-of-response (LORs). In fact, the SRM easily comprises billions of non-zero matrix elements to evaluate the tremendous number of LORs as provided by state-of-the-art PET scanners. Hence, the performance of iterative algorithms, e.g. maximum-likelihood-expectation-maximisation (MLEM), suffers from severe computational problems due to the intensive memory access and huge number of floating point operations. Here, symmetries occupy a key role in terms of efficient implementation. They reduce the amount of independent SRM elements, thus allowing for a significant matrix compression according to the number of exploitable symmetries. With our previous work, the PET REconstruction Software TOolkit (PRESTO), very high compression factors (>300) are demonstrated by using specific non-Cartesian voxel patterns involving discrete polar symmetries. In this way, a pre-calculated memory-resident SRM using complex volume-of-intersection calculations can be achieved. However, our original ray-driven implementation suffers from addressing voxels, projection data and SRM elements in disfavoured memory access patterns. As a consequence, a rather limited numerical throughput is observed due to the massive waste of memory bandwidth and inefficient usage of cache respectively. In this work, an advantageous symmetry-driven evaluation of the forward-backward projectors is proposed to overcome these inefficiencies. The polar symmetries applied in PRESTO suggest a novel organisation of image data and LOR projection data in memory to enable an efficient single instruction multiple data vectorisation, i.e. simultaneous use of any SRM element for symmetric LORs. In addition, the calculation
NASA Astrophysics Data System (ADS)
Scheins, J. J.; Vahedipour, K.; Pietrzyk, U.; Shah, N. J.
2015-12-01
For high-resolution, iterative 3D PET image reconstruction the efficient implementation of forward-backward projectors is essential to minimise the calculation time. Mathematically, the projectors are summarised as a system response matrix (SRM) whose elements define the contribution of image voxels to lines-of-response (LORs). In fact, the SRM easily comprises billions of non-zero matrix elements to evaluate the tremendous number of LORs as provided by state-of-the-art PET scanners. Hence, the performance of iterative algorithms, e.g. maximum-likelihood-expectation-maximisation (MLEM), suffers from severe computational problems due to the intensive memory access and huge number of floating point operations. Here, symmetries occupy a key role in terms of efficient implementation. They reduce the amount of independent SRM elements, thus allowing for a significant matrix compression according to the number of exploitable symmetries. With our previous work, the PET REconstruction Software TOolkit (PRESTO), very high compression factors (>300) are demonstrated by using specific non-Cartesian voxel patterns involving discrete polar symmetries. In this way, a pre-calculated memory-resident SRM using complex volume-of-intersection calculations can be achieved. However, our original ray-driven implementation suffers from addressing voxels, projection data and SRM elements in disfavoured memory access patterns. As a consequence, a rather limited numerical throughput is observed due to the massive waste of memory bandwidth and inefficient usage of cache respectively. In this work, an advantageous symmetry-driven evaluation of the forward-backward projectors is proposed to overcome these inefficiencies. The polar symmetries applied in PRESTO suggest a novel organisation of image data and LOR projection data in memory to enable an efficient single instruction multiple data vectorisation, i.e. simultaneous use of any SRM element for symmetric LORs. In addition, the calculation
Fast polynomial transform and its implementation by computer
NASA Technical Reports Server (NTRS)
Reed, I. S.; Shao, H. M.; Truong, T. K.
1981-01-01
A fast polynomial transform (FPT) algorithm for computing two-dimensional cyclic convolutions on a general-purpose computer is demonstrated and compared with the FFT approach. An FPT program for two-dimensional convolutions written in FORTRAN is shown to be 20% faster than the conventional FFT algorithm. This higher speed advantage makes the FPT algorithm a candidate for many two-dimensional digital image filtering applications.
Outline of a fast hardware implementation of Winograd's DFT algorithm
NASA Technical Reports Server (NTRS)
Zohar, S.
1980-01-01
The main characteristics of the discrete Fourier transform (DFT) algorithm considered by Winograd (1976) is a significant reduction in the number of multiplications. Its primary disadvantage is a higher structural complexity. It is, therefore, difficult to translate the reduced number of multiplications into faster execution of the DFT by means of a software implementation of the algorithm. For this reason, a hardware implementation is considered in the current study, taking into account a design based on the algorithm prescription discussed by Zohar (1979). The hardware implementation of a FORTRAN subroutine is proposed, giving attention to a pipelining scheme in which 5 consecutive data batches are being operated on simultaneously, each batch undergoing one of 5 processing phases.
NASA Astrophysics Data System (ADS)
Asztalos, Stephen J.; Hennig, Wolfgang; Warburton, William K.
2016-01-01
Pulse shape discrimination applied to certain fast scintillators is usually performed offline. In sufficiently high-event rate environments data transfer and storage become problematic, which suggests a different analysis approach. In response, we have implemented a general purpose pulse shape analysis algorithm in the XIA Pixie-500 and Pixie-500 Express digital spectrometers. In this implementation waveforms are processed in real time, reducing the pulse characteristics to a few pulse shape analysis parameters and eliminating time-consuming waveform transfer and storage. We discuss implementation of these features, their advantages, necessary trade-offs and performance. Measurements from bench top and experimental setups using fast scintillators and XIA processors are presented.
A fast portable implementation of the Secure Hash Algorithm, III.
McCurley, Kevin S.
1992-10-01
In 1992, NIST announced a proposed standard for a collision-free hash function. The algorithm for producing the hash value is known as the Secure Hash Algorithm (SHA), and the standard using the algorithm in known as the Secure Hash Standard (SHS). Later, an announcement was made that a scientist at NSA had discovered a weakness in the original algorithm. A revision to this standard was then announced as FIPS 180-1, and includes a slight change to the algorithm that eliminates the weakness. This new algorithm is called SHA-1. In this report we describe a portable and efficient implementation of SHA-1 in the C language. Performance information is given, as well as tips for porting the code to other architectures. We conclude with some observations on the efficiency of the algorithm, and a discussion of how the efficiency of SHA might be improved.
Fast neuromimetic object recognition using FPGA outperforms GPU implementations.
Orchard, Garrick; Martin, Jacob G; Vogelstein, R Jacob; Etienne-Cummings, Ralph
2013-08-01
Recognition of objects in still images has traditionally been regarded as a difficult computational problem. Although modern automated methods for visual object recognition have achieved steadily increasing recognition accuracy, even the most advanced computational vision approaches are unable to obtain performance equal to that of humans. This has led to the creation of many biologically inspired models of visual object recognition, among them the hierarchical model and X (HMAX) model. HMAX is traditionally known to achieve high accuracy in visual object recognition tasks at the expense of significant computational complexity. Increasing complexity, in turn, increases computation time, reducing the number of images that can be processed per unit time. In this paper we describe how the computationally intensive and biologically inspired HMAX model for visual object recognition can be modified for implementation on a commercial field-programmable aate Array, specifically the Xilinx Virtex 6 ML605 evaluation board with XC6VLX240T FPGA. We show that with minor modifications to the traditional HMAX model we can perform recognition on images of size 128 × 128 pixels at a rate of 190 images per second with a less than 1% loss in recognition accuracy in both binary and multiclass visual object recognition tasks.
Fast implementation of length-adaptive privacy amplification in quantum key distribution
NASA Astrophysics Data System (ADS)
Zhang, Chun-Mei; Li, Mo; Huang, Jing-Zheng; Patcharapong, Treeviriyanupab; Li, Hong-Wei; Li, Fang-Yi; Wang, Chuan; Yin, Zhen-Qiang; Chen, Wei; Keattisak, Sripimanwat; Han, Zhen-Fu
2014-09-01
Post-processing is indispensable in quantum key distribution (QKD), which is aimed at sharing secret keys between two distant parties. It mainly consists of key reconciliation and privacy amplification, which is used for sharing the same keys and for distilling unconditional secret keys. In this paper, we focus on speeding up the privacy amplification process by choosing a simple multiplicative universal class of hash functions. By constructing an optimal multiplication algorithm based on four basic multiplication algorithms, we give a fast software implementation of length-adaptive privacy amplification. “Length-adaptive” indicates that the implementation of privacy amplification automatically adapts to different lengths of input blocks. When the lengths of the input blocks are 1 Mbit and 10 Mbit, the speed of privacy amplification can be as fast as 14.86 Mbps and 10.88 Mbps, respectively. Thus, it is practical for GHz or even higher repetition frequency QKD systems.
Using single buffers and data reorganization to implement a multi-megasample fast Fourier transform
NASA Technical Reports Server (NTRS)
Brown, R. D.
1992-01-01
Data ordering in large fast Fourier transforms (FFT's) is both conceptually and implementationally difficult. Discribed here is a method of visualizing data orderings as vectors of address bits, which enables the engineer to use more efficient data orderings and reduce double-buffer memory designs. Also detailed are the difficulties and algorithmic solutions involved in FFT lengths up to 4 megasamples (Msamples) and sample rates up to 80 MHz.
The Vanderbilt University fast track to IAIMS: transition from planning to implementation.
Stead, W W; Borden, R; Bourne, J; Giuse, D; Giuse, N; Harris, T R; Miller, R A; Olsen, A J
1996-01-01
Vanderbilt University Medical Center is implementing an Integrated Advanced Information Management System (IAIMS) using a fast-track approach. The elapsed time between start-up and completion of implementation will be 7.5 years. The Start-Up and Planning phases of the project are complete. The Implementation phase asks one question: How does an organization create an environment that redirects and coordinates a variety of individual activities so that they come together to provide an IAIMS? Four answers to this question are being tested. First, design resources to be "scalable"--i.e., capable of supporting enterprise-wide use. Second, provide information technology planning activities as ongoing core functions that direct local efforts. Third, design core infrastructure resources to be both reusable and expandable at the local level. Fourth, use milestones to measure progress toward selected endpoints to permit early refinement of plans and strategies. PMID:8880678
A novel approach to Hough Transform for implementation in fast triggers
NASA Astrophysics Data System (ADS)
Pozzobon, Nicola; Montecassiano, Fabio; Zotto, Pierluigi
2016-10-01
Telescopes of position sensitive detectors are common layouts in charged particles tracking, and programmable logic devices, such as FPGAs, represent a viable choice for the real-time reconstruction of track segments in such detector arrays. A compact implementation of the Hough Transform for fast triggers in High Energy Physics, exploiting a parameter reduction method, is proposed, targeting the reduction of the needed storage or computing resources in current, or next future, state-of-the-art FPGA devices, while retaining high resolution over a wide range of track parameters. The proposed approach is compared to a Standard Hough Transform with particular emphasis on their application to muon detectors. In both cases, an original readout implementation is modeled.
Effects of modified-implement training on fast bowling in cricket.
Petersen, Carl J; Wilson, Barry D; Hopkins, Will G
2004-01-01
The effects of training with overweight and underweight cricket balls on fast-bowling speed and accuracy were investigated in senior club cricket bowlers randomly assigned to either a traditional (n = 9) or modified-implement training (n = 7) group. Both groups performed bowling training three times a week for 10 weeks. The traditional training group bowled only regulation cricket balls (156 g), whereas the modified-implement training group bowled a combination of overweight (161-181 g), underweight (151-131 g) and regulation cricket balls. A radar gun measured the speed of 18 consecutive deliveries for each bowler before, during and after the training period. Video recordings of the deliveries were also analysed to determine bowling accuracy in terms of first-bounce distance from the stumps. Bowling speed, which was initially 108 +/- 5 km h(-1) (mean +/- standard deviation), increased in the modified-implement training group by 4.0 km x h(-1) and in the traditional training group by 1.3 km x h(-1) (difference, 2.7 km x h(-1); 90% confidence limits, 1.2 to 4.2 km x h(-1)). For a minimum worthwhile change of 5 km x h(-1), the chances that the true effect on bowling speed was practically beneficial/trivial/harmful were 1.0/99/< 0.1%. For bowling accuracy, the chances were 1/48/51%. This modified-implement training programme is not a useful training strategy for club cricketers.
Airborne Demonstration of FPGA Implementation of Fast Lossless Hyperspectral Data Compression System
NASA Technical Reports Server (NTRS)
Keymeulen, D.; Aranki, N.; Bakhshi, A.; Luong, H.; Sartures, C.; Dolman, D.
2014-01-01
Efficient on-board lossless hyperspectral data compression reduces data volume in order to meet NASA and DoD limited downlink capabilities. The technique also improves signature extraction, object recognition and feature classification capabilities by providing exact reconstructed data on constrained downlink resources. At JPL a novel, adaptive and predictive technique for lossless compression of hyperspectral data was recently developed. This technique uses an adaptive filtering method and achieves a combination of low complexity and compression effectiveness that far exceeds state-of-the-art techniques currently in use. The JPL-developed 'Fast Lossless' algorithm requires no training data or other specific information about the nature of the spectral bands for a fixed instrument dynamic range. It is of low computational complexity and thus well-suited for implementation in hardware.
Fast focal zooming scheme for direct drive fusion implemented by inserting KD2PO4 crystal
NASA Astrophysics Data System (ADS)
Zhong, Zheqiang; Hu, Xiaochuan; Zhang, Bin
2016-06-01
The highly required uniformity of target in direct-drive fusion is difficult to achieve and maintain during the entire laser fusion implosion. To mitigate the increasing nonuniformity, the fast focal zooming scheme implemented by inserting an electro-optic (EO) crystal in the front end of beamline has been proposed. Functioning as a phase plate, the specifically designed EO crystal may add the induced spherical wavefront to the laser beam and alter its focusing characteristics. However, in order to zoom out the focal spot by half, the required voltage for KD2PO4 (DKDP) with single pair of electrodes is relatively high. In order to decrease the voltage while maintaining the zooming performance, the DKDP cylinder with multi pairs of electrodes has been presented. The continuous phase plate (CPP) is designed according to both the injected beam and the output field. However, the conventional CPP is designed based on the assumption of an injected beam without wavefront distortion, which would zoom in the focal spot variation in the focal zooming scheme. In order to zoom out the focal spot, a redesigned CPP has been proposed by adding a spherical wavefront to the phase variation of the conventional CPP and further optimizing. On the basis, the focusing characteristics of laser beam during the fast focal zooming process have been analyzed. Results indicate that the focal spot size decreases with the increasing voltage on DKDP crystal, meanwhile the uniformity maintains high during the focal zooming process.
Fialkov, Alexander B; Moragn, Mati; Amirav, Aviv
2011-12-30
A new type of low thermal mass (LTM) fast gas chromatograph (GC) was designed and operated in combination with gas chromatography mass spectrometry (GC-MS) with supersonic molecular beams (SMB), including GC-MS-MS with SMB, thereby providing a novel combination with unique capabilities. The LTM fast GC is based on a short capillary column inserted inside a stainless steel tube that is resistively heated. It is located and mounted outside the standard GC oven on its available top detector port, while the capillary column is connected as usual to the standard GC injector and supersonic molecular beam interface transfer line. This new type of fast GC-MS with SMB enables less than 1 min full range temperature programming and cooling down analysis cycle time. The operation of the fast GC-MS with SMB was explored and 1 min full analysis cycle time of a mixture of 16 hydrocarbons in the C(10)H(22) up to C(44)H(90) range was achieved. The use of 35 mL/min high column flow rate enabled the elution of C(44)H(90) in less than 45 s while the SMB interface enabled splitless acceptance of this high flow rate and the provision of dominant molecular ions. A novel compound 9-benzylazidanthracene was analyzed for its purity and a synthetic chemistry process was monitored for the optimization of the chemical reaction yield. Biodiesel was analyzed in jet fuel (by both GC-MS and GC-MS-MS) in under 1 min as 5 ppm fatty acid methyl esters. Authentic iprodion and cypermethrin pesticides were analyzed in grapes extract in both full scan mode and fast GC-MS-MS mode in under 1 min cycle time and explosive mixture including TATP, TNT and RDX was analyzed in under 1 min combined with exhibiting dominant molecular ion for TATP. Fast GC-MS with SMB is based on trading GC separation for speed of analysis while enhancing the separation power of the MS via the enhancement of the molecular ion in the electron ionization of cold molecules in the SMB. This paper further discusses several features of
Implementation of moire-schlieren deflectometry on a small scale fast capillary plasma discharge
Valenzuela, J. C.; Wyndham, E. S.; Chuaqui, H.; Cortes, D. S.; Favre, M.; Bhuyan, H.
2012-05-15
We present the results of an implementation of a refractive diagnostic to study fast dynamics in capillary discharges. It consists of a moire-schlieren deflectometry technique that provides a quantitative analysis of the refractive index gradients. The technique is composed of an angular deflection mapping system (moire deflectometry) and a spatial Fourier filter (schlieren). Temporal resolution of 12 ps, 50 {mu}m of spatial resolution and minimum detectable gradient of ({nabla}n{sub e}){sub min}=6x10{sup 18}cm{sup -4} were obtained. With these parameters, a large aspect ratio capillary discharge of 15 ns half period current was studied; the diagnostic was implemented axially along the alumina tube of 1.6 mm inner diameter and 21 mm length. The detectable electron density for these conditions was 1x10{sup 17}cm{sup -3}. From the interpretation of the fringe displacement, we are able to measure the velocity of the radial compression wave and the compression ratio due to the Lorentz force. On axis, electron densities of the order of 5x10{sup 17}cm{sup -3} were obtained at the time of maximum soft x-ray emission.
NASA Astrophysics Data System (ADS)
Jung, A.; Ahmad, S.; Barrillon, P.; Brandt, S.; Budtz-Jørgensen, C.; Castro-Tirado, A. J.; Chang, S.-H.; Chang, Y.-Y.; Chen, C. R.; Chen, P.; Choi, H. S.; Choi, Y. J.; Connell, P.; Dagoret-Campagne, S.; Eyles, C.; Grossan, B.; Huang, J. J.; Huang, M.-H. A.; Jeong, S.; Kim, J. E.; Kim, M.; Kim, S.-W.; Kim, Y. W.; Krasnov, A. S.; Lee, J.; Lim, H.; Lin, C.-Y.; Linder, E. V.; Liu, T.-C.; Lund, N.; Nam, J. W.; Min, K. W.; Na, G. W.; Panasyuk, M. I.; Park, I. H.; Reglero, V.; Ripa, J.; Rodrigo, J. M.; Smoot, G. F.; Suh, J. E.; Svertilov, S.; Vedenkin, N.; Wang, M.-Z.; Yashin, I.
2013-07-01
The Ultra-Fast Flash Observatory (UFFO) Pathfinder for Gamma-Ray Bursts (GRBs) consists of two telescopes. The UFFO Burst Alert & Trigger Telescope (UBAT) handles the detection and localization of GRBs, and the Slewing Mirror Telescope (SMT) conducts the measurement of the UV/optical afterglow. UBAT is equipped with an X-ray detector, analog and digital signal readout electronics that detects X-rays from GRBs and determines the location. SMT is equipped with a stepping motor and the associated electronics to rotate the slewing mirror targeting the GRBs identified by UBAT. First the slewing mirror points to a GRB, then SMT obtains the optical image of the GRB using the intensified CCD and its readout electronics. The UFFO Data Acquisition system (UDAQ) is responsible for the overall function and operation of the observatory and the communication with the satellite main processor. In this paper we present the design and implementation of the electronics of UBAT and SMT as well as the architecture and implementation of UDAQ.
Fast implementation of Oliker's ellipses technology to build free form reflector
NASA Astrophysics Data System (ADS)
Magarill, S.
2013-09-01
The field of illumination optics has a number of applications where using free-form reflective surfaces to create a required light distribution can be beneficial. Oliker's concept of combining elliptical surfaces is the foundation of forming a reflector for an arbitrary illuminance distribution. The algorithm for fast implementation of this concept is discussed in detail. It is based on an analytical computation of a 3D cloud of points in order to map the reflector shape with the required flux distribution. Flux delivered to chosen zones across the target can be calculated based on the number of associated cloud points and its locations. This allows optimized ellipse parameters to achieve the required flux distribution without raytracing through the reflector geometry. Such a strictly analytical optimization is much faster than building reflector geometry and raytracing each step of the optimization. A generated 3D cloud of points can be used with a standard SolidWorks feature to build the loft surface. This surface consists of adjacent elliptical facets and should be smooth to maintain continuous irradiance across the target. A secondary operation to smooth the surface profile between elliptical facets is discussed. Examples of proposed algorithm implementations are presented.
Pre-Hardware Optimization and Implementation Of Fast Optics Closed Control Loop Algorithms
NASA Technical Reports Server (NTRS)
Kizhner, Semion; Lyon, Richard G.; Herman, Jay R.; Abuhassan, Nader
2004-01-01
One of the main heritage tools used in scientific and engineering data spectrum analysis is the Fourier Integral Transform and its high performance digital equivalent - the Fast Fourier Transform (FFT). The FFT is particularly useful in two-dimensional (2-D) image processing (FFT2) within optical systems control. However, timing constraints of a fast optics closed control loop would require a supercomputer to run the software implementation of the FFT2 and its inverse, as well as other image processing representative algorithm, such as numerical image folding and fringe feature extraction. A laboratory supercomputer is not always available even for ground operations and is not feasible for a night project. However, the computationally intensive algorithms still warrant alternative implementation using reconfigurable computing technologies (RC) such as Digital Signal Processors (DSP) and Field Programmable Gate Arrays (FPGA), which provide low cost compact super-computing capabilities. We present a new RC hardware implementation and utilization architecture that significantly reduces the computational complexity of a few basic image-processing algorithm, such as FFT2, image folding and phase diversity for the NASA Solar Viewing Interferometer Prototype (SVIP) using a cluster of DSPs and FPGAs. The DSP cluster utilization architecture also assures avoidance of a single point of failure, while using commercially available hardware. This, combined with the control algorithms pre-hardware optimization, or the first time allows construction of image-based 800 Hertz (Hz) optics closed control loops on-board a spacecraft, based on the SVIP ground instrument. That spacecraft is the proposed Earth Atmosphere Solar Occultation Imager (EASI) to study greenhouse gases CO2, C2H, H2O, O3, O2, N2O from Lagrange-2 point in space. This paper provides an advanced insight into a new type of science capabilities for future space exploration missions based on on-board image processing
Detector-device-independent quantum key distribution: Security analysis and fast implementation
NASA Astrophysics Data System (ADS)
Boaron, Alberto; Korzh, Boris; Houlmann, Raphael; Boso, Gianluca; Lim, Charles Ci Wen; Martin, Anthony; Zbinden, Hugo
2016-08-01
One of the most pressing issues in quantum key distribution (QKD) is the problem of detector side-channel attacks. To overcome this problem, researchers proposed an elegant "time-reversal" QKD protocol called measurement-device-independent QKD (MDI-QKD), which is based on time-reversed entanglement swapping. However, MDI-QKD is more challenging to implement than standard point-to-point QKD. Recently, an intermediary QKD protocol called detector-device-independent QKD (DDI-QKD) has been proposed to overcome the drawbacks of MDI-QKD, with the hope that it would eventually lead to a more efficient detector side-channel-free QKD system. Here, we analyze the security of DDI-QKD and elucidate its security assumptions. We find that DDI-QKD is not equivalent to MDI-QKD, but its security can be demonstrated with reasonable assumptions. On the more practical side, we consider the feasibility of DDI-QKD and present a fast experimental demonstration (clocked at 625 MHz), capable of secret key exchange up to more than 90 km.
Implementation of rooftop reciculation parameterization into the QUIC fast response urban wind model
Bagal, N.; Singh, B.; Pardyjak, E. R.; Brown, M. J.
2004-01-01
The QUIC (Quick Urban & Industrial Complex) dispersion modeling system has been developed to provide high-resolution wind and concentration fields in cities. The fast response 3D urban wind model QUIC-URB explicitly solves for the flow field around buildings using a suite of empirical parameterizations and mass conservation. This procedure is based on the work of Rockle (1990). The current Rockle (1990) model does not capture the rooftop recirculation region associated with flow separation from the leading edge of an isolated building. According to Banks et al. (2001), there are two forms of separation depending on the incident wind angle. For an incident wind angle within 20{sup o} of perpendicular to the front face of the building, 'bubble separation' occurs in which cylindrical vortices whose axis are orthogonal to the flow are generated along the rooftop surface (see Fig. 1). For a 'corner wind' flow or incident wind angle of 30{sup o} to 70{sup o} of perpendicular to the front face of the building, 'conical' or 'delta wing' vortices form along the roof surface (Fig. 3). In this work, a model for rooftop recirculation is implemented into the QUIC- URB model for the two incident wind angle regimes described above. The parameterizations for the length and height of the recirculation region are from Wilson (1979) for the case of flow perpendicular or near perpendicular to the building and from Banks et al. (2000) for the case of off-angle flow. In this paper, we describe the rooftop algorithms and show how the model results are improved through comparisons to experimental data (Snyder and Lawson 1994).
Webb, Thomas L; Sheeran, Paschal; Pepper, John
2012-03-01
The present research investigated whether forming implementation intentions could promote fast responses to attitude-incongruent associations (e.g., woman-manager) and thereby modify scores on popular implicit measures of attitude. Expt 1 used the Implicit Association Test (IAT) to measure associations between gender and science versus liberal arts. Planning to associate women with science engendered fast responses to this category-attribute pairing and rendered summary scores more neutral compared to standard IAT instructions. Expt 2 demonstrated that forming egalitarian goal intentions is not sufficient to produce these effects. Expt 3 extended these findings to a different measure of implicit attitude (the Go/No-Go Association Task) and a different stereotypical association (Muslims-terrorism). In Expt 4, managers who planned to associate women with superordinate positions showed more neutral IAT scores relative to non-planners and effects were maintained 3 weeks later. In sum, implementation intentions enable people to gain control over implicit attitude responses.
Webb, Thomas L; Sheeran, Paschal; Pepper, John
2012-03-01
The present research investigated whether forming implementation intentions could promote fast responses to attitude-incongruent associations (e.g., woman-manager) and thereby modify scores on popular implicit measures of attitude. Expt 1 used the Implicit Association Test (IAT) to measure associations between gender and science versus liberal arts. Planning to associate women with science engendered fast responses to this category-attribute pairing and rendered summary scores more neutral compared to standard IAT instructions. Expt 2 demonstrated that forming egalitarian goal intentions is not sufficient to produce these effects. Expt 3 extended these findings to a different measure of implicit attitude (the Go/No-Go Association Task) and a different stereotypical association (Muslims-terrorism). In Expt 4, managers who planned to associate women with superordinate positions showed more neutral IAT scores relative to non-planners and effects were maintained 3 weeks later. In sum, implementation intentions enable people to gain control over implicit attitude responses. PMID:22435844
ERIC Educational Resources Information Center
Holland, Rochelle
2006-01-01
The purpose of this case study was to examine the efficacy of a developing technique that has been coined by this author as a Mental Wellness Fast. Therefore, this paper has been written for therapists who utilize spirituality and/or religion into their practice. The technique is geared to assist clients with healing poor inner dialogues and it…
ERIC Educational Resources Information Center
Edgecombe, Nikki; Jaggars, Shanna Smith; Baker, Elaine DeLott; Bailey, Thomas
2013-01-01
Originally designed for students who test into at least two levels of developmental education in a particular subject area, FastStart is a compressed course program model launched in 2005 at the Community College of Denver (CCD). The program combines multiple semester-length courses into a single intensive semester, while providing case…
Greco, Arianna; Maggini, Laura; De Cola, Luisa; De Marco, Rossella; Gentilucci, Luca
2015-09-16
The rapid and exact identification and quantification of specific biomarkers is a key technology for always achieving more efficient diagnostic methodologies. We present the first application of a nanostructured device constituted of patterned self-assembled monolayers of disk-shaped zeolite L coated with the cyclic integrin ligand c[RGDfK] via isocyanate linker, to the rapid detection of cancer cells. With its high specificity toward HeLa and Glioma cells and fast adhesion ability, this biocompatible monolayer is a promising platform for implementation in diagnostics and personalized therapy formulation devices.
NASA Astrophysics Data System (ADS)
Lucas, Jérôme; Géron, Emmanuel; Ditchi, Thierry; Holé, Stéphane
2012-09-01
In this this paper we quickly derive the Kramers-Kronig relations from simple causality considerations and propose a simple way to implement them using the Fast Fourier Transform. This work focuses on how to make these relations a usable tool even when their conditions of validity are not strictly respected. In this respect we emphasize on their application to the constant low level loss approximation at microwave frequencies. The method presented is demonstrated on various typical cases of fancy propagation: high velocity, negative phase velocity and evanescent waves.
2009-01-01
In 1990, the Fast Track Project was initiated to evaluate the feasibility and effectiveness of a comprehensive, multicomponent prevention program targeting children at risk for conduct disorders in four demographically diverse American communities (Conduct Problems Prevention Research Group [CPPRG], 1992). Representing a prevention science approach toward community-based preventive intervention, the Fast Track intervention design was based upon the available data base elucidating the epidemiology of risk for conduct disorder and suggesting key causal developmental influences (R. P. Weissberg & M. T. Greenberg, 1998). Critical questions about this approach to prevention center around the extent to which such a science-based program can be effective at (1) engaging community members and stakeholders, (2) maintaining intervention fidelity while responding appropriately to the local norms and needs of communities that vary widely in their demographic and cultural/ethnic composition, and (3) maintaining community engagement in the long-term to support effective and sustainable intervention dissemination. This paper discusses these issues, providing examples from the Fast Track project to illustrate the process of program implementation and the evidence available regarding the success of this science-based program at engaging communities in sustainable and effective ways as partners in prevention programming. PMID:11930968
NASA Astrophysics Data System (ADS)
Skorupski, Krzysztof; Mroczka, Janusz; Wriedt, Thomas; Riefler, Norbert
2014-06-01
In many branches of science experiments are expensive, require specialist equipment or are very time consuming. Studying the light scattering phenomenon by fractal aggregates can serve as an example. Light scattering simulations can overcome these problems and provide us with theoretical, additional data which complete our study. For this reason a fractal-like aggregate model as well as fast aggregation codes are needed. Until now various computer models, that try to mimic the physics behind this phenomenon, have been developed. However, their implementations are mostly based on a trial-and-error procedure. Such approach is very time consuming and the morphological parameters of resulting aggregates are not exact because the postconditions (e.g. the position error) cannot be very strict. In this paper we present a very fast and accurate implementation of a tunable aggregation algorithm based on the work of Filippov et al. (2000). Randomization is reduced to its necessary minimum (our technique can be more than 1000 times faster than standard algorithms) and the position of a new particle, or a cluster, is calculated with algebraic methods. Therefore, the postconditions can be extremely strict and the resulting errors negligible (e.g. the position error can be recognized as non-existent). In our paper two different methods, which are based on the particle-cluster (PC) and the cluster-cluster (CC) aggregation processes, are presented.
NASA Astrophysics Data System (ADS)
Rein, Hanno; Tamayo, Daniel
2015-09-01
We present WHFAST, a fast and accurate implementation of a Wisdom-Holman symplectic integrator for long-term orbit integrations of planetary systems. WHFAST is significantly faster and conserves energy better than all other Wisdom-Holman integrators tested. We achieve this by significantly improving the Kepler solver and ensuring numerical stability of coordinate transformations to and from Jacobi coordinates. These refinements allow us to remove the linear secular trend in the energy error that is present in other implementations. For small enough timesteps, we achieve Brouwer's law, i.e. the energy error is dominated by an unbiased random walk due to floating-point round-off errors. We implement symplectic correctors up to order 11 that significantly reduce the energy error. We also implement a symplectic tangent map for the variational equations. This allows us to efficiently calculate two widely used chaos indicators the Lyapunov characteristic number and the Mean Exponential Growth factor of Nearby Orbits. WHFAST is freely available as a flexible C package, as a shared library, and as an easy-to-use PYTHON module.
NASA Astrophysics Data System (ADS)
Rangelov, A. A.
2009-01-01
Truncated Fourier, Gauss, Kummer and exponential sums can be used to factorize numbers: for a factor these sums equal unity in absolute value, whereas they nearly vanish for any other number. We show how this factorization algorithm can emerge from superpositions of classical light waves and we present a number of simple implementations in optics.
Implementation of a fast time-domain processor for FMCW Synthetic Aperture Radar data
NASA Astrophysics Data System (ADS)
Frioud, Max; Wellig, Peter; Stanko, Stephan; Meier, Erich
2015-10-01
For the purpose of getting sensitive information relevant to civil or military security, high-resolution airborne Synthetic Aperture Radar (SAR) provides the possibility to organize missions at short notice regardless of the daylight and of the weather conditions. The use of compact millimeter-wave FMCW SAR systems allows reaching these goals more safely and at lower cost using unmanned lightweight platforms. As a counterpart these platforms are relatively unstable, making the data-processing more difficult. In order to reach optimum focusing quality also in unfavorable flight conditions or for highly non-linear tracks we developed a fast Time-Domain Processor that relies on parallelization using the GPU resources. A production areal processing rate as high as 6 km2/h using 20 cm ground pixel spacing on a single PC station was achieved. The processing quality and efficiency is demonstrated using real data from the MIRANDA35 Ka-band SAR system.
Multitask Coupled Logistic Regression and its Fast Implementation for Large Multitask Datasets.
Gu, Xin; Chung, Fu-Lai; Ishibuchi, Hisao; Wang, Shitong
2015-09-01
When facing multitask-learning problems, it is desirable that the learning method could find the correct input-output features and share the commonality among multiple domains and also scale-up for large multitask datasets. We introduce the multitask coupled logistic regression (LR) framework called LR-based multitask classification learning algorithm (MTC-LR), which is a new method for generating each classifier for each task, capable of sharing the commonality among multitask domains. The basic idea of MTC-LR is to use all individual LR based classifiers, each one appropriate for each task domain, but in contrast to other support vector machine (SVM)-based proposals, learning all the parameter vectors of all individual classifiers by using the conjugate gradient method, in a global way and without the use of kernel trick, and being easily extended into its scaled version. We theoretically show that the addition of a new term in the cost function of the set of LRs (that penalizes the diversity among multiple tasks) produces a coupling of multiple tasks that allows MTC-LR to improve the learning performance in a LR way. This finding can make us easily integrate it with a state-of-the-art fast LR algorithm called dual coordinate descent method (CDdual) to develop its fast version MTC-LR-CDdual for large multitask datasets. The proposed algorithm MTC-LR-CDdual is also theoretically analyzed. Our experimental results on artificial and real-datasets indicate the effectiveness of the proposed algorithm MTC-LR-CDdual in classification accuracy, speed, and robustness. PMID:25423663
FPGA implementation of a 32x32 autocorrelator array for analysis of fast image series.
Buchholz, Jan; Krieger, Jan Wolfgang; Mocsár, Gábor; Kreith, Balázs; Charbon, Edoardo; Vámosi, György; Kebschull, Udo; Langowski, Jörg
2012-07-30
With the evolving technology in CMOS integration, new classes of 2D-imaging detectors have recently become available. In particular, single photon avalanche diode (SPAD) arrays allow detection of single photons at high acquisition rates (≥ 100 kfps), which is about two orders of magnitude higher than with currently available cameras. Here we demonstrate the use of a SPAD array for imaging fluorescence correlation spectroscopy (imFCS), a tool to create 2D maps of the dynamics of fluorescent molecules inside living cells. Time-dependent fluorescence fluctuations, due to fluorophores entering and leaving the observed pixels, are evaluated by means of autocorrelation analysis. The multi-τ correlation algorithm is an appropriate choice, as it does not rely on the full data set to be held in memory. Thus, this algorithm can be efficiently implemented in custom logic. We describe a new implementation for massively parallel multi-τ correlation hardware. Our current implementation can calculate 1024 correlation functions at a resolution of 10 μs in real-time and therefore correlate real-time image streams from high speed single photon cameras with thousands of pixels.
Tuomas, V.; Jaakko, L.
2013-07-01
This article discusses the optimization of the target motion sampling (TMS) temperature treatment method, previously implemented in the Monte Carlo reactor physics code Serpent 2. The TMS method was introduced in [1] and first practical results were presented at the PHYSOR 2012 conference [2]. The method is a stochastic method for taking the effect of thermal motion into account on-the-fly in a Monte Carlo neutron transport calculation. It is based on sampling the target velocities at collision sites and then utilizing the 0 K cross sections at target-at-rest frame for reaction sampling. The fact that the total cross section becomes a distributed quantity is handled using rejection sampling techniques. The original implementation of the TMS requires 2.0 times more CPU time in a PWR pin-cell case than a conventional Monte Carlo calculation relying on pre-broadened effective cross sections. In a HTGR case examined in this paper the overhead factor is as high as 3.6. By first changing from a multi-group to a continuous-energy implementation and then fine-tuning a parameter affecting the conservativity of the majorant cross section, it is possible to decrease the overhead factors to 1.4 and 2.3, respectively. Preliminary calculations are also made using a new and yet incomplete optimization method in which the temperature of the basis cross section is increased above 0 K. It seems that with the new approach it may be possible to decrease the factors even as low as 1.06 and 1.33, respectively, but its functionality has not yet been proven. Therefore, these performance measures should be considered preliminary. (authors)
Bhanot, Gyan V.; Chen, Dong; Gara, Alan G.; Giampapa, Mark E.; Heidelberger, Philip; Steinmacher-Burow, Burkhard D.; Vranas, Pavlos M.
2008-01-01
The present in invention is directed to a method, system and program storage device for efficiently implementing a multidimensional Fast Fourier Transform (FFT) of a multidimensional array comprising a plurality of elements initially distributed in a multi-node computer system comprising a plurality of nodes in communication over a network, comprising: distributing the plurality of elements of the array in a first dimension across the plurality of nodes of the computer system over the network to facilitate a first one-dimensional FFT; performing the first one-dimensional FFT on the elements of the array distributed at each node in the first dimension; re-distributing the one-dimensional FFT-transformed elements at each node in a second dimension via "all-to-all" distribution in random order across other nodes of the computer system over the network; and performing a second one-dimensional FFT on elements of the array re-distributed at each node in the second dimension, wherein the random order facilitates efficient utilization of the network thereby efficiently implementing the multidimensional FFT. The "all-to-all" re-distribution of array elements is further efficiently implemented in applications other than the multidimensional FFT on the distributed-memory parallel supercomputer.
Bhanot, Gyan V.; Chen, Dong; Gara, Alan G.; Giampapa, Mark E.; Heidelberger, Philip; Steinmacher-Burow, Burkhard D.; Vranas, Pavlos M.
2012-01-10
The present in invention is directed to a method, system and program storage device for efficiently implementing a multidimensional Fast Fourier Transform (FFT) of a multidimensional array comprising a plurality of elements initially distributed in a multi-node computer system comprising a plurality of nodes in communication over a network, comprising: distributing the plurality of elements of the array in a first dimension across the plurality of nodes of the computer system over the network to facilitate a first one-dimensional FFT; performing the first one-dimensional FFT on the elements of the array distributed at each node in the first dimension; re-distributing the one-dimensional FFT-transformed elements at each node in a second dimension via "all-to-all" distribution in random order across other nodes of the computer system over the network; and performing a second one-dimensional FFT on elements of the array re-distributed at each node in the second dimension, wherein the random order facilitates efficient utilization of the network thereby efficiently implementing the multidimensional FFT. The "all-to-all" re-distribution of array elements is further efficiently implemented in applications other than the multidimensional FFT on the distributed-memory parallel supercomputer.
NASA Astrophysics Data System (ADS)
Jayarajan, Jayesh; Kumar, Nishant; Verma, Amarnath; Thaker, Ramkrishna
2016-05-01
Drive electronics for generating fast, bipolar clocks, which can drive capacitive loads of the order of 5-10nF are indispensable for present day Charge Coupled Devices (CCDs). Design of these high speed bipolar clocks is challenging because of the capacitive loads that have to be driven and a strict constraint on the rise and fall times. Designing drive electronics circuits for space applications becomes even more challenging due to limited number of available discrete devices, which can survive in the harsh radiation prone space environment. This paper presents the design, simulations and test results of a set of such high speed, bipolar clock drivers. The design has been tested under a thermal cycle of -15 deg C to +55 deg C under vacuum conditions and has been designed using radiation hardened components. The test results show that the design meets the stringent rise/fall time requirements of 50+/-10ns for Multiple Vertical CCD (VCCD) clocks and 20+/-5ns for Horizontal CCD (HCCD) clocks with sufficient design margins across full temperature range, with a pixel readout rate of 6.6MHz. The full design has been realized in flexi-rigid PCB with package volume of 140x160x50 mm3.
Design and Implementation of the Control System for a 2 kHz Rotary Fast Tool Servo
Montesanti, R C; Trumper, D L
2004-03-29
This paper presents a summary of the performance of our 2 kHz rotary fast tool servo and an overview of its control systems. We also discuss the loop shaping techniques used to design the power amplifier current control loop and the implementation of that controller in an op-amp circuit. The design and development of the control system involved a long list of items including: current compensation; tool position compensation; notch filter design and phase stabilizing with an additional pole for a plant with an undamped resonance; adding viscous damping to the fast tool servo; voltage budget for driving real and reactive loads; dealing with unwanted oscillators; ground loops; digital-to-analog converter glitches; electrical noise from the spindle motor switching power supply; and filtering the spindle encoder signal to generate smooth tool tip trajectories. Eventually, all of these topics will be discussed in detail in a Ph.D. thesis that will include this work. For the purposes of this paper, rather than present a diluted discussion that attempts to touch on all of these topics, we will focus on the first item with sufficient detail for providing insight into the design process.
A Reduced-Complexity Fast Algorithm for Software Implementation of the IFFT/FFT in DMT Systems
NASA Astrophysics Data System (ADS)
Chan, Tsun-Shan; Kuo, Jen-Chih; Wu, An-Yeu (Andy)
2002-12-01
The discrete multitone (DMT) modulation/demodulation scheme is the standard transmission technique in the application of asymmetric digital subscriber lines (ADSL) and very-high-speed digital subscriber lines (VDSL). Although the DMT can achieve higher data rate compared with other modulation/demodulation schemes, its computational complexity is too high for cost-efficient implementations. For example, it requires 512-point IFFT/FFT as the modulation/demodulation kernel in the ADSL systems and even higher in the VDSL systems. The large block size results in heavy computational load in running programmable digital signal processors (DSPs). In this paper, we derive computationally efficient fast algorithm for the IFFT/FFT. The proposed algorithm can avoid complex-domain operations that are inevitable in conventional IFFT/FFT computation. The resulting software function requires less computational complexity. We show that it acquires only 17% number of multiplications to compute the IFFT and FFT compared with the Cooly-Tukey algorithm. Hence, the proposed fast algorithm is very suitable for firmware development in reducing the MIPS count in programmable DSPs.
Numerical implementation of non-local polycrystal plasticity using fast Fourier transforms
Lebensohn, Ricardo A.; Needleman, Alan
2016-03-28
Here, we present the numerical implementation of a non-local polycrystal plasticity theory using the FFT-based formulation of Suquet and co-workers. Gurtin (2002) non-local formulation, with geometry changes neglected, has been incorporated in the EVP-FFT algorithm of Lebensohn et al. (2012). Numerical procedures for the accurate estimation of higher order derivatives of micromechanical fields, required for feedback into single crystal constitutive relations, are identified and applied. A simple case of a periodic laminate made of two fcc crystals with different plastic properties is first used to assess the soundness and numerical stability of the proposed algorithm and to study the influencemore » of different model parameters on the predictions of the non-local model. Different behaviors at grain boundaries are explored, and the one consistent with the micro-clamped condition gives the most pronounced size effect. The formulation is applied next to 3-D fcc polycrystals, illustrating the possibilities offered by the proposed numerical scheme to analyze the mechanical response of polycrystalline aggregates in three dimensions accounting for size dependence arising from plastic strain gradients with reasonable computing times.« less
Movie approximation technique for the implementation of fast bandwidth-smoothing algorithms
NASA Astrophysics Data System (ADS)
Feng, Wu-chi; Lam, Chi C.; Liu, Ming
1997-12-01
Bandwidth smoothing algorithms can effectively reduce the network resource requirements for the delivery of compressed video streams. For stored video, a large number of bandwidth smoothing algorithms have been introduced that are optimal under certain constraints but require access to all the frame size data in order to achieve their optimal properties. This constraint, however, can be both resource and computationally expensive, especially for moderately priced set-top-boxes. In this paper, we introduce a movie approximation technique for the representation of the frame sizes of a video, reducing the complexity of the bandwidth smoothing algorithms and the amount of frame data that must be transmitted prior to the start of playback. Our results show that the proposed approximation technique can accurately approximate the frame data with a small number of piece-wise linear segments without affecting the performance measures that the bandwidth soothing algorithms are attempting to achieve by more than 1%. In addition, we show that implementations of this technique can speed up execution times by 100 to 400 times, allowing the bandwidth plan calculation times to be reduced to tens of milliseconds. Evaluation using a compressed full-length motion-JPEG video is provided.
Procacci, Piero
2016-06-27
We present a new release (6.0β) of the ORAC program [Marsili et al. J. Comput. Chem. 2010, 31, 1106-1116] with a hybrid OpenMP/MPI (open multiprocessing message passing interface) multilevel parallelism tailored for generalized ensemble (GE) and fast switching double annihilation (FS-DAM) nonequilibrium technology aimed at evaluating the binding free energy in drug-receptor system on high performance computing platforms. The production of the GE or FS-DAM trajectories is handled using a weak scaling parallel approach on the MPI level only, while a strong scaling force decomposition scheme is implemented for intranode computations with shared memory access at the OpenMP level. The efficiency, simplicity, and inherent parallel nature of the ORAC implementation of the FS-DAM algorithm, project the code as a possible effective tool for a second generation high throughput virtual screening in drug discovery and design. The code, along with documentation, testing, and ancillary tools, is distributed under the provisions of the General Public License and can be freely downloaded at www.chim.unifi.it/orac . PMID:27231982
Murphy, Mark; Alley, Marcus; Demmel, James; Keutzer, Kurt; Vasanawala, Shreyas; Lustig, Michael
2012-06-01
We present l₁-SPIRiT, a simple algorithm for auto calibrating parallel imaging (acPI) and compressed sensing (CS) that permits an efficient implementation with clinically-feasible runtimes. We propose a CS objective function that minimizes cross-channel joint sparsity in the wavelet domain. Our reconstruction minimizes this objective via iterative soft-thresholding, and integrates naturally with iterative self-consistent parallel imaging (SPIRiT). Like many iterative magnetic resonance imaging reconstructions, l₁-SPIRiT's image quality comes at a high computational cost. Excessively long runtimes are a barrier to the clinical use of any reconstruction approach, and thus we discuss our approach to efficiently parallelizing l₁-SPIRiT and to achieving clinically-feasible runtimes. We present parallelizations of l₁-SPIRiT for both multi-GPU systems and multi-core CPUs, and discuss the software optimization and parallelization decisions made in our implementation. The performance of these alternatives depends on the processor architecture, the size of the image matrix, and the number of parallel imaging channels. Fundamentally, achieving fast runtime requires the correct trade-off between cache usage and parallelization overheads. We demonstrate image quality via a case from our clinical experimentation, using a custom 3DFT spoiled gradient echo (SPGR) sequence with up to 8× acceleration via Poisson-disc undersampling in the two phase-encoded directions. PMID:22345529
NASA Astrophysics Data System (ADS)
Valencia, David; Plaza, Antonio; Vega-Rodríguez, Miguel A.; Pérez, Rosa M.
2005-11-01
Hyperspectral imagery is a class of image data which is used in many scientific areas, most notably, medical imaging and remote sensing. It is characterized by a wealth of spatial and spectral information. Over the last years, many algorithms have been developed with the purpose of finding "spectral endmembers," which are assumed to be pure signatures in remotely sensed hyperspectral data sets. Such pure signatures can then be used to estimate the abundance or concentration of materials in mixed pixels, thus allowing sub-pixel analysis which is crucial in many remote sensing applications due to current sensor optics and configuration. One of the most popular endmember extraction algorithms has been the pixel purity index (PPI), available from Kodak's Research Systems ENVI software package. This algorithm is very time consuming, a fact that has generally prevented its exploitation in valid response times in a wide range of applications, including environmental monitoring, military applications or hazard and threat assessment/tracking (including wildland fire detection, oil spill mapping and chemical and biological standoff detection). Field programmable gate arrays (FPGAs) are hardware components with millions of gates. Their reprogrammability and high computational power makes them particularly attractive in remote sensing applications which require a response in near real-time. In this paper, we present an FPGA design for implementation of PPI algorithm which takes advantage of a recently developed fast PPI (FPPI) algorithm that relies on software-based optimization. The proposed FPGA design represents our first step toward the development of a new reconfigurable system for fast, onboard analysis of remotely sensed hyperspectral imagery.
NASA Astrophysics Data System (ADS)
Ki, Dae Wook; Kim, Jae Ho
2013-07-01
We propose a fast new multiple run_before decoding method in context-adaptive variable length coding (CAVLC). The transform coefficients are coded using CAVLC, in which the run_before symbols are generated for a 4×4 block input. To speed up the CAVLC decoding, the run_before symbols need to be decoded in parallel. We implemented a new CAVLC table for simultaneous decoding of up to three run_befores. The simulation results show a Total Speed-up Factor of 205%˜144% over various resolutions and quantization steps.
Huang, Christina Y.; Bassett, Mary T.; Silver, Lynn D.
2010-01-01
Objectives. We assessed consumer awareness of menu calorie information at fast-food chains after the introduction of New York City's health code regulation requiring these chains to display food-item calories on menus and menu boards. Methods. At 45 restaurants representing the 15 largest fast-food chains in the city, we conducted cross-sectional surveys 3 months before and 3 months after enforcement began. At both time points, customers were asked if they had seen calorie information and, if so, whether it had affected their purchase. Data were weighted to the number of city locations for each chain. Results. We collected 1188 surveys pre-enforcement and 1229 surveys postenforcement. Before enforcement, 25% of customers reported seeing calorie information; postenforcement, this figure rose to 64% (P < .001; 38% and 72%, weighted). Among customers who saw calorie information postenforcement, 27% said they used the information, which represents a 2-fold increase in the percentage of customers making calorie-informed choices (10% vs 20%, weighted; P < .001). Conclusions. Posting calorie information on menu boards increases the number of people who see and use this information. Since enforcement of New York's calorie labeling regulation began, approximately 1 million New York adults have seen calorie information each day. PMID:20966367
NASA Technical Reports Server (NTRS)
Farhat, Nabil H.
1987-01-01
Self-organization and learning is a distinctive feature of neural nets and processors that sets them apart from conventional approaches to signal processing. It leads to self-programmability which alleviates the problem of programming complexity in artificial neural nets. In this paper architectures for partitioning an optoelectronic analog of a neural net into distinct layers with prescribed interconnectivity pattern to enable stochastic learning by simulated annealing in the context of a Boltzmann machine are presented. Stochastic learning is of interest because of its relevance to the role of noise in biological neural nets. Practical considerations and methodologies for appreciably accelerating stochastic learning in such a multilayered net are described. These include the use of parallel optical computing of the global energy of the net, the use of fast nonvolatile programmable spatial light modulators to realize fast plasticity, optical generation of random number arrays, and an adaptive noisy thresholding scheme that also makes stochastic learning more biologically plausible. The findings reported predict optoelectronic chips that can be used in the realization of optical learning machines.
Farhat, N H
1987-12-01
Self-organization and learning is a distinctive feature of neural nets and processors that sets them apart from conventional approaches to signal processing. It leads to self-programmability which alleviates the problem of programming complexity in artificial neural nets. In this paper architectures for partitioning an optoelectronic analog of a neural net into distinct layers with prescribed interconnectivity pattern to enable stochastic learning by simulated annealing in the context of a Boltzmann machine are presented. Stochastic learning is of interest because of its relevance to the role of noise in biological neural nets. Practical considerations and methodologies for appreciably accelerating stochastic learning in such a multilayered net are described. These include the use of parallel optical computing of the global energy of the net, the use of fast nonvolatile programmable spatial light modulators to realize fast plasticity, optical generation of random number arrays, and an adaptive noisy thresholding scheme that also makes stochastic learning more biologically plausible. The findings reported predict optoelectronic chips that can be used in the realization of optical learning machines.
Kemeny, Steven Frank; Clyne, Alisa Morss
2011-04-01
Fiber alignment plays a critical role in the structure and function of cells and tissues. While fiber alignment quantification is important to experimental analysis and several different methods for quantifying fiber alignment exist, many studies focus on qualitative rather than quantitative analysis perhaps due to the complexity of current fiber alignment methods. Speed and sensitivity were compared in edge detection and fast Fourier transform (FFT) for measuring actin fiber alignment in cells exposed to shear stress. While edge detection using matrix multiplication was consistently more sensitive than FFT, image processing time was significantly longer. However, when MATLAB functions were used to implement edge detection, MATLAB's efficient element-by-element calculations and fast filtering techniques reduced computation cost 100 times compared to the matrix multiplication edge detection method. The new computation time was comparable to the FFT method, and MATLAB edge detection produced well-distributed fiber angle distributions that statistically distinguished aligned and unaligned fibers in half as many sample images. When the FFT sensitivity was improved by dividing images into smaller subsections, processing time grew larger than the time required for MATLAB edge detection. Implementation of edge detection in MATLAB is simpler, faster, and more sensitive than FFT for fiber alignment quantification.
Namba, Alexa; Leonberg, Beth L.; Wootan, Margo G.
2013-01-01
Introduction Since 2008, several states and municipalities have implemented regulations requiring provision of nutrition information at chain restaurants to address obesity. Although early research into the effect of such labels on consumer decisions has shown mixed results, little information exists on the restaurant industry’s response to labeling. The objective of this exploratory study was to evaluate the effect of menu labeling on fast-food menu offerings over 7 years, from 2005 through 2011. Methods Menus from 5 fast-food chains that had outlets in jurisdictions subject to menu-labeling laws (cases) were compared with menus from 4 fast-food chains operating in jurisdictions not requiring labeling (controls). A trend analysis assessed whether case restaurants improved the healthfulness of their menus relative to the control restaurants. Results Although the overall prevalence of “healthier” food options remained low, a noteworthy increase was seen after 2008 in locations with menu-labeling laws relative to those without such laws. Healthier food options increased from 13% to 20% at case locations while remaining static at 8% at control locations (test for difference in the trend, P = .02). Since 2005, the average calories for an à la carte entrée remained moderately high (approximately 450 kilocalories), with less than 25% of all entrées and sides qualifying as healthier and no clear systematic differences in the trend between chain restaurants in case versus control areas (P ≥ .50). Conclusion These findings suggest that menu labeling has thus far not affected the average nutritional content of fast-food menu items, but it may motivate restaurants to increase the availability of healthier options. PMID:23786908
Thomas, David L.; Vita, Enrico De; Roberts, Steven; Turner, Robert; Yousry, Tarek A.; Ordidge, Roger J.
2007-01-01
In this work, a number of important issues associated with fast spin echo (FSE) imaging of the human brain at 4.7 T are addressed. It is shown that FSE enables the acquisition of images with high resolution and good tissue contrast throughout the brain at high field strength. By employing an echo spacing (ES) of 22 ms, one can use large flip angle refocusing pulses (162°) and a low acquisition bandwidth (50 kHz) to maximize the signal-to-noise ratio (SNR). A new method of phase encode (PE) ordering (called “feathering”) designed to reduce image artifacts is described, and the contributions of RF (B1) inhomogeneity, different echo coherence pathways, and magnetization transfer (MT) to FSE signal intensity and contrast are investigated. B1 inhomogeneity is measured and its effect is shown to be relatively minor for high-field FSE, due to the self-compensating characteristics of the sequence. Thirty-four slice data sets (slice thickness = 2 mm; in-plane resolution = 0.469 mm; acquisition time = 11 min 20 s) from normal volunteers are presented, which allow visualization of brain anatomy in fine detail. This study demonstrates that high-field FSE produces images of the human brain with high spatial resolution, SNR, and tissue contrast, within currently prescribed power deposition guidelines. Magn Reson Med 51:1254-1264, 2004. PMID:15170847
NASA Technical Reports Server (NTRS)
Saracino, G.; Greenberg, N. L.; Shiota, T.; Corsi, C.; Lamberti, C.; Thomas, J. D.
2002-01-01
Real-time three-dimensional echocardiography (RT3DE) is an innovative cardiac imaging modality. However, partly due to lack of user-friendly software, RT3DE has not been widely accepted as a clinical tool. The object of this study was to develop and implement a fast and interactive volume renderer of RT3DE datasets designed for a clinical environment where speed and simplicity are not secondary to accuracy. Thirty-six patients (20 regurgitation, 8 normal, 8 cardiomyopathy) were imaged using RT3DE. Using our newly developed software, all 3D data sets were rendered in real-time throughout the cardiac cycle and assessment of cardiac function and pathology was performed for each case. The real-time interactive volume visualization system is user friendly and instantly provides consistent and reliable 3D images without expensive workstations or dedicated hardware. We believe that this novel tool can be used clinically for dynamic visualization of cardiac anatomy.
Guerra, Nancy G; Knox, Lyndee
2008-06-01
We consider how culture impacts the translation of research into practice, focusing on the culture of the client and the culture of the agency implementing selected programs. We build on lessons learned from a pilot study of an evidence-based family-school partnership, Families and Schools Together (FAST), to prevent youth violence with low-income, immigrant Latino families in Southern California. We examine the impact of cultural characteristics on the translation of this innovation into practice at the community level, relying on an interactive systems framework developed recently by Wandersman and colleagues (2008, American Journal of Community Psychology, 41(3-4), in press) discussed in this issue. As we point out, the culture of the client and the culture of the agency can facilitate or impede connections within and across these interactive systems.
NASA Astrophysics Data System (ADS)
de Lorenzi, Flavio; Debattista, Victor P.; Gerhard, Ortwin; Sambhus, Niranjan
2007-03-01
We describe a made-to-measure (M2M) algorithm for constructing N-particle models of stellar systems from observational data (χ2M2M), extending earlier ideas by Syer & Tremaine. The algorithm properly accounts for observational errors, is flexible, and can be applied to various systems and geometries. We implement this algorithm in a parallel code NMAGIC and carry out a sequence of tests to illustrate its power and performance. (i) We reconstruct an isotropic Hernquist model from density moments and projected kinematics and recover the correct differential energy distribution and intrinsic kinematics. (ii) We build a self-consistent oblate three-integral maximum rotator model and compare how the distribution function is recovered from integral field and slit kinematic data. (iii) We create a non-rotating and a figure rotating triaxial stellar particle model, reproduce the projected kinematics of the figure rotating system by a non-rotating system of the same intrinsic shape, and illustrate the signature of pattern rotation in this model. From these tests, we comment on the dependence of the results from χ2M2M on the initial model, the geometry, and the amount of available data.
