Sample records for fast wave devices

  1. Power selective optical filter devices and optical systems using same

    DOEpatents

    Koplow, Jeffrey P

    2014-10-07

    In an embodiment, a power selective optical filter device includes an input polarizer for selectively transmitting an input signal. The device includes a wave-plate structure positioned to receive the input signal, which includes at least one substantially zero-order, zero-wave plate. The zero-order, zero-wave plate is configured to alter a polarization state of the input signal passing in a manner that depends on the power of the input signal. The zero-order, zero-wave plate includes an entry and exit wave plate each having a fast axis, with the fast axes oriented substantially perpendicular to each other. Each entry wave plate is oriented relative to a transmission axis of the input polarizer at a respective angle. An output polarizer is positioned to receive a signal output from the wave-plate structure and selectively transmits the signal based on the polarization state.

  2. Wave-plate structures, power selective optical filter devices, and optical systems using same

    DOEpatents

    Koplow, Jeffrey P [San Ramon, CA

    2012-07-03

    In an embodiment, an optical filter device includes an input polarizer for selectively transmitting an input signal. The device includes a wave-plate structure positioned to receive the input signal, which includes first and second substantially zero-order, zero-wave plates arranged in series with and oriented at an angle relative to each other. The first and second zero-wave plates are configured to alter a polarization state of the input signal passing in a manner that depends on the power of the input signal. Each zero-wave plate includes an entry and exit wave plate each having a fast axis, with the fast axes oriented substantially perpendicular to each other. Each entry wave plate is oriented relative to a transmission axis of the input polarizer at a respective angle. An output polarizer is positioned to receive a signal output from the wave-plate structure and selectively transmits the signal based on the polarization state.

  3. Advanced computational simulations of water waves interacting with wave energy converters

    NASA Astrophysics Data System (ADS)

    Pathak, Ashish; Freniere, Cole; Raessi, Mehdi

    2017-03-01

    Wave energy converter (WEC) devices harness the renewable ocean wave energy and convert it into useful forms of energy, e.g. mechanical or electrical. This paper presents an advanced 3D computational framework to study the interaction between water waves and WEC devices. The computational tool solves the full Navier-Stokes equations and considers all important effects impacting the device performance. To enable large-scale simulations in fast turnaround times, the computational solver was developed in an MPI parallel framework. A fast multigrid preconditioned solver is introduced to solve the computationally expensive pressure Poisson equation. The computational solver was applied to two surface-piercing WEC geometries: bottom-hinged cylinder and flap. Their numerically simulated response was validated against experimental data. Additional simulations were conducted to investigate the applicability of Froude scaling in predicting full-scale WEC response from the model experiments.

  4. Experiment to investigate current drive by fast Alfven waves in a small tokamak

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gahl, J.; Ishihara, O.; Wong, K.

    1985-07-01

    An experiment has been carried out to study current generation by Doppler shifted cyclotron resonance heating of minority ions with a unidirectional wave in the small tokamak at Texas Tech University. One of the objectives of the experiment is to understand in detail the wave-particle interactions through which fast (compressional) Alfven waves in the ion cyclotron range of frequencies drive currents in toroidal devices.

  5. Traveling-Wave Tubes

    NASA Technical Reports Server (NTRS)

    Kory, Carol L.

    1998-01-01

    The traveling-wave tube (TWT) is a vacuum device invented in the early 1940's used for amplification at microwave frequencies. Amplification is attained by surrendering kinetic energy from an electron beam to a radio frequency (RF) electromagnetic wave. The demand for vacuum devices has been decreased largely by the advent of solid-state devices. However, although solid state devices have replaced vacuum devices in many areas, there are still many applications such as radar, electronic countermeasures and satellite communications, that require operating characteristics such as high power (Watts to Megawatts), high frequency (below 1 GHz to over 100 GHz) and large bandwidth that only vacuum devices can provide. Vacuum devices are also deemed irreplaceable in the music industry where musicians treasure their tube-based amplifiers claiming that the solid-state and digital counterparts could never provide the same "warmth" (3). The term traveling-wave tube includes both fast-wave and slow-wave devices. This article will concentrate on slow-wave devices as the vast majority of TWTs in operation fall into this category.

  6. Exploration of high harmonic fast wave heating on the National Spherical Torus Experiment

    NASA Astrophysics Data System (ADS)

    Wilson, J. R.; Bell, R. E.; Bernabei, S.; Bitter, M.; Bonoli, P.; Gates, D.; Hosea, J.; LeBlanc, B.; Mau, T. K.; Medley, S.; Menard, J.; Mueller, D.; Ono, M.; Phillips, C. K.; Pinsker, R. I.; Raman, R.; Rosenberg, A.; Ryan, P.; Sabbagh, S.; Stutman, D.; Swain, D.; Takase, Y.; Wilgen, J.

    2003-05-01

    High harmonic fast wave (HHFW) heating has been proposed as a particularly attractive means for plasma heating and current drive in the high beta plasmas that are achievable in spherical torus (ST) devices. The National Spherical Torus Experiment (NSTX) [M. Ono, S. M. Kaye, S. Neumeyer et al., in Proceedings of the 18th IEEE/NPSS Symposium on Fusion Engineering, Albuquerque, 1999 (IEEE, Piscataway, NJ, 1999), p. 53] is such a device. An rf heating system has been installed on the NSTX to explore the physics of HHFW heating, current drive via rf waves and for use as a tool to demonstrate the attractiveness of the ST concept as a fusion device. To date, experiments have demonstrated many of the theoretical predictions for HHFW. In particular, strong wave absorption on electrons over a wide range of plasma parameters and wave parallel phase velocities, wave acceleration of energetic ions, and indications of current drive for directed wave spectra have been observed. In addition HHFW heating has been used to explore the energy transport properties of NSTX plasmas, to create H-mode discharges with a large fraction of bootstrap current and to control the plasma current profile during the early stages of the discharge.

  7. Fast Neural Solution Of A Nonlinear Wave Equation

    NASA Technical Reports Server (NTRS)

    Barhen, Jacob; Toomarian, Nikzad

    1996-01-01

    Neural algorithm for simulation of class of nonlinear wave phenomena devised. Numerically solves special one-dimensional case of Korteweg-deVries equation. Intended to be executed rapidly by neural network implemented as charge-coupled-device/charge-injection device, very-large-scale integrated-circuit analog data processor of type described in "CCD/CID Processors Would Offer Greater Precision" (NPO-18972).

  8. Exploration of High Harmonic Fast Wave Heating on the National Spherical Torus Experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J.R. Wilson; R.E. Bell; S. Bernabei

    2003-02-11

    High Harmonic Fast Wave (HHFW) heating has been proposed as a particularly attractive means for plasma heating and current drive in the high-beta plasmas that are achievable in spherical torus (ST) devices. The National Spherical Torus Experiment (NSTX) [Ono, M., Kaye, S.M., Neumeyer, S., et al., Proceedings, 18th IEEE/NPSS Symposium on Fusion Engineering, Albuquerque, 1999, (IEEE, Piscataway, NJ (1999), p. 53.)] is such a device. An radio-frequency (rf) heating system has been installed on NSTX to explore the physics of HHFW heating, current drive via rf waves and for use as a tool to demonstrate the attractiveness of the STmore » concept as a fusion device. To date, experiments have demonstrated many of the theoretical predictions for HHFW. In particular, strong wave absorption on electrons over a wide range of plasma parameters and wave parallel phase velocities, wave acceleration of energetic ions, and indications of current drive for directed wave spectra have been observed. In addition HHFW heating has been used to explore the energy transport properties of NSTX plasmas, to create H-mode (high-confinement mode) discharges with a large fraction of bootstrap current and to control the plasma current profile during the early stages of the discharge.« less

  9. Spread spectrum communication link using surface wave devices

    NASA Technical Reports Server (NTRS)

    Hunsinger, B. J.; Fugit, B. B.

    1971-01-01

    A fast lock-up, 8-MHz bandwidth 8,000 bit per second data rate spread spectrum communication link breadboard is described that is implemented using surface wave devices as the primary signal generators and signal processing elements. It uses surface wave tapped delay lines in the transmitter to generate the signals and in the receiver to detect them. The breadboard provides a measured processing gain for Gaussian noise of 31.5 dB which is within one dB of the theoretical optimum. This development demonstrates that spread spectrum receivers implemented with surface wave devices have sensitivities and complexities comparable to those of serial correlation receivers, but synchronization search times which are two to three orders of magnitude smaller.

  10. Conversion of Radio-Frequency Pulses to Continuous-Wave Sinusoids by Fast Switching and Narrowband Filtering

    DTIC Science & Technology

    2016-09-01

    Switching and Narrowband Filtering by Gregory J Mazzaro, Andrew J Sherbondy, Kenneth I Ranney, and Kelly D Sherbondy...Switching and Narrowband Filtering by Gregory J Mazzaro, Andrew J Sherbondy, Kenneth I Ranney, and Kelly D Sherbondy Sensors and Electron Devices...08/2016 4. TITLE AND SUBTITLE Conversion of Radio-Frequency Pulses to Continuous-Wave Sinusoids by Fast Switching and Narrowband Filtering 5a

  11. Fast T Wave Detection Calibrated by Clinical Knowledge with Annotation of P and T Waves.

    PubMed

    Elgendi, Mohamed; Eskofier, Bjoern; Abbott, Derek

    2015-07-21

    There are limited studies on the automatic detection of T waves in arrhythmic electrocardiogram (ECG) signals. This is perhaps because there is no available arrhythmia dataset with annotated T waves. There is a growing need to develop numerically-efficient algorithms that can accommodate the new trend of battery-driven ECG devices. Moreover, there is also a need to analyze long-term recorded signals in a reliable and time-efficient manner, therefore improving the diagnostic ability of mobile devices and point-of-care technologies. Here, the T wave annotation of the well-known MIT-BIH arrhythmia database is discussed and provided. Moreover, a simple fast method for detecting T waves is introduced. A typical T wave detection method has been reduced to a basic approach consisting of two moving averages and dynamic thresholds. The dynamic thresholds were calibrated using four clinically known types of sinus node response to atrial premature depolarization (compensation, reset, interpolation, and reentry). The determination of T wave peaks is performed and the proposed algorithm is evaluated on two well-known databases, the QT and MIT-BIH Arrhythmia databases. The detector obtained a sensitivity of 97.14% and a positive predictivity of 99.29% over the first lead of the validation databases (total of 221,186 beats). We present a simple yet very reliable T wave detection algorithm that can be potentially implemented on mobile battery-driven devices. In contrast to complex methods, it can be easily implemented in a digital filter design.

  12. Excitation of slow waves in front of an ICRF antenna in a basic plasma experiment

    NASA Astrophysics Data System (ADS)

    Soni, Kunal; van Compernolle, Bart; Crombe, Kristel; van Eester, Dirk

    2017-10-01

    Recent results of ICRF experiments at the Large Plasma Device (LAPD) indicate parasitic coupling to the slow wave by the fast wave antenna. Plasma parameters in LAPD are similar to the scrape-off layer of current fusion devices. The machine has a 17 m long, 60 cm diameter magnetized plasma column with typical plasma parameters ne 1012 -1013 cm-3, Te 1 - 10 eV and B0 1000 G. It was found that coupling to the slow mode occurs when the plasma density in front of the antenna is low enough such that the lower hybrid resonance is present in the plasma. The radial density profile is tailored to allow for fast mode propagation in the high density core and slow mode propagation in the low density edge region. Measurements of the wave fields clearly show two distinct modes, one long wavelength m=1 fast wave mode in the core and a short wavelength backward propagating mode in the edge. Perpendicular wave numbers compare favorably to the predicted values. The experiment was done for varying frequencies, ω /Ωi = 25 , 6 and 1.5. Future experiments will investigate the dependence on antenna tilt angle with respect to the magnetic field, with and without Faraday screen. This work is performed at the Basic Plasma Science Facility, sponsored jointly by DOE and NSF.

  13. Edge loss of high-harmonic fast-wave heating power in NSTX: a cylindrical model

    DOE PAGES

    Perkins, R. J.; Hosea, J. C.; Bertelli, N.; ...

    2017-09-04

    Efficient high-harmonic fast-wave (HHFW) heating in the National Spherical Torus Experiment Upgrade (NSTX-U) would facilitate experiments in turbulence, transport, fast-ion studies, and more. However, previous HHFW operation in NSTX exhibited a large loss of fast-wave power to the divertor along the scrape-off layer field lines for edge densities above the fast-wave cutoff. It was postulated that the wave amplitude is enhanced in the scrapeoff layer due to cavity-like modes, and that these enhanced fields drive sheath losses through RF rectification. As part of ongoing work to confirm this hypothesis, we have developed a cylindrical cold-plasma model to identify and understandmore » scenarios where a substantial fraction of wave power is confined to the plasma periphery. We previously identified a peculiar class of modes, named annulus resonances, that conduct approximately half of their wave power in the periphery and can also account for a significant fraction of the total wave power. Here, we study the influence of annulus resonances on wave field reconstructions and find instances where annulus-resonant modes dominate the spectrum and trap over half of the total wave power at the edge. The work is part of an ongoing effort to determine the mechanism underlying these scrape-off layer losses in NSTX, identify optimal conditions for operation in NSTX-U, and predict whether similar losses occur for the ion-cyclotron minority heating scheme for both current experiments and future devices such as ITER.« less

  14. Edge loss of high-harmonic fast-wave heating power in NSTX: a cylindrical model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perkins, R. J.; Hosea, J. C.; Bertelli, N.

    Efficient high-harmonic fast-wave (HHFW) heating in the National Spherical Torus Experiment Upgrade (NSTX-U) would facilitate experiments in turbulence, transport, fast-ion studies, and more. However, previous HHFW operation in NSTX exhibited a large loss of fast-wave power to the divertor along the scrape-off layer field lines for edge densities above the fast-wave cutoff. It was postulated that the wave amplitude is enhanced in the scrapeoff layer due to cavity-like modes, and that these enhanced fields drive sheath losses through RF rectification. As part of ongoing work to confirm this hypothesis, we have developed a cylindrical cold-plasma model to identify and understandmore » scenarios where a substantial fraction of wave power is confined to the plasma periphery. We previously identified a peculiar class of modes, named annulus resonances, that conduct approximately half of their wave power in the periphery and can also account for a significant fraction of the total wave power. Here, we study the influence of annulus resonances on wave field reconstructions and find instances where annulus-resonant modes dominate the spectrum and trap over half of the total wave power at the edge. The work is part of an ongoing effort to determine the mechanism underlying these scrape-off layer losses in NSTX, identify optimal conditions for operation in NSTX-U, and predict whether similar losses occur for the ion-cyclotron minority heating scheme for both current experiments and future devices such as ITER.« less

  15. Fast T Wave Detection Calibrated by Clinical Knowledge with Annotation of P and T Waves

    PubMed Central

    Elgendi, Mohamed; Eskofier, Bjoern; Abbott, Derek

    2015-01-01

    Background There are limited studies on the automatic detection of T waves in arrhythmic electrocardiogram (ECG) signals. This is perhaps because there is no available arrhythmia dataset with annotated T waves. There is a growing need to develop numerically-efficient algorithms that can accommodate the new trend of battery-driven ECG devices. Moreover, there is also a need to analyze long-term recorded signals in a reliable and time-efficient manner, therefore improving the diagnostic ability of mobile devices and point-of-care technologies. Methods Here, the T wave annotation of the well-known MIT-BIH arrhythmia database is discussed and provided. Moreover, a simple fast method for detecting T waves is introduced. A typical T wave detection method has been reduced to a basic approach consisting of two moving averages and dynamic thresholds. The dynamic thresholds were calibrated using four clinically known types of sinus node response to atrial premature depolarization (compensation, reset, interpolation, and reentry). Results The determination of T wave peaks is performed and the proposed algorithm is evaluated on two well-known databases, the QT and MIT-BIH Arrhythmia databases. The detector obtained a sensitivity of 97.14% and a positive predictivity of 99.29% over the first lead of the validation databases (total of 221,186 beats). Conclusions We present a simple yet very reliable T wave detection algorithm that can be potentially implemented on mobile battery-driven devices. In contrast to complex methods, it can be easily implemented in a digital filter design. PMID:26197321

  16. High power fast wave experiments in LAPD: interaction with density fluctuations and status/plans for ICRH

    NASA Astrophysics Data System (ADS)

    Carter, Troy; Martin, Michael; van Compernolle, Bart; Gekelman, Walter; Pribyl, Pat; Vincena, Stephen; Tripathi, Shreekrishna; van Eester, Dirk; Crombe, Kristel

    2016-10-01

    The LArge Plasma Device (LAPD) at UCLA is a 17 m long, up to 60 cm diameter magnetized plasma column with typical plasma parameters ne 1012 -1013 cm-3, Te 1 - 10 eV, and B 1 kG. A new high-power ( 200 kW) RF system and antenna has been developed for LAPD, enabling the generation of large amplitude fast waves in LAPD. Interaction between the fast waves and density fluctuations is observed, resulting in modulation of the coupled RF power. Two classes of RF-induced density fluctuations are observed. First, a coherent (10 kHz) oscillation is observed spatially near the antenna in response to the initial RF turn-on transient. Second, broadband density fluctuations are enhanced when the RF power is above a threshold a threshold. Strong modulation of the fast wave magnetic fluctuations is observed along with broadening of the primary RF spectral line. Ultimately, high power fast waves will be used for ion heating in LAPD through minority species fundamental heating or second harmonic minority or majority heating. Initial experimental results from heating experiments will be presented along with a discussion of future plans. BaPSF supported by NSF and DOE.

  17. Surface acoustic wave actuated cell sorting (SAWACS).

    PubMed

    Franke, T; Braunmüller, S; Schmid, L; Wixforth, A; Weitz, D A

    2010-03-21

    We describe a novel microfluidic cell sorter which operates in continuous flow at high sorting rates. The device is based on a surface acoustic wave cell-sorting scheme and combines many advantages of fluorescence activated cell sorting (FACS) and fluorescence activated droplet sorting (FADS) in microfluidic channels. It is fully integrated on a PDMS device, and allows fast electronic control of cell diversion. We direct cells by acoustic streaming excited by a surface acoustic wave which deflects the fluid independently of the contrast in material properties of deflected objects and the continuous phase; thus the device underlying principle works without additional enhancement of the sorting by prior labelling of the cells with responsive markers such as magnetic or polarizable beads. Single cells are sorted directly from bulk media at rates as fast as several kHz without prior encapsulation into liquid droplet compartments as in traditional FACS. We have successfully directed HaCaT cells (human keratinocytes), fibroblasts from mice and MV3 melanoma cells. The low shear forces of this sorting method ensure that cells survive after sorting.

  18. Fast Ion and Thermal Plasma Transport in Turbulent Waves in the Large Plasma Device (LAPD)

    NASA Astrophysics Data System (ADS)

    Zhou, Shu

    2011-10-01

    The transport of fast ions and thermal plasmas in electrostatic microturbulence is studied. Strong density and potential fluctuations (δn / n ~ δϕ / kTe ~ 0 . 5 , f ~5-50 kHz) are observed in the LAPD in density gradient regions produced by obstacles with slab or cylindrical geometry. Wave characteristics and the associated plasma transport are modified by driving sheared E ×B drift through biasing the obstacle, and by modification of the axial magnetic fields (Bz) and the plasma species. Cross-field plasma transport is suppressed with small bias and large Bz, and is enhanced with large bias and small Bz. Suppressed cross-field thermal transport coincides with a 180° phase shift between the density and potential fluctuations in the radial direction, while the enhanced thermal transport is associated with modes having low mode number (m = 1) and long radial correlation length. Large gyroradius lithium ions (ρfast /ρs ~ 10) orbit through the turbulent region. Scans with a collimated analyzer and with Langmuir probes give detailed profiles of the fast ion spatial-temporal distribution and of the fluctuating fields. Fast-ion transport decreases rapidly with increasing fast-ion gyroradius. Background waves with different scale lengths also alter the fast ion transport: Beam diffusion is smaller in waves with smaller structures (higher mode number); also, coherent waves with long correlation length cause less beam diffusion than turbulent waves. Experimental results agree well with gyro-averaging theory. When the fast ion interacts with the wave for most of a wave period, a transition from super-diffusive to sub-diffusive transport is observed, as predicted by diffusion theory. A Monte Carlo trajectory-following code simulates the interaction of the fast ions with the measured turbulent fields. Good agreement between observation and modeling is observed. Work funded by DOE and NSF and performed at the Basic Plasma Science Facility.

  19. Acoustic Streaming and Microparticle Enrichment within a Microliter Droplet Using a Lamb-Wave Resonator Array

    NASA Astrophysics Data System (ADS)

    Zhang, Hongxiang; Tang, Zifan; Wang, Zhan; Pan, Shuting; Han, Ziyu; Sun, Chongling; Zhang, Menglun; Duan, Xuexin; Pang, Wei

    2018-06-01

    We report the nonlinear acoustic streaming effect and the fast manipulation of microparticles by microelectromechanical Lamb-wave resonators in a microliter droplet. The device, consisting of four Lamb-wave resonators on a silicon die, generates cylindrical traveling waves in a liquid and efficiently drives nine horizontal vortices within a 1 -μ l droplet; the performance of the device coincides with the numerical model prediction. Experimentally, the particles are enriched at the stagnation center of the main vortex on the free surface of the droplet in open space without microfluidic channels. In addition, the trajectories of the particles in the droplet can be controlled by the excitation power.

  20. Thermal plasma and fast ion transport in electrostatic turbulence in the large plasma devicea)

    NASA Astrophysics Data System (ADS)

    Zhou, Shu; Heidbrink, W. W.; Boehmer, H.; McWilliams, R.; Carter, T. A.; Vincena, S.; Tripathi, S. K. P.; Van Compernolle, B.

    2012-05-01

    The transport of thermal plasma and fast ions in electrostatic microturbulence is studied. Strong density and potential fluctuations (δn /n˜δφ/kTe ˜ 0.5, f ˜ 5-50 kHz) are observed in the large plasma device (LAPD) [W. Gekelman, H. Pfister, Z. Lucky et al., Rev. Sci. Instrum. 62, 2875 (1991)] in density gradient regions produced by obstacles with slab or cylindrical geometry. Wave characteristics and the associated plasma transport are modified by driving sheared E × B drift through biasing the obstacle and by modification of the axial magnetic fields (Bz) and the plasma species. Cross-field plasma transport is suppressed with small bias and large Bz and is enhanced with large bias and small Bz. The transition in thermal plasma confinement is well explained by the cross-phase between density and potential fluctuations. Large gyroradius lithium fast ion beam (ρfast/ρs ˜ 10) orbits through the turbulent region. Scans with a collimated analyzer give detailed profiles of the fast ion spatial-temporal distribution. Fast-ion transport decreases rapidly with increasing fast-ion energy and gyroradius. Background waves with different scale lengths also alter the fast ion transport. Experimental results agree well with gyro-averaging theory. When the fast ion interacts with the wave for most of a wave period, a transition from super-diffusive to sub-diffusive transport is observed, as predicted by diffusion theory. Besides turbulent-wave-induced fast-ion transport, the static radial electric field (Er) from biasing the obstacle leads to drift of the fast-ion beam centroid. The drift and broadening of the beam due to static Er are evaluated both analytically and numerically. Simulation results indicate that the Er induced transport is predominately convective.

  1. Turbulent Transport of Fast Ions in the Large Plasma Device (LAPD)

    NASA Astrophysics Data System (ADS)

    Zhou, Shu; Heidbrink, William; McWilliams, Roger; Boehmer, Heinrich; Carter, Troy; Popovich, Pavel; Tripathi, Shreekrishna; Vincena, Steve; Jenko, Frank

    2010-11-01

    Due to gyroradius averaging and drift-orbit averaging, the transport of fast ions by microturbulence is often smaller than for thermal ions. In this experiment, Strong drift wave turbulence is observed in LAPD on gradients produced by a plate obstacle. Energetic lithium ions orbit through the turbulent region. Scans with a collimated analyzer and with probes give detailed profiles of the fast ion spatial distribution and of the fluctuating fields. The fast-ion transport decreases rapidly with increasing fast-ion gyroradius. Unlike the diffusive transport caused by Coulomb collisions, in this case the turbulent transport is non-diffusive. Analysis and simulation suggest that the fast ions interact ballistically with stationary two-dimensional electrostatic turbulence. The energy dependence of the transport is well explained by gyro-averaging theory. In new experiments, different sources and obstacles alter the drift-wave turbulence to modify the nature of the transport.

  2. The Monitoring Case of Ground-Based Synthetic Aperture Radar with Frequency Modulated Continuous Wave System

    NASA Astrophysics Data System (ADS)

    Zhang, H. Y.; Zhai, Q. P.; Chen, L.; Liu, Y. J.; Zhou, K. Q.; Wang, Y. S.; Dou, Y. D.

    2017-09-01

    The features of the landslide geological disaster are wide distribution, variety, high frequency, high intensity, destructive and so on. It has become a natural disaster with harmful and wide range of influence. The technology of ground-based synthetic aperture radar is a novel deformation monitoring technology developed in recent years. The features of the technology are large monitoring area, high accuracy, long distance without contact and so on. In this paper, fast ground-based synthetic aperture radar (Fast-GBSAR) based on frequency modulated continuous wave (FMCW) system is used to collect the data of Ma Liuzui landslide in Chongqing. The device can reduce the atmospheric errors caused by rapidly changing environment. The landslide deformation can be monitored in severe weather conditions (for example, fog) by Fast-GBSAR with acquisition speed up to 5 seconds per time. The data of Ma Liuzui landslide in Chongqing are analyzed in this paper. The result verifies that the device can monitor landslide deformation under severe weather conditions.

  3. Energy correlations of photon pairs generated by a silicon microring resonator probed by Stimulated Four Wave Mixing.

    PubMed

    Grassani, Davide; Simbula, Angelica; Pirotta, Stefano; Galli, Matteo; Menotti, Matteo; Harris, Nicholas C; Baehr-Jones, Tom; Hochberg, Michael; Galland, Christophe; Liscidini, Marco; Bajoni, Daniele

    2016-04-01

    Compact silicon integrated devices, such as micro-ring resonators, have recently been demonstrated as efficient sources of quantum correlated photon pairs. The mass production of integrated devices demands the implementation of fast and reliable techniques to monitor the device performances. In the case of time-energy correlations, this is particularly challenging, as it requires high spectral resolution that is not currently achievable in coincidence measurements. Here we reconstruct the joint spectral density of photons pairs generated by spontaneous four-wave mixing in a silicon ring resonator by studying the corresponding stimulated process, namely stimulated four wave mixing. We show that this approach, featuring high spectral resolution and short measurement times, allows one to discriminate between nearly-uncorrelated and highly-correlated photon pairs.

  4. Droplet trapping and fast acoustic release in a multi-height device with steady-state flow.

    PubMed

    Rambach, Richard W; Linder, Kevin; Heymann, Michael; Franke, Thomas

    2017-10-11

    We demonstrate a novel multilayer polydimethylsiloxane (PDMS) device for selective storage and release of single emulsion droplets. Drops are captured in a microchannel cavity and can be released on-demand through a triggered surface acoustic wave pulse. The surface acoustic wave (SAW) is excited by a tapered interdigital transducer (TIDT) deposited on a piezoelectric lithium niobate (LiNbO 3 ) substrate and inverts the pressure difference across the cavity trap to push a drop out of the trap and back into the main flow channel. Droplet capture and release does not require a flow rate change, flow interruption, flow inversion or valve action and can be achieved in as fast as 20 ms. This allows both on-demand droplet capture for analysis and monitoring over arbitrary time scales, and continuous device operation with a high droplet rate of 620 drops per s. We hence decouple long-term droplet interrogation from other operations on the chip. This will ease integration with other microfluidic droplet operations and functional components.

  5. Fast wave experiments in LAPD: RF sheaths, convective cells and density modifications

    NASA Astrophysics Data System (ADS)

    Carter, T. A.; van Compernolle, B.; Martin, M.; Gekelman, W.; Pribyl, P.; van Eester, D.; Crombe, K.; Perkins, R.; Lau, C.; Martin, E.; Caughman, J.; Tripathi, S. K. P.; Vincena, S.

    2017-10-01

    An overview is presented of recent work on ICRF physics at the Large Plasma Device (LAPD) at UCLA. The LAPD has typical plasma parameters ne 1012 -1013 cm-3, Te 1 - 10 eV and B 1000 G. A new high-power ( 150 kW) RF system and fast wave antenna have been developed for LAPD. The source runs at a frequency of 2.4 MHz, corresponding to 1 - 7fci , depending on plasma parameters. Evidence of rectified RF sheaths is seen in large increases ( 10Te) in the plasma potential on field lines connected to the antenna. The rectified potential scales linearly with antenna current. The rectified RF sheaths set up convective cells of local E × B flows, measured indirectly by potential measurements, and measured directly with Mach probes. At high antenna powers substantial modifications of the density profile were observed. The plasma density profile initially exhibits transient low frequency oscillations (10 kHz). The amplitude of the fast wave fields in the core plasma is modulated at the same low frequency, suggesting fast wave coupling is affected by the density rearrangement. Work performed at the Basic Plasma Science Facility, supported jointly by the National Science Foundation and the Department of Energy.

  6. Full wave simulations of fast wave efficiency and power losses in the scrape-off layer of tokamak plasmas in mid/high harmonic and minority heating regimes

    DOE PAGES

    Bertelli, N.; Jaeger, E. F.; Hosea, J. C.; ...

    2015-12-17

    Here, several experiments on different machines and in different fast wave (FW) heating regimes, such as hydrogen minority heating and high harmonic fast waves (HHFW), have found strong interaction between radio-frequency (RF) waves and the scrape-off layer (SOL) region. This paper examines the propagation and the power loss in the SOL by using the full wave code AORSA, in which the edge plasma beyond the last closed flux surface (LCFS) is included in the solution domain and a collisional damping parameter is used as a proxy to represent the real, and most likely nonlinear, damping processes. 2D and 3D AORSAmore » results for the National Spherical Torus eXperiment (NSTX) have shown a strong transition to higher SOL power losses (driven by the RF field) when the FW cut-off is removed from in front of the antenna by increasing the edge density. Here, full wave simulations have been extended for 'conventional' tokamaks with higher aspect ratios, such as the DIII-D, Alcator C-Mod, and EAST devices. DIII-D results in HHFW regime show similar behavior found in NSTX and NSTX-U, consistent with previous DIII-D experimental observations. In contrast, a different behavior has been found for C-Mod and EAST, which operate in the minority heating regime.« less

  7. Multi-frequency ICRF diagnostic of Tokamak plasmas

    NASA Astrophysics Data System (ADS)

    Lafonteese, David James

    This thesis explores the diagnostic possibilities of a fast wave-based method for measuring the ion density and temperature profiles of tokamak plasmas. In these studies fast waves are coupled to the plasma at frequencies at the second harmonic of the ion gyrofrequency, at which wave energy is absorbed by the finite-temperature ions. As the ion gyrofrequency is dependent upon the local magnetic field, which varies as l/R in a tokamak, this power absorption is radially localized. The simultaneous launching of multiple frequencies, all resonating at different plasma positions, allows local measurements of the ion density and temperature. To investigate the profile applications of wave damping measurements in a simulated tokamak, an inhouse slab-model ICRF code is developed. A variety of analysis methods are presented, and ion density and temperature profiles are reconstructed for hydrogen plasmas for the Electric Tokamak (ET) and ITER parameter spaces. These methods achieve promising results in simulated plasmas featuring bulk ion heating, off-axis RF heating, and density ramps. The experimental results of similar studies on the Electric Tokamak, a high aspect ratio (R/a = 5), low toroidal field (2.2 kG) device are then presented. In these studies, six fast wave frequencies were coupled using a single-strap, low-field-side antenna to ET plasmas. The frequencies were variable, and could be tuned to resonate at different radii for different experiments. Four magnetic pickup loops were used to measure of the toroidal component of the wave magnetic field. The expected greater eigenmode damping of center-resonant frequencies versus edge-resonant frequencies is consistently observed. Comparison of measured aspects of fast wave behavior in ET is made with the slab code predictions, which validate the code simulations under weakly-damped conditions. A density profile is measured for an ET discharge through analysis of the fast wave measurements, and is compared to an electron density profile derived from Thomson scattering data. The methodology behind a similar measurement of the ion temperature profile is also presented.

  8. Efficient design of nanoplasmonic waveguide devices using the space mapping algorithm.

    PubMed

    Dastmalchi, Pouya; Veronis, Georgios

    2013-12-30

    We show that the space mapping algorithm, originally developed for microwave circuit optimization, can enable the efficient design of nanoplasmonic waveguide devices which satisfy a set of desired specifications. Space mapping utilizes a physics-based coarse model to approximate a fine model accurately describing a device. Here the fine model is a full-wave finite-difference frequency-domain (FDFD) simulation of the device, while the coarse model is based on transmission line theory. We demonstrate that simply optimizing the transmission line model of the device is not enough to obtain a device which satisfies all the required design specifications. On the other hand, when the iterative space mapping algorithm is used, it converges fast to a design which meets all the specifications. In addition, full-wave FDFD simulations of only a few candidate structures are required before the iterative process is terminated. Use of the space mapping algorithm therefore results in large reductions in the required computation time when compared to any direct optimization method of the fine FDFD model.

  9. Frequency-agile THz-wave generation and detection system using nonlinear frequency conversion at room temperature.

    PubMed

    Guo, Ruixiang; Ikar'i, Tomofumi; Zhang, Jun; Minamide, Hiroaki; Ito, Hiromasa

    2010-08-02

    A surface-emitting THz parametric oscillator is set up to generate a narrow-linewidth, nanosecond pulsed THz-wave radiation. The THz-wave radiation is coherently detected using the frequency up-conversion in MgO: LiNbO(3) crystal. Fast frequency tuning and automatic achromatic THz-wave detection are achieved through a special optical design, including a variable-angle mirror and 1:1 telescope devices in the pump and THz-wave beams. We demonstrate a frequency-agile THz-wave parametric generation and THz-wave coherent detection system. This system can be used as a frequency-domain THz-wave spectrometer operated at room-temperature, and there are a high possible to develop into a real-time two-dimensional THz spectral imaging system.

  10. Ion beam generated modes in the lower hybrid frequency range in a laboratory magnetoplasma

    NASA Astrophysics Data System (ADS)

    Van Compernolle, B.; Tripathi, S.; Gekelman, W. N.; Colestock, P. L.; Pribyl, P.

    2012-12-01

    The generation of waves by ion ring distributions is of great importance in many instances in space plasmas. They occur naturally in the magnetosphere through the interaction with substorms, or they can be man-made in ionospheric experiments by photo-ionization of neutral atoms injected perpendicular to the earth's magnetic field. The interaction of a fast ion beam with a low β plasma has been studied in the laboratory. Experiments were performed at the LArge Plasma Device (LAPD) at UCLA. The experiments were done in a Helium plasma (n ≃ 1012 \\ cm-3, B0 = 1000 G - 1800 G, fpe}/f{ce ≃ 1 - 5, Te = 0.25\\ eV, vte ≤ vA). The ion beam \\cite{Tripathi_ionbeam} is a Helium beam with energies ranging from 5 keV to 18 keV. The fast ion velocity is on the order of the Alfvén velocity. The beam is injected from the end of the machine, and spirals down the linear device. Waves were observed below fci in the shear Alfvén wave regime, and in a broad spectrum above fci in the lower hybrid frequency range, the focus of this paper. The wave spectra have distinct peaks close to ion cyclotron harmonics, extending out to the 100th harmonic in some cases. The wave generation was studied for various magnetic fields and background plasma densities, as well as for different beam energies and pitch angles. The waves were measured with 3-axis electric and magnetic probes. Detailed measurements of the perpendicular mode structure will be shown. Langmuir probes were used to measure density and temperature evolution due to the beam-plasma interaction. Retarding field energy analyzers captured the ion beam profiles. The work was performed at the LArge Plasma Device at the Basic Plasma Science Facility (BaPSF) at UCLA, funded by DOE/NSF.

  11. High Power Broadband Millimeter Wave TWTs

    NASA Astrophysics Data System (ADS)

    James, Bill G.

    1998-04-01

    In the early 1980's the requirement for high power broadband millimeter wave sources encouraged the development of microwave vacuum device amplifiers for radar and communication systems. Many government funded programs were implemented for the development of high power broadband millimeter wave amplifiers that would meet the needs of the high power community. The tube design capable of meeting these goals was the slow wave coupled cavity traveling wave device, which had a proven technology base at the lower frequencies (X Band). However scaling this technology to the millimeter frequencies had severe shortcomings in both thermal and manufacturing design. These shortcomings were overcome with the development of the Ladder Circuit technology. In conjunction with the circuit development high power electron beam systems had to be developed for the generation of high rf powers. These beam systems had to be capable of many megawatts of beam power density and high current densities. The cathode technology required to be capable of operating at current densities of 10 amperes per square centimeter at long pulse lengths and high duty cycle. Since the introduction of the Ladder Circuit technology a number of high power broadband millimeter wave amplifiers have been developed and deployed in operating radar and communication systems. Broadband millimeter wave sources have been manufactured in the frequency range from 27 GHz to 100 GHz with power levels ranging from 100 watts CW to 10 kilowatts Peak at W band over a 2 GHz bandwidth. Also a 50 kW peak power and 10 kW average power device at Ka band with 2 GHz bandwidth has been developed. Today the power levels achieved by these devices are nearing the limits of this technology; therefore to gain a significant increase in power at the millimeter wave frequencies, other technologies will have to be considered, particularly fast wave devices. This paper will briefly review the ladder circuit technology and present the designs of a number of broadband high power devices developed at Ka and W band. The discussion will include the beam systems employed in these devices which are the highest power density linear beams generated to date. In conclusion the limits of the power generating capability of this technology will be presented.

  12. Alfven Eigenmode Control in DIII-D

    NASA Astrophysics Data System (ADS)

    Hu, W.; Olofsson, E.; Welander, A.; van Zeeland, M.; Collins, C.; Heidbrink, W.

    2017-10-01

    Alfven eigenmodes (AE) driven by fast ions from neutral beam and ion cyclotron heating are common in present day tokamak plasmas and are expected to be destabilized by alpha particles in future burning plasma experiments. Because these waves have been shown to cause loss and redistribution of fast ions which can impact plasma performance and potentially device integrity, developing control techniques for AEs is of paramount importance. In the DIII-D plasma control system, spectral analysis of real-time ECE data is used as a monitor of AE amplitude, frequency, and location. These values are then used for feedback control of the neutral beam power to control Alfven waves and reduce fast ion loss. This work describes tests of AE control experiments in the current ramp up phase, during which multiple Alfven eigenmodes are typically unstable and fast ion confinement is degraded significantly. Comparisons of neutron emission and confined fast ion profiles with and without active AE control will be made. Work supported by the U.S. Dept. of Energy under Award Number DE-FC02-04ER54698.

  13. Integrated fiber-coupled launcher for slow plasmon-polariton waves.

    PubMed

    Della Valle, Giuseppe; Longhi, Stefano

    2012-01-30

    We propose and numerically demonstrate an integrated fiber-coupled launcher for slow surface plasmon-polaritons. The device is based on a novel plasmonic mode-converter providing efficient power transfer from the fast to the slow modes of a metallic nanostripe. Total coupling efficiency with standard single-mode fiber approaching 30% (including ohmic losses) has been numerically predicted for a 25-µm long gold-based device operating at 1.55 µm telecom wavelength.

  14. A Generalized Fast Frequency Sweep Algorithm for Coupled Circuit-EM Simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rockway, J D; Champagne, N J; Sharpe, R M

    2004-01-14

    Frequency domain techniques are popular for analyzing electromagnetics (EM) and coupled circuit-EM problems. These techniques, such as the method of moments (MoM) and the finite element method (FEM), are used to determine the response of the EM portion of the problem at a single frequency. Since only one frequency is solved at a time, it may take a long time to calculate the parameters for wideband devices. In this paper, a fast frequency sweep based on the Asymptotic Wave Expansion (AWE) method is developed and applied to generalized mixed circuit-EM problems. The AWE method, which was originally developed for lumped-loadmore » circuit simulations, has recently been shown to be effective at quasi-static and low frequency full-wave simulations. Here it is applied to a full-wave MoM solver, capable of solving for metals, dielectrics, and coupled circuit-EM problems.« less

  15. New CO2 Sensor with High Resolution and Fast Response

    DTIC Science & Technology

    2001-10-25

    that a few solid substances selectively adsorb CO2. Combined with a Quartz Micro Balance (QMB) [1, 2] or a Surface Acoustic Wave (SAW) device [3...cardiovascular or respiratory tracts should be sterile or desinfected disposables to minimize the risk for the spread of harmful microorganisms. To

  16. Analysis of dynamical response of air blast loaded safety device

    NASA Astrophysics Data System (ADS)

    Tropkin, S. N.; Tlyasheva, R. R.; Bayazitov, M. I.; Kuzeev, I. R.

    2018-03-01

    Equipment of many oil and gas processing plants in the Russian Federation is considerably worn-out. This causes the decrease of reliability and durability of equipment and rises the accident rate. An air explosion is the one of the most dangerous cases for plants in oil and gas industry, usually caused by uncontrolled emission and inflammation of oil products. Air explosion can lead to significant danger for life and health of plant staff, so it necessitates safety device usage. A new type of a safety device is designed. Numerical simulation is necessary to analyse design parameters and performance of the safety device, subjected to air blast loading. Coupled fluid-structure interaction analysis is performed to determine strength of the protective device and its performance. The coupled Euler-Lagrange method, allowable in Abaqus by SIMULIA, is selected as the most appropriate analysis tool to study blast wave interaction with the safety device. Absorption factors of blast wave are evaluated for the safety device. This factors allow one to assess efficiency of the safety device, and its main structural component – dampener. Usage of CEL allowed one to model fast and accurately the dampener behaviour, and to develop the parametric model to determine safety device sizes.

  17. High power broadband millimeter wave TWTs

    NASA Astrophysics Data System (ADS)

    James, Bill G.

    1999-05-01

    In the early 1980's the requirement for high power broadband millimeter wave sources encouraged the development of microwave vacuum device amplifiers for radar and communication systems. Many government funded programs were implemented for the development of high power broadband millimeter wave amplifiers that would meet the needs of the high power community. The tube design capable of meeting these goals was the slow wave coupled cavity traveling wave device, which had a proven technology base at the lower frequencies (X Band). However scaling this technology to the millimeter frequencies had severe shortcomings in both thermal and manufacturing design. These shortcomings were overcome with the development of the Ladder Circuit technology. In conjunction with the circuit development high power electron beam systems had to be developed for the generation of high rf powers. These beam systems had to be capable of many megawatts of beam power density and high current densities. The cathode technology required to be capable of operating at current densities of 10 amperes per square centimeter at long pulse lengths and high duty cycle. Since the introduction of the Ladder Circuit technology a number of high power broadband millimeter wave amplifiers have been developed using this technology, and have been deployed in operating radar and communication systems. Broadband millimeter wave sources have been manufactured in the frequency range from 27 GHz to 100 GHz with power levels ranging from 100 watts to 50 kilowatts. Today the power levels achieved by these devices are nearing the limits of this technology; therefore to gain a significant increase in power at the millimeter wave frequencies other technologies will have to be considered particularly fast wave devices. This paper will briefly review the ladder circuit technology and present the designs of a number of broadband high power devices developed at Ka and W band. The discussion will include the beam systems employed in these devices which are the highest power density linear beams generated to date. In conclusion the limits of the power generating capability of this technology will be presented.

  18. The Effects of Wave Escape on Fast Magnetosonic Wave Turbulence in Solar Flares

    NASA Technical Reports Server (NTRS)

    Pongkitiwanichakul, Peera; Chandran, Benjamin D. G.; Karpen, Judith T.; DeVore, C. Richard

    2012-01-01

    One of the leading models for electron acceleration in solar flares is stochastic acceleration by weakly turbulent fast magnetosonic waves ("fast waves"). In this model, large-scale flows triggered by magnetic reconnection excite large-wavelength fast waves, and fast-wave energy then cascades from large wavelengths to small wavelengths. Electron acceleration by large-wavelength fast-waves is weak, and so the model relies on the small-wavelength waves produced by the turbulent cascade. In order for the model to work, the energy cascade time for large-wavelength fast waves must be shorter than the time required for the waves to propagate out of the solar-flare acceleration region. To investigate the effects of wave escape, we solve the wave kinetic equation for fast waves in weak turbulence theory, supplemented with a homogeneous wave-loss term.We find that the amplitude of large-wavelength fast waves must exceed a minimum threshold in order for a significant fraction of the wave energy to cascade to small wavelengths before the waves leave the acceleration region.We evaluate this threshold as a function of the dominant wavelength of the fast waves that are initially excited by reconnection outflows.

  19. Active Control of Charge Density Waves at Degenerate Semiconductor Interfaces

    NASA Astrophysics Data System (ADS)

    Vinnakota, Raj; Genov, Dentcho

    We present numerical modeling of an active electronically controlled highly confined charge-density waves, i.e. surface plasmon polaritons (SPPs) at the metallurgic interfaces of degenerate semiconductor materials. An electro-optic switching element for fully-functional plasmonic circuits based on p-n junction semiconductor Surface Plasmon Polariton (SPP) waveguide is shown. Two figures of merits are introduced and parametric study has been performed identifying the device optimal operation range. The Indium Gallium Arsenide (In0.53Ga0.47As) is identified as the best semiconductor material for the device providing high optical confinement, reduced system size and fast operation. The electro-optic SPP switching element is shown to operate at signal modulation up to -24dB and switching rates surpassing 100GHz, thus potentially providing a new pathway toward bridging the gap between electronic and photonic devices. The current work is funded by the NSF EPSCoR CIMM project under award #OIA-1541079.

  20. Direct measurement of the transition from edge to core power coupling in a light-ion helicon source

    NASA Astrophysics Data System (ADS)

    Piotrowicz, P. A.; Caneses, J. F.; Showers, M. A.; Green, D. L.; Goulding, R. H.; Caughman, J. B. O.; Biewer, T. M.; Rapp, J.; Ruzic, D. N.

    2018-05-01

    We present time-resolved measurements of an edge-to-core power transition in a light-ion (deuterium) helicon discharge in the form of infra-red camera imaging of a thin stainless steel target plate on the Proto-Material Exposure eXperiment device. The time-resolved images measure the two-dimensional distribution of power deposition in the helicon discharge. The discharge displays a mode transition characterized by a significant increase in the on-axis electron density and core power coupling, suppression of edge power coupling, and the formation of a fast-wave radial eigenmode. Although the self-consistent mechanism that drives this transition is not yet understood, the edge-to-core power transition displays characteristics that are consistent with the discharge entering a slow-wave anti-resonant regime. RF magnetic field measurements made across the plasma column, together with the power deposition results, provide direct evidence to support the suppression of the slow-wave in favor of core plasma production by the fast-wave in a light-ion helicon source.

  1. Direct measurement of the transition from edge to core power coupling in a light-ion helicon source

    DOE PAGES

    Piotrowicz, Pawel A.; Caneses, Juan F.; Showers, Melissa A.; ...

    2018-05-02

    Here, we present time-resolved measurements of an edge-to-core power transition in a light-ion (deuterium) helicon discharge in the form of infra-red camera imaging of a thin stainless steel target plate on the Proto-Material Exposure eXperiment device. The time-resolved images measure the two-dimensional distribution of power deposition in the helicon discharge. The discharge displays a mode transition characterized by a significant increase in the on-axis electron density and core power coupling, suppression of edge power coupling, and the formation of a fast-wave radial eigenmode. Although the self-consistent mechanism that drives this transition is not yet understood, the edge-to-core power transition displaysmore » characteristics that are consistent with the discharge entering a slow-wave anti-resonant regime. RF magnetic field measurements made across the plasma column, together with the power deposition results, provide direct evidence to support the suppression of the slow-wave in favor of core plasma production by the fast-wave in a light-ion helicon source.« less

  2. Direct measurement of the transition from edge to core power coupling in a light-ion helicon source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Piotrowicz, Pawel A.; Caneses, Juan F.; Showers, Melissa A.

    Here, we present time-resolved measurements of an edge-to-core power transition in a light-ion (deuterium) helicon discharge in the form of infra-red camera imaging of a thin stainless steel target plate on the Proto-Material Exposure eXperiment device. The time-resolved images measure the two-dimensional distribution of power deposition in the helicon discharge. The discharge displays a mode transition characterized by a significant increase in the on-axis electron density and core power coupling, suppression of edge power coupling, and the formation of a fast-wave radial eigenmode. Although the self-consistent mechanism that drives this transition is not yet understood, the edge-to-core power transition displaysmore » characteristics that are consistent with the discharge entering a slow-wave anti-resonant regime. RF magnetic field measurements made across the plasma column, together with the power deposition results, provide direct evidence to support the suppression of the slow-wave in favor of core plasma production by the fast-wave in a light-ion helicon source.« less

  3. Overview of Current Drive Experiment-Upgrade (CDX-U)

    NASA Astrophysics Data System (ADS)

    Hwang, Y. S.; Choe, W.; Stutman, D.; Lo, E.; Menard, J.; Ono, M.; Jones, T. G.; Armstrong, R.

    1996-11-01

    The CDX-U tokamak is a spherical tokamak (ST) facility with R ≈ 32 cm, R/a >= 1.4, and B_TF ≈ 1 kG. With an OH power supply of 60 mV-S capability, experiments were conducted with Ip up to ~ 100 kA and q(a) >= 3.5. The ST plasma performance has been studied along with various MHD-related activities. By appropriate discharge programing, it was possible to obtain MHD-quiescent discharges with a factor of 2 - 3 improvement in the electron energy confinement. Recently, the outer vacuum vessel was replaced with a toroidally continuous stainless steel chamber to accomodate the fast wave antenna. With the newly installed antenna, preliminary heating experiments using high harmonic fast waves have been pursued. The success of fast wave heating is a crucial element for achieving high beta plasmas in ST devices such as NSTX. Also, preliminary electron ripple injection (ERI) experiments were performed in CDX-U to examine the feasibility of this technique for improving ST tokamak confinement. To support the ST physics investigation, various novel plasma profile diagnostics such as the multi-pass Thomson scattering, soft x-ray tomography, and tangential-phase-contrast-imaging systems are under development on CDX-U.

  4. Reliability of pulse waveform separation analysis: effects of posture and fasting.

    PubMed

    Stoner, Lee; Credeur, Daniel; Fryer, Simon; Faulkner, James; Lambrick, Danielle; Gibbs, Bethany Barone

    2017-03-01

    Oscillometric pulse wave analysis devices enable, with relative simplicity and objectivity, the measurement of central hemodynamic parameters. The important parameters are central blood pressures and indices of arterial wave reflection, including wave separation analysis (backward pressure component Pb and reflection magnitude). This study sought to determine whether the measurement precision (between-day reliability) of Pb and reflection magnitude: exceeds the criterion for acceptable reliability; and is affected by posture (supine, seated) and fasting state. Twenty healthy adults (50% female, 27.9 years, 24.2 kg/m) were tested on six different mornings: 3 days fasted, 3 days nonfasted condition. On each occasion, participants were tested in supine and seated postures. Oscillometric pressure waveforms were recorded on the left upper arm. The criterion intra-class correlation coefficient value of 0.75 was exceeded for Pb (0.76) and reflection magnitude (0.77) when participants were assessed under the combined supine-fasted condition. The intra-class correlation coefficient was lowest for Pb in seated-nonfasted condition (0.57), and lowest for reflection magnitude in the seated-fasted condition (0.56). For Pb, the smallest detectible change that must be exceeded in order for a significant change to occur in an individual was 2.5 mmHg, and for reflection magnitude, the smallest detectable change was 8.5%. Assessments of Pb and reflection magnitude are as follows: exceed the criterion for acceptable reliability; and are most reliable when participants are fasted in a supine position. The demonstrated reliability suggests sufficient precision to detect clinically meaningful changes in reflection magnitude and Pb.

  5. Fast helicity switching of x-ray circular polarization at beamline P09 at PETRA III

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strempfer, J., E-mail: Joerg.Strempfer@desy.de; Mardegan, J. R. L.; Francoual, S.

    At the resonant scattering and diffraction beamline P09 at PETRA III/DESY, polarization manipulation in the X-ray energy range 3-13 keV is possible using wave-plates. Recently, fast flipping of circular polarization helicity using the Raspberry Pi controlled FPGA (PiLC) device developed at DESY and dedicated piezo-electric flippers has been commissioned. Functionality of the PiLC for XMCD and first XMCD measurements at the Fe K-and Dy-L{sub 3} absorption edges are presented.

  6. Fast modulations of pulsating proton aurora related to subpacket structures of Pc1 geomagnetic pulsations at subauroral latitudes

    DOE PAGES

    Ozaki, M.; Shiokawa, K.; Miyoshi, Y.; ...

    2016-08-16

    To understand the role of electromagnetic ion cyclotron (EMIC) waves in determining the temporal features of pulsating proton aurora (PPA) via wave-particle interactions at subauroral latitudes, high-time-resolution (1/8 s) images of proton-induced N 2>+ emissions were recorded using a new electron multiplying charge-coupled device camera, along with related Pc1 pulsations on the ground. The observed Pc1 pulsations consisted of successive rising-tone elements with a spacing for each element of 100 s and subpacket structures, which manifest as amplitude modulations with a period of a few tens of seconds. In accordance with the temporal features of the Pc1 pulsations, the auroralmore » intensity showed a similar repetition period of 100 s and an unpredicted fast modulation of a few tens of seconds. Furthermore, these results indicate that PPA is generated by pitch angle scattering, nonlinearly interacting with Pc1/EMIC waves at the magnetic equator.« less

  7. Fast modulations of pulsating proton aurora related to subpacket structures of Pc1 geomagnetic pulsations at subauroral latitudes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ozaki, M.; Shiokawa, K.; Miyoshi, Y.

    To understand the role of electromagnetic ion cyclotron (EMIC) waves in determining the temporal features of pulsating proton aurora (PPA) via wave-particle interactions at subauroral latitudes, high-time-resolution (1/8 s) images of proton-induced N 2>+ emissions were recorded using a new electron multiplying charge-coupled device camera, along with related Pc1 pulsations on the ground. The observed Pc1 pulsations consisted of successive rising-tone elements with a spacing for each element of 100 s and subpacket structures, which manifest as amplitude modulations with a period of a few tens of seconds. In accordance with the temporal features of the Pc1 pulsations, the auroralmore » intensity showed a similar repetition period of 100 s and an unpredicted fast modulation of a few tens of seconds. Furthermore, these results indicate that PPA is generated by pitch angle scattering, nonlinearly interacting with Pc1/EMIC waves at the magnetic equator.« less

  8. Fast decay of solutions for linear wave equations with dissipation localized near infinity in an exterior domain

    NASA Astrophysics Data System (ADS)

    Ryo, Ikehata

    Uniform energy and L2 decay of solutions for linear wave equations with localized dissipation will be given. In order to derive the L2-decay property of the solution, a useful device whose idea comes from Ikehata-Matsuyama (Sci. Math. Japon. 55 (2002) 33) is used. In fact, we shall show that the L2-norm and the total energy of solutions, respectively, decay like O(1/ t) and O(1/ t2) as t→+∞ for a kind of the weighted initial data.

  9. Recent advances in physics and technology of ion cyclotron resonance heating in view of future fusion reactors

    NASA Astrophysics Data System (ADS)

    Ongena, J.; Messiaen, A.; Kazakov, Ye O.; Koch, R.; Ragona, R.; Bobkov, V.; Crombé, K.; Durodié, F.; Goniche, M.; Krivska, A.; Lerche, E.; Louche, F.; Lyssoivan, A.; Vervier, M.; Van Eester, D.; Van Schoor, M.; Wauters, T.; Wright, J.; Wukitch, S.

    2017-05-01

    Ion temperatures of over 100 million degrees need to be reached in future fusion reactors for the deuterium-tritium fusion reaction to work. Ion cyclotron resonance heating (ICRH) is a method that has the capability to directly heat ions to such high temperatures, via a resonant interaction between the plasma ions and radiofrequency waves launched in the plasma. This paper gives an overview of recent developments in this field. In particular a novel and recently developed three-ion heating scenario will be highlighted. It is a flexible scheme with the potential to accelerate heavy ions to high energies in high density plasmas as expected for future fusion reactors. New antenna designs will be needed for next step large future devices like DEMO, to deliver steady-state high power levels, cope with fast variations in coupling due to fast changes in the edge density and to reduce the possibility for impurity production. Such a new design is the traveling wave antenna (TWA) consisting of an array of straps distributed around the circumference of the machine, which is intrinsically resilient to edge density variations and has an optimized power coupling to the plasma. The structure of the paper is as follows: to provide the general reader with a basis for a good understanding of the later sections, an overview is given of wave propagation, coupling and RF power absorption in the ion cyclotron range of frequencies, including a brief summary of the traditionally used heating scenarios. A special highlight is the newly developed three-ion scenario together with its promising applications. A next section discusses recent developments to study edge-wave interaction and reduce impurity influx from ICRH: the dedicated devices IShTAR and Aline, field aligned and three-strap antenna concepts. The principles behind and the use of ICRH as an important option for first wall conditioning in devices with a permanent magnetic field is discussed next. The final section presents ongoing developments for antenna systems in next step devices like ITER and DEMO, with as highlight the TWA concept.

  10. Finite mode analysis through harmonic waveguides

    PubMed

    Alieva; Wolf

    2000-08-01

    The mode analysis of signals in a multimodal shallow harmonic waveguide whose eigenfrequencies are equally spaced and finite can be performed by an optoelectronic device, of which the optical part uses the guide to sample the wave field at a number of sensors along its axis and the electronic part computes their fast Fourier transform. We illustrate this process with the Kravchuk transform.

  11. Acoustic Wave Propagation in Snow Based on a Biot-Type Porous Model

    NASA Astrophysics Data System (ADS)

    Sidler, R.

    2014-12-01

    Despite the fact that acoustic methods are inexpensive, robust and simple, the application of seismic waves to snow has been sparse. This might be due to the strong attenuation inherent to snow that prevents large scale seismic applications or due to the somewhat counterintuitive acoustic behavior of snow as a porous material. Such materials support a second kind of compressional wave that can be measured in fresh snow and which has a decreasing wave velocity with increasing density of snow. To investigate wave propagation in snow we construct a Biot-type porous model of snow as a function of porosity based on the assumptions that the solid frame is build of ice, the pore space is filled with a mix of air, or air and water, and empirical relationships for the tortuosity, the permeability, the bulk, and the shear modulus.We use this reduced model to investigate compressional and shear wave velocities of snow as a function of porosity and to asses the consequences of liquid water in the snowpack on acoustic wave propagation by solving Biot's differential equations with plain wave solutions. We find that the fast compressional wave velocity increases significantly with increasing density, but also that the fast compressional wave velocity might be even lower than the slow compressional wave velocity for very light snow. By using compressional and shear strength criteria and solving Biot's differential equations with a pseudo-spectral approach we evaluate snow failure due to acoustic waves in a heterogeneous snowpack, which we think is an important mechanism in triggering avalanches by explosives as well as by skiers. Finally, we developed a low cost seismic acquisition device to assess the theoretically obtained wave velocities in the field and to explore the possibility of an inexpensive tool to remotely gather snow water equivalent.

  12. Tutorial: Integrated-photonic switching structures

    NASA Astrophysics Data System (ADS)

    Soref, Richard

    2018-02-01

    Recent developments in waveguided 2 × 2 and N × M photonic switches are reviewed, including both broadband and narrowband resonant devices for the Si, InP, and AlN platforms. Practical actuation of switches by electro-optical and thermo-optical techniques is discussed. Present datacom-and-computing applications are reviewed, and potential applications are proposed for chip-scale photonic and optoelectronic integrated switching networks. Potential is found in the reconfigurable, programmable "mesh" switches that enable a promising group of applications in new areas beyond those in data centers and cloud servers. Many important matrix switches use gated semiconductor optical amplifiers. The family of broadband, directional-coupler 2 × 2 switches featuring two or three side-coupled waveguides deserves future experimentation, including devices that employ phase-change materials. The newer 2 × 2 resonant switches include standing-wave resonators, different from the micro-ring traveling-wave resonators. The resonant devices comprise nanobeam interferometers, complex-Bragg interferometers, and asymmetric contra-directional couplers. Although the fast, resonant devices offer ultralow switching energy, ˜1 fJ/bit, they have limitations. They require several trade-offs when deployed, but they do have practical application.

  13. Experimental Study of RF Sheath Formation on a Fast Wave Antenna and Limiter in the LAPD

    NASA Astrophysics Data System (ADS)

    Martin, Michael; Gekelman, Walter; Pribyl, Patrick; van Compernolle, Bart; Carter, Troy

    2015-11-01

    Ion cyclotron resonance heating (ICRH) will be an essential component of heating power in ITER. During ICRH, radio frequency (RF) sheaths may form both at the exciting antenna and further away, e.g. in the divertor region, and may cause wall material sputtering and decreased RF power coupling to the plasma. It is important to do detailed laboratory experiments that fully diagnose the sheaths and wave fields. This is not possible in fusion devices. A new RF system has recently been constructed for performing such studies in the LAPD plasma column (ne ~1012 -1013cm-3 , Te ~ 1 - 10 eV ,B0 ~ 400 - 2000 G , diameter ~ 60cm , length ~ 18 m) . The RF system is capable of pulsing at the 1 Hz rep. rate of the LAPD plasma and operating between 2-6 MHz (1st - 9th harmonic of fci in H) with a power output of 200 kW. First results of this system driving a single-strap fast wave antenna will be presented. Emissive and Langmuir probe measurements in the vicinity of both the antenna and a remote limiter and wave coupling measured by magnetic pickup loops will be presented.

  14. A millisecond micromixer via single-bubble-based acoustic streaming.

    PubMed

    Ahmed, Daniel; Mao, Xiaole; Shi, Jinjie; Juluri, Bala Krishna; Huang, Tony Jun

    2009-09-21

    We present ultra-fast homogeneous mixing inside a microfluidic channel via single-bubble-based acoustic streaming. The device operates by trapping an air bubble within a "horse-shoe" structure located between two laminar flows inside a microchannel. Acoustic waves excite the trapped air bubble at its resonance frequency, resulting in acoustic streaming, which disrupts the laminar flows and triggers the two fluids to mix. Due to this technique's simple design, excellent mixing performance, and fast mixing speed (a few milliseconds), our single-bubble-based acoustic micromixer may prove useful for many biochemical studies and applications.

  15. Surface acoustic wave microfluidics

    PubMed Central

    Ding, Xiaoyun; Li, Peng; Lin, Sz-Chin Steven; Stratton, Zackary S.; Nama, Nitesh; Guo, Feng; Slotcavage, Daniel; Mao, Xiaole; Shi, Jinjie; Costanzo, Francesco; Huang, Tony Jun

    2014-01-01

    The recent introduction of surface acoustic wave (SAW) technology onto lab-on-a-chip platforms has opened a new frontier in microfluidics. The advantages provided by such SAW microfluidics are numerous: simple fabrication, high biocompatibility, fast fluid actuation, versatility, compact and inexpensive devices and accessories, contact-free particle manipulation, and compatibility with other microfluidic components. We believe that these advantages enable SAW microfluidics to play a significant role in a variety of applications in biology, chemistry, engineering, and medicine. In this review article, we discuss the theory underpinning SAWs and their interactions with particles and the contacting fluids in which they are suspended. We then review the SAW-enabled microfluidic devices demonstrated to date, starting with devices that accomplish fluid mixing and transport through the use of travelling SAW; we follow that by reviewing the more recent innovations achieved with standing SAW that enable such actions as particle/cell focusing, sorting, and patterning. Finally, we look forward and appraise where the discipline of SAW microfluidics could go next. PMID:23900527

  16. Fast and slow light generated by surface plasmon wave and gold grating coupling effects

    NASA Astrophysics Data System (ADS)

    Amiri, Iraj S.; Ariannejad, M. M.; Tajdidzadeh, M.; Sorger, Volker J.; Ling, Xi; Yupapin, P.

    2018-06-01

    We present here the results of a simulation of the effect of gold and graphene coatings on silicon micro-ring resonators. We studied the effect of different radii of graphene on the time delay, from which one an interesting aspect of light pulse behaviors, such as fast light, was numerically investigated. The obtained results indicate that the time delay can be varied, which is in good agreement with theoretical predictions. Fast and slow light pulse trains can be obtained by modifying the throughput port, which forms the gold grating length. The temporal gaps between the fast and slow light in the used graphene and gold are 140 and 168 fs, respectively, which can be tuned by varying the radius or grating length. The obtained results show that such a device may be useful in applications requiring fast and slow light pulse train pairs, such as optical switching, sensors, communications, and security applications.

  17. Fast and slow light generated by surface plasmon wave and gold grating coupling effects

    NASA Astrophysics Data System (ADS)

    Amiri, Iraj S.; Ariannejad, M. M.; Tajdidzadeh, M.; Sorger, Volker J.; Ling, Xi; Yupapin, P.

    2018-01-01

    We present here the results of a simulation of the effect of gold and graphene coatings on silicon micro-ring resonators. We studied the effect of different radii of graphene on the time delay, from which one an interesting aspect of light pulse behaviors, such as fast light, was numerically investigated. The obtained results indicate that the time delay can be varied, which is in good agreement with theoretical predictions. Fast and slow light pulse trains can be obtained by modifying the throughput port, which forms the gold grating length. The temporal gaps between the fast and slow light in the used graphene and gold are 140 and 168 fs, respectively, which can be tuned by varying the radius or grating length. The obtained results show that such a device may be useful in applications requiring fast and slow light pulse train pairs, such as optical switching, sensors, communications, and security applications.

  18. Generation of Shear Alfvén Waves by Repetitive High Power Microwave Pulses Near the Electron Plasma Frequency - A laboratory study of a ``Virtual Antenna''

    NASA Astrophysics Data System (ADS)

    Wang, Yuhou; Gekelman, Walter; Pribyl, Patrick; van Compernolle, Bart; Papadopoulos, Konstantinos

    2015-11-01

    ELF / ULF waves are important in terrestrial radio communications but difficult to launch using ground-based structures due to their enormous wavelengths. In spite of this generation of such waves by field-aligned ionospheric heating modulation was first demonstrated using the HAARP facility. In the future heaters near the equator will be constructed and laboratory experiments on cross-field wave propagation could be key to the program's success. Here we report a detailed laboratory study conducted on the Large Plasma Device (LaPD) at UCLA. In this experiment, ten rapid pulses of high power microwaves (250 kW X-band) near the plasma frequency were launched transverse to the background field, and were modulated at a variable fraction (0.1-1.0) of fci. Along with bulk electron heating and density modification, the microwave pulses generated a population of fast electrons. The field-aligned current carried by the fast electrons acted as an antenna that radiated shear Alfvén waves. It was demonstrated that a controllable arbitrary frequency (f

  19. Time-domain separation of interfering waves in cancellous bone using bandlimited deconvolution: simulation and phantom study.

    PubMed

    Wear, Keith A

    2014-04-01

    In through-transmission interrogation of cancellous bone, two longitudinal pulses ("fast" and "slow" waves) may be generated. Fast and slow wave properties convey information about material and micro-architectural characteristics of bone. However, these properties can be difficult to assess when fast and slow wave pulses overlap in time and frequency domains. In this paper, two methods are applied to decompose signals into fast and slow waves: bandlimited deconvolution and modified least-squares Prony's method with curve-fitting (MLSP + CF). The methods were tested in plastic and Zerdine(®) samples that provided fast and slow wave velocities commensurate with velocities for cancellous bone. Phase velocity estimates were accurate to within 6 m/s (0.4%) (slow wave with both methods and fast wave with MLSP + CF) and 26 m/s (1.2%) (fast wave with bandlimited deconvolution). Midband signal loss estimates were accurate to within 0.2 dB (1.7%) (fast wave with both methods), and 1.0 dB (3.7%) (slow wave with both methods). Similar accuracies were found for simulations based on fast and slow wave parameter values published for cancellous bone. These methods provide sufficient accuracy and precision for many applications in cancellous bone such that experimental error is likely to be a greater limiting factor than estimation error.

  20. A wireless handheld probe with spectrally constrained evolution strategies for diffuse optical imaging of tissue

    NASA Astrophysics Data System (ADS)

    Flexman, M. L.; Kim, H. K.; Stoll, R.; Khalil, M. A.; Fong, C. J.; Hielscher, A. H.

    2012-03-01

    We present a low-cost, portable, wireless diffuse optical imaging device. The handheld device is fast, portable, and can be applied to a wide range of both static and dynamic imaging applications including breast cancer, functional brain imaging, and peripheral artery disease. The continuous-wave probe has four near-infrared wavelengths and uses digital detection techniques to perform measurements at 2.3 Hz. Using a multispectral evolution algorithm for chromophore reconstruction, we can measure absolute oxygenated and deoxygenated hemoglobin concentration as well as scattering in tissue. Performance of the device is demonstrated using a series of liquid phantoms comprised of Intralipid®, ink, and dye.

  1. Liquid Crystal on Silicon Wavefront Corrector

    NASA Technical Reports Server (NTRS)

    Pouch, John; Miranda, Felix; Wang, Xinghua; Bos, Philip, J.

    2004-01-01

    A low cost, high resolution, liquid crystal on silicon, spatial light modulator has been developed for the correction of huge aberrations in an optical system where the polarization dependence and the chromatic nature are tolerated. However, the overall system performance suggests that this device is also suitable for real time correction of aberration in human eyes. This device has a resolution of 1024 x 768, and is driven by an XGA display driver. The effective stroke length of the device is 700 nm and 2000 nm for the visible and IR regions of the device, respectively. The response speeds are 50 Hz and 5 Hz, respectively, which are fast enough for real time adaptive optics for aberrations in human eyes. By modulating a wavefront of 2 pi, this device can correct for arbitrary high order wavefront aberrations since the 2-D pixel array is independently controlled by the driver. The high resolution and high accuracy of the device allow for diffraction limited correction of the tip and tilt or defocus without an additional correction loop. We have shown that for every wave of aberration, an 8 step blazed grating is required to achieve high diffraction efficiency around 80%. In light of this, up to 125 waves peak to valley of tip and tilt can be corrected if we choose the simplest aberration. Corrections of 34 waves of aberration, including high order Zernicke terms in a high magnification telescope, to diffraction limited performance (residual wavefront aberration less than 1/30 lambda at 632.8 nm) have been observed at high efficiency.

  2. Heating and current drive on NSTX

    NASA Astrophysics Data System (ADS)

    Wilson, J. R.; Batchelor, D.; Carter, M.; Hosea, J.; Ignat, D.; LeBlanc, B.; Majeski, R.; Ono, M.; Phillips, C. K.; Rogers, J. H.; Schilling, G.

    1997-04-01

    Low aspect ratio tokamaks pose interesting new challenges for heating and current drive. The NSTX (National Spherical Tokamak Experiment) device to be built at Princeton is a low aspect ratio toroidal device that has the achievement of high toroidal beta (˜45%) and non-inductive operation as two of its main research goals. To achieve these goals significant auxiliary heating and current drive systems are required. Present plans include ECH (Electron cyclotron heating) for pre-ionization and start-up assist, HHFW (high harmonic fast wave) for heating and current drive and eventually NBI (neutral beam injection) for heating, current drive and plasma rotation.

  3. Long-wave plasma radiofrequency ablation for treatment of xanthelasma palpebrarum.

    PubMed

    Baroni, Adone

    2018-03-01

    Xanthelasma palpebrarum is the most common type of xanthoma affecting the eyelids. It is characterized by asymptomatic soft yellowish macules, papules, or plaques over the upper and lower eyelids. Many treatments are available for management of xanthelasma palpebrarum, the most commonly used include surgical excision, ablative CO 2 or erbium lasers, nonablative Q-switched Nd:YAG laser, trichloroacetic acid peeling, and radiofrequency ablation. This study aims to evaluate the effectiveness of RF ablation in the treatment of xanthelasma palpebrarum, with D.A.S. Medical portable device (Technolux, Italia), a radiofrequency tool working with long-wave plasma energy and without anesthesia. Twenty patients, 15 female and 5 male, affected by xanthelasma palpebrarum, were enrolled for long-wave plasma radiofrequency ablation treatment. The treatment consisted of 3/4 sessions that were carried out at intervals of 30 days. Treatments were well tolerated by all patients with no adverse effects and optimal aesthetic results. The procedure is very fast and can be performed without anesthesia because of the low and tolerable pain stimulation. Long-wave plasma radiofrequency ablation is an effective option for treatment of xanthelasma palpebrarum and adds an additional tool to the increasing list of medical devices for aesthetic treatments. © 2018 Wiley Periodicals, Inc.

  4. Two-wave propagation in in vitro swine distal ulna

    NASA Astrophysics Data System (ADS)

    Mano, Isao; Horii, Kaoru; Matsukawa, Mami; Otani, Takahiko

    2015-07-01

    Ultrasonic transmitted waves were obtained in an in vitro swine distal ulna specimen, which mimics a human distal radius, that consists of interconnected cortical bone and cancellous bone. The transmitted waveforms appeared similar to the fast waves, slow waves, and overlapping fast and slow waves measured in the specimen after removing the surface cortical bone (only cancellous bone). In addition, the circumferential waves in the cortical bone and water did not affect the fast and slow waves. This suggests that the fast-and-slow-wave phenomenon can be observed in an in vivo human distal radius.

  5. Numerical and experimental study on the wave attenuation in bone--FDTD simulation of ultrasound propagation in cancellous bone.

    PubMed

    Nagatani, Yoshiki; Mizuno, Katsunori; Saeki, Takashi; Matsukawa, Mami; Sakaguchi, Takefumi; Hosoi, Hiroshi

    2008-11-01

    In cancellous bone, longitudinal waves often separate into fast and slow waves depending on the alignment of bone trabeculae in the propagation path. This interesting phenomenon becomes an effective tool for the diagnosis of osteoporosis because wave propagation behavior depends on the bone structure. Since the fast wave mainly propagates in trabeculae, this wave is considered to reflect the structure of trabeculae. For a new diagnosis method using the information of this fast wave, therefore, it is necessary to understand the generation mechanism and propagation behavior precisely. In this study, the generation process of fast wave was examined by numerical simulations using elastic finite-difference time-domain (FDTD) method and experimental measurements. As simulation models, three-dimensional X-ray computer tomography (CT) data of actual bone samples were used. Simulation and experimental results showed that the attenuation of fast wave was always higher in the early state of propagation, and they gradually decreased as the wave propagated in bone. This phenomenon is supposed to come from the complicated propagating paths of fast waves in cancellous bone.

  6. Theory and observation of the onset of nonlinear structures due to eigenmode destabilization by fast ions in tokamaks

    DOE PAGES

    Duarte, V. N.; Berk, H. L.; Gorelenkov, N. N.; ...

    2017-12-12

    Alfvén waves can induce the ejection of fast ions in different forms in tokamaks. In order to develop predictive capabilities to anticipate the nature of fast ion transport, a methodology is proposed to differentiate the likelihood of energetic-particle-driven instabilities to produce frequency chirping or fixed-frequency oscillations. Furthermore, the proposed method employs numerically calculated eigenstructures and multiple resonance surfaces of a given mode in the presence of energetic ion drag and stochasticity (due to collisions and micro-turbulence). Toroidicity-induced, reversed-shear and beta-induced Alfvén-acoustic eigenmodes are used as examples. Waves measured in experiments are characterized, and compatibility is found between the proposed criterionmore » predictions and the experimental observation or lack of observation of chirping behavior of Alfvénic modes in different tokamaks. It is found that the stochastic diffusion due to micro-turbulence can be the dominant energetic particle detuning mechanism near the resonances in many plasma experiments, and its strength is the key as to whether chirping solutions are likely to arise. We proposed a criterion that constitutes a useful predictive tool in assessing whether the nature of the transport for fast ion losses in fusion devices will be dominated by convective or diffusive processes.« less

  7. Theory and observation of the onset of nonlinear structures due to eigenmode destabilization by fast ions in tokamaks

    NASA Astrophysics Data System (ADS)

    Duarte, V. N.; Berk, H. L.; Gorelenkov, N. N.; Heidbrink, W. W.; Kramer, G. J.; Nazikian, R.; Pace, D. C.; Podestà, M.; Van Zeeland, M. A.

    2017-12-01

    Alfvén waves can induce the ejection of fast ions in different forms in tokamaks. In order to develop predictive capabilities to anticipate the nature of fast ion transport, a methodology is proposed to differentiate the likelihood of energetic-particle-driven instabilities to produce frequency chirping or fixed-frequency oscillations. The proposed method employs numerically calculated eigenstructures and multiple resonance surfaces of a given mode in the presence of energetic ion drag and stochasticity (due to collisions and micro-turbulence). Toroidicity-induced, reversed-shear and beta-induced Alfvén-acoustic eigenmodes are used as examples. Waves measured in experiments are characterized, and compatibility is found between the proposed criterion predictions and the experimental observation or lack of observation of chirping behavior of Alfvénic modes in different tokamaks. It is found that the stochastic diffusion due to micro-turbulence can be the dominant energetic particle detuning mechanism near the resonances in many plasma experiments, and its strength is the key as to whether chirping solutions are likely to arise. The proposed criterion constitutes a useful predictive tool in assessing whether the nature of the transport for fast ion losses in fusion devices will be dominated by convective or diffusive processes.

