Sample records for faster release rate

  1. Functionalized bimodal mesoporous silicas as carriers for controlled aspirin delivery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao Lin; Sun Jihong, E-mail: jhsun@bjut.edu.cn; Li Yuzhen

    The bimodal mesoporous silica modified with 3-aminopropyltriethoxysilane was performed as the aspirin carrier. The samples' structure, drug loading and release profiles were characterized with X-ray diffraction, scanning electron microscopy, N{sub 2} adsorption and desorption, Fourier transform infrared spectroscopy, TG analysis, elemental analysis and UV-spectrophotometer. For further exploring the effects of the bimodal mesopores on the drug delivery behavior, the unimodal mesoporous material MCM-41 was also modified as the aspirin carrier. Meantime, Korsmeyer-Peppas equation f{sub t}=kt{sup n} was employed to analyze the dissolution data in details. It is indicated that the bimodal mesopores are beneficial for unrestricted drug molecules diffusing andmore » therefore lead to a higher loading and faster releasing than that of MCM-41. The results show that the aspirin delivery properties are influenced considerably by the mesoporous matrix, whereas the large pore of bimodal mesoporous silica is the key point for the improved controlled-release properties. - Graphical abstract: Loading (A) and release profiles (B) of aspirin in N-BMMs and N-MCM-41 indicated that BMMs have more drug loading capacity and faster release rate than that MCM-41. Highlights: > Bimodal mesoporous silicas (BMMs) and MCM-41 modified with amino group via post-treatment procedure. > Loading and release profiles of aspirin in modified BMMs and MCM-41. > Modified BMMs have more drug loading capacity and faster release rate than that modified MCM-41.« less

  2. Releasing yellow birch saplings and poles

    Treesearch

    Gayne G. Erdmann; Ralph M., Jr. Peterson

    1992-01-01

    Yellow birch needs moisture, nutrients, overhead light, and enough space for the crown to expand in order to compete successfully with faster-growing northern hardwoods. By releasing crowns early, you can increase the number of future veneer and saw log trees in a stand and double the growth rate, thus cutting rotations in half. If you delay crown release too long,...

  3. The fast release of sticky protons: Kinetics of substrate binding and proton release in a multidrug transporter

    PubMed Central

    Adam, Yoav; Tayer, Naama; Rotem, Dvir; Schreiber, Gideon; Schuldiner, Shimon

    2007-01-01

    EmrE is an Escherichia coli H+-coupled multidrug transporter that provides a unique experimental paradigm because of its small size and stability, and because its activity can be studied in detergent solution. In this work, we report a study of the transient kinetics of substrate binding and substrate-induced proton release in EmrE. For this purpose, we measured transient changes in the tryptophan fluorescence upon substrate binding and the rates of substrate-induced proton release. The fluorescence of the essential and fully conserved Trp residue at position 63 is sensitive to the occupancy of the binding site with either protons or substrate. The maximal rate of binding to detergent-solubilized EmrE of TPP+, a high-affinity substrate, is 2 × 107 M−1·s−1, a rate typical of diffusion-limited reactions. Rate measurements with medium- and low-affinity substrates imply that the affinity is determined mainly by the koff of the substrate. The rates of substrate binding and substrate-induced release of protons are faster at basic pHs and slower at lower pHs. These findings imply that the substrate-binding rates are determined by the generation of the species capable of binding; this is controlled by the high affinity to protons of the glutamate at position 14, because an Asp replacement with a lower pK is faster at the same pHs. PMID:17984053

  4. Evidence for size-selective mortality after the first summer of ocean growth by pink salmon

    USGS Publications Warehouse

    Moss, J.H.; Beauchamp, D.A.; Cross, A.D.; Myers, K.W.; Farley, Edward V.; Murphy, J.M.; Helle, J.H.

    2005-01-01

    Pink salmon Onchorhynchus gorbuscha with identifiable thermal otolith marks from Prince William Sound hatchery release groups during 2001 were used to test the hypothesis that faster-growing fish during their first summer in the ocean had higher survival rates than slower-growing fish. Marked juvenile pink salmon were sampled monthly in Prince William Sound and the Gulf of Alaska, and adults that survived to maturity were recovered at hatchery release sites the following year. Surviving fish exhibited significantly wider circuli spacing on the region of the scale formed during early marine residence than did juveniles collected at sea during their first ocean summer, indicating that marine survival after the first growing season was related to increases in early marine growth. At the same circuli, a significantly larger average scale radius for returning adults than for juveniles from the same hatchery would suggest that larger, faster-growing juveniles had a higher survival rate and that significant size-selective mortality occurred after the juveniles were sampled. Growth patterns inferred from intercirculi spacing on scales varied among hatchery release groups, suggesting that density-dependent processes differed among release groups and occurred across Prince William Sound and the coastal Gulf of Alaska. These observations support other studies that have found that larger, faster-growing fish are more likely to survive until maturity. ?? Copyright by the American Fisheries Society 2005.

  5. Sucrose ester stabilized solid lipid nanoparticles and nanostructured lipid carriers. II. Evaluation of the imidazole antifungal drug-loaded nanoparticle dispersions and their gel formulations.

    PubMed

    Das, Surajit; Ng, Wai Kiong; Tan, Reginald B H

    2014-03-14

    This study focused on: (i) feasibility of the previously developed sucrose ester stabilized SLNs and NLCs to encapsulate different imidazole antifungal drugs and (ii) preparation and evaluation of topical gel formulations of those SLNs and NLCs. Three imidazole antifungal drugs; clotrimazole, ketoconazole and climbazole were selected for this study. The results suggested that size, size distribution and drug encapsulation efficiency depend on the drug molecule and type of nanoparticles (SLN/NLC). The drug release experiment always showed faster drug release from NLCs than SLNs when the same drug molecule was loaded in both nanoparticles. However, drug release rate from both SLNs and NLCs followed the order of climbazole > ketoconazole > clotrimazole. NLCs demonstrated better physicochemical stability than SLNs in the case of all drugs. The drug release rate from ketoconazole- and clotrimazole-loaded SLNs became faster after three months than a fresh formulation. There was no significant change in drug release rate from climbazole-loaded SLNs and all drug-loaded NLCs. Gel formulations of SLNs and NLCs were prepared using polycarbophil polymer. Continuous flow measurements demonstrated non-Newtonian flow with shear-thinning behavior and thixotropy. Oscillation measurements depicted viscoelasticity of the gel formulations. Similar to nanoparticle dispersion, drug release rate from SLN- and NLC-gel was in the order of climbazole > ketoconazole > clotrimazole. However, significantly slower drug release was noticed from all gel formulations than their nanoparticle counterparts. Unlike nanoparticle dispersions, no significant difference in drug release from gel formulations containing SLNs and NLCs was observed for each drug. This study concludes that gel formulation of imidazole drug-loaded SLNs and NLCs can be used for sustained/prolonged topical delivery of the drugs.

  6. Uranium mobility during interaction of rhyolitic glass with alkaline solutions: dissolution of glass

    USGS Publications Warehouse

    Zielinski, Robert A.

    1977-01-01

    This report concerns investigations designed to identify the important physical and chemical parameters influencing the rate of release of uranium from glass shards of rhyolitic air-fall ash. Oxidizing, silica undersaturated, alkaline solutions are eluted through a column of rhyolitic glass shards at a carefully controlled temperature, pressure, and flow rate. The solutions are monitored for the concentration of uranium and selected additional elements (Si, K, Li, F), and the glass is recovered and examined for physical and/or chemical evidence of attack. The flushing mode is designed to mimic leaching of glass shards by intermittent, near-surface waters with which the glass is not in equilibrium. Reported rates are applicable only to the experimental conditions (120?C, 7,000 psi), but it is assumed that the reaction mechanisms and the relative importance of rate-influencing parameters remain unchanged, at reduced temperature and pressure. Results of the above experiment indicate that silica and uranium are released from glass shards at comparable rates, while lithium and potassium are released faster and fluorine slower than either Si or U. Rates of release of silica and uranium correlate positively with the surface area of the shards. Rhyolitic shards release uranium at faster rates than rhyodacitic shards of comparable surface area. Changes in the shards resulting from experimental treatment and observed in the original glass separates from an Oligocene ash (compared to a Pleistocene ash) include; surface pitting, increased surface area, devitrification rinds (<1l micron wide) and reduced lithium contents. Future investigations will study the effect of temperature, pressure, solution composition, and flow rate on the relative mobility of U, Si, Li, F, and K.

  7. Ultrafast glutamate sensors resolve high-frequency release at Schaffer collateral synapses.

    PubMed

    Helassa, Nordine; Dürst, Céline D; Coates, Catherine; Kerruth, Silke; Arif, Urwa; Schulze, Christian; Wiegert, J Simon; Geeves, Michael; Oertner, Thomas G; Török, Katalin

    2018-05-22

    Glutamatergic synapses display a rich repertoire of plasticity mechanisms on many different time scales, involving dynamic changes in the efficacy of transmitter release as well as changes in the number and function of postsynaptic glutamate receptors. The genetically encoded glutamate sensor iGluSnFR enables visualization of glutamate release from presynaptic terminals at frequencies up to ∼10 Hz. However, to resolve glutamate dynamics during high-frequency bursts, faster indicators are required. Here, we report the development of fast (iGlu f ) and ultrafast (iGlu u ) variants with comparable brightness but increased K d for glutamate (137 μM and 600 μM, respectively). Compared with iGluSnFR, iGlu u has a sixfold faster dissociation rate in vitro and fivefold faster kinetics in synapses. Fitting a three-state model to kinetic data, we identify the large conformational change after glutamate binding as the rate-limiting step. In rat hippocampal slice culture stimulated at 100 Hz, we find that iGlu u is sufficiently fast to resolve individual glutamate release events, revealing that glutamate is rapidly cleared from the synaptic cleft. Depression of iGlu u responses during 100-Hz trains correlates with depression of postsynaptic EPSPs, indicating that depression during high-frequency stimulation is purely presynaptic in origin. At individual boutons, the recovery from depression could be predicted from the amount of glutamate released on the second pulse (paired pulse facilitation/depression), demonstrating differential frequency-dependent filtering of spike trains at Schaffer collateral boutons. Copyright © 2018 the Author(s). Published by PNAS.

  8. Growth rate effects on the formation of dislocation loops around deep helium bubbles in Tungsten

    DOE PAGES

    Sandoval, Luis; Perez, Danny; Uberuaga, Blas P.; ...

    2016-11-15

    Here, the growth process of spherical helium bubbles located 6 nm below a (100) surface is studied using molecular dynamics and parallel replica dynamics simulations, over growth rates from 10 6 to 10 12 helium atoms per second. Slower growth rates lead to a release of pressure and lower helium content as compared with fast growth cases. In addition, at slower growth rates, helium bubbles are not decorated by multiple dislocation loops, as these tend to merge or emit given sufficient time. At faster rates, dislocation loops nucleate faster than they can emit, leading to a more complicated dislocation structuremore » around the bubble.« less

  9. Nanostructured lipid carriers: effect of solid phase fraction and distribution on the release of encapsulated materials.

    PubMed

    Dan, Nily

    2014-11-25

    Emulsions, solid lipid nanoparticles (SLN), and nanostructured lipid carriers (NLC) containing a mix of liquid and solid domains are of interest as encapsulation vehicles for hydrophobic compounds. Studies of the release rate from these particles yield contradictory results: Some find that increasing the fraction of solid phase increases the rate of release and others the opposite. In this paper we study the release of encapsulated materials from lipid-based nanoparticles using Monte Carlo simulations. We find that, quite surprisingly, the release rate is largely insensitive to the size of solid domains or the fraction of solid phase. However, the distribution of the domains significantly affects the rate of release: Solid domains located at the interface with the surrounding solution inhibit transport, while nanoparticles where the solid domains are concentrated in the center enhance it. The latter can lead to release rates in NLCs that are faster than in the equivalent emulsions. We conclude that controlling the release rate from NLCs requires the ability to determine the location and distribution of the solid phase, which may be achieved through choice of the surfactants stabilizing the particles, incorporation of nucleation sites, and/or the cooling rates and temperatures.

  10. Release of chemical permeation enhancers from drug-in-adhesive transdermal patches.

    PubMed

    Qvist, Michael H; Hoeck, Ulla; Kreilgaard, Bo; Madsen, Flemming; Frokjaer, Sven

    2002-01-14

    There is only limited knowledge of how chemical permeation enhancers release from transdermal drug delivery systems of the drug-in-adhesive type. In this study, the release of eight commonly known enhancers from eight types of polymer adhesives was evaluated using Franz diffusion cells. It was shown that all the enhancers released completely from the adhesives and followed a square root of time kinetic (Higuchi law). Using a statistical analysis it was shown that the release rate was more dependent on the type of enhancer than on the type of polymers. The mean release rates were in the range from 2.2 to 11.1%/ radical t for the slowest and fastest releasing enhancers, which correspond to a 50% release within 500 and 20 min, respectively. Furthermore, the release rates were inversely proportional to the cube root of the molal volumes of the enhancers and to their logarithmic partition coefficients between the polymer adhesive and the receptor fluid. It was found that the observed release rates were probably due to a high diffusion coefficient of the enhancers rather than due to an inhomogeneous embedment of the enhancers in the adhesives. The type of adhesive showed minor influence on the release rate, especially among the acrylic polymers no difference was seen. However, compared to the acrylic adhesives, the polyisobutylene adhesive showed slower release rates, while the silicone adhesive showed slightly faster release rates.

  11. Development of an osmotic pump system for controlled delivery of diclofenac sodium.

    PubMed

    Emara, L H; Taha, N F; Badr, R M; Mursi, N M

    2012-10-01

    Based on an elementary osmotic pump, controlled release systems of diclofenac sodium (DS) were designed to deliver the drug in a zero-order release pattern. Osmotic pump tablets containing 100 mg DS were prepared and coated with either semipermeable (SPM) or microporous (PM) membranes. The tablet coats were composed of hydrophobic triacetin (TA) or hydrophilic polyethylene glycol 400 (PEG 400) incorporated in cellulose acetate (CA) solution, for SPM and PM, respectively. Variable tablet core compositions such as swelling polymers (PEO and HPMC) and osmotic agents (lactose, NaCl, and KCl) were studied. An optimized, sensitive and well controlled in vitro release design, based on the flow-through cell (FTC), was utilized to discriminate between preparations. The results revealed that the presence of PEG 400 in the coating membrane accelerated the drug release rate, while TA suppressed the release rate of DS. In the case of SPM, the amount of DS released was inversely proportional to the membrane thickness, where 5% (w/w) weight gain gave a higher DS release rate than 10% (w/w). Results of different tablet core compositions revealed that the release rate of DS decreased as PEO molecular weight increased. HPMC K15M showed the lowest DS release rate. The presence of lactose, KCl, or NaCl pronouncedly affected DS release rate depending on polymer type in the core. Scanning electron microscopy (SEM) confirmed formation of pores in the membrane that accounts for faster DS release rate. These results revealed that DS could be formulated as an osmotic pump system with a prolonged, zero-order release pattern.

  12. Development of low methoxy amidated pectin-based mucoadhesive patches for buccal delivery of triclosan: effect of cyclodextrin complexation.

    PubMed

    Jug, Mario; Kosalec, Ivan; Maestrelli, Francesca; Mura, Paola

    2012-11-06

    A novel mucoadhesive buccal patch formulation of triclosan (TR), a broad spectrum antibacterial agent, was developed using low methoxy amidated pectin (AMP). The integrity of AMP matrix was improved by addition of 20% (w/w) Carbopol (CAR). The efficiency of β-cyclodextrin-epichlorohydrin polymer (EPIβCD) and anionic carboxymethylated β-cyclodextrin-epichlorohydrin polymer (CMEPIβCD) in optimization of TR solubility and release from such a matrix was investigated and confronted to that of parent β-cyclodextrin (βCD). Loading of TR/βCD co-ground complex into AMP/CAR matrix resulted in a biphasic release profile which was sensitive upon the hydration degree of the matrix, due to lower solubilizing efficiency of βCD, while the drug release from patches loaded with TR/EPIβCD complex was significantly faster with a constant release rate. Microbiological studies evidenced faster onset and more pronounced antibacterial action of TR/EPIβCD loaded patches, clearly demonstrating their good therapeutic potential in eradication of Streptococcus mutans, a cariogenic bacteria, from the oral cavity. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Preparation and evaluation of tilmicosin-loaded hydrogenated castor oil nanoparticle suspensions of different particle sizes.

    PubMed

    Chen, Xiaojin; Wang, Ting; Lu, Mengmeng; Zhu, Luyan; Wang, Yan; Zhou, WenZhong

    2014-01-01

    Three tilmicosin-loaded hydrogenated castor oil nanoparticle (TMS-HCO-NP) suspensions of different particle sizes were prepared with different polyvinyl alcohol surfactant concentrations using a hot homogenization and ultrasonic technique. The in vitro release, in vitro antibacterial activity, mammalian cytotoxicity, acute toxicity in mice, and stability study were conducted to evaluate the characteristics of the suspensions. The in vitro tilmicosin release rate, antibacterial activity, mammalian cytotoxicity, acute toxicity in mice, and stability of the suspensions were evaluated. When prepared with polyvinyl alcohol concentrations of 0.2%, 1%, and 5%, the mean diameters of the nanoparticles in the three suspensions were 920±35 nm, 452±10 nm, and 151±4 nm, respectively. The three suspensions displayed biphasic release profiles similar to that of freeze-dried TMS-HCO-NP powders, with the exception of having a faster initial release. Moreover, suspensions of smaller-sized particles showed faster initial release, and lower minimum inhibitory concentrations and minimum bactericidal concentrations. Time-kill curves showed that within 12 hours, the suspension with the 151 nm particles had the most potent bactericidal activity, but later, the suspensions with larger-sized particles showed increased antibacterial activity. None of the three suspensions were cytotoxic at clinical dosage levels. At higher drug concentrations, all three suspensions showed similar concentration-dependent cytotoxicity. The suspension with the smallest-sized particle showed significantly more acute toxicity in mice, perhaps due to faster drug release. All three suspensions exhibited good stability at 4°C and at room temperature for at least 6 months. These results demonstrate that TMS-HCO-NP suspensions can be a promising formulation for tilmicosin, and that nanoparticle size can be an important consideration for formulation development.

  14. Preparation and evaluation of tilmicosin-loaded hydrogenated castor oil nanoparticle suspensions of different particle sizes

    PubMed Central

    Chen, Xiaojin; Wang, Ting; Lu, Mengmeng; Zhu, Luyan; Wang, Yan; Zhou, WenZhong

    2014-01-01

    Three tilmicosin-loaded hydrogenated castor oil nanoparticle (TMS-HCO-NP) suspensions of different particle sizes were prepared with different polyvinyl alcohol surfactant concentrations using a hot homogenization and ultrasonic technique. The in vitro release, in vitro antibacterial activity, mammalian cytotoxicity, acute toxicity in mice, and stability study were conducted to evaluate the characteristics of the suspensions. The in vitro tilmicosin release rate, antibacterial activity, mammalian cytotoxicity, acute toxicity in mice, and stability of the suspensions were evaluated. When prepared with polyvinyl alcohol concentrations of 0.2%, 1%, and 5%, the mean diameters of the nanoparticles in the three suspensions were 920±35 nm, 452±10 nm, and 151±4 nm, respectively. The three suspensions displayed biphasic release profiles similar to that of freeze-dried TMS-HCO-NP powders, with the exception of having a faster initial release. Moreover, suspensions of smaller-sized particles showed faster initial release, and lower minimum inhibitory concentrations and minimum bactericidal concentrations. Time-kill curves showed that within 12 hours, the suspension with the 151 nm particles had the most potent bactericidal activity, but later, the suspensions with larger-sized particles showed increased antibacterial activity. None of the three suspensions were cytotoxic at clinical dosage levels. At higher drug concentrations, all three suspensions showed similar concentration-dependent cytotoxicity. The suspension with the smallest-sized particle showed significantly more acute toxicity in mice, perhaps due to faster drug release. All three suspensions exhibited good stability at 4°C and at room temperature for at least 6 months. These results demonstrate that TMS-HCO-NP suspensions can be a promising formulation for tilmicosin, and that nanoparticle size can be an important consideration for formulation development. PMID:24920902

  15. Dynamics of multiple elements in fast decomposing vegetable residues.

    PubMed

    Cao, Chun; Liu, Si-Qi; Ma, Zhen-Bang; Lin, Yun; Su, Qiong; Chen, Huan; Wang, Jun-Jian

    2018-03-01

    Litter decomposition regulates the cycling of nutrients and toxicants but is poorly studied in farmlands. To understand the unavoidable in-situ decomposition process, we quantified the dynamics of C, H, N, As, Ca, Cd, Cr, Cu, Fe, Hg, K, Mg, Mn, Na, Ni, Pb, and Zn during a 180-d decomposition study in leafy lettuce (Lactuca sativa var. longifoliaf) and rape (Brassica chinensis) residues in a wastewater-irrigated farmland in northwestern China. Different from most studied natural ecosystems, the managed vegetable farmland had a much faster litter decomposition rate (half-life of 18-60d), and interestingly, faster decomposition of roots relative to leaves for both the vegetables. Faster root decomposition can be explained by the initial biochemical composition (more O-alkyl C and less alkyl and aromatic C) but not the C/N stoichiometry. Multi-element dynamics varied greatly, with C, H, N, K, and Na being highly released (remaining proportion<20%), Ca, Cd, Cr, Mg, Ni, and Zn released, and As, Cu, Fe, Hg, Mn, and Pb possibly accumulated. Although vegetable residues serve as temporary sinks of some metal(loid)s, their fast decomposition, particularly for the O-alkyl-C-rich leafy-lettuce roots, suggest that toxic metal(loid)s can be released from residues, which therefore become secondary pollution sources. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Endurance training facilitates myoglobin desaturation during muscle contraction in rat skeletal muscle.

    PubMed

    Takakura, Hisashi; Furuichi, Yasuro; Yamada, Tatsuya; Jue, Thomas; Ojino, Minoru; Hashimoto, Takeshi; Iwase, Satoshi; Hojo, Tatsuya; Izawa, Tetsuya; Masuda, Kazumi

    2015-03-24

    At onset of muscle contraction, myoglobin (Mb) immediately releases its bound O2 to the mitochondria. Accordingly, intracellular O2 tension (PmbO2) markedly declines in order to increase muscle O2 uptake (mVO2). However, whether the change in PmbO2 during muscle contraction modulates mVO2 and whether the O2 release rate from Mb increases in endurance-trained muscles remain unclear. The purpose of this study was, therefore, to determine the effect of endurance training on O2 saturation of Mb (SmbO2) and PmbO2 kinetics during muscle contraction. Male Wistar rats were subjected to a 4-week swimming training (Tr group; 6 days per week, 30 min × 4 sets per day) with a weight load of 2% body mass. After the training period, deoxygenated Mb kinetics during muscle contraction were measured using near-infrared spectroscopy under hemoglobin-free medium perfusion. In the Tr group, the VmO2peak significantly increased by 32%. Although the PmbO2 during muscle contraction did not affect the increased mVO2 in endurance-trained muscle, the O2 release rate from Mb increased because of the increased Mb concentration and faster decremental rate in SmbO2 at the maximal twitch tension. These results suggest that the Mb dynamics during muscle contraction are contributing factors to faster VO2 kinetics in endurance-trained muscle.

  17. Crown Release Promotes Faster Diameter Growth of Pole-Size Black Walnut

    Treesearch

    Robert E. Phares; Robert D. Williams

    1971-01-01

    Complete crown release more than doubles the diameter growth of pole-size black walnut trees in southern Indiana over a 10-year period. Partially released trees gew about 50 percent more than unreleased trees. The faster growth of the released trees was directly related to increases in crown-area expansion. Most of the study trees produced bole sprouts; however, the...

  18. Investigation of the effect of hydroxypropyl methylcellulose on the phase transformation and release profiles of carbamazepine-nicotinamide cocrystal.

    PubMed

    Li, Mingzhong; Qiu, Shi; Lu, Yan; Wang, Ke; Lai, Xiaojun; Rehan, Mohammad

    2014-09-01

    The aim of this work was to investigate the influence of hydroxypropyl methylcellulose (HPMC) on the phase transformation and release profile of carbamazepine-nicotinamide (CBZ-NIC) cocrystal in solution and in sustained release matrix tablets. The polymorphic transitions of the CBZ-NIC cocrystal and its crystalline properties were examined by differential scanning calorimetry (DSC), X-ray powder diffraction (XRPD), Raman spectroscopy, and scanning electron microscopy (SEM). The apparent CBZ solubility and dissolution rate of CBZ-NIC cocrystal were constant in different concentrations of HPMC solutions. In a lower percentage of HPMC in the matrix tablets, the CBZ release profile of the CBZ-NIC cocrystal was nonlinear and declined over time. With an increased HPMC content in the tablets, the CBZ-NIC cocrystal formulation showed a significantly higher CBZ release rate in comparison with the other two formulations of CBZ III and the physical mixture. Because of a significantly improved dissolution rate of the CBZ-NIC cocrystal, the rate of CBZ entering into solution is significantly faster than the rate of formation of the CBZ-HPMC soluble complex in solution, leading to a higher supersaturation level of CBZ and subsequently precipitation of CBZ dihydrate.

  19. A RAPID AND SIMPLE PHOSPHOLIPASE A ASSAY,

    DTIC Science & Technology

    A simple and rapid method for the assay of phospholipase A was developed. As a substrate fresh egg yolk is used which is hydrolyzed by snake venom...phospholipase A at a 10-20 x faster rate than pure lecithin . The released fatty acids, after extraction with appropriate solvents are titrated

  20. Gas Release as a Deformation Signal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bauer, Stephen J.

    Radiogenic noble gases are contained in crustal rock at inter and intra granular sites. The gas composition depends on lithology, geologic history, fluid phases, and the aging effect by decay of U, Th, and K. The isotopic signature of noble gases found in rocks is vastly different than that of the atmosphere which is contributed by a variety of sources. When rock is subjected to stress conditions exceeding about half its yield strength, micro-cracks begin to form. As rock deformation progresses a fracture network evolves, releasing trapped noble gases and changing the transport properties to gas migration. Thus, changes inmore » gas emanation and noble gas composition from rocks could be used to infer changes in stress-state and deformation. The purpose of this study has been to evaluate the effect of deformation/strain rate upon noble gas release. Four triaxial experiments were attempted for a strain rate range of %7E10-8 /s (180,000s) to %7E 10-4/s (500s); the three fully successful experiments (at the faster strain rates) imply the following: (1) helium is measurably released for all strain rates during deformation, this release is in amounts 1-2 orders of magnitude greater than that present in the air, and (2) helium gas release increases with decreasing strain rate.« less

  1. [The excipient properties of shea butter compared with vaseline and lanolin].

    PubMed

    Thioune, Oumar; Khouma, Barham; Diarra, Mounibé; Diop, Alioune B; Lô, Issa

    2003-01-01

    A shea butter ointment containing 3% aureomycin (clortetracyclin hydrocloride) was prepared and some of its macroscopic and microscopic characteristics were evaluated. Then, the release of the active ingredient was compared by UV spectrophotometry with those obtained when excipients such as petroleum jelly and lanoline were used. Results had shown that the shea butter ointment had satisfactory characteristics. In the other hand, it was found that shea butter released the aureomycin easily and at a faster rate than the other excipients.

  2. Ultrasound triggered drug delivery with liposomal nested microbubbles.

    PubMed

    Wallace, N; Wrenn, S P

    2015-12-01

    When ultrasound contrast agent microbubbles are nested within a liposome, damage to the liposome membrane caused by both stable and inertial cavitation of the microbubble allows for release of the aqueous core of the liposome. Triggered release was not accomplished unless microbubbles were present within the liposome. Leakage was tested using fluorescence assays developed specifically for this drug delivery vehicle and qualitative measurements using an optical microscope. These studies were done using a 1 MHz focused ultrasound transducer while varying parameters including peak negative ultrasound pressure, average liposome diameter, and microbubble concentration. Two regimes exist for membrane disruption caused by cavitating microbubbles. A faster release rate, as well as permanent membrane damage are seen for samples exposed to high pressure (2.1-3.7 MPa). A slower release rate and dilation/temporary poration are characteristic of stable cavitation for low pressure studies (0.54-1.7 MPa). Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Solid dispersion of acetaminophen and poly(ethylene oxide) prepared by hot-melt mixing.

    PubMed

    Yang, Min; Wang, Peng; Huang, Chien-Yueh; Ku, M Sherry; Liu, Huiju; Gogos, Costas

    2010-08-16

    In this study, a model drug, acetaminophen (APAP), was melt mixed with poly(ethylene oxide) (PEO) using a Brabender mixer. APAP was found to recrystallize upon cooling to room temperature for all the drug loadings investigated. Higher drug loading leads to faster recrystallization rate. However, the morphology of the recrystallized drug crystals is identical in samples with different drug loadings and does not change with the storage time. To adjust the drug's dissolution rate, nanoclay Cloisite 15A and 30B were added into the binary mixture. The presence of either of the nanoclay dramatically accelerates the drug's recrystallization rate and slows down the drug's releasing rate. The drop of the releasing rate is mainly due to the decrease of wettability, as supported by the contact angle data. Data analysis of the dissolution results suggests that the addition of nanoclays changes the drug's release mechanism from erosion dominant to diffusion dominant. This study suggests that nanoclays may be utilized to tailor the drug's releasing rate and to improve the dosage form's stability by dramatically shortening the lengthy recrystallization process. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  4. Effects of hatchery rearing on Florida largemouth bass Micropterus floridanus resource allocation and performance under semi-natural conditions.

    PubMed

    Garlock, T M; Monk, C T; Lorenzen, K; Matthews, M D; St Mary, C M

    2014-12-01

    This study examined the growth, activity, metabolism and post-release survival of three groups of Florida largemouth bass Micropterus floridanus: wild-caught fish, hatchery fish reared according to standard practice (hatchery standard) and hatchery fish reared under reduced and unpredictable food provisioning (hatchery manipulated). Hatchery-standard fish differed from wild-caught fish in all measured variables, including survival in semi-natural ponds. Hatchery-standard and hatchery-manipulated fish showed higher activity levels, faster growth and lower standard metabolic rates than wild-caught fish in the hatchery. Fish reared under the manipulated feeding regime showed increased metabolic rates and increased post-release growth, similar to wild-caught fish. Their activity levels and post-release survival, however, remained similar to those of hatchery-standard fish. Activity was negatively correlated with post-release survival and failure of the feed manipulation to reduce activity may have contributed to its failure to improve post-release survival. Activity and post-release survival may be influenced by characteristics of the rearing environment other than the feeding regime, such as stock density or water flow rates. © 2014 The Fisheries Society of the British Isles.

  5. Endurance training facilitates myoglobin desaturation during muscle contraction in rat skeletal muscle

    PubMed Central

    Takakura, Hisashi; Furuichi, Yasuro; Yamada, Tatsuya; Jue, Thomas; Ojino, Minoru; Hashimoto, Takeshi; Iwase, Satoshi; Hojo, Tatsuya; Izawa, Tetsuya; Masuda, Kazumi

    2015-01-01

    At onset of muscle contraction, myoglobin (Mb) immediately releases its bound O2 to the mitochondria. Accordingly, intracellular O2 tension (PmbO2) markedly declines in order to increase muscle O2 uptake (mO2). However, whether the change in PmbO2 during muscle contraction modulates mO2 and whether the O2 release rate from Mb increases in endurance-trained muscles remain unclear. The purpose of this study was, therefore, to determine the effect of endurance training on O2 saturation of Mb (SmbO2) and PmbO2 kinetics during muscle contraction. Male Wistar rats were subjected to a 4-week swimming training (Tr group; 6 days per week, 30 min × 4 sets per day) with a weight load of 2% body mass. After the training period, deoxygenated Mb kinetics during muscle contraction were measured using near-infrared spectroscopy under hemoglobin-free medium perfusion. In the Tr group, the mO2peak significantly increased by 32%. Although the PmbO2 during muscle contraction did not affect the increased mO2 in endurance-trained muscle, the O2 release rate from Mb increased because of the increased Mb concentration and faster decremental rate in SmbO2 at the maximal twitch tension. These results suggest that the Mb dynamics during muscle contraction are contributing factors to faster O2 kinetics in endurance-trained muscle. PMID:25801957

  6. Stabilization of diastolic calcium signal via calcium pump regulation of complex local calcium releases and transient decay in a computational model of cardiac pacemaker cell with individual release channels

    PubMed Central

    Maltsev, Alexander V.; Maltsev, Victor A.; Stern, Michael D.

    2017-01-01

    Intracellular Local Ca releases (LCRs) from sarcoplasmic reticulum (SR) regulate cardiac pacemaker cell function by activation of electrogenic Na/Ca exchanger (NCX) during diastole. Prior studies demonstrated the existence of powerful compensatory mechanisms of LCR regulation via a complex local cross-talk of Ca pump, release and NCX. One major obstacle to study these mechanisms is that LCR exhibit complex Ca release propagation patterns (including merges and separations) that have not been characterized. Here we developed new terminology, classification, and computer algorithms for automatic detection of numerically simulated LCRs and examined LCR regulation by SR Ca pumping rate (Pup) that provides a major contribution to fight-or-flight response. In our simulations the faster SR Ca pumping accelerates action potential-induced Ca transient decay and quickly clears Ca under the cell membrane in diastole, preventing premature releases. Then the SR generates an earlier, more synchronized, and stronger diastolic LCR signal activating an earlier and larger inward NCX current. LCRs at higher Pup exhibit larger amplitudes and faster propagation with more collisions to each other. The LCRs overlap with Ca transient decay, causing an elevation of the average diastolic [Ca] nadir to ~200 nM (at Pup = 24 mM/s). Background Ca (in locations lacking LCRs) quickly decays to resting Ca levels (<100 nM) at high Pup, but remained elevated during slower decay at low Pup. Release propagation is facilitated at higher Pup by a larger LCR amplitude, whereas at low Pup by higher background Ca. While at low Pup LCRs show smaller amplitudes, their larger durations and sizes combined with longer transient decay stabilize integrals of diastolic Ca and NCX current signals. Thus, the local interplay of SR Ca pump and release channels regulates LCRs and Ca transient decay to insure fail-safe pacemaker cell operation within a wide range of rates. PMID:28792496

  7. Controlled release of anticancer drug methotrexate from biodegradable gelatin microspheres.

    PubMed

    Narayani, R; Rao, K P

    1994-01-01

    Biodegradable hydrophilic gelatin microspheres containing the anticancer drug methotrexate (MTX) of different mean particle sizes (1-5, 5-10, and 15-20 microns) were prepared by polymer dispersion technique and crosslinked with glutaraldehyde. The microspheres were uniform, smooth, solid and in the form of free-flowing powder. About 80 per cent of MTX was incorporated in gelatin microspheres of different sizes. The in vitro release of MTX was investigated in two different media, namely simulated gastric and intestinal fluids. The release profiles indicated that gelatin microspheres released MTX in a zero-order fashion for 4-6 days in simulated gastric fluid and for 5-8 days in simulated intestinal fluid. The rate of release of MTX decreased with increase in the particle size of the microspheres. MTX release was faster in gastric fluid when compared to intestinal fluid.

  8. In vitro and ex vivo characterisation of an in situ gelling formulation for sustained lidocaine release with potential use following knee arthroplasty.

    PubMed

    Sharma, Manisha; Chandramouli, Kaushik; Curley, Louise; Pontre, Beau; Reilly, Keryn; Munro, Jacob; Hill, Andrew; Young, Simon; Svirskis, Darren

    2018-06-01

    Sustained lidocaine release via a thermoresponsive poloxamer-based in situ gelling system has the potential to alleviate pain following knee arthroplasty. A previously developed formulation showed a promising drug release profile in synthetic phosphate-buffered saline (PBS). To support the translation of this formulation, ex vivo characterisation was warranted. This study therefore aimed (1) to modify the previously developed formulation to reduce the burst release, (2) to compare the release behaviour into ex vivo human intra-articular fluid (IAF) and PBS and (3) to determine the formulation spread in an ex vivo human knee using magnetic resonance imaging (MRI). All formulations provided sustained release out to 72 h; polyvinyl pyrrolidone was the most effective additive yielding a small yet significant decrease (p < 0.05) in the burst release. Release of lidocaine from the formulation occurred significantly faster into IAF compared to PBS (1.4 times greater release in the first 24 h), correlating with faster rates of gel erosion in IAF. Injection was easily achieved through a 21-gauge (G) needle into the synovial space of a human cadaveric knee, and MRI scans revealed effective spreading of the formulation throughout the joint cavity. The pattern of spread is promising for the drug to reach the widespread nerve endings in the joint capsule; the effect of this spread on release in an in vivo setting will be the subject of future studies. The demonstrated properties indicate that the in situ gelling formulation has the potential to be used clinically to treat post-operative pain following knee arthroplasty.

  9. Dissolution kinetics of iron-, manganese-, and copper-containing synthetic hydroxyapatites

    NASA Technical Reports Server (NTRS)

    Sutter, B.; Hossner, L. R.; Ming, D. W.

    2005-01-01

    Micronutrient-substituted synthetic hydroxyapatite (SHA) is being evaluated by the National Aeronautics and Space Administration's (NASA) Advanced Life Support (ALS) Program for crop production on long-duration human missions to the International Space Station or for future Lunar or Martian outposts. The stirred-flow technique was utilized to characterize Ca, P, Fe, Mn, and Cu release characteristics from Fe-, Mn-, and Cu-containing SHA in deionized (DI) water, citric acid, and diethylene-triamine-pentaacetic acid (DTPA). Initially, Ca and P release rates decreased rapidly with time and were controlled by a non-SHA calcium phosphate phase(s) with low Ca/P solution molar ratios (0.91-1.51) relative to solid SHA ratios (1.56-1.64). At later times, Ca/P solution molar ratios (1.47-1.79) were near solid SHA ratios and release rates decreased slowly indicating that SHA controlled Ca and P release. Substituted SHA materials had faster dissolution rates relative to unsubstituted SHA. The initial metal release rate order was Mn >> Cu > Fe which followed metal-oxide/phosphate solubility suggesting that poorly crystalline metal-oxides/phosphates were dominating metal release. Similar metal release rates for all substituted SHA (approximately 0.01 cmol kg-1 min-1) at the end of the DTPA experiment indicated that SHA dissolution was supplying the metals into solution and that poorly crystalline metal-oxide/phosphates were not controlling metal release. Results indicate that non-SHA Ca-phosphate phases and poorly crystalline metal-oxide/phosphates will contribute Ca, P, and metals. After these phases have dissolved, substituted SHA will be the source of Ca, P, and metals for plants.

  10. Drug release from and hydrolytic degradation of a poly(ethylene glycol) grafted poly(3-hydroxyoctanoate).

    PubMed

    Kim, Hyung Woo; Chung, Chung Wook; Hwang, Sung Joo; Rhee, Young Ha

    2005-07-01

    Monoacrylate-poly(ethylene glycol)-grafted poly(3-hydroxyoctanoate) (PEGMA-g-PHO) copolymers were synthesized to develop a swelling-controlled release delivery system for ibuprofen as a model drug. The in vitro hydrolytic degradation of and the drug release from a film made of the PEGMA-g-PHO copolymer were carried out in a phosphate buffer saline (pH 7.4) medium. The hydrolytic degradation of the copolymer was strongly dependent on the degree of grafting (DG) of the PEGMA group. The degradation rate of the copolymer films in vitro increased with increasing DG of the PEGMA group on the PHO chain. The copolymer films showed a controlled delivery of ibuprofen to the medium in periods of time that depend on the composition, hydrophilic/hydrophobic characteristics, initial drug loading amount and film thickness of the graft copolymer support. The drug release rate from the grafted copolymer films was faster than the rate of weight loss of the films themselves. In particular, a combination of the low DG of the PEGMA group in the PHO chains with the low ibuprofen solubility in water led to long-term constant release from these matrices in vitro.

  11. The reductive half-reaction of xanthine dehydrogenase from Rhodobacter capsulatus: the role of Glu232 in catalysis.

    PubMed

    Hall, James; Reschke, Stefan; Cao, Hongnan; Leimkühler, Silke; Hille, Russ

    2014-11-14

    The kinetic properties of an E232Q variant of the xanthine dehydrogenase from Rhodobacter capsulatus have been examined to ascertain whether Glu(232) in wild-type enzyme is protonated or unprotonated in the course of catalysis at neutral pH. We find that kred, the limiting rate constant for reduction at high [xanthine], is significantly compromised in the variant, a result that is inconsistent with Glu(232) being neutral in the active site of the wild-type enzyme. A comparison of the pH dependence of both kred and kred/Kd from reductive half-reaction experiments between wild-type and enzyme and the E232Q variant suggests that the ionized Glu(232) of wild-type enzyme plays an important role in catalysis by discriminating against the monoanionic form of substrate, effectively increasing the pKa of substrate by two pH units and ensuring that at physiological pH the neutral form of substrate predominates in the Michaelis complex. A kinetic isotope study of the wild-type R. capsulatus enzyme indicates that, as previously determined for the bovine and chicken enzymes, product release is principally rate-limiting in catalysis. The disparity in rate constants for the chemical step of the reaction and product release, however, is not as great in the bacterial enzyme as compared with the vertebrate forms. The results indicate that the bacterial and bovine enzymes catalyze the chemical step of the reaction to the same degree and that the faster turnover observed with the bacterial enzyme is due to a faster rate constant for product release than is seen with the vertebrate enzyme. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  12. Factors That Affect Oxygen Activation and Coupling of the Two Redox Cycles in the Aromatization Reaction Catalyzed by NikD, an Unusual Amino Acid Oxidase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kommoju, Phaneeswara-Rao; Bruckner, Robert C.; Ferreira, Patricia

    2009-10-21

    NikD is a flavoprotein oxidase that catalyzes the oxidation of piperideine-2-carboxylate (P2C) to picolinate in a remarkable aromatization reaction comprising two redox cycles and at least one isomerization step. Tyr258 forms part of an 'aromatic cage' that surrounds the ring in picolinate and its precursors. Mutation of Tyr258 to Phe does not perturb the structure of nikD but does affect the coupling of the two redox cycles and causes a 10-fold decrease in turnover rate. Tyr258Phe catalyzes a quantitative two-electron oxidation of P2C, but only 60% of the resulting dihydropicolinate intermediate undergoes a second redox cycle to produce picolinate. Themore » mutation does not affect product yield with an alternate substrate (3,4-dehydro-l-proline) that is aromatized in a single two-electron oxidation step. Wild-type and mutant enzymes exhibit identical rate constants for oxidation of P2C to dihydropicolinate and isomerization of a reduced enzyme-dihydropicolinate complex. The observed rates are 200- and 10-fold faster, respectively, than the mutant turnover rate. Release of picolinate from Tyr258Phe is 100-fold faster than turnover. The presence of a bound substrate or product is a key factor in oxygen activation by wild-type nikD, as judged by the 10-75-fold faster rates observed for complexes of the reduced enzyme with picolinate, benzoate, or 1-cyclohexenoate, a 1-deaza-P2C analogue. The reduced Tyr258Phe-1-cyclohexenoate complex is 25-fold less reactive with oxygen than the wild-type complex. We postulate that mutation of Tyr258 causes subtle changes in active site dynamics that promote release of the reactive dihydropicolinate intermediate and disrupt the efficient synchronization of oxygen activation observed with wild-type nikD.« less

  13. Development of controlled release formulations of azadirachtin-A employing poly(ethylene glycol) based amphiphilic copolymers.

    PubMed

    Kumar, Jitendra; Shakil, Najam A; Singh, Manish K; Singh, Mukesh K; Pandey, Alka; Pandey, Ravi P

    2010-05-01

    Controlled release (CR) formulations of azadirachtin-A, a bioactive constituent derived from the seed of Azadirachta indica A. Juss (Meliaceae), have been prepared using commercially available polyvinyl chloride, polyethylene glycol (PEG) and laboratory synthesized poly ethylene glycol-based amphiphilic copolymers. Copolymers of polyethylene glycol and various dimethyl esters, which self assemble into nano micellar aggregates in aqueous media, have been synthesized. The kinetics of azadirachtin-A, release in water from the different formulations was studied. Release from the commercial polyethylene glycol (PEG) formulation was faster than the other CR formulations. The rate of release of encapsulated azadirachtin-A from nano micellar aggregates is reduced by increasing the molecular weight of PEG. The diffusion exponent (n value) of azadirachtin-A, in water ranged from 0.47 to 1.18 in the tested formulations. The release was diffusion controlled with a half release time (t(1/2)) of 3.05 to 42.80 days in water from different matrices. The results suggest that depending upon the polymer matrix used, the application rate of azadirachtin-A can be optimized to achieve insect control at the desired level and period.

  14. Use of proteins to minimize the physical aging of EUDRAGIT sustained release films.

    PubMed

    Kucera, Shawn A; McGinity, James W; Zheng, Weijia; Shah, Navnit H; Malick, A Waseem; Infeld, Martin H

    2007-07-01

    The objective of this study was to investigate the influence of two proteins, albumin and type B gelatin, on the physical aging of EUDRAGIT RS 30 D and RL 30 D coated theophylline pellets. The physicomechanical properties of sprayed films, thermal properties of cast films, influence of proteins on the zeta potential and particle size of the dispersion, and the release of proteins from cast films under simulated dissolution conditions were investigated. The release rate of theophylline decreased significantly over time from pellets coated with an acrylic dispersion containing 10% albumin when there was no acidification of the acrylic dispersion; however, when pellets were coated with an acidified EUDRAGIT/albumin dispersion, the theophylline release rate was stable for dosage forms stored in the absence of humidity. The drug release rate was faster for pellets coated with acrylic dispersions containing 10% gelatin compared to the albumin-containing formulations. When sprayed films were stored at 40 degrees C/75% RH, the water vapor permeability decreased significantly for both EUDRAGIT films and those containing EUDRAGIT and albumin; however, there was no significant change in this parameter when 10% gelatin was present. Albumin was released from the acrylic films when the pH of the dissolution media was below the isoelectric point of the protein while no quantitative release of gelatin was observed in pH 1.2 or 7.4 media. The effect of gelatin to prevent the decrease in drug release rate was due to stabilization in water vapor permeability of the film. Acidification of the polymeric dispersion resulted in electrostatic repulsive forces between albumin and the acrylic polymer, which stabilized the drug release rate when the dosage forms were stored in aluminum induction sealed containers at both 40 degrees C/75% RH and 25 degrees C/60% RH.

  15. Mesostructured silica and aluminosilicate carriers for oxytetracycline delivery systems.

    PubMed

    Berger, D; Nastase, S; Mitran, R A; Petrescu, M; Vasile, E; Matei, C; Negreanu-Pirjol, T

    2016-08-30

    Oxytetracycline delivery systems containing various MCM-type silica and aluminosilicate with different antibiotic content were developed in order to establish the influence of the support structural and textural properties and aluminum content on the drug release profile. The antibiotic molecules were loaded into the support mesochannels by incipient wetness impregnation method using a drug concentrated aqueous solution. The carriers and drug-loaded materials were investigated by small- and wide-angle XRD, FTIR spectroscopy, TEM and N2 adsorption-desorption isotherms. Faster release kinetics of oxytetracycline from uncalcined silica and aluminosilicate supports was observed, whereas higher drug content led to lower delivery rate. The presence of aluminum into the silica network also slowed down the release rate. The antimicrobial assays performed on Staphylococcus aureus clinical isolates showed that the oxytetracycline-loaded materials containing MCM-41-type mesoporous silica or aluminosilicate carriers inhibited the bacterial development. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. An in-vitro evaluation of silicone elastomer latex for topical drug delivery.

    PubMed

    Li, L C; Vu, N T

    1995-06-01

    A silicone elastomer latex was evaluated as a topical drug-delivery system. With the addition of a fumed silica and the removal of water, the latex produced elastomeric solid films. The water vapour permeability of the solid film was found to be a function of the film composition. An increase in silica content and the incorporation of a water-soluble component, PEG 3350, rendered the silicone elastomer-free film even more permeable to water vapour. The release of hydrocortisone from the elastomer film can be described by a matrix-diffusion-controlled mechanism. Drug diffusion is thought to occur through the hydrophobic silicone polymer network and the hydrated hydrophilic silica region in the film matrix. Silicone elastomer film with a higher silica content exhibited a faster drug-release rate. The addition of PEG 3350 to the film further enhanced the drug-release rate.

  17. Perception of melting and flavor release of ice cream containing different types and contents of fat.

    PubMed

    Hyvönen, L; Linna, M; Tuorila, H; Dijksterhuis, G

    2003-04-01

    Temporal effects of dairy and vegetable fats (0 to 18%) on perception of strawberry flavor release and melting of ice cream were studied using the time intensity sensory method. Also, aroma and flavor attributes of the ice cream samples were evaluated. Only slight effects of fat on the rate of flavor release and flavor intensity were perceived. A slightly faster flavor release from the vegetable fat compared with dairy fat was noticed. Polydextrose and maltodextrin as bodying agents in the fat-free ice cream significantly increased flavor release and melting rate of the ice cream. Increasing fat content slightly retarded melting of ice cream in the mouth. No significant effect of the fat quality on perceived melting was noticed. Significant differences in aroma and flavor attributes of the fat-free and other samples were perceived. Intensity and sharpness of the strawberry aroma and flavor were greater in fat-free samples and they were perceived as nontypical. Fattiness and creaminess were highly correlated. Maltodextrin and polydextrose increased perceived fattiness and creaminess of fat-free ice cream.

  18. Selective pH-Responsive Core-Sheath Nanofiber Membranes for Chem/Bio/Med Applications: Targeted Delivery of Functional Molecules.

    PubMed

    Han, Daewoo; Steckl, Andrew J

    2017-12-13

    Core-sheath fibers using different Eudragit materials were successfully produced, and their controlled multi-pH responses have been demonstrated. Core-sheath fibers made of Eudragit L 100 (EL100) core and Eudragit S 100 (ES100) sheath provide protection and/or controlled release of core material at pH 6 by adjusting the sheath thickness (controlled by the flow rate of source polymer solution). The thickest sheath (∼250 nm) provides the least core release ∼1.25%/h, while the thinnest sheath (∼140 nm) provides much quicker release ∼16.75%/h. Furthermore, switching core and sheath material dramatically altered the pH response. Core-sheath fibers made of ES100 core and EL100 sheath can provide a consistent core release rate, while the sheath release rate becomes higher as the sheath layer becomes thinner. For example, the thinnest sheath (∼120 nm) provides a core and sheath release ratio of 1:2.5, while the thickest sheath (∼200 nm) shows only a ratio of 1:1.7. All core-sheath Eudragit fibers show no noticeable release at pH 5, while they are completely dissolved at pH 7. Extremely high surface area in the porous network of the fiber membranes provides much faster (>30 times) response to external pH changes as compared to that of equivalent cast films.

  19. Performance and combustion characteristics of direct-injection stratified-charge rotary engines

    NASA Technical Reports Server (NTRS)

    Nguyen, Hung Lee

    1987-01-01

    Computer simulations of the direct-injection stratified-charge (DISC) Wankel engine have been used to calculate heat release rates and performance and efficiency characteristics of the 1007R engine. Engine pressure data have been used in a heat release analysis to study the effects of heat transfer, leakage, and crevice flows. Predicted engine performance data are compared with experimental test data over a range of engine speeds and loads. An examination of methods to improve the performance of the Wankel engine with faster combustion, reduced leakage, higher compression ratio, and turbocharging is presented.

  20. Application of meta- and para- phenylenediamine as enhanced oxime ligation catalysts for protein labeling, PEGylation, immobilization and release

    PubMed Central

    Mahmoodi, Mohammad M.; Rashidian, Mohammad; Zhang, Yi; Distefano, Mark D.

    2015-01-01

    Meta- and para- phenylenediamines have recently been shown to catalyze oxime and hydrazone ligation reactions at rates much faster than aniline, a commonly used catalyst. Here, it is demonstrated how these new catalysts can be used in a generally applicable procedure for fluorescent labeling, PEGylation, immobilization and release of aldehyde and ketone functionalized proteins. The chemical orthogonality of phenylenediamine-catalyzed oxime ligation versus copper catalyzed click reaction has also been harnessed for simultaneous dual labeling of bifunctional proteins containing both aldehyde and alkyne groups in high yield. PMID:25640893

  1. [The effect of body immunological reactivity on the persistence of rickettsiae].

    PubMed

    Klimchuk, M D; Kurganova, I I; Kos, E T; Basarab, N I

    1996-01-01

    Correlation between the rate of seeding of organs by rickettsiae and duration of the exciter persistence and condition of immunological reactivity was established using the experimental rickettsial infection as a model. When using the preparation which stimulates the immunity indices, we have revealed that the number of rickettsiae in organs was less and the release from them was faster than under immunodepression.

  2. The association of the original OSHA chemical hazard communication standard with reductions in acute work injuries/illnesses in private industry and the industrial releases of chemical carcinogens.

    PubMed

    Oleinick, Arthur

    2014-02-01

    OSHA predicted the original chemical Hazard Communication Standard (HCS) would cumulatively reduce the lost workday acute injury/illness rate for exposure events by 20% over 20 years and reduce exposure to chemical carcinogens. JoinPoint trend software identified changes in the rate of change of BLS rates for days away from work for acute injuries/illnesses during 1992-2009 for manufacturing and nonmanufacturing industries for both chemical, noxious or allergenic injury exposure events and All other exposure events. The annual percent change in the rates was used to adjust observed numbers of cases to estimate their association with the standard. A case-control study of EPA's Toxic Release Inventory 1988-2009 data compared carcinogen and non-carcinogens' releases. The study estimates that the HCS was associated with a reduction in the number of acute injuries/illnesses due to chemical injury exposure events over the background rate in the range 107,569-459,395 (Hudson method/modified BIC model) depending on whether the HCS is treated as a marginal or sole factor in the decrease. Carcinogen releases have declined at a substantially faster rate than control non-carcinogens. The previous HCS standard was associated with significant reductions in chemical event acute injuries/illnesses and chemical carcinogen exposures. © 2013 Wiley Periodicals, Inc.

  3. Conductive polymer nanotube patch for fast and controlled ex vivo transdermal drug delivery.

    PubMed

    Nguyen, Thao M; Lee, Sebin; Lee, Sang Bok

    2014-10-01

    To uptake and release hydrophilic model drugs and insulin in a novel conductive polymer (CP) nanotube transdermal patch. The externally controlled transdermal delivery of model drugs and insulin were tested ex vivo and results were compared with CP films. The unique intrinsic properties of CPs provide electrostatic interaction between the model drugs and polymer backbone. When a pulsed potential was applied, the drug delivery release profile mimics that of injection delivery. With a constant potential applied, the release rate constants of the patch system were up to three-times faster than the control (0 V) and released approximately 80% more drug molecules over 24 h. The CP nanotube transdermal patch represents a new and promising drug method, specifically for hydrophilic molecules, which have been a large obstacle for conventional transdermal drug delivery systems.

  4. Characteristics and degradation of chitosan/cellulose acetate microspheres with different model drugs

    NASA Astrophysics Data System (ADS)

    Zhou, Hui-yun; Chen, Xi-guang

    2008-12-01

    In this study, chitosan/cellulose acetate microspheres (CCAM) were prepared by W/O/W emulsification and solvent evaporation as a drug delivery system. The microspheres were spherical, free-flowing and non-aggregated. The CCAM had good flow and suspension ability. The loading efficiency of different model drugs increased with the increasing hydrophobicity of the drug. The loading efficiency of 6-mercaptopurine (6-MP) was more than 30% whereas that of ranitidine hydrochloride (RT) or acetaminophen (ACP) was only 10%. The pH values of solution affected the swelling ability of CCAM and the relative humidity had little effect on the characteristics of CCAM when it was not more than 75%. The CCAM system had a good effect on the controlled release of different model drugs. However, the release rate became slower with the increase of the hydrophobicity of drugs. The release rate of CCAM loaded with hydrophilic RT was almost 60% during 48 h and the release rate of CCAM loaded with hydrophobic drug of 6-MP was not more than 30%. In the meantime, the CCAM system was degradable in vitro and the degradation rate was faster in lysozyme solution than that in the medium of PBS. So the CCAM system was a degradable promising drug delivery system especially for hydrophobic drugs.

  5. Field and laboratory investigations of inactivation of viruses (PRD1 and MS2) attached to iron oxide-coated quartz san

    USGS Publications Warehouse

    Ryan, Joseph N.; Harvey, Ronald W.; Metge, David W.; Elimelech, Menachem; Navigato, Theresa; Pieper, Ann P.

    2002-01-01

    Field and laboratory experiments were conducted to investigate inactivation of viruses attached to mineral surfaces. In a natural gradient transport field experiment, bacteriophage PRD1, radiolabeled with 32P, was injected into a ferric oxyhydroxide-coated sand aquifer with bromide and linear alkylbenzene sulfonates. In a zone of the aquifer contaminated by secondary sewage infiltration, small fractions of infective and 32P-labeled PRD1 broke through with the bromide tracer, followed by the slow release of 84% of the 32P activity and only 0.011% of the infective PRD1. In the laboratory experiments, the inactivation of PRD1, labeled with 35S (protein capsid), and MS2, dual radiolabeled with 35S (protein capsid) and 32P (nucleic acid), was monitored in the presence of groundwater and sediment from the contaminated zone of the field site. Release of infective viruses decreased at a much faster rate than release of the radiolabels, indicating that attached viruses were undergoing surface inactivation. Disparities between 32P and35S release suggest that the inactivated viruses were released in a disintegrated state. Comparison of estimated solution and surface inactivation rates indicates solution inactivation is ∼3 times as fast as surface inactivation. The actual rate of surface inactivation may be substantially underestimated owing to slow release of inactivated viruses.

  6. Towards Optimal Design of Cancer Nanomedicines: Multi-stage Nanoparticles for the Treatment of Solid Tumors.

    PubMed

    Stylianopoulos, Triantafyllos; Economides, Eva-Athena; Baish, James W; Fukumura, Dai; Jain, Rakesh K

    2015-09-01

    Conventional drug delivery systems for solid tumors are composed of a nano-carrier that releases its therapeutic load. These two-stage nanoparticles utilize the enhanced permeability and retention (EPR) effect to enable preferential delivery to tumor tissue. However, the size-dependency of the EPR, the limited penetration of nanoparticles into the tumor as well as the rapid binding of the particles or the released cytotoxic agents to cancer cells and stromal components inhibit the uniform distribution of the drug and the efficacy of the treatment. Here, we employ mathematical modeling to study the effect of particle size, drug release rate and binding affinity on the distribution and efficacy of nanoparticles to derive optimal design rules. Furthermore, we introduce a new multi-stage delivery system. The system consists of a 20-nm primary nanoparticle, which releases 5-nm secondary particles, which in turn release the chemotherapeutic drug. We found that tuning the drug release kinetics and binding affinities leads to improved delivery of the drug. Our results also indicate that multi-stage nanoparticles are superior over two-stage nano-carriers provided they have a faster drug release rate and for high binding affinity drugs. Furthermore, our results suggest that smaller nanoparticles achieve better treatment outcome.

  7. Dissolution experiments of commercial PWR (52 MWd/kgU) and BWR (53 MWd/kgU) spent nuclear fuel cladded segments in bicarbonate water under oxidizing conditions. Experimental determination of matrix and instant release fraction

    NASA Astrophysics Data System (ADS)

    González-Robles, E.; Serrano-Purroy, D.; Sureda, R.; Casas, I.; de Pablo, J.