Grey Ballard, Austin Benson
2014-11-26
This software provides implementations of fast matrix multiplication algorithms. These algorithms perform fewer floating point operations than the classical cubic algorithm. The software uses code generation to automatically implement the fast algorithms based on high-level descriptions. The code serves two general purposes. The first is to demonstrate that these fast algorithms can out-perform vendor matrix multiplication algorithms for modest problem sizes on a single machine. The second is to rapidly prototype many variations of fast matrix multiplication algorithms to encourage future research in this area. The implementations target sequential and shared memory parallel execution.
2014-11-26
This software provides implementations of fast matrix multiplication algorithms. These algorithms perform fewer floating point operations than the classical cubic algorithm. The software uses code generation to automatically implement the fast algorithms based on high-level descriptions. The code serves two general purposes. The first is to demonstrate that these fast algorithms can out-perform vendor matrix multiplication algorithms for modest problem sizes on a single machine. The second is to rapidly prototype many variations of fastmore » matrix multiplication algorithms to encourage future research in this area. The implementations target sequential and shared memory parallel execution.« less
O'Brien, Travis A.; Kashinath, Karthik
2015-05-22
This software implements the fast, self-consistent probability density estimation described by O'Brien et al. (2014, doi: ). It uses a non-uniform fast Fourier transform technique to reduce the computational cost of an objective and self-consistent kernel density estimation method.
NASA Astrophysics Data System (ADS)
Vilardy, Juan M.; Giacometto, F.; Torres, C. O.; Mattos, L.
2011-01-01
The two-dimensional Fast Fourier Transform (FFT 2D) is an essential tool in the two-dimensional discrete signals analysis and processing, which allows developing a large number of applications. This article shows the description and synthesis in VHDL code of the FFT 2D with fixed point binary representation using the programming tool Simulink HDL Coder of Matlab; showing a quick and easy way to handle overflow, underflow and the creation registers, adders and multipliers of complex data in VHDL and as well as the generation of test bench for verification of the codes generated in the ModelSim tool. The main objective of development of the hardware architecture of the FFT 2D focuses on the subsequent completion of the following operations applied to images: frequency filtering, convolution and correlation. The description and synthesis of the hardware architecture uses the XC3S1200E family Spartan 3E FPGA from Xilinx Manufacturer.
Dutta, Abhijit; Schaidle, Joshua A.; Humbird, David; Baddour, Frederick G.; Sahir, Asad
2015-10-06
Ex situ catalytic fast pyrolysis of biomass is a promising route for the production of fungible liquid biofuels. There is significant ongoing research on the design and development of catalysts for this process. However, there are a limited number of studies investigating process configurations and their effects on biorefinery economics. Herein we present a conceptual process design with techno-economic assessment; it includes the production of upgraded bio-oil via fixed bed ex situ catalytic fast pyrolysis followed by final hydroprocessing to hydrocarbon fuel blendstocks. This study builds upon previous work using fluidized bed systems, as detailed in a recent design reportmore » led by the National Renewable Energy Laboratory (NREL/TP-5100-62455); overall yields are assumed to be similar, and are based on enabling future feasibility. Assuming similar yields provides a basis for easy comparison and for studying the impacts of areas of focus in this study, namely, fixed bed reactor configurations and their catalyst development requirements, and the impacts of an inline hot gas filter. A comparison with the fluidized bed system shows that there is potential for higher capital costs and lower catalyst costs in the fixed bed system, leading to comparable overall costs. The key catalyst requirement is to enable the effective transformation of highly oxygenated biomass into hydrocarbons products with properties suitable for blending into current fuels. Potential catalyst materials are discussed, along with their suitability for deoxygenation, hydrogenation and C–C coupling chemistry. This chemistry is necessary during pyrolysis vapor upgrading for improved bio-oil quality, which enables efficient downstream hydroprocessing; C–C coupling helps increase the proportion of diesel/jet fuel range product. One potential benefit of fixed bed upgrading over fluidized bed upgrading is catalyst flexibility, providing greater control over chemistry and product composition
Dutta, Abhijit; Schaidle, Joshua A.; Humbird, David; Baddour, Frederick G.; Sahir, Asad
2015-10-06
Ex situ catalytic fast pyrolysis of biomass is a promising route for the production of fungible liquid biofuels. There is significant ongoing research on the design and development of catalysts for this process. However, there are a limited number of studies investigating process configurations and their effects on biorefinery economics. Herein we present a conceptual process design with techno-economic assessment; it includes the production of upgraded bio-oil via fixed bed ex situ catalytic fast pyrolysis followed by final hydroprocessing to hydrocarbon fuel blendstocks. This study builds upon previous work using fluidized bed systems, as detailed in a recent design report led by the National Renewable Energy Laboratory (NREL/TP-5100-62455); overall yields are assumed to be similar, and are based on enabling future feasibility. Assuming similar yields provides a basis for easy comparison and for studying the impacts of areas of focus in this study, namely, fixed bed reactor configurations and their catalyst development requirements, and the impacts of an inline hot gas filter. A comparison with the fluidized bed system shows that there is potential for higher capital costs and lower catalyst costs in the fixed bed system, leading to comparable overall costs. The key catalyst requirement is to enable the effective transformation of highly oxygenated biomass into hydrocarbons products with properties suitable for blending into current fuels. Potential catalyst materials are discussed, along with their suitability for deoxygenation, hydrogenation and C–C coupling chemistry. This chemistry is necessary during pyrolysis vapor upgrading for improved bio-oil quality, which enables efficient downstream hydroprocessing; C–C coupling helps increase the proportion of diesel/jet fuel range product. One potential benefit of fixed bed upgrading over fluidized bed upgrading is catalyst flexibility, providing greater control over chemistry and product composition. Since this
Li, Shengtai; Li, Hui
2012-06-14
We develop a 3D simulation code for interaction between the proto-planetary disk and embedded proto-planets. The protoplanetary disk is treated as a three-dimensional (3D), self-gravitating gas whose motion is described by the locally isothermal Navier-Stokes equations in a spherical coordinate centered on the star. The differential equations for the disk are similar to those given in Kley et al. (2009) with a different gravitational potential that is defined in Nelson et al. (2000). The equations are solved by directional split Godunov method for the inviscid Euler equations plus operator-split method for the viscous source terms. We use a sub-cycling technique for the azimuthal sweep to alleviate the time step restriction. We also extend the FARGO scheme of Masset (2000) and modified in Li et al. (2001) to our 3D code to accelerate the transport in the azimuthal direction. Furthermore, we have implemented a reduced 2D (r, {theta}) and a fully 3D self-gravity solver on our uniform disk grid, which extends our 2D method (Li, Buoni, & Li 2008) to 3D. This solver uses a mode cut-off strategy and combines FFT in the azimuthal direction and direct summation in the radial and meridional direction. An initial axis-symmetric equilibrium disk is generated via iteration between the disk density profile and the 2D disk-self-gravity. We do not need any softening in the disk self-gravity calculation as we have used a shifted grid method (Li et al. 2008) to calculate the potential. The motion of the planet is limited on the mid-plane and the equations are the same as given in D'Angelo et al. (2005), which we adapted to the polar coordinates with a fourth-order Runge-Kutta solver. The disk gravitational force on the planet is assumed to evolve linearly with time between two hydrodynamics time steps. The Planetary potential acting on the disk is calculated accurately with a small softening given by a cubic-spline form (Kley et al. 2009). Since the torque is extremely sensitive to
Van Dyke, William J.
1992-01-01
A fast valve is disclosed that can close on the order of 7 milliseconds. It is closed by the force of a compressed air spring with the moving parts of the valve designed to be of very light weight and the valve gate being of wedge shaped with O-ring sealed faces to provide sealing contact without metal to metal contact. The combination of the O-ring seal and an air cushion create a soft final movement of the valve closure to prevent the fast air acting valve from having a harsh closing.
Van Dyke, W.J.
1992-04-07
A fast valve is disclosed that can close on the order of 7 milliseconds. It is closed by the force of a compressed air spring with the moving parts of the valve designed to be of very light weight and the valve gate being of wedge shaped with O-ring sealed faces to provide sealing contact without metal to metal contact. The combination of the O-ring seal and an air cushion create a soft final movement of the valve closure to prevent the fast air acting valve from having a harsh closing. 4 figs.
Novel fast multiplier implemented using FPGA
NASA Astrophysics Data System (ADS)
Jabłoński, Janusz; Wegrzyn, Marek
2015-09-01
In the paper, the solution dedicated for FPGA devices of a synthesis of parallel multiplication systems with the alternative approach, called mutual exclusion, for results of partial products is presented. There are proposed a reducer with the factor 4:2 for parallel multipliers, based on Wallace tree structures, that are dedicated for 4-input and 1-output Look-Up Table (LUT) function generator used in FPGA devices. The elaboration refers to the solution for multiplying using FPGAs the numbers of 4 and 8 bits. However it can be enlarged up to 16 and 32 bits. The proposed solution gives the opportunity to use the probability of conditional significant partial products and faster service - fewer logic levels for special cases of multiplication related to the specific values of the sums of partial product bits.
NASA Astrophysics Data System (ADS)
Ghosh, Sanjay; Chaudhury, Kunal N.
2016-03-01
We propose a simple and fast algorithm called PatchLift for computing distances between patches (contiguous block of samples) extracted from a given one-dimensional signal. PatchLift is based on the observation that the patch distances can be efficiently computed from a matrix that is derived from the one-dimensional signal using lifting; importantly, the number of operations required to compute the patch distances using this approach does not scale with the patch length. We next demonstrate how PatchLift can be used for patch-based denoising of images corrupted with Gaussian noise. In particular, we propose a separable formulation of the classical nonlocal means (NLM) algorithm that can be implemented using PatchLift. We demonstrate that the PatchLift-based implementation of separable NLM is a few orders faster than standard NLM and is competitive with existing fast implementations of NLM. Moreover, its denoising performance is shown to be consistently superior to that of NLM and some of its variants, both in terms of peak signal-to-noise ratio/structural similarity index and visual quality.
MontePython: Implementing Quantum Monte Carlo using Python
NASA Astrophysics Data System (ADS)
Nilsen, Jon Kristian
2007-11-01
We present a cross-language C++/Python program for simulations of quantum mechanical systems with the use of Quantum Monte Carlo (QMC) methods. We describe a system for which to apply QMC, the algorithms of variational Monte Carlo and diffusion Monte Carlo and we describe how to implement theses methods in pure C++ and C++/Python. Furthermore we check the efficiency of the implementations in serial and parallel cases to show that the overhead using Python can be negligible. Program summaryProgram title: MontePython Catalogue identifier: ADZP_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADZP_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 49 519 No. of bytes in distributed program, including test data, etc.: 114 484 Distribution format: tar.gz Programming language: C++, Python Computer: PC, IBM RS6000/320, HP, ALPHA Operating system: LINUX Has the code been vectorised or parallelized?: Yes, parallelized with MPI Number of processors used: 1-96 RAM: Depends on physical system to be simulated Classification: 7.6; 16.1 Nature of problem: Investigating ab initio quantum mechanical systems, specifically Bose-Einstein condensation in dilute gases of 87Rb Solution method: Quantum Monte Carlo Running time: 225 min with 20 particles (with 4800 walkers moved in 1750 time steps) on 1 AMD Opteron TM Processor 2218 processor; Production run for, e.g., 200 particles takes around 24 hours on 32 such processors.
NASA Technical Reports Server (NTRS)
Bishop, Matt
1988-01-01
The organization of some tools to help improve passwork security at a UNIX-based site is described along with how to install and use them. These tools and their associated library enable a site to force users to pick reasonably safe passwords (safe being site configurable) and to enable site management to try to crack existing passworks. The library contains various versions of a very fast implementation of the Data Encryption Standard and of the one-way encryption functions used to encryp the password.
A fast neighbor joining method.
Li, J F
2015-01-01
With the rapid development of sequencing technologies, an increasing number of sequences are available for evolutionary tree reconstruction. Although neighbor joining is regarded as the most popular and fastest evolutionary tree reconstruction method [its time complexity is O(n(3)), where n is the number of sequences], it is not sufficiently fast to infer evolutionary trees containing more than a few hundred sequences. To increase the speed of neighbor joining, we herein propose FastNJ, a fast implementation of neighbor joining, which was motivated by RNJ and FastJoin, two improved versions of conventional neighbor joining. The main difference between FastNJ and conventional neighbor joining is that, in the former, many pairs of nodes selected by the rule used in RNJ are joined in each iteration. In theory, the time complexity of FastNJ can reach O(n(2)) in the best cases. Experimental results show that FastNJ yields a significant increase in speed compared to RNJ and conventional neighbor joining with a minimal loss of accuracy. PMID:26345805
FAST: FAST Analysis of Sequences Toolbox
Lawrence, Travis J.; Kauffman, Kyle T.; Amrine, Katherine C. H.; Carper, Dana L.; Lee, Raymond S.; Becich, Peter J.; Canales, Claudia J.; Ardell, David H.
2015-01-01
FAST (FAST Analysis of Sequences Toolbox) provides simple, powerful open source command-line tools to filter, transform, annotate and analyze biological sequence data. Modeled after the GNU (GNU's Not Unix) Textutils such as grep, cut, and tr, FAST tools such as fasgrep, fascut, and fastr make it easy to rapidly prototype expressive bioinformatic workflows in a compact and generic command vocabulary. Compact combinatorial encoding of data workflows with FAST commands can simplify the documentation and reproducibility of bioinformatic protocols, supporting better transparency in biological data science. Interface self-consistency and conformity with conventions of GNU, Matlab, Perl, BioPerl, R, and GenBank help make FAST easy and rewarding to learn. FAST automates numerical, taxonomic, and text-based sorting, selection and transformation of sequence records and alignment sites based on content, index ranges, descriptive tags, annotated features, and in-line calculated analytics, including composition and codon usage. Automated content- and feature-based extraction of sites and support for molecular population genetic statistics make FAST useful for molecular evolutionary analysis. FAST is portable, easy to install and secure thanks to the relative maturity of its Perl and BioPerl foundations, with stable releases posted to CPAN. Development as well as a publicly accessible Cookbook and Wiki are available on the FAST GitHub repository at https://github.com/tlawrence3/FAST. The default data exchange format in FAST is Multi-FastA (specifically, a restriction of BioPerl FastA format). Sanger and Illumina 1.8+ FastQ formatted files are also supported. FAST makes it easier for non-programmer biologists to interactively investigate and control biological data at the speed of thought. PMID:26042145
FAST: FAST Analysis of Sequences Toolbox.
Lawrence, Travis J; Kauffman, Kyle T; Amrine, Katherine C H; Carper, Dana L; Lee, Raymond S; Becich, Peter J; Canales, Claudia J; Ardell, David H
2015-01-01
FAST (FAST Analysis of Sequences Toolbox) provides simple, powerful open source command-line tools to filter, transform, annotate and analyze biological sequence data. Modeled after the GNU (GNU's Not Unix) Textutils such as grep, cut, and tr, FAST tools such as fasgrep, fascut, and fastr make it easy to rapidly prototype expressive bioinformatic workflows in a compact and generic command vocabulary. Compact combinatorial encoding of data workflows with FAST commands can simplify the documentation and reproducibility of bioinformatic protocols, supporting better transparency in biological data science. Interface self-consistency and conformity with conventions of GNU, Matlab, Perl, BioPerl, R, and GenBank help make FAST easy and rewarding to learn. FAST automates numerical, taxonomic, and text-based sorting, selection and transformation of sequence records and alignment sites based on content, index ranges, descriptive tags, annotated features, and in-line calculated analytics, including composition and codon usage. Automated content- and feature-based extraction of sites and support for molecular population genetic statistics make FAST useful for molecular evolutionary analysis. FAST is portable, easy to install and secure thanks to the relative maturity of its Perl and BioPerl foundations, with stable releases posted to CPAN. Development as well as a publicly accessible Cookbook and Wiki are available on the FAST GitHub repository at https://github.com/tlawrence3/FAST. The default data exchange format in FAST is Multi-FastA (specifically, a restriction of BioPerl FastA format). Sanger and Illumina 1.8+ FastQ formatted files are also supported. FAST makes it easier for non-programmer biologists to interactively investigate and control biological data at the speed of thought.
Fast and practical parallel polynomial interpolation
Egecioglu, O.; Gallopoulos, E.; Koc, C.K.
1987-01-01
We present fast and practical parallel algorithms for the computation and evaluation of interpolating polynomials. The algorithms make use of fast parallel prefix techniques for the calculation of divided differences in the Newton representation of the interpolating polynomial. For n + 1 given input pairs the proposed interpolation algorithm requires 2 (log (n + 1)) + 2 parallel arithmetic steps and circuit size O(n/sup 2/). The algorithms are numerically stable and their floating-point implementation results in error accumulation similar to that of the widely used serial algorithms. This is in contrast to other fast serial and parallel interpolation algorithms which are subject to much larger roundoff. We demonstrate that in a distributed memory environment context, a cube connected system is very suitable for the algorithms' implementation, exhibiting very small communication cost. As further advantages we note that our techniques do not require equidistant points, preconditioning, or use of the Fast Fourier Transform. 21 refs., 4 figs.
Fernández-Carrión, E; Ivorra, B; Martínez-López, B; Ramos, A M; Sánchez-Vizcaíno, J M
2016-04-01
Be-FAST is a computer program based on a time-spatial stochastic spread mathematical model for studying the transmission of infectious livestock diseases within and between farms. The present work describes a new module integrated into Be-FAST to model the economic consequences of the spreading of classical swine fever (CSF) and other infectious livestock diseases within and between farms. CSF is financially one of the most damaging diseases in the swine industry worldwide. Specifically in Spain, the economic costs in the two last CSF epidemics (1997 and 2001) reached jointly more than 108 million euros. The present analysis suggests that severe CSF epidemics are associated with significant economic costs, approximately 80% of which are related to animal culling. Direct costs associated with control measures are strongly associated with the number of infected farms, while indirect costs are more strongly associated with epidemic duration. The economic model has been validated with economic information around the last outbreaks in Spain. These results suggest that our economic module may be useful for analysing and predicting economic consequences of livestock disease epidemics. PMID:26875754
Enhanced Model for Fast Ignition
Mason, Rodney J.
2010-10-12
Laser Fusion is a prime candidate for alternate energy production, capable of serving a major portion of the nation's energy needs, once fusion fuel can be readily ignited. Fast Ignition may well speed achievement of this goal, by reducing net demands on laser pulse energy and timing precision. However, Fast Ignition has presented a major challenge to modeling. This project has enhanced the computer code ePLAS for the simulation of the many specialized phenomena, which arise with Fast Ignition. The improved code has helped researchers to understand better the consequences of laser absorption, energy transport, and laser target hydrodynamics. ePLAS uses efficient implicit methods to acquire solutions for the electromagnetic fields that govern the accelerations of electrons and ions in targets. In many cases, the code implements fluid modeling for these components. These combined features, "implicitness and fluid modeling," can greatly facilitate calculations, permitting the rapid scoping and evaluation of experiments. ePLAS can be used on PCs, Macs and Linux machines, providing researchers and students with rapid results. This project has improved the treatment of electromagnetics, hydrodynamics, and atomic physics in the code. It has simplified output graphics, and provided new input that avoids the need for source code access by users. The improved code can now aid university, business and national laboratory users in pursuit of an early path to success with Fast Ignition.
... challenge to eat healthy when going to a fast food place. In general, avoiding items that are deep ... challenge to eat healthy when going to a fast food place. In general, avoiding items that are deep ...
Fast foods are quick, reasonably priced, and readily available alternatives to home cooking. While convenient and economical for a busy lifestyle, fast foods are typically high in calories, fat, saturated fat, ...
NASA Technical Reports Server (NTRS)
Steele, G. L., Jr.
1977-01-01
MacLISP provides a compiler which produces numerical code competitive in speed with some FORTRAN implementations and yet compatible with the rest of the MacLISP system. All numerical programs can be run under the MacLISP interpreter. Additional declarations to the compiler specify type information which allows the generation of optimized numerical code which generally does not require the garbage collection of temporary numerical results. Array accesses are almost as fast as in FORTRAN, and permit the use of dynamically allocated arrays of varying dimensions. The implementation decisions regarding user interface, data representations, and interfacing conventions are discussed which allow the generation of fast numerical LISP code.
Garber, Andrea K; Lustig, Robert H
2011-09-01
Studies of food addiction have focused on highly palatable foods. While fast food falls squarely into that category, it has several other attributes that may increase its salience. This review examines whether the nutrients present in fast food, the characteristics of fast food consumers or the presentation and packaging of fast food may encourage substance dependence, as defined by the American Psychiatric Association. The majority of fast food meals are accompanied by a soda, which increases the sugar content 10-fold. Sugar addiction, including tolerance and withdrawal, has been demonstrated in rodents but not humans. Caffeine is a "model" substance of dependence; coffee drinks are driving the recent increase in fast food sales. Limited evidence suggests that the high fat and salt content of fast food may increase addictive potential. Fast food restaurants cluster in poorer neighborhoods and obese adults eat more fast food than those who are normal weight. Obesity is characterized by resistance to insulin, leptin and other hormonal signals that would normally control appetite and limit reward. Neuroimaging studies in obese subjects provide evidence of altered reward and tolerance. Once obese, many individuals meet criteria for psychological dependence. Stress and dieting may sensitize an individual to reward. Finally, fast food advertisements, restaurants and menus all provide environmental cues that may trigger addictive overeating. While the concept of fast food addiction remains to be proven, these findings support the role of fast food as a potentially addictive substance that is most likely to create dependence in vulnerable populations.
Garber, Andrea K; Lustig, Robert H
2011-09-01
Studies of food addiction have focused on highly palatable foods. While fast food falls squarely into that category, it has several other attributes that may increase its salience. This review examines whether the nutrients present in fast food, the characteristics of fast food consumers or the presentation and packaging of fast food may encourage substance dependence, as defined by the American Psychiatric Association. The majority of fast food meals are accompanied by a soda, which increases the sugar content 10-fold. Sugar addiction, including tolerance and withdrawal, has been demonstrated in rodents but not humans. Caffeine is a "model" substance of dependence; coffee drinks are driving the recent increase in fast food sales. Limited evidence suggests that the high fat and salt content of fast food may increase addictive potential. Fast food restaurants cluster in poorer neighborhoods and obese adults eat more fast food than those who are normal weight. Obesity is characterized by resistance to insulin, leptin and other hormonal signals that would normally control appetite and limit reward. Neuroimaging studies in obese subjects provide evidence of altered reward and tolerance. Once obese, many individuals meet criteria for psychological dependence. Stress and dieting may sensitize an individual to reward. Finally, fast food advertisements, restaurants and menus all provide environmental cues that may trigger addictive overeating. While the concept of fast food addiction remains to be proven, these findings support the role of fast food as a potentially addictive substance that is most likely to create dependence in vulnerable populations. PMID:21999689
Sampath, Rahul S; Sundar, Hari; Veerapaneni, Shravan
2010-01-01
We present fast adaptive parallel algorithms to compute the sum of N Gaussians at N points. Direct sequential computation of this sum would take O(N{sup 2}) time. The parallel time complexity estimates for our algorithms are O(N/n{sub p}) for uniform point distributions and O( (N/n{sub p}) log (N/n{sub p}) + n{sub p}log n{sub p}) for non-uniform distributions using n{sub p} CPUs. We incorporate a plane-wave representation of the Gaussian kernel which permits 'diagonal translation'. We use parallel octrees and a new scheme for translating the plane-waves to efficiently handle non-uniform distributions. Computing the transform to six-digit accuracy at 120 billion points took approximately 140 seconds using 4096 cores on the Jaguar supercomputer. Our implementation is 'kernel-independent' and can handle other 'Gaussian-type' kernels even when explicit analytic expression for the kernel is not known. These algorithms form a new class of core computational machinery for solving parabolic PDEs on massively parallel architectures.
Rice, S; McAllister, E J; Dhurandhar, N V
2007-06-01
Fast food is routinely blamed for the obesity epidemic and consequentially excluded from professional dietary recommendations. However, several sections of society including senior citizens, low-income adult and children, minority and homeless children, or those pressed for time appear to rely on fast food as an important source of meals. Considering the dependence of these nutritionally vulnerable population groups on fast food, we examined the possibility of imaginative selection of fast food, which would attenuate the potentially unfavorable nutrient composition. We present a sample menu to demonstrate that it is possible to design a fast food menu that provides reasonable level of essential nutrients without exceeding the caloric recommendations. We would like to alert health-care professionals that fast food need not be forbidden under all circumstances, and that a fresh look at the role of fast food may enable its inclusion in meal planning for those who depend on it out of necessity, while adding flexibility.
NASA Technical Reports Server (NTRS)
Walatka, Pamela P.; Clucas, Jean; McCabe, R. Kevin; Plessel, Todd; Potter, R.; Cooper, D. M. (Technical Monitor)
1994-01-01
The Flow Analysis Software Toolkit, FAST, is a software environment for visualizing data. FAST is a collection of separate programs (modules) that run simultaneously and allow the user to examine the results of numerical and experimental simulations. The user can load data files, perform calculations on the data, visualize the results of these calculations, construct scenes of 3D graphical objects, and plot, animate and record the scenes. Computational Fluid Dynamics (CFD) visualization is the primary intended use of FAST, but FAST can also assist in the analysis of other types of data. FAST combines the capabilities of such programs as PLOT3D, RIP, SURF, and GAS into one environment with modules that share data. Sharing data between modules eliminates the drudgery of transferring data between programs. All the modules in the FAST environment have a consistent, highly interactive graphical user interface. Most commands are entered by pointing and'clicking. The modular construction of FAST makes it flexible and extensible. The environment can be custom configured and new modules can be developed and added as needed. The following modules have been developed for FAST: VIEWER, FILE IO, CALCULATOR, SURFER, TOPOLOGY, PLOTTER, TITLER, TRACER, ARCGRAPH, GQ, SURFERU, SHOTET, and ISOLEVU. A utility is also included to make the inclusion of user defined modules in the FAST environment easy. The VIEWER module is the central control for the FAST environment. From VIEWER, the user can-change object attributes, interactively position objects in three-dimensional space, define and save scenes, create animations, spawn new FAST modules, add additional view windows, and save and execute command scripts. The FAST User Guide uses text and FAST MAPS (graphical representations of the entire user interface) to guide the user through the use of FAST. Chapters include: Maps, Overview, Tips, Getting Started Tutorial, a separate chapter for each module, file formats, and system
ERIC Educational Resources Information Center
Trochim, William M. K.
Investigated is the topic of research implementation and how it can affect evaluation results. Even when evaluations are well planned, the obtained results can be misleading if the conscientiously-constructed research plan is not correctly implemented in practice. In virtually every research arena, one finds major difficulties in implementing the…
Fast ignition of inertial confinement fusion targets
Gus'kov, S. Yu.
2013-01-15
Results of studies on fast ignition of inertial confinement fusion (ICF) targets are reviewed. The aspects of the fast ignition concept, which consists in the separation of the processes of target ignition and compression due to the synchronized action of different energy drivers, are considered. Criteria for the compression ratio and heating rate of a fast ignition target, the energy balance, and the thermonuclear gain are discussed. The results of experimental and theoretical studies of the heating of a compressed target by various types of igniting drivers, namely, beams of fast electrons and light ions produced under the action of a petawatt laser pulse on the target, a heavy-ion beam generated in the accelerator, an X-ray pulse, and a hydrodynamic flow of laser-accelerated matter, are analyzed. Requirements to the igniting-driver parameters that depend on the fast ignition criteria under the conditions of specific target heating mechanisms, as well as possibilities of practical implementation of these requirements, are discussed. The experimental programs of various laboratories and the prospects of practical implementation of fast ignition of ICF targets are reviewed. To date, fast ignition is the most promising method for decreasing the ignition energy and increasing the thermonuclear gain of an ICF plasma. A large number of publications have been devoted to investigations of this method and adjacent problems of the physics of igniting drivers and their interaction with plasma. This review presents results of only some of these studies that, in the author's opinion, allow one to discuss in detail the main physical aspects of the fast ignition concept and understand the current state and prospects of studies in this direction.
Fitch, Alistair J; Kadyrov, Alexander; Christmas, William J; Kittler, Josef
2005-08-01
A new, fast, statistically robust, exhaustive, translational image-matching technique is presented: fast robust correlation. Existing methods are either slow or non-robust, or rely on optimization. Fast robust correlation works by expressing a robust matching surface as a series of correlations. Speed is obtained by computing correlations in the frequency domain. Computational cost is analyzed and the method is shown to be fast. Speed is comparable to conventional correlation and, for large images, thousands of times faster than direct robust matching. Three experiments demonstrate the advantage of the technique over standard correlation.
Minati, Ludovico; Zacà, Domenico; D'Incerti, Ludovico; Jovicich, Jorge
2014-09-01
An outstanding issue in graph-based analysis of resting-state functional MRI is choice of network nodes. Individual consideration of entire brain voxels may represent a less biased approach than parcellating the cortex according to pre-determined atlases, but entails establishing connectedness for 1(9)-1(11) links, with often prohibitive computational cost. Using a representative Human Connectome Project dataset, we show that, following appropriate time-series normalization, it may be possible to accelerate connectivity determination replacing Pearson correlation with l1-norm. Even though the adjacency matrices derived from correlation coefficients and l1-norms are not identical, their similarity is high. Further, we describe and provide in full an example vector hardware implementation of l1-norm on an array of 4096 zero instruction-set processors. Calculation times <1000 s are attainable, removing the major deterrent to voxel-based resting-sate network mapping and revealing fine-grained node degree heterogeneity. L1-norm should be given consideration as a substitute for correlation in very high-density resting-state functional connectivity analyses. PMID:25023958
Gavrankapetanović, F
1997-01-01
Fasting (arabic-savm) was proclaimed through islam, and thus it is an obligation for Holly Prophet Muhammad s.a.v.s.-Peace be to Him-in the second year after Hijra (in 624 after Milad-born of Isa a.s.). There is a month of fasting-Ramadan-each lunar (hijra) year. So, it was 1415th fasting this year. Former Prophets have brought obligative messages on fasting to their people; so there are also certain forms of fasting with other religions i.e. with Catholics, Jews, Orthodox. These kinds of fasting above differ from muslim fasting, but they also appear obligative. All revelations have brought fasting as obligative. From medical point of view, fasting has two basical components: psychical and physical. Psychical sphere correlate closely with its fundamental ideological message. Allah dz.s. says in Quran: "... Fasting is obligative for you, as it was obligative to your precedents, as to avoid sins; during very few days (II, II, 183 & 184)." Will strength, control of passions, effort and self-discipline makes a pure faithfull person, who purify its mind and body through fasting. Thinking about The Creator is more intensive, character is more solid; and spirit and will get stronger. We will mention the hadith saying: "Essaihune humus saimun!" That means: "Travellers at the Earth are fasters (of my ummet)." The commentary of this hadith, in the Collection of 1001 hadiths (Bin bir hadis), number 485, says: "There are no travelling dervishs or monks in islam; thus there is no such a kind of relligousity in islam. In stead, it is changed by fasting and constant attending of mosque. That was proclaimed as obligation, although there were few cases of travelling in the name of relligousity, like travelling dervishs and sheichs." In this paper, the author discusses medical aspects of fasting and its positive characteristics in the respect of healthy life style and prevention of many sicks. The author mentions positive influence of fasting to certain system and organs of human
Integrative Physiology of Fasting.
Secor, Stephen M; Carey, Hannah V
2016-04-01
Extended bouts of fasting are ingrained in the ecology of many organisms, characterizing aspects of reproduction, development, hibernation, estivation, migration, and infrequent feeding habits. The challenge of long fasting episodes is the need to maintain physiological homeostasis while relying solely on endogenous resources. To meet that challenge, animals utilize an integrated repertoire of behavioral, physiological, and biochemical responses that reduce metabolic rates, maintain tissue structure and function, and thus enhance survival. We have synthesized in this review the integrative physiological, morphological, and biochemical responses, and their stages, that characterize natural fasting bouts. Underlying the capacity to survive extended fasts are behaviors and mechanisms that reduce metabolic expenditure and shift the dependency to lipid utilization. Hormonal regulation and immune capacity are altered by fasting; hormones that trigger digestion, elevate metabolism, and support immune performance become depressed, whereas hormones that enhance the utilization of endogenous substrates are elevated. The negative energy budget that accompanies fasting leads to the loss of body mass as fat stores are depleted and tissues undergo atrophy (i.e., loss of mass). Absolute rates of body mass loss scale allometrically among vertebrates. Tissues and organs vary in the degree of atrophy and downregulation of function, depending on the degree to which they are used during the fast. Fasting affects the population dynamics and activities of the gut microbiota, an interplay that impacts the host's fasting biology. Fasting-induced gene expression programs underlie the broad spectrum of integrated physiological mechanisms responsible for an animal's ability to survive long episodes of natural fasting. PMID:27065168
Gelman, Hannah; Gruebele, Martin
2014-01-01
Fast folding proteins have been a major focus of computational and experimental study because they are accessible to both techniques: they are small and fast enough to be reasonably simulated with current computational power, but have dynamics slow enough to be observed with specially developed experimental techniques. This coupled study of fast folding proteins has provided insight into the mechanisms which allow some proteins to find their native conformation well less than 1 ms and has uncovered examples of theoretically predicted phenomena such as downhill folding. The study of fast folders also informs our understanding of even “slow” folding processes: fast folders are small, relatively simple protein domains and the principles that govern their folding also govern the folding of more complex systems. This review summarizes the major theoretical and experimental techniques used to study fast folding proteins and provides an overview of the major findings of fast folding research. Finally, we examine the themes that have emerged from studying fast folders and briefly summarize their application to protein folding in general as well as some work that is left to do. PMID:24641816
Trueland, Jennifer
2013-12-18
The 5.2 diet involves two days of fasting each week. It is being promoted as the key to sustained weight loss, as well as wider health benefits, despite the lack of evidence on the long-term effects. Nurses need to support patients who wish to try intermittent fasting. PMID:24345130
Clinical implementation of pharmacogenetics.
García-González, Xandra; Cabaleiro, Teresa; Herrero, María José; McLeod, Howard; López-Fernández, Luis A
2016-03-01
In the last decade, pharmacogenetic research has been performed in different fields. However, the application of pharmacogenetic findings to clinical practice has not been as fast as desirable. The current situation of clinical implementation of pharmacogenetics is discussed. This review focuses on the advances of pharmacogenomics to individualize cancer treatments, the relationship between pharmacogenetics and pharmacodynamics in the clinical course of transplant patients receiving a combination of immunosuppressive therapy, the needs and barriers facing pharmacogenetic clinical application, and the situation of pharmacogenetic testing in Spain. It is based on lectures presented by speakers of the Clinical Implementation of Pharmacogenetics Symposium at the VII Conference of the Spanish Pharmacogenetics and Pharmacogenomics Society, held in April 20, 2015. PMID:26751902
Van Devender, John P.; Emin, David
1986-01-01
A reusable fast opening switch for transferring energy, in the form of a high power pulse, from an electromagnetic storage device such as an inductor into a load. The switch is efficient, compact, fast and reusable. The switch comprises a ferromagnetic semiconductor which undergoes a fast transition between conductive and insulating states at a critical temperature and which undergoes the transition without a phase change in its crystal structure. A semiconductor such as europium rich europhous oxide, which undergoes a conductor to insulator transition when it is joule heated from its conductor state, can be used to form the switch.
Van Devender, J.P.; Emin, D.
1983-12-21
A reusable fast opening switch for transferring energy, in the form of a high power pulse, from an electromagnetic storage device such as an inductor into a load. The switch is efficient, compact, fast and reusable. The switch comprises a ferromagnetic semiconductor which undergoes a fast transition between conductive and metallic states at a critical temperature and which undergoes the transition without a phase change in its crystal structure. A semiconductor such as europium rich europhous oxide, which undergoes a conductor to insulator transition when it is joule heated from its conductor state, can be used to form the switch.
Till, C.E.; Chang, Y.I.; Kittel, J.H.; Fauske, H.K.; Lineberry, M.J.; Stevenson, M.G.; Amundson, P.I.; Dance, K.D.
1980-07-01
This report is a compilation of Fast Breeder Reactor (FBR) resource documents prepared to provide the technical basis for the US contribution to the International Nuclear Fuel Cycle Evaluation. The eight separate parts deal with the alternative fast breeder reactor fuel cycles in terms of energy demand, resource base, technical potential and current status, safety, proliferation resistance, deployment, and nuclear safeguards. An Annex compares the cost of decommissioning light-water and fast breeder reactors. Separate abstracts are included for each of the parts.
Demiris, George
2014-01-01
This article provides a general introduction to implementation science—the discipline that studies the implementation process of research evidence—in the context of hospice and palliative care. By discussing how implementation science principles and frameworks can inform the design and implementation of intervention research, we aim to highlight how this approach can maximize the likelihood for translation and long-term adoption in clinical practice settings. We present 2 ongoing clinical trials in hospice that incorporate considerations for translation in their design and implementation as case studies for the implications of implementation science. This domain helps us better understand why established programs may lose their effectiveness over time or when transferred to other settings, why well-tested programs may exhibit unintended effects when introduced in new settings, or how an intervention can maximize cost-effectiveness with strategies for effective adoption. All these challenges are of significance to hospice and palliative care, where we seek to provide effective and efficient tools to improve care services. The emergence of this discipline calls for researchers and practitioners to carefully examine how to refine current and design new and innovative strategies to improve quality of care. PMID:23558847
NASA Astrophysics Data System (ADS)
Wilkinson, P.
2016-02-01
FAST offers "transformational" performance well-suited to finding new phenomena - one of which might be polarised spectral transients. But discoveries will only be made if "the system" provides its users with the necessary opportunities. In addition to designing in as much observational flexibility as possible, FAST should be operated with a philosophy which maximises its "human bandwidth". This band includes the astronomers of tomorrow - many of whom not have yet started school or even been born.
Education For All (EFA) - Fast Track Initiative Progress Report 30046
ERIC Educational Resources Information Center
World Bank Education Advisory Service, 2004
2004-01-01
Launched in June 2002, the Education For All-Fast Track Initiative (FTI) is a performance-based program focusing on the implementation of sustainable policies in support of universal primary completion (UPC) and the required resource mobilization. During its twenty months of implementation, FTI has delivered on results, which give reason for…
On fast reactor kinetics studies
Seleznev, E. F.; Belov, A. A.; Matveenko, I. P.; Zhukov, A. M.; Raskach, K. F.
2012-07-01
The results and the program of fast reactor core time and space kinetics experiments performed and planned to be performed at the IPPE critical facility is presented. The TIMER code was taken as computation support of the experimental work, which allows transient equations to be solved in 3-D geometry with multi-group diffusion approximation. The number of delayed neutron groups varies from 6 to 8. The code implements the solution of both transient neutron transfer problems: a direct one, where neutron flux density and its derivatives, such as reactor power, etc, are determined at each time step, and an inverse one for the point kinetics equation form, where such a parameter as reactivity is determined with a well-known reactor power time variation function. (authors)
Fast data parallel polygon rendering
Ortega, F.A.; Hansen, C.D.
1993-09-01
This paper describes a parallel method for polygonal rendering on a massively parallel SIMD machine. This method, based on a simple shading model, is targeted for applications which require very fast polygon rendering for extremely large sets of polygons such as is found in many scientific visualization applications. The algorithms described in this paper are incorporated into a library of 3D graphics routines written for the Connection Machine. The routines are implemented on both the CM-200 and the CM-5. This library enables a scientists to display 3D shaded polygons directly from a parallel machine without the need to transmit huge amounts of data to a post-processing rendering system.
FAST (Faceted Application of Subject Terminology) Users: Summary and Case Studies
ERIC Educational Resources Information Center
Mixter, Jeffrey; Childress, Eric R.
2013-01-01
Over the past ten years, various organizations, both public and private, have expressed interest in implementing the Faceted Application of Subject Terminology (FAST) in their cataloging workflows. As interest in FAST has grown, so too has interest in knowing how FAST is being used and by whom. Since 2002 eighteen institutions in six countries…
Fast Initialization of Bubble-Memory Systems
NASA Technical Reports Server (NTRS)
Looney, K. T.; Nichols, C. D.; Hayes, P. J.
1986-01-01
Improved scheme several orders of magnitude faster than normal initialization scheme. State-of-the-art commercial bubble-memory device used. Hardware interface designed connects controlling microprocessor to bubblememory circuitry. System software written to exercise various functions of bubble-memory system in comparison made between normal and fast techniques. Future implementations of approach utilize E2PROM (electrically-erasable programable read-only memory) to provide greater system flexibility. Fastinitialization technique applicable to all bubble-memory devices.
Towards a fast implementation of spectral nested dissection
NASA Technical Reports Server (NTRS)
Pothen, Alex; Simon, Horst D.; Wang, Lie; Barnard, Stephen T.
1992-01-01
We describe the spectral nested dissection (SND) algorithm, a new algorithm for computing orderings appropriate for parallel factorization of sparse, symmetric matrices. The algorithm makes use of spectral properties of the Laplacian matrix associated with the given matrix to compute separators. We evaluate the quality of the spectral orderings with respect to several measures: fill, elimination tree height, height and weight balances of elimination trees, and clique tree heights. We use some very large structural analysis problems as test cases and demonstrate on these real applications (such as the Space Shuttle Solid Rocket Booster) that spectral orderings compare quite favorably with commonly used orderings, outperforming them by a wide margin for some of these measures. The only disadvantage of SND is its relatively long execution time. We will present some recent efforts to improve the execution time using both a multilevel and a hybrid approach. We use SND in computing a multifrontal numerical factorization with the different orderings on an eight processor Cray Y-MP and show its effectiveness. We believe that spectral nested dissection is a major breakthrough in terms of generating efficient sparse orderings for parallel machines.
Fast Implementation of Matched Filter Based Automatic Alignment Image Processing
Awwal, A S; Rice, K; Taha, T
2008-04-02
Video images of laser beams imprinted with distinguishable features are used for alignment of 192 laser beams at the National Ignition Facility (NIF). Algorithms designed to determine the position of these beams enable the control system to perform the task of alignment. Centroiding is a common approach used for determining the position of beams. However, real world beam images suffer from intensity fluctuation or other distortions which make such an approach susceptible to higher position measurement variability. Matched filtering used for identifying the beam position results in greater stability of position measurement compared to that obtained using the centroiding technique. However, this gain is achieved at the expense of extra processing time required for each beam image. In this work we explore the possibility of using a field programmable logic array (FPGA) to speed up these computations. The results indicate a performance improvement of 20 using the FPGA relative to a 3 GHz Pentium 4 processor.
A Fast Implementation of the ISODATA Clustering Algorithm
NASA Technical Reports Server (NTRS)
Memarsadeghi, Nargess; Mount, David M.; Netanyahu, Nathan S.; LeMoigne, Jacqueline
2005-01-01
Clustering is central to many image processing and remote sensing applications. ISODATA is one of the most popular and widely used clustering methods in geoscience applications, but it can run slowly, particularly with large data sets. We present a more efficient approach to ISODATA clustering, which achieves better running times by storing the points in a kd-tree and through a modification of the way in which the algorithm estimates the dispersion of each cluster. We also present an approximate version of the algorithm which allows the user to further improve the running time, at the expense of lower fidelity in computing the nearest cluster center to each point. We provide both theoretical and empirical justification that our modified approach produces clusterings that are very similar to those produced by the standard ISODATA approach. We also provide empirical studies on both synthetic data and remotely sensed Landsat and MODIS images that show that our approach has significantly lower running times.
Bull, G; Maffetone, M A; Miller, S K
1992-01-01
Total quality management (TQM) is an organized, systematic approach to problem solving and continuous improvement. American corporations have found that TQM is an excellent way to improve competitiveness, lower operating costs, and improve productivity. Increasing numbers of laboratories are investigating the benefits of TQM. For this month's column, we asked our respondents: What steps has your laboratory taken to implement TQM?
Trapped ion scaling with pulsed fast gates
NASA Astrophysics Data System (ADS)
Bentley, C. D. B.; Carvalho, A. R. R.; Hope, J. J.
2015-10-01
Fast entangling gates for trapped ion pairs offer vastly improved gate operation times relative to implemented gates, as well as approaches to trap scaling. Gates on a neighbouring ion pair only involve local ions when performed sufficiently fast, and we find that even a fast gate between a pair of distant ions with few degrees of freedom restores all the motional modes given more stringent gate speed conditions. We compare pulsed fast gate schemes, defined by a timescale faster than the trap period, and find that our proposed scheme has less stringent requirements on laser repetition rate for achieving arbitrary gate time targets and infidelities well below 10-4. By extending gate schemes to ion crystals, we explore the effect of ion number on gate fidelity for coupling two neighbouring ions in large crystals. Inter-ion distance determines the gate time, and a factor of five increase in repetition rate, or correspondingly the laser power, reduces the infidelity by almost two orders of magnitude. We also apply our fast gate scheme to entangle the first and last ions in a crystal. As the number of ions in the crystal increases, significant increases in the laser power are required to provide the short gate times corresponding to fidelity above 0.99.
Leibon, Gregory; Rockmore, Daniel N.; Park, Wooram; Taintor, Robert; Chirikjian, Gregory S.
2008-01-01
We present algorithms for fast and stable approximation of the Hermite transform of a compactly supported function on the real line, attainable via an application of a fast algebraic algorithm for computing sums associated with a three-term relation. Trade-offs between approximation in bandlimit (in the Hermite sense) and size of the support region are addressed. Numerical experiments are presented that show the feasibility and utility of our approach. Generalizations to any family of orthogonal polynomials are outlined. Applications to various problems in tomographic reconstruction, including the determination of protein structure, are discussed. PMID:20027202
Fast Overcurrent Tripping Circuit
NASA Technical Reports Server (NTRS)
Sullender, Craig C.; Davies, Bryan L.; Osborn, Stephen H.
1993-01-01
Fast overcurrent tripping circuit designed for incorporation into power metal oxide/semiconductor field-effect transistor (MOSFET) switching circuit. Serves as fast electronic circuit breaker by sensing voltage across MOSFET's during conduction and switching MOSFET's off within 1 microsecond after voltage exceeds reference value corresponding to tripping current. Acts more quickly than Hall-effect current sensor and, in comparison with shunt current-measuring circuits, smaller and consumes less power. Also ignores initial transient overcurrents during first 5 microseconds of switching cycle.
NASA Technical Reports Server (NTRS)
1983-01-01
Meeting the identified needs of Earth science requires approaching EOS as an information system and not simply as one or more satellites with instruments. Six elements of strategy are outlined as follows: implementation of the individual discipline missions as currently planned; use of sustained observational capabilities offered by operational satellites without waiting for the launch of new mission; put first priority on the data system; deploy an Advanced Data Collection and Location System; put a substantial new observing capability in a low Earth orbit in such a way as to provide for sustained measurements; and group instruments to exploit their capabilities for synergism; maximize the scientific utility of the mission; and minimize the costs of implementation where possible.
J.A. Schmidt
2002-02-20
If a fusion DEMO reactor can be brought into operation during the first half of this century, fusion power production can have a significant impact on carbon dioxide production during the latter half of the century. An assessment of fusion implementation scenarios shows that the resource demands and waste production associated with these scenarios are manageable factors. If fusion is implemented during the latter half of this century it will be one element of a portfolio of (hopefully) carbon dioxide limiting sources of electrical power. It is time to assess the regional implications of fusion power implementation. An important attribute of fusion power is the wide range of possible regions of the country, or countries in the world, where power plants can be located. Unlike most renewable energy options, fusion energy will function within a local distribution system and not require costly, and difficult, long distance transmission systems. For example, the East Coast of the United States is a prime candidate for fusion power deployment by virtue of its distance from renewable energy sources. As fossil fuels become less and less available as an energy option, the transmission of energy across bodies of water will become very expensive. On a global scale, fusion power will be particularly attractive for regions separated from sources of renewable energy by oceans.
NASA Astrophysics Data System (ADS)
Leutenegger, Marcel; Geissbuehler, Matthias; Märki, Iwan; Leitgeb, Rainer A.; Lasser, Theo
2008-02-01
We present a method for fast calculation of the electromagnetic field near the focus of an objective with a high numerical aperture (NA). Instead of direct integration, the vectorial Debye diffraction integral is evaluated with the fast Fourier transform for calculating the electromagnetic field in the entire focal region. We generalize this concept with the chirp z transform for obtaining a flexible sampling grid and an additional gain in computation speed. Under the conditions for the validity of the Debye integral representation, our method yields the amplitude, phase and polarization of the focus field for an arbitrary paraxial input field in the aperture of the objective. Our fast calculation method is particularly useful for engineering the point-spread function or for fast image deconvolution. We present several case studies by calculating the focus fields of high NA oil immersion objectives for various amplitude, polarization and phase distributions of the input field. In addition, the calculation of an extended polychromatic focus field generated by a Bessel beam is presented. This extended focus field is of particular interest for Fourier domain optical coherence tomography because it preserves a lateral resolution of a few micrometers over an axial distance in the millimeter range.
ERIC Educational Resources Information Center
Education Commission of the States, Denver, CO.
This paper provides an overview of Fast ForWord, a CD-ROM and Internet-based training program for children (pre-K to grade 8) with language and reading problems that helps children rapidly build oral language comprehension and other critical skills necessary for learning to read or becoming a better reader. With the help of computers, speech…
Till, C.E.; Chang, Y.I. ); Lineberry, M.J. )
1990-01-01
Argonne National Laboratory, since 1984, has been developing the Integral Fast Reactor (IFR). This paper will describe the way in which this new reactor concept came about; the technical, public acceptance, and environmental issues that are addressed by the IFR; the technical progress that has been made; and our expectations for this program in the near term. 5 refs., 3 figs.
Uniform smooth filtering approach for fast template matching
NASA Astrophysics Data System (ADS)
Li, Bing C.
2016-05-01
Sum of square difference (SSD) and normalized cross correlation (NCC) are two different template matching techniques and their fast implementations have been investigated independently. The SSD approach is known to be simple and fast, however it is variant to image intensity change that lead to low performance. On the other hand, the NCC method is invariant to intensity change and has high performance, but its computational cost is high. In this paper, we derive an equation that connects NCC and SSD. From this equation, we propose SSD based partial elimination for the fast implementation of NCC template matching. This new technique takes the advantages of both NCC's high performance and SSD's low computational cost. It is fast and has high performance. Then we propose a uniform smoothing approach that further reduces computational cost for NCC. Experiments show that the proposed method is significantly faster than the techniques reported in literature.
Factored-matrix representation of distributed fast transforms. Master's thesis
Bainbridge, R.L.
1987-03-01
Parallel implementations of Fast Fourier Transforms (FFTs) and other fast transforms are represented using factored, partitioned matrices. The factored matrix description of a distributed FFT is introduced using a decimation in time (DIT) FFT algorithm suitable for implementation on a distributed-signal processor. The heart of the matrix representation of distributed fast transforms is the use of permutations of an NxN identity matrix to describe the required interprocessor data transfers on the Butterfly Network. The properties of these transfer matrices and the resulting output ordering are discussed in detail. The factored matrix representation is then used to show that the Fast Hartley Transform (FHT) and the Walsh Hadamard Transform (WHT) are supported by the Butterfly Network.
FAST - FREEDOM ASSEMBLY SEQUENCING TOOL PROTOTYPE
NASA Technical Reports Server (NTRS)
Borden, C. S.
1994-01-01
-Language and has been implemented on DEC VAX series computers running VMS. The program is distributed in executable form. The source code is also provided, but it cannot be compiled without the Tree Manipulation Based Routines (TMBR) package from the Jet Propulsion Laboratory, which is not currently available from COSMIC. The main memory requirement is based on the data used to drive the FAST program. All applications should easily run on an installation with 10Mb of main memory. FAST was developed in 1990 and is a copyrighted work with all copyright vested in NASA. DEC, VAX and VMS are trademarks of Digital Equipment Corporation.
Wu, Kesheng
2007-08-02
An index in a database system is a data structure that utilizes redundant information about the base data to speed up common searching and retrieval operations. Most commonly used indexes are variants of B-trees, such as B+-tree and B*-tree. FastBit implements a set of alternative indexes call compressed bitmap indexes. Compared with B-tree variants, these indexes provide very efficient searching and retrieval operations by sacrificing the efficiency of updating the indexes after the modification of an individual record. In addition to the well-known strengths of bitmap indexes, FastBit has a special strength stemming from the bitmap compression scheme used. The compression method is called the Word-Aligned Hybrid (WAH) code. It reduces the bitmap indexes to reasonable sizes and at the same time allows very efficient bitwise logical operations directly on the compressed bitmaps. Compared with the well-known compression methods such as LZ77 and Byte-aligned Bitmap code (BBC), WAH sacrifices some space efficiency for a significant improvement in operational efficiency. Since the bitwise logical operations are the most important operations needed to answer queries, using WAH compression has been shown to answer queries significantly faster than using other compression schemes. Theoretical analyses showed that WAH compressed bitmap indexes are optimal for one-dimensional range queries. Only the most efficient indexing schemes such as B+-tree and B*-tree have this optimality property. However, bitmap indexes are superior because they can efficiently answer multi-dimensional range queries by combining the answers to one-dimensional queries.
Photon and fast neutron dosimetry using aluminium oxide thermoluminescence dosemeters.
Santos, J P; Fernandes, A C; Gonçalves, I C; Marques, J G; Carvalho, A F; Santos, L; Cardoso, J; Osvay, M
2006-01-01
Al(2)O(3):Mg,Y thermoluminescence (TL) dosemeters were used to measure photon and fast neutron doses in a fast neutron beam recently implemented at the Portuguese Research Reactor, Nuclear and Technological Institute, Portugal. The activation of Al(2)O(3):Mg,Y by fast neutrons provides information about the fast neutron component by measuring the activity of the reaction products and the self-induced TL signal. Additionally, the first TL reading after irradiation determines the photon dose. The elemental composition of the dosemeters was determined by instrumental neutron activation analysis and by particle induced X-ray emission. Results demonstrate that Al(2)O(3):Mg,Y is an adequate material to discriminate photon and fast neutron fields for reactor dosimetry purposes.
Optimisation of vectorisation property: A comparative study for a secondary amphipathic peptide.
Konate, Karidia; Lindberg, Mattias F; Vaissiere, Anaïs; Jourdan, Carole; Aldrian, Gudrun; Margeat, Emmanuel; Deshayes, Sébastien; Boisguerin, Prisca
2016-07-25
RNA interference provides a powerful technology for specific gene silencing. Therapeutic applications of small interfering RNA (siRNA) however require efficient vehicles for stable complexation and intracellular delivery. In order to enhance their cell delivery, short amphipathic peptides called cell-penetrating peptides (CPPs) have been intensively developed for the last two decades. In this context, the secondary amphipathic peptide CADY has shown to form stable siRNA complexes and to improve their cellular uptake independent of the endosomal pathway. In the present work, we have described the parameters influencing CADY nanoparticle formation (buffers, excipients, presence of serum, etc.), and have followed in details the CPP:siRNA self-assembly. Once optimal conditions were determined, we have compared the ability of seven different CADY analogues to form siRNA-loaded nanoparticles compared to CADY:siRNA. First of all, we were able to show by biophysical methods that structural polymorphism (α-helix) is an important prerequisite for stable nanoparticle formation independently of occurring sequence mutations. Luciferase assays revealed that siRNA complexed to CADY-K (shorter version) shows better knock-down efficiency on Neuro2a-Luc(+) and B16-F10-Luc(+) cells compared to CADY:siRNA. Altogether, CADY-K is an ideal candidate for further application especially with regards to ex vivo or in vivo applications. PMID:27224007
Efficient Kriging via Fast Matrix-Vector Products
NASA Technical Reports Server (NTRS)
Memarsadeghi, Nargess; Raykar, Vikas C.; Duraiswami, Ramani; Mount, David M.
2008-01-01
Interpolating scattered data points is a problem of wide ranging interest. Ordinary kriging is an optimal scattered data estimator, widely used in geosciences and remote sensing. A generalized version of this technique, called cokriging, can be used for image fusion of remotely sensed data. However, it is computationally very expensive for large data sets. We demonstrate the time efficiency and accuracy of approximating ordinary kriging through the use of fast matrixvector products combined with iterative methods. We used methods based on the fast Multipole methods and nearest neighbor searching techniques for implementations of the fast matrix-vector products.
Magnetically assisted fast ignition.
Wang, W-M; Gibbon, P; Sheng, Z-M; Li, Y-T
2015-01-01
Fast ignition (FI) is investigated via integrated particle-in-cell simulation including both generation and transport of fast electrons, where petawatt ignition lasers of 2 ps and compressed targets of a peak density of 300 g cm(-3) and areal density of 0.49 g cm(-2) at the core are taken. When a 20 MG static magnetic field is imposed across a conventional cone-free target, the energy coupling from the laser to the core is enhanced by sevenfold and reaches 14%. This value even exceeds that obtained using a cone-inserted target, suggesting that the magnetically assisted scheme may be a viable alternative for FI. With this scheme, it is demonstrated that two counterpropagating, 6 ps, 6 kJ lasers along the magnetic field transfer 12% of their energy to the core, which is then heated to 3 keV. PMID:25615473
NASA Astrophysics Data System (ADS)
Uvarov, I. V.; Postnikov, A. V.; Svetovoy, V. B.
2016-03-01
Lack of fast and strong microactuators is a well-recognized problem in MEMS community. Electrochemical actuators can develop high pressure but they are notoriously slow. Water electrolysis produced by short voltage pulses of alternating polarity can overcome the problem of slow gas termination. Here we demonstrate an actuation regime, for which the gas pressure is relaxed just for 10 μs or so. The actuator consists of a microchamber filled with the electrolyte and covered with a flexible membrane. The membrane bends outward when the pressure in the chamber increases. Fast termination of gas and high pressure developed in the chamber are related to a high density of nanobubbles in the chamber. The physical processes happening in the chamber are discussed so as problems that have to be resolved for practical applications of this actuation regime. The actuator can be used as a driving engine for microfluidics.
NASA Astrophysics Data System (ADS)
Chadwick, Alan V.