  8. Theory and observation of the onset of nonlinear structures due to eigenmode destabilization by fast ions in tokamaks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duarte, V. N.; Berk, H. L.; Gorelenkov, N. N.

    Alfvén waves can induce the ejection of fast ions in different forms in tokamaks. In order to develop predictive capabilities to anticipate the nature of fast ion transport, a methodology is proposed to differentiate the likelihood of energetic-particle-driven instabilities to produce frequency chirping or fixed-frequency oscillations. Furthermore, the proposed method employs numerically calculated eigenstructures and multiple resonance surfaces of a given mode in the presence of energetic ion drag and stochasticity (due to collisions and micro-turbulence). Toroidicity-induced, reversed-shear and beta-induced Alfvén-acoustic eigenmodes are used as examples. Waves measured in experiments are characterized, and compatibility is found between the proposed criterionmore » predictions and the experimental observation or lack of observation of chirping behavior of Alfvénic modes in different tokamaks. It is found that the stochastic diffusion due to micro-turbulence can be the dominant energetic particle detuning mechanism near the resonances in many plasma experiments, and its strength is the key as to whether chirping solutions are likely to arise. We proposed a criterion that constitutes a useful predictive tool in assessing whether the nature of the transport for fast ion losses in fusion devices will be dominated by convective or diffusive processes.« less

  9. Wavelet library for constrained devices

    NASA Astrophysics Data System (ADS)

    Ehlers, Johan Hendrik; Jassim, Sabah A.

    2007-04-01

    The wavelet transform is a powerful tool for image and video processing, useful in a range of applications. This paper is concerned with the efficiency of a certain fast-wavelet-transform (FWT) implementation and several wavelet filters, more suitable for constrained devices. Such constraints are typically found on mobile (cell) phones or personal digital assistants (PDA). These constraints can be a combination of; limited memory, slow floating point operations (compared to integer operations, most often as a result of no hardware support) and limited local storage. Yet these devices are burdened with demanding tasks such as processing a live video or audio signal through on-board capturing sensors. In this paper we present a new wavelet software library, HeatWave, that can be used efficiently for image/video processing/analysis tasks on mobile phones and PDA's. We will demonstrate that HeatWave is suitable for realtime applications with fine control and range to suit transform demands. We shall present experimental results to substantiate these claims. Finally this library is intended to be of real use and applied, hence we considered several well known and common embedded operating system platform differences; such as a lack of common routines or functions, stack limitations, etc. This makes HeatWave suitable for a range of applications and research projects.

  10. Experimental investigation of flow induced dust acoustic shock waves in a complex plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jaiswal, S., E-mail: surabhijaiswal73@gmail.com; Bandyopadhyay, P.; Sen, A.

    2016-08-15

    We report on experimental observations of flow induced large amplitude dust-acoustic shock waves in a complex plasma. The experiments have been carried out in a Π shaped direct current glow discharge experimental device using kaolin particles as the dust component in a background of Argon plasma. A strong supersonic flow of the dust fluid is induced by adjusting the pumping speed and neutral gas flow into the device. An isolated copper wire mounted on the cathode acts as a potential barrier to the flow of dust particles. A sudden change in the gas flow rate is used to trigger themore » onset of high velocity dust acoustic shocks whose dynamics are captured by fast video pictures of the evolving structures. The physical characteristics of these shocks are delineated through a parametric scan of their dynamical properties over a range of flow speeds and potential hill heights. The observed evolution of the shock waves and their propagation characteristics are found to compare well with model numerical results based on a modified Korteweg-de-Vries-Burgers type equation.« less

  11. A Novel Approach to Resonant Absorption of the Fast Magnetohydrodynamic Eigenmodes of a Coronal Arcade

    NASA Astrophysics Data System (ADS)

    Hindman, Bradley W.; Jain, Rekha

    2018-05-01

    The arched field lines forming coronal arcades are often observed to undulate as magnetohydrodynamic waves propagate both across and along the magnetic field. These waves are most likely a combination of resonantly coupled fast magnetoacoustic waves and Alfvén waves. The coupling results in resonant absorption of the fast waves, converting fast wave energy into Alfvén waves. The fast eigenmodes of the arcade have proven difficult to compute or derive analytically, largely because of the mathematical complexity that the coupling introduces. When a traditional spectral decomposition is employed, the discrete spectrum associated with the fast eigenmodes is often subsumed into the continuous Alfvén spectrum. Thus fast eigenmodes become collective modes or quasi-modes. Here we present a spectral decomposition that treats the eigenmodes as having real frequencies but complex wavenumbers. Using this procedure we derive dispersion relations, spatial damping rates, and eigenfunctions for the resonant, fast eigenmodes of the arcade. We demonstrate that resonant absorption introduces a fast mode that would not exist otherwise. This new mode is heavily damped by resonant absorption, travelling only a few wavelengths before losing most of its energy.

  12. A post-processing method to simulate the generalized RF sheath boundary condition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Myra, James R.; Kohno, Haruhiko

    For applications of ICRF power in fusion devices, control of RF sheath interactions is of great importance. A sheath boundary condition (SBC) was previously developed to provide an effective surface impedance for the interaction of the RF sheath with the waves. The SBC enables the surface power flux and rectified potential energy available for sputtering to be calculated. For legacy codes which cannot easily implement the SBC, or to speed convergence in codes which do implement it, we consider here an approximate method to simulate SBCs by post-processing results obtained using other, e.g. conducting wall, boundary conditions. The basic approximationmore » is that the modifications resulting from the generalized SBC are driven by a fixed incoming wave which could be either a fast wave or a slow wave. Finally, the method is illustrated in slab geometry and compared with exact numerical solutions; it is shown to work very well.« less

  13. A post-processing method to simulate the generalized RF sheath boundary condition

    DOE PAGES

    Myra, James R.; Kohno, Haruhiko

    2017-10-23

    For applications of ICRF power in fusion devices, control of RF sheath interactions is of great importance. A sheath boundary condition (SBC) was previously developed to provide an effective surface impedance for the interaction of the RF sheath with the waves. The SBC enables the surface power flux and rectified potential energy available for sputtering to be calculated. For legacy codes which cannot easily implement the SBC, or to speed convergence in codes which do implement it, we consider here an approximate method to simulate SBCs by post-processing results obtained using other, e.g. conducting wall, boundary conditions. The basic approximationmore » is that the modifications resulting from the generalized SBC are driven by a fixed incoming wave which could be either a fast wave or a slow wave. Finally, the method is illustrated in slab geometry and compared with exact numerical solutions; it is shown to work very well.« less

  14. FAST MAGNETOACOUSTIC WAVE TRAINS OF SAUSAGE SYMMETRY IN CYLINDRICAL WAVEGUIDES OF THE SOLAR CORONA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shestov, S.; Kuzin, S.; Nakariakov, V. M., E-mail: sshestov@gmail.com

    2015-12-01

    Fast magnetoacoustic waves guided along the magnetic field by plasma non-uniformities, in particular coronal loops, fibrils, and plumes, are known to be highly dispersive, which lead to the formation of quasi-periodic wave trains excited by a broadband impulsive driver, e.g., a solar flare. We investigated the effects of cylindrical geometry on the fast sausage wave train formation. We performed magnetohydrodynamic numerical simulations of fast magnetoacoustic perturbations of a sausage symmetry, propagating from a localized impulsive source along a field-aligned plasma cylinder with a smooth radial profile of the fast speed. The wave trains are found to have pronounced period modulation,more » with the longer instant period seen in the beginning of the wave train. The wave trains also have a pronounced amplitude modulation. Wavelet spectra of the wave trains have characteristic tadpole features, with the broadband large-amplitude heads preceding low-amplitude quasi-monochromatic tails. The mean period of the wave train is about the transverse fast magnetoacoustic transit time across the cylinder. The mean parallel wavelength is about the diameter of the wave-guiding plasma cylinder. Instant periods are longer than the sausage wave cutoff period. The wave train characteristics depend on the fast magnetoacoustic speed in both the internal and external media, the smoothness of the transverse profile of the equilibrium quantities, and also the spatial size of the initial perturbation. If the initial perturbation is localized at the axis of the cylinder, the wave trains contain higher radial harmonics that have shorter periods.« less

  15. Current drive with combined electron cyclotron wave and high harmonic fast wave in tokamak plasmas

    NASA Astrophysics Data System (ADS)

    Li, J. C.; Gong, X. Y.; Dong, J. Q.; Wang, J.; Zhang, N.; Zheng, P. W.; Yin, C. Y.

    2016-12-01

    The current driven by combined electron cyclotron wave (ECW) and high harmonic fast wave is investigated using the GENRAY/CQL3D package. It is shown that no significant synergetic current is found in a range of cases with a combined ECW and fast wave (FW). This result is consistent with a previous study [Harvey et al., in Proceedings of IAEA TCM on Fast Wave Current Drive in Reactor Scale Tokamaks (Synergy and Complimentarily with LHCD and ECRH), Arles, France, IAEA, Vienna, 1991]. However, a positive synergy effect does appear with the FW in the lower hybrid range of frequencies. This positive synergy effect can be explained using a picture of the electron distribution function induced by the ECW and a very high harmonic fast wave (helicon). The dependence of the synergy effect on the radial position of the power deposition, the wave power, the wave frequency, and the parallel refractive index is also analyzed, both numerically and physically.

  16. Fast gain recovery rates with strong wavelength dependence in a non-linear SOA.

    PubMed

    Cleary, Ciaran S; Power, Mark J; Schneider, Simon; Webb, Roderick P; Manning, Robert J

    2010-12-06

    We report remarkably fast and strongly wavelength-dependent gain recovery in a single SOA without the aid of an offset filter. Full gain recovery times as short as 9 ps were observed in pump-probe measurements when pumping to the blue wavelength side of a continuous wave probe, in contrast to times of 25 to 30 ps when pumping to the red wavelength side. Experimental and numerical analysis indicate that the long effective length and high gain led to deep saturation of the second half of the SOA by the probe. The consequent absorption of blue-shifted pump pulses in this region resulted in device dynamics analogous to those of the Turbo-Switch.

  17. High frequency modulation and injection locking of terahertz quantum cascade lasers

    NASA Astrophysics Data System (ADS)

    Gu, L.; Wan, W. J.; Zhu, Y. H.; Fu, Z. L.; Li, H.; Cao, J. C.

    2017-06-01

    Due to intersubband transitions, the quantum cascade laser (QCL) is free of relaxations and able to work under fast modulations. In this work, the authors investigate the fast modulation properties of a continuous wave (cw) terahertz QCL emitting around 3 THz (˜100 μm). Both simulation and experimental results show that the 3 dB modulation bandwidth for the device can reach 11.5 GHz and the modulation response curve is relatively flat upto ˜16 GHz. The radio frequency (RF) injection measurements verify that around the laser threshold the inter-mode beat note interacts strongly with the RF signal and the laser can be modulated at the round trip frequency of 15.5 GHz.

  18. Multi-point measurement using two-channel reflectometer with antenna switching for study of high-frequency fluctuations in GAMMA 10

    NASA Astrophysics Data System (ADS)

    Ikezoe, R.; Ichimura, M.; Okada, T.; Itagaki, J.; Hirata, M.; Sumida, S.; Jang, S.; Izumi, K.; Tanaka, A.; Yoshikawa, M.; Kohagura, J.; Sakamoto, M.; Nakashima, Y.

    2017-03-01

    A two-channel microwave reflectometer system with fast microwave antenna switching capability was developed and applied to the GAMMA 10 tandem mirror device to study high-frequency small-amplitude fluctuations in a hot mirror plasma. The fast switching of the antennas is controlled using PIN diode switches, which offers the significant advantage of reducing the number of high-cost microwave components and digitizers with high bandwidths and large memory that are required to measure the spatiotemporal behavior of the high-frequency fluctuations. The use of two channels rather than one adds the important function of a simultaneous two-point measurement in either the radial direction or the direction of the antenna array to measure the phase profile of the fluctuations along with the normal amplitude profile. The density fluctuations measured using this system clearly showed the high-frequency coherent fluctuations that are associated with Alfvén-ion-cyclotron (AIC) waves in GAMMA 10. A correlation analysis applied to simultaneously measured density fluctuations showed that the phase component that was included in a reflected microwave provided both high coherence and a clear phase difference for the AIC waves, while the amplitude component showed neither significant coherence nor clear phase difference. The axial phase differences of the AIC waves measured inside the hot plasma confirmed the formation of a standing wave structure. The axial variation of the radial profiles was evaluated and a clear difference was found among the AIC waves for the first time, which would be a key to clarify the unknown boundary conditions of the AIC waves.

  19. Fast, high sensitivity dewpoint hygrometer

    NASA Technical Reports Server (NTRS)

    Hoenk, Michael E. (Inventor)

    1998-01-01

    A dewpoint/frostpoint hygrometer that uses a surface moisture-sensitive sensor as part of an RF oscillator circuit with feedback control of the sensor temperature to maintain equilibrium at the sensor surface between ambient water vapor and condensed water/ice. The invention is preferably implemented using a surface acoustic wave (SAW) device in an RF oscillator circuit configured to generate a condensation-dependent output signal, a temperature sensor to measure the temperature of the SAW device and to distinguish between condensation-dependent and temperature-dependent signals, a temperature regulating device to control the temperature of the SAW device, and a feedback control system configured to keep the condensation-dependent signal nearly constant over time in the presence of time-varying humidity, corrected for temperature. The effect of this response is to heat or cool the surface moisture-sensitive device, which shifts the equilibrium with respect to evaporation and condensation at the surface of the device. The equilibrium temperature under feedback control is a measure of dewpoint or frostpoint.

  20. Effect of the scrape-off layer in AORSA full wave simulations of fast wave minority, mid/high harmonic, and helicon heating regimes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bertelli, N., E-mail: nbertell@pppl.gov; Gerhardt, S.; Hosea, J. C.

    2015-12-10

    Several experiments on different machines and in different fast wave (FW) heating regimes, such as hydrogen minority heating and high harmonic fast waves, have found strong interactions between radio-frequency (RF) waves and the scrape-off layer (SOL) region. This paper examines the propagation and the power loss in the SOL by using the full wave code AORSA, in which the edge plasma beyond the last closed flux surface (LCFS) is included in the solution domain and a collisional damping parameter is used as a proxy to represent the real, and most likely nonlinear, damping processes. 3D AORSA results for the Nationalmore » Spherical Torus eXperiment (NSTX), where a full antenna spectrum is reconstructed, are shown, confirming the same behavior found for a single toroidal mode results in Bertelli et al, Nucl. Fusion, 54 083004, 2014, namely, a strong transition to higher SOL power losses (driven by the RF field) when the FW cut-off is moved away from in front of the antenna by increasing the edge density. Additionally, full wave simulations have been extended to “conventional” tokamaks with higher aspect ratios, such as the DIII-D, Alcator C-Mod, and EAST devices. DIII-D results show similar behavior found in NSTX and NSTX-U, consistent with previous DIII-D experimental observations. In contrast, a different behavior has been found for Alcator C-Mod and EAST, which operate in the minority heating regime unlike NSTX/NSTX-U and DIII-D, which operate in the mid/high harmonic regime. A substantial discussion of some of the main aspects, such as (i) the pitch angle of the magnetic field; (ii) minority heating vs. mid/high harmonic regimes is presented showing the different behavior of the RF field in the SOL region for NSTX-U scenarios with different plasma current. Finally, the preliminary results of the impact of the SOL region on the evaluation of the helicon current drive efficiency in DIII-D is presented for the first time and briefly compared with the different regimes mentioned above.« less

  1. Effect of the scrape-off layer in AORSA full wave simulations of fast wave minority, mid/high harmonic, and helicon heating regimes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bertelli, Nicola; Jaeger, E. F.; Lau, Cornwall H

    2015-01-01

    Several experiments on different machines and in different fast wave (FW) heating regimes, such as hydrogen minority heating and high harmonic fast waves, have found strong interactions between radio-frequency (RF) waves and the scrape-off layer (SOL) region. This paper examines the propagation and the power loss in the SOL by using the full wave code AORSA, in which the edge plasma beyond the last closed flux surface (LCFS) is included in the solution domain and a collisional damping parameter is used as a proxy to represent the real, and most likely nonlinear, damping processes. 3D AORSA results for the Nationalmore » Spherical Torus eXperiment (NSTX), where a full antenna spectrum is reconstructed, are shown, confirming the same behavior found for a single toroidal mode results in Bertelli et al, Nucl. Fusion, 54 083004, 2014, namely, a strong transition to higher SOL power losses (driven by the RF field) when the FW cut-off is moved away from in front of the antenna by increasing the edge density. Additionally, full wave simulations have been extended to "conventional" tokamaks with higher aspect ratios, such as the DIII-D, Alcator C-Mod, and EAST devices. DIII-D results show similar behavior found in NSTX and NSTX-U, consistent with previous DIII-D experimental observations. In contrast, a different behavior has been found for Alcator C-Mod and EAST, which operate in the minority heating regime unlike NSTX/NSTX-U and DIII-D, which operate in the mid/high harmonic regime. A substantial discussion of some of the main aspects, such as (i) the pitch angle of the magnetic field; (ii) minority heating vs. mid/high harmonic regimes is presented showing the different behavior of the RF field in the SOL region for NSTX-U scenarios with different plasma current. Finally, the preliminary results of the impact of the SOL region on the evaluation of the helicon current drive efficiency in DIII-D is presented for the first time and briefly compared with the different regimes mentioned above.« less

  2. Determining attenuation properties of interfering fast and slow ultrasonic waves in cancellous bone.

    PubMed

    Nelson, Amber M; Hoffman, Joseph J; Anderson, Christian C; Holland, Mark R; Nagatani, Yoshiki; Mizuno, Katsunori; Matsukawa, Mami; Miller, James G

    2011-10-01

    Previous studies have shown that interference between fast waves and slow waves can lead to observed negative dispersion in cancellous bone. In this study, the effects of overlapping fast and slow waves on measurements of the apparent attenuation as a function of propagation distance are investigated along with methods of analysis used to determine the attenuation properties. Two methods are applied to simulated data that were generated based on experimentally acquired signals taken from a bovine specimen. The first method uses a time-domain approach that was dictated by constraints imposed by the partial overlap of fast and slow waves. The second method uses a frequency-domain log-spectral subtraction technique on the separated fast and slow waves. Applying the time-domain analysis to the broadband data yields apparent attenuation behavior that is larger in the early stages of propagation and decreases as the wave travels deeper. In contrast, performing frequency-domain analysis on the separated fast waves and slow waves results in attenuation coefficients that are independent of propagation distance. Results suggest that features arising from the analysis of overlapping two-mode data may represent an alternate explanation for the previously reported apparent dependence on propagation distance of the attenuation coefficient of cancellous bone. © 2011 Acoustical Society of America

  3. Determining attenuation properties of interfering fast and slow ultrasonic waves in cancellous bone

    PubMed Central

    Nelson, Amber M.; Hoffman, Joseph J.; Anderson, Christian C.; Holland, Mark R.; Nagatani, Yoshiki; Mizuno, Katsunori; Matsukawa, Mami; Miller, James G.

    2011-01-01

    Previous studies have shown that interference between fast waves and slow waves can lead to observed negative dispersion in cancellous bone. In this study, the effects of overlapping fast and slow waves on measurements of the apparent attenuation as a function of propagation distance are investigated along with methods of analysis used to determine the attenuation properties. Two methods are applied to simulated data that were generated based on experimentally acquired signals taken from a bovine specimen. The first method uses a time-domain approach that was dictated by constraints imposed by the partial overlap of fast and slow waves. The second method uses a frequency-domain log-spectral subtraction technique on the separated fast and slow waves. Applying the time-domain analysis to the broadband data yields apparent attenuation behavior that is larger in the early stages of propagation and decreases as the wave travels deeper. In contrast, performing frequency-domain analysis on the separated fast waves and slow waves results in attenuation coefficients that are independent of propagation distance. Results suggest that features arising from the analysis of overlapping two-mode data may represent an alternate explanation for the previously reported apparent dependence on propagation distance of the attenuation coefficient of cancellous bone. PMID:21973378

  4. STEREO OBSERVATIONS OF FAST MAGNETOSONIC WAVES IN THE EXTENDED SOLAR CORONA ASSOCIATED WITH EIT/EUV WAVES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kwon, Ryun-Young; Ofman, Leon; Kramar, Maxim

    2013-03-20

    We report white-light observations of a fast magnetosonic wave associated with a coronal mass ejection observed by STEREO/SECCHI/COR1 inner coronagraphs on 2011 August 4. The wave front is observed in the form of density compression passing through various coronal regions such as quiet/active corona, coronal holes, and streamers. Together with measured electron densities determined with STEREO COR1 and Extreme UltraViolet Imager (EUVI) data, we use our kinematic measurements of the wave front to calculate coronal magnetic fields and find that the measured speeds are consistent with characteristic fast magnetosonic speeds in the corona. In addition, the wave front turns outmore » to be the upper coronal counterpart of the EIT wave observed by STEREO EUVI traveling against the solar coronal disk; moreover, stationary fronts of the EIT wave are found to be located at the footpoints of deflected streamers and boundaries of coronal holes, after the wave front in the upper solar corona passes through open magnetic field lines in the streamers. Our findings suggest that the observed EIT wave should be in fact a fast magnetosonic shock/wave traveling in the inhomogeneous solar corona, as part of the fast magnetosonic wave propagating in the extended solar corona.« less

  5. Conventional, Bayesian, and Modified Prony's methods for characterizing fast and slow waves in equine cancellous bone

    PubMed Central

    Groopman, Amber M.; Katz, Jonathan I.; Holland, Mark R.; Fujita, Fuminori; Matsukawa, Mami; Mizuno, Katsunori; Wear, Keith A.; Miller, James G.

    2015-01-01

    Conventional, Bayesian, and the modified least-squares Prony's plus curve-fitting (MLSP + CF) methods were applied to data acquired using 1 MHz center frequency, broadband transducers on a single equine cancellous bone specimen that was systematically shortened from 11.8 mm down to 0.5 mm for a total of 24 sample thicknesses. Due to overlapping fast and slow waves, conventional analysis methods were restricted to data from sample thicknesses ranging from 11.8 mm to 6.0 mm. In contrast, Bayesian and MLSP + CF methods successfully separated fast and slow waves and provided reliable estimates of the ultrasonic properties of fast and slow waves for sample thicknesses ranging from 11.8 mm down to 3.5 mm. Comparisons of the three methods were carried out for phase velocity at the center frequency and the slope of the attenuation coefficient for the fast and slow waves. Good agreement among the three methods was also observed for average signal loss at the center frequency. The Bayesian and MLSP + CF approaches were able to separate the fast and slow waves and provide good estimates of the fast and slow wave properties even when the two wave modes overlapped in both time and frequency domains making conventional analysis methods unreliable. PMID:26328678

  6. Wave-particle interactions on the FAST satellite

    NASA Technical Reports Server (NTRS)

    Temerin, M. A.; Carlson, C. W.; Cattell, C. A.; Ergun, R. E.; Mcfadden, J. P.

    1990-01-01

    NASA's Fast Auroral Snapshot, or 'FAST' satellite, scheduled for launch in 1993, will investigate the plasma physics of the low altitude auroral zone from a 3500-km apogee polar orbit. FAST will give attention to wave, double-layer, and soliton production processes due to electrons and ions, as well as to wave-wave interactions, and the acceleration of electrons and ions by waves and electric fields. FAST will employ an intelligent data-handling system capacle of data acquisition at rates of up to 1 Mb/sec, in addition to a 1-Gbit solid-state memory. The data need be gathered for only a few minutes during passes through the auroral zone, since the most interesting auroral phenomena occur in such narrow regions as auroral arcs, electrostatic shocks, and superthermal electron bursts.

  7. On the nature of fast sausage waves in coronal loops

    NASA Astrophysics Data System (ADS)

    Bahari, Karam

    2018-05-01

    The effect of the parameters of coronal loops on the nature of fast sausage waves are investigated. To do this three models of the coronal loop considered, a simple loop model, a current-carrying loop model and a model with radially structured density called "Inner μ" profile. For all the models the Magnetohydrodynamic (MHD) equations solved analytically in the linear approximation and the restoring forces of oscillations obtained. The ratio of the magnetic tension force to the pressure gradient force obtained as a function of the distance from the axis of the loop. In the simple loop model for all values of the loop parameters the fast sausages wave have a mixed nature of Alfvénic and fast MHD waves, in the current-carrying loop model with thick annulus and low density contrast the fast sausage waves can be considered as purely Alfvénic wave in the core region of the loop, and in the "Inner μ" profile for each set of the parameters of the loop the wave can be considered as a purely Alfvénic wave in some regions of the loop.

  8. Nonlinear compression of temporal solitons in an optical waveguide via inverse engineering

    NASA Astrophysics Data System (ADS)

    Paul, Koushik; Sarma, Amarendra K.

    2018-03-01

    We propose a novel method based on the so-called shortcut-to-adiabatic passage techniques to achieve fast compression of temporal solitons in a nonlinear waveguide. We demonstrate that soliton compression could be achieved, in principle, at an arbitrarily small distance by inverse-engineering the pulse width and the nonlinearity of the medium. The proposed scheme could possibly be exploited for various short-distance communication protocols and may be even in nonlinear guided wave-optics devices and generation of ultrashort soliton pulses.

  9. Modification of wave propagation and wave travel-time by the presence of magnetic fields in the solar network atmosphere

    NASA Astrophysics Data System (ADS)

    Nutto, C.; Steiner, O.; Schaffenberger, W.; Roth, M.

    2012-02-01

    Context. Observations of waves at frequencies above the acoustic cut-off frequency have revealed vanishing wave travel-times in the vicinity of strong magnetic fields. This detection of apparently evanescent waves, instead of the expected propagating waves, has remained a riddle. Aims: We investigate the influence of a strong magnetic field on the propagation of magneto-acoustic waves in the atmosphere of the solar network. We test whether mode conversion effects can account for the shortening in wave travel-times between different heights in the solar atmosphere. Methods: We carry out numerical simulations of the complex magneto-atmosphere representing the solar magnetic network. In the simulation domain, we artificially excite high frequency waves whose wave travel-times between different height levels we then analyze. Results: The simulations demonstrate that the wave travel-time in the solar magneto-atmosphere is strongly influenced by mode conversion. In a layer enclosing the surface sheet defined by the set of points where the Alfvén speed and the sound speed are equal, called the equipartition level, energy is partially transferred from the fast acoustic mode to the fast magnetic mode. Above the equipartition level, the fast magnetic mode is refracted due to the large gradient of the Alfvén speed. The refractive wave path and the increasing phase speed of the fast mode inside the magnetic canopy significantly reduce the wave travel-time, provided that both observing levels are above the equipartition level. Conclusions: Mode conversion and the resulting excitation and propagation of fast magneto-acoustic waves is responsible for the observation of vanishing wave travel-times in the vicinity of strong magnetic fields. In particular, the wave propagation behavior of the fast mode above the equipartition level may mimic evanescent behavior. The present wave propagation experiments provide an explanation of vanishing wave travel-times as observed with multi-line high-cadence instruments. Movies are available in electronic form at http://www.aanda.org

  10. Experiments on and observations of intense Alfvén waves in the laboratory

    NASA Astrophysics Data System (ADS)

    Gekelman, W.; Vanzeeland, M.; Vincena, S.

    2002-11-01

    There are many situations, which occur in space (coronal mass ejections, supernovas), or are man-made (upper atmospheric detonations) in which a dense plasma expands into a background magnetized plasma, that can support Alfvén waves. The LArge Plasma Device ( LAPD) is a machine, at UCLA, in which Alfvén wave propagation in homogeneous and inhomogeneous plasmas has been studied. We describe a series of experiments which involve the expansion of a dense (initially, n_lpp/n_0>>1) laser-produced plasma into an ambient highly magnetized background plasma capable of supporting Alfvén waves. The interaction results in the production of intense shear and compressional Alfvén waves, as well as large density perturbations. The magnetic fields of the waves are obtained with a 3-axis inductive probe. Spatial patterns of the magnetic fields associated with the waves and density perturbations are measured at over 10^4 locations. The wave generation mechanism is due to currents from fast electrons which leave the lpp and field aligned return currents provided by the plasma to neutralize space charge. Dramatic movies of the measured wave fields and their associated currents will be presented. *Work supported by the ONR, and DOE/NSF.

  11. Fast decomposition of two ultrasound longitudinal waves in cancellous bone using a phase rotation parameter for bone quality assessment: Simulation study.

    PubMed

    Taki, Hirofumi; Nagatani, Yoshiki; Matsukawa, Mami; Kanai, Hiroshi; Izumi, Shin-Ichi

    2017-10-01

    Ultrasound signals that pass through cancellous bone may be considered to consist of two longitudinal waves, which are called fast and slow waves. Accurate decomposition of these fast and slow waves is considered to be highly beneficial in determination of the characteristics of cancellous bone. In the present study, a fast decomposition method using a wave transfer function with a phase rotation parameter was applied to received signals that have passed through bovine bone specimens with various bone volume to total volume (BV/TV) ratios in a simulation study, where the elastic finite-difference time-domain method is used and the ultrasound wave propagated parallel to the bone axes. The proposed method succeeded to decompose both fast and slow waves accurately; the normalized residual intensity was less than -19.5 dB when the specimen thickness ranged from 4 to 7 mm and the BV/TV value ranged from 0.144 to 0.226. There was a strong relationship between the phase rotation value and the BV/TV value. The ratio of the peak envelope amplitude of the decomposed fast wave to that of the slow wave increased monotonically with increasing BV/TV ratio, indicating the high performance of the proposed method in estimation of the BV/TV value in cancellous bone.

  12. Simultaneous realization of slow and fast acoustic waves using a fractal structure of Koch curve.

    PubMed

    Ding, Jin; Fan, Li; Zhang, Shu-Yi; Zhang, Hui; Yu, Wei-Wei

    2018-01-24

    An acoustic metamaterial based on a fractal structure, the Koch curve, is designed to simultaneously realize slow and fast acoustic waves. Owing to the multiple transmitting paths in the structure resembling the Koch curve, the acoustic waves travelling along different paths interfere with each other. Therefore, slow waves are created on the basis of the resonance of a Koch-curve-shaped loop, and meanwhile, fast waves even with negative group velocities are obtained due to the destructive interference of two acoustic waves with opposite phases. Thus, the transmission of acoustic wave can be freely manipulated with the Koch-curve shaped structure.

  13. Fast selective trapping and release of picoliter droplets in a 3D microfluidic PDMS multi-trap system with bubbles.

    PubMed

    Rambach, Richard W; Biswas, Preetika; Yadav, Ashutosh; Garstecki, Piotr; Franke, Thomas

    2018-02-12

    The selective manipulation and incubation of individual picoliter drops in high-throughput droplet based microfluidic devices still remains challenging. We used a surface acoustic wave (SAW) to induce a bubble in a 3D designed multi-trap polydimethylsiloxane (PDMS) device to manipulate multiple droplets and demonstrate the selection, incubation and on-demand release of aqueous droplets from a continuous oil flow. By controlling the position of the acoustic actuation, individual droplets are addressed and selectively released from a droplet stream of 460 drops per s. A complete trapping and releasing cycle can be as short as 70 ms and has no upper limit for incubation time. We characterize the fluidic function of the hybrid device in terms of electric power, pulse duration and acoustic path.

  14. The tidal waves of connected health devices with healthcare applications: consequences on privacy and care management in European healthcare systems.

    PubMed

    Allaert, Francois-André; Mazen, Noël-Jean; Legrand, Louis; Quantin, Catherine

    2017-01-17

    The market for Connected Health Devices (CHD) with healthcare applications is growing fast and should be worth several billion euros in turnover in the coming years. Their development will completely transform the organisation of our healthcare system, profoundly change the way patients are managed and revolutionizes disease prevention. The CHD with healthcare applications is a tidal wave that has societal impact calling into question the privacy of patients' personal and healthcare information and its protection in secure systems. Rather than trying to stop the use of CHD, we must channel the wave by clearly examining the advantages versus the risks and threats to the patients, and find counter-measures for implementation. The main difficulty is channeling the wave in a way that is acceptable to CHD developers who otherwise will bypass the rules, even if they can be sued for it. Therefore, it appears necessary to implement guidelines that can be used by all developers, defining the minimum requirement for assuring the security of patient privacy and healthcare management. In European Healthcare Systems, there is an imperative need for establishing security guidelines that CHD producers could use to ensure compliance, so that patient privacy and healthcare management is safeguarded. The aim would be to implement the guidelines a posteriori rather than a priori control so as not to hamper innovation.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vincena, Stephen

    The aim of the original proposal was a basic plasma study to experimentally investigate the fundamental physics of how dense, fast-flowing, and field-aligned jets of plasma couple energy and momentum to a much larger, ambient, magnetized plasma. Coupling channels that were explored included bulk plasma heating and flow generation; shock wave production; and wave radiation, particularly in the form of shear and compressional Alfvén waves. The wave radiation, particularly to shear Alfvén waves was successfully modeled using the 3D Particle-In-Cell code, OSIRIS. Experimentally, these jets were produced via pulsed Nd:YAG laser ablation of solid carbon (graphite) rods, which were immersedmore » in the main plasma column of the Large Plasma Device (LaPD) at UCLA’s Basic Plasma Science Facility (BaPSF.) The axial expansion of the laser-produced plasma (LPP) was supersonic and with parallel expansion speeds approximately equal to the Alfvén speed. The project was renewed and refocused efforts to then utilize the laser-produced plasmas as a tool for the disruption and reconnection of current sheets in magnetized plasmas« less

  16. Wave front sensing for next generation earth observation telescope

    NASA Astrophysics Data System (ADS)

    Delvit, J.-M.; Thiebaut, C.; Latry, C.; Blanchet, G.

    2017-09-01

    High resolution observations systems are highly dependent on optics quality and are usually designed to be nearly diffraction limited. Such a performance allows to set a Nyquist frequency closer to the cut off frequency, or equivalently to minimize the pupil diameter for a given ground sampling distance target. Up to now, defocus is the only aberration that is allowed to evolve slowly and that may be inflight corrected, using an open loop correction based upon ground estimation and refocusing command upload. For instance, Pleiades satellites defocus is assessed from star acquisitions and refocusing is done with a thermal actuation of the M2 mirror. Next generation systems under study at CNES should include active optics in order to allow evolving aberrations not only limited to defocus, due for instance to in orbit thermal variable conditions. Active optics relies on aberration estimations through an onboard Wave Front Sensor (WFS). One option is using a Shack Hartmann. The Shack-Hartmann wave-front sensor could be used on extended scenes (unknown landscapes). A wave-front computation algorithm should then be implemented on-board the satellite to provide the control loop wave-front error measure. In the worst case scenario, this measure should be computed before each image acquisition. A robust and fast shift estimation algorithm between Shack-Hartmann images is then needed to fulfill this last requirement. A fast gradient-based algorithm using optical flows with a Lucas-Kanade method has been studied and implemented on an electronic device developed by CNES. Measurement accuracy depends on the Wave Front Error (WFE), the landscape frequency content, the number of searched aberrations, the a priori knowledge of high order aberrations and the characteristics of the sensor. CNES has realized a full scale sensitivity analysis on the whole parameter set with our internally developed algorithm.

  17. Estimation of fast and slow wave properties in cancellous bone using Prony's method and curve fitting.

    PubMed

    Wear, Keith A

    2013-04-01

    The presence of two longitudinal waves in poroelastic media is predicted by Biot's theory and has been confirmed experimentally in through-transmission measurements in cancellous bone. Estimation of attenuation coefficients and velocities of the two waves is challenging when the two waves overlap in time. The modified least squares Prony's (MLSP) method in conjuction with curve-fitting (MLSP + CF) is tested using simulations based on published values for fast and slow wave attenuation coefficients and velocities in cancellous bone from several studies in bovine femur, human femur, and human calcaneus. The search algorithm is accelerated by exploiting correlations among search parameters. The performance of the algorithm is evaluated as a function of signal-to-noise ratio (SNR). For a typical experimental SNR (40 dB), the root-mean-square errors (RMSEs) for one example (human femur) with fast and slow waves separated by approximately half of a pulse duration were 1 m/s (slow wave velocity), 4 m/s (fast wave velocity), 0.4 dB/cm MHz (slow wave attenuation slope), and 1.7 dB/cm MHz (fast wave attenuation slope). The MLSP + CF method is fast (requiring less than 2 s at SNR = 40 dB on a consumer-grade notebook computer) and is flexible with respect to the functional form of the parametric model for the transmission coefficient. The MLSP + CF method provides sufficient accuracy and precision for many applications such that experimental error is a greater limiting factor than estimation error.

  18. Fast-ion stabilization of tokamak plasma turbulence

    NASA Astrophysics Data System (ADS)

    Di Siena, A.; Görler, T.; Doerk, H.; Poli, E.; Bilato, R.

    2018-05-01

    A significant reduction of the turbulence-induced anomalous heat transport has been observed in recent studies of magnetically confined plasmas in the presence of a significant fast-ion fractions. Therefore, the control of fast-ion populations with external heating might open the way to more optimistic scenarios for future fusion devices. However, little is known about the parameter range of relevance of these fast-ion effects which are often only highlighted in correlation with substantial electromagnetic fluctuations. Here, a significant fast ion induced stabilization is also found in both linear and nonlinear electrostatic gyrokinetic simulations which cannot be explained with the conventional assumptions based on pressure profile and dilution effects. Strong wave-fast particle resonant interactions are observed for realistic parameters where the fast particle trace approximation clearly failed and explained with the help of a reduced Vlasov model. In contrast to previous interpretations, fast particles can actively modify the Poisson field equation—even at low fast particle densities where dilution tends to be negligible and at relatively high temperatures, i.e. T  <  30T e . Further key parameters controlling the role of the fast ions are identified in the following and various ways of further optimizing their beneficial impact are explored. Finally, possible extensions into the electromagnetic regime are briefly discussed and the relevance of these findings for ITER standard scenarios is highlighted.

  19. Using dynamic interferometric synthetic aperature radar (InSAR) to image fast-moving surface waves

    DOEpatents

    Vincent, Paul

    2005-06-28

    A new differential technique and system for imaging dynamic (fast moving) surface waves using Dynamic Interferometric Synthetic Aperture Radar (InSAR) is introduced. This differential technique and system can sample the fast-moving surface displacement waves from a plurality of moving platform positions in either a repeat-pass single-antenna or a single-pass mode having a single-antenna dual-phase receiver or having dual physically separate antennas, and reconstruct a plurality of phase differentials from a plurality of platform positions to produce a series of desired interferometric images of the fast moving waves.

  20. Shaping non-diffracting beams with a digital micromirror device

    NASA Astrophysics Data System (ADS)

    Ren, Yu-Xuan; Fang, Zhao-Xiang; Lu, Rong-De

    2016-02-01

    The micromechanical digital micromirror device (DMD) performs as a spatial light modulator to shape the light wavefront. Different from the liquid crystal devices, which use the birefringence to modulate the light wave, the DMD regulates the wavefront through an amplitude modulation with the digitally controlled mirrors switched on and off. The advantages of such device are the fast speed, polarization insensitivity, and the broadband modulation ability. The fast switching ability for the DMD not only enables the shaping of static light mode, but also could dynamically compensate for the wavefront distortion due to scattering medium. We have employed such device to create the higher order modes, including the Laguerre-Gaussian, Hermite-Gaussian, as well as Mathieu modes. There exists another kind of beam with shape-preservation against propagation, and self-healing against obstacles. Representative modes are the Bessel modes, Airy modes, and the Pearcey modes. Since the DMD modulates the light intensity, a series of algorithms are developed to calculate proper amplitude hologram for shaping the light. The quasi-continuous gray scale images could imitate the continuous amplitude hologram, while the binary amplitude modulation is another means to create the modulation pattern for a steady light field. We demonstrate the generation of the non-diffracting beams with the binary amplitude modulation via the DMD, and successfully created the non-diffracting Bessel beam, Airy beam, and the Pearcey beam. We have characterized the non-diffracting modes through propagation measurements as well as the self-healing measurements.

  1. De-trapping Magnetic Mirror Confined Fast Electrons by Shear Alfvén Waves

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Gekelman, W. N.; Pribyl, P.; Papadopoulos, K.

    2013-12-01

    Highly energetic electrons produced naturally or artificially can be trapped in the Earth's radiation belts for months, posing a danger to valuable space satellites. Concepts that can lead to radiation belts mitigation have drawn a great deal of interest. We report a clear demonstration in a controlled lab experiment that a shear Alfvén wave can effectively de-trap energetic electrons confined by a magnetic mirror field. The experiment is performed in a quiescent afterglow plasma in the Large Plasma Device (LaPD) at UCLA. A hot electron ring, along with hard x-rays of energies of 100 keV ~ 3 MeV, is generated by 2nd harmonic electron cyclotron resonance heating and is trapped in a magnetic mirror field (Rmirror = 1.1 ~ 4, Bmin = 438 Gauss). A shear Alfvén wave (fAlfvén ~ 0.5 fci, BAlfvén / B0 ~ 0.1%), is launched with a rotating magnetic field antenna with arbitrary polarization. Irradiated by the Alfvén wave, the loss of electrons is modulated at fAlfvén. The periodic loss of electrons is found to be related to the spatial distortion of the hot electron ring, and continues even after the termination of the wave. The effect is found to be caused only by the right-hand (electron diamagnetic direction) circularly polarized component of the Alfvén wave. Hard x-ray tomography, constructed from more than 1000 chord projections at each axial location, shows electrons are lost in both the radial and axial direction. X-ray spectroscopy shows electrons over a broad range of energy de-trapped by the Alfvén wave, which suggests a non-resonant nature of the de-trapping process. The de-trapping process is found to be accompanied by electro-magnetic fluctuations in the frequency range of 1~5 fLH, which are also modulated at the frequency of the Alfvén wave. To exclude the possible role of whistler waves in this electron de-trapping process, whistler waves at these frequencies are launched with an antenna in absence of the Alfvén wave and no significant electron loss found. Research is supported by an ONR MURI award, and conducted at the Basic Plasma Science Facility at UCLA funded by DoE and NSF. A schematic plot of the experiment, with measured Alfvén wave magnetic field vector over-plotted. The plot shows a plane transverse to the background magnetic mirror field, in which a population of fast electrons is trapped and formed a hot electron ring. It has been observed the shear Alfvén wave can effectively de-trap the mirror confined fast electrons.

  2. A FAST PROPAGATING EXTREME-ULTRAVIOLET WAVE ASSOCIATED WITH A MINI-FILAMENT ERUPTION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng Ruisheng; Jiang Yunchun; Yang Jiayan

    The fast extreme-ultraviolet (EUV) waves (>1000 km s{sup -1}) in the solar corona were very rare in the past. Taking advantage of the high temporal and spatial resolution of the Solar Dynamics Observatory observations, we present a fast EUV wave associated with a mini-filament eruption, a C1.0 flare, and a coronal mass ejection (CME) on 2011 September 30. The event took place at the periphery between two active regions (ARs). The mini-filament rapidly erupted as a blowout jet associated with a flare and a CME. The CME front was likely developed from the large-scale overlying loops. The wave onset wasmore » nearly simultaneous with the start of the jet and the flare. The wave departed far from the flare center and showed a close location relative to the rapid jet. The wave had an initial speed of about 1100 km s{sup -1} and a slight deceleration in the last phase, and the velocity decreased to about 500 km s{sup -1}. The wave propagated in a narrow angle extent, likely to avoid the ARs on both sides. All the results provide evidence that the fast EUV wave was a fast-mode MHD wave. The wave resisted being driven by the CME, because it opened up the large-scale loops and its front likely formed later than the wave. The wave was most likely triggered by the jet, due to their close timing and location relations.« less

  3. Acoustic-wave sensor for ambient monitoring of a photoresist-stripping agent

    DOEpatents

    Pfeifer, K.B.; Hoyt, A.E.; Frye, G.C.

    1998-08-18

    The acoustic-wave sensor is disclosed. The acoustic-wave sensor is designed for ambient or vapor-phase monitoring of a photoresist-stripping agent such as N-methylpyrrolidinone (NMP), ethoxyethylpropionate (EEP) or the like. The acoustic-wave sensor comprises an acoustic-wave device such as a surface-acoustic-wave (SAW) device, a flexural-plate-wave (FPW) device, an acoustic-plate-mode (APM) device, or a thickness-shear-mode (TSM) device (also termed a quartz crystal microbalance or QCM) having a sensing region on a surface thereof. The sensing region includes a sensing film for sorbing a quantity of the photoresist-stripping agent, thereby altering or shifting a frequency of oscillation of an acoustic wave propagating through the sensing region for indicating an ambient concentration of the agent. According to preferred embodiments of the invention, the acoustic-wave device is a SAW device; and the sensing film comprises poly(vinylacetate), poly(N-vinylpyrrolidinone), or poly(vinylphenol). 3 figs.

  4. Acoustic-wave sensor for ambient monitoring of a photoresist-stripping agent

    DOEpatents

    Pfeifer, Kent B.; Hoyt, Andrea E.; Frye, Gregory C.

    1998-01-01

    The acoustic-wave sensor. The acoustic-wave sensor is designed for ambient or vapor-phase monitoring of a photoresist-stripping agent such as N-methylpyrrolidinone (NMP), ethoxyethylpropionate (EEP) or the like. The acoustic-wave sensor comprises an acoustic-wave device such as a surface-acoustic-wave (SAW) device, a flexural-plate-wave (FPW) device, an acoustic-plate-mode (APM) device, or a thickness-shear-mode (TSM) device (also termed a quartz crystal microbalance or QCM) having a sensing region on a surface thereof. The sensing region includes a sensing film for sorbing a quantity of the photoresist-stripping agent, thereby altering or shifting a frequency of oscillation of an acoustic wave propagating through the sensing region for indicating an ambient concentration of the agent. According to preferred embodiments of the invention, the acoustic-wave device is a SAW device; and the sensing film comprises poly(vinylacetate), poly(N-vinylpyrrolidinone), or poly(vinylphenol).

  5. Wave-current interactions at the FloWave Ocean Energy Research Facility

    NASA Astrophysics Data System (ADS)

    Noble, Donald; Davey, Thomas; Steynor, Jeffrey; Bruce, Tom; Smith, Helen; Kaklis, Panagiotis

    2015-04-01

    Physical scale model testing is an important part of the marine renewable energy development process, allowing the study of forces and device behaviour in a controlled environment prior to deployment at sea. FloWave is a new state-of-the-art ocean energy research facility, designed to provide large scale physical modelling services to the tidal and wave sector. It has the unique ability to provide complex multi-directional waves that can be combined with currents from any direction in the 25m diameter circular tank. The facility is optimised for waves around 2s period and 0.4m height, and is capable of generating currents upwards of 1.6m/s. This offers the ability to model metocean conditions suitable for most renewable energy devices at a typical scale of between 1:10 and 1:40. The test section is 2m deep, which can be classed as intermediate-depth for most waves of interest, thus the full dispersion equation must be solved as the asymptotic simplifications do not apply. The interaction between waves and currents has been studied in the tank. This has involved producing in the tank sets of regular waves, focussed wave groups, and random sea spectra including multi-directional sea states. These waves have been both inline-with and opposing the current, as well as investigating waves at arbitrary angles to the current. Changes in wave height and wavelength have been measured, and compared with theoretical results. Using theoretical wave-current interaction models, methods have been explored to "correct" the wave height in the central test area of the tank when combined with a steady current. This allows the wave height with current to be set equal to that without a current. Thus permitting, for example, direct comparison of device motion response between tests with and without current. Alternatively, this would also permit a specific wave height and current combination to be produced in the tank, reproducing recorded conditions at a particular site of interest. The initial tests used a correction factor based on a linear combination of wave and current (Smith 1997), which was found to be reasonably accurate, although the requirement for higher order theory is also explored. FloWave is a new facility that offers the ability to study wave-current interactions at arbitrary angles with relatively fast currents. This is important as waves and tidal currents at sites of interest for renewable energy generation may not be aligned (Lewis et al. 2014), and so better understanding of these conditions is required. References Lewis, M.J. et al., 2014. Realistic wave conditions and their influence on quantifying the tidal stream energy resource. Applied Energy, 136, pp.495-508. Smith, J.M., 1997. Coastal Engineering Technical Note One-dimensional wave-current interaction (CETN IV-9), Vicksburg, MS.

  6. Method and apparatus for actively controlling a micro-scale flexural plate wave device

    DOEpatents

    Dohner, Jeffrey L.

    2001-01-01

    An actively controlled flexural plate wave device provides a micro-scale pump. A method of actively controlling a flexural plate wave device produces traveling waves in the device by coordinating the interaction of a magnetic field with actively controlled currents. An actively-controlled flexural plate wave device can be placed in a fluid channel and adapted for use as a micro-scale fluid pump to cool or drive micro-scale systems, for example, micro-chips, micro-electrical-mechanical devices, micro-fluid circuits, or micro-scale chemical analysis devices.

  7. A fast switch, combiner and narrow-band filter for high-power millimetre wave beams

    NASA Astrophysics Data System (ADS)

    Kasparek, W.; Petelin, M. I.; Shchegolkov, D. Yu; Erckmann, V.; Plaum, B.; Bruschi, A.; ECRH Groups at IPP Greifswald; Karlsruhe, FZK; Stuttgart, IPF

    2008-05-01

    A fast directional switch (FADIS) is described, which allows controlled switching of high-power microwaves between two outputs. A possible application could be synchronous stabilization of neoclassical tearing modes (NTMs). Generally, the device can be used to share the installed EC power between different types of launchers or different applications (e.g. in ITER, midplane/upper launcher). The switching is performed electronically without moving parts by a small frequency-shift keying of the gyrotron (some tens of megahertz), and a narrow-band diplexer. The device can be operated as a beam combiner also, which offers attractive transmission perspectives in multi-megawatt ECRH systems. In addition, these diplexers are useful for plasma diagnostic systems employing high-power sources due to their filter characteristics. The principle and the design of a four-port quasi-optical resonator diplexer is presented. Low-power measurements of switching contrast, mode purity and efficiency show good agreement with theory. Preliminary frequency modulation characteristics of gyrotrons are shown, and first results from high-power switching experiments using the ECRH system for W7-X are presented.

  8. Superior electro-optic response in multiferroic bismuth ferrite nanoparticle doped nematic liquid crystal device

    PubMed Central

    Nayek, Prasenjit; Li, Guoqiang

    2015-01-01

    A superior electro-optic (E-O) response has been achieved when multiferroic bismuth ferrite (BiFeO3/BFO) nanoparticles (NPs) were doped in nematic liquid crystal (NLC) host E7 and the LC device was addressed in the large signal regime by an amplitude modulated square wave signal at the frequency of 100 Hz. The optimized concentration of BFO is 0.15 wt%, and the corresponding total optical response time (rise time + decay time) for a 5 μm-thick cell is 2.5 ms for ~7 Vrms. This might be exploited for the construction of adaptive lenses, modulators, displays, and other E-O devices. The possible reason behind the fast response time could be the visco-elastic constant and restoring force imparted by the locally ordered LCs induced by the multiferroic nanoparticles (MNPs). Polarized optical microscopic textural observation shows that the macroscopic dislocation-free excellent contrast have significant impact on improving the image quality and performance of the devices. PMID:26041701

  9. Helioseismic Implications of Mode Conversion

    NASA Astrophysics Data System (ADS)

    Moradi, H.; Cally, P. S.

    2013-12-01

    The Sun leaks waves through its active regions. The leakage of acoustic waves into the atmosphere through these ‘magnetoacoustic portals’ is well known, but magnetic (fast) waves also enter the atmosphere there. Fast waves ultimately reflect because of the increase in Alfvén speed with height, but when they do so they can partially convert to Alfvén waves. The weakened fast waves then re-enter the interior, to rejoin the seismic p-mode field. But how has the Alfvénic loss they suffered affected the seismology? We present results from simulations that compare Alfvénic losses with travel-time shifts, and draw general conclusions about the role of active region atmospheres in local helioseismology.

  10. Micropatterned Pyramidal Ionic Gels for Sensing Broad-Range Pressures with High Sensitivity.

    PubMed

    Cho, Sung Hwan; Lee, Seung Won; Yu, Seunggun; Kim, Hyeohn; Chang, Sooho; Kang, Donyoung; Hwang, Ihn; Kang, Han Sol; Jeong, Beomjin; Kim, Eui Hyuk; Cho, Suk Man; Kim, Kang Lib; Lee, Hyungsuk; Shim, Wooyoung; Park, Cheolmin

    2017-03-22

    The development of pressure sensors that are effective over a broad range of pressures is crucial for the future development of electronic skin applicable to the detection of a wide pressure range from acoustic wave to dynamic human motion. Here, we present flexible capacitive pressure sensors that incorporate micropatterned pyramidal ionic gels to enable ultrasensitive pressure detection. Our devices show superior pressure-sensing performance, with a broad sensing range from a few pascals up to 50 kPa, with fast response times of <20 ms and a low operating voltage of 0.25 V. Since high-dielectric-constant ionic gels were employed as constituent sensing materials, an unprecedented sensitivity of 41 kPa -1 in the low-pressure regime of <400 Pa could be realized in the context of a metal-insulator-metal platform. This broad-range capacitive pressure sensor allows for the efficient detection of pressure from a variety of sources, including sound waves, a lightweight object, jugular venous pulses, radial artery pulses, and human finger touch. This platform offers a simple, robust approach to low-cost, scalable device design, enabling practical applications of electronic skin.

  11. Fast-to-Alfvén Mode Conversion in the Presence of Ambipolar Diffusion

    NASA Astrophysics Data System (ADS)

    Cally, Paul S.; Khomenko, Elena

    2018-03-01

    It is known that fast magnetohydrodynamic waves partially convert to upward and/or downward propagating Alfvén waves in a stratified atmosphere where Alfvén speed increases with height. This happens around the fast wave reflection height, where the fast wave’s horizontal phase speed equals the Alfvén speed (in a low-β plasma). Typically, this takes place in the mid to upper solar chromosphere for low-frequency waves in the few-millihertz band. However, this region is weakly ionized and thus susceptible to nonideal MHD processes. In this article, we explore how ambipolar diffusion in a zero-β plasma affects fast waves injected from below. Classical ambipolar diffusion is far too weak to have any significant influence at these low frequencies, but if enhanced by turbulence (in the quiet-Sun chromosphere but not in sunspot umbrae) or the production of sufficiently small-scale structure, can substantially absorb waves for turbulent ambipolar Reynolds numbers of around 20 or less. In that case, it is found that the mode conversion process is not qualitatively altered from the ideal case, though conversion to Alfvén waves is reduced because the fast wave flux reaching the conversion region is degraded. It is also found that any upward propagating Alfvén waves generated in this process are almost immune to further ambipolar attenuation, thereby reducing local ambipolar heating compared to cases without mode conversion. In that sense, mode conversion provides a form of “Alfvén cooling.”

  12. 10 GHz Standing-Wave Coplanar Stripline on LiNbO3 Crystal for Radio to Optical-Wave Conversion

    NASA Astrophysics Data System (ADS)

    Darwis, F.; Wijayanto, Y. N.; Setiawan, A.; Mahmudin, D.; Rahman, A. N.; Daud, P.

    2018-04-01

    Recently, X-band radar systems are used widely for surveillance and navigation applications. Especially in archipelago or maritime country, the surveillance/navigation radar systems are required to monitoring critical areas and managing marine traffic. Accurate detection and fast analysis should be improved furthermore to provide security and safety condition. Therefore, several radar systems should be installed in many places to coverage the critical areas within radar networks. The radar network can be connected using optical fibers since it has extremely low propagation loss with optical-wave to carry-out the radar-wave. One important component in the scenario is a radio to optical-wave conversion component. In this paper, we report a 10 GHz radio to optical-wave conversion component using standing-wave coplanar stripline (CPS) on LiNbO3 optical crystal as the substrate. The standing-wave CPS electrodes with narrow slot are arranged in an array structure. An optical waveguide is located close to the narrow slot. The CPS electrodes were analysed using electromagnetic analysis software for 10 GHz operational frequency. Responses for slot width and electrode length variation are reported. As results, return loss of -14.580 dB and -19.517 dB are obtained for single and array CPS electrodes respectively. Optimization of the designed radio to optical-wave conversion devices was also done.

  13. Modeling of Synergy Between 4th and 6th Harmonic Absorptions of Fast Waves on Injected Beams in DIII-D Tokamak

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, M.; Pinsker, R. I.; Chan, V. S.

    2011-12-23

    In recent moderate to high harmonic fast wave heating and current drive experiments in DIII-D, a synergy effect was observed when the 6{sup th} harmonic 90 MHz fast wave power is applied to the plasma preheated by neutral beams and the 4{sup th} harmonic 60 MHz fast wave. In this paper, we investigate how the synergy can occur using ORBIT-RF coupled with AORSA. Preliminary simulations suggest that damping of 4{sup th} harmonic FW on beam ions accelerates them above the injection energy, which may allow significant damping of 6{sup th} harmonic FW on beam ion tails to produce synergy.

  14. Nonlinear excitation of fast magnetosonic waves via quasi-electrostatic whistler wave mixing

    NASA Astrophysics Data System (ADS)

    Zechar, Nathan; Sotnikov, Vladimir; Caplinger, James; Chu, Arthur

    2017-10-01

    We report on experiments of nonlinear simultaneous generation of low frequency fast magnetosonic waves and electromagnetic whistler waves using two loop antennas in the afterglow of a cold magnetized helium plasma. The exciting antennas each have a frequency that is below half the electron cyclotron frequency, and the difference between the two is just below the lower hybrid frequency. They both directly excite whistler waves, however their nonlinear interaction excite the low frequency fast magnetosonic waves at the frequency given by their difference. Plasma is generated using a helicon plasma source in a one meter length cylindrical chamber. The spatial and temporal data of the electromagnetic and electrostatic components of the plasma waves are then captured with developed diagnostic techniques. Wave spectra, general structure and time domain frequencies observed will be reported.

  15. Heating a plasma by a broadband stream of fast electrons: Fast ignition, shock ignition, and Gbar shock wave applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gus’kov, S. Yu., E-mail: guskov@sci.lebedev.ru; Nicolai, Ph.; Ribeyre, X.

    2015-09-15

    An exact analytic solution is found for the steady-state distribution function of fast electrons with an arbitrary initial spectrum irradiating a planar low-Z plasma with an arbitrary density distribution. The solution is applied to study the heating of a material by fast electrons of different spectra such as a monoenergetic spectrum, a step-like distribution in a given energy range, and a Maxwellian spectrum, which is inherent in laser-produced fast electrons. The heating of shock- and fast-ignited precompressed inertial confinement fusion (ICF) targets as well as the heating of a target designed to generate a Gbar shock wave for equation ofmore » state (EOS) experiments by laser-produced fast electrons with a Maxwellian spectrum is investigated. A relation is established between the energies of two groups of Maxwellian fast electrons, which are responsible for generation of a shock wave and heating the upstream material (preheating). The minimum energy of the fast and shock igniting beams as well as of the beam for a Gbar shock wave generation increases with the spectral width of the electron distribution.« less

  16. Advanced density profile reflectometry; the state-of-the-art and measurement prospects for ITER

    NASA Astrophysics Data System (ADS)

    Doyle, E. J.

    2006-10-01

    Dramatic progress in millimeter-wave technology has allowed the realization of a key goal for ITER diagnostics, the routine measurement of the plasma density profile from millimeter-wave radar (reflectometry) measurements. In reflectometry, the measured round-trip group delay of a probe beam reflected from a plasma cutoff is used to infer the density distribution in the plasma. Reflectometer systems implemented by UCLA on a number of devices employ frequency-modulated continuous-wave (FM-CW), ultrawide-bandwidth, high-resolution radar systems. One such system on DIII-D has routinely demonstrated measurements of the density profile over a range of electron density of 0-6.4x10^19,m-3, with ˜25 μs time and ˜4 mm radial resolution, meeting key ITER requirements. This progress in performance was made possible by multiple advances in the areas of millimeter-wave technology, novel measurement techniques, and improved understanding, including: (i) fast sweep, solid-state, wide bandwidth sources and power amplifiers, (ii) dual polarization measurements to expand the density range, (iii) adaptive radar-based data analysis with parallel processing on a Unix cluster, (iv) high memory depth data acquisition, and (v) advances in full wave code modeling. The benefits of advanced system performance will be illustrated using measurements from a wide range of phenomena, including ELM and fast-ion driven mode dynamics, L-H transition studies and plasma-wall interaction. The measurement capabilities demonstrated by these systems provide a design basis for the development of the main ITER profile reflectometer system. This talk will explore the extent to which these reflectometer system designs, results and experience can be translated to ITER, and will identify what new studies and experimental tests are essential.

  17. Spatial patterns of fasting and fed antropyloric pressure waves in humans.

    PubMed Central

    Sun, W M; Hebbard, G S; Malbert, C H; Jones, K L; Doran, S; Horowitz, M; Dent, J

    1997-01-01

    1. Gastric mechanics were investigated by categorizing the temporal and spatial patterning of pressure waves associated with individual gastric contractions. 2. In twelve healthy volunteers, intraluminal pressures were monitored from nine side hole recording points spaced at 1.5 cm intervals along the antrum, pylorus and duodenum. 3. Pressure wave sequences that occurred during phase II fasting contractions (n = 221) and after food (n = 778) were evaluated. 4. The most common pattern of pressure wave onset along the antrum was a variable combination of antegrade, synchronous and retrograde propagation between side hole pairs. This variable pattern accounted for 42% of sequences after food, and 34% during fasting (P < 0.05). Other common pressure wave sequence patterns were: purely antegrade-29% after food and 42% during fasting (P < 0.05); purely synchronous-23% fed and 17% fasting; and purely retrograde-6% fed and 8% fasting. The length of sequences was shorter after food (P < 0.05). Some sequences 'skipped' individual recording points. 5. The spatial patterning of gastric pressure wave sequences is diverse, and may explain the differing mechanical outcomes among individual gastric contractions. 6. Better understanding of gastric mechanics may be gained from temporally precise correlations of luminal flows and pressures and gastric wall motion during individual gastric contraction sequences. PMID:9306286

  18. Quantum Measurement Theory in Gravitational-Wave Detectors.

    PubMed

    Danilishin, Stefan L; Khalili, Farid Ya

    2012-01-01

    The fast progress in improving the sensitivity of the gravitational-wave detectors, we all have witnessed in the recent years, has propelled the scientific community to the point at which quantum behavior of such immense measurement devices as kilometer-long interferometers starts to matter. The time when their sensitivity will be mainly limited by the quantum noise of light is around the corner, and finding ways to reduce it will become a necessity. Therefore, the primary goal we pursued in this review was to familiarize a broad spectrum of readers with the theory of quantum measurements in the very form it finds application in the area of gravitational-wave detection. We focus on how quantum noise arises in gravitational-wave interferometers and what limitations it imposes on the achievable sensitivity. We start from the very basic concepts and gradually advance to the general linear quantum measurement theory and its application to the calculation of quantum noise in the contemporary and planned interferometric detectors of gravitational radiation of the first and second generation. Special attention is paid to the concept of the Standard Quantum Limit and the methods of its surmounting.

  19. Acoustic waves in tilted fiber Bragg gratings for sensing applications

    NASA Astrophysics Data System (ADS)

    Marques, Carlos A. F.; Alberto, Nélia J.; Domingues, Fátima; Leitão, Cátia; Antunes, Paulo; Pinto, João. L.; André, Paulo

    2017-05-01

    Tilted fiber Bragg gratings (TFBGs) are one of the most attractive kind of optical fiber sensor technology due to their intrinsic properties. On the other hand, the acousto-optic effect is an important, fast and accurate mechanism that can be used to change and control several properties of fiber gratings in silica and polymer optical fiber. Several all-optical devices for optical communications and sensing have been successfully designed and constructed using this effect. In this work, we present the recent results regarding the production of optical sensors, through the acousto-optic effect in TFBGs. The cladding and core modes amplitude of a TFBG can be controlled by means of the power levels from acoustic wave source. Also, the cladding modes of a TFBG can be coupled back to the core mode by launching acoustic waves. Induced bands are created on the left side of the original Bragg wavelength due to phase matching to be satisfied. The refractive index (RI) is analyzed in detail when acoustic waves are turned on using saccharose solutions with different RI from 1.33 to 1.43.

  20. Fast visible imaging of turbulent plasma in TORPEX

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iraji, D.; Diallo, A.; Fasoli, A.

    2008-10-15

    Fast framing cameras constitute an important recent diagnostic development aimed at monitoring light emission from magnetically confined plasmas, and are now commonly used to study turbulence in plasmas. In the TORPEX toroidal device [A. Fasoli et al., Phys. Plasmas 13, 055902 (2006)], low frequency electrostatic fluctuations associated with drift-interchange waves are routinely measured by means of extensive sets of Langmuir probes. A Photron Ultima APX-RS fast framing camera has recently been acquired to complement Langmuir probe measurements, which allows comparing statistical and spectral properties of visible light and electrostatic fluctuations. A direct imaging system has been developed, which allows viewingmore » the light, emitted from microwave-produced plasmas tangentially and perpendicularly to the toroidal direction. The comparison of the probability density function, power spectral density, and autoconditional average of the camera data to those obtained using a multiple head electrostatic probe covering the plasma cross section shows reasonable agreement in the case of perpendicular view and in the plasma region where interchange modes dominate.« less

  1. High-speed spatial frequency domain imaging of rat cortex detects dynamic optical and physiological properties following cardiac arrest and resuscitation.

    PubMed

    Wilson, Robert H; Crouzet, Christian; Torabzadeh, Mohammad; Bazrafkan, Afsheen; Farahabadi, Maryam H; Jamasian, Babak; Donga, Dishant; Alcocer, Juan; Zaher, Shuhab M; Choi, Bernard; Akbari, Yama; Tromberg, Bruce J

    2017-10-01

    Quantifying rapidly varying perturbations in cerebral tissue absorption and scattering can potentially help to characterize changes in brain function caused by ischemic trauma. We have developed a platform for rapid intrinsic signal brain optical imaging using macroscopically structured light. The device performs fast, multispectral, spatial frequency domain imaging (SFDI), detecting backscattered light from three-phase binary square-wave projected patterns, which have a much higher refresh rate than sinusoidal patterns used in conventional SFDI. Although not as fast as "single-snapshot" spatial frequency methods that do not require three-phase projection, square-wave patterns allow accurate image demodulation in applications such as small animal imaging where the limited field of view does not allow single-phase demodulation. By using 655, 730, and 850 nm light-emitting diodes, two spatial frequencies ([Formula: see text] and [Formula: see text]), three spatial phases (120 deg, 240 deg, and 360 deg), and an overall camera acquisition rate of 167 Hz, we map changes in tissue absorption and reduced scattering parameters ([Formula: see text] and [Formula: see text]) and oxy- and deoxyhemoglobin concentration at [Formula: see text]. We apply this method to a rat model of cardiac arrest (CA) and cardiopulmonary resuscitation (CPR) to quantify hemodynamics and scattering on temporal scales ([Formula: see text]) ranging from tens of milliseconds to minutes. We observe rapid concurrent spatiotemporal changes in tissue oxygenation and scattering during CA and following CPR, even when the cerebral electrical signal is absent. We conclude that square-wave SFDI provides an effective technical strategy for assessing cortical optical and physiological properties by balancing competing performance demands for fast signal acquisition, small fields of view, and quantitative information content.

  2. Multicriteria analysis to evaluate wave energy converters based on their environmental impact: an Italian case study

    NASA Astrophysics Data System (ADS)

    Azzellino, Arianna; Contestabile, Pasquale; Lanfredi, Caterina; Vicinanza, Diego

    2010-05-01

    The exploitation of renewable energy resources is fast becoming a key objective in many countries. Countries with coastlines have particularly valuable renewable energy resources in the form of tides, currents, waves and offshore wind. Due to the visual impact of siting large numbers of energy generating devices (eg. wind turbines) in terrestrial landscapes, considerable attention is now being directed towards coastal waters. Due to their environmental sensitivity, the selection of the most adequate location for these systems is a critical factor. Multi-criteria analysis allows to consider a wide variety of key characteristics (e.g. water depth, distance to shore, distance to the electric grid in land, geology, environmental impact) that may be converted into a numerical index of suitability for different WEC devices to different locations. So identifying the best alternative between an offshore or a onshore device may be specifically treated as a multicriteria problem. Special enphasisi should be given in the multicriteria analysis to the environmental impact issues. The wave energy prospective in the Italian seas is relatively low if compared to the other European countries faced to the ocean. Based on the wave climate, the Alghero site, (NW Sardinia, Italy) is one of the most interesting sites for the wave energy perspective (about 10 kW/m). Alghero site is characterized by a high level of marine biodiversity. In 2002 the area northern to Alghero harbour (Capo Caccia-Isola Piana) was established a Marine Protected Area (MPA). It could be discussed for this site how to choose between the onshore/offshore WEC alternative. An offshore device like Wave Dragon (http://www.wavedragon.net/) installed at -65m depth (width=300m and length=170 m) may approximately produce about 3.6 GWh/y with a total cost of about 9,000,000 €. On the other hand, an onshore device like SSG (http://waveenergy.no/), employed as crown wall for a vertical breakwater to enlarge the present harbour protection, and installed at -10m depth (length=300 m) may produce about 2.7 GWh/y with a total costs of about 12,000,000 €, where only the 50% of the amount are the costs of the SSG device. Obviously the environmental impact of the two solutions is quite different. Aim of this study is to provide a multicriteria decision support framework to evaluate the best WEC typology and location in the perspective of the environmental cost-benefit analysis. The general environmental aspects generated by wave power projects will be described. Colonisation patterns and biofouling will be discussed with particular reference to changes of the seabed and alterations due to new substrates. In addition, impacts for fish, fishery and marine mammals will be also considered. We suggest that wave power projects should be evaluated also on the basis of their environmental impacts in the perspective of the Strategic Environmental Assessment (SEA) analysis, as implemented by the European Commission (SEA Directive 2001/42/EC). The early incorporation of the environmental aspects involved in the evaluation of wave power projects will give the opportunity for early mitigations or design modifications, most likely making wave projects more acceptable in the long run and more suitable for the marine environment.

  3. Sensitivity of wave propagation in the LHRF to initial poloidal position in finite-aspect-ratio toroidal plasmas

    NASA Astrophysics Data System (ADS)

    Larson, J. J.; Pinsker, R. I.; Bonoli, P. T.; Porkolab, M.

    2017-10-01

    The important effect of varying the initial poloidal wave-launching location to the core accessibility of lower hybrid slow waves in a torus of finite aspect ratio has been understood for many years. Since the qualitative properties of the wave propagation of the other branch in this regime, known as the `whistler', `helicon' or simply the `fast wave', are similar in some ways to those of the slow wave, we expect a dependence on launch position for this wave also. We study this problem for both slow and fast waves, first with simplified analytic models and then using the ray-tracing code GENRAY for realistic plasma equilibria. We assess the prospects of inside, top, bottom or conventional outside launch of waves on each of the two branches. Although the slow wave has been the focus of research for LHRF heating and current drive in the past, the fast wave will play a major role in burning plasmas beyond ITER where Te(0) = 10-20 keV. The stronger electron Landau damping of the slow wave will restrict the power deposition to the outer third of the plasma, while the fast wave's weaker damping allows the wave to penetrate to the hot plasma core before depositing its power. Work supported in part by US DoE under the Science Undergraduate Laboratory Internship (SULI) program and under DE-FC02-04ER54698 and DE-FG02-91-ER54109.

  4. Fast flows, ULF waves, firehose instability and their association in the Earth's mid-tail current sheet

    NASA Astrophysics Data System (ADS)

    Wang, C. P.; Xing, X.

    2017-12-01

    Ultra-Low Frequency (ULF) plasma waves with frequency range between 1 mHz to 10 Hz are widely observed in the Earth's magnetosphere and on the ground. In particular, Pi2 and Pc4 waves have been found to be closely related to many important dynamic processes in the magnetotail, e.g., fast flows (V > 300 km/s). Observations have shown Pi2 waves in association with fast flows in the near-Earth plasma sheet (X>-30 RE). However, in the mid-tail region, where fast flows are more frequently observed than those in the near-Earth magnetotail, this association has not been evaluated. Our preliminary study using ARTEMIS probes in the mid-tail region (X -60 RE) shows close association between Pi2 and Pc4 waves with the presence of fast flows. Strong connection between mid-tail Pi2 pulsations and high-latitude ground Pi2 signatures are also observed. Among many proposed theories for Pi2 wave, ballooning and firehose instabilities are plausible mechanisms in leading to the generation of plasma waves around Pi2 frequency band. Ballooning instability is widely admitted for fast flow associated Pi2 pulsations in the near-Earth region. However, firehose instability is expected to occur more easily in mid-tail and beyond due to the specific pressure anisotropy in that region. We examined the pressure anisotropy conditions and evaluated firehose instability condition for both Pi2 and Pc4 events in mid-tail. It is found that the plasma is unstable against firehose instability in association with the initiation of Pi2 and Pc4 waves. These may suggest that firehose instability can be a wave generation mechanism in the mid-tail region.

  5. EVOLUTION OF FAST MAGNETOACOUSTIC PULSES IN RANDOMLY STRUCTURED CORONAL PLASMAS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yuan, D.; Li, B.; Pascoe, D. J.

    2015-02-01

    We investigate the evolution of fast magnetoacoustic pulses in randomly structured plasmas, in the context of large-scale propagating waves in the solar atmosphere. We perform one-dimensional numerical simulations of fast wave pulses propagating perpendicular to a constant magnetic field in a low-β plasma with a random density profile across the field. Both linear and nonlinear regimes are considered. We study how the evolution of the pulse amplitude and width depends on their initial values and the parameters of the random structuring. Acting as a dispersive medium, a randomly structured plasma causes amplitude attenuation and width broadening of the fast wavemore » pulses. After the passage of the main pulse, secondary propagating and standing fast waves appear. Width evolution of both linear and nonlinear pulses can be well approximated by linear functions; however, narrow pulses may have zero or negative broadening. This arises because narrow pulses are prone to splitting, while broad pulses usually deviate less from their initial Gaussian shape and form ripple structures on top of the main pulse. Linear pulses decay at an almost constant rate, while nonlinear pulses decay exponentially. A pulse interacts most efficiently with a random medium with a correlation length of about half of the initial pulse width. This detailed model of fast wave pulses propagating in highly structured media substantiates the interpretation of EIT waves as fast magnetoacoustic waves. Evolution of a fast pulse provides us with a novel method to diagnose the sub-resolution filamentation of the solar atmosphere.« less

  6. Interaction between high harmonic fast waves and fast ions in NSTX/NSTX-U plasmas

    NASA Astrophysics Data System (ADS)

    Bertelli, N.; Valeo, E. J.; Gorelenkova, M.; Green, D. L.; RF SciDAC Team

    2016-10-01

    Fast wave (FW) heating in the ion cyclotron range of frequency (ICRF) has been successfully used to sustain and control the fusion plasma performance, and it will likely play an important role in the ITER experiment. As demonstrated in the NSTX and DIII-D experiments the interactions between fast waves and fast ions can be so strong to significantly modify the fast ion population from neutral beam injection. In fact, it has been recently found in NSTX that FWs can modify and, under certain conditions, even suppress the energetic particle driven instabilities, such as toroidal Alfvén eigenmodes and global Alfvén eigenmodes and fishbones. This paper examines such interactions in NSTX/NSTX-U plasmas by using the recent extension of the RF full-wave code TORIC to include non-Maxwellian ions distribution functions. Particular attention is given to the evolution of the fast ions distribution function w/ and w/o RF. Tests on the RF kick-operator implemented in the Monte-Carlo particle code NUBEAM is also discussed in order to move towards a self consistent evaluation of the RF wave-field and the ion distribution functions in the TRANSP code. Work supported by US DOE Contract DE-AC02-09CH11466.

  7. The Origin of Compressible Magnetic Turbulence in the Very Local Interstellar Medium

    NASA Astrophysics Data System (ADS)

    Zank, G. P.; Du, S.; Hunana, P.

    2017-06-01

    Voyager 1 observed compressible magnetic turbulence in the very local interstellar medium (VLISM). We show that inner heliosheath (IHS) fast- and slow-mode waves incident on the heliopause (HP) generate VLISM fast-mode waves only that propagate into the VLISM. We suggest that this is the origin of compressible turbulence in the VLISM. We show that fast- and slow-mode waves transmitted across a tangential discontinuity such as the HP are strongly refracted on crossing the HP and subsequently propagate at highly oblique angles to the VLISM magnetic field. Thus, fast-mode waves in the VLISM contribute primarily to the compressible and not the transverse components of the VLISM fluctuating magnetic field variance < δ {\\hat{B}}2> since < δ {\\hat{B}}{fz}2> \

  8. Multi-reflective acoustic wave device

    DOEpatents

    Andle, Jeffrey C.

    2006-02-21

    An acoustic wave device, which utilizes multiple localized reflections of acoustic wave for achieving an infinite impulse response while maintaining high tolerance for dampening effects, is disclosed. The device utilized a plurality of electromechanically significant electrodes disposed on most of the active surface. A plurality of sensors utilizing the disclosed acoustic wave mode device are also described.