    2015-10-01

    The denominated instant release fraction (IRF) is considered in performance assessment (PA) exercises to govern the dose that could arise from the repository. A conservative definition of IRF comprises the total inventory of radionuclides located in the gap, fractures, and the grain boundaries and, if present, in the high burn-up structure (HBS). The values calculated from this theoretical approach correspond to an upper limit that likely does not correspond to what it will be expected to be instantaneously released in the real system. Trying to ascertain this IRF from an experimental point of view, static leaching experiments have been carried out with two commercial UO2 spent nuclear fuels (SNF): one from a pressurized water reactor (PWR), labelled PWR, with an average burn-up (BU) of 52 MWd/kgU and fission gas release (FGR) of 23.1%, and one from a boiling water reactor (BWR), labelled BWR, with an average BU of and 53 MWd/kgU and FGR of 3.9%. One sample of each SNF, consisting of fuel and cladding, has been leached in bicarbonate water during one year under oxidizing conditions at room temperature (25 ± 5)°C. The behaviour of the concentration measured in solution can be divided in two according to the release rate. All radionuclides presented an initial release rate that after some days levels down to a slower second one, which remains constant until the end of the experiment. Cumulative fraction of inventory in aqueous phase (FIAPc) values has been calculated. Results show faster release in the case of the PWR SNF. In both cases Np, Pu, Am, Cm, Y, Tc, La and Nd dissolve congruently with U, while dissolution of Zr, Ru and Rh is slower. Rb, Sr, Cs and Mo, dissolve faster than U. The IRF of Cs at 10 and 200 days has been calculated, being (3.10 ± 0.62) and (3.66 ± 0.73) for PWR fuel, and (0.35 ± 0.07) and (0.51 ± 0.10) for BWR fuel.

  8. Carbon dioxide absorber and regeneration assemblies useful for power plant flue gas

    DOEpatents

    Vimalchand, Pannalal; Liu, Guohai; Peng, Wan Wang

    2012-11-06

    Disclosed are apparatus and method to treat large amounts of flue gas from a pulverized coal combustion power plant. The flue gas is contacted with solid sorbents to selectively absorb CO.sub.2, which is then released as a nearly pure CO.sub.2 gas stream upon regeneration at higher temperature. The method is capable of handling the necessary sorbent circulation rates of tens of millions of lbs/hr to separate CO.sub.2 from a power plant's flue gas stream. Because pressurizing large amounts of flue gas is cost prohibitive, the method of this invention minimizes the overall pressure drop in the absorption section to less than 25 inches of water column. The internal circulation of sorbent within the absorber assembly in the proposed method not only minimizes temperature increases in the absorber to less than 25.degree. F., but also increases the CO.sub.2 concentration in the sorbent to near saturation levels. Saturating the sorbent with CO.sub.2 in the absorber section minimizes the heat energy needed for sorbent regeneration. The commercial embodiments of the proposed method can be optimized for sorbents with slower or faster absorption kinetics, low or high heat release rates, low or high saturation capacities and slower or faster regeneration kinetics.

  9. Engineering multi-stage nanovectors for controlled degradation and tunable release kinetics

    PubMed Central

    Martinez, Jonathan O.; Chiappini, Ciro; Ziemys, Arturas; Faust, Ari M.; Kojic, Milos; Liu, Xuewu; Ferrari, Mauro; Tasciotti, Ennio

    2013-01-01

    Nanovectors hold substantial promise in abating the off-target effects of therapeutics by providing a means to selectively accumulate payloads at the target lesion, resulting in an increase in the therapeutic index. A sophisticated understanding of the factors that govern the degradation and release dynamics of these nanovectors is imperative to achieve these ambitious goals. In this work, we elucidate the relationship that exists between variations in pore size and the impact on the degradation, loading, and release of multistage nanovectors. Larger pored vectors displayed faster degradation and higher loading of nanoparticles, while exhibiting the slowest release rate. The degradation of these particles was characterized to occur in a multi-step progression where they initially decreased in size leaving the porous core isolated, while the pores gradually increased in size. Empirical loading and release studies of nanoparticles along with diffusion modeling revealed that this prolonged release was modulated by the penetration within the porous core of the vectors regulated by their pore size. PMID:23911070

  10. Influence of Scaffold Size on Bactericidal Activity of Nitric Oxide Releasing Silica Nanoparticles

    PubMed Central

    Carpenter, Alexis W.; Slomberg, Danielle L.; Rao, Kavitha S.; Schoenfisch, Mark H.

    2011-01-01

    A reverse microemulsion synthesis was used to prepare amine functionalized silica nanoparticles of three distinct sizes (i.e., 50, 100, and 200 nm) with identical amine concentrations. The resulting hybrid nanoparticles, consisting of N-(6 aminohexyl) aminopropyltrimethoxysilane and tetraethoxysilane, were highly monodisperse in size. N-diazeniumdiolate nitric oxide (NO) donors were subsequently formed on secondary amines while controlling reaction conditions to keep the total amount of nitric oxide (NO) released constant for each particle size. The bactericidal efficacy of the NO releasing nanoparticles against Pseudomonas aeruginosa increased with decreasing particle size. Additionally, smaller diameter nanoparticles were found to associate with the bacteria at a faster rate and to a greater extent than larger particles. Neither control (non-NO-releasing) nor NO releasing particles exhibited toxicity towards L929 mouse fibroblasts at concentrations above their respective minimum bactericidal concentrations. This study represents the first investigation of the bactericidal efficacy of NO-releasing silica nanoparticles as a function of particle size. PMID:21842899

  11. Kinetics of Exocytosis Is Faster in Cones Than in Rods

    PubMed Central

    Rabl, Katalin; Cadetti, Lucia; Thoreson, Wallace B.

    2006-01-01

    Cone-driven responses of second-order retinal neurons are considerably faster than rod-driven responses. We examined whether differences in the kinetics of synaptic transmitter release from rods and cones may contribute to differences in postsynaptic response kinetics. Exocytosis from rods and cones was triggered by membrane depolarization and monitored in two ways: (1) by measuring EPSCs evoked in second-order neurons by depolarizing steps applied to presynaptic rods or cones during simultaneous paired whole-cell recordings or (2) by direct measurements of exocytotic increases in membrane capacitance. The kinetics of release was assessed by varying the length of the depolarizing test step. Both measures of release revealed two kinetic components to the increase in exocytosis as a function of the duration of a step depolarization. In addition to slow sustained components in both cell types, the initial fast component of exocytosis had a time constant of <5 ms in cones, >10-fold faster than that of rods. Rod/cone differences in the kinetics of release were substantiated by a linear correlation between depolarization-evoked capacitance increases and EPSC charge transfer. Experiments on isolated rods indicate that the slower kinetics of exocytosis from rods was not a result of rod–rod coupling. The initial rapid release of vesicles from cones can shape the postsynaptic response and may contribute to the faster responses of cone-driven cells observed at light offset. PMID:15872111

  12. Development of a novel osmotically driven drug delivery system for weakly basic drugs.

    PubMed

    Guthmann, C; Lipp, R; Wagner, T; Kranz, H

    2008-06-01

    The drug substance SAG/ZK has a short biological half-life and because of its weakly basic nature a strong pH-dependent solubility was observed. The aim of this study was to develop a controlled release (cr) multiple unit pellet formulation for SAG/ZK with pH-independent drug release. Pellets with a drug load of 60% were prepared by extrusion/spheronization followed by cr-film coating with an extended release polyvinyl acetate/polyvinyl pyrrolidone dispersion (Kollidon SR 30 D). To overcome the problem of pH-dependent drug release the pellets were then coated with a second layer of an enteric methacrylic acid and ethyl acrylate copolymer (Kollicoat MAE 30 DP). To increase the drug release rates from the double layered cr-pellets different osmotically active ionic (sodium and potassium chloride) and nonionic (sucrose) additives were incorporated into the pellet core. Drug release studies were performed in media of different osmotic pressure to clarify the main release mechanism. Extended release coated pellets of SAG/ZK demonstrated pH-dependent drug release. Applying a second enteric coat on top of the extended release film coat failed in order to achieve pH-independent drug release. Already low enteric polymer levels on top of the extended release coated pellets decreased drug release rates at pH 1 drastically, thus resulting in a reversal of the pH-dependency (faster release at pH 6.8 than in 0.1N HCl). The addition of osmotically active ingredients (sodium and potassium chloride, and sucrose) increased the imbibing of aqueous fluids into the pellet cores thus providing a saturated drug solution inside the beads and increasing drug concentration gradients. In addition, for these pellets increased formation of pores and cracks in the polymer coating was observed. Hence drug release rates from double layered beads increased significantly. Therefore, pH-independent osmotically driven SAG/ZK release was achieved from pellets containing osmotically active ingredients and coated with an extended and enteric polymer. In contrast, with increasing osmotic pressure of the dissolution medium the in vitro drug release rates decreased significantly.

  13. Formation of mannitol core microparticles for sustained release with lipid coating in a mini fluid bed system.

    PubMed

    Wang, Bifeng; Friess, Wolfgang

    2017-11-01

    The goal of this study was to prepare sustained release microparticles for methyl blue and aspartame as sparingly and freely water-soluble model drugs by lipid film coating in a Mini-Glatt fluid bed, and to assess the effect of coating load of two of lipids, hard fat and glyceryl stearate, on the release rates. 30g drug-loaded mannitol carrier microparticles with average diameter of 500 or 300μm were coated with 5g, 10g, 20g and 30g lipids, respectively. The model drugs were completely released in vitro through pores which mainly resulted from dissolution of the polyol core beads. The release of methyl blue from microparticles based on 500μm carrier beads extended up to 25days, while aspartame release from microparticles formed from 300μm carrier beads was extended to 7days. Although glyceryl stearate exhibits higher wettability, burst and release rates were similar for the two lipid materials. Polymorphic transformation of the hart fat was observed upon release. The lipid-coated microparticles produced with 500μm carrier beads showed slightly lower burst release compared to the microparticles produced with 300μm carrier beads as they carried relatively thicker lipid layer based on an equivalent lipid to mannitol ratio. Aspartame microparticles showed a much faster release than methyl blue due to the higher water-solubility of aspartame. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Relationships between solid dispersion preparation process, particle size and drug release--an NMR and NMR microimaging study.

    PubMed

    Dahlberg, Carina; Millqvist-Fureby, Anna; Schuleit, Michael; Furó, István

    2010-10-01

    Solid dispersion tablets prepared by either spray drying or rotoevaporation and exhibiting different grain and pore sizes were investigated under the process of hydration-swelling-gelation. (2)H and (1)H NMR microimaging experiments were used to selectively follow water penetration and polymer mobilization kinetics, respectively, while the drug release kinetics was followed by (1)H NMR spectroscopy. The obtained data, in combination with morphological information by scanning electron microscopy (SEM), reveal a complex process that ultimately leads to release of the drug into the aqueous phase. We find that the rate of water ingress has no direct influence on release kinetics, which also renders air in the tablets a secondary factor. On the other hand, drug release is directly correlated with the polymer mobilization kinetics. Water diffusion into the originally dry polymer grains determines the rate of grain swelling and the hydration within the grains varies strongly with grain size. We propose that this sets the stage for creating homogeneous gels for small grain sizes and heterogeneous gels for large grain sizes. Fast diffusion through water-rich sections of the inhomogeneous gels that exhibit a large mesh size is the factor which yields a faster drug release from tablets prepared by rotoevaporation. Copyright © 2010. Published by Elsevier B.V.

  15. Influence of Polymer Type on the Physical Properties and Release Profile of Papaverine Hydrochloride From Hard Gelatin Capsules.

    PubMed

    Polski, Andrzej; Iwaniak, Karol; Kasperek, Regina; Modrzewska, Joanna; Sobótka-Polska, Karolina; Sławińska, Karolina; Poleszak, Ewa

    2015-01-01

    The capsule is one of the most important solid dosage forms in the pharmaceutical industry. It is easier and faster to produce than a tablet, because it requires fewer excipients. Generally, capsules are easy to swallow and mask any unpleasant taste of the substances used while their release profiles can be easily modified. Papaverine hydrochloride was used as a model substance to show different release profiles using different excipients. The main aim of the study was to analyze the impact of using different polymers on the release profile of papaverine hydrochloride from hard gelatin capsules. Six series of hard gelatin capsules containing papaverine hydrochloride as a model drug and different excipients were made. Then, the angle of repose, flow rate, mass flow rate and volume flow rate of the powders used for capsule production were analyzed. The uniform weight and disintegration time of the capsules were studied. The dissolution study was performed in a basket apparatus, while the amount of papaverine hydrochloride released was determined spectrophotometrically at 251 nm. Only one formula of powder had satisfactory flow properties, while all formulas had good Hausner ratios. The best properties were from powder containing polyvinylpyrrolidone 10k. The disintegration time of capsules varied from 1:30 min to 2:00 min. As required by Polish Pharmacopoeia X, 80% of the active substance in all cases was released within 15 minutes. The capsules with polyvinylpyrrolidone 10k were characterized by the longest release. On the other hand, capsules containing microcrystalline cellulose had the fastest release profile. Using 10% of different polymers, without changing the other excipients, had a significant impact on the physical properties of the powders and papaverine hydrochloride release profile. The two most preferred capsule formulations contained either polyvinylpyrrolidone 10k or microcrystalline cellulose.

  16. Klucel™ EF and ELF polymers for immediate-release oral dosage forms prepared by melt extrusion technology.

    PubMed

    Mohammed, Noorullah Naqvi; Majumdar, Soumyajit; Singh, Abhilasha; Deng, Weibin; Murthy, Narasimha S; Pinto, Elanor; Tewari, Divya; Durig, Thomas; Repka, Michael A

    2012-12-01

    The objective of this research work was to evaluate Klucel™ hydroxypropylcellulose (HPC) EF and ELF polymers, for solubility enhancement as well as to address some of the disadvantages associated with solid dispersions. Ketoprofen (KPR), a Biopharmaceutics Classification System class II drug with poor solubility, was utilized as a model compound. Preliminary thermal studies were performed to confirm formation of a solid solution/dispersion of KPR in HPC matrix and also to establish processing conditions for hot-melt extrusion. Extrudates pelletized and filled into capsules exhibited a carrier-dependent release with ELF polymer exhibiting a faster release. Tablets compressed from milled extrudates exhibited rapid release owing to the increased surface area of the milled extrudate. Addition of mannitol (MNT) further enhanced the release by forming micro-pores and increasing the porosity of the extrudates. An optimized tablet formulation constituting KPR, MNT, and ELF in a 1:1:1 ratio exhibited 90% release in 15 min similar to a commercial capsule formulation. HPC polymers are non-ionic hydrophilic polymers that undergo polymer-chain-length-dependent solubilization and can be used to enhance solubility or dissolution rate of poorly soluble drugs. Dissolution/release rate could be tailored for rapid-release applications by selecting a suitable HPC polymer and altering the final dosage form. The release obtained from pellets was carrier-dependent and not drug-dependent, and hence, such a system can be effectively utilized to address solubility or precipitation issues with poorly soluble drugs in the gastrointestinal environment.

  17. Dissolution enhancement of a model poorly water-soluble drug, atorvastatin, with ordered mesoporous silica: comparison of MSF with SBA-15 as drug carriers.

    PubMed

    Maleki, Aziz; Hamidi, Mehrdad

    2016-01-01

    The purpose of this study was to develop mesoporous silica materials incorporated with poorly water-soluble drug atorvastatin calcium (AC) in order to improve drug dissolution, and intended to be orally administrated. A comparison between 2D-hexagonal silica nanostructured SBA-15 and mesocellular siliceous foam (MSF) with continuous 3D pore system on drug release rate was investigated. AC-loaded mesoporous silicas were characterized thorough N2 adsorption-desorption analysis, Fourier transform infrared (FT-IR) spectroscopy, powder X-ray diffraction (PXRD), differential scanning calorimetry (DSC) and dynamic light scattering (DLS). Results demonstrated a successful incorporation of AC into the silica-based hosts. The results taken from the drug release tests were also analyzed using different parameters, namely similarity factor (f2), difference factor (f1), dissolution efficiency (DE%), mean dissolution rate (MDR) and dissolution time (tm%). It confirmed a significant enhancement in the release profile of atorvastatin calcium with SBA-15, and MSF as drug carrier. Moreover, in comparison with SBA-15, MSF showed faster release rate of AC in enzyme-free simulated gastric fluid (pH 1.2). We believed that our findings can help the use of mesoporous silica materials in improving bioavailability of poorly water-soluble drugs.

  18. Hemoglobin encapsulation in vesicles retards NO and CO binding and O2 release when perfused through narrow gas-permeable tubes.

    PubMed

    Sakai, Hiromi; Okuda, Naoto; Sato, Atsushi; Yamaue, Tatsuya; Takeoka, Shinji; Tsuchida, Eishun

    2010-03-01

    Intravenous administration of cell-free Hb induces vasoconstriction and circulatory disorders, presumably because of the intrinsic affinities to endogenous nitric oxide (NO) and carbon monoxide (CO) as vasorelaxation factors and because of the facilitated O(2) release that might induce autoregulatory vasoconstriction. We examined these gas reactions when Hb-containing solutions of four kinds were perfused through artificial narrow tubes at a practical Hb concentration (10 g/dl). Purified Hb solution, polymerized bovine Hb (Poly(B)Hb), encapsulated Hb [Hb-vesicles (HbV), 279 nm], and red blood cells (RBCs) were perfused through a gas-permeable narrow tube (25 microm inner diameter) at 1 mm/s centerline velocity. The level of reactions was determined microscopically based on the visible-light absorption spectrum of Hb. When the tube was immersed in NO and CO atmospheres, both NO binding and CO binding of deoxygenated Hb (deoxy-Hb) and Poly(B)Hb in the tube was faster than those of HbV and RBCs, and HbV and RBCs showed almost identical binding rates. When the tube was immersed in a N(2) atmosphere, oxygenated Hb and Poly(B)Hb showed much faster O(2) release than did HbV and RBCs. Poly(B)Hb showed a faster reaction than Hb because of the lower O(2) affinity of Poly(B)Hb than Hb. The diffusion process of the particles was simulated using Navier-Stokes and Maxwell-Stefan equations. Results clarified that small Hb (6 nm) diffuses laterally and mixes rapidly. However, the large-dimension HbV shows no such rapid diffusion. The purely physicochemical differences in diffusivity of the particles and the resulting reactivity with gas molecules are one factor inducing biological vasoconstriction of Hb-based oxygen carriers.

  19. Spatial release from masking improves sound pattern discrimination along a biologically relevant pulse-rate continuum in gray treefrogs

    PubMed Central

    Ward, Jessica L.; Buerkle, Nathan P.; Bee, Mark A.

    2013-01-01

    Frogs form large choruses during the mating season in which males produce loud advertisement calls to attract females and repel rival males. High background noise levels in these social aggregations can impair vocal perception. In humans, spatial release from masking contributes to our ability to understand speech in noisy social groups. Here, we tested the hypothesis that spatial separation between target signals and ‘chorus-shaped noise’ improves the ability of female gray treefrogs (Hyla chrysoscelis) to perform a behavioral discrimination task based on perceiving differences in the pulsatile structure of advertisement calls. We used two-stimulus choice tests to measure phonotaxis (approach toward sound) in response to calls differing in pulse rate along a biologically relevant continuum between conspecific (50 pulses s−1) and heterospecific (20 pulses s−1) calls. Signals were presented in quiet, in colocated noise, and in spatially separated noise. In quiet conditions, females exhibited robust preferences for calls with relatively faster pulse rates more typical of conspecific calls. Behavioral discrimination between calls differing in pulse rate was impaired in the presence of colocated noise but similar between quiet and spatially separated noise conditions. Our results indicate that spatial release from energetic masking facilitates a biologically important temporal discrimination task in frogs. We discuss these results in light of previous work on spatial release from masking in frogs and other animals. PMID:24055623

  20. Cyclic debonding of unidirectional composite bonded to aluminum sheet for constant-amplitude loading

    NASA Technical Reports Server (NTRS)

    Roderick, G. L.; Everett, R. A., Jr.; Crews, J. H., Jr.

    1976-01-01

    Cyclic debonding rates were measured during constant-amplitude loading of specimens made of graphite/epoxy bonded to aluminum and S-glass/epoxy bonded to aluminum. Both room-temperature and elevated-temperature curing adhesives were used. Debonding was monitored with a photoelastic coating technique. The debonding rates were compared with three expressions for strain-energy release rate calculated in terms of the maximum stress, stress range, or a combination of the two. The debonding rates were influenced by both adherent thickness and the cyclic stress ratio. For a given value of maximum stress, lower stress ratios and thicker specimens produced faster debonding. Microscopic examination of the debonded surfaces showed different failure mechanisms both for identical adherends bonded with different adhesive and, indeed, even for different adherends bonded with identical adhesives. The expressions for strain-energy release rate correlated the data for different specimen thicknesses and stress ratios quite well for each material system, but the form of the best correlating expression varied among material systems. Empirical correlating expressions applicable to one material system may not be appropriate for another system.

  1. Boswellia gum resin/chitosan polymer composites: Controlled delivery vehicles for aceclofenac.

    PubMed

    Jana, Sougata; Laha, Bibek; Maiti, Sabyasachi

    2015-01-01

    This study was undertaken to evaluate the effect of Boswellia gum resin on the properties of glutaraldehyde (GA) crosslinked chitosan polymer composites and their potential as oral delivery vehicles for a non-steroidal anti-inflammatory drug, aceclofenac. The incorporation of resinous material caused a significant improvement in drug entrapment efficiency (∼40%) of the polymer composites. Fourier transform infrared (FTIR) spectroscopic analysis confirmed the formation of chitosan-gum resin composites and did not show any evidence of drug-polymer chemical interaction. Field emission scanning electron microscopy (FE-SEM) suggested the formation of particulate polymer composites up to chitosan:gum resin mass ratio of 1:3. Only 8-17% drug was released into HCl solution (pH 1.2) in 2h. The drug release rate of polymer composites was faster in phosphate buffer solution (pH 6.8). The composites released ∼60-68% drug load in 7h. In same duration, the drug release rate suddenly boosted up to 92% as the concentration of gum resin in the composites was raised to 80%. The drug release mechanism deviated from non-Fickian to case-II type with increasing resin concentration in the composites. Hence, GA-treated Boswellia resin-chitosan composites could be considered as alternative vehicles for oral delivery of aceclofenac. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Leaching of lead from new unplasticized polyvinyl chloride (uPVC) pipes into drinking water.

    PubMed

    Zhang, Yuanyuan; Lin, Yi-Pin

    2015-06-01

    Unplasticized polyvinyl chloride (uPVC) pipes have been used in the premise plumbing system due to their high strength, long-term durability, and low cost. uPVC pipes, however, may contain lead due to the use of lead compounds as the stabilizer during the manufacturing process. The release of lead from three locally purchased uPVC pipes was investigated in this study. The effects of various water quality parameters including pH value, temperature, and type of disinfectant on the rate of lead release were examined. The elemental mapping obtained using scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDX) confirmed the presence of lead on the inner surfaces of the uPVC pipes and their surface lead weight percentages were determined. The leachable lead concentration for each pipe was determined using high strength acidic EDTA solutions (pH 4, EDTA = 100 mg/L). Lead leaching experiments using tap water and reconstituted tape water under static conditions showed that the rate of lead release increased with the decreasing pH value and increasing temperature. In the presence of monochloramine, lead release was faster than that in the presence of free chlorine.

  3. Delivery of fullerene-containing complexes via microgel swelling and shear-induced release.

    PubMed

    Tarabukina, Elena; Zoolshoev, Zoolsho; Melenevskaya, Elena; Budtova, Tatiana

    2010-01-15

    The absorption and release of poly(vinylpyrrolidone)-fullerene C60 complexes (PVP/C60) from a model microgel is studied. A dry microgel based on a chemically cross-linked sodium polyacrylate was swollen in the aqueous solutions of complexes which were afterwards released under shear stress. First, gel swelling degree in static conditions in the excess of PVP/C60 solutions was studied: the degree of swelling decreases with the increase in PVP/C60 concentration. While pure PVP is homogeneously distributed between the gel and the surrounding solution, a slight concentration of complexes outside the gel was recorded. It was attributed to PVP/C60 hydrophobicity leading to the decrease in the thermodynamic quality of fullerene-containing solution being gel solvent. The release of PVP/C60 solutions induced by shear was studied with counter-rotating rheo-optical technique and compared with PVP solution release under the same conditions. The amount of solution released depends on polymer concentration and shear strain. Contrary to pure PVP solutions in which rate of release decreases with the increase in polymer concentration, PVP/C60 complexes are released faster when fullerene concentration inside the gel is higher.

  4. Melt-processed polymeric cellular dosage forms for immediate drug release.

    PubMed

    Blaesi, Aron H; Saka, Nannaji

    2015-12-28

    The present immediate-release solid dosage forms, such as the oral tablets and capsules, comprise granular matrices. While effective in releasing the drug rapidly, they are fraught with difficulties inherent in processing particulate matter. By contrast, liquid-based processes would be far more predictable; but the standard cast microstructures are unsuited for immediate-release because they resist fluid percolation and penetration. In this article, we introduce cellular dosage forms that can be readily prepared from polymeric melts by incorporating the nucleation, growth, and coalescence of microscopic gas bubbles in a molding process. We show that the cell topology and formulation of such cellular structures can be engineered to reduce the length-scale of the mass-transfer step, which determines the time of drug release, from as large as the dosage form itself to as small as the thickness of the cell wall. This allows the cellular dosage forms to achieve drug release rates over an order of magnitude faster compared with those of cast matrices, spanning the entire spectrum of immediate-release and beyond. The melt-processed polymeric cellular dosage forms enable predictive design of immediate-release solid dosage forms by tailoring microstructures, and could be manufactured efficiently in a single step.

  5. A Correlation Between Intrinsic Brightness and Average Decay Rate of Swift UVOT GRB Optical/UV Light Curves

    NASA Technical Reports Server (NTRS)

    Oates, S. R.; Page, M. J.; De Pasquale, M.; Schady, P.; Breeveld, A. A.; Holland, S. T.; Kuin, N. P. M.; Marshall, F. E.

    2012-01-01

    We examine a sample of 48 Swift/UVOT long Gamma-ray Burst light curves and find a correlation between the logarithmic luminosity at 200s and average decay rate determined from 200s onwards, with a Spearman rank coefficient of -0.58 at a significance of 99.998% (4.2 sigma ). We discuss the causes of the log L200s - alpha (greater than) 200s correlation, finding it to be an intrinsic property of long GRBs, and not resulting from the selection criteria. We find two ways to produce the correlation. One possibility is that there is some property of the central engine, outflow or external medium that affects the rate of energy release so that the bright afterglows release their energy more quickly and decay faster than the fainter afterglows. Alternatively, the correlation may be produced by variation of the observers viewing angle, with observers at large viewing angles observing fainter and slower decaying light curves.

  6. Cellulose, Chitosan, and Keratin Composite Materials. Controlled Drug Release

    PubMed Central

    2015-01-01

    A method was developed in which cellulose (CEL) and/or chitosan (CS) were added to keratin (KER) to enable [CEL/CS+KER] composites to have better mechanical strength and wider utilization. Butylmethylimmidazolium chloride ([BMIm+Cl–]), an ionic liquid, was used as the sole solvent, and because the [BMIm+Cl–] used was recovered, the method is green and recyclable. Fourier transform infrared spectroscopy results confirm that KER, CS, and CEL remain chemically intact in the composites. Tensile strength results expectedly show that adding CEL or CS into KER substantially increases the mechanical strength of the composites. We found that CEL, CS, and KER can encapsulate drugs such as ciprofloxacin (CPX) and then release the drug either as a single or as two- or three-component composites. Interestingly, release rates of CPX by CEL and CS either as a single or as [CEL+CS] composite are faster and independent of concentration of CS and CEL. Conversely, the release rate by KER is much slower, and when incorporated into CEL, CS, or CEL+CS, it substantially slows the rate as well. Furthermore, the reducing rate was found to correlate with the concentration of KER in the composites. KER, a protein, is known to have secondary structure, whereas CEL and CS exist only in random form. This makes KER structurally denser than CEL and CS; hence, KER releases the drug slower than CEL and CS. The results clearly indicate that drug release can be controlled and adjusted at any rate by judiciously selecting the concentration of KER in the composites. Furthermore, the fact that the [CEL+CS+KER] composite has combined properties of its components, namely, superior mechanical strength (CEL), hemostasis and bactericide (CS), and controlled drug release (KER), indicates that this novel composite can be used in ways which hitherto were not possible, e.g., as a high-performance bandage to treat chronic and ulcerous wounds. PMID:25548871

  7. Rate of reaction of OH with HNO3

    NASA Technical Reports Server (NTRS)

    Wine, P. H.; Ravishankara, A. R.; Kreutter, N. M.; Shah, R. C.; Nicovich, J. M.; Thompson, R. L.; Wuebbles, D. J.

    1981-01-01

    Measurements of the kinetics of the reaction of OH with HNO3, and mechanisms of HNO3 removal from the stratosphere, are reported. Bimolecular rate constants were determined at temperatures between 224 and 366 K by monitoring the concentrations of OH radicals produced by HNO3 photolysis and HNO3 according to their resonance fluorescence and 184.9-nm absorption, respectively. The rate constant measured at 298 K is found to be somewhat faster than previously accepted values, with a negative temperature dependence. Calculations of a one-dimensional transport-kinetic atmospheric model on the basis of the new rate constant indicate reductions in O3 depletion due to chlorofluoromethane release and NOx injection, of magnitudes dependent on the nature of the reaction products.

  8. Enhanced rectal absorption of amphotericin B lyophilized with glycyrrhizinate in rabbits.

    PubMed

    Tanaka, M; Kuwahara, E; Takahashi, M; Koyama, O; Takahashi, N; Yotsuyanagi, T

    1998-08-01

    The influence of bases and additives in the formulation for rectal absorption of amphotericin B (AMB) lyophilized with dipotassium glycyrrhizinate (GLYK) was investigated using rabbits in relation to an in vitro release test. The release of AMB from the fatty base of Witepsol or a medium chain triglyceride (MCT) was markedly faster than that from the hydrophilic base of macrogol. The addition of polyoxyethylene (2) lauryl ether (POE(2)LE) into the fatty bases led to a marked increase in the release rate, whereas POE(9)LE or sodium lauryl sulfate resulted in a significantly lower release rate. Animals received rectally each of seven AMB formulations of Witepsol H-15, macrogol, MCT with surfactants and aqueous solution. The absorption of the AMB lyophilized mixture with GLYK at a 1:9 molar ratio from a MCT base was significantly superior to that from macrogol. The addition of POE(2)LE into the MCT base resulted in a marked increase in bioavailability, showing the highest bioavailability of 4.9%. High serum levels of over 100 ng/ml of serum were maintained for 24 h following administration. The lowest bioavailability was 0.32% for the macrogol suppository. There was a good correlation between the release rate of AMB from the formulations and bioavailability. These results suggest that an AMB rectal formulation may provide a promising therapeutic alternative to infusion, taking into account the serum level of AMB exceeding the minimal inhibitory concentration of the infecting organism.

  9. Drug Release and Skin Permeation from Lipid Liquid Crystalline Phases

    NASA Astrophysics Data System (ADS)

    Costa-Balogh, F. O.; Sparr, E.; Sousa, J. J. S.; Pais, A. A. C. C.

    We have studied drug release and skin permeation from several different liquid crystalline lipid formulations that may be used to control the respective release rates. We have studied the release and permeation through human skin of a water-soluble and amphiphilic drug, propranolol hydrochloride, from several formulations prepared with monoolein and phytantriol as permeation enhancers and controlled release excipients. Diolein and cineol were added to selected formulations. We observed that viscosity decreases with drug load, wich is compatible with the occurrence of phase changes. Diolein stabilizes the bicontinuous cubic phases leading to an increase in viscosity and sustained release of the drug. The slowest release was found for the cubic phases with higher viscosity. Studies on skin permeation showed that these latter formulations also presented lower permeability than the less viscous monoolein lamellar phases. Formulations containing cineol originated higher permeability with higher enhancement ratios. Thus, the various formulations are adapted to different circumstances and delivery routes. While a slow release is usually desired for drug sustained delivery, the transdermal route may require a faster release. Lamellar phases, which are less viscous, are more adapted to transdermal applications. Thus, systems involving lamellar phases of monoolein and cineol are good candidates to be used as skin permeation enhancers for propranolol hydrochloride.

  10. Altered neurotransmitter release, vesicle recycling and presynaptic structure in the pilocarpine model of temporal lobe epilepsy

    PubMed Central

    Upreti, Chirag; Otero, Rafael; Partida, Carlos; Skinner, Frank; Thakker, Ravi; Pacheco, Luis F.; Zhou, Zhen-yu; Maglakelidze, Giorgi; Velíšková, Jana; Velíšek, Libor; Romanovicz, Dwight; Jones, Theresa; Stanton, Patric K.

    2012-01-01

    In searching for persistent seizure-induced alterations in brain function that might be causally related to epilepsy, presynaptic transmitter release has relatively been neglected. To measure directly the long-term effects of pilocarpine-induced status epilepticus on vesicular release and recycling in hippocampal mossy fibre presynaptic boutons, we used (i) two-photon imaging of FM1-43 vesicular release in rat hippocampal slices; and (ii) transgenic mice expressing the genetically encoded pH-sensitive fluorescent reporter synaptopHluorin preferentially at glutamatergic synapses. In this study we found that, 1–2 months after pilocarpine-induced status epilepticus, there were significant increases in mossy fibre bouton size, faster rates of action potential-driven vesicular release and endocytosis. We also analysed the ultrastructure of rat mossy fibre boutons using transmission electron microscopy. Pilocarpine-induced status epilepticus led to a significant increase in the number of release sites, active zone length, postsynaptic density area and number of vesicles in the readily releasable and recycling pools, all correlated with increased release probability. Our data show that presynaptic release machinery is persistently altered in structure and function by status epilepticus, which could contribute to the development of the chronic epileptic state and may represent a potential new target for antiepileptic therapies. PMID:22344585

  11. Two-stage controlled release system possesses excellent initial and long-term efficacy.

    PubMed

    Luo, Jian; Jing, Tong-Fang; Zhang, Da-Xia; Zhang, Xian-Peng; Li, Beixing; Liu, Feng

    2018-05-24

    In this work, a series of polyurea-based lambda-cyhalothrin-loaded microcapsules (MCs) with three different size distributions (average diameters of 1.35 μm, MC-S; 5.13 μm, MC-M; and 21.48 μm, MC-L) were prepared and characterized. The results indicated that MCs with a smaller particle size distribution had a faster release rate and excellent initial efficacy against pests. MC-L had a remarkably slow incipient release rate, outstanding photostability and better later-stage efficacy than that of the other tested MCs. The results clarified that the diameter distribution of MCs is the key factor in determining the release property and bioactivity of the MC formulations. Subsequently, the binary mixture MC formulations of MC(+M), MC(S+L) and MC(M+L) were obtained by mixing MC-S, MC-M or MC-L at 1:1 to establish a two-stage release system utilized for foliar application situations. Greenhouse and field experiments showed that MC(S+L) provided an optimal efficacy, and its effective duration was much longer than that of the emulsifiable concentrate (EC) group. Therefore, the release system established in this study was simple and workable for regulating the initial and long-term efficacy by adjusting the particle size distribution; in addition, this system has potential applications in other fields such as drug delivery devices. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Stocking Density Optimization for Enhanced Bioconversion of Fly Ash Enriched Vermicompost.

    PubMed

    Mupambwa, Hupenyu A; Mnkeni, Pearson N S

    2016-05-01

    Although it is widely agreed that stocking density critically affects the rate of vermicomposting, there is no established stocking density for mixtures of fly ash and other waste materials. This study sought to optimize (Savigny, 1826) stocking density for effective biodegradation and nutrient release in a fly ash-cow dung-waste paper (FCP) mixture. Four stocking densities of 0, 12.5, 25, and 37.5 g worms kg were evaluated. Although the 12.5, 25, and 37.5 g worms kg treatments all resulted in a mature vermicompost, stocking densities of 25 and 37.5 g worms kg resulted in faster maturity, higher humification parameters, and a significantly lower final C/N ratio (range 11.1-10.4). The activity of β-glucosidase and fluorescein diacetate hydrolysis enzymes showed faster stabilization at stocking densities of 25 and 37.5 g worms kg, indicating compost stability and maturity. Similarly, a stocking density of 25 g worms kg resulted in the highest release of Olsen-extractable P and (NO + NO)-N contents. The 0-, 12.5-, 25-, and 37.5-g treatments resulted in net Olsen P increases of 16.3, 38.9, 61.0, and 53.0%, respectively, after 10 wk. Although compost maturity could be attained at stocking densities of 12.5 g worms kg, for faster production of humified and nutrient-rich FCP vermicompost, a stocking density of 25 g worms kg seems most appropriate. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  13. [Controlled release of prednisolone from suppository prepared using powder of pulverized tablet].

    PubMed

    Tatsumi, Akitoshi; Oda, Shoko; Nakamoto, Tomoko; Muraoka, Reiko; Takahashi, Yoshiko; Tanaka, Kuniyoshi; Shikata, Toshiyuki; Tatsumi, Sumiyo; Tagawa, Noriko; Kobayashi, Yoshiharu; Hamaguchi, Tsuneo; Kadobayashi, Muneo

    2008-04-01

    Prednisolone suppositories have been used successfully for the treatment of ulcerative colitis in hospital settings. However, the raw material of prednisolone suppository, JP prednisolone powder (JP Powder), was recently removed from the market. Therefore we studied the effects of raw material and suppository base on the release of prednisolone suppository for the purpose of designing a new suppository with similar effects to those of suppository prepared using JP powder (old suppository). New suppositories consisting of the powder of pulverized tablet as raw material and Witepsol H-15 and Witepsol E-75 as suppository base were prepared according to the fusion method. Suppository release test was performed by reciprocating dialysis tube method with tapping (RDT method) and dialysis tubing method (DT method). Both RDT method and DT method were performed using a suppository dissolution apparatus (modified JP disintegration apparatus) and a JP15 paddle apparatus, respectively. The test fluid was 50 mM phosphate buffer solution (pH 7.4) maintained at 37+/-0.5 degrees C. The results of release test by RDT method were similar to those of DT method. Release rate of prednisolone from the new suppository was much faster than that of old suppository. The addition of Witepsol E-75 to new suppository base markedly delayed the release of prednisolone from the new suppository. Release rate of prednisolone from the new suppository, consisting of pulverized tablet and Witepsol H-15 and Witepsol E-75 (76:24), corresponded well with that of the old suppository. It was suggested that this suppository could be used as incoming preparation of suppository prepared using JP powder.

  14. Aggregation of gold nanoparticles followed by methotrexate release enables Raman imaging of drug delivery into cancer cells

    NASA Astrophysics Data System (ADS)

    Durgadas, C. V.; Sharma, C. P.; Paul, W.; Rekha, M. R.; Sreenivasan, K.

    2012-09-01

    This study refers an aqueous synthesis of methotrexate (MTX)-conjugated gold nanoparticles (GNPs), their interaction with HepG2 cells, and the use of Raman imaging to observe cellular internalization and drug delivery. GNPs of average size 3.5-5 nm were stabilized using the amine terminated bifunctional biocompatible copolymer and amended by conjugating MTX, an anticancer drug. The nanoparticles were released MTX at a faster rate in acidic pH and subsequently found to form aggregates. The Raman signals of cellular components were found to be enhanced by the aggregated particles enabling the mapping to visualize site-specific drug delivery. The methodology seems to have potential in optimizing the characteristics of nanodrug carriers for emptying the cargo precisely at specified sites.

  15. On-Line Analysis and Kinetic Behavior of Arsenic Release during Coal Combustion and Pyrolysis.

    PubMed

    Shen, Fenghua; Liu, Jing; Zhang, Zhen; Dai, Jinxin

    2015-11-17

    The kinetic behavior of arsenic (As) release during coal combustion and pyrolysis in a fluidized bed was investigated by applying an on-line analysis system of trace elements in flue gas. This system, based on inductively coupled plasma optical emission spectroscopy (ICP-OES), was developed to measure trace elements concentrations in flue gas quantitatively and continuously. Obvious variations of arsenic concentration in flue gas were observed during coal combustion and pyrolysis, indicating strong influences of atmosphere and temperature on arsenic release behavior. Kinetic laws governing the arsenic release during coal combustion and pyrolysis were determined based on the results of instantaneous arsenic concentration in flue gas. A second-order kinetic law was determined for arsenic release during coal combustion, and the arsenic release during coal pyrolysis followed a fourth-order kinetic law. The results showed that the arsenic release rate during coal pyrolysis was faster than that during coal combustion. Thermodynamic calculations were carried out to identify the forms of arsenic in vapor and solid phases during coal combustion and pyrolysis, respectively. Ca3(AsO4)2 and Ca(AsO2)2 are the possible species resulting from As-Ca interaction during coal combustion. Ca(AsO2)2 is the most probable species during coal pyrolysis.

  16. In vitro studies of degradation and bioactivity of aliphatic polyester composites

    NASA Astrophysics Data System (ADS)

    Chouzouri, Georgia

    In spite of numerous publications on the potential use of combinations of aliphatic polyester composites containing bioactive fillers for bone regeneration, little information exists on the combined in vitro mechanisms involving simultaneously diffusion for polymer degradation and bioactivity through nucleation and growth of apatite in simulated body fluid (SBF) solution. The objective of this study is to contribute to the understanding of the fundamentals in designing non-porous, solid materials for bone regeneration, from experimental data along with their engineering interpretation. Bioactivity, in terms of apatite growth, was assessed through several experimental methods such as scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX), X-ray-diffraction (XRD) and changes in ion concentration. In the case of the six neat fillers evaluated, the filler shape, form and chemical structure showed significant differences in bioactivity response. Bioglass and calcium silicate fillers showed faster nucleation and growth rates in the screening experiments. Composites at 30% by weight filler were prepared by solution and/or melt mixing. Polycaprolactone (PCL) composites containing five different fillers were evaluated. Solution processed PCL/calcium silicate (CS) samples showed faster bioactivity, as determined by apatite growth, compared to melt mixed samples. The onset time for bioactivity was different for all PCL composites. The limited bioactivity in the PCL composites over longer periods of time could be attributed to the PCL hydrophobicity leading to a slow polymer degradation rate, and also to the lack of SBF replenishment. For both polylactic acid (PLA) composites containing CS and bioglass, significant growth was observed after one week and in the case of CS was still evident after four weeks immersion. However, at prolonged time periods no further bioactivity was observed, although ion release results indicated a faster release rate that would eventually lead to a faster polymer degradation and possibly continuing bioactivity. The presence of silicate fillers enhanced the hydrolytic degradation rate of both PCL and PLA as shown from kinetic data calculations based on molecular weight measurements. Unfilled PLA samples showed significant embrittlement after two weeks immersion, whereas for the CS filled system more significant changes could be observed in the compressive strength and modulus after the same time period. Experimental data were also fitted into an equation proposed to calculate erosion number; in the case of unfilled PLA predictions were found to agree with literature results suggesting bulk erosion. By assuming impermeable, randomly dispersed glass flakes, water transport in a composite system, prior to significant polymer degradation could be modeled. However, modeling of transport in the case of the composite consisting of a degrading polymer and a reactive decaying filler was challenging, particularly in the case of directional bioactive reinforcements, due to the occurrence of simultaneous time dependent diffusion phenomena that altered the integrity of the sample.

  17. Spray drying of silica microparticles for sustained release application with a new sol-gel precursor.

    PubMed

    Wang, Bifeng; Friess, Wolfgang

    2017-10-30

    A new precursor, tetrakis(2-methoxyethyl) orthosilicate (TMEOS) was used to fabricate microparticles for sustained release application, specifically for biopharmaceuticals, by spray drying. The advantages of TMEOS over the currently applied precursors are its water solubility and hydrolysis at moderate pH without the need of organic solvents or catalyzers. Thus a detrimental effect on biomolecular drug is avoided. By generating spray-dried silica particles encapsulating the high molecular weight model compound FITC-dextran 150 via the nano spray dryer Büchi-90, we demonstrated how formulation parameters affect and enable control of drug release properties. The implemented strategies to regulate release included incorporating different quantities of dextrans with varying molecular weight as well as adjusting the pH of the precursor solution to modify the internal microstructures. The addition of dextran significantly altered the released amount, while the release became faster with increasing dextran molecular weight. A sustained release over 35days could be achieved with addition of 60 kD dextran. The rate of FITC-Dextran 150 release from the dextran 60 containing particles decreased with higher precursor solution pH. In conclusion, the new precursor TMEOS presents a promising alternative sol-gel technology based carrier material for sustained release application of high molecular weight biopharmaceutical drugs. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Wound Dressing in Maxillofacial Trauma.

    DTIC Science & Technology

    1979-10-31

    Three local anesthetics (procaine, benzocaine , and etidocaine), two antiseptics (iodine and cetylpyridinium chloride, CPC), an anti- inflammatory...Fiber mats with procaine delivered 9% in one hour and 41% in one day. Films released similarly, and powders faster. Benzocaine and etidocaine were...released more slowly. Benzocaine powder released 27% in one hour and 77% in one day, and etidocaine powder released 9% in one hour and 59% in one day

  19. Opposed-flow Flame Spread Over Solid Fuels in Microgravity: the Effect of Confined Spaces

    NASA Astrophysics Data System (ADS)

    Wang, Shuangfeng; Hu, Jun; Xiao, Yuan; Ren, Tan; Zhu, Feng

    2015-09-01

    Effects of confined spaces on flame spread over thin solid fuels in a low-speed opposing flow is investigated by combined use of microgravity experiments and computations. The flame behaviors are observed to depend strongly on the height of the flow tunnel. In particular, a non-monotonic trend of flame spread rate versus tunnel height is found, with the fastest flame occurring in the 3 cm high tunnel. The flame length and the total heat release rate from the flame also change with tunnel height, and a faster flame has a larger length and a higher heat release rate. The computation analyses indicate that a confined space modifies the flow around the spreading flame. The confinement restricts the thermal expansion and accelerates the flow in the streamwise direction. Above the flame, the flow deflects back from the tunnel wall. This inward flow pushes the flame towards the fuel surface, and increases oxygen transport into the flame. Such a flow modification explains the variations of flame spread rate and flame length with tunnel height. The present results suggest that the confinement effects on flame behavior in microgravity should be accounted to assess accurately the spacecraft fire hazard.

  20. Evidence that the Na+-K+ leak/pump ratio contributes to the difference in endurance between fast- and slow-twitch muscles.

    PubMed

    Clausen, T; Overgaard, K; Nielsen, O B

    2004-02-01

    Muscles containing predominantly fast-twitch (type II) fibres [ext. dig. longus (EDL)] show considerably lower contractile endurance than muscles containing mainly slow-twitch (type I) fibres (soleus). To assess whether differences in Na+-K+ fluxes and excitability might contribute to this phenomenon, we compared excitation-induced Na+-K+ leaks, Na+ channels, Na+-K+ pump capacity, force and compound action potentials (M-waves) in rat EDL and soleus muscles. Isolated muscles were mounted for isometric contractions in Krebs-Ringer bicarbonate buffer and exposed to direct or indirect continuous or intermittent electrical stimulation. The time-course of force decline and concomitant changes in Na+-K+ exchange and M-waves were recorded. During continuous stimulation at 60-120 Hz, EDL showed around fivefold faster rate of force decline than soleus. This was associated with a faster loss of excitability as estimated from the area and amplitude of the M-waves. The net uptake of Na+ and the release of K+ per action potential were respectively 6.5- and 6.6-fold larger in EDL than in soleus, which may in part be due to the larger content of Na+ channels in EDL. During intermittent stimulation with 1 s 60 Hz pulse trains, EDL showed eightfold faster rate of force decline than soleus. The considerably lower contractile endurance of fast-twitch compared with slow-twitch muscles reflects differences in the rate of excitation-induced loss of excitability. This is attributed to the much larger excitation-induced Na+ influx and K+ efflux, leading to a faster rise in [K+]o in fast-twitch muscles. This may only be partly compensated by the concomitant activation of the Na+-K+ pumps, in particular in fibres showing large passive Na+-K+ leaks or reduced content of Na+-K+ pumps. Thus, endurance depends on the leak/pump ratio for Na+ and K+.

  1. Reusable electrochemical cell for rapid separation of [18F]fluoride from [18O]water for flow-through synthesis of 18F-labeled tracers

    PubMed Central

    Sadeghi, Saman; Liang, Vincent; Cheung, Shilin; Woo, Suh; Wu, Curtis; Ly, Jimmy; Deng, Yuliang; Eddings, Mark; van Dam, R. Michael

    2015-01-01

    A brass-platinum electrochemical micro flow cell was developed to extract [18F]fluoride from an aqueous solution and release it into an organic based solution, suitable for subsequent radio-synthesis, in a fast and reliable manner. This cell does not suffer electrode erosion and is thus reusable while operating faster by enabling increased voltages. By optimizing temperature, trapping and release potentials, flow rates, and electrode materials, an overall [18F]fluoride trapping and release efficiency of 84±5% (n=7) was achieved. X-ray photoelectron spectroscopy (XPS) was used to analyze electrode surfaces of various metal-metal systems and the findings were correlated with the performance of the electrochemical cell. To demonstrate the reactivity of the released [18F]fluoride, the cell was coupled to a flow-through reactor and automated synthesis of [18F]FDG with a repeatable decay-corrected yield of 56±4% (n=4) was completed in <15 min. A multi-human dose of 5.92 GBq [18F]FDG was also demonstrated. PMID:23474380

  2. Fast transient currents in Na,K-ATPase induced by ATP concentration jumps from the P3-[1-(3',5'-dimethoxyphenyl)-2-phenyl-2-oxo]ethyl ester of ATP.

    PubMed Central

    Sokolov, V S; Apell, H J; Corrie, J E; Trentham, D R

    1998-01-01

    Electrogenic ion transport by Na,K-ATPase was investigated by analysis of transient currents in a model system of protein-containing membrane fragments adsorbed to planar lipid bilayers. Sodium transport was triggered by ATP concentration jumps in which ATP was released from an inactive precursor by an intense near-UV light flash. The method has been used previously with the P3-1-(2-nitrophenyl)ethyl ester of ATP (NPE-caged ATP), from which the relatively slow rate of ATP release limits analysis of processes in the pump mechanism controlled by rate constants greater than 100 s(-1) at physiological pH. Here Na,K-ATPase was reinvestigated using the P3-[1-(3,5-dimethoxyphenyl)-2-phenyl-2-oxo]ethyl ester of ATP (DMB-caged ATP), which has an ATP release rate of >10(5) s(-1). Under otherwise identical conditions, photorelease of ATP from DMB-caged ATP showed faster kinetics of the transient current compared to that from NPE-caged ATP. With DMB-caged ATP, transient currents had rate profiles that were relatively insensitive to pH and the concentration of caged compound. Rate constants of ATP binding and of the E1 to E2 conformational change were compatible with earlier studies. Rate constants of enzyme phosphorylation and ADP-dependent dephosphorylation were 600 s(-1) and 1.5 x 10(6) M(-1) s(-1), respectively, at pH 7.2 and 22 degrees C. PMID:9591656

  3. Gold and Iron Oxide Nanoparticle-Based Ethylcellulose Nanocapsules for Cisplatin Drug Delivery

    PubMed Central

    Sathish Kumar, Kannaiyan; Jaikumar, Vasudevan

    2011-01-01

    The present study is aimed at the overall improvement in the efficacy, reduced toxicity and enhancement of therapeutic index of cisplatin. Nanocapsules of cisplatin containing ethylcellulose have been prepared using solvent evaporation technique under ambient conditions. The prepared nanocapsules were used for controlled drug release of anticancer agents with gold and iron oxide nanoparticles. The drug-entrapped nanocapsules were characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Fourier transform infrared (FTIR) studies indicated the absence of chemical interactions between the drug, polymer and metal nanoparticles. The drug loaded nanoparticles are spherical in shape and had average diameter in the range of 100-300 nm. Drug release study showed that the acidic media provided a faster release than the phosphate buffer media. These findings were also compared statistically through calculating mean, standard deviation and coefficient of variation for various polymer nanocapsules. However, the drug release for gold nanoparticles/anticancer drug (Au-cis) incorporated ethylcellulose nanocapsules was controlled and slow compared to iron oxide nanoparticles-cisplatin incorporated ethylcellulose nanocapsules. Hence, gold nanoparticles act as good trapping agents which slow down the rate of drug release from nanocapsules. PMID:24250373

  4. Osmotic pressure driven protein release from viscous liquid, hydrophobic polymers based on 5-ethylene ketal ε-caprolactone: potential and mechanism.

    PubMed

    Babasola, Iyabo Oladunni; Zhang, Wei; Amsden, Brian G

    2013-11-01

    In this study, the potential of low molecular weight, viscous liquid polymers based on 5-ethylene ketal ε-caprolactone for localized delivery of proteins via an osmotic pressure release mechanism was investigated. Furthermore, the osmotic release mechanism from viscous liquid polymers was elucidated. 5-Ethylene ketal ε-caprolactone was homopolymerized or copolymerized with D,L-lactide (DLLA) by ring-opening polymerization. Polymer hydrophobicity was adjusted by choice of initiator; hydrophobic polymers were prepared by initiating with octan-1-ol, while more hydrophilic polymers were prepared by initiating with 350 g/mol methoxy poly(ethylene glycol) (PEG). Particles consisting of bovine serum albumin (BSA) as a model protein drug were co-lyophilized with trehalose at 50:50 and 10:90 (w/w) ratios and were mixed into the polymers at 1% and/or 5% (w/w) particle loading. The release and mechanism of release of BSA from the polymers were assessed in vitro. BSA was released in a sustained manner, with a near zero-order release profile and with minimal burst effect for 5-80 days depending on the polymer's hydrophilicity; the release was faster from the PEG initiated polymers than from the octan-1-ol initiated polymers. Increasing the particle loading from 1% to 5% (w/w) resulted in a more noticeable burst effect, but did not significantly increase the mass fraction release rate. This release behavior was determined to proceed as follows. Release from the polymer was triggered by the water activity gradient between the surrounding aqueous medium and the saturated solution, which forms when water is absorbed from the surrounding medium to dissolve a given particle. The generated pressure initiates swelling around the particle/polymer interface and creates a superhydrated polymer region through which the solute is transported by convection, at a rate determined by the osmotic pressure generated. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Evaluation of mixed valent iron oxides as reactive adsorbents for arsenic removal.

    PubMed

    Mishra, Dhananjay; Farrell, James

    2005-12-15

    The objective of this research was to determine if Fe(II)-bearing iron oxides generate ferric hydroxides at sufficient rates for removing low levels of arsenic in packed-bed reactors, while at the same time avoiding excessive oxide production that contributes to bed clogging in oxygenated waters. Column experiments were performed to determine the effectiveness of three media for arsenic removal over a range in empty bed contact times, influent arsenic concentrations, dissolved oxygen (DO) levels, and solution pH values. Corrosion rates of the media as a function of the water composition were determined using batch and electrochemical methods. Rates of arsenic removal were first order in the As(V) concentration and were greater for media with higher corrosion rates. As(V) removal increased with increasing DO levels primarily due to faster oxidation of the Fe2+ released by media corrosion. To obtain measurable amounts of arsenic removal in 15 mM NaCl electrolyte solutions containing 50 microg/L As(V), the rate of Fe2+ released by the media needed to be at least 15 times greater than the As(V) feed rate into the column. In waters containing 30 mg/L of silica and 50 microg/L of As(V), measurable amounts of arsenic removal were obtained only for Fe2+ release rates that were at least 200 times greater than the As(V) feed rate. Although all columns showed losses in hydraulic conductivity overthe course of 90 days of operation, the conductivity values remained high, and the losses could be reversed by backwashing the media. The reaction products produced by the media in domestic tap water had average As-to-Fe ratios that were approximately 25% higher than those for a commercially available adsorbent.

  6. Chitosan Nanofibers for Transbuccal Insulin Delivery

    PubMed Central

    Lancina, Michael G.; Shankar, Roopa Kanakatti; Yang, Hu

    2017-01-01

    Purpose In this work, we aimed at producing chitosan based nanofiber mats capable of delivering insulin via the buccal mucosa. Methods Chitosan was electrospun into nanofibers using poly (ethylene oxide) (PEO) as a carrier molecule in various feed ratios. The mechanical properties and degradation kinetics of the fibers were measured. Insulin release rates were determined in vitro using an ELISA assay. The bioactivity of released insulin was measured in terms of Akt activation in pre-adipocytes. Insulin permeation across the buccal mucosa was measured in an ex-vivo porcine transbuccal model. Results Fiber morphology, mechanical properties, and in vitro stability were dependent on PEO feed ratio. Lower PEO content blends produced smaller diameter fibers with significantly faster insulin release kinetics. Insulin showed no reduction in bioactivity due to electrospinning. Buccal permeation of insulin facilitated by high chitosan content blends was significantly higher than that of free insulin. Conclusions Taken together, our work demonstrates chitosan based nanofibers have the potential to serve as a transbuccal insulin delivery vehicle. PMID:28000386

  7. Systematic development of design of experiments (DoE) optimised self-microemulsifying drug delivery system of Zotepine.

    PubMed

    Dalvadi, Hitesh; Patel, Nikita; Parmar, Komal

    2017-05-01

    The aim of present investigation is to improve dissolution rate of poor soluble drug Zotepine by a self-microemulsifying drug delivery system (SMEDDS). Ternary phase diagram with oil (Oleic acid), surfactant (Tween 80) and co-surfactant (PEG 400) at apex were used to identify the efficient self-microemulsifying region. Box-Behnken design was implemented to study the influence of independent variables. Principal Component Analysis was used for scrutinising critical variables. The liquid SMEDDS were characterised for macroscopic evaluation, % Transmission, emulsification time and in vitro drug release studies. Optimised formulation OL1 was converted in to S-SMEDDS by using Aerosil ® 200 as an adsorbent in the ratio of 3:1. The S-SMEDDS was characterised by SEM, DSC, globule size (152.1 nm), zeta-potential (-28.1 mV), % transmission study (98.75%), in vitro release (86.57%) at 30 min. The optimised solid SMEDDS formulation showed faster drug release properties as compared to conventional tablet of Zotepine.

  8. Effective Delivery of Doxycycline and Epidermal Growth Factor for Expedited Healing of Chronic Wounds

    NASA Astrophysics Data System (ADS)

    Kulkarni, Abhilash

    The problems and high medical costs associated with chronic wounds necessitate an economical bioactive wound dressing. A new strategy was investigated to inhibit MMP-9 proteases and to release epidermal growth factor (EGF) to enhance healing. Doxycycline (DOX) and EGF were encapsulated on polyacrylic acid modified polyurethane film (PAA-PU) using Layer-by-Layer (LbL) assembly. The number of bilayers tuned the concentration of DOX and EGF released over time with over 94% bioactivity of EGF retained over 4 days. A simple wound model in which MMP-9 proteases were added to cell culture containing fibroblast cells demonstrated that DOX inhibited the proteases providing a protective environment for the released EGF to stimulate cell migration and proliferation at a faster healing rate. In the presence of DOX, only small amounts of the highly bioactive EGF are sufficient to close the wound. Results show that this is new and promising bioactive dressing for effective wound management.

  9. The Effect of Myofilament Compliance on Kinetics of Force Generation by Myosin Motors in Muscle

    PubMed Central

    Linari, M.; Piazzesi, G.; Lombardi, V.

    2009-01-01

    Abstract We use the inhibitor of isometric force of skeletal muscle N-benzyl-p-toluene sulfonamide (BTS) to decrease, in a dose dependent way, the number of myosin motors attached to actin during the steady isometric contraction of single fibers from frog skeletal muscle (4°C, 2.1 μm sarcomere length). In this way we can reduce the strain in the myofilament compliance during the isometric tetanus (T0) from 3.54 nm in the control solution (T0,NR) to ∼0.5 nm in 1 μM BTS, where T0 is reduced to ∼0.15 T0,NR. The quick force recovery after a step release (1–3 nm per half-sarcomere) becomes faster with the increase of BTS concentration and the decrease of T0. The simulation of quick force recovery with a multistate model of force generation, that adapts Huxley and Simmons model to account for both the high stiffness of the myosin motor (∼3 pN/nm) and the myofilament compliance, shows that the increase in the rate of quick force recovery by BTS is explained by the reduced strain in the myofilaments, consequent to the decrease in half-sarcomere force. The model estimates that i), for the same half-sarcomere release the state transition kinetics in the myosin motor are five times faster in the absence of filament compliance than in the control; and ii), the rate of force recovery from zero to T0 is ∼6000/s in the absence of filament compliance. PMID:19167306

  10. The effect of myofilament compliance on kinetics of force generation by myosin motors in muscle.

    PubMed

    Linari, M; Piazzesi, G; Lombardi, V

    2009-01-01

    We use the inhibitor of isometric force of skeletal muscle N-benzyl-p-toluene sulfonamide (BTS) to decrease, in a dose dependent way, the number of myosin motors attached to actin during the steady isometric contraction of single fibers from frog skeletal muscle (4 degrees C, 2.1 microm sarcomere length). In this way we can reduce the strain in the myofilament compliance during the isometric tetanus (T(0)) from 3.54 nm in the control solution (T(0,NR)) to approximately 0.5 nm in 1 microM BTS, where T(0) is reduced to approximately 0.15 T(0,NR). The quick force recovery after a step release (1-3 nm per half-sarcomere) becomes faster with the increase of BTS concentration and the decrease of T(0). The simulation of quick force recovery with a multistate model of force generation, that adapts Huxley and Simmons model to account for both the high stiffness of the myosin motor (approximately 3 pN/nm) and the myofilament compliance, shows that the increase in the rate of quick force recovery by BTS is explained by the reduced strain in the myofilaments, consequent to the decrease in half-sarcomere force. The model estimates that i), for the same half-sarcomere release the state transition kinetics in the myosin motor are five times faster in the absence of filament compliance than in the control; and ii), the rate of force recovery from zero to T(0) is approximately 6000/s in the absence of filament compliance.