Fast ion conductors, sometimes referred to as superionic conductors or solid electrolytes, are solids with ionic conductivities that are comparable to those found in molten salts and aqueous solutions of strong electrolytes, i.e., 10-2-10 S cm-1. Such materials have been known of for a very long time and some typical examples of the conductivity are shown in Fig. 1, along with sodium chloride as the archetypal normal ionic solid. Faraday [1] first noted the high conductivity of solid lead fluoride (PbF2) and silver sulphide (Ag2S) in the 1830s and silver iodide was known to be unusually high ionic conductor to the German physicists early in the 1900s. However, the materials were regarded as anomalous until the mid 1960s when they became the focus of intense interest to academics and technologists and they have remained at the forefront of materials research [2-4]. The academic aim is to understand the fundamental origin of fast ion behaviour and the technological goal is to utilize the properties in applications, particularly in energy applications such as the electrolyte membranes in solid-state batteries and fuel cells, and in electrochemical sensors. The last four decades has seen an expansion of the types of material that exhibit fast ion behaviour that now extends beyond simple binary ionic crystals to complex solids and even polymeric materials. Over this same period computer simulations of solids has also developed (in fact these methods and the interest in fast ion conductors were almost coincidental in their time of origin) and the techniques have played a key role in this area of research.
Soha, Aria; Chiu, Mickey; Mannel, Eric; Stoll, Sean; Lynch, Don; Boose, Steve; Northacker, Dave; Alfred, Marcus; Lindesay, James; Chujo, Tatsuya; Inaba, Motoi; Nonaka, Toshihiro; Sato, Wataru; Sakatani, Ikumi; Hirano, Masahiro; Choi, Ihnjea
2014-01-15
This is a technical scope of work (TSW) between the Fermi National Accelerator Laboratory (Fermilab) and the experimenters of PHENIX Fast TOF group who have committed to participate in beam tests to be carried out during the FY2014 Fermilab Test Beam Facility program. The goals for this test beam experiment are to verify the timing performance of the two types of time-of-flight detector prototypes.
Fast track evaluation methodology.
Duke, J R
1991-06-01
Evaluating hospital information systems has taken a variety of forms since the initial development and use of automation. The process itself has moved from a hardware-based orientation controlled by data processing professionals to systems solutions and a user-driven process overseen by management. At Harbor Hospital Center in Baltimore, a fast track methodology has been introduced to shorten system evaluation time to meet the rapid changes that constantly affect the healthcare industry.
NASA Technical Reports Server (NTRS)
1996-01-01
The NASA Fast Track Study supports the efforts of a Special Study Group (SSG) made up of members of the Advanced Project Management Class number 23 (APM-23) that met at the Wallops Island Management Education Center from April 28 - May 8, 1996. Members of the Class expressed interest to Mr. Vem Weyers in having an input to the NASA Policy Document (NPD) 7120.4, that will replace NASA Management Institute (NMI) 7120.4, and the NASA Program/Project Management Guide. The APM-23 SSG was tasked with assisting in development of NASA policy on managing Fast Track Projects, defined as small projects under $150 million and completed within three years. 'Me approach of the APM-23 SSG was to gather data on successful projects working in a 'Better, Faster, Cheaper' environment, within and outside of NASA and develop the Fast Track Project section of the NASA Program/Project Management Guide. Fourteen interviews and four other data gathering efforts were conducted by the SSG, and 16 were conducted by Strategic Resources, Inc. (SRI), including five interviews at the Jet Propulsion Laboratory (JPL) and one at the Applied Physics Laboratory (APL). The interviews were compiled and analyzed for techniques and approaches commonly used to meet severe cost and schedule constraints.
NASA Astrophysics Data System (ADS)
Mar, Mark H.
1990-11-01
The purpose of this paper is to report the results of testing the fast Hartley transform (FHT) and comparing it with the fast Fourier transform (FFT). All the definitions and equations in this paper are quoted and cited from the series of references. The author of this report developed a FORTRAN program which computes the Hartley transform. He tested the program with a generalized electromagnetic pulse waveform and verified the results with the known value. Fourier analysis is an essential tool to obtain frequency domain information from transient time domain signals. The FFT is a popular tool to process many of today's audio and electromagnetic signals. System frequency response, digital filtering of signals, and signal power spectrum are the most practical applications of the FFT. However, the Fourier integral transform of the FFT requires computer resources appropriate for the complex arithmetic operations. On the other hand, the FHT can accomplish the same results faster and requires fewer computer resources. The FHT is twice as fast as the FFT, uses only half the computer resources, and so could be more useful than the FFT in typical applications such as spectral analysis, signal processing, and convolution. This paper presents a FORTRAN computer program for the FHT algorithm along with a brief description and compares the results and performance of the FHT and the FFT algorithms.
Johnstone, A M
2007-05-01
Adult humans often undertake acute fasts for cosmetic, religious or medical reasons. For example, an estimated 14% of US adults have reported using fasting as a means to control body weight and this approach has long been advocated as an intermittent treatment for gross refractory obesity. There are unique historical data sets on extreme forms of food restriction that give insight into the consequences of starvation or semi-starvation in previously healthy, but usually non-obese subjects. These include documented medical reports on victims of hunger strike, famine and prisoners of war. Such data provide a detailed account on how the body adapts to prolonged starvation. It has previously been shown that fasting for the biblical period of 40 days and 40 nights is well within the overall physiological capabilities of a healthy adult. However, the specific effects on the human body and mind are less clearly documented, either in the short term (hours) or in the longer term (days). This review asks the following three questions, pertinent to any weight-loss therapy, (i) how effective is the regime in achieving weight loss, (ii) what impact does it have on psychology? and finally, (iii) does it work long-term? PMID:17444963
Neighborhood fast food availability and fast food consumption
Oexle, Nathalie; Barnes, Timothy L; Blake, Christine E; Bell, Bethany A; Liese, Angela D
2015-01-01
Recent nutritional and public health research has focused on how the availability of various types of food in a person’s immediate area or neighborhood influences his or her food choices and eating habits. It has been theorized that people living in areas with a wealth of unhealthy fast-food options may show higher levels of fast-food consumption, a factor that often coincides with being overweight or obese. However, measuring food availability in a particular area is difficult to achieve consistently: there may be differences in the strict physical locations of food options as compared to how individuals perceive their personal food availability, and various studies may use either one or both of these measures. The aim of this study was to evaluate the association between weekly fast-food consumption and both a person’s perceived availability of fast-food and an objective measure of fast-food presence—Geographic Information Systems (GIS)—within that person’s neighborhood. A randomly selected population-based sample of eight counties in South Carolina was used to conduct a cross-sectional telephone survey assessing self-report fast-food consumption and perceived availability of fast food. GIS was used to determine the actual number of fast-food outlets within each participant’s neighborhood. Using multinomial logistic regression analyses, we found that neither perceived availability nor GIS-based presence of fast-food was significantly associated with weekly fast-food consumption. Our findings indicate that availability might not be the dominant factor influencing fast-food consumption. We recommend using subjective availability measures and considering individual characteristics that could influence both perceived availability of fast food and its impact on fast-food consumption. If replicated, our findings suggest that interventions aimed at reducing fast-food consumption by limiting neighborhood fast-food availability might not be completely
Neighborhood fast food availability and fast food consumption.
Oexle, Nathalie; Barnes, Timothy L; Blake, Christine E; Bell, Bethany A; Liese, Angela D
2015-09-01
Recent nutritional and public health research has focused on how the availability of various types of food in a person's immediate area or neighborhood influences his or her food choices and eating habits. It has been theorized that people living in areas with a wealth of unhealthy fast-food options may show higher levels of fast-food consumption, a factor that often coincides with being overweight or obese. However, measuring food availability in a particular area is difficult to achieve consistently: there may be differences in the strict physical locations of food options as compared to how individuals perceive their personal food availability, and various studies may use either one or both of these measures. The aim of this study was to evaluate the association between weekly fast-food consumption and both a person's perceived availability of fast-food and an objective measure of fast-food presence - Geographic Information Systems (GIS) - within that person's neighborhood. A randomly selected population-based sample of eight counties in South Carolina was used to conduct a cross-sectional telephone survey assessing self-report fast-food consumption and perceived availability of fast food. GIS was used to determine the actual number of fast-food outlets within each participant's neighborhood. Using multinomial logistic regression analyses, we found that neither perceived availability nor GIS-based presence of fast-food was significantly associated with weekly fast-food consumption. Our findings indicate that availability might not be the dominant factor influencing fast-food consumption. We recommend using subjective availability measures and considering individual characteristics that could influence both perceived availability of fast food and its impact on fast-food consumption. If replicated, our findings suggest that interventions aimed at reducing fast-food consumption by limiting neighborhood fast-food availability might not be completely effective.
Neighborhood fast food availability and fast food consumption.
Oexle, Nathalie; Barnes, Timothy L; Blake, Christine E; Bell, Bethany A; Liese, Angela D
2015-09-01
Recent nutritional and public health research has focused on how the availability of various types of food in a person's immediate area or neighborhood influences his or her food choices and eating habits. It has been theorized that people living in areas with a wealth of unhealthy fast-food options may show higher levels of fast-food consumption, a factor that often coincides with being overweight or obese. However, measuring food availability in a particular area is difficult to achieve consistently: there may be differences in the strict physical locations of food options as compared to how individuals perceive their personal food availability, and various studies may use either one or both of these measures. The aim of this study was to evaluate the association between weekly fast-food consumption and both a person's perceived availability of fast-food and an objective measure of fast-food presence - Geographic Information Systems (GIS) - within that person's neighborhood. A randomly selected population-based sample of eight counties in South Carolina was used to conduct a cross-sectional telephone survey assessing self-report fast-food consumption and perceived availability of fast food. GIS was used to determine the actual number of fast-food outlets within each participant's neighborhood. Using multinomial logistic regression analyses, we found that neither perceived availability nor GIS-based presence of fast-food was significantly associated with weekly fast-food consumption. Our findings indicate that availability might not be the dominant factor influencing fast-food consumption. We recommend using subjective availability measures and considering individual characteristics that could influence both perceived availability of fast food and its impact on fast-food consumption. If replicated, our findings suggest that interventions aimed at reducing fast-food consumption by limiting neighborhood fast-food availability might not be completely effective. PMID
ERIC Educational Resources Information Center
Charner, Ivan; Fraser, Bryna Shore
A study examined the employment of Hispanics in the fast-food industry. Data were obtained from a national survey of employees at 279 fast-food restaurants from seven companies in which 194 (4.2 percent) of the 4,660 respondents reported being Hispanic. Compared with the total sample, Hispanic fast-food employees were slightly less likely to be…
Fast blur removal via optical computing
NASA Astrophysics Data System (ADS)
Suo, Jinli; Yue, Tao; Dai, Qionghai
2014-11-01
Non-uniform image blur caused by camera shake or lens aberration is a common degradation in practical capture. Different from the uniform blur, non-uniform one is hard to deal with for its extremely high computation complexity as the blur model computation cannot be accelerated by Fast Fourier Transform (FFT). We propose to compute the most computational consuming operation, i.e. blur model calculation, by an optical computing system to realize fast and accurate non-uniform image deblur. A prototype system composed by a projector-camera system as well as a high dimensional motion platform (for motion blur) or original camera lens (for optics aberrations) is implemented. Our method is applied on a series of experiments, either on synthetic or real captured images, to verify its effectiveness and efficient.
Fast interferometric second harmonic generation microscopy
Bancelin, Stéphane; Couture, Charles-André; Légaré, Katherine; Pinsard, Maxime; Rivard, Maxime; Brown, Cameron; Légaré, François
2016-01-01
We report the implementation of fast Interferometric Second Harmonic Generation (I-SHG) microscopy to study the polarity of non-centrosymmetric structures in biological tissues. Using a sample quartz plate, we calibrate the spatially varying phase shift introduced by the laser scanning system. Compensating this phase shift allows us to retrieve the correct phase distribution in periodically poled lithium niobate, used as a model sample. Finally, we used fast interferometric second harmonic generation microscopy to acquire phase images in tendon. Our results show that the method exposed here, using a laser scanning system, allows to recover the polarity of collagen fibrils, similarly to standard I-SHG (using a sample scanning system), but with an imaging time about 40 times shorter. PMID:26977349
Measuring Fast Ion Losses in a Reversed Field Pinch Plasma
NASA Astrophysics Data System (ADS)
Bonofiglo, P. J.; Anderson, J. K.; Almagri, A. F.; Kim, J.; Clark, J.; Capecchi, W.; Sears, S. H.
2015-11-01
The reversed field pinch (RFP) provides a unique environment to study fast ion confinement and transport. The RFP's weak toroidal field, strong magnetic shear, and ability to enter a 3D state provide a wide range of dynamics to study fast ions. Core-localized, 25 keV fast ions are sourced into MST by a tangentially injected hydrogen/deuterium neutral beam. Neutral particle analysis and measured fusion neutron flux indicate enhanced fast ion transport in the plasma core. Past experiments point to a dynamic loss of fast ions associated with the RFP's transition to a 3D state and with beam-driven, bursting magnetic modes. Consequently, fast ion transport and losses in the RFP have garnered recent attention. Valuable information on fast-ion loss, such as energy and pitch distributions, are sought to provide a better understanding of the transport mechanisms at hand. We have constructed and implemented two fast ion loss detectors (FILDs) for use on MST. The FILDs have two, independent, design concepts: collecting particles as a function of v⊥ or with pitch greater than 0.8. In this work, we present our preliminary findings and results from our FILDs on MST. This research is supported by US DOE.
Simplified fast neutron dosimeter
Sohrabi, Mehdi
1979-01-01
Direct fast-neutron-induced recoil and alpha particle tracks in polycarbonate films may be enlarged for direct visual observation and automated counting procedures employing electrochemical etching techniques. Electrochemical etching is, for example, carried out in a 28% KOH solution at room temperature by applying a 2000 V peak-to-peak voltage at 1 kHz frequency. Such recoil particle amplification can be used for the detection of wide neutron dose ranges from 1 mrad. to 1000 rads. or higher, if desired.
DeLuca, P.M. Jr.; Pearson, D.W.
1992-01-01
This progress report concentrates on two major areas of dosimetry research: measurement of fast neutron kerma factors for several elements for monochromatic and white spectrum neutron fields and determination of the response of thermoluminescent phosphors to various ultra-soft X-ray energies and beta-rays. Dr. Zhixin Zhou from the Shanghai Institute of Radiation Medicine, People's Republic of China brought with him special expertise in the fabrication and use of ultra-thin TLD materials. Such materials are not available in the USA. The rather unique properties of these materials were investigated during this grant period.
Detering, Brent A.; Donaldson, Alan D.; Fincke, James R.; Kong, Peter C.; Berry, Ray A.
1999-01-01
A fast quench reaction includes a reactor chamber having a high temperature heating means such as a plasma torch at its inlet and a means of rapidly expanding a reactant stream, such as a restrictive convergent-divergent nozzle at its outlet end. Metal halide reactants are injected into the reactor chamber. Reducing gas is added at different stages in the process to form a desired end product and prevent back reactions. The resulting heated gaseous stream is then rapidly cooled by expansion of the gaseous stream.
Detering, B.A.; Donaldson, A.D.; Fincke, J.R.; Kong, P.C.; Berry, R.A.
1999-08-10
A fast quench reaction includes a reactor chamber having a high temperature heating means such as a plasma torch at its inlet and a means of rapidly expanding a reactant stream, such as a restrictive convergent-divergent nozzle at its outlet end. Metal halide reactants are injected into the reactor chamber. Reducing gas is added at different stages in the process to form a desired end product and prevent back reactions. The resulting heated gaseous stream is then rapidly cooled by expansion of the gaseous stream. 8 figs.
Snell, A.H.
1957-12-01
This patent relates to a reactor and process for carrying out a controlled fast neutron chain reaction. A cubical reactive mass, weighing at least 920 metric tons, of uranium metal containing predominantly U/sup 238/ and having a U/sup 235/ content of at least 7.63% is assembled and the maximum neutron reproduction ratio is limited to not substantially over 1.01 by insertion and removal of a varying amount of boron, the reactive mass being substantially freed of moderator.
NASA Technical Reports Server (NTRS)
Birman, Kenneth; Schiper, Andre; Stephenson, Pat
1990-01-01
A new protocol is presented that efficiently implements a reliable, causally ordered multicast primitive and is easily extended into a totally ordered one. Intended for use in the ISIS toolkit, it offers a way to bypass the most costly aspects of ISIS while benefiting from virtual synchrony. The facility scales with bounded overhead. Measured speedups of more than an order of magnitude were obtained when the protocol was implemented within ISIS. One conclusion is that systems such as ISIS can achieve performance competitive with the best existing multicast facilities--a finding contradicting the widespread concern that fault-tolerance may be unacceptably costly.
NASA Technical Reports Server (NTRS)
Birman, Kenneth P.; Schiper, Andre; Stephenson, Pat
1990-01-01
A new protocol is presented that efficiently implements a reliable, causally ordered multicast primitive and is easily extended into a totally ordered one. Intended for use in the ISIS toolkit, it offers a way to bypass the most costly aspects of ISIS while benefiting from virtual synchrony. The facility scales with bounded overhead. Measured speedups of more than an order of magnitude were obtained when the protocol was implemented within ISIS. One conclusion is that systems such as ISIS can achieve performance competitive with the best existing multicast facilities - a finding contradicting the widespread concern that fault-tolerance may be unacceptably costly.
NASA Technical Reports Server (NTRS)
Barnard, Stephen T.; Simon, Horst; Lasinski, T. A. (Technical Monitor)
1994-01-01
The design of a parallel implementation of multilevel recursive spectral bisection is described. The goal is to implement a code that is fast enough to enable dynamic repartitioning of adaptive meshes.
Nguyen, M.N.; /SLAC
2007-06-18
As part of an improvement project on the linear accelerator at SLAC, it was necessary to replace the original thyratron trigger generator, which consisted of two chassis, two vacuum tubes, and a small thyratron. All solid-state, fast rise, and high voltage thyratron drivers, therefore, have been developed and built for the 244 klystron modulators. The rack mounted, single chassis driver employs a unique way to control and generate pulses through the use of an asymmetric SCR, a PFN, a fast pulse transformer, and a saturable reactor. The resulting output pulse is 2 kV peak into 50 {Omega} load with pulse duration of 1.5 {mu}s FWHM at 180 Hz. The pulse risetime is less than 40 ns with less than 1 ns jitter. Various techniques are used to protect the SCR from being damaged by high voltage and current transients due to thyratron breakdowns. The end-of-line clipper (EOLC) detection circuit is also integrated into this chassis to interrupt the modulator triggering in the event a high percentage of line reflections occurred.
Fast Fourier transform telescope
Tegmark, Max; Zaldarriaga, Matias
2009-04-15
We propose an all-digital telescope for 21 cm tomography, which combines key advantages of both single dishes and interferometers. The electric field is digitized by antennas on a rectangular grid, after which a series of fast Fourier transforms recovers simultaneous multifrequency images of up to half the sky. Thanks to Moore's law, the bandwidth up to which this is feasible has now reached about 1 GHz, and will likely continue doubling every couple of years. The main advantages over a single dish telescope are cost and orders of magnitude larger field-of-view, translating into dramatically better sensitivity for large-area surveys. The key advantages over traditional interferometers are cost (the correlator computational cost for an N-element array scales as Nlog{sub 2}N rather than N{sup 2}) and a compact synthesized beam. We argue that 21 cm tomography could be an ideal first application of a very large fast Fourier transform telescope, which would provide both massive sensitivity improvements per dollar and mitigate the off-beam point source foreground problem with its clean beam. Another potentially interesting application is cosmic microwave background polarization.
Fast Food Jobs. National Study of Fast Food Employment.
ERIC Educational Resources Information Center
Charner, Ivan; Fraser, Bryna Shore
A study examined employment in the fast-food industry. The national survey collected data from employees at 279 fast-food restaurants from seven companies. Female employees outnumbered males by two to one. The ages of those fast-food employees in the survey sample ranged from 14 to 71, with fully 70 percent being in the 16- to 20-year-old age…
Methods for performing fast discrete curvelet transforms of data
Candes, Emmanuel; Donoho, David; Demanet, Laurent
2010-11-23
Fast digital implementations of the second generation curvelet transform for use in data processing are disclosed. One such digital transformation is based on unequally-spaced fast Fourier transforms (USFFT) while another is based on the wrapping of specially selected Fourier samples. Both digital transformations return a table of digital curvelet coefficients indexed by a scale parameter, an orientation parameter, and a spatial location parameter. Both implementations are fast in the sense that they run in about O(n.sup.2 log n) flops for n by n Cartesian arrays or about O(N log N) flops for Cartesian arrays of size N=n.sup.3; in addition, they are also invertible, with rapid inversion algorithms of about the same complexity.
Bender, M.; Bennett, F.K.; Kuckes, A.F.
1963-09-17
A fast-acting electric switch is described for rapidly opening a circuit carrying large amounts of electrical power. A thin, conducting foil bridges a gap in this circuit and means are provided for producing a magnetic field and eddy currents in the foil, whereby the foil is rapidly broken to open the circuit across the gap. Advantageously the foil has a hole forming two narrow portions in the foil and the means producing the magnetic field and eddy currents comprises an annular coil having its annulus coaxial with the hole in the foil and turns adjacent the narrow portions of the foil. An electrical current flows through the coil to produce the magnetic field and eddy currents in the foil. (AEC)
Davis, F.J.; Hurst, G.S.; Reinhardt, P.W.
1959-08-18
An improved proton recoil spectrometer for determining the energy spectrum of a fast neutron beam is described. Instead of discriminating against and thereby"throwing away" the many recoil protons other than those traveling parallel to the neutron beam axis as do conventional spectrometers, this device utilizes protons scattered over a very wide solid angle. An ovoidal gas-filled recoil chamber is coated on the inside with a scintillator. The ovoidal shape of the sensitive portion of the wall defining the chamber conforms to the envelope of the range of the proton recoils from the radiator disposed within the chamber. A photomultiplier monitors the output of the scintillator, and a counter counts the pulses caused by protons of energy just sufficient to reach the scintillator.
Batzer, T.H.; Cummings, D.B.; Ryan, J.F.
1962-05-22
A high-current, fast-acting switch is designed for utilization as a crowbar switch in a high-current circuit such as used to generate the magnetic confinement field of a plasma-confining and heat device, e.g., Pyrotron. The device particularly comprises a cylindrical housing containing two stationary, cylindrical contacts between which a movable contact is bridged to close the switch. The movable contact is actuated by a differential-pressure, airdriven piston assembly also within the housing. To absorb the acceleration (and the shock imparted to the device by the rapidly driven, movable contact), an adjustable air buffer assembly is provided, integrally connected to the movable contact and piston assembly. Various safety locks and circuit-synchronizing means are also provided to permit proper cooperation of the invention and the high-current circuit in which it is installed. (AEC)
Maximoff, Sergey N.; Head-Gordon, Martin P.
2009-01-01
A chemicurrent is a flux of fast (kinetic energy ≳ 0.5−1.3 eV) metal electrons caused by moderately exothermic (1−3 eV) chemical reactions over high work function (4−6 eV) metal surfaces. In this report, the relation between chemicurrent and surface chemistry is elucidated with a combination of top-down phenomenology and bottom-up atomic-scale modeling. Examination of catalytic CO oxidation, an example which exhibits a chemicurrent, reveals 3 constituents of this relation: The localization of some conduction electrons to the surface via a reduction reaction, 0.5 O2 + δe− → Oδ− (Red); the delocalization of some surface electrons into a conduction band in an oxidation reaction, Oδ− + CO → CO2δ− → CO2 + δe− (Ox); and relaxation without charge transfer (Rel). Juxtaposition of Red, Ox, and Rel produces a daunting variety of metal electronic excitations, but only those that originate from CO2 reactive desorption are long-range and fast enough to dominate the chemicurrent. The chemicurrent yield depends on the universality class of the desorption process and the distribution of the desorption thresholds. This analysis implies a power-law relation with exponent 2.66 between the chemicurrent and the heat of adsorption, which is consistent with experimental findings for a range of systems. This picture also applies to other oxidation-reduction reactions over high work function metal surfaces. PMID:19561296
FastPM: a new scheme for fast simulations of dark matter and halos
NASA Astrophysics Data System (ADS)
Feng, Yu; Chu, Man-Yat; Seljak, Uroš; McDonald, Patrick
2016-08-01
We introduce FastPM, a highly-scalable approximated particle mesh N-body solver, which implements the particle mesh (PM) scheme enforcing correct linear displacement (1LPT) evolution via modified kick and drift factors. Employing a 2-dimensional domain decomposing scheme, FastPM scales extremely well with a very large number of CPUs. In contrast to COmoving-LAgrangian (COLA) approach, we do not require to split the force or track separately the 2LPT solution, reducing the code complexity and memory requirements. We compare FastPM with different number of steps (Ns) and force resolution factor (B) against 3 benchmarks: halo mass function from Friends of Friends halo finder, halo and dark matter power spectrum, and cross correlation coefficient (or stochasticity), relative to a high resolution TreePM simulation. We show that the modified time stepping scheme reduces the halo stochasticity when compared to COLA with the same number of steps and force resolution. While increasing Ns and B improves the transfer function and cross correlation coefficient, for many applications FastPM achieves sufficient accuracy at low Ns and B. For example, Ns = 10 and B = 2 simulation provides a substantial saving (a factor of 10) of computing time relative to Ns = 40, B = 3 simulation, yet the halo benchmarks are very similar at z = 0. We find that for abundance matched halos the stochasticity remains low even for Ns = 5. FastPM compares well against less expensive schemes, being only 7 (4) times more expensive than 2LPT initial condition generator for Ns = 10 (Ns = 5). Some of the applications where FastPM can be useful are generating a large number of mocks, producing non-linear statistics where one varies a large number of nuisance or cosmological parameters, or serving as part of an initial conditions solver.
Fast and robust entanglement using Rydberg atoms
NASA Astrophysics Data System (ADS)
Côté, Robin
2001-05-01
In recent years, numerous proposals to build quantum information processors have been suggested. Due to their very long coherence times and the well-developed techniques for cooling and trapping them, neutral atoms are particularly attractive for quantum computing. To design fast quantum gates, one needs to identify strong and controllable two-body interactions. However, large interactions are usually associated with strong mechanical forces on the trapped atoms: their internal states (the qubits) may become entangled with their motional degrees of freedom, leading to rapid decoherence. A new system for implementing quantum logic gates based on ultracold Rydberg atoms is presented. Atoms in excited Rydberg states have long lifetimes and enormous dipole moments. When excited in a constant electric field, their controllable strong dipole-dipole interactions provide the large interaction energy required to perform fast gate operations. The mechanical effects can also be greatly suppressed by using the ``dipole blockade" resulting from the strong dipole-dipole interactions. The gate becomes insensitive to the temperature of the atoms and to the variations in atom-atom separation. Hence, a fast and robust two-qubit quantum gate with operation time much faster than the time scale of the atomic motion is possible(D. Jaksch et al.) Phys. Rev. Lett. 85, 2208 (2000).. The generalization to collective states of mesoscopic ensembles can be accomplished using the same dipole blockade(M.D. Lukin et al.), quant-phy/0011028..
Fast image restoration without boundary artifacts.
Reeves, Stanley J
2005-10-01
Fast Fourier transform (FFT)-based restorations are fast, but at the expense of assuming that the blurring and deblurring are based on circular convolution. Unfortunately, when the opposite sides of the image do not match up well in intensity, this assumption can create significant artifacts across the image. If the pixels outside the measured image window are modeled as unknown values in the restored image, boundary artifacts are avoided. However, this approach destroys the structure that makes the use of the FFT directly applicable, since the unknown image is no longer the same size as the measured image. Thus, the restoration methods available for this problem no longer have the computational efficiency of the FFT. We propose a new restoration method for the unknown boundary approach that can be implemented in a fast and flexible manner. We decompose the restoration into a sum of two independent restorations. One restoration yields an image that comes directly from a modified FFT-based approach. The other restoration involves a set of unknowns whose number equals that of the unknown boundary values. By summing the two, the artifacts are canceled. Because the second restoration has a significantly reduced set of unknowns, it can be calculated very efficiently even though no circular convolution structure exists. PMID:16238051
A fast SEQUEST cross correlation algorithm.
Eng, Jimmy K; Fischer, Bernd; Grossmann, Jonas; Maccoss, Michael J
2008-10-01
The SEQUEST program was the first and remains one of the most widely used tools for assigning a peptide sequence within a database to a tandem mass spectrum. The cross correlation score is the primary score function implemented within SEQUEST and it is this score that makes the tool particularly sensitive. Unfortunately, this score is computationally expensive to calculate, and thus, to make the score manageable, SEQUEST uses a less sensitive but fast preliminary score and restricts the cross correlation to just the top 500 peptides returned by the preliminary score. Classically, the cross correlation score has been calculated using Fast Fourier Transforms (FFT) to generate the full correlation function. We describe an alternate method of calculating the cross correlation score that does not require FFTs and can be computed efficiently in a fraction of the time. The fast calculation allows all candidate peptides to be scored by the cross correlation function, potentially mitigating the need for the preliminary score, and enables an E-value significance calculation based on the cross correlation score distribution calculated on all candidate peptide sequences obtained from a sequence database. PMID:18774840
Adaptive line enhancers for fast acquisition
NASA Technical Reports Server (NTRS)
Yeh, H.-G.; Nguyen, T. M.
1994-01-01
Three adaptive line enhancer (ALE) algorithms and architectures - namely, conventional ALE, ALE with double filtering, and ALE with coherent accumulation - are investigated for fast carrier acquisition in the time domain. The advantages of these algorithms are their simplicity, flexibility, robustness, and applicability to general situations including the Earth-to-space uplink carrier acquisition and tracking of the spacecraft. In the acquisition mode, these algorithms act as bandpass filters; hence, the carrier-to-noise ratio (CNR) is improved for fast acquisition. In the tracking mode, these algorithms simply act as lowpass filters to improve signal-to-noise ratio; hence, better tracking performance is obtained. It is not necessary to have a priori knowledge of the received signal parameters, such as CNR, Doppler, and carrier sweeping rate. The implementation of these algorithms is in the time domain (as opposed to the frequency domain, such as the fast Fourier transform (FFT)). The carrier frequency estimation can be updated in real time at each time sample (as opposed to the batch processing of the FFT). The carrier frequency to be acquired can be time varying, and the noise can be non-Gaussian, nonstationary, and colored.
Calorie Labeling, Fast Food Purchasing and Restaurant Visits
Elbel, Brian; Mijanovich, Tod; Dixon, Beth; Abrams, Courtney; Weitzman, Beth; Kersh, Rogan; Auchincloss, Amy H.; Ogedegbe, Gbenga
2013-01-01
Objective Obesity is a pressing public health problem without proven population-wide solutions. Researchers sought to determine whether a city-mandated policy requiring calorie labeling at fast food restaurants was associated with consumer awareness of labels, calories purchased and fast food restaurant visits. Design and Methods Difference-in-differences design, with data collected from consumers outside fast food restaurants and via a random digit dial telephone survey, before (December 2009) and after (June 2010) labeling in Philadelphia (which implemented mandatory labeling) and Baltimore (matched comparison city). Measures included: self-reported use of calorie information, calories purchased determined via fast food receipts, and self-reported weekly fast-food visits. Results The consumer sample was predominantly Black (71%), and high school educated (62%). Post-labeling, 38% of Philadelphia consumers noticed the calorie labels for a 33 percentage point (p<.001) increase relative to Baltimore. Calories purchased and number of fast food visits did not change in either city over time. Conclusions While some consumer reports noticing and using calorie information, no population level changes were noted in calories purchased or fast food visits. Other controlled studies are needed to examine the longer term impact of labeling as it becomes national law. PMID:24136905
Fast planar segmentation of depth images
NASA Astrophysics Data System (ADS)
Javan Hemmat, Hani; Pourtaherian, Arash; Bondarev, Egor; de With, Peter H. N.
2015-03-01
One of the major challenges for applications dealing with the 3D concept is the real-time execution of the algorithms. Besides this, for the indoor environments, perceiving the geometry of surrounding structures plays a prominent role in terms of application performance. Since indoor structures mainly consist of planar surfaces, fast and accurate detection of such features has a crucial impact on quality and functionality of the 3D applications, e.g. decreasing model size (decimation), enhancing localization, mapping, and semantic reconstruction. The available planar-segmentation algorithms are mostly developed using surface normals and/or curvatures. Therefore, they are computationally expensive and challenging for real-time performance. In this paper, we introduce a fast planar-segmentation method for depth images avoiding surface normal calculations. Firstly, the proposed method searches for 3D edges in a depth image and finds the lines between identified edges. Secondly, it merges all the points on each pair of intersecting lines into a plane. Finally, various enhancements (e.g. filtering) are applied to improve the segmentation quality. The proposed algorithm is capable of handling VGA-resolution depth images at a 6 FPS frame-rate with a single-thread implementation. Furthermore, due to the multi-threaded design of the algorithm, we achieve a factor of 10 speedup by deploying a GPU implementation.
Fast word reading in pure alexia: "fast, yet serial".
Bormann, Tobias; Wolfer, Sascha; Hachmann, Wibke; Neubauer, Claudia; Konieczny, Lars
2015-01-01
Pure alexia is a severe impairment of word reading in which individuals process letters serially with a pronounced length effect. Yet, there is considerable variation in the performance of alexic readers with generally very slow, but also occasionally fast responses, an observation addressed rarely in previous reports. It has been suggested that "fast" responses in pure alexia reflect residual parallel letter processing or that they may even be subserved by an independent reading system. Four experiments assessed fast and slow reading in a participant (DN) with pure alexia. Two behavioral experiments investigated frequency, neighborhood, and length effects in forced fast reading. Two further experiments measured eye movements when DN was forced to read quickly, or could respond faster because words were easier to process. Taken together, there was little support for the proposal that "qualitatively different" mechanisms or reading strategies underlie both types of responses in DN. Instead, fast responses are argued to be generated by the same serial-reading strategy.
Meyers, M C; Brown, B R; Bloom, J A
2001-01-01
The popularity of fast pitch softball in the US and throughout the world is well documented. Along with this popularity, there has been a concomitant increase in the number of injuries. Nearly 52% of cases qualify as major disabling injuries requiring 3 weeks or more of treatment and 2% require surgery. Interestingly, 75% of injuries occur during away games and approximately 31% of traumas occur during nonpositional and conditioning drills. Injuries range from contusions and tendinitis to ligamentous disorders and fractures. Although head and neck traumas account for 4 to 12% of cases, upper extremity traumas account for 23 to 47% of all injuries and up to 19% of cases involve the knee. Approximately 34 to 42% of injuries occur when the athlete collides with another individual or object. Other factors involved include the quality of playing surface, athlete's age and experience level, and the excessive physical demands associated with the sport. Nearly 24% of injuries involve base running and are due to poor judgement, sliding technique, current stationary base design, unorthodox joint and extremity position during ground impact and catching of cleats. The increasing prevalence of overtraining syndrome among athletes has been attributed to an unclear definition of an optimal training zone, poor communication between player and coach, and the limited ability of bone and connective tissue to quickly respond to match the demands of the sport. This has led routinely to arm, shoulder and lumbar instability, chronic nonsteroidal anti-inflammatory drug (NSAID) use and time loss injuries in 45% of pitching staff during a single season. Specific attention to a safer playing environment, coaching and player education, and sport-specific training and conditioning would reduce the risk, rate and severity of fast pitch traumas. Padding of walls, backstops, rails and dugout areas, as well as minimising use of indoor facilities, is suggested to decrease the number of collision
Meyers, M C; Brown, B R; Bloom, J A
2001-01-01
The popularity of fast pitch softball in the US and throughout the world is well documented. Along with this popularity, there has been a concomitant increase in the number of injuries. Nearly 52% of cases qualify as major disabling injuries requiring 3 weeks or more of treatment and 2% require surgery. Interestingly, 75% of injuries occur during away games and approximately 31% of traumas occur during nonpositional and conditioning drills. Injuries range from contusions and tendinitis to ligamentous disorders and fractures. Although head and neck traumas account for 4 to 12% of cases, upper extremity traumas account for 23 to 47% of all injuries and up to 19% of cases involve the knee. Approximately 34 to 42% of injuries occur when the athlete collides with another individual or object. Other factors involved include the quality of playing surface, athlete's age and experience level, and the excessive physical demands associated with the sport. Nearly 24% of injuries involve base running and are due to poor judgement, sliding technique, current stationary base design, unorthodox joint and extremity position during ground impact and catching of cleats. The increasing prevalence of overtraining syndrome among athletes has been attributed to an unclear definition of an optimal training zone, poor communication between player and coach, and the limited ability of bone and connective tissue to quickly respond to match the demands of the sport. This has led routinely to arm, shoulder and lumbar instability, chronic nonsteroidal anti-inflammatory drug (NSAID) use and time loss injuries in 45% of pitching staff during a single season. Specific attention to a safer playing environment, coaching and player education, and sport-specific training and conditioning would reduce the risk, rate and severity of fast pitch traumas. Padding of walls, backstops, rails and dugout areas, as well as minimising use of indoor facilities, is suggested to decrease the number of collision
Fast ignition breakeven scaling.
Slutz, Stephen A.; Vesey, Roger Alan
2005-01-01
A series of numerical simulations have been performed to determine scaling laws for fast ignition break even of a hot spot formed by energetic particles created by a short pulse laser. Hot spot break even is defined to be when the fusion yield is equal to the total energy deposited in the hot spot through both the initial compression and the subsequent heating. In these simulations, only a small portion of a previously compressed mass of deuterium-tritium fuel is heated on a short time scale, i.e., the hot spot is tamped by the cold dense fuel which surrounds it. The hot spot tamping reduces the minimum energy required to obtain break even as compared to the situation where the entire fuel mass is heated, as was assumed in a previous study [S. A. Slutz, R. A. Vesey, I. Shoemaker, T. A. Mehlhorn, and K. Cochrane, Phys. Plasmas 7, 3483 (2004)]. The minimum energy required to obtain hot spot break even is given approximately by the scaling law E{sub T} = 7.5({rho}/100){sup -1.87} kJ for tamped hot spots, as compared to the previously reported scaling of E{sub UT} = 15.3({rho}/100){sup -1.5} kJ for untamped hotspots. The size of the compressed fuel mass and the focusability of the particles generated by the short pulse laser determines which scaling law to use for an experiment designed to achieve hot spot break even.
Responder fast steering mirror
NASA Astrophysics Data System (ADS)
Bullard, Andrew; Shawki, Islam
2013-10-01
Raytheon Space and Airborne Systems (SAS) has designed, built and tested a 3.3-inch diameter fast steering mirror (FSM) for space application. This 2-axis FSM operates over a large angle (over 10 degree range), has a very high servo bandwidth (over 3.3 Khz closed loop bandwidth), has nanoradian-class noise, and is designed to support microradian class line of sight accuracy. The FSM maintains excellent performance over large temperature ranges (which includes wave front error) and has very high reliability with the help of fully redundant angle sensors and actuator circuits. The FSM is capable of achieving all its design requirements while also being reaction-compensated. The reaction compensation is achieved passively and does not need a separate control loop. The FSM has undergone various environmental testing which include exported forces and torques and thermal vacuum testing that support the FSM design claims. This paper presents the mechanical design and test results of the mechanism which satisfies the rigorous vacuum and space application requirements.
Responder fast steering mirror
NASA Astrophysics Data System (ADS)
Bullard, Andrew; Shawki, Islam
2013-09-01
Raytheon Space and Airborne Systems (SAS) has designed, built and tested a 3.3-inch diameter fast steering mirror (FSM) for space application. This 2-axis FSM operates over a large angle (over 10 degree range), has a very high servo bandwidth (over 3.3 Khz closed loop bandwidth), has nanoradian-class noise, and is designed to support microradian class line of sight accuracy. The FSM maintains excellent performance over large temperature ranges (which includes wave front error) and has very high reliability with the help of fully redundant angle sensors and actuator circuits. The FSM is capable of achieving all its design requirements while also being reaction-compensated. The reaction compensation is achieved passively and does not need a separate control loop. The FSM has undergone various environmental testing which include exported forces and torques and thermal vacuum testing that support the FSM design claims. This paper presents the mechanical design and test results of the mechanism which satisfies the rigorous vacuum and space application requirements.
Fast Fuzzy Arithmetic Operations
NASA Technical Reports Server (NTRS)
Hampton, Michael; Kosheleva, Olga
1997-01-01
In engineering applications of fuzzy logic, the main goal is not to simulate the way the experts really think, but to come up with a good engineering solution that would (ideally) be better than the expert's control, In such applications, it makes perfect sense to restrict ourselves to simplified approximate expressions for membership functions. If we need to perform arithmetic operations with the resulting fuzzy numbers, then we can use simple and fast algorithms that are known for operations with simple membership functions. In other applications, especially the ones that are related to humanities, simulating experts is one of the main goals. In such applications, we must use membership functions that capture every nuance of the expert's opinion; these functions are therefore complicated, and fuzzy arithmetic operations with the corresponding fuzzy numbers become a computational problem. In this paper, we design a new algorithm for performing such operations. This algorithm is applicable in the case when negative logarithms - log(u(x)) of membership functions u(x) are convex, and reduces computation time from O(n(exp 2))to O(n log(n)) (where n is the number of points x at which we know the membership functions u(x)).
Jensen, T L; Kiersgaard, M K; Sørensen, D B; Mikkelsen, L F
2013-10-01
Fasting of mice is a common procedure performed in association with many different types of experiments mainly in order to reduce variability in investigatory parameters or to facilitate surgical procedures. However, the effects of fasting not directly related to the investigatory parameters are often ignored. The aim of this review is to present and summarize knowledge about the effects of fasting of mice to facilitate optimization of the fasting procedure for any given study and thereby maximize the scientific outcome and minimize the discomfort for the mice and hence ensure high animal welfare. The results are presented from a number of experimental studies, providing evidence for fasting-induced changes in hormone balance, body weight, metabolism, hepatic enzymes, cardiovascular parameters, body temperature and toxicological responses. A description of relevant normal behaviour and standard physiological parameters is given, concluding that mice are primarily nocturnal and consume two-thirds of their total food intake during the night. It is argued that overnight fasting of mice is not comparable with overnight fasting of humans because the mouse has a nocturnal circadian rhythm and a higher metabolic rate. It is suggested that because many physiological parameters are regulated by circadian rhythms, fasting initiated at different points in the circadian rhythm has different impacts and produces different results.
Fast Feedback in Classroom Practice
ERIC Educational Resources Information Center
Emmett, Katrina; Klaassen, Kees; Eijkelhof, Harrie
2009-01-01
In this article we describe one application of the fast feedback method (see Berg 2003 "Aust. Sci. Teach. J." 28-34) in secondary mechanics education. Two teachers tried out a particular sequence twice, in consecutive years, once with and once without the use of fast feedback. We found the method to be successful, and the data that we obtained…
Fast-Polynomial-Transform Program
NASA Technical Reports Server (NTRS)
Truong, T. K.; Hsu, I. S.; Chu, Y. F.
1987-01-01
Computer program uses fast-polynomial-transformation (FPT) algorithm applicable to two-dimensional mathematical convolutions. Two-dimensional cyclic convolutions converted to one-dimensional convolutions in polynomial rings. Program decomposes cyclic polynomials into polynomial convolutions of same length. Only FPT's and fast Fourier transforms of same length required. Modular approach saves computional resources. Program written in C.
Verification of New Floating Capabilities in FAST v8: Preprint
Wendt, F.; Robertson, A.; Jonkman, J.; Hayman, G.
2015-01-01
In the latest release of NREL's wind turbine aero-hydro-servo-elastic simulation software, FAST v8, several new capabilities and major changes were introduced. FAST has been significantly altered to improve the simulator's modularity and to include new functionalities in the form of modules in the FAST v8 framework. This paper is focused on the improvements made for the modeling of floating offshore wind systems. The most significant change was to the hydrodynamic load calculation algorithms, which are embedded in the HydroDyn module. HydroDyn is now capable of applying strip-theory (via an extension of Morison's equation) at the member level for user-defined geometries. Users may now use a strip-theory-only approach for applying the hydrodynamic loads, as well as the previous potential-flow (radiation/diffraction) approach and a hybrid combination of both methods (radiation/diffraction and the drag component of Morison's equation). Second-order hydrodynamic implementations in both the wave kinematics used by the strip-theory solution and the wave-excitation loads in the potential-flow solution were also added to HydroDyn. The new floating capabilities were verified through a direct code-to-code comparison. We conducted a series of simulations of the International Energy Agency Wind Task 30 Offshore Code Comparison Collaboration Continuation (OC4) floating semisubmersible model and compared the wind turbine response predicted by FAST v8, the corresponding FAST v7 results, and results from other participants in the OC4 project. We found good agreement between FAST v7 and FAST v8 when using the linear radiation/diffraction modeling approach. The strip-theory-based approach inherently differs from the radiation/diffraction approach used in FAST v7 and we identified and characterized the differences. Enabling the second-order effects significantly improved the agreement between FAST v8 and the other OC4 participants.
Fast and Adaptive Lossless Onboard Hyperspectral Data Compression System
NASA Technical Reports Server (NTRS)
Aranki, Nazeeh I.; Keymeulen, Didier; Kimesh, Matthew A.
2012-01-01
Modern hyperspectral imaging systems are able to acquire far more data than can be downlinked from a spacecraft. Onboard data compression helps to alleviate this problem, but requires a system capable of power efficiency and high throughput. Software solutions have limited throughput performance and are power-hungry. Dedicated hardware solutions can provide both high throughput and power efficiency, while taking the load off of the main processor. Thus a hardware compression system was developed. The implementation uses a field-programmable gate array (FPGA). The implementation is based on the fast lossless (FL) compression algorithm reported in Fast Lossless Compression of Multispectral-Image Data (NPO-42517), NASA Tech Briefs, Vol. 30, No. 8 (August 2006), page 26, which achieves excellent compression performance and has low complexity. This algorithm performs predictive compression using an adaptive filtering method, and uses adaptive Golomb coding. The implementation also packetizes the coded data. The FL algorithm is well suited for implementation in hardware. In the FPGA implementation, one sample is compressed every clock cycle, which makes for a fast and practical realtime solution for space applications. Benefits of this implementation are: 1) The underlying algorithm achieves a combination of low complexity and compression effectiveness that exceeds that of techniques currently in use. 2) The algorithm requires no training data or other specific information about the nature of the spectral bands for a fixed instrument dynamic range. 3) Hardware acceleration provides a throughput improvement of 10 to 100 times vs. the software implementation. A prototype of the compressor is available in software, but it runs at a speed that does not meet spacecraft requirements. The hardware implementation targets the Xilinx Virtex IV FPGAs, and makes the use of this compressor practical for Earth satellites as well as beyond-Earth missions with hyperspectral instruments.
FAST-PT: a novel algorithm to calculate convolution integrals in cosmological perturbation theory
NASA Astrophysics Data System (ADS)
McEwen, Joseph E.; Fang, Xiao; Hirata, Christopher M.; Blazek, Jonathan A.
2016-09-01
We present a novel algorithm, FAST-PT, for performing convolution or mode-coupling integrals that appear in nonlinear cosmological perturbation theory. The algorithm uses several properties of gravitational structure formation—the locality of the dark matter equations and the scale invariance of the problem—as well as Fast Fourier Transforms to describe the input power spectrum as a superposition of power laws. This yields extremely fast performance, enabling mode-coupling integral computations fast enough to embed in Monte Carlo Markov Chain parameter estimation. We describe the algorithm and demonstrate its application to calculating nonlinear corrections to the matter power spectrum, including one-loop standard perturbation theory and the renormalization group approach. We also describe our public code (in Python) to implement this algorithm. The code, along with a user manual and example implementations, is available at https://github.com/JoeMcEwen/FAST-PT.
The fast debris evolution model
NASA Astrophysics Data System (ADS)
Lewis, H. G.; Swinerd, G. G.; Newland, R. J.; Saunders, A.
2009-09-01
The 'particles-in-a-box' (PIB) model introduced by Talent [Talent, D.L. Analytic model for orbital debris environmental management. J. Spacecraft Rocket, 29 (4), 508-513, 1992.] removed the need for computer-intensive Monte Carlo simulation to predict the gross characteristics of an evolving debris environment. The PIB model was described using a differential equation that allows the stability of the low Earth orbit (LEO) environment to be tested by a straightforward analysis of the equation's coefficients. As part of an ongoing research effort to investigate more efficient approaches to evolutionary modelling and to develop a suite of educational tools, a new PIB model has been developed. The model, entitled Fast Debris Evolution (FADE), employs a first-order differential equation to describe the rate at which new objects ⩾10 cm are added and removed from the environment. Whilst Talent [Talent, D.L. Analytic model for orbital debris environmental management. J. Spacecraft Rocket, 29 (4), 508-513, 1992.] based the collision theory for the PIB approach on collisions between gas particles and adopted specific values for the parameters of the model from a number of references, the form and coefficients of the FADE model equations can be inferred from the outputs of future projections produced by high-fidelity models, such as the DAMAGE model. The FADE model has been implemented as a client-side, web-based service using JavaScript embedded within a HTML document. Due to the simple nature of the algorithm, FADE can deliver the results of future projections immediately in a graphical format, with complete user-control over key simulation parameters. Historical and future projections for the ⩾10 cm LEO debris environment under a variety of different scenarios are possible, including business as usual, no future launches, post-mission disposal and remediation. A selection of results is presented with comparisons with predictions made using the DAMAGE environment model
Fast Access Data Acquisition System
Dr. Vladimir Katsman
1998-03-17
Our goal in this program is to develop Fast Access Data Acquisition System (FADAS) by combining the flexibility of Multilink's GaAs and InP electronics and electro-optics with an extremely high data rate for the efficient handling and transfer of collider experimental data. This novel solution is based on Multilink's and Los Alamos National Laboratory's (LANL) unique components and technologies for extremely fast data transfer, storage, and processing.
FastML: a web server for probabilistic reconstruction of ancestral sequences.
Ashkenazy, Haim; Penn, Osnat; Doron-Faigenboim, Adi; Cohen, Ofir; Cannarozzi, Gina; Zomer, Oren; Pupko, Tal
2012-07-01
Ancestral sequence reconstruction is essential to a variety of evolutionary studies. Here, we present the FastML web server, a user-friendly tool for the reconstruction of ancestral sequences. FastML implements various novel features that differentiate it from existing tools: (i) FastML uses an indel-coding method, in which each gap, possibly spanning multiples sites, is coded as binary data. FastML then reconstructs ancestral indel states assuming a continuous time Markov process. FastML provides the most likely ancestral sequences, integrating both indels and characters; (ii) FastML accounts for uncertainty in ancestral states: it provides not only the posterior probabilities for each character and indel at each sequence position, but also a sample of ancestral sequences from this posterior distribution, and a list of the k-most likely ancestral sequences; (iii) FastML implements a large array of evolutionary models, which makes it generic and applicable for nucleotide, protein and codon sequences; and (iv) a graphical representation of the results is provided, including, for example, a graphical logo of the inferred ancestral sequences. The utility of FastML is demonstrated by reconstructing ancestral sequences of the Env protein from various HIV-1 subtypes. FastML is freely available for all academic users and is available online at http://fastml.tau.ac.il/.
Psychophysiological study on fasting therapy.
Yamamoto, H; Suzuki, J; Yamauchi, Y
1979-01-01
The Tohoku University method of fasting therapy was performed on 380 patients. The clinical results revealed an efficacy rate of 87%. With regard to psychosomatic diseases, irritable colon syndrome, neurocirculatory asthenia, mild diabetes mellitus, obesity and borderline hypertension were good indications for this therapy. In order to clarify the therapeutic mechanism, several clinical examinations were administered before, during and after therapy. EEG data was analysed according to the power spectral method. The peak frequency decreased as fasting progressed, while it increased as re-fed continued. Percent energy of alpha waves after fasting therapy was significantly higher than that of the pre-fasting stage. The dexamethasone suppression rate of urine 17-OHCS after fasting therapy was significantly lower than that of the pre-fasting stage. It seems that ketone nutrition may work as a strong stressor in the brain cell, temporarily placing all biological mechanisms in a stress state and then activating the natural healing power inherent to the human body, thereby bringing about homeostasis.
Implementing a Corporate Weblog for SAP
NASA Astrophysics Data System (ADS)
Broß, Justus; Quasthoff, Matthias; MacNiven, Sean; Zimmermann, Jürgen; Meinel, Christoph
After web 2.0 technologies experienced a phenomenal expansion and high acceptance among private users, considerations are now intensified to assess whether they can be equally applicable, beneficially employed and meaningfully implemented in an entrepreneurial context. The fast-paced rise of social software like weblogs or wikis and the resulting new form of communication via the Internet is however observed ambiguously in the corporate environment. This is why the particular choice of the platform or technology to be implemented in this field is strongly dependent on its future business case and field of deployment and should therefore be carefully considered beforehand, as this paper strongly suggests.
Fast training algorithms for multilayer neural nets.
Brent, R P
1991-01-01
An algorithm that is faster than back-propagation and for which it is not necessary to specify the number of hidden units in advance is described. The relationship with other fast pattern-recognition algorithms, such as algorithms based on k-d trees, is discussed. The algorithm has been implemented and tested on artificial problems, such as the parity problem, and on real problems arising in speech recognition. Experimental results, including training times and recognition accuracy, are given. Generally, the algorithm achieves accuracy as good as or better than nets trained using back-propagation. Accuracy is comparable to that for the nearest-neighbor algorithm, which is slower and requires more storage space.
MATLAB tensor classes for fast algorithm prototyping.
Bader, Brett William; Kolda, Tamara Gibson
2004-10-01
Tensors (also known as mutidimensional arrays or N-way arrays) are used in a variety of applications ranging from chemometrics to psychometrics. We describe four MATLAB classes for tensor manipulations that can be used for fast algorithm prototyping. The tensor class extends the functionality of MATLAB's multidimensional arrays by supporting additional operations such as tensor multiplication. The tensor as matrix class supports the 'matricization' of a tensor, i.e., the conversion of a tensor to a matrix (and vice versa), a commonly used operation in many algorithms. Two additional classes represent tensors stored in decomposed formats: cp tensor and tucker tensor. We descibe all of these classes and then demonstrate their use by showing how to implement several tensor algorithms that have appeared in the literature.
Notes on implementation of sparsely distributed memory
NASA Technical Reports Server (NTRS)
Keeler, J. D.; Denning, P. J.
1986-01-01
The Sparsely Distributed Memory (SDM) developed by Kanerva is an unconventional memory design with very interesting and desirable properties. The memory works in a manner that is closely related to modern theories of human memory. The SDM model is discussed in terms of its implementation in hardware. Two appendices discuss the unconventional approaches of the SDM: Appendix A treats a resistive circuit for fast, parallel address decoding; and Appendix B treats a systolic array for high throughput read and write operations.
ERIC Educational Resources Information Center
Daigneau, William A.
2003-01-01
Addresses four questions regarding implementation of a long-term capital plan to manage a college's facilities portfolio: When should the projects be implemented? How should the capital improvements be implemented? What will it actually cost in terms of project costs as well as operating costs? Who will implement the plan? (EV)
Fast Poisson, Fast Helmholtz and fast linear elastostatic solvers on rectangular parallelepipeds
Wiegmann, A.
1999-06-01
FFT-based fast Poisson and fast Helmholtz solvers on rectangular parallelepipeds for periodic boundary conditions in one-, two and three space dimensions can also be used to solve Dirichlet and Neumann boundary value problems. For non-zero boundary conditions, this is the special, grid-aligned case of jump corrections used in the Explicit Jump Immersed Interface method. Fast elastostatic solvers for periodic boundary conditions in two and three dimensions can also be based on the FFT. From the periodic solvers we derive fast solvers for the new 'normal' boundary conditions and essential boundary conditions on rectangular parallelepipeds. The periodic case allows a simple proof of existence and uniqueness of the solutions to the discretization of normal boundary conditions. Numerical examples demonstrate the efficiency of the fast elastostatic solvers for non-periodic boundary conditions. More importantly, the fast solvers on rectangular parallelepipeds can be used together with the Immersed Interface Method to solve problems on non-rectangular domains with general boundary conditions. Details of this are reported in the preprint The Explicit Jump Immersed Interface Method for 2D Linear Elastostatics by the author.
FASTGAS: Fast Gas Sampling for palladium exchange tests
Malinowski, M.E.; Stewart, K.D.; VerBerkmoes, A.A.
1991-06-01
A mass spectrometric technique for measuring the composition of gas flows in rapid H/D exchange reactions in palladium compacts has been developed. This method, called FASTGAS (Fast Gas Sampling)'' has been used at atmospheric pressures and above with a time response of better than 100 ms. The current implementation of the FASTGAS technique is described in detail and examples of its application to palladium hydride exchange tests are given. 12 refs., 10 figs.
Programming with a high degree of parallelism in fortran
NASA Astrophysics Data System (ADS)
Jesshope, C. R.
1982-06-01
Many parallel extensions to FORTRAN have been proposed by 'supercomputer' manufacturers. The major differences between these language extensions is reviewed briefly. The Principle of Conservation of Parallelism is also introduced, which is argued to be a desirable foundation on which to base the development of code for parallel computers. Simply stated it requires that the degree of parallelism should not increase during the translation of an algorithm from a concept to a high level language (FORTRAN say) and finally into the machine code of the target computer. Cray FORTRAN and other vectorising compilers do not adhere to this principle, as the parallelism increases from 1 to some greater degree during the compilation process. A simple example will be used to illustrate the implications of this principle, which shows that it will reduce operations at the expense of storage locations. Vectorising compilers may reduce this storage requirement but will increase the number of operations. Two further examples of highly parallel and practical codes are also presented. These illustrate the compactness of code and the close relationship between the mathematical description of the problem and the FORTRAN implementation. The examples show the matrix multiplication and fast Fourier transform algorithms.
Automated measurement of fast mitochondrial transport in neurons
Miller, Kyle E.; Liu, Xin-An; Puthanveettil, Sathyanarayanan V.
2015-01-01
There is growing recognition that fast mitochondrial transport in neurons is disrupted in multiple neurological diseases and psychiatric disorders. However, a major constraint in identifying novel therapeutics based on mitochondrial transport is that the large-scale analysis of fast transport is time consuming. Here we describe methodologies for the automated analysis of fast mitochondrial transport from data acquired using a robotic microscope. We focused on addressing questions of measurement precision, speed, reliably, workflow ease, statistical processing, and presentation. We used optical flow and particle tracking algorithms, implemented in ImageJ, to measure mitochondrial movement in primary cultured cortical and hippocampal neurons. With it, we are able to generate complete descriptions of movement profiles in an automated fashion of hundreds of thousands of mitochondria with a processing time of approximately one hour. We describe the calibration of the parameters of the tracking algorithms and demonstrate that they are capable of measuring the fast transport of a single mitochondrion. We then show that the methods are capable of reliably measuring the inhibition of fast mitochondria transport induced by the disruption of microtubules with the drug nocodazole in both hippocampal and cortical neurons. This work lays the foundation for future large-scale screens designed to identify compounds that modulate mitochondrial motility. PMID:26578890
HI Intensity Mapping with FAST
NASA Astrophysics Data System (ADS)
Bigot-Sazy, M.-A.; Ma, Y.-Z.; Battye, R. A.; Browne, I. W. A.; Chen, T.; Dickinson, C.; Harper, S.; Maffei, B.; Olivari, L. C.; Wilkinsondagger, P. N.