  9. ICRF fast wave current drive and mode conversion current drive in EAST tokamak

    NASA Astrophysics Data System (ADS)

    Yin, L.; Yang, C.; Gong, X. Y.; Lu, X. Q.; Du, D.; Chen, Y.

    2017-10-01

    Fast wave in the ion-cyclotron resonance frequency (ICRF) range is a promising candidate for non-inductive current drive (CD), which is essential for long pulse and high performance operation of tokamaks. A numerical study on the ICRF fast wave current drive (FWCD) and mode-conversion current drive (MCCD) in the Experimental Advanced Superconducting Tokamak (EAST) is carried out by means of the coupled full wave and Ehst-Karney parameterization methods. The results show that FWCD efficiency is notable in two frequency regimes, i.e., f ≥ 85 MHz and f = 50-65 MHz, where ion cyclotron absorption is effectively avoided, and the maximum on-axis driven current per unit power can reach 120 kA/MW. The sensitivity of the CD efficiency to the minority ion concentration is confirmed, owing to fast wave mode conversion, and the peak MCCD efficiency is reached for 22% minority-ion concentration. The effects of the wave-launch position and the toroidal wavenumber on the efficiency of current drive are also investigated.

  10. Initial applications of the non-Maxwellian extension of the full-wave TORIC v.5 code in the mid/high harmonic and minority heating regimes

    NASA Astrophysics Data System (ADS)

    Bertelli, N.; Valeo, E. J.; Phillips, C. K.

    2015-11-01

    A non Maxwellian extension of the full wave TORIC v.5 code in the mid/high harmonic and minority heating regimes has been revisited. In both regimes the treatment of the non-Maxwellian ions is needed in order to improve the analysis of combined fast wave (FW) and neutral beam injection (NBI) heated discharges in the current fusion devices. Additionally, this extension is also needed in time-dependent analysis where the combined heating experiments are generally considered. Initial numerical cases with thermal ions and with a non-Maxwellian ions are presented for both regimes. The simulations are then compared with results from the AORSA code, which has already been extended to include non-Maxwellian ions. First attempts to apply this extension in a self-consistent way with the NUBEAM module, which is included in the TRANSP code, are also discussed. Work supported by US DOE Contracts # DE-FC02-01ER54648 and DE-AC02-09CH11466.

  11. A scattering approach to sea wave diffraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Corradini, M. L., E-mail: letizia.corradini@unicam.it; Garbuglia, M., E-mail: milena.garbuglia@unicam.it; Maponi, P., E-mail: pierluigi.maponi@unicam.it

    This paper intends to show a model for the diffraction of sea waves approaching an OWC device, which converts the sea waves motion into mechanical energy and then electrical energy. This is a preliminary study to the optimisation of the device, in fact the computation of sea waves diffraction around the device allows the estimation of the sea waves energy which enters into the device. The computation of the diffraction phenomenon is the result of a sea waves scattering problem, solved with an integral equation method.

  12. Fast Shear Compounding Using Robust Two-dimensional Shear Wave Speed Calculation and Multi-directional Filtering

    PubMed Central

    Song, Pengfei; Manduca, Armando; Zhao, Heng; Urban, Matthew W.; Greenleaf, James F.; Chen, Shigao

    2014-01-01

    A fast shear compounding method was developed in this study using only one shear wave push-detect cycle, such that the shear wave imaging frame rate is preserved and motion artifacts are minimized. The proposed method is composed of the following steps: 1. applying a comb-push to produce multiple differently angled shear waves at different spatial locations simultaneously; 2. decomposing the complex shear wave field into individual shear wave fields with differently oriented shear waves using a multi-directional filter; 3. using a robust two-dimensional (2D) shear wave speed calculation to reconstruct 2D shear elasticity maps from each filter direction; 4. compounding these 2D maps from different directions into a final map. An inclusion phantom study showed that the fast shear compounding method could achieve comparable performance to conventional shear compounding without sacrificing the imaging frame rate. A multi-inclusion phantom experiment showed that the fast shear compounding method could provide a full field-of-view (FOV), 2D, and compounded shear elasticity map with three types of inclusions clearly resolved and stiffness measurements showing excellent agreement to the nominal values. PMID:24613636

  13. Novel Integral Equation Methods Applied to the Analysis of New Guiding and Radiating Structures and Optically-Inspired Phenomena at Microwaves

    NASA Astrophysics Data System (ADS)

    Gomez-Diaz, Juan Sebastian

    This PhD. dissertation presents a multidisciplinary work, which involves the development of different novel formulations applied to the accurate and efficient analysis of a wide variety of new structures, devices, and phenomena at themicrowave frequency region. The objectives of the present work can be divided into three main research lines: (1) The first research line is devoted to the Green's function analysis of multilayered enclosures with convex arbitrarily-shaped cross section. For this purpose, three accurate spatial-domain formulations are developed at the Green's functions level. These techniques are then efficiently incorporated into a mixed-potential integral equation framework, which allows the fast and accurate analysis of multilayered printed circuits in shielded enclosures. The study of multilayered shielded circuits has lead to the development of the novel hybridwaveguide-microstrip filter technology, which is light, compact, low-loss and presents important advantages for the space industry. (2) The second research line is related to the impulse-regime study ofmetamaterial-based composite right/left-handed (CRLH) structures and the subsequent theoretical and practical demonstration of several novel optically-inspired phenomena and applications at microwaves, in both, the guided and the radiative region. This study allows the development of new devices for ultra wide band and high data-rate communications systems. Besides, this research line also deals with the simple and accurate characterization of CRLH leaky-wave antennas using transmission line theory. (3) The third and last research line presents a novel CRLH parallel-plate waveguide leaky-wave antenna structure, and a rigorous iterative modal-based technique for its fast and complete characterization, including a systematic calculation of the antenna physical dimensions. It is important to point out that all the theoretical developments and novel structures presented in thiswork have been numerically confirmed, by the use of both, home-made software and commercial full-wave simulations, and experimentally verified, by the use of measurements from fabricated prototypes.

  14. Two dimensional cylindrical fast magnetoacoustic solitary waves in a dust plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu Haifeng; Wang Shiqing; Engineering and Technical College of Chengdu University of Technology, Leshan 614000

    2011-04-15

    The nonlinear fast magnetoacoustic solitary waves in a dust plasma with the combined effects of bounded cylindrical geometry and transverse perturbation are investigated in a new equation. In this regard, cylindrical Kadomtsev-Petviashvili (CKP) equation is derived using the small amplitude perturbation expansion method. Under a suitable coordinate transformation, the CKP equation can be solved analytically. It is shown that the dust cylindrical fast magnetoacoustic solitary waves can exist in the CKP equation. The present investigation may have relevance in the study of nonlinear electromagnetic soliton waves both in laboratory and astrophysical plasmas.

  15. Fast spatial beam shaping by acousto-optic diffraction for 3D non-linear microscopy.

    PubMed

    Akemann, Walther; Léger, Jean-François; Ventalon, Cathie; Mathieu, Benjamin; Dieudonné, Stéphane; Bourdieu, Laurent

    2015-11-02

    Acousto-optic deflection (AOD) devices offer unprecedented fast control of the entire spatial structure of light beams, most notably their phase. AOD light modulation of ultra-short laser pulses, however, is not straightforward to implement because of intrinsic chromatic dispersion and non-stationarity of acousto-optic diffraction. While schemes exist to compensate chromatic dispersion, non-stationarity remains an obstacle. In this work we demonstrate an efficient AOD light modulator for stable phase modulation using time-locked generation of frequency-modulated acoustic waves at the full repetition rate of a high power laser pulse amplifier of 80 kHz. We establish the non-local relationship between the optical phase and the generating acoustic frequency function and verify the system for temporal stability, phase accuracy and generation of non-linear two-dimensional phase functions.

  16. Cancellous bone analysis with modified least squares Prony's method and chirp filter: phantom experiments and simulation.

    PubMed

    Wear, Keith A

    2010-10-01

    The presence of two longitudinal waves in porous media is predicted by Biot's theory and has been confirmed experimentally in cancellous bone. When cancellous bone samples are interrogated in through-transmission, these two waves can overlap in time. Previously, the Modified Least-Squares Prony's (MLSP) method was validated for estimation of amplitudes, attenuation coefficients, and phase velocities of fast and slow waves, but tended to overestimate phase velocities by up to about 5%. In the present paper, a pre-processing chirp filter to mitigate the phase velocity bias is derived. The MLSP/chirp filter (MLSPCF) method was tested for decomposition of a 500 kHz-center-frequency signal containing two overlapping components: one passing through a low-density-polyethylene plate (fast wave) and another passing through a cancellous-bone-mimicking phantom material (slow wave). The chirp filter reduced phase velocity bias from 100 m/s (5.1%) to 69 m/s (3.5%) (fast wave) and from 29 m/s (1.9%) to 10 m/s (0.7%) (slow wave). Similar improvements were found for 1) measurements in polycarbonate (fast wave) and a cancellous-bone-mimicking phantom (slow wave), and 2) a simulation based on parameters mimicking bovine cancellous bone. The MLSPCF method did not offer consistent improvement in estimates of attenuation coefficient or amplitude.

  17. SDO/AIA Observations of Quasi-periodic Fast (~1000 km/s) Propagating (QFP) Waves as Evidence of Fast-mode Magnetosonic Waves in the Low Corona: Statistics and Implications

    NASA Astrophysics Data System (ADS)

    Liu, W.; Ofman, L.; Title, A. M.; Zhao, J.; Aschwanden, M. J.

    2011-12-01

    Recent EUV imaging observations from SDO/AIA led to the discovery of quasi-periodic fast (~2000 km/s) propagating (QFP) waves in active regions (Liu et al. 2011). They were interpreted as fast-mode magnetosonic waves and reproduced in 3D MHD simulations (Ofman et al. 2011). Since then, we have extended our study to a sample of more than a dozen such waves observed during the SDO mission (2010/04-now). We will present the statistical properties of these waves including: (1) Their projected speeds measured in the plane of the sky are about 400-2200 km/s, which, as the lower limits of their true speeds in 3D space, fall in the expected range of coronal Alfven or fast-mode speeds. (2) They usually originate near flare kernels, often in the wake of a coronal mass ejection, and propagate in narrow funnels of coronal loops that serve as waveguides. (3) These waves are launched repeatedly with quasi-periodicities in the 30-200 seconds range, often lasting for more than one hour; some frequencies coincide with those of the quasi-periodic pulsations (QPPs) in the accompanying flare, suggestive a common excitation mechanism. We obtained the k-omega diagrams and dispersion relations of these waves using Fourier analysis. We estimate their energy fluxes and discuss their contribution to coronal heating as well as their diagnostic potential for coronal seismology.

  18. Acceleration of the Fast Solar Wind by Solitary Waves in Coronal Holes

    NASA Technical Reports Server (NTRS)

    Ofman, Leon

    2001-01-01

    The purpose of this investigation is to develop a new model for the acceleration of the fast solar wind by nonlinear. time-dependent multidimensional MHD simulations of waves in solar coronal holes. Preliminary computational studies indicate that nonlinear waves are generated in coronal holes by torsional Alfv\\'{e}n waves. These waves in addition to thermal conduction may contribute considerably to the accelerate the solar wind. Specific goals of this proposal are to investigate the generation of nonlinear solitary-like waves and their effect on solar wind acceleration by numerical 2.5D MHD simulation of coronal holes with a broad range of plasma and wave parameters; to study the effect of random disturbances at the base of a solar coronal hole on the fast solar wind acceleration with a more advanced 2.5D MHD model and to compare the results with the available observations; to extend the study to a full 3D MHD simulation of fast solar wind acceleration with a more realistic model of a coronal hole and solar boundary conditions. The ultimate goal of the three year study is to model the, fast solar wind in a coronal hole, based on realistic boundary conditions in a coronal hole near the Sun, and the coronal hole structure (i.e., density, temperature. and magnetic field geometry,) that will become available from the recently launched SOHO spacecraft.

  19. Acceleration of the Fast Solar Wind by Solitary Waves in Coronal Holes

    NASA Technical Reports Server (NTRS)

    Ofman, Leon

    2000-01-01

    The purpose of this investigation is to develop a new model for the acceleration of the fast solar wind by nonlinear, time-dependent multidimensional MHD simulations of waves in solar coronal holes. Preliminary computational studies indicate that solitary-like waves are generated in coronal holes nonlinearly by torsional Alfven waves. These waves in addition to thermal conduction may contribute considerably to the accelerate the solar wind. Specific goals of this proposal are to investigate the generation of nonlinear solitary-like waves and their effect on solar wind acceleration by numerical 2.5D MHD simulation of coronal holes with a broad range of plasma and wave parameters; to study the effect of random disturbances at the base of a solar coronal hole on the fast solar wind acceleration with a more advanced 2.5D MHD model and to compare the results with the available observations; to extend the study to a full 3D MHD simulation of fast solar wind acceleration with a more realistic model of a coronal hole and solar boundary conditions. The ultimate goal of the three year study is to model the fast solar wind in a coronal hole, based on realistic boundary conditions in a coronal hole near the Sun, and the coronal hole structure (i.e., density, temperature, and magnetic field geometry) that will become available from the recently launched SOHO spacecraft.

  20. CONTRIBUTION OF VELOCITY VORTICES AND FAST SHOCK REFLECTION AND REFRACTION TO THE FORMATION OF EUV WAVES IN SOLAR ERUPTIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Hongjuan; Liu, Siqing; Gong, Jiancun

    2015-06-01

    We numerically study the detailed evolutionary features of the wave-like disturbance and its propagation in the eruption. This work is a follow-up to Wang et al., using significantly upgraded new simulations. We focus on the contribution of the velocity vortices and the fast shock reflection and refraction in the solar corona to the formation of the EUV waves. Following the loss of equilibrium in the coronal magnetic structure, the flux rope exhibits rapid motions and invokes the fast-mode shock at the front of the rope, which then produces a type II radio burst. The expansion of the fast shock, whichmore » is associated with outward motion, takes place in various directions, and the downward expansion shows the reflection and the refraction as a result of the non-uniform background plasma. The reflected component of the fast shock propagates upward and the refracted component propagates downward. As the refracted component reaches the boundary surface, a weak echo is excited. The Moreton wave is invoked as the fast shock touches the bottom boundary, so the Moreton wave lags the type II burst. A secondary echo occurs in the area where reflection of the fast shock encounters the slow-mode shock, and the nearby magnetic field lines are further distorted because of the interaction between the secondary echo and the velocity vortices. Our results indicate that the EUV wave may arise from various processes that are revealed in the new simulations.« less

  1. Quasi-periodic Fast-mode Wave Trains Within a Global EUV Wave and Sequential Transverse Oscillations Detected by SDO-AIA

    NASA Technical Reports Server (NTRS)

    Liu, Wei; Ofman, Leon; Nitta, Nariaki; Aschwanden, Markus J.; Schrijver, Carolus J.; Title, Alan M.; Tarbell, Theodore D.

    2012-01-01

    We present the first unambiguous detection of quasi-periodic wave trains within the broad pulse of a global EUV wave (so-called EIT wave) occurring on the limb. These wave trains, running ahead of the lateral coronal mass ejection (CME) front of 2-4 times slower, coherently travel to distances greater than approximately solar radius/2 along the solar surface, with initial velocities up to 1400 kilometers per second decelerating to approximately 650 kilometers per second. The rapid expansion of the CME initiated at an elevated height of 110 Mm produces a strong downward and lateral compression, which may play an important role in driving the primary EUV wave and shaping its front forwardly inclined toward the solar surface. The wave trains have a dominant 2 minute periodicity that matches the X-ray flare pulsations, suggesting a causal connection. The arrival of the leading EUV wave front at increasing distances produces an uninterrupted chain sequence of deflections and/or transverse (likely fast kink mode) oscillations of local structures, including a flux-rope coronal cavity and its embedded filament with delayed onsets consistent with the wave travel time at an elevated (by approximately 50%) velocity within it. This suggests that the EUV wave penetrates through a topological separatrix surface into the cavity, unexpected from CME-caused magnetic reconfiguration. These observations, when taken together, provide compelling evidence of the fast-mode MHD wave nature of the primary (outer) fast component of a global EUV wave, running ahead of the secondary (inner) slow component of CME-caused restructuring.

  2. NREL's Water Power Software Makes a Splash; NREL Highlights, Research & Development, NREL (National Renewable Energy Laboratory)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2015-06-01

    WEC-Sim is a DOE-funded software tool being jointly developed by NREL and SNL. WEC-Sim computationally models wave energy converters (WEC), devices that generate electricity using movement of water systems such as oceans, rivers, etc. There is great potential for WECs to generate electricity, but as of yet, the industry has yet to establish a commercially viable concept. Modeling, design, and simulations tools are essential to the successful development of WECs. Commercial WEC modeling software tools can't be modified by the user. In contrast, WEC-Sim is a free, open-source, and flexible enough to be modified to meet the rapidly evolving needsmore » of the WEC industry. By modeling the power generation performance and dynamic loads of WEC designs, WEC-Sim can help support the development of new WEC devices by optimizing designs for cost of energy and competitiveness. By being easily accessible, WEC-Sim promises to help level the playing field in the WEC industry. Importantly, WEC-Sim is also excellent at its job! In 2014, WEC-Sim was used in conjunction with NREL’s FAST modeling software to win a hydrodynamic modeling competition. WEC-Sim and FAST performed very well at predicting the motion of a test device in comparison to other modeling tools. The most recent version of WEC-Sim (v1.1) was released in April 2015.« less

  3. Topological Magnonics: A Paradigm for Spin-Wave Manipulation and Device Design

    NASA Astrophysics Data System (ADS)

    Wang, X. S.; Zhang, H. W.; Wang, X. R.

    2018-02-01

    Conventional magnonic devices use magnetostatic waves whose properties are sensitive to device geometry and the details of magnetization structure, so the design and the scalability of the device or circuitry are difficult. We propose topological magnonics, in which topological exchange spin waves are used as information carriers, that do not suffer from conventional problems of magnonic devices with additional nice features of nanoscale wavelength and high frequency. We show that a perpendicularly magnetized ferromagnet on a honeycomb lattice is generically a topological magnetic material in the sense that topologically protected chiral edge spin waves exist in the band gap as long as a spin-orbit-induced nearest-neighbor pseudodipolar interaction (and/or a next-nearest-neighbor Dzyaloshinskii-Moriya interaction) is present. The edge spin waves propagate unidirectionally along sample edges and domain walls regardless of the system geometry and defects. As a proof of concept, spin-wave diodes, spin-wave beam splitters, and spin-wave interferometers are designed by using sample edges and domain walls to manipulate the propagation of topologically protected chiral spin waves. Since magnetic domain walls can be controlled by magnetic fields or electric current or fields, one can essentially draw, erase, and redraw different spin-wave devices and circuitry on the same magnetic plate so that the proposed devices are reconfigurable and tunable. The topological magnonics opens up an alternative direction towards a robust, reconfigurable and scalable spin-wave circuitry.

  4. Understanding the Physical Nature of Coronal "EIT Waves"

    NASA Astrophysics Data System (ADS)

    Long, D. M.; Bloomfield, D. S.; Chen, P.-F.; Downs, C.; Gallagher, P. T.; Kwon, R.-Y.; Vanninathan, K.; Veronig, A.; Vourlidas, A.; Vrsnak, B.; Warmuth, A.; Zic, T.

    2016-10-01

    For almost 20 years the physical nature of globally-propagating waves in the solar corona (commonly called "EIT waves") has been controversial and subject to debate. Additional theories have been proposed throughout the years to explain observations that did not fit with the originally proposed fast-mode wave interpretation. However, the incompatibility of observations made using the Extreme-ultraviolet Imaging Telescope (EIT) on the Solar and Heliospheric Observatory with the fast-mode wave interpretation have been challenged by differing viewpoints from the Solar Terrestrial Relations Observatory spacecraft and higher spatial/temporal resolution data from the Solar Dynamics Observatory. In this paper, we reexamine the theories proposed to explain "EIT waves" to identify measurable properties and behaviours that can be compared to current and future observations. Most of us conclude that "EIT waves" are best described as fast-mode large-amplitude waves/shocks, which are initially driven by the impulsive expansion of an erupting coronal mass ejection in the low corona.

  5. Understanding the Physical Nature of Coronal "EIT Waves".

    PubMed

    Long, D M; Bloomfield, D S; Chen, P F; Downs, C; Gallagher, P T; Kwon, R-Y; Vanninathan, K; Veronig, A M; Vourlidas, A; Vršnak, B; Warmuth, A; Žic, T

    2017-01-01

    For almost 20 years the physical nature of globally propagating waves in the solar corona (commonly called "EIT waves") has been controversial and subject to debate. Additional theories have been proposed over the years to explain observations that did not agree with the originally proposed fast-mode wave interpretation. However, the incompatibility of observations made using the Extreme-ultraviolet Imaging Telescope (EIT) onboard the Solar and Heliospheric Observatory with the fast-mode wave interpretation was challenged by differing viewpoints from the twin Solar Terrestrial Relations Observatory spacecraft and data with higher spatial and temporal resolution from the Solar Dynamics Observatory . In this article, we reexamine the theories proposed to explain EIT waves to identify measurable properties and behaviours that can be compared to current and future observations. Most of us conclude that the so-called EIT waves are best described as fast-mode large-amplitude waves or shocks that are initially driven by the impulsive expansion of an erupting coronal mass ejection in the low corona.

  6. High-harmonic fast magnetosonic wave coupling, propagation, and heating in a spherical torus plasma

    NASA Astrophysics Data System (ADS)

    Menard, J.; Majeski, R.; Kaita, R.; Ono, M.; Munsat, T.; Stutman, D.; Finkenthal, M.

    1999-05-01

    A novel rotatable two-strap antenna has been installed in the current drive experiment upgrade (CDX-U) [T. Jones, Ph.D. thesis, Princeton University (1995)] in order to investigate high-harmonic fast wave coupling, propagation, and electron heating as a function of strap angle and strap phasing in a spherical torus plasma. Radio-frequency-driven sheath effects are found to fit antenna loading trends at very low power and become negligible above a few kilowatts. At sufficiently high power, the measured coupling efficiency as a function of strap angle is found to agree favorably with cold plasma wave theory. Far-forward microwave scattering from wave-induced density fluctuations in the plasma core tracks the predicted fast wave loading as the antenna is rotated. Signs of electron heating during rf power injection have been observed in CDX-U with central Thomson scattering, impurity ion spectroscopy, and Langmuir probes. While these initial results appear promising, damping of the fast wave on thermal ions at high ion-cyclotron-harmonic number may compete with electron damping at sufficiently high ion β—possibly resulting in a significantly reduced current drive efficiency and production of a fast ion population. Preliminary results from ray-tracing calculations which include these ion damping effects are presented.

  7. Pulse propagation in discrete excitatory networks of integrate-and-fire neurons.

    PubMed

    Badel, Laurent; Tonnelier, Arnaud

    2004-07-01

    We study the propagation of solitary waves in a discrete excitatory network of integrate-and-fire neurons. We show the existence and the stability of a fast wave and a family of slow waves. Fast waves are similar to those already described in continuum networks. Stable slow waves have not been previously reported in purely excitatory networks and their propagation is particular to the discrete nature of the network. The robustness of our results is studied in the presence of noise.

  8. Low-Frequency Waves in Cold Three-Component Plasmas

    NASA Astrophysics Data System (ADS)

    Fu, Qiang; Tang, Ying; Zhao, Jinsong; Lu, Jianyong

    2016-09-01

    The dispersion relation and electromagnetic polarization of the plasma waves are comprehensively studied in cold electron, proton, and heavy charged particle plasmas. Three modes are classified as the fast, intermediate, and slow mode waves according to different phase velocities. When plasmas contain positively-charged particles, the fast and intermediate modes can interact at the small propagating angles, whereas the two modes are separate at the large propagating angles. The near-parallel intermediate and slow waves experience the linear polarization, circular polarization, and linear polarization again, with the increasing wave number. The wave number regime corresponding to the above circular polarization shrinks as the propagating angle increases. Moreover, the fast and intermediate modes cause the reverse change of the electromagnetic polarization at the special wave number. While the heavy particles carry the negative charges, the dispersion relations of the fast and intermediate modes are always separate, being independent of the propagating angles. Furthermore, this study gives new expressions of the three resonance frequencies corresponding to the highly-oblique propagation waves in the general three-component plasmas, and shows the dependence of the resonance frequencies on the propagating angle, the concentration of the heavy particle, and the mass ratio among different kinds of particles. supported by National Natural Science Foundation of China (Nos. 11303099, 41531071 and 41574158), and the Youth Innovation Promotion Association CAS

  9. Fast shear compounding using robust 2-D shear wave speed calculation and multi-directional filtering.

    PubMed

    Song, Pengfei; Manduca, Armando; Zhao, Heng; Urban, Matthew W; Greenleaf, James F; Chen, Shigao

    2014-06-01

    A fast shear compounding method was developed in this study using only one shear wave push-detect cycle, such that the shear wave imaging frame rate is preserved and motion artifacts are minimized. The proposed method is composed of the following steps: 1. Applying a comb-push to produce multiple differently angled shear waves at different spatial locations simultaneously; 2. Decomposing the complex shear wave field into individual shear wave fields with differently oriented shear waves using a multi-directional filter; 3. Using a robust 2-D shear wave speed calculation to reconstruct 2-D shear elasticity maps from each filter direction; and 4. Compounding these 2-D maps from different directions into a final map. An inclusion phantom study showed that the fast shear compounding method could achieve comparable performance to conventional shear compounding without sacrificing the imaging frame rate. A multi-inclusion phantom experiment showed that the fast shear compounding method could provide a full field-of-view, 2-D and compounded shear elasticity map with three types of inclusions clearly resolved and stiffness measurements showing excellent agreement to the nominal values. Copyright © 2014 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  10. Measurements of Turbulent Transport of Fast Ions in the LAPD

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Boehmer, H.; Heidbrink, W. W.; McWilliams, R.; Zhao, L.; Carter, T.; Leneman, D.; Vincena, S.

    2004-11-01

    Understanding the spatial transport induced by fluctuations is important to the confinement of magnetized plasmas. The paradox of fast ions being much better confined than thermal ions, i.e. the effective diffusion coefficient of fast ions being much smaller than that of thermal ions, has been observed experimentally [1], explained theoretically [2], and analyzed by simulations [3]. Gyroradius averaging and drift averaging are two predicted effects that are responsible for reduced fast-ion transport. Our goal is to quantitatively confirm these effects and make further exploration by measuring fast-ion transport as a function of gyroradius in the LArge Plasma Device (LAPD) plasma with well-characterized background fluctuations. A 3D gridded analyzer is used to measure the spatial profile of the beam produced by an ion gun launching 500 eV Argon ions [4]. Strong drift wave fluctuations are generated by inserting a disk into the center of the plasma. First results will be presented. [1] W. Heidbrink, G. Sadler, Nucl. Fusion, Vol. 34, p. 535 (1994); [2] P. C. Efthimion et al., Plasma Phys. and Cont. Nucl. Fusion Res., Vol. 1, p. 307 (1988); [3] G. Manfredi, R. Dendy, Phys. Rev. Lett. 76, p. 4360 (1996); [4] H. Boehmer et al. , Rev. Sci. Instrum. , Vol. 75, p. 1013 (2002)

  11. Wave energy converter effects on wave propagation: A sensitivity study in Monterey Bay, CA

    NASA Astrophysics Data System (ADS)

    Chang, G.; Jones, C. A.; Roberts, J.; Magalen, J.; Ruehl, K.; Chartrand, C.

    2014-12-01

    The development of renewable offshore energy in the United States is growing rapidly and wave energy is one of the largest resources currently being evaluated. The deployment of wave energy converter (WEC) arrays required to harness this resource could feasibly number in the hundreds of individual devices. The WEC arrays have the potential to alter nearshore wave propagation and circulation patterns and ecosystem processes. As the industry progresses from pilot- to commercial-scale it is important to understand and quantify the effects of WECs on the natural nearshore processes that support a local, healthy ecosystem. To help accelerate the realization of commercial-scale wave power, predictive modeling tools have been developed and utilized to evaluate the likelihood of environmental impact. At present, direct measurements of the effects of different types of WEC arrays on nearshore wave propagation are not available; therefore wave model simulations provide the groundwork for investigations of the sensitivity of model results to prescribed WEC characteristics over a range of anticipated wave conditions. The present study incorporates a modified version of an industry standard wave modeling tool, SWAN (Simulating WAves Nearshore), to simulate wave propagation through a hypothetical WEC array deployment site on the California coast. The modified SWAN, referred to as SNL-SWAN, incorporates device-specific WEC power take-off characteristics to more accurately evaluate a WEC device's effects on wave propagation. The primary objectives were to investigate the effects of a range of WEC devices and device and array characteristics (e.g., device spacing, number of WECs in an array) on nearshore wave propagation using SNL-SWAN model simulations. Results showed that significant wave height was most sensitive to variations in WEC device type and size and the number of WEC devices in an array. Locations in the lee centerline of the arrays in each modeled scenario showed the largest potential changes in wave height. The SNL-SWAN model simulations for various WEC devices provide the basis for a solid model understanding, giving the confidence necessary for future WEC evaluations.

  12. High Pulse Wave Velocity Has a Strong Impact on Early Carotid Atherosclerosis in a Japanese General Male Population.

    PubMed

    Kubozono, Takuro; Miyata, Masaaki; Kawasoe, Shin; Ojima, Satoko; Yoshifuku, Shiro; Miyahara, Hironori; Maenohara, Shigeho; Ohishi, Mitsuru

    2017-02-24

    Although there have been several reports on the risk factors associated with intima-media thickness (IMT), many questions remain. The purpose of this study was to investigate the association between IMT and cardiovascular risk factors in a Japanese general population.Methods and Results:The study group consisted of 1,583 male subjects undergoing routine health checkups. IMT of the common carotid artery was measured by high-resolution ultrasonography. Brachial-ankle pulse wave velocity (baPWV) was measured using an automated device. Univariate analysis demonstrated that carotid IMT significantly associated with age, body mass index (BMI), systolic blood pressure (SBP), diastolic blood pressure (DBP), baPWV, fasting glucose, low-density lipoprotein cholesterol (LDL-C), triglycerides (TG), and high-density lipoprotein cholesterol (HDL-C). Multiple logistic regression analysis for carotid atherosclerosis (carotid IMT ≥1.0 mm) was performed using obesity (BMI ≥25.0 kg/m 2 ), high BP (SBP ≥130 mmHg or DBP ≥85 mmHg), dyslipidemia (LDL-C ≥140 mg/dL, TG ≥150 mg/dL, or HDL-C <40 mg/dL), impaired fasting glucose (IFG) (fasting glucose ≥110 g/dL), and high baPWV (≥1,400 cm/s). Carotid atherosclerosis was significantly associated with only high baPWV (OR: 2.22, 95% CI: 1.24-4.17, P<0.01). High baPWV was a stronger predictor of early carotid atherosclerosis than high BP, dyslipidemia, or IFG in a Japanese general male population.

  13. Flexural Plate Wave Devices for Chemical Analysis

    DTIC Science & Technology

    1991-04-16

    Naval Research Laboratory Washi..gton. DC 20375-5000 NRL Memorandum Report 6815 AD-A234 129 Flexural Plate Wave Devices for Chemical Analysis JAY W...4. TITLE AND SUBTITLE S. FUNDING NUMBERS Flexural Plate Wave Devices for Chemical Analysis 6. AUTHOR(S) 61-1638-01 Jay W. Grate. Stuart W. Wenzel... ANALYSIS INTRODUCTION Flexural plate wave (FPW) devices offer many attractive features for chemical analysis (1-9). As gravimetric sensors for chemical

  14. Reflective lens-free imaging on high-density silicon microelectrode arrays for monitoring and evaluation of in vitro cardiac contractility

    PubMed Central

    Pauwelyn, Thomas; Stahl, Richard; Mayo, Lakyn; Zheng, Xuan; Lambrechts, Andy; Janssens, Stefan; Lagae, Liesbet; Reumers, Veerle; Braeken, Dries

    2018-01-01

    The high rate of drug attrition caused by cardiotoxicity is a major challenge for drug development. Here, we developed a reflective lens-free imaging (RLFI) approach to non-invasively record in vitro cell deformation in cardiac monolayers with high temporal (169 fps) and non-reconstructed spatial resolution (352 µm) over a field-of-view of maximally 57 mm2. The method is compatible with opaque surfaces and silicon-based devices. Further, we demonstrated that the system can detect the impairment of both contractility and fast excitation waves in cardiac monolayers. Additionally, the RLFI device was implemented on a CMOS-based microelectrode array to retrieve multi-parametric information of cardiac cells, thereby offering more in-depth analysis of drug-induced (cardiomyopathic) effects for preclinical cardiotoxicity screening applications. PMID:29675322

  15. Active illumination using a digital micromirror device for quantitative phase imaging.

    PubMed

    Shin, Seungwoo; Kim, Kyoohyun; Yoon, Jonghee; Park, YongKeun

    2015-11-15

    We present a powerful and cost-effective method for active illumination using a digital micromirror device (DMD) for quantitative phase-imaging techniques. Displaying binary illumination patterns on a DMD with appropriate spatial filtering, plane waves with various illumination angles are generated and impinged onto a sample. Complex optical fields of the sample obtained with various incident angles are then measured via Mach-Zehnder interferometry, from which a high-resolution 2D synthetic aperture phase image and a 3D refractive index tomogram of the sample are reconstructed. We demonstrate the fast and stable illumination-control capability of the proposed method by imaging colloidal spheres and biological cells. The capability of high-speed optical diffraction tomography is also demonstrated by measuring 3D Brownian motion of colloidal particles with the tomogram acquisition rate of 100 Hz.

  16. Microsecond-range optical shutter for unpolarized light with chiral nematic liquid crystal

    NASA Astrophysics Data System (ADS)

    Mohammadimasoudi, Mohammad; Shin, Jungsoon; Lee, Keechang; Neyts, Kristiaan; Beeckman, Jeroen

    2015-04-01

    A fast electro-optic shutter is fabricated and demonstrated. The device works independently of the polarization state of the incoming light beam. Modulation between 3% transmission and 60% transmission is obtained within a wavelength range of 50 nm with a response time of 20 μs. The device consists of two partly polymerized chiral nematic liquid crystal layers separated by a half wave plate. The transmission modulation is due to a 50 nm wavelength shift of the photonic band gap of the chiral liquid crystal realized by applying an electric field over a mixture of photo-polymerized LC and non-reactive nematic LC containing a chiral dopant. The shutter features high reflectivity in the photonic band gap. We investigate the influence of the amplitude of the applied voltage on the width and the depth of the reflection band.

  17. Experimental Observation of Convective Cell Formation due to a Fast Wave Antenna in the Large Plasma Device

    NASA Astrophysics Data System (ADS)

    Martin, M. J.; Gekelman, W.; Van Compernolle, B.; Pribyl, P.; Carter, T.

    2017-11-01

    An experiment in a linear device, the Large Plasma Device, is used to study sheaths caused by an actively powered radio frequency (rf) antenna. The rf antenna used in the experiment consists of a single current strap recessed inside a copper box enclosure without a Faraday screen. A large increase in the plasma potential was observed along magnetic field lines that connect to the antenna limiter. The electric field from the spatial variation of the rectified plasma potential generated E →×B→0 flows, often referred to as convective cells. The presence of the flows generated by these potentials is confirmed by Mach probes. The observed convective cell flows are seen to cause the plasma in front of the antenna to flow away and cause a density modification near the antenna edge. These can cause hot spots and damage to the antenna and can result in a decrease in the ion cyclotron range of frequencies antenna coupling.

  18. Experimental Observation of Convective Cell Formation due to a Fast Wave Antenna in the Large Plasma Device.

    PubMed

    Martin, M J; Gekelman, W; Van Compernolle, B; Pribyl, P; Carter, T

    2017-11-17

    An experiment in a linear device, the Large Plasma Device, is used to study sheaths caused by an actively powered radio frequency (rf) antenna. The rf antenna used in the experiment consists of a single current strap recessed inside a copper box enclosure without a Faraday screen. A large increase in the plasma potential was observed along magnetic field lines that connect to the antenna limiter. The electric field from the spatial variation of the rectified plasma potential generated E[over →]×B[over →]_{0} flows, often referred to as convective cells. The presence of the flows generated by these potentials is confirmed by Mach probes. The observed convective cell flows are seen to cause the plasma in front of the antenna to flow away and cause a density modification near the antenna edge. These can cause hot spots and damage to the antenna and can result in a decrease in the ion cyclotron range of frequencies antenna coupling.

  19. Pulsed laser ablation of IC packages for device failure analyses

    NASA Astrophysics Data System (ADS)

    Hong, Ming Hui; Mai, ZhiHong; Chen, G. X.; Thiam, Thomas; Song, Wen D.; Lu, Yongfeng; Soh, Chye E.; Chong, Tow Chong

    2002-06-01

    Pulsed laser ablation of mold compounds for IC packaging in air and with steam assistance is investigated. It is applied to decap IC packages and expose computer CPU dies for the device failure analyses. Compared with chemical decapping, the laser ablation has advantages of being fast speed, non- contact and dry processing. Laser ablation with the steam assistance results in higher ablation rate and wider ablated crater with much smoother surface morphology. It implies that the steam assisted laser ablation can achieve a faster and better quality laser processing. Audible acoustic wave and plasma optical signal diagnostics are also carried out to have a better understanding of the mechanisms behind. Light wavelength and laser fluence applied in the decapping are two important parameters. The 532 nm Nd:YAG laser decapping at a low laser fluence can achieve a large decapping area with a fine ablation profile. IC packages decapped by the laser ablation show good quality for the device failure analyses.

  20. Scientific Ground of a New Optical Device for Contactless Measurement of the Small Spatial Displacements of Control Object Surfaces

    NASA Astrophysics Data System (ADS)

    Miroshnichenko, I. P.; Parinov, I. A.

    2017-06-01

    It is proposed the computational-experimental ground of newly developed optical device for contactless measurement of small spatial displacements of control object surfaces based on the use of new methods of laser interferometry. The proposed device allows one to register linear and angular components of the small displacements of control object surfaces during the diagnosis of the condition of structural materials for forced elements of goods under exploring by using acoustic non-destructive testing methods. The described results are the most suitable for application in the process of high-precision measurements of small linear and angular displacements of control object surfaces during experimental research, the evaluation and diagnosis of the state of construction materials for forced elements of goods, the study of fast wave propagation in layered constructions of complex shape, manufactured of anisotropic composite materials, the study of damage processes in modern construction materials in mechanical engineering, shipbuilding, aviation, instrumentation, power engineering, etc.

  1. Mode Conversion of a Solar Extreme-ultraviolet Wave over a Coronal Cavity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zong, Weiguo; Dai, Yu, E-mail: ydai@nju.edu.cn

    2017-01-10

    We report on observations of an extreme-ultraviolet (EUV) wave event in the Sun on 2011 January 13 by Solar Terrestrial Relations Observatory and Solar Dynamics Observatory in quadrature. Both the trailing edge and the leading edge of the EUV wave front in the north direction are reliably traced, revealing generally compatible propagation velocities in both perspectives and a velocity ratio of about 1/3. When the wave front encounters a coronal cavity near the northern polar coronal hole, the trailing edge of the front stops while its leading edge just shows a small gap and extends over the cavity, meanwhile gettingmore » significantly decelerated but intensified. We propose that the trailing edge and the leading edge of the northward propagating wave front correspond to a non-wave coronal mass ejection component and a fast-mode magnetohydrodynamic wave component, respectively. The interaction of the fast-mode wave and the coronal cavity may involve a mode conversion process, through which part of the fast-mode wave is converted to a slow-mode wave that is trapped along the magnetic field lines. This scenario can reasonably account for the unusual behavior of the wave front over the coronal cavity.« less

  2. Self-oscillation of standing spin wave in ring resonator with proportional-integral-derivative control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peng, B.; Urazuka, Y.; Chen, H.

    2014-05-07

    We report on numerical analysis on self-oscillation of standing spin wave excited in a nanostructured active ring resonator, consists of a ferromagnetic nanowire with perpendicular anisotropy. The confined resonant modes are along the nanowire length. A positive feedback with proportional-integral-derivative gain control was adopted in the active ring. Stable excitation of the 1st order standing spin wave has been demonstrated with micromagnetic simulations, taking into account the thermal effect with a random field model. The stationary standing spin wave with a pre-determined set variable of precession amplitude was attained within 20 ns by optimizing the proportional-integral-derivative gain control parameters. The resultmore » indicates that a monochromatic oscillation frequency f{sub osc} is extracted from the initial thermal fluctuation state and selectively amplified with the positive feedback loop. The obtained f{sub osc} value of 5.22 GHz practically agrees with the theoretical prediction from dispersion relation of the magneto static forward volume wave. It was also confirmed that the f{sub osc} change due to the temperature rise can be compensated with an external perpendicular bias field H{sub b}. The observed quick compensation time with an order of nano second suggests the fast operation speed in the practical device application.« less

  3. "Wave" signal-smoothing and mercury-removing device for laser ablation quadrupole and multiple collector ICPMS analysis: application to lead isotope analysis.

    PubMed

    Hu, Zhaochu; Zhang, Wen; Liu, Yongsheng; Gao, Shan; Li, Ming; Zong, Keqing; Chen, Haihong; Hu, Shenghong

    2015-01-20

    A novel "wave" signal-smoothing and mercury-removing device has been developed for laser ablation quadrupole and multiple collector ICPMS analysis. With the wave stabilizer that has been developed, the signal stability was improved by a factor of 6.6-10 and no oscillation of the signal intensity was observed at a repetition rate of 1 Hz. Another advantage of the wave stabilizer is that the signal decay time is similar to that without the signal-smoothing device (increased by only 1-2 s for a signal decay of approximately 4 orders of magnitude). Most of the normalized elemental signals (relative to those without the stabilizer) lie within the range of 0.95-1.0 with the wave stabilizer. Thus, the wave stabilizer device does not significantly affect the aerosol transport efficiency. These findings indicate that this device is well-suited for routine optimization of ICPMS, as well as low repetition rate laser ablation analysis, which provides smaller elemental fractionation and better spatial resolution. With the wave signal-smoothing and mercury-removing device, the mercury gas background is reduced by 1 order of magnitude. More importantly, the (202)Hg signal intensity produced in the sulfide standard MASS-1 by laser ablation is reduced from 256 to 0.7 mV by the use of the wave signal-smoothing and mercury-removing device. This result suggests that the mercury is almost completely removed from the sample aerosol particles produced by laser ablation with the operation of the wave mercury-removing device. The wave mercury-removing device that we have designed is very important for Pb isotope ratio and accessory mineral U-Pb dating analysis, where removal of the mercury from the background gas and sample aerosol particles is highly desired. The wave signal-smoothing and mercury-removing device was applied successfully to the determination of the (206)Pb/(204)Pb isotope ratio in samples with low Pb content and/or high Hg content.

  4. Analysis of Spontaneous and Nerve-Evoked Calcium Transients in Intact Extraocular Muscles in Vitro

    PubMed Central

    Feng, Cheng-Yuan; Hennig, Grant W.; Corrigan, Robert D.; Smith, Terence K.; von Bartheld, Christopher S.

    2012-01-01

    Extraocular muscles (EOMs) have unique calcium handling properties, yet little is known about the dynamics of calcium events underlying ultrafast and tonic contractions in myofibers of intact EOMs. Superior oblique EOMs of juvenile chickens were dissected with their nerve attached, maintained in oxygenated Krebs buffer, and loaded with fluo-4. Spontaneous and nerve stimulation-evoked calcium transients were recorded and, following calcium imaging, some EOMs were double-labeled with rhodamine-conjugated alpha-bungarotoxin (rhBTX) to identify EOM myofiber types. EOMs showed two main types of spontaneous calcium transients, one slow type (calcium waves with 1/2max duration of 2–12 s, velocity of 25–50 μm/s) and two fast “flash-like” types (Type 1, 30–90 ms; Type 2, 90–150 ms 1/2max duration). Single pulse nerve stimulation evoked fast calcium transients identical to the fast (Type 1) calcium transients. Calcium waves were accompanied by a local myofiber contraction that followed the calcium transient wavefront. The magnitude of calcium-wave induced myofiber contraction far exceeded those of movement induced by nerve stimulation and associated fast calcium transients. Tetrodotoxin eliminated nerve-evoked transients, but not spontaneous transients. Alpha-bungarotoxin eliminated both spontaneous and nerve-evoked fast calcium transients, but not calcium waves, and caffeine increased wave activity. Calcium waves were observed in myofibers lacking spontaneous or evoked fast transients, suggestive of multiply-innervated myofibers, and this was confirmed by double-labeling with rhBTX. We propose that the abundant spontaneous calcium transients and calcium waves with localized contractions that do not depend on innervation may contribute to intrinsic generation of tonic functions of EOMs. PMID:22579493

  5. GaN-based superluminescent diodes with long lifetime

    NASA Astrophysics Data System (ADS)

    Castiglia, A.; Rossetti, M.; Matuschek, N.; Rezzonico, R.; Duelk, M.; Vélez, C.; Carlin, J.-F.; Grandjean, N.

    2016-02-01

    We report on the reliability of GaN-based super-luminescent light emitting diodes (SLEDs) emitting at a wavelength of 405 nm. We show that the Mg doping level in the p-type layers has an impact on both the device electro-optical characteristics and their reliability. Optimized doping levels allow decreasing the operating voltage on single-mode devices from more than 6 V to less than 5 V for an injection current of 100 mA. Furthermore, maximum output powers as high as 350 mW (for an injection current of 500 mA) have been achieved in continuous-wave operation (CW) at room temperature. Modules with standard and optimized p-type layers were finally tested in terms of lifetime, at a constant output power of 10 mW, in CW operation and at a case temperature of 25 °C. The modules with non-optimized p-type doping showed a fast and remarkable increase in the drive current during the first hundreds of hours together with an increase of the device series resistance. No degradation of the electrical characteristics was observed over 2000 h on devices with optimized p-type layers. The estimated lifetime for those devices was longer than 5000 h.

  6. Preliminary Analysis of a Submerged Wave Energy Device

    NASA Astrophysics Data System (ADS)

    Wagner, J. R.; Wagner, J. J.; Hayatdavoodi, M.; Ertekin, R. C.

    2016-02-01

    Preliminary analysis of a submerged wave energy harvesting device is presented. The device is composed of a thin, horizontally submerged plate that is restricted to heave oscillations under the influence of surface waves. The submerged plate is oscillating, and it can be attached to a fixed rotor, or a piston, to harvest the wave energy. A fully submerged wave energy converter is preferred over a surface energy convertor due to its durability and less visual and physical distractions it presents. In this study, the device is subject to nonlinear shallow-water waves. Wave loads on the submerged oscillating plate are obtained via the Level I Green-Naghdi equations. The unsteady motion of the plate is obtained by solving the nonlinear equations of motion. The results are obtained for a range of waves with varying heights and periods. The amplitude and period of plate oscillations are analyzed as functions of the wave parameters and plate width. Particular attention is given to the selection of the site of desired wave field. Initial estimation on the amount of energy extraction from the device, located near shore at a given site, is provided.

  7. Effect of medullary cavity in cancellous bone on two-wave phenomenon

    NASA Astrophysics Data System (ADS)

    Hachiken, Takuma; Nakanishi, Shoko; Matsukawa, Mami

    2016-07-01

    Osteoporotic patients have a larger medullary cavity in their cancellous bone than healthy people. In this study, the effect of the medullary cavity on the two-wave phenomenon was experimentally investigated using a cancellous bone model and a radius bone model. In the cancellous bone model, with the increase in hole (medullary cavity) diameter, the amplitudes of the fast waves became smaller, whereas the amplitudes of the slow waves became larger. In the radius bone model, the fast wave overlapped with the circumferential wave. The slow wave became larger with increasing hole diameter. The analysis of the slow wave thus seems to be useful for the in vivo diagnosis of the degree of osteoporosis.

  8. Semiconductor Quantum Electron Wave Transport, Diffraction, and Interference: Analysis, Device, and Measurement.

    NASA Astrophysics Data System (ADS)

    Henderson, Gregory Newell

    Semiconductor device dimensions are rapidly approaching a fundamental limit where drift-diffusion equations and the depletion approximation are no longer valid. In this regime, quantum effects can dominate device response. To increase further device density and speed, new devices must be designed that use these phenomena to positive advantage. In addition, quantum effects provide opportunities for a new class of devices which can perform functions previously unattainable with "conventional" semiconductor devices. This thesis has described research in the analysis of electron wave effects in semiconductors and the development of methods for the design, fabrication, and characterization of quantum devices based on these effects. First, an exact set of quantitative analogies are presented which allow the use of well understood optical design and analysis tools for the development of electron wave semiconductor devices. Motivated by these analogies, methods are presented for modeling electron wave grating diffraction using both an exact rigorous coupled-wave analysis and approximate analyses which are useful for grating design. Example electron wave grating switch and multiplexer designs are presented. In analogy to thin-film optics, the design and analysis of electron wave Fabry-Perot interference filters are also discussed. An innovative technique has been developed for testing these (and other) electron wave structures using Ballistic Electron Emission Microscopy (BEEM). This technique uses a liquid-helium temperature scanning tunneling microscope (STM) to perform spectroscopy of the electron transmittance as a function of electron energy. Experimental results show that BEEM can resolve even weak quantum effects, such as the reflectivity of a single interface between materials. Finally, methods are discussed for incorporating asymmetric electron wave Fabry-Perot filters into optoelectronic devices. Theoretical and experimental results show that such structures could be the basis for a new type of electrically pumped mid - to far-infrared semiconductor laser.

  9. DETECTION OF FAST-MOVING WAVES PROPAGATING OUTWARD ALONG SUNSPOTS’ RADIAL DIRECTION IN THE PHOTOSPHERE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Junwei; Chen, Ruizhu; Hartlep, Thomas

    2015-08-10

    Helioseismic and magnetohydrodynamic waves are abundant in and above sunspots. Through cross-correlating oscillation signals in the photosphere observed by the Solar Dynamics Observatory/Helioseismic and Magnetic Imager, we reconstruct how waves propagate away from virtual wave sources located inside a sunspot. In addition to the usual helioseismic wave, a fast-moving wave is detected traveling along the sunspot’s radial direction from the umbra to about 15 Mm beyond the sunspot boundary. The wave has a frequency range of 2.5–4.0 mHz with a phase velocity of 45.3 km s{sup −1}, substantially faster than the typical speeds of Alfvén and magnetoacoustic waves in themore » photosphere. The observed phenomenon is consistent with a scenario of that a magnetoacoustic wave is excited at approximately 5 Mm beneath the sunspot. Its wavefront travels to and sweeps across the photosphere with a speed higher than the local magnetoacoustic speed. The fast-moving wave, if truly excited beneath the sunspot’s surface, will help open a new window for studying the internal structure and dynamics of sunspots.« less

  10. Detonation models of fast combustion waves in nanoscale Al-MoO3 bulk powder media

    NASA Astrophysics Data System (ADS)

    Shaw, Benjamin D.; Pantoya, Michelle L.; Dikici, Birce

    2013-02-01

    The combustion of nanometric aluminum (Al) powder with an oxidiser such as molybdenum trioxide (MoO3) is studied analytically. This study focuses on detonation wave models and a Chapman-Jouget detonation model provides reasonable agreement with experimentally-observed wave speeds provided that multiphase equilibrium sound speeds are applied at the downstream edge of the detonation wave. The results indicate that equilibrium sound speeds of multiphase mixtures can play a critical role in determining speeds of fast combustion waves in nanoscale Al-MoO3 powder mixtures.

  11. A new impulsive seismic shear wave source for near-surface (0-30 m) seismic studies

    NASA Astrophysics Data System (ADS)

    Crane, J. M.; Lorenzo, J. M.

    2010-12-01

    Estimates of elastic moduli and fluid content in shallow (0-30 m) natural soils below artificial flood containment structures can be particularly useful in levee monitoring as well as seismic hazard studies. Shear wave moduli may be estimated from horizontally polarized, shear wave experiments. However, long profiles (>10 km) with dense receiver and shot spacings (<1m) cannot be collected efficiently using currently available shear wave sources. We develop a new, inexpensive, shear wave source for collecting fast, shot gathers over large acquisition sites. In particular, gas-charged, organic-rich sediments comprising most lower-delta sedimentary facies, greatly attenuate compressional body-waves. On the other hand, SH waves are relatively insensitive to pore-fluid moduli and can improve resolution. We develop a recoil device (Jolly, 1956) into a single-user, light-weight (<20 kg), impulsive, ground-surface-coupled SH wave generator, which is capable of working at rates of several hundred shotpoints per day. Older impulsive methods rely on hammer blows to ground-planted stationary targets. Our source is coupled to the ground with steel spikes and the powder charge can be detonated mechanically or electronically. Electrical fuses show repeatability in start times of < 50 microseconds. The barrel and shell-holder exceed required thicknesses to ensure complete safety during use. The breach confines a black-powder, 12-gauge shotgun shell, loaded with inert, environmentally safe ballast. In urban settings, produced heat and sound are confined by a detached, exterior cover. A moderate 2.5 g black-powder charge generates seismic amplitudes equivalent to three 4-kg sledge-hammer blows. We test this device to elucidate near subsurface sediment properties at former levee breach sites in New Orleans, Louisiana, USA. Our radio-telemetric seismic acquisition system uses an in-house landstreamer, consisting of 14-Hz horizontal component geophones, coupled to steel plates. Reflected, refracted and surface arrivals resulting from a single shot of this seismic source are comparable in signal, noise, and frequency composition to three stacked hammer blows to a ground-planted stationary target.

  12. Motion and Seasickness of Fast Warships

    DTIC Science & Technology

    2004-10-01

    Motion and Seasickness of Fast Warships Riola J.M. (1), Esteban S. (2), Giron-Sierra J.M. (2) & Aranda J. (3) (1) Canal de Experiencias ...5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Canal de Experiencias Hidrodinámicas de ...Bretschneider Sp bability Density of Waves /λ, with H being the wave height (twice the wave a in a seakeeping basin Canal de Experiencias Hid r waves with

  13. Teleseismic surface wave study of S-wave velocity structure in Southern California

    NASA Astrophysics Data System (ADS)

    Prindle-Sheldrake, K. L.; Tanimoto, T.

    2002-12-01

    We report on a 3D S-wave velocity structure derived from teleseismic Rayleigh and Love waves using TriNet broadband seismic data. Phase velocity maps, constructed between 20 and 55 mHz for Rayleigh waves and between 25 and 45 mHz for Love waves, were inverted for S-wave velocity structure at depth. Our starting model is SCEC 2.2, which has detailed crustal structure, but laterally homogeneous upper mantle structure. Depth resolution from the data set is good from the surface to approximately 100 km, but deteriorates rapidly beyond this depth. Our analysis indicates that, while Rayleigh wave data are mostly sensitive to mantle structure, Love wave data require some modifications of crustal structure from SCEC 2.2 model. Various regions in Southern California have different seismic-velocity signatures in terms of fast and slow S-wave velocities: In the Southern Sierra, both the crust and mantle are slow. In the Mojave desert, mid-crustal depths tend to show slow velocities, which are already built into SCEC 2.2. In the Transverse Ranges, the lower crust and mantle are both fast. Our Love wave results require much faster crustal velocity than those in SCEC 2.2 in this region. In the Peninsular ranges, both the crust and mantle are fast with mantle fast velocity extending to about 70 km. This is slightly more shallow than the depth extent under the Transverse Ranges, yet it is surprisingly deep. Under the Salton Sea, the upper crust is very slow and the upper mantle is also slow. However, these two slow velocity layers are separated by faster velocity lower crust which creates a distinct contrast with respect to the adjacent slow velocity regions. Existence of such a relatively fast layer, sandwiched by slow velocities, are related to features in phase velocity maps, especially in the low frequency Love wave phase velocity map (25 mHz) and the high frequency Rayleigh wave phase velocity maps (above 40 mHz). Such a feature may be related to partial melting processes under the Salton Sea.

  14. 3D Vectorial Time Domain Computational Integrated Photonics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kallman, J S; Bond, T C; Koning, J M

    2007-02-16

    The design of integrated photonic structures poses considerable challenges. 3D-Time-Domain design tools are fundamental in enabling technologies such as all-optical logic, photonic bandgap sensors, THz imaging, and fast radiation diagnostics. Such technologies are essential to LLNL and WFO sponsors for a broad range of applications: encryption for communications and surveillance sensors (NSA, NAI and IDIV/PAT); high density optical interconnects for high-performance computing (ASCI); high-bandwidth instrumentation for NIF diagnostics; micro-sensor development for weapon miniaturization within the Stockpile Stewardship and DNT programs; and applications within HSO for CBNP detection devices. While there exist a number of photonics simulation tools on the market,more » they primarily model devices of interest to the communications industry. We saw the need to extend our previous software to match the Laboratory's unique emerging needs. These include modeling novel material effects (such as those of radiation induced carrier concentrations on refractive index) and device configurations (RadTracker bulk optics with radiation induced details, Optical Logic edge emitting lasers with lateral optical inputs). In addition we foresaw significant advantages to expanding our own internal simulation codes: parallel supercomputing could be incorporated from the start, and the simulation source code would be accessible for modification and extension. This work addressed Engineering's Simulation Technology Focus Area, specifically photonics. Problems addressed from the Engineering roadmap of the time included modeling the Auston switch (an important THz source/receiver), modeling Vertical Cavity Surface Emitting Lasers (VCSELs, which had been envisioned as part of fast radiation sensors), and multi-scale modeling of optical systems (for a variety of applications). We proposed to develop novel techniques to numerically solve the 3D multi-scale propagation problem for both the microchip laser logic devices as well as devices characterized by electromagnetic (EM) propagation in nonlinear materials with time-varying parameters. The deliverables for this project were extended versions of the laser logic device code Quench2D and the EM propagation code EMsolve with new modules containing the novel solutions incorporated by taking advantage of the existing software interface and structured computational modules. Our approach was multi-faceted since no single methodology can always satisfy the tradeoff between model runtime and accuracy requirements. We divided the problems to be solved into two main categories: those that required Full Wave Methods and those that could be modeled using Approximate Methods. Full Wave techniques are useful in situations where Maxwell's equations are not separable (or the problem is small in space and time), while approximate techniques can treat many of the remaining cases.« less

  15. A study of Equartorial wave characteristics using rockets, balloons, lidar and radar

    NASA Astrophysics Data System (ADS)

    Sasi, M.; Krishna Murthy, B.; Ramkumar, G.; Satheesan, K.; Parameswaran, K.; Rajeev, K.; Sunilkumar, S.; Nair, P.; Krishna Murthy, K.; Bhavanikumar, Y.; Raghunath, K.; Jain, A.; Rao, P.; Krishnaiah, M.; Nayar, S.; Revathy, K.

    Dynamics of low latitude middle atmosphere is dominated by the zonal wind quasi- biennial oscillation (QBO) in the lower stratosphere and zonl wind semiannual oscillation (SAO) in the stratopause and mesopause regions. Equatorial waves play a significant role in the evolution of QBO and SAO through wave- mean flow interactions resulting in momentum transfer from the waves to the mean flow in the equatorial middle atmosphere. With the objective of characterising the equatorial wave characteristics and momentum fluxes associated with them a campaign experiment was conducted in 2000 using RH-200 rockets, balloons, Raleigh lidar and MST radar. Winds and temperatures in the troposphere, stratosphere and mesosphere over two low latitude stations Gadanki (13.5°N, 79.2°E) and SHAR (13.7°N, 80.2°E) were measured, using MST Radar, Rayleigh Lidar, balloons and RH-200 rockets, for 40 consecutive days from 21 February to 01 April 2000 and were used for the study of equatorial waves and their interactions with the background mean flow in various atmospheric regions. The study shows the occurrence of a strong stratospheric cooling (~25 K) anomaly along with a zonal wind anomaly and this low-latitude event appears to be linked to high-latitude stratospheric warming event and leads to subsequent generation of short period (~5 days) oscillations lasting for a few cycles in the stratosphere. A slow Kelvin wave (~18 day period), fast Kelvin wave (~8 days) and ultra fast Kelvin wave (~3.3 day period) and RG wave (~4.8 day period) have been identified. There are indications of slow and ultra fast Kelvin waves, in addition to fast Kelvin waves, contributing to the evolution of the westerly phase of the stratopause SAO.

  16. Searching for Fast Radio Bursts with the Advanced Laser Interferometer Gravitational-wave Observatory (LIGO)

    NASA Astrophysics Data System (ADS)

    Fisher, Ryan Patrick; Hughey, Brennan; Howell, Eric; LIGO Collaboration

    2018-01-01

    Although Fast Radio Bursts (FRB) are being detected with increasing frequency, their progenitor systems are still mostly a mystery. We present the plan to conduct targeted searches for gravitational-wave counterparts to these FRB events in the data from the first and second observing runs of the Advanced Laser Interferometer Gravitational-wave Observatory (LIGO).

  17. A current drive by using the fast wave in frequency range higher than two timeslower hybrid resonance frequency on tokamaks

    NASA Astrophysics Data System (ADS)

    Kim, Sun Ho; Hwang, Yong Seok; Jeong, Seung Ho; Wang, Son Jong; Kwak, Jong Gu

    2017-10-01

    An efficient current drive scheme in central or off-axis region is required for the steady state operation of tokamak fusion reactors. The current drive by using the fast wave in frequency range higher than two times lower hybrid resonance (w>2wlh) could be such a scheme in high density, high temperature reactor-grade tokamak plasmas. First, it has relatively higher parallel electric field to the magnetic field favorable to the current generation, compared to fast waves in other frequency range. Second, it can deeply penetrate into high density plasmas compared to the slow wave in the same frequency range. Third, parasitic coupling to the slow wave can contribute also to the current drive avoiding parametric instability, thermal mode conversion and ion heating occured in the frequency range w<2wlh. In this study, the propagation boundary, accessibility, and the energy flow of the fast wave are given via cold dispersion relation and group velocity. The power absorption and current drive efficiency are discussed qualitatively through the hot dispersion relation and the polarization. Finally, those characteristics are confirmed with ray tracing code GENRAY for the KSTAR plasmas.

  18. Research on Efficiency of a Wave Energy Conversion System

    NASA Astrophysics Data System (ADS)

    Lu, Zhongyue; Shang, Jianzhong; Luo, Zirong; Sun, Chongfei; Chen, Gewei

    2018-02-01

    The oceans are rich in wave energy that is green energy, and the wave energy are now being used to generate electricity on a massive scale. It can also be used as a single generator for beacon, buoy or underwater vehicle. Micro small wave energy power generation device is a kind of wave energy power generation devices, main characteristic is mobility is good, and can be directly assembled on various kinds of equipment for the power supply, with good prospects for development. The research object of the paper is a new adaptive reversing wave energy generating device belongs to micro-sized wave energy generating device. Using the upper and lower absorber blade groups, the low speed and large torque wave energy can be converted into electric energy which can be used for load and lithium battery charging.

  19. Acousto-optic modulation of a photonic crystal nanocavity with Lamb waves in microwave K band

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tadesse, Semere A.; School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota 55455; Li, Huan

    2015-11-16

    Integrating nanoscale electromechanical transducers and nanophotonic devices potentially can enable acousto-optic devices to reach unprecedented high frequencies and modulation efficiency. Here, we demonstrate acousto-optic modulation of a photonic crystal nanocavity using Lamb waves with frequency up to 19 GHz, reaching the microwave K band. The devices are fabricated in suspended aluminum nitride membrane. Excitation of acoustic waves is achieved with interdigital transducers with period as small as 300 nm. Confining both acoustic wave and optical wave within the thickness of the membrane leads to improved acousto-optic modulation efficiency in these devices than that obtained in previous surface acoustic wave devices. Ourmore » system demonstrates a scalable optomechanical platform where strong acousto-optic coupling between cavity-confined photons and high frequency traveling phonons can be explored.« less

  20. Acoustic-wave sensor apparatus for analyzing a petroleum-based composition and sensing solidification of constituents therein

    DOEpatents

    Spates, J.J.; Martin, S.J.; Mansure, A.J.

    1997-08-26

    An acoustic-wave sensor apparatus and method are disclosed. The apparatus for analyzing a normally liquid petroleum-based composition includes at least one acoustic-wave device in contact with the petroleum-based composition for sensing or detecting the presence of constituents (e.g. paraffins or petroleum waxes) therein which solidify upon cooling of the petroleum-based composition below a cloud-point temperature. The acoustic-wave device can be a thickness-shear-mode device (also termed a quartz crystal microbalance), a surface-acoustic-wave device, an acoustic-plate-mode device or a flexural plate-wave device. Embodiments of the present invention can be used for measuring a cloud point, a pour point and/or a freeze point of the petroleum-based composition, and for determining a temperature characteristic of each point. Furthermore, measurements with the acoustic-wave sensor apparatus can be made off-line by using a sample having a particular petroleum-based composition; or in-situ with the petroleum-based composition contained within a pipeline or storage tank. The acoustic-wave sensor apparatus has uses in many different petroleum technology areas, including the recovery, transport, storage, refining and use of petroleum and petroleum-based products. 7 figs.

  1. Acoustic-wave sensor apparatus for analyzing a petroleum-based composition and sensing solidification of constituents therein

    DOEpatents

    Spates, James J.; Martin, Stephen J.; Mansure, Arthur J.

    1997-01-01

    An acoustic-wave sensor apparatus and method. The apparatus for analyzing a normally liquid petroleum-based composition includes at least one acoustic-wave device in contact with the petroleum-based composition for sensing or detecting the presence of constituents (e.g. paraffins or petroleum waxes) therein which solidify upon cooling of the petroleum-based composition below a cloud-point temperature. The acoustic-wave device can be a thickness-shear-mode device (also termed a quartz crystal mircrobalance), a surface-acoustic-wave device, an acoustic-plate-mode device or a flexural plate-wave device. Embodiments of the present invention can be used for measuring a cloud point, a pour point and/or a freeze point of the petroleum-based composition, and for determining a temperature characteristic of each point. Furthermore, measurements with the acoustic-wave sensor apparatus can be made off-line by using a sample having a particular petroleum-based composition; or in-situ with the petroleum-based composition contained within a pipeline or storage tank. The acoustic-wave sensor apparatus has uses in many different petroleum technology areas, including the recover transport, storage, refining and use of petroleum and petroleum-based products.

  2. Associations between major chain fast-food outlet availability and change in body mass index: a longitudinal observational study of women from Victoria, Australia

    PubMed Central

    Thornton, Lukar E; Olstad, Dana Lee; Cerin, Ester; Ball, Kylie

    2017-01-01

    Objectives The residential neighbourhood fast-food environment has the potential to lead to increased levels of obesity by providing opportunities for residents to consume energy-dense products. This longitudinal study aimed to examine whether change in body mass index (BMI) differed dependent on major chain fast-food outlet availability among women residing in disadvantaged neighbourhoods. Setting Eighty disadvantaged neighbourhoods in Victoria, Australia. Participants Sample of 882 women aged 18–46 years at baseline (wave I: 2007/2008) who remained at the same residential location at all three waves (wave II: 2010/2011; wave III: 2012/2013) of the Resilience for Eating and Activity Despite Inequality study. Primary outcome BMI based on self-reported height and weight at each wave. Results There was no evidence of an interaction between time and the number of major chain fast-food outlets within 2 (p=0.88), 3 (p=0.66) or 5 km (p=0.24) in the multilevel models of BMI. Furthermore, there was no evidence of an interaction between time and change in availability at any distance and BMI. Conclusions Change in BMI was not found to differ by residential major chain fast-food outlet availability among Victorian women residing in disadvantaged neighbourhoods. It may be that exposure to fast-food outlets around other locations regularly visited influence change in BMI. Future research needs to consider what environments are the key sources for accessing and consuming fast food and how these relate to BMI and obesity risk. PMID:29042381

  3. Improvement of contact grating device for efficient terahertz wave generation using bi-angular filter

    NASA Astrophysics Data System (ADS)

    Nagashima, Keisuke; Tsubouchi, Masaaki; Ochi, Yoshihiro; Maruyama, Momoko

    2018-03-01

    We have proposed an improved contact grating device for generating terahertz waves efficiently and have succeeded in developing the device with a very high diffraction efficiency and a wide spectral width. This device has a bi-angular filter and a Fabry-Perot-type structure, which are composed of dielectric multilayers. The bi-angular filter is designed to reflect the 0th-order wave and transmit the-1st-order diffraction wave. Numerical calculations indicate that the new device has a maximum diffraction efficiency over 99% and a spectral width of approximately 20 nm. We measured a high efficiency of 90% over a broad spectral range using a fabricated device.

  4. Prospects for gravitational wave astronomy with next generation large-scale pulsar timing arrays

    NASA Astrophysics Data System (ADS)

    Wang, Yan; Mohanty, Soumya D.

    2018-02-01

    Next generation radio telescopes, namely the Five-hundred-meter Aperture Spherical Telescope (FAST) and the Square Kilometer Array (SKA), will revolutionize the pulsar timing arrays (PTAs) based gravitational wave (GW) searches. We review some of the characteristics of FAST and SKA, and the resulting PTAs, that are pertinent to the detection of gravitational wave signals from individual supermassive black hole binaries.

  5. On Emulation of Flueric Devices in Excitable Chemical Medium

    PubMed Central

    Adamatzky, Andrew

    2016-01-01

    Flueric devices are fluidic devices without moving parts. Fluidic devices use fluid as a medium for information transfer and computation. A Belousov-Zhabotinsky (BZ) medium is a thin-layer spatially extended excitable chemical medium which exhibits travelling excitation wave-fronts. The excitation wave-fronts transfer information. Flueric devices compute via jets interaction. BZ devices compute via excitation wave-fronts interaction. In numerical model of BZ medium we show that functions of key flueric devices are implemented in the excitable chemical system: signal generator, and, xor, not and nor Boolean gates, delay elements, diodes and sensors. Flueric devices have been widely used in industry since late 1960s and are still employed in automotive and aircraft technologies. Implementation of analog of the flueric devices in the excitable chemical systems opens doors to further applications of excitation wave-based unconventional computing in soft robotics, embedded organic electronics and living technologies. PMID:27997561

  6. On Emulation of Flueric Devices in Excitable Chemical Medium.

    PubMed

    Adamatzky, Andrew

    2016-01-01

    Flueric devices are fluidic devices without moving parts. Fluidic devices use fluid as a medium for information transfer and computation. A Belousov-Zhabotinsky (BZ) medium is a thin-layer spatially extended excitable chemical medium which exhibits travelling excitation wave-fronts. The excitation wave-fronts transfer information. Flueric devices compute via jets interaction. BZ devices compute via excitation wave-fronts interaction. In numerical model of BZ medium we show that functions of key flueric devices are implemented in the excitable chemical system: signal generator, and, xor, not and nor Boolean gates, delay elements, diodes and sensors. Flueric devices have been widely used in industry since late 1960s and are still employed in automotive and aircraft technologies. Implementation of analog of the flueric devices in the excitable chemical systems opens doors to further applications of excitation wave-based unconventional computing in soft robotics, embedded organic electronics and living technologies.

  7. Reconfigurable nanoscale spin-wave directional coupler

    PubMed Central

    Wang, Qi; Pirro, Philipp; Verba, Roman; Slavin, Andrei; Hillebrands, Burkard; Chumak, Andrii V.

    2018-01-01

    Spin waves, and their quanta magnons, are prospective data carriers in future signal processing systems because Gilbert damping associated with the spin-wave propagation can be made substantially lower than the Joule heat losses in electronic devices. Although individual spin-wave signal processing devices have been successfully developed, the challenging contemporary problem is the formation of two-dimensional planar integrated spin-wave circuits. Using both micromagnetic modeling and analytical theory, we present an effective solution of this problem based on the dipolar interaction between two laterally adjacent nanoscale spin-wave waveguides. The developed device based on this principle can work as a multifunctional and dynamically reconfigurable signal directional coupler performing the functions of a waveguide crossing element, tunable power splitter, frequency separator, or multiplexer. The proposed design of a spin-wave directional coupler can be used both in digital logic circuits intended for spin-wave computing and in analog microwave signal processing devices. PMID:29376117

  8. Reconfigurable nanoscale spin-wave directional coupler.

    PubMed

    Wang, Qi; Pirro, Philipp; Verba, Roman; Slavin, Andrei; Hillebrands, Burkard; Chumak, Andrii V

    2018-01-01

    Spin waves, and their quanta magnons, are prospective data carriers in future signal processing systems because Gilbert damping associated with the spin-wave propagation can be made substantially lower than the Joule heat losses in electronic devices. Although individual spin-wave signal processing devices have been successfully developed, the challenging contemporary problem is the formation of two-dimensional planar integrated spin-wave circuits. Using both micromagnetic modeling and analytical theory, we present an effective solution of this problem based on the dipolar interaction between two laterally adjacent nanoscale spin-wave waveguides. The developed device based on this principle can work as a multifunctional and dynamically reconfigurable signal directional coupler performing the functions of a waveguide crossing element, tunable power splitter, frequency separator, or multiplexer. The proposed design of a spin-wave directional coupler can be used both in digital logic circuits intended for spin-wave computing and in analog microwave signal processing devices.

  9. Observed ocean waves by tropical cyclones

    NASA Astrophysics Data System (ADS)

    Zhang, Lin; Oey, Leo

    2017-04-01

    Ocean waves produced by tropical cyclones (TC) modify air-sea fluxes which in turn are crucial to the storms' intensity and development, yet they are poorly understood. Here we use 24 years (1992-2015) of observed waves, winds and TC-track information to stratify storm-centered composite maps of waves and winds according to TC intensities and translation speeds (Uh). While the wind field is rightward-asymmetric independent of Uh, the wave field is rightward-symmetric in concert with the wind for slow-translating TCs (Uh ≤ 3 m s-1), but right-rear asymmetric with strongest waves in the 4th quadrant for medium to fast-translating TCs (3 < Uh ≤ 7 m s-1), especially for the very fast storms (Uh > 7 m s-1), all independent of TC-intensity. The dominance of the right-rear asymmetry for fast-translating TCs appears to be related to the development of cross swells as the storms move faster, but further research using models are needed to understand the physical mechanisms.

  10. Guided-Wave TeO2 Acousto-Optic Devices

    DTIC Science & Technology

    1991-01-12

    In this research program, Guided-wave TeO2 Acousto - Optic Devices, the properties of surface acoustic waves on tellurium dioxide single crystal...surfaces has been studied for its potential applications as acousto - optic signal processing devices. Personal computer based numerical method has been...interaction with laser beams. Use of the acousto - optic probe, the surface acoustic wave velocity and field distribution have been obtained and compared

  11. Enhanced Sensitivity of Wireless Chemical Sensor Based on Love Wave Mode

    NASA Astrophysics Data System (ADS)

    Wang, Wen; Oh, Haekwan; Lee, Keekeun; Yang, Sangsik

    2008-09-01

    A 440 MHz wireless and passive Love-wave-based chemical sensor was developed for CO2 detection. The developed device was composed of a reflective delay line patterned on 41° YX LiNbO3 piezoelectric substrate, a poly(methyl methacrylate) (PMMA) waveguide layer, and Teflon AF 2400 sensitive film. A theoretical model is presented to describe wave propagation in Love wave devices with large piezoelectricity and to allow the design of an optimized structure. In wireless device testing using a network analyzer, infusion of CO2 into the testing chamber induced large phase shifts of the reflection peaks owing to the interaction between the sensing film and the test gas (CO2). Good linearity and repeatability were observed at CO2 concentrations of 0-350 ppm. The obtained sensitivity from the Love wave device was approximately 7.07° ppm-1. The gas response properties of the fabricated Love-wave sensor in terms of linearity and sensitivity were provided, and a comparison to surface acoustic wave devices was also discussed.

  12. Shockwave generation by a semiconductor bridge operation in water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zvulun, E.; Toker, G.; Gurovich, V. Tz.

    2014-05-28

    A semiconductor bridge (SCB) is a silicon device, used in explosive systems as the electrical initiator element. In recent years, SCB plasma has been extensively studied, both electrically and using fast photography and spectroscopic imaging. However, the value of the pressure buildup at the bridge remains unknown. In this study, we operated SCB devices in water and, using shadow imaging and reference beam interferometry, obtained the velocity of the shock wave propagation and distribution of the density of water. These results, together with a self-similar hydrodynamic model, were used to calculate the pressure generated by the exploding SCB. In addition,more » the results obtained showed that the energy of the water flow exceeds significantly the energy deposited into the exploded SCB. The latter can be explained by the combustion of the aluminum and silicon atoms released in water, which acts as an oxidizing medium.« less

  13. Optomechanical terahertz detection with single meta-atom resonator.

    PubMed

    Belacel, Cherif; Todorov, Yanko; Barbieri, Stefano; Gacemi, Djamal; Favero, Ivan; Sirtori, Carlo

    2017-11-17

    Most of the common technologies for detecting terahertz photons (>1 THz) at room temperature rely on slow thermal devices. The realization of fast and sensitive detectors in this frequency range is indeed a notoriously difficult task. Here we propose a novel device consisting of a subwavelength terahertz meta-atom resonator, which integrates a nanomechanical element and allows energy exchange between the mechanical motion and the electromagnetic degrees of freedom. An incident terahertz wave thus produces a nanomechanical signal that can be read out optically with high precision. We exploit this concept to demonstrate a terahertz detector that operates at room temperature with high sensitivity and a much higher frequency response compared to standard detectors. Beyond the technological issue of terahertz detection, our architecture opens up new perspectives for fundamental science of light-matter interaction at terahertz frequencies, combining optomechanical approaches with semiconductor quantum heterostructures.