  11. Effect of calcium on fatty acid bioaccessibility during in vitro digestion of Cheddar-type cheeses prepared with different milk fat fractions.

    PubMed

    Ayala-Bribiesca, Erik; Turgeon, Sylvie L; Britten, Michel

    2017-04-01

    Calcium plays an important role in intestinal lipid digestion by increasing the lipolysis rate, but also limits fatty acid bioaccessibility by producing insoluble Ca soaps with long-chain fatty acids at intestinal pH conditions. The aim of this study was to better understand the effect of Ca on the bioaccessibility of milk fat from Cheddar-type cheeses. Three anhydrous milk fats (AMF) with different fatty acid profiles (olein, stearin, or control AMF) were used to prepare Cheddar-type cheeses, which were then enriched or not with Ca using CaCl 2 during the salting step. The cheeses were digested in vitro, and their disintegration and lipolysis rates were monitored during the process. At the end of digestion, lipids were extracted under neutral and acidic pH conditions to compare free fatty acids under intestinal conditions in relation to total fatty acids released during the digestion process. The cheeses prepared with the stearin (the AMF with the highest ratio of long-chain fatty acids) were more resistant to disintegration than the other cheeses, owing to the high melting temperature of that AMF. The Ca-enriched cheeses had faster lipolysis rates than the regular Ca cheeses. Chromatographic analysis of the digestion products showed that Ca interacted with long-chain fatty acids, producing Ca soaps, whereas no interaction with shorter fatty acids was detected. Although higher Ca levels resulted in faster lipolysis rates, driven by the depletion of reaction products as Ca soaps, such insoluble compounds are expected to reduce the bioavailability of fatty acids by hindering their absorption. These effects on lipid digestion and absorption are of interest for the design of food matrices for the controlled release of fat-soluble nutrients or bioactive molecules. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  12. Development and characterisation of sustained release solid dispersion oral tablets containing the poorly water soluble drug disulfiram.

    PubMed

    Shergill, Mandip; Patel, Mina; Khan, Siraj; Bashir, Ayesha; McConville, Christopher

    2016-01-30

    Administration of drugs via the oral route is the most common and preferred route due to its ease of administration, cost-effectiveness and flexibility in design. However, if the drug being administered has limited aqueous solubility it can result in poor bioavailability. Furthermore, the low pH of the stomach as well as enzymatic activity can result in drugs delivered via the oral route being rapidly metabolised and degraded. Here we demonstrate the development and characterisation of sustained release solid dispersion oral tablets, containing the poorly water-soluble drug disulfiram (DSF). The tablets, which are manufactured from two different polymers (Kolliphor(®) P 188 and P 237) specifically designed for the manufacture of solid dispersions and two different polymers (Kollidon(®) SR and HPMC) specifically designed to provide sustained release, can enhance the solubility of DSF, sustain its release, while protecting it from degradation in simulated gastric fluid (SGF). The paper demonstrates that when using the hot melt method at 80°C the DSF loading capacity of the Kolliphor(®) P 188 and P 237 polymers is approximately 43 and 46% respectively, with the DSF completely in an amorphous state. The addition of 80% Kollidon(®) SR to the formulation completely protected the DSF in SGF for up to 70 min with 16% degradation after 120 min, while 75% degradation occurred after 120 min with the addition of 80% HPMC. The release rate of DSF can be manipulated by both the loading and type of sustained release polymer used, with HPMC providing for a much faster release rate compared to Kollidon(®) SR. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Physical defect formation in few layer graphene-like carbon on metals: influence of temperature, acidity, and chemical functionalization.

    PubMed

    Schumacher, Christoph M; Grass, Robert N; Rossier, Michael; Athanassiou, Evagelos K; Stark, Wendelin J

    2012-03-06

    A systematical examination of the chemical stability of cobalt metal nanomagnets with a graphene-like carbon coating is used to study the otherwise rather elusive formation of nanometer-sized physical defects in few layer graphene as a result of acid treatments. We therefore first exposed the core-shell nanomaterial to well-controlled solutions of altering acidity and temperature. The release of cobalt into these solutions over time offered a simple tool to monitor the progress of particle degradation. The results suggested that the oxidative damage of the graphene-like coatings was the rate-limiting step during particle degradation since only fully intact or entirely emptied carbon shells were found after the experiments. If ionic noble metal species were additionally present in the acidic solutions, the noble metal was found to reduce on the surface of specific, defective particles. The altered electrochemical gradients across the carbon shells were however not found to lead to a faster release of cobalt from the particles. The suggested mechanistic insight was further confirmed by the covalent chemical functionalization of the particle surface with chemically inert aryl species, which leads to an additional thickening of the shells. This leads to reduced cobalt release rates as well as slower noble metal reduction rates depending on the augmentation of the shell thickness.

  14. Pharmacokinetics and anti-hypertensive effect of metoprolol tartrate rectal delivery system.

    PubMed

    Abou el Ela, Amal El Sayeh F; Allam, Ayat A; Ibrahim, Ehsan H

    2016-01-01

    The main aim of this work was to develop rectal suppositories for better delivery of metoprolol tartrate (MT). The various bases used were fatty, water soluble and emulsion bases. The physical properties of the prepared suppositories were characterized such as weight variation, hardness, disintegration time, melting range and the drug content uniformity. The in vitro release of MT from the prepared suppositories was carried out. The evaluation of the pharmacological effects of MT on the blood pressure and heart rate of the healthy rabbits after the rectal administration compared to the oral tablets was studied. Moreover, the formulation with the highest in vitro release and the highest pharmacological effects would be selected for a further pharmacokinetics study compared to the oral tablets. The results revealed that the emulsion bases gave the highest rate of the drug release than the other bases used. The reduction effect of the emulsion MT suppository base on the blood pressure and heart rate was found to be faster and greater than that administered orally. The selected emulsion suppository base (F11) showed a significant increase in the AUC (1.88-fold) in rabbits as compared to the oral tablets. From the above results we can conclude that rectal route can serve as an efficient alternative route to the oral one for systemic delivery of MT which may be due to the avoidance of first-pass effect in the liver.

  15. Nitrate addition to groundwater impacted by ethanol-blended fuel accelerates ethanol removal and mitigates the associated metabolic flux dilution and inhibition of BTEX biodegradation

    NASA Astrophysics Data System (ADS)

    Corseuil, Henry Xavier; Gomez, Diego E.; Schambeck, Cássio Moraes; Ramos, Débora Toledo; Alvarez, Pedro J. J.

    2015-03-01

    A comparison of two controlled ethanol-blended fuel releases under monitored natural attenuation (MNA) versus nitrate biostimulation (NB) illustrates the potential benefits of augmenting the electron acceptor pool with nitrate to accelerate ethanol removal and thus mitigate its inhibitory effects on BTEX biodegradation. Groundwater concentrations of ethanol and BTEX were measured 2 m downgradient of the source zones. In both field experiments, initial source-zone BTEX concentrations represented less than 5% of the dissolved total organic carbon (TOC) associated with the release, and measurable BTEX degradation occurred only after the ethanol fraction in the multicomponent substrate mixture decreased sharply. However, ethanol removal was faster in the nitrate amended plot (1.4 years) than under natural attenuation conditions (3.0 years), which led to faster BTEX degradation. This reflects, in part, that an abundant substrate (ethanol) can dilute the metabolic flux of target pollutants (BTEX) whose biodegradation rate eventually increases with its relative abundance after ethanol is preferentially consumed. The fate and transport of ethanol and benzene were accurately simulated in both releases using RT3D with our general substrate interaction module (GSIM) that considers metabolic flux dilution. Since source zone benzene concentrations are relatively low compared to those of ethanol (or its degradation byproduct, acetate), our simulations imply that the initial focus of cleanup efforts (after free-product recovery) should be to stimulate the degradation of ethanol (e.g., by nitrate addition) to decrease its fraction in the mixture and speed up BTEX biodegradation.

  16. Nitrate addition to groundwater impacted by ethanol-blended fuel accelerates ethanol removal and mitigates the associated metabolic flux dilution and inhibition of BTEX biodegradation.

    PubMed

    Corseuil, Henry Xavier; Gomez, Diego E; Schambeck, Cássio Moraes; Ramos, Débora Toledo; Alvarez, Pedro J J

    2015-03-01

    A comparison of two controlled ethanol-blended fuel releases under monitored natural attenuation (MNA) versus nitrate biostimulation (NB) illustrates the potential benefits of augmenting the electron acceptor pool with nitrate to accelerate ethanol removal and thus mitigate its inhibitory effects on BTEX biodegradation. Groundwater concentrations of ethanol and BTEX were measured 2 m downgradient of the source zones. In both field experiments, initial source-zone BTEX concentrations represented less than 5% of the dissolved total organic carbon (TOC) associated with the release, and measurable BTEX degradation occurred only after the ethanol fraction in the multicomponent substrate mixture decreased sharply. However, ethanol removal was faster in the nitrate amended plot (1.4 years) than under natural attenuation conditions (3.0 years), which led to faster BTEX degradation. This reflects, in part, that an abundant substrate (ethanol) can dilute the metabolic flux of target pollutants (BTEX) whose biodegradation rate eventually increases with its relative abundance after ethanol is preferentially consumed. The fate and transport of ethanol and benzene were accurately simulated in both releases using RT3D with our general substrate interaction module (GSIM) that considers metabolic flux dilution. Since source zone benzene concentrations are relatively low compared to those of ethanol (or its degradation byproduct, acetate), our simulations imply that the initial focus of cleanup efforts (after free-product recovery) should be to stimulate the degradation of ethanol (e.g., by nitrate addition) to decrease its fraction in the mixture and speed up BTEX biodegradation. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Concomitant monitoring of implant formation and drug release of in situ forming poly (lactide-co-glycolide acid) implants in a hydrogel matrix mimicking the subcutis using UV-vis imaging.

    PubMed

    Sun, Yu; Jensen, Henrik; Petersen, Nickolaj J; Larsen, Susan W; Østergaard, Jesper

    2018-02-20

    For poly (lactide-co-glycolide acid) (PLGA)-based in situ forming implants, the rate of implant formation plays an important role in determining the overall drug release kinetics. Currently, in vitro techniques capable of characterizing the processes of drug release and implant formation at the same time are not available. A hydrogel-based in vitro experimental setup was recently developed requiring only microliter of formulation and forming a closed system potentially suitable for interfacing with various spectroscopic techniques. The aim of the present proof-of-concept study was to investigate the feasibility of concomitant UV imaging, Vis imaging and light microscopy for detailed characterization of the behavior of in situ forming PLGA implants in the hydrogel matrix mimicking the subcutis. The model compounds, piroxicam and α-lactalbumin were added to PLGA-1-methyl-2-pyrrolidinone and PLGA-triacetin solutions. Upon bringing the PLGA-solvent-compound pre-formulation in contact with the hydrogel, Vis imaging and light microscopy were applied to visualize the depot formation and UV imaging was used to quantify drug transport in the hydrogel. As compared to piroxicam, the α-lactalbumin invoked an acceleration of phase separation and an increase of implant size. α-Lactalbumin was released faster from the PLGA-1-methyl-2-pyrrolidinone system than the PLGA-triacetin system opposite to the piroxicam release pattern. A linear relationship between the rate of implant formation and initial compound release within the first 4h was established for the PLGA-NMP systems. This implies that phase separation may be one of the controlling factors in drug release. The rate of implant formation may be an important parameter for predicting and tailoring drug release. The approach combining UV imaging, Vis imaging and light microscopy may facilitate understanding of release processes and holds potential for becoming a useful tool in formulation development of in situ forming implants. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Heterogeneity in leaf litter decomposition in a temporary Mediterranean stream during flow fragmentation.

    PubMed

    Abril, Meritxell; Muñoz, Isabel; Menéndez, Margarita

    2016-05-15

    In temporary Mediterranean streams, flow fragmentation during summer droughts originates an ephemeral mosaic of terrestrial and aquatic habitat types. The heterogeneity of habitat types implies a particular ecosystem functioning in temporary streams that is still poorly understood. We assessed the initial phases of leaf litter decomposition in selected habitat types: running waters, isolated pools and moist and dry streambed sediments. We used coarse-mesh litter bags containing Populus nigra leaves to examine decomposition rates, microbial biomass, macroinvertebrate abundance and dissolved organic carbon (DOC) release rates in each habitat type over an 11-day period in late summer. We detected faster decomposition rates in aquatic (running waters and isolated pools) than in terrestrial habitats (moist and dry streambed sediments). Under aquatic conditions, decomposition was characterized by intense leaching and early microbial colonization, which swiftly started to decompose litter. Microbial colonization in isolated pools was primarily dominated by bacteria, whereas in running waters fungal biomass predominated. Under terrestrial conditions, leaves were most often affected by abiotic processes that resulted in small mass losses. We found a substantial decrease in DOC release rates in both aquatic habitats within the first days of the study, whereas DOC release rates remained relatively stable in the moist and dry sediments. This suggests that leaves play different roles as a DOC source during and after flow fragmentation. Overall, our results revealed that leaf decomposition is heterogeneous during flow fragmentation, which has implications related to DOC utilization that should be considered in future regional carbon budgets. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Rapid synaptic vesicle endocytosis in cone photoreceptors of salamander retina

    PubMed Central

    Van Hook, Matthew J.; Thoreson, Wallace B.

    2013-01-01

    Following synaptic vesicle exocytosis, neurons retrieve the fused membrane by a process of endocytosis in order to provide a supply of vesicles for subsequent release and maintain the presynaptic active zone. Rod and cone photoreceptors use a specialized structure called the synaptic ribbon that enables them to sustain high rates of neurotransmitter release. They must also employ mechanisms of synaptic vesicle endocytosis capable of keeping up with release. While much is known about endocytosis at another retinal ribbon synapse, that of the goldfish Mb1 bipolar cell, less is known about endocytosis in photoreceptors. We used capacitance recording techniques to measure vesicle membrane fusion and retrieval in photoreceptors from salamander retinal slices. We found that application of brief depolarizing steps (<100 ms) to cones evoked exocytosis followed by rapid endocytosis with a time constant ~250 ms. In some cases, the capacitance trace overshot the baseline, indicating excess endocytosis. Calcium had no effect on the time constant, but enhanced excess endocytosis resulting in a faster rate of membrane retrieval. Surprisingly, endocytosis was unaffected by blockers of dynamin, suggesting that cone endocytosis is dynamin-independent. This contrasts with synaptic vesicle endocytosis in rods, which was inhibited by the dynamin inhibitor dynasore and GTPγS introduced through the patch pipette, suggesting that the two photoreceptor types employ distinct pathways for vesicle retrieval. The fast kinetics of synaptic vesicle endocytosis in photoreceptors likely enables these cells to maintain a high rate of transmitter release, allowing them to faithfully signal changes in illumination to second-order neurons. PMID:23238726

  20. Degradation and protein release properties of microspheres prepared from biodegradable poly(lactide-co-glycolide) and ABA triblock copolymers: influence of buffer media on polymer erosion and bovine serum albumin release.

    PubMed

    Bittner, B; Witt, C; Mäder, K; Kissel, T

    1999-08-05

    The aim of the present study was to investigate the influence of the chemical insertion of poly(ethylene oxide), PEO, into a poly(lactide-co-glycolide), PLG, backbone on the mechanisms of in vitro degradation and erosion of the polymer. For this purpose microspheres prepared by a modified W/O/W double emulsion technique using ABA triblock copolymers, consisting of PLG A-blocks attached to central PEO B-blocks were compared with microspheres prepared from PLG. Due to their molecular architecture the ABA triblock copolymers differed in their erosion and degradation behavior from PLG. Degradation occurred faster in the ABA polymers by cleavage of ester bonds inside the polymer backbone. Even erosion was shown to start immediately after incubation in different buffer media. By varying pH and ionic strength of the buffer it was found that both mass loss and molecular weight decay were accelerated in alkaline and acidic pH in the case of the ABA triblock copolymers. Although the pH of the medium had a moderate influence on the degradation of PLG, the molecular weight decay was not accompanied by a mass loss during the observation time. In a second set of experiments we prepared bovine serum albumin, BSA, loaded microspheres from both polymers. The release of BSA from ABA microspheres under in vitro conditions parallels the faster swelling and erosion rates. This could be confirmed by electron paramagnetic resonance, EPR, measurements with spin labeled albumin where an influx of buffer medium into the ABA microspheres was already observed within a few minutes. In contrast, PLG microspheres revealed a burst release without any erosion. The current study shows that the environmental conditions affected the degradation and erosion of the pure polymer microspheres in the same way as the release of the model protein. This leads to the conclusion that the more favorable degradation profile of the ABA triblock copolymers was responsible for the improvement of the release profile.

  1. Effect of diisocyanate linkers on the degradation characteristics of copolyester urethanes as potential drug carrier matrices.

    PubMed

    Mathew, Simi; Baudis, Stefan; Neffe, Axel T; Behl, Marc; Wischke, Christian; Lendlein, Andreas

    2015-09-01

    In this study, the effect of three aliphatic diisocyanate linkers, L-lysine diisocyanate ethyl ester (LDI), hexamethylene diisocyanate (HDI), and racemic 2,2,4-/2,4,4-trimethyl hexamethylene diisocyanate (TMDI), on the degradation of oligo[(rac-lactide)-co-glycolide] (64:36 mol%) based polyester urethanes (PEU) was examined. Samples were characterized for their molecular weight, mass loss, water uptake, sequence structure, and thermal and mechanical properties. Compared to non-segmented PLGA, the PEU showed higher water uptake and generally degraded faster. Interestingly, the rate of degradation was not directly correlating with the hydrophilicity of the diisocyanate moieties; instead, competing intra-/intermolecular hydrogen bonds in between urethane moieties appear to substantially decrease the rate of degradation for LDI-derived PEU. By comparing microparticles (μm) and films (mm) as matrices of different dimensions, it was shown that autocatalysis remains a contributor to degradation of the larger-sized PEU matrices as it is typical for non-segmented lactide/glycolide copolymers. The shown capacity of lactide/glycolide-based multiblock copolymers to degrade faster than PLGA and exhibit improved elastic properties could be of interest for medical implants and drug release systems. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Channelled tablets: An innovative approach to accelerating drug release from 3D printed tablets.

    PubMed

    Sadia, Muzna; Arafat, Basel; Ahmed, Waqar; Forbes, Robert T; Alhnan, Mohamed A

    2018-01-10

    Conventional immediate release dosage forms involve compressing the powder with a disintegrating agent that enables rapid disintegration and dissolution upon oral ingestion. Among 3D printing technologies, the fused deposition modelling (FDM) 3D printing technique has a considerable potential for patient-specific dosage forms. However, the use of FDM 3D printing in tablet manufacturing requires a large portion of polymer, which slows down drug release through erosion and diffusion mechanisms. In this study, we demonstrate for the first time the use of a novel design approach of caplets with perforated channels to accelerate drug release from 3D printed tablets. This strategy has been implemented using a caplet design with perforating channels of increasing width (0.2, 0.4, 0.6, 0.8 or 1.0mm) and variable length, and alignment (parallel or at right angle to tablet long axis). Hydrochlorothiazide (BCS class IV drug) was chosen as the model drug as enhanced dissolution rate is vital to guarantee oral bioavailability. The inclusion of channels exhibited an increase in the surface area/volume ratio, however, the release pattern was also influenced by the width and the length of the channel. A channel width was ≥0.6mm deemed critical to meet the USP criteria of immediate release products. Shorter multiple channels (8.6mm) were more efficient at accelerating drug release than longer channels (18.2mm) despite having comparable surface area/mass ratio. This behaviour may be linked to the reduced flow resistance within the channels and the faster fragmentation during dissolution of these tablets. In conclusion, the width and length of the channel should be carefully considered in addition to surface area/mass when optimizing drug release from 3D printed designs. The incorporation of short channels can be adopted in the designs of dosage forms, implants or stents to enhance the release rate of eluting drug from polymer-rich structures. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Endurance exercise modulates levodopa induced growth hormone release in patients with Parkinson's disease.

    PubMed

    Müller, Thomas; Welnic, Jacub; Woitalla, Dirk; Muhlack, Siegfried

    2007-07-11

    Acute levodopa (LD) application and exercise release human growth hormone (GH). An earlier trial showed, that combined stimulus of exercise and LD administration is the best provocative test for GH response in healthy participants. Objective was to show this combined effect of LD application and exercise on GH response and to investigate the impact on LD metabolism in 20 previously treated patients with Parkinson's disease (PD). We measured GH- and LD plasma concentrations following soluble 200 mg LD/50 mg benserazide administration during endurance exercise and rest on two separate consecutive days. GH concentrations significantly increased on both days, but GH release was significantly delayed during rest. LD metabolism was not altered due to exercise in a clinical relevant manner. Exercise induced a significant faster LD stimulated GH release in comparison with the rest condition. We did not find the supposed increase of LD induced GH release by endurance exercise. We assume, that only a limited amount of GH is available for GH release in the anterior pituitary following an acute 200 mg LD administration. GH disposal also depends on growth hormone releasing hormone (GHRH), which is secreted into hypothalamic portal capillaries. During the exercise condition, the resulting higher blood pressure supports blood flow and thus GHRH transport towards the GH producing cells in the pituitary. This might additionally have caused the significant faster GH release during exercise.

  4. En Route Air Traffic Control Input Devices for the Next Generation

    NASA Technical Reports Server (NTRS)

    Mainini, Matthew J.

    2010-01-01

    The purpose of this study was to investigate the usefulness of different input device configurations when trial planning new routes for aircraft in an advanced simulation of the en route workstation. The task of trial planning is one of the futuristic tools that is performed by the graphical manipulation of an aircraft's trajectory to reroute the aircraft without voice communication. In this study with two input devices, the FAA's current trackball and a basic optical computer mouse were evaluated with "pick" button in a click-and-hold state and a click-and-release state while the participant dragged the trial plan line. The trial plan was used for three different conflict types: Aircraft Conflicts, Weather Conflicts, and Aircraft + Weather Conflicts. Speed and accuracy were the primary dependent variables. Results indicate that the mouse conditions were significantly faster than the trackball conditions overall with no significant loss of accuracy. Several performance ratings and preference ratings were analyzed from post-run and post-simulation questionnaires. The release conditions were significantly more useful and likable than the hold conditions. The results suggest that the mouse in the release button state was the fastest and most well liked device configuration for trial planning in the en route workstation. Keywords-input devices, en route, controller, workstation, mouse, trackball, NextGen

  5. Increased dissolution rate and oral bioavailability of hydrophobic drug glyburide tablets produced using supercritical CO₂ silica dispersion technology.

    PubMed

    Guan, Jibin; Han, Jihong; Zhang, Dong; Chu, Chunxia; Liu, Hongzhuo; Sun, Jin; He, Zhonggui; Zhang, Tianhong

    2014-04-01

    The aim of this study was to design a silica-supported solid dispersion of a water-insoluble drug, glyburide, to increase its dissolution rate and oral absorption using supercritical fluid (SCF) technology. DSC and PXRD results indicated that the encapsulated drug in the optimal solid dispersion was in an amorphous state and the product was stable for 6 months. Glyburide was adsorbed onto the porous silica, as confirmed by the SEM images and BET analysis. Furthermore, FT-IR spectroscopy confirmed that there was no change in the chemical structure of glyburide after the application of SCF. The glyburide silica-based dispersion could also be compressed into tablet form. In vitro drug release analysis of the silica solid dispersion tablets demonstrated faster release of glyburide compared with the commercial micronized tablet. In an in vivo test, the AUC of the tablets composed of the new glyburide silica-based solid dispersion was 2.01 times greater than that of the commercial micronized glyburide tablets. In conclusion, SCF technology presents a promising approach to prepare silica-based solid dispersions of hydrophobic drugs because of its ability to increase their release and oral bioavailability. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. A comparative study between melt granulation/compression and hot melt extrusion/injection molding for the manufacturing of oral sustained release thermoplastic polyurethane matrices.

    PubMed

    Verstraete, G; Mertens, P; Grymonpré, W; Van Bockstal, P J; De Beer, T; Boone, M N; Van Hoorebeke, L; Remon, J P; Vervaet, C

    2016-11-20

    During this project 3 techniques (twin screw melt granulation/compression (TSMG), hot melt extrusion (HME) and injection molding (IM)) were evaluated for the manufacturing of thermoplastic polyurethane (TPU)-based oral sustained release matrices, containing a high dose of the highly soluble metformin hydrochloride. Whereas formulations with a drug load between 0 and 70% (w/w) could be processed via HME/(IM), the drug content of granules prepared via melt granulation could only be varied between 85 and 90% (w/w) as these formulations contained the proper concentration of binder (i.e. TPU) to obtain a good size distribution of the granules. While release from HME matrices and IM tablets could be sustained over 24h, release from the TPU-based TSMG tablets was too fast (complete release within about 6h) linked to their higher drug load and porosity. By mixing hydrophilic and hydrophobic TPUs the in vitro release kinetics of both formulations could be adjusted: a higher content of hydrophobic TPU was correlated with a slower release rate. Although mini-matrices showed faster release kinetics than IM tablets, this observation was successfully countered by changing the hydrophobic/hydrophilic TPU ratio. In vivo experiments via oral administration to dogs confirmed the versatile potential of the TPU platform as intermediate-strong and low-intermediate sustained characteristics were obtained for the IM tablets and HME mini-matrices, respectively. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Graft copolymers of ethyl methacrylate on waxy maize starch derivatives as novel excipients for matrix tablets: drug release and fronts movement kinetics.

    PubMed

    Marinich, J A; Ferrero, C; Jiménez-Castellanos, M R

    2012-04-01

    A previous paper deals with the physicochemical and technological characterization of novel graft copolymers of ethyl methacrylate (EMA) on waxy maize starch (MS) and hydroxypropylstarch (MHS). The results obtained suggested the potential application of these copolymers as excipients for compressed non-disintegrating matrix tablets. Therefore, the purpose of the present study was to investigate the mechanism governing drug release from matrix systems prepared with the new copolymers and anhydrous theophylline or diltiazem HCl as model drugs with different solubility. The influence of the carbohydrate nature, drying procedure and initial pore network on drug release kinetics was also evaluated. Drug release experiments were performed from free tablets. Radial drug release and fronts movement kinetics were also analysed, and several mathematical models were employed to ascertain the drug release mechanisms. The drug release markedly depends on the drug solubility and the carbohydrate nature but is practically not affected by the drying process and the initial matrix porosity. A faster drug release is observed for matrices containing diltiazem HCl compared with those containing anhydrous theophylline, in accordance with the higher drug solubility and the higher friability of diltiazem matrices. In fact, although diffusion is the prevailing drug release mechanism for all matrices, the erosion mechanism seems to have some contribution in several formulations containing diltiazem. A reduction in the surface exposed to the dissolution medium (radial release studies) leads to a decrease in the drug release rate, but the release mechanism is not essentially modified. The nearly constant erosion front movement confirms the behaviour of these systems as inert matrices where the drugs are released mainly by diffusion through the porous structure. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. Synergistic effect of PEGylated resveratrol on delivery of anticancer drugs.

    PubMed

    Wang, Wenlong; Zhang, Liang; Le, Yuan; Chen, Jian-Feng; Wang, Jiexin; Yun, Jimmy

    2016-02-10

    Resveratrol (RES) is a natural polyphenol which can be considered as a nutraceutical because of its benefits such as anticancer and antioxidant activity. In this paper, we designed polymer-RES conjugates as anticancer drug carrier for synergistic therapeutic effect in cancer treatment. Bicalutamide (BIC) was used as a model drug to investigate the drug release behaviors and in vitro anticancer performance. PEG-RES and PEG-Glycine-RES nanoparticles were prepared and characterized. The size of the prepared particles was around 50 nm with RES content of 17.2 and 16.3 wt% for PEG-RES and PEG-Glycine-RES, respectively, and BIC loading efficiency were of 81.6% and 84.5%, separately. Release rate of RES from conjugates depended on the stability of ester group against hydrolysis. BIC release was much faster than RES release. The anticancer activity of BIC loaded PEGylated RES nanoparticles was much better than that of free BIC, indicating the conjugates provided a synergetic cytotoxicity to cancer cells. Confocal laser scanning microscopy observation and flow cytometry analyses indicated that PEGylated RES conjugates were more efficiently internalized into cells, released drug into cytoplasm. These results suggest that PEGylated RES conjugates show great potential for cancer therapy. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. New release cell for NMR microimaging of tablets. Swelling and erosion of poly(ethylene oxide).

    PubMed

    Abrahmsén-Alami, Susanna; Körner, Anna; Nilsson, Ingvar; Larsson, Anette

    2007-09-05

    A small release cell, in the form of a rotating disc, has been constructed to fit into the MRI equipment. The present work show that both qualitative and quantitative information of the swelling and erosion behavior of hydrophilic extended release (ER) matrix tablets may be obtained using this release cell and non-invasive magnetic resonance imaging (MRI) studies at different time-points during matrix dissolution. The tablet size, core size and the gel layer thickness of ER matrix formulations based on poly(ethylene oxide) have been determined. The dimensional changes as a function of time were found to correspond well to observations made with texture analysis (TA) methodology. Most importantly, the results of the present study show that both the erosion (displacement of the gel-dissolution media interface) and the swelling (decrease of dry tablet core size) proceed with a faster rate in radial than in axial direction using the rotating disk set-up. This behavior was attributed to the higher shear forces experienced in the radial direction. The results also indicate that front synchronization (constant gel layer thickness) is associated with the formation of an almost constant polymer concentration profile through the gel layer at different time-points.

  10. Synthesis and characterization of a thermo-sensitive poly( N-methyl acryloylglycine methyl ester) used as a drug release carrier

    NASA Astrophysics Data System (ADS)

    Deng, Kui-Lin; Zhong, Hai-Bin; Jiao, Yi-Suo; Fan, Ting; Qiao, Xiao; Zhang, Peng-Fei; Ren, Xiao-Bo

    2010-06-01

    In this article, poly( N-methyl acryloylglycine methyl ester) (PNMAME) was prepared as a novel thermosensitive material with a lower critical solution temperature (LCST) at around 49.5°C. The chemical structures of the monomer NMAME and PNMAME were characterized by 1H NMR and IR measurements. The LCST was investigated systematically as a function of PNMAME concentration, inorganic salt solution and pH value. The results indicated that LCST of PNMAME was obviously dependent on PNMAME concentration and pH. The LCST was increased with a decrease in pH value and PNMAME concentration. To obtain a thermo-sensitive hydrogel with the phase transition temperature close to human body temperature, the copolymerization was conducted between NMAME and N-acryloylglycine ethyl ester (NAGEE). The release behavior of caffeine was evaluated at different temperatures and contents of cross-linkers ( N, N-methylenebis(acrylamide) (NMBA)). The increase of cross-linker content led to a decrease in the release rate of caffeine due to higher crossing density in the hydrogel network. In addition, a faster release of caffeine from the hydrogel with 3% NMBA at 37°C was found in contrast to that at 18°C.

  11. Ca2+-induced Ca2+ Release Phenomena in Mammalian Sympathetic Neurons Are Critically Dependent on the Rate of Rise of Trigger Ca2+

    PubMed Central

    Hernández-Cruz, Arturo; Escobar, Ariel L.; Jiménez, Nicolás

    1997-01-01

    The role of ryanodine-sensitive intracellular Ca2+ stores present in nonmuscular cells is not yet completely understood. Here we examine the physiological parameters determining the dynamics of caffeine-induced Ca2+ release in individual fura-2–loaded sympathetic neurons. Two ryanodine-sensitive release components were distinguished: an early, transient release (TR) and a delayed, persistent release (PR). The TR component shows refractoriness, depends on the filling status of the store, and requires caffeine concentrations ≥10 mM. Furthermore, it is selectively suppressed by tetracaine and intracellular BAPTA, which interfere with Ca2+-mediated feedback loops, suggesting that it constitutes a Ca2+-induced Ca2+-release phenomenon. The dynamics of release is markedly affected when Sr2+ substitutes for Ca2+, indicating that Sr2+ release may operate with lower feedback gain than Ca2+ release. Our data indicate that when the initial release occurs at an adequately fast rate, Ca2+ triggers further release, producing a regenerative response, which is interrupted by depletion of releasable Ca2+ and Ca2+-dependent inactivation. A compartmentalized linear diffusion model can reproduce caffeine responses: When the Ca2+ reservoir is full, the rapid initial Ca2+ rise determines a faster occupation of the ryanodine receptor Ca2+ activation site giving rise to a regenerative release. With the store only partially loaded, the slower initial Ca2+ rise allows the inactivating site of the release channel to become occupied nearly as quickly as the activating site, thereby suppressing the initial fast release. The PR component is less dependent on the store's Ca2+ content. This study suggests that transmembrane Ca2+ influx in rat sympathetic neurons does not evoke widespread amplification by CICR because of its inability to raise [Ca2+] near the Ca2+ release channels sufficiently fast to overcome their Ca2+-dependent inactivation. Conversely, caffeine-induced Ca2+ release can undergo considerable amplification especially when Ca2+ stores are full. We propose that the primary function of ryanodine-sensitive stores in neurons and perhaps in other nonmuscular cells, is to emphasize subcellular Ca2+ gradients resulting from agonist-induced intracellular release. The amplification gain is dependent both on the agonist concentration and on the filling status of intracellular Ca2+ stores. PMID:9041445

  12. Application of arteether-loaded polyurethane nanomicelles to induce immune response in breast cancer model.

    PubMed

    Jabbarzadegan, Mona; Rajayi, Hajar; Mofazzal Jahromi, Mirza Ali; Yeganeh, Hamid; Yousefi, Mehdi; Muhammad Hassan, Zuhair; Majidi, Jafar

    2017-06-01

    To concentrate a potent anticancer drug (Arteether) in tumor microenvironment, we encapsulated it in biodegradable and pH sensitive polyurethane (PU) nanomicelles (NMs). The nanocomplex was characterized by Fourier transform infrared (FTIR), dynamic light scattering (DLS). The loading capacity and release profile in pH of 5.4 and 7.4 were considered. The cytotoxicity effect was evaluated in vitro and in vivo settings. The level of IFN-γ and IL-4 cytokines of mice splenocytes were assessed by enzyme-linked immunosorbent assay (ELISA). The nanocomplex showed negative zeta charge of -26.2 mV, size of 42.30 nm and high loading capacity (92%). Release profile showed a faster rate of drug liberation at pH 5.4 as compared to that of pH 7.4. It indicated significant inhibitory effect on the growth of 4T1 cell line and increased IFN-γ level.

  13. Host-guest chemistry of dendrimer-drug complexes. 6. Fully acetylated dendrimers as biocompatible drug vehicles using dexamethasone 21-phosphate as a model drug.

    PubMed

    Yang, Kun; Weng, Liang; Cheng, Yiyun; Zhang, Hongfeng; Zhang, Jiahai; Wu, Qinglin; Xu, Tongwen

    2011-03-17

    Fully acetylated poly(amidoamine) (PAMAM) dendrimer was proposed as a biocompatible drug vehicle using dexamethasone 21-phosphate (Dp21) as a model drug. NMR techniques including (1)H NMR and 2D NOE NMR were used to characterize the host-guest chemistry of acetylated dendrimer/Dp21 and cationic dendrimer/Dp21 complexes. The pH-dependent micellization, complexation, and inclusion behaviors of Dp21 were observed in the presence of acetylated and cationic PAMAM dendrimers. Acetylated dendrimer only encapsulates Dp21 at acidic conditions, while cationic dendrimer can host Dp21 at both acidic and neutral conditions. The orientation of Dp21 molecules in the dendrimer cavities depends on the quaternization degree of tertiary amine groups of dendrimer and the protonation ratio of phosphate group of Dp21. A distinctive pH-dependent release behavior of Dp21 from the acetylated and nonacetylated dendritic matrix was observed: Dp21 exhibits a much slower release rate from acetylated dendrimer at lower pH conditions and a much faster release rate from nonacetylated dendrimer with decreasing pH values. Cytotoxicity studies further confirmed the biocompatibility of acetylated dendrimers, which are much safer in the delivery of therapeutics for the treatment of various diseases than nonacetylated dendrimers. The dendrimer-drug binding and release mechanisms provide a new insight for the design and optimization of biocompatible dendrimer-based drug delivery systems. © 2011 American Chemical Society

  14. Succinate modulation of H2O2 release at NADH:ubiquinone oxidoreductase (Complex I) in brain mitochondria

    PubMed Central

    Zoccarato, Franco; Cavallini, Lucia; Bortolami, Silvia; Alexandre, Adolfo

    2007-01-01

    Complex I (NADH:ubiquinone oxidoreductase) is responsible for most of the mitochondrial H2O2 release, both during the oxidation of NAD-linked substrates and during succinate oxidation. The much faster succinate-dependent H2O2 production is ascribed to Complex I, being rotenone-sensitive. In the present paper, we report high-affinity succinate-supported H2O2 generation in the absence as well as in the presence of GM (glutamate/malate) (1 or 2 mM of each). In brain mitochondria, their only effect was to increase from 0.35 to 0.5 or to 0.65 mM the succinate concentration evoking the semi-maximal H2O2 release. GM are still oxidized in the presence of succinate, as indicated by the oxygen-consumption rates, which are intermediate between those of GM and of succinate alone when all substrates are present together. This effect is removed by rotenone, showing that it is not due to inhibition of succinate influx. Moreover, α-oxoglutarate production from GM, a measure of the activity of Complex I, is decreased, but not stopped, by succinate. It is concluded that succinate-induced H2O2 production occurs under conditions of regular downward electron flow in Complex I. Succinate concentration appears to modulate the rate of H2O2 release, probably by controlling the hydroquinone/quinone ratio. PMID:17477844

  15. Hydrogeologic framework and simulation of shallow ground-water flow in the vicinity of a hazardous-waste landfill near Pinewood, South Carolina

    USGS Publications Warehouse

    Vroblesky, D.A.

    1994-01-01

    The geologic units in the vicinity of a hazardous- waste landfill near Pinewood, S.C., were divided into hydrogeologic units on the basis of lithologic and hydrologic characteristics. A quasi-3- dimensional finite-difference ground-water-flow model was constructed to represent the hydrogeologic flamework. The simulation results indicate that if non-reactive constituents were released to the Lang Syne water-bearing zone underlying the central and western pans of the disposal area, the constituents would move in a southwesterly direction at a rate of about one-half to 7 feet per year. Contaminants could move from the Lang Syne water-bearing zone upward to the surficial aquifer, to streams, or to Lake Marion. Although these flow rates indicate that it would require at least 50 years for contaminants to travel between the disposal area and a nearby (400 ft) potential discharge area, the heterogeneity of the site hydrogeology imparts an uncertainty to the conclusion. Faster travel times cannot be ruled out if contamination enters an area having a higher hydraulic conductivity than those determined in this investigation. Faster arrival times at Lake Marion also could result if there are pathways shorter than about 400 feet between contaminated water and an area where it can discharge to the surficial aquifer or to streams. If contaminant releases were to occur on the eastern side of the ground-water mounds, near landfill section II and the southeastern part of land fill section I, initial flow directions would be toward the water-level depression in the eastern part of the facility. Ground water within water- level depression would flow downward, probably to the underlying lower Sawdust Landing water-beating zone. Movement of non-reactive constituents in the tower Sawdust Landing water-bearing zone would be southwestward toward Lake Marion at a rate of about 8 to 20 feet per year. Transport to the lake by this route could require more than 200 years.

  16. Solvent Vapor Annealing of Amorphous Carbamazepine Films for Fast Polymorph Screening and Dissolution Alteration.

    PubMed

    Schrode, Benedikt; Bodak, Brigitta; Riegler, Hans; Zimmer, Andreas; Christian, Paul; Werzer, Oliver

    2017-09-30

    Solubility enhancement and thus higher bioavailability are of great importance and a constant challenge in pharmaceutical research whereby polymorph screening and selection is one of the most important tasks. A very promising approach for polymorph screening is solvent vapor annealing where a sample is exposed to an atmosphere saturated with molecules of a specific chemical/solvent. In this work, amorphous carbamazepine thin films were prepared by spin coating, and the transformation into crystalline forms under exposure to solvent vapors was investigated. Employing grazing incidence X-ray diffraction, four distinct carbamazepine polymorphs, a solvate, and hydrates could be identified, while optical microscopy showed mainly spherulitic morphologies. In vitro dissolution experiments revealed different carbamazepine release from the various thin-film samples containing distinct polymorphic compositions: heat treatment of amorphous samples at 80 °C results in an immediate release; samples exposed to EtOH vapors show a drug release about 5 times slower than this immediate one; and all the others had intermediate release profiles. Noteworthy, even the sample of slowest release has a manifold faster release compared to a standard powder sample demonstrating the capabilities of thin-film preparation for faster drug release in general. Despite the small number of samples in this screening experiment, the results clearly show how solvent vapor annealing can assist in identifying potential polymorphs and allows for estimating their impact on properties like bioavailability.

  17. Arginine functionalized bacterial cellulose nanofibers containing gel as an effective wound dressing; in vitro and in vivo evaluation.

    PubMed

    Feizabadi, Farideh; Minaiyan, Mohsan; Taheri, Azade

    2018-02-19

    Nanofibers such as bacterial cellulose nanofibers (BC-NFs) have gained increasing attention for use in wound dressings. Topical application of arginine can stimulate wound healing significantly. In order to promote the wound healing process, arginine functionalized BC-NFs containing gel (Arg-BC-NFs gel) was prepared by the electrostatic attachment of arginine on the surface of BC-NFs. The effect of pH was evaluated on the amount of the attached arginine on the BC-NFs surface. The attachment of arginine on BC-NFs surface was investigated by FTIR spectroscopy. The morphology of Arg-BC-NFs was evaluated using FESEM. The viscosity and spreadability of Arg-BC-NFs and the release of arginine from Arg-BC-NFs were evaluated. The effectiveness of Arg-BC-NFs gel was assessed in a full thickness wound model in rats. Re-epithelization, collagen deposition and neovascularization were investigated in the wound tissues using histological and immunohistochemical analysis. FTIR spectra and the zeta potential of BC-NFs confirmed the surface modification of BC-NFs by arginine. FESEM images showed the nanofibrous structure of Arg-BC-NFs. The release of arginine from Arg-BC-NFs gel was in a sustained release manner for 24 h. The appropriate viscosity and spreadability of Arg-BC-NFs gel confirmed its easy topical application. In vivo studies revealed that Arg-BC-NFs gel promoted wound closure at a faster rate than BC-NFs gel and arginine solution. Moreover, faster and more organized re-epithelialization, angiogenesis and collagen deposition were achieved in Arg-BC-NFs gel treated group in comparison to other groups. Arg-BC-NFs gel can be introduced as an effective wound dressing for acute wounds. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  18. The effect of cyclodextrin on both the agglomeration and the in vitro characteristics of drug loaded and targeted silica nanoparticles

    NASA Astrophysics Data System (ADS)

    Khattabi, Areen M.; Alqdeimat, Diala A.

    2018-02-01

    One of the problems in the use of nanoparticles (NPs) as carriers in drug delivery systems is their agglomeration which mainly appears due to their high surface energy. This results in formation of NPs with different sizes leading to differences in their distribution and bioavailability. The surface coating of NPs with certain compounds can be used to prevent or minimize this problem. In this study, the effect of cyclodextrin (CD) on the agglomeration state and hence on the in vitro characteristics of drug loaded and targeted silica NPs was investigated. A sample of NPs was loaded with anticancer agents, then modified with a long polymer, carboxymethyl-β-cyclodextrin (CM-β-CD) and folic acid (FA), respectively. Another sample was modified similarly but without CD. The surface modification was characterized using fourier transform infrared spectroscopy (FT-IR). The polydispersity (PD) was measured using dynamic light scattering (DLS) and was found to be smaller for CD modified NPs. The results of the in vitro drug release showed that the release rate from both samples exhibited similar pattern for the first 5 hours, however the rate was faster from CD modified NPs after 24 hours. The in vitro cell viability assay confirmed that CD modified NPs were about 30% more toxic to HeLa cells. These findings suggest that CD has a clear effect in minimizing the agglomeration of such modified silica NPs, accelerating their drug release rate and enhancing their targeting effect.

  19. Quantifying Ca2+ release and inactivation of Ca2+ release in fast- and slow-twitch muscles.

    PubMed

    Barclay, C J

    2012-12-01

    The aims of this study were to quantify the Ca(2+) release underlying twitch contractions of mammalian fast- and slow-twitch muscle and to comprehensively describe the transient inactivation of Ca(2+) release following a stimulus. Experiments were performed using bundles of fibres from mouse extensor digitorum longus (EDL) and soleus muscles. Ca(2+) release was quantified from the amount of ATP used to remove Ca(2+) from the myoplasm following stimulation. ATP turnover by crossbridges was blocked pharmacologically (N-benzyl-p-toluenesulphonamide for EDL, blebbistatin for soleus) and muscle heat production was used as an index of Ca(2+) pump ATP turnover. At 20°C, Ca(2+) release in response to a single stimulus was 34 and 84 μmol (kg muscle)(-1) for soleus and EDL, respectively, and increased with temperature (30°C: soleus, 61 μmol kg(-1); EDL, 168 μmol kg(-1)). Delivery of another stimulus within 100 ms of the first produced a smaller Ca(2+) release. The maximum magnitude of the decrease in Ca(2+) release was greater in EDL than soleus. Ca(2+) release recovered with an exponential time course which was faster in EDL (mean time constant at 20°C, 32.1 ms) than soleus (65.6 ms) and faster at 30°C than at 20°C. The amounts of Ca(2+) released and crossbridge cycles performed are consistent with a scheme in which Ca(2+) binding to troponin-C allowed an average of ∼1.7 crossbridge cycles in the two muscles.

  20. Quantifying Ca2+ release and inactivation of Ca2+ release in fast- and slow-twitch muscles

    PubMed Central

    Barclay, C J

    2012-01-01

    The aims of this study were to quantify the Ca2+ release underlying twitch contractions of mammalian fast- and slow-twitch muscle and to comprehensively describe the transient inactivation of Ca2+ release following a stimulus. Experiments were performed using bundles of fibres from mouse extensor digitorum longus (EDL) and soleus muscles. Ca2+ release was quantified from the amount of ATP used to remove Ca2+ from the myoplasm following stimulation. ATP turnover by crossbridges was blocked pharmacologically (N-benzyl-p-toluenesulphonamide for EDL, blebbistatin for soleus) and muscle heat production was used as an index of Ca2+ pump ATP turnover. At 20°C, Ca2+ release in response to a single stimulus was 34 and 84 μmol (kg muscle)−1 for soleus and EDL, respectively, and increased with temperature (30°C: soleus, 61 μmol kg−1; EDL, 168 μmol kg−1). Delivery of another stimulus within 100 ms of the first produced a smaller Ca2+ release. The maximum magnitude of the decrease in Ca2+ release was greater in EDL than soleus. Ca2+ release recovered with an exponential time course which was faster in EDL (mean time constant at 20°C, 32.1 ms) than soleus (65.6 ms) and faster at 30°C than at 20°C. The amounts of Ca2+ released and crossbridge cycles performed are consistent with a scheme in which Ca2+ binding to troponin-C allowed an average of ∼1.7 crossbridge cycles in the two muscles. PMID:23027818

  1. Formulation, in vitro evaluation and study of variables on tri-layered gastro-retentive delivery system of diltiazem HCl.

    PubMed

    Raut Desai, Shilpa; Rohera, Bhagwan D

    2014-03-01

    Tri-layered floating tablets using only one grade of polyethylene oxide (PEO) would enable easy manufacturing, reproducibility and controlled release for highly soluble drugs. To evaluate the potential of PEO as a sole polymer for the controlled release and to study the effect of formulation variables on release and gastric retention of highly soluble Diltiazem hydrochloride (DTZ). Tablets were compressed with middle layer consisting of drug and polymer while outer layers consisted of polymer with sodium bicarbonate. Design of formulation to obtain 12 h, zero-order release and rapid floatation was done by varying the grades, quantity of PEO and sodium bicarbonate. Dissolution data were fitted in drug release models and swelling/erosion studies were undertaken to verify the drug release mechanism. Effect of formulation variables and tablet surface morphology using scanning electron microscopy were studied. The optimized formula passed the criteria of USP dissolution test I and exhibited floating lag-time of 3-4 min. Drug release was faster from low molecular weight (MW) PEO as compared to high MW. With an increase in the amount of sodium bicarbonate, faster buoyancy was achieved due to the increased CO2 gas formation. Drug release followed zero-order and gave a good fit to the Korsmeyer-Peppas model, which suggested that drug release was due to diffusion through polymer swelling. Zero-order, controlled release profile with the desired buoyancy can be achieved by using optimum formula quantities of sodium bicarbonate and polymer. The tri-layered system shows promising delivery of DTZ, and possibly other water-soluble drugs.

  2. Chitosan nanofibers for transbuccal insulin delivery.

    PubMed

    Lancina, Michael G; Shankar, Roopa Kanakatti; Yang, Hu

    2017-05-01

    In this work, they aimed at producing chitosan based nanofiber mats capable of delivering insulin via the buccal mucosa. Chitosan was electrospun into nanofibers using poly(ethylene oxide) (PEO) as a carrier molecule in various feed ratios. The mechanical properties and degradation kinetics of the fibers were measured. Insulin release rates were determined in vitro using an ELISA assay. The bioactivity of released insulin was measured in terms of Akt activation in pre-adipocytes. Insulin permeation across the buccal mucosa was measured in an ex-vivo porcine transbuccal model. Fiber morphology, mechanical properties, and in vitro stability were dependent on PEO feed ratio. Lower PEO content blends produced smaller diameter fibers with significantly faster insulin release kinetics. Insulin showed no reduction in bioactivity due to electrospinning. Buccal permeation of insulin facilitated by high chitosan content blends was significantly higher than that of free insulin. Taken together, the work demonstrates that chitosan-based nanofibers have the potential to serve as a transbuccal insulin delivery vehicle. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 1252-1259, 2017. © 2017 Wiley Periodicals, Inc.

  3. Particle characterization of poorly water-soluble drugs using a spray freeze drying technique.

    PubMed

    Kondo, Masahiro; Niwa, Toshiyuki; Okamoto, Hirokazu; Danjo, Kazumi

    2009-07-01

    A spray freeze drying (SFD) method was developed to prepare the composite particles of poorly water-soluble drug. The aqueous solution dissolved drug and the functional polymer was sprayed directly into liquid nitrogen. Then, the iced droplets were lyophilized with freeze-dryer to prepare solid particles. Tolbutamide (TBM) and hydroxypropylmethylcellulose (HPMC) were used as a model drug and water-soluble polymeric carrier in this study, respectively. The morphological observation of particles revealed that the spherical particles having porous structure could be obtained by optimizing the loading amount of drug and polymer in the spray solution. Especially, SFD method was characterized that the prepared particles had significantly larger specific surface area comparing with those prepared by the standard spray drying technique. The physicochemical properties of the resultant particles were found to be dependent on the concentration of spray solution. When the solution with high content of drug and polymer was used, the particle size of the resulting composite particles increased and they became spherical. The specific surface area of the particles also increased as a result of higher concentration of solution. The evaluation of spray solution indicated that these results were dependent on the viscosity of spray solution. In addition, when composite particles of TBM were prepared using the SFD method with HPMC as a carrier, the crystallinity of TBM decreased as the proportion of HPMC increased. When the TBM : HPMC ratio reached 1 : 5, the crystallinity of the particles completely disappeared. The dissolution tests showed that the release profiles of poorly water-soluble TBM from SFD composite particles were drastically improved compared to bulk TBM. The 70% release time T(70) of composite particles prepared by the SFD method in a solution of pH 1.2 was quite smaller than that of bulk TBM, while in a solution of pH 6.8, it was slightly lower. In addition, the release rates were faster than those of standard spray dried (SD) composite particles for solutions of pH 1.2 and 6.8, respectively. When composite particles were prepared from mixtures with various composition ratios, T(70) was found to decrease as the proportion of HPMC increased; the release rate was faster than that of bulk TBM in a solution of pH 6.8, as well as solution of pH 1.2.

  4. Microfluidic Leaching of Soil Minerals: Release of K+ from K Feldspar

    PubMed Central

    Ciceri, Davide; Allanore, Antoine

    2015-01-01

    The rate of K+ leaching from soil minerals such as K-feldspar is believed to be too slow to provide agronomic benefit. Currently, theories and methods available to interpret kinetics of mineral processes in soil fail to consider its microfluidic nature. In this study, we measure the leaching rate of K+ ions from a K-feldspar-bearing rock (syenite) in a microfluidic environment, and demonstrate that at the spatial and temporal scales experienced by crop roots, K+ is available at a faster rate than that measured with conventional apparatuses. We present a device to investigate kinetics of mineral leaching at an unprecedented simultaneous resolution of space (~101-102 μm), time (~101-102 min) and fluid volume (~100-101 mL). Results obtained from such a device challenge the notion that silicate minerals cannot be used as alternative fertilizers for tropical soils. PMID:26485160

  5. Effect of medium-chain triglycerides on the release behavior of Endostar encapsulated PLGA microspheres.

    PubMed

    Meng, Boyu; Li, Ling; Hua, Su; Wang, Qingsong; Liu, Chunhui; Xu, Xiangyang; Yin, Xiaojin

    2010-09-15

    The incomplete release of Endostar from PLGA microspheres was observed in our previous study. In the present study, we focused on the effect of medium-chain triglycerides (MCT) on the in vitro/in vivo release behavior of Endostar encapsulated PLGA microspheres, which were prepared by a water-in-oil-in-water (W/O/W) double-emulsion method with or without MCT. The in vitro accumulated release of Endostar from microspheres co-encapsulated with 30% MCT was found to be 79.04% after a 30-day incubation period in PBS (pH 7.4) at 37 degrees C. However, the accumulated release of Endostar from MCT-free microspheres was found to be only 32.22%. Pouches containing Endostar encapsulated PLGA microspheres were implanted subcutaneously in rats. The effect of MCT on the in vivo release showed a similar trend to the in vitro release. After 30 days, only 9.87% of the total encapsulated Endostar was retained in microspheres co-encapsulated with 30% MCT, while 42.25% of Endostar was retained in MCT-free microspheres. The co-encapsulation of MCT provided the microspheres with a porous surface, which significantly improved the in vitro/in vivo release of Endostar from PLGA microspheres. In addition, in vitro experiments showed that MCT co-encapsulated PLGA microspheres had more inter-connected pores, faster degradation of PLGA, and faster swelling of microspheres, which helped to explain the mechanism of the effect of MCT on improving the release of Endostar from PLGA microspheres. Copyright 2010 Elsevier B.V. All rights reserved.

  6. Rapid Retinal Release from a Cone Visual Pigment Following Photoactivation*

    PubMed Central

    Chen, Min-Hsuan; Kuemmel, Colleen; Birge, Robert R.; Knox, Barry E.

    2012-01-01

    As part of the visual cycle, the retinal chromophore in both rod and cone visual pigments undergoes reversible Schiff base hydrolysis and dissociation following photobleaching. We characterized light-activated retinal release from a short-wavelength sensitive cone pigment (VCOP) in 0.1% dodecyl maltoside using fluorescence spectroscopy. The half-time (t1/2) of retinal release from VCOP was 7.1 s, 250-fold faster than rhodopsin. VCOP exhibited pH-dependent release kinetics, with the t1/2 decreasing from 23 s to 4 s with pH 4.1 to 8, respectively. However, the Arrhenius activation energy (Ea) for VCOP derived from kinetic measurements between 4° and 20°C was 17.4 kcal/mol, similar to 18.5 kcal/mol for rhodopsin. There was a small kinetic isotope (D2O) effect in VCOP, but less than that observed in rhodopsin. Mutation of the primary Schiff base counterion (VCOPD108A) produced a pigment with an unprotonated chromophore (⌊max = 360 nm) and dramatically slowed (t1/2 ~ 6.8 min) light-dependent retinal release. Using homology modeling, a VCOP mutant with two substitutions (S85D/ D108A) was designed to move the counterion one alpha helical turn into the transmembrane region from the native position. This double mutant had a UV-visible absorption spectrum consistent with a protonated Schiff base (⌊max = 420 nm). Moreover, VCOPS85D/D108A mutant had retinal release kinetics (t1/2 = 7 s) and Ea (18 kcal/mol) similar to the native pigment exhibiting no pH-dependence. By contrast, the single mutant VCOPS85D had a ~3-fold decrease in retinal release rate compared to the native pigment. Photoactivated VCOPD108A had kinetics comparable to a rhodopsin counterion mutant, RhoE113Q, both requiring hydroxylamine to fully release retinal. These results demonstrate that the primary counterion of cone visual pigments is necessary for efficient Schiff base hydrolysis. We discuss how the large differences in retinal release rates between rod and cone visual pigments arise, not from inherent differences in the rate of Schiff base hydrolysis, but rather from differences in the non-covalent binding properties of the retinal chromophore to the protein. PMID:22217337

  7. Effects of Mg2+ on Ca2+ release from sarcoplasmic reticulum of skeletal muscle fibres from yabby (crustacean) and rat.

    PubMed

    Launikonis, B S; Stephenson, D G

    2000-07-15

    1. The role of myoplasmic [Mg2+] on Ca2+ release from the sarcoplasmic reticulum (SR) was examined in the two major types of crustacean muscle fibres, the tonic, long sarcomere fibres and the phasic, short sarcomere fibres of the fresh water decapod crustacean Cherax destructor (yabby) and in the fast-twitch rat muscle fibres using the mechanically skinned muscle fibre preparation. 2. A robust Ca2+-induced Ca2+-release (CICR) mechanism was present in both long and short sarcomere fibres and 1 mM Mg2+ exerted a strong inhibitory action on the SR Ca2+ release in both fibre types. 3. The SR displayed different properties with respect to Ca2+ loading in the long and the short sarcomere fibres and marked functional differences were identified with respect to Mg2+ inhibition between the two crustacean fibre types. Thus, in long sarcomere fibres, the submaximally loaded SR was able to release Ca2+ when [Mg2+] was lowered from 1 to 0.01 mM in the presence of 8 mM ATPtotal and in the virtual absence of Ca2+ (< 5 nM) even when the CICR was suppressed. In contrast, negligible Ca2+ was released from the submaximally loaded SR of short sarcomere yabby fibres when [Mg2+] was lowered from 1 to 0.01 mM under the same conditions as for the long sarcomere fibres. Nevertheless, the rate of SR Ca2+ release in short sarcomere fibres increased markedly when [Mg2+] was lowered in the presence of [Ca2+] approaching the normal resting levels (50-100 nM). 4. Rat fibres were able to release SR Ca2+ at a faster rate than the long sarcomere yabby fibres when [Mg2+] was lowered from 1 to 0. 01 mM in the virtual absence of Ca2+ but, unlike with yabby fibres, the net rate of Ca2+ release was actually increased for conditions that were considerably less favourable to CICR. 5. In summary, it is concluded that crustacean skeletal muscles have more that one functional type of Ca2+-release channels, that these channels display properties that are intermediate between those of mammalian skeletal and cardiac isoforms, that the inhibition exerted by Mg2+ at rest on the crustacean SR Ca2+-release channels must be removed during excitation-contraction coupling and that, unlike in crustacean fibres, CICR cannot play the major role in the activation of SR Ca2+-release channels in the rat skeletal muscle.