2016-02-01
We discuss the detectability of large-scale HI intensity fluctuations using the FAST telescope. We present forecasts for the accuracy of measuring the Baryonic Acoustic Oscillations and constraining the properties of dark energy. The FAST 19-beam L-band receivers (1.05-1.45 GHz) can provide constraints on the matter power spectrum and dark energy equation of state parameters (w0,wa) that are comparable to the BINGO and CHIME experiments. For one year of integration time we find that the optimal survey area is 6000 deg2. However, observing with larger frequency coverage at higher redshift (0.95-1.35 GHz) improves the projected errorbars on the HI power spectrum by more than 2 σ confidence level. The combined constraints from FAST, CHIME, BINGO and Planck CMB observations can provide reliable, stringent constraints on the dark energy equation of state.
Fast reactors and nuclear nonproliferation
Avrorin, E.N.; Rachkov, V.I.; Chebeskov, A.N.
2013-07-01
Problems are discussed with regard to nuclear fuel cycle resistance in fast reactors to nuclear proliferation risk due to the potential for use in military programs of the knowledge, technologies and materials gained from peaceful nuclear power applications. Advantages are addressed for fast reactors in the creation of a more reliable mode of nonproliferation in the closed nuclear fuel cycle in comparison with the existing fully open and partially closed fuel cycles of thermal reactors. Advantages and shortcomings are also discussed from the point of view of nonproliferation from the start with fast reactors using plutonium of thermal reactor spent fuel and enriched uranium fuel to the gradual transition using their own plutonium as fuel. (authors)
Future Assets, Student Talent (FAST)
NASA Technical Reports Server (NTRS)
1992-01-01
Future Assets, Student Talent (FAST) motivates and prepares talented students with disabilities to further their education and achieve High Tech and professional employment. The FAST program is managed by local professionals, business, and industry leaders; it is modeled after High School High Tech project TAKE CHARGE started in Los Angeles in 1983. Through cooperative efforts of Alabama Department of Education, Vocational Rehabilitation, Adult and Children Services, and the President's Committee on Employment of People with Disabilities, north central Alabama was chosen as the second site for a High School High Tech project. In 1986 local business, industry, education, government agencies, and rehabilitation representatives started FAST. The program objectives and goals, results and accomplishments, and survey results are included.
Fast sigmoidal networks via spiking neurons.
Maass, W
1997-02-15
We show that networks of relatively realistic mathematical models for biological neurons in principle can simulate arbitrary feedforward sigmoidal neural nets in a way that has previously not been considered. This new approach is based on temporal coding by single spikes (respectively by the timing of synchronous firing in pools of neurons) rather than on the traditional interpretation of analog variables in terms of firing rates. The resulting new simulation is substantially faster and hence more consistent with experimental results about the maximal speed of information processing in cortical neural systems. As a consequence we can show that networks of noisy spiking neurons are "universal approximators" in the sense that they can approximate with regard to temporal coding any given continuous function of several variables. This result holds for a fairly large class of schemes for coding analog variables by firing times of spiking neurons. This new proposal for the possible organization of computations in networks of spiking neurons systems has some interesting consequences for the type of learning rules that would be needed to explain the self-organization of such networks. Finally, the fast and noise-robust implementation of sigmoidal neural nets by temporal coding points to possible new ways of implementing feedforward and recurrent sigmoidal neural nets with pulse stream VLSI.
Fast computation of a gated dipole field.
Mengov, George; Georgiev, Kalin; Pulov, Stefan; Trifonov, Trifon; Atanassov, Krassimir
2006-12-01
We address the need to develop efficient algorithms for numerical simulation of models, based in part or entirely on adaptive resonance theory. We introduce modifications that speed up the computation of the gated dipole field (GDF) in the Exact ART neural network. The speed increase of our solution amounts to at least an order of magnitude for fields with more than 100 gated dipoles. We adopt a 'divide and rule' approach towards the original GDF differential equations by grouping them into three categories, and modify each category in a separate way. We decouple the slow-dynamics part - the neurotransmitters from the rest of system, solve their equations analytically, and adapt the solution to the remaining fast-dynamics processes. Part of the node activations are integrated by an unsophisticated numerical procedure switched on and off according to rules. The remaining activations are calculated at equilibrium. We implement this logic in a Generalized Net (GN) - a tool for parallel processes simulation which enables a fresh look at developing efficient models. Our software implementation of generalized nets appears to add little computational overhead.
Compression and fast retrieval of SNP data
Sambo, Francesco; Di Camillo, Barbara; Toffolo, Gianna; Cobelli, Claudio
2014-01-01
Motivation: The increasing interest in rare genetic variants and epistatic genetic effects on complex phenotypic traits is currently pushing genome-wide association study design towards datasets of increasing size, both in the number of studied subjects and in the number of genotyped single nucleotide polymorphisms (SNPs). This, in turn, is leading to a compelling need for new methods for compression and fast retrieval of SNP data. Results: We present a novel algorithm and file format for compressing and retrieving SNP data, specifically designed for large-scale association studies. Our algorithm is based on two main ideas: (i) compress linkage disequilibrium blocks in terms of differences with a reference SNP and (ii) compress reference SNPs exploiting information on their call rate and minor allele frequency. Tested on two SNP datasets and compared with several state-of-the-art software tools, our compression algorithm is shown to be competitive in terms of compression rate and to outperform all tools in terms of time to load compressed data. Availability and implementation: Our compression and decompression algorithms are implemented in a C++ library, are released under the GNU General Public License and are freely downloadable from http://www.dei.unipd.it/~sambofra/snpack.html. Contact: sambofra@dei.unipd.it or cobelli@dei.unipd.it. PMID:25064564
[Preoperative fasting guidelines: an update].
López Muñoz, A C; Busto Aguirreurreta, N; Tomás Braulio, J
2015-03-01
Anesthesiology societies have issued various guidelines on preoperative fasting since 1990, not only to decrease the incidence of lung aspiration and anesthetic morbidity, but also to increase patient comfort prior to anesthesia. Some of these societies have been updating their guidelines, as such that, since 2010, we now have 2 evidence-based preoperative fasting guidelines available. In this article, an attempt is made to review these updated guidelines, as well as the current instructions for more controversial patients such as infants, the obese, and a particular type of ophthalmic surgery.
Fast generation of stereolithographic models.
Raic, K; Jansen, T; von Rymon-Lipinski, B; Tille, C; Seitz, H; Keeve, E
2002-01-01
In this paper we present a work-in-progress method for fast and efficient generation of stereolithographic models. The overall approach is embedded in our general software framework Julius, which runs on high-end-graphic systems as well as on low-level PCs. The design of the support structures needed for the stereolithographic process will allow semiautomatic generation of the model. We did produce support structures for stereolithographic models with this fast data processing pipeline and will show future perspectives in this paper. PMID:12451779
Subspace Detectors: Efficient Implementation
Harris, D B; Paik, T
2006-07-26
computed efficiently for continuous multichannel seismic data. The speed of the calculation is significant as it may become desirable to deploy subspace detectors numbering in the thousands. One application contemplated for these detectors is as screens against signals from repeating sources such as mines or aftershocks of large earthquakes. With many tens of stations and potentially hundreds of sources to screen, efficient implementations are desirable. Speed, of course, can be achieved by procuring faster computers or special-purpose hardware. The approach we examine here is the development of two efficient algorithms that can make the calculations run faster on any machine. In the first section, we describe the subspace detector as we use it for the detection of repeating seismic events, defining terms and the parameterization used in succeeding sections. This section also reviews how the correlation computations central to the matched filter and subspace detectors can be implemented as a collection of convolution operations. Convolution algorithms using fast Fourier transforms, such as the overlap-add and overlap-save methods, have long been known as efficient implementations of discrete-time finite-impulse-response filters [e.g. Oppenheim and Schafer, 1975]. These may be extended in a straightforward manner to implement multichannel correlation detectors. In the second section, we describe how multichannel data can be multiplexed to compute the required convolutions with a single pair of FFT operations instead of a pair for each channel. This approach increases speed approximately twofold. Seismic data, almost invariably, are oversampled. This characteristic provides an opportunity for increased efficiency by decimating the data prior to performing the correlation calculations. In the third section, we describe a bandpass transformation of the data that allows a more aggressive decimation of the data without significant loss of fidelity in the correlation calculation
A pragmatic cluster randomised trial evaluating three implementation interventions
2012-01-01
Background Implementation research is concerned with bridging the gap between evidence and practice through the study of methods to promote the uptake of research into routine practice. Good quality evidence has been summarised into guideline recommendations to show that peri-operative fasting times could be considerably shorter than patients currently experience. The objective of this trial was to evaluate the effectiveness of three strategies for the implementation of recommendations about peri-operative fasting. Methods A pragmatic cluster randomised trial underpinned by the PARIHS framework was conducted during 2006 to 2009 with a national sample of UK hospitals using time series with mixed methods process evaluation and cost analysis. Hospitals were randomised to one of three interventions: standard dissemination (SD) of a guideline package, SD plus a web-based resource championed by an opinion leader, and SD plus plan-do-study-act (PDSA). The primary outcome was duration of fluid fast prior to induction of anaesthesia. Secondary outcomes included duration of food fast, patients’ experiences, and stakeholders’ experiences of implementation, including influences. ANOVA was used to test differences over time and interventions. Results Nineteen acute NHS hospitals participated. Across timepoints, 3,505 duration of fasting observations were recorded. No significant effect of the interventions was observed for either fluid or food fasting times. The effect size was 0.33 for the web-based intervention compared to SD alone for the change in fluid fasting and was 0.12 for PDSA compared to SD alone. The process evaluation showed different types of impact, including changes to practices, policies, and attitudes. A rich picture of the implementation challenges emerged, including inter-professional tensions and a lack of clarity for decision-making authority and responsibility. Conclusions This was a large, complex study and one of the first national randomised
MILAMIN 2 - Fast MATLAB FEM solver
NASA Astrophysics Data System (ADS)
Dabrowski, Marcin; Krotkiewski, Marcin; Schmid, Daniel W.
2013-04-01
MILAMIN is a free and efficient MATLAB-based two-dimensional FEM solver utilizing unstructured meshes [Dabrowski et al., G-cubed (2008)]. The code consists of steady-state thermal diffusion and incompressible Stokes flow solvers implemented in approximately 200 lines of native MATLAB code. The brevity makes the code easily customizable. An important quality of MILAMIN is speed - it can handle millions of nodes within minutes on one CPU core of a standard desktop computer, and is faster than many commercial solutions. The new MILAMIN 2 allows three-dimensional modeling. It is designed as a set of functional modules that can be used as building blocks for efficient FEM simulations using MATLAB. The utilities are largely implemented as native MATLAB functions. For performance critical parts we use MUTILS - a suite of compiled MEX functions optimized for shared memory multi-core computers. The most important features of MILAMIN 2 are: 1. Modular approach to defining, tracking, and discretizing the geometry of the model 2. Interfaces to external mesh generators (e.g., Triangle, Fade2d, T3D) and mesh utilities (e.g., element type conversion, fast point location, boundary extraction) 3. Efficient computation of the stiffness matrix for a wide range of element types, anisotropic materials and three-dimensional problems 4. Fast global matrix assembly using a dedicated MEX function 5. Automatic integration rules 6. Flexible prescription (spatial, temporal, and field functions) and efficient application of Dirichlet, Neuman, and periodic boundary conditions 7. Treatment of transient and non-linear problems 8. Various iterative and multi-level solution strategies 9. Post-processing tools (e.g., numerical integration) 10. Visualization primitives using MATLAB, and VTK export functions We provide a large number of examples that show how to implement a custom FEM solver using the MILAMIN 2 framework. The examples are MATLAB scripts of increasing complexity that address a given
Implementing Student Information Systems
ERIC Educational Resources Information Center
Sullivan, Laurie; Porter, Rebecca
2006-01-01
Implementing an enterprise resource planning system is a complex undertaking. Careful planning, management, communication, and staffing can make the difference between a successful and unsuccessful implementation. (Contains 3 tables.)
NASA Technical Reports Server (NTRS)
Fogal, G. L.
1977-01-01
Wall structure keeps chambers at constant, uniform temperature, yet allows them to be cooled rapidly if necessary. Wall structure, used in fast-response cloud chamber, has surface heater and coolant shell separated by foam insulation. It is lightweight and requires relatively little power.
Fast Detector Simulation Using Lelaps
Langeveld, W
2004-08-20
Lelaps is a fast detector simulation program which reads StdHep generator files and produces SIO or LCIO output files. It swims particles through detectors taking into account magnetic fields, multiple scattering and dE/dx energy loss. It simulates parameterized showers in EM and hadronic calorimeters and supports gamma conversions and decays.
ERIC Educational Resources Information Center
Florida State Board of Community Colleges, Tallahassee.
The document is a compilation of Fast Facts on a wide range of issues affecting the Florida Community College System (FCCS) and higher education in general. It uses data extracted from a federal publication entitled "Answers in the Tool Box." Some of the topics that are addressed are as follows: important variables for student baccalaureate…
ERIC Educational Resources Information Center
Wisniewski, Jeff
2008-01-01
This article presents fast, easy and helpful hints for making web sites that people will want to use over and over again. These tips include: (1) Making sure that the website's copyright statement is up-to-date; (2) Adding "last updated" code to each webpage at the site; (3) Adding photos to the site's contact information; (4) Turning boring old…
Fast superconducting magnetic field switch
Goren, Y.; Mahale, N.K.
1995-12-31
The superconducting magnetic switch or fast kicker magnet is employed with an electron stream or a bunch of electrons to rapidly change the direction of flow of the electron stream or bunch of electrons. The apparatus employs a beam tube which is coated with a film of superconducting material. The tube is cooled to a temperature below the superconducting transition temperature and is subjected to a constant magnetic field which is produced by an external dc magnet. The magnetic field produced by the dc magnet is less than the critical field for the superconducting material, thus, creating a Meissner Effect condition. A controllable fast electromagnet is used to provide a magnetic field which supplements that of the dc magnet so that when the fast magnet is energized the combined magnetic field is now greater than the critical field and the superconducting material returns to its normal state allowing the magnetic field to penetrate the tube. This produces an internal field which effects the direction of motion and of the electron stream or electron bunch. The switch can also operate as a switching mechanism for charged particles. Magnetic switches and particularly fast kicker magnets are used in the accelerator industry to quickly deflect particle beams into and out of various transport lines, storage rings, dumps, and specifically to differentially route individual bunches of particles from a train of bunches which are injected or ejected from a given ring.
Fast Atom Bombardment Mass Spectrometry.
ERIC Educational Resources Information Center
Rinehart, Kenneth L., Jr.
1982-01-01
Discusses reactions and characteristics of fast atom bombardment (FAB) mass spectroscopy in which samples are ionized in a condensed state by bombardment with xenon or argon atoms, yielding positive/negative secondary ions. Includes applications of FAB to structural problems and considers future developments using the technique. (Author/JN)
Fast semivariogram computation using FPGA architectures
NASA Astrophysics Data System (ADS)
Lagadapati, Yamuna; Shirvaikar, Mukul; Dong, Xuanliang
2015-02-01
The semivariogram is a statistical measure of the spatial distribution of data and is based on Markov Random Fields (MRFs). Semivariogram analysis is a computationally intensive algorithm that has typically seen applications in the geosciences and remote sensing areas. Recently, applications in the area of medical imaging have been investigated, resulting in the need for efficient real time implementation of the algorithm. The semivariogram is a plot of semivariances for different lag distances between pixels. A semi-variance, γ(h), is defined as the half of the expected squared differences of pixel values between any two data locations with a lag distance of h. Due to the need to examine each pair of pixels in the image or sub-image being processed, the base algorithm complexity for an image window with n pixels is O(n2). Field Programmable Gate Arrays (FPGAs) are an attractive solution for such demanding applications due to their parallel processing capability. FPGAs also tend to operate at relatively modest clock rates measured in a few hundreds of megahertz, but they can perform tens of thousands of calculations per clock cycle while operating in the low range of power. This paper presents a technique for the fast computation of the semivariogram using two custom FPGA architectures. The design consists of several modules dedicated to the constituent computational tasks. A modular architecture approach is chosen to allow for replication of processing units. This allows for high throughput due to concurrent processing of pixel pairs. The current implementation is focused on isotropic semivariogram computations only. Anisotropic semivariogram implementation is anticipated to be an extension of the current architecture, ostensibly based on refinements to the current modules. The algorithm is benchmarked using VHDL on a Xilinx XUPV5-LX110T development Kit, which utilizes the Virtex5 FPGA. Medical image data from MRI scans are utilized for the experiments
Implementation of global energy sustainability
Grob, G.R.
1998-02-01
The term energy sustainability emerged from the UN Conference on Environment and Development in Rio 1992, when Agenda 21 was formulated and the Global Energy Charter proclaimed. Emission reductions, total energy costing, improved energy efficiency, and sustainable energy systems are the four fundamental principles of the charter. These principles can be implemented in the proposed financial, legal, technical, and education framework. Much has been done in many countries toward the implementation of the Global Energy Charter, but progress has not been fast enough to ease the disastrous effects of the too many ill-conceived energy systems on the environment, climate, and health. Global warming is accelerating, and pollution is worsening, especially in developing countries with their hunger for energy to meet the needs of economic development. Asian cities are now beating all pollution records, and greenhouse gases are visibly changing the climate with rising sea levels, retracting glaciers, and record weather disasters. This article presents why and how energy investments and research money have to be rechanneled into sustainable energy, rather than into the business-as-usual of depleting, unsustainable energy concepts exceeding one trillion dollars per year. This largest of all investment sectors needs much more attention.
Fast Neutron Sensitivity with HPGe
Seifert, Allen; Hensley, Walter K.; Siciliano, Edward R.; Pitts, W. K.
2008-01-22
In addition to being excellent gamma-ray detectors, germanium detectors are also sensitive to fast neutrons. Incident neutrons undergo inelastic scattering {Ge(n,n')Ge*} off germanium nuclei and the resulting excited states emit gamma rays or conversion electrons. The response of a standard 140% high-purity germanium (HPGe) detector with a bismuth germanate (BGO) anti-coincidence shield was measured for several neutron sources to characterize the ability of the HPGe detector to detect fast neutrons. For a sensitivity calculation performed using the characteristic fast neutron response peak that occurs at 692 keV, the 140% germanium detector system exhibited a sensitivity of ~175 counts / kg of WGPu_{metal} in 1000 seconds at a source-detector distance of 1 meter with 4 in. of lead shielding between source and detector. Theoretical work also indicates that it might be possible to use the shape of the fast-neutron inelastic scattering signatures (specifically, the end-point energy of the long high energy tail of the resulting asymmetric peak) to gain additional information about the energy distribution of the incident neutron spectrum. However, the experimentally observed end-point energies appear to be almost identical for each of the fast neutron sources counted. Detailed MCNP calculations show that the neutron energy distributions impingent on the detector for these sources are very similar in this experimental configuration, due to neutron scattering in a lead shield (placed between the neutron source and HPGe detector to reduce the gamma ray flux), the BGO anti-coincidence detector, and the concrete floor.
A fast meteor detection algorithm
NASA Astrophysics Data System (ADS)
Gural, P.
2016-01-01
A low latency meteor detection algorithm for use with fast steering mirrors had been previously developed to track and telescopically follow meteors in real-time (Gural, 2007). It has been rewritten as a generic clustering and tracking software module for meteor detection that meets both the demanding throughput requirements of a Raspberry Pi while also maintaining a high probability of detection. The software interface is generalized to work with various forms of front-end video pre-processing approaches and provides a rich product set of parameterized line detection metrics. Discussion will include the Maximum Temporal Pixel (MTP) compression technique as a fast thresholding option for feeding the detection module, the detection algorithm trade for maximum processing throughput, details on the clustering and tracking methodology, processing products, performance metrics, and a general interface description.
NASA Technical Reports Server (NTRS)
Feynman, Joan; Ruzmaikin, Alexander
2006-01-01
We study CMEs observed by LASCO to have plane of the sky velocities exceeding 1500 km/sec. We find that these extremely fast CMEs are typically associated with flares accompanied by erupting prominences. Our results are consistent with a single CME initiation process that consists of three stages. The initial stage is brought about by the emergence of new magnetic flux, which interacts with the pre-existing magnetic configuration and results in a slow rise of the magnetic structure. The second stage is a fast reconnection phase with flaring, filament eruption and a sudden increase of the rise velocity of the magnetic structure (CME). The third stage consists of propagation in the corona. We discuss the sources of these CMEs and the need for improved understanding of the first and third stages.
Electron Beams for Fast Ignition
NASA Astrophysics Data System (ADS)
Fonseca, R. A.; Davies, J. R.; Silva, L. O.
2004-11-01
In the fast ignitor scenario an intense relativistic electron beam is used to deposit energy inside the fuel target and trigger the thermonuclear reaction. This electron beam is produced on the outer plasma layer of the target by the interaction of an ultra-intense laser. The energy transfer from the laser to the electron beam, and the stability of the propagation of the electron beam are crucial for a successful fast ignitor scheme. We have used three-dimensional particle-in-cell simulations using the OSIRIS.framework [1] to explore the self-consistent generation of high current electron beams by ultra intense lasers. Novel laser pulse configurations are explored in order to generate electron beams transporting more energy, and capable of avoiding the deleterious effects of collisionless instabilities in the plasma corona. [1] R. A. Fonseca et al., LNCS 2331, 342-351, (Springer, Heidelberg, 2002);
Fast-track for fast times: catching and keeping generation Y in the nursing workforce.
Walker, Kim
2007-04-01
There is little doubt we find ourselves in challenging times as never before has there been such generational diversity in the nursing workforce. Currently, nurses from four distinct (and now well recognised and discussed) generational groups jostle for primacy of recognition and reward. Equally significant is the acute realisation that our ageing profession must find ways to sustain itself in the wake of huge attrition as the 'baby boomer' nurses start retiring over the next ten to fifteen years. These realities impel us to become ever more strategic in our thinking about how best to manage the workforce of the future. This paper presents two exciting and original innovations currently in train at one of Australia's leading Catholic health care providers: firstly, a new fast-track bachelor of nursing program for fee-paying domestic students. This is a collaborative venture between St Vincent's and Mater Health, Sydney (SV&MHS) and the University of Tasmania (UTas); as far as we know, it is unprecedented in Australia. As well, the two private facilities of SV&MHS, St Vincent's Private (SVPH) and the Mater Hospitals, have developed and implemented a unique 'accelerated progression pathway' (APP) to enable registered nurses with talent and ambition to fast track their career through a competency and merit based system of performance management and reward. Both these initiatives are aimed squarely at the gen Y demographic and provide potential to significantly augment our capacity to recruit and retain quality people well into the future.
Application of Fast Multipole Methods to the NASA Fast Scattering Code
NASA Technical Reports Server (NTRS)
Dunn, Mark H.; Tinetti, Ana F.
2008-01-01
The NASA Fast Scattering Code (FSC) is a versatile noise prediction program designed to conduct aeroacoustic noise reduction studies. The equivalent source method is used to solve an exterior Helmholtz boundary value problem with an impedance type boundary condition. The solution process in FSC v2.0 requires direct manipulation of a large, dense system of linear equations, limiting the applicability of the code to small scales and/or moderate excitation frequencies. Recent advances in the use of Fast Multipole Methods (FMM) for solving scattering problems, coupled with sparse linear algebra techniques, suggest that a substantial reduction in computer resource utilization over conventional solution approaches can be obtained. Implementation of the single level FMM (SLFMM) and a variant of the Conjugate Gradient Method (CGM) into the FSC is discussed in this paper. The culmination of this effort, FSC v3.0, was used to generate solutions for three configurations of interest. Benchmarking against previously obtained simulations indicate that a twenty-fold reduction in computational memory and up to a four-fold reduction in computer time have been achieved on a single processor.
A fast AFC technique with self-calibration for fast-locking PLLs
NASA Astrophysics Data System (ADS)
Song, Bongsub; Lee, Junan; Kim, Kyunghoon; Burm, Jinwook
2013-08-01
A fast adaptive frequency calibration (AFC) technique with self-calibration for fast-locking phase-locked loops is presented with frequency-selecting switches. The proposed AFC directly calculates the proper switch states of the voltage-controlled oscillator (VCO). It requires only six clock cycles of the reference oscillator regardless of the number of VCO switches to reach the final switch state in the ideal case. The proposed method counts the number of VCO cycles per reference clock period for the minimum VCO frequency (MIN) and the maximum VCO frequency (MAX) during the first four-clock periods. For the following two-clock periods, the proper states of the VCO switches are set to the calculated value from MIN, MAX and the desired division ratio for a target frequency (EST). A frequency synthesiser with the proposed AFC was implemented on a 0.18 µm CMOS process. The AFC time decreased from 40 to 0.4 µs employing the proposed scheme such that the total lock time is 40 µs with the loop bandwidth of 40 kHz.
Fast quench reactor and method
Detering, Brent A.; Donaldson, Alan D.; Fincke, James R.; Kong, Peter C.
2002-01-01
A fast quench reaction includes a reactor chamber having a high temperature heating means such as a plasma torch at its inlet and a restrictive convergent-divergent nozzle at its outlet end. Reactants are injected into the reactor chamber. The resulting heated gaseous stream is then rapidly cooled by passage through the nozzle. This "freezes" the desired end product(s) in the heated equilibrium reaction stage.
Fast quench reactor and method
Detering, Brent A.; Donaldson, Alan D.; Fincke, James R.; Kong, Peter C.
2002-09-24
A fast quench reaction includes a reactor chamber having a high temperature heating means such as a plasma torch at its inlet and a restrictive convergent-divergent nozzle at its outlet end. Reactants are injected into the reactor chamber. The resulting heated gaseous stream is then rapidly cooled by passage through the nozzle. This "freezes" the desired end product(s) in the heated equilibrium reaction stage.
Fast quench reactor and method
Detering, Brent A.; Donaldson, Alan D.; Fincke, James R.; Kong, Peter C.
1998-01-01
A fast quench reaction includes a reactor chamber having a high temperature heating means such as a plasma torch at its inlet and a restrictive convergent-divergent nozzle at its outlet end. Reactants are injected into the reactor chamber. The resulting heated gaseous stream is then rapidly cooled by passage through the nozzle. This "freezes" the desired end product(s) in the heated equilibrium reaction stage.
Gricius, Robert F; Wong, Douglas
2016-01-01
Hospitals that are newly qualified for the 340B Drug Pricing Program may have an opportunity for fast-track approval to participate in the program. Three steps are required to seize this opportunity: Use data analytics to assess current and future percentages of Medicaid utilization and eligibility for federal SSI cash benefits. Determine the feasibility of early cost report filing. Prepare appropriate documentation and undertake the initial enrollment process. PMID:26863836
Gricius, Robert F; Wong, Douglas
2016-01-01
Hospitals that are newly qualified for the 340B Drug Pricing Program may have an opportunity for fast-track approval to participate in the program. Three steps are required to seize this opportunity: Use data analytics to assess current and future percentages of Medicaid utilization and eligibility for federal SSI cash benefits. Determine the feasibility of early cost report filing. Prepare appropriate documentation and undertake the initial enrollment process.
Fast quench reactor and method
Detering, B.A.; Donaldson, A.D.; Fincke, J.R.; Kong, P.C.
1998-05-12
A fast quench reactor includes a reactor chamber having a high temperature heating means such as a plasma torch at its inlet and a restrictive convergent-divergent nozzle at its outlet end. Reactants are injected into the reactor chamber. The resulting heated gaseous stream is then rapidly cooled by passage through the nozzle. This ``freezes`` the desired end product(s) in the heated equilibrium reaction stage. 7 figs.
Spitler, L G; Scholz, P; Hessels, J W T; Bogdanov, S; Brazier, A; Camilo, F; Chatterjee, S; Cordes, J M; Crawford, F; Deneva, J; Ferdman, R D; Freire, P C C; Kaspi, V M; Lazarus, P; Lynch, R; Madsen, E C; McLaughlin, M A; Patel, C; Ransom, S M; Seymour, A; Stairs, I H; Stappers, B W; van Leeuwen, J; Zhu, W W
2016-03-10
Fast radio bursts are millisecond-duration astronomical radio pulses of unknown physical origin that appear to come from extragalactic distances. Previous follow-up observations have failed to find additional bursts at the same dispersion measure (that is, the integrated column density of free electrons between source and telescope) and sky position as the original detections. The apparent non-repeating nature of these bursts has led to the suggestion that they originate in cataclysmic events. Here we report observations of ten additional bursts from the direction of the fast radio burst FRB 121102. These bursts have dispersion measures and sky positions consistent with the original burst. This unambiguously identifies FRB 121102 as repeating and demonstrates that its source survives the energetic events that cause the bursts. Additionally, the bursts from FRB 121102 show a wide range of spectral shapes that appear to be predominantly intrinsic to the source and which vary on timescales of minutes or less. Although there may be multiple physical origins for the population of fast radio bursts, these repeat bursts with high dispersion measure and variable spectra specifically seen from the direction of FRB 121102 support an origin in a young, highly magnetized, extragalactic neutron star. PMID:26934226
Diagnostics for Fast Ignition Science
MacPhee, A; Akli, K; Beg, F; Chen, C; Chen, H; Clarke, R; Hey, D; Freeman, R; Kemp, A; Key, M; King, J; LePape, S; Link, A; Ma, T; Nakamura, N; Offermann, D; Ovchinnikov, V; Patel, P; Phillips, T; Stephens, R; Town, R; Wei, M; VanWoerkom, L; Mackinnon, A
2008-05-06
The concept for Electron Fast Ignition Inertial Confinement Fusion demands sufficient laser energy be transferred from the ignitor pulse to the assembled fuel core via {approx}MeV electrons. We have assembled a suite of diagnostics to characterize such transfer. Recent experiments have simultaneously fielded absolutely calibrated extreme ultraviolet multilayer imagers at 68 and 256eV; spherically bent crystal imagers at 4 and 8keV; multi-keV crystal spectrometers; MeV x-ray bremmstrahlung and electron and proton spectrometers (along the same line of sight); nuclear activation samples and a picosecond optical probe based interferometer. These diagnostics allow careful measurement of energy transport and deposition during and following laser-plasma interactions at extremely high intensities in both planar and conical targets. Augmented with accurate on-shot laser focal spot and pre-pulse characterization, these measurements are yielding new insight into energy coupling and are providing critical data for validating numerical PIC and hybrid PIC simulation codes in an area that is crucial for many applications, particularly fast ignition. Novel aspects of these diagnostics and how they are combined to extract quantitative data on ultra high intensity laser plasma interactions are discussed, together with implications for full-scale fast ignition experiments.
Fast superconducting magnetic field switch
Goren, Yehuda; Mahale, Narayan K.
1996-01-01
The superconducting magnetic switch or fast kicker magnet is employed with electron stream or a bunch of electrons to rapidly change the direction of flow of the electron stream or bunch of electrons. The apparatus employs a beam tube which is coated with a film of superconducting material. The tube is cooled to a temperature below the superconducting transition temperature and is subjected to a constant magnetic field which is produced by an external dc magnet. The magnetic field produced by the dc magnet is less than the critical field for the superconducting material, thus, creating a Meissner Effect condition. A controllable fast electromagnet is used to provide a magnetic field which supplements that of the dc magnet so that when the fast magnet is energized the combined magnetic field is now greater that the critical field and the superconducting material returns to its normal state allowing the magnetic field to penetrate the tube. This produces an internal field which effects the direction of motion and of the electron stream or electron bunch. The switch can also operate as a switching mechanism for charged particles.
Heterogeneous Transmutation Sodium Fast Reactor
S. E. Bays
2007-09-01
The threshold-fission (fertile) nature of Am-241 is used to destroy this minor actinide by capitalizing upon neutron capture instead of fission within a sodium fast reactor. This neutron-capture and its subsequent decay chain leads to the breeding of even neutron number plutonium isotopes. A slightly moderated target design is proposed for breeding plutonium in an axial blanket located above the active “fast reactor” driver fuel region. A parametric study on the core height and fuel pin diameter-to-pitch ratio is used to explore the reactor and fuel cycle aspects of this design. This study resulted in both non-flattened and flattened core geometries. Both of these designs demonstrated a high capacity for removing americium from the fuel cycle. A reactivity coefficient analysis revealed that this heterogeneous design will have comparable safety aspects to a homogeneous reactor of comparable size. A mass balance analysis revealed that the heterogeneous design may reduce the number of fast reactors needed to close the current once-through light water reactor fuel cycle.
Spitler, L G; Scholz, P; Hessels, J W T; Bogdanov, S; Brazier, A; Camilo, F; Chatterjee, S; Cordes, J M; Crawford, F; Deneva, J; Ferdman, R D; Freire, P C C; Kaspi, V M; Lazarus, P; Lynch, R; Madsen, E C; McLaughlin, M A; Patel, C; Ransom, S M; Seymour, A; Stairs, I H; Stappers, B W; van Leeuwen, J; Zhu, W W
2016-03-10
Fast radio bursts are millisecond-duration astronomical radio pulses of unknown physical origin that appear to come from extragalactic distances. Previous follow-up observations have failed to find additional bursts at the same dispersion measure (that is, the integrated column density of free electrons between source and telescope) and sky position as the original detections. The apparent non-repeating nature of these bursts has led to the suggestion that they originate in cataclysmic events. Here we report observations of ten additional bursts from the direction of the fast radio burst FRB 121102. These bursts have dispersion measures and sky positions consistent with the original burst. This unambiguously identifies FRB 121102 as repeating and demonstrates that its source survives the energetic events that cause the bursts. Additionally, the bursts from FRB 121102 show a wide range of spectral shapes that appear to be predominantly intrinsic to the source and which vary on timescales of minutes or less. Although there may be multiple physical origins for the population of fast radio bursts, these repeat bursts with high dispersion measure and variable spectra specifically seen from the direction of FRB 121102 support an origin in a young, highly magnetized, extragalactic neutron star.
Fast superconducting magnetic field switch
Goren, Y.; Mahale, N.K.
1996-08-06
The superconducting magnetic switch or fast kicker magnet is employed with electron stream or a bunch of electrons to rapidly change the direction of flow of the electron stream or bunch of electrons. The apparatus employs a beam tube which is coated with a film of superconducting material. The tube is cooled to a temperature below the superconducting transition temperature and is subjected to a constant magnetic field which is produced by an external dc magnet. The magnetic field produced by the dc magnet is less than the critical field for the superconducting material, thus, creating a Meissner Effect condition. A controllable fast electromagnet is used to provide a magnetic field which supplements that of the dc magnet so that when the fast magnet is energized the combined magnetic field is now greater that the critical field and the superconducting material returns to its normal state allowing the magnetic field to penetrate the tube. This produces an internal field which effects the direction of motion and of the electron stream or electron bunch. The switch can also operate as a switching mechanism for charged particles. 6 figs.
Simple and fast cosine approximation method for computer-generated hologram calculation.
Nishitsuji, Takashi; Shimobaba, Tomoyoshi; Kakue, Takashi; Arai, Daisuke; Ito, Tomoyoshi
2015-12-14
The cosine function is a heavy computational operation in computer-generated hologram (CGH) calculation; therefore, it is implemented by substitution methods such as a look-up table. However, the computational load and required memory space of such methods are still large. In this study, we propose a simple and fast cosine function approximation method for CGH calculation. As a result, we succeeded in creating CGH with sufficient quality and made the calculation time 1.6 times as fast at maximum compared to using the look-up table of the cosine function on CPU implementation.
NASA Astrophysics Data System (ADS)
Yu, Xinying; Zhang, Xia; Duan, Ran; li, di; Hao, Jie
2015-08-01
The receiver system is an important part of FAST (Five-hundred-meter Aperture Spherical Radio Telescope) and plays a key role in determining the performance of the telescope.This research covers three major aspects: establishment of system synchronization and timestamps, field-programmable gate array (FPGA)-based data transmission and analysis, and the rear receiver monitoring system. We intend to combine the use of GPS and a frequency standard instrument with network access to Unix timestamps to form actual timestamps. The data are stored with timestamps that contain integer and fractional seconds to be precise and headers, which are primarily intended to distinguish the data from each other.The data analysis procedures includes converting the timestamp information to real-time information, and merging the 8 channels’ data conversion results into frequency and energy data using corresponding conversion formulae. We must develop tailored monitoring software for the FAST receiver to customize the data format and perform data transmission. Signals on the front-end and back-end of the receiver can be monitored and controlled by adjusting the parameters on the software to increase the flexibility of the receiver.Most operations are performed on FPGA board, which can be shown from the figure, including the analog-to-digital conversion (ADC), fast Fourier transform (FFT), and pulse per second (1PPS) and Unix timestamp access operations.When analog data arrive, we initialize two ADCs at a sampling rate of 3Gsps, following by 8-channel FFT parallel processing.In collaboration with the Institute of Automation, we have developed a custom FPGA board which we call "FDB"("FAST Digital Backend"). The board is integrated with two Virtex-6 and one Virtex-5 high-speed Xilinx chips. The main function of the two Virtex-6 devices is to run the FFT and PFB programs, whereas the main function of Virtex-5 is configuration of the board.This research is indispensable for realizing the
NASA Technical Reports Server (NTRS)
Hauschildt, P. H.
1992-01-01
A fast method for the solution of the radiative transfer equation in rapidly moving spherical media, based on an approximate Lambda-operator iteration, is described. The method uses the short characteristic method and a tridiagonal approximate Lambda-operator to achieve fast convergence. The convergence properties and the CPU time requirements of the method are discussed for the test problem of a two-level atom with background continuum absorption and Thomson scattering. Details of the actual implementation for fast vector and parallel computers are given. The method is accurate and fast enough to be incorporated in radiation-hydrodynamic calculations.
Fasting Increases Tobramycin Oral Absorption in Mice▿
De Leo, Luigina; Di Toro, Nicola; Decorti, Giuliana; Malusà, Noelia; Ventura, Alessandro; Not, Tarcisio
2010-01-01
The pharmacokinetics of the aminoglycoside tobramycin was evaluated after oral administration to fed or fasting (15 h) mice. As expected, under normal feeding conditions, oral absorption was negligible; however, fasting induced a dramatic increase in tobramycin bioavailability. The dual-sugar test with lactulose and l-rhamnose confirmed increased small bowel permeability via the paracellular route in fasting animals. When experiments aimed at increasing the oral bioavailability of hydrophilic compounds are performed, timing of fasting should be extremely accurate. PMID:20086144
Fast neutron imaging device and method
Popov, Vladimir; Degtiarenko, Pavel; Musatov, Igor V.
2014-02-11
A fast neutron imaging apparatus and method of constructing fast neutron radiography images, the apparatus including a neutron source and a detector that provides event-by-event acquisition of position and energy deposition, and optionally timing and pulse shape for each individual neutron event detected by the detector. The method for constructing fast neutron radiography images utilizes the apparatus of the invention.
Fast Foods, Organic Foods, Fad Diets
Technology Transfer Automated Retrieval System (TEKTRAN)
There is no standard definition of fast food. Generally, fast food is eaten without cutlery, and fast-food restaurants have no wait staff. Failure to have a standardized definition makes it difficult to compare studies. Foods available outside the home tend to be high in energy and fat compared w...
Fast ion beam chopping system for neutron generators
NASA Astrophysics Data System (ADS)
Hahto, S. K.; Hahto, S. T.; Leung, K. N.; Reijonen, J.; Miller, T. G.; Van Staagen, P. K.
2005-02-01
Fast deuterium (D+) and tritium (T+) ion beam pulses are needed in some neutron-based imaging systems. A compact, integrated fast ion beam extraction and chopping system has been developed and tested at the Lawrence Berkeley National Laboratory for these applications, and beam pulses with 15ns full width at half maximum have been achieved. Computer simulations together with experimental tests indicate that even faster pulses are achievable by shortening the chopper voltage rise time. This chopper arrangement will be implemented in a coaxial neutron generator, in which a small point-like neutron source is created by multiple 120keV D+ ion beams hitting a titanium target at the center of the source.
Fast ion beam chopping system for neutron generators
Hahto, S.K.; Hahto, S.T.; Leung, K.N.; Reijonen, J.; Miller, T.G.; Van Staagen, P.K.
2005-02-01
Fast deuterium (D{sup +}) and tritium (T{sup +}) ion beam pulses are needed in some neutron-based imaging systems. A compact, integrated fast ion beam extraction and chopping system has been developed and tested at the Lawrence Berkeley National Laboratory for these applications, and beam pulses with 15 ns full width at half maximum have been achieved. Computer simulations together with experimental tests indicate that even faster pulses are achievable by shortening the chopper voltage rise time. This chopper arrangement will be implemented in a coaxial neutron generator, in which a small point-like neutron source is created by multiple 120 keV D{sup +} ion beams hitting a titanium target at the center of the source.
Matrix-Vector Based Fast Fourier Transformations on SDR Architectures
NASA Astrophysics Data System (ADS)
He, Y.; Hueske, K.; Götze, J.; Coersmeier, E.
2008-05-01
Today Discrete Fourier Transforms (DFTs) are applied in various radio standards based on OFDM (Orthogonal Frequency Division Multiplex). It is important to gain a fast computational speed for the DFT, which is usually achieved by using specialized Fast Fourier Transform (FFT) engines. However, in face of the Software Defined Radio (SDR) development, more general (parallel) processor architectures are often desirable, which are not tailored to FFT computations. Therefore, alternative approaches are required to reduce the complexity of the DFT. Starting from a matrix-vector based description of the FFT idea, we will present different factorizations of the DFT matrix, which allow a reduction of the complexity that lies between the original DFT and the minimum FFT complexity. The computational complexities of these factorizations and their suitability for implementation on different processor architectures are investigated.
Behaviour of fast electron transport in solid targets
NASA Astrophysics Data System (ADS)
Koenig, M.; Baton, S. D.; Benuzzi-Mounaix, A.; Fuchs, J.; Loupias, B.; Guillou, P.; Batani, D.; Morace, A.; Piazza, D.; Kodama, R.; Norimatsu, T.; Nakatsutsumi, M.; Aglitskiy, Y.; Rousseaux, C.
2006-06-01
One of the main issues of the fast ignitor scheme is the role of fast electron transport in the solid fuel heating. Recent experiments used a new target scheme based on the use of cone to guide the PW laser and enhance the electron production. In this context it is fundamental to understand the physics underlying this new target scheme. We report here recent and preliminary results of ultra-intense laser pulse interaction with three layer targets in presence of the cone or without. Experiments have been performed at LULI with the 100 TW laser facility, at intensities up to 3 1019 W/cm2. Several diagnostics have been implemented (2D Kα imaging, Kα spectroscopy and rear side imaging, protons emission) to quantify the cone effect.
Fast Sparse Level Sets on Graphics Hardware.
Jalba, Andrei C; van der Laan, Wladimir J; Roerdink, Jos B T M
2013-01-01
The level-set method is one of the most popular techniques for capturing and tracking deformable interfaces. Although level sets have demonstrated great potential in visualization and computer graphics applications, such as surface editing and physically based modeling, their use for interactive simulations has been limited due to the high computational demands involved. In this paper, we address this computational challenge by leveraging the increased computing power of graphics processors, to achieve fast simulations based on level sets. Our efficient, sparse GPU level-set method is substantially faster than other state-of-the-art, parallel approaches on both CPU and GPU hardware. We further investigate its performance through a method for surface reconstruction, based on GPU level sets. Our novel multiresolution method for surface reconstruction from unorganized point clouds compares favorably with recent, existing techniques and other parallel implementations. Finally, we point out that both level-set computations and rendering of level-set surfaces can be performed at interactive rates, even on large volumetric grids. Therefore, many applications based on level sets can benefit from our sparse level-set method.
Applications of fast wave in spherical tokamaks
Chiu, S.C.; Chan, V.S.; Lin-Liu, Y.R.; Miller, R.L.; Prater, R.; Politzer, P.
1997-04-01
In spherical tokamaks (ST), the magnetic field strength varies over a wide range across the plasma, and at high betas it deviates significantly from the 1/R dependence of conventional tokamaks. This, together with the high density expected in ST, poses challenging problems for RF heating and current drive. In this paper, the authors investigate the various possible applications of fast waves (FW) in ST. The adjoint technique of calculating current drive is implemented in the raytracing code CURRAY. The applicability of high harmonic and subharmonic FW to steady state ST is considered. They find that high harmonic FW tends to be totally absorbed before reaching the core and may be considered a candidate for off axis current drive while the subharmonic FW tends to be absorbed mainly in the core region and may be considered for central current drive. A difficult problem is the maintenance of current at the startup stage. In the bootstrap ramp-up scenario, the current ramp-up is mainly provided by the bootstrap current. Under this condition, the role of rf becomes mainly the sustainment of plasma through electron heating. Using a slab full-wave code SEMAL, the authors find that the ion-ion-hybrid mode conversion scheme is a promising candidate. The effect of possible existence of edge Alfven resonance and high harmonic cyclotron resonance is investigated and regimes of minimization of edge heating identified.
Applications of fast wave in spherical tokamaks
Chiu, S.C.; Chan, V.S.; Lin-Liu, Y.R.; Miller, R.L.; Prater, R.; Politzer, P.
1997-04-01
In spherical tokamaks (ST), the magnetic field strength varies over a wide range across the plasma, and at high betas it deviates significantly from the 1/R dependence of conventional tokamaks. This, together with the high density expected in ST, poses challenging problems for RF heating and current drive. In this paper, we investigate the various possible applications of fast waves (FW) in ST. The adjoint technique of calculating current drive is implemented in the raytracing code CURRAY. The applicability of high harmonic and subharmonic FW to steady state ST is considered. We find that high harmonic FW tends to be totally absorbed before reaching the core and may be considered a candidate for off axis current drive while the subharmonic FW tends to be absorbed mainly in the core region and may be considered for central current drive. A difficult problem is the maintenance of current at the startup stage. In the bootstrap ramp-up scenario, the current ramp-up is mainly provided by the bootstrap current. Under this condition, the role of rf becomes mainly the sustainment of plasma through electron heating. Using a slab full-wave code SEMAL, we find that the ion-ion-hybrid mode conversion scheme is a promising candidate. The effect of possible existence of edge Alfv{acute e}n resonance and high harmonic cyclotron resonance is investigated and regimes of minimization of edge heating identified. {copyright} {ital 1997 American Institute of Physics.}
Fast and Provably Accurate Bilateral Filtering.
Chaudhury, Kunal N; Dabhade, Swapnil D
2016-06-01
The bilateral filter is a non-linear filter that uses a range filter along with a spatial filter to perform edge-preserving smoothing of images. A direct computation of the bilateral filter requires O(S) operations per pixel, where S is the size of the support of the spatial filter. In this paper, we present a fast and provably accurate algorithm for approximating the bilateral filter when the range kernel is Gaussian. In particular, for box and Gaussian spatial filters, the proposed algorithm can cut down the complexity to O(1) per pixel for any arbitrary S . The algorithm has a simple implementation involving N+1 spatial filterings, where N is the approximation order. We give a detailed analysis of the filtering accuracy that can be achieved by the proposed approximation in relation to the target bilateral filter. This allows us to estimate the order N required to obtain a given accuracy. We also present comprehensive numerical results to demonstrate that the proposed algorithm is competitive with the state-of-the-art methods in terms of speed and accuracy. PMID:27093722
Fast flexible electronics with strained silicon nanomembranes.
Zhou, Han; Seo, Jung-Hun; Paskiewicz, Deborah M; Zhu, Ye; Celler, George K; Voyles, Paul M; Zhou, Weidong; Lagally, Max G; Ma, Zhenqiang
2013-01-01
Fast flexible electronics operating at radio frequencies (>1 GHz) are more attractive than traditional flexible electronics because of their versatile capabilities, dramatic power savings when operating at reduced speed and broader spectrum of applications. Transferrable single-crystalline Si nanomembranes (SiNMs) are preferred to other materials for flexible electronics owing to their unique advantages. Further improvement of Si-based device speed implies significant technical and economic advantages. While the mobility of bulk Si can be enhanced using strain techniques, implementing these techniques into transferrable single-crystalline SiNMs has been challenging and not demonstrated. The past approach presents severe challenges to achieve effective doping and desired material topology. Here we demonstrate the combination of strained- NM-compatible doping techniques with self-sustained-strain sharing by applying a strain-sharing scheme between Si and SiGe multiple epitaxial layers, to create strained print-transferrable SiNMs. We demonstrate a new speed record of Si-based flexible electronics without using aggressively scaled critical device dimensions.
Fast Image Texture Classification Using Decision Trees
NASA Technical Reports Server (NTRS)
Thompson, David R.
2011-01-01
Texture analysis would permit improved autonomous, onboard science data interpretation for adaptive navigation, sampling, and downlink decisions. These analyses would assist with terrain analysis and instrument placement in both macroscopic and microscopic image data products. Unfortunately, most state-of-the-art texture analysis demands computationally expensive convolutions of filters involving many floating-point operations. This makes them infeasible for radiation- hardened computers and spaceflight hardware. A new method approximates traditional texture classification of each image pixel with a fast decision-tree classifier. The classifier uses image features derived from simple filtering operations involving integer arithmetic. The texture analysis method is therefore amenable to implementation on FPGA (field-programmable gate array) hardware. Image features based on the "integral image" transform produce descriptive and efficient texture descriptors. Training the decision tree on a set of training data yields a classification scheme that produces reasonable approximations of optimal "texton" analysis at a fraction of the computational cost. A decision-tree learning algorithm employing the traditional k-means criterion of inter-cluster variance is used to learn tree structure from training data. The result is an efficient and accurate summary of surface morphology in images. This work is an evolutionary advance that unites several previous algorithms (k-means clustering, integral images, decision trees) and applies them to a new problem domain (morphology analysis for autonomous science during remote exploration). Advantages include order-of-magnitude improvements in runtime, feasibility for FPGA hardware, and significant improvements in texture classification accuracy.
The Empirical Mode Decomposition algorithm via Fast Fourier Transform
NASA Astrophysics Data System (ADS)
Myakinin, Oleg O.; Zakharov, Valery P.; Bratchenko, Ivan A.; Kornilin, Dmitry V.; Artemyev, Dmitry N.; Khramov, Alexander G.
2014-09-01
In this paper we consider a problem of implementing a fast algorithm for the Empirical Mode Decomposition (EMD). EMD is one of the newest methods for decomposition of non-linear and non-stationary signals. A basis of EMD is formed "on-the-fly", i.e. it depends from a distribution of the signal and not given a priori in contrast on cases Fourier Transform (FT) or Wavelet Transform (WT). The EMD requires interpolating of local extrema sets of signal to find upper and lower envelopes. The data interpolation on an irregular lattice is a very low-performance procedure. A classical description of EMD by Huang suggests doing this through splines, i.e. through solving of a system of equations. Existence of a fast algorithm is the main advantage of the FT. A simple description of an algorithm in terms of Fast Fourier Transform (FFT) is a standard practice to reduce operation's count. We offer a fast implementation of EMD (FEMD) through FFT and some other cost-efficient algorithms. Basic two-stage interpolation algorithm for EMD is composed of a Upscale procedure through FFT and Downscale procedure through a selection procedure for signal's points. First we consider the local maxima (or minima) set without reference to the axis OX, i.e. on a regular lattice. The Upscale through the FFT change the signal's length to the Least Common Multiple (LCM) value of all distances between neighboring extremes on the axis OX. If the LCM value is too large then it is necessary to limit local set of extrema. In this case it is an analog of the spline interpolation. A demo for FEMD in noise reduction task for OCT has been shown.
Electron precession: A guide for implementation
NASA Astrophysics Data System (ADS)
Own, C. S.; Marks, L. D.; Sinkler, Wharton
2005-03-01
The design approach for electron precession systems designed at Northwestern University is described, and examples of systems retrofitted onto two different transmission electron microscopes using this method are demonstrated. The precession diffraction patterns from these instruments are of good quality while simultaneously being very easy to acquire. A 15-minute procedure for aligning these instruments is described in the appendix. Partnering this user-friendly and inexpensive hardware implementation with fast and user-friendly crystallography software offers potentially speedy and routine solution of crystal structures.
NASA Astrophysics Data System (ADS)
Rasmussen, J.; Nielsen, S. K.; Stejner, M.; Galdon-Quiroga, J.; Garcia-Munoz, M.; Geiger, B.; Jacobsen, A. S.; Jaulmes, F.; Korsholm, S. B.; Lazanyi, N.; Leipold, F.; Ryter, F.; Salewski, M.; Schubert, M.; Stober, J.; Wagner, D.; the ASDEX Upgrade Team; the EUROFusion MST1 Team
2016-11-01
Sawtooth instabilities can modify heating and current-drive profiles and potentially increase fast-ion losses. Understanding how sawteeth redistribute fast ions as a function of sawtooth parameters and of fast-ion energy and pitch is hence a subject of particular interest for future fusion devices. Here we present the first collective Thomson scattering (CTS) measurements of sawtooth-induced redistribution of fast ions at ASDEX Upgrade. These also represent the first localized fast-ion measurements on the high-field side of this device. The results indicate fast-ion losses in the phase-space measurement volume of about 50% across sawtooth crashes, in good agreement with values predicted with the Kadomtsev sawtooth model implemented in TRANSP and with the sawtooth model in the EBdyna_go code. In contrast to the case of sawteeth, we observe no fast-ion redistribution in the presence of fishbone modes. We highlight how CTS measurements can discriminate between different sawtooth models, in particular when aided by multi-diagnostic velocity-space tomography, and briefly discuss our results in light of existing measurements from other fast-ion diagnostics.
Very fast thermal measurements by means of fast line scanning
NASA Astrophysics Data System (ADS)
Wallin, Bo
1999-03-01
Many thermal processes pass very quickly. The normal frame rate of radiometric scanners or FPA cameras is sometimes far below what might be needed in order to see what is happening with the object. When it comes to measurement there is nothing yet to match the measurement accuracy of the best scanning devices. When very high measurement accuracy has to be combined with highest possible data acquisition rate, the best way today is to use the scanning technique, with the scanner set for line scanning. Thus it is possible to acquire thermal information also from very fast processes. Computer processing of thermal information is today applied in almost 100% of the cases. If this is applied to thermal information, which is acquired by Fast line scanning, the results can be very interesting. This method has been successfully applied e.g. to tires, disk brakes, fusion research, and to analysis of explosions in connections with the development of air-bags. The paper describes the above mentioned applications. This includes a method description and some thermograms, which show the final result.
Comparison of Fast-Food and Non-Fast-Food Children's Menu Items
ERIC Educational Resources Information Center
Serrano, Elena L.; Jedda, Virginia B.
2009-01-01
Objective: Compare the macronutrient content of children's meals sold by fast-food restaurants (FFR) and non-fast-food restaurants (NFF). Design: All restaurants within the designated city limits were surveyed. Non-fast-food children's meals were purchased, weighed, and analyzed using nutrition software. All fast-food children's meals were…
ERIC Educational Resources Information Center
Brooks, D. Christopher
2014-01-01
While the use of analytics to promote student success is gaining in popularity, basic questions about what IPAS is and the issues institutions face during implementation and integration. The "IPAS Implementation Handbook" catalogs the experiences, observations, and practical advice from 19 institutions engaged in IPAS implementation…
Implementing technology assessments
NASA Technical Reports Server (NTRS)
Kasper, R. G. (Editor); Logsdon, J. M. (Editor); Mottur, E. R. (Editor)
1975-01-01
Five case studies of specific technology assessments and the ways in which they influenced (or did not influence) the development of the assessed technology are discussed. Automotive air pollution and problems of implementing technology assessment are considered. The assessment-acceptance-implementation process is discussed in detail using the five case studies as examples.
Measuring Curriculum Implementation
ERIC Educational Resources Information Center
Huntley, Mary Ann
2009-01-01
Using curriculum-specific tools for measuring fidelity of implementation is an essential yet often overlooked aspect of examining relationships among textbooks, teaching, and student learning. This "Brief Report" describes the variety of ways that curriculum implementation is measured and argues that there is an urgent need to develop…
The implementation of POSTGRES
NASA Technical Reports Server (NTRS)
Stonebraker, Michael; Rowe, Lawrence A.; Hirohama, Michael
1990-01-01
The design and implementation decisions made for the three-dimensional data manager POSTGRES are discussed. Attention is restricted to the DBMS backend functions. The POSTGRES data model and query language, the rules system, the storage system, the POSTGRES implementation, and the current status and performance are discussed.
Fast Tree: Computing Large Minimum-Evolution Trees with Profiles instead of a Distance Matrix
N. Price, Morgan; S. Dehal, Paramvir; P. Arkin, Adam
2009-07-31
Gene families are growing rapidly, but standard methods for inferring phylogenies do not scale to alignments with over 10,000 sequences. We present FastTree, a method for constructing large phylogenies and for estimating their reliability. Instead of storing a distance matrix, FastTree stores sequence profiles of internal nodes in the tree. FastTree uses these profiles to implement neighbor-joining and uses heuristics to quickly identify candidate joins. FastTree then uses nearest-neighbor interchanges to reduce the length of the tree. For an alignment with N sequences, L sites, and a different characters, a distance matrix requires O(N^2) space and O(N^2 L) time, but FastTree requires just O( NLa + N sqrt(N) ) memory and O( N sqrt(N) log(N) L a ) time. To estimate the tree's reliability, FastTree uses local bootstrapping, which gives another 100-fold speedup over a distance matrix. For example, FastTree computed a tree and support values for 158,022 distinct 16S ribosomal RNAs in 17 hours and 2.4 gigabytes of memory. Just computing pairwise Jukes-Cantor distances and storing them, without inferring a tree or bootstrapping, would require 17 hours and 50 gigabytes of memory. In simulations, FastTree was slightly more accurate than neighbor joining, BIONJ, or FastME; on genuine alignments, FastTree's topologies had higher likelihoods. FastTree is available at http://microbesonline.org/fasttree.
Fast pulse nonthermal plasma reactor
Rosocha, Louis A.
2005-06-14
A fast pulsed nonthermal plasma reactor includes a discharge cell and a charging assembly electrically connected thereto. The charging assembly provides plural high voltage pulses to the discharge cell. Each pulse has a rise time between one and ten nanoseconds and a duration of three to twenty nanoseconds. The pulses create nonthermal plasma discharge within the discharge cell. Accordingly, the nonthermal plasma discharge can be used to remove pollutants from gases or break the gases into smaller molecules so that they can be more efficiently combusted.