  14. Beam steering for virtual/augmented reality displays with a cycloidal diffractive waveplate.

    PubMed

    Chen, Haiwei; Weng, Yishi; Xu, Daming; Tabiryan, Nelson V; Wu, Shin-Tson

    2016-04-04

    We proposed a switchable beam steering device with cycloidal diffractive waveplate (CDW) for eye tracking in a virtual reality (VR) or augmented reality (AR) display system. Such a CDW diffracts the incident circularly polarized light to the first order with over 95% efficiency. To convert the input linearly polarized light to right-handed or left-handed circular polarization, we developed a broadband polarization switch consisting of a twisted nematic liquid crystal cell and an achromatic quarter-wave retardation film. By cascading 2-3 CDWs together, multiple diffraction angles can be achieved. To suppress the color dispersion, we proposed two approaches to obtain the same diffraction angle for red, green, and blue LEDs-based full color displays. Our device exhibits several advantages, such as high diffraction efficiency, fast response time, low power consumption, and low cost. It holds promise for the emerging VR/AR displays.

  15. Microsecond-range optical shutter for unpolarized light with chiral nematic liquid crystal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohammadimasoudi, Mohammad, E-mail: Mohammad.Mohammadimasoudi@elis.ugent.be; Neyts, Kristiaan; Beeckman, Jeroen

    2015-04-15

    A fast electro-optic shutter is fabricated and demonstrated. The device works independently of the polarization state of the incoming light beam. Modulation between 3% transmission and 60% transmission is obtained within a wavelength range of 50 nm with a response time of 20 μs. The device consists of two partly polymerized chiral nematic liquid crystal layers separated by a half wave plate. The transmission modulation is due to a 50 nm wavelength shift of the photonic band gap of the chiral liquid crystal realized by applying an electric field over a mixture of photo-polymerized LC and non-reactive nematic LC containingmore » a chiral dopant. The shutter features high reflectivity in the photonic band gap. We investigate the influence of the amplitude of the applied voltage on the width and the depth of the reflection band.« less

  16. Measurement of Poisson's ratio of nonmetallic materials by laser holographic interferometry

    NASA Astrophysics Data System (ADS)

    Zhu, Jian T.

    1991-12-01

    By means of the off-axis collimated plane wave coherent light arrangement and a loading device by pure bending, Poisson's ratio values of CFRP (carbon fiber-reinforced plactics plates, lay-up 0 degree(s), 90 degree(s)), GFRP (glass fiber-reinforced plactics plates, radial direction) and PMMA (polymethyl methacrylate, x, y direction) have been measured. In virtue of this study, the ministry standard for the Ministry of Aeronautical Industry (Testing method for the measurement of Poisson's ratio of non-metallic by laser holographic interferometry) has been published. The measurement process is fast and simple. The measuring results are reliable and accurate.

  17. A new equation in two dimensional fast magnetoacoustic shock waves in electron-positron-ion plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Masood, W.; Jehan, Nusrat; Mirza, Arshad M.

    2010-03-15

    Nonlinear properties of the two dimensional fast magnetoacoustic waves are studied in a three-component plasma comprising of electrons, positrons, and ions. In this regard, Kadomtsev-Petviashvili-Burger (KPB) equation is derived using the small amplitude perturbation expansion method. Under the condition that the electron and positron inertia are ignored, Burger-Kadomtsev-Petviashvili (Burger-KP) for a fast magnetoacoustic wave is derived for the first time, to the best of author's knowledge. The solutions of both KPB and Burger-KP equations are obtained using the tangent hyperbolic method. The effects of positron concentration, kinematic viscosity, and plasma beta are explored both for the KPB and the Burger-KPmore » shock waves and the differences between the two are highlighted. The present investigation may have relevance in the study of nonlinear electromagnetic shock waves both in laboratory and astrophysical plasmas.« less

  18. Scattering of Magnetic Mirror-Trapped Fast Electrons by a Shear Alfvén Wave

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Gekelman, W. N.; Pribyl, P.; Papadopoulos, K.

    2011-12-01

    Highly energetic electrons produced naturally or artificially can be trapped in the earth's radiation belts for months, posing a danger to satellites in space. An experimental investigation of the scattering of mirror trapped fast electrons by a shear Alfvén wave is performed at the Large Plasma Device (LaPD) at UCLA, and sheds light on a technique for artificially de-trapping the hazardous electrons in space. The experiment is performed in a quiescent afterglow plasma (ne ≈ 0.1 to 1×1012cm-3, Te ≈ 0.5 eV, B0 = 400 to 1200 G, L = 18 m, and diameter = 0.6 m). The magnetic field is programmed to include a mirror section approximately 3 m long, with 1.1 ≤Rmirror≤ 4. A trapped fast electron population is generated in the mirror section using second harmonic Electron Cyclotron Heating (ECH). The heating source comprises a 25 kW magnetron, operating at 2.45 GHz, with the microwave power injected for 10 - 50 ms. Longer injection periods (τ>30ms) result in a population of runaway electrons (energies up to 5MeV) as evidenced by X-ray production when the electron orbits hit a probe or the waveguide. The fastest electrons are generated in an annular region in front of the waveguide, with a radial extent of several cm and axial extent L ≈ 1 m. Shear Alfvén waves are launched with Bwave/B0 less than 0.5%, at frequencies ranging from 115 to 230 kHz (0.19 to 0.75 of fci in the straight field). Using the X-ray production, v⊥ probes and Langmuir probes as diagnostics, the Alfvén waves are observed to have a dramatic effect on the run-away electrons (E~105eV) as well as the less energetic electrons (E~102eV): the Alfvén wave can modify the trapped electron orbits to the extent that they are lost from the mirror trap. Possible mechanisms for scattering include the shear Alfvén wave breaking of one or more adiabatic invariants of an electron in a mirror field. This work is supported by The Office of Naval Research and performed at the Basic Plasma Science Facility under ONR MURI 00014-07-1-0789. The BaPSF is funded by the Department of Energy and the National Science Foundation.

  19. Backside imaging of a microcontroller with common-path digital holography

    NASA Astrophysics Data System (ADS)

    Finkeldey, Markus; Göring, Lena; Schellenberg, Falk; Gerhardt, Nils C.; Hofmann, Martin

    2017-03-01

    The investigation of integrated circuits (ICs), such as microcontrollers (MCUs) and system on a chip (SoCs) devices is a topic with growing interests. The need for fast and non-destructive imaging methods is given by the increasing importance of hardware Trojans, reverse engineering and further security related analysis of integrated cryptographic devices. In the field of side-channel attacks, for instance, the precise spot for laser fault attacks is important and could be determined by using modern high resolution microscopy methods. Digital holographic microscopy (DHM) is a promising technique to achieve high resolution phase images of surface structures. These phase images provide information about the change of the refractive index in the media and the topography. For enabling a high phase stability, we use the common-path geometry to create the interference pattern. The interference pattern, or hologram, is captured with a water cooled sCMOS camera. This provides a fast readout while maintaining a low level of noise. A challenge for these types of holograms is the interference of the reflected waves from the different interfaces inside the media. To distinguish between the phase signals from the buried layer and the surface reflection we use specific numeric filters. For demonstrating the performance of our setup we show results with devices under test (DUT), using a 1064 nm laser diode as light source. The DUTs are modern microcontrollers thinned to different levels of thickness of the Si-substrate. The effect of the numeric filter compared to unfiltered images is analyzed.

  20. Calibration and validation of a spar-type floating offshore wind turbine model using the FAST dynamic simulation tool

    DOE PAGES

    Browning, J. R.; Jonkman, J.; Robertson, A.; ...

    2014-12-16

    In this study, high-quality computer simulations are required when designing floating wind turbines because of the complex dynamic responses that are inherent with a high number of degrees of freedom and variable metocean conditions. In 2007, the FAST wind turbine simulation tool, developed and maintained by the U.S. Department of Energy's (DOE's) National Renewable Energy Laboratory (NREL), was expanded to include capabilities that are suitable for modeling floating offshore wind turbines. In an effort to validate FAST and other offshore wind energy modeling tools, DOE funded the DeepCwind project that tested three prototype floating wind turbines at 1/50 th scalemore » in a wave basin, including a semisubmersible, a tension-leg platform, and a spar buoy. This paper describes the use of the results of the spar wave basin tests to calibrate and validate the FAST offshore floating simulation tool, and presents some initial results of simulated dynamic responses of the spar to several combinations of wind and sea states. Wave basin tests with the spar attached to a scale model of the NREL 5-megawatt reference wind turbine were performed at the Maritime Research Institute Netherlands under the DeepCwind project. This project included free-decay tests, tests with steady or turbulent wind and still water (both periodic and irregular waves with no wind), and combined wind/wave tests. The resulting data from the 1/50th model was scaled using Froude scaling to full size and used to calibrate and validate a full-size simulated model in FAST. Results of the model calibration and validation include successes, subtleties, and limitations of both wave basin testing and FAST modeling capabilities.« less

  1. Electrostatic waves driven by electron beam in lunar wake plasma

    NASA Astrophysics Data System (ADS)

    Sreeraj, T.; Singh, S. V.; Lakhina, G. S.

    2018-05-01

    A linear analysis of electrostatic waves propagating parallel to the ambient field in a four component homogeneous, collisionless, magnetised plasma comprising fluid protons, fluid He++, electron beam, and suprathermal electrons following kappa distribution is presented. In the absence of electron beam streaming, numerical analysis of the dispersion relation shows six modes: two electron acoustic modes (modes 1 and 6), two fast ion acoustic modes (modes 2 and 5), and two slow ion acoustic modes (modes 3 and 4). The modes 1, 2 and 3 and modes 4, 5, and 6 have positive and negative phase speeds, respectively. With an increase in electron beam speed, the mode 6 gets affected the most and the phase speed turns positive from negative. The mode 6 thus starts to merge with modes 2 and 3 and generates the electron beam driven fast and slow ion acoustic waves unstable with a finite growth. The electron beam driven slow ion-acoustic waves occur at lower wavenumbers, whereas fast ion-acoustic waves occur at a large value of wavenumbers. The effect of various other parameters has also been studied. We have applied this analysis to the electrostatic waves observed in lunar wake during the first flyby of the ARTEMIS mission. The analysis shows that the low (high) frequency waves observed in the lunar wake could be the electron beam driven slow (fast) ion-acoustic modes.

  2. Numerical modeling of the effects of wave energy converter characteristics on nearshore wave conditions

    DOE PAGES

    Chang, G.; Ruehl, K.; Jones, C. A.; ...

    2015-12-24

    Modeled nearshore wave propagation was investigated downstream of simulated wave energy converters (WECs) to evaluate overall near- and far-field effects of WEC arrays. Model sensitivity to WEC characteristics and WEC array deployment scenarios was evaluated using a modified version of an industry standard wave model, Simulating WAves Nearshore (SWAN), which allows the incorporation of device-specific WEC characteristics to specify obstacle transmission. The sensitivity study illustrated that WEC device type and subsequently its size directly resulted in wave height variations in the lee of the WEC array. Wave heights decreased up to 30% between modeled scenarios with and without WECs formore » large arrays (100 devices) of relatively sizable devices (26 m in diameter) with peak power generation near to the modeled incident wave height. Other WEC types resulted in less than 15% differences in modeled wave height with and without WECs, with lesser influence for WECs less than 10 m in diameter. Wave directions and periods were largely insensitive to changes in parameters. Furthermore, additional model parameterization and analysis are required to fully explore the model sensitivity of peak wave period and mean wave direction to the varying of the parameters.« less

  3. Alfvén Waves Generated by Expanding Plasmas in the Laboratory and in Space

    NASA Astrophysics Data System (ADS)

    Gekelman, W.; Vanzeeland, M.; Vincena, S.; Pribyl, P.

    2002-12-01

    There are many situations, which occur in space (coronal mass ejections, supernovas), or are man-made (upper atmospheric detonations) in which a dense plasma expands into a background magnetized plasma, that can support Alfvén waves. The LArge Plasma Device (LAPD) is a machine, at UCLA, in which Alfvén waves propagation in homogeneous and inhomogeneous plasmas has been studied. These will be briefly reviewed. Then a new class of experiments which involve the expansion of a dense (initially, n/no>>1) laser-produced plasma into an ambient highly magnetized background plasma capable of supporting Alfvén waves will be presented. The 150 MW laser is pulsed at the same 1 Hz repetition rate as the plasma in a highly reproducible experiment. The laser beam impacts a solid target such that the initial plasma burst is directed either along or across the magnetic field. The interaction results in the production of intense shear and compressional Alfvén waves, as well as large density perturbations. The waves propagate away from the target and are observed to become plasma column resonances. The magnetic fields of the waves are obtained with a 3-axis inductive probe. Spatial patterns of the magnetic fields associated with the waves and density perturbations are measured at over {10}4 locations and will be shown in dramatic movies. These are used to estimate the coupling efficiency of the laser energy and kinetic energy of the dense plasma into wave energy. The wave generation mechanism is due to field aligned return currents, which replace fast electrons escaping the initial blast. Work supported by ONR, DOE, and NSF

  4. Flexural plate wave devices fabricated from silicon carbide membrane

    NASA Astrophysics Data System (ADS)

    Diagne, Ndeye Fama

    Flexural Plate Wave (FPW) devices fabricated from Silicon Carbide (SiC) membranes are presented here which exhibit electrical and mechanical characteristics in its transfer functions that makes it very useful as a low voltage probe device capable of functioning in small areas that are commonly inaccessible to ordinary devices. The low input impedance characteristic of this current driven device makes it possible for it to operate at very low voltages, thereby reducing the hazards for flammable or explosive areas to be probed. The Flexural Plate Wave (FPW) devices are of a family of gravimetric type sensors that permit direct measurements of the mass of the vibrating element. The primary objective was to study the suitability of Silicon Carbide (SiC) membranes as a replacement of Silicon Nitride (SiN) membrane in flexural plate wave devices developed by Sandia National Laboratories. Fabrication of the Flexural Plate Wave devices involves the overlaying a silicon wafer with membranes of 3C-SiC thin film upon which conducting meander lines are placed. The input excitation energy is in the form of an input current. The lines of current along the direction of the conducting Meander Lines Transducer (MLTs) and the applied perpendicular external magnetic field set up a mechanical wave perpendicular to both, exciting the membrane by means of a Lorentz force, which in turn sets up flexural waves that propagate along the thin membrane. The physical dimensions, the mass density, the tension in the membrane and the meander spacing are physical characteristics that determine resonance frequency of the Flexural Plate Wave (FPW) device. Of primary interest is the determination of the resonant frequency of the silicon carbide membrane as functions of the device physical characteristic parameters. The appropriate transduction scheme with Meander Line Transducers (IDTs) are used to excite the membrane. Equivalent circuit models characterizing the reflection response S11 (amplitude and phase) for a one-port Flexural PlateWave device and the transmission response S21 of a two-port device are used for the development of the equivalent mechanical characteristics.

  5. Alfvén wave dynamics at the neighborhood of a 2.5D magnetic null-point

    NASA Astrophysics Data System (ADS)

    Sabri, S.; Vasheghani Farahani, S.; Ebadi, H.; Hosseinpour, M.; Fazel, Z.

    2018-05-01

    The aim of the present study is to highlight the energy transfer via the interaction of magnetohydrodynamic waves with a 2.5D magnetic null-point in a finite plasma-β regime of the solar corona. An initially symmetric Alfvén pulse at a specific distance from a magnetic null-point is kicked towards the isothermal null-point. A shock-capturing Godunov-type PLUTO code is used to solve the ideal magnetohydrodynamic set equations in the context of wave-plasma energy transfer. As the Alfvén wave propagates towards the magnetic null-point it experiences speed lowering which ends up in releasing energy along the separatrices. In this line owing to the Alfvén wave, a series of events take place that contribute towards coronal heating. Nonlinear induced waves are by products of the torsional Alfvén interaction with magnetic null-points. The energy of these induced waves which are fast magnetoacoustic (transverse) and slow magnetoacoustic (longitudinal) waves are supplied by the Alfvén wave. The nonlinearly induced density perturbations are proportional to the Alfvén wave energy loss. This supplies energy for the propagation of fast and slow magnetoacoustic waves, where in contrast to the fast wave the slow wave experiences a continuous energy increase. As such, the slow wave may transfer its energy to the medium at later times, maintaining a continuous heating mechanism at the neighborhood of a magnetic null-point.

  6. Underwater Sound Levels at a Wave Energy Device Testing Facility in Falmouth Bay, UK.

    PubMed

    Garrett, Joanne K; Witt, Matthew J; Johanning, Lars

    2016-01-01

    Passive acoustic monitoring devices were deployed at FaBTest in Falmouth Bay, UK, a marine renewable energy device testing facility during trials of a wave energy device. The area supports considerable commercial shipping and recreational boating along with diverse marine fauna. Noise monitoring occurred during (1) a baseline period, (2) installation activity, (3) the device in situ with inactive power status, and (4) the device in situ with active power status. This paper discusses the preliminary findings of the sound recording at FabTest during these different activity periods of a wave energy device trial.

  7. Toward jet injection by continuous-wave laser cavitation

    NASA Astrophysics Data System (ADS)

    Berrospe-Rodriguez, Carla; Visser, Claas Willem; Schlautmann, Stefan; Rivas, David Fernandez; Ramos-Garcia, Ruben

    2017-10-01

    This is a study motivated by the need to develop a needle-free device for eliminating major global healthcare problems caused by needles. The generation of liquid jets by means of a continuous-wave laser, focused into a light absorbing solution, was studied with the aim of developing a portable and affordable jet injector. We designed and fabricated glass microfluidic devices, which consist of a chamber where thermocavitation is created and a tapered channel. The growth of a vapor bubble displaces and expels the liquid through the channel as a fast traveling jet. Different parameters were varied with the purpose of increasing the jet velocity. The velocity increases with smaller channel diameters and taper ratios, whereas larger chambers significantly reduce the jet speed. It was found that the initial position of the liquid-air meniscus interface and its dynamics contribute to increased jet velocities. A maximum velocity of 94±3 m/s for a channel diameter of D=120 μm, taper ratio n=0.25, and chamber length E=200 μm was achieved. Finally, agarose gel-based skin phantoms were used to demonstrate the potential of our devices to penetrate the skin. The maximum penetration depth achieved was ˜1 mm, which is sufficient to penetrate the stratum corneum and for most medical applications. A meta-analysis shows that larger injection volumes will be required as a next step to medical relevance for laser-induced jet injection techniques in general.

  8. Fast Magnetosonic Waves Observed by Van Allen Probes: Testing Local Wave Excitation Mechanism

    NASA Astrophysics Data System (ADS)

    Min, Kyungguk; Liu, Kaijun; Wang, Xueyi; Chen, Lunjin; Denton, Richard E.

    2018-01-01

    Linear Vlasov theory and particle-in-cell (PIC) simulations for electromagnetic fluctuations in a homogeneous, magnetized, and collisionless plasma are used to investigate a fast magnetosonic wave event observed by the Van Allen Probes. The fluctuating magnetic field observed exhibits a series of spectral peaks at harmonics of the proton cyclotron frequency Ωp and has a dominant compressional component, which can be classified as fast magnetosonic waves. Furthermore, the simultaneously observed proton phase space density exhibits positive slopes in the perpendicular velocity space, ∂fp/∂v⊥>0, which can be a source for these waves. Linear theory analyses and PIC simulations use plasma and field parameters measured in situ except that the modeled proton distribution is modified to have larger ∂fp/∂v⊥ under the assumption that the observed distribution corresponds to a marginally stable state when the distribution has already been scattered by the excited waves. The results show that the positive slope is the source of the proton cyclotron harmonic waves at propagation quasi-perpendicular to the background magnetic field, and as a result of interactions with the excited waves the evolving proton distribution progresses approximately toward the observed distribution.

  9. Partial Reflection and Trapping of a Fast-mode Wave in Solar Coronal Arcade Loops

    NASA Astrophysics Data System (ADS)

    Kumar, Pankaj; Innes, D. E.

    2015-04-01

    We report on the first direct observation of a fast-mode wave propagating along and perpendicular to cool (171 Å) arcade loops observed by the Solar Dynamics Observatory/Atmospheric Imaging Assembly (AIA). The wave was associated with an impulsive/compact flare near the edge of a sunspot. The EUV wavefront expanded radially outward from the flare center and decelerated in the corona from 1060 to 760 km s-1 within ˜3-4 minutes. Part of the EUV wave propagated along a large-scale arcade of cool loops and was partially reflected back to the flare site. The phase speed of the wave was about 1450 km s-1, which is interpreted as a fast-mode wave. A second overlying loop arcade, orientated perpendicular to the cool arcade, is heated and becomes visible in the AIA hot channels. These hot loops sway in time with the EUV wave, as it propagated to and fro along the lower loop arcade. We suggest that an impulsive energy release at one of the footpoints of the arcade loops causes the onset of an EUV shock wave that propagates along and perpendicular to the magnetic field.

  10. Surface Acoustic Wave Monitor for Deposition and Analysis of Ultra-Thin Films

    NASA Technical Reports Server (NTRS)

    Hines, Jacqueline H. (Inventor)

    2015-01-01

    A surface acoustic wave (SAW) based thin film deposition monitor device and system for monitoring the deposition of ultra-thin films and nanomaterials and the analysis thereof is characterized by acoustic wave device embodiments that include differential delay line device designs, and which can optionally have integral reference devices fabricated on the same substrate as the sensing device, or on a separate device in thermal contact with the film monitoring/analysis device, in order to provide inherently temperature compensated measurements. These deposition monitor and analysis devices can include inherent temperature compensation, higher sensitivity to surface interactions than quartz crystal microbalance (QCM) devices, and the ability to operate at extreme temperatures.

  11. Large-amplitude hydromagnetic waves in collisionless relativistic plasma - Exact solution for the fast-mode magnetoacoustic wave

    NASA Technical Reports Server (NTRS)

    Barnes, A.

    1983-01-01

    An exact nonlinear solution is found to the relativistic kinetic and electrodynamic equations (in their hydromagnetic limit) that describes the large-amplitude fast-mode magnetoacoustic wave propagating normal to the magnetic field in a collisionless, previously uniform plasma. It is pointed out that a wave of this kind will be generated by transverse compression of any collisionless plasma. The solution is in essence independent of the detailed form of the particle momentum distribution functions. The solution is obtained, in part, through the method of characteristics; the wave exhibits the familiar properties of steepening and shock formation. A detailed analysis is given of the ultrarelativistic limit of this wave.

  12. An Extreme-ultraviolet Wave Generating Upward Secondary Waves in a Streamer-like Solar Structure

    NASA Astrophysics Data System (ADS)

    Zheng, Ruisheng; Chen, Yao; Feng, Shiwei; Wang, Bing; Song, Hongqiang

    2018-05-01

    Extreme-ultraviolet (EUV) waves, spectacular horizontally propagating disturbances in the low solar corona, always trigger horizontal secondary waves (SWs) when they encounter the ambient coronal structure. We present the first example of upward SWs in a streamer-like structure after the passing of an EUV wave. This event occurred on 2017 June 1. The EUV wave happened during a typical solar eruption including a filament eruption, a coronal mass ejection (CME), and a C6.6 flare. The EUV wave was associated with quasi-periodic fast propagating (QFP) wave trains and a type II radio burst that represented the existence of a coronal shock. The EUV wave had a fast initial velocity of ∼1000 km s‑1, comparable to high speeds of the shock and the QFP wave trains. Intriguingly, upward SWs rose slowly (∼80 km s‑1) in the streamer-like structure after the sweeping of the EUV wave. The upward SWs seemed to originate from limb brightenings that were caused by the EUV wave. All of the results show that the EUV wave is a fast-mode magnetohydrodynamic (MHD) shock wave, likely triggered by the flare impulses. We suggest that part of the EUV wave was probably trapped in the closed magnetic fields of the streamer-like structure, and upward SWs possibly resulted from the release of slow-mode trapped waves. It is believed that the interplay of the strong compression of the coronal shock and the configuration of the streamer-like structure is crucial for the formation of upward SWs.

  13. Associations between major chain fast-food outlet availability and change in body mass index: a longitudinal observational study of women from Victoria, Australia.

    PubMed

    Lamb, Karen E; Thornton, Lukar E; Olstad, Dana Lee; Cerin, Ester; Ball, Kylie

    2017-10-16

    The residential neighbourhood fast-food environment has the potential to lead to increased levels of obesity by providing opportunities for residents to consume energy-dense products. This longitudinal study aimed to examine whether change in body mass index (BMI) differed dependent on major chain fast-food outlet availability among women residing in disadvantaged neighbourhoods. Eighty disadvantaged neighbourhoods in Victoria, Australia. Sample of 882 women aged 18-46 years at baseline (wave I: 2007/2008) who remained at the same residential location at all three waves (wave II: 2010/2011; wave III: 2012/2013) of the Resilience for Eating and Activity Despite Inequality study. BMI based on self-reported height and weight at each wave. There was no evidence of an interaction between time and the number of major chain fast-food outlets within 2 (p=0.88), 3 (p=0.66) or 5 km (p=0.24) in the multilevel models of BMI. Furthermore, there was no evidence of an interaction between time and change in availability at any distance and BMI. Change in BMI was not found to differ by residential major chain fast-food outlet availability among Victorian women residing in disadvantaged neighbourhoods. It may be that exposure to fast-food outlets around other locations regularly visited influence change in BMI. Future research needs to consider what environments are the key sources for accessing and consuming fast food and how these relate to BMI and obesity risk. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  14. Reflection of Fast Magnetosonic Waves near a Magnetic Reconnection Region

    NASA Astrophysics Data System (ADS)

    Provornikova, E.; Laming, J. M.; Lukin, V. S.

    2018-06-01

    Magnetic reconnection in the solar corona is thought to be unstable with the formation of multiple interacting plasmoids, and previous studies have shown that plasmoid dynamics can trigger MHD waves of different modes propagating outward from the reconnection site. However, variations in plasma parameters and magnetic field strength in the vicinity of a coronal reconnection site may lead to wave reflection and mode conversion. In this paper we investigate the reflection and refraction of fast magnetoacoustic waves near a reconnection site. Under a justified assumption of an analytically specified Alfvén speed profile, we derive and solve analytically the full wave equation governing the propagation of fast-mode waves in a non-uniform background plasma without recourse to the small wavelength approximation. We show that the waves undergo reflection near the reconnection current sheet due to the Alfvén speed gradient and that the reflection efficiency depends on the plasma-β parameter, as well as on the wave frequency. In particular, we find that waves are reflected more efficiently near reconnection sites in a low-β plasma, which is typical under solar coronal conditions. Also, the reflection is larger for lower-frequency waves while high-frequency waves propagate outward from the reconnection region almost without the reflection. We discuss the implications of efficient wave reflection near magnetic reconnection sites in strongly magnetized coronal plasma for particle acceleration, and also the effect this might have on first ionization potential (FIP) fractionation by the ponderomotive force of these waves in the chromosphere.

  15. Preliminary study of slow and fast ultrasonic waves using MR images of trabecular bone phantom

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Solis-Najera, S. E., E-mail: solisnajera@ciencias.unam.mx, E-mail: angel.perez@ciencias.unam.mx, E-mail: lucia.medina@ciencias.unam.mx; Neria-Pérez, J. A., E-mail: solisnajera@ciencias.unam.mx, E-mail: angel.perez@ciencias.unam.mx, E-mail: lucia.medina@ciencias.unam.mx; Medina, L., E-mail: solisnajera@ciencias.unam.mx, E-mail: angel.perez@ciencias.unam.mx, E-mail: lucia.medina@ciencias.unam.mx

    Cancellous bone is a complex tissue that performs physiological and biomechanical functions in all vertebrates. It is made up of trabeculae that, from a simplified structural viewpoint, can be considered as plates and beams in a hyperstatic structure that change with time leading to osteoporosis. Several methods has been developed to study the trabecular bone microstructure among them is the Biot’s model which predicts the existence of two longitudinal waves in porous media; the slow and the fast waves, that can be related to porosity of the media. This paper is focused on the experimental detection of the two Biot’smore » waves of a trabecular bone phantom, consisting of a trabecular network of inorganic hydroxyapatite. Experimental measurements of both waves were performed using through transmission ultrasound. Results had shown clearly that the propagation of two waves propagation is transversal to the trabecular alignment. Otherwise the waves are overlapped and a single wave seems to be propagated. To validate these results, magnetic resonance images were acquired to assess the trabecular direction, and to assure that the pulses correspond to the slow and fast waves. This approach offers a methodology for non-invasive studies of trabecular bones.« less

  16. Spin wave nonreciprocity for logic device applications

    NASA Astrophysics Data System (ADS)

    Jamali, Mahdi; Kwon, Jae Hyun; Seo, Soo-Man; Lee, Kyung-Jin; Yang, Hyunsoo

    2013-11-01

    The utilization of spin waves as eigenmodes of the magnetization dynamics for information processing and communication has been widely explored recently due to its high operational speed with low power consumption and possible applications for quantum computations. Previous proposals of spin wave Mach-Zehnder devices were based on the spin wave phase, a delicate entity which can be easily disrupted. Here, we propose a complete logic system based on the spin wave amplitude utilizing the nonreciprocal spin wave behavior excited by microstrip antennas. The experimental data reveal that the nonreciprocity of magnetostatic surface spin wave can be tuned by the bias magnetic field. Furthermore, engineering of the device structure could result in a high nonreciprocity factor for spin wave logic applications.

  17. Spin wave nonreciprocity for logic device applications

    PubMed Central

    Jamali, Mahdi; Kwon, Jae Hyun; Seo, Soo-Man; Lee, Kyung-Jin; Yang, Hyunsoo

    2013-01-01

    The utilization of spin waves as eigenmodes of the magnetization dynamics for information processing and communication has been widely explored recently due to its high operational speed with low power consumption and possible applications for quantum computations. Previous proposals of spin wave Mach-Zehnder devices were based on the spin wave phase, a delicate entity which can be easily disrupted. Here, we propose a complete logic system based on the spin wave amplitude utilizing the nonreciprocal spin wave behavior excited by microstrip antennas. The experimental data reveal that the nonreciprocity of magnetostatic surface spin wave can be tuned by the bias magnetic field. Furthermore, engineering of the device structure could result in a high nonreciprocity factor for spin wave logic applications. PMID:24196318

  18. Ion absorption of the high harmonic fast wave in the National Spherical Torus Experiment

    NASA Astrophysics Data System (ADS)

    Rosenberg, Adam Lewis

    Ion absorption of the high harmonic fast wave in a spherical torus is of critical importance to assessing the viability of the wave as a means of heating and driving current. Analysis of recent NSTX shots has revealed that under some conditions when neutral beam and RF power are injected into the plasma simultaneously, a fast ion population with energy above the beam injection energy is sustained by the wave. In agreement with modeling, these experiments find the RF-induced fast ion tail strength and neutron rate at lower B-fields to be less enhanced, likely due to a larger β profile, which promotes greater off-axis absorption where the fast ion population is small. Ion loss codes find the increased loss fraction with decreased B insufficient to account for the changes in tail strength, providing further evidence that this is an RF interaction effect. Though greater ion absorption is predicted with lower k∥, surprisingly little variation in the tail was observed, along with a neutron rate enhancement with higher k∥. Data from the neutral particle analyzer, neutron detectors, x-ray crystal spectrometer, and Thomson scattering is presented, along with results from the TRANSP transport analysis code, ray-tracing codes HPRT and CURRAY, full-wave code and AORSA, quasilinear code CQL3D, and ion loss codes EIGOL and CONBEAM.

  19. Experimental Research of a New Wave Energy Conversion Device

    NASA Astrophysics Data System (ADS)

    Lu, Zhongyue; Shang, Jianzhong; Luo, Zirong; Sun, Chongfei; Chen, Gewei

    2018-01-01

    With the increasing tension of contemporary social energy, the development and utilization of renewable energy has become an important development direction. As an important part of renewable energy, wave energy has the characteristics of green environmental protection and abundant reserves, attracting more investment and research. For small marine equipment energy supply problem, this paper puts forward a micro wave energy conversion device as the basic of heaving motion of waves in the ocean. This paper designed a new type of power output device can solve the micro wave energy conversion problem.

  20. Numerical Simulation of Coronal Waves Interacting with Coronal Holes. III. Dependence on Initial Amplitude of the Incoming Wave

    NASA Astrophysics Data System (ADS)

    Piantschitsch, Isabell; Vršnak, Bojan; Hanslmeier, Arnold; Lemmerer, Birgit; Veronig, Astrid; Hernandez-Perez, Aaron; Čalogović, Jaša

    2018-06-01

    We performed 2.5D magnetohydrodynamic (MHD) simulations showing the propagation of fast-mode MHD waves of different initial amplitudes and their interaction with a coronal hole (CH), using our newly developed numerical code. We find that this interaction results in, first, the formation of reflected, traversing, and transmitted waves (collectively, secondary waves) and, second, in the appearance of stationary features at the CH boundary. Moreover, we observe a density depletion that is moving in the opposite direction of the incoming wave. We find a correlation between the initial amplitude of the incoming wave and the amplitudes of the secondary waves as well as the peak values of the stationary features. Additionally, we compare the phase speed of the secondary waves and the lifetime of the stationary features to observations. Both effects obtained in the simulation, the evolution of secondary waves, as well as the formation of stationary fronts at the CH boundary, strongly support the theory that coronal waves are fast-mode MHD waves.

  1. Modulated scattering technique in the terahertz domain enabled by current actuated vanadium dioxide switches

    PubMed Central

    Vitale, W. A.; Tamagnone, M.; Émond, N.; Le Drogoff, B.; Capdevila, S.; Skrivervik, A.; Chaker, M.; Mosig, J. R.; Ionescu, A. M.

    2017-01-01

    The modulated scattering technique is based on the use of reconfigurable electromagnetic scatterers, structures able to scatter and modulate an impinging electromagnetic field in function of a control signal. The modulated scattering technique is used in a wide range of frequencies up to millimeter waves for various applications, such as field mapping of circuits or antennas, radio-frequency identification devices and imaging applications. However, its implementation in the terahertz domain remains challenging. Here, we describe the design and experimental demonstration of the modulated scattering technique at terahertz frequencies. We characterize a modulated scatterer consisting in a bowtie antenna loaded with a vanadium dioxide switch, actuated using a continuous current. The modulated scatterer behavior is demonstrated using a time domain terahertz spectroscopy setup and shows significant signal strength well above 0.5 THz, which makes this device a promising candidate for the development of fast and energy-efficient THz communication devices and imaging systems. Moreover, our experiments allowed us to verify the operation of a single micro-meter sized VO2 switch at terahertz frequencies, thanks to the coupling provided by the antenna. PMID:28145523

  2. Comprehensive Performance Study of Magneto Cantilevers as a Candidate Model for Biological Sensors used in Lab-on-a-Chip Applications

    PubMed Central

    Saberkari, Hamidreza; Ghavifekr, Habib Badri; Shamsi, Mousa

    2015-01-01

    In recent years, demand for biological sensors which are capable of fast and accurate detection of minor amounts of pathogens in real-time form has been intensified. Acoustic wave (AW) devices whose performance is determined by mass sensitivity parameters and quality factor are used in biological sensors as platforms with high quality. Yet, current AW devices are facing many challenges such as the low value of their quality factor in practical applications and also their difficulty to use in liquids. The main focus of this article is to study on the magnetostrictive sensors which include milli/microcantilever (MSMC) type. In comparison with AW devices, MSMC has a lot of advantages; (1) its actuation and sensing unit is wirelessly controlled. (2) Its fabrication process is easy. (3) It works well in liquids. (4) It has a high-quality factor (in the air > 500). Simulation results demonstrate that the amount of quality factor depends on environment properties (density and viscosity), MSMC geometry, and its resonant behavior of harmonic modes. PMID:26120566

  3. Quasi-periodic Counter-propagating Fast Magnetosonic Wave Trains from Neighboring Flares: SDO/AIA Observations and 3D MHD Modeling

    NASA Astrophysics Data System (ADS)

    Ofman, Leon; Liu, Wei

    2018-06-01

    Since their discovery by the Solar Dynamics Observatory/Atmospheric Imaging Assembly (AIA) in the extreme ultraviolet, rapid (phase speeds of ∼1000 km s‑1), quasi-periodic, fast-mode propagating (QFP) wave trains have been observed accompanying many solar flares. They typically propagate in funnel-like structures associated with the expanding magnetic field topology of the active regions (ARs). The waves provide information on the associated flare pulsations and the magnetic structure through coronal seismology (CS). The reported waves usually originate from a single localized source associated with the flare. Here we report the first detection of counter-propagating QFPs associated with two neighboring flares on 2013 May 22, apparently connected by large-scale, trans-equatorial coronal loops. We present the first results of a 3D MHD model of counter-propagating QFPs in an idealized bipolar AR. We investigate the excitation, propagation, nonlinearity, and interaction of the counter-propagating waves for a range of key model parameters, such as the properties of the sources and the background magnetic structure. In addition to QFPs, we also find evidence of trapped fast- (kink) and slow-mode waves associated with the event. We apply CS to determine the magnetic field strength in an oscillating loop during the event. Our model results are in qualitative agreement with the AIA-observed counter-propagating waves and used to identify the various MHD wave modes associated with the observed event, providing insights into their linear and nonlinear interactions. Our observations provide the first direct evidence of counter-propagating fast magnetosonic waves that can potentially lead to turbulent cascade and carry significant energy flux for coronal heating in low-corona magnetic structures.

  4. Individually Identifiable Surface Acoustic Wave Sensors, Tags and Systems

    NASA Technical Reports Server (NTRS)

    Hines, Jacqueline H. (Inventor); Solie, Leland P. (Inventor); Tucker, Dana Y. G. (Inventor); Hines, Andrew T. (Inventor)

    2017-01-01

    A surface-launched acoustic wave sensor tag system for remotely sensing and/or providing identification information using sets of surface acoustic wave (SAW) sensor tag devices is characterized by acoustic wave device embodiments that include coding and other diversity techniques to produce groups of sensors that interact minimally, reducing or alleviating code collision problems typical of prior art coded SAW sensors and tags, and specific device embodiments of said coded SAW sensor tags and systems. These sensor/tag devices operate in a system which consists of one or more uniquely identifiable sensor/tag devices and a wireless interrogator. The sensor device incorporates an antenna for receiving incident RF energy and re-radiating the tag identification information and the sensor measured parameter(s). Since there is no power source in or connected to the sensor, it is a passive sensor. The device is wirelessly interrogated by the interrogator.

  5. An FMM-FFT Accelerated SIE Simulator for Analyzing EM Wave Propagation in Mine Environments Loaded With Conductors

    PubMed Central

    Sheng, Weitian; Zhou, Chenming; Liu, Yang; Bagci, Hakan; Michielssen, Eric

    2018-01-01

    A fast and memory efficient three-dimensional full-wave simulator for analyzing electromagnetic (EM) wave propagation in electrically large and realistic mine tunnels/galleries loaded with conductors is proposed. The simulator relies on Muller and combined field surface integral equations (SIEs) to account for scattering from mine walls and conductors, respectively. During the iterative solution of the system of SIEs, the simulator uses a fast multipole method-fast Fourier transform (FMM-FFT) scheme to reduce CPU and memory requirements. The memory requirement is further reduced by compressing large data structures via singular value and Tucker decompositions. The efficiency, accuracy, and real-world applicability of the simulator are demonstrated through characterization of EM wave propagation in electrically large mine tunnels/galleries loaded with conducting cables and mine carts. PMID:29726545

  6. Feasibility of UltraFast Doppler in Post-operative Evaluation of Hepatic Artery in Recipients following Liver Transplantation.

    PubMed

    Kim, Se-Young; Kim, Kyoung Won; Choi, Sang Hyun; Kwon, Jae Hyun; Song, Gi-Won; Kwon, Heon-Ju; Yun, Young Ju; Lee, Jeongjin; Lee, Sung-Gyu

    2017-11-01

    To determine the feasibility of using UltraFast Doppler in post-operative evaluation of the hepatic artery (HA) after liver transplantation (LT), we evaluated 283 simultaneous conventional and UltraFast Doppler sessions in 126 recipients over a 2-mo period after LT, using an Aixplorer scanner The Doppler indexes of the HA (peak systolic velocity [PSV], end-diastolic velocity [EDV], resistive index [RI] and systolic acceleration time [SAT]) by retrospective analysis of retrieved waves from UltraFast Doppler clips were compared with those obtained by conventional spectral Doppler. Correlation, performance in diagnosing the pathologic wave, examination time and reproducibility were evaluated. The PSV, EDV, RI and SAT of spectral and UltraFast Doppler measurements exhibited excellent correlation with favorable diagnostic performance. During the bedside examination, the mean time spent for UltraFast clip storing was significantly shorter than that for conventional Doppler US measurements. Both conventional and UltraFast Doppler exhibited good to excellent inter-analysis consistency. In conclusion, compared with conventional spectral Doppler, UltraFast Doppler values correlated excellently and yielded acceptable pathologic wave diagnostic performance with reduced examination time at the bedside and excellent reproducibility. Copyright © 2017 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  7. Method and apparatus for suppressing waves in a borehole

    DOEpatents

    West, Phillip B.

    2005-10-04

    Methods and apparatus for suppression of wave energy within a fluid-filled borehole using a low pressure acoustic barrier. In one embodiment, a flexible diaphragm type device is configured as an open bottomed tubular structure for disposition in a borehole to be filled with a gas to create a barrier to wave energy, including tube waves. In another embodiment, an expandable umbrella type device is used to define a chamber in which a gas is disposed. In yet another embodiment, a reverse acting bladder type device is suspended in the borehole. Due to its reverse acting properties, the bladder expands when internal pressure is reduced, and the reverse acting bladder device extends across the borehole to provide a low pressure wave energy barrier.

  8. Waves and Tsunami Project

    ERIC Educational Resources Information Center

    Frashure, K. M.; Chen, R. F.; Stephen, R. A.; Bolmer, T.; Lavin, M.; Strohschneider, D.; Maichle, R.; Micozzi, N.; Cramer, C.

    2007-01-01

    Demonstrating wave processes quantitatively in the classroom using standard classroom tools (such as Slinkys and wave tanks) can be difficult. For example, waves often travel too fast for students to actually measure amplitude or wavelength. Also, when teaching propagating waves, reflections from the ends set up standing waves, which can confuse…

  9. Assimilation of Wave Imaging Radar Observations for Real-Time Wave-by-Wave Forecasting

    NASA Astrophysics Data System (ADS)

    Haller, M. C.; Simpson, A. J.; Walker, D. T.; Lynett, P. J.; Pittman, R.; Honegger, D.

    2016-02-01

    It has been shown in various studies that a controls system can dramatically improve Wave Energy Converter (WEC) power production by tuning the device's oscillations to the incoming wave field, as well as protect WEC devices by decoupling them in extreme wave conditions. A requirement of the most efficient controls systems is a phase-resolved, "deterministic" surface elevation profile, alerting the device to what it will experience in the near future. The current study aims to demonstrate a deterministic method of wave forecasting through the pairing of an X-Band marine radar with a predictive Mild Slope Equation (MSE) wave model. Using the radar as a remote sensing technique, the wave field up to 1-4 km surrounding a WEC device can be resolved. Individual waves within the radar scan are imaged through the contrast between high intensity wave faces and low intensity wave troughs. Using a recently developed method, radar images are inverted into the radial component of surface slope, shown in the figure provided using radar data from Newport, Oregon. Then, resolved radial slope images are assimilated into the MSE wave model. This leads to a best-fit model hindcast of the waves within the domain. The hindcast is utilized as an initial condition for wave-by-wave forecasting with a target forecast horizon of 3-5 minutes (tens of wave periods). The methodology is currently being tested with synthetic data and comparisons with field data are imminent.

  10. Coronal magnetohydrodynamic waves and oscillations: observations and quests.

    PubMed

    Aschwanden, Markus J

    2006-02-15

    Coronal seismology, a new field of solar physics that emerged over the last 5 years, provides unique information on basic physical properties of the solar corona. The inhomogeneous coronal plasma supports a variety of magnetohydrodynamics (MHD) wave modes, which manifest themselves as standing waves (MHD oscillations) and propagating waves. Here, we briefly review the physical properties of observed MHD oscillations and waves, including fast kink modes, fast sausage modes, slow (acoustic) modes, torsional modes, their diagnostics of the coronal magnetic field, and their physical damping mechanisms. We discuss the excitation mechanisms of coronal MHD oscillations and waves: the origin of the exciter, exciter propagation, and excitation in magnetic reconnection outflow regions. Finally, we consider the role of coronal MHD oscillations and waves for coronal heating, the detectability of various MHD wave types, and we estimate the energies carried in the observed MHD waves and oscillations: Alfvénic MHD waves could potentially provide sufficient energy to sustain coronal heating, while acoustic MHD waves fall far short of the required coronal heating rates.

  11. Method of and apparatus for determining deposition-point temperature

    DOEpatents

    Mansure, A.J.; Spates, J.J.; Martin, S.J.

    1998-10-27

    Acoustic-wave sensor apparatus and method are disclosed for analyzing a normally liquid petroleum-based composition for monitoring deposition-point temperature. The apparatus includes at least one acoustic-wave device such as SAW, QCM, FPM, TSM or APM type devices in contact with the petroleum-based composition for sensing or detecting the surface temperature at which deposition occurs and/or rate of deposition as a function of temperature by sensing an accompanying change in frequency, phase shift, damping voltage or damping current of an electrical oscillator to a known calibrated condition. The acoustic wave device is actively cooled to monitor the deposition of constituents such as paraffins by determining the point at which solids from the liquid composition begin to form on the acoustic wave device. The acoustic wave device can be heated to melt or boil off the deposits to reset the monitor and the process can be repeated. 5 figs.

  12. Method of and apparatus for determining deposition-point temperature

    DOEpatents

    Mansure, Arthur J.; Spates, James J.; Martin, Stephen J.

    1998-01-01

    Acoustic-wave sensor apparatus and method for analyzing a normally liquid petroleum-based composition for monitoring deposition-point temperature. The apparatus includes at least one acoustic-wave device such as SAW, QCM, FPM, TSM or APM type devices in contact with the petroleum-based composition for sensing or detecting the surface temperature at which deposition occurs and/or rate of deposition as a function of temperature by sensing an accompanying change in frequency, phase shift, damping voltage or damping current of an electrical oscillator to a known calibrated condition. The acoustic wave device is actively cooled to monitor the deposition of constituents such as paraffins by determining the point at which solids from the liquid composition begin to form on the acoustic wave device. The acoustic wave device can be heated to melt or boil off the deposits to reset the monitor and the process can be repeated.

  13. Strain in shore fast ice due to incoming ocean waves and swell

    NASA Astrophysics Data System (ADS)

    Fox, Colin; Squire, Vernon A.

    1991-03-01

    Using a development from the theoretical model presented by Fox and Squire (1990), this paper investigates the strain field generated in shore fast ice by normally incident ocean waves and swell. After a brief description of the model and its convergence, normalized absolute strain (relative to a 1-m incident wave) is found as a function of distance from the ice edge for various wave periods, ice thicknesses, and water depths. The squared transfer function, giving the relative ability of incident waves of different periods to generate strain in the ice, is calculated, and its consequences are discussed. The ice is then forced with a Pierson-Moskowitz spectrum, and the consequent strain spectra are plotted as a function of penetration into the ice sheet. Finally, rms strain, computed as the incoherent sum of the strains resulting from energy in the open water spectrum, is found. The results have implications to the breakup of shore fast ice and hence to the floe size distribution of the marginal ice zone.

  14. Influence of viscoelastic property on laser-generated surface acoustic waves in coating-substrate systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun Hongxiang; Faculty of Science, Jiangsu University, Zhenjiang 212013; Zhang Shuyi

    2011-04-01

    Taking account of the viscoelasticity of materials, the pulsed laser generation of surface acoustic waves in coating-substrate systems has been investigated quantitatively by using the finite element method. The displacement spectra of the surface acoustic waves have been calculated in frequency domain for different coating-substrate systems, in which the viscoelastic properties of the coatings and substrates are considered separately. Meanwhile, the temporal displacement waveforms have been obtained by applying inverse fast Fourier transforms. The numerical results of the normal surface displacements are presented for different configurations: a single plate, a slow coating on a fast substrate, and a fast coatingmore » on a slow substrate. The influences of the viscoelastic properties of the coating and the substrate on the attenuation of the surface acoustic waves have been studied. In addition, the influence of the coating thickness on the attenuation of the surface acoustic waves has been also investigated in detail.« less

  15. Interaction of solitons for obliquely propagating magnetoacoustic waves in stellar atmosphere

    NASA Astrophysics Data System (ADS)

    Jahangir, R.; Masood, W.; Siddiq, M.; Batool, Nazia

    2016-12-01

    We study here the nonlinear oblique propagation of magnetoacoustic waves in dense plasmas with degenerate electrons by deriving Kadomtsev-Petviashvili (KP) equation for small but finite amplitude perturbations. The two soliton interaction has been studied by finding the solution of the KP equation using the Hirota bilinear formalism. For illustrative purposes, we have used the plasma parameters typically found in white dwarf stars for both the fast and slow modes of magnetoacoustic waves. It has been observed that the soliton interaction in the fast and slow modes is strongly influenced by the predominant and weak dispersive coefficients of the KP equation. The single soliton behavior has also been explained for the fast and slow magnetoacoustic modes.

  16. High-harmonic fast-wave power flow along magnetic field lines in the scrape-off layer of NSTX.

    PubMed

    Perkins, R J; Hosea, J C; Kramer, G J; Ahn, J-W; Bell, R E; Diallo, A; Gerhardt, S; Gray, T K; Green, D L; Jaeger, E F; Jaworski, M A; LeBlanc, B P; McLean, A; Maingi, R; Phillips, C K; Roquemore, L; Ryan, P M; Sabbagh, S; Taylor, G; Wilson, J R

    2012-07-27

    A significant fraction of high-harmonic fast-wave (HHFW) power applied to NSTX can be lost to the scrape-off layer (SOL) and deposited in bright and hot spirals on the divertor rather than in the core plasma. We show that the HHFW power flows to these spirals along magnetic field lines passing through the SOL in front of the antenna, implying that the HHFW power couples across the entire width of the SOL rather than mostly at the antenna face. This result will help guide future efforts to understand and minimize these edge losses in order to maximize fast-wave heating and current drive.

  17. A quantum wave based compact modeling approach for the current in ultra-short DG MOSFETs suitable for rapid multi-scale simulations

    NASA Astrophysics Data System (ADS)

    Hosenfeld, Fabian; Horst, Fabian; Iñíguez, Benjamín; Lime, François; Kloes, Alexander

    2017-11-01

    Source-to-drain (SD) tunneling decreases the device performance in MOSFETs falling below the 10 nm channel length. Modeling quantum mechanical effects including SD tunneling has gained more importance specially for compact model developers. The non-equilibrium Green's function (NEGF) has become a state-of-the-art method for nano-scaled device simulation in the past years. In the sense of a multi-scale simulation approach it is necessary to bridge the gap between compact models with their fast and efficient calculation of the device current, and numerical device models which consider quantum effects of nano-scaled devices. In this work, an NEGF based analytical model for nano-scaled double-gate (DG) MOSFETs is introduced. The model consists of a closed-form potential solution of a classical compact model and a 1D NEGF formalism for calculating the device current, taking into account quantum mechanical effects. The potential calculation omits the iterative coupling and allows the straightforward current calculation. The model is based on a ballistic NEGF approach whereby backscattering effects are considered as second order effect in a closed-form. The accuracy and scalability of the non-iterative DG MOSFET model is inspected in comparison with numerical NanoMOS TCAD data for various channel lengths. With the help of this model investigations on short-channel and temperature effects are performed.

  18. WaveSAX device: design optimization through scale modelling and a PTO strategical control system

    NASA Astrophysics Data System (ADS)

    Peviani, Maximo; Danelli, Andrea; Dadone, Gianluca; Dalmasso, Alberto

    2017-04-01

    WaveSAX is an innovative OWC (Oscillating Water Column) device for the generation of electricity from wave power, conceived to be installed in coastal marine structures, such as ports and harbours. The device - especially designed for the typical wave climate of Mediterranean Sea - is characterized by two important aspects: flexibility to fit in different structural configurations and replication in a large number of units. A model of the WaveSAX device on a scale 1:5 has been built and tested in the ocean tank at Ecole Centrale de Nantes (France). The study aimed to analyse the behaviour of the device, including two Wells turbine configurations (with three and four blades), with regular and irregular wave conditions in the ocean wave tank. The model and the wave basin were equipped with a series of sensors which allowed to measure the following parameters during the tests: pressure in different points inside the device, the free water surface displacement inside and outside the device, the rotational velocity and the torque at the top of the axis. The tests had the objective to optimize the device design, especially as far as the characteristics of the rotor of the turbine is concern. Although the performance of the WaveSAX has been satisfactory for regular wave conditions, the behaviour of the Wells turbines for irregular wave climate has shown limitations in terms of maintaining the capacity to transform hydraulics energy into mechanical power. To optimize the efficiency of the turbine, an electronical system has been built on the basis of the ocean tank tests. It allows to continuously monitor and command the rotational speed and the torque of the rotor connected with the turbine, and to control in real time the electrical flow of a motor-generator, either absorbing energy as a generator, or providing power to the turbine working as an engine. Two strategies - based on the velocity and the torque control - have been investigate in the electronic test bench simulating four wave conditions previously tested in the ocean tank at the ECN (Nantes, France). The results showed a satisfactory behaviour of the system and allowed to define the optimal velocity and torque conditions to maximize the PTO. REFERENCES 1. M. Peviani, 2015, 'WAVESAX device: conceptual design and perspectives', 8th European Seminar OWEMES 2015, Offshore Wind and other marine renewable Energies in Mediterranean and European Seas, Rome, Italy 2. B. Holmes, K. Nielsen, 2010, Guidelines for the Development & Testing of Wave Energy Systems, OES-IA Annex II Task 2.1, Report T02-2.1 3. G. Agate, A. Amicarelli, M. Peviani, 2014, 'Analisi fluidodinamica di un prototipo per la conversione di energia da moto ondoso: ottimizzazione della componente fissa e stime preliminari di potenza assorbita con la girante', RSE Ricerca di Sistema, Report 14001669 4. G. Agate, A. Amicarelli, A. Danelli, M. Peviani, 2015, 'Ottimizzazione del disegno di un dispositivo di generazione d'energia dal moto ondoso: simulazioni numeriche e studi in vasca di laboratorio idraulico, RSE Ricerca di Sistema, Report 15000671 5. A. Agate, A. Amicarelli, A. Danelli, M. Peviani, 2015. 'Optimization of the WaveSAX device: numerical modelling and ocean wave basin tests', VI International Conference on Computational Methods in Marine Engineering MARINE 2015, Rome, Italy 6. A. Danelli, M. Peviani, 2016. 'Performance evaluation of an innovative device to transform wave power into electric energy in ports and harbours". CORE 2nd International Conference on Offshore Renewable Energy; Glasgow, UK 7. M. Peviani, A. Danelli, G. Agate, F. Thiebaut, 2014, 'WAVETUBE RSE1, addressed to test an innovative device to transform wave power into electric energy in ports and harbours', Infrastructure post access report in the MARINET project framework 8. M. Peviani, A. Danelli, G. Agate, S. Bourdier, 2015, WAVESAX RSE2, addressed to test an innovative device to transform wave power into electric energy in ports and harbours', Infrastructure post access report in the MARINET project framework.

  19. Demonstration of a robust magnonic spin wave interferometer.

    PubMed

    Kanazawa, Naoki; Goto, Taichi; Sekiguchi, Koji; Granovsky, Alexander B; Ross, Caroline A; Takagi, Hiroyuki; Nakamura, Yuichi; Inoue, Mitsuteru

    2016-07-22

    Magnonics is an emerging field dealing with ultralow power consumption logic circuits, in which the flow of spin waves, rather than electric charges, transmits and processes information. Waves, including spin waves, excel at encoding information via their phase using interference. This enables a number of inputs to be processed in one device, which offers the promise of multi-input multi-output logic gates. To realize such an integrated device, it is essential to demonstrate spin wave interferometers using spatially isotropic spin waves with high operational stability. However, spin wave reflection at the waveguide edge has previously limited the stability of interfering waves, precluding the use of isotropic spin waves, i.e., forward volume waves. Here, a spin wave absorber is demonstrated comprising a yttrium iron garnet waveguide partially covered by gold. This device is shown experimentally to be a robust spin wave interferometer using the forward volume mode, with a large ON/OFF isolation value of 13.7 dB even in magnetic fields over 30 Oe.

  20. Demonstration of a robust magnonic spin wave interferometer

    PubMed Central

    Kanazawa, Naoki; Goto, Taichi; Sekiguchi, Koji; Granovsky, Alexander B.; Ross, Caroline A.; Takagi, Hiroyuki; Nakamura, Yuichi; Inoue, Mitsuteru

    2016-01-01

    Magnonics is an emerging field dealing with ultralow power consumption logic circuits, in which the flow of spin waves, rather than electric charges, transmits and processes information. Waves, including spin waves, excel at encoding information via their phase using interference. This enables a number of inputs to be processed in one device, which offers the promise of multi-input multi-output logic gates. To realize such an integrated device, it is essential to demonstrate spin wave interferometers using spatially isotropic spin waves with high operational stability. However, spin wave reflection at the waveguide edge has previously limited the stability of interfering waves, precluding the use of isotropic spin waves, i.e., forward volume waves. Here, a spin wave absorber is demonstrated comprising a yttrium iron garnet waveguide partially covered by gold. This device is shown experimentally to be a robust spin wave interferometer using the forward volume mode, with a large ON/OFF isolation value of 13.7 dB even in magnetic fields over 30 Oe. PMID:27443989

  1. Fast assessment of planar chromatographic layers quality using pulse thermovision method.

    PubMed

    Suszyński, Zbigniew; Świta, Robert; Loś, Joanna; Zarzycka, Magdalena B; Kaleniecka, Aleksandra; Zarzycki, Paweł K

    2014-12-19

    The main goal of this paper is to demonstrate capability of pulse thermovision (thermal-wave) methodology for sensitive detection of photothermal non-uniformities within light scattering and semi-transparent planar stationary phases. Successful visualization of stationary phases defects required signal processing protocols based on wavelet filtration, correlation analysis and k-means 3D segmentation. Such post-processing data handling approach allows extremely sensitive detection of thickness and structural changes within commercially available planar chromatographic layers. Particularly, a number of TLC and HPTLC stationary phases including silica, cellulose, aluminum oxide, polyamide and octadecylsilane coated with adsorbent layer ranging from 100 to 250μm were investigated. Presented detection protocol can be used as an efficient tool for fast screening the overall heterogeneity of any layered materials. Moreover, described procedure is very fast (few seconds including acquisition and data processing) and may be applied for fabrication processes online controlling. In spite of planar chromatographic plates this protocol can be used for assessment of different planar separation tools like paper based analytical devices or micro total analysis systems, consisted of organic and non-organic layers. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. High speed Infrared imaging method for observation of the fast varying temperature phenomena

    NASA Astrophysics Data System (ADS)

    Moghadam, Reza; Alavi, Kambiz; Yuan, Baohong

    With new improvements in high-end commercial R&D camera technologies many challenges have been overcome for exploring the high-speed IR camera imaging. The core benefits of this technology is the ability to capture fast varying phenomena without image blur, acquire enough data to properly characterize dynamic energy, and increase the dynamic range without compromising the number of frames per second. This study presents a noninvasive method for determining the intensity field of a High Intensity Focused Ultrasound Device (HIFU) beam using Infrared imaging. High speed Infrared camera was placed above the tissue-mimicking material that was heated by HIFU with no other sensors present in the HIFU axial beam. A MATLAB simulation code used to perform a finite-element solution to the pressure wave propagation and heat equations within the phantom and temperature rise to the phantom was computed. Three different power levels of HIFU transducers were tested and the predicted temperature increase values were within about 25% of IR measurements. The fundamental theory and methods developed in this research can be used to detect fast varying temperature phenomena in combination with the infrared filters.

  3. Formulation of the rotational transformation of wave fields and their application to digital holography.

    PubMed

    Matsushima, Kyoji

    2008-07-01

    Rotational transformation based on coordinate rotation in Fourier space is a useful technique for simulating wave field propagation between nonparallel planes. This technique is characterized by fast computation because the transformation only requires executing a fast Fourier transform twice and a single interpolation. It is proved that the formula of the rotational transformation mathematically satisfies the Helmholtz equation. Moreover, to verify the formulation and its usefulness in wave optics, it is also demonstrated that the transformation makes it possible to reconstruct an image on arbitrarily tilted planes from a wave field captured experimentally by using digital holography.

  4. The Effect of Waves on the Tidal-Stream Energy Resource

    NASA Astrophysics Data System (ADS)

    Lewis, M. J.; Neill, S. P.; Robins, P. E.; Hashemi, M. R.

    2016-02-01

    The tidal-stream energy resource is typically estimated using depth-averaged "tide-only" hydrodynamic models and do not consider the influence of waves. We find that waves will reduce the available resource, and the wave climate needs to be considered when designing a resilient and efficient tidal-stream energy device. Using well-validated oceanographic models of the Irish Sea and Northwest European shelf, we show tidal-stream energy sites with quiescent wave climates are extremely limited, with limited sea-space and limited scope for future development. To fully realise the potential of tidal-stream energy and to ensure globally deployable devices, the influence of waves on the resource and turbines must be considered. The effect of waves upon the tidal current was investigated using observations (ADCP and wave buoy time-series), and a state-of-the-art, 3-dimensional, dynamically coupled wave-tide model (COAWST). The presence of waves reduced the depth-averaged tidal current, which reduced the potential extractable power by 10% per metre wave height increase. To ensure resilience and survivability, tidal-stream energy device may cease to produce electricity during extremes (often called downtime), however the wave conditions threshold for device shut-down is unknown, and requires future work. The presence of waves will also effect turbine performance and design criteria; for example, the presence of waves was found to alter the shape of the velocity profile, and wave-current misalignment (waves propagating at an angle oblique to the plane of tidal flow) was found to occur for a significant amount of time at many potential tidal-stream energy sites. Therefore, waves reduced the available resource, furthermore the influence of waves on the interaction between tidal energy devices and the tidal-stream resource needs to be characterised in physically-scaled tank experiments and computational fluid dynamics (CFD) numerical models.

  5. Lower solar chromosphere-corona transition region. II - Wave pressure effects for a specific form of the heating function

    NASA Technical Reports Server (NTRS)

    Woods, D. Tod; Holzer, Thomas E.; Macgregor, Keith B.

    1990-01-01

    Lower transition region models with a balance between mechanical heating and radiative losses are expanded to include wave pressure effects. The models are used to study the simple damping length form of the heating function. The results are compared to the results obtained by Woods et al. (1990) for solutions in the lower transition region. The results suggest that a mixture of fast-mode and slow-mode waves may provide the appropriate heating mechanism in the lower transition region, with the decline in effective vertical wave speed caused by the refraction and eventual total reflection of the fast-mode wave resulting from the decreasing atmospheric density.

  6. Material and Phonon Engineering for Next Generation Acoustic Devices

    NASA Astrophysics Data System (ADS)

    Kuo, Nai-Kuei

    This thesis presents the theoretical and experimental work related to micromachining of low intrinsic loss sapphire and phononic crystals for engineering new classes of electroacoustic devices for frequency control applications. For the first time, a low loss sapphire suspended membrane was fabricated and utilized to form the main body of a piezoelectric lateral overtone bulk acoustic resonator (LOBAR). Since the metalized piezoelectric transducer area in a LOBAR is only a small fraction of the overall resonant cavity (made out of sapphire), high quality factor (Q) overtones are attained. The experiment confirms the low intrinsic mechanical loss of the transferred sapphire thin film, and the resonators exhibit the highest Q of 5,440 at 2.8 GHz ( f·Q of 1.53.1013 Hz). This is also the highest f·Q demonstrated for aluminum-nitride-(AIN)-based Lamb wave devices to date. Beyond demonstrating a low loss device, this experimental work has laid the foundation for the future development of new micromechanical devices based on a high Q, high hardness and chemically resilient material. The search for alternative ways to more efficiently perform frequency control functionalities lead to the exploration of Phononic Crystal (PnC) structures in AIN thin films. Four unit cell designs were theoretically and experimentally investigated to explore the behavior of phononic bandgaps (PBGs) in the ultra high frequency (UHF) range: (i) the conventional square lattice with circular air scatterer, (ii) the inverse acoustic bandgap (IABG) structure, (iii) the fractal PnC, and (iv) the X-shaped PnC. Each unit cell has its unique frequency characteristic that was exploited to synthesize either cavity resonators or improve the performance of acoustic delay lines. The PBGs operate in the range of 770 MHz to 1 GHz and exhibit a maximum acoustic rejection of 40 dB. AIN Lamb wave transducers (LWTs) were employed for the experimental demonstration of the PBGs and cavity resonances. Ultra-wide bandwidth (˜10%) was achieved by implementing slanted finger transducers (SFIT) in thin film AIN. The impulse response and coupling of modes (COM) models commonly used for surface acoustic wave (SAW) devices were developed to design the operating frequency and bandwidth of the LWTs. These techniques enabled access to fast frequency solutions (impulse response method) and good pass-band ripple estimation (COM) for any piezoelectric Lamb-wave based device. The conventional and IABG unit cell designs were explored for the making of cavity resonators. A PnC cavity made with conventional design exhibits a Q of 675 at 665 MHz. Despite the low Q, its value is very high when the volume of the cavity is taken into account ( Q per unit volume of 3.1017/m3). In order to understand the limited value of Q a detailed finite element analysis is performed to unveil its dependence on the specific design of the transducer. The capabilities of the X-shaped PnCs were harvested for synthesizing a method to suppress the sidelobe response of an AIN Lamb wave (SFIT) delay line. 10 dB of sidelobe magnitude reduction was attained while leaving the pass-band unaltered. Although at a very preliminary stage, the theoretical and experimental work on AIN PnC has demonstrated that new acoustic capabilities are enabled by these metamaterials. Future electroacoustic devices that perform frequency control functions in a compact and low loss fashion can now be envisioned.

  7. Global Hybrid Simulation of Alfvenic Waves Associated with Magnetotail Reconnection and Fast Flows

    NASA Astrophysics Data System (ADS)

    Cheng, L.; Lin, Y.; Wang, X.; Perez, J. D.

    2017-12-01

    Alfvenic fluctuations have been observed near the magnetotail plasma sheet boundary layer associated with fast flows. In this presentation, we use the Auburn 3-D Global Hybrid code (ANGIE3D) to investigate the generation and propagation of Alfvenic waves in the magnetotail. Shear Alfven waves and kinetic Alfven waves (KAWs) are found to be generated in magnetic reconnection in the plasma sheet as well as in the dipole-like field region of the magnetosphere, carrying Poynting flux along magnetic field lines toward the ionosphere, and the wave structure is strongly altered by the flow braking in the tail. The 3-D structure of the wave electromagnetic field and the associated parallel currents in reconnection and the dipole-like field region is presented. The Alfvenic waves exhibit a turbulence spectrum. The roles of these Alfvenic waves in ion heating is discussed.

  8. Observation of a high-quality quasi-periodic rapidly propagating wave train using SDO/AIA

    NASA Astrophysics Data System (ADS)

    Nisticò, G.; Pascoe, D. J.; Nakariakov, V. M.

    2014-09-01

    Context. We present a new event of quasi-periodic wave trains observed in EUV wavebands that rapidly propagate away from an active region after a flare. Aims: We measured the parameters of a wave train observed on 7 December 2013 after an M1.2 flare, such as the phase speeds, periods and wavelengths, in relationship to the local coronal environment and the energy sources. Methods: We compared our observations with a numerical simulation of fast magnetoacoustic waves that undergo dispersive evolution and leakage in a coronal loop embedded in a potential magnetic field. Results: The wave train is observed to propagate as several arc-shaped intensity disturbances for almost half an hour, with a speed greater than 1000 km s-1 and a period of about 1 min. The wave train followed two different patterns of propagation, in accordance with the magnetic structure of the active region. The oscillatory signal is found to be of high-quality, i.e. there is a large number (10 or more) of subsequent wave fronts observed. The observations are found to be consistent with the numerical simulation of a fast wave train generated by a localised impulsive energy release. Conclusions: Transverse structuring in the corona can efficiently create and guide high-quality quasi-periodic propagating fast wave trains. The movies are available in electronic form at http://www.aanda.org

  9. Storm wave buoy equipped with micromechanical inertial unit: Results of development and testing

    NASA Astrophysics Data System (ADS)

    Gryazin, D. G.; Staroselcev, L. P.; Belova, O. O.; Gleb, K. A.

    2017-07-01

    The article describes the results of developing a wave buoy to measure the statistical characteristics of waves and the characteristics of directional spectra of three-dimensional waves. The device is designed for long-term measurements lasting up to a season, which can help solve problems in forecasting waves and preventing emergencies from wave impact on offshore platforms, hydraulic structures, and other marine facilities. The measuring unit involves triads of micromechanical gyroscopes, accelerometers, and a three-component magnetometer. A description of the device, results of laboratory research of its characteristics, and bench and full-scale tests are offered. It is noted that to assess the performance characteristics, comparative tests of the Storm wave buoy were conducted with a standard string wave probe installed on an offshore platform. It is shown that the characteristics and capabilities of the wave buoy make it possible to oust foreign devices from the domestic market.

  10. Chaos-assisted broadband momentum transformation in optical microresonators

    NASA Astrophysics Data System (ADS)

    Jiang, Xuefeng; Shao, Linbo; Zhang, Shu-Xin; Yi, Xu; Wiersig, Jan; Wang, Li; Gong, Qihuang; Lončar, Marko; Yang, Lan; Xiao, Yun-Feng

    2017-10-01

    The law of momentum conservation rules out many desired processes in optical microresonators. We report broadband momentum transformations of light in asymmetric whispering gallery microresonators. Assisted by chaotic motions, broadband light can travel between optical modes with different angular momenta within a few picoseconds. Efficient coupling from visible to near-infrared bands is demonstrated between a nanowaveguide and whispering gallery modes with quality factors exceeding 10 million. The broadband momentum transformation enhances the device conversion efficiency of the third-harmonic generation by greater than three orders of magnitude over the conventional evanescent-wave coupling. The observed broadband and fast momentum transformation could promote applications such as multicolor lasers, broadband memories, and multiwavelength optical networks.

  11. Physics of ultrasonic wave propagation in bone and heart characterized using Bayesian parameter estimation

    NASA Astrophysics Data System (ADS)

    Anderson, Christian Carl

    This Dissertation explores the physics underlying the propagation of ultrasonic waves in bone and in heart tissue through the use of Bayesian probability theory. Quantitative ultrasound is a noninvasive modality used for clinical detection, characterization, and evaluation of bone quality and cardiovascular disease. Approaches that extend the state of knowledge of the physics underpinning the interaction of ultrasound with inherently inhomogeneous and isotropic tissue have the potential to enhance its clinical utility. Simulations of fast and slow compressional wave propagation in cancellous bone were carried out to demonstrate the plausibility of a proposed explanation for the widely reported anomalous negative dispersion in cancellous bone. The results showed that negative dispersion could arise from analysis that proceeded under the assumption that the data consist of only a single ultrasonic wave, when in fact two overlapping and interfering waves are present. The confounding effect of overlapping fast and slow waves was addressed by applying Bayesian parameter estimation to simulated data, to experimental data acquired on bone-mimicking phantoms, and to data acquired in vitro on cancellous bone. The Bayesian approach successfully estimated the properties of the individual fast and slow waves even when they strongly overlapped in the acquired data. The Bayesian parameter estimation technique was further applied to an investigation of the anisotropy of ultrasonic properties in cancellous bone. The degree to which fast and slow waves overlap is partially determined by the angle of insonation of ultrasound relative to the predominant direction of trabecular orientation. In the past, studies of anisotropy have been limited by interference between fast and slow waves over a portion of the range of insonation angles. Bayesian analysis estimated attenuation, velocity, and amplitude parameters over the entire range of insonation angles, allowing a more complete characterization of anisotropy. A novel piecewise linear model for the cyclic variation of ultrasonic backscatter from myocardium was proposed. Models of cyclic variation for 100 type 2 diabetes patients and 43 normal control subjects were constructed using Bayesian parameter estimation. Parameters determined from the model, specifically rise time and slew rate, were found to be more reliable in differentiating between subject groups than the previously employed magnitude parameter.