  8. Frequency specific activity in subthalamic nucleus correlates with hand bradykinesia in Parkinson's disease.

    PubMed

    Tan, Huiling; Pogosyan, Alek; Anzak, Anam; Foltynie, Thomas; Limousin, Patricia; Zrinzo, Ludvic; Ashkan, Keyoumars; Bogdanovic, Marko; Green, Alexander L; Aziz, Tipu; Brown, Peter

    2013-02-01

    Local field potential recordings made from the basal ganglia of patients undergoing deep brain stimulation have suggested that frequency specific activity is involved in determining the rate of force development and the peak force at the outset of a movement. However, the extent to which the basal ganglia might be involved in motor performance later on in a sustained contraction is less clear. We therefore recorded from the subthalamic nucleus region (STNr) in patients with Parkinson's disease (PD) as they made maximal voluntary grips. Relative to age-matched controls they had more rapid force decrement when contraction was meant to be sustained and prolonged release reaction time and slower rate of force offset when they were supposed to release the grip. These impairments were independent from medication status. Increased STNr power over 5-12 Hz (in the theta/alpha band) independently predicted better performance-reduced force decrement, shortened release reaction time and faster rate of force offset. In contrast, lower mean levels and progressive reduction of STNr power over 55-375 Hz (high gamma/high frequency) over the period when contraction was meant to be sustained were both strongly associated with greater force decrement over time. Higher power over 13-23 Hz (low beta) was associated with more rapid force decrement during the period when grip should have been sustained, and with a paradoxical shortening of the release reaction time. These observations suggest that STNr activities at 5-12 Hz and 55-375 Hz are necessary for optimal grip performance and that deficiencies of such activities lead to motor impairments. In contrast, increased levels of 13-25 Hz activity both promote force decrement and shorten the release reaction time, consistent with a role in antagonising (and terminating) voluntary movement. Frequency specific oscillatory activities in the STNr impact on motor performance from the beginning to the end of a voluntary grip. Copyright © 2012 Elsevier Inc. All rights reserved.

  9. Frequency specific activity in subthalamic nucleus correlates with hand bradykinesia in Parkinson's disease

    PubMed Central

    Tan, Huiling; Pogosyan, Alek; Anzak, Anam; Foltynie, Thomas; Limousin, Patricia; Zrinzo, Ludvic; Ashkan, Keyoumars; Bogdanovic, Marko; Green, Alexander L.; Aziz, Tipu; Brown, Peter

    2013-01-01

    Local field potential recordings made from the basal ganglia of patients undergoing deep brain stimulation have suggested that frequency specific activity is involved in determining the rate of force development and the peak force at the outset of a movement. However, the extent to which the basal ganglia might be involved in motor performance later on in a sustained contraction is less clear. We therefore recorded from the subthalamic nucleus region (STNr) in patients with Parkinson's disease (PD) as they made maximal voluntary grips. Relative to age-matched controls they had more rapid force decrement when contraction was meant to be sustained and prolonged release reaction time and slower rate of force offset when they were supposed to release the grip. These impairments were independent from medication status. Increased STNr power over 5–12 Hz (in the theta/alpha band) independently predicted better performance—reduced force decrement, shortened release reaction time and faster rate of force offset. In contrast, lower mean levels and progressive reduction of STNr power over 55–375 Hz (high gamma/high frequency) over the period when contraction was meant to be sustained were both strongly associated with greater force decrement over time. Higher power over 13–23 Hz (low beta) was associated with more rapid force decrement during the period when grip should have been sustained, and with a paradoxical shortening of the release reaction time. These observations suggest that STNr activities at 5–12 Hz and 55–375 Hz are necessary for optimal grip performance and that deficiencies of such activities lead to motor impairments. In contrast, increased levels of 13–25 Hz activity both promote force decrement and shorten the release reaction time, consistent with a role in antagonising (and terminating) voluntary movement. Frequency specific oscillatory activities in the STNr impact on motor performance from the beginning to the end of a voluntary grip. PMID:23178580

  10. In vitro biorelevant models for evaluating modified release mesalamine products to forecast the effect of formulation and meal intake on drug release.

    PubMed

    Andreas, Cord J; Chen, Ying-Chen; Markopoulos, Constantinos; Reppas, Christos; Dressman, Jennifer

    2015-11-01

    Postprandial administration of solid oral dosage forms greatly changes the dissolution environment compared to fasted state administration. The aims of this study were to investigate and forecast the effect of co-administration of a meal on drug release for delayed and/or extended release mesalamine formulations as well as design of in vitro tests to distinguish among formulations in a biorelevant way. Five different mesalamine formulations (Asacol® 400 mg, Mezavant® 1200 mg, Pentasa® 500 mg and Salofalk® in the 250 mg and 500 mg strengths) were investigated with biorelevant dissolution methods using the USP apparatus III and USP apparatus IV (open loop mode) under both fasted and fed state conditions, as well as with the dissolution methods described in pharmacopeia for delayed and extended release mesalamine products. Using the biorelevant experimental conditions proposed in this study, changes in release in the proximal gut due to meal intake are forecast to be minimal for Asacol®, Mezavant®, Pentasa® and Salofalk® 500 mg, while for Salofalk® 250 mg release was predicted to occur much earlier under fed state conditions. The USP apparatus III generally tended to result in faster dissolution rates and forecast more pronounced food effects for Salofalk® 250 mg than the USP apparatus IV. The biorelevant dissolution gradients were also able to reflect the in vivo behavior of the formulations. In vitro biorelevant models can be useful in the comparison of the release behavior from different delayed and extended release mesalamine formulations as well as forecasting effects of concomitant meal intake on drug release. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Pulsatile release of biomolecules from polydimethylsiloxane (PDMS) chips with hydrolytically degradable seals.

    PubMed

    Intra, Janjira; Glasgow, Justin M; Mai, Hoang Q; Salem, Aliasger K

    2008-05-08

    We demonstrate, for the first time, a robust novel polydimethylsiloxane (PDMS) chip that can provide controlled pulsatile release of DNA based molecules, proteins and oligonucleotides without external stimuli or triggers. The PDMS chip with arrays of wells was constructed by replica molding. Poly(lactic acid-co-glycolic acid) (PLGA) polymer films of varying composition and thickness were used as seals to the wells. The composition, molecular weight and thickness of the PLGA films were all parameters used to control the degradation rate of the seals and therefore the release profiles. Degradation of the films followed the PLGA composition order of 50:50 PLGA>75:25 PLGA>85:15 PLGA at all time-points beyond week 1. Scanning electron microscopy images showed that films were initially smooth, became porous and ruptured as the osmotic pressure pushed the degrading PLGA film outwards. Pulsatile release of DNA was controlled by the composition and thickness of the PLGA used to seal the well. Transfection experiments in a model Human Embryonic Kidney 293 (HEK293) cell line showed that plasmid DNA loaded in the wells was functional after pulsatile release in comparison to control plasmid DNA at all time-points. Thicker films degraded faster than thinner films and could be used to fine-tune the release of DNA over day length periods. Finally the PDMS chip was shown to provide repeated sequential release of CpG oligonucleotides and a model antigen, Ovalbumin (OVA), indicating significant potential for this device for vaccinations or applications that require defined complex release patterns of a variety of chemicals, drugs and biomolecules.

  12. Encapsulation and controlled release of rapamycin from polycaprolactone nanoparticles prepared by membrane micromixing combined with antisolvent precipitation.

    PubMed

    Othman, Rahimah; Vladisavljevic, Goran T; Nagy, Zoltan K; Holdich, Richard Graham

    2016-09-30

    Rapamycin loaded polycaprolactone nanoparticles (RAPA-PCL NPs) with a low polydispersity index of 0.006-0.073 were produced by anti-solvent precipitation using a ringed stainless steel membrane with 10-μm diameter laser-drilled pores. The organic phase composed of 6 g L -1 of PCL and 0.6-3.0 g L -1 of RAPA in acetone was injected through the membrane at 140 L m -2 h -1 into 0.2 wt% aqueous polyvinyl alcohol solution stirred at 1300 rpm, resulting in a Z-average mean of 189-218 nm, a drug encapsulation efficiency of 98.8-98.9 % and a drug loading in the NPs of 9-33 %. The encapsulation of RAPA was confirmed by UV-Vis spectroscopy, XRD, DSC, and ATR-FTIR. The disappearance of sharp characteristic peaks of crystalline RAPA in the XRD pattern of RAPA-PCL NPs revealed that the drug was molecularly dispersed in the polymer matrix or present in individual amorphous domains. The rate of drug release in pure water was negligible due to low aqueous solubility of RAPA. RAPA-PCL NPs released more than 91 % of their drug cargo after 2.5 h in the release medium composed of 0.78-1.5 M of the hydrotropic agent N,N-diethylnicotinamide (DENA), 10 vol% of ethanol, and 2 vol% of Tween 20 in phosphate buffered saline. The release rate of RAPA was faster when the concentra-tion of DENA in the dissolution medium was higher. The dissolution of RAPA was slower when the drug was embedded in the PCL matrix of the NPs than dispersed in the form of pure RAPA nanocrystals.

  13. Magnetotail energy dissipation during an auroral substorm

    PubMed Central

    Panov, E.V.; Baumjohann, W.; Wolf, R.A.; Nakamura, R.; Angelopoulos, V.; Weygand, J. M.; Kubyshkina, M.V.

    2016-01-01

    Violent releases of space plasma energy from the Earth’s magnetotail during substorms produce strong electric currents and bright aurora. But what modulates these currents and aurora and controls dissipation of the energy released in the ionosphere? Using data from the THEMIS fleet of satellites and ground-based imagers and magnetometers, we show that plasma energy dissipation is controlled by field-aligned currents (FACs) produced and modulated during magnetotail topology change and oscillatory braking of fast plasma jets at 10-14 Earth radii in the nightside magnetosphere. FACs appear in regions where plasma sheet pressure and flux tube volume gradients are non-collinear. Faster tailward expansion of magnetotail dipolarization and subsequent slower inner plasma sheet restretching during substorm expansion and recovery phases cause faster poleward then slower equatorward movement of the substorm aurora. Anharmonic radial plasma oscillations build up displaced current filaments and are responsible for discrete longitudinal auroral arcs that move equatorward at a velocity of about 1km/s. This observed auroral activity appears sufficient to dissipate the released energy. PMID:27917231

  14. Nanostructural evolution and behavior of H and Li in ion-implanted γ-LiAlO 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Weilin; Zhang, Jiandong; Edwards, Danny J.

    In-situ He+ ion irradiation is performed under a helium ion microscope to study nanostructural evolution in polycrystalline gamma-LiAlO2 pellets. Various locations within a grain, across grain boundaries and at a cavity are selected. The results exhibit He bubble formation, grain-boundary cracking, nanoparticle agglomeration, increasing surface brightness with dose, and material loss from the surface. Similar brightening effects at grain boundaries are also observed under a scanning electron microscope. Li diffusion and loss from polycrystalline gamma-LiAlO2 is faster than its monocrystalline counterpart during H2+ ion implantation at elevated temperatures. There is also more significant H diffusion and release from polycrystalline pelletsmore » during thermal annealing of 300 K implanted samples. Grain boundaries and cavities could provide a faster pathway for H and Li diffusion. H release is slightly faster from the 573 K implanted monocrystalline gamma-LiAlO2 during annealing at 773 K. Metal hydrides could be formed preferentially along the grain boundaries to immobilize hydrogen.« less

  15. Adenoviral vector tethering to metal surfaces via hydrolysable cross-linkers for the modulation of vector release and transduction

    PubMed Central

    Fishbein, Ilia; Forbes, Scott P.; Chorny, Michael; Connolly, Jeanne M.; Adamo, Richard F.; Corrales, Ricardo; Alferiev, Ivan S.; Levy, Robert J.

    2013-01-01

    The use of arterial stents and other medical implants as a delivery platform for surface immobilized gene vectors allows for safe and efficient localized expression of therapeutic transgenes. In this study we investigate the use of hydrolysable cross-linkers with distinct kinetics of hydrolysis for delivery of gene vectors from polyallylamine bisphosphonate-modified metal surfaces. Three cross-linkers with the estimated t1/2 of ester bonds hydrolysis of 5, 12 and 50 days demonstrated a cumulative 20%, 39% and 45% vector release, respectively, after 30 days exposure to physiological buffer at 37°C. Transgene expression in endothelial and smooth muscles cells transduced with substrate immobilized adenovirus resulted in significantly different expression profiles for each individual cross-linker. Furthermore, immobilization of adenoviral vectors effectively extended their transduction effectiveness beyond the initial phase of release. Transgene expression driven by adenovirus-tethered stents in rat carotid arteries demonstrated that a faster rate of cross-linker hydrolysis resulted in higher expression levels at day 1, which declined by day 8 after stent implantation, while inversely, slower hydrolysis was associated with increased arterial expression at day 8 in comparison with day 1. In conclusion, adjustable release of transduction-competent adenoviral vectors from metallic surfaces can be achieved, both in vitro and in vivo, through surface immobilization of adenoviral vectors using hydrolysable cross-linkers with structure-specific release kinetics. PMID:23777912

  16. W/O/W multiple emulsions containing nitroimidazole derivates for vaginal delivery.

    PubMed

    Ozer, Ozgen; Ozyazici, Mine; Tedajo, Muriel; Taner, Memduh S; Köseoglu, Kamil

    2007-03-01

    The aim of our study was to formulate a stable multiple emulsions containing two nitroimidazole derivates, metronidazole (MT) and ornidazole (OR), for vaginal therapy. MT and OR were located internal and external phases of multiple emulsion, respectively, and the in vitro release studies were realized in phosphate (pH 7) and lactate buffer (pH 4.5) solutions to investigate better the effect of pH and location of active substance on the release. The imaging studies were realized in rabbits following labeling MT and OR with Technethium-99m ((99m)Tc) to evaluate the in vivo absorption characteristics. The percentage of MT and OR released from the multiple emulsions in alkaline media were 3.2- and 2.8-fold greater than that observed in acidic media, respectively, when they were introduced in the internal phase of the multiple emulsions. The absorption rate of MT from vaginal epithelium was faster than OR. We observed that especially in alkaline medium a high release was found that was convenient for the vaginal infections seen in the alkaline pH. We concluded that W/O/W multiple emulsions were locally effective in vagina and they could be introduced as a new drug carrier system for vaginal delivery.

  17. Endoscopic carpal tunnel release using the modified Chow's extrabursal dual portal technique: clinical results of 640 patients.

    PubMed

    Kim, Poong-Taek; Micić, Ivan D; Park, Il-Hyng; Jeon, In-ho

    2007-01-01

    During a 4-year period, a total of 784 wrists of 640 patients were treated using a modified Chow's extrabursal dual portal endoscopic technique. All surgeries were performed under local anesthesia. A 1-cm incision was marked 1-2 cm proximal to the distal wrist crease, in the midline, ulnar to the palmaris longus. A distal portal was established along a line bisecting an angle created by the intersection of the ulnar border of the abducted thumb and the third web space. An obturator and cannula assembly were inserted under the portal, and three blades were used to cut under endoscopic vision. Subjective results showed that 706 hands (90%) had a reduction in the severity of pain after carpal tunnel release, 706 hands (90%) had a reduction in the severity of paresthesia and 729 hands (93%) had a reduction in the severity of numbness. Nocturnal pain and paresthesia were relieved in 745 cases (95%). Compared with the conventional open carpal tunnel release, less postoperative pain and faster recovery have been reported following endoscopic carpal tunnel release. This study suggests that extrabursal dual portal technique is a safe and reliable treatment option for carpal tunnel syndrome with a high success rate.

  18. Mechanical properties and drug release of venlafaxine HCl solid mini matrices prepared by hot-melt extrusion and hot or ambient compression.

    PubMed

    Avgerinos, Theodoros; Kantiranis, Nikolaos; Panagopoulou, Athanasia; Malamataris, Stavros; Kachrimanis, Kyriakos; Nikolakakis, Ioannis

    2018-02-01

    Objective/significance: To elucidate the role of plasticizers in different mini matrices and correlate mechanical properties with drug release. Cylindrical pellets were prepared by hot-melt extrusion (HME) and mini tablets by hot (HC) and ambient compression (AC). Venlafaxine HCl was the model drug, Eudragit ® RSPO the matrix former and citric acid or Lutrol ® F127 the plasticizers. The matrices were characterized for morphology, crystallinity, and mechanical properties. The influence of plasticizer's type and content on the extrusion pressure (P e ) during HME and ejection during tableting was examined and the mechanical properties were correlated with drug release parameters. Resistance to extrusion and tablet ejection force were reduced by Lutrol ® F127 which also produced softer and weaker pellets with faster release, but harder and stronger HC tablets with slower release. HME pellets showed greater tensile strength (T) and 100 times slower release than tablets. P e correlated with T and resistance to deformation of the corresponding pellets (r 2  = 0.963 and 0.945). For both HME and HC matrices the decrease of drug release with T followed a single straight line (r 2  = 0.990) and for HME the diffusion coefficient (D e ) and retreat rate constant (k b ) decreased linearly with T (r 2  = 0.934 and 0.972). Lutrol ® F127 and citric acid are efficient plasticizers and Lutrol ® F127 is a thermal binder/lubricant in HC compression. The different bonding mechanisms of the matrices were reflected in the mechanical strength and drug release. Relationships established between T and drug release parameters for HME and HC matrices may be useful during formulation work.

  19. Controlled drug release properties of ionically cross-linked chitosan beads: the influence of anion structure.

    PubMed

    Shu, X Z; Zhu, K J

    2002-02-21

    By adopting a novel chitosan cross-linked method, i.e. chitosan/gelatin droplet coagulated at low temperature and then cross-linked by anions (sulfate, citrate and tripolyphosphate (TPP)), the chitosan beads were prepared. Scanning electron microscopy (SEM) observation showed that sulfate/chitosan and citrate/chitosan beads usually had a spherical shape, smooth surface morphology and integral inside structure. Cross-sectional analysis indicated that the cross-linking process of sulfate and citrate to chitosan was much faster than that of TPP due to their smaller molecular size. But, once completely cross-linked, TPP/chitosan beads possessed much better mechanical strength and the force to break the beads was approximately ten times higher than that of sulfate/chitosan or citrate/chitosan beads. Release media pH and ionic strength seriously influenced the controlled drug release properties of the beads, which related to the strength of electrostatic interaction between anions and chitosan. Sulfate and citrate cross-linked chitosan beads swelled and even dissociated in simulated gastric fluid (SGF) and hence, model drug (riboflavin) released completely in 5 h; while in simulated intestinal fluid (SIF), beads remained in a shrinkage state and drug released slowly (release % usually <70% in 24 h). However, swelling and drug release of TPP/chitosan bead was usually insensitive to media pH. Chitosan beads, cross-linked by a combination of TPP and citrate (or sulfate) together, not only had a good shape, but also improved pH-responsive drug release properties. Salt weakened the interaction of citrate, especially sulfate with chitosan and accelerated beads swelling and hence drug release rate, but it was insensitive to that of TPP/chitosan. These results indicate that ionically cross-linked chitosan beads may be useful in stomach specific drug delivery.

  20. Sustained transdermal release of diltiazem hydrochloride through electron beam irradiated different PVA hydrogel membranes

    NASA Astrophysics Data System (ADS)

    Bhunia, Tridib; Goswami, Luna; Chattopadhyay, Dipankar; Bandyopadhyay, Abhijit

    2011-08-01

    Extremely fast release of diltiazem hydrochloride (water soluble, anti anginal drug used to treat chest pain) together with its faster erosion has been the primary problem in conventional oral therapy. It has been addressed in this paper by encapsulating the drug in electron beam irradiated various poly (vinyl alcohol) hydrogel membranes and delivering it through transdermal route. Results show excellent control over the release of diltiazem hydrochloride through these membranes subject to their physico-mechanicals.

  1. Comparative evaluation of PLGA nanoparticle delivery system for 5-fluorouracil and curcumin on squamous cell carcinoma.

    PubMed

    Masloub, Shaimaa M; Elmalahy, Mohamed H; Sabry, Dina; Mohamed, Wael S; Ahmed, Sahar H

    2016-04-01

    The purpose of this study is to assess the effect of 5-fluorouracil nanoparticles and curcumin naoparticles on cell proliferation and the expression of the apoptotic marker (caspase 3) in squamous cell carcinoma cell line. PLGA 5-fluorouracil nanopartciles and PLGA curcumin nanoparticles were prepared and applied for 24 and 48h on human laryngeal squamous carcinoma cell line (Hep-2) as regard IC 50 concentration. MTT assay was used for evaluation of cytotoxicity of prepared nanoparticles. Quantitaive reverse transcriptase polymerase chain reaction (QRT-PCR) was used for the assessment of caspase-3 expression in the treated cell line. The drug release rate profiles was dependent upon polymer to drug ratio, noting that the higher PLGA polymer ratio to 5-fluprouracil or curcumin drug showed faster release rates. On the other hand, the least PLGA polymer ratio to 5-fluprouracil or curcumin drug showed the slowest release rates. MTT assay revelaed that 5-fluorouracil nanoparticels or curcumin nanoparticels showed a clear cytotoxic effect on Hep-2 cell line compared to non treated cancer cells. The RT-PCR assessment of caspase-3 expression revealed that there was a significant increase in caspase-3 expression in Hep-2 cell line treated with 5-fluorouracil nanoparticles or curcumin compared to non treated cancer cells. Curcumin nanoparticles could be more active in inducing apoptosis in short term assays (24h) than long term assays (48h) due to differential cellular uptake. While 5-fluorouracil nanoparticles induced higher significant apoptosis in long term (48h) compared to curcumin group. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Recruitment of faster motor units is associated with greater rates of fascicle strain and rapid changes in muscle force during locomotion

    PubMed Central

    Lee, Sabrina S. M.; de Boef Miara, Maria; Arnold, Allison S.; Biewener, Andrew A.; Wakeling, James M.

    2013-01-01

    SUMMARY Animals modulate the power output needed for different locomotor tasks by changing muscle forces and fascicle strain rates. To generate the necessary forces, appropriate motor units must be recruited. Faster motor units have faster activation–deactivation rates than slower motor units, and they contract at higher strain rates; therefore, recruitment of faster motor units may be advantageous for tasks that involve rapid movements or high rates of work. This study identified motor unit recruitment patterns in the gastrocnemii muscles of goats and examined whether faster motor units are recruited when locomotor speed is increased. The study also examined whether locomotor tasks that elicit faster (or slower) motor units are associated with increased (or decreased) in vivo tendon forces, force rise and relaxation rates, fascicle strains and/or strain rates. Electromyography (EMG), sonomicrometry and muscle-tendon force data were collected from the lateral and medial gastrocnemius muscles of goats during level walking, trotting and galloping and during inclined walking and trotting. EMG signals were analyzed using wavelet and principal component analyses to quantify changes in the EMG frequency spectra across the different locomotor conditions. Fascicle strain and strain rate were calculated from the sonomicrometric data, and force rise and relaxation rates were determined from the tendon force data. The results of this study showed that faster motor units were recruited as goats increased their locomotor speeds from level walking to galloping. Slow inclined walking elicited EMG intensities similar to those of fast level galloping but different EMG frequency spectra, indicating that recruitment of the different motor unit types depended, in part, on characteristics of the task. For the locomotor tasks and muscles analyzed here, recruitment patterns were generally associated with in vivo fascicle strain rates, EMG intensity and tendon force. Together, these data provide new evidence that changes in motor unit recruitment have an underlying mechanical basis, at least for certain locomotor tasks. PMID:22972893

  3. Recruitment of faster motor units is associated with greater rates of fascicle strain and rapid changes in muscle force during locomotion.

    PubMed

    Lee, Sabrina S M; de Boef Miara, Maria; Arnold, Allison S; Biewener, Andrew A; Wakeling, James M

    2013-01-15

    Animals modulate the power output needed for different locomotor tasks by changing muscle forces and fascicle strain rates. To generate the necessary forces, appropriate motor units must be recruited. Faster motor units have faster activation-deactivation rates than slower motor units, and they contract at higher strain rates; therefore, recruitment of faster motor units may be advantageous for tasks that involve rapid movements or high rates of work. This study identified motor unit recruitment patterns in the gastrocnemii muscles of goats and examined whether faster motor units are recruited when locomotor speed is increased. The study also examined whether locomotor tasks that elicit faster (or slower) motor units are associated with increased (or decreased) in vivo tendon forces, force rise and relaxation rates, fascicle strains and/or strain rates. Electromyography (EMG), sonomicrometry and muscle-tendon force data were collected from the lateral and medial gastrocnemius muscles of goats during level walking, trotting and galloping and during inclined walking and trotting. EMG signals were analyzed using wavelet and principal component analyses to quantify changes in the EMG frequency spectra across the different locomotor conditions. Fascicle strain and strain rate were calculated from the sonomicrometric data, and force rise and relaxation rates were determined from the tendon force data. The results of this study showed that faster motor units were recruited as goats increased their locomotor speeds from level walking to galloping. Slow inclined walking elicited EMG intensities similar to those of fast level galloping but different EMG frequency spectra, indicating that recruitment of the different motor unit types depended, in part, on characteristics of the task. For the locomotor tasks and muscles analyzed here, recruitment patterns were generally associated with in vivo fascicle strain rates, EMG intensity and tendon force. Together, these data provide new evidence that changes in motor unit recruitment have an underlying mechanical basis, at least for certain locomotor tasks.

  4. A comparative study on the effects of amphiphilic and hydrophilic polymers on the release profiles of a poorly water-soluble drug.

    PubMed

    Irwan, Anastasia W; Berania, Jacqueline E; Liu, Xueming

    2016-03-01

    This paper reports the use of two crystalline polymers, an amphiphilic Pluronic® F-127 (PF-127) and a hydrophilic poly(ethylene glycol) (PEG6000) as drug delivery carriers for improving the drug release of a poorly water-soluble drug, fenofibrate (FEN), via micelle formation and formation of a solid dispersion (SD). In 10% PF-127 (aq.), FEN showed an equilibrium solubility of ca. 0.6 mg/mL, due to micelle formation. In contrast, in 10% PEG6000 (aq.), FEN only exhibited an equilibrium solubility of 0.0037 mg/mL. FEN-loaded micelles in PF-127 were prepared by direct dissolution and membrane dialysis. Both methods only yielded a highest drug loading (DL) of 0.5%. SDs of FEN in PF-127 and PEG6000, at DLs of 5-80%, were prepared by solvent evaporation. In-vitro dissolution testing showed that both micelles and SDs significantly improved FEN's release rate. The SDs of FEN in PF-127 showed significantly faster release than crystalline FEN, when the DL was as high as 50%, whereas SDs of PEG6000 showed similar enhancement in the release rate when the DL was not more than 20%. The DSC thermograms of SDs of PF-127 exhibited a single phase transition peak at ca. 55-57 °C when the DL was not more than 50%, whereas those in PEG6000 exhibited a similar peak at ca. 61-63 °C when the DL was not more than 35%. When the DL exceeded 50% for SDs of PF-127 and 35% for SDs of PEG6000, DSC thermograms showed two melting peaks for the carrier polymer and FEN, respectively. FT-IR studies revealed that PF-127 has a stronger hydrophobic-hydrophobic interaction with FEN than PEG6000. It is likely that both dispersion and micelle formation contributed to the stronger effect of PF-127 on enhancing the release rate of FEN in its SDs.

  5. Role of Climatic Variability on Fate and Transport of LNAPL Pollutants in Subsurface

    NASA Astrophysics Data System (ADS)

    Gupta, P. K.; Yadav, B. K.

    2017-12-01

    Climatic variability affects groundwater resources both directly through replenishment by surface recharge and indirectly via changes in groundwater extraction patterns. Remediation of polluted groundwater due to the release of mono-aromatic hydrocarbons such as light non-aqueous phase liquids (LNAPL) is of particular concern under changing climatic conditions because of their higher water solubility and wide coverage in the subsurface. Thus, the aim of this study was to investigate the impact of these shallow groundwater extremes on biodegradation and transport of toluene, the selected LNAPL, in subsurface using a series of practical and numerical experiments. An air tight three-dimensional sand tank setup (60cm-L×30cm-W×60cm-D) embedded with horizontal and vertical layers of sampling ports was fabricated using a glass sheet of thickness 7 mm. Clean sand having an average grain size of 0.5-1.0 mm was packed homogeneously for creating an unconfined aquifer. Pure phase of toluene was released from the top surface to create a pool of the LNAPL around the groundwater table which was maintained at 35 cm from the tank bottom. Initially, a constant water flux was allowed to flow to maintain a pore water velocity of 1.2 m/day in lateral direction to mimic a base groundwater flow regime. Subsequently, faster and slow groundwater velocity regimes were developed by changing the water flux through the saturated zone keeping the water table location at the same level. The observed breakthrough curves at different ports showed that lateral and transverse transport of the LNAPL was more prominent as compared to its vertical movement. The increased vertical movement of the LNAPL along with an enhanced dissolution rate under the faster groundwater flow condition shows the crucial role of mechanical dispersion and the shear force acting on the water-LNAPL interface. The rate of degradation was found high for the case of faster pore water velocities due to dependency of the degradation kinetics on substrate concentration. The observed data were compared well with the simulated curves for all the three cases of groundwater flow conditions. The results of this study are of direct use in applying bioremediation technique in the field and for planning of LNAPL polluting industrial locations under changing climatic conditions.

  6. The kinetics of dissolution of dolomite in CO2-H2O systems at 1.5 to 65oC and 0 to 1 atm PCO2.

    USGS Publications Warehouse

    Busenberg, E.; Plummer, Niel

    1982-01-01

    Weight loss measurements at different T and PCO2 during experimental investigations of the dissolution kinetics of eight samples of dolomite permitted recognition of a two-stage process. During the first stage, which is brief, the surface composition of the dolomite becomes enriched with the MgCO3 component and the CaCO3 component dissolves faster. In the second and more important stage both components of the solid are released stoichiometrically, described quantitatively by three parallel consecutive forward reactions and one significant backward reaction. Dissolution rates are apparently more dependent on crystallographic order than on compositional variations. -M.S.

  7. Synthesis and characterization of chitosan quaternary ammonium salt and its application as drug carrier for ribavirin.

    PubMed

    Li, Si-Dong; Li, Pu-Wang; Yang, Zi-Ming; Peng, Zheng; Quan, Wei-Yan; Yang, Xi-Hong; Yang, Lei; Dong, Jing-Jing

    2014-11-01

    N-(2-hydroxyl) propyl-3-trimethyl ammonium chitosan chloride (HTCC) is hydro-soluble chitosan (CS) derivative, which can be obtained by the reaction between epoxypropyl trimethyl ammonium chloride (ETA) and CS. The preparation parameters for the synthesis of HTCC were optimized by orthogonal experimental design. ETA was successfully grafted into the free amino group of CS. Grafting of ETA with CS had great effect on the crystal structure of HTCC, which was confirmed by the XRD results. HTCC displayed higher capability to form nanoparticles by crosslinking with negatively charged sodium tripolyphosphate (TPP). Ribavrin- (RIV-) loaded HTCC nanoparticles were positively charged and were spherical in shape with average particle size of 200 nm. More efficient drug encapsulation efficiency and loading capacity were obtained for HTCC in comparison with CS, however, HTCC nanoparticles displayed faster release rate due to its hydro-soluble properties. The results suggest that HTCC is a promising CS derivative for the encapsulation of hydrophilic drugs in obtaining sustained release of drugs.

  8. L. inermis-loaded nanofibrous scaffolds for wound dressing applications.

    PubMed

    Vakilian, Saeid; Norouzi, Mohammad; Soufi-Zomorrod, Mahsa; Shabani, Iman; Hosseinzadeh, Simzar; Soleimani, Masoud

    2018-04-01

    Since ancient times, some herbal medicines have been extensively used for burn and wound treatments, showing preference to the common synthetic medications by virtue of having less side effects and faster healing rate. In this study, hybrid nanofibrous scaffolds of poly-l-lactic-acid (PLLA) and gelatin incorporated L. inermis were fabricated via electrospinning technique. Morphology and characteristics of the scaffolds were studied by scanning electron microscopy (SEM) and Fourier transform infrared (FTIR), respectively. The release profile of the L. inermis from the nanofibers was also assessed in vitro. Moreover, the structural stability of the released L. inermis from the nanofibers was evaluated using high-performance liquid chromatography (HPLC). The nanofibers showed a gradual release of L. inermis up to two days while the intact structure was preserved. Furthermore, antibacterial assay demonstrated that L. inermis-loaded nanofibrous scaffolds could effectively kill E. coli and S. aureus within 2 h. Finally, biocompatibility of the nanofibers was proven on 3T3 fibroblasts. Therefore, the L. inermis loaded PLLA-Gelatin nanofibers showed a potential application as a wound dressing in order to control wound infections. Copyright © 2018. Published by Elsevier Ltd.

  9. Water/oil type microemulsion systems containing lidocaine hydrochloride: in vitro and in vivo evaluation.

    PubMed

    Dogrul, Ahmet; Arslan, Seyda Akkus; Tirnaksiz, Figen

    2014-01-01

    The purpose of this study was to develop a water/oil microemulsion containing lidocaine hydrochloride (4%) and to compare its local anaesthetic efficacy with commercial products. A pseudoternary diagram (Km:1/1 or 1/2) was constructed using lecithin/ethanol/oil/water. The droplet size, viscosity and release of the microemulsions were evaluated. Tail flick tests were conducted for in vivo effectiveness; the initiation time of effect, maximum effect, time to reach maximum effect, and relative efficacy were evaluated. The drug caused a significant increase in droplet size. The use of olive oil resulted in a decrease in the solubilisation parameter, as well as a reduction in the release. The droplet size and viscosity of the microemulsion composed of Miglyol/lecithin/ethanol/water/drug (Km:1/2) was lower than other microemulsions (8.38 nm, 6.9 mPa), and its release rate (1.61 mg/h) was higher. This system had a faster and more efficient anaesthetic effect than the other microemulsions and commercial products. Results indicate that a water/oil type microemulsion (Miglyol/lecithin/ethanol/water) has promising potential to increase the local anaesthetic effect.

  10. The Kinesin-5 Chemomechanical Cycle Is Dominated by a Two-heads-bound State*♦

    PubMed Central

    Mickolajczyk, Keith J.

    2016-01-01

    Single-molecule microscopy and stopped-flow kinetics assays were carried out to understand the microtubule polymerase activity of kinesin-5 (Eg5). Four lines of evidence argue that the motor primarily resides in a two-heads-bound (2HB) state. First, upon microtubule binding, dimeric Eg5 releases both bound ADPs. Second, microtubule dissociation in saturating ADP is 20-fold slower for the dimer than for the monomer. Third, ATP-triggered mant-ADP release is 5-fold faster than the stepping rate. Fourth, ATP binding is relatively fast when the motor is locked in a 2HB state. Shortening the neck-linker does not facilitate rear-head detachment, suggesting a minimal role for rear-head-gating. This 2HB state may enable Eg5 to stabilize incoming tubulin at the growing microtubule plus-end. The finding that slowly hydrolyzable ATP analogs trigger slower nucleotide release than ATP suggests that ATP hydrolysis in the bound head precedes stepping by the tethered head, leading to a mechanochemical cycle in which processivity is determined by the race between unbinding of the bound head and attachment of the tethered head. PMID:27402829

  11. Polymeric nanoparticles for increased oral bioavailability and rapid absorption using celecoxib as a model of a low-solubility, high-permeability drug.

    PubMed

    Morgen, Michael; Bloom, Corey; Beyerinck, Ron; Bello, Akintunde; Song, Wei; Wilkinson, Karen; Steenwyk, Rick; Shamblin, Sheri

    2012-02-01

    To demonstrate drug/polymer nanoparticles can increase the rate and extent of oral absorption of a low-solubility, high-permeability drug. Amorphous drug/polymer nanoparticles containing celecoxib were prepared using ethyl cellulose and either sodium caseinate or bile salt. Nanoparticles were characterized using dynamic light scattering, transmission and scanning electron microscopy, and differential scanning calorimetry. Drug release and resuspension studies were performed using high-performance liquid chromatography. Pharmacokinetic studies were performed in dogs and humans. A physical model is presented describing the nanoparticle state of matter and release performance. Nanoparticles dosed orally in aqueous suspensions provided higher systemic exposure and faster attainment of peak plasma concentrations than commercial capsules, with median time to maximum drug concentration (Tmax) of 0.75 h in humans for nanoparticles vs. 3 h for commercial capsules. Nanoparticles released celecoxib rapidly and provided higher dissolved-drug concentrations than micronized crystalline drug. Nanoparticle suspensions are stable for several days and can be spray-dried to form dry powders that resuspend in water. Drug/polymer nanoparticles are well suited for providing rapid oral absorption and increased bioavailability of BCS Class II drugs.

  12. Dissolution of solid lipid extrudates in biorelevant media.

    PubMed

    Witzleb, R; Müllertz, A; Kanikanti, V-R; Hamann, H-J; Kleinebudde, P

    2012-01-17

    Solid lipid extrudates with the model drug praziquantel were produced with chemically diverse lipids and investigated regarding their dissolution behaviour in different media. The lipids used in this study were glyceryl tripalmitate, glyceryl dibehenate, glyceryl monostearate, cetyl palmitate and solid paraffin. Thermoanalytical and dissolution behaviour was investigated directly after extrusion and after 3 and 6 months open storage at 40°C/75% RH. Dissolution studies were conducted in hydrochloric acid (HCl) pH 1.2 with different levels of polysorbate 20 and with a biorelevant medium containing pancreatic lipase, bile salts and phospholipids. Furthermore, the impact of lipid digestion on drug release was studied using in vitro lipolysis. The release of praziquantel from cetyl palmitate and glyceryl monostearate in the biorelevant medium was much faster than in HCl, whereas there was hardly any difference for the other lipids. It was shown that drug release from glyceryl monostearate matrices is driven by both solubilisation and enzymatic degradation of the lipid, whereas dissolution from cetyl palmitate extrudates is dependent only on solubilisation by surfactants in the medium. Moreover, storage influenced the appearance of the extrudate surface and the dissolution rate for all lipids except solid paraffin. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Impact of change of matrix crystallinity and polymorphism on ovalbumin release from lipid-based implants.

    PubMed

    Duque, Luisa; Körber, Martin; Bodmeier, Roland

    2018-05-30

    The objectives of this study were to prepare lipid-based implants by hot melt extrusion (HME) for the prolonged release of ovalbumin (OVA), and to relate protein release to crystallinity and polymorphic changes of the lipid matrix. Two lipids, glycerol tristearate and hydrogenated palm oil, with different composition and degree of crystallinity were studied. Solid OVA was dispersed within the lipid matrixes, which preserved its stability during extrusion. This was partially attributed to a protective effect of the lipidic matrix. The incorporation of OVA decreased the mechanical strength of the implants prepared with the more crystalline matrix, glycerol tristearate, whereas it remained comparable for the hydrogenated palm oil because of stronger physical and non-covalent interactions between the protein and this lipid. This was also the reason for the faster release of OVA from the glycerol tristearate matrix when compared to the hydrogenated palm oil (8 vs. 28 weeks). Curing induced and increased crystallinity, and changes in the release rate, especially for the more crystalline matrix. In this case, both an increase and a decrease in release, were observed depending on the tempering condition. Curing at higher temperatures induced a melt-mediated crystallization and solid state transformation of the glycerol tristearate matrix and led to rearrangements of the inner structure with the formation of larger pores, which accelerated the release. In contrast, changes in the hydrogenated palm oil under the same curing conditions were less noticeable leading to a more robust formulation, because of less polymorphic changes over time. This study helps to understand the effect of lipid matrix composition and crystallinity degree on the performance of protein-loaded implants, and to establish criteria for the selection of a lipid carrier depending on the release profile desired. Copyright © 2018. Published by Elsevier B.V.

  14. Effects of flow rate on the migration of different plasticizers from PVC infusion medical devices

    PubMed Central

    Eljezi, Teuta; Clauson, Hélène; Lambert, Céline; Bouattour, Yassine; Chennell, Philip; Pereira, Bruno; Sautou, Valérie

    2018-01-01

    Infusion medical devices (MDs) used in hospitals are often made of plasticized polyvinylchloride (PVC). These plasticizers may leach out into infused solutions during clinical practice, especially during risk-situations, e.g multiple infusions in Intensive Care Units and thus may enter into contact with the patients. The migrability of the plasticizers is dependent of several clinical parameters such as temperature, contact time, nature of the simulant, etc… However, no data is available about the influence of the flow rate at which drug solutions are administrated. In this study, we evaluated the impact of different flow rates on the release of the different plasticizers during an infusion procedure in order to assess if they could expose the patients to more toxic amounts of plasticizers. Migration assays with different PVC infusion sets and extension lines were performed with different flow rates that are used in clinical practice during 1h, 2h, 4h, 8h and 24h, using a lipophilic drug simulant. From a clinical point of view, the results showed that, regardless of the plasticizer, the faster the flow rate, the higher the infused volume and the higher the quantities of plasticizers released, both from infusion sets and extension lines, leading to higher patient exposure. However, physically, there was no significant difference of the migration kinetics linked to the flow rate for a same medical device, reflecting complex interactions between the PVC matrix and the simulant. The migration was especially dependent on the nature and the composition of the medical device. PMID:29474357

  15. Drug release from slabs and the effects of surface roughness.

    PubMed

    Kalosakas, George; Martini, Dimitra

    2015-12-30

    We discuss diffusion-controlled drug release from slabs or thin films. Analytical and numerical results are presented for slabs with flat surfaces, having a uniform thickness. Then, considering slabs with rough surfaces, the influence of a non-uniform slab thickness on release kinetics is numerically investigated. The numerical release profiles are obtained using Monte Carlo simulations. Release kinetics is quantified through the stretched exponential (or Weibull) function and the resulting dependence of the two parameters of this function on the thickness of the slab, for flat surfaces, and the amplitude of surface fluctuations (or the degree of thickness variability) in case of roughness. We find that a higher surface roughness leads to a faster drug release. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Optimization of synthesis process of thermally-responsive poly-n-isopropylacrylamide nanoparticles for controlled release of antimicrobial hydrophobic compounds

    NASA Astrophysics Data System (ADS)

    Hill, Laura E.; Gomes, Carmen L.

    2014-12-01

    The goal of this study was to develop an effective method to synthesize poly-n-isopropylacrylamide (PNIPAAM) nanoparticles with entrapped cinnamon bark extract (CBE) to improve its delivery to foodborne pathogens and control its release with temperature stimuli. CBE was used as a model for hydrophobic natural antimicrobials. A top-down procedure using crosslinked PNIPAAM was compared to a bottom-up procedure using NIPAAM monomer. Both processes relied on self-assembly of the molecules into micelles around the CBE at 40 °C. Processing conditions were compared including homogenization time of the polymer, hydration time prior to homogenization, lyophilization, and the effect of particle ultrafiltration. The top-down versus bottom-up synthesis methods yielded particles with significantly different characteristics, especially their release profiles and antimicrobial activities. The synthesis methods affected particle size, with the bottom-up procedure resulting in smaller (P < 0.05) diameters than the top-down procedure. The controlled release profile of CBE from nanoparticles was dependent on the release media temperature. A faster, burst release was observed at 40 °C and a slower, more sustained release was observed at lower temperatures. PNIPAAM particles containing CBE were analyzed for their antimicrobial activity against Salmonella enterica serovar Typhimurium LT2 and Listeria monocytogenes Scott A. The PNIPAAM particles synthesized via the top-down procedure had a much faster release, which led to a greater (P < 0.05) antimicrobial activity. Both of the top-down nanoparticles performed similarly, therefore the 7 min homogenization time nanoparticles would be the best for this application, as the process time is shorter and little improvement was seen by using a slightly longer homogenization.

  17. Canine bombesin-like gastrin releasing peptides stimulate gastrin release and acid secretion in the dog.

    PubMed Central

    Bunnett, N W; Clark, B; Debas, H T; Del Milton, R C; Kovacs, T O; Orloff, M S; Pappas, T N; Reeve, J R; Rivier, J E; Walsh, J H

    1985-01-01

    The synthetic mammalian bombesin-like peptides, canine gastrin releasing peptide 27, 23 and 10, and porcine gastrin releasing peptide 27 were compared with amphibian bombesin 14 and 10 during intravenous infusions into six conscious dogs with chronic gastric cannulae. Gastrin and gastrin releasing peptide were measured in peripherally sampled venous blood by radioimmunoassay and gastric acid secretions were collected. All forms of gastrin releasing peptide stimulated gastrin release and gastric acid secretion in a dose-dependent manner. The larger canine and porcine peptides were more potent than the decapeptide. Bombesin 14 was more potent than bombesin 10. A rise in the venous concentration of immunoreactive gastrin releasing peptide of only 20 fmol ml-1 stimulated gastrin release to about 50% of maximal. Gastrin releasing peptide 10 was cleared from the circulation three times faster than the larger forms and this may account for the apparent differences in potency. PMID:3839849

  18. Conductive polymer nanotube patch for fast and controlled in vivo transdermal drug delivery

    NASA Astrophysics Data System (ADS)

    Nguyen, Thao M.

    Transdermal drug delivery has created new applications for existing therapies and offered an alternative to the traditional oral route where drugs can prematurely metabolize in the liver causing adverse side effects. Opening the transdermal delivery route to large hydrophilic drugs is one of the greatest challenges due to the hydrophobicity of the skin. However, the ability to deliver hydrophilic drugs using a transdermal patch would provide a solution to problems of other delivery methods for hydrophilic drugs. The switching of conductive polymers (CP) between redox states cause simultaneous changes in the polymer charge, conductivity, and volume—properties that can all be exploited in the biomedical field of controlled drug delivery. Using the template synthesis method, poly(3,4-ethylenedioxythiophene (PEDOT) nanotubes were synthesized electrochemically and a transdermal drug delivery patch was successfully designed and developed. In vitro and in vivo uptake and release of hydrophilic drugs were investigated. The relationship between the strength of the applied potential and rate of drug release were also investigated. Results revealed that the strength of the applied potential is proportional to the rate of drug release; therefore one can control the rate of drug release by controlling the applied potential. The in vitro studies focused on the kinetics of the drug delivery system. It was determined that the drug released mainly followed zero-order kinetics. In addition, it was determined that applying a releasing potential to the transdermal drug delivery system lead to a higher release rate constant (up to 7 times greater) over an extended period of time (˜24h). In addition, over 24 hours, an average of 80% more model drug molecules were released with an applied potential than without. The in vivo study showed that the drug delivery system was capable of delivering model hydrophilic drugs molecules through the dermis layer of the skin within 30 minutes, while the control showed no visible drugs at the same depth. Most importantly, it was determined that the delivery of drugs into the blood stream was stable within 20 minutes. The functionalization of CP was also studied in order to enhance the properties and drug loading capabilities of the polymers. The co-polymerization of poly(3,4-(2-methylene)propylenedioxythiophene) (PMProDot) with polystyrene (PS) and polyvinylcarbazole (PVK) through the highly reactive methylene group was achieved. The modified PMProDot nanotubes demonstrated response times that were two times faster than without modification. The modification of PEDOT nanotubes with polydopamine, a biocompatible polymer, was also investigated and achieved. In depth characterization of functionalized CP demonstrate the ability to fine tune the properties of the polymer in order to achieve the required therapeutic drug release profile.

  19. Results Of Copper Catalyzed Peroxide Oxidation (CCPO) Of Tank 48H Simulants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peters, T. B.; Pareizs, J. M.; Newell, J. D.

    2012-12-13

    Savannah River National Laboratory (SRNL) performed a series of laboratory-scale experiments that examined copper-catalyzed hydrogen peroxide (H{sub 2}O{sub 2}) aided destruction of organic components, most notably tetraphenylborate (TPB), in Tank 48H simulant slurries. The experiments were designed with an expectation of conducting the process within existing vessels of Building 241-96H with minimal modifications to the existing equipment. Results of the experiments indicate that TPB destruction levels exceeding 99.9% are achievable, dependent on the reaction conditions. A lower reaction pH provides faster reaction rates (pH 7 > pH 9 > pH 11); however, pH 9 reactions provide the least quantity ofmore » organic residual compounds within the limits of species analyzed. Higher temperatures lead to faster reaction rates and smaller quantities of organic residual compounds. A processing temperature of 50°C as part of an overall set of conditions appears to provide a viable TPB destruction time on the order of 4 days. Higher concentrations of the copper catalyst provide faster reaction rates, but the highest copper concentration (500 mg/L) also resulted in the second highest quantity of organic residual compounds. The data in this report suggests 100-250 mg/L as a minimum. Faster rates of H{sub 2}O{sub 2} addition lead to faster reaction rates and lower quantities of organic residual compounds. An addition rate of 0.4 mL/hour, scaled to the full vessel, is suggested for the process. SRNL recommends that for pH adjustment, an acid addition rate 42 mL/hour, scaled to the full vessel, is used. This is the same addition rate used in the testing. Even though the TPB and phenylborates can be destroyed in a relative short time period, the residual organics will take longer to degrade to <10 mg/L. Low level leaching on titanium occurred, however, the typical concentrations of released titanium are very low (~40 mg/L or less). A small amount of leaching under these conditions is not surprising and is consistent with a previous study. Acidification with phosphoric and formic acids, in lieu of nitric acid, provides benefits in reducing the amount of benzene emitted over the lifetime of a reaction. Analyses of the post-reaction residual material indicate that slurry initially adjusted down to a pH 7 produced a greater degree of energetic material than material initially adjusted to a pH of 9. No more than 140 {micro}g/m{sup 3} of mercury was indicated in reactor head spaces at any time. An estimation of less than 1% of the initial mercury was vaporized in each experiment. A limited number of replicate tests were performed to determine experimental reproducibility. These tests indicate a reasonable degree of reproducibility. The conclusion of the simulant testing has provided a set of reaction conditions that can destroy the TPB and phenylborates quickly. While longer times will be required to degrade the residual organics, the reactions appear to perform in a consistent manner. A real waste test or tests are recommended and further investigation into the use of phosphoric or formic acid is warranted.« less

  20. Biodurability of chrysotile and tremolite asbestos

    NASA Astrophysics Data System (ADS)

    Oze, C.; Solt, K.

    2008-12-01

    Chrysotile and tremolite asbestos represent two mineralogical categories of regulated asbestos commonly evaluated in epidemiological, toxicological, and pathological studies. Lung and digestive fluids are undersaturated with respect to chrysotile and tremolite asbestos (i.e. dissolution is thermodynamically favorable), where the dissolution kinetics control the durability of these minerals in respiratory and gastric systems. Here we examined the biodurability of chrysotile and tremolite asbestos in simulated body fluids (SBFs) as a function of mineral surface area over time. Batch experiments in simulated gastric fluid (SGF; HCl and NaCl solution at pH 1.2) and simulated lung fluid (SLF; a modified Gamble's solution at pH 7.4) were performed at 37°C over 720 hours. The rate-limiting step of Si release for both minerals was used to determine and compare dissolution rates. Chrysotile and tremolite asbestos are less biodurable in SGF compared to SLF. Based on equal suspension densities (surface area per volume of solution, m2 L- 1), chrysotile undergoes dissolution approximately 44 times faster than tremolite asbestos in SGF; however, amphibole asbestos dissolves approximately 6 times faster than chrysotile in SLF. Provided identical fiber dimensions, fiber dissolution models demonstrate that chrysotile is more biodurable in SLF and less biodurable in SGF compared to tremolite asbestos. Overall, the methodology employed here provides an alternative means to evaluate asbestos material fiber lifetimes based on mineral surface considerations.

  1. Improvement of the dissolution rate of poorly soluble drugs by solid crystal suspensions.

    PubMed

    Thommes, Markus; Ely, David R; Carvajal, M Teresa; Pinal, Rodolfo

    2011-06-06

    We present a novel extrusion based approach where the dissolution rate of poorly soluble drugs (griseofulvin, phenytoin and spironolactone) is significantly accelerated. The drug and highly soluble mannitol are coprocessed in a hot melt extrusion operation. The obtained product is an intimate mixture of the crystalline drug and crystalline excipient, with up to 50% (w/w) drug load. The in vitro drug release from the obtained solid crystalline suspensions is over 2 orders of magnitude faster than that of the pure drug. Since the resulting product is crystalline, the accelerated dissolution rate does not bear the physical stability concerns inherent to amorphous formulations. This approach is useful in situations where the drug is not a good glass former or in cases where it is difficult to stabilize the amorphous drug. Being thermodynamically stable, the dissolution profile and the solid state properties of the product are maintained after storage at 40 °C, 75% RH for at least 90 days.

  2. Dissolution assessment of allopurinol immediate release tablets by near infrared spectroscopy.

    PubMed

    Smetiško, Jelena; Miljanić, Snežana

    2017-10-25

    The purpose of this study was to develop a NIR spectroscopic method for assessment of drug dissolution from allopurinol immediate release tablets. Thirty three different batches of allopurinol immediate release tablets containing constant amount of the active ingredient, but varying in excipients content and physical properties were introduced in a PLS calibration model. Correlating allopurinol dissolution reference values measured by the routinely used UV/Vis method, with the data extracted from the NIR spectra, values of correlation coefficient, bias, slope, residual prediction determination and root mean square error of prediction (0.9632, 0.328%, 1.001, 3.58, 3.75%) were evaluated. The obtained values implied that the NIR diffuse reflectance spectroscopy could serve as a faster and simpler alternative to the conventional dissolution procedure, even for the tablets with a very fast dissolution rate (>85% in 15minutes). Apart from the possibility of prediction of the allopurinol dissolution rate, the other multivariate technique, PCA, provided additional data on the non-chemical characteristics of the product, which could not be obtained from the reference dissolution values. Analysis on an independent set of samples confirmed that a difference between the UV/Vis reference method and the proposed NIR method was not significant. According to the presented results, the proposed NIR method may be suitable for practical application in routine analysis and for continuously monitoring the product's chemical and physical properties responsible for expected quality. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Mathematical Description of Complex Chemical Kinetics and Application to CFD Modeling Codes

    NASA Technical Reports Server (NTRS)

    Bittker, D. A.

    1993-01-01

    A major effort in combustion research at the present time is devoted to the theoretical modeling of practical combustion systems. These include turbojet and ramjet air-breathing engines as well as ground-based gas-turbine power generating systems. The ability to use computational modeling extensively in designing these products not only saves time and money, but also helps designers meet the quite rigorous environmental standards that have been imposed on all combustion devices. The goal is to combine the very complex solution of the Navier-Stokes flow equations with realistic turbulence and heat-release models into a single computer code. Such a computational fluid-dynamic (CFD) code simulates the coupling of fluid mechanics with the chemistry of combustion to describe the practical devices. This paper will focus on the task of developing a simplified chemical model which can predict realistic heat-release rates as well as species composition profiles, and is also computationally rapid. We first discuss the mathematical techniques used to describe a complex, multistep fuel oxidation chemical reaction and develop a detailed mechanism for the process. We then show how this mechanism may be reduced and simplified to give an approximate model which adequately predicts heat release rates and a limited number of species composition profiles, but is computationally much faster than the original one. Only such a model can be incorporated into a CFD code without adding significantly to long computation times. Finally, we present some of the recent advances in the development of these simplified chemical mechanisms.

  4. Mathematical description of complex chemical kinetics and application to CFD modeling codes

    NASA Technical Reports Server (NTRS)

    Bittker, D. A.

    1993-01-01

    A major effort in combustion research at the present time is devoted to the theoretical modeling of practical combustion systems. These include turbojet and ramjet air-breathing engines as well as ground-based gas-turbine power generating systems. The ability to use computational modeling extensively in designing these products not only saves time and money, but also helps designers meet the quite rigorous environmental standards that have been imposed on all combustion devices. The goal is to combine the very complex solution of the Navier-Stokes flow equations with realistic turbulence and heat-release models into a single computer code. Such a computational fluid-dynamic (CFD) code simulates the coupling of fluid mechanics with the chemistry of combustion to describe the practical devices. This paper will focus on the task of developing a simplified chemical model which can predict realistic heat-release rates as well as species composition profiles, and is also computationally rapid. We first discuss the mathematical techniques used to describe a complex, multistep fuel oxidation chemical reaction and develop a detailed mechanism for the process. We then show how this mechanism may be reduced and simplified to give an approximate model which adequately predicts heat release rates and a limited number of species composition profiles, but is computationally much faster than the original one. Only such a model can be incorporated into a CFD code without adding significantly to long computation times. Finally, we present some of the recent advances in the development of these simplified chemical mechanisms.

  5. The effects of various control and water treatment processes on the membrane integrity and toxin fate of cyanobacteria.

    PubMed

    Fan, Jiajia; Hobson, Peter; Ho, Lionel; Daly, Robert; Brookes, Justin

    2014-01-15

    Cyanobacterial blooms are one of the main contaminants that can degrade drinking water quality with the associated taste, odour and toxic compounds. Although a wide range of techniques have shown promise for cyanobacterial bloom control and cyanobacterial cell/metabolite removal in reservoirs and water treatment plants (WTPs), these treatments may have negative consequences through release of intracellular metabolites into the surrounding water. This study assessed the impact of copper sulphate (CuSO4), chlorine, potassium permanganate (KMnO4), hydrogen peroxide (H2O2) and ozone on Microcystis aeruginosa culture and the toxins it produced. All of these agents induced the loss of cyanobacterial membrane integrity. However, no associated increase in dissolved toxins was detected during chlorine and H2O2 treatments which may be due to faster toxin oxidation rates than release rates. KMnO4 doses of 1 and 3mgL(-1) degraded dissolved toxins while having no impact on cyanobacterial membrane integrity. In contrast, ozone induced a significant increase in extracellular toxins but it was unable to degrade these toxins to the same degree as the other oxidants which may due to the lack of residual. All chemicals, except CuSO4, were able to reduce cyanotoxins and chlorine was the most effective with a rate up to 2161M(-1)s(-1). Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Tau Kinetics in Neurons and the Human Central Nervous System.

    PubMed

    Sato, Chihiro; Barthélemy, Nicolas R; Mawuenyega, Kwasi G; Patterson, Bruce W; Gordon, Brian A; Jockel-Balsarotti, Jennifer; Sullivan, Melissa; Crisp, Matthew J; Kasten, Tom; Kirmess, Kristopher M; Kanaan, Nicholas M; Yarasheski, Kevin E; Baker-Nigh, Alaina; Benzinger, Tammie L S; Miller, Timothy M; Karch, Celeste M; Bateman, Randall J

    2018-03-21

    We developed stable isotope labeling and mass spectrometry approaches to measure the kinetics of multiple isoforms and fragments of tau in the human central nervous system (CNS) and in human induced pluripotent stem cell (iPSC)-derived neurons. Newly synthesized tau is truncated and released from human neurons in 3 days. Although most tau proteins have similar turnover, 4R tau isoforms and phosphorylated forms of tau exhibit faster turnover rates, suggesting unique processing of these forms that may have independent biological activities. The half-life of tau in control human iPSC-derived neurons is 6.74 ± 0.45 days and in human CNS is 23 ± 6.4 days. In cognitively normal and Alzheimer's disease participants, the production rate of tau positively correlates with the amount of amyloid plaques, indicating a biological link between amyloid plaques and tau physiology. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. Characterisation of zinc delivery from a nipple shield delivery system using a breastfeeding simulation apparatus

    PubMed Central

    Bruggraber, Sylvaine F. A.; Gerrard, Stephen E.; Kendall, Richard A.; Tuleu, Catherine; Slater, Nigel K. H.