Cho, Nakwon
1980-01-01
A fast-acting valve actuator utilizes a spring driven pneumatically loaded piston to drive a valve gate. Rapid exhaust of pressurized gas from the pneumatically loaded side of the piston facilitates an extremely rapid piston stroke. A flexible selector diaphragm opens and closes an exhaust port in response to pressure differentials created by energizing and de-energizing a solenoid which controls the pneumatic input to the actuator as well as selectively providing a venting action to one side of the selector diaphragm.
Fast feedback for linear colliders
Hendrickson, L.; Adolphsen, C.; Allison, S.; Gromme, T.; Grossberg, P.; Himel, T.; Krauter, K.; MacKenzie, R.; Minty, M.; Sass, R.
1995-05-01
A fast feedback system provides beam stabilization for the SLC. As the SLC is in some sense a prototype for future linear colliders, this system may be a prototype for future feedbacks. The SLC provides a good base of experience for feedback requirements and capabilities as well as a testing ground for performance characteristics. The feedback system controls a wide variety of machine parameters throughout the SLC and associated experiments, including regulation of beam position, angle, energy, intensity and timing parameters. The design and applications of the system are described, in addition to results of recent performance studies.
Isochoric implosions for fast ignition
Clark, D S; Tabak, M
2006-06-05
Fast Ignition (FI) exploits the ignition of a dense, uniform fuel assembly by an external energy source to achieve high gain. In conventional ICF implosions, however, the fuel assembles as a dense shell surrounding a low density, high-pressure hotspot. Such configurations are far from optimal for FI. Here, it is shown that a self-similar spherical implosion of the type originally studied by Guderley [Luftfahrtforschung 19, 302 (1942).] may be employed to implode a dense, quasi-uniform fuel assembly with minimal energy wastage in forming a hotspot. A scheme for realizing these specialized implosions in a practical ICF target is also described.
Exploiting Resistive Guiding for Fast Ignition
NASA Astrophysics Data System (ADS)
Robinson, Alex
2012-10-01
Devising methods and schemes for controlling fast electron transport remains a major challenge in Fast Ignition research. Realistic estimates of the fast electron divergence angle require this control in order to ensure that the fast electron to hot spot coupling efficiency does not reach excessively low values. Resistivity gradients in the target will lead to strong magnetic field growth (via ∇ηxj) which can be exploited for the purposes of controlling the fast electron propagation (Robinson and Sherlock, PoP (2007)). There are a number of possible schemes which might be considered. Here we will report on numerical simulations that we have carried out on both simple configurations such as parabolic reflectors, and complex arrangements (Robinson, Key and Tabak, PRL (2012)). Substantial improvements to the fast electron to hot spot coupling efficiency have been found even for realistic fast electron divergence angles.
A fast readout algorithm for Cluster Counting/Timing drift chambers on a FPGA board
NASA Astrophysics Data System (ADS)
Cappelli, L.; Creti, P.; Grancagnolo, F.; Pepino, A.; Tassielli, G.
2013-08-01
A fast readout algorithm for Cluster Counting and Timing purposes has been implemented and tested on a Virtex 6 core FPGA board. The algorithm analyses and stores data coming from a Helium based drift tube instrumented by 1 GSPS fADC and represents the outcome of balancing between cluster identification efficiency and high speed performance. The algorithm can be implemented in electronics boards serving multiple fADC channels as an online preprocessing stage for drift chamber signals.
The time course of cognitive control implementation.
Janssens, Clio; De Loof, Esther; Pourtois, Gilles; Verguts, Tom
2016-08-01
Optimally recruiting cognitive control is a key factor in efficient task performance. In line with influential cognitive control theories, earlier work assumed that control is relatively slow. We challenge this notion and test whether control also can be implemented more rapidly by investigating the time course of cognitive control. In two experiments, a visual discrimination paradigm was applied. A reward cue was presented with variable intervals to target onset. The results showed that reward cues can rapidly improve performance. Importantly, the reward manipulation was orthogonal to the response, ensuring that the reward effect was due to fast cognitive control implementation rather than to automatic activation of rewarded S-R associations. We also empirically specify the temporal limits of cognitive control, because the reward cue had no effect when it was presented shortly after target onset, during task execution. PMID:26739258
Fast computational scheme of image compression for 32-bit microprocessors
NASA Technical Reports Server (NTRS)
Kasperovich, Leonid
1994-01-01
This paper presents a new computational scheme of image compression based on the discrete cosine transform (DCT), underlying JPEG and MPEG International Standards. The algorithm for the 2-d DCT computation uses integer operations (register shifts and additions / subtractions only); its computational complexity is about 8 additions per image pixel. As a meaningful example of an on-board image compression application we consider the software implementation of the algorithm for the Mars Rover (Marsokhod, in Russian) imaging system being developed as a part of Mars-96 International Space Project. It's shown that fast software solution for 32-bit microprocessors may compete with the DCT-based image compression hardware.
Real Time Fast Ultrasound Imaging Technology and Possible Applications
NASA Astrophysics Data System (ADS)
Cruza, J. F.; Perez, M.; Moreno, J. M.; Fritsch, C.
In this work, a novel hardware architecture for fast ultrasound imaging based on FPGA devices is proposed. A key difference over other approaches is the unlimited scalability in terms of active channels without performance losses. Acquisition and processing tasks share the same hardware, eliminating communication bottlenecks with smaller size and power losses. These features make this system suitable to implement the most demanding imaging applications, like 3D Phased Array, Total Focusing Method, Vector Doppler, Image Compounding, High Speed Part Scanning and advanced elastographic techniques. A single medium sized FPGA allows beamforming up to 200 scan lines simultaneously, which is enough to perform most of the above mentioned applications in strict real time.
Structure retrieval with fast electrons using segmented detectors
NASA Astrophysics Data System (ADS)
Brown, H. G.; D'Alfonso, A. J.; Chen, Z.; Morgan, A. J.; Weyland, M.; Zheng, C.; Fuhrer, M. S.; Findlay, S. D.; Allen, L. J.
2016-04-01
We introduce an algorithm for the reconstruction of the complex transmission function of a specimen using segmented detectors in scanning transmission electron microscopy geometry. The phase of the transmission function can be related to magnetic and electric fields within the specimen and is sensitive to lighter elements. The technique is demonstrated for simulated data and also using experimental datasets taken from a MoS2 monolayer and a SrTiO3 crystal. We present an extension to the algorithm to account for uncertainties in the illuminating probe. The algorithm can be implemented using fast Fourier transforms, and this provides the possibility of reconstructing specimen transmission functions in real time.
A fast and light stream cipher for smartphones
NASA Astrophysics Data System (ADS)
Vidal, G.; Baptista, M. S.; Mancini, H.
2014-06-01
We present a stream cipher based on a chaotic dynamical system. Using a chaotic trajectory sampled under certain rules in order to avoid any attempt to reconstruct the original one, we create a binary pseudo-random keystream that can only be exactly reproduced by someone that has fully knowledge of the communication system parameters formed by a transmitter and a receiver, sharing the same initial conditions. The plaintext is XOR'ed with the keystream creating the ciphertext, the encrypted message. This keystream passes the NIST's randomness test and has been implemented in a videoconference App for smartphones, in order to show the fast and light nature of the proposed encryption system.
Fast Model Generalized Pseudopotential Theory (MGPT) Interatomic Potential Routine
2015-03-18
MGPT is an unclassified source code for the fast evaluation and application of quantum-based MGPT interatomic potentials for mrtals. The present version of MGPT has been developed entirely at LLNL, but is specifically designed for implementation in the open-source molecular0dynamics code LAMMPS maintained by Sandia National Laboratories. Using MGPT in LAMMPS, with separate input potential data, one can perform large-scale atomistic simulations of the structural, thermodynamic, defeat and mechanical properties of transition metals with quantum-mechanicalmore » realism.« less
Giving a nutritional fast hug in the intensive care unit.
Monares Zepeda, Enrique; Galindo Martín, Carlos Alfredo
2015-05-01
Implementing a nutrition support protocol in critical care is a complex and dynamic process that involves the use of evidence, education programs and constant monitoring. To facilitate this task we developed a mnemonic tool called the Nutritional FAST HUG (F: feeding, A: analgesia, S: stools, T: trace elements, H: head of bed, U: ulcers, G: glucose control) with a process also internally developed (both modified from the mnemonic proposed by Jean Louis Vincent) called MIAR (M: measure, I: interpret, A: act, R: reanalysis) showing an easy form to perform medical rounds at the intensive care unit using a systematic process.
Fast CNOT gate via shortcuts to adiabatic passage
NASA Astrophysics Data System (ADS)
Wang, Zhe; Xia, Yan; Chen, Ye-Hong; Song, Jie
2016-10-01
Based on the shortcuts to adiabatic passage, we propose a scheme for directly implementing a controlled-not (CNOT) gate in a cavity quantum electrodynamics system. Moreover, we generalize the scheme to realize a CNOT gate in two separate cavities connected by an optical fiber. The strictly numerical simulation shows that the schemes are fast and insensitive to the decoherence caused by atomic spontaneous emission and photon leakage. In addition, the schemes can provide a theoretical basis for the manipulation of the multiqubit quantum gates in distant nodes of a quantum network.
Fast Model Generalized Pseudopotential Theory (MGPT) Interatomic Potential Routine
2015-03-18
MGPT is an unclassified source code for the fast evaluation and application of quantum-based MGPT interatomic potentials for mrtals. The present version of MGPT has been developed entirely at LLNL, but is specifically designed for implementation in the open-source molecular0dynamics code LAMMPS maintained by Sandia National Laboratories. Using MGPT in LAMMPS, with separate input potential data, one can perform large-scale atomistic simulations of the structural, thermodynamic, defeat and mechanical properties of transition metals with quantum-mechanical realism.
Laser rastering flow cytometry: fast cell counting and identification
NASA Astrophysics Data System (ADS)
Vacca, G.; Junnarkar, M. R.; Goldblatt, N. R.; Yee, M. W.; Van Slyke, B. M.; Briese, T. C.
2009-02-01
We describe the concept of laser rastering flow cytometry, where a rapidly scanning laser beam allows counting and classification of cells at much higher rates than currently possible. Modifications to existing flow cytometers to implement the concept include an acousto-optic deflector, fast analog-to-digital conversion, and a two-step digital-signal-processing scheme that handles the high data rates and provides key assay information. Results are shown that prove the concept, demonstrating the ability to resolve closely spaced cells and to measure cells at rates more than an order of magnitude faster than on conventional flow-cytometer-based hematology analyzers.
Cortical Specializations Underlying Fast Computations
Volgushev, Maxim
2016-01-01
The time course of behaviorally relevant environmental events sets temporal constraints on neuronal processing. How does the mammalian brain make use of the increasingly complex networks of the neocortex, while making decisions and executing behavioral reactions within a reasonable time? The key parameter determining the speed of computations in neuronal networks is a time interval that neuronal ensembles need to process changes at their input and communicate results of this processing to downstream neurons. Theoretical analysis identified basic requirements for fast processing: use of neuronal populations for encoding, background activity, and fast onset dynamics of action potentials in neurons. Experimental evidence shows that populations of neocortical neurons fulfil these requirements. Indeed, they can change firing rate in response to input perturbations very quickly, within 1 to 3 ms, and encode high-frequency components of the input by phase-locking their spiking to frequencies up to 300 to 1000 Hz. This implies that time unit of computations by cortical ensembles is only few, 1 to 3 ms, which is considerably faster than the membrane time constant of individual neurons. The ability of cortical neuronal ensembles to communicate on a millisecond time scale allows for complex, multiple-step processing and precise coordination of neuronal activity in parallel processing streams, while keeping the speed of behavioral reactions within environmentally set temporal constraints. PMID:25689988
Manybeam velocimeter for fast surfaces
Goosman, D.; Avara, G.; Steinmetz, L.; Lai, C.; Perry, S.
1996-09-01
For the past 5 years, we have conceived, built and successfully used a new 10 beam laser velocimeter for monitoring velocity vs time histories of fast moving surfaces, and will have a 20 beam capability soon. We conceived a method to multiplex 5 to 10 beams through a single Fabry-Perot interferometer, without losing any light that our equivalently-performing single beam system could use, and with negligible cross- talk. This saves the cost of 16 interferometers, simplifies operation and takes less space than without multiplexing. We devised special efficient light collecting probes, streak cameras that change sweep speed during the course of the record, and a new double cavity interferometer which is better, cheaper and more flexible than our previous versions. With the 10 recorders, we conceived and employ a method of using both a fast and a slow streak camera on each of 5 beams without reducing the light that is available to either camera separately. Five new galvanometrically-driven triggerable CCD streak cameras will be installed soon.
RCD+: Fast loop modeling server.
López-Blanco, José Ramón; Canosa-Valls, Alejandro Jesús; Li, Yaohang; Chacón, Pablo
2016-07-01
Modeling loops is a critical and challenging step in protein modeling and prediction. We have developed a quick online service (http://rcd.chaconlab.org) for ab initio loop modeling combining a coarse-grained conformational search with a full-atom refinement. Our original Random Coordinate Descent (RCD) loop closure algorithm has been greatly improved to enrich the sampling distribution towards near-native conformations. These improvements include a new workflow optimization, MPI-parallelization and fast backbone angle sampling based on neighbor-dependent Ramachandran probability distributions. The server starts by efficiently searching the vast conformational space from only the loop sequence information and the environment atomic coordinates. The generated closed loop models are subsequently ranked using a fast distance-orientation dependent energy filter. Top ranked loops are refined with the Rosetta energy function to obtain accurate all-atom predictions that can be interactively inspected in an user-friendly web interface. Using standard benchmarks, the average root mean squared deviation (RMSD) is 0.8 and 1.4 Å for 8 and 12 residues loops, respectively, in the challenging modeling scenario in where the side chains of the loop environment are fully remodeled. These results are not only very competitive compared to those obtained with public state of the art methods, but also they are obtained ∼10-fold faster. PMID:27151199
The Ignitor Fast Pellet Injector
NASA Astrophysics Data System (ADS)
Frattolillo, A.; Migliori, S.; Bombarda, F.; Milora, S. L.; Baylor, L. R.; Combs, S. K.
2004-11-01
A collaboration between the ENEA Laboratory at Frascati and the Fusion Technology Group of Oak Ridge for the development of a fast pellet injector for the Ignitor ignition experiment has been established. The program aims at the construction of a 4 barrel, double stage gun able to reach speeds up to 4 km/s and thus penetrate to the core of the plasma column. The compact size of the Ignitor machine favors the injection from the low field side, for which very positive results have been obtained on the FTU machine [1], in terms of density profile peaking and good energy confinement. The ongoing activities include the procurement of all the hardware for the criocooler, diagnostics and control electronics, from the ORNL side, and the design and construction of the gun by ENEA. A new fast valve has been developed that considerably reduces the requirements on the expansion volumes necessary to prevent the propulsion gas to reach the plasma chamber. [1] D. Frigione, et al., Nuclear Fusion 41, 1613 (2001).
RCD+: Fast loop modeling server
López-Blanco, José Ramón; Canosa-Valls, Alejandro Jesús; Li, Yaohang; Chacón, Pablo
2016-01-01
Modeling loops is a critical and challenging step in protein modeling and prediction. We have developed a quick online service (http://rcd.chaconlab.org) for ab initio loop modeling combining a coarse-grained conformational search with a full-atom refinement. Our original Random Coordinate Descent (RCD) loop closure algorithm has been greatly improved to enrich the sampling distribution towards near-native conformations. These improvements include a new workflow optimization, MPI-parallelization and fast backbone angle sampling based on neighbor-dependent Ramachandran probability distributions. The server starts by efficiently searching the vast conformational space from only the loop sequence information and the environment atomic coordinates. The generated closed loop models are subsequently ranked using a fast distance-orientation dependent energy filter. Top ranked loops are refined with the Rosetta energy function to obtain accurate all-atom predictions that can be interactively inspected in an user-friendly web interface. Using standard benchmarks, the average root mean squared deviation (RMSD) is 0.8 and 1.4 Å for 8 and 12 residues loops, respectively, in the challenging modeling scenario in where the side chains of the loop environment are fully remodeled. These results are not only very competitive compared to those obtained with public state of the art methods, but also they are obtained ∼10-fold faster. PMID:27151199
Fast algorithm for solving the Hankel/Toeplitz Structured Total Least Squares problem
NASA Astrophysics Data System (ADS)
Lemmerling, Philippe; Mastronardi, Nicola; van Huffel, Sabine
2000-07-01
The Structured Total Least Squares (STLS) problem is a natural extension of the Total Least Squares (TLS) problem when constraints on the matrix structure need to be imposed. Similar to the ordinary TLS approach, the STLS approach can be used to determine the parameter vector of a linear model, given some noisy measurements. In many signal processing applications, the imposition of this matrix structure constraint is necessary for obtaining Maximum Likelihood (ML) estimates of the parameter vectorE In this paper we consider the Toeplitz (Hankel) STLS problem (i.e., an STLS problem in which the Toeplitz (Hankel) structure needs to be preserved). A fast implementation of an algorithm for solving this frequently occurring STLS problem is proposed. The increased efficiency is obtained by exploiting the low displacement rank of the involved matrices and the sparsity of the associated generators. The fast implementation is compared to two other implementations of algorithms for solving the Toeplitz (Hankel) STLS problem. The comparison is carried out on a recently proposed speech compression scheme. The numerical results confirm the high efficiency of the newly proposed fast implementation: the straightforward implementations have a complexity of O((m+n)3) and O(m3) whereas the proposed implementation has a complexity of O(mn+n2).
Quantum Bayesian implementation
NASA Astrophysics Data System (ADS)
Wu, Haoyang
2013-02-01
Mechanism design is a reverse problem of game theory. Nash implementation and Bayesian implementation are two important parts of mechanism design theory. The former one corresponds to a setting with complete information, whereas the latter one corresponds to a setting with incomplete information. A recent work Wu (Int J Quantum Inf 9:615-623, 2011) shows that when an additional condition is satisfied, the traditional sufficient conditions for Nash implementation will fail in a quantum domain. Inspired by this work, in this paper we will propose that the traditional sufficient conditions for Bayesian implementation will also fail if agents use quantum strategies to send messages to the designer through channels (e.g., Internet, cable etc) and two additional conditions are satisfied.
Vehicle Technologies Program Implementation
none,
2009-06-19
The Vehicle Technologies Program takes a systematic approach to Program implementation. Elements of this approach include the evaluation of new technologies, competitive selection of projects and partners, review of Program and project improvement, project tracking, and portfolio management and adjustment.
Digital film library implementation
NASA Astrophysics Data System (ADS)
Kishore, Sheel; Khalsa, Satjeet S.; Seshadri, Sridhar B.; Arenson, Ronald L.
1991-07-01
The Radiology Department at the University of Pennsylvania is in the process of clinically testing its PACS implementation. The PACS implementation has been built around a Vortech Image Archival and Retrieval System (IARS) with a 140-platter optical jukebox. The Vortech IARS provides archival services only. A set of software modules have been developed in-house that allow the system to function as a digital film library. The current implementation allows connectivity to a RIS (DECrad), supports the routing of images to two intensive care units, and allows image acquisition from a Du Pont FD2000 laser scanner and two GE SIGNA MR units. All process-to-process communication follows the ACR/NEMA 2.0 protocol. The proposed folder extensions to ACR/NEMA 2.0 are being utilized for sending information to the display nodes. The system has been running clinically for about three months. Details of the design, implementation, and functionality of the PACS are presented.
On the abstracted dataflow complexity of Fast Fourier Transforms
Boehm, A.P.W.; Hiromoto, R.E.; Kelly, K.A.; Ashley, J.M.
1992-05-01
In this paper we develop and analyze the simulated performance of codes for the Fast Fourier Transform written in If and targeted for execution on Motorola`s dataflow machine Monsoon. The FFT application is of interest because of its computational parallelism, its requirement for global communications, and its array element data dependences. We use the parallel profiling simulator Id World to study the dataflow performance of various implementations. Our approach is comparative. We study two approaches, a recursive and an iterative one, and in each version we examine the effect of a variety of implementations. We contend that only through such comparative evaluations can significant insight be gained in understanding the computational and structural details of functional algorithms.
PYTRANSIT: fast and easy exoplanet transit modelling in PYTHON
NASA Astrophysics Data System (ADS)
Parviainen, Hannu
2015-07-01
We present a fast and user friendly exoplanet transit light-curve modelling package PYTRANSIT, implementing optimized versions of the Giménez and Mandel & Agol transit models. The package offers an object-oriented PYTHON interface to access the two models implemented natively in FORTRAN with OpenMP parallelization. A partial OpenCL version of the quadratic Mandel-Agol model is also included for GPU-accelerated computations. The aim of PYTRANSIT is to facilitate the analysis of photometric time series of exoplanet transits consisting of hundreds of thousands of data points, and of multipassband transit light curves from spectrophotometric observations, as a part of a researcher's programming toolkit for building complex, problem-specific analyses.
Fast ellipse detection by elliptical arcs extracting and grouping
NASA Astrophysics Data System (ADS)
Li, Yipeng; Zhao, Chunhui
2015-03-01
A novel and simple ellipse detection method is proposed in this paper. First, Canny operator is carried on the gray image to get edge image. Second, all the edge segments are obtained from edge image and output gradients of edge segments for further analysis. According to gradient direction, the edge segments are split into primitive lines and arcs. Then elliptical arcs are extracted from the results of splitting and an efficient grouping strategy is proposed to group elliptical arcs coming from the same ellipse as candidate ellipse. Finally, least-square fitting method is implemented to estimate the parameters of these candidate ellipses. Experiment results show that the proposed method is robust to noise and fast for real-time implementation.
Reduced Fast Ion Transport Model For The Tokamak Transport Code TRANSP
Podesta,, Mario; Gorelenkova, Marina; White, Roscoe
2014-02-28
Fast ion transport models presently implemented in the tokamak transport code TRANSP [R. J. Hawryluk, in Physics of Plasmas Close to Thermonuclear Conditions, CEC Brussels, 1 , 19 (1980)] are not capturing important aspects of the physics associated with resonant transport caused by instabilities such as Toroidal Alfv en Eigenmodes (TAEs). This work describes the implementation of a fast ion transport model consistent with the basic mechanisms of resonant mode-particle interaction. The model is formulated in terms of a probability distribution function for the particle's steps in phase space, which is consistent with the MonteCarlo approach used in TRANSP. The proposed model is based on the analysis of fast ion response to TAE modes through the ORBIT code [R. B. White et al., Phys. Fluids 27 , 2455 (1984)], but it can be generalized to higher frequency modes (e.g. Compressional and Global Alfv en Eigenmodes) and to other numerical codes or theories.
Autonomous mobile robot fast hybrid decision system DT-FAM based on laser system measurement LSM
NASA Astrophysics Data System (ADS)
Będkowski, Janusz; Jankowski, Stanisław
2006-10-01
In this paper the new intelligent data processing system for mobile robot is described. The robot perception uses the LSM - Laser System Measurement. The innovative fast hybrid decision system is based on fuzzy ARTMAP supported by decision tree. The virtual laboratory of robotics was implemented to execute experiments.
We have performed a series of experiments to determine the tradeoff in detection sensitivity for implementing design features for an Open-Path Fourier Transform Infrared (OP-FTIR) chemical analyzer that would be quick to deploy under emergency response conditions. The fast-deplo...
Hydrodynamic assembly for Fast Ignition
NASA Astrophysics Data System (ADS)
Tabak, Max; Clark, Daniel; Town, Richard; Hatchett, Stephen
2007-11-01
We present directly and indirectly driven implosion designs for Fast Ignition. Directly driven designs using various laser illumination wavelengths are described. We compare these designs with simple hydrodynamic efficiency models. Capsules illuminated with less than 1 MJ of light with perfect zooming at low intensity and low contrast ratio in power can assemble 4 mg of fuel to column density in excess of 3 g/cm^2. We contrast these designs with more optimized designs that lead to Guderley-style self similar implosions. Indirectly driven capsules absorbing 75 kJ of xrays can assemble 0.7 mg to column density 2.7 g/cm^2 in 1D simulations. We describe 2-D simulations including both capsules and attached cones driven by radiation. We describe issues in assembling fuel near the cone tip and cone disruption.
Fast Steerable Principal Component Analysis
Zhao, Zhizhen; Shkolnisky, Yoel; Singer, Amit
2016-01-01
Cryo-electron microscopy nowadays often requires the analysis of hundreds of thousands of 2-D images as large as a few hundred pixels in each direction. Here, we introduce an algorithm that efficiently and accurately performs principal component analysis (PCA) for a large set of 2-D images, and, for each image, the set of its uniform rotations in the plane and their reflections. For a dataset consisting of n images of size L × L pixels, the computational complexity of our algorithm is O(nL3 + L4), while existing algorithms take O(nL4). The new algorithm computes the expansion coefficients of the images in a Fourier–Bessel basis efficiently using the nonuniform fast Fourier transform. We compare the accuracy and efficiency of the new algorithm with traditional PCA and existing algorithms for steerable PCA. PMID:27570801
NASA Astrophysics Data System (ADS)
Visentin, B.; Gasser, Y.; Charrier, J. P.
2006-07-01
High gradient performances of bulk niobium cavities go through a low-temperature baking during one or two days, the temperature parameter is adjusted in a narrow tuning range around 110 or 120 °C. With such treatment, the intrinsic quality factor Q0 is improved at high fields. Assuming the oxygen diffusion is involved in this phenomenon, we have developed the “fast baking” (145 °C/3 h) as an alternative method. Similar results have been achieved with this method compared to standard baking. Consequently, for the first time, a link between oxygen diffusion and high field Q-slope has been demonstrated. Furthermore, this method open the way to a simpler and better baking procedure for the large-scale cavity production due to: time reduction and possibility to combine baking and drying during cavity preparation.
Rotor for centrifugal fast analyzers
Lee, N.E.
1984-01-01
The invention is an improved photometric analyzer of the rotary cuvette type, the analyzer incorporating a multicuvette rotor of novel design. The rotor (a) is leaktight, (b) permits operation in the 90/sup 0/ and 180/sup 0/ excitation modes, (c) is compatible with extensively used Centrifugal Fast Analyzers, and (d) can be used thousands of times. The rotor includes an assembly comprising a top plate, a bottom plate, and a central plate, the rim of the central plate being formed with circumferentially spaced indentations. A uv-transmitting ring is sealably affixed to the indented rim to define with the indentations an array of cuvettes. The ring serves both as a sealing means and an end window for the cuvettes.
Rotor for centrifugal fast analyzers
Lee, Norman E.
1985-01-01
The invention is an improved photometric analyzer of the rotary cuvette type, the analyzer incorporating a multicuvette rotor of novel design. The rotor (a) is leaktight, (b) permits operation in the 90.degree. and 180.degree. excitation modes, (c) is compatible with extensively used Centrifugal Fast Analyzers, and (d) can be used thousands of times. The rotor includes an assembly comprising a top plate, a bottom plate, and a central plate, the rim of the central plate being formed with circumferentially spaced indentations. A UV-transmitting ring is sealably affixed to the indented rim to define with the indentations an array of cuvettes. The ring serves both as a sealing means and an end window for the cuvettes.
Fast Randomized STDMA Link Scheduling
NASA Astrophysics Data System (ADS)
Gomez, Sergio; Gras, Oriol; Friderikos, Vasilis
In this paper a fast randomized parallel link swap based packing (RSP) algorithm for timeslot allocation in a spatial time division multiple access (STDMA) wireless mesh network is presented. The proposed randomized algorithm extends several greedy scheduling algorithms that utilize the physical interference model by applying a local search that leads to a substantial improvement in the spatial timeslot reuse. Numerical simulations reveal that compared to previously scheduling schemes the proposed randomized algorithm can achieve a performance gain of up to 11%. A significant benefit of the proposed scheme is that the computations can be parallelized and therefore can efficiently utilize commoditized and emerging multi-core and/or multi-CPU processors.
Fast breeder reactor protection system
van Erp, J.B.
1973-10-01
Reactor protection is provided for a liquid-metal-fast breeder reactor core by measuring the coolant outflow temperature from each of the subassemblies of the core. The outputs of the temperature sensors from a subassembly region of the core containing a plurality of subassemblies are combined in a logic circuit which develops a scram alarm if a predetermined number of the sensors indicate an over temperature condition. The coolant outflow from a single subassembly can be mixed with the coolant outflow from adjacent subassemblies prior to the temperature sensing to increase the sensitivity of the protection system to a single subassembly failure. Coherence between the sensors can be required to discriminate against noise signals. (Official Gazette)
Microprocessor implementation of an FFT for ionospheric VLF observations
NASA Technical Reports Server (NTRS)
Elvidge, J.; Kintner, P.; Holzworth, R.
1984-01-01
A fast Fourier transform algorithm is implemented on a CMOS microprocessor for application to very low-frequency electric fields (less than 10 kHz) sensed on high-altitude scientific balloons. Two FFT's are calculated simultaneously by associating them with conjugate symmetric and conjugate antisymmetric results. One goal of the system was to detect spectral signatures associated with fast time variations present in natural signals such as whistlers and chorus. Although a full evaluation of the system was not possible for operational reasons, a measure of the system's success has been defined and evaluated.
Stability thresholds and calculation techniques for fast entangling gates on trapped ions
NASA Astrophysics Data System (ADS)
Bentley, C. D. B.; Taylor, R. L.; Carvalho, A. R. R.; Hope, J. J.
2016-04-01
Fast entangling gates have been proposed for trapped ions that are orders of magnitude faster than current implementations. We present here a detailed analysis of the challenges involved in performing a successful fast gate. We show that the rotating wave approximation is stable with respect to pulse numbers: the time scale on which we can neglect terms rotating at the atomic frequency is negligibly affected by the number of pulses in the fast gate. In contrast, we show that the laser pulse instability does give rise to a pulse-number-dependent effect; the fast gate infidelity is compounded with the number of applied imperfect pulses. Using the dimensional reduction method presented here, we find bounds on the pulse stability required to achieve two-qubit gate fidelity thresholds.
Nutritional and behavioral effects of gorge and fast feeding in captive lions.
Altman, Joanne D; Gross, Kathy L; Lowry, Stephen R
2005-01-01
Nonhuman animals in captivity manifest behaviors and physiological conditions that are not common in the wild. Lions in captivity face problems of obesity, inactivity, and stereotypy. To mediate common problems of captive lions, this study implemented a gorge and fast feeding schedule that better models naturalistic patterns: African lions (Panthera leo) gradually adapted from a conventional feeding program to a random gorge and fast feeding schedule. Digestibility increased significantly and food intake and metabolizable energy intake correspondingly decreased. Lions also showed an increase in appetitive active behaviors, no increase in agonistic behavior, and paced half as frequently on fast days as on feeding days. Thus, switching captive lions to a gorge and fast feeding schedule resulted in improved nutritional status and increased activity.
Heterogeneous Recycling in Fast Reactors
Forget, Benoit; Pope, Michael; Piet, Steven J.; Driscoll, Michael
2012-07-30
Current sodium fast reactor (SFR) designs have avoided the use of depleted uranium blankets over concerns of creating weapons grade plutonium. While reducing proliferation risks, this restrains the reactor design space considerably. This project will analyze various blanket and transmutation target configurations that could broaden the design space while still addressing the non-proliferation issues. The blanket designs will be assessed based on the transmutation efficiency of key minor actinide (MA) isotopes and also on mitigation of associated proliferation risks. This study will also evaluate SFR core performance under different scenarios in which depleted uranium blankets are modified to include minor actinides with or without moderators (e.g. BeO, MgO, B4C, and hydrides). This will be done in an effort to increase the sustainability of the reactor and increase its power density while still offering a proliferation resistant design with the capability of burning MA waste produced from light water reactors (LWRs). Researchers will also analyze the use of recycled (as opposed to depleted) uranium in the blankets. The various designs will compare MA transmutation efficiency, plutonium breeding characteristics, proliferation risk, shutdown margins and reactivity coefficients with a current reference sodium fast reactor design employing homogeneous recycling. The team will also evaluate the out-of-core accumulation and/or burn-down rates of MAs and plutonium isotopes on a cycle-by-cycle basis. This cycle-by-cycle information will be produced in a format readily usable by the fuel cycle systems analysis code, VISION, for assessment of the sustainability of the deployment scenarios.
Physical studies of fast ignition in China
NASA Astrophysics Data System (ADS)
He, X. T.; Cai, Hong-bo; Wu, Si-zhong; Cao, Li-hua; Zhang, Hua; He, Ming-qing; Chen, Mo; Wu, Jun-feng; Zhou, Cang-tao; Zhou, Wei-Min; Shan, Lian-qiang; Wang, Wei-wu; Zhang, Feng; Bi, Bi; Zhao, Zong-qing; Gu, Yu-qiu; Zhang, Bao-han; Wang, Wei; Fang, Zhi-heng; Lei, An-le; Wang, Chen; Pei, Wen-bing; Fu, Si-zu
2015-06-01
Fast ignition approach to inertial confinement fusion is one of the important goals today, in addition to central hot spot ignition in China. The SG-IIU and PW laser facilities are coupled to investigate the hot spot formation for fast ignition. The SG-III laser facility is almost completed and will be coupled with tens kJ PW lasers for the demonstration of fast ignition. In recent years, for physical studies of fast ignition, we have been focusing on the experimental study of implosion symmetry, M-band radiation preheating and mixing, advanced fast ignition target design, and so on. In addition, the modeling capabilities and code developments enhanced our ability to perform the hydro-simulation of the compression implosion, and the particle-in-cell (PIC) and hybrid-PIC simulation of the generation, transport and deposition of relativistic electron beams. Considerable progress has been achieved in understanding the critical issues of fast ignition.
Should Type 1 diabetics fast in Ramadan.
Mohsin, Fauzia; Azad, Kishwar; Zabeen, Bedowra; Tayyeb, Samin; Baki, Abdul; Nahar, Nazmun
2015-05-01
Fasting during the holy month of Ramadan is obligatory for all healthy adult and adolescent Muslims from the age of 12 years. This involves abstaining from eating or drinking from early dawn (Suhur/Sehri) till sunset (Iftar).Fasting is not meant to create excessive hardships or impart any adverse effect to the Muslim individual. As such, Islam has exempted certain categories of people from fasting including young children, travelers, the sick, the elderly,and pregnant and lactating women. According to expert opinion, people with type 1 diabetes who fast during Ramadan are at very high risk of metabolic deterioration. However, some recent studies have demonstrated that individuals with type 1 diabetes who are otherwise healthy and stable, can fast during Ramadan provided they comply with the Ramadan focused management plan and are under close professional supervision. This article discusses how to assess, counsel, monitor and manage people with type 1 diabetes who wish to fast during Ramadan.
HDF5-FastQuery: Accelerating Complex Queries on HDF Datasets usingFast Bitmap Indices
Gosink, Luke; Shalf, John; Stockinger, Kurt; Wu, Kesheng; Bethel,Wes
2006-03-30
Large scale scientific data is often stored in scientific data formats such as FITS, netCDF and HDF. These storage formats are of particular interest to the scientific user community since they provide multi-dimensional storage and retrieval. However, one of the drawbacks of these storage formats is that they do not support semantic indexing which is important for interactive data analysis where scientists look for features of interests such as ''Find all supernova explosions where energy > 10{sup 5} and temperature > 10{sup 6}''. In this paper we present a novel approach called HDF5-FastQuery to accelerate the data access of large HDF5 files by introducing multi-dimensional semantic indexing. Our implementation leverages an efficient indexing technology called bitmap indexing that has been widely used in the database community. Bitmap indices are especially well suited for interactive exploration of large-scale read only data. Storing the bitmap indices into the HDF5 file has the following advantages: (a) Significant performance speedup of accessing subsets of multi-dimensional data and (b) portability of the indices across multiple computer platforms. We will present an API that simplifies the execution of queries on HDF5 files for general scientific applications and data analysis. The design is flexible enough to accommodate the use of arbitrary indexing technology for semantic range queries. We will also provide a detailed performance analysis of HDF5-FastQuery for both synthetic and scientific data. The results demonstrate that our proposed approach for multi-dimensional queries is up to a factor of 2 faster than HDF5.
HDF5-FastQuery: Accelerating Complex Queries on HDF Datasets UsingFast Bitmap Indices
Gosink, Luke; Shalf, John; Stockinger, Kurt; Wu, Kesheng; Bethel,Wes
2005-12-07
Large scale scientific data is often stored in scientific data formats such as FITS, netCDF and HDF. These storage formats are of particular interest to the scientific user community since they provide multi-dimensional storage and retrieval. However, one of the drawbacks of these storage formats is that they do not support semantic indexing which is important for interactive data analysis where scientists look for features of interests such as ''Find all supernova explosions where energy >105 and temperature >106''. In this paper we present a novel approach called HDF5-FastQuery to accelerate the data access of large HDF5 files by introducing multi-dimensional semantic indexing. Our implementation leverages an efficient indexing technology called ''bitmapindexing'' that has been widely used in the database community. Bitmapindices are especially well suited for interactive exploration of large-scale read-only data. Storing the bitmap indices into the HDF5 file has the following advantages: (a) Significant performance speedup of accessing subsets of multi-dimensional data and (b) portability of the indices across multiple computer platforms. We will present an API that simplifies the execution of queries on HDF5 files for general scientific applications and data analysis. The design is flexible enough to accommodate the use of arbitrary indexing technology for semantic range queries. We will also provide a detailed performance analysis of HDF5-FastQuery for both synthetic and scientific data. The results demonstrate that our proposed approach for multi-dimensional queries is up to a factor of 2 faster than HDF5.
A FAST POLYNOMIAL TRANSFORM PROGRAM WITH A MODULARIZED STRUCTURE
NASA Technical Reports Server (NTRS)
Truong, T. K.
1994-01-01
This program utilizes a fast polynomial transformation (FPT) algorithm applicable to two-dimensional mathematical convolutions. Two-dimensional convolution has many applications, particularly in image processing. Two-dimensional cyclic convolutions can be converted to a one-dimensional convolution in a polynomial ring. Traditional FPT methods decompose the one-dimensional cyclic polynomial into polynomial convolutions of different lengths. This program will decompose a cyclic polynomial into polynomial convolutions of the same length. Thus, only FPTs and Fast Fourier Transforms of the same length are required. This modular approach can save computational resources. To further enhance its appeal, the program is written in the transportable 'C' language. The steps in the algorithm are: 1) formulate the modulus reduction equations, 2) calculate the polynomial transforms, 3) multiply the transforms using a generalized fast Fourier transformation, 4) compute the inverse polynomial transforms, and 5) reconstruct the final matrices using the Chinese remainder theorem. Input to this program is comprised of the row and column dimensions and the initial two matrices. The matrices are printed out at all steps, ending with the final reconstruction. This program is written in 'C' for batch execution and has been implemented on the IBM PC series of computers under DOS with a central memory requirement of approximately 18K of 8 bit bytes. This program was developed in 1986.
Research on Fast-Doppler-Broadening of neutron cross sections
Li, S.; Wang, K.; Yu, G.
2012-07-01
A Fast-Doppler-Broadening method is developed in this work to broaden Continuous Energy neutron cross-sections for Monte Carlo calculations. Gauss integration algorithm and parallel computing are implemented in this method, which is unprecedented in the history of cross section processing. Compared to the traditional code (NJOY, SIGMA1, etc.), the new Fast-Doppler-Broadening method shows a remarkable speedup with keeping accuracy. The purpose of using Gauss integration is to avoid complex derivation of traditional broadening formula and heavy load of computing complementary error function that slows down the Doppler broadening process. The OpenMP environment is utilized in parallel computing which can take full advantage of modern multi-processor computers. Combination of the two can reduce processing time of main actinides (such as {sup 238}U, {sup 235}U) to an order of magnitude of 1{approx}2 seconds. This new method is fast enough to be applied to Online Doppler broadening. It can be combined or coupled with Monte Carlo transport code to solve temperature dependent problems and neutronics-thermal hydraulics coupled scheme which is a big challenge for the conventional NJOY-MCNP system. Examples are shown to determine the efficiency and relative errors compared with the NJOY results. A Godiva Benchmark is also used in order to test the ACE libraries produced by the new method. (authors)
Correlation between macrosomia body indices and maternal fasting blood glucose.
Song, Y; Zhang, S; Song, W
2014-05-01
To explore the significance of neonatal body indices in identifying pathological macrosomia, we implemented a retrospective study of 254 neonates, including: 100 macrosomia of diabetic pregnancies, 77 macrosomia of healthy pregnancies and 77 normal neonates of healthy pregnancies, using their birth weight, body length, head circumference and chest circumference, to calculate neonatal body indices, multiple regression analysis of the correlation between newborn body indices and maternal fasting blood glucose. The Quetelet Index and Kaup Index of diabetic macrosomia is higher than that of non-diabetic macrosomia; HC:CC (ratio between head circumference and chest circumference) is reversed (p < 0.05). The multiple regression equation of neonatal body indices to maternal fasting blood glucose is BG = 6.959 + 0.031 QI -4.482 × HC:CC. Quetelet index and HC:CC have linear relationship with maternal fasting blood glucose (p < 0.05). Compared with birth weight, Quetelet Index and HC:CC could better reflect the effect of maternal metabolism on the fetus and be of great significance in the prediction of fetal macrosomia. PMID:24798112
Fast, Parallel and Secure Cryptography Algorithm Using Lorenz's Attractor
NASA Astrophysics Data System (ADS)
Marco, Anderson Gonçalves; Martinez, Alexandre Souto; Bruno, Odemir Martinez
A novel cryptography method based on the Lorenz's attractor chaotic system is presented. The proposed algorithm is secure and fast, making it practical for general use. We introduce the chaotic operation mode, which provides an interaction among the password, message and a chaotic system. It ensures that the algorithm yields a secure codification, even if the nature of the chaotic system is known. The algorithm has been implemented in two versions: one sequential and slow and the other, parallel and fast. Our algorithm assures the integrity of the ciphertext (we know if it has been altered, which is not assured by traditional algorithms) and consequently its authenticity. Numerical experiments are presented, discussed and show the behavior of the method in terms of security and performance. The fast version of the algorithm has a performance comparable to AES, a popular cryptography program used commercially nowadays, but it is more secure, which makes it immediately suitable for general purpose cryptography applications. An internet page has been set up, which enables the readers to test the algorithm and also to try to break into the cipher.
CMB quadrupole suppression. II. The early fast roll stage
Boyanovsky, D.; Vega, H. J. de; Sanchez, N. G.
2006-12-15
Within the effective field theory of inflation, an initialization of the classical dynamics of the inflaton with approximate equipartition between the kinetic and potential energy of the inflaton leads to a brief fast roll stage that precedes the slow roll regime. The fast roll stage leads to an attractive potential in the wave equations for the mode functions of curvature and tensor perturbations. The evolution of the inflationary perturbations is equivalent to the scattering by this potential and a useful dictionary between the scattering data and observables is established. Implementing methods from scattering theory we prove that this attractive potential leads to a suppression of the quadrupole moment for CMB and B-mode angular power spectra. The scale of the potential is determined by the Hubble parameter during slow roll. Within the effective field theory of inflation at the grand unification (GUT) energy scale we find that if inflation lasts a total number of e-folds N{sub tot}{approx}59, there is a 10%-20% suppression of the CMB quadrupole and about 2%-4% suppression of the tensor quadrupole. The suppression of higher multipoles is smaller, falling off as 1/l{sup 2}. The suppression is much smaller for N{sub tot}>59, therefore if the observable suppression originates in the fast roll stage, there is the upper bound N{sub tot}{approx}59.
Fasting: molecular mechanisms and clinical applications.
Longo, Valter D; Mattson, Mark P
2014-02-01
Fasting has been practiced for millennia, but, only recently, studies have shed light on its role in adaptive cellular responses that reduce oxidative damage and inflammation, optimize energy metabolism, and bolster cellular protection. In lower eukaryotes, chronic fasting extends longevity, in part, by reprogramming metabolic and stress resistance pathways. In rodents intermittent or periodic fasting protects against diabetes, cancers, heart disease, and neurodegeneration, while in humans it helps reduce obesity, hypertension, asthma, and rheumatoid arthritis. Thus, fasting has the potential to delay aging and help prevent and treat diseases while minimizing the side effects caused by chronic dietary interventions. PMID:24440038
Safer staining method for acid fast bacilli.
Ellis, R C; Zabrowarny, L A
1993-01-01
To develop a method for staining acid fast bacilli which excluded highly toxic phenol from the staining solution. A lipophilic agent, a liquid organic detergent, LOC High Studs, distributed by Amway, was substituted. The acid fast bacilli stained red; nuclei, cytoplasm, and cytoplasmic elements stained blue on a clear background. These results compare very favourably with acid fast bacilli stained by the traditional method. Detergents are efficient lipophilic agents and safer to handle than phenol. The method described here stains acid fast bacilli as efficiently as traditional carbol fuchsin methods. LOC High Suds is considerably cheaper than phenol. Images PMID:7687254
Safer staining method for acid fast bacilli.
Ellis, R C; Zabrowarny, L A
1993-06-01
To develop a method for staining acid fast bacilli which excluded highly toxic phenol from the staining solution. A lipophilic agent, a liquid organic detergent, LOC High Studs, distributed by Amway, was substituted. The acid fast bacilli stained red; nuclei, cytoplasm, and cytoplasmic elements stained blue on a clear background. These results compare very favourably with acid fast bacilli stained by the traditional method. Detergents are efficient lipophilic agents and safer to handle than phenol. The method described here stains acid fast bacilli as efficiently as traditional carbol fuchsin methods. LOC High Suds is considerably cheaper than phenol.
Relationship of attitudes toward fast food and frequency of fast-food intake in adults.
Dave, Jayna M; An, Lawrence C; Jeffery, Robert W; Ahluwalia, Jasjit S
2009-06-01
The purpose of the study was to examine the association between attitudes toward fast food and the frequency of fast-food intake in adults. This study is a cross-sectional evaluation of random digit-dial telephone surveys to identify patterns of eating away from home and attitudes toward it. Participants included 530 adults (94% white, 65% women, 70% married, 42% with college educated). Attitudes toward fast food was measured using an 11-item, 4-dimensional scale: perceived convenience of fast food (alpha=0.56); fast food is fun and social (alpha=0.55); fast food perceived as unhealthful (alpha=0.45); and dislike toward cooking (alpha=0.52). Frequency of fast-food intake was found to be significantly associated with age (odds ratios (OR)=0.981, P=0.001), gender (men>women), and marital status of the participants (single>married/partnered and divorced/separated/widowed). Additionally, frequency of fast-food intake was also found to be significantly associated with perceived convenience of fast food (OR=1.162, P<0.001) and dislike toward cooking (OR=1.119, P<0.001) but not with perceived unhealthfulness of fast food (OR=0.692, P=0.207). These findings suggest public education regarding the unhealthfulness of fast food may not influence fast food consumption. Interventions targeting the issue of convenience and quick or efficient preparation of nutritious alternatives to fast food could be more promising. PMID:19247277
Fast Charging Electric Vehicle Research & Development Project
Heny, Michael
2014-03-31
The research and development project supported the engineering, design and implementation of on-road Electric Vehicle (“EV”) charging technologies. It included development of potential solutions for DC fast chargers (“DCFC”) capable of converting high voltage AC power to the DC power required by EVs. Additional development evaluated solutions related to the packaging of power electronic components and enclosure design, as well as for the design and evaluation of EV charging stations. Research compared different charging technologies to identify optimum applications in a municipal fleet. This project collected EV usage data and generated a report demonstrating that EVs, when supported by adequate charging infrastructure, are capable of replacing traditional internal combustion vehicles in many municipal applications. The project’s period of performance has demonstrated various methods of incorporating EVs into a municipal environment, and has identified three general categories for EV applications: - Short Commute: Defined as EVs performing in limited duration, routine commutes. - Long Commute: Defined as tasks that require EVs to operate in longer daily mileage patterns. - Critical Needs: Defined as the need for EVs to be ready at every moment for indefinite periods. Together, the City of Charlottesville, VA (the “City”) and Aker Wade Power Technologies, LLC (“Aker Wade”) concluded that the EV has a viable position in many municipal fleets but with limited recommendation for use in Critical Needs applications such as Police fleets. The report also documented that, compared to internal combustion vehicles, BEVs have lower vehicle-related greenhouse gas (“GHG”) emissions and contribute to a reduction of air pollution in urban areas. The enhanced integration of EVs in a municipal fleet can result in reduced demand for imported oil and reduced municipal operating costs. The conclusions indicated in the project’s Engineering Report (see
The passage of fast electrons through matter
NASA Astrophysics Data System (ADS)
Sorini, Adam P.
This work regards the passage of fast electrons through matter, and in particular how electrons scatter and lose energy within a solid. The basic quantum theory of these scattering processes was first considered in the early- to mid-20th century by Bohr, Bethe, Fermi, and others. This work extends our understanding of how a relativistic electron scatters off, and loses energy to, a complex many-body system. The main idea of this work is that it is now possible to calculate, from first-principles, the inelastic losses of relativistic electrons in condensed matter. We present ab initio calculations based on a real-space Green's function approach, implemented in the FEFF8 computer program[1]. Our work focuses on three topics: Relativistic stopping power and associated loss parameters, electron energy loss spectroscopy in high energy transmission electron microscopes, and the inelastic electron scattering mixed dynamic form factor. We calculate, for the first time, ab initio stopping powers and inelastic mean free paths in real materials. The stopping powers are calculated over a broad energy range, from ten eV to above ten MeV. We also present the first ab initio calculations of the "mean excitation energy". We develop a relativistic theory of inelastic electron scattering, based on ab initio calculations of dielectric response, and the generalized Lorenz gauge. Using our relativistic dielectric theory, we calculate the EELS magic angle ratio for boron nitride and for graphite. In these anisotropic materials we find large relativistic corrections to the magic angle for high energy electron microscopes. We also predict and calculate large deviations in the EELS magic angle from the relativistic vacuum predictions in the low energy-loss regime. Finally, we present calculations of mixed dynamic form factor.
Fast Plasma Instrument for MMS: Simulation Results
NASA Technical Reports Server (NTRS)
Figueroa-Vinas, Adolfo; Adrian, Mark L.; Lobell, James V.; Simpson, David G.; Barrie, Alex; Winkert, George E.; Yeh, Pen-Shu; Moore, Thomas E.
2008-01-01
Magnetospheric Multiscale (MMS) mission will study small-scale reconnection structures and their rapid motions from closely spaced platforms using instruments capable of high angular, energy, and time resolution measurements. The Dual Electron Spectrometer (DES) of the Fast Plasma Instrument (FPI) for MMS meets these demanding requirements by acquiring the electron velocity distribution functions (VDFs) for the full sky with high-resolution angular measurements every 30 ms. This will provide unprecedented access to electron scale dynamics within the reconnection diffusion region. The DES consists of eight half-top-hat energy analyzers. Each analyzer has a 6 deg. x 11.25 deg. Full-sky coverage is achieved by electrostatically stepping the FOV of each of the eight sensors through four discrete deflection look directions. Data compression and burst memory management will provide approximately 30 minutes of high time resolution data during each orbit of the four MMS spacecraft. Each spacecraft will intelligently downlink the data sequences that contain the greatest amount of temporal structure. Here we present the results of a simulation of the DES analyzer measurements, data compression and decompression, as well as ground-based analysis using as a seed re-processed Cluster/PEACE electron measurements. The Cluster/PEACE electron measurements have been reprocessed through virtual DES analyzers with their proper geometrical, energy, and timing scale factors and re-mapped via interpolation to the DES angular and energy phase-space sampling measurements. The results of the simulated DES measurements are analyzed and the full moments of the simulated VDFs are compared with those obtained from the Cluster/PEACE spectrometer using a standard quadrature moment, a newly implemented spectral spherical harmonic method, and a singular value decomposition method. Our preliminary moment calculations show a remarkable agreement within the uncertainties of the measurements, with the
NASA Astrophysics Data System (ADS)
Gilleron, Franck; Piron, Robin
2015-12-01
We present Dédale, a fast code implementing a simplified non-local-thermodynamic-equilibrium (NLTE) plasma model. In this approach, the stationary collisional-radiative rates equations are solved for a set of well-chosen Layzer complexes in order to determine the ion state populations. The electronic structure is approximated using the screened hydrogenic model (SHM) of More with relativistic corrections. The radiative and collisional cross-sections are based on Kramers and Van Regemorter formula, respectively, which are extrapolated to derive analytical expressions for all the rates. The latter are improved thereafter using Gaunt factors or more accurate tabulated data. Special care is taken for dielectronic rates which are compared and rescaled with quantum calculations from the Averroès code. The emissivity and opacity spectra are calculated under the same assumptions as for the radiative rates, either in a detailed manner by summing the transitions between each pair of complexes, or in a coarser statistical way by summing the one-electron transitions averaged over the complexes. Optionally, nℓ-splitting can be accounted for using a WKB approach in an approximate potential reconstructed analytically from the screened charges. It is also possible to improve the spectra by replacing some transition arrays with more accurate data tabulated using the SCO-RCG or FAC codes. This latter option is particularly useful for K-shell emission spectroscopy. The Dédale code was used to submit neon and tungsten cases in the last NLTE-8 workshop (Santa Fe, November 4-8, 2013). Some of these results are presented, as well as comparisons with Averroès calculations.
X-33 Environmental Impact Statement: A Fast Track Approach
NASA Technical Reports Server (NTRS)
McCaleb, Rebecca C.; Holland, Donna L.
1998-01-01
NASA is required by the National Environmental Policy Act (NEPA) to prepare an appropriate level environmental analysis for its major projects. Development of the X-33 Technology Demonstrator and its associated flight test program required an environmental impact statement (EIS) under the NEPA. The EIS process is consists of four parts: the "Notice of Intent" to prepare an EIS and scoping; the draft EIS which is distributed for review and comment; the final ETS; and the "Record of Decision." Completion of this process normally takes from 2 - 3 years, depending on the complexity of the proposed action. Many of the agency's newest fast track, technology demonstration programs require NEPA documentation, but cannot sustain the lengthy time requirement between program concept development to implementation. Marshall Space Flight Center, in cooperation with Kennedy Space Center, accomplished the NEPA process for the X-33 Program in 13 months from Notice of Intent to Record of Decision. In addition, the environmental team implemented an extensive public involvement process, conducting a total of 23 public meetings for scoping and draft EIS comment along with numerous informal meetings with public officials, civic organizations, and Native American Indians. This paper will discuss the fast track approach used to successfully accomplish the NEPA process for X-33 on time.
A small and fast piezo-actuated legged robot
NASA Astrophysics Data System (ADS)
Yumaryanto, Abdul A.; An, Jaebum; Lee, Sangyoon
2007-04-01
In this paper we present the development of a small and fast LIPCA-actuated mobile robot. LIPCA (Lightweight Piezoceramic Composite curved Actuator) is a piezo-composite actuator that uses a PZT layer sandwiched between composite materials of carbon/epoxy and glass/epoxy layers to amplify the displacement. Three versions of LIPCA robots have been developed thus far to implement a small and autonomous robot. The design of the first prototype was inspired by a six-legged insect like a cockroach. Its maximum speed is 173 mm/sec with the voltage input of 400 Vpp at 40 Hz frequency. As the result of a slight modification in the design, a faster LIPCA robot was developed. However their structures are not strong enough to carry a load heavier than 20 gram, which can be a major obstacle to implementing autonomous robots. By several changes in the mechanism, the LIPCA-actuated robot has been improved such that it is able to carry a weight as much as 60 gram. For all the prototypes we used two LIPCA strips that are placed oppositely in the middle of the robot body. The LIPCA strips are driven by a square signal function of high AC voltage with the phase difference of 180°. All the experimental results show a possibility of a small and fast walking robot actuated by LIPCA without using any conventional electromagnetic actuator.
RGBA packing for fast cone beam reconstruction on the GPU
NASA Astrophysics Data System (ADS)
Ino, Fumihiko; Yoshida, Seiji; Hagihara, Kenichi
2009-02-01
This paper presents a fast cone beam reconstruction method accelerated on the graphics processing unit (GPU). We implement the Feldkamp, Davis, and Kress (FDK) algorithm on the OpenGL graphics pipeline, which allows us to exploit the full resources and capabilities available on the GPU. The proposed method differs from previous GPU-based methods in having an RGBA packing scheme capable of directly dealing with projections without rebinning. It also reduces the amount of computation by using a data reuse scheme, which is useful to save the memory bandwidth for this memory-intensive problem. Both schemes contribute to reduce the number of rendering passes, namely the number of kernel invocations on the GPU, realizing fast cone beam reconstruction. We show some experimental results obtained on a desktop PC with an nVIDIA GeForce 8800 GTX card. As a result, the proposed method takes 8.1 seconds to reconstruct a 5123-voxel volume from 360 5122-pixel projection images. This execution time is equivalent to a 15.6-fold speedup over a CPU implementation, showing 10% higher performance as compared with a previous OpenGL-based method that requires the single-slice rebinning of projections for acceleration. With respect to non-rebinned data, our method provides approximately three times higher performance than the previous method.
Clinical Pharmacogenetics Implementation
WEITZEL, KRISTIN W.; ELSEY, AMANDA R.; LANGAEE, TAIMOUR Y.; BURKLEY, BENJAMIN; NESSL, DAVID R.; OBENG, ANIWAA OWUSU; STALEY, BENJAMIN J.; DONG, HUI-JIA; ALLAN, ROBERT W.; LIU, J. FELIX; COOPER-DEHOFF, RHONDA M.; ANDERSON, R. DAVID; CONLON, MICHAEL; CLARE-SALZLER, MICHAEL J.; NELSON, DAVID R.; JOHNSON, JULIE A.
2014-01-01
Current challenges exist to widespread clinical implementation of genomic medicine and pharmacogenetics. The University of Florida (UF) Health Personalized Medicine Program (PMP) is a pharmacist-led, multidisciplinary initiative created in 2011 within the UF Clinical Translational Science Institute. Initial efforts focused on pharmacogenetics, with long-term goals to include expansion to disease-risk prediction and disease stratification. Herein we describe the processes for development of the program, the challenges that were encountered and the clinical acceptance by clinicians of the genomic medicine implementation. The initial clinical implementation of the UF PMP began in June 2012 and targeted clopidogrel use and the CYP2C19 genotype in patients undergoing left heart catheterization and percutaneous-coronary intervention (PCI). After 1 year, 1,097 patients undergoing left heart catheterization were genotyped preemptively, and 291 of those underwent subsequent PCI. Genotype results were reported to the medical record for 100% of genotyped patients. Eighty patients who underwent PCI had an actionable genotype, with drug therapy changes implemented in 56 individuals. Average turnaround time from blood draw to genotype result entry in the medical record was 3.5 business days. Seven different third party payors, including Medicare, reimbursed for the test during the first month of billing, with an 85% reimbursement rate for outpatient claims that were submitted in the first month. These data highlight multiple levels of success in clinical implementation of genomic medicine. PMID:24616371
Fast convolution-superposition dose calculation on graphics hardware.