  12. Efficient generation of energetic ions in multi-ion plasmas by radio-frequency heating

    NASA Astrophysics Data System (ADS)

    Kazakov, Ye. O.; Ongena, J.; Wright, J. C.; Wukitch, S. J.; Lerche, E.; Mantsinen, M. J.; van Eester, D.; Craciunescu, T.; Kiptily, V. G.; Lin, Y.; Nocente, M.; Nabais, F.; Nave, M. F. F.; Baranov, Y.; Bielecki, J.; Bilato, R.; Bobkov, V.; Crombé, K.; Czarnecka, A.; Faustin, J. M.; Felton, R.; Fitzgerald, M.; Gallart, D.; Giacomelli, L.; Golfinopoulos, T.; Hubbard, A. E.; Jacquet, Ph.; Johnson, T.; Lennholm, M.; Loarer, T.; Porkolab, M.; Sharapov, S. E.; Valcarcel, D.; van Schoor, M.; Weisen, H.; Marmar, E. S.; Baek, S. G.; Barnard, H.; Bonoli, P.; Brunner, D.; Candy, J.; Canik, J.; Churchill, R. M.; Cziegler, I.; Dekow, G.; Delgado-Aparicio, L.; Diallo, A.; Edlund, E.; Ennever, P.; Faust, I.; Fiore, C.; Gao, Chi; Golfinopoulos, T.; Greenwald, M.; Hartwig, Z. S.; Holland, C.; Hubbard, A. E.; Hughes, J. W.; Hutchinson, I. H.; Irby, J.; Labombard, B.; Lin, Yijun; Lipschultz, B.; Loarte, A.; Mumgaard, R.; Parker, R. R.; Porkolab, M.; Reinke, M. L.; Rice, J. E.; Scott, S.; Shiraiwa, S.; Snyder, P.; Sorbom, B.; Terry, D.; Terry, J. L.; Theiler, C.; Vieira, R.; Walk, J. R.; Wallace, G. M.; White, A.; Whyte, D.; Wolfe, S. M.; Wright, G. M.; Wright, J.; Wukitch, S. J.; Xu, P.; Abduallev, S.; Abhangi, M.; Abreu, P.; Afzal, M.; Aggarwal, K. M.; Ahlgren, T.; Ahn, J. H.; Aho-Mantila, L.; Aiba, N.; Airila, M.; Albanese, R.; Aldred, V.; Alegre, D.; Alessi, E.; Aleynikov, P.; Alfier, A.; Alkseev, A.; Allinson, M.; Alper, B.; Alves, E.; Ambrosino, G.; Ambrosino, R.; Amicucci, L.; Amosov, V.; Sundén, E. Andersson; Angelone, M.; Anghel, M.; Angioni, C.; Appel, L.; Appelbee, C.; Arena, P.; Ariola, M.; Arnichand, H.; Arshad, S.; Ash, A.; Ashikawa, N.; Aslanyan, V.; Asunta, O.; Auriemma, F.; Austin, Y.; Avotina, L.; Axton, M. D.; Ayres, C.; Bacharis, M.; Baciero, A.; Baião, D.; Bailey, S.; Baker, A.; Balboa, I.; Balden, M.; Balshaw, N.; Bament, R.; Banks, J. W.; Baranov, Y. F.; Barnard, M. A.; Barnes, D.; Barnes, M.; Barnsley, R.; Wiechec, A. Baron; Orte, L. Barrera; Baruzzo, M.; Basiuk, V.; Bassan, M.; Bastow, R.; Batista, A.; Batistoni, P.; Baughan, R.; Bauvir, B.; Baylor, L.; Bazylev, B.; Beal, J.; Beaumont, P. S.; Beckers, M.; Beckett, B.; Becoulet, A.; Bekris, N.; Beldishevski, M.; Bell, K.; Belli, F.; Bellinger, M.; Belonohy, É.; Ayed, N. Ben; Benterman, N. A.; Bergsåker, H.; Bernardo, J.; Bernert, M.; Berry, M.; Bertalot, L.; Besliu, C.; Beurskens, M.; Bieg, B.; Bielecki, J.; Biewer, T.; Bigi, M.; Bílková, P.; Binda, F.; Bisoffi, A.; Bizarro, J. P. S.; Björkas, C.; Blackburn, J.; Blackman, K.; Blackman, T. R.; Blanchard, P.; Blatchford, P.; Bobkov, V.; Boboc, A.; Bodnár, G.; Bogar, O.; Bolshakova, I.; Bolzonella, T.; Bonanomi, N.; Bonelli, F.; Boom, J.; Booth, J.; Borba, D.; Borodin, D.; Borodkina, I.; Botrugno, A.; Bottereau, C.; Boulting, P.; Bourdelle, C.; Bowden, M.; Bower, C.; Bowman, C.; Boyce, T.; Boyd, C.; Boyer, H. J.; Bradshaw, J. M. A.; Braic, V.; Bravanec, R.; Breizman, B.; Bremond, S.; Brennan, P. D.; Breton, S.; Brett, A.; Brezinsek, S.; Bright, M. D. J.; Brix, M.; Broeckx, W.; Brombin, M.; Brosławski, A.; Brown, D. P. D.; Brown, M.; Bruno, E.; Bucalossi, J.; Buch, J.; Buchanan, J.; Buckley, M. A.; Budny, R.; Bufferand, H.; Bulman, M.; Bulmer, N.; Bunting, P.; Buratti, P.; Burckhart, A.; Buscarino, A.; Busse, A.; Butler, N. K.; Bykov, I.; Byrne, J.; Cahyna, P.; Calabrò, G.; Calvo, I.; Camenen, Y.; Camp, P.; Campling, D. C.; Cane, J.; Cannas, B.; Capel, A. J.; Card, P. J.; Cardinali, A.; Carman, P.; Carr, M.; Carralero, D.; Carraro, L.; Carvalho, B. B.; Carvalho, I.; Carvalho, P.; Casson, F. J.; Castaldo, C.; Catarino, N.; Caumont, J.; Causa, F.; Cavazzana, R.; Cave-Ayland, K.; Cavinato, M.; Cecconello, M.; Ceccuzzi, S.; Cecil, E.; Cenedese, A.; Cesario, R.; Challis, C. D.; Chandler, M.; Chandra, D.; Chang, C. S.; Chankin, A.; Chapman, I. T.; Chapman, S. C.; Chernyshova, M.; Chitarin, G.; Ciraolo, G.; Ciric, D.; Citrin, J.; Clairet, F.; Clark, E.; Clark, M.; Clarkson, R.; Clatworthy, D.; Clements, C.; Cleverly, M.; Coad, J. P.; Coates, P. A.; Cobalt, A.; Coccorese, V.; Cocilovo, V.; Coda, S.; Coelho, R.; Coenen, J. W.; Coffey, I.; Colas, L.; Collins, S.; Conka, D.; Conroy, S.; Conway, N.; Coombs, D.; Cooper, D.; Cooper, S. R.; Corradino, C.; Corre, Y.; Corrigan, G.; Cortes, S.; Coster, D.; Couchman, A. S.; Cox, M. P.; Craciunescu, T.; Cramp, S.; Craven, R.; Crisanti, F.; Croci, G.; Croft, D.; Crombé, K.; Crowe, R.; Cruz, N.; Cseh, G.; Cufar, A.; Cullen, A.; Curuia, M.; Czarnecka, A.; Dabirikhah, H.; Dalgliesh, P.; Dalley, S.; Dankowski, J.; Darrow, D.; Davies, O.; Davis, W.; Day, C.; Day, I. E.; de Bock, M.; de Castro, A.; de La Cal, E.; de La Luna, E.; Masi, G. De; de Pablos, J. L.; de Temmerman, G.; de Tommasi, G.; de Vries, P.; Deakin, K.; Deane, J.; Agostini, F. Degli; Dejarnac, R.; Delabie, E.; den Harder, N.; Dendy, R. O.; Denis, J.; Denner, P.; Devaux, S.; Devynck, P.; Maio, F. Di; Siena, A. Di; Troia, C. Di; Dinca, P.; D'Inca, R.; Ding, B.; Dittmar, T.; Doerk, H.; Doerner, R. P.; Donné, T.; Dorling, S. E.; Dormido-Canto, S.; Doswon, S.; Douai, D.; Doyle, P. T.; Drenik, A.; Drewelow, P.; Drews, P.; Duckworth, Ph.; Dumont, R.; Dumortier, P.; Dunai, D.; Dunne, M.; Ďuran, I.; Durodié, F.; Dutta, P.; Duval, B. P.; Dux, R.; Dylst, K.; Dzysiuk, N.; Edappala, P. V.; Edmond, J.; Edwards, A. M.; Edwards, J.; Eich, Th.; Ekedahl, A.; El-Jorf, R.; Elsmore, C. G.; Enachescu, M.; Ericsson, G.; Eriksson, F.; Eriksson, J.; Eriksson, L. G.; Esposito, B.; Esquembri, S.; Esser, H. G.; Esteve, D.; Evans, B.; Evans, G. E.; Evison, G.; Ewart, G. D.; Fagan, D.; Faitsch, M.; Falie, D.; Fanni, A.; Fasoli, A.; Faustin, J. M.; Fawlk, N.; Fazendeiro, L.; Fedorczak, N.; Felton, R. C.; Fenton, K.; Fernades, A.; Fernandes, H.; Ferreira, J.; Fessey, J. A.; Février, O.; Ficker, O.; Field, A.; Fietz, S.; Figueiredo, A.; Figueiredo, J.; Fil, A.; Finburg, P.; Firdaouss, M.; Fischer, U.; Fittill, L.; Fitzgerald, M.; Flammini, D.; Flanagan, J.; Fleming, C.; Flinders, K.; Fonnesu, N.; Fontdecaba, J. M.; Formisano, A.; Forsythe, L.; Fortuna, L.; Fortuna-Zalesna, E.; Fortune, M.; Foster, S.; Franke, T.; Franklin, T.; Frasca, M.; Frassinetti, L.; Freisinger, M.; Fresa, R.; Frigione, D.; Fuchs, V.; Fuller, D.; Futatani, S.; Fyvie, J.; Gál, K.; Galassi, D.; Gałązka, K.; Galdon-Quiroga, J.; Gallagher, J.; Gallart, D.; Galvão, R.; Gao, X.; Gao, Y.; Garcia, J.; Garcia-Carrasco, A.; García-Muñoz, M.; Gardarein, J.-L.; Garzotti, L.; Gaudio, P.; Gauthier, E.; Gear, D. F.; Gee, S. J.; Geiger, B.; Gelfusa, M.; Gerasimov, S.; Gervasini, G.; Gethins, M.; Ghani, Z.; Ghate, M.; Gherendi, M.; Giacalone, J. C.; Giacomelli, L.; Gibson, C. S.; Giegerich, T.; Gil, C.; Gil, L.; Gilligan, S.; Gin, D.; Giovannozzi, E.; Girardo, J. B.; Giroud, C.; Giruzzi, G.; Glöggler, S.; Godwin, J.; Goff, J.; Gohil, P.; Goloborod'Ko, V.; Gomes, R.; Gonçalves, B.; Goniche, M.; Goodliffe, M.; Goodyear, A.; Gorini, G.; Gosk, M.; Goulding, R.; Goussarov, A.; Gowland, R.; Graham, B.; Graham, M. E.; Graves, J. P.; Grazier, N.; Grazier, P.; Green, N. R.; Greuner, H.; Grierson, B.; Griph, F. S.; Grisolia, C.; Grist, D.; Groth, M.; Grove, R.; Grundy, C. N.; Grzonka, J.; Guard, D.; Guérard, C.; Guillemaut, C.; Guirlet, R.; Gurl, C.; Utoh, H. H.; Hackett, L. J.; Hacquin, S.; Hagar, A.; Hager, R.; Hakola, A.; Halitovs, M.; Hall, S. J.; Cook, S. P. Hallworth; Hamlyn-Harris, C.; Hammond, K.; Harrington, C.; Harrison, J.; Harting, D.; Hasenbeck, F.; Hatano, Y.; Hatch, D. R.; Haupt, T. D. V.; Hawes, J.; Hawkes, N. C.; Hawkins, J.; Hawkins, P.; Haydon, P. W.; Hayter, N.; Hazel, S.; Heesterman, P. J. L.; Heinola, K.; Hellesen, C.; Hellsten, T.; Helou, W.; Hemming, O. N.; Hender, T. C.; Henderson, M.; Henderson, S. S.; Henriques, R.; Hepple, D.; Hermon, G.; Hertout, P.; Hidalgo, C.; Highcock, E. G.; Hill, M.; Hillairet, J.; Hillesheim, J.; Hillis, D.; Hizanidis, K.; Hjalmarsson, A.; Hobirk, J.; Hodille, E.; Hogben, C. H. A.; Hogeweij, G. M. D.; Hollingsworth, A.; Hollis, S.; Homfray, D. A.; Horáček, J.; Hornung, G.; Horton, A. R.; Horton, L. D.; Horvath, L.; Hotchin, S. P.; Hough, M. R.; Howarth, P. J.; Hubbard, A.; Huber, A.; Huber, V.; Huddleston, T. M.; Hughes, M.; Huijsmans, G. T. A.; Hunter, C. L.; Huynh, P.; Hynes, A. M.; Iglesias, D.; Imazawa, N.; Imbeaux, F.; Imríšek, M.; Incelli, M.; Innocente, P.; Irishkin, M.; Ivanova-Stanik, I.; Jachmich, S.; Jacobsen, A. S.; Jacquet, P.; Jansons, J.; Jardin, A.; Järvinen, A.; Jaulmes, F.; Jednoróg, S.; Jenkins, I.; Jeong, C.; Jepu, I.; Joffrin, E.; Johnson, R.; Johnson, T.; Johnston, Jane; Joita, L.; Jones, G.; Jones, T. T. C.; Hoshino, K. K.; Kallenbach, A.; Kamiya, K.; Kaniewski, J.; Kantor, A.; Kappatou, A.; Karhunen, J.; Karkinsky, D.; Karnowska, I.; Kaufman, M.; Kaveney, G.; Kazakov, Y.; Kazantzidis, V.; Keeling, D. L.; Keenan, T.; Keep, J.; Kempenaars, M.; Kennedy, C.; Kenny, D.; Kent, J.; Kent, O. N.; Khilkevich, E.; Kim, H. T.; Kim, H. S.; Kinch, A.; King, C.; King, D.; King, R. F.; Kinna, D. J.; Kiptily, V.; Kirk, A.; Kirov, K.; Kirschner, A.; Kizane, G.; Klepper, C.; Klix, A.; Knight, P.; Knipe, S. J.; Knott, S.; Kobuchi, T.; Köchl, F.; Kocsis, G.; Kodeli, I.; Kogan, L.; Kogut, D.; Koivuranta, S.; Kominis, Y.; Köppen, M.; Kos, B.; Koskela, T.; Koslowski, H. R.; Koubiti, M.; Kovari, M.; Kowalska-Strzęciwilk, E.; Krasilnikov, A.; Krasilnikov, V.; Krawczyk, N.; Kresina, M.; Krieger, K.; Krivska, A.; Kruezi, U.; Książek, I.; Kukushkin, A.; Kundu, A.; Kurki-Suonio, T.; Kwak, S.; Kwiatkowski, R.; Kwon, O. J.; Laguardia, L.; Lahtinen, A.; Laing, A.; Lam, N.; Lambertz, H. T.; Lane, C.; Lang, P. T.; Lanthaler, S.; Lapins, J.; Lasa, A.; Last, J. R.; Łaszyńska, E.; Lawless, R.; Lawson, A.; Lawson, K. D.; Lazaros, A.; Lazzaro, E.; Leddy, J.; Lee, S.; Lefebvre, X.; Leggate, H. J.; Lehmann, J.; Lehnen, M.; Leichtle, D.; Leichuer, P.; Leipold, F.; Lengar, I.; Lennholm, M.; Lerche, E.; Lescinskis, A.; Lesnoj, S.; Letellier, E.; Leyland, M.; Leysen, W.; Li, L.; Liang, Y.; Likonen, J.; Linke, J.; Linsmeier, Ch.; Lipschultz, B.; Litaudon, X.; Liu, G.; Liu, Y.; Lo Schiavo, V. P.; Loarer, T.; Loarte, A.; Lobel, R. C.; Lomanowski, B.; Lomas, P. J.; Lönnroth, J.; López, J. M.; López-Razola, J.; Lorenzini, R.; Losada, U.; Lovell, J. J.; Loving, A. B.; Lowry, C.; Luce, T.; Lucock, R. M. A.; Lukin, A.; Luna, C.; Lungaroni, M.; Lungu, C. P.; Lungu, M.; Lunniss, A.; Lupelli, I.; Lyssoivan, A.; MacDonald, N.; Macheta, P.; Maczewa, K.; Magesh, B.; Maget, P.; Maggi, C.; Maier, H.; Mailloux, J.; Makkonen, T.; Makwana, R.; Malaquias, A.; Malizia, A.; Manas, P.; Manning, A.; Manso, M. E.; Mantica, P.; Mantsinen, M.; Manzanares, A.; Maquet, Ph.; Marandet, Y.; Marcenko, N.; Marchetto, C.; Marchuk, O.; Marinelli, M.; Marinucci, M.; Markovič, T.; Marocco, D.; Marot, L.; Marren, C. A.; Marshal, R.; Martin, A.; Martin, Y.; Martín de Aguilera, A.; Martínez, F. J.; Martín-Solís, J. R.; Martynova, Y.; Maruyama, S.; Masiello, A.; Maslov, M.; Matejcik, S.; Mattei, M.; Matthews, G. F.; Maviglia, F.; Mayer, M.; Mayoral, M. L.; May-Smith, T.; Mazon, D.; Mazzotta, C.; McAdams, R.; McCarthy, P. J.; McClements, K. G.; McCormack, O.; McCullen, P. A.; McDonald, D.; McIntosh, S.; McKean, R.; McKehon, J.; Meadows, R. C.; Meakins, A.; Medina, F.; Medland, M.; Medley, S.; Meigh, S.; Meigs, A. G.; Meisl, G.; Meitner, S.; Meneses, L.; Menmuir, S.; Mergia, K.; Merrigan, I. R.; Mertens, Ph.; Meshchaninov, S.; Messiaen, A.; Meyer, H.; Mianowski, S.; Michling, R.; Middleton-Gear, D.; Miettunen, J.; Militello, F.; Militello-Asp, E.; Miloshevsky, G.; Mink, F.; Minucci, S.; Miyoshi, Y.; Mlynář, J.; Molina, D.; Monakhov, I.; Moneti, M.; Mooney, R.; Moradi, S.; Mordijck, S.; Moreira, L.; Moreno, R.; Moro, F.; Morris, A. W.; Morris, J.; Moser, L.; Mosher, S.; Moulton, D.; Murari, A.; Muraro, A.; Murphy, S.; Asakura, N. N.; Na, Y. S.; Nabais, F.; Naish, R.; Nakano, T.; Nardon, E.; Naulin, V.; Nave, M. F. F.; Nedzelski, I.; Nemtsev, G.; Nespoli, F.; Neto, A.; Neu, R.; Neverov, V. S.; Newman, M.; Nicholls, K. J.; Nicolas, T.; Nielsen, A. H.; Nielsen, P.; Nilsson, E.; Nishijima, D.; Noble, C.; Nocente, M.; Nodwell, D.; Nordlund, K.; Nordman, H.; Nouailletas, R.; Nunes, I.; Oberkofler, M.; Odupitan, T.; Ogawa, M. T.; O'Gorman, T.; Okabayashi, M.; Olney, R.; Omolayo, O.; O'Mullane, M.; Ongena, J.; Orsitto, F.; Orszagh, J.; Oswuigwe, B. I.; Otin, R.; Owen, A.; Paccagnella, R.; Pace, N.; Pacella, D.; Packer, L. W.; Page, A.; Pajuste, E.; Palazzo, S.; Pamela, S.; Panja, S.; Papp, P.; Paprok, R.; Parail, V.; Park, M.; Diaz, F. Parra; Parsons, M.; Pasqualotto, R.; Patel, A.; Pathak, S.; Paton, D.; Patten, H.; Pau, A.; Pawelec, E.; Soldan, C. Paz; Peackoc, A.; Pearson, I. J.; Pehkonen, S.-P.; Peluso, E.; Penot, C.; Pereira, A.; Pereira, R.; Puglia, P. P. Pereira; von Thun, C. Perez; Peruzzo, S.; Peschanyi, S.; Peterka, M.; Petersson, P.; Petravich, G.; Petre, A.; Petrella, N.; Petržilka, V.; Peysson, Y.; Pfefferlé, D.; Philipps, V.; Pillon, M.; Pintsuk, G.; Piovesan, P.; Dos Reis, A. Pires; Piron, L.; Pironti, A.; Pisano; Pitts, R.; Pizzo, F.; Plyusnin, V.; Pomaro, N.; Pompilian, O. G.; Pool, P. J.; Popovichev, S.; Porfiri, M. T.; Porosnicu, C.; Porton, M.; Possnert, G.; Potzel, S.; Powell, T.; Pozzi, J.; Prajapati, V.; Prakash, R.; Prestopino, G.; Price, D.; Price, M.; Price, R.; Prior, P.; Proudfoot, R.; Pucella, G.; Puglia, P.; Puiatti, M. E.; Pulley, D.; Purahoo, K.; Pütterich, Th.; Rachlew, E.; Rack, M.; Ragona, R.; Rainford, M. S. J.; Rakha, A.; Ramogida, G.; Ranjan, S.; Rapson, C. J.; Rasmussen, J. J.; Rathod, K.; Rattá, G.; Ratynskaia, S.; Ravera, G.; Rayner, C.; Rebai, M.; Reece, D.; Reed, A.; Réfy, D.; Regan, B.; Regaña, J.; Reich, M.; Reid, N.; Reimold, F.; Reinhart, M.; Reinke, M.; Reiser, D.; Rendell, D.; Reux, C.; Cortes, S. D. A. Reyes; Reynolds, S.; Riccardo, V.; Richardson, N.; Riddle, K.; Rigamonti, D.; Rimini, F. G.; Risner, J.; Riva, M.; Roach, C.; Robins, R. J.; Robinson, S. A.; Robinson, T.; Robson, D. W.; Roccella, R.; Rodionov, R.; Rodrigues, P.; Rodriguez, J.; Rohde, V.; Romanelli, F.; Romanelli, M.; Romanelli, S.; Romazanov, J.; Rowe, S.; Rubel, M.; Rubinacci, G.; Rubino, G.; Ruchko, L.; Ruiz, M.; Ruset, C.; Rzadkiewicz, J.; Saarelma, S.; Sabot, R.; Safi, E.; Sagar, P.; Saibene, G.; Saint-Laurent, F.; Salewski, M.; Salmi, A.; Salmon, R.; Salzedas, F.; Samaddar, D.; Samm, U.; Sandiford, D.; Santa, P.; Santala, M. I. K.; Santos, B.; Santucci, A.; Sartori, F.; Sartori, R.; Sauter, O.; Scannell, R.; Schlummer, T.; Schmid, K.; Schmidt, V.; Schmuck, S.; Schneider, M.; Schöpf, K.; Schwörer, D.; Scott, S. D.; Sergienko, G.; Sertoli, M.; Shabbir, A.; Sharapov, S. E.; Shaw, A.; Shaw, R.; Sheikh, H.; Shepherd, A.; Shevelev, A.; Shumack, A.; Sias, G.; Sibbald, M.; Sieglin, B.; Silburn, S.; Silva, A.; Silva, C.; Simmons, P. A.; Simpson, J.; Simpson-Hutchinson, J.; Sinha, A.; Sipilä, S. K.; Sips, A. C. C.; Sirén, P.; Sirinelli, A.; Sjöstrand, H.; Skiba, M.; Skilton, R.; Slabkowska, K.; Slade, B.; Smith, N.; Smith, P. G.; Smith, R.; Smith, T. J.; Smithies, M.; Snoj, L.; Soare, S.; Solano, E. R.; Somers, A.; Sommariva, C.; Sonato, P.; Sopplesa, A.; Sousa, J.; Sozzi, C.; Spagnolo, S.; Spelzini, T.; Spineanu, F.; Stables, G.; Stamatelatos, I.; Stamp, M. F.; Staniec, P.; Stankūnas, G.; Stan-Sion, C.; Stead, M. J.; Stefanikova, E.; Stepanov, I.; Stephen, A. V.; Stephen, M.; Stevens, A.; Stevens, B. D.; Strachan, J.; Strand, P.; Strauss, H. R.; Ström, P.; Stubbs, G.; Studholme, W.; Subba, F.; Summers, H. P.; Svensson, J.; Świderski, Ł.; Szabolics, T.; Szawlowski, M.; Szepesi, G.; Suzuki, T. T.; Tál, B.; Tala, T.; Talbot, A. R.; Talebzadeh, S.; Taliercio, C.; Tamain, P.; Tame, C.; Tang, W.; Tardocchi, M.; Taroni, L.; Taylor, D.; Taylor, K. A.; Tegnered, D.; Telesca, G.; Teplova, N.; Terranova, D.; Testa, D.; Tholerus, E.; Thomas, J.; Thomas, J. D.; Thomas, P.; Thompson, A.; Thompson, C.-A.; Thompson, V. K.; Thorne, L.; Thornton, A.; Thrysøe, A. S.; Tigwell, P. A.; Tipton, N.; Tiseanu, I.; Tojo, H.; Tokitani, M.; Tolias, P.; Tomeš, M.; Tonner, P.; Towndrow, M.; Trimble, P.; Tripsky, M.; Tsalas, M.; Tsavalas, P.; Jun, D. Tskhakaya; Turner, I.; Turner, M. M.; Turnyanskiy, M.; Tvalashvili, G.; Tyrrell, S. G. J.; Uccello, A.; Ul-Abidin, Z.; Uljanovs, J.; Ulyatt, D.; Urano, H.; Uytdenhouwen, I.; Vadgama, A. P.; Valcarcel, D.; Valentinuzzi, M.; Valisa, M.; Olivares, P. Vallejos; Valovic, M.; van de Mortel, M.; van Eester, D.; van Renterghem, W.; van Rooij, G. J.; Varje, J.; Varoutis, S.; Vartanian, S.; Vasava, K.; Vasilopoulou, T.; Vega, J.; Verdoolaege, G.; Verhoeven, R.; Verona, C.; Rinati, G. Verona; Veshchev, E.; Vianello, N.; Vicente, J.; Viezzer, E.; Villari, S.; Villone, F.; Vincenzi, P.; Vinyar, I.; Viola, B.; Vitins, A.; Vizvary, Z.; Vlad, M.; Voitsekhovitch, I.; Vondráček, P.; Vora, N.; Vu, T.; de Sa, W. W. Pires; Wakeling, B.; Waldon, C. W. F.; Walkden, N.; Walker, M.; Walker, R.; Walsh, M.; Wang, E.; Wang, N.; Warder, S.; Warren, R. J.; Waterhouse, J.; Watkins, N. W.; Watts, C.; Wauters, T.; Weckmann, A.; Weiland, J.; Weisen, H.; Weiszflog, M.; Wellstood, C.; West, A. T.; Wheatley, M. R.; Whetham, S.; Whitehead, A. M.; Whitehead, B. D.; Widdowson, A. M.; Wiesen, S.; Wilkinson, J.; Williams, J.; Williams, M.; Wilson, A. R.; Wilson, D. J.; Wilson, H. R.; Wilson, J.; Wischmeier, M.; Withenshaw, G.; Withycombe, A.; Witts, D. M.; Wood, D.; Wood, R.; Woodley, C.; Wray, S.; Wright, J.; Wright, J. C.; Wu, J.; Wukitch, S.; Wynn, A.; Xu, T.; Yadikin, D.; Yanling, W.; Yao, L.; Yavorskij, V.; Yoo, M. G.; Young, C.; Young, D.; Young, I. D.; Young, R.; Zacks, J.; Zagorski, R.; Zaitsev, F. S.; Zanino, R.; Zarins, A.; Zastrow, K. D.; Zerbini, M.; Zhang, W.; Zhou, Y.; Zilli, E.; Zoita, V.; Zoletnik, S.; Zychor, I.

    2017-10-01

    We describe a new technique for the efficient generation of high-energy ions with electromagnetic ion cyclotron waves in multi-ion plasmas. The discussed `three-ion' scenarios are especially suited for strong wave absorption by a very low number of resonant ions. To observe this effect, the plasma composition has to be properly adjusted, as prescribed by theory. We demonstrate the potential of the method on the world-largest plasma magnetic confinement device, JET (Joint European Torus, Culham, UK), and the high-magnetic-field tokamak Alcator C-Mod (Cambridge, USA). The obtained results demonstrate efficient acceleration of 3He ions to high energies in dedicated hydrogen-deuterium mixtures. Simultaneously, effective plasma heating is observed, as a result of the slowing-down of the fast 3He ions. The developed technique is not only limited to laboratory plasmas, but can also be applied to explain observations of energetic ions in space-plasma environments, in particular, 3He-rich solar flares.

  13. Monitoring of thermal therapy based on shear modulus changes: I. shear wave thermometry.

    PubMed

    Arnal, Bastien; Pernot, Mathieu; Tanter, Mickael

    2011-02-01

    The clinical applicability of high-intensity focused ultrasound (HIFU) for noninvasive therapy is today hampered by the lack of robust and real-time monitoring of tissue damage during treatment. The goal of this study is to show that the estimation of local tissue elasticity from shear wave imaging (SWI) can lead to the 2-D mapping of temperature changes during HIFU treatments. This new concept of shear wave thermometry is experimentally implemented here using conventional ultrasonic imaging probes. HIFU treatment and monitoring were, respectively, performed using a confocal setup consisting of a 2.5-MHz single-element transducer focused at 30 mm on ex vivo samples and an 8-MHz ultrasound diagnostic probe. Thermocouple measurements and ultrasound-based thermometry were used as a gold standard technique and were combined with SWI on the same device. The SWI sequences consisted of 2 successive shear waves induced at different lateral positions. Each wave was created using 100-μs pushing beams at 3 depths. The shear wave propagation was acquired at 17,000 frames/s, from which the elasticity map was recovered. HIFU sonications were interleaved with fast imaging acquisitions, allowing a duty cycle of more than 90%. Elasticity and temperature mapping was achieved every 3 s, leading to realtime monitoring of the treatment. Tissue stiffness was found to decrease in the focal zone for temperatures up to 43°C. Ultrasound-based temperature estimation was highly correlated to stiffness variation maps (r² = 0.91 to 0.97). A reversible calibration phase of the changes of elasticity with temperature can be made locally using sighting shots. This calibration process allows for the derivation of temperature maps from shear wave imaging. Compared with conventional ultrasound-based approaches, shear wave thermometry is found to be much more robust to motion artifacts.

  14. Analysis and optimization of Love wave liquid sensors.

    PubMed

    Jakoby, B; Vellekoop, M J

    1998-01-01

    Love wave sensors are highly sensitive microacoustic devices, which are well suited for liquid sensing applications thanks to the shear polarization of the wave. The sensing mechanism thereby relies on the mechanical (or acoustic) interaction of the device with the liquid. The successful utilization of Love wave devices for this purpose requires proper shielding to avoid unwanted electric interaction of the liquid with the wave and the transducers. In this work we describe the effects of this electric interaction and the proper design of a shield to prevent it. We present analysis methods, which illustrate the impact of the interaction and which help to obtain an optimized design of the proposed shield. We also present experimental results for devices that have been fabricated according to these design rules.

  15. Time-Dependent Simulations of Fast-Wave Heated High-Non-Inductive-Fraction H-Mode Plasmas in the National Spherical Torus Experiment Upgrade

    NASA Astrophysics Data System (ADS)

    Taylor, Gary; Bertelli, Nicola; Gerhardt, Stefan P.; Hosea, Joel C.; Mueller, Dennis; Perkins, Rory J.; Poli, Francesca M.; Wilson, James R.; Raman, Roger

    2017-10-01

    30 MHz fast-wave heating may be an effective tool for non-inductively ramping low-current plasmas to a level suitable for initiating up to 12 MW of neutral beam injection on the National Spherical Tokamak Experiment Upgrade (NSTX-U). Previously on NSTX 30 MHz fast wave heating was shown to efficiently and rapidly heat electrons; at the NSTX maximum axial toroidal magnetic field (BT(0)) of 0.55 T, 1.4 MW of 30 MHz heating increased the central electron temperature from 0.2 to 2 keV in 30 ms and generated an H-mode plasma with a non-inductive fraction (fNI) ˜ 0.7 at a plasma current (Ip) of 300 kA. NSTX-U will operate at BT(0) up to 1 T, with up to 4 MW of 30 MHz power (Prf). Predictive TRANSP free boundary transport simulations, using the TORIC full wave spectral code to calculate the fast-wave heating and current drive, have been run for NSTX-U Ip = 300 kA H-mode plasmas. Favorable scaling of fNI with 30 MHz heating power is predicted, with fNI ≥ 1 for Prf ≥ 2 MW.

  16. Apparatus for in-situ nondestructive measurement of Young's modulus of plate structures

    NASA Technical Reports Server (NTRS)

    Huang, Jerry Qixin (Inventor); Perez, Robert J. (Inventor); DeLangis, Leo M. (Inventor)

    2005-01-01

    A method and apparatus for determining stiffness of a plate-like structure including a monolithic or composite laminate plate entails disposing a device for generating an acoustical pulse against a surface of the plate and disposing a detecting device against the same surface spaced a known distance from the pulse-generating device, and using the pulse-generating device to emit a pulse so as to create an extensional wave in the plate. The detecting device is used to determine a time of flight of the wave over the known distance, and the wave velocity is calculated. A Young's modulus of the plate is determined by a processor based on the wave velocity. Methods and apparatus for evaluating both isotropic plates and anisotropic laminates are disclosed.

  17. High Speed Terahertz Modulator on the Chip Based on Tunable Terahertz Slot Waveguide

    PubMed Central

    Singh, P. K.; Sonkusale, S.

    2017-01-01

    This paper presents an on-chip device that can perform gigahertz-rate amplitude modulation and switching of broadband terahertz electromagnetic waves. The operation of the device is based on the interaction of confined THz waves in a novel slot waveguide with an electronically tunable two dimensional electron gas (2DEG) that controls the loss of the THz wave propagating through this waveguide. A prototype device is fabricated which shows THz intensity modulation of 96% at 0.25 THz carrier frequency with low insertion loss and device length as small as 100 microns. The demonstrated modulation cutoff frequency exceeds 14 GHz indicating potential for the high-speed modulation of terahertz waves. The entire device operates at room temperature with low drive voltage (<2 V) and zero DC power consumption. The device architecture has potential for realization of the next generation of on-chip modulators and switches at THz frequencies. PMID:28102306

  18. Characterisation of the biofouling community on a floating wave energy device.

    PubMed

    Nall, Christopher R; Schläppy, Marie-Lise; Guerin, Andrew J

    2017-05-01

    Wave energy devices are novel structures in the marine environment and, as such, provide a unique habitat for biofouling organisms. In this study, destructive scrape samples and photoquadrats were used to characterise the temperate epibenthic community present on prototypes of the Pelamis wave energy converter. The biofouling observed was extensive and diverse with 115 taxa recorded including four non-native species. Vertical zonation was identified on the sides of the device, with an algae-dominated shallow subtidal area and a deeper area characterised by a high proportion of suspension-feeding invertebrates. Differences in species composition and biomass were also observed between devices, along the length of the device and between sampling dates. This research provides an insight into the variation of biofouling assemblages on a wave energy device as well as the potential technical and ecological implications associated with biofouling on marine renewable energy structures.

  19. Application of oil-water discrimination technology in fractured reservoirs using the differences between fast and slow shear-waves

    NASA Astrophysics Data System (ADS)

    Luo, Cong; Li, Xiangyang; Huang, Guangtan

    2017-08-01

    Oil-water discrimination is of great significance in the design and adjustment of development projects in oil fields. For fractured reservoirs, based on anisotropic S-wave splitting information, it becomes possible to effectively solve such problems which are difficult to deal with in traditional longitudinal wave exploration, due to the similar bulk modulus and density of these two fluids. In this paper, by analyzing the anisotropic character of the Chapman model (2009 Geophysics 74 97-103), the velocity and reflection coefficient differences between the fast and slow S-wave caused by fluid substitution have been verified. Then, through a wave field response analysis of the theoretical model, we found that water saturation causes a longer time delay, a larger time delay gradient and a lower amplitude difference between the fast and slow S-wave, while the oil case corresponds to a lower time delay, a lower gradient and a higher amplitude difference. Therefore, a new class attribute has been proposed regarding the amplitude energy of the fast and slow shear wave, used for oil-water distinction. This new attribute, as well as that of the time delay gradient, were both applied to the 3D3C seismic data of carbonate fractured reservoirs in the Luojia area of the Shengli oil field in China. The results show that the predictions of the energy attributes are more consistent with the well information than the time delay gradient attribute, hence demonstrating the great advantages and potential of this new attribute in oil-water recognition.

  20. Combined free-stream disturbance measurements and receptivity studies in hypersonic wind tunnels by means of a slender wedge probe and direct numerical simulation

    NASA Astrophysics Data System (ADS)

    Wagner, Alexander; Schülein, Erich; Petervari, René; Hannemann, Klaus; Ali, Syed R. C.; Cerminara, Adriano; Sandham, Neil D.

    2018-05-01

    Combined free-stream disturbance measurements and receptivity studies in hypersonic wind tunnels were conducted by means of a slender wedge probe and direct numerical simulation. The study comprises comparative tunnel noise measurements at Mach 3, 6 and 7.4 in two Ludwieg tube facilities and a shock tunnel. Surface pressure fluctuations were measured over a wide range of frequencies and test conditions including harsh test environments not accessible to measurement techniques such as pitot probes and hot-wire anemometry. Quantitative results of the tunnel noise are provided in frequency ranges relevant for hypersonic boundary layer transition. In combination with the experimental studies, direct numerical simulations of the leading-edge receptivity to fast and slow acoustic waves were performed for the slender wedge probe at conditions corresponding to the experimental free-stream conditions. The receptivity to fast acoustic waves was found to be characterized by an early amplification of the induced fast mode. For slow acoustic waves an initial decay was found close to the leading edge. At all Mach numbers, and for all considered frequencies, the leading-edge receptivity to fast acoustic waves was found to be higher than the receptivity to slow acoustic waves. Further, the effect of inclination angles of the acoustic wave with respect to the flow direction was investigated. The combined numerical and experimental approach in the present study confirmed the previous suggestion that the slow acoustic wave is the dominant acoustic mode in noisy hypersonic wind tunnels.

  1. Traveling wave device for combining or splitting symmetric and asymmetric waves

    DOEpatents

    Möbius, Arnold; Ives, Robert Lawrence

    2005-07-19

    A traveling wave device for the combining or splitting of symmetric and asymmetric traveling wave energy includes a feed waveguide for traveling wave energy, the feed waveguide having an input port and a launching port, a reflector for coupling wave energy between the feed waveguide and a final waveguide for the collection and transport of wave energy to or from the reflector. The power combiner has a launching port for symmetrical waves which includes a cylindrical section coaxial to the feed waveguide, and a launching port for asymmetric waves which includes a sawtooth rotated about a central axis.

  2. Toward jet injection by continuous-wave laser cavitation.

    PubMed

    Berrospe-Rodriguez, Carla; Visser, Claas Willem; Schlautmann, Stefan; Rivas, David Fernandez; Ramos-Garcia, Ruben

    2017-10-01

    This is a study motivated by the need to develop a needle-free device for eliminating major global healthcare problems caused by needles. The generation of liquid jets by means of a continuous-wave laser, focused into a light absorbing solution, was studied with the aim of developing a portable and affordable jet injector. We designed and fabricated glass microfluidic devices, which consist of a chamber where thermocavitation is created and a tapered channel. The growth of a vapor bubble displaces and expels the liquid through the channel as a fast traveling jet. Different parameters were varied with the purpose of increasing the jet velocity. The velocity increases with smaller channel diameters and taper ratios, whereas larger chambers significantly reduce the jet speed. It was found that the initial position of the liquid-air meniscus interface and its dynamics contribute to increased jet velocities. A maximum velocity of 94±3  m/s for a channel diameter of D=120  μm, taper ratio n=0.25, and chamber length E=200  μm was achieved. Finally, agarose gel-based skin phantoms were used to demonstrate the potential of our devices to penetrate the skin. The maximum penetration depth achieved was ∼1  mm, which is sufficient to penetrate the stratum corneum and for most medical applications. A meta-analysis shows that larger injection volumes will be required as a next step to medical relevance for laser-induced jet injection techniques in general. (2017) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  3. Propagation Characteristics Of Weakly Guiding Optical Fibers

    NASA Technical Reports Server (NTRS)

    Manshadi, Farzin

    1992-01-01

    Report discusses electromagnetic propagation characteristics of weakly guiding optical-fiber structures having complicated shapes with cross-sectional dimensions of order of wavelength. Coupling, power-dividing, and transition dielectric-waveguide structures analyzed. Basic data computed by scalar-wave, fast-Fourier-transform (SW-FFT) technique, based on numerical solution of scalar version of wave equation by forward-marching fast-Fourier-transform method.

  4. Environmental impact of the use of radiofrequency electromagnetic fields in physiotherapeutic treatment.

    PubMed

    Gryz, Krzysztof; Karpowicz, Jolanta

    2014-01-01

    Electromagnetic fields used in physiotherapeutic treatment affect not only patients, but also physiotherapists, patients not undergoing treatment and electronic medical equipment. The aim of the work was to study the parameters of the electromagnetic fields of physiotherapeutic devices with respect to requirements regarding the protection of electronic devices, including medical implants, against electromagnetic intererence, and the protection of the general public (patients not undergoing treatment and bystanders), as well as medical personnel, against the health hazards caused by electromagnetic exposure. The spatial distribution of electric and magnetic field strength was investigated near 3 capacitive short-wave and 3 long-wave diathermies and 3 ultrasound therapy units, as along with the capacitive electric currents caused by electromagnetic field interaction in the upper limbs of the physiotherapists operating these devices. The physiotherapists' exposure to electromagnetic fields depends on the spatial organisation of the workspace and their location during treatment. Electric fields able to interfere with the function of electronic medical implants and in whic anyone not undergoing treatment should not be present were measured up to 150-200 cm away from active applicators of short-wave diathermy, and up to 40-45 cm away from long-wave diathermy ones. Electric fields in which workers should not be present were measured up to 30-40 cm away from the applicators and cables of active short-wave diathermy devices. A capacitive electric current with a strength exceeding many times the international recommendations regarding workers protection was measured in the wrist while touching applicators and cables of active short-wave diathermy devices. The strongest environmental electromagnetic hazards occur near short-wave diathermy devices, and to a lesser degree near long-wave diathermy devices, but were not found near ultrasound therapy units.

  5. J Waves Are Associated With the Increased Occurrence of Life-Threatening Ventricular Tachyarrhythmia in Patients With Nonischemic Cardiomyopathy.

    PubMed

    Naruse, Yoshihisa; Nogami, Akihiko; Shinoda, Yasutoshi; Hanaki, Yuichi; Shirai, Yasuhiro; Kowase, Shinya; Kurosaki, Kenji; Machino, Takeshi; Kuroki, Kenji; Yamasaki, Hiro; Igarashi, Miyako; Sekiguchi, Yukio; Aonuma, Kazutaka

    2016-12-01

    Recent studies showed that J waves were associated with higher incidence of ventricular tachyarrhythmia (VT/VF) in patients with idiopathic ventricular fibrillation (VF) and myocardial infarction. We sought to assess the association between J waves and VT/VF in patients with nonischemic cardiomyopathy (NICM). We retrospectively enrolled 109 patients (79 men; mean age, 60 ± 15 years) with NICM who underwent implantable cardioverter defibrillator (ICD) implantation. The primary endpoint of this study was the occurrence of appropriate device therapy due to sustained VT/VF. The J wave was electrocardiographically defined as an elevation of the terminal portion of the QRS complex of >0.1 mV in at least 2 contiguous inferior or lateral leads. Among the 109 patients, 37 (34%) experienced an episode of appropriate device therapy during a median follow-up period of 25.9 (IQR 11.5-54.3) months. Kaplan-Meier curves showed that the presence of J waves on the 12-lead ECG obtained before device implantation was associated with an increased occurrence of appropriate device therapy (P < 0.001). Multivariate Cox proportional regression analysis revealed that the presence of J waves (HR 2.95; 95% CI 1.31-6.64; P = 0.009) was an independent predictor for the occurrence of appropriate device therapy. In the subgroup analysis of the patients with dilated or hypertrophic cardiomyopathy, J wave tended to increase the occurrence of appropriate device therapy (P = 0.056 and P = 0.092, respectively). The presence of J waves was an independent predictor for the occurrence of appropriate device therapy in patients with NICM who underwent ICD implantation. © 2016 Wiley Periodicals, Inc.

  6. Mica-dominated seismic properties of mid-crust beneath west Yunnan (China) and geodynamic implications

    NASA Astrophysics Data System (ADS)

    Shao, Tongbin; Ji, Shaocheng; Oya, Shoma; Michibayashi, Katsuyoshi; Wang, Qian

    2016-05-01

    Measurements of crystallographic preferred orientations (CPO) and calculations of P- and S-wave velocities (Vp and Vs) and anisotropy were conducted on three quartz-mica schists and one felsic mylonite, which are representative of typical metamorphic rocks deformed in the middle crust beneath the southeastern Tibetan plateau. Results show that the schists have Vp anisotropy (AVp) ranging from 16.4% to 25.5% and maximum Vs anisotropy [AVs(max)] between 21.6% and 37.8%. The mylonite has lower AVp and AVs(max) but slightly higher foliation anisotropy, which are 13.2%, 18.5%, and 3.07%, respectively, due to the lower content and CPO strength of mica. With increasing mica content, the deformed rocks tend to form transverse isotropy (TI) with fast velocities in the foliation plane and slow velocities normal to the foliation. However, the presence of prismatic minerals (e.g., amphibole and sillimanite) forces the overall symmetry to deviate from TI. An increase in feldspar content reduces the bulk anisotropy caused by mica or quartz because the fast-axis of feldspar aligns parallel to the slow-axis of mica and/or quartz. The effect of quartz on seismic properties of mica-bearing rocks is complex, depending on its content and prevailing slip system. The greatest shear-wave splitting and fastest Vp both occur for propagation directions within the foliation plane, consistent with the fast Pms (S-wave converted from P-wave at the Moho) polarization directions in the west Yunnan where mica/amphibole-bearing rocks have developed pervasive subvertical foliation and subhorizontal lineation. The fast Pms directions are perpendicular to the approximately E-W orienting fast SKS (S-wave traversing the core as P-wave) directions, indicating a decoupling at the Moho interface between the crust and mantle beneath the region. The seismic data are inconsistent with the model of crustal channel flow as the latter should produce a subhorizontal foliation where vertically incident shear waves suffer little splitting.

  7. Radial Shock Wave Devices Generate Cavitation

    PubMed Central

    Császár, Nikolaus B. M.; Angstman, Nicholas B.; Milz, Stefan; Sprecher, Christoph M.; Kobel, Philippe; Farhat, Mohamed; Furia, John P.; Schmitz, Christoph

    2015-01-01

    Background Conflicting reports in the literature have raised the question whether radial extracorporeal shock wave therapy (rESWT) devices and vibrating massage devices have similar energy signatures and, hence, cause similar bioeffects in treated tissues. Methods and Findings We used laser fiber optic probe hydrophone (FOPH) measurements, high-speed imaging and x-ray film analysis to compare fundamental elements of the energy signatures of two rESWT devices (Swiss DolorClast; Electro Medical Systems, Nyon, Switzerland; D-Actor 200; Storz Medical, Tägerwillen, Switzerland) and a vibrating massage device (Vibracare; G5/General Physiotherapy, Inc., Earth City, MO, USA). To assert potential bioeffects of these treatment modalities we investigated the influence of rESWT and vibrating massage devices on locomotion ability of Caenorhabditis elegans (C. elegans) worms. Results FOPH measurements demonstrated that both rESWT devices generated acoustic waves with comparable pressure and energy flux density. Furthermore, both rESWT devices generated cavitation as evidenced by high-speed imaging and caused mechanical damage on the surface of x-ray film. The vibrating massage device did not show any of these characteristics. Moreover, locomotion ability of C. elegans was statistically significantly impaired after exposure to radial extracorporeal shock waves but was unaffected after exposure of worms to the vibrating massage device. Conclusions The results of the present study indicate that both energy signature and bioeffects of rESWT devices are fundamentally different from those of vibrating massage devices. Clinical Relevance Prior ESWT studies have shown that tissues treated with sufficient quantities of acoustic sound waves undergo cavitation build-up, mechanotransduction, and ultimately, a biological alteration that “kick-starts” the healing response. Due to their different treatment indications and contra-indications rESWT devices cannot be equated to vibrating massage devices and should be used with due caution in clinical practice. PMID:26509573

  8. Radial Shock Wave Devices Generate Cavitation.

    PubMed

    Császár, Nikolaus B M; Angstman, Nicholas B; Milz, Stefan; Sprecher, Christoph M; Kobel, Philippe; Farhat, Mohamed; Furia, John P; Schmitz, Christoph

    2015-01-01

    Conflicting reports in the literature have raised the question whether radial extracorporeal shock wave therapy (rESWT) devices and vibrating massage devices have similar energy signatures and, hence, cause similar bioeffects in treated tissues. We used laser fiber optic probe hydrophone (FOPH) measurements, high-speed imaging and x-ray film analysis to compare fundamental elements of the energy signatures of two rESWT devices (Swiss DolorClast; Electro Medical Systems, Nyon, Switzerland; D-Actor 200; Storz Medical, Tägerwillen, Switzerland) and a vibrating massage device (Vibracare; G5/General Physiotherapy, Inc., Earth City, MO, USA). To assert potential bioeffects of these treatment modalities we investigated the influence of rESWT and vibrating massage devices on locomotion ability of Caenorhabditis elegans (C. elegans) worms. FOPH measurements demonstrated that both rESWT devices generated acoustic waves with comparable pressure and energy flux density. Furthermore, both rESWT devices generated cavitation as evidenced by high-speed imaging and caused mechanical damage on the surface of x-ray film. The vibrating massage device did not show any of these characteristics. Moreover, locomotion ability of C. elegans was statistically significantly impaired after exposure to radial extracorporeal shock waves but was unaffected after exposure of worms to the vibrating massage device. The results of the present study indicate that both energy signature and bioeffects of rESWT devices are fundamentally different from those of vibrating massage devices. Prior ESWT studies have shown that tissues treated with sufficient quantities of acoustic sound waves undergo cavitation build-up, mechanotransduction, and ultimately, a biological alteration that "kick-starts" the healing response. Due to their different treatment indications and contra-indications rESWT devices cannot be equated to vibrating massage devices and should be used with due caution in clinical practice.

  9. Receptivity of Hypersonic Boundary Layers to Distributed Roughness and Acoustic Disturbances

    NASA Technical Reports Server (NTRS)

    Balakumar, P.

    2013-01-01

    Boundary-layer receptivity and stability of Mach 6 flows over smooth and rough seven-degree half-angle sharp-tipped cones are numerically investigated. The receptivity of the boundary layer to slow acoustic disturbances, fast acoustic disturbances, and vortical disturbances is considered. The effects of three-dimensional isolated roughness on the receptivity and stability are also simulated. The results for the smooth cone show that the instability waves are generated in the leading edge region and that the boundary layer is much more receptive to slow acoustic waves than to the fast acoustic waves. Vortical disturbances also generate unstable second modes, however the receptivity coefficients are smaller than that of the slow acoustic wave. Distributed roughness elements located near the nose region decreased the receptivity of the second mode generated by the slow acoustic wave by a small amount. Roughness elements distributed across the continuous spectrum increased the receptivity of the second mode generated by the slow and fast acoustic waves and the vorticity wave. The largest increase occurred for the vorticity wave. Roughness elements distributed across the synchronization point did not change the receptivity of the second modes generated by the acoustic waves. The receptivity of the second mode generated by the vorticity wave increased in this case, but the increase is lower than that occurred with the roughness elements located across the continuous spectrum. The simulations with an isolated roughness element showed that the second mode waves generated by the acoustic disturbances are not influenced by the small roughness element. Due to the interaction, a three-dimensional wave is generated. However, the amplitude is orders of magnitude smaller than the two-dimensional wave.

  10. The picosecond structure of ultra-fast rogue waves

    NASA Astrophysics Data System (ADS)

    Klein, Avi; Shahal, Shir; Masri, Gilad; Duadi, Hamootal; Sulimani, Kfir; Lib, Ohad; Steinberg, Hadar; Kolpakov, Stanislav A.; Fridman, Moti

    2018-02-01

    We investigated ultrafast rogue waves in fiber lasers and found three different patterns of rogue waves: single- peaks, twin-peaks, and triple-peaks. The statistics of the different patterns as a function of the pump power of the laser reveals that the probability for all rogue waves patterns increase close to the laser threshold. We developed a numerical model which prove that the ultrafast rogue waves patterns result from both the polarization mode dispersion in the fiber and the non-instantaneous nature of the saturable absorber. This discovery reveals that there are three different types of rogue waves in fiber lasers: slow, fast, and ultrafast, which relate to three different time-scales and are governed by three different sets of equations: the laser rate equations, the nonlinear Schrodinger equation, and the saturable absorber equations, accordingly. This discovery is highly important for analyzing rogue waves and other extreme events in fiber lasers and can lead to realizing types of rogue waves which were not possible so far such as triangular rogue waves.

  11. Self-Consistent and Time-Dependent Solar Wind Models

    NASA Technical Reports Server (NTRS)

    Ong, K. K.; Musielak, Z. E.; Rosner, R.; Suess, S. T.; Sulkanen, M. E.

    1997-01-01

    We describe the first results from a self-consistent study of Alfven waves for the time-dependent, single-fluid magnetohydrodynamic (MHD) solar wind equations, using a modified version of the ZEUS MHD code. The wind models we examine are radially symmetrical and magnetized; the initial outflow is described by the standard Parker wind solution. Our study focuses on the effects of Alfven waves on the outflow and is based on solving the full set of the ideal nonlinear MHD equations. In contrast to previous studies, no assumptions regarding wave linearity, wave damping, and wave-flow interaction are made; thus, the models naturally account for the back-reaction of the wind on the waves, as well as for the nonlinear interaction between different types of MHD waves. Our results clearly demonstrate when momentum deposition by Alfven waves in the solar wind can be sufficient to explain the origin of fast streams in solar coronal holes; we discuss the range of wave amplitudes required to obtained such fast stream solutions.

  12. Effect of Stress and Saturation on Shear Wave Anisotropy: Laboratory Observations Using Laser Doppler Interferometry

    NASA Astrophysics Data System (ADS)

    Lebedev, M.; Collet, O.; Bona, A.; Gurevich, B.

    2015-12-01

    Estimations of hydrocarbon and water resources as well as reservoir management during production are the main challenges facing the resource recovery industry nowadays. The recently discovered reservoirs are not only deep but they are also located in complicated geological formations. Hence, the effect of anisotropy on reservoir imaging becomes significant. Shear wave (S-wave) splitting has been observed in the field and laboratory experiments for decades. Despite the fact that S-wave splitting is widely used for evaluation of subsurface anisotropy, the effects of stresses as well fluid saturation on anisotropy have not been understood in detail. In this paper we present the laboratory study of the effect of stress and saturation on S-wave splitting for a Bentheim sandstone sample. The cubic sample (50mm3), porosity 22%, density 1890kg/m3) was placed into a true-triaxial cell. The sample was subjected to several combinations of stresses varying from 0 to 10MPa and applied to the sample in two directions (X and Y), while no stress was applied to the sample in the Z-direction. The sample's bedding was nearly oriented parallel to Y-Z plane. The ultrasonic S-waves were exited at a frequency of 0.5MHz by a piezoelectric transducer and were propagating in the Z-direction. Upon wave arrival onto the free surface the displacement of the surface was monitored by a Laser Doppler interferometer. Hodograms of the central point of the dry sample (Fig. 1) demonstrate how S-wave polarizations for both "fast" and "slow" S-waves change when increasing the stress in the X direction, while the stress in direction Y is kept constant at 3 MPa. Polarization of the fast S wave is shifted towards the X-axis (axis of the maximum stress). While both S-wave velocities increase with stress, the anisotropy level remains the same. No shift of polarization of fast wave was observed when the stress along the Y-axis was kept at 3 MPa, while the stress along the X-axis was increasing. However, in that case, S-wave splitting is more prominent. The fast S-wave velocity is increasing with the stress increase while the slow S-wave velocity starts decreasing after 5MPa, indicating possible cracks opening in the Y-direction. Interestingly no change in anisotropy was observed for the water-saturated sample.

  13. Application of very high harmonic fast waves for off-axis current drive in the DIII-D and FNSF-AT tokamaks

    DOE PAGES

    Prater, Ronald; Moeller, Charles P.; Pinsker, Robert I.; ...

    2014-06-26

    Fast waves at frequencies far above the ion cyclotron frequency and approaching the lower hybrid frequency (also called “helicons” or “whistlers”) have application to off-axis current drive in tokamaks with high electron beta. The high frequency causes the whistler-like behavior of the wave power nearly following field lines, but with a small radial component, so the waves spiral slowly toward the plasma center. The high frequency also contributes to strong damping. Modeling predicts robust off-axis current drive with good efficiency compared to alternatives in high performance discharges in DIII-D and Fusion Nuclear Science Facility (FNSF) when the electron beta ismore » above about 1.8%. Detailed analysis of ray behavior shows that ray trajectories and damping are deterministic (that is, not strongly affected by plasma profiles or initial ray conditions), unlike the chaotic ray behavior in lower frequency fast wave experiments. Current drive was found to not be sensitive to the launched value of the parallel index of refraction n||, so wave accessibility issues can be reduced. Finally, use of a traveling wave antenna provides a very narrow n|| spectrum, which also helps avoid accessibility problems.« less

  14. Classification and determination of cerebral biovailability of psychotropic drugs by quantitative "pharmaco-EEG" and psychometric investigations (studies with AX-A411-BS).

    PubMed

    Saletu, B; Grünberger, J; Linzmayer, L

    1977-10-01

    Utilizing computerized quantitative analysis of the human scalp recorded electroencephalogram (EEG), it is possible to classify psychotropic drugs. While neuroleptic compounds produce an increase of slow and decrease of fast activities, anxiolytic substances induce an augmentation of fast waves, decrease of alpha waves and--according to the sedative properties of the drug--an increase or decrease of slow waves. Antidepressants produce a concomitant augmentation of slow and fast activities as well as an attenuation of alpha waves. Nootropic substances attenuate slow activities, augment alpha and slow beta waves and decrease fast beta waves. The latter alterations are quite opposite to age-related changes. Since the main psychopharmacological classes seem to have characteristic pharmaco-EEG profiles, the method proved to be useful for determination of psychoactivity and cerebral bioavailability of newly developed substances as for instance AX-A411-BS, a new benzodiazepine. The latter substance was found to be CNS-active and was classified as anxiolytic. It induced dosedependent changes, which were barely visible in the 2nd hour post-drug, became quite obvious in the 4th hour and increased until the 8th hour after oral administration of one single dose. In the higher dosage range, slow activities came to the fore, indicating aoditional sedative properties. Psychometric tests measuring attention, psychomotor activity. mood, vigilance, extroversion, concentration aith a long-lasting effect. The implications of these methods are discussed.

  15. Wave Energy Prize - 1/20th Testing - SEWEC

    DOE Data Explorer

    Wesley Scharmen

    2016-10-07

    Data from the 1/20th scale testing data completed on the Wave Energy Prize for the SEWEC team, including the 1/20th scale test plan, raw test data, video, photos, and data analysis results. The top level objective of the 1/20th scale device testing is to obtain the necessary measurements required for determining Average Climate Capture Width per Characteristic Capital Expenditure (ACE) and the Hydrodynamic Performance Quality (HPQ), key metrics for determining the Wave Energy Prize (WEP) winners. * Note: During the TG4 judging meeting, the Wave Energy Prize judges reviewed the data collected during the testing of SEWEC's device at Carderock and determined that the data were inconclusive and did not allow an ACE value to be calculated for the device. Consequently, the SEWEC device was deemed ineligible to be considered for the Wave Energy Prize.

  16. Inverse mirror plasma experimental device (IMPED) - a magnetized linear plasma device for wave studies

    NASA Astrophysics Data System (ADS)

    Bose, Sayak; Chattopadhyay, P. K.; Ghosh, J.; Sengupta, S.; Saxena, Y. C.; Pal, R.

    2015-04-01

    In a quasineutral plasma, electrons undergo collective oscillations, known as plasma oscillations, when perturbed locally. The oscillations propagate due to finite temperature effects. However, the wave can lose the phase coherence between constituting oscillators in an inhomogeneous plasma (phase mixing) because of the dependence of plasma oscillation frequency on plasma density. The longitudinal electric field associated with the wave may be used to accelerate electrons to high energies by exciting large amplitude wave. However when the maximum amplitude of the wave is reached that plasma can sustain, the wave breaks. The phenomena of wave breaking and phase mixing have applications in plasma heating and particle acceleration. For detailed experimental investigation of these phenomena a new device, inverse mirror plasma experimental device (IMPED), has been designed and fabricated. The detailed considerations taken before designing the device, so that different aspects of these phenomena can be studied in a controlled manner, are described. Specifications of different components of the IMPED machine and their flexibility aspects in upgrading, if necessary, are discussed. Initial results meeting the prerequisite condition of the plasma for such study, such as a quiescent, collisionless and uniform plasma, are presented. The machine produces δnnoise/n <= 1%, Luniform ~ 120 cm at argon filling pressure of ~10-4 mbar and axial magnetic field of B = 1090 G.

  17. Equatorial Magnetohydrodynamic Shallow Water Waves in the Solar Tachocline

    NASA Astrophysics Data System (ADS)

    Zaqarashvili, Teimuraz

    2018-03-01

    The influence of a toroidal magnetic field on the dynamics of shallow water waves in the solar tachocline is studied. A sub-adiabatic temperature gradient in the upper overshoot layer of the tachocline causes significant reduction of surface gravity speed, which leads to trapping of the waves near the equator and to an increase of the Rossby wave period up to the timescale of solar cycles. Dispersion relations of all equatorial magnetohydrodynamic (MHD) shallow water waves are obtained in the upper tachocline conditions and solved analytically and numerically. It is found that the toroidal magnetic field splits equatorial Rossby and Rossby-gravity waves into fast and slow modes. For a reasonable value of reduced gravity, global equatorial fast magneto-Rossby waves (with the spatial scale of equatorial extent) have a periodicity of 11 years, matching the timescale of activity cycles. The solutions are confined around the equator between latitudes ±20°–40°, coinciding with sunspot activity belts. Equatorial slow magneto-Rossby waves have a periodicity of 90–100 yr, resembling the observed long-term modulation of cycle strength, i.e., the Gleissberg cycle. Equatorial magneto-Kelvin and slow magneto-Rossby-gravity waves have the periodicity of 1–2 years and may correspond to observed annual and quasi-biennial oscillations. Equatorial fast magneto-Rossby-gravity and magneto-inertia-gravity waves have periods of hundreds of days and might be responsible for observed Rieger-type periodicity. Consequently, the equatorial MHD shallow water waves in the upper overshoot tachocline may capture all timescales of observed variations in solar activity, but detailed analytical and numerical studies are necessary to make a firm conclusion toward the connection of the waves to the solar dynamo.

  18. Laser Direct Writing and Selective Metallization of Metallic Circuits for Integrated Wireless Devices.

    PubMed

    Cai, Jinguang; Lv, Chao; Watanabe, Akira

    2018-01-10

    Portable and wearable devices have attracted wide research attention due to their intimate relations with human daily life. As basic structures in the devices, the preparation of high-conductive metallic circuits or micro-circuits on flexible substrates should be facile, cost-effective, and easily integrated with other electronic units. In this work, high-conductive carbon/Ni composite structures were prepared by using a facile laser direct writing method, followed by an electroless Ni plating process, which exhibit a 3-order lower sheet resistance of less than 0.1 ohm/sq compared to original structures before plating, showing the potential for practical use. The carbon/Ni composite structures exhibited a certain flexibility and excellent anti-scratch property due to the tight deposition of Ni layers on carbon surfaces. On the basis of this approach, a wireless charging and storage device on a polyimide film was demonstrated by integrating an outer rectangle carbon/Ni composite coil for harvesting electromagnetic waves and an inner carbon micro-supercapacitor for energy storage, which can be fast charged wirelessly by a commercial wireless charger. Furthermore, a near-field communication (NFC) tag was prepared by combining a carbon/Ni composite coil for harvesting signals and a commercial IC chip for data storage, which can be used as an NFC tag for practical application.

  19. The preplasma effect on the properties of the shock wave driven by a fast electron beam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Llor Aisa, E.; Ribeyre, X.; Tikhonchuk, V. T.

    2016-08-15

    Strong shock wave generation by a mono-energetic fast electron beam in a plasma with an increasing density profile is studied theoretically. The proposed analytical model describes the shock wave characteristics for a homogeneous plasma preceded by a low density precursor. The shock pressure and the time of shock formation depend on the ratio of the electron stopping length to the preplasma areal density and on the initial energy of injected electrons. The conclusions of theoretical model are confirmed in numerical simulations.

  20. Novel Optical Processor for Phased Array Antenna.

    DTIC Science & Technology

    1992-10-20

    parallel glass slide into the signal beam optical loop. The parallel glass acts like a variable phase shifter to the signal beam simulating phase drift...A list of possible designs are given as follows , _ _ Velocity fa (100dB/cm) Lumit Wavelength I M2I1 TeO2 Longi 4.2 /m/ns about 3 GHz 1.4 4m 34 Fast...subject to achievable acoustic frequency, the preferred materials are the slow shear wave in TeO2 , the fast shear wave in TeO2 or the shear waves in

  1. Microfabricated bulk wave acoustic bandgap device

    DOEpatents

    Olsson, Roy H.; El-Kady, Ihab F.; McCormick, Frederick; Fleming, James G.; Fleming, Carol

    2010-06-08

    A microfabricated bulk wave acoustic bandgap device comprises a periodic two-dimensional array of scatterers embedded within the matrix material membrane, wherein the scatterer material has a density and/or elastic constant that is different than the matrix material and wherein the periodicity of the array causes destructive interference of the acoustic wave within an acoustic bandgap. The membrane can be suspended above a substrate by an air or vacuum gap to provide acoustic isolation from the substrate. The device can be fabricated using microelectromechanical systems (MEMS) technologies. Such microfabricated bulk wave phononic bandgap devices are useful for acoustic isolation in the ultrasonic, VHF, or UHF regime (i.e., frequencies of order 1 MHz to 10 GHz and higher, and lattice constants of order 100 .mu.m or less).

  2. Microfabricated bulk wave acoustic bandgap device

    DOEpatents

    Olsson, Roy H.; El-Kady, Ihab F.; McCormick, Frederick; Fleming, James G.; Fleming, legal representative, Carol

    2010-11-23

    A microfabricated bulk wave acoustic bandgap device comprises a periodic two-dimensional array of scatterers embedded within the matrix material membrane, wherein the scatterer material has a density and/or elastic constant that is different than the matrix material and wherein the periodicity of the array causes destructive interference of the acoustic wave within an acoustic bandgap. The membrane can be suspended above a substrate by an air or vacuum gap to provide acoustic isolation from the substrate. The device can be fabricated using microelectromechanical systems (MEMS) technologies. Such microfabricated bulk wave phononic bandgap devices are useful for acoustic isolation in the ultrasonic, VHF, or UHF regime (i.e., frequencies of order 1 MHz to 10 GHz and higher, and lattice constants of order 100 .mu.m or less).

  3. Fast and precise technique for magnet lattice correction via sine-wave excitation of fast correctors

    DOE PAGES

    Yang, X.; Smaluk, V.; Yu, L. H.; ...

    2017-05-02

    A novel technique has been developed to improve the precision and shorten the measurement time of the LOCO (linear optics from closed orbits) method. This technique, named AC LOCO, is based on sine-wave (ac) beam excitation via fast correctors. Such fast correctors are typically installed at synchrotron light sources for the fast orbit feedback. The beam oscillations are measured by beam position monitors. The narrow band used for the beam excitation and measurement not only allows us to suppress effectively the beam position noise but also opens the opportunity for simultaneously exciting multiple correctors at different frequencies (multifrequency mode). Wemore » demonstrated at NSLS-II that AC LOCO provides better lattice corrections and works much faster than the traditional LOCO method.« less

  4. Educational Multimedia Profiling Recommendations for Device-Aware Adaptive Mobile Learning

    ERIC Educational Resources Information Center

    Moldovan, Arghir-Nicolae; Ghergulescu, Ioana; Muntean, Cristina Hava

    2014-01-01

    Mobile learning is seeing a fast adoption with the increasing availability and affordability of mobile devices such as smartphones and tablets. As the creation and consumption of educational multimedia content on mobile devices is also increasing fast, educators and mobile learning providers are faced with the challenge to adapt multimedia type…

  5. A Wave Power Device with Pendulum Based on Ocean Monitoring Buoy

    NASA Astrophysics Data System (ADS)

    Chai, Hui; Guan, Wanchun; Wan, Xiaozheng; Li, Xuanqun; Zhao, Qiang; Liu, Shixuan

    2018-01-01

    The ocean monitoring buoy usually exploits solar energy for power supply. In order to improve power supply capacity, this paper proposes a wave power device according to the structure and moving character of buoy. The wave power device composes of pendulum mechanism that converts wave energy into mechanical energy and energy storage mechanism where the mechanical energy is transferred quantitatively to generator. The hydrodynamic equation for the motion of buoy system with generator devise is established based on the potential flow theory, and then the characteristics of pendulum motion and energy conversion properties are analysed. The results of this research show that the proposed wave power devise is able to efficiently and periodically convert wave energy into power, and increasing the stiffness of energy storage spring is benefit for enhancing the power supply capacity of the buoy. This study provides a theory reference for the development of technology on wave power generator for ocean monitoring buoy.

  6. Are ion acoustic waves supported by high-density plasmas in the Large Plasma Device (LaPD)?

    NASA Astrophysics Data System (ADS)

    Roycroft, Rebecca; Dorfman, Seth; Carter, Troy A.; Gekelman, Walter; Tripathi, Shreekrishna

    2012-10-01

    Ion acoustic waves are a type of longitudinal wave in a plasma, propagating though the motion of the ions. The wave plays a key role in a parametric decay process thought to be responsible for the spectrum of turbulence observed in the solar wind. In recent LaPD experiments aimed at studying this process, modes thought to be ion acoustic waves are strongly damped when the pump Alfven waves are turned off. This observation motivates an experiment focused on directly launching ion acoustic waves under similar conditions. Our first attempt to launch ion acoustic waves using a metal grid in the plasma was unsuccessful at high magnetic fields and densities due to electrons shorting out the bias applied between the grid and the wall. Results from a new device based on [1] to launch ion acoustic waves will be presented; this device will consist of a small chamber with a plasma source separated from the main chamber by two biased grids. The plasma created inside the small device will be held at a different potential from the main plasma; modulation of this difference should affect the ions, allowing ion acoustic waves to be launched and their properties compared to the prior LaPD experiments.[4pt] [1] W. Gekelman and R. L. Stenzel, Phys. Fluids 21, 2014 (1978).

  7. Applications of surface acoustic and shallow bulk acoustic wave devices

    NASA Astrophysics Data System (ADS)

    Campbell, Colin K.

    1989-10-01

    Surface acoustic wave (SAW) device coverage includes delay lines and filters operating at selected frequencies in the range from about 10 MHz to 11 GHz; modeling with single-crystal piezoelectrics and layered structures; resonators and low-loss filters; comb filters and multiplexers; antenna duplexers; harmonic devices; chirp filters for pulse compression; coding with fixed and programmable transversal filters; Barker and quadraphase coding; adaptive filters; acoustic and acoustoelectric convolvers and correlators for radar, spread spectrum, and packet radio; acoustooptic processors for Bragg modulation and spectrum analysis; real-time Fourier-transform and cepstrum processors for radar and sonar; compressive receivers; Nyquist filters for microwave digital radio; clock-recovery filters for fiber communications; fixed-, tunable-, and multimode oscillators and frequency synthesizers; acoustic charge transport; and other SAW devices for signal processing on gallium arsenide. Shallow bulk acoustic wave device applications include gigahertz delay lines, surface-transverse-wave resonators employing energy-trapping gratings, and oscillators with enhanced performance and capability.

  8. High-energy terahertz wave parametric oscillator with a surface-emitted ring-cavity configuration.

    PubMed

    Yang, Zhen; Wang, Yuye; Xu, Degang; Xu, Wentao; Duan, Pan; Yan, Chao; Tang, Longhuang; Yao, Jianquan

    2016-05-15

    A surface-emitted ring-cavity terahertz (THz) wave parametric oscillator has been demonstrated for high-energy THz output and fast frequency tuning in a wide frequency range. Through the special optical design with a galvano-optical scanner and four-mirror ring-cavity structure, the maximum THz wave output energy of 12.9 μJ/pulse is achieved at 1.359 THz under the pump energy of 172.8 mJ. The fast THz frequency tuning in the range of 0.7-2.8 THz can be accessed with the step response of 600 μs. Moreover, the maximum THz wave output energy from this configuration is 3.29 times as large as that obtained from the conventional surface-emitted THz wave parametric oscillator with the same experimental conditions.

  9. Mechanisms for Selective Single-Cell Reactivation during Offline Sharp-Wave Ripples and Their Distortion by Fast Ripples.

    PubMed

    Valero, Manuel; Averkin, Robert G; Fernandez-Lamo, Ivan; Aguilar, Juan; Lopez-Pigozzi, Diego; Brotons-Mas, Jorge R; Cid, Elena; Tamas, Gabor; Menendez de la Prida, Liset

    2017-06-21

    Memory traces are reactivated selectively during sharp-wave ripples. The mechanisms of selective reactivation, and how degraded reactivation affects memory, are poorly understood. We evaluated hippocampal single-cell activity during physiological and pathological sharp-wave ripples using juxtacellular and intracellular recordings in normal and epileptic rats with different memory abilities. CA1 pyramidal cells participate selectively during physiological events but fired together during epileptic fast ripples. We found that firing selectivity was dominated by an event- and cell-specific synaptic drive, modulated in single cells by changes in the excitatory/inhibitory ratio measured intracellularly. This mechanism collapses during pathological fast ripples to exacerbate and randomize neuronal firing. Acute administration of a use- and cell-type-dependent sodium channel blocker reduced neuronal collapse and randomness and improved recall in epileptic rats. We propose that cell-specific synaptic inputs govern firing selectivity of CA1 pyramidal cells during sharp-wave ripples. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Noncontacting device to indicate deflection of turbopump internal rotating parts

    NASA Technical Reports Server (NTRS)

    Hamilton, D. B.; Grieser, D. R.; Plummer, A. M.; Ensminger, D.; Saccacio, E. J.

    1972-01-01

    Phase 2 (development) which was concluded for the ultrasonic Doppler device and the light-pipe-reflectance device is reported. An ultrasonic Doppler breadboard system was assembled which accurately measured runout in the J-2 LOX pump impeller during operation. The transducer was mounted on the outside of the pump volute using a C-clamp. Vibration was measured by conducting the ultrasonic wave through the volute housing and through the fluid in the volute to the impeller surface. The impeller vibration was also measured accurately using the light-pipe probe mounted in an elastomeric-gland fitting in the pump case. A special epoxy resin developed for cryogenic applications was forced into the end of the fiber-optic probe to retain the fibers. Subsequently, the probe suffered no damage after simultaneous exposure to 2150 psi and 77 F. Preliminary flash X-radiographs were taken of the turbine wheel and the shaft-bearing-seal assembly, using a 2-megavolt X-ray unit. Reasonable resolution and contrast was obtained. A fast-neutron detector was fabricated and sensitivity was measured. The results demonstrated that the technique is feasible for integrated-time measurements requiring, perhaps, 240 revolutions to obtain sufficient exposure at 35,000 rpm. The experimental verification plans are included.

  11. Characterization of pulsed atmospheric-pressure plasma streams (PAPS) generated by a plasma gun

    NASA Astrophysics Data System (ADS)

    Robert, E.; Sarron, V.; Riès, D.; Dozias, S.; Vandamme, M.; Pouvesle, J.-M.

    2012-06-01

    An experimental study of atmospheric-pressure rare gas plasma propagation in a high-aspect-ratio capillary is reported. The plasma is generated with a plasma gun device based on a dielectric barrier discharge (DBD) reactor powered by either nanosecond or microsecond rise-time high-voltage pulses at single-shot to multi-kHz frequencies. The influence of the voltage waveform, pulse polarity, pulse repetition rate and capillary material have been studied using nanosecond intensified charge-coupled device imaging and plasma-front velocity measurements. The evolution of the plasma appearance during its propagation and the study of the role of the different experimental parameters lead us to suggest a new denomination of pulsed atmospheric-pressure plasma streams to describe all the plasma features, including the previously so-called plasma bullet. The unique properties of such non-thermal plasma launching in capillaries, far from the primary DBD plasma, are associated with a fast ionization wave travelling with velocity in the 107-108 cm s-1 range. Voltage pulse tailoring is shown to allow for a significant improvement of such plasma delivery. Thus, the plasma gun device affords unique opportunities in biomedical endoscopic applications.

  12. Regarding the optimization of O1-mode ECRH and the feasibility of EBW startup on NSTX-U

    NASA Astrophysics Data System (ADS)

    Lopez, N. A.; Poli, F. M.

    2018-06-01

    Recently published scenarios for fully non-inductive startup and operation on the National Spherical Torus eXperiment Upgrade (NSTX-U) (Menard et al 2012 Nucl. Fusion 52 083015) show Electron Cyclotron Resonance Heating (ECRH) as an important component in preparing a target plasma for efficient High Harmonic Fast Wave and Neutral Beam heating. The modeling of the propagation and absorption of EC waves in the evolving plasma is required to define the most effective window of operation, and to optimize the launcher geometry for maximal heating and current drive during this window. Here, we extend a previous optimization of O1-mode ECRH on NSTX-U to account for the full time-dependent performance of the ECRH using simulations performed with TRANSP. We find that the evolution of the density profile has a prominent role in the optimization by defining the time window of operation, which in certain cases may be a more important metric to compare launcher performance than the average power absorption. This feature cannot be captured by analysis on static profiles, and should be accounted for when optimizing ECRH on any device that operates near the cutoff density. Additionally, the utility of the electron Bernstein wave (EBW) in driving current and generating closed flux surfaces in the early startup phase has been demonstrated on a number of devices. Using standalone GENRAY simulations, we find that efficient EBW current drive is possible on NSTX-U if the injection angle is shifted below the midplane and aimed towards the top half of the vacuum vessel. However, collisional damping of the EBW is projected to be significant, in some cases accounting for up to 97% of the absorbed EBW power.

  13. Regarding the optimization of O1-mode ECRH and the feasibility of EBW startup on NSTX-U

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lopez, Nicolas; Poli, Francesca M.

    Recently published scenarios for fully non-inductive startup and operation on the National Spherical Torus eXperiment Upgrade (NSTX-U) [Menard J et al 2012 Nucl. Fusion 52 083015] show Electron Cyclotron Resonance Heating (ECRH) as an important component in preparing a target plasma for efficient High Harmonic Fast Wave and Neutral Beam heating. The modelling of the propagation and absorption of EC waves in the evolving plasma is required to define the most effective window of operation, and to optimize the launcher geometry for maximal heating and current drive during this window. Here in this paper, we extend a previous optimization ofmore » O1-mode ECRH on NSTX-U to account for the full time-dependent performance of the ECRH using simulations performed with TRANSP. We find that the evolution of the density profile has a prominent role in the optimization by defining the time window of operation, which in certain cases may be a more important metric to compare launcher performance than the average power absorption. This feature cannot be captured by analysis on static profiles, and should be accounted for when optimizing ECRH on any device that operates near the cutoff density. Additionally, the utility of the electron Bernstein wave (EBW) in driving current and generating closed flux surfaces in the early startup phase has been demonstrated on a number of devices. Using standalone GENRAY simulations, we find that efficient EBW current drive is possible on NSTX-U if the injection angle is shifted below the midplane and aimed towards the top half of the vacuum vessel. However, collisional damping of the EBW is projected to be significant, in some cases accounting for up to 97\\% of the absorbed EBW power.« less

  14. Regarding the optimization of O1-mode ECRH and the feasibility of EBW startup on NSTX-U

    DOE PAGES

    Lopez, Nicolas; Poli, Francesca M.