    2017-01-01

    Zinc delivery from a nipple shield delivery system (NSDS), a novel platform for administering medicines to infants during breastfeeding, was characterised using a breastfeeding simulation apparatus. In this study, human milk at flow rates and pressures physiologically representative of breastfeeding passed through the NSDS loaded with zinc-containing rapidly disintegrating tablets, resulting in release of zinc into the milk. Inductively coupled plasma optical emission spectrometry was used to detect the zinc released, using a method that does not require prior digestion of the samples and that could be applied in other zinc analysis studies in breast milk. Four different types of zinc-containing tablets with equal zinc load but varying excipient compositions were tested in the NSDS in vitro. Zinc release measured over 20 minutes ranged from 32–51% of the loaded dose. Total zinc release for sets tablets of the same composition but differing hardness were not significantly different from one another with P = 0.3598 and P = 0.1270 for two tested pairs using unpaired t tests with Welch’s correction. By the same test total zinc release from two sets of tablets having similar hardness but differing composition were also not significantly significant with P = 0.2634. Future zinc tablet composition and formulation optimisation could lead to zinc supplements and therapeutics with faster drug release, which could be administered with the NSDS during breastfeeding. The use of the NSDS to deliver zinc could then lead to treatment and prevention of some of the leading causes of child mortality, including diarrheal disease and pneumonia. PMID:28158283

  8. Characterisation of zinc delivery from a nipple shield delivery system using a breastfeeding simulation apparatus.

    PubMed

    Scheuerle, Rebekah L; Bruggraber, Sylvaine F A; Gerrard, Stephen E; Kendall, Richard A; Tuleu, Catherine; Slater, Nigel K H

    2017-01-01

    Zinc delivery from a nipple shield delivery system (NSDS), a novel platform for administering medicines to infants during breastfeeding, was characterised using a breastfeeding simulation apparatus. In this study, human milk at flow rates and pressures physiologically representative of breastfeeding passed through the NSDS loaded with zinc-containing rapidly disintegrating tablets, resulting in release of zinc into the milk. Inductively coupled plasma optical emission spectrometry was used to detect the zinc released, using a method that does not require prior digestion of the samples and that could be applied in other zinc analysis studies in breast milk. Four different types of zinc-containing tablets with equal zinc load but varying excipient compositions were tested in the NSDS in vitro. Zinc release measured over 20 minutes ranged from 32-51% of the loaded dose. Total zinc release for sets tablets of the same composition but differing hardness were not significantly different from one another with P = 0.3598 and P = 0.1270 for two tested pairs using unpaired t tests with Welch's correction. By the same test total zinc release from two sets of tablets having similar hardness but differing composition were also not significantly significant with P = 0.2634. Future zinc tablet composition and formulation optimisation could lead to zinc supplements and therapeutics with faster drug release, which could be administered with the NSDS during breastfeeding. The use of the NSDS to deliver zinc could then lead to treatment and prevention of some of the leading causes of child mortality, including diarrheal disease and pneumonia.

  9. Enhanced Oral Bioavailability of Pueraria Flavones by a Novel Solid Self-microemulsifying Drug Delivery System (SMEDDS) Dropping Pills.

    PubMed

    Guan, Qingxiang; Zhang, Guangyuan; Sun, Shilin; Fan, Hongbo; Sun, Cheng; Zhang, Shaoyuan

    2016-05-01

    To improve bioavailability of pueraria flavones (PF), a self-microemulsifying drug delivery system (SMEDDS) dropping pills composed of PF, Crodamol GTCC, Maisine 35-1, Cremophor RH 40, 1,2-propylene glycol and polyethylene glycol 6000 (PEG6000) was developed. Particle size, zeta potential, morphology and in vitro drug release were investigated, respectively. Pharmacokinetics, bioavailability of PF-SMEDDS dropping pills and commercial Yufengningxin dropping pills were also evaluated and compared in rats. Puerarin treated as the representative component of PF was analyzed. Dynamic light scattering showed the ability of PF-SMEDDS dropping pills to form a nanoemulsion droplet size in aqueous media. The type of media showed no significant effects on the release rate of PF. PF-SMEDDS dropping pills were able to improve the in vitro release rate of PF, and the in vitro release of these dropping pills was significantly faster than that of Yufengningxin dropping pills. There was a dramatic difference between the mean value of t1/2, peak concentration (Cmax), the area of concentration-time curve from 0 to 6 h (AUC0-6 h) of PF-SMEDDS dropping pills and that of commercial Yufengningxin dropping pills. A pharmacokinetic study showed that the bioavailability of PF was greatly enhanced by PF-SMEDDS dropping pills. The value of Cmax and relative bioavailability of PF-SMEDDS dropping pills were dramatically improved by an average of 1.69- and 2.36-fold compared with that of Yufengningxin dropping pills after gavage administration, respectively. It was concluded that bioavailability of PF was greatly improved and that PF-SMEDDS dropping pills might be an encouraging strategy to enhance the oral bioavailability of PF.

  10. Formulation and evaluation of an in situ gel forming system for controlled delivery of triptorelin acetate.

    PubMed

    Abashzadeh, Sh; Dinarvand, R; Sharifzadeh, M; Hassanzadeh, G; Amini, M; Atyabi, F

    2011-11-20

    The novel physical hydrogels composed of chitosan or its water soluble derivatives such as carboxymethyl chitosan (CMCh) and sodium carboxymethyl chitosan (NaCMCh) and opened ring polyvinyl pyrrolidone (OP-PVP) were used as a controlled delivery system for triptorelin acetate, a luteinizing-releasing hormone agonist. The in situ gel forming system designed according to physical interactions such as chains entanglements and hydrophilic attractions especially h-bonds of chitosan and/or NaCMCh and OR-PVP. In order to increase in situ gel forming rate the chitosan microspheres prepared through spray drying technique. The chitosan or NaCMCh/OR-PVP blends prepared at different ratios (0.05, 0.10, 0.12, 0.16, 0.20 and 0.24) and suspended in sesame oil as non-aqueous vehicle at different solid content (10-30%). The suitable ratio of polymers with faster in situ gel forming rate was selected for in vivo studies. The gel formation and drug release from the system was evaluated both in vitro and in vivo. In vitro and in vivo results were compared with Diphereline SR 3.75mg, a commercially available controlled delivery system of triptorelin. In vitro release studies showed a sustained release profile for about 192h with first order kinetics. In vivo studies on male rats by determination of serum testosterone were confirmed the acceptable performance of in situ gel forming system compared with Diphereline SR in decreasing the serum testosterone level for 35days, demonstrating the potential of the novel in situ gel forming system for controlled delivery of peptides. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. Implications of nonrandom seed abscission and global stilling for migration of wind-dispersed plant species.

    PubMed

    Thompson, Sally E; Katul, Gabriel G

    2013-06-01

    Migration of plant populations is a potential survival response to climate change that depends critically on seed dispersal. Biological and physical factors determine dispersal and migration of wind-dispersed species. Recent field and wind tunnel studies demonstrate biological adaptations that bias seed release toward conditions of higher wind velocity, promoting longer dispersal distances and faster migration. However, another suite of international studies also recently highlighted a global decrease in near-surface wind speeds, or 'global stilling'. This study assessed the implications of both factors on potential plant population migration rates, using a mechanistic modeling framework. Nonrandom abscission was investigated using models of three seed release mechanisms: (i) a simple drag model; (ii) a seed deflection model; and (iii) a 'wear and tear' model. The models generated a single functional relationship between the frequency of seed release and statistics of the near-surface wind environment, independent of the abscission mechanism. An Inertial-Particle, Coupled Eulerian-Lagrangian Closure model (IP-CELC) was used to investigate abscission effects on seed dispersal kernels and plant population migration rates under contemporary and potential future wind conditions (based on reported global stilling trends). The results confirm that nonrandom seed abscission increased dispersal distances, particularly for light seeds. The increases were mitigated by two physical feedbacks: (i) although nonrandom abscission increased the initial acceleration of seeds from rest, the sensitivity of the seed dispersal to this initial condition declined as the wind speed increased; and (ii) while nonrandom abscission increased the mean dispersal length, it reduced the kurtosis of seasonal dispersal kernels, and thus the chance of long-distance dispersal. Wind stilling greatly reduced the modeled migration rates under biased seed release conditions. Thus, species that require high wind velocities for seed abscission could experience threshold-like reductions in dispersal and migration potential if near-surface wind speeds continue to decline. © 2013 Blackwell Publishing Ltd.

  12. Membrane Permeabilization Induced by Sphingosine: Effect of Negatively Charged Lipids

    PubMed Central

    Jiménez-Rojo, Noemi; Sot, Jesús; Viguera, Ana R.; Collado, M. Isabel; Torrecillas, Alejandro; Gómez-Fernández, J.C.; Goñi, Félix M.; Alonso, Alicia

    2014-01-01

    Sphingosine [(2S, 3R, 4E)-2-amino-4-octadecen-1, 3-diol] is the most common sphingoid long chain base in sphingolipids. It is the precursor of important cell signaling molecules, such as ceramides. In the last decade it has been shown to act itself as a potent metabolic signaling molecule, by activating a number of protein kinases. Moreover, sphingosine has been found to permeabilize phospholipid bilayers, giving rise to vesicle leakage. The present contribution intends to analyze the mechanism by which this bioactive lipid induces vesicle contents release, and the effect of negatively charged bilayers in the release process. Fluorescence lifetime measurements and confocal fluorescence microscopy have been applied to observe the mechanism of sphingosine efflux from large and giant unilamellar vesicles; a graded-release efflux has been detected. Additionally, stopped-flow measurements have shown that the rate of vesicle permeabilization increases with sphingosine concentration. Because at the physiological pH sphingosine has a net positive charge, its interaction with negatively charged phospholipids (e.g., bilayers containing phosphatidic acid together with sphingomyelins, phosphatidylethanolamine, and cholesterol) gives rise to a release of vesicular contents, faster than with electrically neutral bilayers. Furthermore, phosphorous 31-NMR and x-ray data show the capacity of sphingosine to facilitate the formation of nonbilayer (cubic phase) intermediates in negatively charged membranes. The data might explain the pathogenesis of Niemann-Pick type C1 disease. PMID:24940775

  13. Bioadhesive Controlled Metronidazole Release Matrix Based on Chitosan and Xanthan Gum

    PubMed Central

    Eftaiha, Ala’a F.; Qinna, Nidal; Rashid, Iyad S.; Al Remawi, Mayyas M.; Al Shami, Munther R.; Arafat, Tawfiq A.; Badwan, Adnan A.

    2010-01-01

    Metronidazole, a common antibacterial drug, was incorporated into a hydrophilic polymer matrix composed of chitosan xanthan gum mixture. Hydrogel formation of this binary chitosan-xanthan gum combination was tested for its ability to control the release of metronidazole as a drug model. This preparation (MZ-CR) was characterized by in vitro, ex vivo bioadhesion and in vivo bioavailability study. For comparison purposes a commercial extended release formulation of metronidazole (CMZ) was used as a reference. The in vitro drug-release profiles of metronidazole preparation and CMZ were similar in 0.1 M HCl and phosphate buffer pH 6.8. Moreover, metronidazole preparation and CMZ showed a similar detachment force to sheep stomach mucosa, while the bioadhesion of the metronidazole preparation was higher three times than CMZ to sheep duodenum. The results of in vivo study indicated that the absorption of metronidazole from the preparation was faster than that of CMZ. Also, MZ-CR leads to higher metronidazole Cmax and AUC relative to that of the CMZ. This increase in bioavailability might be explained by the bioadhesion of the preparation at the upper part of the small intestine that could result in an increase in the overall intestinal transit time. As a conclusion, formulating chitosan-xanthan gum mixture as a hydrophilic polymer matrix resulted in a superior pharmacokinetic parameters translated by better rate and extent of absorption of metronidazole. PMID:20559494

  14. Effect of Variation in Viscosity Grade of Ethycellulose on Theophylline Microcapsule Properties Prepared by Emulsion Solvent Evaporation.

    PubMed

    Garekani, Hadi Afrasiabi; Ahmadi, Behzad; Sadeghi, Fatemeh

    2017-01-01

    There are conflicting reports regarding the effect of polymer viscosity grade on microcapsule properties. The aim of the present study was to investigate the effect of just viscosity grade of ethylcellulose (EC) (not polymeric solution) on properties of theophylline microcapsules prepared by emulsion solvent evaporation. The effect of EC viscosity grade and drug:polymer ratio was investigated on microcapsule properties (yield, particle size, morphology, surface characteristics and drug release). Differential scanning calorimetry (DSC) and X-ray powder diffraction (XRD) were implemented to study the interaction and solid state of drug. The microcapsules were compressed in the presence of excipients and drug release was evaluated. The yield of microencapsulation and encapsulation efficiency at 1:1 drug:polymer ratio was dependent on EC viscosity. Microcapsules were spherical with some pores on their surfaces. The number of pores was more and their size was bigger for EC 100 cP microcapsules. Theophylline remained in crystalline form after encapsulation. DSC studies confirmed lack of interaction between drug and polymer. The drug release was rapid at 2:1 drug:polymer whilst it was slowed down at 1:1 drug:polymer ratio. Microcapsules obtained from EC 100 cP showed slightly faster drug release at latter ratio. Marginal changes in release rate were observed after compression of microcapsules. All viscosity grades of EC were able to sustain the release of the drug from microcapsules. Considering the similar release profiles for microcapsules prepared from different viscosities of EC, the use of lower viscosity grade of EC is recommended due to the ease of production and also less processing time. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  15. Geochemical modeling of arsenic sulfide oxidation kinetics in a mining environment

    NASA Astrophysics Data System (ADS)

    Lengke, Maggy F.; Tempel, Regina N.

    2005-01-01

    Arsenic sulfide (AsS (am), As 2S 3 (am), orpiment, and realgar) oxidation rates increase with increasing pH values. The rates of arsenic sulfide oxidation at higher pH values relative to those at pH˜2 are in the range of 26-4478, 3-17, 8-182, and 4-10 times for As 2S 3 (am), orpiment, AsS (am), and realgar, respectively. Numerical simulations of orpiment and realgar oxidation kinetics were conducted using the geochemical reaction path code EQ3/6 to evaluate the effects of variable DO concentrations and mineral reactivity factors on water chemistry evolution during orpiment and realgar oxidation. The results show that total As concentrations increase by ˜1.14 to 13 times and that pH values decrease by ˜0.6 to 4.2 U over a range of mineral reactivity factors from 1% to 50% after 2000 days (5.5 yr). The As release from orpiment and realgar oxidation exceeds the current U.S. National Drinking Water Standard (0.05 ppm) approximately in 200-300 days at the lowest initial dissolved oxygen concentration (3 ppm) and a reactivity factor of 1%. The results of simulations of orpiment oxidation in the presence of albite and calcite show that calcite can act as an effective buffer to the acid water produced from orpiment oxidation within relatively short periods (days/months), but the release of As continues to increase. Pyrite oxidation rates are faster than orpiment and realgar from pH 2.3 to 8; however, pyrite oxidation rates are slower than As 2S 3 (am) and AsS (am) at pH 8. The activation energies of arsenic sulfide oxidation range from 16 to 124 kJ/mol at pH˜8 and temperature 25 to 40°C, and pyrite activation energies are ˜52 to 88 kJ/mol, depending on pH and temperature range. The magnitude of activation energies for both pyrite and arsenic sulfide solids indicates that the oxidation of these minerals is dominated by surface reactions, except for As 2S 3 (am). Low activation energies of As 2S 3 (am) indicate that diffusion may be rate controlling. Limestone is commonly mixed with sulfide minerals in a mining environment to prevent acid water formation. However, the oxidation rates of arsenic sulfides increase as solution pH rises and result in a greater release of As. Furthermore, the lifetimes of carbonate minerals (i.e., calcite, aragonite, and dolomite) are much shorter than those of arsenic sulfide and silicate minerals. Thus, within a geologic frame time, carbonate minerals may not be present to act as a pH buffer for acid mine waters. Additionally, the presence of silicate minerals such as pyroxenes (wollastonite, jadeite, and spodumene) and Ca-feldspars (labradorite, anorthite, and nepheline) may not be important for buffering acid solutions because these minerals dissolve faster than and have shorter lifetimes than sulfide minerals. However, other silicate minerals such as Na and K-feldspars (albite, sanidine, and microcline), quartz, pyroxenes (augite, enstatite, diopsite, and MnSiO 3) that have much longer lifetimes than arsenic sulfide minerals may be present in a system. The results of our modeling of arsenic sulfide mineral oxidation show that these minerals potentially can release significant concentrations of dissolved As to natural waters, and the factors and mechanisms involved in arsenic sulfide oxidation warrant further study.

  16. Strategies to overcome pH-dependent solubility of weakly basic drugs by using different types of alginates.

    PubMed

    Gutsche, S; Krause, M; Kranz, H

    2008-12-01

    Weakly basic drugs demonstrate higher solubility at lower pH, thus often leading to faster drug release at lower pH. The objective of this study was to achieve pH-independent release of weakly basic drugs from extended release formulations based on the naturally occurring polymer sodium alginate. Three approaches to overcome the pH-dependent solubility of the weakly basic model drug verapamil hydrochloride were investigated. First, matrix tablets were prepared by direct compression of drug substance with different types of sodium alginate only. Second, pH-modifiers were added to the drug/alginate matrix systems. Third, press-coated tablets consisting of an inner pH-modifier tablet core and an outer drug/sodium alginate coat were prepared. pH-Independent drug release was achieved from matrix tablets consisting of selected alginates and drug substance only. Alginates are better soluble at higher pH. Therefore, they are able to compensate the poor solubility of weakly basic drugs at higher pH as the matrix of the tablets dissolves faster. This approach was successful when using alginates that demonstrated fast hydration and erosion at higher pH. The approach failed for alginates with less-pronounced erosion at higher pH. The addition of fumaric acid to drug/alginate-based matrix systems decreased the microenvironmental pH within the tablets thus increasing the solubility of the weakly basic drug at higher pH. Therefore, pH-independent drug release was achieved irrespective of the type of alginate used. Drug release from press-coated tablets did not provide any further advantages as compound release remained pH-dependent.

  17. [Influence of polymer type on the physical properties and the release study of papaverine hydrochloride from tablets].

    PubMed

    Kasperek, Regina; Polski, Andrzej; Sobótka-Polska, Karolina; Poleszak, Ewa

    2014-01-01

    Polymers are widely used in drug manufacturing. Researchers studied their impact on the bioavailability of active substances or on physical properties of tablets for many years. To study the influence of polymer excipients, such as microcrystalline cellulose (Avicel PH 101, Avicel PH 102), croscarmellose sodium, crospovidone or polyvinylpyrrolidone, on the release profile of papaverine hydrochloride from tablets and on the physical properties of tablets. Six series of uncoated tablets were prepared by indirect method, with previous wet granulation. Tablets contained papaverine hydrochloride and various excipients. The physical properties of the prepared granules, tablets and the release profile of papaverine hydrochloride from tablets were examined. The content of papaverine hydrochloride from the release study were determined spectrophotometrically. All tablets met the pharmacopoeia requirements during following tests: the disintegration time of tablets, uncoated tablets resistance to abrasion, the weight uniformity and dose formulations, their dimensions, the resistance to crushing of tablets and the drug substance content in the tablet. In four cases more than 80% of papaverine was released up to 2 min, in one formula it was up to 5 min, and in last one up to 10 min. Tablets containing crospovidone disintegrated faster than tablets with croscarmellose sodium. Adding gelatinized starch to the tablet composition increased the disintegration time, hardness and delayed the release of papaverine. During the wet granulation process, granules containing polyvinylpyrrolidone were characterized by a suitable flow properties and slightly prolonged disintegration time. Tablets containing Avicel PH 102 compared to tablets with Avicel PH 101 had less weight loss during the test of mechanical resistance, improved hardness and faster release profile of papaverine from tablets.

  18. Faster-X evolution: Theory and evidence from Drosophila.

    PubMed

    Charlesworth, Brian; Campos, José L; Jackson, Benjamin C

    2018-02-12

    A faster rate of adaptive evolution of X-linked genes compared with autosomal genes can be caused by the fixation of recessive or partially recessive advantageous mutations, due to the full expression of X-linked mutations in hemizygous males. Other processes, including recombination rate and mutation rate differences between X chromosomes and autosomes, may also cause faster evolution of X-linked genes. We review population genetics theory concerning the expected relative values of variability and rates of evolution of X-linked and autosomal DNA sequences. The theoretical predictions are compared with data from population genomic studies of several species of Drosophila. We conclude that there is evidence for adaptive faster-X evolution of several classes of functionally significant nucleotides. We also find evidence for potential differences in mutation rates between X-linked and autosomal genes, due to differences in mutational bias towards GC to AT mutations. Many aspects of the data are consistent with the male hemizygosity model, although not all possible confounding factors can be excluded. © 2018 John Wiley & Sons Ltd.

  19. Experimental Constraints on Fluid-Rock Reactions during Incipient Serpentinization of Harzburgite

    NASA Astrophysics Data System (ADS)

    Klein, F.; Grozeva, N. G.; Seewald, J.; McCollom, T. M.; Humphris, S. E.; Moskowitz, B. M.; Berquo, T. S.; Kahl, W. A.

    2014-12-01

    The exposure of mantle peridotite to water at crustal levels leads to a cascade of interconnected dissolution-precipitation and reduction-oxidation reactions - a process referred to as serpentinization. These reactions have major implications for microbial life through the provision of hydrogen (H2). To simulate incipient serpentinization and the release of H2 under well-constrained conditions, we reacted uncrushed harzburgite with chemically modified seawater at 300°C and 35 MPa for ca. 1.5 years (13441 hours), monitored changes in fluid chemistry over time, and examined the secondary mineralogy at the termination of the experiment. Approximately 4 mol % of the protolith underwent alteration forming serpentine, accessory magnetite, chlorite, and traces of calcite and heazlewoodite. Alteration textures bear remarkable similarities to those found in partially serpentinized abyssal peridotites. Neither brucite nor talc precipitated during the experiment. Given that the starting material contained ~3.8 times more olivine than orthopyroxene on a molar basis, mass balance requires that dissolution of orthopyroxene was significantly faster than dissolution of olivine. However, the H2 release rate was not uniform, slowing from ~2 nmol H2(aq) gperidotite-1 s-1 at the beginning of the experiment to ~0.2 nmol H2(aq) gperidotite-1 s-1 at its termination. Serpentinization consumed water but did not release significant amounts of dissolved species (other than H2) suggesting that incipient hydration reactions involved a volume increase of ~40%. The reduced access of water to olivine surfaces due to filling of fractures and coating of primary minerals with alteration products led to decreased rates of serpentinization and H2 release. While this concept might seem at odds with completely serpentinized seafloor peridotites, reaction-driven fracturing offers an intriguing solution to the seemingly self-limiting nature of serpentinization. Indeed, the reacted sample revealed a number of textural features diagnostic of incipient reaction-driven fracturing. Reaction-driven and tectonic fracturing must have far reaching impacts on the release rate of H2 in peridotite-hosted hydrothermal systems and therefore represent key mechanisms in regulating the supply of reduced gases to microbial ecosystems.

  20. Boosting recovery rather than buffering reactivity: Higher stress-induced oxytocin secretion is associated with increased cortisol reactivity and faster vagal recovery after acute psychosocial stress.

    PubMed

    Engert, Veronika; Koester, Anna M; Riepenhausen, Antje; Singer, Tania

    2016-12-01

    Animal models and human studies using paradigms designed to stimulate endogenous oxytocin release suggest a stress-buffering role of oxytocin. We here examined the involvement of stress-induced peripheral oxytocin secretion in reactivity and recovery phases of the human psychosocial stress response. Healthy male and female participants (N=114) were subjected to a standardized laboratory stressor, the Trier Social Stress Test. In addition to plasma oxytocin, cortisol was assessed as a marker of hypothalamic-pituitary-adrenal (HPA-) axis activity, alpha-amylase and heart rate as markers of sympathetic activity, high frequency heart rate variability as a marker of vagal tone and self-rated anxiety as an indicator of subjective stress experience. On average, oxytocin levels increased by 51% following psychosocial stress. The stress-induced oxytocin secretion, however, did not reduce stress reactivity. To the contrary, higher oxytocin secretion was associated with greater cortisol reactivity and peak cortisol levels in both sexes. In the second phase of the stress response the opposite pattern was observed, with higher oxytocin secretion associated with faster vagal recovery. We suggest that after an early stage of oxytocin and HPA-axis co-activation, the stress-reducing action of oxytocin unfolds. Due to the time lag it manifests as a recovery-boosting rather than a reactivity-buffering effect. By reinforcing parasympathetic autonomic activity, specifically during stress recovery, oxytocin may provide an important protective function against the health-compromising effects of sustained stress. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Water-assisted dehalogenation of thionyl chloride in the presence of water molecules.

    PubMed

    Yeung, Chi Shun; Ng, Ping Leung; Guan, Xiangguo; Phillips, David Lee

    2010-04-01

    A second-order Møller-Plesset perturbation theory (MP2) and density functional theory (DFT) investigation of the dehalogenation reactions of thionyl chloride is reported, in which water molecules (up to seven) were explicitly involved in the reaction complex. The dehalogenation processes of thionyl chloride were found to be dramatically catalyzed by water molecules. The reaction rate became significantly faster as more water molecules became involved in the reaction complex. The dehalogenation processes can be reasonably simulated by the gas-phase water cluster models, which reveals that water molecules can help to solvate the thionyl chloride molecules and activate the release of the Cl(-) leaving group. The computed activation energies were used to compare the calculations to available experimental data.

  2. Increased rate of response of the pituitary-adrenal system in rats adapted to chronic stress

    NASA Technical Reports Server (NTRS)

    Sakellaris, P. C.; Vernikos-Danellis, J.

    1975-01-01

    The response and adaptation of the pituitary-adrenal system to chronic stresses was investigated. These included individual caging, confinement, and exposure to cold for varying periods of time. Studies were carried out demonstrating that during the period of adaptation when plasma corticosterone concentrations returned toward their prestress level despite continued exposure to the stressor, the animals responded to additional stimuli of ether for 1 min, a saline injection, or release from confinement with a faster increase (within 2.5 min) in plasma corticosterone than controls (10 min). It is concluded that during adaptation to a chronic stress the pituitary-adrenal system is not inhibited by the circulating steroid level but is actually hypersensitive to additional stimuli.

  3. Research, monitoring, and evaluation of emerging issues and measures to recover the Snake River Fall Chinook Salmon ESU, 1/1/2016 - 12/31/2016

    USGS Publications Warehouse

    Connor, William P.; Mullins, Frank L.; Tiffan, Kenneth F.; Plumb, John M.; Perry, Russell W.; Erhardt, John M.; Hemingway, Rulon J.; Bickford, Brad; Rhodes, Tobyn N.

    2017-01-01

    The portion of the Snake River fall Chinook Salmon Oncorhynchus tshawytscha ESU that spawns upstream of Lower Granite Dam transitioned from low to high abundance during 1992–2016 in association with U.S. Endangered Species Act recovery efforts and other federally mandated actions. This annual report focuses on (1) numeric and habitat use responses by natural- and hatchery-origin spawners, (2) phenotypic and numeric responses by natural-origin juveniles, and (3) predator responses in the Snake River upper and lower reaches as abundance of adult and juvenile fall Chinook Salmon increased. Spawners have located and used most of the available spawning habitat and that habitat is gradually approaching redd capacity. Timing of spawning and fry emergence has been relatively stable; whereas the timing of parr dispersal from riverine rearing habitat into Lower Granite Reservoir has become earlier as apparent abundance of juveniles has increased. Growth rate (g/d) and dispersal size of parr also declined as apparent abundance of juveniles increased. Passage timing of smolts from the two Snake River reaches has become earlier and downstream movement rate faster as estimated abundance of fall Chinook Salmon smolts in Lower Granite Reservoir has increased. In 2016, we described estimated the consumption rate and loss of subyearlings by Smallmouth Bass before, during, and after four hatchery releases. Before releases, Smallmouth Bass consumption rates of subyearling was low (0–0.36 fish/bass/d), but the day after the releases consumption rates reached as high as 1.6 fish/bass/d. Bass consumption in the upper portion of Hells Canyon was high for about 1–2 d before returning to pre-release levels, but in the lower river consumption rates were reduced but took longer to return to pre-release levels. We estimated that most of the subyearlings consumed by bass were of hatchery origin. Smallmouth Bass predation on subyearlings is intense following a hatchery release, but the predation pressure is relatively short-lived as subyearlings quickly disperse downstream. This information will allow us to better estimate subyearling loss to predation from our past efforts at time intervals less than 2 weeks. These findings coupled with stock-recruitment analyses presented in this report provide evidence for density-dependence in the Snake River reaches and in Lower Granite Reservoir that was influenced by the expansion of the recovery program. The long-term goal is to use the information covered here in a comprehensive modeling effort to conduct action effectiveness and uncertainty research and to inform Fish Population, Hydrosystem, Harvest, Hatchery, and Predation and Invasive Species Management RM&E.

  4. Partially oxidized polyvinyl alcohol as a promising material for tissue engineering.

    PubMed

    Stocco, Elena; Barbon, Silvia; Grandi, Francesca; Gamba, Pier Giorgio; Borgio, Luca; Del Gaudio, Costantino; Dalzoppo, Daniele; Lora, Silvano; Rajendran, Senthilkumar; Porzionato, Andrea; Macchi, Veronica; Rambaldo, Anna; De Caro, Raffaele; Parnigotto, Pier Paolo; Grandi, Claudio

    2017-07-01

    The desired clinical outcome after implantation of engineered tissue substitutes depends strictly on the development of biodegradable scaffolds. In this study we fabricated 1% and 2% oxidized polyvinyl alcohol (PVA) hydrogels, which were considered for the first time for tissue-engineering applications. The final aim was to promote the protein release capacity and biodegradation rate of the resulting scaffolds in comparison with neat PVA. After physical crosslinking, characterization of specific properties of 1% and 2% oxidized PVA was performed. We demonstrated that mechanical properties, hydrodynamic radius of molecules, thermal characteristics and degree of crystallinity were inversely proportional to the PVA oxidation rate. On the other hand, swelling behaviour and protein release were enhanced, confirming the potential of oxidized PVA as a protein delivery system, besides being highly biodegradable. Twelve weeks after in vivo implantation in mice, the modified hydrogels did not elicit severe inflammatory reactions, showing them to be biocompatible and to degrade faster as the degree of oxidation increased. According to our results, oxidized PVA stands out as a novel biomaterial for tissue engineering that can be used to realize scaffolds with customizable mechanical behaviour, protein-loading ability and biodegradability. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  5. Hydrogen-bond memory and water-skin supersolidity resolving the Mpemba paradox.

    PubMed

    Zhang, Xi; Huang, Yongli; Ma, Zengsheng; Zhou, Yichun; Zhou, Ji; Zheng, Weitao; Jiang, Qing; Sun, Chang Q

    2014-11-14

    The Mpemba paradox, that is, hotter water freezes faster than colder water, has baffled thinkers like Francis Bacon, René Descartes, and Aristotle since B.C. 350. However, a commonly accepted understanding or theoretical reproduction of this effect remains challenging. Numerical reproduction of observations, shown herewith, confirms that water skin supersolidity [Zhang et al., Phys. Chem. Chem. Phys., DOI: ] enhances the local thermal diffusivity favoring heat flowing outwardly in the liquid path. Analysis of experimental database reveals that the hydrogen bond (O:H-O) possesses memory to emit energy at a rate depending on its initial storage. Unlike other usual materials that lengthen and soften all bonds when they absorb thermal energy, water performs abnormally under heating to lengthen the O:H nonbond and shorten the H-O covalent bond through inter-oxygen Coulomb coupling [Sun et al., J. Phys. Chem. Lett., 2013, 4, 3238]. Cooling does the opposite to release energy, like releasing a coupled pair of bungees, at a rate of history dependence. Being sensitive to the source volume, skin radiation, and the drain temperature, the Mpemba effect proceeds only in the strictly non-adiabatic 'source-path-drain' cycling system for the heat "emission-conduction-dissipation" dynamics with a relaxation time that drops exponentially with the rise of the initial temperature of the liquid source.

  6. Rate and Equilibrium Constants for an Enzyme Conformational Change during Catalysis by Orotidine 5'-Monophosphate Decarboxylase.

    PubMed

    Goryanova, Bogdana; Goldman, Lawrence M; Ming, Shonoi; Amyes, Tina L; Gerlt, John A; Richard, John P

    2015-07-28

    The caged complex between orotidine 5'-monophosphate decarboxylase (ScOMPDC) and 5-fluoroorotidine 5'-monophosphate (FOMP) undergoes decarboxylation ∼300 times faster than the caged complex between ScOMPDC and the physiological substrate, orotidine 5'-monophosphate (OMP). Consequently, the enzyme conformational changes required to lock FOMP at a protein cage and release product 5-fluorouridine 5'-monophosphate (FUMP) are kinetically significant steps. The caged form of ScOMPDC is stabilized by interactions between the side chains from Gln215, Tyr217, and Arg235 and the substrate phosphodianion. The control of these interactions over the barrier to the binding of FOMP and the release of FUMP was probed by determining the effect of all combinations of single, double, and triple Q215A, Y217F, and R235A mutations on kcat/Km and kcat for turnover of FOMP by wild-type ScOMPDC; its values are limited by the rates of substrate binding and product release, respectively. The Q215A and Y217F mutations each result in an increase in kcat and a decrease in kcat/Km, due to a weakening of the protein-phosphodianion interactions that favor fast product release and slow substrate binding. The Q215A/R235A mutation causes a large decrease in the kinetic parameters for ScOMPDC-catalyzed decarboxylation of OMP, which are limited by the rate of the decarboxylation step, but much smaller decreases in the kinetic parameters for ScOMPDC-catalyzed decarboxylation of FOMP, which are limited by the rate of enzyme conformational changes. By contrast, the Y217A mutation results in large decreases in kcat/Km for ScOMPDC-catalyzed decarboxylation of both OMP and FOMP, because of the comparable effects of this mutation on rate-determining decarboxylation of enzyme-bound OMP and on the rate-determining enzyme conformational change for decarboxylation of FOMP. We propose that kcat = 8.2 s(-1) for decarboxylation of FOMP by the Y217A mutant is equal to the rate constant for cage formation from the complex between FOMP and the open enzyme, that the tyrosyl phenol group stabilizes the closed form of ScOMPDC by hydrogen bonding to the substrate phosphodianion, and that the phenyl group of Y217 and F217 facilitates formation of the transition state for the rate-limiting conformational change. An analysis of kinetic data for mutant enzyme-catalyzed decarboxylation of OMP and FOMP provides estimates for the rate and equilibrium constants for the conformational change that traps FOMP at the enzyme active site.

  7. Kinetic release of hydrogen peroxide from different whitening products.

    PubMed

    da Silva Marques, Duarte Nuno; Silveira, Joao Miguel; Marques, Joana Rita; Amaral, Joao Almeida; Guilherme, Nuno Marques; da Mata, António Duarte

    2012-01-01

    The objective of this in vitro study was to evaluate the kinetics of hydrogen peroxide (HP) release from five different bleaching products: VivaStyle® 10% fitted tray gel, VivaStyle® 30% in-office bleaching gel, VivaStyle® Paint-On Plus paint-on bleaching varnish, Opalescence PF® 10% carbamide peroxide gel and Trèswhite Supreme™ 10% HP gel. Each product was firstly titrated for its HP content by a described method. HP release kinetics was assessed by a modified spectrophotometric technique. One sample t test was performed to test for differences between the manufacturers' claimed HP concentrations and the titrated HP content in the whitening products. Analysis of variance plus Tamhane's post hoc tests and Pearson correlation analysis were used as appropriate. Values of P < 0.05 were taken as significant. Titrated HP revealed an increased content when compared to the manufacturer's specifications for all the products tested (P < 0.05), although only products from one manufacturer produced significantly higher results. All products presented a significant (P < 0.05) and sustained release of HP. However, the product with paint-on cellulose-based matrix resulted in significantly (P < 0.05) faster kinetics when compared to other products tested. These results are consistent with manufacturers' reduced recommended application times. The results of this study suggest that modifying the matrix composition may be a viable alternative to HP concentration increase, since this may result in faster release kinetics without exposure to high HP concentrations.

  8. Synthesis and Characterisation of Photocrosslinked poly(ethylene glycol) diacrylate Implants for Sustained Ocular Drug Delivery.

    PubMed

    McAvoy, Kathryn; Jones, David; Thakur, Raghu Raj Singh

    2018-01-16

    To investigate the sustained ocular delivery of small and large drug molecules from photocrosslinked poly(ethylene glycol) diacrylate (PEGDA) implants with varying pore forming agents. Triamcinolone acetonide and ovalbumin loaded photocrosslinked PEGDA implants, with or without pore-forming agents, were fabricated and characterised for chemical, mechanical, swelling, network parameters, as well as drug release and biocompatibility. HPLC-based analytical methods were employed for analysis of two molecules; ELISA was used to demonstrate bioactivity of ovalbumin. Regardless of PEGDA molecular weight or pore former composition all implants loaded with triamcinolone acetonide released significantly faster than those loaded with ovalbumin. Higher molecular weight PEGDA systems (700 Da) resulted in faster drug release of triamcinolone acetonide than their 250 Da counterpart. All ovalbumin released over the 56-day time period was found to be bioactive. Increasing PEGDA molecular weight resulted in increased system swelling, decreased crosslink density (Ve), increased polymer-water interaction parameter (χ), increased average molecular weight between crosslinks (Mc) and increased mesh size (ε). SEM studies showed the porosity of implants increased with increasing PEGDA molecular weight. Biocompatibility showed both PEGDA molecular weight implants were non-toxic when exposed to retinal epithelial cells over a 7-day period. Photocrosslinked PEGDA implant based systems are capable of controlled drug release of both small and large drug molecules through adaptations in the polymer system network. We are currently continuing evaluation of these systems as potential sustained drug delivery devices.

  9. Increased Coal Plant Flexibility Can Improve Renewables Integration |

    Science.gov Websites

    practices that enable lower turndowns, faster starts and stops, and faster ramping between load set-points faster ramp rates and faster and less expensive starts. Flexible Load - Demand Response Resources Demand response (DR) is a load management practice of deliberately reducing or adding load to balance the system

  10. Microstructural effects in drug release by solid and cellular polymeric dosage forms: A comparative study.

    PubMed

    Blaesi, Aron H; Saka, Nannaji

    2017-11-01

    In recent studies, we have introduced melt-processed polymeric cellular dosage forms to achieve both immediate drug release and predictable manufacture. Dosage forms ranging from minimally-porous solids to highly porous, open-cell and thin-walled structures were prepared, and the drug release characteristics investigated as the volume fraction of cells and the excipient molecular weight were varied. In the present study, both minimally-porous solid and cellular dosage forms consisting of various weight fractions of Acetaminophen drug and polyethylene glycol (PEG) excipient are prepared and analyzed. Microstructures of the solid forms and the cell walls range from single-phase solid solutions of the excipient and a small amount of drug molecules to two-phase composites of the excipient and tightly packed drug particles. Results of dissolution experiments show that the minimally-porous solid forms disintegrate and release drug by slow surface erosion. The erosion rate decreases as the drug weight fraction is increased. By contrast, the open-cell structures disintegrate rapidly by viscous exfoliation, and the disintegration time is independent of drug weight fraction. Drug release models suggest that the solid forms erode by convective mass transfer of the faster-eroding excipient if the drug volume fraction is small. At larger drug volume fractions, however, the slower-eroding drug particles hinder access of the free-flowing fluid to the excipient, thus slowing down erosion of the composite. Conversely, the disintegration rate of the cellular forms is limited by diffusion of the dissolution fluid into the excipient phase of the thin cell walls. Because the wall thickness is of the order of the drug particle size, and the particles are enveloped by the excipient during melt-processing, the drug particles cannot hinder diffusion through the excipient across the walls. Thus the disintegration time of the cellular forms is mostly unaffected by the volume fraction of drug in the walls. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Faster eating rates are associated with higher energy intakes during an ad libitum meal, higher BMI and greater adiposity among 4·5-year-old children: results from the Growing Up in Singapore Towards Healthy Outcomes (GUSTO) cohort.

    PubMed

    Fogel, Anna; Goh, Ai Ting; Fries, Lisa R; Sadananthan, Suresh A; Velan, S Sendhil; Michael, Navin; Tint, Mya-Thway; Fortier, Marielle V; Chan, Mei Jun; Toh, Jia Ying; Chong, Yap-Seng; Tan, Kok Hian; Yap, Fabian; Shek, Lynette P; Meaney, Michael J; Broekman, Birit F P; Lee, Yung Seng; Godfrey, Keith M; Chong, Mary F F; Forde, Ciarán G

    2017-04-01

    Faster eating rates are associated with increased energy intake, but little is known about the relationship between children's eating rate, food intake and adiposity. We examined whether children who eat faster consume more energy and whether this is associated with higher weight status and adiposity. We hypothesised that eating rate mediates the relationship between child weight and ad libitum energy intake. Children (n 386) from the Growing Up in Singapore Towards Healthy Outcomes cohort participated in a video-recorded ad libitum lunch at 4·5 years to measure acute energy intake. Videos were coded for three eating-behaviours (bites, chews and swallows) to derive a measure of eating rate (g/min). BMI and anthropometric indices of adiposity were measured. A subset of children underwent MRI scanning (n 153) to measure abdominal subcutaneous and visceral adiposity. Children above/below the median eating rate were categorised as slower and faster eaters, and compared across body composition measures. There was a strong positive relationship between eating rate and energy intake (r 0·61, P<0·001) and a positive linear relationship between eating rate and children's BMI status. Faster eaters consumed 75 % more energy content than slower eating children (Δ548 kJ (Δ131 kcal); 95 % CI 107·6, 154·4, P<0·001), and had higher whole-body (P<0·05) and subcutaneous abdominal adiposity (Δ118·3 cc; 95 % CI 24·0, 212·7, P=0·014). Mediation analysis showed that eating rate mediates the link between child weight and energy intake during a meal (b 13·59; 95 % CI 7·48, 21·83). Children who ate faster had higher energy intake, and this was associated with increased BMI z-score and adiposity.

  12. Faster eating rates are associated with higher energy intakes during an Ad libitum meal, higher BMI and greater adiposity among 4.5 year old children – Results from the GUSTO cohort

    PubMed Central

    Fogel, Anna; Goh, Ai Ting; Fries, Lisa R.; Sadananthan, Suresh Anand; Velan, S. Sendhil; Michael, Navin; Tint, Mya Thway; Fortier, Marielle Valerie; Chan, Mei Jun; Toh, Jia Ying; Chong, Yap-Seng; Tan, Kok Hian; Yap, Fabian; Shek, Lynette P.; Meaney, Michael J.; Broekman, Birit F.P.; Lee, Yung Seng; Godfrey, Keith M.; Chong, Mary Foong Fong; Forde, Ciarán Gerard

    2017-01-01

    Faster eating rates are associated with increased energy intake, but less is known about the relationship between children’s eating rate, food intake and adiposity. We examined whether children who eat faster consume more energy and whether this is associated with higher weight status and adiposity. We hypothesized that eating rate mediates the relationship between child weight and ad libitum energy intake. Children (N=386) from the Growing Up in Singapore towards Healthy Outcomes (GUSTO) cohort participated in a video-recorded ad libitum lunch at 4.5 years to measure acute energy intake. Videos were coded for three eating-behaviours (bites, chews and swallows) to derive a measure of eating rate (g/min). Body mass index (BMI) and anthropometric indices of adiposity were measured. A subset of children underwent MRI scanning (n=153) to measure abdominal subcutaneous and visceral adiposity. Children above/below the median eating rate were categorised as slower and faster eaters, and compared across body composition measures. There was a strong positive relationship between eating rate and energy intake (r=0.61, p<0.001) and a positive linear relationship between eating rate and children’s BMI status. Faster eaters consumed 75% more calories than slower eating children (Δ131 kcal, 95%CI [107.6, 154.4], p<0.001), and had higher whole-body (p<0.05) and subcutaneous abdominal adiposity (Δ118.3 cc; 95%CI [24.0, 212.7], p=0.014). Mediation analysis showed that eating rate mediates the link between child weight and energy intake during a meal (b=13.59, 95% CI [7.48, 21.83]). Children who ate faster had higher energy intake, and this was associated with increased BMIz and adiposity. PMID:28462734

  13. Consistency of Eating Rate, Oral Processing Behaviours and Energy Intake across Meals

    PubMed Central

    McCrickerd, Keri; Forde, Ciaran G.

    2017-01-01

    Faster eating has been identified as a risk factor for obesity and the current study tested whether eating rate is consistent within an individual and linked to energy intake across multiple meals. Measures of ad libitum intake, eating rate, and oral processing at the same or similar test meal were recorded on four non-consecutive days for 146 participants (117 male, 29 female) recruited across four separate studies. All the meals were video recorded, and oral processing behaviours were derived through behavioural coding. Eating behaviours showed good to excellent consistency across the meals (intra-class correlation coefficients > 0.76, p < 0.001) and participants who ate faster took larger bites (β ≥ 0.39, p < 0.001) and consistently consumed more energy, independent of meal palatability, sex, body composition and reported appetite (β ≥ 0.17, p ≤ 0.025). Importantly, eating faster at one meal predicted faster eating and increased energy intake at subsequent meals (β > 0.20, p < 0.05). Faster eating is relatively consistent within individuals and is predictive of faster eating and increased energy intake at subsequent similar meals consumed in a laboratory context, independent of individual differences in body composition. PMID:28817066

  14. An adaptive Bayesian inference algorithm to estimate the parameters of a hazardous atmospheric release

    NASA Astrophysics Data System (ADS)

    Rajaona, Harizo; Septier, François; Armand, Patrick; Delignon, Yves; Olry, Christophe; Albergel, Armand; Moussafir, Jacques

    2015-12-01

    In the eventuality of an accidental or intentional atmospheric release, the reconstruction of the source term using measurements from a set of sensors is an important and challenging inverse problem. A rapid and accurate estimation of the source allows faster and more efficient action for first-response teams, in addition to providing better damage assessment. This paper presents a Bayesian probabilistic approach to estimate the location and the temporal emission profile of a pointwise source. The release rate is evaluated analytically by using a Gaussian assumption on its prior distribution, and is enhanced with a positivity constraint to improve the estimation. The source location is obtained by the means of an advanced iterative Monte-Carlo technique called Adaptive Multiple Importance Sampling (AMIS), which uses a recycling process at each iteration to accelerate its convergence. The proposed methodology is tested using synthetic and real concentration data in the framework of the Fusion Field Trials 2007 (FFT-07) experiment. The quality of the obtained results is comparable to those coming from the Markov Chain Monte Carlo (MCMC) algorithm, a popular Bayesian method used for source estimation. Moreover, the adaptive processing of the AMIS provides a better sampling efficiency by reusing all the generated samples.

  15. Pac-man motility of kinetochores unleashed by laser microsurgery

    PubMed Central

    LaFountain, James R.; Cohan, Christopher S.; Oldenbourg, Rudolf

    2012-01-01

    We report on experiments directly in living cells that reveal the regulation of kinetochore function by tension. X and Y sex chromosomes in crane fly (Nephrotoma suturalis) spermatocytes exhibit an atypical segregation mechanism in which each univalent maintains K-fibers to both poles. During anaphase, each maintains a leading fiber (which shortens) to one pole and a trailing fiber (which elongates) to the other. We used this intriguing behavior to study the motile states that X-Y kinetochores are able to support during anaphase. We used a laser microbeam to either sever a univalent along the plane of sister chromatid cohesion or knock out one of a univalent's two kinetochores to release one or both from the resistive influence of its sister's K-fiber. Released kinetochores with attached chromosome arms moved poleward at rates at least two times faster than normal. Furthermore, fluorescent speckle microscopy revealed that detached kinetochores converted their functional state from reverse pac-man to pac-man motility as a consequence of their release from mechanical tension. We conclude that kinetochores can exhibit pac-man motility, even though their normal behavior is dominated by traction fiber mechanics. Unleashing of kinetochore motility through loss of resistive force is further evidence for the emerging model that kinetochores are subject to tension-sensitive regulation. PMID:22740625

  16. Functionalized graphene oxide nanoparticles for cancer cell-specific delivery of antitumor drug.

    PubMed

    Zhao, Xubo; Yang, Liangwei; Li, Xiaorui; Jia, Xu; Liu, Lei; Zeng, Jin; Guo, Jinshan; Liu, Peng

    2015-01-21

    The unique reduction-triggered functional graphene oxide nanoparticles (GON) with well-defined size and uniform distribution were designed as an innovative drug delivery platform for cancer treatment for the first time, via the redox radical polymerization of methacrylic acid from the polyethylene glycol (PEG) modified GON (GON-PEG), following by cross-linking with cystamine. Thermogravimetric analysis demonstrates that the typical PMAA2-GON-PEG carriers contain about 16 wt % PEG segments and 33 wt % poly(methacrylic acid) (PMAA) brushes. PEG moieties are incorporated to make the drug delivery platforms stealthy during blood circulation. Notably, introducing the cross-linked PMAA brushes efficiently minimizes the premature release of doxorubicin (DOX) in the stimulated normal tissues, and accelerates DOX release in the stimulated tumor tissues through response to reduce agent. The carriers showed a 6-fold faster releasing rate at pH 5.0 in the presence of 10 mM glutathione (GSH) (stimulated tumor tissues) than at pH 7.4 with 10 μM GSH (stimulated normal tissues). In vitro cytotoxicity test also showed that the cross-linked PMAA2-GON-PEG (CPMAA2-GON-PEG) carriers had remarkable cytocompatibility, and that the DOX-loaded CPMAA2-GON-PEG had excellent killing capability to SiHa cells.

  17. Development and characterization of enteric-coated immediate-release pellets of aceclofenac by extrusion/spheronization technique using kappa-carrageenan as a pelletizing agent.

    PubMed

    Kilor, Vaishali A; Sapkal, Nidhi P; Awari, Jasmine G; Shewale, Bharti D

    2010-03-01

    In the present study, an attempt was made to prepare immediate-release enteric-coated pellets of aceclofenac, a poorly soluble nonsteroidal anti-inflammatory drug that has a gastrointestinal intolerance as its serious side effect. Formulation of enteric-coated pellets with improved solubility of aceclofenac could address both of these problems. To achieve these goals, pellets were prepared by extrusion-spheronization method using pelletizing agents that can contribute to the faster disintegration and thereby improve the solubility of the drug. Different disintegrants like beta-cyclodextrin, kollidon CL, Ac-Di-Sol, and sodium starch glycolate were tried in order to further improve disintegration time. The pellets were characterized for drug content, particle size distribution, flow properties, infrared spectroscopy, surface morphology, disintegration rate, and dissolution profile. The formulations, which showed best disintegration and dissolution profiles, were coated with Eudragit L100-55, an enteric-coated polymer which does not dissolve at gastric pH but dissolves at intestinal pH, releasing the drug immediately in the dissolution medium. The optimized enteric-coated formulation containing 20% kappa-carrageenan, lactose, and sodium starch glycolate as a disintegrant did inhibit the release of the drug for 2 h in 0.1 N HCl, whereas 87% of the drug was released within 45 min. The improvement was substantial when it was compared with solubility of pure drug under the same conditions. Thus, dissolution profiles suggested that combination of kappa-carrageenan and sodium starch glycolate resulted into fast-disintegrating, immediate-release pellets, overcoming the bioavailability problem of the poorly soluble drug, aceclofenac, and enteric coating of these pellets avoids the exposure of aceclofenac to ulcer-prone areas of the gastrointestinal tract.

  18. Release of beryllium from mineral ores in artificial lung and skin surface fluids.

    PubMed

    Duling, Matthew G; Stefaniak, Aleksandr B; Lawrence, Robert B; Chipera, Steve J; Virji, M Abbas

    2012-06-01

    Exposure to some manufactured beryllium compounds via skin contact or inhalation can cause sensitization. A portion of sensitized persons who inhale beryllium may develop chronic beryllium disease (CBD). Little is understood about exposures to naturally occurring beryllium minerals. The purpose of this study was to assess the bioaccessibility of beryllium from bertrandite ore. Dissolution of bertrandite from two mine pits (Monitor and Blue Chalk) was evaluated for both the dermal and inhalation exposure pathways by determining bioaccessibility in artificial sweat (pH 5.3 and pH 6.5), airway lining fluid (SUF, pH 7.3), and alveolar macrophage phagolysosomal fluid (PSF, pH 4.5). Significantly more beryllium was released from Monitor pit ore than Blue Chalk pit ore in artificial sweat buffered to pH 5.3 (0.88 ± 0.01% vs. 0.36 ± 0.00%) and pH 6.5 (0.09 ± 0.00% vs. 0.03 ± 0.01%). Rates of beryllium released from the ores in artificial sweat were faster than previously measured for manufactured forms of beryllium (e.g., beryllium oxide), known to induce sensitization in mice. In SUF, levels of beryllium were below the analytical limit of detection. In PSF, beryllium dissolution was biphasic (initial rapid diffusion followed by latter slower surface reactions). During the latter phase, dissolution half-times were 1,400 to 2,000 days, and rate constants were ~7 × 10(-10) g/(cm(2)·day), indicating that bertrandite is persistent in the lung. These data indicate that it is prudent to control skin and inhalation exposures to bertrandite dusts.

  19. Buprenorphine dose induction in non-opioid-tolerant pre-release prisoners.

    PubMed

    Vocci, Frank J; Schwartz, Robert P; Wilson, Monique E; Gordon, Michael S; Kinlock, Timothy W; Fitzgerald, Terrence T; O'Grady, Kevin E; Jaffe, Jerome H

    2015-11-01

    In a previously reported randomized controlled trial, formerly opioid-dependent prisoners were more likely to enter community drug abuse treatment when they were inducted in prison onto buprenorphine/naloxone (hereafter called buprenorphine) than when they received counseling without buprenorphine in prison (47.5% vs. 33.7%, p=0.012) (Gordon et al., 2014). In this communication we report on the results of the induction schedule and the adverse event profile seen in pre-release prisoners inducted onto buprenorphine. This paper examines the dose induction procedure, a comparison of the proposed versus actual doses given per week, and side effects reported for 104 adult participants who were randomized to buprenorphine treatment in prison. Self-reported side effects were analyzed using generalized estimated equations to determine changes over time in side effects. Study participants were inducted onto buprenorphine at a rate faster than the induction schedule. Of the 104 (72 males, 32 females) buprenorphine recipients, 64 (37 males, 27 females) remained on medication at release from prison. Nine participants (8.6%) discontinued buprenorphine because of unpleasant opioid side effects. There were no serious adverse events reported during the in-prison phase of the study. Constipation was the most frequent symptom reported (69 percent). Our findings suggest that buprenorphine administered to non-opioid-tolerant adults should be started at a lower, individualized dose than customarily used for adults actively using opioids, and that non-opioid-tolerant pre-release prisoners can be successfully inducted onto therapeutic doses prior to release. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  20. Paired-Pulse Depression at Photoreceptor Synapses

    PubMed Central

    Rabl, Katalin; Cadetti, Lucia; Thoreson, Wallace B.

    2011-01-01

    Synaptic depression produced by repetitive stimulation is likely to be particularly important in shaping responses of second-order retinal neurons at the tonically active photoreceptor synapse. We analyzed the time course and mechanisms of synaptic depression at rod and cone synapses using paired-pulse protocols involving two complementary measurements of exocytosis: (1) paired whole-cell recordings of the postsynaptic current (PSC) in second-order retinal neurons and (2) capacitance measurements of vesicular membrane fusion in rods and cones. PSCs in ON bipolar, OFF bipolar, and horizontal cells evoked by stimulation of either rods or cones recovered from paired-pulse depression (PPD) at rates similar to the recovery of exocytotic capacitance changes in rods and cones. Correlation between presynaptic and postsynaptic measures of recovery from PPD suggests that 80 –90% of the depression at these synapses is presynaptic in origin. Consistent with a predominantly presynaptic mechanism, inhibiting desensitization of postsynaptic glutamate receptors had little effect on PPD. The depression of exocytotic capacitance changes exceeded depression of the presynaptic calcium current, suggesting that it is primarily caused by a depletion of synaptic vesicles. In support of this idea, limiting Ca2+ influx by using weaker depolarizing stimuli promoted faster recovery from PPD. Although cones exhibit much faster exocytotic kinetics than rods, exocytotic capacitance changes recovered from PPD at similar rates in both cell types. Thus, depression of release is not likely to contribute to differences in the kinetics of transmission from rods and cones. PMID:16510733

  1. Differential Light-induced Responses in Sectorial Inherited Retinal Degeneration*

    PubMed Central

    Ramon, Eva; Cordomí, Arnau; Aguilà, Mònica; Srinivasan, Sundaramoorthy; Dong, Xiaoyun; Moore, Anthony T.; Webster, Andrew R.; Cheetham, Michael E.; Garriga, Pere

    2014-01-01

    Retinitis pigmentosa (RP) is a group of genetically and clinically heterogeneous inherited degenerative retinopathies caused by abnormalities of photoreceptors or retinal pigment epithelium in the retina leading to progressive sight loss. Rhodopsin is the prototypical G-protein-coupled receptor located in the vertebrate retina and is responsible for dim light vision. Here, novel M39R and N55K variants were identified as causing an intriguing sector phenotype of RP in affected patients, with selective degeneration in the inferior retina. To gain insights into the molecular aspects associated with this sector RP phenotype, whose molecular mechanism remains elusive, the mutations were constructed by site-directed mutagenesis, expressed in heterologous systems, and studied by biochemical, spectroscopic, and functional assays. M39R and N55K opsins had variable degrees of chromophore regeneration when compared with WT opsin but showed no gross structural misfolding or altered trafficking. M39R showed a faster rate for transducin activation than WT rhodopsin with a faster metarhodopsinII decay, whereas N55K presented a reduced activation rate and an altered photobleaching pattern. N55K also showed an altered retinal release from the opsin binding pocket upon light exposure, affecting its optimal functional response. Our data suggest that these sector RP mutations cause different protein phenotypes that may be related to their different clinical progression. Overall, these findings illuminate the molecular mechanisms of sector RP associated with rhodopsin mutations. PMID:25359768

  2. Cross-bridge kinetics, cooperativity, and negatively strained cross- bridges in vertebrate smooth muscle. A laser-flash photolysis study

    PubMed Central

    1988-01-01

    The effects of laser-flash photolytic release of ATP from caged ATP [P3- 1(2-nitrophenyl)ethyladenosine-5'-triphosphate] on stiffness and tension transients were studied in permeabilized guinea pig protal vein smooth muscle. During rigor, induced by removing ATP from the relaxed or contracting muscles, stiffness was greater than in relaxed muscle, and electron microscopy showed cross-bridges attached to actin filaments at an approximately 45 degree angle. In the absence of Ca2+, liberation of ATP (0.1-1 mM) into muscles in rigor caused relaxation, with kinetics indicating cooperative reattachment of some cross- bridges. Inorganic phosphate (Pi; 20 mM) accelerated relaxation. A rapid phase of force development, accompanied by a decline in stiffness and unaffected by 20 mM Pi, was observed upon liberation of ATP in muscles that were released by 0.5-1.0% just before the laser pulse. This force increment observed upon detachment suggests that the cross- bridges can bear a negative tension. The second-order rate constant for detachment of rigor cross-bridges by ATP, in the absence of Ca2+, was estimated to be 0.1-2.5 X 10(5) M-1s-1, which indicates that this reaction is too fast to limit the rate of ATP hydrolysis during physiological contractions. In the presence of Ca2+, force development occurred at a rate (0.4 s-1) similar to that of intact, electrically stimulated tissue. The rate of force development was an order of magnitude faster in muscles that had been thiophosphorylated with ATP gamma S before the photochemical liberation of ATP, which indicates that under physiological conditions, in non-thiophosphorylated muscles, light-chain phosphorylation, rather than intrinsic properties of the actomyosin cross-bridges, limits the rate of force development. The release of micromolar ATP or CTP from caged ATP or caged CTP caused force development of up to 40% of maximal active tension in the absence of Ca2+, consistent with cooperative attachment of cross-bridges. Cooperative reattachment of dephosphorylated cross-bridges may contribute to force maintenance at low energy cost and low cross-bridge cycling rates in smooth muscle. PMID:3373178

  3. Procedural Pain Heart Rate Responses in Massaged Preterm Infants

    PubMed Central

    Diego, Miguel A.; Field, Tiffany; Hernandez-Reif, Maria

    2009-01-01

    Heart rate (HR) responses to the removal of a monitoring lead were assessed in 56 preterm infants who received moderate pressure, light pressure or no massage therapy. The infants who received moderate pressure massage therapy exhibited lower increases in HR suggesting an attenuated pain response. The heart rate of infants who received moderate pressure massage also returned to baseline faster than the heart rate of the other two groups, suggesting a faster recovery rate. PMID:19185352

  4. Articulation rate across dialect, age, and gender

    PubMed Central

    Jacewicz, Ewa; Fox, Robert A.; O’Neill, Caitlin; Salmons, Joseph

    2009-01-01

    The understanding of sociolinguistic variation is growing rapidly, but basic gaps still remain. Whether some languages or dialects are spoken faster or slower than others constitutes such a gap. Speech tempo is interconnected with social, physical and psychological markings of speech. This study examines regional variation in articulation rate and its manifestations across speaker age, gender and speaking situations (reading vs. free conversation). The results of an experimental investigation show that articulation rate differs significantly between two regional varieties of American English examined here. A group of Northern speakers (from Wisconsin) spoke significantly faster than a group of Southern speakers (from North Carolina). With regard to age and gender, young adults read faster than older adults in both regions; in free speech, only Northern young adults spoke faster than older adults. Effects of gender were smaller and less consistent; men generally spoke slightly faster than women. As the body of work on the sociophonetics of American English continues to grow in scope and depth, we argue that it is important to include fundamental phonetic information as part of our catalog of regional differences and patterns of change in American English. PMID:20161445

  5. Influence of Different Forest System Management Practices on Leaf Litter Decomposition Rates, Nutrient Dynamics and the Activity of Ligninolytic Enzymes: A Case Study from Central European Forests

    PubMed Central

    Schulz, Elke; Schloter, Michael; Buscot, François; Hofrichter, Martin; Krüger, Dirk

    2014-01-01

    Leaf litter decomposition is the key ecological process that determines the sustainability of managed forest ecosystems, however very few studies hitherto have investigated this process with respect to silvicultural management practices. The aims of the present study were to investigate the effects of forest management practices on leaf litter decomposition rates, nutrient dynamics (C, N, Mg, K, Ca, P) and the activity of ligninolytic enzymes. We approached these questions using a 473 day long litterbag experiment. We found that age-class beech and spruce forests (high forest management intensity) had significantly higher decomposition rates and nutrient release (most nutrients) than unmanaged deciduous forest reserves (P<0.05). The site with near-to-nature forest management (low forest management intensity) exhibited no significant differences in litter decomposition rate, C release, lignin decomposition, and C/N, lignin/N and ligninolytic enzyme patterns compared to the unmanaged deciduous forest reserves, but most nutrient dynamics examined in this study were significantly faster under such near-to-nature forest management practices. Analyzing the activities of ligninolytic enzymes provided evidence that different forest system management practices affect litter decomposition by changing microbial enzyme activities, at least over the investigated time frame of 473 days (laccase, P<0.0001; manganese peroxidase (MnP), P = 0.0260). Our results also indicate that lignin decomposition is the rate limiting step in leaf litter decomposition and that MnP is one of the key oxidative enzymes of litter degradation. We demonstrate here that forest system management practices can significantly affect important ecological processes and services such as decomposition and nutrient cycling. PMID:24699676

  6. Influence of different forest system management practices on leaf litter decomposition rates, nutrient dynamics and the activity of ligninolytic enzymes: a case study from central European forests.