Hissoiny, Sami; Ozell, Benoît; Després, Philippe
2009-06-01
The numerical calculation of dose is central to treatment planning in radiation therapy and is at the core of optimization strategies for modern delivery techniques. In a clinical environment, dose calculation algorithms are required to be accurate and fast. The accuracy is typically achieved through the integration of patient-specific data and extensive beam modeling, which generally results in slower algorithms. In order to alleviate execution speed problems, the authors have implemented a modern dose calculation algorithm on a massively parallel hardware architecture. More specifically, they have implemented a convolution-superposition photon beam dose calculation algorithm on a commodity graphics processing unit (GPU). They have investigated a simple porting scenario as well as slightly more complex GPU optimization strategies. They have achieved speed improvement factors ranging from 10 to 20 times with GPU implementations compared to central processing unit (CPU) implementations, with higher values corresponding to larger kernel and calculation grid sizes. In all cases, they preserved the numerical accuracy of the GPU calculations with respect to the CPU calculations. These results show that streaming architectures such as GPUs can significantly accelerate dose calculation algorithms and let envision benefits for numerically intensive processes such as optimizing strategies, in particular, for complex delivery techniques such as IMRT and are therapy.
Massively Parallel Processing for Fast and Accurate Stamping Simulations
NASA Astrophysics Data System (ADS)
Gress, Jeffrey J.; Xu, Siguang; Joshi, Ramesh; Wang, Chuan-tao; Paul, Sabu
2005-08-01
The competitive automotive market drives automotive manufacturers to speed up the vehicle development cycles and reduce the lead-time. Fast tooling development is one of the key areas to support fast and short vehicle development programs (VDP). In the past ten years, the stamping simulation has become the most effective validation tool in predicting and resolving all potential formability and quality problems before the dies are physically made. The stamping simulation and formability analysis has become an critical business segment in GM math-based die engineering process. As the simulation becomes as one of the major production tools in engineering factory, the simulation speed and accuracy are the two of the most important measures for stamping simulation technology. The speed and time-in-system of forming analysis becomes an even more critical to support the fast VDP and tooling readiness. Since 1997, General Motors Die Center has been working jointly with our software vendor to develop and implement a parallel version of simulation software for mass production analysis applications. By 2001, this technology was matured in the form of distributed memory processing (DMP) of draw die simulations in a networked distributed memory computing environment. In 2004, this technology was refined to massively parallel processing (MPP) and extended to line die forming analysis (draw, trim, flange, and associated spring-back) running on a dedicated computing environment. The evolution of this technology and the insight gained through the implementation of DM0P/MPP technology as well as performance benchmarks are discussed in this publication.
Sipilä, Raija; Mäntyranta, Taina; Mäkelä, Marjukka; Komulainen, Jorma; Kaila, Minna
2016-01-01
Implementation research examines and promotes the uptake of research findings in various operational environments. The concepts of implementation research in Finnish are not yet established. In support of the research field we describe the Finnish equivalents of the central terms related to knowledge translation in healthcare and the frame of reference of Implementation research, with the national Current Care Guidelines as the starting point. The frame of reference is based on literature, experiences of the authors, iterative modification of the frame of reference on the basis of discussions, and results of expert inquiry. The frame of reference describes seven objects of evaluation, examples of research set-ups and methods as well as tools. PMID:27319083
Experimental and numerical investigation of the Fast-SAGD process
NASA Astrophysics Data System (ADS)
Shin, Hyundon
The SAGD process has been tested in the field, and is now in a commercial stage in Western Canadian oil sands areas. The Fast-SAGD method can partly solve the drilling difficulty and reduce costs in a SAGD operation requiring paired parallel wells one above the other. This method also enhances the thermal efficiency in the reservoir. In this research, the reservoir parameters and operating conditions for the SAGD and Fast-SAGD processes are investigated by numerical simulation in the three Alberta oil sands areas. Scaled physical model experiments, which are operated by an automated process control system, are conducted under high temperature and high pressure conditions. The results of the study indicate that the shallow Athabasca-type reservoir, which is thick with high permeability (high kxh), is a good candidate for SAGD application, whereas Cold Lake- and Peace River-type reservoirs, which are thin with low permeability, are not as good candidates for conventional SAGD implementation. The simulation results indicate improved energy efficiency and productivity in most cases for the Fast-SAGD process; in those cases, the project economics were enhanced compared to the SAGD process. Both Cold Lake- and Peace River-type reservoirs are good candidates for a Fast-SAGD application rather than a conventional SAGD application. This new process demonstrates improved efficiency and lower costs for extracting heavy oil from these important reservoirs. A new economic indicator, called simple thermal efficiency parameter (STEP), was developed and validated to evaluate the performance of a SAGD project. STEP is based on cumulative steam-oil ratio (CSOR), calendar day oil rate (CDOR) and recovery factor (RF) for the time prior to the steam-oil ratio (SOR) attaining 4. STEP can be used as a financial metric quantitatively as well as qualitatively for this type of thermal project. An automated process control system was set-up and validated, and has the capability of
Multitasking domain decomposition fast Poisson solvers on the Cray Y-MP
NASA Technical Reports Server (NTRS)
Chan, Tony F.; Fatoohi, Rod A.
1990-01-01
The results of multitasking implementation of a domain decomposition fast Poisson solver on eight processors of the Cray Y-MP are presented. The object of this research is to study the performance of domain decomposition methods on a Cray supercomputer and to analyze the performance of different multitasking techniques using highly parallel algorithms. Two implementations of multitasking are considered: macrotasking (parallelism at the subroutine level) and microtasking (parallelism at the do-loop level). A conventional FFT-based fast Poisson solver is also multitasked. The results of different implementations are compared and analyzed. A speedup of over 7.4 on the Cray Y-MP running in a dedicated environment is achieved for all cases.
Implementation of Adaptive Digital Controllers on Programmable Logic Devices
NASA Technical Reports Server (NTRS)
Gwaltney, David A.; King, Kenneth D.; Smith, Keary J.; Montenegro, Justino (Technical Monitor)
2002-01-01
Much has been made of the capabilities of Field Programmable Gate Arrays (FPGA's) in the hardware implementation of fast digital signal processing functions. Such capability also makes an FPGA a suitable platform for the digital implementation of closed loop controllers. Other researchers have implemented a variety of closed-loop digital controllers on FPGA's. Some of these controllers include the widely used Proportional-Integral-Derivative (PID) controller, state space controllers, neural network and fuzzy logic based controllers. There are myriad advantages to utilizing an FPGA for discrete-time control functions which include the capability for reconfiguration when SRAM- based FPGA's are employed, fast parallel implementation of multiple control loops and implementations that can meet space level radiation tolerance requirements in a compact form-factor. Generally, a software implementation on a Digital Signal Processor (DSP) device or microcontroller is used to implement digital controllers. At Marshall Space Flight Center, the Control Electronics Group has been studying adaptive discrete-time control of motor driven actuator systems using DSP devices. While small form factor, commercial DSP devices are now available with event capture, data conversion, Pulse Width Modulated (PWM) outputs and communication peripherals, these devices are not currently available in designs and packages which meet space level radiation requirements. In general, very few DSP devices are produced that are designed to meet any level of radiation tolerance or hardness. An alternative is required for compact implementation of such functionality to withstand the harsh environment encountered on spacemap. The goal of this effort is to create a fully digital, flight ready controller design that utilizes an FPGA for implementation of signal conditioning for control feedback signals, generation of commands to the controlled system, and hardware insertion of adaptive-control algorithm
Implementation of Adaptive Digital Controllers on Programmable Logic Devices
NASA Technical Reports Server (NTRS)
Gwaltney, David A.; King, Kenneth D.; Smith, Keary J.; Monenegro, Justino (Technical Monitor)
2002-01-01
Much has been made of the capabilities of FPGA's (Field Programmable Gate Arrays) in the hardware implementation of fast digital signal processing. Such capability also makes an FPGA a suitable platform for the digital implementation of closed loop controllers. Other researchers have implemented a variety of closed-loop digital controllers on FPGA's. Some of these controllers include the widely used proportional-integral-derivative (PID) controller, state space controllers, neural network and fuzzy logic based controllers. There are myriad advantages to utilizing an FPGA for discrete-time control functions which include the capability for reconfiguration when SRAM-based FPGA's are employed, fast parallel implementation of multiple control loops and implementations that can meet space level radiation tolerance requirements in a compact form-factor. Generally, a software implementation on a DSP (Digital Signal Processor) or microcontroller is used to implement digital controllers. At Marshall Space Flight Center, the Control Electronics Group has been studying adaptive discrete-time control of motor driven actuator systems using digital signal processor (DSP) devices. While small form factor, commercial DSP devices are now available with event capture, data conversion, pulse width modulated (PWM) outputs and communication peripherals, these devices are not currently available in designs and packages which meet space level radiation requirements. In general, very few DSP devices are produced that are designed to meet any level of radiation tolerance or hardness. The goal of this effort is to create a fully digital, flight ready controller design that utilizes an FPGA for implementation of signal conditioning for control feedback signals, generation of commands to the controlled system, and hardware insertion of adaptive control algorithm approaches. An alternative is required for compact implementation of such functionality to withstand the harsh environment
Fast repetition rate (FRR) flasher
Kolber, Zbigniew; Falkowski, Paul
1997-02-11
A fast repetition rate (FRR) flasher suitable for high flash photolysis including kinetic chemical and biological analysis. The flasher includes a power supply, a discharge capacitor operably connected to be charged by the power supply, and a flash lamp for producing a series of flashes in response to discharge of the discharge capacitor. A triggering circuit operably connected to the flash lamp initially ionizes the flash lamp. A current switch is operably connected between the flash lamp and the discharge capacitor. The current switch has at least one insulated gate bipolar transistor for switching current that is operable to initiate a controllable discharge of the discharge capacitor through the flash lamp. Control means connected to the current switch for controlling the rate of discharge of the discharge capacitor thereby to effectively keep the flash lamp in an ionized state between Successive discharges of the discharge capacitor. Advantageously, the control means is operable to discharge the discharge capacitor at a rate greater than 10,000 Hz and even up to a rate greater than about 250,000 Hz.
Impulsively generated fast coronal pulsations
NASA Technical Reports Server (NTRS)
Edwin, P. M.; Roberts, B.
1986-01-01
Rapid oscillations in the corona are discussed from a theoretical standpoint, developing some previous work on ducted, fast magnetoacoustic waves in an inhomogeneous medium. In the theory, impulsively (e.g., flare) generated mhd (magnetohydrodynamic) waves are ducted by regions of low Alfven speed (high density) such as coronal loops. Wave propagation in such ducts is strongly dispersive and closely akin to the behavior of Love waves in seismology, Pekeris waves in oceanography and guided waves in fiber optics. Such flare-generated magnetoacoustic waves possess distinctive temporal signatures consisting of periodic, quasi-periodic and decay phases. The quasi-periodic phase possesses the strongest amplitudes and the shortest time scales. Time scales are typically of the order of a second for inhomogeneities (coronal loop width) of 1000 km and Alfven speeds of 1000/kms, and pulse duration times are of tens of seconds. Quasi-periodic signatures have been observed in radio wavelengths for over a decade and more recently by SMM. It is hoped that the theoretical ideas outlined may be successfully related to these observations and thus aid the interpretation of oscillatory signatures recorded by SMM. Such signatures may also provide a diagnostic of coronal conditions. New aspects of the ducted mhd waves, for example their behavior in smoothly varying as opposed to tube-like inhomogeneities, are currently under investigation. The theory is not restricted to loops but applied equally to open field regions.
Isochoric Implosions for Fast Ignition
NASA Astrophysics Data System (ADS)
Clark, Daniel; Tabak, Max
2006-10-01
Various gain models have shown the potentially great advantages of Fast Ignition (FI) Inertial Confinement Fusion (ICF) over its conventional hotspot ignition counterpart. These gain models, however, all assume nearly uniform-density fuel assemblies. By contrast, typical ICF implosions yield hollowed fuel assemblies with a high-density shell of fuel surrounding a low-density, high-pressure hotspot. To realize fully the advantages of FI, then, an alternative implosion design must be found which yields nearly isochoric fuel assemblies without substantial hotspots. Here, it is shown that a self-similar spherical implosion of the type originally studied by Guderley [Luftfahrtforschung 19, 302 (1942)] may be employed to yield precisely such quasi-isochoric imploded states. The difficulty remains, however, of accessing these self-similarly imploding configurations from initial conditions representing an actual ICF target, namely a uniform, solid-density shell at rest. Furthermore, these specialized implosions must be realized for practicable drive parameters, i.e., accessible peak pressures, shell aspect ratios, etc. An implosion scheme is presented which meets all of these requirements, suggesting the possibility of genuinely isochoric implosions for FI.
[Fast neutron cross section measurements
Knoll, G.F.
1992-10-26
From its inception, the Nuclear Data Project at the University of Michigan has concentrated on two major objectives: (1) to carry out carefully controlled nuclear measurements of the highest possible reliability in support of the national nuclear data program, and (2) to provide an educational opportunity for students with interests in experimental nuclear science. The project has undergone a successful transition from a primary dependence on our photoneutron laboratory to one in which our current research is entirely based on a unique pulsed 14 MeV fast neutron facility. The new experimental facility is unique in its ability to provide nanosecond bursts of 14 MeV neutrons under conditions that are clean'' and as scatter-free as possible, and is the only one of its type currently in operation in the United States. It has been designed and put into operation primarily by graduate students, and has met or exceeded all of its important initial performance goals. We have reached the point of its routine operation, and most of the data are now in hand that will serve as the basis for the first two doctoral dissertations to be written by participating graduate students. Our initial results on double differential neutron cross sections will be presented at the May 1993 Fusion Reactor Technology Workshop. We are pleased to report that, after investing several years in equipment assembly and optimization, the project has now entered its data production'' phase.
Isochoric Implosions for Fast Ignition
Clark, D S; Tabak, M
2007-04-04
Various gain models have shown the potentially great advantages of Fast Ignition (FI) Inertial Confinement Fusion (ICF) over its conventional hot spot ignition counterpart [e.g., S. Atzeni, Phys. Plasmas 6, 3316 (1999); M. Tabak et al., Fusion Sci. & Technology 49, 254 (2006)]. These gain models, however, all assume nearly uniform-density fuel assemblies. In contrast, conventional ICF implosions yield hollowed fuel assemblies with a high-density shell of fuel surrounding a low-density, high-pressure hot spot. Hence, to realize fully the advantages of FI, an alternative implosion design must be found which yields nearly isochoric fuel assemblies without substantial hot spots. Here, it is shown that a self-similar spherical implosion of the type originally studied by Guderley [Luftfahrtforschung 19, 302 (1942)] may be employed to yield precisely such quasi-isochoric imploded states. The difficulty remains, however, of accessing these self-similarly imploding configurations from initial conditions representing an actual ICF target, namely a uniform, solid-density shell at rest. Furthermore, these specialized implosions must be realized for practicable drive parameters and at the scales and energies of interest in ICF. A direct-drive implosion scheme is presented which meets all of these requirements and reaches a nearly isochoric assembled density of 300 g=cm{sup 3} and areal density of 2.4 g=cm{sup 2} using 485 kJ of laser energy.
Fasting: The History, Pathophysiology and Complications
Kerndt, Peter R.; Naughton, James L.; Driscoll, Charles E.; Loxterkamp, David A.
1982-01-01
An appreciation of the physiology of fasting is essential to the understanding of therapeutic dietary interventions and the effect of food deprivation in various diseases. The practice of prolonged fasting for political or religious purposes is increasing, and a physician is likely to encounter such circumstances. Early in fasting weight loss is rapid, averaging 0.9 kg per day during the first week and slowing to 0.3 kg per day by the third week; early rapid weight loss is primarily due to negative sodium balance. Metabolically, early fasting is characterized by a high rate of gluconeogenesis with amino acids as the primary substrates. As fasting continues, progressive ketosis develops due to the mobilization and oxidation of fatty acids. As ketone levels rise they replace glucose as the primary energy source in the central nervous system, thereby decreasing the need for gluconeogenesis and sparing protein catabolism. Several hormonal changes occur during fasting, including a fall in insulin and T3 levels and a rise in glucagon and reverse T3 levels. Most studies of fasting have used obese persons and results may not always apply to lean persons. Medical complications seen in fasting include gout and urate nephrolithiasis, postural hypotension and cardiac arrhythmias. ImagesFigure 4. PMID:6758355
Advanced Safeguards Approaches for New Fast Reactors
Durst, Philip C.; Therios, Ike; Bean, Robert; Dougan, A.; Boyer, Brian; Wallace, Rick L.; Ehinger, Michael H.; Kovacic, Don N.; Tolk, K.
2007-12-15
This third report in the series reviews possible safeguards approaches for new fast reactors in general, and the ABR in particular. Fast-neutron spectrum reactors have been used since the early 1960s on an experimental and developmental level, generally with fertile blanket fuels to “breed” nuclear fuel such as plutonium. Whether the reactor is designed to breed plutonium, or transmute and “burn” actinides depends mainly on the design of the reactor neutron reflector and the whether the blanket fuel is “fertile” or suitable for transmutation. However, the safeguards issues are very similar, since they pertain mainly to the receipt, shipment and storage of fresh and spent plutonium and actinide-bearing “TRU”-fuel. For these reasons, the design of existing fast reactors and details concerning how they have been safeguarded were studied in developing advanced safeguards approaches for the new fast reactors. In this regard, the design of the Experimental Breeder Reactor-II “EBR-II” at the Idaho National Laboratory (INL) was of interest, because it was designed as a collocated fast reactor with a pyrometallurgical reprocessing and fuel fabrication line – a design option being considered for the ABR. Similarly, the design of the Fast Flux Facility (FFTF) on the Hanford Site was studied, because it was a successful prototype fast reactor that ran for two decades to evaluate fuels and the design for commercial-scale fast reactors.
Research Program of a Super Fast Reactor
Oka, Yoshiaki; Ishiwatari, Yuki; Liu, Jie; Terai, Takayuki; Nagasaki, Shinya; Muroya, Yusa; Abe, Hiroaki; Akiba, Masato; Akimoto, Hajime; Okumura, Keisuke; Akasaka, Naoaki; GOTO, Shoji
2006-07-01
Research program of a supercritical-pressure light water cooled fast reactor (Super Fast Reactor) is funded by MEXT (Ministry of Education, Culture, Sports, Science and Technology) in December 2005 as one of the research programs of Japanese NERI (Nuclear Energy Research Initiative). It consists of three programs. (1) development of Super Fast Reactor concept; (2) thermal-hydraulic experiments; (3) material developments. The purpose of the concept development is to pursue the advantage of high power density of fast reactor over thermal reactors to achieve economic competitiveness of fast reactor for its deployment without waiting for exhausting uranium resources. Design goal is not breeding, but maximizing reactor power by using plutonium from spent LWR fuel. MOX will be the fuel of the Super Fast Reactor. Thermal-hydraulic experiments will be conducted with HCFC22 (Hydro chlorofluorocarbons) heat transfer loop of Kyushu University and supercritical water loop at JAEA. Heat transfer data including effect of grid spacers will be taken. The critical flow and condensation of supercritical fluid will be studied. The materials research includes the development and testing of austenitic stainless steel cladding from the experience of PNC1520 for LMFBR. Material for thermal insulation will be tested. SCWR (Supercritical-Water Cooled Reactor) of GIF (Generation-4 International Forum) includes both thermal and fast reactors. The research of the Super Fast Reactor will enhance SCWR research and the data base. The research period will be until March 2010. (authors)
Optical imaging of fast, dynamic neurophysiological function.
Rector, D. M.; Carter, K. M.; Yao, X.; George, J. S.
2002-01-01
Fast evoked responses were imaged from rat dorsal medulla and whisker barrel cortex. To investigate the biophysical mechanisms involved, fast optical responses associated with isolated crustacean nerve stimulation were recorded using birefringence and scattered light. Such studies allow optimization of non-invasive imaging techniques being developed for use in humans.
Analytical model for fast-shock ignition
NASA Astrophysics Data System (ADS)
Ghasemi, S. A.; Farahbod, A. H.; Sobhanian, S.
2014-07-01
A model and its improvements are introduced for a recently proposed approach to inertial confinement fusion, called fast-shock ignition (FSI). The analysis is based upon the gain models of fast ignition, shock ignition and considerations for the fast electrons penetration into the pre-compressed fuel to examine the formation of an effective central hot spot. Calculations of fast electrons penetration into the dense fuel show that if the initial electron kinetic energy is of the order ˜4.5 MeV, the electrons effectively reach the central part of the fuel. To evaluate more realistically the performance of FSI approach, we have used a quasi-two temperature electron energy distribution function of Strozzi (2012) and fast ignitor energy formula of Bellei (2013) that are consistent with 3D PIC simulations for different values of fast ignitor laser wavelength and coupling efficiency. The general advantages of fast-shock ignition in comparison with the shock ignition can be estimated to be better than 1.3 and it is seen that the best results can be obtained for the fuel mass around 1.5 mg, fast ignitor laser wavelength ˜0.3 micron and the shock ignitor energy weight factor about 0.25.
Nutrient quality of fast food kids meals
Technology Transfer Automated Retrieval System (TEKTRAN)
Exposure of children to kids’ meals at fast food restaurants is high; however, the nutrient quality of such meals has not been systematically assessed. We assessed the nutrient quality of fast food meals marketed to young children, i.e., "kids meals". The nutrient quality of kids’ meals was assessed...
Differential staining of bacteria: acid fast stain.
Reynolds, Jackie; Moyes, Rita B; Breakwell, Donald P
2009-11-01
Acid-fastness is an uncommon characteristic shared by the genera Mycobacterium (Section 10A) and Nocardia. Because of this feature, this stain is extremely helpful in identification of these bacteria. Although Gram positive, acid-fast bacteria do not take the crystal violet into the wall well, appearing very light purple rather than the deep purple of normal Gram-positive bacteria.
Can Fast and Slow Intelligence Be Differentiated?
ERIC Educational Resources Information Center
Partchev, Ivailo; De Boeck, Paul
2012-01-01
Responses to items from an intelligence test may be fast or slow. The research issue dealt with in this paper is whether the intelligence involved in fast correct responses differs in nature from the intelligence involved in slow correct responses. There are two questions related to this issue: 1. Are the processes involved different? 2. Are the…
Fast ion JET diagnostics: confinement and losses
Kiptily, V. G.; Pinches, S. D.; Sharapov, S. E.; Syme, D. B.; Cecconello, M.; Darrow, D.; Hill, K.; Goloborod'ko, V.; Yavorskij, V.; Johnson, T.; Murari, A.; Reich, M.; Gorini, G.; Zoita, V.
2008-03-12
A study of magnetically confined fast ions in tokamaks plays an important role in burning plasma research. To reach ignition and steady burning of a reactor plasma an adequate confinement of energetic ions produced by NBI heating, accelerated with ICRF and born in fusion reactions is essential to provide efficient heating of the bulk plasma. Thus, investigation of the fast ion behaviour is an immediate task for present-day large machines, such as JET, in order to understand the main mechanisms of slowing down, redistribution and losses, and to develop optimal plasma scenarios. Today's JET has an enhanced suite of fast ion diagnostics both of confined and lost ions that enable to significantly contribute to this important area of research. Fast ion populations of p, d, t, {sup 3}He and {sup 4}He, made with ICRF, NBI, and fusion reactions have been investigated in experiments on JET with sophisticated diagnostics in conventional and shear-reversed plasmas, exploring a wide range of effects. This paper will introduce to the JET fast-ion diagnostic techniques and will give an overview of recent observations. A synergy of the unique diagnostic set was utilised in JET, and studies of the response of fast ions to MHD modes (e.g. tornado modes, sawtooth crashes), fast {sup 3}He-ions behaviour in shear-reversed plasmas are impressive examples of that. Some results on fast ion losses in JET experiments with various levels of the toroidal field ripple will be demonstrated.
Fast Mapping in Late-Talking Toddlers
ERIC Educational Resources Information Center
Weismer, Susan Ellis; Venker, Courtney E.; Evans, Julia L.; Moyle, Maura Jones
2013-01-01
This study investigated fast mapping in late-talking (LT) toddlers and toddlers with normal language (NL) development matched on age, nonverbal cognition, and maternal education. The fast-mapping task included novel object labels and familiar words. The LT group scored significantly lower than the NL group on novel word comprehension and…
Fasting during Ramadan in adolescents with diabetes
Zabeen, Bedowra; Tayyeb, Samin; Benarjee, Biplob; Baki, Abdul; Nahar, Jebun; Mohsin, Fauzia; Nahar, Nazmun; Azad, Kishwar
2014-01-01
Background: Fasting (Sawm) during Ramadan, one of the five pillars of Islam is obligatory for all healthy adult and adolescent Muslims from the age of 12 years. Some children with diabetes, despite their exemption insist on fasting in Ramadan. We evaluated the safety of fasting among children with type 1 diabetes. Materials and Mathods: A prospective observational study was designed for diabetic children and adolescents who wish to fast during Ramadan 2012. Patients with their caregivers were given intensive education and instructions were provided by diabetic educators, dieticians and physicians on insulin adjustment, home blood glucose monitoring and dietary adjustments prior to Ramadan. Results: A total of 33 children and adolescents were included in this study. Of these, 16 were male and 17 were female. Majority (60.6%) of the patients could complete their fasting during the Ramadan. Patients were divided into two groups, those who completed fasting were considered as Group-I, whereas patients who broke the fast were in Group-ll. Blood glucose, hemoglobin A1c weight, and insulin dose before and after Ramadan in two groups showed no significant difference. Conclusion: Children older than 11 years of age with type 1 diabetes mellitus with conventional twice-a-day regimen can fast safely during Ramadan provided they have proper education and intensive follow-up during Ramadan. PMID:24701429
FAST User's Guide - Updated August 2005
Jonkman, J. M.; Buhl, M. L. Jr.
2005-10-01
The FAST (Fatigue, Aerodynamics, Structures, and Turbulence) Code is a comprehensive aeroelastic simulator capable of predicting both the extreme and fatigue loads of two- and three-bladed horizontal-axis wind turbines (HAWTs). This document covers the features of FAST and outlines its operating procedures.
Fast Mapping Verb Meaning from Argument Structure
ERIC Educational Resources Information Center
Johnson, Valerie E.
2010-01-01
Purpose: To examine lexical knowledge in children through a fast mapping task. Method: This study compared the performance of 60 African American English-speaking and general American English-speaking children between the ages of 4 and 6 years. They were presented with a comprehension task involving the fast mapping of novel verbs in 4 different…
Analytical model for fast-shock ignition
Ghasemi, S. A. Farahbod, A. H.; Sobhanian, S.
2014-07-15
A model and its improvements are introduced for a recently proposed approach to inertial confinement fusion, called fast-shock ignition (FSI). The analysis is based upon the gain models of fast ignition, shock ignition and considerations for the fast electrons penetration into the pre-compressed fuel to examine the formation of an effective central hot spot. Calculations of fast electrons penetration into the dense fuel show that if the initial electron kinetic energy is of the order ∼4.5 MeV, the electrons effectively reach the central part of the fuel. To evaluate more realistically the performance of FSI approach, we have used a quasi-two temperature electron energy distribution function of Strozzi (2012) and fast ignitor energy formula of Bellei (2013) that are consistent with 3D PIC simulations for different values of fast ignitor laser wavelength and coupling efficiency. The general advantages of fast-shock ignition in comparison with the shock ignition can be estimated to be better than 1.3 and it is seen that the best results can be obtained for the fuel mass around 1.5 mg, fast ignitor laser wavelength ∼0.3 micron and the shock ignitor energy weight factor about 0.25.
NASA GRC MBSE Implementation Status
NASA Technical Reports Server (NTRS)
Parrott, Edith; Trase, Katie; Green, Randi; Varga, Denise; Powell, Joe
2016-01-01
This presentation gives a brief overview on GRCs Model Based System Engineering (MBSE) implementation status. This overview covers: history, project usage and implementation, challenges and future work.
Implementing College Strategic Plans.
ERIC Educational Resources Information Center
Further Education Development Agency, London (England).
This document, which is intended for individuals responsible for planning and management at further education (FE) colleges, summarizes the factors that contributed to or obstructed implementation of strategic plans in 10 FE colleges in England and Wales in 1994-95. It presents key questions and illustrations that FE colleges can use for…
ERIC Educational Resources Information Center
McHaney, Roger W.
2009-01-01
In March 2009, Kansas State University successfully implemented the ELATEwiki website to encourage a public exchange of e-learning and teaching resources. ELATEwiki, the Electronic Learning and Teaching Exchange, facilitates the creation and documentation of innovative teaching approaches used by individuals and organizations interested in…
Fidelity of Implementation Report
ERIC Educational Resources Information Center
Powers, Stephen; Hughes, Michael
2015-01-01
In 2014, the US Department of Education awarded the Maricopa County Education Service Agency an Investing in Innovation (i3) grant to fund the Engineering STEM Identity (ESI) project. The purpose of i3 is to expand the implementation of, and investment in, innovative educational practices. Accordingly, the goal of ESI is to address one of the most…
ERIC Educational Resources Information Center
Cliffe, Roger
1978-01-01
Hearing damage from noise exposure and approaches to implementing hearing safety in school industrial laboratories through noise reduction and protective equipment are discussed. Although all states have not adopted the Occupational Safety and Health Act, teachers should be aware of noise hazards and act to protect hearing. (MF)
Adiabatically implementing quantum gates
Sun, Jie; Lu, Songfeng Liu, Fang
2014-06-14
We show that, through the approach of quantum adiabatic evolution, all of the usual quantum gates can be implemented efficiently, yielding running time of order O(1). This may be considered as a useful alternative to the standard quantum computing approach, which involves quantum gates transforming quantum states during the computing process.
Reiste, K K; Hubrich, A
1996-02-01
The authors describe the implementation of the Work-Team Concept at the Frigidaire plans in Jefferson, Iowa. By forming teams, plant staff have made significant improvements in worker safety, product quality, customer service, cost-effectiveness, and overall employee well-being. PMID:10154936
Implementing Bilingual Pattern Practice
ERIC Educational Resources Information Center
Scheffler, Pawel
2016-01-01
This article describes how semi-communicative bilingual drills were implemented in a four-month course in pedagogical English for a group of ten Polish adult learners. When the course was over, the learners were asked to evaluate the procedure by filling in a questionnaire. The learners expressed overwhelming approval for bilingual drills in terms…
Implementation Challenges and Results
ERIC Educational Resources Information Center
Walters, Kirk; Sorensen, Nicholas
2013-01-01
This paper describes the implementation of the online and f2f summer algebra courses that were delivered in summers 2011 and 2012. These data will be used to frame the impact results presented in an earlier paper. In particular, the paper will provide a detailed picture of how the online course was structured and the types of supports provided to…
Implementing Sustainable Institutional Practices
ERIC Educational Resources Information Center
Shepard, Joseph; Johnson, Lewis
2009-01-01
Recent research has found that few institutions of higher education implemented the necessary strategies to make their campuses sustainable (Thompson and Green 2005). Ironically, universities are the segment of society with the most access to the intellectual capital needed to provide sound sustainable practices and measurements. Having top…
Fast-Food Consumption, Diet Quality, and Neighborhood Exposure to Fast Food
Diez Roux, Ana V.; Nettleton, Jennifer A.; Jacobs, David R.; Franco, Manuel
2009-01-01
The authors examined associations among fast-food consumption, diet, and neighborhood fast-food exposure by using 2000–2002 Multi-Ethnic Study of Atherosclerosis data. US participants (n = 5,633; aged 45–84 years) reported usual fast-food consumption (never, <1 time/week, or ≥1 times/week) and consumption near home (yes/no). Healthy diet was defined as scoring in the top quintile of the Alternate Healthy Eating Index or bottom quintile of a Western-type dietary pattern. Neighborhood fast-food exposure was measured by densities of fast-food outlets, participant report, and informant report. Separate logistic regression models were used to examine associations of fast-food consumption and diet; fast-food exposure and consumption near home; and fast-food exposure and diet adjusted for site, age, sex, race/ethnicity, education, and income. Those never eating fast food had a 2–3-times higher odds of having a healthy diet versus those eating fast food ≥1 times/week, depending on the dietary measure. For every standard deviation increase in fast-food exposure, the odds of consuming fast food near home increased 11%–61% and the odds of a healthy diet decreased 3%–17%, depending on the model. Results show that fast-food consumption and neighborhood fast-food exposure are associated with poorer diet. Interventions that reduce exposure to fast food and/or promote individual behavior change may be helpful. PMID:19429879
Fast TracKer: A fast hardware track trigger for the ATLAS detector
NASA Astrophysics Data System (ADS)
Pandini, Carlo
2016-07-01
The trigger system at the ATLAS experiment is designed to lower the event rate occurring from the nominal bunch crossing rate of 40 MHz to about 1 kHz for a LHC luminosity of the order of 1034cm-2s-1. To achieve high background rejection while maintaining good efficiency for interesting physics signals, sophisticated algorithms are needed which require an extensive use of tracking information. The Fast TracKer (FTK) trigger system, part of the ATLAS trigger upgrade program, is a highly parallel hardware device designed to perform track-finding at 100 kHz. Modern, powerful Field Programmable Gate Arrays (FPGAs) form an important part of the system architecture, and the combinatorial problem of pattern recognition is solved by 8000 standard-cell ASICs used to implement an Associative Memory architecture. The availability of the tracking and subsequent vertex information within a short latency ensures robust selections and allows improved trigger performance for the most difficult signatures, such as b-jets and τ leptons.
Orbital Advection by Interpolation: A Fast and Accurate Numerical Scheme for Super-Fast MHD Flows
Johnson, B M; Guan, X; Gammie, F
2008-04-11
In numerical models of thin astrophysical disks that use an Eulerian scheme, gas orbits supersonically through a fixed grid. As a result the timestep is sharply limited by the Courant condition. Also, because the mean flow speed with respect to the grid varies with position, the truncation error varies systematically with position. For hydrodynamic (unmagnetized) disks an algorithm called FARGO has been developed that advects the gas along its mean orbit using a separate interpolation substep. This relaxes the constraint imposed by the Courant condition, which now depends only on the peculiar velocity of the gas, and results in a truncation error that is more nearly independent of position. This paper describes a FARGO-like algorithm suitable for evolving magnetized disks. Our method is second order accurate on a smooth flow and preserves {del} {center_dot} B = 0 to machine precision. The main restriction is that B must be discretized on a staggered mesh. We give a detailed description of an implementation of the code and demonstrate that it produces the expected results on linear and nonlinear problems. We also point out how the scheme might be generalized to make the integration of other supersonic/super-fast flows more efficient. Although our scheme reduces the variation of truncation error with position, it does not eliminate it. We show that the residual position dependence leads to characteristic radial variations in the density over long integrations.
Risk Management Implementation Tool
NASA Technical Reports Server (NTRS)
Wright, Shayla L.
2004-01-01
Continuous Risk Management (CM) is a software engineering practice with processes, methods, and tools for managing risk in a project. It provides a controlled environment for practical decision making, in order to assess continually what could go wrong, determine which risk are important to deal with, implement strategies to deal with those risk and assure the measure effectiveness of the implemented strategies. Continuous Risk Management provides many training workshops and courses to teach the staff how to implement risk management to their various experiments and projects. The steps of the CRM process are identification, analysis, planning, tracking, and control. These steps and the various methods and tools that go along with them, identification, and dealing with risk is clear-cut. The office that I worked in was the Risk Management Office (RMO). The RMO at NASA works hard to uphold NASA s mission of exploration and advancement of scientific knowledge and technology by defining and reducing program risk. The RMO is one of the divisions that fall under the Safety and Assurance Directorate (SAAD). I worked under Cynthia Calhoun, Flight Software Systems Engineer. My task was to develop a help screen for the Continuous Risk Management Implementation Tool (RMIT). The Risk Management Implementation Tool will be used by many NASA managers to identify, analyze, track, control, and communicate risks in their programs and projects. The RMIT will provide a means for NASA to continuously assess risks. The goals and purposes for this tool is to provide a simple means to manage risks, be used by program and project managers throughout NASA for managing risk, and to take an aggressive approach to advertise and advocate the use of RMIT at each NASA center.
Allerdictor: fast allergen prediction using text classification techniques
Dang, Ha X.; Lawrence, Christopher B.
2014-01-01
Motivation: Accurately identifying and eliminating allergens from biotechnology-derived products are important for human health. From a biomedical research perspective, it is also important to identify allergens in sequenced genomes. Many allergen prediction tools have been developed during the past years. Although these tools have achieved certain levels of specificity, when applied to large-scale allergen discovery (e.g. at a whole-genome scale), they still yield many false positives and thus low precision (even at low recall) due to the extreme skewness of the data (allergens are rare). Moreover, the most accurate tools are relatively slow because they use protein sequence alignment to build feature vectors for allergen classifiers. Additionally, only web server implementations of the current allergen prediction tools are publicly available and are without the capability of large batch submission. These weaknesses make large-scale allergen discovery ineffective and inefficient in the public domain. Results: We developed Allerdictor, a fast and accurate sequence-based allergen prediction tool that models protein sequences as text documents and uses support vector machine in text classification for allergen prediction. Test results on multiple highly skewed datasets demonstrated that Allerdictor predicted allergens with high precision over high recall at fast speed. For example, Allerdictor only took ∼6 min on a single core PC to scan a whole Swiss-Prot database of ∼540 000 sequences and identified <1% of them as allergens. Availability and implementation: Allerdictor is implemented in Python and available as standalone and web server versions at http://allerdictor.vbi.vt.edu. Contact: lawrence@vbi.vt.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:24403538
Fast optimization and dose calculation in scanned ion beam therapy
Hild, S.; Graeff, C.; Trautmann, J.; Kraemer, M.; Zink, K.; Durante, M.; Bert, C.
2014-07-15
Purpose: Particle therapy (PT) has advantages over photon irradiation on static tumors. An increased biological effectiveness and active target conformal dose shaping are strong arguments for PT. However, the sensitivity to changes of internal geometry complicates the use of PT for moving organs. In case of interfractionally moving objects adaptive radiotherapy (ART) concepts known from intensity modulated radiotherapy (IMRT) can be adopted for PT treatments. One ART strategy is to optimize a new treatment plan based on daily image data directly before a radiation fraction is delivered [treatment replanning (TRP)]. Optimizing treatment plans for PT using a scanned beam is a time consuming problem especially for particles other than protons where the biological effective dose has to be calculated. For the purpose of TRP, fast optimization and fast dose calculation have been implemented into the GSI in-house treatment planning system (TPS) TRiP98. Methods: This work reports about the outcome of a code analysis that resulted in optimization of the calculation processes as well as implementation of routines supporting parallel execution of the code. To benchmark the new features, the calculation time for therapy treatment planning has been studied. Results: Compared to the original version of the TPS, calculation times for treatment planning (optimization and dose calculation) have been improved by a factor of 10 with code optimization. The parallelization of the TPS resulted in a speedup factor of 12 and 5.5 for the original version and the code optimized version, respectively. Hence the total speedup of the new implementation of the authors' TPS yielded speedup factors up to 55. Conclusions: The improved TPS is capable of completing treatment planning for ion beam therapy of a prostate irradiation considering organs at risk in this has been overseen in the review process. Also see below 6 min.
Fast response liquid crystal devices
NASA Astrophysics Data System (ADS)
Wu, Yung-Hsun
Liquid crystal (LC) has been widely used for displays, spatial light modulators, variable optical attenuators (VOAs) and other tunable photonic devices. The response time of these devices is mainly determined by the employed liquid crystal material. The response time of a LC device depends on the visco-elastic coefficient (gamma1/K11), LC cell gap (d), and applied voltage. Hence, low visco-elastic coefficient LC materials and thinner cell gap are favorable for reducing the response time. However, low visco-elastic coefficient LCs are usually associated with a low birefringence because of shorter molecular conjugation. For display applications, such as LCD TVs, low birefringence (Deltan<0.1) LCs are commonly used. However, for optical communications at 1550 nm, low birefringence requires to a thick cell gap which, in turn, increases the response time. How to obtain fast response for the LC devices is a fundamentally important and technically challenging task. In this dissertation, we investigate several methods to improve liquid crystal response time, for examples, using dual-frequency liquid crystals, polymer stabilized liquid crystals, and sheared polymer network liquid crystals. We discover a new class of material, denoted as sheared polymer network liquid crystal (SPNLC) which exhibits a submillisecond response time. Moreover, this response time is insensitive to the LC cell gap. This is the first LC device exhibiting such an interesting property. Chapters 1 and 2 describe the motivation and background of this dissertation. From chapter 3 to chapter 6, dual-frequency liquid crystals and polymer network methods are demonstrated as examples for the variable optical attenuators. Variable optical attenuator (VOA) is a key component in optical communications. Especially, the sheared PNLC VOA shows the best result; its dynamic range reaches 43 dB while the response time is in the submillisecond range at 1550 nm wavelength, which is 50 times faster than the commercial
Mutual colliding impact fast ignition
Winterberg, Friedwardt
2014-09-15
It is proposed to apply the well established colliding beam technology of high energy physics to the fast hot spot ignition of a highly compressed DT (deuterium-tritium) target igniting a larger D (deuterium) burn, by accelerating a small amount of solid deuterium, and likewise a small amount of tritium, making a head-on collision in the center of the target, projecting them through conical ducts situated at the opposite side of the target and converging in its center. In their head-on collision, the relative collision velocity is 5/3 times larger compared to the collision velocity of a stationary target. The two pieces have for this reason to be accelerated to a smaller velocity than would otherwise be needed to reach upon impact the same temperature. Since the velocity distribution of the two head-on colliding projectiles is with its two velocity peaks non-Maxwellian, the maximum cross section velocity product turns out to be substantially larger than the maximum if averaged over a Maxwellian. The D and T projectiles would have to be accelerated with two sabots driven by powerful particle or laser beams, permitting a rather large acceleration length. With the substantially larger cross section-velocity product by virtue of the non-Maxwellian velocity distribution, a further advantage is that the head-on collision produces a large magnetic field by the thermomagnetic Nernst effect, enhancing propagating burn. With this concept, the ignition of the neutron-less hydrogen-boron (HB{sup 11}) reaction might even be possible in a heterogeneous assembly of the hydrogen and the boron to reduce the bremsstrahlung-losses, resembling the heterogeneous assembly in a graphite-natural uranium reactor, there to reduce the neutron losses.
Neighborhood fast food restaurants and fast food consumption: A national study
2011-01-01
Background Recent studies suggest that neighborhood fast food restaurant availability is related to greater obesity, yet few studies have investigated whether neighborhood fast food restaurant availability promotes fast food consumption. Our aim was to estimate the effect of neighborhood fast food availability on frequency of fast food consumption in a national sample of young adults, a population at high risk for obesity. Methods We used national data from U.S. young adults enrolled in wave III (2001-02; ages 18-28) of the National Longitudinal Study of Adolescent Health (n = 13,150). Urbanicity-stratified multivariate negative binomial regression models were used to examine cross-sectional associations between neighborhood fast food availability and individual-level self-reported fast food consumption frequency, controlling for individual and neighborhood characteristics. Results In adjusted analysis, fast food availability was not associated with weekly frequency of fast food consumption in non-urban or low- or high-density urban areas. Conclusions Policies aiming to reduce neighborhood availability as a means to reduce fast food consumption among young adults may be unsuccessful. Consideration of fast food outlets near school or workplace locations, factors specific to more or less urban settings, and the role of individual lifestyle attitudes and preferences are needed in future research. PMID:21740571
Fasts, feasts and festivals in diabetes-1: Glycemic management during Hindu fasts.
Kalra, Sanjay; Bajaj, Sarita; Gupta, Yashdeep; Agarwal, Pankaj; Singh, S K; Julka, Sandeep; Chawla, Rajeev; Agrawal, Navneet
2015-01-01
This communication is the first of a series on South Asian fasts, festivals, and diabetes, designed to spread awareness and stimulate research on this aspect of diabetes and metabolic care. It describes the various fasts observed as part of Hindu religion and offers a classification scheme for them, labeling them as infrequent and frequent. The infrequent fasts are further sub-classified as brief and prolonged, to facilitate a scientific approach to glycemic management during these fasts. Pre-fast counseling, non-pharmacological therapy, pharmacological modification, and post-fast debriefing are discussed in detail. All available drug classes and molecules are covered in this article, which provides guidance about necessary changes in dosage and timing of administration. While in no way exhaustive, the brief review offers a basic framework which diabetes care professionals can use to counsel and manage persons in their care who wish to observe various Hindu fasts. PMID:25729681
Fasts, feasts and festivals in diabetes-1: Glycemic management during Hindu fasts
Kalra, Sanjay; Bajaj, Sarita; Gupta, Yashdeep; Agarwal, Pankaj; Singh, S. K.; Julka, Sandeep; Chawla, Rajeev; Agrawal, Navneet
2015-01-01
This communication is the first of a series on South Asian fasts, festivals, and diabetes, designed to spread awareness and stimulate research on this aspect of diabetes and metabolic care. It describes the various fasts observed as part of Hindu religion and offers a classification scheme for them, labeling them as infrequent and frequent. The infrequent fasts are further sub-classified as brief and prolonged, to facilitate a scientific approach to glycemic management during these fasts. Pre-fast counseling, non-pharmacological therapy, pharmacological modification, and post-fast debriefing are discussed in detail. All available drug classes and molecules are covered in this article, which provides guidance about necessary changes in dosage and timing of administration. While in no way exhaustive, the brief review offers a basic framework which diabetes care professionals can use to counsel and manage persons in their care who wish to observe various Hindu fasts. PMID:25729681
Plane-wave ultrasound beamforming using a nonuniform fast Fourier transform.
Kruizinga, Pieter; Mastik, Frits; de Jong, Nico; van der Steen, Antonius F W; van Soest, Gijs
2012-12-01
Beamforming of plane-wave ultrasound echo signals in the Fourier domain provides fast and accurate image reconstruction. Conventional implementations perform a k-space interpolation from the uniform sampled grid to a nonuniform acoustic dispersion grid. In this paper, we demonstrate that this step can be replaced by a nonuniform Fourier transform. We study the performance of the nonuniform fast Fourier transform (NUFFT) in terms of signal-to-noise ratio and computational cost, and show that the NUFFT offers an advantage in the trade-off between speed and accuracy, compared with other frequency-domain beamforming strategies.
Development towards a fast ion loss detector for the reversed field pinch
NASA Astrophysics Data System (ADS)
Bonofiglo, P. J.; Anderson, J. K.; Almagri, A. F.; Kim, J.; Clark, J.; Capecchi, W.; Sears, S. H.; Egedal, J.
2016-11-01
A fast ion loss detector has been constructed and implemented on the Madison Symmetric Torus (MST) to investigate energetic ion losses and transport due to energetic particle and MHD instabilities. The detector discriminates particle orbits solely on pitch and consists of two thin-foil, particle collecting plates that are symmetric with respect to the device aperture. One plate collects fast ion signal, while the second aids in the minimization of background and noise effects. Initial measurements are reported along with suggestions for the next design phase of the detector.
Fast extended focused imaging in digital holography using a graphics processing unit.
Wang, Le; Zhao, Jianlin; Di, Jianglei; Jiang, Hongzhen
2011-05-01
We present a simple and effective method for reconstructing extended focused images in digital holography using a graphics processing unit (GPU). The Fresnel transform method is simplified by an algorithm named fast Fourier transform pruning with frequency shift. Then the pixel size consistency problem is solved by coordinate transformation and combining the subpixel resampling and the fast Fourier transform pruning with frequency shift. With the assistance of the GPU, we implemented an improved parallel version of this method, which obtained about a 300-500-fold speedup compared with central processing unit codes.
Zhang, D; Yuan, X; Ngo, N; Shum, P
2002-06-17
We present a fast Hankel transform (FHTn) method for direct numerical evaluation of electromagnetic (EM) field propagation through an axially symmetric system. Comparing with the vector-based plane-wave spectrum (VPWS) method, we present an alternative approach to implement the fast Hankel transform which does not require an additional coordinate transformation for Fourier transform. The proposed FHTn method is an efficient approach for numerical evaluation of an arbitrary integer order of the Hankel transform (HT). As an example to demonstrate the effectiveness of the proposed method, we apply the FHTn technique to the analysis of cylindrical EM field propagation through a diffractive microlens.
NASA Astrophysics Data System (ADS)
Zhang, D. W.; Yuan, X.-C.; Ngo, N. Q.; Shum, P.
2002-06-01
We present a fast Hankel transform (FHTn) method for direct numerical evaluation of electromagnetic (EM) field propagation through an axially symmetric system. Comparing with the vector-based plane-wave spectrum (VPWS) method, we present an alternative approach to implement the fast Hankel transform which does not require an additional coordinate transformation for Fourier transform. The proposed FHTn method is an efficient approach for numerical evaluation of an arbitrary integer order of the Hankel transform (HT). As an example to demonstrate the effectiveness of the proposed method, we apply the FHTn technique to the analysis of cylindrical EM field propagation through a diffractive microlens.
A photodiode-based neutral particle bolometer for characterizing charge-exchanged fast-ion behavior
Clary, R.; Smirnov, A.; Dettrick, S.; Knapp, K.; Korepanov, S.; Ruskov, E.; Heidbrink, W. W.; Zhu, Y.
2012-10-15
A neutral particle bolometer (NPB) has been designed and implemented on Tri Alpha Energy's C-2 device in order to spatially and temporally resolve the charge-exchange losses of fast-ion populations originating from neutral beam injection into field-reversed configuration plasmas. This instrument employs a silicon photodiode as the detection device with an integrated tungsten filter coating to reduce sensitivity to light radiation. Here we discuss the technical aspects and calibration of the NPB, and report typical NPB measurement results of wall recycling effects on fast-ion losses.
NASA Astrophysics Data System (ADS)
Clary, R.; Smirnov, A.; Dettrick, S.; Knapp, K.; Korepanov, S.; Ruskov, E.; Heidbrink, W. W.; Zhu, Y.
2012-10-01
A neutral particle bolometer (NPB) has been designed and implemented on Tri Alpha Energy's C-2 device in order to spatially and temporally resolve the charge-exchange losses of fast-ion populations originating from neutral beam injection into field-reversed configuration plasmas. This instrument employs a silicon photodiode as the detection device with an integrated tungsten filter coating to reduce sensitivity to light radiation. Here we discuss the technical aspects and calibration of the NPB, and report typical NPB measurement results of wall recycling effects on fast-ion losses.
A photodiode-based neutral particle bolometer for characterizing charge-exchanged fast-ion behavior.
Clary, R; Smirnov, A; Dettrick, S; Knapp, K; Korepanov, S; Ruskov, E; Heidbrink, W W; Zhu, Y
2012-10-01
A neutral particle bolometer (NPB) has been designed and implemented on Tri Alpha Energy's C-2 device in order to spatially and temporally resolve the charge-exchange losses of fast-ion populations originating from neutral beam injection into field-reversed configuration plasmas. This instrument employs a silicon photodiode as the detection device with an integrated tungsten filter coating to reduce sensitivity to light radiation. Here we discuss the technical aspects and calibration of the NPB, and report typical NPB measurement results of wall recycling effects on fast-ion losses.
A fast and memory-sparing probabilistic selection algorithm for the GPU
Monroe, Laura M; Wendelberger, Joanne; Michalak, Sarah
2010-09-29
A fast and memory-sparing probabilistic top-N selection algorithm is implemented on the GPU. This probabilistic algorithm gives a deterministic result and always terminates. The use of randomization reduces the amount of data that needs heavy processing, and so reduces both the memory requirements and the average time required for the algorithm. This algorithm is well-suited to more general parallel processors with multiple layers of memory hierarchy. Probabilistic Las Vegas algorithms of this kind are a form of stochastic optimization and can be especially useful for processors having a limited amount of fast memory available.
Study of the propagation of ultra-intense laser-produced fast electrons in gas jets
NASA Astrophysics Data System (ADS)
Batani, D.; Manclossi, M.; Piazza, D.; Baton, S. D.; Benuzzi-Mounaix, A.; Koenig, M.; Popescu, H.; Amiranoff, F.; Rabec Le Gloahec, M.; Rousseaux, C.; Borghesi, M.; Cecchetti, C.
2006-06-01
We present the results of some recent experiments performed at the LULI laboratory using the 100 TW laser facility concerning the study of the propagation of fast electrons in gas targets. Novel diagnostics have been implemented including chirped shadowgraphy and proton radiography. Proton radiography images did show the presence of very strong fields in the gas probably produced by charge separation. In turn, these imply a slowing down of the fast electron cloud as it penetrates in the gas, and a strong inhibition of propagation. Indeed chirped shadowgraphy images show a strong reduction of the electron cloud velocity from the initial value close to a fraction of c.
Fast diffraction computation algorithms based on FFT
NASA Astrophysics Data System (ADS)
Logofatu, Petre Catalin; Nascov, Victor; Apostol, Dan
2010-11-01
The discovery of the Fast Fourier transform (FFT) algorithm by Cooley and Tukey meant for diffraction computation what the invention of computers meant for computation in general. The computation time reduction is more significant for large input data, but generally FFT reduces the computation time with several orders of magnitude. This was the beginning of an entire revolution in optical signal processing and resulted in an abundance of fast algorithms for diffraction computation in a variety of situations. The property that allowed the creation of these fast algorithms is that, as it turns out, most diffraction formulae contain at their core one or more Fourier transforms which may be rapidly calculated using the FFT. The key in discovering a new fast algorithm is to reformulate the diffraction formulae so that to identify and isolate the Fourier transforms it contains. In this way, the fast scaled transformation, the fast Fresnel transformation and the fast Rayleigh-Sommerfeld transform were designed. Remarkable improvements were the generalization of the DFT to scaled DFT which allowed freedom to choose the dimensions of the output window for the Fraunhofer-Fourier and Fresnel diffraction, the mathematical concept of linearized convolution which thwarts the circular character of the discrete Fourier transform and allows the use of the FFT, and last but not least the linearized discrete scaled convolution, a new concept of which we claim priority.
Fast magnetoacoustic wave trains in coronal holes
NASA Astrophysics Data System (ADS)
Pascoe, D. J.; Nakariakov, V. M.; Kupriyanova, E. G.
2014-08-01
Context. Rapidly propagating coronal EUV disturbances recently discovered in the solar corona are interpreted in terms of guided fast magnetoacoustic waves. Fast magnetoacoustic waves experience geometric dispersion in waveguides, which causes localised, impulsive perturbations to develop into quasi-periodic wave trains. Aims: We consider the formation of fast wave trains in a super-radially expanding coronal hole modelled by a magnetic funnel with a field-aligned density profile that is rarefied in comparison to the surrounding plasma. This kind of structure is typical of coronal holes, and it forms a fast magnetoacoustic anti-waveguide as a local maximum in the Alfvén speed. Methods: We performed 2D MHD numerical simulations for impulsively generated perturbations to the system. Both sausage and kink perturbations are considered and the role of the density contrast ratio investigated. Results: The anti-waveguide funnel geometry refracts wave energy away from the structure. However, in this geometry the quasi-periodic fast wave trains are found to appear, too, and so can be associated with the observed rapidly propagating coronal EUV disturbances. The wave trains propagate along the external edge of the coronal hole. The fast wave trains generated in coronal holes exhibit less dispersive evolution than in the case of a dense waveguide. Conclusions: We conclude that an impulsive energy release localised in a coronal plasma inhomogeneity develops into a fast wave train for both kink and sausage disturbances and for both waveguide and anti-waveguide transverse plasma profiles.
Fast Physics Testbed for the FASTER Project
Lin, W.; Liu, Y.; Hogan, R.; Neggers, R.; Jensen, M.; Fridlind, A.; Lin, Y.; Wolf, A.
2010-03-15
This poster describes the Fast Physics Testbed for the new FAst-physics System Testbed and Research (FASTER) project. The overall objective is to provide a convenient and comprehensive platform for fast turn-around model evaluation against ARM observations and to facilitate development of parameterizations for cloud-related fast processes represented in global climate models. The testbed features three major components: a single column model (SCM) testbed, an NWP-Testbed, and high-resolution modeling (HRM). The web-based SCM-Testbed features multiple SCMs from major climate modeling centers and aims to maximize the potential of SCM approach to enhance and accelerate the evaluation and improvement of fast physics parameterizations through continuous evaluation of existing and evolving models against historical as well as new/improved ARM and other complementary measurements. The NWP-Testbed aims to capitalize on the large pool of operational numerical weather prediction products. Continuous evaluations of NWP forecasts against observations at ARM sites are carried out to systematically identify the biases and skills of physical parameterizations under all weather conditions. The highresolution modeling (HRM) activities aim to simulate the fast processes at high resolution to aid in the understanding of the fast processes and their parameterizations. A four-tier HRM framework is established to augment the SCM- and NWP-Testbeds towards eventual improvement of the parameterizations.
Fast Food and Neighborhood Stroke Risk
Morgenstern, Lewis B.; Escobar, James D.; Sánchez, Brisa N.; Hughes, Rebecca; Zuniga, Belinda G.; Garcia, Nelda; Lisabeth, Lynda D.
2009-01-01
Objective To investigate the association between the number of fast food restaurants and ischemic stroke in neighborhoods. Methods This work was a pre-specified part of the Brain Attack in Corpus Christi (BASIC) project. Ischemic stroke cases were prospectively ascertained in Nueces County, Texas. Home addresses were geocoded and used to establish the census tract for each stroke case. Census tracts were used as proxies for neighborhoods (n=64). Using a standard definition, fast food restaurants were identified from a commercial list. Poisson regression was used to study the association between the number of fast food restaurants in the neighborhood, using a 1-mile buffer around each census tract, and the risk of stroke in the neighborhood. Models were adjusted for demographics and neighborhood socioeconomic status (SES). Results There were 1,247 completed ischemic strokes from January 2000 through June 2003 and 262 fast food restaurants. The median number of fast food restaurants per census tract including buffer was 22 (IQR 12–33). Adjusting for neighborhood demographics and SES, the association of fast food restaurants with stroke was significant (p=0.02). The association suggested that the risk of stroke in a neighborhood increased by 1% for every fast food restaurant (RR 1.01 95% CI: 1.00–1.01). The relative risk of stroke comparing neighborhoods in the 75th to the 25th percentile of the distribution of fast food restaurants was 1.13 (95% CI: 1.02–1.25). Interpretation Controlling for demographic and SES factors, there was a significant association between fast food restaurants and stroke risk in neighborhoods in this community-based study. PMID:19743456
NASA Technical Reports Server (NTRS)
Dixon, William; Fan, William; Lloyd, Joey; Pham, Nam-Anh; Stevens, Michael
1988-01-01
The design of the Soil Transport Implement (STI) for SKITTER is presented. The purpose of STI is to provide a protective layer of lunar soil for the lunar modules. The objective is to cover the lunar module with a layer of soil approximately two meters thick within a two week period. The amount of soil required to cover the module is roughly 77 dump truck loads or three million earth pounds. A spinning disk is employed to accomplish its task. STI is an autonomous, teleoperated system. The design incorporates the latest advances in composite materials and high strength, light weight alloys to achieve a high strength to weight ratio. The preliminary design should only be used to assess the feasibility of employing a spinning wheel as a soil transport implement. A mathematical model of the spinning wheel was used to evaluate the performance of this design.