    2018-03-29

    Recently published scenarios for fully non-inductive startup and operation on the National Spherical Torus eXperiment Upgrade (NSTX-U) [Menard J et al 2012 Nucl. Fusion 52 083015] show Electron Cyclotron Resonance Heating (ECRH) as an important component in preparing a target plasma for efficient High Harmonic Fast Wave and Neutral Beam heating. The modelling of the propagation and absorption of EC waves in the evolving plasma is required to define the most effective window of operation, and to optimize the launcher geometry for maximal heating and current drive during this window. Here in this paper, we extend a previous optimization ofmore » O1-mode ECRH on NSTX-U to account for the full time-dependent performance of the ECRH using simulations performed with TRANSP. We find that the evolution of the density profile has a prominent role in the optimization by defining the time window of operation, which in certain cases may be a more important metric to compare launcher performance than the average power absorption. This feature cannot be captured by analysis on static profiles, and should be accounted for when optimizing ECRH on any device that operates near the cutoff density. Additionally, the utility of the electron Bernstein wave (EBW) in driving current and generating closed flux surfaces in the early startup phase has been demonstrated on a number of devices. Using standalone GENRAY simulations, we find that efficient EBW current drive is possible on NSTX-U if the injection angle is shifted below the midplane and aimed towards the top half of the vacuum vessel. However, collisional damping of the EBW is projected to be significant, in some cases accounting for up to 97\\% of the absorbed EBW power.« less

  15. Reliability of oscillometric central hemodynamic responses to an orthostatic challenge.

    PubMed

    Stoner, Lee; Bonner, Chantel; Credeur, Daniel; Lambrick, Danielle; Faulkner, James; Wadsworth, Daniel; Williams, Michelle A

    2015-08-01

    Monitoring central hemodynamic responses to an orthostatic challenge may provide important insight into autonomic nervous system function. Oscillometric pulse wave analysis devices have recently emerged, presenting clinically viable options for investigating central hemodynamic properties. The purpose of the current study was to determine whether oscillometric pulse wave analysis can be used to reliably (between-day) assess central blood pressure and central pressure augmentation (augmentation index) responses to a 5 min orthostatic challenge (modified tilt-table). Twenty healthy adults (26.4 y (SD 5.2), 55% F, 24.7 kg/m(2) (SD 3.8)) were tested on 3 different mornings in the fasted state, separated by a maximum of 7 days. Central hemodynamic variables were assessed on the left arm using an oscillometric device. Repeated measures analysis of variance indicated a significant main effect of the modified tilt-table for all central hemodynamic variables (P < 0.001). In response to the tilt, central diastolic pressure increased by 4.5 mmHg (CI: 2.6, 6.4), central systolic blood pressure increased by 2.3 (CI: 4.4, 0.16) mmHg, and augmentation index decreased by an absolute - 5.3%, (CI: -2.7, -7.9%). The intra-class correlation coefficient values for central diastolic pressure (0.83-0.86), central systolic blood pressure (0.80-0.87) and AIx (0.79-0.82) were above the 0.75 criterion in both the supine and tilted positions, indicating excellent between-day reliability. Central hemodynamic responses to an orthostatic challenge can be assessed with acceptable between-day reliability using oscillometric pulse wave analysis. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  16. The variety of MHD shock waves interactions in the solar wind flow

    NASA Technical Reports Server (NTRS)

    Grib, S. A.

    1995-01-01

    Different types of nonlinear shock wave interactions in some regions of the solar wind flow are considered. It is shown, that the solar flare or nonflare CME fast shock wave may disappear as the result of the collision with the rotational discontinuity. By the way the appearance of the slow shock waves as the consequence of the collision with other directional discontinuity namely tangential is indicated. Thus the nonlinear oblique and normal MHD shock waves interactions with different solar wind discontinuities (tangential, rotational, contact, shock and plasmoidal) both in the free flow and close to the gradient regions like the terrestrial magnetopause and the heliopause are described. The change of the plasma pressure across the solar wind fast shock waves is also evaluated. The sketch of the classification of the MHD discontinuities interactions, connected with the solar wind evolution is given.

  17. On-Demand Microwave Generator of Shaped Single Photons

    NASA Astrophysics Data System (ADS)

    Forn-Díaz, P.; Warren, C. W.; Chang, C. W. S.; Vadiraj, A. M.; Wilson, C. M.

    2017-11-01

    We demonstrate the full functionality of a circuit that generates single microwave photons on demand, with a wave packet that can be modulated with a near-arbitrary shape. We achieve such a high tunability by coupling a superconducting qubit near the end of a semi-infinite transmission line. A dc superconducting quantum interference device shunts the line to ground and is employed to modify the spatial dependence of the electromagnetic mode structure in the transmission line. This control allows us to couple and decouple the qubit from the line, shaping its emission rate on fast time scales. Our decoupling scheme is applicable to all types of superconducting qubits and other solid-state systems and can be generalized to multiple qubits as well as to resonators.

  18. Advanced Wavefront Sensing and Control Testbed (AWCT)

    NASA Technical Reports Server (NTRS)

    Shi, Fang; Basinger, Scott A.; Diaz, Rosemary T.; Gappinger, Robert O.; Tang, Hong; Lam, Raymond K.; Sidick, Erkin; Hein, Randall C.; Rud, Mayer; Troy, Mitchell

    2010-01-01

    The Advanced Wavefront Sensing and Control Testbed (AWCT) is built as a versatile facility for developing and demonstrating, in hardware, the future technologies of wave front sensing and control algorithms for active optical systems. The testbed includes a source projector for a broadband point-source and a suite of extended scene targets, a dispersed fringe sensor, a Shack-Hartmann camera, and an imaging camera capable of phase retrieval wavefront sensing. The testbed also provides two easily accessible conjugated pupil planes which can accommodate the active optical devices such as fast steering mirror, deformable mirror, and segmented mirrors. In this paper, we describe the testbed optical design, testbed configurations and capabilities, as well as the initial results from the testbed hardware integrations and tests.

  19. Negative inductance SQUID qubit operating in a quantum regime

    NASA Astrophysics Data System (ADS)

    Liu, W. Y.; Su, F. F.; Xu, H. K.; Li, Z. Y.; Tian, Ye; Zhu, X. B.; Lu, Li; Han, Siyuan; Zhao, S. P.

    2018-04-01

    Two-junction SQUIDs with negative mutual inductance between their two arms, called nSQUIDs, have been proposed for significantly improving quantum information transfer but their quantum nature has not been experimentally demonstrated. We have designed, fabricated, and characterized superconducting nSQUID qubits. Our results provide clear evidence of the quantum coherence of the device, whose properties are well described by theoretical calculations using parameters determined from spectroscopic measurement. In addition to their future application for fast quantum information transfer, the nSQUID qubits exhibit rich characteristics in their tunable two-dimensional (2D) potentials, energy levels, wave function symmetries, and dipole matrix elements, which are essential to the study of a wide variety of macroscopic quantum phenomena such as tunneling in 2D potential landscapes.

  20. Photosynthetic Energy Transfer at the Quantum/Classical Border.

    PubMed

    Keren, Nir; Paltiel, Yossi

    2018-06-01

    Quantum mechanics diverges from the classical description of our world when very small scales or very fast processes are involved. Unlike classical mechanics, quantum effects cannot be easily related to our everyday experience and are often counterintuitive to us. Nevertheless, the dimensions and time scales of the photosynthetic energy transfer processes puts them close to the quantum/classical border, bringing them into the range of measurable quantum effects. Here we review recent advances in the field and suggest that photosynthetic processes can take advantage of the sensitivity of quantum effects to the environmental 'noise' as means of tuning exciton energy transfer efficiency. If true, this design principle could be a base for 'nontrivial' coherent wave property nano-devices. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Slow Magnetosonic Waves and Fast Flows in Active Region Loops

    NASA Technical Reports Server (NTRS)

    Ofman, L.; Wang, T. J.; Davila, J. M.

    2012-01-01

    Recent extreme ultraviolet spectroscopic observations indicate that slow magnetosonic waves are present in active region (AR) loops. Some of the spectral data were also interpreted as evidence of fast (approx 100-300 km/s) quasiperiodic flows. We have performed three-dimensional magnetohydrodynamic (3D MHD) modeling of a bipolar AR that contains impulsively generated waves and flows in coronal loops. The model AR is initiated with a dipole magnetic field and gravitationally stratified density, with an upflow-driven steadily or periodically in localized regions at the footpoints of magnetic loops. The resulting flows along the magnetic field lines of the AR produce higher density loops compared to the surrounding plasma by injection of material into the flux tubes and the establishment of siphon flow.We find that the impulsive onset of flows with subsonic speeds result in the excitation of damped slow magnetosonic waves that propagate along the loops and coupled nonlinearly driven fast-mode waves. The phase speed of the slow magnetosonic waves is close to the coronal sound speed. When the amplitude of the driving pulses is increased we find that slow shock-like wave trains are produced. When the upflows are driven periodically, undamped oscillations are produced with periods determined by the periodicity of the upflows. Based on the results of the 3D MHD model we suggest that the observed slow magnetosonic waves and persistent upflows may be produced by the same impulsive events at the bases of ARs.

  2. Global Observation of Planetary-Scale Waves in UARS HRDI and WINDII MLT Winds

    NASA Technical Reports Server (NTRS)

    Lieberman, Ruth

    1999-01-01

    The purpose of this study is to use examine planetary-scale motions in the UARS mesosphere and lower thermospheric data. The actual study was confined to HRDI winds and temperatures, since these observations were more continuous, and spanned the 60-120 km range. Three classes of waves were studied: fast equatorial Kelvin waves, nonmigrating tides, and the midlatitude 2-day wave. The purpose of the Kelvin wave and the 2-day wave studies was to test whether the waves significantly affect the mean flow. Such studies require high-quality spectral definitions in order to derive the wave heat and momentum flux divergence which can act in comination to drive the mean flow. Accordingly, HRDI winds from several special observing campaigns were used for analyses of fast (periods under 5 days) waves. The campaigns are characterized by continuous viewing by HRDI in 2 viewing directions, for periods of 10-12 days. Data sampled in this manner lend themselves quite well to "asynoptic spectral analysis", from which motions with periods as low as one day can be retrieved with relatively minimal aliasing.

  3. Monte-Carlo Orbit/Full Wave Simulation of Fast Alfvén Wave (FW) Damping on Resonant Ions in Tokamaks

    NASA Astrophysics Data System (ADS)

    Choi, M.; Chan, V. S.; Tang, V.; Bonoli, P.; Pinsker, R. I.; Wright, J.

    2005-09-01

    To simulate the resonant interaction of fast Alfvén wave (FW) heating and Coulomb collisions on energetic ions, including finite orbit effects, a Monte-Carlo code ORBIT-RF has been coupled with a 2D full wave code TORIC4. ORBIT-RF solves Hamiltonian guiding center drift equations to follow trajectories of test ions in 2D axisymmetric numerical magnetic equilibrium under Coulomb collisions and ion cyclotron radio frequency quasi-linear heating. Monte-Carlo operators for pitch-angle scattering and drag calculate the changes of test ions in velocity and pitch angle due to Coulomb collisions. A rf-induced random walk model describing fast ion stochastic interaction with FW reproduces quasi-linear diffusion in velocity space. FW fields and its wave numbers from TORIC are passed on to ORBIT-RF to calculate perpendicular rf kicks of resonant ions valid for arbitrary cyclotron harmonics. ORBIT-RF coupled with TORIC using a single dominant toroidal and poloidal wave number has demonstrated consistency of simulations with recent DIII-D FW experimental results for interaction between injected neutral-beam ions and FW, including measured neutron enhancement and enhanced high energy tail. Comparison with C-Mod fundamental heating discharges also yielded reasonable agreement.

  4. International Symposium on Wave and Tidal Energy, 2nd, St. John's College, Cambridge, England, September 23-25, 1981, Proceedings

    NASA Astrophysics Data System (ADS)

    Stephens, H. S.; Stapleton, C. A.

    Topics discussed include wave power device interactions, the mathematical modeling of tidal power, and wave power with air turbines. Particular attention is given to the hydrodynamic characteristics of the Bristol Cylinder, the Strangford Lough tidal energy project, and the Foilpropeller for wave power propulsion. Consideration is also given to a submerged oscillating water column device, models of wave energy transformation near a coast, and the environmental implications of tidal power.

  5. Millimeter wave transmission systems and related devices

    NASA Technical Reports Server (NTRS)

    Hebert, L. M.

    1984-01-01

    A survey was made of the state-of-the-art in millimeter (20 GHz to 300 GHz) wave transmission systems and related devices. The survey includes summaries of analytical studies and theoretical results that were obtained for various transmission line structures. This material was supplemented by further analysis where appropriate. The transmission line structures are evaluated in terms of electrical performance, ease of manufacture, usefulness for building other devices and compatibility with solid state devices. Descriptions of waveguide transmission lines which have commonly been used in the microwave frequency range are provided along with special attention given to the problems that these guides face when their use is extended into the millimeter wave range. Also, guides which have been introduced specifically to satisfy the requirements of millimeter wave transmission are discussed in detail.

  6. Measurement of Underwater Operational Noise Emitted by Wave and Tidal Stream Energy Devices.

    PubMed

    Lepper, Paul A; Robinson, Stephen P

    2016-01-01

    The increasing international growth in the development of marine and freshwater wave and tidal energy harvesting systems has been followed by a growing requirement to understand any associated underwater impact. Radiated noise generated during operation is dependent on the device's physical properties, the sound-propagation environment, and the device's operational state. Physical properties may include size, distribution in the water column, and mechanics/hydrodynamics. The sound-propagation environment may be influenced by water depth, bathymetry, sediment type, and water column acoustic properties, and operational state may be influenced by tidal cycle and wave height among others This paper discusses some of the challenges for measurement of noise characteristics from these devices as well as a case study of the measurement of radiated noise from a full-scale wave energy converter.

  7. Fast method of cross-talk effect reduction in biomedical imaging (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Nowakowski, Maciej; Kolenderska, Sylwia M.; Borycki, Dawid; Wojtkowski, Maciej

    2016-03-01

    Optical imaging of biological samples or living tissue structures requires light delivery to a region of interest and then collection of scattered light or fluorescent light in order to reconstruct an image of the object. When the coherent illumination light enters bulky biological object, each of scattering center (single molecule, group of molecules or other sample feature) acts as a secondary light source. As a result, scattered spherical waves from these secondary sources interact with each other, generating cross-talk noise between optical channels (eigenmodes). The cross-talk effect have serious impact on the performance of the imaging systems. In particular it reduces an ability of optical system to transfer high spatial frequencies thereby reducing its resolution. In this work we present a fast method to eliminate all unwanted waves combination, that overlap at image plane, suppressing recovery of high spatial frequencies by using the spatio-temporal optical coherence manipulation (STOC, [1]). In this method a number of phase mask is introduced to illuminating beam by spatial light modulator in a time of single image acquisition. We use a digital mirror device (DMD) in order to rapid cross-talk noise reduction (up to 22kHz modulation frequency) when imaging living biological cells in vivo by using full-field microscopy setup with double pass arrangement. This, to our best knowledge, has never been shown before. [1] D. Borycki, M. Nowakowski, and M. Wojtkowski, Opt. Lett. 38, 4817 (2013).

  8. SLOW PATCHY EXTREME-ULTRAVIOLET PROPAGATING FRONTS ASSOCIATED WITH FAST CORONAL MAGNETO-ACOUSTIC WAVES IN SOLAR ERUPTIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Y.; Ding, M. D.; Chen, P. F., E-mail: guoyang@nju.edu.cn

    2015-08-15

    Using the high spatiotemporal resolution extreme ultraviolet (EUV) observations of the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory, we conduct a statistical study of the observational properties of the coronal EUV propagating fronts. We find that it might be a universal phenomenon for two types of fronts to coexist in a large solar eruptive event. It is consistent with the hybrid model of EUV propagating fronts, which predicts that coronal EUV propagating fronts consist of both a fast magneto-acoustic wave and a nonwave component. We find that the morphologies, propagation behaviors, and kinematic features of the two EUVmore » propagating fronts are completely different from each other. The fast magneto-acoustic wave fronts are almost isotropic. They travel continuously from the flaring region across multiple magnetic polarities to global distances. On the other hand, the slow nonwave fronts appear as anisotropic and sequential patches of EUV brightening. Each patch propagates locally in the magnetic domains where the magnetic field lines connect to the bottom boundary and stops at the magnetic domain boundaries. Within each magnetic domain, the velocities of the slow patchy nonwave component are an order of magnitude lower than that of the fast-wave component. However, the patches of the slow EUV propagating front can jump from one magnetic domain to a remote one. The velocities of such a transit between different magnetic domains are about one-third to one-half of those of the fast-wave component. The results show that the velocities of the nonwave component, both within one magnetic domain and between different magnetic domains, are highly nonuniform due to the inhomogeneity of the magnetic field in the lower atmosphere.« less

  9. Acoustic and elastic multiple scattering and radiation from cylindrical structures

    NASA Astrophysics Data System (ADS)

    Amirkulova, Feruza Abdukadirovna

    Multiple scattering (MS) and radiation of waves by a system of scatterers is of great theoretical and practical importance and is required in a wide variety of physical contexts such as the implementation of "invisibility" cloaks, the effective parameter characterization, and the fabrication of dynamically tunable structures, etc. The dissertation develops fast, rapidly convergent iterative techniques to expedite the solution of MS problems. The formulation of MS problems reduces to a system of linear algebraic equations using Graf's theorem and separation of variables. The iterative techniques are developed using Neumann expansion and Block Toeplitz structure of the linear system; they are very general, and suitable for parallel computations and a large number of MS problems, i.e. acoustic, elastic, electromagnetic, etc., and used for the first time to solve MS problems. The theory is implemented in Matlab and FORTRAN, and the theoretical predictions are compared to computations obtained by COMSOL. To formulate the MS problem, the transition matrix is obtained by analyzing an acoustic and an elastic single scattering of incident waves by elastic isotropic and anisotropic solids. The mathematical model of wave scattering from multilayered cylindrical and spherical structures is developed by means of an exact solution of dynamic 3D elasticity theory. The recursive impedance matrix algorithm is derived for radially heterogeneous anisotropic solids. An explicit method for finding the impedance in piecewise uniform, transverse-isotropic material is proposed; the solution is compared to elasticity theory solutions involving Buchwald potentials. Furthermore, active exterior cloaking devices are modeled for acoustic and elastic media using multipole sources. A cloaking device can render an object invisible to some incident waves as seen by some external observer. The active cloak is generated by a discrete set of multipole sources that destructively interfere with an incident wave to produce zero total field over a finite spatial region. The approach precisely determines the necessary source amplitudes and enables a cloaked region to be determined using Graf's theorem. To apply the approach, the infinite series of multipole expansions are truncated, and the accuracy of cloaking is studied by modifying the truncation parameter.

  10. ITER Plasma at Ion Cyclotron Frequency Domain: The Fusion Alpha Particles Diagnostics Based on the Stimulated Raman Scattering of Fast Magnetosonic Wave off High Harmonic Ion Bernstein Modes

    NASA Astrophysics Data System (ADS)

    Stefan, V. Alexander

    2014-10-01

    A novel method for alpha particle diagnostics is proposed. The theory of stimulated Raman scattering, SRS, of the fast wave and ion Bernstein mode, IBM, turbulence in multi-ion species plasmas, (Stefan University Press, La Jolla, CA, 2008). is utilized for the diagnostics of fast ions, (4)He (+2), in ITER plasmas. Nonlinear Landau damping of the IBM on fast ions near the plasma edge leads to the space-time changes in the turbulence level, (inverse alpha particle channeling). The space-time monitoring of the IBM turbulence via the SRS techniques may prove efficient for the real time study of the fast ion velocity distribution function, spatial distribution, and transport. Supported by Nikola Tesla Labs., La Jolla, CA 92037.

  11. Thalamic reticular nucleus induces fast and local modulation of arousal state

    PubMed Central

    Lewis, Laura D; Voigts, Jakob; Flores, Francisco J; Schmitt, L Ian; Wilson, Matthew A

    2015-01-01

    During low arousal states such as drowsiness and sleep, cortical neurons exhibit rhythmic slow wave activity associated with periods of neuronal silence. Slow waves are locally regulated, and local slow wave dynamics are important for memory, cognition, and behaviour. While several brainstem structures for controlling global sleep states have now been well characterized, a mechanism underlying fast and local modulation of cortical slow waves has not been identified. Here, using optogenetics and whole cortex electrophysiology, we show that local tonic activation of thalamic reticular nucleus (TRN) rapidly induces slow wave activity in a spatially restricted region of cortex. These slow waves resemble those seen in sleep, as cortical units undergo periods of silence phase-locked to the slow wave. Furthermore, animals exhibit behavioural changes consistent with a decrease in arousal state during TRN stimulation. We conclude that TRN can induce rapid modulation of local cortical state. DOI: http://dx.doi.org/10.7554/eLife.08760.001 PMID:26460547

  12. Whistler Mode Based Explanation for the Fast Reconnection Rate Measured in the MIT Versatile Toroidal Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Nagendra

    2011-12-09

    Despite the widely discussed role of whistler waves in mediating magnetic reconnection (MR), the direct connection between such waves and the MR has not been demonstrated by comparing the characteristic temporal and spatial features of the waves and the MR process. Using the whistler wave dispersion relation, we theoretically predict the experimentally measured rise time ({tau}{sub rise}) of a few microseconds for the fast rising MR rate in the Versatile Toroidal Facility at MIT. The rise time is closely given by the inverse of the frequency bandwidth of the whistler waves generated in the evolving current sheet. The wave frequenciesmore » lie much above the ion cyclotron frequency, but they are limited to less than 0.1% of the electron cyclotron frequency in the argon plasma. The maximum normalized MR rate R=0.35 measured experimentally is precisely predicted by the angular dispersion of the whistler waves.« less

  13. Generation of Pc 1 waves by the ion temperature anisotropy associated with fast shocks caused by sudden impulses

    NASA Technical Reports Server (NTRS)

    Mandt, M. E.; Lee, L. C.

    1991-01-01

    The high correlation of Pc 1 events with magnetospheric compressions is known. A mechanism is proposed which leads to the generation of Pc 1 waves. The interaction of a dynamic pressure pulse with the earth's bow shock leads to the formation of a weak fast-mode shock propagating into the magnetoshealth. The shock wave can pass right through a tangential discontinuity (magnetopause) and into the magnetosphere, without disturbing either of the structures. In a quasiperpendicular geometry, the shock wave exhibits anisotropic heating. This anisotropy drives unstable ion-cyclotron waves which can contribute to the generation of the Pc 1 waves which are detected. The viability of the mechanism is demonstrated with simulations. This mechanism could explain the peak in the occurrence of observed Pc 1 waves in the postnoon sector where a field-aligned discontinuity in the solar wind would most often be parallel to the magnetopause surface due to the average Parker-spiral magnetic-field configuration.

  14. Method and apparatus for detecting explosives

    DOEpatents

    Moore, David Steven [Santa Fe, NM

    2011-05-10

    A method and apparatus is provided for detecting explosives by thermal imaging. The explosive material is subjected to a high energy wave which can be either a sound wave or an electromagnetic wave which will initiate a chemical reaction in the explosive material which chemical reaction will produce heat. The heat is then sensed by a thermal imaging device which will provide a signal to a computing device which will alert a user of the apparatus to the possibility of an explosive device being present.

  15. Preliminary Analysis of an Oscillating Surge Wave Energy Converter with Controlled Geometry: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tom, Nathan; Lawson, Michael; Yu, Yi-Hsiang

    The aim of this paper is to present a novel wave energy converter device concept that is being developed at the National Renewable Energy Laboratory. The proposed concept combines an oscillating surge wave energy converter with active control surfaces. These active control surfaces allow for the device geometry to be altered, which leads to changes in the hydrodynamic properties. The device geometry will be controlled on a sea state time scale and combined with wave-to-wave power-take-off control to maximize power capture, increase capacity factor, and reduce design loads. The paper begins with a traditional linear frequency domain analysis of themore » device performance. Performance sensitivity to foil pitch angle, the number of activated foils, and foil cross section geometry is presented to illustrate the current design decisions; however, it is understood from previous studies that modeling of current oscillating wave energy converter designs requires the consideration of nonlinear hydrodynamics and viscous drag forces. In response, a nonlinear model is presented that highlights the shortcomings of the linear frequency domain analysis and increases the precision in predicted performance.« less

  16. Isochoric heating and strong blast wave formation driven by fast electrons in solid-density targets

    NASA Astrophysics Data System (ADS)

    Santos, J. J.; Vauzour, B.; Touati, M.; Gremillet, L.; Feugeas, J.-L.; Ceccotti, T.; Bouillaud, R.; Deneuville, F.; Floquet, V.; Fourment, C.; Hadj-Bachir, M.; Hulin, S.; Morace, A.; Nicolaï, Ph; d'Oliveira, P.; Reau, F.; Samaké, A.; Tcherbakoff, O.; Tikhonchuk, V. T.; Veltcheva, M.; Batani, D.

    2017-10-01

    We experimentally investigate the fast (< 1 {ps}) isochoric heating of multi-layer metallic foils and subsequent high-pressure hydrodynamics induced by energetic electrons driven by high-intensity, high-contrast laser pulses. The early-time temperature profile inside the target is measured from the streaked optical pyrometry of the target rear side. This is further characterized from benchmarked simulations of the laser-target interaction and the fast electron transport. Despite a modest laser energy (< 1 {{J}}), the early-time high pressures and associated gradients launch inwards a strong compression wave developing over ≳ 10 ps into a ≈ 140 {Mbar} blast wave, according to hydrodynamic simulations, consistent with our measurements. These experimental and numerical findings pave the way to a short-pulse-laser-based platform dedicated to high-energy-density physics studies.

  17. The ISPM unified radio and plasma wave experiment

    NASA Technical Reports Server (NTRS)

    Stone, R. G.; Caldwell, J.; Deconchy, Y.; Deschanciaux, C.; Ebbett, R.; Epstein, G.; Groetz, K.; Harvey, C. C.; Hoang, S.; Howard, R.

    1983-01-01

    Hardware for the International Solar Polar Mission (ISPM) Unified Radio and Plasma (URAP) wave experiment is presented. The URAP determines direction and polarization of distant radio sources for remote sensing of the heliosphere, and studies local wave phenomena which determine the transport coefficients of the ambient plasma. Electric and magnetic field antennas and preamplifiers; the electromagnetic compatibility plan and grounding; radio astronomy and plasma frequency receivers; a fast Fourier transformation data processing unit waveform analyzer; dc voltage measurements; a fast envelope sampler for the solar wind, and plasmas near Jupiter; a sounder; and a power converter are described.

  18. [EFFECTS OF ELECTRICAL STIMULATION OF NUCLEUS RETICULARIS PONTIS ORALIS ON THE SLEEP-WAKING STATES IN KRUSHINSKII-MOLODKINA STRAIN RATS].

    PubMed

    Vataev, S I; Malgina, N A; Oganesyan, G A

    2015-07-01

    The effects of electrical stimulation of nucleus reticularis pontis oralis on the behavior and brain electrical activity during all phases of the sleep-waking cycle was studied in Krushinskii-Molodkina strain rats, which have an inherited predisposition to audiogenic seizures. Electrical stimulation with 7 Hz frequency in the deep stage of slow-wave sleep cause appearance the fast-wave sleep. Similar stimulation during fast-wave sleep periods did not effects on the electrographic patterns and EEG spectral characteristics of hippocampus, visual, auditory and somatocnen nrnrenc nf the cnrtey ThPe sfimul1stinns did nnt break a fast-wave sleenhut increased almost twice due the duration of these sleep episodes. After electrical stimulation by same frequency during the wakeftlness and superficial slow-wave sleep states, the patterns and spectral characteristics of brain electrical activity in rats showed no significant changes as compared with controls. The results of this study indicate that the state of the animals sleep-waking cycle at the time of stimulation is a critical variable that influences the responses which are induced by electrical stimulation of the nucleus reticularis pontis oralis.

  19. Preferential Heating of Oxygen 5+ Ions by Finite-Amplitude Oblique Alfven Waves

    NASA Technical Reports Server (NTRS)

    Maneva, Yana G.; Vinas, Adolfo; Araneda, Jamie; Poedts, Stefaan

    2016-01-01

    Minor ions in the fast solar wind are known to have higher temperatures and to flow faster than protons in the interplanetary space. In this study we combine previous research on parametric instability theory and 2.5D hybrid simulations to study the onset of preferential heating of Oxygen 5+ ions by large-scale finite-amplitude Alfven waves in the collisionless fast solar wind. We consider initially non-drifting isotropic multi-species plasma, consisting of isothermal massless fluid electrons, kinetic protons and kinetic Oxygen 5+ ions. The external energy source for the plasma heating and energization are oblique monochromatic Alfven-cyclotron waves. The waves have been created by rotating the direction of initial parallel pump, which is a solution of the multi-fluid plasma dispersion relation. We consider propagation angles theta less than or equal to 30 deg. The obliquely propagating Alfven pump waves lead to strong diffusion in the ion phase space, resulting in highly anisotropic heavy ion velocity distribution functions and proton beams. We discuss the application of the model to the problems of preferential heating of minor ions in the solar corona and the fast solar wind.

  20. Teleseismic P-wave polarization analysis at the Gräfenberg array

    NASA Astrophysics Data System (ADS)

    Cristiano, L.; Meier, T.; Krüger, F.; Keers, H.; Weidle, C.

    2016-12-01

    P-wave polarization at the Gräfenberg array (GRF) in southern Germany is analysed in terms of azimuthal deviations and deviations in the vertical polarization using 20 yr of broad-band recordings. An automated procedure for estimating P-wave polarization parameters is suggested, based on the definition of a characteristic function, which evaluates the polarization angles and their time variability as well as the amplitude, linearity and the signal-to-noise ratio of the P wave. P-wave polarization at the GRF array is shown to depend mainly on frequency and backazimuth and only slightly on epicentral distance indicating depth-dependent local anisotropy and lateral heterogeneity. A harmonic analysis is applied to the azimuthal anomalies to analyse their periodicity as a function of backazimuth. The dominant periods are 180° and 360°. At low frequencies, between 0.03 and 0.1 Hz, the observed fast directions of azimuthal anisotropy inferred from the 180° periodicity are similar across the array. The average fast direction of azimuthal anisotropy at these frequencies is N20°E with an uncertainty of about 8° and is consistent with fast directions of Pn-wave propagation. Lateral velocity gradients determined for the low-frequency band are compatible with the Moho topography of the area. A more complex pattern in the horizontal fast axis orientation beneath the GRF array is observed in the high-frequency band between 0.1 and 0.5 Hz, and is attributed to anisotropy in the upper crust. A remarkable rotation of the horizontal fast axis orientation across the suture between the geological units Moldanubicum and Saxothuringicum is observed. In contrast, the 360° periodicity at high frequencies is rather consistent across the array and may either point to lower velocities in the upper crust towards the Bohemian Massif and/or to anisotropy dipping predominantly in the NE-SW direction. Altogether, P-wave polarization analysis indicates the presence of layered lithospheric anisotropy in the area of the GRF array. Seismic anisotropy is more variable in the brittle upper crust compared to lower crustal and subcrustal depths.

  1. Magnetic swirls and associated fast magnetoacoustic kink waves in a solar chromospheric flux tube

    NASA Astrophysics Data System (ADS)

    Murawski, K.; Kayshap, P.; Srivastava, A. K.; Pascoe, D. J.; Jelínek, P.; Kuźma, B.; Fedun, V.

    2018-02-01

    We perform numerical simulations of impulsively generated magnetic swirls in an isolated flux tube that is rooted in the solar photosphere. These swirls are triggered by an initial pulse in a horizontal component of the velocity. The initial pulse is launched either (a) centrally, within the localized magnetic flux tube or (b) off-central, in the ambient medium. The evolution and dynamics of the flux tube are described by three-dimensional, ideal magnetohydrodynamic equations. These equations are numerically solved to reveal that in case (a) dipole-like swirls associated with the fast magnetoacoustic kink and m = 1 Alfvén waves are generated. In case (b), the fast magnetoacoustic kink and m = 0 Alfvén modes are excited. In both these cases, the excited fast magnetoacoustic kink and Alfvén waves consist of a similar flow pattern and magnetic shells are also generated with clockwise and counter-clockwise rotating plasma within them, which can be the proxy of dipole-shaped chromospheric swirls. The complex dynamics of vortices and wave perturbations reveals the channelling of sufficient amount of energy to fulfil energy losses in the chromosphere (˜104 W m-1) and in the corona (˜102 W m-1). Some of these numerical findings are reminiscent of signatures in recent observational data.

  2. A micromachined thermally compensated thin film Lamb wave resonator for frequency control and sensing applications

    NASA Astrophysics Data System (ADS)

    Wingqvist, G.; Arapan, L.; Yantchev, V.; Katardjiev, I.

    2009-03-01

    Micromachined thin film plate acoustic wave resonators (FPARs) utilizing the lowest order symmetric Lamb wave (S0) propagating in highly textured 2 µm thick aluminium nitride (AlN) membranes have been successfully demonstrated (Yantchev and Katardjiev 2007 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54 87-95). The proposed devices have a SAW-based design and exhibit Q factors of up to 3000 at a frequency around 900 MHz as well as design flexibility with respect to the required motional resistance. However, a notable drawback of the proposed devices is the non-zero temperature coefficient of frequency (TCF) which lies in the range -20 ppm K-1 to -25 ppm K-1. Thus, despite the promising features demonstrated, further device optimization is required. In this work temperature compensation of thin AlN film Lamb wave resonators is studied and experimentally demonstrated. Temperature compensation while retaining at the same time the device electromechanical coupling is experimentally demonstrated. The zero TCF Lamb wave resonators are fabricated onto composite AlN/SiO2 membranes. Q factors of around 1400 have been measured at a frequency of around 755 MHz. Finally, the impact of technological issues on the device performance is discussed in view of improving the device performance.

  3. FAST NEUTRON DOSIMETER FOR HIGH TEMPERATURE OPERATION BY MEASUREMENT OF THE AMOUNT OF CESIUM 137 FORMED FROM A THORIUM WIRE

    DOEpatents

    McCune, D.A.

    1964-03-17

    A method and device for measurement of integrated fast neutron flux in the presence of a large thermal neutron field are described. The device comprises a thorium wire surrounded by a thermal neutron attenuator that is, in turn, enclosed by heat-resistant material. The method consists of irradiating the device in a neutron field whereby neutrons with energies in excess of 1.1 Mev cause fast fissions in the thorium, then removing the thorium wire, separating the cesium-137 fission product by chemical means from the thorium, and finally counting the radioactivity of the cesium to determine the number of fissions which have occurred so that the integrated fast flux may be obtained. (AEC)

  4. A field-emission based vacuum device for the generation of THz waves

    NASA Astrophysics Data System (ADS)

    Lin, Ming-Chieh

    2005-03-01

    Terahertz waves have been used to characterize the electronic, vibrational and compositional properties of solid, liquid and gas phase materials during the past decade. More and more applications in imaging science and technology call for the well development of THz wave sources. Amplification and generation of a high frequency electromagnetic wave are a common interest of field emission based devices. In the present work, we propose a vacuum electronic device based on field emission mechanism for the generation of THz waves. To verify our thinking and designs, the cold tests and the hot tests have been studied via the simulation tools, SUPERFISH and MAGIC. In the hot tests, two types of electron emission mechanisms are considered. One is the field emission and the other is the explosive emission. The preliminary design of the device is carried out and tested by the numerical simulations. The simulation results show that an electronic efficiency up to 4% can be achieved without employing any magnetic circuits.

  5. Millimeter Wave Nonreciprocal Devices.

    DTIC Science & Technology

    1983-01-03

    measures microwave magnetic field patterns of magnetostatic waves in LPE -YIG thin films has been developed. The probe’s sensing element is either a...Morgenthaler, "Workshop on Application of Garnet and Ferrite Thin Films to Microwave Devices," Session FC, Third Joint Intermag - Magnetism and...thin films Li... millimeter waves magnetostati c waves i A TRAC" =CmE4 F*91040 eEp y mnenu -d Dfenvely by Noek n.m--) The Microwave and Quantum

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roberts, Jesse D.; Chang, Grace; Magalen, Jason

    A modified version of an indust ry standard wave modeling tool was evaluated, optimized, and utilized to investigate model sensitivity to input parameters a nd wave energy converter ( WEC ) array deployment scenarios. Wave propagation was investigated d ownstream of the WECs to evaluate overall near - and far - field effects of WEC arrays. The sensitivity study illustrate d that wave direction and WEC device type we r e most sensitive to the variation in the model parameters examined in this study . Generally, the changes in wave height we re the primary alteration caused by the presencemore » of a WEC array. Specifically, W EC device type and subsequently their size directly re sult ed in wave height variations; however, it is important to utilize ongoing laboratory studies and future field tests to determine the most appropriate power matrix values for a particular WEC device and configuration in order to improve modeling results .« less

  7. Energy scavenging system by acoustic wave and integrated wireless communication

    NASA Astrophysics Data System (ADS)

    Kim, Albert

    The purpose of the project was developing an energy-scavenging device for other bio implantable devices. Researchers and scientist have studied energy scavenging method because of the limitation of traditional power source, especially for bio-implantable devices. In this research, piezoelectric power generator that activates by acoustic wave, or music was developed. Follow by power generator, a wireless communication also integrated with the device for monitoring the power generation. The Lead Zirconate Titanate (PZT) bimorph cantilever with a proof mass at the free end tip was studied to convert acoustic wave to power. The music or acoustic wave played through a speaker to vibrate piezoelectric power generator. The LC circuit integrated with the piezoelectric material for purpose of wireless monitoring power generation. However, wireless monitoring can be used as wireless power transmission, which means the signal received via wireless communication also can be used for power for other devices. Size of 74 by 7 by 7cm device could generate and transmit 100mVp from 70 mm distance away with electrical resonant frequency at 420.2 kHz..

  8. Cylindrical fast magnetosonic solitary waves in quantum degenerate electron-positron-ion plasma

    NASA Astrophysics Data System (ADS)

    Abdikian, A.

    2018-02-01

    The nonlinear properties of fast magnetosonic solitary waves in a quantum degenerate electron-positron (e-p) plasma in the presence of stationary ions for neutralizing the plasma background of bounded cylindrical geometry were studied. By employing the standard reductive perturbation technique and the quantum hydrodynamic model for the e-p fluid, the cylindrical Kadomtsev-Petviashvili (CKP) equation was derived for small, but finite, amplitude waves and was given the solitary wave solution for the parameters relevant to dense astrophysical objects such as white dwarf stars. By a suitable coordinate transformation, the CKP equation can be solved analytically. An analytical solution for magnetosonic solitons and periodic waves is presented. The numerical results reveal that the Bohm potential has a main effect on the periodic and solitary wave structures. By increasing the values of the plasma parameters, the amplitude of the solitary wave will be increased. The present study may be helpful in the understanding of nonlinear electromagnetic soliton waves propagating in both laboratory and astrophysical plasmas, and can help in providing good agreement between theoretical results and laboratory plasma experiments.

  9. Micromachined TWTs for THz Radiation Sources

    NASA Technical Reports Server (NTRS)

    Booske, John H.; vanderWeide, Daniel W.; Kory, Carol L.; Limbach, S.; Downey, Alan (Technical Monitor)

    2001-01-01

    The Terahertz (THz) region of the electromagnetic spectrum (about 300 - 3000 GHz in frequency or about 0.1 - 1 mm free space wavelength) has enormous potential for high-data-rate communications, spectroscopy, astronomy, space research, medicine, biology, surveillance, remote sensing, industrial process control, etc. It has been characterized as the most scientifically rich, yet under-utilized, region of the electromagnetic spectrum. The most critical roadblock to full exploitation of the THz band is lack of coherent radiation sources that are powerful (0.001 - 1.0 W continuous wave), efficient (> 1%), frequency agile (instantaneously tunable over 1% bandwidths or more), reliable, and comparatively inexpensive. To develop vacuum electron device (VED) radiation sources satisfying these requirements, fabrication and packaging approaches must be heavily considered to minimize costs, in addition to the basic interaction physics and circuit design. To minimize size of the prime power supply, beam voltage must be minimized, preferably 10 kV. Solid state sources satisfy the low voltage requirement, but are many orders of magnitude below power, efficiency, and bandwidth requirements. On the other hand, typical fast-wave VED sources in this regime (e.g., gyrotrons, FELs) tend to be large, expensive, high voltage and very high power devices unsuitable for most of the applications cited above. VEDs based on grating or inter-digital (ID) circuits have been researched and developed. However, achieving forward-wave amplifier operation with instantaneous fractional bandwidths > 1% is problematic for these devices with low-energy (< 15 kV) electron beams. Moreover, the interaction impedance is quite low unless the beam-circuit spacing is kept particularly narrow, often leading to significant beam interception. One solution to satisfy the THz source requirements mentioned above is to develop micromachined VEDs, or "micro-VEDs". Among other benefits, micro-machining technologies provide superior high frequency wall conductivity as a result of superior surface smoothness compared with conventional mechanical or electric discharge machining approaches. Micro-VED technologies are already being applied to the development of millimeter-wave klystrons at Stanford Linear Accelerator Center and submillimeter-wave klystrons at the University of Leeds. We are investigating the use of micro-machining technologies to develop THz regime TWTs, with emphasis on folded-waveguide TWTs. The folded-waveguide TWT (FW-TWT) has several features that make it attractive for THz-regime micro-VED applications. It is a relatively simple circuit to design and fabricate, it is amenable to precision pattern replication by micro-machining, and it is has been demonstrated capable of forward-wave amplification with appreciable bandwidth. We are conducting experimental and computational studies of micro-VED FW-TWTs to examine their feasibility for applications at frequencies from 200 - 1000 GHz.

  10. Fast response pyroelectric detector-preamplifier assembled device

    NASA Astrophysics Data System (ADS)

    Bai, PiJi; Tai, Yunjian; Liu, Huiping

    2008-03-01

    The pyroelectric detector is wide used for its simple structure and high performance to price ratio. It has been used in thermal detecting, infrared spectrum and laser testing. When the pyroelectric detector was applied in practice, fast reponse speed is need. For improving the response speed of the pyroelectric detector some specific technology has been used in the preamplifier schematic. High sense and fast response character of the pyroelectric detector-preamplifier assembled device had been achieved. When the device is applied in acute concussion condition, it must survive from the acute concussion condition testing. For it reliability some specific technology was used in the device fabricating procedure. At last the performance parameter testing result and simulation application condition result given in this paper show the performance of the pyroelectric detector-preamplifier assembled device had achieved the advance goal.

  11. Crustal anisotropy in the forearc of the Northern Cascadia Subduction Zone, British Columbia

    NASA Astrophysics Data System (ADS)

    Balfour, N. J.; Cassidy, J. F.; Dosso, S. E.

    2012-01-01

    This paper aims to identify sources and variations of crustal anisotropy from shear-wave splitting measurements in the forearc of the Northern Cascadia Subduction Zone of southwest British Columbia. Over 20 permanent stations and 15 temporary stations were available for shear-wave splitting analysis on ˜4500 event-station pairs for local crustal earthquakes. Results from 1100 useable shear-wave splitting measurements show spatial variations in fast directions, with margin-parallel fast directions at most stations and margin-perpendicular fast directions at stations in the northeast of the region. Crustal anisotropy is often attributed to stress and has been interpreted as the fast direction being related to the orientation of the maximum horizontal compressive stress. However, studies have also shown anisotropy can be complicated by crustal structure. Southwest British Columbia is a complex region of crustal deformation and some of the stations are located near large ancient faults. To use seismic anisotropy as a stress indicator requires identifying which stations are influenced by stress and which by structure. We determine the source of anisotropy at each station by comparing fast directions from shear-wave splitting results to the maximum horizontal compressive stress orientation determined from earthquake focal mechanism inversion. Most stations show agreement between the fast direction and the maximum horizontal compressive stress. This suggests that anisotropy is related to stress-aligned fluid-filled microcracks based on extensive dilatancy anisotropy. These stations are further analysed for temporal variations to lay groundwork for monitoring temporal changes in the stress over extended time periods. Determining the sources of variability in anisotropy can lead to a better understanding of the crustal structure and stress, and in the future may be used as a monitoring and mapping tool.

  12. Wave envelope technique for multimode wave guide problems

    NASA Technical Reports Server (NTRS)

    Hariharan, S. I.; Sudharsanan, S. I.

    1986-01-01

    A fast method for solving wave guide problems is proposed. In particular, the guide is considered to be inhomogeneous allowing propagation of waves of higher order modes. Such problems have been handled successfully for acoustic wave propagation problems with single mode and finite length. This paper extends this concept to electromagnetic wave guides with several modes and infinite length. The method is described and results of computations are presented.

  13. Wave Energy Prize -- Carderock Test Design and Rigging to Accommodate Diversity of Device Types

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Driscoll, Frederick R

    Wave Energy Prize Carderock Test Design and Rigging to Accommodate Diversity of Device Types presentation from the Water Power Technologies Office Peer Review, FY14-FY16. The challenge was to determine testing conditions, develop processing algorithms, and execute tests for equitable and consistent evaluation of different wave energy converter (WEC) technologies.

  14. Quasi-Phasematched Nonlinear Optics: Materials and Devices

    DTIC Science & Technology

    2007-04-16

    the soliton energy in pump, signal and idler waves as a function of the final wave- vector mismatch in the chirped QPM gratings. We see good agreement...devices including OP-GaAs devices for broadband optical parametric generation (OPG) at mid-infrared wavelengths, bulk PPLN devices for soliton ...Carrasco, and L. Torner,"Engineering of multi-color spatial solitons with chirped-period quasi-phase-matching gratings in optical parametric amplification

  15. Spatial transformation-enabled electromagnetic devices: from radio frequencies to optical wavelengths

    PubMed Central

    Jiang, Zhi Hao; Turpin, Jeremy P.; Morgan, Kennith; Lu, Bingqian; Werner, Douglas H.

    2015-01-01

    Transformation optics provides scientists and engineers with a new powerful design paradigm to manipulate the flow of electromagnetic waves in a user-defined manner and with unprecedented flexibility, by controlling the spatial distribution of the electromagnetic properties of a medium. Using this approach, over the past decade, various previously undiscovered physical wave phenomena have been revealed and novel electromagnetic devices have been demonstrated throughout the electromagnetic spectrum. In this paper, we present versatile theoretical and experimental investigations on designing transformation optics-enabled devices for shaping electromagnetic wave radiation and guidance, at both radio frequencies and optical wavelengths. Different from conventional coordinate transformations, more advanced and versatile coordinate transformations are exploited here to benefit diverse applications, thereby providing expanded design flexibility, enhanced device performance, as well as reduced implementation complexity. These design examples demonstrate the comprehensive capability of transformation optics in controlling electromagnetic waves, while the associated novel devices will open up new paths towards future integrated electromagnetic component synthesis and design, from microwave to optical spectral regimes. PMID:26217054

  16. Ultrasonic speech translator and communications system

    DOEpatents

    Akerman, M.A.; Ayers, C.W.; Haynes, H.D.

    1996-07-23

    A wireless communication system undetectable by radio frequency methods for converting audio signals, including human voice, to electronic signals in the ultrasonic frequency range, transmitting the ultrasonic signal by way of acoustical pressure waves across a carrier medium, including gases, liquids, or solids, and reconverting the ultrasonic acoustical pressure waves back to the original audio signal. The ultrasonic speech translator and communication system includes an ultrasonic transmitting device and an ultrasonic receiving device. The ultrasonic transmitting device accepts as input an audio signal such as human voice input from a microphone or tape deck. The ultrasonic transmitting device frequency modulates an ultrasonic carrier signal with the audio signal producing a frequency modulated ultrasonic carrier signal, which is transmitted via acoustical pressure waves across a carrier medium such as gases, liquids or solids. The ultrasonic receiving device converts the frequency modulated ultrasonic acoustical pressure waves to a frequency modulated electronic signal, demodulates the audio signal from the ultrasonic carrier signal, and conditions the demodulated audio signal to reproduce the original audio signal at its output. 7 figs.

  17. A switchable spin-wave signal splitter for magnonic networks

    NASA Astrophysics Data System (ADS)

    Heussner, F.; Serga, A. A.; Brächer, T.; Hillebrands, B.; Pirro, P.

    2017-09-01

    The influence of an inhomogeneous magnetization distribution on the propagation of caustic-like spin-wave beams in unpatterned magnetic films has been investigated by utilizing micromagnetic simulations. Our study reveals a locally controllable and reconfigurable tractability of the beam directions. This feature is used to design a device combining split and switch functionalities for spin-wave signals on the micrometer scale. A coherent transmission of spin-wave signals through the device is verified. This attests the applicability in magnonic networks where the information is encoded in the phase of the spin waves.

  18. Quasi-periodic Radio Bursts Associated with Fast-mode Waves near a Magnetic Null Point

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Pankaj; Nakariakov, Valery M.; Cho, Kyung-Suk, E-mail: pankaj.kumar@nasa.gov

    This paper presents an observation of quasi-periodic rapidly propagating waves observed in the Atmospheric Image Assembly (AIA) 171/193 Å channels during the impulsive phase of an M1.9 flare that occurred on 2012 May 7. The instant period was found to decrease from 240 to 120 s, and the speed of the wavefronts was in the range of ∼664–1416 km s{sup −1}. Almost simultaneously, quasi-periodic bursts with similar instant periods, ∼70 and ∼140 s, occur in the microwave emission and in decimetric type IV and type III radio bursts, and in the soft X-ray emission. The magnetic field configuration of themore » flare site was consistent with a breakout topology, i.e., a quadrupolar field along with a magnetic null point. The quasi-periodic rapidly propagating wavefronts of the EUV emission are interpreted as a fast magnetoacoustic wave train. The observations suggest that the fast-mode waves are generated during the quasi-periodic magnetic reconnection in the cusp region above the flare arcade loops. For the first time, we provide evidence of a tadpole wavelet signature at about 70–140 s in decimetric (245/610 MHz) radio bursts, along with the direct observation of a coronal fast-mode wave train in EUV. In addition, at AIA 131/193 Å we observed quasi-periodic EUV disturbances with periods of 95 and 240 s propagating downward at apparent speeds of 172–273 km s{sup −1}. The nature of these downward propagating disturbances is not revealed, but they could be connected to magnetoacoustic waves or periodically shrinking loops.« less

  19. Propagating Neural Source Revealed by Doppler Shift of Population Spiking Frequency

    PubMed Central

    Zhang, Mingming; Shivacharan, Rajat S.; Chiang, Chia-Chu; Gonzalez-Reyes, Luis E.

    2016-01-01

    Electrical activity in the brain during normal and abnormal function is associated with propagating waves of various speeds and directions. It is unclear how both fast and slow traveling waves with sometime opposite directions can coexist in the same neural tissue. By recording population spikes simultaneously throughout the unfolded rodent hippocampus with a penetrating microelectrode array, we have shown that fast and slow waves are causally related, so a slowly moving neural source generates fast-propagating waves at ∼0.12 m/s. The source of the fast population spikes is limited in space and moving at ∼0.016 m/s based on both direct and Doppler measurements among 36 different spiking trains among eight different hippocampi. The fact that the source is itself moving can account for the surprising direction reversal of the wave. Therefore, these results indicate that a small neural focus can move and that this phenomenon could explain the apparent wave reflection at tissue edges or multiple foci observed at different locations in neural tissue. SIGNIFICANCE STATEMENT The use of novel techniques with an unfolded hippocampus and penetrating microelectrode array to record and analyze neural activity has revealed the existence of a source of neural signals that propagates throughout the hippocampus. The source itself is electrically silent, but its location can be inferred by building isochrone maps of population spikes that the source generates. The movement of the source can also be tracked by observing the Doppler frequency shift of these spikes. These results have general implications for how neural signals are generated and propagated in the hippocampus; moreover, they have important implications for the understanding of seizure generation and foci localization. PMID:27013678

  20. Anisotropy of the innermost inner core from body wave and normal mode observations

    NASA Astrophysics Data System (ADS)

    Deuss, A. F.; Smink, M.; Bouwman, D.; Ploegstra, J.; van Tent, R.

    2016-12-01

    It has been known for a long time that the Earth's inner core is cylindrically anisotropic, with waves that travel in the direction of the Earth's rotation axis arriving several seconds before waves travelling in the equatorial direction. Recently, several studies have suggested that the Earth's rotation axis may not be the fast anisotropy direction in the innermost inner core. Beghein and Trampert (2003) found that the Earth's rotation axis is slow, with the equatorial plane being fast. Wang et al (2015) found instead that the fast symmetry axis is in the equatorial plane. Here, we use both body wave and normal mode observations to test these two different hypotheses. Similar to Wang, we correct body wave PKIKP data for anisotropy in the upper inner core, and investigate if there is any anisotropy remaining in the innermost inner core. We find that the results strongly depend on the very limited number of polar direction waves with angle less than 25 degrees. With the limited data it is difficult to distinguish between the two different hypotheses, and if any tilted anisotropy is required at all. Normal modes see inner core anisotropy with north-south symmetry axis as anomalous zonal coefficients. We will show theoretically that if the anisotropy symmetry axis is tilted, non-zonal coefficients will also become anomalous. We search consistent anomalous non-zonal coefficients for modes sensitive to the innermost inner core. If the symmetry axis is still north south, but this is now the slow direction and the equatorial plane fast, then we predict negative zonal coefficients. This is observed for some normal modes, explaining why Beghein and Trampert (2003) found this type of anisotropy in the innermost inner core.

  1. Investigating the Wave Nature of the Outer Envelope of Halo Coronal Mass Ejections

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kwon, Ryun-Young; Vourlidas, Angelos, E-mail: rkwon@gmu.edu

    We investigate the nature of the outer envelope of halo coronal mass ejections (H-CMEs) using multi-viewpoint observations from the Solar Terrestrial Relations Observatory-A , -B , and SOlar and Heliospheric Observatory coronagraphs. The 3D structure and kinematics of the halo envelopes and the driving CMEs are derived separately using a forward modeling method. We analyze three H-CMEs with peak speeds from 1355 to 2157 km s{sup −1}; sufficiently fast to drive shocks in the corona. We find that the angular widths of the halos range from 192° to 252°, while those of the flux ropes range between only 58° andmore » 91°, indicating that the halos are waves propagating away from the CMEs. The halo widths are in agreement with widths of Extreme Ultraviolet (EUV) waves in the low corona further demonstrating the common origin of these structures. To further investigate the wave nature of the halos, we model their 3D kinematic properties with a linear fast magnetosonic wave model. The model is able to reproduce the position of the halo flanks with realistic coronal medium assumptions but fails closer to the CME nose. The CME halo envelope seems to arise from a driven wave (or shock) close to the CME nose, but it is gradually becoming a freely propagating fast magnetosonic wave at the flanks. This interpretation provides a simple unifying picture for CME halos, EUV waves, and the large longitudinal spread of solar energetic particles.« less

  2. Investigation of Response Amplitude Operators for Floating Offshore Wind Turbines: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramachandran, G. K. V.; Robertson, A.; Jonkman, J. M.

    This paper examines the consistency between response amplitude operators (RAOs) computed from WAMIT, a linear frequency-domain tool, to RAOs derived from time-domain computations based on white-noise wave excitation using FAST, a nonlinear aero-hydro-servo-elastic tool. The RAO comparison is first made for a rigid floating wind turbine without wind excitation. The investigation is further extended to examine how these RAOs change for a flexible and operational wind turbine. The RAOs are computed for below-rated, rated, and above-rated wind conditions. The method is applied to a floating wind system composed of the OC3-Hywind spar buoy and NREL 5-MW wind turbine. The responsesmore » are compared between FAST and WAMIT to verify the FAST model and to understand the influence of structural flexibility, aerodynamic damping, control actions, and waves on the system responses. The results show that based on the RAO computation procedure implemented, the WAMIT- and FAST-computed RAOs are similar (as expected) for a rigid turbine subjected to waves only. However, WAMIT is unable to model the excitation from a flexible turbine. Further, the presence of aerodynamic damping decreased the platform surge and pitch responses, as computed by both WAMIT and FAST when wind was included. Additionally, the influence of gyroscopic excitation increased the yaw response, which was captured by both WAMIT and FAST.« less

  3. Fractional Ablative Laser Followed by Transdermal Acoustic Pressure Wave Device to Enhance the Drug Delivery of Aminolevulinic Acid: In Vivo Fluorescence Microscopy Study.

    PubMed

    Waibel, Jill S; Rudnick, Ashley; Nousari, Carlos; Bhanusali, Dhaval G

    2016-01-01

    Topical drug delivery is the foundation of all dermatological therapy. Laser-assisted drug delivery (LAD) using fractional ablative laser is an evolving modality that may allow for a greater precise depth of penetration by existing topical medications, as well as more efficient transcutaneous delivery of large drug molecules. Additional studies need to be performed using energy-driven methods that may enhance drug delivery in a synergistic manner. Processes such as iontophoresis, electroporation, sonophoresis, and the use of photomechanical waves aid in penetration. This study evaluated in vivo if there is increased efficacy of fractional CO2 ablative laser with immediate acoustic pressure wave device. Five patients were treated and biopsied at 4 treatment sites: 1) topically applied aminolevulinic acid (ALA) alone; 2) fractional ablative CO2 laser and topical ALA alone; 3) fractional ablative CO2 laser and transdermal acoustic pressure wave device delivery system; and 4) topical ALA with transdermal delivery system. The comparison of the difference in the magnitude of diffusion with both lateral spread of ALA and depth diffusion of ALA was measured by fluorescence microscopy. For fractional ablative CO2 laser, ALA, and transdermal acoustic pressure wave device, the protoporphyrin IX lateral fluorescence was 0.024 mm on average vs 0.0084 mm for fractional ablative CO2 laser and ALA alone. The diffusion for the acoustic pressure wave device was an order of magnitude greater. We found that our combined approach of fractional ablative CO2 laser paired with the transdermal acoustic pressure wave device increased the depth of penetration of ALA.

  4. A wideband fast multipole boundary element method for half-space/plane-symmetric acoustic wave problems

    NASA Astrophysics Data System (ADS)

    Zheng, Chang-Jun; Chen, Hai-Bo; Chen, Lei-Lei

    2013-04-01

    This paper presents a novel wideband fast multipole boundary element approach to 3D half-space/plane-symmetric acoustic wave problems. The half-space fundamental solution is employed in the boundary integral equations so that the tree structure required in the fast multipole algorithm is constructed for the boundary elements in the real domain only. Moreover, a set of symmetric relations between the multipole expansion coefficients of the real and image domains are derived, and the half-space fundamental solution is modified for the purpose of applying such relations to avoid calculating, translating and saving the multipole/local expansion coefficients of the image domain. The wideband adaptive multilevel fast multipole algorithm associated with the iterative solver GMRES is employed so that the present method is accurate and efficient for both lowand high-frequency acoustic wave problems. As for exterior acoustic problems, the Burton-Miller method is adopted to tackle the fictitious eigenfrequency problem involved in the conventional boundary integral equation method. Details on the implementation of the present method are described, and numerical examples are given to demonstrate its accuracy and efficiency.

  5. Lateral heterogeneity and azimuthal anistropy of the upper mantle: Love and Rayleigh waves 100-250 sec

    NASA Technical Reports Server (NTRS)

    Tanimoto, T.; Anderson, D. L.

    1983-01-01

    The lateral heterogeneity and apparent anisotropy of the upper mantle are studied by measuring Rayleigh and Love wave phase velocities in the period range 100-250 sec. Spherical harmonic descriptions of the lateral heterogeneity are obtained for order and degree up to 1=m=10. Slow regions are evident at the East Pacific rise, northeast Africa, Tibet, Tasman sea, southwestern North America and triple junctions in the Northern Atlantic and Indian oceans. Fast regions occur in Australia, western Pacific and the eastern Atlantic. Details which are not evident in previous studies include two fast regions in the central Pacific and the subduction zone in the Scotia Arc region. Inversion for azimuthal dependence showed (1) little correlation between the fast phase velocity directions and the plate motion vector in plate interiors, but (2) correlation of the fast direction with the perpendicular direction to trenches and ridges. Phase velocity is high when waves propagate perpendicular to these structures. Severe tradeoffs exist between heterogeneity and azimuthal dependence because of the yet unsatisfactory path coverage.

  6. Lateral heterogeneity and azimuthal anisotropy of the upper mantle - Love and Rayleigh waves 100-250 sec

    NASA Technical Reports Server (NTRS)

    Tanimoto, T.; Anderson, D. L.

    1985-01-01

    The lateral heterogeneity and apparent anisotropy of the upper mantle are studied by measuring Rayleigh and Love wave phase velocities in the period range 100-250 sec. Spherical harmonic descriptions of the lateral heterogeneity are obtained for order and degree up to 1=m=10. Slow regions are evident at the East Pacific rise, northeast Africa, Tibet, Tasman sea, southwestern North America and triple junctions in the Northern Atlantic and Indian oceans. Fast regions occur in Australia, western Pacific and the eastern Atlantic. Details which are not evident in previous studies include two fast regions in the central Pacific and the subduction zone in the Scotia Arc region. Inversion for azimuthal dependence showed (1) little correlation between the fast phase velocity directions and the plate motion vector in plate interiors, but (2) correlation of the fast direction with the perpendicular direction to trenches and ridges. Phase velocity is high when waves propagate perpendicular to these structures. Severe tradeoffs exist between heterogeneity and azimuthal dependence because of the yet unsatisfactory path coverage.

  7. Fast solution of elliptic partial differential equations using linear combinations of plane waves.

    PubMed

    Pérez-Jordá, José M

    2016-02-01

    Given an arbitrary elliptic partial differential equation (PDE), a procedure for obtaining its solution is proposed based on the method of Ritz: the solution is written as a linear combination of plane waves and the coefficients are obtained by variational minimization. The PDE to be solved is cast as a system of linear equations Ax=b, where the matrix A is not sparse, which prevents the straightforward application of standard iterative methods in order to solve it. This sparseness problem can be circumvented by means of a recursive bisection approach based on the fast Fourier transform, which makes it possible to implement fast versions of some stationary iterative methods (such as Gauss-Seidel) consuming O(NlogN) memory and executing an iteration in O(Nlog(2)N) time, N being the number of plane waves used. In a similar way, fast versions of Krylov subspace methods and multigrid methods can also be implemented. These procedures are tested on Poisson's equation expressed in adaptive coordinates. It is found that the best results are obtained with the GMRES method using a multigrid preconditioner with Gauss-Seidel relaxation steps.

  8. Research on a new wave energy absorption device

    NASA Astrophysics Data System (ADS)

    Lu, Zhongyue; Shang, Jianzhong; Luo, Zirong; Sun, Chongfei; Zhu, Yiming

    2018-01-01

    To reduce impact of global warming and the energy crisis problems caused by pollution of energy combustion, the research on renewable and clean energies becomes more and more important. This paper designed a new wave absorption device, and also gave an introduction on its mechanical structure. The flow tube model is analyzed, and presented the formulation of the proposed method. To verify the principle of wave absorbing device, an experiment was carried out in a laboratory environment, and the results of the experiment can be applied for optimizing the structure design of output power.

  9. LETTER: Investigation of the effect of Alfven resonance mode conversion on fast wave current drive in ITER

    NASA Astrophysics Data System (ADS)

    Alava, M. J.; Heikkinen, J. A.; Hellsten, T.

    1995-07-01

    In order to reduce or to avoid ion cyclotron damping, the use of frequencies below the ion cyclotron frequency of minority ion species or the second harmonic of majority ion species has been proposed for fast wave current drive based on direct electron absorption. For these scenarios, the Alfven or ion-ion hybrid resonance can appear on the high field side of a tokamak. The presence of these resonances causes parasitic absorption, competing with the electron Landau damping and transit time magnetic pumping responsible for the fast wave current drive. In the present study, neglecting effects from toroidicity, the mode conversion at the Alfven resonance is shown to be of the order of 5 to 10% in the current drive scenarios for the planned ITER experiment. If the single pass absorption in the centre can be made sufficiently high, the conversion at the Alfven resonance becomes negligible

  10. Investigation of the effect of Alfven resonance absorption on fast wave current drive in ITER

    NASA Astrophysics Data System (ADS)

    Alava, M. J.; Heikkinen, J. A.; Hellsten, T.

    The use of frequencies below the ion cyclotron frequency of minority ion species or second harmonic of majority species has been proposed for fast wave current drive in order to reduce or to avoid ion cyclotron damping. For these scenarios, the Alfven resonance can appear on the high field side of a tokamak. The presence of this resonance causes parasitic absorption competing with the electron Landau damping and transit time magnetic pumping responsible for the fast wave current drive. In the present study, the mode conversion at the Alfven resonance is shown to be of the order of 5 to 10 percent in the current drive scenarios for the planned International Thermonuclear Experimental Reactor (ITER) experiment. However, if the single pass absorption in the center can be made sufficiently high, the conversion at the Alfven resonance becomes negligible.

  11. WindWaveFloat (WWF): Final Scientific Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alla Weinstein; Roddier, Dominique; Banister, Kevin

    2012-03-30

    Principle Power Inc. and National Renewable Energy Lab (NREL) have completed a contract to assess the technical and economic feasibility of integrating wave energy converters into the WindFloat, resulting in a new concept called the WindWaveFloat (WWF). The concentration of several devices on one platform could offer a potential for both economic and operational advantages. Wind and wave energy converters can share the electrical cable and power transfer equipment to transport the electricity to shore. Access to multiple generation devices could be simplified, resulting in cost saving at the operational level. Overall capital costs may also be reduced, provided thatmore » the design of the foundation can be adapted to multiple devices with minimum modifications. Finally, the WindWaveFloat confers the ability to increase energy production from individual floating support structures, potentially leading to a reduction in levelized energy costs, an increase in the overall capacity factor, and greater stability of the electrical power delivered to the grid. The research conducted under this grant investigated the integration of several wave energy device types into the WindFloat platform. Several of the resulting system designs demonstrated technical feasibility, but the size and design constraints of the wave energy converters (technical and economic) make the WindWaveFloat concept economically unfeasible at this time. Not enough additional generation could be produced to make the additional expense associated with wave energy conversion integration into the WindFloat worthwhile.« less

  12. Detection of Propagating Fast Sausage Waves through Detailed Analysis of a Zebra-pattern Fine Structure in a Solar Radio Burst

    NASA Astrophysics Data System (ADS)

    Kaneda, K.; Misawa, H.; Iwai, K.; Masuda, S.; Tsuchiya, F.; Katoh, Y.; Obara, T.

    2018-03-01

    Various magnetohydrodynamic (MHD) waves have recently been detected in the solar corona and investigated intensively in the context of coronal heating and coronal seismology. In this Letter, we report the first detection of short-period propagating fast sausage mode waves in a metric radio spectral fine structure observed with the Assembly of Metric-band Aperture Telescope and Real-time Analysis System. Analysis of Zebra patterns (ZPs) in a type-IV burst revealed a quasi-periodic modulation in the frequency separation between the adjacent stripes of the ZPs (Δf ). The observed quasi-periodic modulation had a period of 1–2 s and exhibited a characteristic negative frequency drift with a rate of 3–8 MHz s‑1. Based on the double plasma resonance model, the most accepted generation model of ZPs, the observed quasi-periodic modulation of the ZP can be interpreted in terms of fast sausage mode waves propagating upward at phase speeds of 3000–8000 km s‑1. These results provide us with new insights for probing the fine structure of coronal loops.

  13. 1990 MTT-S International Microwave Symposium and Exhibition and Microwave and Millimeter-Wave Monolithic IC Symposium, Dallas, TX, May 7-10, 1990, Proceedings

    NASA Astrophysics Data System (ADS)

    McQuiddy, David N., Jr.; Sokolov, Vladimir

    1990-12-01

    The present conference discusses microwave filters, lightwave technology for microwave antennas, planar and quasi-planar guides, mixers and VCOs, cavity filters, discontinuity and coupling effects, control circuits, power dividers and phase shifters, microwave ICs, biological effects and medical applications, CAD and modeling for MMICs, directional couplers, MMIC design trends, microwave packaging and manufacturing, monolithic ICs, and solid-state devices and circuits. Also discussed are microwave and mm-wave superconducting technology, MICs for communication systems, the merging of optical and microwave technologies, microwave power transistors, ferrite devices, network measurements, advanced transmission-line structures, FET devices and circuits, field theory of IC discontinuities, active quasi-optical techniques, phased-array techniques and circuits, nonlinear CAD, sub-mm wave devices, and high power devices.

  14. Looking for radio waves with a simple radio wave detector

    NASA Astrophysics Data System (ADS)

    Sugimoto (Stray Cats), Norihiro

    2011-11-01

    I created a simple device that can detect radio waves in a classroom. In physics classes I tell students that we live in a sea of radio waves. They come from TV, radio, and cell phone signals as well as other sources. Students don't realize this because those electromagnetic waves are invisible. So, I wondered if I could come up with a way to detect the waves and help students to understand them better. Electromagnetic wave meters, which measure intensity of radio waves quantitatively, are commercially available. However, to students most of these are black boxes, and at the introductory level it is more effective to detect radio waves in a simpler way. This paper describes my device and how I have used it in my classes.

  15. Monitoring of thermal therapy based on shear modulus changes: II. Shear wave imaging of thermal lesions.

    PubMed

    Arnal, Bastien; Pernot, Mathieu; Tanter, Mickael

    2011-08-01

    The clinical applicability of high-intensity focused ultrasound (HIFU) for noninvasive therapy is currently hampered by the lack of robust and real-time monitoring of tissue damage during treatment. The goal of this study is to show that the estimation of local tissue elasticity from shear wave imaging (SWI) can lead to a precise mapping of the lesion. HIFU treatment and monitoring were respectively performed using a confocal setup consisting of a 2.5-MHz single element transducer focused at 34 mm on ex vivo samples and an 8-MHz ultrasound diagnostic probe. Ultrasound-based strain imaging was combined with shear wave imaging on the same device. The SWI sequences consisted of 2 successive shear waves induced at different lateral positions. Each wave was created with pushing beams of 100 μs at 3 depths. The shear wave propagation was acquired at 17,000 frames/s, from which the elasticity map was recovered. HIFU sonications were interleaved with fast imaging acquisitions, allowing a duty cycle of more than 90%. Thus, elasticity and strain mapping was achieved every 3 s, leading to real-time monitoring of the treatment. When thermal damage occurs, tissue stiffness was found to increase up to 4-fold and strain imaging showed strong shrinkages that blur the temperature information. We show that strain imaging elastograms are not easy to interpret for accurate lesion characterization, but SWI provides a quantitative mapping of the thermal lesion. Moreover, the concept of shear wave thermometry (SWT) developed in the companion paper allows mapping temperature with the same method. Combined SWT and shear wave imaging can map the lesion stiffening and temperature outside the lesion, which could be used to predict the eventual lesion growth by thermal dose calculation. Finally, SWI is shown to be robust to motion and reliable in vivo on sheep muscle.

  16. Quantitative shear wave imaging optical coherence tomography for noncontact mechanical characterization of myocardium

    NASA Astrophysics Data System (ADS)

    Wang, Shang; Lopez, Andrew L.; Morikawa, Yuka; Tao, Ge; Li, Jiasong; Larina, Irina V.; Martin, James F.; Larin, Kirill V.

    2015-03-01

    Optical coherence elastography (OCE) is an emerging low-coherence imaging technique that provides noninvasive assessment of tissue biomechanics with high spatial resolution. Among various OCE methods, the capability of quantitative measurement of tissue elasticity is of great importance for tissue characterization and pathology detection across different samples. Here we report a quantitative OCE technique, termed quantitative shear wave imaging optical coherence tomography (Q-SWI-OCT), which enables noncontact measurement of tissue Young's modulus based on the ultra-fast imaging of the shear wave propagation inside the sample. A focused air-puff device is used to interrogate the tissue with a low-pressure short-duration air stream that stimulates a localized displacement with the scale at micron level. The propagation of this tissue deformation in the form of shear wave is captured by a phase-sensitive OCT system running with the scan of the M-mode imaging over the path of the wave propagation. The temporal characteristics of the shear wave is quantified based on the cross-correlation of the tissue deformation profiles at all the measurement locations, and linear regression is utilized to fit the data plotted in the domain of time delay versus wave propagation distance. The wave group velocity is thus calculated, which results in the quantitative measurement of the Young's modulus. As the feasibility demonstration, experiments are performed on tissuemimicking phantoms with different agar concentrations and the quantified elasticity values with Q-SWI-OCT agree well with the uniaxial compression tests. For functional characterization of myocardium with this OCE technique, we perform our pilot experiments on ex vivo mouse cardiac muscle tissues with two studies, including 1) elasticity difference of cardiac muscle under relaxation and contract conditions and 2) mechanical heterogeneity of the heart introduced by the muscle fiber orientation. Our results suggest the potential of using Q-SWI-OCT as an essential tool for nondestructive biomechanical evaluation of myocardium.

  17. Calculating qP-wave traveltimes in 2-D TTI media by high-order fast sweeping methods with a numerical quartic equation solver

    NASA Astrophysics Data System (ADS)

    Han, Song; Zhang, Wei; Zhang, Jie

    2017-09-01

    A fast sweeping method (FSM) determines the first arrival traveltimes of seismic waves by sweeping the velocity model in different directions meanwhile applying a local solver. It is an efficient way to numerically solve Hamilton-Jacobi equations for traveltime calculations. In this study, we develop an improved FSM to calculate the first arrival traveltimes of quasi-P (qP) waves in 2-D tilted transversely isotropic (TTI) media. A local solver utilizes the coupled slowness surface of qP and quasi-SV (qSV) waves to form a quartic equation, and solve it numerically to obtain possible traveltimes of qP-wave. The proposed quartic solver utilizes Fermat's principle to limit the range of the possible solution, then uses the bisection procedure to efficiently determine the real roots. With causality enforced during sweepings, our FSM converges fast in a few iterations, and the exact number depending on the complexity of the velocity model. To improve the accuracy, we employ high-order finite difference schemes and derive the second-order formulae. There is no weak anisotropy assumption, and no approximation is made to the complex slowness surface of qP-wave. In comparison to the traveltimes calculated by a horizontal slowness shooting method, the validity and accuracy of our FSM is demonstrated.

  18. Acoustic Receptivity of Mach 4.5 Boundary Layer with Leading- Edge Bluntness

    NASA Technical Reports Server (NTRS)

    Malik, Mujeeb R.; Balakumar, Ponnampalam

    2007-01-01

    Boundary layer receptivity to two-dimensional slow and fast acoustic waves is investigated by solving Navier-Stokes equations for Mach 4.5 flow over a flat plate with a finite-thickness leading edge. Higher order spatial and temporal schemes are employed to obtain the solution whereby the flat-plate leading edge region is resolved by providing a sufficiently refined grid. The results show that the instability waves are generated in the leading edge region and that the boundary-layer is much more receptive to slow acoustic waves (by almost a factor of 20) as compared to the fast waves. Hence, this leading-edge receptivity mechanism is expected to be more relevant in the transition process for high Mach number flows where second mode instability is dominant. Computations are performed to investigate the effect of leading-edge thickness and it is found that bluntness tends to stabilize the boundary layer. Furthermore, the relative significance of fast acoustic waves is enhanced in the presence of bluntness. The effect of acoustic wave incidence angle is also studied and it is found that the receptivity of the boundary layer on the windward side (with respect to the acoustic forcing) decreases by more than a factor of 4 when the incidence angle is increased from 0 to 45 deg. However, the receptivity coefficient for the leeward side is found to vary relatively weakly with the incidence angle.

  19. Low-loss plasmon-assisted electro-optic modulator.

    PubMed

    Haffner, Christian; Chelladurai, Daniel; Fedoryshyn, Yuriy; Josten, Arne; Baeuerle, Benedikt; Heni, Wolfgang; Watanabe, Tatsuhiko; Cui, Tong; Cheng, Bojun; Saha, Soham; Elder, Delwin L; Dalton, Larry R; Boltasseva, Alexandra; Shalaev, Vladimir M; Kinsey, Nathaniel; Leuthold, Juerg

    2018-04-01

    For nearly two decades, researchers in the field of plasmonics 1 -which studies the coupling of electromagnetic waves to the motion of free electrons near the surface of a metal 2 -have sought to realize subwavelength optical devices for information technology 3-6 , sensing 7,8 , nonlinear optics 9,10 , optical nanotweezers 11 and biomedical applications 12 . However, the electron motion generates heat through ohmic losses. Although this heat is desirable for some applications such as photo-thermal therapy, it is a disadvantage in plasmonic devices for sensing and information technology 13 and has led to a widespread view that plasmonics is too lossy to be practical. Here we demonstrate that the ohmic losses can be bypassed by using 'resonant switching'. In the proposed approach, light is coupled to the lossy surface plasmon polaritons only in the device's off state (in resonance) in which attenuation is desired, to ensure large extinction ratios between the on and off states and allow subpicosecond switching. In the on state (out of resonance), destructive interference prevents the light from coupling to the lossy plasmonic section of a device. To validate the approach, we fabricated a plasmonic electro-optic ring modulator. The experiments confirm that low on-chip optical losses, operation at over 100 gigahertz, good energy efficiency, low thermal drift and a compact footprint can be combined in a single device. Our result illustrates that plasmonics has the potential to enable fast, compact on-chip sensing and communications technologies.

  20. Vorticity equation for MHD fast waves in geospace environment

    NASA Technical Reports Server (NTRS)

    Yamauchi, M.; Lundin, R.; Lui, A. T. Y.

    1993-01-01

    The MHD vorticity equation is modified in order to apply it to nonlinear MHD fast waves or shocks when their extent along the magnetic field is limited. Field-aligned current (FAC) generation is also discussed on the basis of this modified vorticity equation. When the wave normal is not aligned to the finite velocity convection and the source region is spatially limited, a longitudinal polarization causes a pair of plus and minus charges inside the compressional plane waves or shocks, generating a pair of FACs. This polarization is not related to the separation between the electrons and ions caused by their difference in mass, a separation which is inherent to compressional waves. The resultant double field-aligned current structure exists both with and without the contributions from curvature drift, which is questionable in terms of its contribution to vorticity change from the viewpoint of single-particle motion.

  1. Non-linear wave-particle interactions and fast ion loss induced by multiple Alfvén eigenmodes in the DIII-D tokamak

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Xi; Kramer, Gerrit J.; Heidbrink, William W.