    PubMed

    Purahong, Witoon; Kapturska, Danuta; Pecyna, Marek J; Schulz, Elke; Schloter, Michael; Buscot, François; Hofrichter, Martin; Krüger, Dirk

    2014-01-01

    Leaf litter decomposition is the key ecological process that determines the sustainability of managed forest ecosystems, however very few studies hitherto have investigated this process with respect to silvicultural management practices. The aims of the present study were to investigate the effects of forest management practices on leaf litter decomposition rates, nutrient dynamics (C, N, Mg, K, Ca, P) and the activity of ligninolytic enzymes. We approached these questions using a 473 day long litterbag experiment. We found that age-class beech and spruce forests (high forest management intensity) had significantly higher decomposition rates and nutrient release (most nutrients) than unmanaged deciduous forest reserves (P<0.05). The site with near-to-nature forest management (low forest management intensity) exhibited no significant differences in litter decomposition rate, C release, lignin decomposition, and C/N, lignin/N and ligninolytic enzyme patterns compared to the unmanaged deciduous forest reserves, but most nutrient dynamics examined in this study were significantly faster under such near-to-nature forest management practices. Analyzing the activities of ligninolytic enzymes provided evidence that different forest system management practices affect litter decomposition by changing microbial enzyme activities, at least over the investigated time frame of 473 days (laccase, P<0.0001; manganese peroxidase (MnP), P = 0.0260). Our results also indicate that lignin decomposition is the rate limiting step in leaf litter decomposition and that MnP is one of the key oxidative enzymes of litter degradation. We demonstrate here that forest system management practices can significantly affect important ecological processes and services such as decomposition and nutrient cycling.

  7. Extraction of curcumin from Curcuma longa L. using ultrasound assisted supercritical carbon dioxide

    NASA Astrophysics Data System (ADS)

    Kimthet, Chhouk; Wahyudiono, Kanda, Hideki; Goto, Motonobu

    2017-05-01

    Curcumin is one of phenolic compounds, which has been recently shown to have useful pharmacological properties such as anti-inflammatory, anti-bacterial, anti-carcinogenic, antifungal, and antimicrobial activities. The objective of this research is to extract the curcumin from Curcuma longa L. using ultrasound assisted supercritical carbon dioxide extraction (USC-CO2). The extraction was performed at 50°C, 25 MPa, CO2 flow rate of 3 mL/min with 10% cosolvent. The result of extraction, thermogravimetry (TG), Fourier transform infrared spectroscopy (FTIR) and scanning electron microscope (SEM) showed that ultrasound power could disrupt cell wall and release the target compounds from Curcuma longa L. USC-CO2 could provide higher curcumin content in the extracts and faster extraction compared to SC-CO2 extraction without ultrasound.

  8. Single neuropsychological test scores associated with rate of cognitive decline in early Alzheimer disease.

    PubMed

    Parikh, Mili; Hynan, Linda S; Weiner, Myron F; Lacritz, Laura; Ringe, Wendy; Cullum, C Munro

    2014-01-01

    Alzheimer disease (AD) characteristically begins with episodic memory impairment followed by other cognitive deficits; however, the course of illness varies, with substantial differences in the rate of cognitive decline. For research and clinical purposes it would be useful to distinguish between persons who will progress slowly from persons who will progress at an average or faster rate. Our objective was to use neurocognitive performance features and disease-specific and health information to determine a predictive model for the rate of cognitive decline in participants with mild AD. We reviewed the records of a series of 96 consecutive participants with mild AD from 1995 to 2011 who had been administered selected neurocognitive tests and clinical measures. Based on Clinical Dementia Rating (CDR) of functional and cognitive decline over 2 years, participants were classified as Faster (n = 45) or Slower (n = 51) Progressors. Stepwise logistic regression analyses using neurocognitive performance features, disease-specific, health, and demographic variables were performed. Neuropsychological scores that distinguished Faster from Slower Progressors included Trail Making Test - A, Digit Symbol, and California Verbal Learning Test (CVLT) Total Learned and Primacy Recall. No disease-specific, health, or demographic variable predicted rate of progression; however, history of heart disease showed a trend. Among the neuropsychological variables, Trail Making Test - A best distinguished Faster from Slower Progressors, with an overall accuracy of 68%. In an omnibus model including neuropsychological, disease-specific, health, and demographic variables, only Trail Making Test - A distinguished between groups. Several neuropsychological performance features were associated with the rate of cognitive decline in mild AD, with baseline Trail Making Test - A performance best separating those who declined at an average or faster rate from those who showed slower progression.

  9. Exchange of potassium and strontium in adult bone

    PubMed Central

    MALTBY, BARRIE; LEMON, GERARD J.; BASSINGTHWAIGHTE, JAMES B.; KELLY, PATRICK J.

    2010-01-01

    The kinetics of exchange of strontium (85Sr) and potassium (42K) were studied in the midtibial cortical bone of 37 adult dogs. After injection of these two tracer cations and tracer-labeled albumin into the tibial nutrient artery, two types of observations were made: 1) collection of sequential venous samples to provide the outflow indicator-dilution curves and to calculate the extraction and retention at early times; and 2) detection of energy-selected gamma emissions via a detector over the tibia to give the time course of content of 42K and 85Sr in the tibia. Extractions of K+ and Sr2+ were 50 and 60% during a single transcapillary passage. More Sr2+ than K+ was retained in the first minutes. Their rates of washout over a 3-h period were similar. The interpretation is that the rate of uptake at extravascular sites is faster for Sr2+ than for K+, as is the rate of release, and that the extravascular volume of distribution for Sr2+ (adsorption sites in the interstitium or on bone) is much larger than that for K+ (intracellular). PMID:7065283

  10. Release kinetics of volatile organic compounds from roasted and ground coffee: online measurements by PTR-MS and mathematical modeling.

    PubMed

    Mateus, Maria-L; Lindinger, Christian; Gumy, Jean-C; Liardon, Remy

    2007-12-12

    The present work shows the possibilities and limitations in modeling release kinetics of volatile organic compounds (VOCs) from roasted and ground coffee by applying physical and empirical models such as the diffusion and Weibull models. The release kinetics of VOCs were measured online by proton transfer reaction-mass spectrometry (PTR-MS). Compounds were identified by GC-MS, and the contribution of the individual compounds to different mass fragments was elucidated by GC/PTR-MS. Coffee samples roasted to different roasting degrees and ground to different particle sizes were studied under dry and wet stripping conditions. To investigate the accuracy of modeling the VOC release kinetics recorded using PTR-MS, online kinetics were compared with kinetics reconstituted from purge and trap samplings. Results showed that uncertainties in ion intensities due to the presence of isobaric species may prevent the development of a robust mathematical model. Of the 20 identified compounds, 5 were affected to a lower extent as their contribution to specific m/z intensity varied by <15% over the stripping time. The kinetics of these compounds were fitted using physical and statistical models, respectively, the diffusion and Weibull models, which helped to identify the underlying release mechanisms. For dry stripping, the diffusion model allowed a good representation of the release kinetics, whereas for wet stripping conditions, release patterns were very complex and almost specific for each compound analyzed. In the case of prewetted coffee, varying particle size (approximately 400-1200 microm) had no significant effect on the VOC release rate, whereas for dry coffee, the release was faster for smaller particles. The absence of particle size effect in wet coffee was attributed to the increase of opened porosity and compound diffusivity by solubilization and matrix relaxation. To conclude, the accurate modeling of VOC release kinetics from coffee allowed small variations in compound release to be discriminated. Furthermore, it evidenced the different aroma compositions that may be obtained depending on the time when VOCs are recovered.

  11. Faster-X Evolution of Gene Expression in Drosophila

    PubMed Central

    Meisel, Richard P.; Malone, John H.; Clark, Andrew G.

    2012-01-01

    DNA sequences on X chromosomes often have a faster rate of evolution when compared to similar loci on the autosomes, and well articulated models provide reasons why the X-linked mode of inheritance may be responsible for the faster evolution of X-linked genes. We analyzed microarray and RNA–seq data collected from females and males of six Drosophila species and found that the expression levels of X-linked genes also diverge faster than autosomal gene expression, similar to the “faster-X” effect often observed in DNA sequence evolution. Faster-X evolution of gene expression was recently described in mammals, but it was limited to the evolutionary lineages shortly following the creation of the therian X chromosome. In contrast, we detect a faster-X effect along both deep lineages and those on the tips of the Drosophila phylogeny. In Drosophila males, the dosage compensation complex (DCC) binds the X chromosome, creating a unique chromatin environment that promotes the hyper-expression of X-linked genes. We find that DCC binding, chromatin environment, and breadth of expression are all predictive of the rate of gene expression evolution. In addition, estimates of the intraspecific genetic polymorphism underlying gene expression variation suggest that X-linked expression levels are not under relaxed selective constraints. We therefore hypothesize that the faster-X evolution of gene expression is the result of the adaptive fixation of beneficial mutations at X-linked loci that change expression level in cis. This adaptive faster-X evolution of gene expression is limited to genes that are narrowly expressed in a single tissue, suggesting that relaxed pleiotropic constraints permit a faster response to selection. Finally, we present a conceptional framework to explain faster-X expression evolution, and we use this framework to examine differences in the faster-X effect between Drosophila and mammals. PMID:23071459

  12. Can lagrangian models reproduce the migration time of European eel obtained from otolith analysis?

    NASA Astrophysics Data System (ADS)

    Rodríguez-Díaz, L.; Gómez-Gesteira, M.

    2017-12-01

    European eel can be found at the Bay of Biscay after a long migration across the Atlantic. The duration of migration, which takes place at larval stage, is of primary importance to understand eel ecology and, hence, its survival. This duration is still a controversial matter since it can range from 7 months to > 4 years depending on the method to estimate duration. The minimum migration duration estimated from our lagrangian model is similar to the duration obtained from the microstructure of eel otoliths, which is typically on the order of 7-9 months. The lagrangian model showed to be sensitive to different conditions like spatial and time resolution, release depth, release area and initial distribution. In general, migration showed to be faster when decreasing the depth and increasing the resolution of the model. In average, the fastest migration was obtained when only advective horizontal movement was considered. However, faster migration was even obtained in some cases when locally oriented random migration was taken into account.

  13. Control of heart rate during thermoregulation in the heliothermic lizard Pogona barbata: importance of cholinergic and adrenergic mechanisms.

    PubMed

    Seebacher, F; Franklin, C E

    2001-12-01

    During thermoregulation in the bearded dragon Pogona barbata, heart rate when heating is significantly faster than when cooling at any given body temperature (heart rate hysteresis), resulting in faster rates of heating than cooling. However, the mechanisms that control heart rate during heating and cooling are unknown. The aim of this study was to test the hypothesis that changes in cholinergic and adrenergic tone on the heart are responsible for the heart rate hysteresis during heating and cooling in P. barbata. Heating and cooling trials were conducted before and after the administration of atropine, a muscarinic antagonist, and sotalol, a beta-adrenergic antagonist. Cholinergic and beta-adrenergic blockade did not abolish the heart rate hysteresis, as the heart rate during heating was significantly faster than during cooling in all cases. Adrenergic tone was extremely high (92.3 %) at the commencement of heating, and decreased to 30.7 % at the end of the cooling period. Moreover, in four lizards there was an instantaneous drop in heart rate (up to 15 beats min(-1)) as the heat source was switched off, and this drop in heart rate coincided with either a drop in beta-adrenergic tone or an increase in cholinergic tone. Rates of heating were significantly faster during the cholinergic blockade, and least with a combined cholinergic and beta-adrenergic blockade. The results showed that cholinergic and beta-adrenergic systems are not the only control mechanisms acting on the heart during heating and cooling, but they do have a significant effect on heart rate and on rates of heating and cooling.

  14. Auditory perceptual simulation: Simulating speech rates or accents?

    PubMed

    Zhou, Peiyun; Christianson, Kiel

    2016-07-01

    When readers engage in Auditory Perceptual Simulation (APS) during silent reading, they mentally simulate characteristics of voices attributed to a particular speaker or a character depicted in the text. Previous research found that auditory perceptual simulation of a faster native English speaker during silent reading led to shorter reading times that auditory perceptual simulation of a slower non-native English speaker. Yet, it was uncertain whether this difference was triggered by the different speech rates of the speakers, or by the difficulty of simulating an unfamiliar accent. The current study investigates this question by comparing faster Indian-English speech and slower American-English speech in the auditory perceptual simulation paradigm. Analyses of reading times of individual words and the full sentence reveal that the auditory perceptual simulation effect again modulated reading rate, and auditory perceptual simulation of the faster Indian-English speech led to faster reading rates compared to auditory perceptual simulation of the slower American-English speech. The comparison between this experiment and the data from Zhou and Christianson (2016) demonstrate further that the "speakers'" speech rates, rather than the difficulty of simulating a non-native accent, is the primary mechanism underlying auditory perceptual simulation effects. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. [The use of natural and synthetic hydrophilic polymers in the formulation of metformin hydrochloride tablets with different profile release].

    PubMed

    Kołodziejczyk, Michał Krzysztof; Kołodziejska, Justyna; Zgoda, Marian Mikołaj

    2012-01-01

    Metformin hydrochloride after buformin and phenformin belongs to the group of biguanid derivatives used as oral anti-diabetic drugs. The object of the study is the technological analysis and the potential effect of biodegradable macromolecular polymers on the technological and therapeutic parameters of oral anti-diabetic medicinal products with metformin hydrochloride: Siofor, Formetic, Glucophage, Metformax in doses of 500mg and 1000mg and Glucophage XR in a dose of 500 mg of modified release. Market therapeutic products containing 500 and 1000 mg of metformin hydrochloride in a normal formulation and 500 mg of metformin hydrochloride in a formulation of modified release were analyzed. Following research methods were used: technological analysis of tablets, study of disintegration time of tablets, evaluation of pharmaceutical availability of metformin hydrochloride from tested therapeutic products, mathematical and kinetic analysis of release profiles of metformin hydrochloride, statistical analysis of mean differences of release coefficients. The percentage of excipients in the XR formulation is higher and constitutes 50.5% of a tablet mass. However, in standard formulations the percentage is lower, between 5.5% and 12.76%. On the basis of the results of disintegration time studies, the analysed therapeutic products can be divided into two groups, regardless the dose. The first one are preparations with faster (not fast!) disintegration: Glucophage i Metformax. The second group are preparations with slower disintegration, more balanced in the aspect of a high dose of the biologically active substance: Formetic and Siofor. Products with a lower content of excipients (Metformax, Glucophage) disintegrate in a faster way. The disintegration rate of the products with a higher content of excipients (Formetic, Siofor) is slower. The appearance of metformin hydrochloride concentration in the gastrointestinal contents, balanced in time, caused by a slower disintegration-dissolving of a tablet, is conducive to the reduction of gastrointestinal side effects and better tolerance of the therapeutic product by a patient. The study on pharmaceutical availability indicated relevant kinetic differences between tested therapeutic products. They are particularly visible between standard formulations and the one with prolonged release (Glucophage XR500). Its release profile bears features of kinetics similar to zero-order reactions. Tested therapeutic products contain a large amount of the biologically active substance in relation to the content of excipients. A higher content of excipients in a single tablet mass distinguishes Siofor in comparison with Glucophage i Metformax. The excipients used in the formulations of tested preparations are comparable. A higher percentage of binding agents (HPMC, PVP) is observed, but there is a lack of typical disintegrants which results in a longer disintegration time up to 15 minutes. Siofor disintegrates at the same time as Formetic, but longer than Glucophage i Metformax. Considering the large content of the active substance and pharmacological properties of metformin hydrochloride, such a disintegration might have beneficial consequences, because the amount of the free active substance in the gastrointestinal tract will increase over the longer time period what will reduce the level of gastrointestinal side effects. The release profiles of metformin hydrochloride from tested therapeutic products are comparable. The Glucophage XR 500 formulation with the release kinetics of metformin hydrochloride similar to the zero-order kinetics is completely different from the others. The above is confirmed by the mathematical analysis of release profiles of metformin hydrochloride from tested preparations where equations of lines describing the release profile are characterized by similar values of correlation coefficients.

  16. Atmospheric modeling of Mars CH4 subsurface clathrates releases mimicking SAM and 2003 Earth-based detections

    NASA Astrophysics Data System (ADS)

    Pla-García, J.; Rafkin, S. C.

    2017-12-01

    The aim of this work is to establish the amount of mixing during all martian seasons to test whether CH4 releases inside or outside of Gale crater are consistent with MSL-SAM observations. Several modeling scenarios were configured, including instantaneous and steady releases, both inside and outside the crater. A simulation to mimic the 2003 Earth-based detections (Mumma et al. 2009 or M09) was also performed. In the instantaneous release inside Gale experiments, Ls270 was shown to be the faster mixing season when air within and outside the crater was well mixed: all tracer mass inside the crater is diluted after just 8 hours. The mixing of near surface crater air with the external environment in the rest of the year is potentially rapid but slower than Ls270.In the instantaneous release outside Gale (NW) experiment, in just 12 hours the CH4 that makes it to the MSL landing location is diluted by six orders of magnitude. The timescale of mixing in MRAMS experiments is on the order of 1 sol regardless of season. The duration of the CH4 peak observed by SAM is 100 sols. Therefore there is a steady release inside the crater, or there is a very large magnitude steady release outside the crater. In the steady release Gale experiments, CH4 flux rate from ground is 1.8 kg m-2 s-1 (derived from Gloesener et al. 2017 clathrates fluxes) and it is not predictive. In these experiments, 200 times lower CH4 values detected by SAM are modeled around MSL location. There are CH4 concentration variations of orders of magnitude depending on the hour, so timing of SAM measurements is important. With a larger (but further away) outside crater release area compared to inside, similar CH4 values around MSL are modeled, so distance to source is important. In the steady experiments mimicking M09 detection release area, only 12 times lower CH4 values detected by SAM are modeled around MSL. The highest value in the M09 modeled scenario (0.6 ppbv) is reached in Ls270. This value is the highest of all modeled experiments. With our initial conditions (flux rates, release area size and distance to MSL), SAM should not be able (or very difficult) to detect CH4, but if we multiply flux by 12, increase the release area or move it closer to MSL (or all of above), it may be possible to get CH4 values that SAM could detect regardless where it comes from: inside, outside (close to) or far away from Gale.

  17. Two mantle domains and the time scales of fluid transfer beneath the Vanuatu arc

    NASA Astrophysics Data System (ADS)

    Turner, Simon P.; Peate, David W.; Hawkesworth, Chris J.; Eggins, Stephen M.; Crawford, Anthony J.

    1999-11-01

    U-Th isotope disequilibria can provide constraints on the time elapsed since fluid addition to the mantle wedge beneath island arcs. The Vanuatu arc offers new insights into these processes because Pb isotopes there are not dominated by components from the subducting plate and so preserve the signatures of the mantle wedge. The Pb isotope data document the presence of separate Pacific and Indian mantle domains beneath the arc volcanoes. The Indian mantle was brought beneath the central part of the arc from the backarc by collision with the D'Entrecasteaux Ridge, resulting in a slowing of subduction there. The distinction in the mantle wedge composition is also uniquely apparent in U-Th isotope data, which define two subparallel arrays on the U-Th equiline diagram, one anchored to high U/Th Pacific mantle and the other to lower U/Th Indian mantle. These data provide clear evidence of the effects of variable mantle composition on U-Th isotope disequilibria. We argue that such arrays faithfully record the time elapsed since fluid release from the subducting plate. The data indicate that this occurred ca. 16 ka in the area of collision and slow subduction, but ca. 60 ka where the rate of subduction is substantially faster. This suggests a link between the rate of subduction and the time elapsed since fluid release.

  18. Rapid dispersal of saltcedar (Tamarix spp.) biocontrol beetles (Diorhabda carinulata) on a desert river detected by phenocams, MODIS imagery and ground observations

    USGS Publications Warehouse

    Nagler, Pamela L.; Pearlstein, Susanna; Glenn, Edward P.; Brown, Tim B.; Bateman, Heather L.; Bean, Dan W.; Hultine, Kevin R.

    2013-01-01

    We measured the rate of dispersal of saltcedar leaf beetles (Diorhabda carinulata), a defoliating insect released on western rivers to control saltcedar shrubs (Tamarix spp.), on a 63 km reach of the Virgin River, U.S. Dispersal was measured by satellite imagery, ground surveys and phenocams. Pixels from the Moderate Resolution Imaging Spectrometer (MODIS) sensors on the Terra satellite showed a sharp drop in NDVI in midsummer followed by recovery, correlated with defoliation events as revealed in networked digital camera images and ground surveys. Ground surveys and MODIS imagery showed that beetle damage progressed downstream at a rate of about 25 km yr−1 in 2010 and 2011, producing a 50% reduction in saltcedar leaf area index and evapotranspiration by 2012, as estimated by algorithms based on MODIS Enhanced Vegetation Index values and local meteorological data for Mesquite, Nevada. This reduction is the equivalent of 10.4% of mean annual river flows on this river reach. Our results confirm other observations that saltcedar beetles are dispersing much faster than originally predicted in pre-release biological assessments, presenting new challenges and opportunities for land, water and wildlife managers on western rivers. Despite relatively coarse resolution (250 m) and gridding artifacts, single MODIS pixels can be useful in tracking the effects of defoliating insects in riparian corridors.

  19. The role of water in gas hydrate dissociation

    USGS Publications Warehouse

    Circone, S.; Stern, L.A.; Kirby, S.H.

    2004-01-01

    When raised to temperatures above the ice melting point, gas hydrates release their gas in well-defined, reproducible events that occur within self-maintained temperature ranges slightly below the ice point. This behavior is observed for structure I (carbon dioxide, methane) and structure II gas hydrates (methane-ethane, and propane), including those formed with either H2O- or D2O-host frameworks, and dissociated at either ambient or elevated pressure conditions. We hypothesize that at temperatures above the H2O (or D2O) melting point: (1) hydrate dissociation produces water + gas instead of ice + gas, (2) the endothermic dissociation reaction lowers the temperature of the sample, causing the water product to freeze, (3) this phase transition buffers the sample temperatures within a narrow temperature range just below the ice point until dissociation goes to completion, and (4) the temperature depression below the pure ice melting point correlates with the average rate of dissociation and arises from solution of the hydrate-forming gas, released by dissociation, in the water phase at elevated concentrations. In addition, for hydrate that is partially dissociated to ice + gas at lower temperatures and then heated to temperatures above the ice point, all remaining hydrate dissociates to gas + liquid water as existing barriers to dissociation disappear. The enhanced dissociation rates at warmer temperatures are probably associated with faster gas transport pathways arising from the formation of water product.

  20. Release kinetics of esterified p-coumaric acid and ferulic acid from rice straw in mild alkaline solution.

    PubMed

    Linh, Tran Ngoc; Fujita, Hirokata; Sakoda, Akiyoshi

    2017-05-01

    The release kinetics of esterified p-coumaric acid (PCA) and ferulic acid (FA) from rice straw under a mild alkaline condition were investigated to collect fundamental data for the design of a recovery process. The results showed that the straw size, NaOH concentration, and temperature were the key parameters governing release kinetics. The analysis demonstrated that FA is released considerably faster than PCA. The close relationship between lignin and the PCA dissolution indicates a reciprocal and/or simultaneous release. Moreover, PCA is broadly distributed in the lignin network but tends to be located more densely in the lignin fraction which is not easily solubilized by alkaline treatment. In contrast, the release of FA is strongly affected by removal of lignin fraction which is easily solubilized. These results suggest that the release kinetics are controlled by the accessibility of NaOH to their ester sites in the lignin/hemicellulose network, and by their localization. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. The effects of sex-biased gene expression and X-linkage on rates of sequence evolution in Drosophila.

    PubMed

    Campos, José Luis; Johnston, Keira; Charlesworth, Brian

    2017-12-08

    A faster rate of adaptive evolution of X-linked genes compared with autosomal genes (the faster-X effect) can be caused by the fixation of recessive or partially recessive advantageous mutations. This effect should be largest for advantageous mutations that affect only male fitness, and least for mutations that affect only female fitness. We tested these predictions in Drosophila melanogaster by using coding and functionally significant non-coding sequences of genes with different levels of sex-biased expression. Consistent with theory, nonsynonymous substitutions in most male-biased and unbiased genes show faster adaptive evolution on the X. However, genes with very low recombination rates do not show such an effect, possibly as a consequence of Hill-Robertson interference. Contrary to expectation, there was a substantial faster-X effect for female-biased genes. After correcting for recombination rate differences, however, female-biased genes did not show a faster X-effect. Similar analyses of non-coding UTRs and long introns showed a faster-X effect for all groups of genes, other than introns of female-biased genes. Given the strong evidence that deleterious mutations are mostly recessive or partially recessive, we would expect a slower rate of evolution of X-linked genes for slightly deleterious mutations that become fixed by genetic drift. Surprisingly, we found little evidence for this after correcting for recombination rate, implying that weakly deleterious mutations are mostly close to being semidominant. This is consistent with evidence from polymorphism data, which we use to test how models of selection that assume semidominance with no sex-specific fitness effects may bias estimates of purifying selection. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  2. Are nanostructured lipid carriers (NLCs) better than solid lipid nanoparticles (SLNs): development, characterizations and comparative evaluations of clotrimazole-loaded SLNs and NLCs?

    PubMed

    Das, Surajit; Ng, Wai Kiong; Tan, Reginald B H

    2012-08-30

    In recent years, solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs) are among the popular research topics for the delivery of lipophilic drugs. Although SLNs have demonstrated several beneficial properties as drug-carrier, limited drug-loading and expulsion of drug during storage led to the development of NLCs. However, the superiority of NLCs over SLNs has not been fully established yet due to the contradictory results. In this study, SLNs and NLCs were developed using clotrimazole as model drug. Size, polydispersity index (PI), zeta potential (ZP), drug-loading (L), drug encapsulation efficiency (EE), scanning electron microscopy (SEM), differential scanning calorimetry (DSC), X-ray diffractometry (XRD), drug release and stability of SLNs and NLCs were compared. Critical process parameters exhibited significant impact on the nanoparticles' properties. Size, PI, ZP and EE of the developed SLNs and NLCs were<100 nm, <0.17, <-22 mV and>82%, respectively. SEM images of SLNs and NLCs revealed spherical shaped particles (≈ 100 nm). DSC and XRD studies indicated slight difference between SLNs and NLCs as well as disappearance of the crystalline peak(s) of the encapsulated drug. NLCs demonstrated faster drug release than SLNs at low drug-loading, whereas there was no significant difference in drug release from SLNs and NLCs at high drug-loading. However, sustained/prolonged drug release was observed from both formulations. Furthermore, this study suggests that the drug release experiment should be designed considering the final application (topical/oral/parenteral) of the product. Regarding stability, NLCs showed better stability (in terms of size, PI, EE and L) than SLNs at 25°C. Moreover, there was no significant difference in drug release profile of NLCs after 3 months storage in compare to fresh NLCs, while significant change in drug release rate was observed in case of SLNs. Therefore, NLCs have an edge over SLNs. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Colder environments did not select for a faster metabolism during experimental evolution of Drosophila melanogaster.

    PubMed

    Alton, Lesley A; Condon, Catriona; White, Craig R; Angilletta, Michael J

    2017-01-01

    The effect of temperature on the evolution of metabolism has been the subject of debate for a century; however, no consistent patterns have emerged from comparisons of metabolic rate within and among species living at different temperatures. We used experimental evolution to determine how metabolism evolves in populations of Drosophila melanogaster exposed to one of three selective treatments: a constant 16°C, a constant 25°C, or temporal fluctuations between 16 and 25°C. We tested August Krogh's controversial hypothesis that colder environments select for a faster metabolism. Given that colder environments also experience greater seasonality, we also tested the hypothesis that temporal variation in temperature may be the factor that selects for a faster metabolism. We measured the metabolic rate of flies from each selective treatment at 16, 20.5, and 25°C. Although metabolism was faster at higher temperatures, flies from the selective treatments had similar metabolic rates at each measurement temperature. Based on variation among genotypes within populations, heritable variation in metabolism was likely sufficient for adaptation to occur. We conclude that colder or seasonal environments do not necessarily select for a faster metabolism. Rather, other factors besides temperature likely contribute to patterns of metabolic rate over thermal clines in nature. © 2016 The Author(s). Evolution © 2016 The Society for the Study of Evolution.

  4. Linking behavior, physiology, and survival of Atlantic Salmon smolts during estuary migration

    USGS Publications Warehouse

    Stich, Daniel S.; Zydlewski, Gayle B.; Kocik, John F.; Zydlewski, Joseph D.

    2015-01-01

    Decreased marine survival is identified as a component driver of continued declines of Atlantic Salmon Salmo salar. However, estimates of marine mortality often incorporate loss incurred during estuary migration that may be mechanistically distinct from factors affecting marine mortality. We examined movements and survival of 941 smolts (141 wild and 800 hatchery-reared fish) released in freshwater during passage through the Penobscot River estuary, Maine, from 2005 to 2013. We related trends in estuary arrival date, movement rate, and survival to fish characteristics, migratory history, and environmental conditions in the estuary. Fish that experienced the warmest thermal history arrived in the estuary 8 d earlier than those experiencing the coolest thermal history during development. Estuary arrival date was 10 d later for fish experiencing high flow than for fish experiencing low flow. Fish released furthest upstream arrived in the estuary 3 d later than those stocked further downstream but moved 0.5 km/h faster through the estuary. Temporally, movement rate and survival in the estuary both peaked in mid-May. Spatially, movement rate and survival both decreased from freshwater to the ocean. Wild smolts arrived in the estuary later than hatchery fish, but we observed no change in movement rate or survival attributable to rearing history. Fish with the highest gill Na+, K+-ATPase activity incurred 25% lower mortality through the estuary than fish with the lowest gill Na+, K+-ATPase activity. Smolt survival decreased (by up to 40%) with the increasing number of dams passed (ranging from two to nine) during freshwater migration. These results underscore the importance of physiological preparedness on performance and the delayed, indirect effects of dams on survival of Atlantic Salmon smolts during estuary migration, ultimately affecting marine survival estimates.

  5. Variation in decomposition rates in the fynbos biome, South Africa: the role of plant species and plant stoichiometry.

    PubMed

    Bengtsson, Jan; Janion, Charlene; Chown, Steven L; Leinaas, Hans Petter

    2011-01-01

    Previous studies in the fynbos biome of the Western Cape, South Africa, have suggested that biological decomposition rates in the fynbos vegetation type, on poor soils, may be so low that fire is the main factor contributing to litter breakdown and nutrient release. However, the fynbos biome also comprises vegetation types on more fertile soils, such as the renosterveld. The latter is defined by the shrub Elytropappus rhinocerotis, while the shrub Galenia africana may become dominant in overgrazed areas. We examined decomposition of litter of these two species and the geophyte Watsonia borbonica in patches of renosterveld in an agricultural landscape. In particular, we sought to understand how plant species identity affects litter decomposition rates, especially through variation in litter stoichiometry. Decomposition (organic matter mass loss) varied greatly among the species, and was related to litter N and P content. G. africana, with highest nutrient content, lost 65% of its original mass after 180 days, while E. rhinocerotis had lost ca. 30%, and the very nutrient poor W. borbonica <10%. Litter placed under G. africana decomposed slightly faster than when placed under E. rhinocerotis. Over the course of the experiment, G. africana and E. rhinocerotis lost N and P, while W. borbonica showed strong accumulation of these elements. Decomposition rates of G. africana and E. rhinocerotis were substantially higher than those previously reported from fynbos vegetation, and variation among the species investigated was considerable. Our results suggest that fire may not always be the main factor contributing to litter breakdown and nutrient release in the fynbos biome. Thus, biological decomposition has likely been underestimated and, along with small-scale variation in ecosystem processes, would repay further study.

  6. Magnetotail dynamics under isobaric constraints

    NASA Technical Reports Server (NTRS)

    Birn, Joachim; Schindler, Karl; Janicke, Lutz; Hesse, Michael

    1994-01-01

    Using linear theory and nonlinear MHD simulations, we investigate the resistive and ideal MHD stability of two-dimensional plasma configurations under the isobaric constraint dP/dt = 0, which in ideal MHD is equivalent to conserving the pressure function P = P(A), where A denotes the magnetic flux. This constraint is satisfied for incompressible modes, such as Alfven waves, and for systems undergoing energy losses. The linear stability analysis leads to a Schroedinger equation, which can be investigated by standard quantum mechanics procedures. We present an application to a typical stretched magnetotail configuration. For a one-dimensional sheet equilibrium characteristic properties of tearing instability are rediscovered. However, the maximum growth rate scales with the 1/7 power of the resistivity, which implies much faster growth than for the standard tearing mode (assuming that the resistivity is small). The same basic eigen-mode is found also for weakly two-dimensional equilibria, even in the ideal MHD limit. In this case the growth rate scales with the 1/4 power of the normal magnetic field. The results of the linear stability analysis are confirmed qualitatively by nonlinear dynamic MHD simulations. These results suggest the interesting possibility that substorm onset, or the thinning in the late growth phase, is caused by the release of a thermodynamic constraint without the (immediate) necessity of releasing the ideal MHD constraint. In the nonlinear regime the resistive and ideal developments differ in that the ideal mode does not lead to neutral line formation without the further release of the ideal MHD constraint; instead a thin current sheet forms. The isobaric constraint is critically discussed. Under perhaps more realistic adiabatic conditions the ideal mode appears to be stable but could be driven by external perturbations and thus generate the thin current sheet in the late growth phase, before a nonideal instability sets in.

  7. Transport direction determines the kinetics of substrate transport by the glutamate transporter EAAC1

    PubMed Central

    Zhang, Zhou; Tao, Zhen; Gameiro, Armanda; Barcelona, Stephanie; Braams, Simona; Rauen, Thomas; Grewer, Christof

    2007-01-01

    Glutamate transport by the excitatory amino acid carrier EAAC1 is known to be reversible. Thus, glutamate can either be taken up into cells, or it can be released from cells through reverse transport, depending on the electrochemical gradient of the co- and countertransported ions. However, it is unknown how fast and by which reverse transport mechanism glutamate can be released from cells. Here, we determined the steady- and pre-steady-state kinetics of reverse glutamate transport with submillisecond time resolution. First, our results suggest that glutamate and Na+ dissociate from their cytoplasmic binding sites sequentially, with glutamate dissociating first, followed by the three cotransported Na+ ions. Second, the kinetics of glutamate transport depend strongly on transport direction, with reverse transport being faster but less voltage-dependent than forward transport. Third, electrogenicity is distributed over several reverse transport steps, including intracellular Na+ binding, reverse translocation, and reverse relocation of the K+-bound EAAC1. We propose a kinetic model, which is based on a “first-in-first-out” mechanism, suggesting that glutamate association, with its extracellular binding site as well as dissociation from its intracellular binding site, precedes association and dissociation of at least one Na+ ion. Our model can be used to predict rates of glutamate release from neurons under physiological and pathophysiological conditions. PMID:17991780

  8. Effect of Alcohol on Diesel Engine Combustion Operating with Biodiesel-Diesel Blend at Idling Conditions

    NASA Astrophysics Data System (ADS)

    Mahmudul, H. M.; Hagos, Ftwi. Y.; A, M. Mukhtar N.; Mamat, Rizalman; Abdullah, A. Adam

    2018-03-01

    Biodiesel is a promising alternative fuel to run the automotive engine. However, its blends have not been properly investigated during idling as it is the main problem to run the vehicles in a big city. The purpose of this study is to evaluate the impact of alcohol additives such as butanol and ethanol on combustion parameters under idling conditions when a single cylinder diesel engine operates with diesel, diesel-biodiesel blends, and diesel biodiesel-alcohol blends. The engine combustion parameters such as peak pressure, heat release rate and ignition delay were computed. This investigation has revealed that alcohol blends with diesel and biodiesel, BU20 blend yield higher maximum peak cylinder pressure than diesel. B5 blend was found with the lowest energy release among all. B20 was slightly lower than diesel. BU20 blend was seen with the highest peak energy release where E20 blend was found advance than diesel. Among all, the blends alcohol component revealed shorter ignition delay. B5 and B20 blends were influenced by biodiesel interference and the burning fraction were found slightly slower than conventional diesel where BU20 and E20 blends was found slightly faster than diesel So, based on the result, it can be said that among the alcohol blends butanol and ethanol can be promising alternative at idling conditions and can be used without any engine modifications.

  9. A comparative study of the effect of spray drying and hot-melt extrusion on the properties of amorphous solid dispersions containing felodipine.

    PubMed

    Mahmah, Osama; Tabbakh, Rami; Kelly, Adrian; Paradkar, Anant

    2014-02-01

    To compare the properties of solid dispersions of felodipine for oral bioavailability enhancement using two different polymers, polyvinylpyrrolidone (PVP) and hydroxypropyl methylcellulose acetate succinate (HPMCAS), by hot-melt extrusion (HME) and spray drying. Felodipine solid dispersions were prepared by HME and spray drying techniques. PVP and HPMCAS were used as polymer matrices at different drug : polymer ratios (1 : 1, 1 : 2 and 1 : 3). Detailed characterization was performed using differential scanning calorimetry, powder X-ray diffractometry, scanning electron microscopy and in-vitro dissolution testing. Dissolution profiles were evaluated in the presence of sodium dodecyl sulphate. Stability of different solid dispersions was studied under accelerated conditions (40°C/75% RH) over 8 weeks. Spray-dried formulations were found to release felodipine faster than melt extruded formulations for both polymer matrices. Solid dispersions containing HMPCAS exhibited higher drug release rates and better wettability than those produced with a PVP matrix. No significant differences in stability were observed except with HPMCAS at a 1 : 1 ratio, where crystallization was detected in spray-dried formulations. Solid dispersions of felodipine produced by spray drying exhibited more rapid drug release than corresponding melt extruded formulations, although in some cases improved stability was observed for melt extruded formulations. © 2013 Royal Pharmaceutical Society.

  10. Strain Mediated Adaptation Is Key for Myosin Mechanochemistry: Discovering General Rules for Motor Activity.

    PubMed

    Jana, Biman; Onuchic, José N

    2016-08-01

    A structure-based model of myosin motor is built in the same spirit of our early work for kinesin-1 and Ncd towards physical understanding of its mechanochemical cycle. We find a structural adaptation of the motor head domain in post-powerstroke state that signals faster ADP release from it compared to the same from the motor head in the pre-powerstroke state. For dimeric myosin, an additional forward strain on the trailing head, originating from the postponed powerstroke state of the leading head in the waiting state of myosin, further increases the rate of ADP release. This coordination between the two heads is the essence of the processivity of the cycle. Our model provides a structural description of the powerstroke step of the cycle as an allosteric transition of the converter domain in response to the Pi release. Additionally, the variation in structural elements peripheral to catalytic motor domain is the deciding factor behind diverse directionalities of myosin motors (myosin V & VI). Finally, we observe that there are general rules for functional molecular motors across the different families. Allosteric structural adaptation of the catalytic motor head in different nucleotide states is crucial for mechanochemistry. Strain-mediated coordination between motor heads is essential for processivity and the variation of peripheral structural elements is essential for their diverse functionalities.

  11. Strain Mediated Adaptation Is Key for Myosin Mechanochemistry: Discovering General Rules for Motor Activity

    PubMed Central

    Jana, Biman; Onuchic, José N.

    2016-01-01

    A structure-based model of myosin motor is built in the same spirit of our early work for kinesin-1 and Ncd towards physical understanding of its mechanochemical cycle. We find a structural adaptation of the motor head domain in post-powerstroke state that signals faster ADP release from it compared to the same from the motor head in the pre-powerstroke state. For dimeric myosin, an additional forward strain on the trailing head, originating from the postponed powerstroke state of the leading head in the waiting state of myosin, further increases the rate of ADP release. This coordination between the two heads is the essence of the processivity of the cycle. Our model provides a structural description of the powerstroke step of the cycle as an allosteric transition of the converter domain in response to the Pi release. Additionally, the variation in structural elements peripheral to catalytic motor domain is the deciding factor behind diverse directionalities of myosin motors (myosin V & VI). Finally, we observe that there are general rules for functional molecular motors across the different families. Allosteric structural adaptation of the catalytic motor head in different nucleotide states is crucial for mechanochemistry. Strain-mediated coordination between motor heads is essential for processivity and the variation of peripheral structural elements is essential for their diverse functionalities. PMID:27494025

  12. Next Generation Risk Assessment: Incorporation of Recent Advances in Molecular, Computational, and Systems Biology (Final Report)

    EPA Science Inventory

    EPA announced the release of the final report, Next Generation Risk Assessment: Incorporation of Recent Advances in Molecular, Computational, and Systems Biology. This report describes new approaches that are faster, less resource intensive, and more robust that can help ...

  13. The 2017 Release Cloudy

    NASA Astrophysics Data System (ADS)

    Ferland, G. J.; Chatzikos, M.; Guzmán, F.; Lykins, M. L.; van Hoof, P. A. M.; Williams, R. J. R.; Abel, N. P.; Badnell, N. R.; Keenan, F. P.; Porter, R. L.; Stancil, P. C.

    2017-10-01

    We describe the 2017 release of the spectral synthesis code Cloudy, summarizing the many improvements to the scope and accuracy of the physics which have been made since the previous release. Exporting the atomic data into external data files has enabled many new large datasets to be incorporated into the code. The use of the complete datasets is not realistic for most calculations, so we describe the limited subset of data used by default, which predicts significantly more lines than the previous release of Cloudy. This version is nevertheless faster than the previous release, as a result of code optimizations. We give examples of the accuracy limits using small models, and the performance requirements of large complete models. We summarize several advances in the H- and He-like iso-electronic sequences and use our complete collisional-radiative models to establish the densities where the coronal and local thermodynamic equilibrium approximations work.

  14. Rh6G released from solid and nanoporous SiO2 spheres prepared by sol-gel route

    NASA Astrophysics Data System (ADS)

    García-Macedo, J. A.; Francisco S., P.; Franco, A.

    2015-10-01

    Porous silica nanoparticles are considering good systems for drug cargo and liquid separation. In this work we studied the release of rhodamine 6G (Rh6G) from solid and porous silica nanoparticles. Solid and porous SiO2 spheres were prepared by sol-gel method. Nanoporous channels were produced by using a surfactant that was removed by chemical procedure. Rh6G was incorporated into the channels by impregnation. The hexagonal structure of the pores was detected by XRD and confirmed by HRTEM micrographs. Rh6G released from the particles by stirring them in water at controlled speed was studied as function of time by photoluminescence. Released ratio was faster in the solid nanoparticles than in the porous ones. In the last case, a second release mechanism was observed. It was related with rhodamine coming out from the porous.

  15. Predicting clinical decline in progressive agrammatic aphasia and apraxia of speech.

    PubMed

    Whitwell, Jennifer L; Weigand, Stephen D; Duffy, Joseph R; Clark, Heather M; Strand, Edythe A; Machulda, Mary M; Spychalla, Anthony J; Senjem, Matthew L; Jack, Clifford R; Josephs, Keith A

    2017-11-28

    To determine whether baseline clinical and MRI features predict rate of clinical decline in patients with progressive apraxia of speech (AOS). Thirty-four patients with progressive AOS, with AOS either in isolation or in the presence of agrammatic aphasia, were followed up longitudinally for up to 4 visits, with clinical testing and MRI at each visit. Linear mixed-effects regression models including all visits (n = 94) were used to assess baseline clinical and MRI variables that predict rate of worsening of aphasia, motor speech, parkinsonism, and behavior. Clinical predictors included baseline severity and AOS type. MRI predictors included baseline frontal, premotor, motor, and striatal gray matter volumes. More severe parkinsonism at baseline was associated with faster rate of decline in parkinsonism. Patients with predominant sound distortions (AOS type 1) showed faster rates of decline in aphasia and motor speech, while patients with segmented speech (AOS type 2) showed faster rates of decline in parkinsonism. On MRI, we observed trends for fastest rates of decline in aphasia in patients with relatively small left, but preserved right, Broca area and precentral cortex. Bilateral reductions in lateral premotor cortex were associated with faster rates of decline of behavior. No associations were observed between volumes and decline in motor speech or parkinsonism. Rate of decline of each of the 4 clinical features assessed was associated with different baseline clinical and regional MRI predictors. Our findings could help improve prognostic estimates for these patients. © 2017 American Academy of Neurology.

  16. Females exceed males in mercury concentrations of burbot Lota lota

    USGS Publications Warehouse

    Madenjian, Charles P.; Stapanian, Martin A.; Cott, Peter A.; Krabbenhoft, David P.; Edwards, William; Ogilvie, Lynn M.; Mychek-Londer, Justin G.; DeWild, John F.

    2015-01-01

    Examination of differences in contaminant concentrations between sexes of fish, across several fish species, may reveal clues for important behavioral and physiological differences between the sexes. We determined whole-fish total mercury (Hg) concentrations of 25 male and 25 female adult burbot Lota lota captured in Lake Erie during summer 2011, and of 14 male and 18 female adult burbot captured in Great Slave Lake (Northwest Territories, Canada) during winter 2013. On average, females were 22 % greater in Hg concentration than males. This difference was probably not due to a greater feeding rate by females, because results from previous studies based on polychlorinated biphenyl (PCB) determinations of these same burbot indicated that males fed at a substantially greater rate than females. Based on our determinations of Hg concentrations in the gonads and somatic tissue of five ripe females and five ripe males, this difference was not attributable to changes in Hg concentration immediately after spawning due to release of gametes. Further, bioenergetics modeling results from previous studies indicated that growth dilution would not explain any portion of this observed difference in Hg concentrations between the sexes. We, therefore, conclude that this difference was most likely due to a substantially faster rate of Hg elimination by males compared with females. Male burbot exhibit among the greatest gonadosomatic indices (GSIs) of all male fishes, with their testes accounting for between 10 and 15 % of their body weight when the fish are in ripe condition. Androgens have been linked to enhanced Hg elimination rates in other vertebrates. If androgen production is positively related to GSI, then male burbot would be expected to have among the greatest androgen levels of all fishes. Thus, we hypothesize that male burbot eliminate Hg from their bodies faster than most other male fishes, and this explains the greater Hg concentration in females compared with males.

  17. Variation in promiscuity and sexual selection drives avian rate of Faster-Z evolution.

    PubMed

    Wright, Alison E; Harrison, Peter W; Zimmer, Fabian; Montgomery, Stephen H; Pointer, Marie A; Mank, Judith E

    2015-03-01

    Higher rates of coding sequence evolution have been observed on the Z chromosome relative to the autosomes across a wide range of species. However, despite a considerable body of theory, we lack empirical evidence explaining variation in the strength of the Faster-Z Effect. To assess the magnitude and drivers of Faster-Z Evolution, we assembled six de novo transcriptomes, spanning 90 million years of avian evolution. Our analysis combines expression, sequence and polymorphism data with measures of sperm competition and promiscuity. In doing so, we present the first empirical evidence demonstrating the positive relationship between Faster-Z Effect and measures of promiscuity, and therefore variance in male mating success. Our results from multiple lines of evidence indicate that selection is less effective on the Z chromosome, particularly in promiscuous species, and that Faster-Z Evolution in birds is due primarily to genetic drift. Our results reveal the power of mating system and sexual selection in shaping broad patterns in genome evolution. © 2015 John Wiley & Sons Ltd.

  18. A description of an ‘obesogenic’ eating style that promotes higher energy intake and is associated with greater adiposity in 4.5 year-old children: Results from the GUSTO cohort

    PubMed Central

    Fogel, Anna; Goh, Ai Ting; Fries, Lisa R.; Sadananthan, Suresh Anand; Velan, S. Sendhil; Michael, Navin; Tint, Mya Thway; Fortier, Marielle Valerie; Chan, Mei Jun; Toh, Jia Ying; Chong, Yap-Seng; Tan, Kok Hian; Yap, Fabian; Shek, Lynette P.; Meaney, Michael J.; Broekman, Birit F. P.; Lee, Yung Seng; Godfrey, Keith M.; Chong, Mary Foong Fong; Forde, Ciarán G.

    2017-01-01

    Recent findings confirm that faster eating rates support higher energy intakes within a meal and are associated with increased body weight and adiposity in children. The current study sought to identify the eating behaviours that underpin faster eating rates and energy intake in children, and to investigate their variations by weight status and other individual differences. Children (N=386) from the Growing Up in Singapore towards Healthy Outcomes (GUSTO) cohort took part in a video-recorded ad libitum lunch at 4.5 years of age to measure acute energy intake. Videos were coded for three eating behaviours (bites, chews and swallows) to derive a measure of eating rate (g/min) and measures of eating microstructure: eating rate (g/min), total oral exposure (minutes), average bite size (g/bite), chews per gram, oral exposure per bite (seconds), total bites and proportion of active to total mealtime. Children’s BMIs were calculated and a subset of children underwent MRI scanning to establish abdominal adiposity. Children were grouped into faster and slower eaters, and into healthy and overweight groups to compare their eating behaviours. Results demonstrate that faster eating rates were correlated with larger average bite size (r=0.55, p<0.001), fewer chews per gram (r=-0.71, p<0.001) and shorter oral exposure time per bite (r=-0.25, p<0.001), and with higher energy intakes (r=0.61, p<0.001). Children with overweight and higher adiposity had faster eating rates (p<0.01) and higher energy intakes (p<0.01), driven by larger bite sizes (p<0.05). Eating behaviours varied by sex, ethnicity and early feeding regimes, partially attributable to BMI. We propose that these behaviours describe an ‘obesogenic eating style’ that is characterised by faster eating rates, achieved through larger bites, reduced chewing and shorter oral exposure time. This obesogenic eating style supports acute energy intake within a meal and is more prevalent among, though not exclusive to, children with overweight. PMID:28213204

  19. Soy matrix drug delivery systems obtained by melt-processing techniques.

    PubMed

    Vaz, Cláudia M; van Doeveren, Patrick F N M; Reis, Rui L; Cunha, António M

    2003-01-01

    The aim of this study was to develop new soy protein drug delivery matrix systems by melt-processing techniques, namely, extrusion and injection moulding. The soy matrix systems with an encapsulated drug (theophylline, TH) were previously compounded by extrusion performed at two different pH values, (i) pH 4 (SIpDtp) and (ii) pH 7 (SIDtp), and further injection-moulded into a desired shape. During the extrusion process the matrixes SIDtp were also cross-linked with glyoxal (0.6X-SIDtp) and reinforced with a bioactive filler, hydroxylapatite (SI-HADtp). The obtained mouldings were used to study the drug-release mechanisms from the plastic soy-TH matrixes. In an isotonic saline solution (ISS) buffered at pH 5.0 (200 mM acetate buffer), the resulting release kinetics could be described using the Fick's second law of diffusion. Because the diffusion coefficients were found to be constant and the boundary conditions to be stationary, these systems are drug-diffusion controlled. Conversely, the dominant phenomena in an isotonic saline solution buffered at pH 7.4 (200 mM Tris/HCl buffer) are more complex. In fact, because of the higher polymer solubility, the resulting matrix is time-variant. So, the drug release is affected by swelling, drug diffusion, and polymer dissolution, being faster when compared to ISS-200 mM acetate buffer, pH 5.0. The changes in the formulation composition affecting the correspondent release rates were also investigated. At pH 7.4, increasing the cross-linking degree of the polymer matrix (via reaction with glyoxal or heat treatment) or decreasing the net charge (extruding at pH near its isoelectric point) led to lower release rates. The incorporation of ceramic filler caused the opposite effect. Because of the low solubility of the matrix at pH 5.0, no significant variations were detected with variations in the selected formulations. These systems, based on a nonstandard protein-based material, seem to be very promising to be used as carriers for drug delivery.

  20. Defect engineered oxides for enhanced mechanochemical destruction of halogenated organic pollutants.

    PubMed

    Cagnetta, Giovanni; Huang, Jun; Lu, Mengnan; Wang, Bin; Wang, Yujue; Deng, Shubo; Yu, Gang

    2017-10-01

    Mechanochemical activation of metal oxides is studied by a novel methodology based on solid state reaction with a stable radical specie. Such approach corroborates that vacancy formation by high energy ball milling, also in nonreducible oxides, is responsible for electron release on particles' surfaces. This finding suggests a new defect engineering strategy to improve effectiveness of metal oxides as co-milling reagent for halogenated organic pollutant destruction. Results prove that high valent metal doping of a commonly employed co-milling reagent such as CaO determines 2.5 times faster pollutant degradation rate. This enhancement is due to electron-rich defects generated by the dopant; electrons are transferred to the organic pollutant thus causing its mineralization. The proposed strategy can be easily applied to other reagents. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. The Structure of Working Memory Abilities across the Adult Life Span

    PubMed Central

    Hale, Sandra; Rose, Nathan S.; Myerson, Joel; Strube, Michael J; Sommers, Mitchell; Tye-Murray, Nancy; Spehar, Brent

    2010-01-01

    The present study addresses three questions regarding age differences in working memory: (1) whether performance on complex span tasks decreases as a function of age at a faster rate than performance on simple span tasks; (2) whether spatial working memory decreases at a faster rate than verbal working memory; and (3) whether the structure of working memory abilities is different for different age groups. Adults, ages 20–89 (n=388), performed three simple and three complex verbal span tasks and three simple and three complex spatial memory tasks. Performance on the spatial tasks decreased at faster rates as a function of age than performance on the verbal tasks, but within each domain, performance on complex and simple span tasks decreased at the same rates. Confirmatory factor analyses revealed that domain-differentiated models yielded better fits than models involving domain-general constructs, providing further evidence of the need to distinguish verbal and spatial working memory abilities. Regardless of which domain-differentiated model was examined, and despite the faster rates of decrease in the spatial domain, age group comparisons revealed that the factor structure of working memory abilities was highly similar in younger and older adults and showed no evidence of age-related dedifferentiation. PMID:21299306

  2. Role of climate change in reforestation and nursery practices

    Treesearch

    Mary I. Williams; R. Kasten Dumroese

    2014-01-01

    Ecosystems have been adjusting to changes in climate over time, but projections are that future global climate will change at rates faster than that previously experienced in geologic time. It is not necessarily the amount of change, but rather this rate of change that is most threatening to plant species - the climate appears to be changing faster than plants can...

  3. Experimental study of PLLA/INH slow release implant fabricated by three dimensional printing technique and drug release characteristics in vitro.

    PubMed

    Wu, Gui; Wu, Weigang; Zheng, Qixin; Li, Jingfeng; Zhou, Jianbo; Hu, Zhilei

    2014-07-19

    Local slow release implant provided long term and stable drug release in the lesion. The objective of this study was to fabricate biodegradable slow release INH/PLLA tablet via 3 dimensional printing technique (3DP) and to compare the drug release characteristics of three different structured tablets in vitro. Three different drug delivery systems (columnar-shaped tablet (CST), doughnut-shaped tablet (DST) and multilayer doughnut-shaped tablet (MDST)) were manufactured by the three dimensional printing machine and isoniazid was loaded into the implant. Dynamic soaking method was used to study the drug release characteristics of the three implants. MTT cytotoxicity test and direct contact test were utilized to study the biocompatibility of the implant. The microstructures of the implants' surfaces were observed with electron microscope. The PLLA powder in the tablet could be excellently combined through 3DP without disintegration. Electron microscope observations showed that INH distributed evenly on the surface of the tablet in a "nest-shaped" way, while the surface of the barrier layer in the multilayer doughnut shaped tablet was compact and did not contain INH. The concentration of INH in all of the three tablets were still higher than the effective bacteriostasis concentration (Isoniazid: 0.025 ~ 0.05 μg/ml) after 30 day's release in vitro. All of the tablets showed initial burst release of the INH in the early period. Drug concentration of MDST became stable and had little fluctuation starting from the 6th day of the release. Drug concentration of DST and CST decreased gradually and the rate of decrease in concentration was faster in DST than CST. MTT cytotoxicity test and direct contact test indicated that the INH-PLLA tablet had low cytotoxicity and favorable biocompatibility. Three dimensional printing technique was a reliable technique to fabricate complicated implants. Drug release pattern in MDST was the most stable among the three implants. It was an ideal drug delivery system for the antibiotics. Biocompatibility tests demonstrated that the INH-PLLA implant did not have cytotoxicity. The multilayer donut-shaped tablet provided a new constant slow release method after an initial burst for the topical application of the antibiotic.