Jozwiak, Mathieu; Monnet, Xavier
2016-01-01
Sepsis bundles represent key elements of care regarding the diagnosis and treatment of patients with septic shock and allow ones to convert complex guidelines into meaningful changes in behavior. Sepsis bundles endorsed the early goal-directed therapy (EGDT) and their implementation resulted in an improved outcome of septic shock patients. They induced more consistent and timely application of evidence-based care and reduced practice variability. These benefits mainly depend on the compliance with sepsis bundles, highlighting the importance of dedicated performance improvement initiatives, such as multifaceted educational programs. Nevertheless, the interest of early goal directed therapy in septic shock patients compared to usual care has recently been questioned, leading to an update of sepsis bundles in 2015. These new sepsis bundles may also exhibit, as the previous bundles, some limits and pitfalls and the effects of their implementation still needs to be evaluated. PMID:27713890
Partnership implementation research
Solberg, Leif I.; Glasgow, Russell E.; Unützer, Jürgen; Jaeckels, Nancy; Oftedahl, Gary; Beck, Arne; Maciosek, Michael V.; Crain, A. Lauren
2014-01-01
Background Translational research is increasingly important as academic health centers transform themselves to meet new requirements of NIH funding. Most attention has focused on T1 translation studies (bench to bedside) with considerable uncertainty about how to enhance T2 (effectiveness trials) and especially T3 (implementation studies). Objective To describe an innovative example of a T3 study, conducted as partnership research with the leaders of a major natural experiment in Minnesota to improve the primary care of depression. Methods All health plans in the state have agreed on a new payment model to support clinics that implement the well-evidenced collaborative care model for depression in the DIAMOND Initiative (Depression Improvement Across Minnesota: Offering a New Direction). The DIAMOND Study was developed in an ongoing partnership with Initiative leaders from seven health plans, 85 clinics, and a regional quality improvement collaborative to evaluate the implementation and its impacts on patients and other stakeholders. We agreed upon a staggered implementation, multiple baseline research design, utilizing the concepts of practical clinical trials and engaged scholarship and have collaborated on all aspects of conducting the study, including joint identification of patient and clinic survey recipients. Results Complex study methods have worked well through 20 months because of the commitment of all stakeholders to both the Initiative and study. Over 1,500 patient subjects have been recruited from health plan information delivered weekly and 99.7% of 316 physicians and administrators from all participating clinical organizations have completed Study surveys. Conclusions Partnership research can greatly facilitate translational research studies. PMID:20508531
Implementing PAT with Standards
NASA Astrophysics Data System (ADS)
Chandramohan, Laakshmana Sabari; Doolla, Suryanarayana; Khaparde, S. A.
2016-02-01
Perform Achieve Trade (PAT) is a market-based incentive mechanism to promote energy efficiency. The purpose of this work is to address the challenges inherent to inconsistent representation of business processes, and interoperability issues in PAT like cap-and-trade mechanisms especially when scaled. Studies by various agencies have highlighted that as the mechanism evolves including more industrial sectors and industries in its ambit, implementation will become more challenging. This paper analyses the major needs of PAT (namely tracking, monitoring, auditing & verifying energy-saving reports, and providing technical support & guidance to stakeholders); and how the aforesaid reasons affect them. Though current technologies can handle these challenges to an extent, standardization activities for implementation have been scanty for PAT and this work attempts to evolve them. The inconsistent modification of business processes, rules, and procedures across stakeholders, and interoperability among heterogeneous systems are addressed. This paper proposes the adoption of specifically two standards into PAT, namely Business Process Model and Notation for maintaining consistency in business process modelling, and Common Information Model (IEC 61970, 61968, 62325 combined) for information exchange. Detailed architecture and organization of these adoptions are reported. The work can be used by PAT implementing agencies, stakeholders, and standardization bodies.
A model for fast axonal transport.
Blum, J J; Reed, M C
1985-01-01
A model for fast axonal transport is developed in which the essential features are that organelles may interact with mechanochemical cross-bridges that in turn interact with microtubules, forming an organelle-engine-microtubule complex which is transported along the microtubules. Computer analysis of the equations derived to describe such a system show that most of the experimental observations on fast axonal transport can be simulated by the model, indicating that the model is useful for the interpretation and design of experiments aimed at clarifying the mechanism of fast axonal transport. PMID:2416456
Fast Plasma Instrument for MMS: Simulation Results
NASA Astrophysics Data System (ADS)
Viñas, A. F.; Adrian, M. L.; Lobell, J. V.; Simpson, D. G.; Barrie, A.; Winkert, G. E.; Yeh, P.; Moore, T. E.
2008-12-01
Magnetospheric Multiscale (MMS) mission will study small-scale reconnection structures and their rapid motions from closely spaced platforms using instruments capable of high angular, energy, and time resolution measurements. The Dual Electron Spectrometer (DES) of the Fast Plasma Instrument (FPI) for MMS meets these demanding requirements by acquiring the electron velocity distribution functions (VDF's) for the full sky with high-resolution angular measurements every 30 ms. This will provide unprecedented access to electron scale dynamics within the reconnection diffusion region. The DES consists of eight half-top-hat energy analyzers. Each analyzer has a 6° × 180° field of view (FOV) with a single pixel resolution of 6° × 11.25°. Full-sky coverage is achieved by electrostatically stepping the FOV of each of the eight sensors through four discrete deflection look directions. Data compression and burst memory management will provide approximately 30 minutes of high time resolution data during each orbit of the four MMS spacecraft. Each spacecraft will intelligently downlink the data sequences that contain the greatest amount of temporal structure. Here we present the results of a simulation of the DES analyzer measurements, data compression and decompression, as well as ground- based analysis using as a seed re-processed Cluster/PEACE electron measurements. The Cluster/PEACE electron measurements have been re-processed through virtual DES analyzers with their proper geometrical, energy, and timing scale factors and re-mapped via interpolation to the DES angular and energy phase- space sampling measurements. The results of the simulated DES measurements are analyzed and the full moments of the simulated VDF's are compared with those obtained from the Cluster/PEACE spectrometer using a standard quadrature moment, a newly implemented spectral spherical harmonic method, and a singular value decomposition method. Our preliminary moment calculations show a
Design and Implementation of a Fast Imaging System for Detection of Optical Lattices
NASA Astrophysics Data System (ADS)
Gillette, Matthew; Hachtel, Andrew; Clements, Ethan; Zhong, Shan; Ducay, Ray; Bali, Samir
2014-05-01
A home built system for imaging optical lattices is presented. Our imaging system uses a repurposed astronomy camera- the complete system costs less than 5000 while rivaling the performance of a commercially available system which costs 40-50000. The camera must have an extremely low dark current, high quantum efficiency, as well as the ability to take precisely timed millisecond exposures. Using LabVIEW a sequence of precise electronic pulses is created to control the laser beams in order to load the lattice structure with cold atoms. When running a LabVIEW VI at millisecond timescales Windows introduces inaccuracies in pulse timing. A master slave computer setup, called a real time target (RTT) is created in order to increase this accuracy to the microsecond level. We gratefully acknowledge support from the Petroleum Research Fund and Miami University. We acknowledge invaluable help from the Miami University Instrumentation Lab.
A fast object-oriented Matlab implementation of the Reproducing Kernel Particle Method
NASA Astrophysics Data System (ADS)
Barbieri, Ettore; Meo, Michele
2012-05-01
Novel numerical methods, known as Meshless Methods or Meshfree Methods and, in a wider perspective, Partition of Unity Methods, promise to overcome most of disadvantages of the traditional finite element techniques. The absence of a mesh makes meshfree methods very attractive for those problems involving large deformations, moving boundaries and crack propagation. However, meshfree methods still have significant limitations that prevent their acceptance among researchers and engineers, namely the computational costs. This paper presents an in-depth analysis of computational techniques to speed-up the computation of the shape functions in the Reproducing Kernel Particle Method and Moving Least Squares, with particular focus on their bottlenecks, like the neighbour search, the inversion of the moment matrix and the assembly of the stiffness matrix. The paper presents numerous computational solutions aimed at a considerable reduction of the computational times: the use of kd-trees for the neighbour search, sparse indexing of the nodes-points connectivity and, most importantly, the explicit and vectorized inversion of the moment matrix without using loops and numerical routines.
WSCLEAN: an implementation of a fast, generic wide-field imager for radio astronomy
NASA Astrophysics Data System (ADS)
Offringa, A. R.; McKinley, B.; Hurley-Walker, N.; Briggs, F. H.; Wayth, R. B.; Kaplan, D. L.; Bell, M. E.; Feng, L.; Neben, A. R.; Hughes, J. D.; Rhee, J.; Murphy, T.; Bhat, N. D. R.; Bernardi, G.; Bowman, J. D.; Cappallo, R. J.; Corey, B. E.; Deshpande, A. A.; Emrich, D.; Ewall-Wice, A.; Gaensler, B. M.; Goeke, R.; Greenhill, L. J.; Hazelton, B. J.; Hindson, L.; Johnston-Hollitt, M.; Jacobs, D. C.; Kasper, J. C.; Kratzenberg, E.; Lenc, E.; Lonsdale, C. J.; Lynch, M. J.; McWhirter, S. R.; Mitchell, D. A.; Morales, M. F.; Morgan, E.; Kudryavtseva, N.; Oberoi, D.; Ord, S. M.; Pindor, B.; Procopio, P.; Prabu, T.; Riding, J.; Roshi, D. A.; Shankar, N. Udaya; Srivani, K. S.; Subrahmanyan, R.; Tingay, S. J.; Waterson, M.; Webster, R. L.; Whitney, A. R.; Williams, A.; Williams, C. L.
2014-10-01
Astronomical wide-field imaging of interferometric radio data is computationally expensive, especially for the large data volumes created by modern non-coplanar many-element arrays. We present a new wide-field interferometric imager that uses the w-stacking algorithm and can make use of the w-snapshot algorithm. The performance dependences of CASA's w-projection and our new imager are analysed and analytical functions are derived that describe the required computing cost for both imagers. On data from the Murchison Widefield Array, we find our new method to be an order of magnitude faster than w-projection, as well as being capable of full-sky imaging at full resolution and with correct polarization correction. We predict the computing costs for several other arrays and estimate that our imager is a factor of 2-12 faster, depending on the array configuration. We estimate the computing cost for imaging the low-frequency Square Kilometre Array observations to be 60 PetaFLOPS with current techniques. We find that combining w-stacking with the w-snapshot algorithm does not significantly improve computing requirements over pure w-stacking. The source code of our new imager is publicly released.
Parrallel Implementation of Fast Randomized Algorithms for Low Rank Matrix Decomposition
Lucas, Andrew J.; Stalizer, Mark; Feo, John T.
2014-03-01
We analyze the parallel performance of randomized interpolative decomposition by de- composing low rank complex-valued Gaussian random matrices larger than 100 GB. We chose a Cray XMT supercomputer as it provides an almost ideal PRAM model permitting quick investigation of parallel algorithms without obfuscation from hardware idiosyncrasies. We obtain that on non-square matrices performance scales almost linearly with runtime about 100 times faster on 128 processors. We also verify that numerically discovered error bounds still hold on matrices two orders of magnitude larger than those previously tested.
A generalized Leaky Integrate-and-Fire neuron model with fast implementation method.
Wang, Zhenzhong; Guo, Lilin; Adjouadi, Malek
2014-08-01
This study introduces a new Generalized Leaky Integrate-and-Fire (GLIF) neuron model with variable leaking resistor and bias current in order to reproduce accurately the membrane voltage dynamics of a biological neuron. The accuracy of this model is ensured by adjusting its parameters to the statistical properties of the Hodgkin-Huxley model outputs; while the speed is enhanced by introducing a Generalized Exponential Moving Average method that converts the parameterized kernel functions into pre-calculated lookup tables based on an analytic solution of the dynamic equations of the GLIF model.
A generalized Leaky Integrate-and-Fire neuron model with fast implementation method.
Wang, Zhenzhong; Guo, Lilin; Adjouadi, Malek
2014-08-01
This study introduces a new Generalized Leaky Integrate-and-Fire (GLIF) neuron model with variable leaking resistor and bias current in order to reproduce accurately the membrane voltage dynamics of a biological neuron. The accuracy of this model is ensured by adjusting its parameters to the statistical properties of the Hodgkin-Huxley model outputs; while the speed is enhanced by introducing a Generalized Exponential Moving Average method that converts the parameterized kernel functions into pre-calculated lookup tables based on an analytic solution of the dynamic equations of the GLIF model. PMID:24875788
Design and DSP implementation of star image acquisition and star point fast acquiring and tracking
NASA Astrophysics Data System (ADS)
Zhou, Guohui; Wang, Xiaodong; Hao, Zhihang
2006-02-01
Star sensor is a special high accuracy photoelectric sensor. Attitude acquisition time is an important function index of star sensor. In this paper, the design target is to acquire 10 samples per second dynamic performance. On the basis of analyzing CCD signals timing and star image processing, a new design and a special parallel architecture for improving star image processing are presented in this paper. In the design, the operation moving the data in expanded windows including the star to the on-chip memory of DSP is arranged in the invalid period of CCD frame signal. During the CCD saving the star image to memory, DSP processes the data in the on-chip memory. This parallelism greatly improves the efficiency of processing. The scheme proposed here results in enormous savings of memory normally required. In the scheme, DSP HOLD mode and CPLD technology are used to make a shared memory between CCD and DSP. The efficiency of processing is discussed in numerical tests. Only in 3.5ms is acquired the five lightest stars in the star acquisition stage. In 43us, the data in five expanded windows including stars are moved into the internal memory of DSP, and in 1.6ms, five star coordinates are achieved in the star tracking stage.
NASA Astrophysics Data System (ADS)
Xue, Zhenwen; Qin, Chenghu; Wu, Ping; Yang, Xin; Tian, Jie
2012-03-01
Fluorescence molecular tomography (FMT) can three-dimensionally resolve molecular activities in in vivo small animal through the reconstruction of the distribution of fluorescent probes. Due to large number of unknowns and limited measurements from the surfaces of small animals, the FMT problem is often ill-posed and ill-conditioned. Though various L2-norm regularizations can make the solution stable, they usually make the solution over-smoothed. During the early stages of tumor detection, fluorescent sources that indicate the distribution of tumors are usually small and sparse, which can be regarded as a type of a priori information. L1-norm regularizations have been incorporated to promote the sparsity of optical tomographic problems. In this paper, an efficient method with the L1-norm regularization based on coordinate descent is proposed to solve the FMT problem with extremely limited measurements. The proposed method minimizes the objective by solving a sequence of scalar minimization subproblems in multi-variable minimization. Each subproblem improves the estimate of the solution via minimizing along a determined coordinate with all other coordinates fixed. This algorithm first updates the coordinate that makes the energy decrease the most. Non-existence of matrix-vector multiplication in the iteration process makes the proposed algorithm time-efficient. To evaluate this method, we compare it to the iterated-shrinkage-based algorithm with L1-norm regularization in numerical experiments. The proposed algorithm is able to obtain satisfactory reconstruction results even when the measurements are very limited. Besides, the proposed algorithm is about two orders of magnitude faster than the iterated-shrinkage-based algorithm, which enables the proposed algorithm into practical applications.
Fast, high sensitivity dewpoint hygrometer
NASA Technical Reports Server (NTRS)
Hoenk, Michael E. (Inventor)
1998-01-01
A dewpoint/frostpoint hygrometer that uses a surface moisture-sensitive sensor as part of an RF oscillator circuit with feedback control of the sensor temperature to maintain equilibrium at the sensor surface between ambient water vapor and condensed water/ice. The invention is preferably implemented using a surface acoustic wave (SAW) device in an RF oscillator circuit configured to generate a condensation-dependent output signal, a temperature sensor to measure the temperature of the SAW device and to distinguish between condensation-dependent and temperature-dependent signals, a temperature regulating device to control the temperature of the SAW device, and a feedback control system configured to keep the condensation-dependent signal nearly constant over time in the presence of time-varying humidity, corrected for temperature. The effect of this response is to heat or cool the surface moisture-sensitive device, which shifts the equilibrium with respect to evaporation and condensation at the surface of the device. The equilibrium temperature under feedback control is a measure of dewpoint or frostpoint.
Fast Action Can Prevent Sepsis Death: CDC
... fullstory_160574.html Fast Action Can Prevent Sepsis Death: CDC Know the signs of extreme response to ... treated long before it causes severe illness or death, U.S. health officials report. Sepsis, or septicemia, occurs ...
Fast internal dynamics in alcohol dehydrogenase.
Monkenbusch, M; Stadler, A; Biehl, R; Ollivier, J; Zamponi, M; Richter, D
2015-08-21
Large-scale domain motions in alcohol dehydrogenase (ADH) have been observed previously by neutron spin-echo spectroscopy (NSE). We have extended the investigation on the dynamics of ADH in solution by using high-resolution neutron time-of-flight (TOF) and neutron backscattering (BS) spectroscopy in the incoherent scattering range. The observed hydrogen dynamics were interpreted in terms of three mobility classes, which allowed a simultaneous description of the measured TOF and BS spectra. In addition to the slow global protein diffusion and domain motions observed by NSE, a fast internal process could be identified. Around one third of the protons in ADH participate in the fast localized diffusive motion. The diffusion coefficient of the fast internal motions is around two third of the value of the surrounding D2O solvent. It is tempting to associate the fast internal process with solvent exposed amino acid residues with dangling side chains. PMID:26298156
Cosmology: Home of a fast radio burst
NASA Astrophysics Data System (ADS)
Lorimer, Duncan
2016-02-01
Our understanding of fast radio bursts -- intense pulses of radio waves -- and their use as cosmic probes promises to be transformed now that one burst has been associated with a galaxy of known distance from Earth. See Letter p.453
Fast internal dynamics in alcohol dehydrogenase
Monkenbusch, M.; Stadler, A. Biehl, R.; Richter, D.; Ollivier, J.; Zamponi, M.
2015-08-21
Large-scale domain motions in alcohol dehydrogenase (ADH) have been observed previously by neutron spin-echo spectroscopy (NSE). We have extended the investigation on the dynamics of ADH in solution by using high-resolution neutron time-of-flight (TOF) and neutron backscattering (BS) spectroscopy in the incoherent scattering range. The observed hydrogen dynamics were interpreted in terms of three mobility classes, which allowed a simultaneous description of the measured TOF and BS spectra. In addition to the slow global protein diffusion and domain motions observed by NSE, a fast internal process could be identified. Around one third of the protons in ADH participate in the fast localized diffusive motion. The diffusion coefficient of the fast internal motions is around two third of the value of the surrounding D{sub 2}O solvent. It is tempting to associate the fast internal process with solvent exposed amino acid residues with dangling side chains.
FastBit: Interactively Searching Massive Data
Wu, Kesheng; Ahern, Sean; Bethel, E. Wes; Chen, Jacqueline; Childs, Hank; Cormier-Michel, Estelle; Geddes, Cameron; Gu, Junmin; Hagen, Hans; Hamann, Bernd; Koegler, Wendy; Lauret, Jerome; Meredith, Jeremy; Messmer, Peter; Otoo, Ekow; Perevoztchikov, Victor; Poskanzer, Arthur; Prabhat,; Rubel, Oliver; Shoshani, Arie; Sim, Alexander; Stockinger, Kurt; Weber, Gunther; Zhang, Wei-Ming
2009-06-23
As scientific instruments and computer simulations produce more and more data, the task of locating the essential information to gain insight becomes increasingly difficult. FastBit is an efficient software tool to address this challenge. In this article, we present a summary of the key underlying technologies, namely bitmap compression, encoding, and binning. Together these techniques enable FastBit to answer structured (SQL) queries orders of magnitude faster than popular database systems. To illustrate how FastBit is used in applications, we present three examples involving a high-energy physics experiment, a combustion simulation, and an accelerator simulation. In each case, FastBit significantly reduces the response time and enables interactive exploration on terabytes of data.
Interpretation of fast-ion signals during beam modulation experiments
NASA Astrophysics Data System (ADS)
Heidbrink, W. W.; Collins, C. S.; Stagner, L.; Zhu, Y. B.; Petty, C. C.; Van Zeeland, M. A.
2016-11-01
Fast-ion signals produced by a modulated neutral beam are used to infer fast-ion transport. The measured quantity is the divergence of perturbed fast-ion flux from the phase-space volume measured by the diagnostic, \
Sociodemographic differences in fast food price sensitivity
Meyer, Katie A.; Guilkey, David K.; Ng, Shu Wen; Duffey, Kiyah J.; Popkin, Barry M.; Kiefe, Catarina I.; Steffen, Lyn M.; Shikany, James M.; Gordon-Larsen, Penny
2014-01-01
Importance Fiscal food policies (e.g., taxation) are increasingly proposed to improve population-level health, but their impact on health disparities is unknown. Objective We estimated subgroup-specific effects of fast food price changes on fast food consumption and cardio-metabolic outcomes, hypothesizing inverse associations between fast food price with fast food consumption, BMI, and insulin resistance and stronger associations among blacks (vs. whites) and participants with relatively lower education or income. Design 20-year follow-up (5 exams) in a biracial U.S. prospective cohort: Coronary Artery Risk Development in Young Adults (CARDIA) (1985/86–2005/06, baseline n=5,115). Participants Aged 18–30 at baseline; designed for equal recruitment by race (black/white), educational attainment, age, and gender. Exposures Community-level price data from the Council for Community and Economic Research (C2ER) temporally- and geographically-linked to study participants’ home address at each exam. Main outcome and measures Participant-reported number of fast food eating occasions per week; BMI (kg/m2) from clinical assessment of weight and height; homeostatic model assessment insulin resistance (HOMA-IR) from fasting glucose and insulin. Covariates included individual- and community-level social and demographic factors. Results In repeated measures regression, multivariable-adjusted associations between fast food price and consumption were non-linear (quadratic, p<0.001), with significant inverse estimated effects on consumption at higher prices; estimates varied according to race (interaction term p=0.04), income (p=0.07), and education (p=0.03). For example, at the 10th percentile of price ($1.25/serving), blacks and whites had mean fast food consumption (times/week) of 2.2 (95% CI: 2.1–2.3) and 1.6 (1.5–1.7), respectively, while at the 90th percentile of price ($1.53/serving), respective mean consumption estimates were 1.9 (1.8–2.0) and 1.5 (1.4–1.6). We
NASA Astrophysics Data System (ADS)
Tsukahara, Hiroshi; Iwano, Kaoru; Mitsumata, Chiharu; Ishikawa, Tadashi; Ono, Kanta
2016-10-01
We implement low communication frequency three-dimensional fast Fourier transform algorithms on micromagnetics simulator for calculations of a magnetostatic field which occupies a significant portion of large-scale micromagnetics simulation. This fast Fourier transform algorithm reduces the frequency of all-to-all communications from six to two times. Simulation times with our simulator show high scalability in parallelization, even if we perform the micromagnetics simulation using 32 768 physical computing cores. This low communication frequency fast Fourier transform algorithm enables world largest class micromagnetics simulations to be carried out with over one billion calculation cells.
COUPLED FAST-THERMAL POWER BREEDER REACTOR
Avery, R.
1961-07-18
A nuclear reactor having a region operating predominantly on fast neutrons and another region operating predominantly on slow neutrons is described. The fast region is a plutonium core and the slow region is a natural uranium blanket around the core. Both of these regions are free of moderator. A moderating reflector surrounds the uranium blanket. The moderating material and thickness of the reflector are selected so that fissions in the uranium blanket make a substantial contribution to the reactivity of the reactor.
LSST operation simulator implementation
NASA Astrophysics Data System (ADS)
Delgado, Francisco; Cook, Kem; Miller, Michelle; Allsman, Robyn; Pierfederici, Francesco
2006-06-01
We have developed an operation simulator for the Large Synoptic Survey Telescope (LSST) that is an implementation in Python language using the SimPy extension, with a modular and object-oriented design. The main components include a telescope model, a sky model, a weather database for 3 sites, a scheduler and multiple observing proposals. All the proposals derive from a parent class which is fully configurable through about 75 parameters to implement a specific science survey. These parameters control the target selection region, the composition of the sequence of observations for each field, the timing restrictions and filter selection criteria of each observation, the lunation handling, seeing limits, etc. The current implemented proposals include Weak Lensing, Near Earth Asteroids, Supernova and Kuiper Belt Objects. The telescope model computes the slew time delay from the current position to any given target position, using a complete kinematic model for the mount, dome and rotator, as well as optics alignment corrections. The model is fully configurable through about 50 parameters. The scheduler module combines the information received from the proposals and the telescope model for selecting the best target at each moment, promoting targets that fulfill multiple surveys and storing all the simulator activities in a MySQL database for further analysis of the run. This scheduler is also configurable; for example, balancing the weight of the slew time delay in selecting the next field to observe. This simulator has been very useful in clarifying some of the technical and scientific capabilities of the LSST design, and gives a good baseline for a future observation scheduler.
STEREO Mission Design Implementation
NASA Technical Reports Server (NTRS)
Guzman, Jose J.; Dunham, David W.; Sharer, Peter J.; Hunt, Jack W.; Ray, J. Courtney; Shapiro, Hongxing S.; Ossing, Daniel A.; Eichstedt, John E.
2007-01-01
STEREO (Solar-TErrestrial RElations Observatory) is the third mission in the Solar Terrestrial Probes program (STP) of the National Aeronautics and Space Administration (NASA) Science Mission Directorate Sun-Earth Connection theme. This paper describes the successful implementation (lunar swingby targeting) of the mission following the first phasing orbit to deployment into the heliocentric mission orbits following the two lunar swingbys. The STEREO Project had to make some interesting trajectory decisions in order to exploit opportunities to image a bright comet and an unusual lunar transit across the Sun.
NASA Technical Reports Server (NTRS)
1989-01-01
The Life Science Division of the NASA Office of Space Science and Applications (OSSA) describes its plans for assuring the health, safety, and productivity of astronauts in space, and its plans for acquiring further fundamental scientific knowledge concerning space life sciences. This strategic implementation plan details OSSA's goals, objectives, and planned initiatives. The following areas of interest are identified: operational medicine; biomedical research; space biology; exobiology; biospheric research; controlled ecological life support; flight programs and advance technology development; the life sciences educational program; and earth benefits from space life sciences.
GOSIP implementation guidelines
Van Norman, H.J.
1996-07-01
GOSIP (Government Open Systems Interconnection Profile) is a subset of ISO`s OSI protocol standards relevant to US Government operations. As a Federal Information Processing Standard (FIPS), GOSIP is required by law for all Federal agencies. Mandatory standards-based communications products are required when purchasing functionality equivalent to what is specified in GOSIP. This unprecedented requirement by the Federal government has caused considerable confusion concerning practical implementation of relatively immature and untested technologies. Many organizations already have substantial investment in one or more proprietary network architectures. This paper examines issues associated with conversion to the GOSIP system.
Advances in Fast Response Acoustically Derived Air Temperature Measurements
NASA Astrophysics Data System (ADS)
Bogoev, Ivan; Jacobsen, Larry; Horst, Thomas; Conrad, Benjamin
2016-04-01
Fast-response accurate air-temperature measurements are required when estimating turbulent fluxes of heat, water and carbon dioxide by open-path eddy-covariance technique. In comparison with contact thermometers like thermocouples, ultra-sonic thermometers do not suffer from solar radiation loading, water vapor condensation and evaporative cooling effects. Consequently they have the potential to provide more accurate true air temperature measurements. The absolute accuracy of the ultrasonic thermometer is limited by the following parameters: the distance between the transducer pairs, transducer delays associated with the electrical-acoustic signal conversion that vary with temperature, components of the wind vector that are normal to the ultrasonic paths, and humidity. The distance between the transducer pairs is commonly obtained by coordinate measuring machine. Improved accuracy demonstrated in this study results from increased stiffness in the anemometer head to better maintain the ultrasonic path-length distances. To further improve accuracy and account for changes in transducer delays and distance as a function of temperature, these parameters are characterized in a zero-wind chamber over the entire operating temperature range. When the sonic anemometer is combined with a co-located fast-response water vapor analyzer, like in the IRGASON instrument, speed of sound can be compensated for humidity effects on a point-by-point basis resulting in a true fast-response air temperature measurement. Laboratory test results show that when the above steps are implemented in the calibration of the ultrasonic thermometer air-temperature accuracy better than ±0.5 degrees Celsius can be achieved over the entire operating range. The approach is also validated in a field inter-comparison with an aspirated thermistor probe mounted in a radiation shield.
A Framework for Fast Image Deconvolution With Incomplete Observations.
Simoes, Miguel; Almeida, Luis B; Bioucas-Dias, Jose; Chanussot, Jocelyn
2016-11-01
In image deconvolution problems, the diagonalization of the underlying operators by means of the fast Fourier transform (FFT) usually yields very large speedups. When there are incomplete observations (e.g., in the case of unknown boundaries), standard deconvolution techniques normally involve non-diagonalizable operators, resulting in rather slow methods or, otherwise, use inexact convolution models, resulting in the occurrence of artifacts in the enhanced images. In this paper, we propose a new deconvolution framework for images with incomplete observations that allows us to work with diagonalized convolution operators, and therefore is very fast. We iteratively alternate the estimation of the unknown pixels and of the deconvolved image, using, e.g., an FFT-based deconvolution method. This framework is an efficient, high-quality alternative to existing methods of dealing with the image boundaries, such as edge tapering. It can be used with any fast deconvolution method. We give an example in which a state-of-the-art method that assumes periodic boundary conditions is extended, using this framework, to unknown boundary conditions. Furthermore, we propose a specific implementation of this framework, based on the alternating direction method of multipliers (ADMM). We provide a proof of convergence for the resulting algorithm, which can be seen as a "partial" ADMM, in which not all variables are dualized. We report experimental comparisons with other primal-dual methods, where the proposed one performed at the level of the state of the art. Four different kinds of applications were tested in the experiments: deconvolution, deconvolution with inpainting, superresolution, and demosaicing, all with unknown boundaries.
A Framework for Fast Image Deconvolution With Incomplete Observations.
Simoes, Miguel; Almeida, Luis B; Bioucas-Dias, Jose; Chanussot, Jocelyn
2016-11-01
In image deconvolution problems, the diagonalization of the underlying operators by means of the fast Fourier transform (FFT) usually yields very large speedups. When there are incomplete observations (e.g., in the case of unknown boundaries), standard deconvolution techniques normally involve non-diagonalizable operators, resulting in rather slow methods or, otherwise, use inexact convolution models, resulting in the occurrence of artifacts in the enhanced images. In this paper, we propose a new deconvolution framework for images with incomplete observations that allows us to work with diagonalized convolution operators, and therefore is very fast. We iteratively alternate the estimation of the unknown pixels and of the deconvolved image, using, e.g., an FFT-based deconvolution method. This framework is an efficient, high-quality alternative to existing methods of dealing with the image boundaries, such as edge tapering. It can be used with any fast deconvolution method. We give an example in which a state-of-the-art method that assumes periodic boundary conditions is extended, using this framework, to unknown boundary conditions. Furthermore, we propose a specific implementation of this framework, based on the alternating direction method of multipliers (ADMM). We provide a proof of convergence for the resulting algorithm, which can be seen as a "partial" ADMM, in which not all variables are dualized. We report experimental comparisons with other primal-dual methods, where the proposed one performed at the level of the state of the art. Four different kinds of applications were tested in the experiments: deconvolution, deconvolution with inpainting, superresolution, and demosaicing, all with unknown boundaries. PMID:27576251
Implementation notes on bdes(1). [data encryption implementation
NASA Technical Reports Server (NTRS)
Bishop, Matt
1991-01-01
This note describes the implementation of bdes, the file encryption program being distributed in the 4.4 release of the Berkeley Software Distribution. It implements all modes of the Data Encryption Standard program.
Fast algorithm for relaxation processes in big-data systems
NASA Astrophysics Data System (ADS)
Hwang, S.; Lee, D.-S.; Kahng, B.
2014-10-01
Relaxation processes driven by a Laplacian matrix can be found in many real-world big-data systems, for example, in search engines on the World Wide Web and the dynamic load-balancing protocols in mesh networks. To numerically implement such processes, a fast-running algorithm for the calculation of the pseudoinverse of the Laplacian matrix is essential. Here we propose an algorithm which computes quickly and efficiently the pseudoinverse of Markov chain generator matrices satisfying the detailed-balance condition, a general class of matrices including the Laplacian. The algorithm utilizes the renormalization of the Gaussian integral. In addition to its applicability to a wide range of problems, the algorithm outperforms other algorithms in its ability to compute within a manageable computing time arbitrary elements of the pseudoinverse of a matrix of size millions by millions. Therefore our algorithm can be used very widely in analyzing the relaxation processes occurring on large-scale networked systems.
Fast and robust quantum computation with ionic Wigner crystals
Baltrusch, J. D.; Negretti, A.; Taylor, J. M.; Calarco, T.
2011-04-15
We present a detailed analysis of the modulated-carrier quantum phase gate implemented with Wigner crystals of ions confined in Penning traps. We elaborate on a recent scheme, proposed by two of the authors, to engineer two-body interactions between ions in such crystals. We analyze the situation in which the cyclotron ({omega}{sub c}) and the crystal rotation ({omega}{sub r}) frequencies do not fulfill the condition {omega}{sub c}=2{omega}{sub r}. It is shown that even in the presence of the magnetic field in the rotating frame the many-body (classical) Hamiltonian describing small oscillations from the ion equilibrium positions can be recast in canonical form. As a consequence, we are able to demonstrate that fast and robust two-qubit gates are achievable within the current experimental limitations. Moreover, we describe a realization of the state-dependent sign-changing dipole forces needed to realize the investigated quantum computing scheme.
Fast deterministic ptychographic imaging using X-rays.
Yan, Ada W C; D'Alfonso, Adrian J; Morgan, Andrew J; Putkunz, Corey T; Allen, Leslie J
2014-08-01
We present a deterministic approach to the ptychographic retrieval of the wave at the exit surface of a specimen of condensed matter illuminated by X-rays. The method is based on the solution of an overdetermined set of linear equations, and is robust to measurement noise. The set of linear equations is efficiently solved using the conjugate gradient least-squares method implemented using fast Fourier transforms. The method is demonstrated using a data set obtained from a gold-chromium nanostructured test object. It is shown that the transmission function retrieved by this linear method is quantitatively comparable with established methods of ptychography, with a large decrease in computational time, and is thus a good candidate for real-time reconstruction.
A Massively Parallel Adaptive Fast Multipole Method on Heterogeneous Architectures
Lashuk, Ilya; Chandramowlishwaran, Aparna; Langston, Harper; Nguyen, Tuan-Anh; Sampath, Rahul S; Shringarpure, Aashay; Vuduc, Richard; Ying, Lexing; Zorin, Denis; Biros, George
2012-01-01
We describe a parallel fast multipole method (FMM) for highly nonuniform distributions of particles. We employ both distributed memory parallelism (via MPI) and shared memory parallelism (via OpenMP and GPU acceleration) to rapidly evaluate two-body nonoscillatory potentials in three dimensions on heterogeneous high performance computing architectures. We have performed scalability tests with up to 30 billion particles on 196,608 cores on the AMD/CRAY-based Jaguar system at ORNL. On a GPU-enabled system (NSF's Keeneland at Georgia Tech/ORNL), we observed 30x speedup over a single core CPU and 7x speedup over a multicore CPU implementation. By combining GPUs with MPI, we achieve less than 10 ns/particle and six digits of accuracy for a run with 48 million nonuniformly distributed particles on 192 GPUs.
Fast chirality reversal of the magnetic vortex by electric current
Lim, W. L. Liu, R. H.; Urazhdin, S.; Tyliszczak, T.; Erokhin, S. G.; Berkov, D.
2014-12-01
The possibility of high-density information encoding in magnetic materials by topologically stable inhomogeneous magnetization configurations such as domain walls, skyrmions, and vortices has motivated intense research into mechanisms enabling their control and detection. While the uniform magnetization states can be efficiently controlled by electric current using magnetic multilayer structures, this approach has proven much more difficult to implement for inhomogeneous states. Here, we report direct observation of fast reversal of magnetic vortex by electric current in a simple planar structure based on a bilayer of spin Hall material Pt with a single microscopic ferromagnetic disk contacted by asymmetric electrodes. The reversal is enabled by a combination of the chiral Oersted field and spin current generated by the nonuniform current distribution in Pt. Our results provide a route for the efficient control of inhomogeneous magnetization configurations by electric current.
Fast Electronics for the Dafne Transverse Feedback Systems
NASA Astrophysics Data System (ADS)
Drago, Alessandro
Transverse feedback systems for controlling the vertical coupled-bunch instabilities in the positron and electron main rings are installed at DAFNE. They started to be operative respectively from June and September 2000. For the horizontal plane, similar systems have been installed in summer 2001 with less kicker power. Design specifications and the basic system concepts are presented. Real time bunch-by-bunch offset correction is implemented using digital signal processors and dual-port RAM's. Fast analog to digital sampling is performed at the maximum bunch frequency (368 MHz). The system manages at full speed a continuous flow of 8-bits data and it has the capability to invert the sign or put to zero the output for any combination of bunches. A conversion from digital to analog produces the output correcting signal.
Fast Nonparametric Clustering of Structured Time-Series.
Hensman, James; Rattray, Magnus; Lawrence, Neil D
2015-02-01
In this publication, we combine two Bayesian nonparametric models: the Gaussian Process (GP) and the Dirichlet Process (DP). Our innovation in the GP model is to introduce a variation on the GP prior which enables us to model structured time-series data, i.e., data containing groups where we wish to model inter- and intra-group variability. Our innovation in the DP model is an implementation of a new fast collapsed variational inference procedure which enables us to optimize our variational approximation significantly faster than standard VB approaches. In a biological time series application we show how our model better captures salient features of the data, leading to better consistency with existing biological classifications, while the associated inference algorithm provides a significant speed-up over EM-based variational inference. PMID:26353249
A comparison of two fast binary adder configurations
NASA Technical Reports Server (NTRS)
Canaris, J.; Cameron, K.
1990-01-01
Conditional sum and binary lookahead carry are two methods for performing fast binary addition. These methods are quite different, but the adders have a common feature that makes them interesting to compare. Both adders have the carry generating logic implemented as a binary tree, which grows in depth as log(sub 2) n,n equals the number of bits in the adder. The delay in the carry paths also grows in proportion to log(sub 2) n. This paper shows that the Transmission-Gate Conditional-Sum adder and the binary lookahead carry adder have the same speed of addition, but that the conditional sum adder requires only 46 percent of the area.
Fast-electron transport in cylindrically laser-compressed matter
NASA Astrophysics Data System (ADS)
Perez, F.; Koenig, M.; Batani, D.; Baton, S. D.; Beg, F. N.; Benedetti, C.; Brambrink, E.; Chawla, S.; Dorchies, F.; Fourment, C.; Galimberti, M.; Gizzi, L. A.; Heathcote, R.; Higginson, D. P.; Hulin, S.; Jafer, R.; Koester, P.; Labate, L.; Lancaster, K.; Mac Kinnon, A. J.; McPhee, A. G.; Nazarov, W.; Nicolai, P.; Pasley, J.; Ravasio, A.; Richetta, M.; Santos, J. J.; Sgattoni, A.; Spindloe, C.; Vauzour, B.; Volpe, L.
2009-12-01
Experimental and theoretical results of relativistic electron transport in cylindrically compressed matter are presented. This experiment, which is a part of the HiPER roadmap, was achieved on the VULCAN laser facility (UK) using four long pulses beams (~4 × 50 J, 1 ns, at 0.53 µm) to compress a hollow plastic cylinder filled with plastic foam of three different densities (0.1, 0.3 and 1 g cm-3). 2D simulations predict a density of 2-5 g cm-3 and a plasma temperature up to 100 eV at maximum compression. A short pulse (10 ps, 160 J) beam generated fast electrons that propagate through the compressed matter by irradiating a nickel foil at an intensity of 5 × 1018 W cm-2. X-ray spectrometer and imagers were implemented in order to estimate the compressed plasma conditions and to infer the hot electron characteristics. Results are discussed and compared with simulations.
Fast control of trapped ion qubits using shaped optical pulses
NASA Astrophysics Data System (ADS)
Rangan, Chitra; Monroe, C. R.; Bucksbaum, P. H.; Bloch, A. M.
2003-05-01
We present a fast control scheme for producing arbitrary states of trapped ion qubits via shaped optical pulses. When the atomic wavepacket is not localized to under a wavelength (beyond the Lamb-Dicke limit), we show that, we show that the Hilbert space of the qubit-harmonic oscillator can be made finite, and the Schrödinger equation controllable. We then implement an optimal control formalism to determine the pulse shapes that can drive the system to any desired state. This process is faster than using sequential single-frequency laser fields to achieve the same final state. We discuss control schemes for producing entangled states of two qubits. We show progress towards achieving decoherence-free subspaces that could be used in error correction schemes.
FFTF (Fast Flux Test Facility) reactor shutdown system reliability reevaluation
Pierce, B.F.
1986-07-01
The reliability analysis of the Fast Flux Test Facility reactor shutdown system was reevaluated. Failure information based on five years of plant operating experience was used to verify original reliability numbers or to establish new ones. Also, system modifications made subsequent to performance of the original analysis were incorporated into the reevaluation. Reliability calculations and sensitivity analyses were performed using a commercially available spreadsheet on a personal computer. The spreadsheet was configured so that future failures could be tracked and compared with expected failures. A number of recommendations resulted from the reevaluation including both increased and decreased surveillance intervals. All recommendations were based on meeting or exceeding existing reliability goals. Considerable cost savings will be incurred upon implementation of the recommendations.
FAST AND EXACT SPIN-s SPHERICAL HARMONIC TRANSFORMS
Huffenberger, Kevin M.; Wandelt, Benjamin D.
2010-08-15
We demonstrate a fast spin-s spherical harmonic transform algorithm, which is flexible and exact for band-limited functions. In contrast to previous work, where spin transforms are computed independently, our algorithm permits the computation of several distinct spin transforms simultaneously. Specifically, only one set of special functions is computed for transforms of quantities with any spin, namely the Wigner d matrices evaluated at {pi}/2, which may be computed with efficient recursions. For any spin, the computation scales as O(L{sup 3}), where L is the band limit of the function. Our publicly available numerical implementation permits very high accuracy at modest computational cost. We discuss applications to the cosmic microwave background and gravitational lensing.
Fast frequency domain method to detect skew in a document image
NASA Astrophysics Data System (ADS)
Mehta, Sunita; Walia, Ekta; Dutta, Maitreyee
2015-12-01
In this paper, a new fast frequency domain method based on Discrete Wavelet Transform and Fast Fourier Transform has been implemented for the determination of the skew angle in a document image. Firstly, image size reduction is done by using two-dimensional Discrete Wavelet Transform and then skew angle is computed using Fast Fourier Transform. Skew angle error is almost negligible. The proposed method is experimented using a large number of documents having skew between -90° and +90° and results are compared with Moments with Discrete Wavelet Transform method and other commonly used existing methods. It has been determined that this method works more efficiently than the existing methods. Also, it works with typed, picture documents having different fonts and resolutions. It overcomes the drawback of the recently proposed method of Moments with Discrete Wavelet Transform that does not work with picture documents.
Kasherininov, P. G. Tomasov, A. A.
2008-11-15
Fast optical recording media based on semiconductor nanostructures (CdTe, GaAs) for image recording and processing with a speed to 10{sup 6} cycle/s (which exceeds the speed of known recording media based on metal-insulator-semiconductor-(liquid crystal) (MIS-LC) structures by two to three orders of magnitude), a photosensitivity of 10{sup -2}V/cm{sup 2}, and a spatial resolution of 5-10 (line pairs)/mm are developed. Operating principles of nanostructures as fast optical recording media and methods for reading images recorded in such media are described. Fast optical processors for recording images in incoherent light based on CdTe crystal nanostructures are implemented. The possibility of their application to fabricate image correlators is shown.
A fast contour descriptor algorithm for supernova imageclassification
Aragon, Cecilia R.; Aragon, David Bradburn
2006-07-16
We describe a fast contour descriptor algorithm and its application to a distributed supernova detection system (the Nearby Supernova Factory) that processes 600,000 candidate objects in 80 GB of image data per night. Our shape-detection algorithm reduced the number of false positives generated by the supernova search pipeline by 41% while producing no measurable impact on running time. Fourier descriptors are an established method of numerically describing the shapes of object contours, but transform-based techniques are ordinarily avoided in this type of application due to their computational cost. We devised a fast contour descriptor implementation for supernova candidates that meets the tight processing budget of the application. Using the lowest-order descriptors (F{sub 1} and F{sub -1}) and the total variance in the contour, we obtain one feature representing the eccentricity of the object and another denoting its irregularity. Because the number of Fourier terms to be calculated is fixed and small, the algorithm runs in linear time, rather than the O(n log n) time of an FFT. Constraints on object size allow further optimizations so that the total cost of producing the required contour descriptors is about 4n addition/subtraction operations, where n is the length of the contour.
Fast imaging of live organisms with sculpted light sheets.
Chmielewski, Aleksander K; Kyrsting, Anders; Mahou, Pierre; Wayland, Matthew T; Muresan, Leila; Evers, Jan Felix; Kaminski, Clemens F
2015-04-20
Light-sheet microscopy is an increasingly popular technique in the life sciences due to its fast 3D imaging capability of fluorescent samples with low photo toxicity compared to confocal methods. In this work we present a new, fast, flexible and simple to implement method to optimize the illumination light-sheet to the requirement at hand. A telescope composed of two electrically tuneable lenses enables us to define thickness and position of the light-sheet independently but accurately within milliseconds, and therefore optimize image quality of the features of interest interactively. We demonstrated the practical benefit of this technique by 1) assembling large field of views from tiled single exposure each with individually optimized illumination settings; 2) sculpting the light-sheet to trace complex sample shapes within single exposures. This technique proved compatible with confocal line scanning detection, further improving image contrast and resolution. Finally, we determined the effect of light-sheet optimization in the context of scattering tissue, devising procedures for balancing image quality, field of view and acquisition speed.
Fast imaging of live organisms with sculpted light sheets
NASA Astrophysics Data System (ADS)
Chmielewski, Aleksander K.; Kyrsting, Anders; Mahou, Pierre; Wayland, Matthew T.; Muresan, Leila; Evers, Jan Felix; Kaminski, Clemens F.
2015-04-01
Light-sheet microscopy is an increasingly popular technique in the life sciences due to its fast 3D imaging capability of fluorescent samples with low photo toxicity compared to confocal methods. In this work we present a new, fast, flexible and simple to implement method to optimize the illumination light-sheet to the requirement at hand. A telescope composed of two electrically tuneable lenses enables us to define thickness and position of the light-sheet independently but accurately within milliseconds, and therefore optimize image quality of the features of interest interactively. We demonstrated the practical benefit of this technique by 1) assembling large field of views from tiled single exposure each with individually optimized illumination settings; 2) sculpting the light-sheet to trace complex sample shapes within single exposures. This technique proved compatible with confocal line scanning detection, further improving image contrast and resolution. Finally, we determined the effect of light-sheet optimization in the context of scattering tissue, devising procedures for balancing image quality, field of view and acquisition speed.
Wavemoth-Fast Spherical Harmonic Transforms by Butterfly Matrix Compression
NASA Astrophysics Data System (ADS)
Seljebotn, D. S.
2012-03-01
We present Wavemoth, an experimental open source code for computing scalar spherical harmonic transforms (SHTs). Such transforms are ubiquitous in astronomical data analysis. Our code performs substantially better than existing publicly available codes owing to improvements on two fronts. First, the computational core is made more efficient by using small amounts of pre-computed data, as well as paying attention to CPU instruction pipelining and cache usage. Second, Wavemoth makes use of a fast and numerically stable algorithm based on compressing a set of linear operators in a pre-computation step. The resulting SHT scales as O(L 2log2 L) for the resolution range of practical interest, where L denotes the spherical harmonic truncation degree. For low- and medium-range resolutions, Wavemoth tends to be twice as fast as libpsht, which is the current state-of-the-art implementation for the HEALPix grid. At the resolution of the Planck experiment, L ~ 4000, Wavemoth is between three and six times faster than libpsht, depending on the computer architecture and the required precision. Because of the experimental nature of the project, only spherical harmonic synthesis is currently supported, although adding support for spherical harmonic analysis should be trivial.
a New Approach to Fast Mosaic Uav Images
NASA Astrophysics Data System (ADS)
Liu, Q.; Liu, W.; Zou, L.; Wang, J.; Liu, Y.
2011-09-01
Unmanned Aerial Vehicles (UAVs) have been widely used to acquire high quality terrain images of the areas of interest, particularly when such a task could potentially risk human life or even impossible as the areas cannot be accessed easily by surveyors. Once the images have been obtained, traditional photogrammetric processing process can be used to establish a relative orientation model and then, absolute orientation model with the procedures of space resection and intersection. In many such applications, the geo- referenced images which are stitched together to represent the geospatial relationships for the feature objects are sufficient. A fast or near real-time processing approach for UAV images using GPS/INS data has being investigated for years. One beneficial application of such approach is the capability of quick production of geo-referenced images for various engineering or business activities, such as urban and road planning, the site selection of factories and bridges, etc. In this paper, we have proposed a new fast processing approach for the UAV images collected with an integrated GPS/INS/Vision system. The approach features that the corresponding points between images have been determined, and then coordinate transformation is carried out to implement image stitching. The accuracy of corresponding points normally affects the quality of stitched images, but the results of our experiments revealed that the image stitching errors were obvious even the accuracy of corresponding points was high. The stitching errors could be caused by the changes of surface elevation.
Fast muon simulation in the JUNO central detector
NASA Astrophysics Data System (ADS)
Lin, Tao; Deng, Zi-Yan; Li, Wei-Dong; Cao, Guo-Fu; You, Zheng-Yun; Li, Xin-Ying
2016-08-01
The Jiangmen Underground Neutrino Observatory (JUNO) is a multi-purpose neutrino experiment designed to measure the neutrino mass hierarchy using a central detector (CD), which contains 20 kton liquid scintillator (LS) surrounded by about 17000 photomultiplier tubes (PMTs). Due to the large fiducial volume and huge number of PMTs, the simulation of a muon particle passing through the CD with the Geant4 toolkit becomes an extremely computation-intensive task. This paper presents a fast simulation implementation using a so-called voxel method: for scintillation photons generated in a certain LS voxel, the PMT’s response is produced beforehand with Geant4 and then introduced into the simulation at runtime. This parameterisation method successfully speeds up the most CPU consuming process, the optical photon’s propagation in the LS, by a factor of 50. In the paper, the comparison of physics performance between fast and full simulation is also given. Supported by Strategic Priority Research Program of Chinese Academy of Sciences (XDA10010900) and National Natural Science Foundation of China (11405279, 11575224)
WAVEMOTH-FAST SPHERICAL HARMONIC TRANSFORMS BY BUTTERFLY MATRIX COMPRESSION
Seljebotn, D. S.
2012-03-01
We present Wavemoth, an experimental open source code for computing scalar spherical harmonic transforms (SHTs). Such transforms are ubiquitous in astronomical data analysis. Our code performs substantially better than existing publicly available codes owing to improvements on two fronts. First, the computational core is made more efficient by using small amounts of pre-computed data, as well as paying attention to CPU instruction pipelining and cache usage. Second, Wavemoth makes use of a fast and numerically stable algorithm based on compressing a set of linear operators in a pre-computation step. The resulting SHT scales as O(L{sup 2}log{sup 2} L) for the resolution range of practical interest, where L denotes the spherical harmonic truncation degree. For low- and medium-range resolutions, Wavemoth tends to be twice as fast as libpsht, which is the current state-of-the-art implementation for the HEALPix grid. At the resolution of the Planck experiment, L {approx} 4000, Wavemoth is between three and six times faster than libpsht, depending on the computer architecture and the required precision. Because of the experimental nature of the project, only spherical harmonic synthesis is currently supported, although adding support for spherical harmonic analysis should be trivial.
F2Dock: Fast Fourier Protein-Protein Docking
Bajaj, Chandrajit; Chowdhury, Rezaul; Siddavanahalli, Vinay
2009-01-01
The functions of proteins is often realized through their mutual interactions. Determining a relative transformation for a pair of proteins and their conformations which form a stable complex, reproducible in nature, is known as docking. It is an important step in drug design, structure determination and understanding function and structure relationships. In this paper we extend our non-uniform fast Fourier transform docking algorithm to include an adaptive search phase (both translational and rotational) and thereby speed up its execution. We have also implemented a multithreaded version of the adaptive docking algorithm for even faster execution on multicore machines. We call this protein-protein docking code F2Dock (F2 = Fast Fourier). We have calibrated F2Dock based on an extensive experimental study on a list of benchmark complexes and conclude that F2Dock works very well in practice. Though all docking results reported in this paper use shape complementarity and Coulombic potential based scores only, F2Dock is structured to incorporate Lennard-Jones potential and re-ranking docking solutions based on desolvation energy. PMID:21071796
Fast imaging of live organisms with sculpted light sheets
Chmielewski, Aleksander K.; Kyrsting, Anders; Mahou, Pierre; Wayland, Matthew T.; Muresan, Leila; Evers, Jan Felix; Kaminski, Clemens F.
2015-01-01
Light-sheet microscopy is an increasingly popular technique in the life sciences due to its fast 3D imaging capability of fluorescent samples with low photo toxicity compared to confocal methods. In this work we present a new, fast, flexible and simple to implement method to optimize the illumination light-sheet to the requirement at hand. A telescope composed of two electrically tuneable lenses enables us to define thickness and position of the light-sheet independently but accurately within milliseconds, and therefore optimize image quality of the features of interest interactively. We demonstrated the practical benefit of this technique by 1) assembling large field of views from tiled single exposure each with individually optimized illumination settings; 2) sculpting the light-sheet to trace complex sample shapes within single exposures. This technique proved compatible with confocal line scanning detection, further improving image contrast and resolution. Finally, we determined the effect of light-sheet optimization in the context of scattering tissue, devising procedures for balancing image quality, field of view and acquisition speed. PMID:25893952
FastQuery: A Parallel Indexing System for Scientific Data
Chou, Jerry; Wu, Kesheng; Prabhat,
2011-07-29
Modern scientific datasets present numerous data management and analysis challenges. State-of-the- art index and query technologies such as FastBit can significantly improve accesses to these datasets by augmenting the user data with indexes and other secondary information. However, a challenge is that the indexes assume the relational data model but the scientific data generally follows the array data model. To match the two data models, we design a generic mapping mechanism and implement an efficient input and output interface for reading and writing the data and their corresponding indexes. To take advantage of the emerging many-core architectures, we also develop a parallel strategy for indexing using threading technology. This approach complements our on-going MPI-based parallelization efforts. We demonstrate the flexibility of our software by applying it to two of the most commonly used scientific data formats, HDF5 and NetCDF. We present two case studies using data from a particle accelerator model and a global climate model. We also conducted a detailed performance study using these scientific datasets. The results show that FastQuery speeds up the query time by a factor of 2.5x to 50x, and it reduces the indexing time by a factor of 16 on 24 cores.
MIRADS-2 Implementation Manual
NASA Technical Reports Server (NTRS)
1975-01-01
The Marshall Information Retrieval and Display System (MIRADS) which is a data base management system designed to provide the user with a set of generalized file capabilities is presented. The system provides a wide variety of ways to process the contents of the data base and includes capabilities to search, sort, compute, update, and display the data. The process of creating, defining, and loading a data base is generally called the loading process. The steps in the loading process which includes (1) structuring, (2) creating, (3) defining, (4) and implementing the data base for use by MIRADS are defined. The execution of several computer programs is required to successfully complete all steps of the loading process. This library must be established as a cataloged mass storage file as the first step in MIRADS implementation. The procedure for establishing the MIRADS Library is given. The system is currently operational for the UNIVAC 1108 computer system utilizing the Executive Operating System. All procedures relate to the use of MIRADS on the U-1108 computer.
Flawless information system implementation.
Schmitz, J W
1993-01-01
When it was decided to replace the homegrown materiel management information system at Barnes Hospital, a 1,200-bed hospital in St. Louis, Missouri, with a more comprehensive one, the aim was to have a swift, error-free selection, testing and implementation process. It met these goals by dedicating the following resources to the process: 1) a dedicated, full-time user responsible for requirements definition, testing, training and user support, 2) a dedicated IS support team for selection, testing and implementation of the software package, 3) availability of additional personnel in Materiel Management for general assistance, 4) a team approach, both at the project team level, and hospital wide, 5) a total commitment to quality at every phase, 6) a thorough approach to testing, both at the system level, and at the unit, or program level and 7) the vendor commitment of extra time, money and energy to help us make the system work to the best of its ability. PMID:10123862
Known TCP Implementation Problems
NASA Technical Reports Server (NTRS)
Paxson, Vern (Editor); Allman, Mark; Dawson, Scott; Fenner, William; Griner, Jim; Heavens, Ian; Lahey, K.; Semke, J.; Volz, B.
1999-01-01
This memo catalogs a number of known TCP implementation problems. The goal in doing so is to improve conditions in the existing Internet by enhancing the quality of current TCP/IP implementations. It is hoped that both performance and correctness issues can be resolved by making implementors aware of the problems and their solutions. In the long term, it is hoped that this will provide a reduction in unnecessary traffic on the network, the rate of connection failures due to protocol errors, and load on network servers due to time spent processing both unsuccessful connections and retransmitted data. This will help to ensure the stability of the global Internet. Each problem is defined as follows: Name of Problem The name associated with the problem. In this memo, the name is given as a subsection heading. Classification one or more problem categories for which the problem is classified: "congestion control", "performance", "reliability", "resource management". Description A definition of the problem, succinct but including necessary background material. Significance A brief summary of the sorts of environments for which the problem is significant.