    2014-05-21

    A new non-linear feature has been observed in fast-ion loss from tokamak plasmas in the form of oscillations at the sum, difference and second harmonic frequencies of two independent Alfvén eigenmodes (AEs). Full orbit calculations and analytic theory indicate this non-linearity is due to coupling of fast-ion orbital response as it passes through each AE — a change in wave-particle phase k • r by one mode alters the force exerted by the next. Furthermore, the loss measurement is of barely confined, non-resonant particles, while similar non-linear interactions can occur between well-confined particles and multiple AEs leading to enhanced fast-ionmore » transport.« less

  2. Rigid polyurethane foam as an efficient material for shock wave attenuation

    NASA Astrophysics Data System (ADS)

    Komissarov, P. V.; Borisov, A. A.; Sokolov, G. N.; Lavrov, V. V.

    2016-09-01

    A new method for reducing parameters of blast waves generated by explosions of HE charges on ground is presented. Most of the traditional techniques reduce the wave parameters at a certain distance from the charge, i.e. as a matter of fact the damping device interacts with a completely formed shock wave. The proposed approach is to use rigid polyurethane foam coating immediately the explosive charge. A distributed structure of such a foam block that provides most efficient shock wave attenuation is suggested. Results of experimental shock wave investigations recorded in tests in which HE charges have been exploded with damping devices and without it are compared.

  3. Wave Energy Prize - 1/50th Testing - Float Inc

    DOE Data Explorer

    Wesley Scharmen

    2016-01-15

    This submission of data includes all the 1/50th scale testing data completed on the Wave Energy Prize for Float Inc. During the testing of its 1/50th-scale device, Float Inc. Berger ABAM was deemed ineligible due to the fact that they brought a device with them to test and did not ship the device by the deadline stipulated in the Wave Energy Prize Rules. Because of this, analysis, results, and judging were not completed for this team/device. This submission included files such as: 1/50th test data (raw & processed) 1/50th test data video and pictures 1/50th Test plans and testing documents

  4. International Conference on Infrared and Millimeter Waves, 16th, Ecole Polytechnique Federale de Lausanne, Switzerland, Aug. 26-30, 1991, Conference Digest

    NASA Astrophysics Data System (ADS)

    Siegrist, M. R.; Tran, T. M.; Tran, M. Q.

    1991-10-01

    Consideration is given to millimeter waves (MMW), submillimeter waves, materials properties, and gyrotrons/FEL. Particular attention is given to MMW sources, detectors and mixers; MMW systems, devices and antennas; guided propagation; high Tc superconductors; semiconductors; MMW astronomy and atmospheric physics; lasers, submillimeter devices, and plasma diagnostics; and submillimeter detectors.

  5. Are Wave and Tidal Energy Plants New Green Technologies?

    PubMed

    Douziech, Mélanie; Hellweg, Stefanie; Verones, Francesca

    2016-07-19

    Wave and tidal energy plants are upcoming, potentially green technologies. This study aims at quantifying their various potential environmental impacts. Three tidal stream devices, one tidal range plant and one wave energy harnessing device are analyzed over their entire life cycles, using the ReCiPe 2008 methodology at midpoint level. The impacts of the tidal range plant were on average 1.6 times higher than the ones of hydro-power plants (without considering natural land transformation). A similar ratio was found when comparing the results of the three tidal stream devices to offshore wind power plants (without considering water depletion). The wave energy harnessing device had on average 3.5 times higher impacts than offshore wind power. On the contrary, the considered plants have on average 8 (wave energy) to 20 (tidal stream), or even 115 times (tidal range) lower impact than electricity generated from coal power. Further, testing the sensitivity of the results highlighted the advantage of long lifetimes and small material requirements. Overall, this study supports the potential of wave and tidal energy plants as alternative green technologies. However, potential unknown effects, such as the impact of turbulence or noise on marine ecosystems, should be further explored in future research.

  6. Dispersive Evolution of Nonlinear Fast Magnetoacoustic Wave Trains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pascoe, D. J.; Goddard, C. R.; Nakariakov, V. M., E-mail: D.J.Pascoe@warwick.ac.uk

    2017-10-01

    Quasi-periodic rapidly propagating wave trains are frequently observed in extreme ultraviolet observations of the solar corona, or are inferred by the quasi-periodic modulation of radio emission. The dispersive nature of fast magnetohydrodynamic waves in coronal structures provides a robust mechanism to explain the detected quasi-periodic patterns. We perform 2D numerical simulations of impulsively generated wave trains in coronal plasma slabs and investigate how the behavior of the trapped and leaky components depend on the properties of the initial perturbation. For large amplitude compressive perturbations, the geometrical dispersion associated with the waveguide suppresses the nonlinear steepening for the trapped wave train.more » The wave train formed by the leaky components does not experience dispersion once it leaves the waveguide and so can steepen and form shocks. The mechanism we consider can lead to the formation of multiple shock fronts by a single, large amplitude, impulsive event and so can account for quasi-periodic features observed in radio spectra.« less

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wright, J. C.; Bonoli, P. T.; Schmidt, A. E.

    Lower hybrid (LH) waves ({omega}{sub ci}<<{omega}<<{omega}{sub ce}, where {omega}{sub i,e}{identical_to}Z{sub i,e}eB/m{sub i,e}c) have the attractive property of damping strongly via electron Landau resonance on relatively fast tail electrons and consequently are well-suited to driving current. Established modeling techniques use Wentzel-Kramers-Brillouin (WKB) expansions with self-consistent non-Maxwellian distributions. Higher order WKB expansions have shown some effects on the parallel wave number evolution and consequently on the damping due to diffraction [G. Pereverzev, Nucl. Fusion 32, 1091 (1991)]. A massively parallel version of the TORIC full wave electromagnetic field solver valid in the LH range of frequencies has been developed [J. C. Wrightmore » et al., Comm. Comp. Phys. 4, 545 (2008)] and coupled to an electron Fokker-Planck solver CQL3D[R. W. Harvey and M. G. McCoy, in Proceedings of the IAEA Technical Committee Meeting, Montreal, 1992 (IAEA Institute of Physics Publishing, Vienna, 1993), USDOC/NTIS Document No. DE93002962, pp. 489-526] in order to self-consistently evolve nonthermal electron distributions characteristic of LH current drive (LHCD) experiments in devices such as Alcator C-Mod and ITER (B{sub 0}{approx_equal}5 T, n{sub e0}{approx_equal}1x10{sup 20} m{sup -3}). These simulations represent the first ever self-consistent simulations of LHCD utilizing both a full wave and Fokker-Planck calculation in toroidal geometry.« less

  8. Enhanced performance configuration for fast-switching deformed helix ferroelectric liquid crystal continuous tunable Lyot filter.

    PubMed

    Tam, A M W; Qi, G; Srivastava, A K; Wang, X Q; Fan, F; Chigrinov, V G; Kwok, H S

    2014-06-10

    In this paper, we present a novel design configuration of double DHFLC wave plate continuous tunable Lyot filter, which exhibits a rapid response time of 185 μs, while the high-contrast ratio between the passband and stop band is maintained throughout a wide tunable range. A DHFLC tunable filter with a high-contrast ratio is attractive for realizing high-speed optical processing devices, such as multispectral and hyperspectral imaging systems, real-time remote sensing, field sequential color display, and wavelength demultiplexing in the metro network. In this work, an experimental prototype for a single-stage DHFLC Lyot filter of this design has been fabricated using photoalignment technology. We have demonstrated that the filter has a continuous tunable range of 30 nm for a blue wavelength, 45 nm for a green wavelength, and more than 50 nm for a red wavelength when the applied voltage gradually increases from 0 to 8 V. Within this tunable range, the contrast ratio of the proposed double wave plate configuration is maintained above 20 with small deviation in the transmittance level. Simulation and experimental results showed the proposed double DHFLC wave plate configuration enhances the contrast ratio of the tunable filter and, thus, increases the tunable range of the filter when compared with the Lyot filter using a single DHFLC wave plate. Moreover, we have proposed a polarization insensitive configuration for which the efficiency of the existing prototype can theoretically be doubled by the use of polarization beam splitters.

  9. History of Chandra X-Ray Observatory

    NASA Image and Video Library

    1999-08-01

    This x-ray image of the Cassiopeia A (CAS A) supernova remnant is the official first light image of the Chandra X-Ray Observatory (CXO). The 5,000-second image was made with the Advanced Charged Coupled Device (CCD) Image Spectrometer (ACIS). Two shock waves are visible: A fast outer shock and a slower irner shock. The inner shock wave is believed to be due to the collision of ejecta from the supernova explosion with a circumstellar shell of material, heating it to a temperature of 10 million-degrees Celsius. The outer shock wave is analogous to an awesome sonic boom resulting from this collision The x-rays reveal a bright object near the center, which may be the long-sought neutron star or black hole remnant of the explosion that produced Cassiopeia A. Cassiopeia A is the 320-year-old remnant of a massive star that exploded. Located in the constellation Cassiopeia, it is 10 light-years across and 10,000 light-years from Earth. A supernova occurs when a massive star has used up its nuclear fuel and the pressure drops in the central core of the star. The matter in the core is crushed by gravity to higher and higher densities, and temperatures reach billions of degrees. Under these extreme conditions, nuclear reactions occur violently and catastrophically, reversing the collapse. A thermonuclear shock wave races through the now expanding stellar debris, fusing lighter elements into heavier ones and producing a brilliant visual outburst.

  10. Counterbalancing the use of ultrasound contrast agents by a cavitation-regulated system.

    PubMed

    Desjouy, C; Fouqueray, M; Lo, C W; Muleki Seya, P; Lee, J L; Bera, J C; Chen, W S; Inserra, C

    2015-09-01

    The stochastic behavior of cavitation can lead to major problems of initiation and maintenance of cavitation during sonication, responsible of poor reproducibility of US-induced bioeffects in the context of sonoporation for instance. To overcome these disadvantages, the injection of ultrasound contrast agents as cavitation nuclei ensures fast initiation and lower acoustic intensities required for cavitation activity. More recently, regulated-cavitation devices based on the real-time modulation of the applied acoustic intensity have shown their potential to maintain a stable cavitation state during an ultrasonic shot, in continuous or pulsed wave conditions. In this paper is investigated the interest, in terms of cavitation activity, of using such regulated-cavitation device or injecting ultrasound contrast agents in the sonicated medium. When using fixed applied acoustic intensity, results showed that introducing ultrasound contrast agents increases reproducibility of cavitation activity (coefficient of variation 62% and 22% without and with UCA, respectively). Moreover, the use of the regulated-cavitation device ensures a given cavitation activity (coefficient of variation less 0.4% in presence of UCAs or not). This highlights the interest of controlling cavitation over time to free cavitation-based application from the use of UCAs. Interestingly, during a one minute sonication, while ultrasound contrast agents progressively disappear, the regulated-cavitation device counterbalance their destruction to sustain a stable inertial cavitation activity. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Nonlinear effects associated with fast magnetosonic waves and turbulent magnetic amplification in laboratory and astrophysical plasmas

    NASA Astrophysics Data System (ADS)

    Tiwary, PremPyari; Sharma, Swati; Sharma, Prachi; Singh, Ram Kishor; Uma, R.; Sharma, R. P.

    2016-12-01

    This paper presents the spatio-temporal evolution of magnetic field due to the nonlinear coupling between fast magnetosonic wave (FMSW) and low frequency slow Alfvén wave (SAW). The dynamical equations of finite frequency FMSW and SAW in the presence of ponderomotive force of FMSW (pump wave) has been presented. Numerical simulation has been carried out for the nonlinear coupled equations of finite frequency FMSW and SAW. A systematic scan of the nonlinear behavior/evolution of the pump FMSW has been done for one of the set of parameters chosen in this paper, using the coupled dynamical equations. Filamentation of fast magnetosonic wave has been considered to be responsible for the magnetic turbulence during the laser plasma interaction. The results show that the formation and growth of localized structures depend on the background magnetic field but the order of amplification does not get affected by the magnitude of the background magnetic field. In this paper, we have shown the relevance of our model for two different parameters used in laboratory and astrophysical phenomenon. We have used one set of parameters pertaining to experimental observations in the study of fast ignition of laser fusion and hence studied the turbulent structures in stellar environment. The other set corresponds to the study of magnetic field amplification in the clumpy medium surrounding the supernova remnant Cassiopeia A. The results indicate considerable randomness in the spatial structure of the magnetic field profile in both the cases and gives a sufficient indication of turbulence. The turbulent spectra have been studied and the break point has been found around k which is consistent with the observations in both the cases. The nonlinear wave-wave interaction presented in this paper may be important in understanding the turbulence in the laboratory as well as the astrophysical phenomenon.

  12. Dual-channel near-field control by polarizations using isotropic and inhomogeneous metasurface.

    PubMed

    Wan, Xiang; Cai, Ben Geng; Li, Yun Bo; Cui, Tie Jun

    2015-11-03

    We propose a method for dual-channel near-field manipulations by designing isotropic but inhomogeneous metasurfaces. As example, we present a dual-channel near-field focusing metasurface device. When the device is driven by surface waves from different channels on the metasurface, the near fields will be focused at the same spatial point with different polarizations. Conversely, if a linearly polarized source is radiated at the spatial focal point, different channels will be evoked on the metasurface controlled by polarization. We fabricated and measured the metasurface device in the microwave frequency. Well agreements between the simulation and measurement results are observed. The proposed method exhibits great flexibility in controlling the surface waves and spatial waves simultaneously. It is expected that the proposed method and dual-channel device will facilitate the manipulation of near electromagnetic or optical waves in different frequency regimes.

  13. A reconfigurable waveguide for energy-efficient transmission and local manipulation of information in a nanomagnetic device

    NASA Astrophysics Data System (ADS)

    Haldar, Arabinda; Kumar, Dheeraj; Adeyeye, Adekunle Olusola

    2016-05-01

    Spin-wave-based devices promise to usher in an era of low-power computing where information is carried by the precession of the electrons' spin instead of dissipative translation of their charge. This potential is, however, undermined by the need for a bias magnetic field, which must remain powered on to maintain an anisotropic device characteristic. Here, we propose a reconfigurable waveguide design that can transmit and locally manipulate spin waves without the need for any external bias field once initialized. We experimentally demonstrate the transmission of spin waves in straight as well as curved waveguides without a bias field, which has been elusive so far. Furthermore, we experimentally show a binary gating of the spin-wave signal by controlled switching of the magnetization, locally, in the waveguide. The results have potential implications in high-density integration and energy-efficient operation of nanomagnetic devices at room temperature.

  14. Development of 2-D horn-antenna millimeter-wave imaging device (HMID) for the plasma diagnostics

    NASA Astrophysics Data System (ADS)

    Nagayama, Y.; Ito, N.; Kuwahara, D.; Tsuchiya, H.; Yamaguchi, S.

    2017-04-01

    The two-dimensional (2-D) Horn-antenna Millimeter-wave Imaging Device (HMID) has been developed for the O-mode Microwave Imaging Reflectometry (O-MIR) in the Large Helical Device (LHD). The detectable frequency range of the HMID is 23-33 GHz, which corresponds to the cutoff electron density of 0.8-1.5 × 1019 m-3 in the O-MIR. The HMID is a 2-D imaging device that improves on the horn-antenna mixer array, which had been developed for the X-mode MIR in the LHD. In the HMID, the signal (RF) wave from the horn antenna is transmitted to the microstrip line by the finline transmitter, and this is mixed by the double-balanced-mixer with the local oscillation wave that is fed by a coaxial cable. By using the HMID, the MIR optical system can be significantly simplified.

  15. Development of 2-D horn-antenna millimeter-wave imaging device (HMID) for the plasma diagnostics.

    PubMed

    Nagayama, Y; Ito, N; Kuwahara, D; Tsuchiya, H; Yamaguchi, S

    2017-04-01

    The two-dimensional (2-D) Horn-antenna Millimeter-wave Imaging Device (HMID) has been developed for the O-mode Microwave Imaging Reflectometry (O-MIR) in the Large Helical Device (LHD). The detectable frequency range of the HMID is 23-33 GHz, which corresponds to the cutoff electron density of 0.8-1.5 × 10 19 m -3 in the O-MIR. The HMID is a 2-D imaging device that improves on the horn-antenna mixer array, which had been developed for the X-mode MIR in the LHD. In the HMID, the signal (RF) wave from the horn antenna is transmitted to the microstrip line by the finline transmitter, and this is mixed by the double-balanced-mixer with the local oscillation wave that is fed by a coaxial cable. By using the HMID, the MIR optical system can be significantly simplified.

  16. TIMING OF SHOCK WAVES

    DOEpatents

    Tuck, J.L.

    1955-03-01

    This patent relates to means for ascertaining the instant of arrival of a shock wave in an exploslve charge and apparatus utilizing this means to coordinate the timing of two operations involving a short lnterval of time. A pair of spaced electrodes are inserted along the line of an explosive train with a voltage applied there-across which is insufficient to cause discharge. When it is desired to initiate operation of a device at the time the explosive shock wave reaches a particular point on the explosive line, the device having an inherent time delay, the electrodes are located ahead of the point such that the ionization of the area between the electrodes caused by the traveling explosive shock wave sends a signal to initiate operation of the device to cause it to operate at the proper time. The operated device may be photographic equipment consisting of an x-ray illuminating tube.

  17. Separation control by vortex generator devices in a transonic channel flow

    NASA Astrophysics Data System (ADS)

    Bur, Reynald; Coponet, Didier; Carpels, Yves

    2009-12-01

    An experimental study was conducted in a transonic channel to control by mechanical vortex generator devices the strong interaction between a shock wave and a separated turbulent boundary layer. Control devices—co-rotating and counter-rotating vane-type vortex generators—were implemented upstream of the shock foot region and tested both on a steady shock wave and on a forced shock oscillation configurations. The spanwise spacing of vortex generator devices along the channel appeared to be an important parameter to control the flow separation region. When the distance between each device is decreased, the vortices merging is more efficient to reduce the separation. Their placement upstream of the shock wave is determinant to ensure that vortices have mixed momentum all spanwise long before they reach the separation line, so as to avoid separation cells. Then, vortex generators slightly reduced the amplitude of the forced shock wave oscillation by delaying the upstream displacement of the leading shock.

  18. Acoustic and Cavitation Fields of Shock Wave Therapy Devices

    NASA Astrophysics Data System (ADS)

    Chitnis, Parag V.; Cleveland, Robin O.

    2006-05-01

    Extracorporeal shock wave therapy (ESWT) is considered a viable treatment modality for orthopedic ailments. Despite increasing clinical use, the mechanisms by which ESWT devices generate a therapeutic effect are not yet understood. The mechanistic differences in various devices and their efficacies might be dependent on their acoustic and cavitation outputs. We report acoustic and cavitation measurements of a number of different shock wave therapy devices. Two devices were electrohydraulic: one had a large reflector (HMT Ossatron) and the other was a hand-held source (HMT Evotron); the other device was a pneumatically driven device (EMS Swiss DolorClast Vet). Acoustic measurements were made using a fiber-optic probe hydrophone and a PVDF hydrophone. A dual passive cavitation detection system was used to monitor cavitation activity. Qualitative differences between these devices were also highlighted using a high-speed camera. We found that the Ossatron generated focused shock waves with a peak positive pressure around 40 MPa. The Evotron produced peak positive pressure around 20 MPa, however, its acoustic output appeared to be independent of the power setting of the device. The peak positive pressure from the DolorClast was about 5 MPa without a clear shock front. The DolorClast did not generate a focused acoustic field. Shadowgraph images show that the wave propagating from the DolorClast is planar and not focused in the vicinity of the hand-piece. All three devices produced measurable cavitation with a characteristic time (cavitation inception to bubble collapse) that varied between 95 and 209 μs for the Ossatron, between 59 and 283 μs for the Evotron, and between 195 and 431 μs for the DolorClast. The high-speed camera images show that the cavitation activity for the DolorClast is primarily restricted to the contact surface of the hand-piece. These data indicate that the devices studied here vary in acoustic and cavitation output, which may imply that the mechanisms by which they generate therapeutic effects are different.

  19. Issues of nanoelectronics: a possible roadmap.

    PubMed

    Wang, Kang L

    2002-01-01

    In this review, we will discuss a possible roadmap in scaling a nanoelectronic device from today's CMOS technology to the ultimate limit when the device fails. In other words, at the limit, CMOS will have a severe short channel effect, significant power dissipation in its quiescent (standby) state, and problems related to other essential characteristics. Efforts to use structures such as the double gate, vertical surround gate, and SOI to improve the gate control have continually been made. Other types of structures using SiGe source/drain, asymmetric Schottky source/drain, and the like will be investigated as viable structures to achieve ultimate CMOS. In reaching its scaling limit, tunneling will be an issue for CMOS. The tunneling current through the gate oxide and between the source and drain will limit the device operation. When tunneling becomes significant, circuits may incorporate tunneling devices with CMOS to further increase the functionality per device count. We will discuss both the top-down and bottom-up approaches in attaining the nanometer scale and eventually the atomic scale. Self-assembly is used as a bottom-up approach. The state of the art is reviewed, and the challenges of the multiple-step processing in using the self-assembly approach are outlined. Another facet of the scaling trend is to decrease the number of electrons in devices, ultimately leading to single electrons. If the size of a single-electron device is scaled in such a way that the Coulomb self-energy is higher than the thermal energy (at room temperature), a single-electron device will be able to operate at room temperature. In principle, the speed of the device will be fast as long as the capacitance of the load is also scaled accordingly. The single-electron device will have a small drive current, and thus the load capacitance, including those of interconnects and fanouts, must be small to achieve a reasonable speed. However, because the increase in the density (and/or functionality) of integrated circuits is the principal driver, the wiring or interconnects will increase and become the bottleneck for the design of future high-density and high-functionality circuits, particularly for single-electron devices. Furthermore, the massive interconnects needed in the architecture used today will result in an increase in load capacitance. Thus for single-electron device circuits, it is critical to have minimal interconnect loads. And new types of architectures with minimal numbers of global interconnects will be needed. Cellular automata, which need only nearest-neighbor interconnects, are discussed as a plausible example. Other architectures such as neural networks are also possible. Examples of signal processing using cellular automata are discussed. Quantum computing and information processing are based on quantum mechanical descriptions of individual particles correlated among each other. A quantum bit or qubit is described as a linear superposition of the wave functions of a two-state system, for example, the spin of a particle. With the interaction of two qubits, they are connected in a "wireless fashion" using wave functions via quantum mechanical interaction, referred to as entanglement. The interconnection by the nonlocality of wave functions affords a massive parallel nature for computing or so-called quantum parallelism. We will describe the potential and solid-state implementations of quantum computing and information, using electron spin and/or nuclear spin in Si and Ge. Group IV elements have a long coherent time and other advantages. The example of using SiGe for g factor engineering will be described.

  20. Gas loading of graphene-quartz surface acoustic wave devices

    NASA Astrophysics Data System (ADS)

    Whitehead, E. F.; Chick, E. M.; Bandhu, L.; Lawton, L. M.; Nash, G. R.

    2013-08-01

    Graphene was transferred to the propagation path of quartz surface acoustic wave devices and the attenuation due to gas loading of air and argon measured at 70 MHz and 210 MHz and compared to devices with no graphene. Under argon loading, there was no significant difference between the graphene and non-graphene device and the values of measured attenuation agree well with those calculated theoretically. Under air loading, at 210 MHz, there was a significant difference between the non-graphene and graphene devices, with the average value of attenuation obtained with the graphene devices being approximately twice that obtained from the bare quartz devices.

  1. Dynamics of Exploding Plasma Within a Magnetized Plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dimonte, G; Dipeso, G; Hewett, D

    2002-02-01

    This memo describes several possible laboratory experiments on the dynamics of an exploding plasma in a background magnetized plasma. These are interesting scientifically and the results are applicable to energetic explosions in the earth's ionosphere (DOE Campaign 7 at LLNL). These proposed experiments are difficult and can only be performed in the new LAPD device at UCLA. The purpose of these experiments would be to test numerical simulations, theory and reduced models for systems performance codes. The experiments are designed to investigate the affect of the background plasma on (1) the maximum diamagnetic bubble radius given by Eq. 9; andmore » (2) the Alfven wave radiation efficiency produced by the induced current J{sub A} (Eqs. 10-12) These experiments involve measuring the bubble radius using a fast gated optical imager as in Ref [1] and the Alfven wave profile and intensity as in Ref [2] for different values of the exploding plasma energy, background plasma density and temperature, and background magnetic field. These experiments extend the previously successful experiments [2] on Alfven wave coupling. We anticipate that the proposed experiments would require 1-2 weeks of time on the LAPD. We would perform PIC simulations in support of these experiments in order to validate the codes. Once validated, the PIC simulations would then be able to be extended to realistic ionospheric conditions with various size explosions and altitudes. In addition to the Alfven wave coupling, we are interested in the magnetic containment and transport of the exploding ''debris'' plasma to see if the shorting of the radial electric field in the magnetic bubble would allow the ions to propagate further. This has important implications in an ionospheric explosion because it defines the satellite damage region. In these experiments, we would field fast gated optical cameras to obtain images of the plasma expansion, which could then be correlated with magnetic probe measurements. In this regard, it would be most helpful to have a more powerful laser more than 10J in order to increase the extent of the magnetic bubble.« less

  2. Dispersively formed quasi-periodic fast magnetosonic wavefronts due to the eruption of a nearby mini-filament

    NASA Astrophysics Data System (ADS)

    Shen, Yuandeng; Song, Tengfei; Liu, Yu

    2018-06-01

    Observational analysis is performed to study the excitation mechanism and propagation properties of a quasi-periodic fast-propagating (QFP) magnetosonic wave. The QFP wave was associated with the eruption of a nearby mini-filament and a small B4 Geostationary Operational Environmental Satellite (GOES) flare, which may indicate that the generation of a QFP wave does not require much flare energy. The propagation of the QFP wave was along a bundle of funnel-shaped open loops with a speed of about 1100 ± 78 km s-1 and an acceleration of -2.2 ± 1.1 km s-2. Periodicity analysis indicates that the periods of the QFP wave are 43 ± 6 and 79 ± 18 s. For the first time, we find that the periods of the QFP wave and the accompanying flare are inconsistent, which is different from the findings reported in previous studies. We propose that the present QFP wave was possibly caused by the mechanism of dispersive evolution of the initially broad-band disturbance resulting from the nearby mini-filament eruption.

  3. Analytical study of body waves in orthorhombic media and comparison with SKS-phase observations from selected stations

    NASA Astrophysics Data System (ADS)

    Löberich, Eric; Bokelmann, Götz

    2016-04-01

    Anisotropic effects of wave propagation, observed in the Earth, provide interesting applications in basic research and practice, e.g., in reservoir geophysics and other fields. Teleseismic waves often evidence upper mantle anisotropy, as created by aligned olivine grains. While each grain is associated with orthorhombic symmetry, the preferred alignment may lead to a transversely isotropic characteristic. Considering body waves passing through an anisotropic medium, a splitting of shear waves can usually be observed, since their transverse polarization leads to a separation of the two quasi-shear waves. The associated splitting-delay is generated if the related fast and slow seismic velocities differ. Most of the previous shear-wave splitting investigations were based on the common assumption of near-vertical incidence. However, the influence of increasing incidence angles, which may lead to angular dependent splitting-delay and fast polarization orientation, has been pointed out by Davis (2003). Our study investigates the occurrence of these postulated dependences on azimuth and incidence angle (distance), examining splitting observations in SKS-recordings at selected broadband stations (e.g., Djibouti and Red Lake, Ontario).

  4. Proposed electromagnetic wave energy converter

    NASA Technical Reports Server (NTRS)

    Bailey, R. L.

    1973-01-01

    Device converts wave energy into electric power through array of insulated absorber elements responsive to field of impinging electromagnetic radiation. Device could also serve as solar energy converter that is potentially less expensive and fragile than solar cells, yet substantially more efficient.

  5. Acoustic biosensors.

    PubMed

    Fogel, Ronen; Limson, Janice; Seshia, Ashwin A

    2016-06-30

    Resonant and acoustic wave devices have been researched for several decades for application in the gravimetric sensing of a variety of biological and chemical analytes. These devices operate by coupling the measurand (e.g. analyte adsorption) as a modulation in the physical properties of the acoustic wave (e.g. resonant frequency, acoustic velocity, dissipation) that can then be correlated with the amount of adsorbed analyte. These devices can also be miniaturized with advantages in terms of cost, size and scalability, as well as potential additional features including integration with microfluidics and electronics, scaled sensitivities associated with smaller dimensions and higher operational frequencies, the ability to multiplex detection across arrays of hundreds of devices embedded in a single chip, increased throughput and the ability to interrogate a wider range of modes including within the same device. Additionally, device fabrication is often compatible with semiconductor volume batch manufacturing techniques enabling cost scalability and a high degree of precision and reproducibility in the manufacturing process. Integration with microfluidics handling also enables suitable sample pre-processing/separation/purification/amplification steps that could improve selectivity and the overall signal-to-noise ratio. Three device types are reviewed here: (i) bulk acoustic wave sensors, (ii) surface acoustic wave sensors, and (iii) micro/nano-electromechanical system (MEMS/NEMS) sensors. © 2016 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  6. Control of Spin Wave Dynamics in Spatially Twisted Magnetic Structures

    DTIC Science & Technology

    2017-06-27

    realize high-performance spintronic and magnetic storage devices. 15. SUBJECT TERMS nano- electronics , spin, wave, magnetic, multi-functional, device 16... electronics has required us to develop high-performance and multi-functional electronic devices driven with extremely low power consumption...Spintronics”, simultaneously utilizing the charge and the spin of electrons , provides us with solutions to essential problems for semiconductor-based

  7. Vibration analysis on automatic take-up device of belt conveyor

    NASA Astrophysics Data System (ADS)

    Qin, Tailong; Wei, Jin

    2008-10-01

    Through introducing application condition of belt conveyor in the modern mining industry, the paper proposed, in the dynamic course of its starting, braking or loading, it would produce moving tension and elastic wave. And analyzed the factors cause the automatic take-up device of belt conveyor vibrating: the take-up device's structure and the elastic wave. Finally the paper proposed the measure to reduce vibration and carried on the modeling and simulation on the tension buffer device.

  8. Surface acoustic wave devices for harsh environment wireless sensing

    DOE PAGES

    Greve, David W.; Chin, Tao -Lun; Zheng, Peng; ...

    2013-05-24

    In this study, langasite surface acoustic wave devices can be used to implement harsh environment wireless sensing of gas concentration and temperature. This paper reviews prior work on the development of langasite surface acoustic wave devices, followed by a report of recent progress toward the implementation of oxygen gas sensors. Resistive metal oxide films can be used as the oxygen sensing film, although development of an adherent barrier layer will be necessary with the sensing layers studied here to prevent interaction with the langasite substrate. Experimental results are presented for the performance of a langasite surface acoustic wave oxygen sensormore » with tin oxide sensing layer, and these experimental results are correlated with direct measurements of the sensing layer resistivity.« less

  9. Realization of spin wave switch for data processing

    NASA Astrophysics Data System (ADS)

    Balinskiy, M.; Chiang, H.; Khitun, A.

    2018-05-01

    In this work, experimental data on a spin wave switch based on spin wave interference is reported. The switch is a three terminal device where spin wave propagation between the source and the drain is modulated by the control spin wave signal. The prototype is a micrometer scale device based on Y3Fe2(FeO4)3 film. The output characteristics show the oscillation of the output spin wave signal as a function of the phase difference between the source and the drain spin wave signals. The On/Off ratio of the prototype exceeds 20 dB at room temperature. The utilization of phase in addition to amplitude for information encoding offers an innovative route towards multi-state logic circuits. The advantages and shortcomings of spin wave switches are also discussed.

  10. Traveling waves in the discrete fast buffered bistable system.

    PubMed

    Tsai, Je-Chiang; Sneyd, James

    2007-11-01

    We study the existence and uniqueness of traveling wave solutions of the discrete buffered bistable equation. Buffered excitable systems are used to model, among other things, the propagation of waves of increased calcium concentration, and discrete models are often used to describe the propagation of such waves across multiple cells. We derive necessary conditions for the existence of waves, and, under some restrictive technical assumptions, we derive sufficient conditions. When the wave exists it is unique and stable.

  11. Optimization of bottom-hinged flap-type wave energy converter for a specific wave rose

    NASA Astrophysics Data System (ADS)

    Behzad, Hamed; Panahi, Roozbeh

    2017-06-01

    In this paper, we conducted a numerical analysis on the bottom-hinged flap-type Wave Energy Convertor (WEC). The basic model, implemented through the study using ANSYS-AQWA, has been validated by a three-dimensional physical model of a pitching vertical cylinder. Then, a systematic parametric assessment has been performed on stiffness, damping, and WEC direction against an incoming wave rose, resulting in an optimized flap-type WEC for a specific spot in the Persian Gulf. Here, stiffness is tuned to have a near-resonance condition considering the wave rose, while damping is modified to capture the highest energy for each device direction. Moreover, such sets of specifications have been checked at different directions to present the best combination of stiffness, damping, and device heading. It has been shown that for a real condition, including different wave heights, periods, and directions, it is very important to implement the methodology introduced here to guarantee device performance.

  12. Rotating magnetic shallow water waves and instabilities in a sphere

    NASA Astrophysics Data System (ADS)

    Márquez-Artavia, X.; Jones, C. A.; Tobias, S. M.

    2017-07-01

    Waves in a thin layer on a rotating sphere are studied. The effect of a toroidal magnetic field is considered, using the shallow water ideal MHD equations. The work is motivated by suggestions that there is a stably stratified layer below the Earth's core mantle boundary, and the existence of stable layers in stellar tachoclines. With an azimuthal background field known as the Malkus field, ?, ? being the co-latitude, a non-diffusive instability is found with azimuthal wavenumber ?. A necessary condition for instability is that the Alfvén speed exceeds ? where ? is the rotation rate and ? the sphere radius. Magneto-inertial gravity waves propagating westward and eastward occur, and become equatorially trapped when the field is strong. Magneto-Kelvin waves propagate eastward at low field strength, but a new westward propagating Kelvin wave is found when the field is strong. Fast magnetic Rossby waves travel westward, whilst the slow magnetic Rossby waves generally travel eastward, except for some ? modes at large field strength. An exceptional very slow westward ? magnetic Rossby wave mode occurs at all field strengths. The current-driven instability occurs for ? when the slow and fast magnetic Rossby waves interact. With strong field the magnetic Rossby waves become trapped at the pole. An asymptotic analysis giving the wave speed and wave form in terms of elementary functions is possible both in polar trapped and equatorially trapped cases.

  13. Relativistic electron scattering by magnetosonic waves: Effects of discrete wave emission and high wave amplitudes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Artemyev, A. V., E-mail: ante0226@gmail.com; Mourenas, D.; Krasnoselskikh, V. V.

    2015-06-15

    In this paper, we study relativistic electron scattering by fast magnetosonic waves. We compare results of test particle simulations and the quasi-linear theory for different spectra of waves to investigate how a fine structure of the wave emission can influence electron resonant scattering. We show that for a realistically wide distribution of wave normal angles θ (i.e., when the dispersion δθ≥0.5{sup °}), relativistic electron scattering is similar for a wide wave spectrum and for a spectrum consisting in well-separated ion cyclotron harmonics. Comparisons of test particle simulations with quasi-linear theory show that for δθ>0.5{sup °}, the quasi-linear approximation describes resonantmore » scattering correctly for a large enough plasma frequency. For a very narrow θ distribution (when δθ∼0.05{sup °}), however, the effect of a fine structure in the wave spectrum becomes important. In this case, quasi-linear theory clearly fails in describing accurately electron scattering by fast magnetosonic waves. We also study the effect of high wave amplitudes on relativistic electron scattering. For typical conditions in the earth's radiation belts, the quasi-linear approximation cannot accurately describe electron scattering for waves with averaged amplitudes >300 pT. We discuss various applications of the obtained results for modeling electron dynamics in the radiation belts and in the Earth's magnetotail.« less

  14. The Effect of Saturation on Shear Wave Anisotropy in a Transversely Isotropic Medium

    NASA Astrophysics Data System (ADS)

    Li, W.; Pyrak-Nolte, L. J.

    2010-12-01

    Seismic monitoring of fluid distributions in the subsurface requires an understanding of the effect of fluid saturation on the anisotropic properties of layered media. Austin Chalk is a carbonate rock composed mainly of calcite (99.9%) with fine bedding caused by a weakly-directed fabric. In this paper, we assess the shear-wave anisotropy of Austin Chalk and the effect of saturation on interpreting anisotropy based on shear wave velocity, attenuation and spectral content as a function of saturation. In the laboratory, we performed full shear-waveform measurements on several dry cubic samples of Austin Chalk with dimensions 50mm x 50mm x 50mm. Two shear-wave contact transducers (central Frequency 1 MHz) were use to send and receive signals. Data was collected for three orthogonal orientations of the sample and as a function of shear wave polarization relative to the layers in the sample. For the waves propagated parallel to the layers, both fast and slow shear waves were observed with velocities of 3444 m/s and 3193 m/s, respectively. It was noted that the minimum and maximum shear wave velocities did not occur when the shear wave polarization were perpendicular or parallel to the layering in the sample but occurred at an orientation of ~25 degrees from the normal to the layers. The sample was then vacuum saturated with water for approximately ~15 hours. The same measurements were performed on the saturated sample as those on the dry sample. Both shear wave velocities observed decreased upon water-saturation with corresponding velocities of 3155 m/s and 2939 m/s, respectively. In the dry condition the difference between the fast and slow shear wave velocities was 250 m/s. This difference decreased to 215 m/s after fluid saturation. In both the dry and saturated condition, the shear wave velocity for waves propagated perpendicularly to the layers was independent of polarization and had the same magnitude as that of the slow shear wave. A wavelet analysis was performed to determine changes in the spectral content of the signals upon saturation as well velocity dispersion. We found that (1) low frequency components exhibit a larger difference in time delay between the fast and slow shear waves for the water-saturated condition than for the dry condition; (2) that high frequency components have relatively small differences in time delay between the dry and saturated conditions; and (3) the dominant frequency shifted to lower frequencies for the fast shear wave upon saturation while no change in dominant frequency was observed for the slow shear wave upon saturation. Thus, fluid saturation affects shear velocity as well as the spectral content of the signal. Acknowledgments: The authors wish to acknowledge support of this work by the Geosciences Research Program, Office of Basic Energy Sciences US Department of Energy (DE-FG02-09ER16022), by Exxon Mobil Upstream Research Company and the GeoMathematical Imaging Group at Purdue University.

  15. Studies of large amplitude Alfvén waves and wave-wave interactions in LAPD

    NASA Astrophysics Data System (ADS)

    Carter, T. A.; Brugman, B.; Auerbach, D. W.

    2006-10-01

    Electromagnetic turbulence is thought to play an important role in plasmas in astrophysical settings (e.g. the interstellar medium, accretion disks) and in the laboratory (e.g. transport in magnetic fusion devices). From a weak turbulence point of view, nonlinear interactions between shear Alfvén waves are fundamental to the turbulent energy cascade in magnetic turbulence. An overview of experiments on large amplitude shear Alfvén waves in the Large Plasma Device (LAPD) will be presented. Large amplitude Alfvén waves (δB/B ˜1%) are generated either using a resonant cavity or loop antennas. Properties of Alfvén waves generated by these sources will be discussed, along with evidence of heating, background density modification and electron acceleration by the waves. An overview of experiments on wave-wave interactions will be given along with a discussion of future directions.

  16. Influence of polymer coating morphology on microsensor response

    NASA Astrophysics Data System (ADS)

    Levit, Natalia; Pestov, Dmitry; Tepper, Gary C.

    2004-03-01

    Nanoscale polymeric coatings are used in a variety of sensor systems. The influence of polymer coating morphology on sensor response was investigated and it was determined that coating morphology plays a particularly important role in transducers based on optical or acoustic resonance such as surface acoustic wave (SAW) or surface plasmon resonance (SPR) devices. Nanoscale polymeric coatings were deposited onto a number of miniature devices using a "solvent-free" deposition technique known as Rapid Expansion of Supercritical Solutions (RESS). In RESS, the supercritical solvent goes into the vapor phase upon fast depressurization and separates from the polymer. Therefore, dry polymer particles are deposited from the gas phase. The average diameter of RESS precipitates is about two orders of magnitude smaller than the minimum droplet size achievable by the air-brush method. For rubbery polymers, such as PIB and PDMS, the nanoscale solute droplets produced by RESS agglomerate on the surface forming a highly-uniform continuous nanoscale film. For glassy and crstalline polymers, the RESS droplets produce uniform particulate coatings exhibiting high surface-to-volume ratio. The coating morphology can be changed by controlling the RESS processing conditions.

  17. Overcoming Challenges in Kinetic Modeling of Magnetized Plasmas and Vacuum Electronic Devices

    NASA Astrophysics Data System (ADS)

    Omelchenko, Yuri; Na, Dong-Yeop; Teixeira, Fernando

    2017-10-01

    We transform the state-of-the art of plasma modeling by taking advantage of novel computational techniques for fast and robust integration of multiscale hybrid (full particle ions, fluid electrons, no displacement current) and full-PIC models. These models are implemented in 3D HYPERS and axisymmetric full-PIC CONPIC codes. HYPERS is a massively parallel, asynchronous code. The HYPERS solver does not step fields and particles synchronously in time but instead executes local variable updates (events) at their self-adaptive rates while preserving fundamental conservation laws. The charge-conserving CONPIC code has a matrix-free explicit finite-element (FE) solver based on a sparse-approximate inverse (SPAI) algorithm. This explicit solver approximates the inverse FE system matrix (``mass'' matrix) using successive sparsity pattern orders of the original matrix. It does not reduce the set of Maxwell's equations to a vector-wave (curl-curl) equation of second order but instead utilizes the standard coupled first-order Maxwell's system. We discuss the ability of our codes to accurately and efficiently account for multiscale physical phenomena in 3D magnetized space and laboratory plasmas and axisymmetric vacuum electronic devices.

  18. Investigation of electrostatic waves in the ion cyclotron range of frequencies in L-4 and ACT-1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ono, Masayuki

    Electrostatic waves in the ion cyclotron range of frequencies (ICRF) were studied in the Princeton L-4 and ACT-1 devices for approximately ten years, from 1975 to 1985. The investigation began in the L-4 linear device, looking for the parametric excitation of electrostatic ion cyclotron waves in multi-ion-species plasmas. In addition, this investigation verified multi-ion-species effects on the electrostatic ion cyclotron wave dispersion religion including the ion-ion hybrid resonance. Finite-Larmor-radius modification of the wave dispersion relation was also observed, even for ion temperatures of T{sub i} {approx} 1/40 eV. Taking advantage of the relatively high field and long device length ofmore » L-4, the existence of the cold electrostatic ion cyclotron wave (CES ICW) was verified. With the arrival of the ACT-1 toroidal device, finite-Larmor-radius (FLR) waves were studied in a relatively collisionless warm-ion hydrogen plasma. Detailed investigations of ion Bernstein waves (IBW) included the verification of mode-transformation in their launching, their wave propagation characteristics, their absorption, and the resulting ion heating. This basic physics activity played a crucial role in developing a new reactor heating concept termed ion Bernstein wave heating. Experimental research in the lower hybrid frequency range confirmed the existence of FLR effects near the lower hybrid resonance, predicted by Stix in 1965. In a neon plasma with a carefully placed phased wave exciter, the neutralized ion Bernstein wave was observed for the first time. Using a fastwave ICRF antenna, two parasitic excitation processes for IBW -- parametric instability and density-gradient-driven excitation -- were also discovered. In the concluding section of this paper, a possible application of externally launched electrostatic waves is suggested for helium ash removal from fusion reactor plasmas.« less

  19. Investigation of electrostatic waves in the ion cyclotron range of frequencies in L-4 and ACT-1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ono, Masayuki.

    Electrostatic waves in the ion cyclotron range of frequencies (ICRF) were studied in the Princeton L-4 and ACT-1 devices for approximately ten years, from 1975 to 1985. The investigation began in the L-4 linear device, looking for the parametric excitation of electrostatic ion cyclotron waves in multi-ion-species plasmas. In addition, this investigation verified multi-ion-species effects on the electrostatic ion cyclotron wave dispersion religion including the ion-ion hybrid resonance. Finite-Larmor-radius modification of the wave dispersion relation was also observed, even for ion temperatures of T[sub i] [approx] 1/40 eV. Taking advantage of the relatively high field and long device length ofmore » L-4, the existence of the cold electrostatic ion cyclotron wave (CES ICW) was verified. With the arrival of the ACT-1 toroidal device, finite-Larmor-radius (FLR) waves were studied in a relatively collisionless warm-ion hydrogen plasma. Detailed investigations of ion Bernstein waves (IBW) included the verification of mode-transformation in their launching, their wave propagation characteristics, their absorption, and the resulting ion heating. This basic physics activity played a crucial role in developing a new reactor heating concept termed ion Bernstein wave heating. Experimental research in the lower hybrid frequency range confirmed the existence of FLR effects near the lower hybrid resonance, predicted by Stix in 1965. In a neon plasma with a carefully placed phased wave exciter, the neutralized ion Bernstein wave was observed for the first time. Using a fastwave ICRF antenna, two parasitic excitation processes for IBW -- parametric instability and density-gradient-driven excitation -- were also discovered. In the concluding section of this paper, a possible application of externally launched electrostatic waves is suggested for helium ash removal from fusion reactor plasmas.« less

  20. Ultrasonic speech translator and communications system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akerman, M.A.; Ayers, C.W.; Haynes, H.D.

    1996-07-23

    A wireless communication system undetectable by radio frequency methods for converting audio signals, including human voice, to electronic signals in the ultrasonic frequency range, transmitting the ultrasonic signal by way of acoustical pressure waves across a carrier medium, including gases, liquids, or solids, and reconverting the ultrasonic acoustical pressure waves back to the original audio signal. The ultrasonic speech translator and communication system includes an ultrasonic transmitting device and an ultrasonic receiving device. The ultrasonic transmitting device accepts as input an audio signal such as human voice input from a microphone or tape deck. The ultrasonic transmitting device frequency modulatesmore » an ultrasonic carrier signal with the audio signal producing a frequency modulated ultrasonic carrier signal, which is transmitted via acoustical pressure waves across a carrier medium such as gases, liquids or solids. The ultrasonic receiving device converts the frequency modulated ultrasonic acoustical pressure waves to a frequency modulated electronic signal, demodulates the audio signal from the ultrasonic carrier signal, and conditions the demodulated audio signal to reproduce the original audio signal at its output. 7 figs.« less

  1. Circuit quantum acoustodynamics with surface acoustic waves.

    PubMed

    Manenti, Riccardo; Kockum, Anton F; Patterson, Andrew; Behrle, Tanja; Rahamim, Joseph; Tancredi, Giovanna; Nori, Franco; Leek, Peter J

    2017-10-17

    The experimental investigation of quantum devices incorporating mechanical resonators has opened up new frontiers in the study of quantum mechanics at a macroscopic level. It has recently been shown that surface acoustic waves (SAWs) can be piezoelectrically coupled to superconducting qubits, and confined in high-quality Fabry-Perot cavities in the quantum regime. Here we present measurements of a device in which a superconducting qubit is coupled to a SAW cavity, realising a surface acoustic version of cavity quantum electrodynamics. We use measurements of the AC Stark shift between the two systems to determine the coupling strength, which is in agreement with a theoretical model. This quantum acoustodynamics architecture may be used to develop new quantum acoustic devices in which quantum information is stored in trapped on-chip acoustic wavepackets, and manipulated in ways that are impossible with purely electromagnetic signals, due to the 10 5 times slower mechanical waves.In this work, Manenti et al. present measurements of a device in which a tuneable transmon qubit is piezoelectrically coupled to a surface acoustic wave cavity, realising circuit quantum acoustodynamic architecture. This may be used to develop new quantum acoustic devices.

  2. Ultrasonic speech translator and communications system

    DOEpatents

    Akerman, M. Alfred; Ayers, Curtis W.; Haynes, Howard D.

    1996-01-01

    A wireless communication system undetectable by radio frequency methods for converting audio signals, including human voice, to electronic signals in the ultrasonic frequency range, transmitting the ultrasonic signal by way of acoustical pressure waves across a carrier medium, including gases, liquids, or solids, and reconverting the ultrasonic acoustical pressure waves back to the original audio signal. The ultrasonic speech translator and communication system (20) includes an ultrasonic transmitting device (100) and an ultrasonic receiving device (200). The ultrasonic transmitting device (100) accepts as input (115) an audio signal such as human voice input from a microphone (114) or tape deck. The ultrasonic transmitting device (100) frequency modulates an ultrasonic carrier signal with the audio signal producing a frequency modulated ultrasonic carrier signal, which is transmitted via acoustical pressure waves across a carrier medium such as gases, liquids or solids. The ultrasonic receiving device (200) converts the frequency modulated ultrasonic acoustical pressure waves to a frequency modulated electronic signal, demodulates the audio signal from the ultrasonic carrier signal, and conditions the demodulated audio signal to reproduce the original audio signal at its output (250).

  3. Spatial transformation-enabled electromagnetic devices: from radio frequencies to optical wavelengths.

    PubMed

    Jiang, Zhi Hao; Turpin, Jeremy P; Morgan, Kennith; Lu, Bingqian; Werner, Douglas H

    2015-08-28

    Transformation optics provides scientists and engineers with a new powerful design paradigm to manipulate the flow of electromagnetic waves in a user-defined manner and with unprecedented flexibility, by controlling the spatial distribution of the electromagnetic properties of a medium. Using this approach, over the past decade, various previously undiscovered physical wave phenomena have been revealed and novel electromagnetic devices have been demonstrated throughout the electromagnetic spectrum. In this paper, we present versatile theoretical and experimental investigations on designing transformation optics-enabled devices for shaping electromagnetic wave radiation and guidance, at both radio frequencies and optical wavelengths. Different from conventional coordinate transformations, more advanced and versatile coordinate transformations are exploited here to benefit diverse applications, thereby providing expanded design flexibility, enhanced device performance, as well as reduced implementation complexity. These design examples demonstrate the comprehensive capability of transformation optics in controlling electromagnetic waves, while the associated novel devices will open up new paths towards future integrated electromagnetic component synthesis and design, from microwave to optical spectral regimes. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  4. Characteristics of surface acoustic waves in (11\\bar 2 0)ZnO film/ R-sapphire substrate structures

    NASA Astrophysics Data System (ADS)

    Wang, Yan; Zhang, ShuYi; Xu, Jing; Xie, YingCai; Lan, XiaoDong

    2018-02-01

    (11\\bar 2 0)ZnO film/ R-sapphire substrate structure is promising for high frequency acoustic wave devices. The propagation characteristics of SAWs, including the Rayleigh waves along [0001] direction and Love waves along [1ī00] direction, are investigated by using 3 dimensional finite element method (3D-FEM). The phase velocity ( v p), electromechanical coupling coefficient ( k 2), temperature coefficient of frequency ( TCF) and reflection coefficient ( r) of Rayleigh wave and Love wave devices are theoretically analyzed. Furthermore, the influences of ZnO films with different crystal orientation on SAW properties are also investigated. The results show that the 1st Rayleigh wave has an exceedingly large k 2 of 4.95% in (90°, 90°, 0°) (11\\bar 2 0)ZnO film/ R-sapphire substrate associated with a phase velocity of 5300 m/s; and the 0th Love wave in (0°, 90°, 0°) (11\\bar 2 0)ZnO film/ R-sapphire substrate has a maximum k 2 of 3.86% associated with a phase velocity of 3400 m/s. And (11\\bar 2 0)ZnO film/ R-sapphire substrate structures can be used to design temperature-compensated and wide-band SAW devices. All of the results indicate that the performances of SAW devices can be optimized by suitably selecting ZnO films with different thickness and crystal orientations deposited on R-sapphire substrates.

  5. Fast volumetric imaging with patterned illumination via digital micro-mirror device-based temporal focusing multiphoton microscopy.

    PubMed

    Chang, Chia-Yuan; Hu, Yvonne Yuling; Lin, Chun-Yu; Lin, Cheng-Han; Chang, Hsin-Yu; Tsai, Sheng-Feng; Lin, Tzu-Wei; Chen, Shean-Jen

    2016-05-01

    Temporal focusing multiphoton microscopy (TFMPM) has the advantage of area excitation in an axial confinement of only a few microns; hence, it can offer fast three-dimensional (3D) multiphoton imaging. Herein, fast volumetric imaging via a developed digital micromirror device (DMD)-based TFMPM has been realized through the synchronization of an electron multiplying charge-coupled device (EMCCD) with a dynamic piezoelectric stage for axial scanning. The volumetric imaging rate can achieve 30 volumes per second according to the EMCCD frame rate of more than 400 frames per second, which allows for the 3D Brownian motion of one-micron fluorescent beads to be spatially observed. Furthermore, it is demonstrated that the dynamic HiLo structural multiphoton microscope can reject background noise by way of the fast volumetric imaging with high-speed DMD patterned illumination.

  6. Determining mode excitations of vacuum electronics devices via three-dimensional simulations using the SOS code

    NASA Technical Reports Server (NTRS)

    Warren, Gary

    1988-01-01

    The SOS code is used to compute the resonance modes (frequency-domain information) of sample devices and separately to compute the transient behavior of the same devices. A code, DOT, is created to compute appropriate dot products of the time-domain and frequency-domain results. The transient behavior of individual modes in the device is then plotted. Modes in a coupled-cavity traveling-wave tube (CCTWT) section excited beam in separate simulations are analyzed. Mode energy vs. time and mode phase vs. time are computed and it is determined whether the transient waves are forward or backward waves for each case. Finally, the hot-test mode frequencies of the CCTWT section are computed.

  7. Wave energy absorption by a floating air bag

    NASA Astrophysics Data System (ADS)

    Kurniawan, A.; Chaplin, J. R.; Greaves, D. M.; Hann, M.

    2017-02-01

    A floating air bag, ballasted in water, expands and contracts as it heaves under wave action. Connecting the bag to a secondary volume via a turbine transforms the bag into a device capable of generating useful energy from the waves. Small-scale measurements of the device reveal some interesting properties, which are successfully predicted numerically. Owing to its compressibility, the device can have a heave resonance period longer than that of a rigid device of the same shape and size, without any phase control. Furthermore, varying the amount of air in the bag is found to change its shape and hence its dynamic response, while varying the turbine damping or the air volume ratio changes the dynamic response without changing the shape.

  8. Shock and Rarefaction Waves in a Heterogeneous Mantle

    NASA Astrophysics Data System (ADS)

    Jordan, J.; Hesse, M. A.

    2012-12-01

    We explore the effect of heterogeneities on partial melting and melt migration during active upwelling in the Earth's mantle. We have constructed simple, explicit nonlinear models in one dimension to examine heterogeneity and its dynamic affects on porosity, temperature and the magnesium number in a partially molten, porous medium comprised of olivine. The composition of the melt and solid are defined by a closed, binary phase diagram for a simplified, two-component olivine system. The two-component solid solution is represented by a phase loop where concentrations 0 and 1 to correspond to fayalite and forsterite, respectively. For analysis, we examine an advective system with a Riemann initial condition. Chromatographic tools and theory have primarily been used to track large, rare earth elements as tracers. In our case, we employ these theoretical tools to highlight the importance of the magnesium number, enthalpy and overall heterogeneity in the dynamics of melt migration. We calculate the eigenvectors and eigenvalues in the concentration-enthalpy space in order to glean the characteristics of the waves emerging the Riemann step. Analysis on Riemann problems of this nature shows us that the composition-enthalpy waves can be represented by self-similar solutions. The eigenvalues of the composition-enthalpy system represent the characteristic wave propagation speeds of the compositions and enthalpy through the domain. Furthermore, the corresponding eigenvectors are the directions of variation, or ``pathways," in concentration-enthalpy space that the characteristic waves follow. In the two-component system, the Riemann problem yields two waves connected by an intermediate concentration-enthalpy state determined by the intersections of the integral curves of the eigenvectors emanating from both the initial and boundary states. The first wave, ``slow path," and second wave, ``fast path," follow the aformentioned pathways set by the eigenvectors. The slow path wave has a zero eigenvalue, corresponding to a wave speed of zero, which preserves a residual imprint of the initial condition. Freezing fronts textemdash those that result in a negative change in porositytextemdash feature fast path waves that travel as shocks, whereas the fast path waves of melting fronts travel as spreading, rarefaction waves.

  9. Seismic anisotropy and its precursory change before eruptions at Piton de la Fournaise volcano, La Réunion

    NASA Astrophysics Data System (ADS)

    Savage, M. K.; Ferrazzini, V.; Peltier, A.; Rivemale, E.; Mayor, J.; Schmid, A.; Brenguier, F.; Massin, F.; Got, J.-L.; Battaglia, J.; DiMuro, A.; Staudacher, T.; Rivet, D.; Taisne, B.; Shelley, A.

    2015-05-01

    The Piton de la Fournaise volcano exhibits frequent eruptions preceded by seismic swarms and is a good target to test hypotheses about magmatically induced variations in seismic wave properties. We use a permanent station network and a portable broadband network to compare seismic anisotropy measured via shear wave splitting with geodetic displacements, ratios of compressional to shear velocity (Vp/Vs), earthquake focal mechanisms, and ambient noise correlation analysis of surface wave velocities and to examine velocity and stress changes from 2000 through 2012. Fast directions align radially to the central cone and parallel to surface cracks and fissures, suggesting stress-controlled cracks. High Vp/Vs ratios under the summit compared with low ratios under the flank suggest spatial variations in the proportion of fluid-filled versus gas-filled cracks. Secular variations of fast directions (ϕ) and delay times (dt) between split shear waves are interpreted to sense changing crack densities and pressure. Delay times tend to increase while surface wave velocity decreases before eruptions. Rotations of ϕ may be caused by changes in either stress direction or fluid pressure. These changes usually correlate with GPS baseline changes. Changes in shear wave splitting measurements made on multiplets yield several populations with characteristic delay times, measured incoming polarizations, and fast directions, which change their proportion as a function of time. An eruption sequence on 14 October 2010 yielded over 2000 shear wave splitting measurements in a 14 h period, allowing high time resolution measurements to characterize the sequence. Stress directions from a propagating dike model qualitatively fit the temporal change in splitting.

  10. What can wave energy learn from offshore oil and gas?

    PubMed

    Jefferys, E R

    2012-01-28

    This title may appear rather presumptuous in the light of the progress made by the leading wave energy devices. However, there may still be some useful lessons to be learnt from current 'offshore' practice, and there are certainly some awful warnings from the past. Wave energy devices and the marine structures used in oil and gas exploration as well as production share a common environment and both are subject to wave, wind and current loads, which may be evaluated with well-validated, albeit imperfect, tools. Both types of structure can be designed, analysed and fabricated using similar tools and technologies. They fulfil very different missions and are subject to different economic and performance requirements; hence 'offshore' design tools must be used appropriately in wave energy project and system design, and 'offshore' cost data should be adapted for 'wave' applications. This article reviews the similarities and differences between the fields and highlights the differing economic environments; offshore structures are typically a small to moderate component of field development cost, while wave power devices will dominate overall system cost. The typical 'offshore' design process is summarized and issues such as reliability-based design and design of not normally manned structures are addressed. Lessons learned from poor design in the past are discussed to highlight areas where care is needed, and wave energy-specific design areas are reviewed. Opportunities for innovation and optimization in wave energy project and device design are discussed; wave energy projects must ultimately compete on a level playing field with other routes to low CO₂ energy and/or energy efficiency. This article is a personal viewpoint and not an expression of a ConocoPhillips position.

  11. Observation of quasi-periodic solar radio bursts associated with propagating fast-mode waves

    NASA Astrophysics Data System (ADS)

    Goddard, C. R.; Nisticò, G.; Nakariakov, V. M.; Zimovets, I. V.; White, S. M.

    2016-10-01

    Aims: Radio emission observations from the Learmonth and Bruny Island radio spectrographs are analysed to determine the nature of a train of discrete, periodic radio "sparks" (finite-bandwidth, short-duration isolated radio features) which precede a type II burst. We analyse extreme ultraviolet (EUV) imaging from SDO/AIA at multiple wavelengths and identify a series of quasi-periodic rapidly-propagating enhancements, which we interpret as a fast wave train, and link these to the detected radio features. Methods: The speeds and positions of the periodic rapidly propagating fast waves and the coronal mass ejection (CME) were recorded using running-difference images and time-distance analysis. From the frequency of the radio sparks the local electron density at the emission location was estimated for each. Using an empirical model for the scaling of density in the corona, the calculated electron density was used to obtain the height above the surface at which the emission occurs, and the propagation velocity of the emission location. Results: The period of the radio sparks, δtr = 1.78 ± 0.04 min, matches the period of the fast wave train observed at 171 Å, δtEUV = 1.7 ± 0.2 min. The inferred speed of the emission location of the radio sparks, 630 km s-1, is comparable to the measured speed of the CME leading edge, 500 km s-1, and the speeds derived from the drifting of the type II lanes. The calculated height of the radio emission (obtained from the density) matches the observed location of the CME leading edge. From the above evidence we propose that the radio sparks are caused by the quasi-periodic fast waves, and the emission is generated as they catch up and interact with the leading edge of the CME. The movie associated to Fig. 2 is available at http://www.aanda.org

  12. Resonance Frequency Readout Circuit for a 900 MHz SAW Device

    PubMed Central

    Liu, Heng; Zhang, Chun; Weng, Zhaoyang; Guo, Yanshu; Wang, Zhihua

    2017-01-01

    A monolithic resonance frequency readout circuit with high resolution and short measurement time is presented for a 900 MHz RF surface acoustic wave (SAW) sensor. The readout circuit is composed of a fractional-N phase-locked loop (PLL) as the stimulus source to the SAW device and a phase-based resonance frequency detecting circuit using successive approximation (SAR). A new resonance frequency searching strategy has been proposed based on the fact that the SAW device phase-frequency response crosses zero monotonically around the resonance frequency. A dedicated instant phase difference detecting circuit is adopted to facilitate the fast SAR operation for resonance frequency searching. The readout circuit has been implemented in 180 nm CMOS technology with a core area of 3.24 mm2. In the experiment, it works with a 900 MHz SAW resonator with a quality factor of Q = 130. Experimental results show that the readout circuit consumes 7 mW power from 1.6 V supply. The frequency resolution is 733 Hz, and the relative accuracy is 0.82 ppm, and it takes 0.48 ms to complete one measurement. Compared to the previous results in the literature, this work has achieved the shortest measurement time with a trade-off between measurement accuracy and measurement time. PMID:28914799

  13. Resonance Frequency Readout Circuit for a 900 MHz SAW Device.

    PubMed

    Liu, Heng; Zhang, Chun; Weng, Zhaoyang; Guo, Yanshu; Wang, Zhihua

    2017-09-15

    A monolithic resonance frequency readout circuit with high resolution and short measurement time is presented for a 900 MHz RF surface acoustic wave (SAW) sensor. The readout circuit is composed of a fractional-N phase-locked loop (PLL) as the stimulus source to the SAW device and a phase-based resonance frequency detecting circuit using successive approximation (SAR). A new resonance frequency searching strategy has been proposed based on the fact that the SAW device phase-frequency response crosses zero monotonically around the resonance frequency. A dedicated instant phase difference detecting circuit is adopted to facilitate the fast SAR operation for resonance frequency searching. The readout circuit has been implemented in 180 nm CMOS technology with a core area of 3.24 mm². In the experiment, it works with a 900 MHz SAW resonator with a quality factor of Q = 130. Experimental results show that the readout circuit consumes 7 mW power from 1.6 V supply. The frequency resolution is 733 Hz, and the relative accuracy is 0.82 ppm, and it takes 0.48 ms to complete one measurement. Compared to the previous results in the literature, this work has achieved the shortest measurement time with a trade-off between measurement accuracy and measurement time.

  14. Defense Small Business Innovation Research (SBIR) Program. Program Solicitation 90.1. FY-1990

    DTIC Science & Technology

    1989-10-01

    Electronics Assemble and Test A90-125 Guided-Wave TeO2 Optical Devices A90-126 Acceleration Sensing Module for Munition Safety Systems A90-127 Electromagnetic...package containing all drawings and process information, complete operating manuals. A90-125 Guided-Wave TeO2 Optical Devices OBJECTIVE: This exploratory...bandwidth and efficiency of these devices. PHASE I: Phase one would consist of the design of several breadboard TeO2 AO devices each having TBWP of

  15. A scheme for recording a fast process at nanosecond scale by using digital holographic interferometry with continuous wave laser

    NASA Astrophysics Data System (ADS)

    Wang, Jun; Zhao, Jianlin; Di, Jianglei; Jiang, Biqiang

    2015-04-01

    A scheme for recording fast process at nanosecond scale by using digital holographic interferometry with continuous wave (CW) laser is described and demonstrated experimentally, which employs delayed-time fibers and angular multiplexing technique and can realize the variable temporal resolution at nanosecond scale and different measured depths of object field at certain temporal resolution. The actual delay-time is controlled by two delayed-time fibers with different lengths. The object field information in two different states can be simultaneously recorded in a composite hologram. This scheme is also suitable for recording fast process at picosecond scale, by using an electro-optic modulator.

  16. Observation of extremely strong shock waves in solids launched by petawatt laser heating

    DOE PAGES

    Lancaster, K. L.; Robinson, A. P. L.; Pasley, J.; ...

    2017-08-25

    Understanding hydrodynamic phenomena driven by fast electron heating is important for a range of applications including fast electron collimation schemes for fast ignition and the production and study of hot, dense matter. In this work, detailed numerical simulations modelling the heating, hydrodynamic evolution, and extreme ultra-violet (XUV) emission in combination with experimental XUV images indicate shock waves of exceptional strength (200 Mbar) launched due to rapid heating of materials via a petawatt laser. In conclusion, we discuss in detail the production of synthetic XUV images and how they assist us in interpreting experimental XUV images captured at 256 eV usingmore » a multi-layer spherical mirror.« less

  17. Investigations of Pressure Distribution on Fast Flying Bodies

    NASA Technical Reports Server (NTRS)

    Stamm, G.

    1946-01-01

    The question to be treated is: how high is the pressure in the bow wave caused by a body flying at supersonic speed, and how far reaching are the destructive effects of that wave? The pressure distribution on an s.S. and an S. projectile of normal speed has been ascertained already by the methods of measurement used at the Ballistic Institute of the Technical Academy of the German Air Forces. Now similar investigations of the conditions on especially fast-flying bodies were carried out.

  18. Extremely Fast Numerical Integration of Ocean Surface Wave Dynamics

    DTIC Science & Technology

    2007-09-30

    sub-processor must be added as shown in the blue box of Fig. 1. We first consider the Kadomtsev - Petviashvili (KP) equation ηt + coηx +αηηx + βη ...analytic integration of the so-called “soliton equations ,” I have discovered how the GFT can be used to solved higher order equations for which study...analytical study and extremely fast numerical integration of the extended nonlinear Schroedinger equation for fully three dimensional wave motion

  19. Helicon normal modes in Proto-MPEX

    NASA Astrophysics Data System (ADS)

    Piotrowicz, P. A.; Caneses, J. F.; Green, D. L.; Goulding, R. H.; Lau, C.; Caughman, J. B. O.; Rapp, J.; Ruzic, D. N.

    2018-05-01

    The Proto-MPEX helicon source has been operating in a high electron density ‘helicon-mode’. Establishing plasma densities and magnetic field strengths under the antenna that allow for the formation of normal modes of the fast-wave are believed to be responsible for the ‘helicon-mode’. A 2D finite-element full-wave model of the helicon antenna on Proto-MPEX is used to identify the fast-wave normal modes responsible for the steady-state electron density profile produced by the source. We also show through the simulation that in the regions of operation in which core power deposition is maximum the slow-wave does not deposit significant power besides directly under the antenna. In the case of a simulation where a normal mode is not excited significant edge power is deposited in the mirror region. ).

  20. Helicon normal modes in Proto-MPEX

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Piotrowicz, Pawel A.; Caneses, Juan F.; Green, David L.

    Here, the Proto-MPEX helicon source has been operating in a high electron density 'helicon-mode'. Establishing plasma densities and magnetic field strengths under the antenna that allow for the formation of normal modes of the fast-wave are believed to be responsible for the 'helicon-mode'. A 2D finite-element full-wave model of the helicon antenna on Proto-MPEX is used to identify the fast-wave normal modes responsible for the steady-state electron density profile produced by the source. We also show through the simulation that in the regions of operation in which core power deposition is maximum the slow-wave does not deposit significant power besidesmore » directly under the antenna. In the case of a simulation where a normal mode is not excited significant edge power is deposited in the mirror region.« less

  1. Helicon normal modes in Proto-MPEX

    DOE PAGES

    Piotrowicz, Pawel A.; Caneses, Juan F.; Green, David L.; ...

    2018-05-22

    Here, the Proto-MPEX helicon source has been operating in a high electron density 'helicon-mode'. Establishing plasma densities and magnetic field strengths under the antenna that allow for the formation of normal modes of the fast-wave are believed to be responsible for the 'helicon-mode'. A 2D finite-element full-wave model of the helicon antenna on Proto-MPEX is used to identify the fast-wave normal modes responsible for the steady-state electron density profile produced by the source. We also show through the simulation that in the regions of operation in which core power deposition is maximum the slow-wave does not deposit significant power besidesmore » directly under the antenna. In the case of a simulation where a normal mode is not excited significant edge power is deposited in the mirror region.« less

  2. Bootstrap and fast wave current drive for tokamak reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ehst, D.A.

    1991-09-01

    Using the multi-species neoclassical treatment of Hirshman and Sigmar we study steady state bootstrap equilibria with seed currents provided by low frequency (ICRF) fast waves and with additional surface current density driven by lower hybrid waves. This study applies to reactor plasmas of arbitrary aspect ratio. IN one limit the bootstrap component can supply nearly the total equilibrium current with minimal driving power (< 20 MW). However, for larger total currents considerable driving power is required (for ITER: I{sub o} = 18 MA needs P{sub FW} = 15 MW, P{sub LH} = 75 MW). A computational survey of bootstrap fractionmore » and current drive efficiency is presented. 11 refs., 8 figs.« less

  3. Modeling and Theory of RF Antenna Systems on Proto-MPEX

    NASA Astrophysics Data System (ADS)

    Piotrowicz, P. A.; Caneses, J. F.; Goulding, R. H.; Green, D.; Caughman, J. B. O.; Ruzic, D. N.; Proto-MPEX Team

    2017-10-01

    The RF wave coupling of the helicon and ICH antennas installed on the Prototype Material Plasma Exposure eXperiment (MPEX) has been explored theoretically and via a full wave model implemented in COMSOL Multiphysics. The high-density mode in Proto-MPEX has been shown to occur when exciting radial eigenmodes of the plasma column which coincides with entering a Trivelpiece Gould (TG) anti-resonant regime, therefore suppressing edge heating in favor of core power deposition. The fast wave launched by the helicon antenna has a large wavelength and travels at a steep group velocity angle with the background magnetic field; for this reason the fast wave launched by the helicon antenna efficiently couples power to the core plasma. However, the ICH heating scheme relies on a small wavelength slow wave to couple power to the core of the plasma column. Coupling slow wave power to the core of the plasma column is sensitive to the location of the Alfven resonance. The wave-vector and group velocity vector of the slow wave in this parameter regime undergoes a drastic change in behavior when approaching the Alfven resonance. Full wave simulation results and dispersion analysis will be presented with suggestions to guide experimental progress. This work was supported by the US. D.O.E. contract DE-AC05-00OR22725.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roberts, Jesse D.; Chang, Grace; Jones, Craig

    The numerical model, SWAN (Simulating WAves Nearshore) , was used to simulate wave conditions in Kaneohe Bay, HI in order to determine the effects of wave energy converter ( WEC ) devices on the propagation of waves into shore. A nested SWAN model was validated then used to evaluate a range of initial wave conditions: significant wave heights (H s ) , peak periods (T p ) , and mean wave directions ( MWD) . Differences between wave height s in the presence and absence of WEC device s were assessed at locations in shore of the WEC array. Themore » maximum decrease in wave height due to the WEC s was predicted to be approximately 6% at 5 m and 10 m water depths. Th is occurred for model initiation parameters of H s = 3 m (for 5 m water depth) or 4 m (10 m water depth) , T p = 10 s, and MWD = 330deg . Subsequently, bottom orbital velocities were found to decrease by about 6%.« less

  5. Reduced spike-timing reliability correlates with the emergence of fast ripples in the rat epileptic hippocampus.

    PubMed

    Foffani, Guglielmo; Uzcategui, Yoryani G; Gal, Beatriz; Menendez de la Prida, Liset

    2007-09-20

    Ripples are sharp-wave-associated field oscillations (100-300 Hz) recorded in the hippocampus during behavioral immobility and slow-wave sleep. In epileptic rats and humans, a different and faster oscillation (200-600 Hz), termed fast ripples, has been described. However, the basic mechanisms are unknown. Here, we propose that fast ripples emerge from a disorganized ripple pattern caused by unreliable firing in the epileptic hippocampus. Enhanced synaptic activity is responsible for the irregular bursting of CA3 pyramidal cells due to large membrane potential fluctuations. Lower field interactions and a reduced spike-timing reliability concur with decreased spatial synchronization and the emergence of fast ripples. Reducing synaptically driven membrane potential fluctuations improves both spike-timing reliability and spatial synchronization and restores ripples in the epileptic hippocampus. Conversely, a lower spike-timing reliability, with reduced potassium currents, is associated with ripple shuffling in normal hippocampus. Therefore, fast ripples may reflect a pathological desynchronization of the normal ripple pattern.

  6. A fast wind-farm boundary-layer model to investigate gravity wave effects and upstream flow deceleration

    NASA Astrophysics Data System (ADS)

    Allaerts, Dries; Meyers, Johan

    2017-11-01

    Wind farm design and control often relies on fast analytical wake models to predict turbine wake interactions and associated power losses. Essential input to these models are the inflow velocity and turbulent intensity at hub height, which come from prior measurement campaigns or wind-atlas data. Recent LES studies showed that in some situations large wind farms excite atmospheric gravity waves, which in turn affect the upstream wind conditions. In the current study, we develop a fast boundary-layer model that computes the excitation of gravity waves and the perturbation of the boundary-layer flow in response to an applied force. The core of the model is constituted by height-averaged, linearised Navier-Stokes equations for the inner and outer layer, and the effect of atmospheric gravity waves (excited by the boundary-layer displacement) is included via the pressure gradient. Coupling with analytical wake models allows us to study wind-farm wakes and upstream flow deceleration in various atmospheric conditions. Comparison with wind-farm LES results shows excellent agreement in terms of pressure and boundary-layer displacement levels. The authors acknowledge support from the European Research Council (FP7-Ideas, Grant No. 306471).

  7. Fast Solitons on Star Graphs

    NASA Astrophysics Data System (ADS)

    Adami, Riccardo; Cacciapuoti, Claudio; Finco, Domenico; Noja, Diego

    We define the Schrödinger equation with focusing, cubic nonlinearity on one-vertex graphs. We prove global well-posedness in the energy domain and conservation laws for some self-adjoint boundary conditions at the vertex, i.e. Kirchhoff boundary condition and the so-called δ and δ‧ boundary conditions. Moreover, in the same setting, we study the collision of a fast solitary wave with the vertex and we show that it splits in reflected and transmitted components. The outgoing waves preserve a soliton character over a time which depends on the logarithm of the velocity of the ingoing solitary wave. Over the same timescale, the reflection and transmission coefficients of the outgoing waves coincide with the corresponding coefficients of the linear problem. In the analysis of the problem, we follow ideas borrowed from the seminal paper [17] about scattering of fast solitons by a delta interaction on the line, by Holmer, Marzuola and Zworski. The present paper represents an extension of their work to the case of graphs and, as a byproduct, it shows how to extend the analysis of soliton scattering by other point interactions on the line, interpreted as a degenerate graph.

  8. Millimeter-Wave Generation Via Plasma Three-Wave Mixing

    DTIC Science & Technology

    1988-06-01

    are coupled to a third space -charge wave with dispersion 2w W k -k k . (16) A plasma-loaded-waveguide mode is excited at the intersection of this...DISPERSION "FAST" W PLASMA WAVE Wc PLASMA WAVE A-lA oppositely directed EPWs with different phase velocities (wp/k., and wO/k. 2) are coupled to a third ... space -charge wave with dispersion 2w I- k k .(16) e 2 A plaama-loaded-waveguide mode is excited at the intersection of this coupled space-charge wave

  9. Breakthroughs in Low-Profile Leaky-Wave HPM Antennas

    DTIC Science & Technology

    2015-03-18

    presentation of our work at the 17th annual DEPS conference. 15. SUBJECT TERMS Leaky-wave Antennas. High Power Microwaves (HPM) Antennas. Low-profile...the performance, behavior, and design of innovative High Power Microwave (HPM, GW-class) antennas of the forward-traveling, fast-wave, leaky-wave...Conformal Antennas. 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER OF PAGES 19a. NAME OF RESPONSIBLE PERSON (Monitor

  10. Parametrics for Molecular Deuterium Concentrations in the Source Region of the UW-IEC Device Using an Ion Acoustic Wave Diagnostic

    NASA Astrophysics Data System (ADS)

    Boris, D. R.; Emmert, G. A.