  4. Experimental study of PLLA/INH slow release implant fabricated by three dimensional printing technique and drug release characteristics in vitro

    PubMed Central

    2014-01-01

    Background Local slow release implant provided long term and stable drug release in the lesion. The objective of this study was to fabricate biodegradable slow release INH/PLLA tablet via 3 dimensional printing technique (3DP) and to compare the drug release characteristics of three different structured tablets in vitro. Methods Three different drug delivery systems (columnar-shaped tablet (CST), doughnut-shaped tablet (DST) and multilayer doughnut-shaped tablet (MDST)) were manufactured by the three dimensional printing machine and isoniazid was loaded into the implant. Dynamic soaking method was used to study the drug release characteristics of the three implants. MTT cytotoxicity test and direct contact test were utilized to study the biocompatibility of the implant. The microstructures of the implants’ surfaces were observed with electron microscope. Results The PLLA powder in the tablet could be excellently combined through 3DP without disintegration. Electron microscope observations showed that INH distributed evenly on the surface of the tablet in a “nest-shaped” way, while the surface of the barrier layer in the multilayer doughnut shaped tablet was compact and did not contain INH. The concentration of INH in all of the three tablets were still higher than the effective bacteriostasis concentration (Isoniazid: 0.025 ~ 0.05 μg/ml) after 30 day’s release in vitro. All of the tablets showed initial burst release of the INH in the early period. Drug concentration of MDST became stable and had little fluctuation starting from the 6th day of the release. Drug concentration of DST and CST decreased gradually and the rate of decrease in concentration was faster in DST than CST. MTT cytotoxicity test and direct contact test indicated that the INH-PLLA tablet had low cytotoxicity and favorable biocompatibility. Conclusions Three dimensional printing technique was a reliable technique to fabricate complicated implants. Drug release pattern in MDST was the most stable among the three implants. It was an ideal drug delivery system for the antibiotics. Biocompatibility tests demonstrated that the INH-PLLA implant did not have cytotoxicity. The multilayer donut-shaped tablet provided a new constant slow release method after an initial burst for the topical application of the antibiotic. PMID:25038793

  5. Exocytosis of gold nanoparticle and photosensitizer from cancer cells and their effects on photodynamic and photothermal processes.

    PubMed

    He, Yulu; Hua, Wei-Hsiang; Low, Meng-Chun; Tsai, Yu-Hsuan; Cai, Cheng-Jin; Chiang, Hsin-Chun; Yu, Jian-He; Hsiao, Jen-Hung; Tseng, Po-Hao; Kiang, Yean-Woei; Yang, C C; Zhang, Zhenxi

    2018-06-08

    We first illustrate the faster decrease of the photothermal (PT) effect with the delay time of laser treatment, in which the illumination of a 1064 nm laser effectively excites the localized surface plasmon (LSP) resonance of cell-up-taken gold nanoring (NRI) linked with a photosensitizer (PS), when compared with the photodynamic (PD) effect produced by the illumination of a 660 nm laser for effective PS excitation. The measurement results of the metal contents of Au NRI and PS based on inductively coupled plasma mass spectroscopy and the PS fluorescence intensity based on flow cytometry show that the linkage of NRI and PS is rapidly broken for releasing PS through the effect of glutathione in lysosome after cell uptake. Meanwhile, NRI escapes from a cell with a high rate such that the PT effect decays fast while the released PS can stay inside a cell longer for producing a prolonged PD effect. The effective delivery of PS through the linkage with Au NRI for cell uptake and the advantageous effect of LSP resonance at a PS absorption wavelength on the PD process are also demonstrated.

  6. Structural evolution of Ti destroyable interlayer in large-size diamond film deposition by DC arc plasma jet

    NASA Astrophysics Data System (ADS)

    Guo, Jianchao; Li, Chengming; Liu, Jinlong; Wei, Junjun; Chen, Liangxian; Hua, Chenyi; Yan, Xiongbo

    2016-05-01

    The addition of titanium (Ti) interlayer was verified to reduce the residual stress of diamond films by self-fracturing and facilitate the harvest of a crack-free free-standing diamond film prepared by direct current (DC) arc plasma jet. In this study, the evolution of the Ti interlayer between large-area diamond film and substrate was studied and modeled in detail. The evolution of the interlayer was found to be relevant to the distribution of the DC arc plasma, which can be divided into three areas (arc center, arc main, and arc edge). The formation rate of titanium carbide (TiC) in the arc main was faster than in the other two areas and resulted in the preferred generation of crack in the diamond film in the arc main during cooling. Sandwich structures were formed along with the growth of TiC until the complete transformation of the Ti interlayer. The interlayer released stress via self-fracture. Avoiding uneven fragile regions that formed locally in the interlayer and achieving cooperatively released stress are crucial for the preparation of large crack-free diamond films.

  7. Development and evaluation of N-naphthyl-N,O-succinyl chitosan micelles containing clotrimazole for oral candidiasis treatment.

    PubMed

    Tonglairoum, Prasopchai; Woraphatphadung, Thisirak; Ngawhirunpat, Tanasait; Rojanarata, Theerasak; Akkaramongkolporn, Prasert; Sajomsang, Warayuth; Opanasopit, Praneet

    2017-03-01

    Clotrimazole (CZ)-loaded N-naphthyl-N,O-succinyl chitosan (NSCS) micelles have been developed as an alternative for oral candidiasis treatment. NSCS was synthesized by reductive N-amination and N,O-succinylation. CZ was incorporated into the micelles using various methods, including the dropping method, the dialysis method, and the O/W emulsion method. The size and morphology of the CZ-loaded micelles were characterized using dynamic light scattering measurements (DLS) and a transmission electron microscope (TEM), respectively. The drug entrapment efficiency, loading capacity, release characteristics, and antifungal activity against Candida albicans were also evaluated. The CZ-loaded micelles prepared using different methods differed in the size of micelles. The micelles ranged in size from 120 nm to 173 nm. The micelles prepared via the O/W emulsion method offered the highest percentage entrapment efficiency and loading capacity. The CZ released from the CZ-loaded micelles at much faster rate compared to CZ powder. The CZ-loaded NSCS micelles can significantly hinder the growth of Candida cells after contact. These CZ-loaded NSCS micelles offer great antifungal activity and might be further developed to be a promising candidate for oral candidiasis treatment.

  8. Age and growth of the knobbed whelk Busycon carica (Gmelin 1791) in South Carolina subtidal waters

    USGS Publications Warehouse

    Eversole, A.G.; Anderson, W.D.; Isely, J.J.

    2008-01-01

    Knobbed whelk, Busycon carica (Gmelin, 1791), age and growth were estimated using tagged and recaptured individuals (n = 396) from areas off South Carolina coastal islands. Recaptured whelks were at large an average of 298 d (4-2,640 d). Growth, an increase in shell length (SL), was evident in 24% of the recaptured whelks, whereas 29% of recaptured individuals were the same size as when released and 47% were smaller than the released size. Mean growth rate was <0.001 mm SL/d and 0.022 mm SL/d if decreases in SL were assumed to be zero. Smaller whelks (???90 mm SL) at large for over one year grew seven times faster than larger whelks. The von Bertalanffy growth model: SL1 = 159.5(1 - e-0.0765(t+0.4162)), was developed from the mark - recapture whelks exhibiting growth. Based on a South Carolina minimum legal size of 102 mm SL, whelks recruit into the fishery at 13 y of age. The longevity, large size at maturity and slow growth suggest the potential for over harvest of knobbed whelk. Future whelk management plans may wish to consider whether economically viable commercial harvest can be sustainable.

  9. Antimicrobial paper based on a soy protein isolate or modified starch coating including carvacrol and cinnamaldehyde.

    PubMed

    Arfa, Afef Ben; Preziosi-Belloy, Laurence; Chalier, Pascale; Gontard, Nathalie

    2007-03-21

    Soy protein isolates (SPI) and octenyl-succinate (OSA) modified starch were used as paper coating and inclusion matrices of two antimicrobial compounds: cinnamaldehyde and carvacrol. Antimicrobial compound losses from the coated papers were evaluated after the coating and drying process, and the two matrices demonstrated retention ability that depended on the compound nature and concentration. Whereas carvacrol losses ranged between 12 and 45%, cinnamaldehyde losses varied from 43 to 76%. The losses were always higher from OSA-starch-coated papers than from SPI-coated papers. During storage in accelerated conditions, at 30 degrees C and 60% relative humidity, carvacrol retention from coated papers was found to be similar whatever the coating matrices and the carvacrol rate. In contrast, the retention from SPI-coated papers was particularly high for the cinnamaldehyde concentration of 30% (w/w) compared to the lowest (10% w/w) or highest concentration (60% w/w). Compared to carvacrol, faster release was observed, particurlarly when OSA-starch was used. The antimicrobial properties of the coated papers were shown against Escherichia coli and Botrytis cinerea and explained by favorable conditions of total release of the antimicrobial agents.

  10. Exocytosis of gold nanoparticle and photosensitizer from cancer cells and their effects on photodynamic and photothermal processes

    NASA Astrophysics Data System (ADS)

    He, Yulu; Hua, Wei-Hsiang; Low, Meng-Chun; Tsai, Yu-Hsuan; Cai, Cheng-Jin; Chiang, Hsin-Chun; Yu, Jian-He; Hsiao, Jen-Hung; Tseng, Po-Hao; Kiang, Yean-Woei; Yang, C. C.; Zhang, Zhenxi

    2018-06-01

    We first illustrate the faster decrease of the photothermal (PT) effect with the delay time of laser treatment, in which the illumination of a 1064 nm laser effectively excites the localized surface plasmon (LSP) resonance of cell-up-taken gold nanoring (NRI) linked with a photosensitizer (PS), when compared with the photodynamic (PD) effect produced by the illumination of a 660 nm laser for effective PS excitation. The measurement results of the metal contents of Au NRI and PS based on inductively coupled plasma mass spectroscopy and the PS fluorescence intensity based on flow cytometry show that the linkage of NRI and PS is rapidly broken for releasing PS through the effect of glutathione in lysosome after cell uptake. Meanwhile, NRI escapes from a cell with a high rate such that the PT effect decays fast while the released PS can stay inside a cell longer for producing a prolonged PD effect. The effective delivery of PS through the linkage with Au NRI for cell uptake and the advantageous effect of LSP resonance at a PS absorption wavelength on the PD process are also demonstrated.

  11. Biological feedbacks as cause and demise of the Neoproterozoic icehouse: astrobiological prospects for faster evolution and importance of cold conditions.

    PubMed

    Janhunen, Pekka; Kaartokallio, Hermanni; Oksanen, Ilona; Lehto, Kirsi; Lehto, Harry

    2007-02-14

    Several severe glaciations occurred during the Neoproterozoic eon, and especially near its end in the Cryogenian period (630-850 Ma). While the glacial periods themselves were probably related to the continental positions being appropriate for glaciation, the general coldness of the Neoproterozoic and Cryogenian as a whole lacks specific explanation. The Cryogenian was immediately followed by the Ediacaran biota and Cambrian Metazoan, thus understanding the climate-biosphere interactions around the Cryogenian period is central to understanding the development of complex multicellular life in general. Here we present a feedback mechanism between growth of eukaryotic algal phytoplankton and climate which explains how the Earth system gradually entered the Cryogenian icehouse from the warm Mesoproterozoic greenhouse. The more abrupt termination of the Cryogenian is explained by the increase in gaseous carbon release caused by the more complex planktonic and benthic foodwebs and enhanced by a diversification of metazoan zooplankton and benthic animals. The increased ecosystem complexity caused a decrease in organic carbon burial rate, breaking the algal-climatic feedback loop of the earlier Neoproterozoic eon. Prior to the Neoproterozoic eon, eukaryotic evolution took place in a slow timescale regulated by interior cooling of the Earth and solar brightening. Evolution could have proceeded faster had these geophysical processes been faster. Thus, complex life could theoretically also be found around stars that are more massive than the Sun and have main sequence life shorter than 10 Ga. We also suggest that snow and glaciers are, in a statistical sense, important markers for conditions that may possibly promote the development of complex life on extrasolar planets.

  12. Biological Feedbacks as Cause and Demise of Neoproterozoic Icehouse: Astrobiological Prospects for Faster Evolution and Importance of Cold Conditions

    PubMed Central

    Janhunen, Pekka; Kaartokallio, Hermanni; Oksanen, Ilona; Lehto, Kirsi; Lehto, Harry

    2007-01-01

    Several severe glaciations occurred during the Neoproterozoic eon, and especially near its end in the Cryogenian period (630–850 Ma). While the glacial periods themselves were probably related to the continental positions being appropriate for glaciation, the general coldness of the Neoproterozoic and Cryogenian as a whole lacks specific explanation. The Cryogenian was immediately followed by the Ediacaran biota and Cambrian Metazoan, thus understanding the climate-biosphere interactions around the Cryogenian period is central to understanding the development of complex multicellular life in general. Here we present a feedback mechanism between growth of eukaryotic algal phytoplankton and climate which explains how the Earth system gradually entered the Cryogenian icehouse from the warm Mesoproterozoic greenhouse. The more abrupt termination of the Cryogenian is explained by the increase in gaseous carbon release caused by the more complex planktonic and benthic foodwebs and enhanced by a diversification of metazoan zooplankton and benthic animals. The increased ecosystem complexity caused a decrease in organic carbon burial rate, breaking the algal-climatic feedback loop of the earlier Neoproterozoic eon. Prior to the Neoproterozoic eon, eukaryotic evolution took place in a slow timescale regulated by interior cooling of the Earth and solar brightening. Evolution could have proceeded faster had these geophysical processes been faster. Thus, complex life could theoretically also be found around stars that are more massive than the Sun and have main sequence life shorter than 10 Ga. We also suggest that snow and glaciers are, in a statistical sense, important markers for conditions that may possibly promote the development of complex life on extrasolar planets. PMID:17299594

  13. Model-Driven Analysis of Eyeblink Classical Conditioning Reveals the Underlying Structure of Cerebellar Plasticity and Neuronal Activity.

    PubMed

    Antonietti, Alberto; Casellato, Claudia; D'Angelo, Egidio; Pedrocchi, Alessandra

    The cerebellum plays a critical role in sensorimotor control. However, how the specific circuits and plastic mechanisms of the cerebellum are engaged in closed-loop processing is still unclear. We developed an artificial sensorimotor control system embedding a detailed spiking cerebellar microcircuit with three bidirectional plasticity sites. This proved able to reproduce a cerebellar-driven associative paradigm, the eyeblink classical conditioning (EBCC), in which a precise time relationship between an unconditioned stimulus (US) and a conditioned stimulus (CS) is established. We challenged the spiking model to fit an experimental data set from human subjects. Two subsequent sessions of EBCC acquisition and extinction were recorded and transcranial magnetic stimulation (TMS) was applied on the cerebellum to alter circuit function and plasticity. Evolutionary algorithms were used to find the near-optimal model parameters to reproduce the behaviors of subjects in the different sessions of the protocol. The main finding is that the optimized cerebellar model was able to learn to anticipate (predict) conditioned responses with accurate timing and success rate, demonstrating fast acquisition, memory stabilization, rapid extinction, and faster reacquisition as in EBCC in humans. The firing of Purkinje cells (PCs) and deep cerebellar nuclei (DCN) changed during learning under the control of synaptic plasticity, which evolved at different rates, with a faster acquisition in the cerebellar cortex than in DCN synapses. Eventually, a reduced PC activity released DCN discharge just after the CS, precisely anticipating the US and causing the eyeblink. Moreover, a specific alteration in cortical plasticity explained the EBCC changes induced by cerebellar TMS in humans. In this paper, for the first time, it is shown how closed-loop simulations, using detailed cerebellar microcircuit models, can be successfully used to fit real experimental data sets. Thus, the changes of the model parameters in the different sessions of the protocol unveil how implicit microcircuit mechanisms can generate normal and altered associative behaviors.The cerebellum plays a critical role in sensorimotor control. However, how the specific circuits and plastic mechanisms of the cerebellum are engaged in closed-loop processing is still unclear. We developed an artificial sensorimotor control system embedding a detailed spiking cerebellar microcircuit with three bidirectional plasticity sites. This proved able to reproduce a cerebellar-driven associative paradigm, the eyeblink classical conditioning (EBCC), in which a precise time relationship between an unconditioned stimulus (US) and a conditioned stimulus (CS) is established. We challenged the spiking model to fit an experimental data set from human subjects. Two subsequent sessions of EBCC acquisition and extinction were recorded and transcranial magnetic stimulation (TMS) was applied on the cerebellum to alter circuit function and plasticity. Evolutionary algorithms were used to find the near-optimal model parameters to reproduce the behaviors of subjects in the different sessions of the protocol. The main finding is that the optimized cerebellar model was able to learn to anticipate (predict) conditioned responses with accurate timing and success rate, demonstrating fast acquisition, memory stabilization, rapid extinction, and faster reacquisition as in EBCC in humans. The firing of Purkinje cells (PCs) and deep cerebellar nuclei (DCN) changed during learning under the control of synaptic plasticity, which evolved at different rates, with a faster acquisition in the cerebellar cortex than in DCN synapses. Eventually, a reduced PC activity released DCN discharge just after the CS, precisely anticipating the US and causing the eyeblink. Moreover, a specific alteration in cortical plasticity explained the EBCC changes induced by cerebellar TMS in humans. In this paper, for the first time, it is shown how closed-loop simulations, using detailed cerebellar microcircuit models, can be successfully used to fit real experimental data sets. Thus, the changes of the model parameters in the different sessions of the protocol unveil how implicit microcircuit mechanisms can generate normal and altered associative behaviors.

  14. Study of the Alsys implementation of the Catalogue of Interface Features and Options for the Ada language for 80386 Unix

    NASA Technical Reports Server (NTRS)

    Gibson, James S.; Barnes, Michael J.; Ostermiller, Daniel L.

    1993-01-01

    A set of programs was written to test the functionality and performance of the Alsys Ada implementation of the Catalogue of Interface Features and Options (CIFO), a set of optional Ada packages for real-time applications. No problems were found with the task id, preemption control, or shared-data packages. Minor problems were found with the dispatching control, dynamic priority, events, non-waiting entry call, semaphore, and scheduling packages. The Alsys implementation is derived mostly from Release 2 of the CIFO standard, but includes some of the features of Release 3 and some modifications unique to Alsys. Performance measurements show that the semaphore and shared-data features are an order-of-magnitude faster than the same mechanisms using an Ada rendezvous. The non-waiting entry call is slightly faster than a standard rendezvous. The existence of errors in the implementation, the incompleteness of the documentation from the published standard impair the usefulness of this implementation. Despite those short-comings, the Alsys CIFO implementation might be of value in the development of real-time applications.

  15. Comparative efficacy of rapid-release nicotine gum versus nicotine polacrilex gum in relieving smoking cue-provoked craving.

    PubMed

    Niaura, Raymond; Sayette, Michael; Shiffman, Saul; Glover, Elbert D; Nides, Mitch; Shelanski, Morris; Shadel, William; Koslo, Randy; Robbins, Bruce; Sorrentino, Jim

    2005-11-01

    Most relapse episodes occur when smokers are confronted with craving provoked by situational cues. Current nicotine gum can help relieve cue-provoked cravings, but faster effects may result in more rapid relief. We tested a prototype formulation of a new rapid-release nicotine gum (RRNG) that provides more rapid release and absorption of nicotine, for its ability to provide faster and better craving relief compared to current nicotine polacrilex gum (NPG). Random assignment to RRNG or NPG, used during a smoking cue provocation procedure. Participants and setting A total of 319 smokers were exposed to a smoking cue in the laboratory by being asked to light but not smoke a cigarette of their preferred brand. Subjects then chewed a piece of 2 mg RRNG (n = 159) or 2 mg NPG (n = 160) according to randomized assignment. Craving assessments were completed at regular intervals before and after cue exposure (baseline, pre-cue, and 3, 6, 9, 12, 15, 18, 21, 25, 30 and 35 minutes after the cue). Smokers chewing RRNG showed significantly lower craving than NPG subjects starting with the first assessment at 3 minutes (P < 0.025). Repeated-measures ANOVA revealed a significant treatment x time interaction (P < 0.05)-craving scores dropped more rapidly in RRNG subjects compared to NPG subjects. Survival analyses also indicated superiority of RRNG in achieving more rapid self-reported meaningful relief (P < 0.05) and complete relief (P < 0.05) of craving. Rapid-release nicotine gum reduced cue-provoked craving more rapidly compared to NPG, and thus merits further study in cessation efficacy trials.

  16. Modulation of drug release kinetics of shellac-based matrix tablets by in-situ polymerization through annealing process.

    PubMed

    Limmatvapirat, Sontaya; Limmatvapirat, Chutima; Puttipipatkhachorn, Satit; Nunthanid, Jurairat; Luangtana-anan, Manee; Sriamornsak, Pornsak

    2008-08-01

    A new oral-controlled release matrix tablet based on shellac polymer was designed and developed, using metronidazole (MZ) as a model drug. The shellac-based matrix tablets were prepared by wet granulation using different amounts of shellac and lactose. The effect of annealing temperature and pH of medium on drug release from matrix tablets was investigated. The increased amount of shellac and increased annealing temperature significantly affected the physical properties (i.e., tablet hardness and tablet disintegration) and MZ release from the matrix tablets. The in-situ polymerization played a major role on the changes in shellac properties during annealing process. Though the shellac did not dissolve in acid medium, the MZ release in 0.1N HCl was faster than in pH 7.3 buffer, resulting from a higher solubility of MZ in acid medium. The modulation of MZ release kinetics from shellac-based matrix tablets could be accomplished by varying the amount of shellac or annealing temperature. The release kinetics was shifted from relaxation-controlled release to diffusion-controlled release when the amount of shellac or the annealing temperature was increased.

  17. Assembled modules technology for site-specific prolonged delivery of norfloxacin.

    PubMed

    Oliveira, Paulo Renato; Bernardi, Larissa Sakis; Strusi, Orazio Luca; Mercuri, Salvatore; Segatto Silva, Marcos A; Colombo, Paolo; Sonvico, Fabio

    2011-02-28

    The aim of this research was to design and study norfloxacin (NFX) release in floating conditions from compressed hydrophilic matrices of hydroxypropylmethylcellulose (HPMC) or poly(ethylene oxide) (PEO). Module assembling technology for drug delivery system manufacturing was used. Two differently cylindrical base curved matrix/modules, identified as female and male, were assembled in void configuration by friction interlocking their concave bases obtaining a floating release system. Drug release and floatation behavior of this assembly was investigated. Due to the higher surface area exposed to the release medium, faster release was observed for individual modules compared to their assembled configuration, independently on the polymer used and concentration. The release curves analyzed using the Korsmeyer exponential equation and Peppas & Sahlin binomial equation showed that the drug release was controlled both by drug diffusion and polymer relaxation or erosion mechanisms. However, convective transport was predominant with PEO and at low content of polymers. NFX release from PEO polymeric matrix was more erosion dependent than HPMC. The assembled systems were able to float in vitro for up to 240min, indicating that this drug delivery system of norfloxacin could provide gastro-retentive site-specific release for increasing norfloxacin bioavailability. Copyright © 2010. Published by Elsevier B.V.

  18. Activity of vancomycin release from bioinspired coatings of hydroxyapatite or TiO2 nanotubes.

    PubMed

    Ionita, Daniela; Bajenaru-Georgescu, Daniela; Totea, Georgeta; Mazare, Anca; Schmuki, Patrik; Demetrescu, Ioana

    2017-01-30

    Herein we investigate the efficiency of various biomimetic coatings for localized drug delivery, using vancomycin as key therapeutic drug, which is a widely used antibiotic for the treatment of strong infections caused by positive Gram bacteria. We evaluate classical hydroxyapatite and biomimetic hydroxyapatite-collagen coatings obtained by electrochemical deposition as well as TiO 2 nanotubes arrays obtained by electrochemical anodization. Surface morphology, compositional and structural data confirm the incorporation of vancomycin into the layers and drug release profiles for vancomycin evaluate their release ability. Namely, hydroxyapatite coatings lead to a ≈92% vancomycin release after 30h and hydroxyapatite-collagen to 85%, while the TiO 2 nanotubes layers lead to 78% release. The antibacterial effect of such drug loaded coatings is evaluated against S. aureus (Gram-positive bacteria). Our study shows that the vancomycin incorporated hydroxyapatite coatings lead to a faster release, while the nanotubular coatings may lead to longer time release and additionally both types of coatings ensure a good antibacterial inhibition. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Simultaneous measurement of bacterial flagellar rotation rate and swimming speed.

    PubMed Central

    Magariyama, Y; Sugiyama, S; Muramoto, K; Kawagishi, I; Imae, Y; Kudo, S

    1995-01-01

    Swimming speeds and flagellar rotation rates of individual free-swimming Vibrio alginolyticus cells were measured simultaneously by laser dark-field microscopy at 25, 30, and 35 degrees C. A roughly linear relation between swimming speed and flagellar rotation rate was observed. The ratio of swimming speed to flagellar rotation rate was 0.113 microns, which indicated that a cell progressed by 7% of pitch of flagellar helix during one flagellar rotation. At each temperature, however, swimming speed had a tendency to saturate at high flagellar rotation rate. That is, the cell with a faster-rotating flagellum did not always swim faster. To analyze the bacterial motion, we proposed a model in which the torque characteristics of the flagellar motor were considered. The model could be analytically solved, and it qualitatively explained the experimental results. The discrepancy between the experimental and the calculated ratios of swimming speed to flagellar rotation rate was about 20%. The apparent saturation in swimming speed was considered to be caused by shorter flagella that rotated faster but produced less propelling force. Images FIGURE 1 FIGURE 4 PMID:8580359

  20. Biophysical risks to carbon sequestration and storage in Australian drylands.

    PubMed

    Nolan, Rachael H; Sinclair, Jennifer; Eldridge, David J; Ramp, Daniel

    2018-02-15

    Carbon abatement schemes that reduce land clearing and promote revegetation are now an important component of climate change policy globally. There is considerable potential for these schemes to operate in drylands which are spatially extensive. However, projects in these environments risk failure through unplanned release of stored carbon to the atmosphere. In this review, we identify factors that may adversely affect the success of vegetation-based carbon abatement projects in dryland ecosystems, evaluate their likelihood of occurrence, and estimate the potential consequences for carbon storage and sequestration. We also evaluate management strategies to reduce risks posed to these carbon abatement projects. Identified risks were primarily disturbances, including unplanned fire, drought, and grazing. Revegetation projects also risk recruitment failure, thereby failing to reach projected rates of sequestration. Many of these risks are dependent on rainfall, which is highly variable in drylands and susceptible to further variation under climate change. Resprouting vegetation is likely to be less vulnerable to disturbance and have faster recovery rates upon release from disturbance. We conclude that there is a strong impetus for identifying management strategies and risk reduction mechanisms for carbon abatement projects. Risk mitigation would be enhanced by effective co-ordination of mitigation strategies at scales larger than individual abatement project boundaries, and by implementing risk assessment throughout project planning and implementation stages. Reduction of risk is vital for maximising carbon sequestration of individual projects and for reducing barriers to the establishment of new projects entering the market. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Effect of homogenization and heat treatment on the behavior of protein and fat globules during gastric digestion of milk.

    PubMed

    Ye, Aiqian; Cui, Jian; Dalgleish, Douglas; Singh, Harjinder

    2017-01-01

    The effects of homogenization and heat treatment on the formation and the breakdown of clots during gastric digestion of whole milk were investigated using a human gastric simulator. Homogenization and heat treatment led to formation of coagula with fragmented and crumbled structures compared with the coagulum formed from raw whole milk, but a larger fraction of the protein and more fat globules were incorporated into the coagula induced by action of the milk-clotting enzyme pepsin. The fat globules in the whole milk appeared to be embedded in the clots as they formed. After formation of the clot, the greater numbers of pores in the structures of the clots formed with homogenized milk and heated whole milk led to greater rates of protein hydrolysis by pepsin, which resulted in faster release of fat globules from the clots into the digesta. Coalescence of fat globules occurred both in the digesta and within the protein clots no matter whether they were in homogenized or heated milk samples. The formation of clots with different structures and hence the changes in the rates of protein hydrolysis and the release of milk fat into the digesta in the stomach provide important information for understanding the gastric emptying of milk and the potential to use this knowledge to manipulate the bioavailability of fat and other fat-soluble nutrients in dairy products. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  2. Efficacy of reactive mineral-based sorbents for phosphate, bacteria, nitrogen and TOC removal--column experiment in recirculation batch mode.

    PubMed

    Nilsson, Charlotte; Lakshmanan, Ramnath; Renman, Gunno; Rajarao, Gunaratna Kuttuva

    2013-09-15

    Two mineral-based materials (Polonite and Sorbulite) intended for filter wells in on-site wastewater treatment were compared in terms of removal of phosphate (PO4-P), total inorganic nitrogen (TIN), total organic carbon (TOC) and faecal indicator bacteria (Escherichia coli and Enterococci). Using an innovative, recirculating system, septic tank effluent was pumped at a hydraulic loading rate of 3000 L m(2) d(-1) into triplicate bench-scale columns of each material over a 90-day period. The results showed that Polonite performed better with respect to removal of PO4-P, retaining on average 80% compared with 75% in Sorbulite. This difference was attributed to higher CaO content in Polonite and its faster dissolution. Polonite also performed better in terms of removal of bacteria because of its higher pH value. The total average reduction in E. coli was 60% in Polonite and 45% in Sorbulite, while for Enterococci the corresponding value was 56% in Polonite and 34% in Sorbulite. Sorbulite removed TIN more effectively, with a removal rate of 23%, while Polonite removed 11% of TIN, as well as TOC. Organic matter (measured as TOC) was accumulated in the filter materials but was also released periodically. The results showed that Sorbulite could meet the demand in removing phosphate and nitrogen with reduced microbial release from the wastewater treatment process. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Rate of Iron Transfer Through the Horse Spleen Ferritin Shell Determined by the Rate of Formation of Prussian Blue and Fe-desferrioxamine Within the Ferritin Cavity

    NASA Technical Reports Server (NTRS)

    Zhang, Bo; Watt, Richard K.; Galvez, Natividad; Dominquez-Vera, Jose M.; Watt, Gerald D.

    2005-01-01

    Iron (2+ and 3+) is believed to transfer through the three-fold channels in the ferritin shell during iron deposition and release in animal ferritins. However, the rate of iron transit in and out through these channels has not been reported. The recent synthesis of [Fe(CN)(sub 6)](3-), Prussian Blue (PB) and desferrioxamine (DES) all trapped within the horse spleen ferritin (HoSF) interior makes these measurements feasible. We report the rate of Fe(2+) penetrating into the ferritin interior by adding external Fe(2+) to [Fe(CN)(sub 6)](3-) encapsulated in the HoSF interior and measuring the rate of formation of the resulting encapsulated PB. The rate at which Fe(2+) reacts with [Fe(CN)(sub 6)](3-) in the HoSF interior is much slower than the formation of free PB in solution and is proceeded by a lag period. We assume this lag period and the difference in rate represent the transfer of Fe(2+) through the HoSF protein shell. The calculated diffusion coefficient, D approx. 5.8 x 10(exp -20) square meters per second corresponds to the measured lag time of 10-20 s before PB forms within the HoSF interior. The activation energy for Fe(2+) transfer from the outside solution through the protein shell was determined to be 52.9 kJ/mol by conducting the reactions at 10 to approximately 40 C. The reaction of Fe(3+) with encapsulated [Fe(CN)6](4-) also readily forms PB in the HoSF interior, but the rate is faster than the corresponding Fe(2+) reaction. The rate for Fe(3+) transfer through the ferritin shell was confirmed by measuring the rate of the formation of Fe-DES inside HoSF and an activation energy of 58.4 kJ/mol was determined. An attempt was made to determine the rate of iron (2+ and 3+) transit out from the ferritin interior by adding excess bipyridine or DES to PB trapped within the HoSF interior. However, the reactions are slow and occur at almost identical rates for free and HoSF-encapsulated PB, indicating that the transfer of iron from the interior through the protein shell is faster than the rate-limiting step of PB dissociation. The method described in this work presents a novel way of determining the rate of transfer of iron and possibly other small molecules through the ferritin shell.

  4. Microgeographic differentiation in thermal performance curves between rural and urban populations of an aquatic insect.

    PubMed

    Tüzün, Nedim; Op de Beeck, Lin; Brans, Kristien I; Janssens, Lizanne; Stoks, Robby

    2017-12-01

    The rapidly increasing rate of urbanization has a major impact on the ecology and evolution of species. While increased temperatures are a key aspect of urbanization ("urban heat islands"), we have very limited knowledge whether this generates differentiation in thermal responses between rural and urban populations. In a common garden experiment, we compared the thermal performance curves (TPCs) for growth rate and mortality in larvae of the damselfly Coenagrion puella from three urban and three rural populations. TPCs for growth rate shifted vertically, consistent with the faster-slower theoretical model whereby the cold-adapted rural larvae grew faster than the warm-adapted urban larvae across temperatures. In line with costs of rapid growth, rural larvae showed lower survival than urban larvae across temperatures. The relatively lower temperatures hence expected shorter growing seasons in rural populations compared to the populations in the urban heat islands likely impose stronger time constraints to reach a certain developmental stage before winter, thereby selecting for faster growth rates. In addition, higher predation rates at higher temperature may have contributed to the growth rate differences between urban and rural ponds. A faster-slower differentiation in TPCs may be a widespread pattern along the urbanization gradient. The observed microgeographic differentiation in TPCs supports the view that urbanization may drive life-history evolution. Moreover, because of the urban heat island effect, urban environments have the potential to aid in developing predictions on the impact of climate change on rural populations.

  5. Characterizing the Performance of Gas-Permeable Membranes as an Ammonia Recovery Strategy from Anaerobically Digested Dairy Manure

    PubMed Central

    Fillingham, Melanie; Singh, Jessica; Burtt, Stephen; Crolla, Anna; Kinsley, Chris; MacDonald, J. Douglas

    2017-01-01

    Capturing ammonia from anaerobically digested manure could simultaneously decrease the adverse effects of ammonia inhibition on biogas production, reduce reactive nitrogen (N) loss to the environment, and produce mineral N fertilizer as a by-product. In this study, gas permeable membranes (GPM) were used to capture ammonia from dairy manure and digestate by the diffusion of gaseous ammonia across the membrane where ammonia is captured by diluted acid, forming an aqueous ammonium salt. A lab-scale prototype using tubular expanded polytetrafluoroethylene (ePTFE) GPM was used to (1) characterize the effect of total ammonium nitrogen (TAN) concentration, temperature, and pH on the ammonia capture rate using GPM, and (2) to evaluate the performance of a GPM system in conditions similar to a mesophilic anaerobic digester. The GPM captured ammonia at a rate between 2.2 and 6.3% of gaseous ammonia in the donor solution per day. Capture rate was faster in anaerobic digestate than raw manure. The ammonia capture rate could be predicted using non-linear regression based on the factors of total ammonium nitrogen concentration, temperature, and pH. This use of membranes shows promise in reducing the deleterious impacts of ammonia on both the efficiency of biogas production and the release of reactive N to the environment. PMID:28991162

  6. Core-shell-structured nanothermites synthesized by atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Qin, Lijun; Gong, Ting; Hao, Haixia; Wang, Keyong; Feng, Hao

    2013-12-01

    Thermite materials feature very exothermic solid-state redox reactions. However, the energy release rates of traditional thermite mixtures are limited by the reactant diffusion velocities. In this work, atomic layer deposition (ALD) is utilized to synthesize thermite materials with greatly enhanced reaction rates. By depositing certain types of metal oxides (oxidizers) onto a commercial Al nanopowder, core-shell-structured nanothermites can be produced. The average film deposition rate on the Al nanopowder is 0.17 nm/cycle for ZnO and 0.031 nm/cycle for SnO2. The thickness of the oxidizer layer can be precisely controlled by adjusting the ALD cycle number. The compositions, morphologies, and structures of the ALD nanothermites are characterized by X-ray photoelectron spectroscopy, scanning electron microscopy, and high-resolution transmission electron microscopy. The characterization results reveal nearly perfect coverage of the Al nanoparticles by uniform ALD oxidizer layers and confirm the formation of core-shell nanoparticles. Combustion properties of the nanothermites are probed by laser ignition technique. Reactions of the core-shell-structured nanothermites are several times faster than the mixture of nanopowders. The promoted reaction rate is mostly attributed to the uniform distribution of reactants on the nanometer scale. These core-shell-structured nanothermites provide a potential pathway to control and enhance thermite reactions.

  7. Men's Increase in College Enrollment Breaks Long-Term Trend--Rises Faster than Rate for Women. Fact Book Bulletin

    ERIC Educational Resources Information Center

    Southern Regional Education Board (SREB), 2012

    2012-01-01

    From 2005 to 2010, in an historic turnaround, the number of men enrolled in college increased faster than the number of women in the Southern Regional Education Board (SREB) region, the West and the Northeast. The Midwest was the only region where enrollment by women increased faster than for men over this period. In the SREB region, men's…

  8. Earthquake slip weakening and asperities explained by thermal pressurization.

    PubMed

    Wibberley, Christopher A J; Shimamoto, Toshihiko

    2005-08-04

    An earthquake occurs when a fault weakens during the early portion of its slip at a faster rate than the release of tectonic stress driving the fault motion. This slip weakening occurs over a critical distance, D(c). Understanding the controls on D(c) in nature is severely limited, however, because the physical mechanism of weakening is unconstrained. Conventional friction experiments, typically conducted at slow slip rates and small displacements, have obtained D(c) values that are orders of magnitude lower than values estimated from modelling seismological data for natural earthquakes. Here we present data on fluid transport properties of slip zone rocks and on the slip zone width in the centre of the Median Tectonic Line fault zone, Japan. We show that the discrepancy between laboratory and seismological results can be resolved if thermal pressurization of the pore fluid is the slip-weakening mechanism. Our analysis indicates that a planar fault segment with an impermeable and narrow slip zone will become very unstable during slip and is likely to be the site of a seismic asperity.

  9. Effect of inflow discharges on the development of matric suction and volumetric water content for dike during overtopping tests

    NASA Astrophysics Data System (ADS)

    Hassan, Marwan A.; Ismail, Mohd A. M.

    2017-10-01

    The point of this review is to depict the impact of various inflow discharge rate releases on the instruments of matric suction and volumetric water content during an experimental test of spatial overtopping failure at school of civil engineering in universiti Sains of Malaysia. A dry sand dike was conducted inside small flume channel with twelve sensors of tensiometer and Time-Domain Reflectometer (TDR). Instruments are installed in the soil at different locations in downstream and upstream slopes of the dike for measuring the response of matric suction and volumetric water content, respectively. Two values of inflow discharge rates of 30 and 40 L/min are utilized as a part of these experiments to simulate the effectiveness of water reservoirs in erosion mechanism. The outcomes demonstrate that the matric suction and volumetric water content are decreased and increased, respectively for both inflow discharges. The higher inflow discharges accelerate the saturation of dike soil and the erosion process faster than that for the lower inflow discharges.

  10. Enhanced desorption of persistent organic pollutants from microplastics under simulated physiological conditions.

    PubMed

    Bakir, Adil; Rowland, Steven J; Thompson, Richard C

    2014-02-01

    Microplastics have the potential to uptake and release persistent organic pollutants (POPs); however, subsequent transfer to marine organisms is poorly understood. Some models estimating transfer of sorbed contaminants to organisms neglect the role of gut surfactants under differing physiological conditions in the gut (varying pH and temperature), examined here. We investigated the potential for polyvinylchloride (PVC) and polyethylene (PE) to sorb and desorb (14)C-DDT, (14)C-phenanthrene (Phe), (14)C-perfluorooctanoic acid (PFOA) and (14)C-di-2-ethylhexyl phthalate (DEHP). Desorption rates of POPs were quantified in seawater and under simulated gut conditions. Influence of pH and temperature was examined in order to represent cold and warm blooded organisms. Desorption rates were faster with gut surfactant, with a further substantial increase under conditions simulating warm blooded organisms. Desorption under gut conditions could be up to 30 times greater than in seawater alone. Of the POP/plastic combinations examined Phe with PE gave the highest potential for transport to organisms. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Effect of squalane on mebendazole-loaded Compritol® nanoparticles.

    PubMed

    Graves, Richard A; Ledet, Grace A; Nation, Cedric A; Pramar, Yashoda V; Bostanian, Levon A; Mandal, Tarun K

    2015-01-01

    The objective of this study is to develop nanostructured lipid formulations of Compritol for the delivery of mebendazole. The formulations were prepared with Compritol 888 ATO, squalane, and Pluronic F68. Nine batches with different amounts of modifier, squalane, and drug were prepared. The formulations were characterized by evaluating particle size, morphology, and zeta potential. The thermal properties of the formulations were analyzed by differential scanning calorimetry (DSC). The encapsulation efficiency of each formulation and the drug release rates from each formulation were quantified by UPLC. The particles were spherical and had median particle sizes between 300 and 600 nm (50th percentile). A linear relationship was observed between Compritol/squalane composition and the melting point of the mixture. The DSC scans of the formulations revealed some recrystallization of the drug from the formulations, and the amount of recrystallization correlated with the amount of squalane in the formulation. Approximately, 70% efficiency of encapsulation was observed in the formulations with 30% (w/w) squalane, and these formulations also had faster dissolution rates compared to the other formulations. Overall, the formulations with 30% squalane are the preferred formulation for future testing.

  12. Association of female sex and heart rate with increased arterial stiffness in patients with type 2 diabetes mellitus

    PubMed Central

    Kang, Min-Kyung; Yu, Jae Myung; Chun, Kwang Jin; Choi, Jaehuk; Choi, Seonghoon; Lee, Namho; Cho, Jung Rae

    2017-01-01

    Objective: This study aimed to evaluate the factors associated with increased arterial stiffness (IAS) measured by pulse wave velocity (PWV) and its clinical implications in patients with type 2 diabetes mellitus (DM). Methods: This was an observational, cross-sectional study. The ankle–brachial PWV was used to measure arterial stiffness, and 310 patients (mean age, 49±9 years; 180 men) with type 2 DM were divided into two groups according to the results of PWV: Group 1 (IAS; n=214) and Group 2 (normal arterial stiffness; n=96). Results: Patients in Group 1 were predominantly females (48% vs. 28%, p=0.001) and showed higher blood pressure and faster heart rate (HR). The glomerular filtration rate was lower and the urine microalbumin level was higher in patients with IAS. In multiple regression analysis, female sex and faster HR were independently associated with IAS. In subgroup analysis among female patients, prior stroke was more common in patients with IAS, and faster HR and increased postprandial 2-h C-peptide level were independently associated with IAS. Conclusion: Female sex and faster HR were independently associated with IAS in patients with type 2 DM. In a subgroup analysis among female patients, prior stroke was more common in patients with IAS, and faster HR and elevated postprandial 2-h C-peptide level were found to be independently associated with IAS. PMID:29145217

  13. Influence of heat and shear induced protein aggregation on the in vitro digestion rate of whey proteins.

    PubMed

    Singh, Tanoj K; Øiseth, Sofia K; Lundin, Leif; Day, Li

    2014-11-01

    Protein intake is essential for growth and repair of body cells, the normal functioning of muscles, and health related immune functions. Most food proteins are consumed after undergoing various degrees of processing. Changes in protein structure and assembly as a result of processing impact the digestibility of proteins. Research in understanding to what extent the protein structure impacts the rate of proteolysis under human physiological conditions has gained considerable interest. In this work, four whey protein gels were prepared using heat processing at two different pH values, 6.8 and 4.6, with and without applied shear. The gels showed different protein network microstructures due to heat induced unfolding (at pH 6.8) or lack of unfolding, thus resulting in fine stranded protein networks. When shear was applied during heating, particulate protein networks were formed. The differences in the gel microstructures resulted in considerable differences in their rheological properties. An in vitro gastric and intestinal model was used to investigate the resulting effects of these different gel structures on whey protein digestion. In addition, the rate of digestion was monitored by taking samples at various time points throughout the in vitro digestion process. The peptides in the digesta were profiled using SDS-polyacrylamide gel electrophoresis, reversed-phase-HPLC and LC-MS. Under simulated gastric conditions, whey proteins in structured gels were hydrolysed faster than native proteins in solution. The rate of peptides released during in vitro digestion differed depending on the structure of the gels and extent of protein aggregation. The outcomes of this work highlighted that changes in the network structure of the protein can influence the rate and pattern of its proteolysis under gastrointestinal conditions. Such knowledge could assist the food industry in designing novel food formulations to control the digestion kinetics and the release of biologically active peptides for desired health outcome.

  14. Chiral DOTA chelators as an improved platform for biomedical imaging and therapy applications.

    PubMed

    Dai, Lixiong; Jones, Chloe M; Chan, Wesley Ting Kwok; Pham, Tiffany A; Ling, Xiaoxi; Gale, Eric M; Rotile, Nicholas J; Tai, William Chi-Shing; Anderson, Carolyn J; Caravan, Peter; Law, Ga-Lai

    2018-02-27

    Despite established clinical utilisation, there is an increasing need for safer, more inert gadolinium-based contrast agents, and for chelators that react rapidly with radiometals. Here we report the syntheses of a series of chiral DOTA chelators and their corresponding metal complexes and reveal properties that transcend the parent DOTA compound. We incorporated symmetrical chiral substituents around the tetraaza ring, imparting enhanced rigidity to the DOTA cavity, enabling control over the range of stereoisomers of the lanthanide complexes. The Gd chiral DOTA complexes are shown to be orders of magnitude more inert to Gd release than [GdDOTA] - . These compounds also exhibit very-fast water exchange rates in an optimal range for high field imaging. Radiolabeling studies with (Cu-64/Lu-177) also demonstrate faster labelling properties. These chiral DOTA chelators are alternative general platforms for the development of stable, high relaxivity contrast agents, and for radiometal complexes used for imaging and/or therapy.

  15. Andrographolide: solving chemical instability and poor solubility by means of cocrystals.

    PubMed

    Suresh, Kuthuru; Goud, N Rajesh; Nangia, Ashwini

    2013-12-01

    The bioactive agent andrographolide was screened with pharmaceutically acceptable coformers to discover a novel solid form that will solve the chemical instability and poor solubility problems of this herbal medicine. Liquid-assisted grinding of andrographolide with GRAS (generally regarded as safe) coformers in a fixed stoichiometry resulted in cocrystals with vanillin (1:1), vanillic acid (1:1), salicylic acid (1:1), resorcinol (1:1), and guaiacol (1:1). All the crystalline products were characterized by thermal, spectroscopic, and diffraction methods. Interestingly, even though the cocrystals are isostructural, their physicochemical properties are quite different. The andrographolide-salicylic acid cocrystal completely inhibited the chemical transformation of andrographolide to its inactive sulfate metabolite, and moreover, the cocrystal exhibited a dissolution rate that was three times faster and a drug release that was two times higher than pure andrographolide. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Fluxgate magnetorelaxometry for characterization of hydrogel polymerization kinetics and physical entrapment capacity.

    PubMed

    Heim, E; Harling, S; Ludwig, F; Menzel, H; Schilling, M

    2008-05-21

    Hydrogels have the potential for providing drug delivery systems with long release rates. The polymerization kinetics and the physical entrapment capacity of photo-cross-linked hydroxyethyl methacrylate hydroxyethylstarch hydrogels are investigated with a non-destructive method. For this purpose, superparamagnetic nanoparticles as replacements for biomolecules are used as probes. By analyzing their magnetic relaxation behavior, the amounts of physically entrapped and mobile nanoparticles can be determined. The hydrogels were loaded with five different concentrations of nanoparticles. Different methods of analysis of the relaxation curves and the influence of the microviscosity are discussed. This investigation allows one to optimize the UV light irradiation time and to determine the amount of physically entrapped nanoparticles in the hydrogel network. It was found that the polymerization kinetics is faster for decreasing nanoparticle concentration but not all nanoparticles can be physically entrapped in the network.

  17. Investigation on sodium benzoate release from poly(butylene adipate-co-terephthalate)/organoclay/sodium benzoate based nanocomposite film and their antimicrobial activity.

    PubMed

    Mondal, Dibyendu; Bhowmick, Biplab; Maity, Dipanwita; Mollick, Md Masud R; Rana, Dipak; Rangarajan, Vivek; Sen, Ramkrishna; Chattopadhyay, Dipankar

    2015-03-01

    Polymeric nanocomposites embedded with nontoxic antimicrobial agents have recently gained potential industrial significance, mainly for their applicability to preserve food quality and ensure safety. In this study, a poly(butylene adipate-co-terephthalate) (PBAT)/organoclay (CMMT) based nanocomposite film doped with sodium benzoate (SB) as antimicrobial agent was prepared by a solution mixing process. A homogenous dispersion of organoclay (cetyltrimethylammonium-modified montmorillonite [CMMT]) in PBAT matrix was observed by X-ray diffraction and transmission electron microscopy. PBAT/CMMT nanocomposite film showed higher barrier properties against water and methanol vapor compared to the PBAT film. The release of SB from PBAT and its nanocomposite film was measured and the relevant data were fitted to the Weibull model. The higher values of Weibull's shape factor and scale parameter as corroborated by experimental findings indicated faster rate of SB release from PBAT/CMMT/SB nanocomposite film, when compared to the pristine PBAT film. Bacterial inhibition studies were accomplished against 2 food pathogenic bacteria, Bacillus subtilis and Staphylococcus aureus, by determining the zone of inhibition and corresponding growth profiles. Both bacterial inhibition studies and growth profiles established that PBAT/CMMT/SB demonstrated better antimicrobial activity than PBAT/SB film. Therefore, PBAT/CMMT/SB nanocomposite film can be used for food packaging application as it showed good barrier properties and antimicrobial activity against food pathogenic bacteria. © 2015 Institute of Food Technologists®

  18. N2-fixing red alder indirectly accelerates ecosystem nitrogen cycling

    USGS Publications Warehouse

    Perakis, Steven S.; Matkins, Joselin J.; Hibbs, David E.

    2012-01-01

    Symbiotic N2-fixing tree species can accelerate ecosystem N dynamics through decomposition via direct pathways by producing readily decomposed leaf litter and increasing N supply to decomposers, as well as via indirect pathways by increasing tissue and detrital N in non-fixing vegetation. To evaluate the relative importance of these pathways, we compared three-year decomposition and N dynamics of N2-fixing red alder leaf litter (2.34 %N) to both low-N (0.68 %N) and high-N (1.21 %N) litter of non-fixing Douglas-fir, and decomposed each litter source in four forests dominated by either red alder or Douglas-fir. We also used experimental N fertilization of decomposition plots to assess elevated N availability as a potential mechanism of N2-fixer effects on litter mass loss and N dynamics. Direct effects of N2-fixing red alder on decomposition occurred primarily as faster N release from red alder than Douglas-fir litter, but direct increases in N supply to decomposers via fertilization did not stimulate decomposition of any litter. Fixed N indirectly influenced detrital dynamics by increasing Douglas-fir tissue and litter N concentrations, which accelerated litter N release without accelerating mass loss. By increasing soil N, tissue N, and the rate of N release from litter of non-fixers, we conclude that N2-fixing vegetation can indirectly foster plant-soil feedbacks that contribute to the persistence of elevated N availability in terrestrial ecosystems.

  19. Exchange of TiO2 nanoparticles between streams and streambeds.

    PubMed

    Boncagni, Natalia Ticiana; Otaegui, Justo Manuel; Warner, Evelyn; Curran, Trisha; Ren, Jianhong; de Cortalezzi, Maria Marta Fidalgo

    2009-10-15

    The expanding use of manufactured nanoparticles has increased the potential for their release into the natural environment. Particularly, TiO2 nanoparticles pose significant exposure risk to humans and other living species due to their extensive use in a wide range of fields. To better understand the environmental and health risks associated with the release of TiO2 nanoparticles, knowledge on their fate and transport is needed. This study evaluates the transport of two different TiO2 nanoparticles: one commercially available (P25 TiO2 and the other synthesized at a lab scale (synthesized TiO2). Laboratory flume, column, and batch experiments were conducted to investigate the processes dominating the transport of TiO2 nanoparticles between streams and streambeds and to characterize the properties of these nanoparticles under different physicochemical conditions. Results show that the synthesized TiO2 was more stable compared to the P25 TiO2, which underwent significant aggregation under the same experimental conditions. As a result, P25 TiO2 deposited at a faster rate than the synthesized TiO2 in the streambed. Both types of TiO2 nanoparticles deposited in the streambed were easily released when the stream velocity was increased. The aggregation and deposition of P25 TiO2 were highly dependent on pH. A process-based colloid exchange model was applied to interpret the observed transport behavior of the TiO2 nanoparticles.

  20. Revisiting the Pharmacokinetic Profiles of Gadolinium-Based Contrast Agents: Differences in Long-Term Biodistribution and Excretion.

    PubMed

    Lancelot, Eric

    2016-11-01

    Gadolinium-based contrast agents (GBCAs) have been used for years for magnetic resonance imaging examinations. Because of their rapid blood clearance, they were considered as very safe products until some of them were shown to induce nephrogenic systemic fibrosis in patients with renal failure and hypersignals on T1-weighted unenhanced brain scans of patients with normal renal function. To date, these adverse effects have been related almost exclusively to the use of low-stability linear agents, which are more prone to release free gadolinium. The aim of the present meta-analysis was to ascertain the existence of a deep compartment for gadolinium storage in the body and to assess whether all the GBCAs present the same toxicokinetic profile. Applying a systematic literature search methodology, all clinical and preclinical studies reporting time-dependent plasma concentrations and renal excretion data of gadolinium were identified and analyzed. Since the individual data were not available, the analysis focused on the average values per groups of subjects or animals, which had received a given GBCA at a given dose. The rate constants of the distribution phase (α), rapid elimination phase (β), and residual excretion phase (γ) of gadolinium were determined in each group from the plasma concentration (Cp) time curves and the relative urinary excretion rate (rER) time curves, taking the 2-hour time point as a reference. Moreover, as bone may represent a reservoir for long-term gadolinium accumulation and slow release into the blood stream, the time curves of the relative concentration in the bone (rCB) of Gd-labeled GBCAs in mice or rats were analyzed taking day 1 concentrations as a reference. The ratio of gadolinium concentrations in the bone marrow (CBM) as compared with the bone (CB) was also calculated. The relative urinary excretion rate (rER) plots revealed a prolonged residual excretion phase of gadolinium in healthy volunteers, consistent with the existence of a deep compartment of distribution for the GBCAs. The rate constant γ of gadoterate meglumine (0.107 hour) is 5 times higher than that of the linear agents (0.020 ± 0.008 hour), indicating a much faster blood clearance for the macrocyclic GBCA. Similar results were obtained in the preclinical studies. A strong correlation was shown between the γ values of the different products and their respective thermodynamic stability constants (Ktherm). Greater clearance rates of Gd from murine bone were also found after gadoterate meglumine or gadoteridol injection (0.131-0.184 day) than after administration of the linear agents (0.004-0.067 day). The concentrations of Gd in the bone marrow (CBM) from animals exposed to either gadoterate meglumine or gadodiamide are higher than those in the bone (CB) for at least 24 hours. Moreover, the ratio of concentrations (CBM/CB) at 4 hours is significantly lower with the former agent than the latter (1.9 vs 6.5, respectively). Using a nonconventional pharmacokinetic approach, we showed that gadoterate meglumine undergoes a much faster residual excretion from the body than the linear GBCAs, a process that seems related to the thermodynamic stability of the different chelates. Gadolinium dissociation occurs in vivo for some linear chelates, a mechanism that may explain their long-term retention and slow release from bone. Potential consequences in terms of bone toxicity warrant further investigations.

  1. Comparing human peritoneal fluid and phosphate-buffered saline for drug delivery: do we need bio-relevant media?

    PubMed

    Bhusal, Prabhat; Rahiri, Jamie Lee; Sua, Bruce; McDonald, Jessica E; Bansal, Mahima; Hanning, Sara; Sharma, Manisha; Chandramouli, Kaushik; Harrison, Jeff; Procter, Georgina; Andrews, Gavin; Jones, David S; Hill, Andrew G; Svirskis, Darren

    2018-06-01

    An understanding of biological fluids at the site of administration is important to predict the fate of drug delivery systems in vivo. Little is known about peritoneal fluid; therefore, we have investigated this biological fluid and compared it to phosphate-buffered saline, a synthetic media commonly used for in vitro evaluation of intraperitoneal drug delivery systems. Human peritoneal fluid samples were analysed for electrolyte, protein and lipid levels. In addition, physicochemical properties were measured alongside rheological parameters. Significant inter-patient variations were observed with regard to pH (p < 0.001), buffer capacity (p < 0.05), osmolality (p < 0.001) and surface tension (p < 0.05). All the investigated physicochemical properties of peritoneal fluid differed from phosphate-buffered saline (p < 0.001). Rheological examination of peritoneal fluid demonstrated non-Newtonian shear thinning behaviour and predominantly exhibited the characteristics of an entangled network. Inter-patient and inter-day variability in the viscosity of peritoneal fluid was observed. The solubility of the local anaesthetic lidocaine in peritoneal fluid was significantly higher (p < 0.05) when compared to phosphate-buffered saline. Interestingly, the dissolution rate of lidocaine was not significantly different between the synthetic and biological media. Importantly, and with relevance to intraperitoneal drug delivery systems, the sustained release of lidocaine from a thermosensitive gel formulation occurred at a significantly faster rate into peritoneal fluid. Collectively, these data demonstrate the variation between commonly used synthetic media and human peritoneal fluid. The differences in drug release rates observed illustrate the need for bio-relevant media, which ultimately would improve in vitro-in vivo correlation.

  2. Central gene expression changes associated with enhanced neuroendocrine and autonomic response habituation to repeated noise stress after voluntary wheel running in rats

    PubMed Central

    Sasse, Sarah K.; Nyhuis, Tara J.; Masini, Cher V.; Day, Heidi E. W.; Campeau, Serge

    2013-01-01

    Accumulating evidence indicates that regular physical exercise benefits health in part by counteracting some of the negative physiological impacts of stress. While some studies identified reductions in some measures of acute stress responses with prior exercise, limited data were available concerning effects on cardiovascular function, and reported effects on hypothalamic-pituitary-adrenocortical (HPA) axis responses were largely inconsistent. Given that exposure to repeated or prolonged stress is strongly implicated in the precipitation and exacerbation of illness, we proposed the novel hypothesis that physical exercise might facilitate adaptation to repeated stress, and subsequently demonstrated significant enhancement of both HPA axis (glucocorticoid) and cardiovascular (tachycardia) response habituation to repeated noise stress in rats with long-term access to running wheels compared to sedentary controls. Stress habituation has been attributed to modifications of brain circuits, but the specific sites of adaptation and the molecular changes driving its expression remain unclear. Here, in situ hybridization histochemistry was used to examine regulation of select stress-associated signaling systems in brain regions representing likely candidates to underlie exercise-enhanced stress habituation. Analyzed brains were collected from active (6 weeks of wheel running) and sedentary rats following control, acute, or repeated noise exposures that induced a significantly faster rate of glucocorticoid response habituation in active animals but preserved acute noise responsiveness. Nearly identical experimental manipulations also induce a faster rate of cardiovascular response habituation in exercised, repeatedly stressed rats. The observed regulation of the corticotropin-releasing factor and brain-derived neurotrophic factor systems across several brain regions suggests widespread effects of voluntary exercise on central functions and related adaptations to stress across multiple response modalities. PMID:24324441

  3. Risk assessment of false-positive quantitative real-time PCR results in food, due to detection of DNA originating from dead cells.

    PubMed

    Wolffs, Petra; Norling, Börje; Rådström, Peter

    2005-03-01

    Real-time PCR technology is increasingly used for detection and quantification of pathogens in food samples. A main disadvantage of nucleic acid detection is the inability to distinguish between signals originating from viable cells and DNA released from dead cells. In order to gain knowledge concerning risks of false-positive results due to detection of DNA originating from dead cells, quantitative PCR (qPCR) was used to investigate the degradation kinetics of free DNA in four types of meat samples. Results showed that the fastest degradation rate was observed (1 log unit per 0.5 h) in chicken homogenate, whereas the slowest rate was observed in pork rinse (1 log unit per 120.5 h). Overall results indicated that degradation occurred faster in chicken samples than in pork samples and faster at higher temperatures. Based on these results, it was concluded that, especially in pork samples, there is a risk of false-positive PCR results. This was confirmed in a quantitative study on cell death and signal persistence over a period of 28 days, employing three different methods, i.e. viable counts, direct qPCR, and finally floatation, a recently developed discontinuous density centrifugation method, followed by qPCR. Results showed that direct qPCR resulted in an overestimation of up to 10 times of the amount of cells in the samples compared to viable counts, due to detection of DNA from dead cells. However, after using floatation prior to qPCR, results resembled the viable count data. This indicates that by using of floatation as a sample treatment step prior to qPCR, the risk of false-positive PCR results due to detection of dead cells, can be minimized.

  4. Multi-element microelectropolishing method

    DOEpatents

    Lee, Peter J.