NASA Astrophysics Data System (ADS)
Recktenwald, Geoff; Deinert, Mark
2010-03-01
Determining the time dependent concentration of isotopes within a nuclear reactor core is central to the analysis of nuclear fuel cycles. We present a fast, flexible tool for determining the time dependent neutron spectrum within fast reactors. The code (VBUDS: visualization, burnup, depletion and spectra) uses a two region, multigroup collision probability model to simulate the energy dependent neutron flux and tracks the buildup and burnout of 24 actinides, as well as fission products. While originally developed for LWR simulations, the model is shown to produce fast reactor spectra that show high degree of fidelity to available fast reactor benchmarks.
Implementation: Measuring and Explaining the Fidelity of CSR Implementation
ERIC Educational Resources Information Center
Kurki, Anja; Boyle, Andrea; Aladjem, Daniel K.
2006-01-01
Comprehensive school reform (CSR) is only as effective as its implementation. By using data collected for the National Longitudinal Evaluation of Comprehensive School Reform (NLECSR), this article explores the factors that predict CSR model implementation and the ways that CSR model implementation varies. We found little difference in the fidelity…
Fast model-based estimation of ancestry in unrelated individuals.
Alexander, David H; Novembre, John; Lange, Kenneth
2009-09-01
Population stratification has long been recognized as a confounding factor in genetic association studies. Estimated ancestries, derived from multi-locus genotype data, can be used to perform a statistical correction for population stratification. One popular technique for estimation of ancestry is the model-based approach embodied by the widely applied program structure. Another approach, implemented in the program EIGENSTRAT, relies on Principal Component Analysis rather than model-based estimation and does not directly deliver admixture fractions. EIGENSTRAT has gained in popularity in part owing to its remarkable speed in comparison to structure. We present a new algorithm and a program, ADMIXTURE, for model-based estimation of ancestry in unrelated individuals. ADMIXTURE adopts the likelihood model embedded in structure. However, ADMIXTURE runs considerably faster, solving problems in minutes that take structure hours. In many of our experiments, we have found that ADMIXTURE is almost as fast as EIGENSTRAT. The runtime improvements of ADMIXTURE rely on a fast block relaxation scheme using sequential quadratic programming for block updates, coupled with a novel quasi-Newton acceleration of convergence. Our algorithm also runs faster and with greater accuracy than the implementation of an Expectation-Maximization (EM) algorithm incorporated in the program FRAPPE. Our simulations show that ADMIXTURE's maximum likelihood estimates of the underlying admixture coefficients and ancestral allele frequencies are as accurate as structure's Bayesian estimates. On real-world data sets, ADMIXTURE's estimates are directly comparable to those from structure and EIGENSTRAT. Taken together, our results show that ADMIXTURE's computational speed opens up the possibility of using a much larger set of markers in model-based ancestry estimation and that its estimates are suitable for use in correcting for population stratification in association studies.
Modelling land-fast sea ice using a linear elastic model
NASA Astrophysics Data System (ADS)
Plante, Mathieu; Tremblay, Bruno
2016-04-01
Land-fast ice is an important component of the Arctic system, capping the coastal Arctic waters for most of the year and exerting a large influence on ocean-atmosphere heat exchanges. Yet, the accurate representation of land-fast ice in most large-scale sea ice models remains a challenge, part due to the difficult (and sometimes non-physical) parametrisation of ice fracture. In this study, a linear elastic model is developed to investigate the internal stresses induced by the wind forcing on the land-fast ice, modelled as a 2D elastic plate. The model simulates ice fracture by the implementation of a damage coefficient which causes a local reduction in internal stress. This results in a cascade propagation of damage, simulating the ice fracture that determines the position of the land-fast ice edge. The modelled land-fast ice cover is sensitive to the choice of failure criterion. The parametrised cohesion, tensile and compressive strength and the relationship with the land-fast ice stability is discussed. To estimate the large scale mechanical properties of land-fast ice, these results are compared to a set of land-fast ice break up events and ice bridge formations observed in the Siberian Arctic. These events are identified using brightness temperature imagery from the MODIS (Moderate Resolution Imaging Spectroradiometer) Terra and Aqua satellites, from which the position of the flaw lead is identifiable by the opening of polynyi adjacent to the land-fast ice edge. The shape of the land-fast ice before, during and after these events, along with the characteristic scale of the resulting ice floes, are compared to the model results to extrapolate the stress state that corresponds to these observations. The model setting that best reproduce the scale of the observed break up events is used to provide an estimation of the strength of the ice relative to the wind forcing. These results will then be used to investigate the relationship between the ice thickness and the
First steps towards a fast-neutron therapy planning program
2011-01-01
Background The Monte Carlo code GEANT4 was used to implement first steps towards a treatment planning program for fast-neutron therapy at the FRM II research reactor in Garching, Germany. Depth dose curves were calculated inside a water phantom using measured primary neutron and simulated primary photon spectra and compared with depth dose curves measured earlier. The calculations were performed with GEANT4 in two different ways, simulating a simple box geometry and splitting this box into millions of small voxels (this was done to validate the voxelisation procedure that was also used to voxelise the human body). Results In both cases, the dose distributions were very similar to those measured in the water phantom, up to a depth of 30 cm. In order to model the situation of patients treated at the FRM II MEDAPP therapy beamline for salivary gland tumors, a human voxel phantom was implemented in GEANT4 and irradiated with the implemented MEDAPP neutron and photon spectra. The 3D dose distribution calculated inside the head of the phantom was similar to the depth dose curves in the water phantom, with some differences that are explained by differences in elementary composition. The lateral dose distribution was studied at various depths. The calculated cumulative dose volume histograms for the voxel phantom show the exposure of organs at risk surrounding the tumor. Conclusions In order to minimize the dose to healthy tissue, a conformal treatment is necessary. This can only be accomplished with the help of an advanced treatment planning system like the one developed here. Although all calculations were done for absorbed dose only, any biological dose weighting can be implemented easily, to take into account the increased radiobiological effectiveness of neutrons compared to photons. PMID:22118299
Stationary Liquid Fuel Fast Reactor
Yang, Won Sik; Grandy, Andrew; Boroski, Andrew; Krajtl, Lubomir; Johnson, Terry
2015-09-30
For effective burning of hazardous transuranic (TRU) elements of used nuclear fuel, a transformational advanced reactor concept named SLFFR (Stationary Liquid Fuel Fast Reactor) was proposed based on stationary molten metallic fuel. The fuel enters the reactor vessel in a solid form, and then it is heated to molten temperature in a small melting heater. The fuel is contained within a closed, thick container with penetrating coolant channels, and thus it is not mixed with coolant nor flow through the primary heat transfer circuit. The makeup fuel is semi- continuously added to the system, and thus a very small excess reactivity is required. Gaseous fission products are also removed continuously, and a fraction of the fuel is periodically drawn off from the fuel container to a processing facility where non-gaseous mixed fission products and other impurities are removed and then the cleaned fuel is recycled into the fuel container. A reference core design and a preliminary plant system design of a 1000 MWt TRU- burning SLFFR concept were developed using TRU-Ce-Co fuel, Ta-10W fuel container, and sodium coolant. Conservative design approaches were adopted to stay within the current material performance database. Detailed neutronics and thermal-fluidic analyses were performed to develop a reference core design. Region-dependent 33-group cross sections were generated based on the ENDF/B-VII.0 data using the MC2-3 code. Core and fuel cycle analyses were performed in theta-r-z geometries using the DIF3D and REBUS-3 codes. Reactivity coefficients and kinetics parameters were calculated using the VARI3D perturbation theory code. Thermo-fluidic analyses were performed using the ANSYS FLUENT computational fluid dynamics (CFD) code. Figure 0.1 shows a schematic radial layout of the reference 1000 MWt SLFFR core, and Table 0.1 summarizes the main design parameters of SLFFR-1000 loop plant. The fuel container is a 2.5 cm thick cylinder with an inner radius of 87.5 cm. The fuel
Catalytic fast pyrolysis of lignocellulosic biomass
Liu, Changjun; Wang, Huamin; Karim, Ayman M.; Sun, Junming; Wang, Yong
2014-11-21
Increasing energy demand, especially in the transportation sector, and soaring CO2 emissions necessitate the exploitation of renewable sources of energy. Despite the large variety of new energy Q3 carriers, liquid hydrocarbon still appears to be the most attractive and feasible form of transportation fuel taking into account the energy density, stability and existing infrastructure. Biomass is an abundant, renewable source of energy; however, utilizing it in a cost-effective way is still a substantial challenge. Lignocellulose is composed of three major biopolymers, namely cellulose, hemicellulose and lignin. Fast pyrolysis of biomass is recognized as an efficient and feasible process to selectively convert lignocellulose into a liquid fuel—bio-oil. However bio-oil from fast pyrolysis contains a large amount of oxygen, distributed in hundreds of oxygenates. These oxygenates are the cause of many negative properties, such as low heating values, high corrosiveness, high viscosity, and instability; they also greatly Q4 limit the application of bio-oil particularly as transportation fuel. Hydrocarbons derived from biomass are most attractive because of their high energy density and compatibility with the existing infrastructure. Thus, converting lignocellulose into transportation fuels via catalytic fast pyrolysis has attracted much attention. Many studies related to catalytic fast pyrolysis of biomass have been published. The main challenge of this process is the development of active and stable catalysts that can deal with a large variety of decomposition intermediates from lignocellulose. This review starts with the current understanding of the chemistry in fast pyrolysis of lignocellulose and focuses on the development of catalysts in catalytic fast pyrolysis. Recent progress in the experimental studies on catalytic fast pyrolysis of biomass is also summarized with the emphasis on bio-oil yields and quality.
Catalytic fast pyrolysis of lignocellulosic biomass.
Liu, Changjun; Wang, Huamin; Karim, Ayman M; Sun, Junming; Wang, Yong
2014-11-21
Increasing energy demand, especially in the transportation sector, and soaring CO2 emissions necessitate the exploitation of renewable sources of energy. Despite the large variety of new energy carriers, liquid hydrocarbon still appears to be the most attractive and feasible form of transportation fuel taking into account the energy density, stability and existing infrastructure. Biomass is an abundant, renewable source of energy; however, utilizing it in a cost-effective way is still a substantial challenge. Lignocellulose is composed of three major biopolymers, namely cellulose, hemicellulose and lignin. Fast pyrolysis of biomass is recognized as an efficient and feasible process to selectively convert lignocellulose into a liquid fuel-bio-oil. However bio-oil from fast pyrolysis contains a large amount of oxygen, distributed in hundreds of oxygenates. These oxygenates are the cause of many negative properties, such as low heating value, high corrosiveness, high viscosity, and instability; they also greatly limit the application of bio-oil particularly as transportation fuel. Hydrocarbons derived from biomass are most attractive because of their high energy density and compatibility with the existing infrastructure. Thus, converting lignocellulose into transportation fuels via catalytic fast pyrolysis has attracted much attention. Many studies related to catalytic fast pyrolysis of biomass have been published. The main challenge of this process is the development of active and stable catalysts that can deal with a large variety of decomposition intermediates from lignocellulose. This review starts with the current understanding of the chemistry in fast pyrolysis of lignocellulose and focuses on the development of catalysts in catalytic fast pyrolysis. Recent progress in the experimental studies on catalytic fast pyrolysis of biomass is also summarized with the emphasis on bio-oil yields and quality.
Catalytic fast pyrolysis of lignocellulosic biomass.
Liu, Changjun; Wang, Huamin; Karim, Ayman M; Sun, Junming; Wang, Yong
2014-11-21
Increasing energy demand, especially in the transportation sector, and soaring CO2 emissions necessitate the exploitation of renewable sources of energy. Despite the large variety of new energy carriers, liquid hydrocarbon still appears to be the most attractive and feasible form of transportation fuel taking into account the energy density, stability and existing infrastructure. Biomass is an abundant, renewable source of energy; however, utilizing it in a cost-effective way is still a substantial challenge. Lignocellulose is composed of three major biopolymers, namely cellulose, hemicellulose and lignin. Fast pyrolysis of biomass is recognized as an efficient and feasible process to selectively convert lignocellulose into a liquid fuel-bio-oil. However bio-oil from fast pyrolysis contains a large amount of oxygen, distributed in hundreds of oxygenates. These oxygenates are the cause of many negative properties, such as low heating value, high corrosiveness, high viscosity, and instability; they also greatly limit the application of bio-oil particularly as transportation fuel. Hydrocarbons derived from biomass are most attractive because of their high energy density and compatibility with the existing infrastructure. Thus, converting lignocellulose into transportation fuels via catalytic fast pyrolysis has attracted much attention. Many studies related to catalytic fast pyrolysis of biomass have been published. The main challenge of this process is the development of active and stable catalysts that can deal with a large variety of decomposition intermediates from lignocellulose. This review starts with the current understanding of the chemistry in fast pyrolysis of lignocellulose and focuses on the development of catalysts in catalytic fast pyrolysis. Recent progress in the experimental studies on catalytic fast pyrolysis of biomass is also summarized with the emphasis on bio-oil yields and quality. PMID:24801125
Fast String Search on Multicore Processors: Mapping fundamental algorithms onto parallel hardware
Scarpazza, Daniele P.; Villa, Oreste; Petrini, Fabrizio
2008-04-01
String searching is one of these basic algorithms. It has a host of applications, including search engines, network intrusion detection, virus scanners, spam filters, and DNA analysis, among others. The Cell processor, with its multiple cores, promises to speed-up string searching a lot. In this article, we show how we mapped string searching efficiently on the Cell. We present two implementations: • The fast implementation supports a small dictionary size (approximately 100 patterns) and provides a throughput of 40 Gbps, which is 100 times faster than reference implementations on x86 architectures. • The heavy-duty implementation is slower (3.3-4.3 Gbps), but supports dictionaries with tens of thousands of strings.
Licklider Transmission Protocol Implementation
NASA Technical Reports Server (NTRS)
Burleigh, Scott C.; Krupiarz, Chris
2011-01-01
This software is an implementation of the Licklider Transmission Protocol (LTP), a communications protocol intended to support the Bundle Protocol in Delay-Tolerant Network (DTN) operations. LTP is designed to provide retransmission-based reliability over links characterized by extremely long message round-trip times and/or frequent interruptions in connectivity. Communication in interplanetary space is the most prominent example of this sort of environment, and LTP is principally aimed at supporting long-haul reliable transmission over deep-space RF links. Like any reliable transport service employing ARQ (Automatic Repeat re-Quests), LTP is stateful. In order to assure the reception of a block of data it has sent, LTP must retain for possible retransmission all portions of that block which might not have been received yet. In order to do so, it must keep track of which portions of the block are known to have been received so far, and which are not, together with any additional information needed for purposes of retransmitting part, or all, of the block. Long round-trip times mean substantial delay between the transmission of a block of data and the reception of an acknowledgement from the block s destination, signaling arrival of the block. If LTP postponed transmission of additional blocks of data until it received acknowledgement of the arrival of all prior blocks, valuable opportunities to use what little deep space transmission bandwidth is available would be forever lost. For this reason, LTP is based in part on a notion of massive state retention. Any number of requested transmission conversations (sessions) may be concurrently in flight at various displacements along the link between two LTP engines, and the LTP engines must necessarily retain transmission status and retransmission resources for all of them. Moreover, if any of the data of a given block are lost en route, it will be necessary to retain the state of that transmission during an additional
Teleradiology: opportunities, problems, implementation.
Williams, O L; Singh, S K
1996-01-01
With the introduction of computerized tomography and magnetic resonance imaging in the early 1970s, computers became integral to the imaging process. Shortly thereafter, scanners that create digitized images from film were introduced and teleradiology--images transmitted in real time--became possible. In the early 1980s, the idea of a picture archiving and communications system (PACS) began to develop. It promised to retrieve, connect and store every kind of image, from x-ray to CT, and render film obsolete. However, inflated expectations and inadequate technology hindered PACS implementation. Digital imaging offers the following benefits over film-based systems: - Less space is needed to store imaging studies. - Digital imaging files can be faster and easier for referring physicians to retrieve than film and are not susceptible to loss and damage. - Digital images can be enhanced, contrasted, colored and otherwise manipulated to maximize available information. - There are no chemicals to dispose of. While telemedicine promises to increase the efficiency and effectiveness of medical professionals, wide-scale implementation faces the following obstacles: - It has been difficult to establish a uniform standard that allows file transfer among systems made by different vendors. - There are unresolved legal questions about "interstate" medical practice as it occurs in teleradiology and about standards of care and image quality. - Any system available on a network is vulnerable to unauthorized users who may invade the database or operation of the system, and it is very difficult to detect fraud--data that has been tampered with--in digital records. - Connections to remote locations depend on local telephone lines, which may be slow. Other options are available, but they may be too expensive for facilities in the rural areas that need them the most. - Digital imaging equipment is still very costly to acquire and install. The future of telemedicine rests now with those who
Navigator GPS Receiver for Fast Acquisition and Weak Signal Space Applications
NASA Technical Reports Server (NTRS)
Winternitz, Luke; Moreau, Michael; Boegner, Gregory J.; Sirotzky, Steve
2004-01-01
NASA Goddard Space Flight Center (GSFC) is developing a new space-borne GPS receiver that can operate effectively in the full range of Earth orbiting missions from Low Earth Orbit (LEO) to geostationary and beyond. Navigator is designed to be a fully space flight qualified GPS receiver optimized for fast signal acquisition and weak signal tracking. The fast acquisition capabilities provide exceptional time to first fix performance (TIFF) with no a priori receiver state or GPS almanac information, even in the presence of high Doppler shifts present in LEO (or near perigee in highly eccentric orbits). The fast acquisition capability also makes it feasible to implement extended correlation intervals and therefore significantly reduce Navigator s acquisition threshold. This greatly improves GPS observability when the receiver is above the GPS constellation (and satellites must be tracked from the opposite side of the Earth) by providing at least 10 dB of increased acquisition sensitivity. Fast acquisition and weak signal tracking algorithms have been implemented and validated on a hardware development board. A fully functional version of the receiver, employing most of the flight parts, with integrated navigation software is expected by mid 2005. An ultimate goal of this project is to license the Navigator design to an industry partner who will then market the receiver as a commercial product.
FastPros: screening of reaction knockout strategies for metabolic engineering
Ohno, Satoshi; Shimizu, Hiroshi; Furusawa, Chikara
2014-01-01
Motivation: Although constraint-based flux analysis of knockout strains has facilitated the production of desirable metabolites in microbes, current screening methods have placed a limitation on the number knockouts that can be simultaneously analyzed. Results: Here, we propose a novel screening method named FastPros. In this method, the potential of a given reaction knockout for production of a specific metabolite is evaluated by shadow pricing of the constraint in the flux balance analysis, which generates a screening score to obtain candidate knockout sets. To evaluate the performance of FastPros, we screened knockout sets to produce each metabolite in the entire Escherichia coli metabolic network. We found that 75% of these metabolites could be produced under biomass maximization conditions by adding up to 25 reaction knockouts. Furthermore, we demonstrated that using FastPros in tandem with another screening method, OptKnock, could further improve target metabolite productivity. Availability and implementation: Source code is freely available at http://www-shimizu.ist.osaka-u.ac.jp/shimizu_lab/FastPros/, implemented in MATLAB and COBRA toolbox. Contact: chikara.furusawa@riken.jp or shimizu@ist.osaka-u.ac.jp Supplementary information: Supplementary data are available at Bioinformatics online. PMID:24257186
Calculation of coupling to slow and fast waves in the LHRF from phased waveguide arrays
Pinsker, R.I.; Duvall, R.E.; Fortgang, C.M.; Colestock, P.L.
1986-04-01
A previously reported algorithm for solving the problem of coupling electromagnetic energy in the LHRF from a phased array of identical rectangular waveguides to a plane-stratified, magnetized cold plasma is numerically implemented. The resulting computer codes are sufficiently general to allow for an arbitrary number of waveguides with finite dimensions in both poloidal and toroidal directions, and are thus capable of computing coupling to both slow and fast waves in the plasma. Some of the details of the implementation and the extension of the algorithm to allow study of the Fourier spectrum of slow and fast waves launched by the array are discussed. Good agreement is found with previously reported, less general work for the slow wave launching case. The effect of phasing multirow arrays in the poloidal direction is studied, and an asymmetry between phasing 'up' and 'down' is found that persists in the case where the plasma adjacent to the array is uniform. A 4 x 3 array designed to launch fast waves of high phase velocity is studied. By using the optimal poloidal phasing, low reflection coefficients (absolute value of R/sup 2/ less than or equal to 20%) are found under some not unrealistic edge plasma conditions, but most of the input power is trapped in the outermost layer of the plasma. Implications of our results for fast wave current drive experiments are discussed.
Kovacs, Julio A; Wriggers, Willy
2016-08-25
We introduce a fast information matching (FIM) method for transforming time domain data into spatial images through handshaking between fast and slow degrees of freedom. The analytics takes advantage of the detailed time series available from biomolecular computer simulations, and it yields spatial heat maps that can be visualized on 3D molecular structures or in the form of interaction networks. The speed of our efficient mutual information solver is on the order of a basic Pearson cross-correlation calculation. We demonstrate that the FIM method is superior to linear cross-correlation for the detection of nonlinear dependence in challenging situations where measures for the global dynamics (the "activity") diverge. The analytics is applied to the detection of hinge-bending hot spots and to the prediction of pairwise contacts between residues that are relevant for the global activity exhibited by the molecular dynamics (MD) trajectories. Application examples from various MD laboratories include the millisecond bovine pancreatic trypsin inhibitor (BPTI) trajectory using canonical MD, a Gaussian accelerated MD folding trajectory of chignolin, and the heat-induced unfolding of engrailed homeodomain (EnHD). The FIM implementation will be freely disseminated with our open-source package, TimeScapes.
A VLSI pipeline design of a fast prime factor DFT on a finite field
NASA Technical Reports Server (NTRS)
Truong, T. K.; Hsu, I. S.; Shao, H. M.; Reed, I. S.; Shyu, H. C.
1986-01-01
A conventional prime factor discrete Fourier transform (DFT) algorithm is used to realize a discrete Fourier-like transform on the finite field, GF(q sub n). A pipeline structure is used to implement this prime factor DFT over GF(q sub n). This algorithm is developed to compute cyclic convolutions of complex numbers and to decode Reed-Solomon codes. Such a pipeline fast prime factor DFT algorithm over GF(q sub n) is regular, simple, expandable, and naturally suitable for VLSI implementation. An example illustrating the pipeline aspect of a 30-point transform over GF(q sub n) is presented.
Fast IIR isotropic 2-D complex Gabor filters with boundary initialization.
Bernardino, Alexandre; Santos-Victor, José
2006-11-01
Gabor filters are widely applied in image analysis and computer vision applications. This paper describes a fast algorithm for isotropic complex Gabor filtering that outperforms existing implementations. The main computational improvement arises from the decomposition of Gabor filtering into more efficient Gaussian filtering and sinusoidal modulations. Appropriate filter initial conditions are derived to avoid boundary transients, without requiring explicit image border extension. Our proposal reduces up to 39% the number of required operations with respect to state-of-the-art approaches. A full C++ implementation of the method is publicly available.
A reliable, fast and low cost maximum power point tracker for photovoltaic applications
Enrique, J.M.; Andujar, J.M.; Bohorquez, M.A.
2010-01-15
This work presents a new maximum power point tracker system for photovoltaic applications. The developed system is an analog version of the ''P and O-oriented'' algorithm. It maintains its main advantages: simplicity, reliability and easy practical implementation, and avoids its main disadvantages: inaccurateness and relatively slow response. Additionally, the developed system can be implemented in a practical way at a low cost, which means an added value. The system also shows an excellent behavior for very fast variables in incident radiation levels. (author)
Moore, Reagan W.; Studham, Ronald S.; Rajasekar, Arcot; Watson, Chip; Stockinger, Heinz; Kunszt, Peter; Charlie Catlett and Ian Foster
2002-02-27
Data grids link distributed, heterogeneous storage resources into a coherent data management system. From a user perspective, the data grid provides a uniform name space across the underlying storage systems, while supporting retrieval and storage of files. In the high energy physics community, at least six data grids have been implemented for the storage and distribution of experimental data. Data grids are also being used to support projects as diverse as digital libraries (National Library of Medicine Visible Embryo project), federation of multiple astronomy sky surveys (NSF National Virtual Observatory project), and integration of distributed data sets (Long Term Ecological Reserve). Data grids also form the core interoperability mechanisms for creating persistent archives, in which data collections are migrated to new technologies over time. The ability to provide a uniform name space across multiple administration domains is becoming a critical component of national-scale, collaborative projects.
Environmental Implementation Plan
Not Available
1993-03-15
The purpose of the Environmental Implementation Plan (EIP) is to show the current and future (five years) environmental plans from individual site organizations and divisions, as well as site environmental programs and initiatives which are designed to protect the environment and meet or exceed changing environmental/regulatory requirements. Communicating with site organizations, departments, and committees is essential in making the site's environmental-planning process work. The EIP gives the site the what, when, how, and why for environmental requirements. Through teamwork and proactive planning, a partnership for environmental excellence is formed to achieve the site vision for SRS to become the recognized model for Environmental Excellence in the Department of Energy's Nuclear Weapons Complex.
Environmental Implementation Plan
Not Available
1993-03-15
The purpose of the Environmental Implementation Plan (EIP) is to show the current and future (five years) environmental plans from individual site organizations and divisions, as well as site environmental programs and initiatives which are designed to protect the environment and meet or exceed changing environmental/regulatory requirements. Communicating with site organizations, departments, and committees is essential in making the site`s environmental-planning process work. The EIP gives the site the what, when, how, and why for environmental requirements. Through teamwork and proactive planning, a partnership for environmental excellence is formed to achieve the site vision for SRS to become the recognized model for Environmental Excellence in the Department of Energy`s Nuclear Weapons Complex.
A fast track path improves access to palliative care for people with learning disabilities.
Whitington, Jane; Ma, Peng
People with learning disabilities often experience inequalities in accessing general health services. This group, their families and carers need access to effective palliative care when facing a life limiting illness. This article describes the development and implementation of a fast track referral pathway for people with learning disabilities at St Francis Hospice in Essex. Our aim is to share this pathway so others can replicate the collaborative working to improve access to palliative care services for this group. PMID:20514883
PHYML Online—a web server for fast maximum likelihood-based phylogenetic inference
Guindon, Stéphane; Lethiec, Franck; Duroux, Patrice; Gascuel, Olivier
2005-01-01
PHYML Online is a web interface to PHYML, a software that implements a fast and accurate heuristic for estimating maximum likelihood phylogenies from DNA and protein sequences. This tool provides the user with a number of options, e.g. nonparametric bootstrap and estimation of various evolutionary parameters, in order to perform comprehensive phylogenetic analyses on large datasets in reasonable computing time. The server and its documentation are available at . PMID:15980534
A preliminary report on the development of MATLAB tensor classes for fast algorithm prototyping.
Bader, Brett William; Kolda, Tamara Gibson
2004-07-01
We describe three MATLAB classes for manipulating tensors in order to allow fast algorithm prototyping. A tensor is a multidimensional or N-way array. We present a tensor class for manipulating tensors which allows for tensor multiplication and 'matricization.' We have further added two classes for representing tensors in decomposed format: cp{_}tensor and tucker{_}tensor. We demonstrate the use of these classes by implementing several algorithms that have appeared in the literature.
Overcoming design challenges for a radiation-tolerant, radiation-hardened Fast Ethernet interface
NASA Astrophysics Data System (ADS)
Arrigo, Jeanette; Innocenti, Gino; Carpenter, Bryce; Esper, Jaime
10 Mbps Ethernet communication has been available for Space applications for several years, however this has not been the case for Fast Ethernet (i.e. 100basetx) operating at 100 Mbps. A 100basetx interface has been developed using radiation tolerant components that can be replaced with radiation hardened components. This implementation can operate at the input baud rate allowing for a wider component selection.
NASA Technical Reports Server (NTRS)
Powers, E. J.; Kim, Y. C.; Hong, J. Y.; Roth, J. R.; Krawczonek, W. M.
1978-01-01
A diagnostic, based on fast Fourier-transform spectral analysis techniques, that provides experimental insight into the relationship between the experimentally observable spectral characteristics of the fluctuations and the fluctuation-induced plasma transport is described. The model upon which the diagnostic technique is based and its experimental implementation is discussed. Some characteristic results obtained during the course of an experimental study of fluctuation-induced transport in the electric field dominated NASA Lewis bumpy torus plasma are presented.
An efficient scheme for sampling fast dynamics at a low average data acquisition rate.
Philippe, A; Aime, S; Roger, V; Jelinek, R; Prévot, G; Berthier, L; Cipelletti, L
2016-02-24
We introduce a temporal scheme for data sampling, based on a variable delay between two successive data acquisitions. The scheme is designed so as to reduce the average data flow rate, while still retaining the information on the data evolution on fast time scales. The practical implementation of the scheme is discussed and demonstrated in light scattering and microscopy experiments that probe the dynamics of colloidal suspensions using CMOS or CCD cameras as detectors.
PHYML Online--a web server for fast maximum likelihood-based phylogenetic inference.
Guindon, Stéphane; Lethiec, Franck; Duroux, Patrice; Gascuel, Olivier
2005-07-01
PHYML Online is a web interface to PHYML, a software that implements a fast and accurate heuristic for estimating maximum likelihood phylogenies from DNA and protein sequences. This tool provides the user with a number of options, e.g. nonparametric bootstrap and estimation of various evolutionary parameters, in order to perform comprehensive phylogenetic analyses on large datasets in reasonable computing time. The server and its documentation are available at http://atgc.lirmm.fr/phyml.
Grid Oriented Implementation of the Tephra Model
NASA Astrophysics Data System (ADS)
Coltelli, M.; D'Agostino, M.; Drago, A.; Pistagna, F.; Prestifilippo, M.; Reitano, D.; Scollo, S.; Spata, G.
2009-04-01
TEPHRA is a two dimensional advection-diffusion model implemented by Bonadonna et al. [2005] that describes the sedimentation process of particles from volcanic plumes. The model is used by INGV - Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Catania, to forecast tephra dispersion during Etna volcanic events. Every day weather forecast provided by the Italian Air Force Meteorological Office in Rome and by the hydrometeorological service of ARPA in Emilia Romagna are processed by TEPHRA model with other volcanological parameters to simulate two different eruptive scenarios of Mt. Etna (corresponding to 1998 and 2002-03 Etna eruptions). The model outputs are plotted on maps and transferred to Civil Protection which takes the trouble to give public warnings and plan mitigation measures. The TEPHRA model is implemented in ANSI-C code using MPI commands to maximize parallel computation. Actually the model runs on an INGV Beowulf cluster. In order to provide better performances we worked on porting it to PI2S2 sicilian grid infrastructure inside the "PI2S2 Project" (2006-2008). We configured the application to run on grid, using Glite middleware, analyzed the obtained performances and comparing them with ones obtained on the local cluster. As TEPHRA needs to be run in a short time in order to transfer fastly the dispersion maps to Civil Protection, we also worked to minimize and stabilize grid job-scheduling time by using customized high-priority queues called Emergency Queue.
Dynamic Implementation Seeking Equilibrium Model.
ERIC Educational Resources Information Center
Riboldi, Pablo Jose
Implementing exportable instructional systems has always been a problem for instructional developers. Even the best instructional systems lose effectiveness when they are poorly implemented. Researchers have focused their efforts on creating mechanisms to help developers and managers improve and control implementation. However, most of these…
RYUTOV,D.D.; DERZON,MARK S.; MATZEN,M. KEITH
1999-10-25
The spectacular progress made during the last few years in reaching high energy densities in fast implosions of annular current sheaths (fast Z pinches) opens new possibilities for a broad spectrum of experiments, from x-ray generation to controlled thermonuclear fusion and astrophysics. Presently Z pinches are the most intense laboratory X ray sources (1.8 MJ in 5 ns from a volume 2 mm in diameter and 2 cm tall). Powers in excess of 200 TW have been obtained. This warrants summarizing the present knowledge of physics that governs the behavior of radiating current-carrying plasma in fast Z pinches. This survey covers essentially all aspects of the physics of fast Z pinches: initiation, instabilities of the early stage, magnetic Rayleigh-Taylor instability in the implosion phase, formation of a transient quasi-equilibrium near the stagnation point, and rebound. Considerable attention is paid to the analysis of hydrodynamic instabilities governing the implosion symmetry. Possible ways of mitigating these instabilities are discussed. Non-magnetohydrodynamic effects (anomalous resistivity, generation of particle beams, etc.) are summarized. Various applications of fast Z pinches are briefly described. Scaling laws governing development of more powerful Z pinches are presented. The survey contains 36 figures and more than 300 references.
Ryutov, D.D.; Derzon, M.S.; Matzen, M.K.
1998-07-01
The spectacular progress made during the last few years in reaching high energy densities in fast implosions of annular current sheaths (fast Z pinches) opens new possibilities for a broad spectrum of experiments, from x-ray generation to controlled thermonuclear fusion and astrophysics. Presently Z pinches are the most intense laboratory X ray sources (1.8 MJ in 5 ns from a volume 2 mm in diameter and 2 cm tall). Powers in excess of 200 TW have been obtained. This warrants summarizes the present knowledge of physics that governs the behavior of radiating current-carrying plasma in fast Z-pinches. This survey covers essentially all aspects of the physics of fast Z pinches: initiation, instabilities of the early stage, magnetic Rayleigh-Taylor instability in the implosion phase, formation of a transient quasi-equilibrium near the stagnation point, and rebound. Considerable attention is paid to the analysis of hydrodynamic instabilities governing the implosion symmetry. Possible ways of mitigating these instabilities are discussed. Non-magnetohydrodynamic effects (anomalous resistivity, generation of particle beams, etc.) are summarized. Various applications of fast Z pinches are briefly described. Scaling laws governing development of more powerful Z pinches are presented. The survey contains 52 figures and nearly 300 references.
Subwavelength nanobrush target to collimate fast electrons
NASA Astrophysics Data System (ADS)
Zhao, Zongqing; Cao, Lihua; Cao, Leifeng; Zhou, Weimin; Wu, Yuchi; Zhu, Bin; Dong, Kegong; Zhang, Baohan; Ding, Yongkun; Gu, Yuqiu
2011-10-01
A subwavelength nanobrush target was proposed to collimate fast electrons in laser plasma interaction, which consists of a 5 μm copper underlay covered with a 20 μm thick layer of metallic fibers. The diameter of the individual fibers is about 200 nm and the spacing between them is about 150 nm. The experiment was hold at SILEX-I laser facility (10 J, 31 fs, 300 TW). When a subwavelength nanobrush target interacts with ultraintense laser of 7.9*1018/cm2, highly collimated fast electron beam with divergence angle nearly zero whereas the divergence of the plane target is 40 degree. Two-dimensional particle-in-cell (PIC) simulations show that the fast electrons will be accelerated and guided by strong transient electromagnetic fields created at the wall surfaces of nanobrushs. Both experiment and simulation show that the subwavelength nanobrush target can indeed generate fast electrons more efficiency and collimate them. The scheme should be useful for fast ignition and K α source research in inertial confinement fusion.
Large Deviations in Fast-Slow Systems
NASA Astrophysics Data System (ADS)
Bouchet, Freddy; Grafke, Tobias; Tangarife, Tomás; Vanden-Eijnden, Eric
2016-02-01
The incidence of rare events in fast-slow systems is investigated via analysis of the large deviation principle (LDP) that characterizes the likelihood and pathway of large fluctuations of the slow variables away from their mean behavior—such fluctuations are rare on short time-scales but become ubiquitous eventually. Classical results prove that this LDP involves an Hamilton-Jacobi equation whose Hamiltonian is related to the leading eigenvalue of the generator of the fast process, and is typically non-quadratic in the momenta—in other words, the LDP for the slow variables in fast-slow systems is different in general from that of any stochastic differential equation (SDE) one would write for the slow variables alone. It is shown here that the eigenvalue problem for the Hamiltonian can be reduced to a simpler algebraic equation for this Hamiltonian for a specific class of systems in which the fast variables satisfy a linear equation whose coefficients depend nonlinearly on the slow variables, and the fast variables enter quadratically the equation for the slow variables. These results are illustrated via examples, inspired by kinetic theories of turbulent flows and plasma, in which the quasipotential characterizing the long time behavior of the system is calculated and shown again to be different from that of an SDE.
Processing of fast speech by elderly listeners.
Janse, Esther
2009-04-01
This study investigates the relative contributions of auditory and cognitive factors to the common finding that an increase in speech rate affects elderly listeners more than young listeners. Since a direct relation between non-auditory factors, such as age-related cognitive slowing, and fast speech performance has been difficult to demonstrate, the present study took an on-line, rather than off-line, approach and focused on processing time. Elderly and young listeners were presented with speech at two rates of time compression and were asked to detect pre-assigned target words as quickly as possible. A number of auditory and cognitive measures were entered in a statistical model as predictors of elderly participants' fast speech performance: hearing acuity, an information processing rate measure, and two measures of reading speed. The results showed that hearing loss played a primary role in explaining elderly listeners' increased difficulty with fast speech. However, non-auditory factors such as reading speed and the extent to which participants were affected by increased rate of presentation in a visual analog of the listening experiment also predicted fast speech performance differences among the elderly participants. These on-line results confirm that slowed information processing is indeed part of elderly listeners' problem keeping up with fast language.
A simple implementation of the Viterbi algorithm on the Motorola DSP56001
NASA Technical Reports Server (NTRS)
Messer, Dion D.; Park, Sangil
1990-01-01
As systems designers design communication systems with digital rather than analog components to reduce noise and increase channel capacity, they must have the ability to perform traditional communication algorithms digitally. The use of trellis coded modulation as well as the extensive use of convolutional encoding for error detection and correction requires an efficient digital implementation of the Viterbi Algorithm for real time demodulation and decoding. Digital signal processors are now fast enough to implement Viterbi decoding in conjunction with the normal receiver/transmitter functions for lower speed channels on a single chip as well as performing fast decoding for higher speed channels, if the algorithm is implemented efficiently. The purpose of this paper is to identify a good way to implement the Viterbi Algorithm (VA) on the Motorola DSP56001, balancing performance considerations with speed and memory efficiency.
A Fast Visible Camera Divertor-Imaging Diagnostic on DIII-D
Roquemore, A; Maingi, R; Lasnier, C; Nishino, N; Evans, T; Fenstermacher, M; Nagy, A
2007-06-19
In recent campaigns, the Photron Ultima SE fast framing camera has proven to be a powerful diagnostic when applied to imaging divertor phenomena on the National Spherical Torus Experiment (NSTX). Active areas of NSTX divertor research addressed with the fast camera include identification of types of EDGE Localized Modes (ELMs)[1], dust migration, impurity behavior and a number of phenomena related to turbulence. To compare such edge and divertor phenomena in low and high aspect ratio plasmas, a multi-institutional collaboration was developed for fast visible imaging on NSTX and DIII-D. More specifically, the collaboration was proposed to compare the NSTX small type V ELM regime [2] and the residual ELMs observed during Type I ELM suppression with external magnetic perturbations on DIII-D[3]. As part of the collaboration effort, the Photron camera was installed recently on DIII-D with a tangential view similar to the view implemented on NSTX, enabling a direct comparison between the two machines. The rapid implementation was facilitated by utilization of the existing optics that coupled the visible spectral output from the divertor vacuum ultraviolet UVTV system, which has a view similar to the view developed for the divertor tangential TV camera [4]. A remote controlled filter wheel was implemented, as was the radiation shield required for the DIII-D installation. The installation and initial operation of the camera are described in this paper, and the first images from the DIII-D divertor are presented.
NASA Technical Reports Server (NTRS)
Chew, W. C.; Song, J. M.; Lu, C. C.; Weedon, W. H.
1995-01-01
In the first phase of our work, we have concentrated on laying the foundation to develop fast algorithms, including the use of recursive structure like the recursive aggregate interaction matrix algorithm (RAIMA), the nested equivalence principle algorithm (NEPAL), the ray-propagation fast multipole algorithm (RPFMA), and the multi-level fast multipole algorithm (MLFMA). We have also investigated the use of curvilinear patches to build a basic method of moments code where these acceleration techniques can be used later. In the second phase, which is mainly reported on here, we have concentrated on implementing three-dimensional NEPAL on a massively parallel machine, the Connection Machine CM-5, and have been able to obtain some 3D scattering results. In order to understand the parallelization of codes on the Connection Machine, we have also studied the parallelization of 3D finite-difference time-domain (FDTD) code with PML material absorbing boundary condition (ABC). We found that simple algorithms like the FDTD with material ABC can be parallelized very well allowing us to solve within a minute a problem of over a million nodes. In addition, we have studied the use of the fast multipole method and the ray-propagation fast multipole algorithm to expedite matrix-vector multiplication in a conjugate-gradient solution to integral equations of scattering. We find that these methods are faster than LU decomposition for one incident angle, but are slower than LU decomposition when many incident angles are needed as in the monostatic RCS calculations.
ERIC Educational Resources Information Center
Bashir, Sajitha
2009-01-01
This article examines the contribution of the Education for All-Fast Track Initiative (EFA-FTI) global partnership in strengthening aid effectiveness in the education sector, and specifically how the implementation modalities of the EFA-FTI Catalytic Fund (CF) have contributed to this strengthening. The empirical findings are based on a review…
48 CFR 52.213-1 - Fast Payment Procedure.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 48 Federal Acquisition Regulations System 2 2012-10-01 2012-10-01 false Fast Payment Procedure. 52....213-1 Fast Payment Procedure. As prescribed in 13.404, insert the following clause: Fast Payment... contract, order, or blanket purchase agreement; and (ii) Display prominently on the invoice “FAST...
48 CFR 52.213-1 - Fast Payment Procedure.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 48 Federal Acquisition Regulations System 2 2013-10-01 2013-10-01 false Fast Payment Procedure. 52....213-1 Fast Payment Procedure. As prescribed in 13.404, insert the following clause: Fast Payment... contract, order, or blanket purchase agreement; and (ii) Display prominently on the invoice “FAST...
48 CFR 52.213-1 - Fast Payment Procedure.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 48 Federal Acquisition Regulations System 2 2010-10-01 2010-10-01 false Fast Payment Procedure. 52....213-1 Fast Payment Procedure. As prescribed in 13.404, insert the following clause: Fast Payment... contract, order, or blanket purchase agreement; and (ii) Display prominently on the invoice “FAST...
48 CFR 52.213-1 - Fast Payment Procedure.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 48 Federal Acquisition Regulations System 2 2011-10-01 2011-10-01 false Fast Payment Procedure. 52....213-1 Fast Payment Procedure. As prescribed in 13.404, insert the following clause: Fast Payment... contract, order, or blanket purchase agreement; and (ii) Display prominently on the invoice “FAST...
48 CFR 52.213-1 - Fast Payment Procedure.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 48 Federal Acquisition Regulations System 2 2014-10-01 2014-10-01 false Fast Payment Procedure. 52....213-1 Fast Payment Procedure. As prescribed in 13.404, insert the following clause: Fast Payment... contract, order, or blanket purchase agreement; and (ii) Display prominently on the invoice “FAST...
Slow and fast light switching in ruby
NASA Astrophysics Data System (ADS)
Rajan, Rajitha P.; Riesen, Hans
2015-05-01
Studies about light propagation have been undertaken for more than a century. It is now well established that any material that has normal or anomalous dispersion generates slow or fast light. In this paper, we demonstrate an experimental technique to rapidly switch between slow and fast light in ruby. The experiment utilizes transient holeburning to create drastic variation in refractive index of ruby to produce slow as well as fast light. Transient hole-burning involves the depletion of the ground state leading to a highly populated excited state by single frequency laser excitation. This leads to a hole in the absorption spectrum when readout by a laser. We observed a delay of 29 ns and advancement of -11 ns in an external magnetic field of B║c = 12 mT corresponding to a group velocity of c/961 and negative group velocity of -c/365 respectively.
A fast tool for minimum hybridization networks
2012-01-01
Background Due to hybridization events in evolution, studying two different genes of a set of species may yield two related but different phylogenetic trees for the set of species. In this case, we want to combine the two phylogenetic trees into a hybridization network with the fewest hybridization events. This leads to three computational problems, namely, the problem of computing the minimum size of a hybridization network, the problem of constructing one minimum hybridization network, and the problem of enumerating a representative set of minimum hybridization networks. The previously best software tools for these problems (namely, Chen and Wang’s HybridNet and Albrecht et al.’s Dendroscope 3) run very slowly for large instances that cannot be reduced to relatively small instances. Indeed, when the minimum size of a hybridization network of two given trees is larger than 23 and the problem for the trees cannot be reduced to relatively smaller independent subproblems, then HybridNet almost always takes longer than 1 day and Dendroscope 3 often fails to complete. Thus, a faster software tool for the problems is in need. Results We develop a software tool in ANSI C, named FastHN, for the following problems: Computing the minimum size of a hybridization network, constructing one minimum hybridization network, and enumerating a representative set of minimum hybridization networks. We obtain FastHN by refining HybridNet with three ideas. The first idea is to preprocess the input trees so that the trees become smaller or the problem becomes to solve two or more relatively smaller independent subproblems. The second idea is to use a fast algorithm for computing the rSPR distance of two given phylognetic trees to cut more branches of the search tree in the exhaustive-search stage of the algorithm. The third idea is that during the exhaustive-search stage of the algorithm, we find two sibling leaves in one of the two forests (obtained from the given trees by cutting
Single-beam heterodyne FAST CARS microscopy.
Shen, Yujie; Voronine, Dmitri V; Sokolov, Alexei V; Scully, Marlan O
2016-09-19
We demonstrate, for the first time, single-beam heterodyne FAST CARS imaging without data post-processing and with nonresonant background subtraction in a simple setup via the real-time piezo modulation of the probe delay. Our fast signal acquisition scheme does not require a spatial light modulator in the pulse shaper, and is suitable for high-resolution imaging and time-resolved dynamics. In addition, the spectral detection of the back-scattered FAST CARS signal is incorporated into the pulse shaper, allowing for a compact and more efficient design. Such epi-detection capability is demonstrated by imaging Si and MoS_{2} microstructures. PMID:27661903
Fast Intersection Algorithms for Sorted Sequences
NASA Astrophysics Data System (ADS)
Baeza-Yates, Ricardo; Salinger, Alejandro
This paper presents and analyzes a simple intersection algorithm for sorted sequences that is fast on average. It is related to the multiple searching problem and to merging. We present the worst and average case analysis, showing that in the former, the complexity nicely adapts to the smallest list size. In the latter case, it performs less comparisons than the total number of elements on both inputs, n and m, when n = αm (α> 1), achieving O(m log(n/m)) complexity. The algorithm is motivated by its application to fast query processing in Web search engines, where large intersections, or differences, must be performed fast. In this case we experimentally show that the algorithm is faster than previous solutions.
Zhang, Y. P.; Liu, Yi; Song, X. Y.; Yuan, G. L.; Chen, W.; Ji, X. Q.; Ding, X. T.; Yang, J. W.; Zhou, J.; Li, X.; Yang, Q. W.; Duan, X. R.; Pan, C. H.; Liu, Y.
2010-10-15
A fast electron bremsstrahlung (FEB) diagnostic technique based on cadmium telluride (CdTe) detector has been developed recently in the HL-2A tokamak for measurements of the temporal evolution of FEB emission in the energy range of 10-200 keV. With a perpendicular viewing into the plasma on the equatorial plane, the hard x-ray spectra with eight different energy channels are measured. The discrimination of the spectra is implemented by an accurate spectrometry. The system also makes use of fast digitization and software signal processing technology. An ambient environment of neutrons, gammas, and magnetic disturbance requires careful shielding. During electron cyclotron resonance heating, the generation of fast electrons and the oscillations of electron fishbone (e-fishbone) have been found. Using the FEB measurement system, it has been experimentally identified that the mode strongly correlates with the electron cyclotron resonance heating produced fast electrons with 30-70 keV.
Graça, Flávia A; Gonçalves, Dawit A P; Silveira, Wilian A; Lira, Eduardo C; Chaves, Valéria Ernestânia; Zanon, Neusa M; Garófalo, Maria Antonieta R; Kettelhut, Isis C; Navegantes, Luiz C C
2013-12-01
The physiological role of epinephrine in the regulation of skeletal muscle protein metabolism under fasting is unknown. We examined the effects of plasma epinephrine depletion, induced by adrenodemedullation (ADMX), on muscle protein metabolism in fed and 2-day-fasted rats. In fed rats, ADMX for 10 days reduced muscle mass, the cross-sectional area of extensor digitorum longus (EDL) muscle fibers, and the phosphorylation levels of Akt. In addition, ADMX led to a compensatory increase in muscle sympathetic activity, as estimated by the rate of norepinephrine turnover; this increase was accompanied by high rates of muscle protein synthesis. In fasted rats, ADMX exacerbated fasting-induced proteolysis in EDL but did not affect the low rates of protein synthesis. Accordingly, ADMX activated lysosomal proteolysis and further increased the activity of the ubiquitin (Ub)-proteasome system (UPS). Moreover, expression of the atrophy-related Ub ligases atrogin-1 and MuRF1 and the autophagy-related genes LC3b and GABARAPl1 were upregulated in EDL muscles from ADMX-fasted rats compared with sham-fasted rats, and ADMX reduced cAMP levels and increased fasting-induced Akt dephosphorylation. Unlike that observed for EDL muscles, soleus muscle proteolysis and Akt phosphorylation levels were not affected by ADMX. In isolated EDL, epinephrine reduced the basal UPS activity and suppressed overall proteolysis and atrogin-1 and MuRF1 induction following fasting. These data suggest that epinephrine released from the adrenal medulla inhibits fasting-induced protein breakdown in fast-twitch skeletal muscles, and these antiproteolytic effects on the UPS and lysosomal system are apparently mediated through a cAMP-Akt-dependent pathway, which suppresses ubiquitination and autophagy.
NASA Technical Reports Server (NTRS)
Johnston, William E.; Ziobarth, John (Technical Monitor)
2002-01-01
We have presented the essence of experience gained in building two production Grids, and provided some of the global context for this work. As the reader might imagine, there were a lot of false starts, refinements to the approaches and to the software, and several substantial integration projects (SRB and Condor integrated with Globus) to get where we are today. However, the point of this paper is to try and make it substantially easier for others to get to the point where Information Power Grids (IPG) and the DOE Science Grids are today. This is what is needed in order to move us toward the vision of a common cyber infrastructure for science. The author would also like to remind the readers that this paper primarily represents the actual experiences that resulted from specific architectural and software choices during the design and implementation of these two Grids. The choices made were dictated by the criteria laid out in section 1. There is a lot more Grid software available today that there was four years ago, and various of these packages are being integrated into IPG and the DOE Grids. However, the foundation choices of Globus, SRB, and Condor would not be significantly different today than they were four years ago. Nonetheless, if the GGF is successful in its work - and we have every reason to believe that it will be - then in a few years we will see that the 28 functions provided by these packages will be defined in terms of protocols and MIS, and there will be several robust implementations available for each of the basic components, especially the Grid Common Services. The impact of the emerging Web Grid Services work is not yet clear. It will likely have a substantial impact on building higher level services, however it is the opinion of the author that this will in no way obviate the need for the Grid Common Services. These are the foundation of Grids, and the focus of almost all of the operational and persistent infrastructure aspects of Grids.
Closing nuclear fuel cycle with fast reactors: problems and prospects
Shadrin, A.; Dvoeglazov, K.; Ivanov, V.
2013-07-01
The closed nuclear fuel cycle (CNFC) with fast reactors (FR) is the most promising way of nuclear energetics development because it prevents spent nuclear fuel (SNF) accumulation and minimizes radwaste volume due to minor actinides (MA) transmutation. CNFC with FR requires the elaboration of safety, environmentally acceptable and economically effective methods of treatment of SNF with high burn-up and low cooling time. The up-to-date industrially implemented SNF reprocessing technologies based on hydrometallurgical methods are not suitable for the reprocessing of SNF with high burn-up and low cooling time. The alternative dry methods (such as electrorefining in molten salts or fluoride technologies) applicable for such SNF reprocessing have not found implementation at industrial scale. So the cost of SNF reprocessing by means of dry technologies can hardly be estimated. Another problem of dry technologies is the recovery of fissionable materials pure enough for dense fuel fabrication. A combination of technical solutions performed with hydrometallurgical and dry technologies (pyro-technology) is proposed and it appears to be a promising way for the elaboration of economically, ecologically and socially accepted technology of FR SNF management. This paper deals with discussion of main principle of dry and aqueous operations combination that probably would provide safety and economic efficiency of the FR SNF reprocessing. (authors)
Real-time lucky imaging in FastCam project
NASA Astrophysics Data System (ADS)
Rodríguez Ramos, L. F.; Piqueras Meseguer, J. J.; Martin Hernando, Y.; Oscoz, A.; Rebolo, R.
2008-07-01
Lucky imaging techniques implemented by the FastCam group (see http://www.iac.es/proyecto/fastcam/) at the Instituto de Astrofisica de Canarias have demonstrated its ability to obtain spectacular diffraction limited images in telescopes ranging from 1 to 4.2 m in visible wavelengths (mainly in the I band), at the expense of using only a small percentage of the available images. This work presents the development of a real-time processor, FPGA-based, capable of performing all the required processing involved in the lucky imaging technique: Bias and flat-field correction, quality evaluation of images, quality threshold for image selection, image recentering and accumulation, and finally sending through Gigabit Ethernet both raw and processed images to a PC computer. Furthermore, a real time display is generated directly from FPGA showing both types of images, plus a histogram of the computed quality values and the threshold used. All processes can co-exist physically located in separated places inside the FPGA, using its natural parallel approach, and can easily handle the 512x512 pixels at 30 fps found at the sensor camera output (an Andor Ixon+ DU-897ECSO EMCCD). Flexibility and parallel processing features of the reconfigurable logic have been used to implement a novel imaging strategy for segmented-mirror telescopes, allowing separate evaluation of every segment and posterior accumulation to achieve the resolution limit of a single segment with the integration capability of the full primary mirror.
Fast Fourier Transform algorithm design and tradeoffs
NASA Technical Reports Server (NTRS)
Kamin, Ray A., III; Adams, George B., III
1988-01-01
The Fast Fourier Transform (FFT) is a mainstay of certain numerical techniques for solving fluid dynamics problems. The Connection Machine CM-2 is the target for an investigation into the design of multidimensional Single Instruction Stream/Multiple Data (SIMD) parallel FFT algorithms for high performance. Critical algorithm design issues are discussed, necessary machine performance measurements are identified and made, and the performance of the developed FFT programs are measured. Fast Fourier Transform programs are compared to the currently best Cray-2 FFT program.
A fast chopper for medium energy beams
NASA Astrophysics Data System (ADS)
Madrak, R.; Wildman, D.
2014-10-01
The key elements have been constructed for a fast chopper system capable of removing single 2.5 MeV proton bunches spaced at 325 MHz. The average chopping rate is ~ 1 MHz. The components include a pulse delaying microstrip structure for deflecting the beam, high voltage (1.2 kV) fast (ns rise time) pulsers, and an associated wideband combiner. Various designs for the deflecting structures have been studied. Measurements of the microstrip structures' coverage factors and pulse shapes are presented.
Fast Fluorescence Microscopy with Light Sheets.
Daetwyler, Stephan; Huisken, Jan
2016-08-01
In light sheet microscopy, optical sectioning by selective fluorescence excitation with a sheet of light is combined with fast full-frame acquisition. This illumination scheme provides minimal photobleaching and phototoxicity. Complemented with remote focusing and multi-view acquisition, light sheet microscopy is the method of choice for acquisition of very fast biological processes, large samples, and high-throughput applications in areas such as neuroscience, plant biology, and developmental biology. This review explains why light sheet microscopes are much faster and gentler than other established fluorescence microscopy techniques. New volumetric imaging schemes and highlights of selected biological applications are also discussed. PMID:27638692
Uncertainty Propagation with Fast Monte Carlo Techniques
NASA Astrophysics Data System (ADS)
Rochman, D.; van der Marck, S. C.; Koning, A. J.; Sjöstrand, H.; Zwermann, W.
2014-04-01
Two new and faster Monte Carlo methods for the propagation of nuclear data uncertainties in Monte Carlo nuclear simulations are presented (the "Fast TMC" and "Fast GRS" methods). They are addressing the main drawback of the original Total Monte Carlo method (TMC), namely the necessary large time multiplication factor compared to a single calculation. With these new methods, Monte Carlo simulations can now be accompanied with uncertainty propagation (other than statistical), with small additional calculation time. The new methods are presented and compared with the TMC methods for criticality benchmarks.
FOMA: A Fast Optical Multichannel Analyzer
NASA Astrophysics Data System (ADS)
Haskovec, J. S.; Bramson, G.; Brooks, N. H.; Perry, M.
1989-12-01
A Fast Optical Multichannel Analyzer (FOMA) was built for spectroscopic measurements with fast time resolution on the DIII-D tokamak. The FOMA utilizes a linear photodiode array (RETICON RL 1024 SA) as the detector sensor. An external recharge switch and ultrafast operational amplifiers permit a readout time per pixel of 300 ns. In conjunction with standard CAMAC digitizer and timing modules, a readout time of 500 microns is achieved for the full 1024-element array. Data acquired in bench tests and in actual spectroscopic measurements on the DIII-D tokamak is presented to illustrate the camera's capability.
Fast Neutral Pressure Measurements in NSTX
R. Raman; H.W. Kugel; T. Provost; R. Gernhardt; T.R. Jarboe; M.G. Bell
2002-08-06
Several fast neutral pressure gauges have been installed on NSTX [National Spherical Torus Experiment] to measure the vessel and divertor pressure during inductive and coaxial helicity injected (CHI) plasma operations. Modified, PDX [Poloidal Divertor Experiment]-type Penning gauges have been installed on the upper and lower divertors. Neutral pressure measurements during plasma operations from these and from two shielded fast Micro ion gauges at different toroidal locations on the vessel mid-plane are described. A new unshielded ion gauge, referred to as the In-vessel Neutral Pressure (INP) gauge is under development.
A fast chopper for medium energy beams
Madrak, R.; Wildman, D.
2014-10-30
The key elements have been constructed for a fast chopper system capable of removing single 2.5 MeV proton bunches spaced at 325 MHz. The average chopping rate is ~ 1 MHz. The components include a pulse delaying microstrip structure for deflecting the beam, high voltage (1.2 kV) fast (ns rise time) pulsers, and an associated wideband combiner. Various designs for the deflecting structures have been studied. Measurements of the microstrip structures' coverage factors and pulse shapes are presented.