    2007-11-01

    The ion source region of the UW-Inertial Electrostatic Confinement device is comprised of a filament assisted DC discharge plasma that exists between the wall of the IEC vacuum chamber and the grounded spherical steel grid that makes up the anode of the IEC device. A 0-dimensional rate equation calculation of the molecular deuterium ion species concentration has been applied utilizing varying primary electron energy, and neutral gas pressure. By propagating ion acoustic waves in the source region of the IEC device the concentrations of molecular deuterium ion species have been determined for these varying plasma conditions, and high D3^+ concentrations have been verified. This was done by utilizing the multi-species ion acoustic wave dispersion relation, which relates the phase speed of the multi-species ion acoustic wave, vph, to the sum in quadrature of the concentration weighted ion acoustic sound speeds of the individual ion species.

  11. Impacts of wave energy conversion devices on local wave climate: observations and modelling from the Perth Wave Energy Project

    NASA Astrophysics Data System (ADS)

    Hoeke, Ron; Hemer, Mark; Contardo, Stephanie; Symonds, Graham; Mcinnes, Kathy

    2016-04-01

    As demonstrated by the Australian Wave Energy Atlas (AWavEA), the southern and western margins of the country possess considerable wave energy resources. The Australia Government has made notable investments in pre-commercial wave energy developments in these areas, however little is known about how this technology may impact local wave climate and subsequently affect neighbouring coastal environments, e.g. altering sediment transport, causing shoreline erosion or accretion. In this study, a network of in-situ wave measurement devices have been deployed surrounding the 3 wave energy converters of the Carnegie Wave Energy Limited's Perth Wave Energy Project. This data is being used to develop, calibrate and validate numerical simulations of the project site. Early stage results will be presented and potential simulation strategies for scaling-up the findings to larger arrays of wave energy converters will be discussed. The intended project outcomes are to establish zones of impact defined in terms of changes in local wave energy spectra and to initiate best practice guidelines for the establishment of wave energy conversion sites.

  12. Study of a Novel Oscillating Surge Wave Energy Converter: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tom, Nathan M; Choiniere, Michael; Thiagarajan, Krish P.

    This study investigates the performance of an oscillating surge wave energy converter (OSWEC) that utilizes adjustable geometry as a means of controlling the hydrodynamic coefficients, a concept originally proposed by [1]. The body of the device consists of a bottom-hinged solid rectangular frame with five horizontal flaps spanning the interior of the frame. The flaps can rotate independently about their center of rotation within the frame like a large window shutter. Changing the orientation of the flaps alters the hydrodynamic coefficients and natural frequency of the device as well as the ability to shed or absorb structural loads accordingly. Thismore » ability may allow the device to operate in a wider range of sea states than other current wave energy converter designs. This paper presents and compares the results of numerical simulations and experimental testing of the OSWEC's response to regular waves with all five of the horizontal fin configurations sharing the same orientation of 0 degrees (fully closed interior) and 90 degrees (fully open). The numerical simulations were performed using WAMIT, which calculates hydrodynamic coefficients using a boundary element method code to solve the linear potential flow problem, and WEC-Sim, a MATLAB-based tool that simulates multibody devices in the time domain by solving the governing equations of motion. A 1:14 scale model of the device was built for experimental evaluation in an 8-m-long, 1-m wide wave tank, which supports a water depth of 0.7 m. The OSWEC motion in different wave conditions was measured with displacement sensors while nonlinear wave-structure interaction effects like slamming and overtopping were captured using a high-speed camera and used to understand differences between the simulation and experiments.« less

  13. DIFFRACTION, REFRACTION, AND REFLECTION OF AN EXTREME-ULTRAVIOLET WAVE OBSERVED DURING ITS INTERACTIONS WITH REMOTE ACTIVE REGIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen Yuandeng; Liu Yu; Zhao Ruijuan

    2013-08-20

    We present observations of the diffraction, refraction, and reflection of a global extreme-ultraviolet (EUV) wave propagating in the solar corona. These intriguing phenomena are observed when the wave interacts with two remote active regions, and together they exhibit properties of an EUV wave. When the wave approached AR11465, it became weaker and finally disappeared in the active region, but a few minutes later a new wavefront appeared behind the active region, and it was not concentric with the incoming wave. In addition, a reflected wave was also simultaneously observed on the wave incoming side. When the wave approached AR11459, itmore » transmitted through the active region directly and without reflection. The formation of the new wavefront and the transmission could be explained with diffraction and refraction effects, respectively. We propose that the different behaviors observed during the interactions may be caused by different speed gradients at the boundaries of the two active regions. We find that the EUV wave formed ahead of a group of expanding loops a few minutes after the start of the loops' expansion, which represents the initiation of the associated coronal mass ejection (CME). Based on these results, we conclude that the EUV wave should be a nonlinear magnetosonic wave or shock driven by the associated CME, which propagated faster than the ambient fast mode speed and gradually slowed down to an ordinary linear wave. Our observations support the hybrid model that includes both fast wave and slow non-wave components.« less

  14. Modeling of a Compact Terahertz Source based on the Two-Stream Instability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Svimonishvili, Tengiz

    2016-05-17

    THz radiation straddles the microwave and infrared bands of the electromagnetic spectrum, thus combining the penetrating power of lower-frequency waves and imaging capabilities of higher-energy infrared radiation. THz radiation is employed in various elds such as cancer research, biology, agriculture, homeland security, and environmental monitoring. Conventional vacuum electronic sources of THz radiation (e.g., fast- and slow-wave devices) either require very small structures or are bulky and expensive to operate. Optical sources necessitate cryogenic cooling and are presently capable of producing milliwatt levels of power at THz frequencies. We propose a millimeter and sub-millimeter wave source based on a well-known phenomenonmore » called the two-stream instability. The two-beam source relies on lowenergy and low-current electron beams for operation. Also, it is compact, simple in design, and does not contain expensive parts that require complex machining and precise alignment. In this dissertation, we perform 2-D particle-in-cell (PIC) simulations of the interaction region of the two-beam source. The interaction region consists of a beam pipe of radius ra and two electron beams of radius rb co-propagating and interacting inside the pipe. The simulations involve the interaction of unmodulated (no initial energy modulation) and modulated (energy-modulated, seeded at a given frequency) electron beams. In addition, both cold (monoenergetic) and warm (Gaussian) beams are treated.« less

  15. A visible light imaging device for cardiac rate detection with reduced effect of body movement

    NASA Astrophysics Data System (ADS)

    Jiang, Xiaotian; Liu, Ming; Zhao, Yuejin

    2014-09-01

    A visible light imaging system to detect human cardiac rate is proposed in this paper. A color camera and several LEDs, acting as lighting source, were used to avoid the interference of ambient light. From people's forehead, the cardiac rate could be acquired based on photoplethysmography (PPG) theory. The template matching method was used after the capture of video. The video signal was discomposed into three signal channels (RGB) and the region of interest was chosen to take the average gray value. The green channel signal could provide an excellent waveform of pulse wave on the account of green lights' absorptive characteristics of blood. Through the fast Fourier transform, the cardiac rate was exactly achieved. But the research goal was not just to achieve the cardiac rate accurately. With the template matching method, the effects of body movement are reduced to a large extent, therefore the pulse wave can be detected even while people are in the moving state and the waveform is largely optimized. Several experiments are conducted on volunteers, and the results are compared with the ones gained by a finger clamped pulse oximeter. The contrast results between these two ways are exactly agreeable. This method to detect the cardiac rate and the pulse wave largely reduces the effects of body movement and can probably be widely used in the future.

  16. RF Rectification on LAPD and NSTX: the relationship between rectified currents and potentials

    NASA Astrophysics Data System (ADS)

    Perkins, R. J.; Carter, T.; Caughman, J. B.; van Compernolle, B.; Gekelman, W.; Hosea, J. C.; Jaworski, M. A.; Kramer, G. J.; Lau, C.; Martin, E. H.; Pribyl, P.; Tripathi, S. K. P.; Vincena, S.

    2017-10-01

    RF rectification is a sheath phenomenon important in the fusion community for impurity injection, hot spot formation on plasma-facing components, modifications of the scrape-off layer, and as a far-field sink of wave power. The latter is of particular concern for the National Spherical Torus eXperiment (NSTX), where a substantial fraction of the fast-wave power is lost to the divertor along scrape-off layer field lines. To assess the relationship between rectified currents and rectified voltages, detailed experiments have been performed on the Large Plasma Device (LAPD). An electron current is measured flowing out of the antenna and into the limiters, consistent with RF rectification with a higher RF potential at the antenna. The scaling of this current with RF power will be presented. The limiters are also floated to inhibit this DC current; the impact of this change on plasma-potential and wave-field measurements will be shown. Comparison to data from divertor probes in NSTX will be made. These experiments on a flexible mid-sized experiment will provide insight and guidance into the effects of ICRF on the edge plasma in larger fusion experiments. Funded by the DOE OFES (DE-FC02-07ER54918 and DE-AC02-09CH11466), NSF (NSF- PHY 1036140), and the Univ. of California (12-LR- 237124).

  17. FAST Model Calibration and Validation of the OC5-DeepCwind Floating Offshore Wind System Against Wave Tank Test Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wendt, Fabian F; Robertson, Amy N; Jonkman, Jason

    During the course of the Offshore Code Comparison Collaboration, Continued, with Correlation (OC5) project, which focused on the validation of numerical methods through comparison against tank test data, the authors created a numerical FAST model of the 1:50-scale DeepCwind semisubmersible system that was tested at the Maritime Research Institute Netherlands ocean basin in 2013. This paper discusses several model calibration studies that were conducted to identify model adjustments that improve the agreement between the numerical simulations and the experimental test data. These calibration studies cover wind-field-specific parameters (coherence, turbulence), hydrodynamic and aerodynamic modeling approaches, as well as rotor model (blade-pitchmore » and blade-mass imbalances) and tower model (structural tower damping coefficient) adjustments. These calibration studies were conducted based on relatively simple calibration load cases (wave only/wind only). The agreement between the final FAST model and experimental measurements is then assessed based on more-complex combined wind and wave validation cases.« less

  18. Anisotropic Rayleigh-wave phase velocities beneath northern Vietnam

    NASA Astrophysics Data System (ADS)

    Legendre, Cédric P.; Zhao, Li; Huang, Win-Gee; Huang, Bor-Shouh

    2015-02-01

    We explore the Rayleigh-wave phase-velocity structure beneath northern Vietnam over a broad period range of 5 to 250 s. We use the two-stations technique to derive the dispersion curves from the waveforms of 798 teleseismic events recoded by a set of 23 broadband seismic stations deployed in northern Vietnam. These dispersion curves are then inverted for both isotropic and azimuthally anisotropic Rayleigh-wave phase-velocity maps in the frequency range of 10 to 50 s. Main findings include a crustal expression of the Red River Shear Zone and the Song Ma Fault. Northern Vietnam displays a northeast/southwest dichotomy in the lithosphere with fast velocities beneath the South China Block and slow velocities beneath the Simao Block and between the Red River Fault and the Song Da Fault. The anisotropy in the region is relatively simple, with a high amplitude and fast directions parallel to the Red River Shear Zone in the western part. In the eastern part, the amplitudes are generally smaller and the fast axis displays more variations with periods.

  19. Weak rotating flow disturbances in a centrifugal compressor with a vaneless diffuser

    NASA Technical Reports Server (NTRS)

    Moore, F. K.

    1988-01-01

    A theory is presented to predict the occurrence of weak rotating waves in a centrifugal compression system with a vaneless diffuser. As in a previous study of axial systems, an undisturbed performance characteristic is assumed known. Following an inviscid analysis of the diffuser flow, conditions for a neutral rotating disturbance are found. The solution is shown to have two branches; one with fast rotation, the other with very slow rotation. The slow branch includes a dense set of resonant solutions. The resonance is a feature of the diffuser flow, and therefore such disturbances must be expected at the various resonant flow coefficients regardless of the compressor characteristic. Slow solutions seem limited to flow coefficients less than about 0.3, where third and fourth harmonics appear. Fast waves seem limited to a first harmonic. These fast and slow waves are described, and effects of diffuser-wall convergence, backward blade angles, and partial recovery of exit velocity head are assessed.

  20. A study on crustal shear wave splitting in the western part of the Banda arc-continent collision

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Syuhada, E-mail: hadda9@gmail.com; Research Centre for Physics - Indonesian Institute of Sciences; Hananto, Nugroho D.

    2016-03-11

    We analyzed shear wave splitting parameters from local shallow (< 30 km) earthquakes recorded at six seismic stations in the western part of the Banda arc-continent collision. We determined fast polarization and delay time for 195 event-stations pairs calculated from good signal-to-noise ratio waveforms. We observed that there is evidence for shear wave splitting at all stations with dominant fast polarization directions oriented about NE-SW, which are parallel to the collision direction of the Australian plate. However, minor fast polarization directions are oriented around NW-SE being perpendicular to the strike of Timor through. Furthermore, the changes in fast azimuths with themore » earthquake-station back azimuth suggest that the crustal anisotropy in the study area is not uniform. Splitting delay times are within the range of 0.05 s to 0.8 s, with a mean value of 0.29±0.18 s. Major seismic stations exhibit a weak tendency increasing of delay times with increasing hypocentral distance suggesting the main anisotropy contribution of the shallow crust. In addition, these variations in fast azimuths and delay times indicate that the crustal anisotropy in this region might not only be caused by extensive dilatancy anisotropy (EDA), but also by heterogeneity shallow structure such as the presence of foliations in the rock fabric and the fracture zones associated with active faults.« less

  1. Just How Does Sound Wave?

    ERIC Educational Resources Information Center

    Shipman, Bob

    2006-01-01

    When children first hear the term "sound wave" perhaps they might associate it with the way a hand waves or perhaps the squiggly line image on a television monitor when sound recordings are being made. Research suggests that children tend to think sound somehow travels as a discrete package, a fast-moving invisible thing, and not something that…

  2. Bringing (Century-Old) Technology into the Classroom, Part II: Teaching Vibrations and Waves, Electricity and Magnetism, and Optics with Antiques

    ERIC Educational Resources Information Center

    Jewett, John W., Jr.

    2016-01-01

    This is the second in a series of two articles on using antique devices to teach introductory physics. As mentioned in the first article, students can more clearly see the physics required for the operation of antique devices than for modern-day technological devices. This article further discusses antiques used to teach vibrations and waves,…

  3. Spectral Anisotropy of Magnetic Field Fluctuations around Ion Scales in the Fast Solar Wind

    NASA Astrophysics Data System (ADS)

    Wang, X.; Tu, C.; He, J.; Marsch, E.; Wang, L.

    2016-12-01

    The power spectra of magnetic field at ion scales are significantly influenced by waves and structures. In this work, we study the ΘRB angle dependence of the contribution of waves on the spectral index of the magnetic field. Wavelet technique is applied to the high time-resolution magnetic field data from WIND spacecraft measurements in the fast solar wind. It is found that around ion scales, the parallel spectrum has a slope of -4.6±0.1 originally. When we remove the waves, which correspond to the data points with relatively larger value of magnetic helicity, the parallel spectrum gets shallower gradually to -3.2±0.2. However, the perpendicular spectrum does not change significantly during the wave-removal process, and its slope remains -3.1±0.1. It means that when the waves are removed from the original data, the spectral anisotropy gets weaker. This result may help us understand the physical nature of the spectral anisotropy around the ion scales.

  4. Surface acoustic wave oxygen sensor

    NASA Technical Reports Server (NTRS)

    Collman, James P.; Oglesby, Donald M.; Upchurch, Billy T.; Leighty, Bradley D.; Zhang, Xumu; Herrmann, Paul C.

    1994-01-01

    A surface acoustic wave (SAW) device that responds to oxygen pressure was developed by coating a 158 MHz quartz surface acoustic wave (SAW) device with an oxygen binding agent. Two types of coatings were used. One type was prepared by dissolving an oxygen binding agent in a toluene solution of a copolymer containing the axial ligand. A second type was prepared with an oxygen binding porphyrin solution containing excess axial ligand without a polymer matrix. In the polymer based coatings, the copolymer served to provide the axial ligand to the oxygen binding agent and as a coating matrix on the surface of the SAW device. The oxygen sensing SAW device has been shown to bind oxygen following a Langmuir isotherm and may be used to measure the equilibrium constant of the oxygen binding compound in the coating matrix.

  5. Investigating Dielectric and Metamaterial Effects in a Terahertz Traveling-Wave Tube Amplifier

    NASA Technical Reports Server (NTRS)

    Starinshak, David P.; Wilson, Jeffrey D.

    2008-01-01

    Adding material enhancements to a terahertz traveling-wave tube amplifier is investigated. Isotropic dielectrics, negative-index metamaterials, and anisotropic crystals are simulated, and plans to increase the efficiency of the device are discussed. Early results indicate that adding dielectric to the curved sections of the serpentine-shaped slow-wave circuit produce optimal changes in the cold-test characteristics of the device and a minimal drop in operating frequency. Additional results suggest that materials with simultaneously small relative permittivities and electrical conductivities are best suited for increasing the efficiency of the device. More research is required on the subject, and recommendations are given to determine the direction.

  6. Application of hierarchical cascading technique to finite element method simulation in bulk acoustic wave devices

    NASA Astrophysics Data System (ADS)

    Li, Xinyi; Bao, Jingfu; Huang, Yulin; Zhang, Benfeng; Omori, Tatsuya; Hashimoto, Ken-ya

    2018-07-01

    In this paper, we propose the use of the hierarchical cascading technique (HCT) for the finite element method (FEM) analysis of bulk acoustic wave (BAW) devices. First, the implementation of this technique is presented for the FEM analysis of BAW devices. It is shown that the traveling-wave excitation sources proposed by the authors are fully compatible with the HCT. Furthermore, a HCT-based absorbing mechanism is also proposed to replace the perfectly matched layer (PML). Finally, it is demonstrated how the technique is much more efficient in terms of memory consumption and execution time than the full FEM analysis.

  7. Threat detection in desert environment with passive millimeter-wave sensor

    NASA Astrophysics Data System (ADS)

    Wilson, John P.; Schuetz, Christopher A.; Martin, Richard D.; Dillon, Thomas E.; Murakowski, Maciej; Prather, Dennis W.

    2011-06-01

    A new technique for improvised explosive device (IED) creation uses an explosive device buried in foam and covered in a layer of dirt. These devices are difficult to detect visually, however, their material characteristics make them detectable by passive millimeter-wave (pmmW) sensors. Results are presented from a test using a mock IED and an outdoor set-up consisting of two mock IEDs on a dirt background. The results show that the mock IEDs produces a millimeter-wave signature which is distinguishable from the background surrounding the mock IEDs. Simulations based on the measured data are presented and a design for a future vehicle mounted sensor is shown.

  8. An accurate, fast, and scalable solver for high-frequency wave propagation

    NASA Astrophysics Data System (ADS)

    Zepeda-Núñez, L.; Taus, M.; Hewett, R.; Demanet, L.

    2017-12-01

    In many science and engineering applications, solving time-harmonic high-frequency wave propagation problems quickly and accurately is of paramount importance. For example, in geophysics, particularly in oil exploration, such problems can be the forward problem in an iterative process for solving the inverse problem of subsurface inversion. It is important to solve these wave propagation problems accurately in order to efficiently obtain meaningful solutions of the inverse problems: low order forward modeling can hinder convergence. Additionally, due to the volume of data and the iterative nature of most optimization algorithms, the forward problem must be solved many times. Therefore, a fast solver is necessary to make solving the inverse problem feasible. For time-harmonic high-frequency wave propagation, obtaining both speed and accuracy is historically challenging. Recently, there have been many advances in the development of fast solvers for such problems, including methods which have linear complexity with respect to the number of degrees of freedom. While most methods scale optimally only in the context of low-order discretizations and smooth wave speed distributions, the method of polarized traces has been shown to retain optimal scaling for high-order discretizations, such as hybridizable discontinuous Galerkin methods and for highly heterogeneous (and even discontinuous) wave speeds. The resulting fast and accurate solver is consequently highly attractive for geophysical applications. To date, this method relies on a layered domain decomposition together with a preconditioner applied in a sweeping fashion, which has limited straight-forward parallelization. In this work, we introduce a new version of the method of polarized traces which reveals more parallel structure than previous versions while preserving all of its other advantages. We achieve this by further decomposing each layer and applying the preconditioner to these new components separately and in parallel. We demonstrate that this produces an even more effective and parallelizable preconditioner for a single right-hand side. As before, additional speed can be gained by pipelining several right-hand-sides.

  9. Supershear Rayleigh Waves at a Soft Interface

    NASA Astrophysics Data System (ADS)

    Le Goff, Anne; Cobelli, Pablo; Lagubeau, Guillaume

    2013-06-01

    We report on the experimental observation of waves at a liquid foam surface propagating faster than the bulk shear waves. The existence of such waves has long been debated, but the recent observation of supershear events in a geophysical context has inspired us to search for their existence in a model viscoelastic system. An optimized fast profilometry technique allows us to observe on a liquid foam surface the waves triggered by the impact of a projectile. At high impact velocity, we show that the expected subshear Rayleigh waves are accompanied by faster surface waves that can be identified as supershear Rayleigh waves.

  10. Fast pesticide detection inside microfluidic device with integrated optical pH, oxygen sensors and algal fluorescence.

    PubMed

    Tahirbegi, Islam Bogachan; Ehgartner, Josef; Sulzer, Philipp; Zieger, Silvia; Kasjanow, Alice; Paradiso, Mirco; Strobl, Martin; Bouwes, Dominique; Mayr, Torsten

    2017-02-15

    The necessities of developing fast, portable, cheap and easy to handle pesticide detection platforms are getting attention of scientific and industrial communities. Although there are some approaches to develop microchip based pesticide detection platforms, there is no compact microfluidic device for the complementary, fast, cheap, reusable and reliable analysis of different pesticides. In this work, a microfluidic device is developed for in-situ analysis of pesticide concentration detected via metabolism/photosynthesis of Chlamydomonas reinhardtii algal cells (algae) in tap water. Algae are grown in glass based microfluidic chip, which contains integrated optical pH and oxygen sensors in a portable system for on-site detection. In addition, intrinsic algal fluorescence is detected to analyze the pesticide concentration in parallel to pH and oxygen sensors with integrated fluorescence detectors. The response of the algae under the effect of different concentrations of pesticides is evaluated and complementary inhibition effects depending on the pesticide concentration are demonstrated. The three different sensors allow the determination of various pesticide concentrations in the nanomolar concentration range. The miniaturized system provides the fast quantification of pesticides in less than 10min and enables the study of toxic effects of different pesticides on Chlamydomonas reinhardtii green algae. Consequently, the microfluidic device described here provides fast and complementary detection of different pesticides with algae in a novel glass based microfluidic device with integrated optical pH, oxygen sensors and algal fluorescence. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. New Magnetic Materials and Phenomena for Radar and Microwave Signal Processing Devices - Bulk and Thin Film Ferrites and Metallic Films

    DTIC Science & Technology

    2009-02-15

    Magnon scattered light generally experiences a 90° rotation in polarization from the incident beam. The wave- vector selective BLS measurements...filters, phase locked microwave pulse sources, microwave and millimeter wave devices such as isolators, circulators, phase shifters, secure signal...Wave vector selective Brillouin light scattering measurements and analysis, " C. L. Ordofiez-Romero, B. A. Kalinikos, P. Krivosik, Wei Tong, P

  12. The Consequences of Alfven Waves and Parallel Potential Drops in the Auroral Zone

    NASA Technical Reports Server (NTRS)

    Schriver, David

    2003-01-01

    The goal of this research is to examine the causes of field-aligned plasma acceleration in the auroral zone using satellite data and numerical simulations. A primary question to be addressed is what causes the field-aligned acceleration of electrons (leading to precipitation) and ions (leading to upwelling ions) in the auroral zone. Data from the Fast Auroral SnapshoT (FAST) and Polar satellites is used when the two satellites are in approximate magnetic conjunction and are in the auroral region. FAST is at relatively low altitudes and samples plasma in the midst of the auroral acceleration region while Polar is at much higher altitudes and can measure plasmas and waves propagating towards the Earth. Polar can determine the sources of energy streaming earthward from the magnetotail, either in the form of field-aligned currents, electromagnetic waves or kinetic particle energy, that ultimately leads to the acceleration of plasma in the auroral zone. After identifying and examining several events, numerical simulations are run that bridges the spatial region between the two satellites. The code is a one-dimensional, long system length particle in cell simulation that has been developed to model the auroral region. A main goal of this research project is to include Alfven waves in the simulation to examine how these waves can accelerate plasma in the auroral zone.

  13. Strong fast long-period waves in the Efpalio 2010 earthquake records: explanation in terms of leaking modes

    NASA Astrophysics Data System (ADS)

    Vackář, Jiří; Zahradník, Jiří; Sokos, Efthimios

    2014-01-01

    The January 18, 2010, shallow earthquake in the Corinth Gulf, Greece ( M w 5.3) generated unusually strong long-period waves (periods 4-8 s) between the P and S wave arrival. These periods, being significantly longer than the source duration, indicated a structural effect. The waves were observed in epicentral distances 40-250 km and were significant on radial and vertical component. None of existing velocity models of the studied region provided explanation of the waves. By inverting complete waveforms, we obtained an 1-D crustal model explaining the observation. The most significant feature of the best-fitting model (as well as the whole suite of models almost equally well fitting the waveforms) is a strong velocity step at depth about 4 km. In the obtained velocity model, the fast long-period wave was modeled by modal summation and identified as a superposition of several leaking modes. In this sense, the wave is qualitatively similar to P long or Pnl waves, which however are usually reported in larger epicentral distances. The main innovation of this paper is emphasis to smaller epicentral distances. We studied properties of the wave using synthetic seismograms. The wave has a normal dispersion. Azimuthal and distance dependence of the wave partially explains its presence at 46 stations of 70 examined. Depth dependence shows that the studied earthquake was very efficient in the excitation of these waves just due to its shallow centroid depth (4.5 km).

  14. Control of ULF Wave Accessibility to the Inner Magnetosphere by the Convection of Plasma Density

    NASA Astrophysics Data System (ADS)

    Degeling, A. W.; Rae, I. J.; Watt, C. E. J.; Shi, Q. Q.; Rankin, R.; Zong, Q.-G.

    2018-02-01

    During periods of storm activity and enhanced convection, the plasma density in the afternoon sector of the magnetosphere is highly dynamic due to the development of plasmaspheric drainage plume (PDP) structure. This significantly affects the local Alfvén speed and alters the propagation of ULF waves launched from the magnetopause. Therefore, it can be expected that the accessibility of ULF wave power for radiation belt energization is sensitively dependent on the recent history of magnetospheric convection and the stage of development of the PDP. This is investigated using a 3-D model for ULF waves within the magnetosphere in which the plasma density distribution is evolved using an advection model for cold plasma, driven by a (VollandStern) convection electrostatic field (resulting in PDP structure). The wave model includes magnetic field day/night asymmetry and extends to a paraboloid dayside magnetopause, from which ULF waves are launched at various stages during the PDP development. We find that the plume structure significantly alters the field line resonance location, and the turning point for MHD fast waves, introducing strong asymmetry in the ULF wave distribution across the noon meridian. Moreover, the density enhancement within the PDP creates a waveguide or local cavity for MHD fast waves, such that eigenmodes formed allow the penetration of ULF wave power to much lower L within the plume than outside, providing an avenue for electron energization.

  15. Low-noise kinetic inductance traveling-wave amplifier using three-wave mixing

    NASA Astrophysics Data System (ADS)

    Vissers, M. R.; Erickson, R. P.; Ku, H.-S.; Vale, Leila; Wu, Xian; Hilton, G. C.; Pappas, D. P.

    2016-01-01

    We have fabricated a wide-bandwidth, high dynamic range, low-noise cryogenic amplifier based on a superconducting kinetic inductance traveling-wave device. The device was made from NbTiN and consisted of a long, coplanar waveguide on a silicon chip. By adding a DC current and an RF pump tone, we are able to generate parametric amplification using three-wave mixing (3WM). The devices exhibit gain of more than 15 dB across an instantaneous bandwidth from 4 to 8 GHz. The total usable gain bandwidth, including both sides of the signal-idler gain region, is more than 6 GHz. The noise referred to the input of the devices approaches the quantum limit, with less than 1 photon excess noise. We compare these results directly to the four-wave mixing amplification mode, i.e., without DC-biasing. We find that the 3WM mode allows operation with the pump at lower RF power and at frequencies far from the signal. We have used this knowledge to redesign the amplifiers to utilize primarily 3WM amplification, thereby allowing for direct integration into large scale qubit and detector applications.

  16. Low-noise kinetic inductance traveling-wave amplifier using three-wave mixing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vissers, M. R.; Erickson, R. P.; Ku, H.-S.

    We have fabricated a wide-bandwidth, high dynamic range, low-noise cryogenic amplifier based on a superconducting kinetic inductance traveling-wave device. The device was made from NbTiN and consisted of a long, coplanar waveguide on a silicon chip. By adding a DC current and an RF pump tone, we are able to generate parametric amplification using three-wave mixing (3WM). The devices exhibit gain of more than 15 dB across an instantaneous bandwidth from 4 to 8 GHz. The total usable gain bandwidth, including both sides of the signal-idler gain region, is more than 6 GHz. The noise referred to the input of the devices approachesmore » the quantum limit, with less than 1 photon excess noise. We compare these results directly to the four-wave mixing amplification mode, i.e., without DC-biasing. We find that the 3WM mode allows operation with the pump at lower RF power and at frequencies far from the signal. We have used this knowledge to redesign the amplifiers to utilize primarily 3WM amplification, thereby allowing for direct integration into large scale qubit and detector applications.« less

  17. Parallel database search and prime factorization with magnonic holographic memory devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khitun, Alexander

    In this work, we describe the capabilities of Magnonic Holographic Memory (MHM) for parallel database search and prime factorization. MHM is a type of holographic device, which utilizes spin waves for data transfer and processing. Its operation is based on the correlation between the phases and the amplitudes of the input spin waves and the output inductive voltage. The input of MHM is provided by the phased array of spin wave generating elements allowing the producing of phase patterns of an arbitrary form. The latter makes it possible to code logic states into the phases of propagating waves and exploitmore » wave superposition for parallel data processing. We present the results of numerical modeling illustrating parallel database search and prime factorization. The results of numerical simulations on the database search are in agreement with the available experimental data. The use of classical wave interference may results in a significant speedup over the conventional digital logic circuits in special task data processing (e.g., √n in database search). Potentially, magnonic holographic devices can be implemented as complementary logic units to digital processors. Physical limitations and technological constrains of the spin wave approach are also discussed.« less

  18. Parallel database search and prime factorization with magnonic holographic memory devices

    NASA Astrophysics Data System (ADS)

    Khitun, Alexander

    2015-12-01

    In this work, we describe the capabilities of Magnonic Holographic Memory (MHM) for parallel database search and prime factorization. MHM is a type of holographic device, which utilizes spin waves for data transfer and processing. Its operation is based on the correlation between the phases and the amplitudes of the input spin waves and the output inductive voltage. The input of MHM is provided by the phased array of spin wave generating elements allowing the producing of phase patterns of an arbitrary form. The latter makes it possible to code logic states into the phases of propagating waves and exploit wave superposition for parallel data processing. We present the results of numerical modeling illustrating parallel database search and prime factorization. The results of numerical simulations on the database search are in agreement with the available experimental data. The use of classical wave interference may results in a significant speedup over the conventional digital logic circuits in special task data processing (e.g., √n in database search). Potentially, magnonic holographic devices can be implemented as complementary logic units to digital processors. Physical limitations and technological constrains of the spin wave approach are also discussed.

  19. Laser and acoustic lens for lithotripsy

    DOEpatents

    Visuri, Steven R.; Makarewicz, Anthony J.; London, Richard A.; Benett, William J.; Krulevitch, Peter; Da Silva, Luiz B.

    2002-01-01

    An acoustic focusing device whose acoustic waves are generated by laser radiation through an optical fiber. The acoustic energy is capable of efficient destruction of renal and biliary calculi and deliverable to the site of the calculi via an endoscopic procedure. The device includes a transducer tip attached to the distal end of an optical fiber through which laser energy is directed. The transducer tip encapsulates an exogenous absorbing dye. Under proper irradiation conditions (high absorbed energy density, short pulse duration) a stress wave is produced via thermoelastic expansion of the absorber for the destruction of the calculi. The transducer tip can be configured into an acoustic lens such that the transmitted acoustic wave is shaped or focused. Also, compressive stress waves can be reflected off a high density/low density interface to invert the compressive wave into a tensile stress wave, and tensile stresses may be more effective in some instances in disrupting material as most materials are weaker in tension than compression. Estimations indicate that stress amplitudes provided by this device can be magnified more than 100 times, greatly improving the efficiency of optical energy for targeted material destruction.

  20. Transition region, coronal heating and the fast solar wind

    NASA Astrophysics Data System (ADS)

    Li, Xing

    2003-07-01

    It is assumed that magnetic flux tubes are strongly concentrated at the boundaries of supergranule convection cells. A power law spectrum of high frequency Alfvén waves with a spectral index -1 originating from the sun is assumed to supply all the energy needed to energize the plasma flowing in such magnetic flux tubes. At the high frequency end, the waves are eroded by ions due to ion cyclotron resonance. The magnetic flux concentration is essential since it allows a sufficiently strong energy flux to be carried by high frequency ion cyclotron waves and these waves can be readily released at the coronal base by cyclotron resonance. The main results are: 1. The waves are capable of creating a steep transition region, a hot corona and a fast solar wind if both the wave frequency is high enough and the magnetic flux concentration is sufficiently strong in the boundaries of the supergranule convection zone. 2. By primarily heating alpha particles only, it is possible to produce a steep transition region, a hot corona and a fast solar wind. Coulomb coupling plays a key role in transferring the thermal energy of alpha particles to protons and electrons at the corona base. The electron thermal conduction then does the remaining job to create a sharp transition region. 3. Plasma species (even ions) may already partially lose thermal equilibrium in the transition region, and minor ions may already be faster than protons at the very base of the corona. 4. The model predicts high temperature alpha particles (Talpha ~ 2 x 107 K) and low proton temperatures (Tp < 106 K) between 2 and 4 solar radii, suggesting that hydrogen Lyman lines observed by UVCS above coronal holes may be primarily broadened by Alfvén waves in this range.

  1. Magnetically Controlled Surface Acoustic Waves on Multiferroic BiFeO3

    NASA Astrophysics Data System (ADS)

    Ishii, Y.; Sasaki, R.; Nii, Y.; Ito, T.; Onose, Y.

    2018-03-01

    We fabricate a surface acoustic wave (SAW) device on a multiferroic BiFeO3 crystal while SAW devices are usually fabricated on nonmagnetic piezoelectrics and commercially available as bandpass filters. By using the time-domain technique, we demonstrate the SAW excitation on BiFeO3 . The amplitude and phase of the SAW signal are modulated by the external magnetic field reflecting the multiferroicity of BiFeO3 . The magnetic controllability of the multiferroic SAW device seems useful for the further functionalization of the SAW device.

  2. SiC-based neutron detector in quasi-realistic working conditions: efficiency and stability at room and high temperature under fast neutron irradiations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferone, Raffaello; Issa, Fatima; Ottaviani, Laurent

    In the framework of the European I SMART project, we have designed and made new SiC-based nuclear radiation detectors able to operate in harsh environments and to detect both fast and thermal neutrons. In this paper, we report experimental results of fast neutron irradiation campaign at high temperature (106 deg. C) in quasi-realistic working conditions. Our device does not suffer from high temperature, and spectra do show strong stability, preserving features. These experiments, as well as others in progress, show the I SMART SiC-based device skills to operate in harsh environments, whereas other materials would strongly suffer from degradation. Workmore » is still demanded to test our device at higher temperatures and to enhance efficiency in order to make our device fully exploitable from an industrial point of view. (authors)« less

  3. Investigation of mantle kinematics beneath the Hellenic-subduction zone with teleseismic direct shear waves

    NASA Astrophysics Data System (ADS)

    Confal, Judith M.; Eken, Tuna; Tilmann, Frederik; Yolsal-Çevikbilen, Seda; Çubuk-Sabuncu, Yeşim; Saygin, Erdinc; Taymaz, Tuncay

    2016-12-01

    The subduction and roll-back of the African plate beneath the Eurasian plate along the arcuate Hellenic trench is the dominant geodynamic process in the Aegean and western Anatolia. Mantle flow and lithospheric kinematics in this region can potentially be understood better by mapping seismic anisotropy. This study uses direct shear-wave splitting measurements based on the Reference Station Technique in the southern Aegean Sea to reveal seismic anisotropy in the mantle. The technique overcomes possible contamination from source-side anisotropy on direct S-wave signals recorded at a station pair by maximizing the correlation between the seismic traces at reference and target stations after correcting the reference stations for known receiver-side anisotropy and the target stations for arbitrary splitting parameters probed via a grid search. We obtained splitting parameters at 35 stations with good-quality S-wave signals extracted from 81 teleseismic events. Employing direct S-waves enabled more stable and reliable splitting measurements than previously possible, based on sparse SKS data at temporary stations, with one to five events for local SKS studies, compared with an average of 12 events for each station in this study. The fast polarization directions mostly show NNE-SSW orientation with splitting time delays between 1.15 s and 1.62 s. Two stations in the west close to the Hellenic Trench and one in the east show N-S oriented fast polarizations. In the back-arc region three stations exhibit NE-SW orientation. The overall fast polarization variations tend to be similar to those obtained from previous SKS splitting studies in the region but indicate a more consistent pattern, most likely due to the usage of a larger number of individual observations in direct S-wave derived splitting measurements. Splitting analysis on direct shear waves typically resulted in larger split time delays compared to previous studies, possibly because S-waves travel along a longer path in the same anisotropic structure. Considering the S-derived splitting measurements of this study together with earlier SKS and Rayleigh wave anisotropy modelling results we suggest that the very consistent direct S-derived fast shear wave directions can be explained by the lattice-preferred orientation of olivine in the asthenospheric mantle due to mantle flow induced by the roll-back of the slab. It is possible that a small contribution originated in the lower crust beneath the study region where anisotropic fabric might have formed in response to extension in the Miocene.

  4. Field-controllable Spin-Hall Effect of Light in Optical Crystals: A Conoscopic Mueller Matrix Analysis.

    PubMed

    Samlan, C T; Viswanathan, Nirmal K

    2018-01-31

    Electric-field applied perpendicular to the direction of propagation of paraxial beam through an optical crystal dynamically modifies the spin-orbit interaction (SOI), leading to the demonstration of controllable spin-Hall effect of light (SHEL). The electro- and piezo-optic effects of the crystal modifies the radially symmetric spatial variation in the fast-axis orientation of the crystal, resulting in a complex pattern with different topologies due to the symmetry-breaking effect of the applied field. This introduces spatially-varying Pancharatnam-Berry type geometric phase on to the paraxial beam of light, leading to the observation of SHEL in addition to the spin-to-vortex conversion. A wave-vector resolved conoscopic Mueller matrix measurement and analysis provides a first glimpse of the SHEL in the biaxial crystal, identified via the appearance of weak circular birefringence. The emergence of field-controllable fast-axis orientation of the crystal and the resulting SHEL provides a new degree of freedom for affecting and controlling the spin and orbital angular momentum of photons to unravel the rich underlying physics of optical crystals and aid in the development of active photonic spin-Hall devices.

  5. Simultaneous use of camera and probe diagnostics to unambiguously identify and study the dynamics of multiple underlying instabilities during the route to plasma turbulence.

    PubMed

    Thakur, S C; Brandt, C; Light, A; Cui, L; Gosselin, J J; Tynan, G R

    2014-11-01

    We use multiple-tip Langmuir probes and fast imaging to unambiguously identify and study the dynamics of underlying instabilities during the controlled route to fully-developed plasma turbulence in a linear magnetized helicon plasma device. Langmuir probes measure radial profiles of electron temperature, plasma density and potential; from which we compute linear growth rates of instabilities, cross-phase between density and potential fluctuations, Reynold's stress, particle flux, vorticity, time-delay estimated velocity, etc. Fast imaging complements the 1D probe measurements by providing temporally and spatially resolved 2D details of plasma structures associated with the instabilities. We find that three radially separated plasma instabilities exist simultaneously. Density gradient driven resistive drift waves propagating in the electron diamagnetic drift direction separate the plasma into an edge region dominated by strong, velocity shear driven Kelvin-Helmholtz instabilities and a central core region which shows coherent Rayleigh-Taylor modes propagating in the ion diamagnetic drift direction. The simultaneous, complementary use of both probes and camera was crucial to identify the instabilities and understand the details of the very rich plasma dynamics.

  6. Invited Article: An active terahertz polarization converter employing vanadium dioxide and a metal wire grating in total internal reflection geometry

    NASA Astrophysics Data System (ADS)

    Liu, Xudong; Chen, Xuequan; Parrott, Edward P. J.; Han, Chunrui; Humbert, Georges; Crunteanu, Aurelian; Pickwell-MacPherson, Emma

    2018-05-01

    Active broadband terahertz (THz) polarization manipulation devices are challenging to realize, but also of great demand in broadband terahertz systems. Vanadium dioxide (VO2) shows a promising phase transition for active control of THz waves and provides broadband polarization characteristics when integrated within grating-type structures. We creatively combine a VO2-based grating structure with a total internal reflection (TIR) geometry providing a novel interaction mechanism between the electromagnetic waves and the device, to realize a powerful active broadband THz polarization-controlling device. The device is based on a Si-substrate coated with a VO2 layer and a metal grating structure on top, attached to a prism for generating the TIR condition on the Si-VO2-grating interface. The grating is connected to electrodes for electrically switching the VO2 between its insulating and conducting phases. By properly selecting the incident angle of the THz waves, the grating direction, and the incident polarization state, we first achieved a broadband intensity modulator under a fused silica prism with an average modulation depth of 99.75% in the 0.2-1.1 THz region. Additionally, we realized an active ultra-broadband quarter-wave converter under a Si prism that can be switched between a 45° linear rotator and a quarter wave converter in the 0.8-1.5 THz region. This is the first demonstration of an active quarter-wave converter with ultra-broad bandwidth performance. Our work shows a highly flexible and multifunctional polarization-controlling device for broadband THz applications.

  7. Fast Wave Transmission Measurements on Alcator C-Mod

    NASA Astrophysics Data System (ADS)

    Reardon, J.; Bonoli, P. T.; Porkolab, M.; Takase, Y.; Wukitch, S. J.

    1997-11-01

    Data are presented from an array of single-turn loop probes newly installed on the inner wall of C-Mod, directly opposite one of the two fast-wave antennas. The 8-loop array extends 32^circ in the toroidal direction at the midplane and can distinguish electromagnetic from electrostatic modes. Data are acquired by 1GHz digitizer, spectrum analyzer, and RF detector circuit. Phase measurements during different heating scenarios show evidence of both standing and travelling waves. The measurement of toroidal mode number N_tor (conserved under the assumption of axisymmetry) is used to guide the toroidal full-wave code TORIC(Brambilla, M., IPP Report 5/66, February 1996). Amplitude measurements show modulation both by Type III ELMs and sawteeth; the observed sawtooth modulation may be interpreted as due to changes in central absorption. The amplitude of tildeB_tor measured at the inner wall is compared to the prediction of TORIC.

  8. Depth-variant azimuthal anisotropy in Tibet revealed by surface wave tomography

    NASA Astrophysics Data System (ADS)

    Pandey, Shantanu; Yuan, Xiaohui; Debayle, Eric; Tilmann, Frederik; Priestley, Keith; Li, Xueqing

    2015-06-01

    Azimuthal anisotropy derived from multimode Rayleigh wave tomography in China exhibits depth-dependent variations in Tibet, which can be explained as induced by the Cenozoic India-Eurasian collision. In west Tibet, the E-W fast polarization direction at depths <100 km is consistent with the accumulated shear strain in the Tibetan lithosphere, whereas the N-S fast direction at greater depths is aligned with Indian Plate motion. In northeast Tibet, depth-consistent NW-SE directions imply coupled deformation throughout the whole lithosphere, possibly also involving the underlying asthenosphere. Significant anisotropy at depths of 225 km in southeast Tibet reflects sublithospheric deformation induced by northward and eastward lithospheric subduction beneath the Himalaya and Burma, respectively. The multilayer anisotropic surface wave model can explain some features of SKS splitting measurements in Tibet, with differences probably attributable to the limited back azimuthal coverage of most SKS studies in Tibet and the limited horizontal resolution of the surface wave results.

  9. Breakthroughs in Low-Profile Leaky-Wave HPM Antennas

    DTIC Science & Technology

    2016-09-21

    information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and... traveling , fast-wave, leaky-wave class. 1.1. Overview of Previous Activities (1st thru 11th Quarter) During the first quarter, we prepared and...theory to guide the design of high-gain configurations (again, limited to 2D, H-plane representations) for linear, forward traveling -wave, leaky

  10. Alfven resonance mode conversion in the Phaedrus-T current drive experiments: Modelling and density fluctuations measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vukovic, M.; Harper, M.; Breun, R.

    1995-12-31

    Current drive experiments on the Phaedrus-T tokamak performed with a low field side two-strap fast wave antenna at frequencies below {omega}{sub cH} show loop volt drops of up to 30% with strap phasing (0, {pi}/2). RF induced density fluctuations in the plasma core have also been observed with a microwave reflectometer. It is believed that they are caused by kinetic Alfven waves generated by mode conversion of fast waves at the Alfven resonance. Correlation of the observed density fluctuations with the magnitude of the {Delta}V{sub loop} suggest that the {Delta}V{sub loop} is attributable to current drive/heating due to mode convertedmore » kinetic Alfven waves. The toroidal cold plasma wave code LION is used to model the Alfven resonance mode conversion surfaces in the experiments while the cylindrical hot plasma kinetic wave code ISMENE is used to model the behavior of kinetic Alfven waves at the Alfven resonance location. Initial results obtained from limited density, magnetic field, antenna phase, and impurity scans show good agreement between the RF induced density fluctuations and the predicted behavior of the kinetic Alfven waves. Detailed comparisons between the density fluctuations and the code predictions are presented.« less

  11. Basilar-membrane interference patterns from multiple internal reflection of cochlear traveling waves.

    PubMed

    Shera, Christopher A; Cooper, Nigel P

    2013-04-01

    At low stimulus levels, basilar-membrane (BM) mechanical transfer functions in sensitive cochleae manifest a quasiperiodic rippling pattern in both amplitude and phase. Analysis of the responses of active cochlear models suggests that the rippling is a mechanical interference pattern created by multiple internal reflection within the cochlea. In models, the interference arises when reverse-traveling waves responsible for stimulus-frequency otoacoustic emissions (SFOAEs) reflect off the stapes on their way to the ear canal, launching a secondary forward-traveling wave that combines with the primary wave produced by the stimulus. Frequency-dependent phase differences between the two waves then create the rippling pattern measurable on the BM. Measurements of BM ripples and SFOAEs in individual chinchilla ears demonstrate that the ripples are strongly correlated with the acoustic interference pattern measured in ear-canal pressure, consistent with a common origin involving the generation of SFOAEs. In BM responses to clicks, the ripples appear as temporal fine structure in the response envelope (multiple lobes, waxing and waning). Analysis of the ripple spacing and response phase gradients provides a test for the role of fast- and slow-wave modes of reverse energy propagation within the cochlea. The data indicate that SFOAE delays are consistent with reverse slow-wave propagation but much too long to be explained by fast waves.

  12. Wave energy absorption by a submerged air bag connected to a rigid float.

    PubMed

    Kurniawan, A; Chaplin, J R; Hann, M R; Greaves, D M; Farley, F J M

    2017-04-01

    A new wave energy device features a submerged ballasted air bag connected at the top to a rigid float. Under wave action, the bag expands and contracts, creating a reciprocating air flow through a turbine between the bag and another volume housed within the float. Laboratory measurements are generally in good agreement with numerical predictions. Both show that the trajectory of possible combinations of pressure and elevation at which the device is in static equilibrium takes the shape of an S. This means that statically the device can have three different draughts, and correspondingly three different bag shapes, for the same pressure. The behaviour in waves depends on where the mean pressure-elevation condition is on the static trajectory. The captured power is highest for a mean condition on the middle section.

  13. Wave energy absorption by a submerged air bag connected to a rigid float

    PubMed Central

    Chaplin, J. R.; Hann, M. R.; Greaves, D. M.; Farley, F. J. M.

    2017-01-01

    A new wave energy device features a submerged ballasted air bag connected at the top to a rigid float. Under wave action, the bag expands and contracts, creating a reciprocating air flow through a turbine between the bag and another volume housed within the float. Laboratory measurements are generally in good agreement with numerical predictions. Both show that the trajectory of possible combinations of pressure and elevation at which the device is in static equilibrium takes the shape of an S. This means that statically the device can have three different draughts, and correspondingly three different bag shapes, for the same pressure. The behaviour in waves depends on where the mean pressure-elevation condition is on the static trajectory. The captured power is highest for a mean condition on the middle section. PMID:28484330

  14. Wave energy absorption by a submerged air bag connected to a rigid float

    NASA Astrophysics Data System (ADS)

    Kurniawan, A.; Chaplin, J. R.; Hann, M. R.; Greaves, D. M.; Farley, F. J. M.

    2017-04-01

    A new wave energy device features a submerged ballasted air bag connected at the top to a rigid float. Under wave action, the bag expands and contracts, creating a reciprocating air flow through a turbine between the bag and another volume housed within the float. Laboratory measurements are generally in good agreement with numerical predictions. Both show that the trajectory of possible combinations of pressure and elevation at which the device is in static equilibrium takes the shape of an S. This means that statically the device can have three different draughts, and correspondingly three different bag shapes, for the same pressure. The behaviour in waves depends on where the mean pressure-elevation condition is on the static trajectory. The captured power is highest for a mean condition on the middle section.

  15. Chaos-assisted broadband momentum transformation in optical microresonators.

    PubMed

    Jiang, Xuefeng; Shao, Linbo; Zhang, Shu-Xin; Yi, Xu; Wiersig, Jan; Wang, Li; Gong, Qihuang; Lončar, Marko; Yang, Lan; Xiao, Yun-Feng

    2017-10-20

    The law of momentum conservation rules out many desired processes in optical microresonators. We report broadband momentum transformations of light in asymmetric whispering gallery microresonators. Assisted by chaotic motions, broadband light can travel between optical modes with different angular momenta within a few picoseconds. Efficient coupling from visible to near-infrared bands is demonstrated between a nanowaveguide and whispering gallery modes with quality factors exceeding 10 million. The broadband momentum transformation enhances the device conversion efficiency of the third-harmonic generation by greater than three orders of magnitude over the conventional evanescent-wave coupling. The observed broadband and fast momentum transformation could promote applications such as multicolor lasers, broadband memories, and multiwavelength optical networks. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  16. Fluid driven torsional dipole seismic source

    DOEpatents

    Hardee, Harry C.

    1991-01-01

    A compressible fluid powered oscillating downhole seismic source device capable of periodically generating uncontaminated horizontally-propagated, shear waves is provided. A compressible fluid generated oscillation is created within the device which imparts an oscillation to a housing when the device is installed in a housing such as the cylinder off an existing downhole tool, thereby a torsional seismic source is established. Horizontal waves are transferred to the surrounding bore hole medium through downhole clamping.

  17. Contactless remote induction of shear waves in soft tissues using a transcranial magnetic stimulation device

    NASA Astrophysics Data System (ADS)

    Grasland-Mongrain, Pol; Miller-Jolicoeur, Erika; Tang, An; Catheline, Stefan; Cloutier, Guy

    2016-03-01

    This study presents the first observation of shear waves induced remotely within soft tissues. It was performed through the combination of a transcranial magnetic stimulation device and a permanent magnet. A physical model based on Maxwell and Navier equations was developed. Experiments were performed on a cryogel phantom and a chicken breast sample. Using an ultrafast ultrasound scanner, shear waves of respective amplitudes of 5 and 0.5 μm were observed. Experimental and numerical results were in good agreement. This study constitutes the framework of an alternative shear wave elastography method.

  18. Magnetic Fe3O4@TiO2 Nanoparticles-based Test Strip Immunosensing Device for Rapid Detection of Phosphorylated Butyrylcholinesterase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ge, Xiaoxiao; Zhang, Weiying; Lin, Yuehe

    2013-12-15

    An integrated magnetic nanoparticles-based test-strip immunosensing device was developed for rapid and sensitive quantification of phosphorylated butyrylcholinesterase (BChE), the biomarker of exposure to organophosphous pesticides (OP), in human plasma. In order to overcome the difficulty in scarce availability of OP-specific antibody, here magnetic Fe3O4@TiO2 nanoparticles were used and adsorbed on the test strip through a small magnet inserted in the device to capture target OP-BChE through selective binding between TiO2 and OP moiety. Further recognition was completed by horseradish peroxidase (HRP) and anti-BChE antibody (Ab) co-immobilized gold nanoparticles (GNPs). Their strong affinities among Fe3O4@TiO2, OP-BChE and HRP/Ab-GNPs were characterized bymore » quartz crystal microbalance (QCM), surface plasmon resonance (SPR) and square wave voltammetry (SWV) measurements. After cutting off from test strip, the resulted immunocomplex (HRP/Ab-GNPs/OP-BChE/Fe3O4@TiO2) was measured by SWV using a screen printed electrode under the test zone. Greatly enhanced sensitivity was achieved by introduction of GNPs to link enzyme and antibody at high ratio, which amplifies electrocatalytic signal significantly. Moreover, the use of test strip for fast immunoreactions reduces analytical time remarkably. Coupling with a portable electrochemical detector, the integrated device with advanced nanotechnology displays great promise for sensitive, rapid and in-filed on-site evaluation of OP poisoning.« less

  19. "Magnon Spintronics"

    NASA Astrophysics Data System (ADS)

    Yu, Haiming; Xiao, Jiang; Pirro, Philipp

    2018-03-01

    We are proud to present a collection of 12 cutting-edge research articles on the emerging field "magnon spintronics" investigating the properties of spin waves or magnons towards their potential applications in low-power-consumption information technologies. Magnons (quasiparticles of spin waves) are collective excitations of magnetizations in a magnetic system. The concept for such excitations was first introduced 1930 by Felix Bloch [1] who described ferromagnetism in a lattice. The field of magnon spintronics [2] or magnonics [3] aims at utilizing magnons to realize information processing and storage. The propagation of spin waves is free of charge transport, hence a successful realization of magnonic devices can innately avoid Joule heating induced energy loss in nowadays micro- or nano-electronic devices. Magnonics has made many progresses in recent years, including the demonstration of magnonic logic devices [4]. Towards the aim to generate magnonic devices, it is an essential step to find materials suitable for conveying spin waves. One outstanding candidate is a ferromagnetic insulator yttrium iron garnet (YIG). It offers an out standing low damping which allows the propagation of spin waves over relatively long distances. Experiments on such a thin YIG film with an out-of-plane magnetization have been performed by Chen et al. [5]. They excited so called forward volume mode spin waves and determined the propagating spin wave properties, such as the group velocities. Lohman et al. [6] has successfully imaged the propagating spin waves using time-resolved MOKE microscopy and show agreement with micromagnetic modellings. For very long time, YIG is the most ideal material for spin waves thanks to its ultra-low damping. However, it remains a major challenge integrate YIG on to Silicon substrate. Magnetic Heusler alloys on the other hand, can be easily grown on Si substrate and also shows reasonably good damping properties, which allow spin waves to propagate over a distance as long as 100 μm demonstrated by Stueckler et al. [7]. This is so far a record of spin wave propagation distance in ferromagnetic Heusler alloy thin films. Jaroslaw et al. [8] studied spin waves in planar quasicrystal of Penrose tiling showing distinctive magnonic gaps. This proves the impact of quasiperiodic long-range order on the spectrum of spin waves.

  20. 21 CFR 876.5990 - Extracorporeal shock wave lithotripter.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Extracorporeal shock wave lithotripter. 876.5990... shock wave lithotripter. (a) Identification. An extracorporeal shock wave lithotripter is a device that focuses ultrasonic shock waves into the body to noninvasively fragment urinary calculi within the kidney...

  1. 21 CFR 876.5990 - Extracorporeal shock wave lithotripter.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Extracorporeal shock wave lithotripter. 876.5990... shock wave lithotripter. (a) Identification. An extracorporeal shock wave lithotripter is a device that focuses ultrasonic shock waves into the body to noninvasively fragment urinary calculi within the kidney...

  2. 21 CFR 876.5990 - Extracorporeal shock wave lithotripter.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Extracorporeal shock wave lithotripter. 876.5990... shock wave lithotripter. (a) Identification. An extracorporeal shock wave lithotripter is a device that focuses ultrasonic shock waves into the body to noninvasively fragment urinary calculi within the kidney...

  3. Design of beam deflector, splitters, wave plates and metalens using photonic elements with dielectric metasurface

    NASA Astrophysics Data System (ADS)

    Zhang, Qing; Li, Maozhong; Liao, Tingdi; Cui, Xudong

    2018-03-01

    Under the trend of miniaturization and reduction of system complexity, conventional bulky photonic elements are expected to be replaced by new compact and ultrathin dielectric metasurface elements. In this letter, we propose an αTiO2 dielectric metasurface (DM) platform that could be exploited to design high efficiency wave-front control devices at visible wavelength. Combining with fundamental principles and full wave simulations (Lumerical FDTD 3D solver ®), we successfully realize four DM devices, such as anomalous beam deflectors, polarization insensitive metalens, wave plates and polarization beam splitters. All these devices can achieve high transmission efficiencies (larger than 80%). Among them, the anomalous refraction beam deflectors can bend light propagation to any desired directions; the polarization insensitive metalens maintains diffraction limited focus (focal spot as small as 0.67 λ); the quarter-wave and half-wave plates have broadband working wavelengths from 550 to 1000 nm; and the polarization beam splitter can split an arbitrarily polarized incident beam into two orthogonally polarized beams, the TM components is deflected to the right side, and the TE components is deflected to the left side. These devices may find applications in the areas of imaging, polarization control, spectroscopy, and on-chip optoelectronic systems etc., and our studies may richen the design of all-dielectric optical elements at visible wavelength.

  4. Electromagnetic Cyclotron Waves in the Solar Wind: Wind Observation and Wave Dispersion Analysis

    NASA Technical Reports Server (NTRS)

    Jian, L. K.; Moya, P. S.; Vinas, A. F.; Stevens, M.

    2016-01-01

    Wind observed long-lasting electromagnetic cyclotron waves near the proton cyclotron frequency on 11 March 2005, in the descending part of a fast wind stream. Bi-Maxwellian velocity distributions are fitted for core protons, beam protons, and alpha-particles. Using the fitted plasma parameters we conduct kinetic linear dispersion analysis and find ion cyclotron and/or firehose instabilities grow in six of 10 wave intervals. After Doppler shift, some of the waves have frequency and polarization consistent with observation, thus may be correspondence to the cyclotron waves observed.

  5. Electromagnetic cyclotron waves in the solar wind: Wind observation and wave dispersion analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jian, L. K., E-mail: lan.jian@nasa.gov; Heliophysics Science Division, NASA Goddard Space Flight Center, Greenbelt, MD 20771; Moya, P. S.

    2016-03-25

    Wind observed long-lasting electromagnetic cyclotron waves near the proton cyclotron frequency on 11 March 2005, in the descending part of a fast wind stream. Bi-Maxwellian velocity distributions are fitted for core protons, beam protons, and α-particles. Using the fitted plasma parameters we conduct kinetic linear dispersion analysis and find ion cyclotron and/or firehose instabilities grow in six of 10 wave intervals. After Doppler shift, some of the waves have frequency and polarization consistent with observation, thus may be correspondence to the cyclotron waves observed.

  6. Integrated photonic power divider with arbitrary power ratios.

    PubMed

    Xu, Ke; Liu, Lu; Wen, Xiang; Sun, Wenzhao; Zhang, Nan; Yi, Ningbo; Sun, Shang; Xiao, Shumin; Song, Qinghai

    2017-02-15

    Integrated optical power splitters are one of the fundamental building blocks in photonic integrated circuits. Conventional multimode interferometer-based power splitters are widely used as they have reasonable footprints and are easy to fabricate. However, it is challenging to realize arbitrary split ratios, especially for multi-outputs. In this Letter, an ultra-compact power splitter with a QR code-like nanostructure is designed by a nonlinear fast search method. The highly functional structure is composed of a number of freely designed square pixels with the size of 120×120  nm which could be either dielectric or air. The light waves are scattered by a number of etched squares with optimized locations, and the scattered waves superimpose at the outputs with the desired power ratio. We demonstrate 1×2 splitters with 1:1, 1:2, and 1:3 split ratios, and a 1×3 splitter with the ratio of 1:2:1. The footprint for all the devices is only 3.6×3.6  μm. Well-controlled split ratios are measured for all the cases. The measured transmission efficiencies of all the splitters are close to 80% over 30 nm wavelength range.

  7. Simulations of High Harmonic Fast Wave Heating on the C-2U Advanced Beam-Driven Field-Reversed Configuration Device

    NASA Astrophysics Data System (ADS)

    Yang, Xiaokang; Petrov, Yuri; Ceccherini, Francesco; Koehn, Alf; Galeotti, Laura; Dettrick, Sean; Binderbauer, Michl

    2017-10-01

    Numerous efforts have been made at Tri-Alpha Energy (TAE) to theoretically explore the physics of microwave electron heating in field-reversed configuration (FRC) plasmas. For the fixed 2D profiles of plasma density and temperature for both electrons and thermal ions and equilibrium field of the C-2U machine, simulations with GENRAY-C ray-tracing code have been conducted for the ratios of ω/ωci[D] in the range of 6 - 20. Launch angles and antenna radial and axial positions have been optimized in order to simultaneously achieve good wave penetration into the core of FRC plasmas and efficient power damping on electrons. It is found that in an optimal regime, single pass absorption efficiency is 100% and most of the power is deposited inside the separatrix of FRC plasmas, with power damping efficiency of about 72% on electrons and less than 19% on ions. Calculations have clearly demonstrated that substantial power absorption on electrons is mainly attributed to high beta enhancement of magnetic pumping; complete power damping occurs before Landau damping has a significant effect on power absorption.

  8. Fourier transform infrared evanescent wave (FTIR-FEW) spectroscopy of tissue

    NASA Astrophysics Data System (ADS)

    Bruch, Reinhard F.; Sukuta, Sydney; Afanasyeva, Natalia I.; Kolyakov, Sergei F.; Butvina, Leonid N.

    1997-05-01

    A new Fourier transform infrared fiberoptic evanescent wave (FTIR-FEW) spectroscopy method has been developed for tissue diagnostics in the middle infrared (MIR) wavelength range (3 to 20 micrometers). Specific novel fiberoptical chemical and biological sensors have been studied and used for spectroscopic diagnostic purposes. These nontoxic and nonhygroscopic fiber sensors are characterized by (1) low optical losses (0.05 to 0.2 dB/m at about 10 micrometer) and (2) high flexibility. Our new fiber optical devices can be utilized with standard commercially available Fourier transform spectrometers including attenuated total reflection (ATR) techniques. They are in particular ideally suited for noninvasive, fast, direct, sensitive investigations of in vivo and ex vivo medical diagnostics applications. Here we present data on IR spectra of skin tissue in vivo for various cases of melanoma and nevus in the range of 1480 - 1800 cm-1. The interpretation of the spectra of healthy and different stages of tumor and cancer skin tissue clearly indicates that this technique can be used for precancer and cancer diagnostics. This technique can be designed for real-time and on-line computer modeling and analysis of tissue changes.

  9. Efficient transformer for electromagnetic waves

    DOEpatents

    Miller, R.B.

    A transformer structure for efficient transfer of electromagnetic energy from a transmission line to an unmatched load provides voltage multiplication and current division by a predetermined constant. Impedance levels are transformed by the square of that constant. The structure includes a wave splitter, connected to an input transmission device and to a plurality of output transmission devices. The output transmission devices are effectively connected in parallel to the input transmission device. The output transmission devices are effectively series connected to provide energy to a load. The transformer structure is particularly effective in increasing efficiency of energy transfer through an inverting convolute structure by capturing and transferring energy losses from the inverter to the load.

  10. Recent Developments in Gravity-Wave Effects in Climate Models and the Global Distribution of Gravity-Wave Momentum Flux from Observations and Models

    DTIC Science & Technology

    2010-07-01

    by changes in wind and stability to a vertical wavelength lying outside the observable range. Gravity-wave parametrizations also represent intermit ...tropopause variability. J. Atmos. Sci. 65: 1817–1837. Salby ML. 1982. Sampling theory for asynoptic satellite observations. Part II: Fast Fourier synoptic

  11. Low-cost and reagent-free paper-based device to detect chloride ions in serum and sweat.

    PubMed

    Cinti, Stefano; Fiore, Luca; Massoud, Renato; Cortese, Claudio; Moscone, Danila; Palleschi, Giuseppe; Arduini, Fabiana

    2018-03-01

    The recent goal of sustainability in analytical chemistry has boosted the development of eco-designed analytical tools to deliver fast and cost-effective analysis with low economic and environmental impact. Due to the recent focus in sustainability, we report the use of low-cost filter paper as a sustainable material to print silver electrodes and to load reagents for a reagent-free electrochemical detection of chloride in biological samples, namely serum and sweat. The electrochemical detection of chloride ions was carried out by exploiting the reaction of the analyte (i.e. chloride) with the silver working electrode. During the oxidation wave in cyclic voltammetry the silver ions are produced, thus they react with chloride ions to form AgCl, while in the reduction wave, the following reaction occurs: AgCl + e - -->Ag + Cl - . These reactions at the electrode surface resulted in anodic/cathodic peaks directly proportional to the chloride ions in solution. Chloride ions were detected with the addition of only 10μL of the sample on the paper-based electrochemical cell, obtaining linearity up to 200mM with a detection limit equal to 1mM and relative standard deviation lower than 10%. The accuracy of the sensor was evaluated in serum and sweat samples, with percentage recoveries between 93 ± 10 and 108 ± 8%. Moreover, the results achieved with the paper-based device were positively compared with those obtained by using the gold standard method (Ion Selective Electrode) adopted in routine clinical analyses. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. A Local Probe for Universal Non-equilibrium Dynamics

    DTIC Science & Technology

    2015-06-01

    left in the ground 1T. E. Drake, Y . Sagi, R. Paudel, J. T. Stewart, J. P . Gaebler, and D. S. Jin, “ Direct observation of the fermi surface in an...bottom) allow to switch the laser fast and fine-tune the frequency. “λ/2” refers to half-wave plates, “λ/4” refers to quarter-wave plates, and all cubes...the beat note signal on a fast photodiode. state (|F = 9/2,mF = −7/2〉), any place where excitation light exists. Imaging atoms occurs on a cycling

  13. Collective Thomson scattering measurements of fast-ion transport due to sawtooth crashes in ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Rasmussen, J.; Nielsen, S. K.; Stejner, M.; Galdon-Quiroga, J.; Garcia-Munoz, M.; Geiger, B.; Jacobsen, A. S.; Jaulmes, F.; Korsholm, S. B.; Lazanyi, N.; Leipold, F.; Ryter, F.; Salewski, M.; Schubert, M.; Stober, J.; Wagner, D.; the ASDEX Upgrade Team; the EUROFusion MST1 Team

    2016-11-01

    Sawtooth instabilities can modify heating and current-drive profiles and potentially increase fast-ion losses. Understanding how sawteeth redistribute fast ions as a function of sawtooth parameters and of fast-ion energy and pitch is hence a subject of particular interest for future fusion devices. Here we present the first collective Thomson scattering (CTS) measurements of sawtooth-induced redistribution of fast ions at ASDEX Upgrade. These also represent the first localized fast-ion measurements on the high-field side of this device. The results indicate fast-ion losses in the phase-space measurement volume of about 50% across sawtooth crashes, in good agreement with values predicted with the Kadomtsev sawtooth model implemented in TRANSP and with the sawtooth model in the EBdyna_go code. In contrast to the case of sawteeth, we observe no fast-ion redistribution in the presence of fishbone modes. We highlight how CTS measurements can discriminate between different sawtooth models, in particular when aided by multi-diagnostic velocity-space tomography, and briefly discuss our results in light of existing measurements from other fast-ion diagnostics.

  14. Inverse multipath fingerprinting for millimeter wave V2I beam alignment.

    DOT National Transportation Integrated Search

    2017-05-01

    Efficient beam alignment is a crucial component in millimeter wave systems with analog beamforming, especially in fast-changing vehicular settings. This paper uses the vehicles position (e.g., available via GPS) to query the multipath fingerprint ...

  15. Upper Mantle Responses to India-Eurasia Collision in Indochina, Malaysia, and the South China Sea

    NASA Astrophysics Data System (ADS)

    Hongsresawat, S.; Russo, R. M.

    2016-12-01

    We present new shear wave splitting and splitting intensity measurements from SK(K)S phases recorded at seismic stations of the Malaysian National Seismic Network. These results, in conjunction with results from Tibet and Yunnan provide a basis for testing the degree to which Indochina and South China Sea upper mantle fabrics are responses to India-Eurasia collision. Upper mantle fabrics derived from shear wave splitting measurements in Yunnan and eastern Tibet parallel geodetic surface motions north of 26°N, requiring transmission of tractions from upper mantle depths to surface, or consistent deformation boundary conditions throughout the upper 200 km of crust and mantle. Shear wave splitting fast trends and surface velocities diverge in eastern Yunnan and south of 26°N, indicating development of an asthenospheric layer that decouples crust and upper mantle, or corner flow above the subducted Indo-Burma slab. E-W fast shear wave splitting trends southwest of 26°N/104°E indicate strong gradients in any asthenospheric infiltration. Possible upper mantle flow regimes beneath Indochina include development of olivine b-axis anisotropic symmetry due to high strain and hydrous conditions in the syntaxis/Indo-Burma mantle wedge (i.e., southward flow), development of strong upper mantle corner flow in the Indo-Burma wedge with olivine a-axis anisotropic symmetry (i.e., westward flow), and simple asthenospheric flow due to eastward motion of Sundaland shearing underlying asthenosphere. Further south, shear-wave splitting delay times at Malaysian stations vary from 0.5 seconds on the Malay Peninsula to over 2 seconds at stations on Borneo. Splitting fast trends at Borneo stations and Singapore trend NE-SW, but in northern Peninsular Malaysia, the splitting fast polarization direction is NW-SE, parallel to the trend of the Peninsula. Thus, there is a sharp transition from low delay time and NW-SE fast polarization to high delay times and fast polarization directions that parallel the strike of the now-inoperative spreading center in the South China Sea. This transition appears to occur in the central portion of Peninsular Malaysia and may mark the boundary between Tethyan upper mantle extruded from the India-Asia collision zone and supra-subduction upper mantle of the Indonesian arc.

  16. Non-volatile Clocked Spin Wave Interconnect for Beyond-CMOS Nanomagnet Pipelines

    PubMed Central

    Dutta, Sourav; Chang, Sou-Chi; Kani, Nickvash; Nikonov, Dmitri E.; Manipatruni, Sasikanth; Young, Ian A.; Naeemi, Azad

    2015-01-01

    The possibility of using spin waves for information transmission and processing has been an area of active research due to the unique ability to manipulate the amplitude and phase of the spin waves for building complex logic circuits with less physical resources and low power consumption. Previous proposals on spin wave logic circuits have suggested the idea of utilizing the magneto-electric effect for spin wave amplification and amplitude- or phase-dependent switching of magneto-electric cells. Here, we propose a comprehensive scheme for building a clocked non-volatile spin wave device by introducing a charge-to-spin converter that translates information from electrical domain to spin domain, magneto-electric spin wave repeaters that operate in three different regimes - spin wave transmitter, non-volatile memory and spin wave detector, and a novel clocking scheme that ensures sequential transmission of information and non-reciprocity. The proposed device satisfies the five essential requirements for logic application: nonlinearity, amplification, concatenability, feedback prevention, and complete set of Boolean operations. PMID:25955353

  17. A comprehensive study of electrostatic turbulence and transport in the laboratory basic plasma device TORPEX

    NASA Astrophysics Data System (ADS)

    Furno, I.; Fasoli, A.; Avino, F.; Bovet, A.; Gustafson, K.; Iraji, D.; Labit, B.; Loizu, J.; Ricci, P.; Theiler, C.

    2012-04-01

    TORPEX is a toroidal device located at the CRPP-EPFL in Lausanne. In TORPEX, a vertical magnetic field superposed on a toroidal field creates helicoidal field lines with both ends terminating on the torus vessel. The turbulence driven by magnetic curvature and plasma gradients causes plasma transport in the radial direction while at the same time plasma is progressively lost along the field lines. The relatively simple magnetic geometry and diagnostic access of the TORPEX configuration facilitate the experimental study of low frequency instabilities and related turbulent transport, and make an accurate comparison between simulations and experiments possible. We first present a detailed investigation of electrostatic interchange turbulence, associated structures and their effect on plasma using high-resolution diagnostics of plasma parameters and wave fields throughout the whole device cross-section, fluid models and numerical simulations. Interchange modes nonlinearly develop blobs, radially propagating filaments of enhanced plasma pressure. Blob velocities and sizes are obtained from probe measurements using pattern recognition and are described by an analytical expression that includes ion polarization currents, parallel sheath currents and ion-neutral collisions. Then, we describe recent advances of a non-perturbative Li 6+ miniaturized ion source and a detector for the investigation of the interaction between supra thermal ions and interchange-driven turbulence. We present first measurements of the spatial and energy space distribution of the fast ion beam in different plasma scenarios, in which the plasma turbulence is fully characterized. The experiments are interpreted using two-dimensional fluid simulations describing the low-frequency interchange turbulence, taking into account the plasma source and plasma losses at the torus vessel. By treating fast ions as test particles, we integrate their equations of motion in the simulated electromagnetic fields, and we compare their time-averaged and statistical properties with experimental data. Finally, we discuss future developments including the possibility of closing the magnetic field lines and of performing magnetic reconnection experiments.

  18. Non-leaky modes and bandgaps of surface acoustic waves in wrinkled stiff-film/compliant-substrate bilayers

    NASA Astrophysics Data System (ADS)

    Li, Guo-Yang; Xu, Guoqiang; Zheng, Yang; Cao, Yanping

    2018-03-01

    Surface acoustic wave (SAW) devices have found a wide variety of technical applications, including SAW filters, SAW resonators, microfluidic actuators, biosensors, flow measurement devices, and seismic wave shields. Stretchable/flexible electronic devices, such as sensory skins for robotics, structural health monitors, and wearable communication devices, have received considerable attention across different disciplines. Flexible SAW devices are essential building blocks for these applications, wherein piezoelectric films may need to be integrated with the compliant substrates. When piezoelectric films are much stiffer than soft substrates, SAWs are usually leaky and the devices incorporating them suffer from acoustic losses. In this study, the propagation of SAWs in a wrinkled bilayer system is investigated, and our analysis shows that non-leaky modes can be achieved by engineering stress patterns through surface wrinkles in the system. Our analysis also uncovers intriguing bandgaps (BGs) related to the SAWs in a wrinkled bilayer system; these are caused by periodic deformation patterns, which indicate that diverse wrinkling patterns could be used as metasurfaces for controlling the propagation of SAWs.

  19. Research status of wave energy conversion (WEC) device of raft structure

    NASA Astrophysics Data System (ADS)

    Dong, Jianguo; Gao, Jingwei; Tao, Liang; Zheng, Peng

    2017-10-01

    This paper has briefly described the concept of wave energy generation and six typical conversion devices. As for raft structure, detailed analysis is provided from its development process to typical devices. Taking the design process and working principle of Plamis as an example, the general principle of raft structure is briefly described. After that, a variety of raft structure models are introduced. Finally, the advantages and disadvantages, and development trend of raft structure are pointed out.

  20. On fast reconnection in pair plasmas

    NASA Astrophysics Data System (ADS)

    Zocco, A.; Chacon, L.; Simakov, A.; Lukin, V.

    2008-11-01

    The relevance of two-fluid effects to fast magnetic reconnection in standard electron-proton plasmas is well-known. The currently accepted view is that such fast reconnection is enabled by fast dispersive waves, which originate in the ion-electron mass difference. However, electron-positron (pair) plasmas do not feature such mass difference, and thus do not support fast dispersive waves. Nevertheless, recent kinetic and fluid pair-plasmas simulations have demonstrated that fast magnetic reconnection is indeed possible, thus casting doubt on the accepted view. In this study, we develop an analytical fluid model for 2D reconnection in non-relativistic, large-guide-field, low-β pair plasmas, including inertia, resistivity, and parallel viscosity.^4 We conclude that fast reconnection is possible in the collisionless (viscosity-dominated) regime, but not in the collisional (resistivity-dominated) one. J. Birn et al., J. Geophys. Res. 106 (A3), pp. 3715--3719 (2001) M. A. Shay et al., Geophys. Res. Lett. 26, 2163 (1999); B. N. Rogers et al., Phys. Rev. Lett. 87, 195004 (2001) See e.g. S. Zenitani and M. Hoshino, Astrophys. J. 562, L63 (2001); N. Bessho and A. Bhattacharjee, Phys. Rev. Lett. 95, 245001 (2005); W. Daughton and H. Karimabadi, Phys. Plasmas 14, 72303 (2007). L. Chac'on, A. N. Simakov, V. S. Lukin, A. Zocco, Phys. Rev. Lett., 025003 (2008)

Top