    1994-01-01

    A method is provided for microelectropolishing a transmission electron microscopy nonhomogeneous multi-element compound foil. The foil is electrolyzed at different polishing rates for different elements by rapidly cycling between different current densities. During a first portion of each cycle at a first voltage a first element electrolyzes at a higher current density than a second element such that the material of the first element leaves the anode foil at a faster rate than the second element and creates a solid surface film, and such that the solid surface film is removed at a faster rate than the first element leaves the anode foil. During a second portion of each cycle at a second voltage the second element electrolyzes at a higher current density than the first element, and the material of the second element leaves the anode foil at a faster rate than the first element and creates a solid surface film, and the solid surface film is removed at a slower rate than the second element leaves the foil. The solid surface film is built up during the second portion of the cycle, and removed during the first portion of the cycle.

  5. Movement amplitude and tempo change in piano performance

    NASA Astrophysics Data System (ADS)

    Palmer, Caroline

    2004-05-01

    Music performance places stringent temporal and cognitive demands on individuals that should yield large speed/accuracy tradeoffs. Skilled piano performance, however, shows consistently high accuracy across a wide variety of rates. Movement amplitude may affect the speed/accuracy tradeoff, so that high accuracy can be obtained even at very fast tempi. The contribution of movement amplitude changes in rate (tempo) is investigated with motion capture. Cameras recorded pianists with passive markers on hands and fingers, who performed on an electronic (MIDI) keyboard. Pianists performed short melodies at faster and faster tempi until they made errors (altering the speed/accuracy function). Variability of finger movements in the three motion planes indicated most change in the plane perpendicular to the keyboard across tempi. Surprisingly, peak amplitudes of motion before striking the keys increased as tempo increased. Increased movement amplitudes at faster rates may reduce or compensate for speed/accuracy tradeoffs. [Work supported by Canada Research Chairs program, HIMH R01 45764.

  6. Silver-Ion-Exchanged Nanostructured Zeolite X as Antibacterial Agent with Superior Ion Release Kinetics and Efficacy against Methicillin-Resistant Staphylococcus aureus.

    PubMed

    Chen, Shaojiang; Popovich, John; Iannuzo, Natalie; Haydel, Shelley E; Seo, Dong-Kyun

    2017-11-15

    As antibiotic resistance continues to be a major public health problem, antimicrobial alternatives have become critically important. Nanostructured zeolites have been considered as an ideal host for improving popular antimicrobial silver-ion-exchanged zeolites, because with very short diffusion path lengths they offer advantages in ion diffusion and release over their conventional microsized zeolite counterparts. Herein, comprehensive studies are reported on materials characteristics, silver-ion release kinetics, and antibacterial properties of silver-ion-exchanged nanostructured zeolite X with comparisons to conventional microsized silver-ion-exchanged zeolite (∼2 μm) as a reference. The nanostructured zeolites are submicrometer-sized aggregates (100-700 nm) made up of primary zeolite particles with an average primary particle size of 24 nm. The silver-ion-exchanged nanostructured zeolite released twice the concentration of silver ions at a rate approximately three times faster than the reference. The material exhibited rapid antimicrobial activity against methicillin-resistant Staphylococcus aureus (MRSA) with minimum inhibitory concentration (MIC) values ranging from 4 to 16 μg/mL after 24 h exposure in various growth media and a minimum bactericidal concentration (MBC; >99.9% population reduction) of 1 μg/mL after 2 h in water. While high concentrations of silver-ion-exchanged nanostructured zeolite X were ineffective at reducing MRSA biofilm cell viability, efficacy increased at lower concentrations. In consideration of potential medical applications, cytotoxicity of the silver-ion-exchanged nanostructured zeolite X was also investigated. After 4 days of incubation, significant reduction in eukaryotic cell viability was observed only at concentrations 4-16-fold greater than the 24 h MIC, indicating low cytotoxicity of the material. Our results establish silver-ion-exchanged nanostructured zeolites as an effective antibacterial material against dangerous antibiotic-resistant bacteria.

  7. Leaching behavior of U, Mn, Sr, and Pb from different particle-size fractions of uranium mill tailings.

    PubMed

    Liu, Bo; Peng, Tongjiang; Sun, Hongjuan

    2017-06-01

    Pollution by the release of heavy metals from tailings constitutes a potential threat to the environment. To characterize the processes governing the release of Mn, Sr, Pb, and U from the uranium mill tailings, a dynamic leaching test was applied for different size of uranium mill tailings samples. Inductively coupled plasma atomic emission spectroscopy (ICP-AES) and inductively coupled plasma mass spectrometry (ICP-MS) were performed to determine the content of Mn, Sr, Pb, and U in the leachates. The release of mobile Mn, Sr, Pb, and U fraction was slow, being faster in the initial stage and then attained a near steady-state condition. The experimental results demonstrate that the release of Mn, Sr, Pb, and U from uranium mill tailings with different size fractions is controlled by a variety of mechanisms. Surface wash-off is the release mechanism for Mn. The main release mechanism of Sr and Pb is the dissolution in the initial leaching stage. For U, a mixed process of wash-off and diffusion is the controlling mechanism.

  8. A Two-State Model for the Dynamics of the Pyrophosphate Ion Release in Bacterial RNA Polymerase

    PubMed Central

    Da, Lin-Tai; Pardo Avila, Fátima; Wang, Dong; Huang, Xuhui

    2013-01-01

    The dynamics of the PPi release during the transcription elongation of bacterial RNA polymerase and its effects on the Trigger Loop (TL) opening motion are still elusive. Here, we built a Markov State Model (MSM) from extensive all-atom molecular dynamics (MD) simulations to investigate the mechanism of the PPi release. Our MSM has identified a simple two-state mechanism for the PPi release instead of a more complex four-state mechanism observed in RNA polymerase II (Pol II). We observed that the PPi release in bacterial RNA polymerase occurs at sub-microsecond timescale, which is ∼3-fold faster than that in Pol II. After escaping from the active site, the (Mg-PPi)2− group passes through a single elongated metastable region where several positively charged residues on the secondary channel provide favorable interactions. Surprisingly, we found that the PPi release is not coupled with the TL unfolding but correlates tightly with the side-chain rotation of the TL residue R1239. Our work sheds light on the dynamics underlying the transcription elongation of the bacterial RNA polymerase. PMID:23592966

  9. High methane natural gas/air explosion characteristics in confined vessel.

    PubMed

    Tang, Chenglong; Zhang, Shuang; Si, Zhanbo; Huang, Zuohua; Zhang, Kongming; Jin, Zebing

    2014-08-15

    The explosion characteristics of high methane fraction natural gas were investigated in a constant volume combustion vessel at different initial conditions. Results show that with the increase of initial pressure, the peak explosion pressure, the maximum rate of pressure rise increase due to a higher amount (mass) of flammable mixture, which delivers an increased amount of heat. The increased total flame duration and flame development time result as a consequence of the higher amount of flammable mixture. With the increase of the initial temperature, the peak explosion pressures decrease, but the pressure increase during combustion is accelerated, which indicates a faster flame speed and heat release rate. The maximum value of the explosion pressure, the maximum rate of pressure rise, the minimum total combustion duration and the minimum flame development time is observed when the equivalence ratio of the mixture is 1.1. Additionally, for higher methane fraction natural gas, the explosion pressure and the maximum rate of pressure rise are slightly decreased, while the combustion duration is postponed. The combustion phasing is empirically correlated with the experimental parameters with good fitting performance. Furthermore, the addition of dilute gas significantly reduces the explosion pressure, the maximum rate of pressure rise and postpones the flame development and this flame retarding effect of carbon dioxide is stronger than that of nitrogen. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Modeling decay rates of dead wood in a neotropical forest.

    PubMed

    Hérault, Bruno; Beauchêne, Jacques; Muller, Félix; Wagner, Fabien; Baraloto, Christopher; Blanc, Lilian; Martin, Jean-Michel

    2010-09-01

    Variation of dead wood decay rates among tropical trees remains one source of uncertainty in global models of the carbon cycle. Taking advantage of a broad forest plot network surveyed for tree mortality over a 23-year period, we measured the remaining fraction of boles from 367 dead trees from 26 neotropical species widely varying in wood density (0.23-1.24 g cm(-3)) and tree circumference at death time (31.5-272.0 cm). We modeled decay rates within a Bayesian framework assuming a first order differential equation to model the decomposition process and tested for the effects of forest management (selective logging vs. unexploited), of mode of death (standing vs. downed) and of topographical levels (bottomlands vs. hillsides vs. hilltops) on wood decay rates. The general decay model predicts the observed remaining fraction of dead wood (R2 = 60%) with only two biological predictors: tree circumference at death time and wood specific density. Neither selective logging nor local topography had a differential effect on wood decay rates. Including the mode of death into the model revealed that standing dead trees decomposed faster than downed dead trees, but the gain of model accuracy remains rather marginal. Overall, these results suggest that the release of carbon from tropical dead trees to the atmosphere can be simply estimated using tree circumference at death time and wood density.

  11. Muscle fibre recruitment can respond to the mechanics of the muscle contraction.

    PubMed

    Wakeling, James M; Uehli, Katrin; Rozitis, Antra I

    2006-08-22

    This study investigates the motor unit recruitment patterns between and within muscles of the triceps surae during cycling on a stationary ergometer at a range of pedal speeds and resistances. Muscle activity was measured from the soleus (SOL), medial gastrocnemius (MG) and lateral gastrocnemius (LG) using surface electromyography (EMG) and quantified using wavelet and principal component analysis. Muscle fascicle strain rates were quantified using ultrasonography, and the muscle-tendon unit lengths were calculated from the segmental kinematics. The EMG intensities showed that the body uses the SOL relatively more for the higher-force, lower-velocity contractions than the MG and LG. The EMG spectra showed a shift to higher frequencies at faster muscle fascicle strain rates for MG: these shifts were independent of the level of muscle activity, the locomotor load and the muscle fascicle strain. These results indicated that a selective recruitment of the faster motor units occurred within the MG muscle in response to the increasing muscle fascicle strain rates. This preferential recruitment of the faster fibres for the faster tasks indicates that in some circumstances motor unit recruitment during locomotion can match the contractile properties of the muscle fibres to the mechanical demands of the contraction.

  12. Formulation and evaluation of buccal film of Ivabradine hydrochloride for the treatment of stable angina pectoris

    PubMed Central

    Lodhi, Mohasin; Dubey, Akhilesh; Narayan, Reema; Prabhu, Prabhakara; Priya, Sneh

    2013-01-01

    Background: Ivabradine hydrochloride is an anti-anginal drug with a biological half-life of about 2 h, and repeated daily administration is needed to maintain effective plasma level. Present investigation of buccal films of Ivabradine hydrochloride is an attempt to avoid the repeated administration and release of drug in more controlled fashion, thereby, to improve the bioavailability. Materials and Methods: Buccal patches were fabricated by solvent casting technique and were evaluated for its physical properties like physical appearance, weight uniformity, thickness, swelling index, surface pH, mucoadhesive time, and folding endurance, in vitro and ex vivo release studies. Results: A combination of hydroxypropyl methyl cellulose (HPMC) K15M and K100M with carbopol 940, PEG 6000 gave promising results. Further, the drug content of all the formulations was determined and was found to be uniform. All the formulations were subjected to in vitro release study using phosphate buffer pH 6.6. Patches exhibited drug release in the range of 90.36% ± 0.854 to 98.37% ± 0.589 at the end of six hrs. The best formulations (F2 and F5) containing the composition of HPMC K15-37.50 mg, carbopol-0.42 mg, PEG6000-16.87 mg, Aspertane-0.28 mg, Tween-0.0023 mg and HPMC K100-37.50 mg, carbopol-0.42 mg, PEG6000-16.87 mg, Aspertane-0.28 mg, Tween-0.0023 mg respectively exhibited in vitro drug release of 97.61% ± 0.589 and 98.37% ± 0.114 respectively. The results of ex vivo diffusion using goat cheek pouch revealed that the drug release rate was retarded up to seven hrs. Films prepared with permeation enhancer (Tween 80) showed faster drug release. Finally, stability studies were carried out by using human saliva for the optimized formulation (F2-F5). Conclusion: The present study indicated enormous potential of mucoadhesive buccal patches containing Ivabradine for systemic delivery with an added advantage of circumventing hepatic first pass metabolism. Further work is recommended to support its efficacy claims by long term pharmacokinetic and pharmacodynamic studies in human beings. PMID:23799205

  13. Evidence for shifts to faster growth strategies in the new ranges of invasive alien plants

    PubMed Central

    Leishman, Michelle R; Cooke, Julia; Richardson, David M; Newman, Jonathan

    2014-01-01

    Summary Understanding the processes underlying the transition from introduction to naturalization and spread is an important goal of invasion ecology. Release from pests and pathogens in association with capacity for rapid growth is thought to confer an advantage for species in novel regions. We assessed leaf herbivory and leaf-level traits associated with growth strategy in the native and exotic ranges of 13 invasive plant species from 256 populations. Species were native to either the Western Cape region of South Africa, south-western Australia or south-eastern Australia and had been introduced to at least one of the other regions or to New Zealand. We tested for evidence of herbivore release and shifts in leaf traits between native and exotic ranges of the 13 species. Across all species, leaf herbivory, specific leaf area and leaf area were significantly different between native and exotic ranges while there were no significant differences across the 13 species found for leaf mass, assimilation rate, dark respiration or foliar nitrogen. Analysis at the species- and region-level showed that eight out of 13 species had reduced leaf herbivory in at least one exotic region compared to its native range. Six out of 13 species had significantly larger specific leaf area (SLA) in at least one exotic range region and five of those six species experienced reduced leaf herbivory. Increases in SLA were underpinned by increases in leaf area rather than reductions in leaf mass. No species showed differences in the direction of trait shifts from the native range between different exotic regions. This suggests that the driver of selection on these traits in the exotic range is consistent across regions and hence is most likely to be associated with factors linked with introduction to a novel environment, such as release from leaf herbivory, rather than with particular environmental conditions. Synthesis. These results provide evidence that introduction of a plant species into a novel environment commonly results in a reduction in the top-down constraint imposed by herbivores on growth, allowing plants to shift towards a faster growth strategy which may result in an increase in population size and spread and consequently to invasive success. PMID:25558090

  14. Combination of injectable ethinyl estradiol and drospirenone drug-delivery systems and characterization of their in vitro release.

    PubMed

    Nippe, Stefanie; General, Sascha

    2012-11-20

    Our aim was to investigate the in vitro release and combination of ethinyl estradiol (EE) and drospirenone (DRSP) drug-delivery systems. DRSP poly(lactic-co-glycolic acid) (PLGA) microparticles and organogels containing DRSP microcrystals were prepared and characterized with regard to properties influencing drug release. The morphology and release kinetics of DRSP PLGA microparticles indicated that DRSP is dispersed in the polymer. The in vitro release profiles correlated well with in vivo data. Although DRSP degradation is known to be acid-catalyzed, DRSP was relatively stable in the PLGA matrix. Aqueous DRSP PLGA microparticle suspensions were combinable with EE PLGA microparticles and EE poly(butylcyanoacrylate) (PBCA) microcapsules without interacting. EE release from PLGA microparticles was faster than DRSP release; EE release is assumed to be primarily controlled by drug diffusion. Liquid-filled EE PBCA microcapsules were shown to be more robust than air-filled EE PBCA microcapsules; the bursting of microcapsules accelerating the drug delivery was therefore delayed. The drug release profile for DRSP organogels was fairly linear with the square root of time. The system was not combinable with EE PBCA microcapsules. In contrast, incorporation of EE PLGA microparticles in organogels resulted in prolonged EE release. The drug release of EE and DRSP was thus approximated. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Dual responsive aerogel made from thermo/pH sensitive graft copolymer alginate-g-P(NIPAM-co-NHMAM) for drug controlled release.

    PubMed

    Shao, Lin; Cao, Yang; Li, Zhanying; Hu, Wenbin; Li, Shize; Lu, Lingbin

    2018-07-15

    Alginate was grafted with NIPAM and NHMAM successfully, and a new responsive copolymer, alginate-g-P(NIPAM-co-NHMAM), was obtained. A novel dual responsive polysaccharide-based aerogel with thermo/pH sensitive properties was designed from the copolymer as drug controlled release system. The chemical structure of the copolymer was characterized by FT-IR and 1 H NMR. Lower critical solution temperature (LCST) of the copolymer covered a wide temperature range from 27.6 °C to 42.2 °C, which could be adjusted with changing the ratio between NIPAM and NHMAM. The dual responsive aerogel had a three-dimensional network structure. As a drug controlled release system, the aerogel was high responsive to both temperature and pH with drug loading efficiency up to 13.24%. Above LCST, the aerogel had a faster drug release, and drug was completely released in neutral environment, while the drug release was obstructed in acid environment. Furthermore, the drug release mechanism of the aerogel was illuminated. These results indicated that the dual responsive aerogel was a promising candidate for drug carriers. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Process-based modeling of silicate mineral weathering responses to increasing atmospheric CO2 and climate change

    NASA Astrophysics Data System (ADS)

    Banwart, Steven A.; Berg, Astrid; Beerling, David J.

    2009-12-01

    A mathematical model describes silicate mineral weathering processes in modern soils located in the boreal coniferous region of northern Europe. The process model results demonstrate a stabilizing biological feedback mechanism between atmospheric CO2 levels and silicate weathering rates as is generally postulated for atmospheric evolution. The process model feedback response agrees within a factor of 2 of that calculated by a weathering feedback function of the type generally employed in global geochemical carbon cycle models of the Earth's Phanerozoic CO2 history. Sensitivity analysis of parameter values in the process model provides insight into the key mechanisms that influence the strength of the biological feedback to weathering. First, the process model accounts for the alkalinity released by weathering, whereby its acceleration stabilizes pH at values that are higher than expected. Although the process model yields faster weathering with increasing temperature, because of activation energy effects on mineral dissolution kinetics at warmer temperature, the mineral dissolution rate laws utilized in the process model also result in lower dissolution rates at higher pH values. Hence, as dissolution rates increase under warmer conditions, more alkalinity is released by the weathering reaction, helping maintain higher pH values thus stabilizing the weathering rate. Second, the process model yields a relatively low sensitivity of soil pH to increasing plant productivity. This is due to more rapid decomposition of dissolved organic carbon (DOC) under warmer conditions. Because DOC fluxes strongly influence the soil water proton balance and pH, this increased decomposition rate dampens the feedback between productivity and weathering. The process model is most sensitive to parameters reflecting soil structure; depth, porosity, and water content. This suggests that the role of biota to influence these characteristics of the weathering profile is as important, if not more important, than the role of biota to influence mineral dissolution rates through changes in soil water chemistry. This process-modeling approach to quantify the biological weathering feedback to atmospheric CO2 demonstrates the potential for a far more mechanistic description of weathering feedback in simulations of the global geochemical carbon cycle.

  17. Tension-activated channels in the mechanism of osmotic fitness in Pseudomonas aeruginosa

    PubMed Central

    Rowe, Ian; Schams, Anthony; Mayhew, Christina

    2017-01-01

    Pseudomonas aeruginosa (PA) is an opportunistic pathogen with an exceptional ability to adapt to a range of environments. Part of its adaptive potential is the ability to survive drastic osmolarity changes. Upon a sudden dilution of external medium, such as during exposure to rain, bacteria evade mechanical rupture by engaging tension-activated channels that act as osmolyte release valves. In this study, we compare fast osmotic permeability responses in suspensions of wild-type PA and Escherichia coli (EC) strains in stopped-flow experiments and provide electrophysiological descriptions of osmotic-release channels in PA. Using osmotic dilution experiments, we first show that PA tolerates a broader range of shocks than EC. We record the kinetics of cell equilibration reported by light scattering responses to osmotic up- and down-shocks. PA exhibits a lower water permeability and faster osmolyte release rates during large osmotic dilutions than EC, which correlates with better survival. To directly characterize the PA tension-activated channels, we generate giant spheroplasts from this microorganism and record current responses in excised patches. Unlike EC, which relies primarily on two types of channels, EcMscS and EcMscL, to generate a distinctive two-wave pressure ramp response, PA exhibits a more gradual response that is dominated by MscL-type channels. Genome analysis, cloning, and expression reveal that PA possesses one MscL-type (PaMscL) and two MscS-type (PaMscS-1 and 2) proteins. In EC spheroplasts, both PaMscS channels exhibit a slightly earlier activation by pressure compared with EcMscS. Unitary currents reveal that PaMscS-2 has a smaller conductance, higher anionic preference, stronger inactivation, and slower recovery compared with PaMscS-1. We conclude that PA relies on MscL as the major valve defining a high rate of osmolyte release sufficient to curb osmotic swelling under extreme shocks, but it still requires MscS-type channels with a strong propensity to inactivation to properly terminate massive permeability response. PMID:28424229

  18. Non-iterative determination of the stress-density relation from ramp wave data through a window

    NASA Astrophysics Data System (ADS)

    Dowling, Evan; Fratanduono, Dayne; Swift, Damian

    2017-06-01

    In the canonical ramp compression experiment, a smoothly-increasing load is applied the surface of the sample, and the particle velocity history is measured at interfaces two or more different distances into the sample. The velocity histories are used to deduce a stress-density relation by correcting for perturbations caused by reflected release waves, usually via the iterative Lagrangian analysis technique of Rothman and Maw. We previously described a non-iterative (recursive) method of analysis, which was more stable and orders of magnitude faster than iteration, but was subject to the limitation that the free surface velocity had to be sampled at uniform intervals. We have now developed more general recursive algorithms suitable for analyzing ramp data through a finite-impedance window. Free surfaces can be treated seamlessly, and the need for uniform velocity sampling has been removed. These calculations require interpolation of partially-released states using the partially-constructed isentrope, making them slower than the previous free-surface scheme, but they are still much faster than iterative analysis. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  19. Microencapsulation of Theobroma cacao L. waste extract: optimization using response surface methodology.

    PubMed

    Gabbay Alves, Taís Vanessa; Silva da Costa, Russany; Aliakbarian, Bahar; Casazza, Alessandro Alberto; Perego, Patrizia; Carréra Silva Júnior, José Otávio; Ribeiro Costa, Roseane Maria; Converti, Attilio

    2017-03-01

    The cocoa extract (Theobroma cacao L.) has a significant amount of polyphenols (TP) with potent antioxidant activity (AA). This study aims to optimise microencapsulation of the extract of cocoa waste using chitosan and maltodextrin. Microencapsulation tests were performed according to a Box-Behnken factorial design, and the results were evaluated by response surface methodology with temperature, maltodextrin concentration (MD) and extract flowrate (EF) as independent variables, and the fraction of encapsulated TP, TP encapsulation yield, AA, yield of drying and solubility index as responses. The optimum conditions were: inlet temperature of 170 °C, MD of 5% and EF of 2.5 mL/min. HPLC analysis identified epicatechin as the major component of both the extract and microparticles. TP release was faster at pH 3.5 than in water. These results as a whole suggest that microencapsulation was successful and the final product can be used as a nutrient source for aquatic animal feed. Highlights Microencapsulation is optimised according to a factorial design of the Box-Behnken type. Epicatechin is the major component of both the extract and microcapsules. The release of polyphenols from microcapsules is faster at pH 3.5 than in water.

  20. Evaluation of the Disintegrant Properties of Native Starches of Five New Cassava Varieties in Paracetamol Tablet Formulations

    PubMed Central

    Adjei, Frank Kumah; Osei, Yaa Asantewaa; Kuntworbe, Noble

    2017-01-01

    The disintegrant potential of native starches of five new cassava (Manihot esculenta Crantz.) varieties developed by the Crops Research Institute of Ghana (CRIG) was studied in paracetamol tablet formulations. The yield of the starches ranged from 8.0 to 26.7%. The starches were basic (pH: 8.1–9.9), with satisfactory moisture content (≤15%), swelling capacity (≥20%), ash values (<1%), flow properties, and negligible toxic metal ion content, and compatible with the drug. The tensile strength (Ts), crushing strength (Cs), and friability (Ft) of tablets containing 5–10% w/w of the cassava starches were similar (p > 0.05) to those containing maize starch BP. The disintegration times of the tablets decreased with increase in concentration of the cassava starches. The tablets passed the disintegration test (DT ≤ 15 min) and exhibited faster disintegration times (p > 0.05) than those containing maize starch BP. The disintegration efficiency ratio (DER) and the disintegration parameter DERc of the tablets showed that cassava starches V20, V40, and V50 had better disintegrant activity than maize starch BP. The tablets passed the dissolution test for immediate release tablets (≥70% release in 45 min) with dissolution rates similar to those containing maize starch BP. PMID:28781909

  1. Fastest Rotating Star Found in Neighboring Galaxy

    NASA Image and Video Library

    2017-12-08

    NASA image release December 5, 2011 This is an artist's concept of the fastest rotating star found to date. The massive, bright young star, called VFTS 102, rotates at a million miles per hour, or 100 times faster than our Sun does. Centrifugal forces from this dizzying spin rate have flattened the star into an oblate shape and spun off a disk of hot plasma, seen edge on in this view from a hypothetical planet. The star may have "spun up" by accreting material from a binary companion star. The rapidly evolving companion later exploded as a supernova. The whirling star lies 160,000 light-years away in the Large Magellanic Cloud, a satellite galaxy of our Milky Way. The team will use NASA's Hubble Space Telescope to make precise measurements of the star's proper motion across space. To read more go to: hubblesite.org/newscenter/archive/releases/2011/39/full/ Image Type: Artwork Credit: NASA, ESA, and G. Bacon (STScI) NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  2. Synthesis of a novel superdisintegrant by starch derivatization with polysuccinimide and its application for the development of Ondansetron fast dissolving tablet.

    PubMed

    Sadeghi, Mozhgan; Hemmati, Salar; Hamishehkar, Hamed

    2016-01-01

    Disintegrants are the key excipients administered in tablet formulations to boost the decomposition of the tablet into smaller pieces in the gastrointestinal environment, thereby increasing the available surface area and enhancing a more rapid release of the active ingredient. Polysuccinimide (PSI), a biodegradable polymer synthesized from aspartic acid, was reacted with starch and fully assessed by CHN, (1)H-NMR, and FTIR. PSI-grafted starch (PSI-St) was synthesized and applied as a disintegrant in the formulation of a rapidly disintegrating tablet of Ondansetron, a nausea and vomiting medicine. The tablet formulated with the newly developed superdisintegrant was evaluated for hardness, friability, disintegration time, and dissolution rate, and the results were compared with tablets formulated with an identical composition of test formulation differing only in type of disintegrant. Tablets prepared with starch and tablets prepared with sodium starch glycolate (SSG) were used as negative and positive controls, respectively. Dissolution study results indicated that although the onset of disintegration action was faster for SSG than PSI-St, higher amounts of drug were released from tablets formulated from PSI-St than from those formulated from SSG during 10 min. It was concluded that the novel synthesized superdisintegrant has an appropriate potential for the application in the formulation of fast dissolving tablets.

  3. Synthesis of a novel superdisintegrant by starch derivatization with polysuccinimide and its application for the development of Ondansetron fast dissolving tablet.

    PubMed

    Sadeghi, Mozhgan; Hemmati, Salar; Hamishehkar, Hamed

    2016-05-01

    Disintegrants are the key excipients administered in tablet formulations to boost the decomposition of the tablet into smaller pieces in the gastrointestinal environment, thereby increasing the available surface area and enhancing a more rapid release of the active ingredient. Polysuccinimide (PSI), a biodegradable polymer synthesized from aspartic acid, was reacted with starch and fully assessed by CHN, 1 H-NMR, and FTIR. PSI-grafted starch (PSI-St) was synthesized and applied as a disintegrant in the formulation of a rapidly disintegrating tablet of Ondansetron, a nausea and vomiting medicine. The tablet formulated with the newly developed superdisintegrant was evaluated for hardness, friability, disintegration time, and dissolution rate, and the results were compared with tablets formulated with an identical composition of test formulation differing only in type of disintegrant. Tablets prepared with starch and tablets prepared with sodium starch glycolate (SSG) were used as negative and positive controls, respectively. Dissolution study results indicated that although the onset of disintegration action was faster for SSG than PSI-St, higher amounts of drug were released from tablets formulated from PSI-St than from those formulated from SSG during 10 min. It was concluded that the novel synthesized superdisintegrant has an appropriate potential for the application in the formulation of fast dissolving tablets.

  4. Characteristics of Crushing Energy and Fractal of Magnetite Ore under Uniaxial Compression

    NASA Astrophysics Data System (ADS)

    Gao, F.; Gan, D. Q.; Zhang, Y. B.

    2018-03-01

    The crushing mechanism of magnetite ore is a critical theoretical problem on the controlling of energy dissipation and machine crushing quality in ore material processing. Uniaxial crushing tests were carried out to research the deformation mechanism and the laws of the energy evolution, based on which the crushing mechanism of magnetite ore was explored. The compaction stage and plasticity and damage stage are two main compression deformation stages, the main transitional forms from inner damage to fracture are plastic deformation and stick-slip. In the process of crushing, plasticity and damage stage is the key link on energy absorption for that the specimen tends to saturate energy state approaching to the peak stress. The characteristics of specimen deformation and energy dissipation can synthetically reply the state of existed defects inner raw magnetite ore and the damage process during loading period. The fast releasing of elastic energy and the work done by the press machine commonly make raw magnetite ore thoroughly broken after peak stress. Magnetite ore fragments have statistical self-similarity and size threshold of fractal characteristics under uniaxial squeezing crushing. The larger ratio of releasable elastic energy and dissipation energy and the faster energy change rate is the better fractal properties and crushing quality magnetite ore has under uniaxial crushing.

  5. Rapid Stress System Drives Chemical Transfer of Fear from Sender to Receiver

    PubMed Central

    de Groot, Jasper H. B.; Smeets, Monique A. M.; Semin, Gün R.

    2015-01-01

    Humans can register another person’s fear not only with their eyes and ears, but also with their nose. Previous research has demonstrated that exposure to body odors from fearful individuals elicited implicit fear in others. The odor of fearful individuals appears to have a distinctive signature that can be produced relatively rapidly, driven by a physiological mechanism that has remained unexplored in earlier research. The apocrine sweat glands in the armpit that are responsible for chemosignal production contain receptors for adrenalin. We therefore expected that the release of adrenalin through activation of the rapid stress response system (i.e., the sympathetic-adrenal medullary system) is what drives the release of fear sweat, as opposed to activation of the slower stress response system (i.e., hypothalamus-pituitary-adrenal axis). To test this assumption, sweat was sampled while eight participants prepared for a speech. Participants had higher heart rates and produced more armpit sweat in the fast stress condition, compared to baseline and the slow stress condition. Importantly, exposure to sweat from participants in the fast stress condition induced in receivers (N = 31) a simulacrum of the state of the sender, evidenced by the emergence of a fearful facial expression (facial electromyography) and vigilant behavior (i.e., faster classification of emotional facial expressions). PMID:25723720

  6. Bioinspired Coordination Micelles Integrating High Stability, Triggered Cargo Release, and Magnetic Resonance Imaging.

    PubMed

    Xin, Keting; Li, Man; Lu, Di; Meng, Xuan; Deng, Jun; Kong, Deling; Ding, Dan; Wang, Zheng; Zhao, Yanjun

    2017-01-11

    Catechol-Fe 3+ coordinated micelles show the potential for achieving on-demand drug delivery and magnetic resonance imaging in a single nanoplatform. Herein, we developed bioinspired coordination-cross-linked amphiphilic polymeric micelles loaded with a model anticancer agent, doxorubicin (Dox). The nanoscale micelles could tolerate substantial dilution to a condition below the critical micelle concentration (9.4 ± 0.3 μg/mL) without sacrificing the nanocarrier integrity due to the catechol-Fe 3+ coordinated core cross-linking. Under acidic conditions (pH 5.0), the release rate of Dox was significantly faster compared to that at pH 7.4 as a consequence of coordination collapse and particle de-cross-linking. The cell viability study in 4T1 cells showed no toxicity regarding placebo cross-linked micelles. The micelles with improved stability showed a dramatically increased Dox accumulation in tumors and hence the enhanced suppression of tumor growth in a 4T1 tumor-bearing mouse model. The presence of Fe 3+ endowed the micelles T 1 -weighted MRI capability both in vitro and in vivo without the incorporation of traditional toxic paramagnetic contrast agents. The current work presented a simple "three birds with one stone" approach to engineer the robust theranostic nanomedicine platform.

  7. (99)Tc(VII) Retardation, Reduction, and Redox Rate Scaling in Naturally Reduced Sediments.

    PubMed

    Liu, Yuanyuan; Liu, Chongxuan; Kukkadapu, Ravi K; McKinley, James P; Zachara, John; Plymale, Andrew E; Miller, Micah D; Varga, Tamas; Resch, Charles T

    2015-11-17

    An experimental and modeling study was conducted to investigate pertechnetate (Tc(VII)O4(-)) retardation, reduction, and rate scaling in three sediments from Ringold formation at U.S. Department of Energy's Hanford site, where (99)Tc is a major contaminant in groundwater. Tc(VII) was reduced in all the sediments in both batch reactors and diffusion columns, with a faster rate in a sediment containing a higher concentration of HCl-extractable Fe(II). Tc(VII) migration in the diffusion columns was reductively retarded with retardation degrees correlated with Tc(VII) reduction rates. The reduction rates were faster in the diffusion columns than those in the batch reactors, apparently influenced by the spatial distribution of redox-reactive minerals along transport paths that supplied Tc(VII). X-ray computed tomography and autoradiography were performed to identify the spatial locations of Tc(VII) reduction and transport paths in the sediments, and results generally confirmed the newly found behavior of reaction rate changes from batch to column. The results from this study implied that Tc(VII) migration can be reductively retarded at Hanford site with a retardation degree dependent on reactive Fe(II) content and its distribution in sediments. This study also demonstrated that an effective reaction rate may be faster in transport systems than that in well-mixed reactors.

  8. PLGA-based drug delivery systems: importance of the type of drug and device geometry.

    PubMed

    Klose, D; Siepmann, F; Elkharraz, K; Siepmann, J

    2008-04-16

    Different types of ibuprofen- and lidocaine-loaded, poly(lactic-co-glycolic acid) (PLGA)-based microparticles and thin, free films of various dimensions were prepared and physico-chemically characterized in vitro. The obtained experimental results were analyzed using mathematical theories based on Fick's second law of diffusion. Importantly, the initial drug loadings were low in all cases (4%, w/w), simplifying the mathematical treatment and minimizing potential effects of the acidic/basic nature of the two model drugs on polymer degradation. Interestingly, the type of drug and device geometry strongly affected the resulting release kinetics and relative importance of the involved mass transport mechanisms. For instance, the relative release rate was almost unaffected by the system size in the case of spherical microparticles, but strongly depended on the thickness of thin, free films, irrespective of the type of drug. Ibuprofen and lidocaine release was found to be primarily diffusion controlled from the investigated PLGA-based microparticles for all system sizes, whereas diffusion was only dominant in the case of the thinnest free films. Interestingly, the type of drug did not significantly affect the resulting polymer degradation kinetics. However, ibuprofen release was always much faster than lidocaine release for all system geometries and sizes. This can probably be attributed to attractive ionic interactions between protonated, positively charged lidocaine ions and negatively charged, deprotonated carboxylic end groups of PLGA, hindering drug diffusion. The determined apparent diffusion coefficients of the drugs clearly point out that the mobility of an active agent in PLGA-based delivery systems does not only depend on its own physico-chemical properties and the type of PLGA used, but also to a large extent on the size and shape of the device. This has to be carefully taken into account when developing/optimizing this type of advanced drug delivery systems.

  9. CO2-switchable fluorescence of a dendritic polymer and its applications

    NASA Astrophysics Data System (ADS)

    Gao, Chunmei; Lü, Shaoyu; Liu, Mingzhu; Wu, Can; Xiong, Yun

    2015-12-01

    The synthesis and properties of CO2 responsive and fluorescent dendritic polymers, poly(amido amine)/Pluronic F127 (PAMAM/F127), are reported in this paper. The morphologies and sizes of PAMAM/F127 dendritic polymers were investigated by dynamic light scattering (DLS) and transmission electron microscopy (TEM). PAMAM/F127 dendritic polymers showed unimolecular micelle morphologies at low concentrations, and changed to multimolecular micelles at higher concentrations. Additionally, fluorescence spectra and confocal laser scanning microscopy images showed that PAMAM/F127 dendritic polymers exhibited a fluorescent enhancement response to the presence of CO2. Apart from that, the release behavior of PAMAM/F127 gels under simulated body fluids was investigated by choosing curcumin as the hydrophobic drug. The results indicated that PAMAM/F127 dendritic polymers can be used to improve the solubility of curcumin, and the drug released faster in the presence of CO2. Such CO2 responsive fluorescent dendritic polymers are potentially applicable in cellular imaging or drug controlled release.The synthesis and properties of CO2 responsive and fluorescent dendritic polymers, poly(amido amine)/Pluronic F127 (PAMAM/F127), are reported in this paper. The morphologies and sizes of PAMAM/F127 dendritic polymers were investigated by dynamic light scattering (DLS) and transmission electron microscopy (TEM). PAMAM/F127 dendritic polymers showed unimolecular micelle morphologies at low concentrations, and changed to multimolecular micelles at higher concentrations. Additionally, fluorescence spectra and confocal laser scanning microscopy images showed that PAMAM/F127 dendritic polymers exhibited a fluorescent enhancement response to the presence of CO2. Apart from that, the release behavior of PAMAM/F127 gels under simulated body fluids was investigated by choosing curcumin as the hydrophobic drug. The results indicated that PAMAM/F127 dendritic polymers can be used to improve the solubility of curcumin, and the drug released faster in the presence of CO2. Such CO2 responsive fluorescent dendritic polymers are potentially applicable in cellular imaging or drug controlled release. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr06729d

  10. Aspects of Solvent Chemistry for Calcium Hydroxide Medicaments

    PubMed Central

    Athanassiadis, Basil

    2017-01-01

    Calcium hydroxide pastes have been used in endodontics since 1947. Most current calcium hydroxide endodontic pastes use water as the vehicle, which limits the dissolution of calcium hydroxide that can be achieved and, thereby, the maximum pH that can be achieved within the root canal system. Using polyethylene glycol as a solvent, rather than water, can achieve an increase in hydroxyl ions release compared to water or saline. By adopting non-aqueous solvents such as the polyethylene glycols (PEG), greater dissolution and faster hydroxyl ion release can be achieved, leading to enhanced antimicrobial actions, and other improvements in performance and biocompatibility. PMID:29065542

  11. Montmorillonite Dissolution in Simulated Lung Fluids

    NASA Astrophysics Data System (ADS)

    Schmidt, M.; Wendlandt, R. F.

    2008-12-01

    Because lung fluids" first interaction is with the surface of inhaled grains, the surface properties of inhaled mineral dusts may have a generally mitigating effect on cytotoxicity and carcinogenicity. Wendlandt et al. (Appl. Geochem. 22, 2007) investigated the surface properties of respirable-sized quartz grains in bentonites and recognized pervasive montmorillonite surface coatings on silica grains. The purpose of this study was to determine the dissolution rate and biodurability of montmorillonite in simulated lung fluids and to assess its potential to mitigate silica cytotoxicity. Modified batch reaction experiments were conducted on purified and size fractionated calcic (SAz-2; 0.4-5 μm) and sodic (DC-2; 0.4-2 μm) montmorillonites for 120 to 160 days of reaction time at 37°C in both simulated extracellular lung fluid (Lu) and simulated lysosomal fluid (Ly). Modified batch experiments simulated a flow-through setup and minimized sample handling difficulties. Reacted Lu and Ly fluid was analyzed for Mg, Al, and Si on an ICP-OE spectrometer. Steady state dissolution was reached 90-100 days after the start of the experiment and maintained for 40-60 days. Measured montmorillonite dissolution rates based on BET surface areas and Si steady state release range from 4.1x10-15 mol/m2/s at the slowest to 1.0x10-14 mol/m2/s at the fastest with relative uncertainties of less than 10%. Samples reacting in Ly (pH = 4.55) dissolved faster than those in Lu (pH = 7.40), and DC-2 dissolved faster than SAz-2. The measured range of biodurabilities was 1,300 to 3,400 years for a 1 μm grain assuming a spherical volume and a molar volume equal to that of illite. The difference in salinities of the two fluids was too slight to draw conclusions about the relationship of ionic strength to dissolution rate. Results indicate that montmorillonite dissolution is incongruent and edge controlled. Dissolution rates for DC- 2 and SAz-2 clays were comparable to those reported in the literature. Biodurability results fall well beyond the lifespan of humans confirming montmorillonite's potential to mitigate silica cytotoxicity.

  12. Elucidation of release characteristics of highly soluble drug trimetazidine hydrochloride from chitosan-carrageenan matrix tablets.

    PubMed

    Li, Liang; Wang, Linlin; Shao, Yang; Tian, Ye; Li, Conghao; Li, Ying; Mao, Shirui

    2013-08-01

    The aim of this study was to better understand the underlying drug release characteristics from matrix tablets based on the combination of chitosan (CS) and different types of carrageenans [kappa (κ)-CG, iota (ι)-CG, and lambda (λ)-CG]. Highly soluble trimetazidine hydrochloride (TH) was used as a model drug. First, characteristics of drug release from different formulations were investigated, and then in situ complexation capacity of CG with TH and CS was studied by differential scanning calorimetry and Fourier transform infrared spectroscopy. Erosion and swelling of matrix were also characterized to better understand the drug-release mechanisms. Effects of pH and ionic strength on drug release were also studied. It was found that not only ι-CG and λ-CG could reduce the burst release of TH by the effect of TH-CG interaction, CS-ι-CG- and CS-λ-CG-based polyelectrolyte film could further modify the controlled-release behavior, but not CS-κ-CG. High pH and high ionic strength resulted in faster drug release from CS-κ-CG- and CS-ι-CG-based matrix, but drug release from CS-λ-CG-based matrix was less sensitive to pH and ionic strength. In conclusion, CS-λ-CG-based matrix tablets are quite promising as controlled-release drug carrier based on multiple mechanisms. Copyright © 2013 Wiley Periodicals, Inc.

  13. Pure rotational CARS thermometry studies of low-temperature oxidation kinetics in air and ethene-air nanosecond pulse discharge plasmas

    NASA Astrophysics Data System (ADS)

    Zuzeek, Yvette; Choi, Inchul; Uddi, Mruthunjaya; Adamovich, Igor V.; Lempert, Walter R.

    2010-03-01

    Pure rotational CARS thermometry is used to study low-temperature plasma assisted fuel oxidation kinetics in a repetitive nanosecond pulse discharge in ethene-air at stoichiometric and fuel lean conditions at 40 Torr pressure. Air and fuel-air mixtures are excited by a burst of high-voltage nanosecond pulses (peak voltage, 20 kV; pulse duration, ~ 25 ns) at a 40 kHz pulse repetition rate and a burst repetition rate of 10 Hz. The number of pulses in the burst is varied from a few pulses to a few hundred pulses. The results are compared with the previously developed hydrocarbon-air plasma chemistry model, modified to incorporate non-empirical scaling of the nanosecond discharge pulse energy coupled to the plasma with number density, as well as one-dimensional conduction heat transfer. Experimental time-resolved temperature, determined as a function of the number of pulses in the burst, is found to agree well with the model predictions. The results demonstrate that the heating rate in fuel-air plasmas is much faster compared with air plasmas, primarily due to energy release in exothermic reactions of fuel with O atoms generated by the plasma. It is found that the initial heating rate in fuel-air plasmas is controlled by the rate of radical (primarily O atoms) generation and is nearly independent of the equivalence ratio. At long burst durations, the heating rate in lean fuel air-mixtures is significantly reduced when all fuel is oxidized.

  14. Controlling insulin release from reverse hexagonal (HII) liquid crystalline mesophase by enzymatic lipolysis.

    PubMed

    Mishraki-Berkowitz, Tehila; Cohen, Guy; Aserin, Abraham; Garti, Nissim

    2018-01-01

    In the present study we aimed to control insulin release from the reverse hexagonal (H II ) mesophase using Thermomyces lanuginosa lipase (TLL) in the environment (outer TLL) or within the H II cylinders (inner TLL). Two insulin-loaded systems differing by the presence (or absence) of phosphatidylcholine (PC) were examined. In general, incorporation of PC into the H II interface (without TLL) increased insulin release, as a more cooperative system was formed. Addition of TLL to the systems' environments resulted in lipolysis of the H II structure. In the absence of PC, the lipolysis was more dominant and led to a significant increase in insulin release (50% after 8h). However, the presence of PC stabilized the interface, hindering the lipolysis, and therefore no impact on the release profile was detected during the first 8h. Entrapment of TLL within the H II cylinders (with and without PC) drastically increased insulin release in both systems up to 100%. In the presence of PC insulin released faster and the structure was more stable. Consequently, the presence of lipases (inner or outer) both enhanced the destruction of the carrier, and provided sustained release of the entrapped insulin. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. In Vitro and In Vivo Investigation of the Potential of Amorphous Microporous Silica as a Protein Delivery Vehicle

    PubMed Central

    Vanmellaert, Lieve; Vermaelen, Peter; Deroose, Christophe M.; Naert, Ignace; Cardoso, Marcio Vivan; Martens, Johan A.

    2013-01-01

    Delivering growth factors (GFs) at bone/implant interface needs to be optimized to achieve faster osseointegration. Amorphous microporous silica (AMS) has a potential to be used as a carrier and delivery platform for GFs. In this work, adsorption (loading) and release (delivery) mechanism of a model protein, bovine serum albumin (BSA), from AMS was investigated in vitro as well as in vivo. In general, strong BSA adsorption to AMS was observed. The interaction was stronger at lower pH owing to favorable electrostatic interaction. In vitro evaluation of BSA release revealed a peculiar release profile, involving a burst release followed by a 6 h period without appreciable BSA release and a further slower release later. Experimental data supporting this observation are discussed. Apart from understanding protein/biomaterial (BSA/AMS) interaction, determination of in vivo protein release is an essential aspect of the evaluation of a protein delivery system. In this regard micropositron emission tomography (μ-PET) was used in an exploratory experiment to determine in vivo BSA release profile from AMS. Results suggest stronger in vivo retention of BSA when adsorbed on AMS. This study highlights the possible use of AMS as a controlled protein delivery platform which may facilitate osseointegration. PMID:23991413

  16. Atmospheric modeling of Mars CH4 subsurface clathrates releases mimicking SAM and 2003 Earth-based detections

    NASA Astrophysics Data System (ADS)

    Pla-Garcia, Jorge

    2017-10-01

    The aim of this work is to establish the amount of mixing during all martian seasons to test whether CH4 releases inside or outside of Gale crater are consistent with MSL-SAM observations. Several modeling scenarios were configured, including instantaneous and steady releases, both inside and outside the crater. A simulation to mimic the 2003 Earth-based detections (Mumma et al. 2009 or M09) was also performed. In the instantaneous release inside Gale experiments, Ls270 was shown to be the faster mixing season when air within and outside the crater was well mixed: all tracer mass inside the crater is diluted after just 8 hours. The mixing of near surface crater air with the external environment in the rest of the year is potentially rapid but slower than Ls270. In the instantaneous release outside Gale (NW) experiment, in just 12 hours the CH4 that makes it to the MSL landing location is diluted by six orders of magnitude. The timescale of mixing in the model is on the order of 1 sol regardless of season. The duration of the CH4 peak observed by SAM is 100 sols. Therefore there is a steady release inside the crater, or there is a large magnitude steady release outside the crater. In the steady release Gale experiments, CH4 flux rate from ground is 1.8 kg m-2 s-1 (Gloesener et al. 2017) and it is not predictive. In these experiments, ~200 times lower CH4 values detected by SAM are modeled around MSL location. There are CH4 concentration variations of orders of magnitude depending on the hour, so timing of SAM measurements is important. With a larger (but further away) outside crater release area compared to inside, similar CH4 values around MSL are modeled, so distance to source is important. In the steady experiments mimicking M09 detection release area, only 12 times lower CH4 values detected by SAM are modeled around MSL. The highest value in the M09 modeled scenario (0.6 ppbv) is reached in Ls270. This value is the highest of all modeled experiments. With our initial conditions, SAM should not be able to detect CH4, but if we multiply flux by 12, increase the release area or move it closer to MSL (or all of above), it may be possible to get CH4 values that SAM could detect regardless where it comes from.

  17. Bioactive Molecules Release and Cellular Responses of Alginate-Tricalcium Phosphate Particles Hybrid Gel

    PubMed Central

    Bang, Sumi; Zhang, Shengmin

    2017-01-01

    In this article, a hybrid gel has been developed using sodium alginate (Alg) and α-tricalcium phosphate (α-TCP) particles through ionic crosslinking process for the application in bone tissue engineering. The effects of pH and composition of the gel on osteoblast cells (MC3T3) response and bioactive molecules release have been evaluated. At first, a slurry of Alg and α-TCP has been prepared using an ultrasonicator for the homogeneous distribution of α-TCP particles in the Alg network and to achieve adequate interfacial interaction between them. After that, CaCl2 solution has been added to the slurry so that ionic crosslinked gel (Alg-α-TCP) is formed. The developed hybrid gel has been physico-chemically characterized using Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM) and a swelling study. The SEM analysis depicted the presence of α-TCP micro-particles on the surface of the hybrid gel, while cross-section images signified that the α-TCP particles are fully embedded in the porous gel network. Different % swelling ratio at pH 4, 7 and 7.4 confirmed the pH responsiveness of the Alg-α-TCP gel. The hybrid gel having lower % α-TCP particles showed higher % swelling at pH 7.4. The hybrid gel demonstrated a faster release rate of bovine serum albumin (BSA), tetracycline (TCN) and dimethyloxalylglycine (DMOG) at pH 7.4 and for the grade having lower % α-TCP particles. The MC3T3 cells are viable inside the hybrid gel, while the rate of cell proliferation is higher at pH 7.4 compared to pH 7. The in vitro cytotoxicity analysis using thiazolyl blue tetrazolium bromide (MTT), bromodeoxyuridine (BrdU) and neutral red assays ascertained that the hybrid gel is non-toxic for MC3T3 cells. The experimental results implied that the non-toxic and biocompatible Alg-α-TCP hybrid gel could be used as scaffold in bone tissue engineering. PMID:29135939

  18. The Pace of Cultural Evolution

    PubMed Central

    Perreault, Charles

    2012-01-01

    Today, humans inhabit most of the world’s terrestrial habitats. This observation has been explained by the fact that we possess a secondary inheritance mechanism, culture, in addition to a genetic system. Because it is assumed that cultural evolution occurs faster than biological evolution, humans can adapt to new ecosystems more rapidly than other animals. This assumption, however, has never been tested empirically. Here, I compare rates of change in human technologies to rates of change in animal morphologies. I find that rates of cultural evolution are inversely correlated with the time interval over which they are measured, which is similar to what is known for biological rates. This correlation explains why the pace of cultural evolution appears faster when measured over recent time periods, where time intervals are often shorter. Controlling for the correlation between rates and time intervals, I show that (1) cultural evolution is faster than biological evolution; (2) this effect holds true even when the generation time of species is controlled for; and (3) culture allows us to evolve over short time scales, which are normally accessible only to short-lived species, while at the same time allowing for us to enjoy the benefits of having a long life history. PMID:23024804

  19. Multi-element microelectropolishing method

    DOEpatents

    Lee, P.J.

    1994-10-11

    A method is provided for microelectropolishing a transmission electron microscopy nonhomogeneous multi-element compound foil. The foil is electrolyzed at different polishing rates for different elements by rapidly cycling between different current densities. During a first portion of each cycle at a first voltage a first element electrolyzes at a higher current density than a second element such that the material of the first element leaves the anode foil at a faster rate than the second element and creates a solid surface film, and such that the solid surface film is removed at a faster rate than the first element leaves the anode foil. During a second portion of each cycle at a second voltage the second element electrolyzes at a higher current density than the first element, and the material of the second element leaves the anode foil at a faster rate than the first element and creates a solid surface film, and the solid surface film is removed at a slower rate than the second element leaves the foil. The solid surface film is built up during the second portion of the cycle, and removed during the first portion of the cycle. 10 figs.

  20. Soy polysaccharide as a novel superdisintegrant in sildenafil citrate sublingual tablets: preparation, characterization, and in vivo evaluation

    PubMed Central

    Hosny, Khaled Mohamed; Mosli, Hisham Ahmed; Hassan, Ali Habiballah

    2015-01-01

    Sildenafil citrate (SC), a drug used to treat erectile dysfunction, is available in tablet form but has three major problems. First, the drug displays inadequate aqueous solubility, which delays the onset of its action. Second, the drug undergoes extensive first-pass metabolism, resulting in a low (40%) bioavailability. Third, the gastrointestinal effects of SC include dyspepsia and a burning sensation. The aim of this research was to prepare SC as a sublingual tablet utilizing soy polysaccharide as novel superdisintegrant to mitigate the abovementioned problems. The solubility of SC in various hydrophilic carrier solutions was estimated in order to prepare the drug as a coprecipitate. Sublingual tablets were prepared and evaluated for hardness, friability, drug content, wetting time, water absorption ratio, in vitro dispersion time, dissolution rate, and stability study. The pharmacokinetic study of the tablets was carried out on healthy volunteers. The results indicated that the co-precipitation of SC with polyvinylpyrollidone K30 enhanced the solubility of SC by more than eight folds. The tablet contained 8% soy polysaccharide as a superdisintegrant and provided a wetting time of 25 seconds, and in vitro dispersion times of 55 seconds. The drug release was found to be 95.6%. The prepared SC sublingual tablet also exhibited a rapid onset of action, and its bioavailability was enhanced 1.68-fold compared with that of the marketed tablets. It can be concluded that SC sublingual tablet is a promising formulation that results in higher solubility, faster dispersion and onset of action, higher release rate, and higher systemic bioavailability. PMID:25624751

  1. Higher rate alternative non-drug reinforcement produces faster suppression of cocaine seeking but more resurgence when removed.

    PubMed

    Craig, Andrew R; Nall, Rusty W; Madden, Gregory J; Shahan, Timothy A

    2016-06-01

    Relapse following removal of an alternative source of reinforcement introduced during extinction of a target behavior is called resurgence. This form of relapse may be related to relapse of drug taking following loss of alternative non-drug reinforcement in human populations. Laboratory investigations of factors mediating resurgence with food-maintained behavior suggest higher rates of alternative reinforcement produce faster suppression of target behavior but paradoxically generate more relapse when alternative reinforcement is discontinued. At present, it is unknown if a similar effect occurs when target behavior is maintained by drug reinforcement and the alternative is a non-drug reinforcer. In the present experiment three groups of rats were trained to lever press for infusions of cocaine during baseline. Next, during treatment, cocaine reinforcement was suspended and an alternative response was reinforced with either high-rate, low-rate, or no alternative food reinforcement. Finally, all reinforcement was suspended to test for relapse of cocaine seeking. Higher rate alternative reinforcement produced faster elimination of cocaine seeking than lower rates or extinction alone, but when treatment was suspended resurgence of cocaine seeking occurred following only high-rate alternative reinforcement. Thus, although higher rate alternative reinforcement appears to more effectively suppress drug seeking, should it become unavailable, it can have the unfortunate effect of increasing relapse. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Shanghai: a study on the spatial growth of population and economy in a Chinese metropolitan area.

    PubMed

    Zhu, J

    1995-01-01

    In this study of the growth in population and industry in Shanghai, China, between the 1982 and 1990 censuses, data on administrative divisions was normalized through digitization and spatial analysis. Analysis focused on spatial units, intensity of growth, time period, distance, rate of growth, and direction of spatial growth. The trisection method divided the city into city proper, outskirts, and suburbs. The distance function method considered the distance from center city as a function: exponential, power, trigonometric, logarithmic, and polynomial. Population growth and employment in all sectors increased in the outskirts and suburbs and decreased in the city proper except tertiary sectors. Primary sector employment decreased in all three sections. Employment in the secondary increased faster in the outskirts and suburbs than the total rate of growth of population and employment. In the city secondary sector employment rates decreased faster than total population and employment rates. The tertiary sector had the highest rate of growth in all sections, and employment grew faster than secondary sector rates. Tertiary growth was highest in real estate, finance, and insurance. Industrial growth in the secondary sector was 160.2% in the suburbs, 156.6% in the outskirts, and 80.9% in the city. In the distance function analysis, industry expanded further out than the entire secondary sector. Commerce grew the fastest in areas 15.4 km from center city. Economic growth was faster after economic reforms in 1978. Growth was led by industry and followed by the secondary sector, the tertiary sector, and population. Industrial expansion resulted from inner pressure, political factors controlling size, the social and economic system, and the housing construction and distribution system. Initially sociopsychological factors affected urban concentration.

  3. Parameters and structure of lunar regolith in Chang'E-3 landing area from lunar penetrating radar (LPR) data

    NASA Astrophysics Data System (ADS)

    Dong, Zehua; Fang, Guangyou; Ji, Yicai; Gao, Yunze; Wu, Chao; Zhang, Xiaojuan

    2017-01-01

    Chang'E-3 (CE-3) landed in the northwest Mare Imbrium, a region that has not been explored before. Yutu rover that released by CE-3 lander carried the first lunar surface penetrating radar (LPR) for exploring lunar regolith thickness and subsurface shallow geological structures. In this paper, based on the LPR data and the Panoramic Camera (PC) data, we first calculate the lunar surface regolith parameters in CE-3 landing area including its permittivity, density, conductivity and FeO + TiO2 content. LPR data provides a higher spatial resolution and more accuracy for the lunar regolith parameters comparing to other remote sensing techniques, such as orbit radar sounder and microwave sensing or earth-based powerful radar. We also derived the regolith thickness and its weathered rate with much better accuracy in the landing area. The results indicate that the regolith growth rate is much faster than previous estimation, the regolith parameters are not uniform even in such a small study area and the thickness and growth rate of lunar regolith here are different from other areas in Mare Imbrium. We infer that the main reason should be geological deformation that caused by multiple impacts of meteorites in different sizes.

  4. Faster Self-paced Rate of Drinking for Alcohol Mixed with Energy Drinks versus Alcohol Alone

    PubMed Central

    Marczinski, Cecile A.; Fillmore, Mark T.; Maloney, Sarah F.; Stamates, Amy L.

    2016-01-01

    The consumption of alcohol mixed with energy drinks (AmED) has been associated with higher rates of binge drinking and impaired driving when compared to alcohol alone. However, it remains unclear why the risks of use of AmED are heightened compared to alcohol alone even when the doses of alcohol consumed are similar. Therefore, the purpose of this laboratory study was to investigate if the rate of self-paced beverage consumption was faster for a dose of AmED versus alcohol alone using a double-blind, within-subjects, placebo-controlled study design. Participants (n = 16) of equal gender who were social drinkers attended 4 separate test sessions that involved consumption of alcohol (1.97 ml/kg vodka) and energy drinks, alone and in combination. On each test day, the dose assigned was divided into 10 cups. Participants were informed that they would have a two hour period to consume the 10 drinks. After the self-paced drinking period, participants completed a cued go/no-go reaction time task and subjective ratings of stimulation and sedation. The results indicated that participants consumed the AmED dose significantly faster (by approximately 16 minutes) than the alcohol dose. For the performance task, participants’ mean reaction times were slower in the alcohol conditions and faster in the energy drink conditions. In conclusion, alcohol consumers should be made aware that rapid drinking might occur for AmED beverages thus heightening alcohol-related safety risks. The fast rate of drinking may be related to the generalized speeding of responses following energy drink consumption. PMID:27819431

  5. Effects of music tempo upon submaximal cycling performance.

    PubMed

    Waterhouse, J; Hudson, P; Edwards, B

    2010-08-01

    In an in vivo laboratory controlled study, 12 healthy male students cycled at self-chosen work-rates while listening to a program of six popular music tracks of different tempi. The program lasted about 25 min and was performed on three occasions--unknown to the participants, its tempo was normal, increased by 10% or decreased by 10%. Work done, distance covered and cadence were measured at the end of each track, as were heart rate and subjective measures of exertion, thermal comfort and how much the music was liked. Speeding up the music program increased distance covered/unit time, power and pedal cadence by 2.1%, 3.5% and 0.7%, respectively; slowing the program produced falls of 3.8%, 9.8% and 5.9%. Average heart rate changes were +0.1% (faster program) and -2.2% (slower program). Perceived exertion and how much the music was liked increased (faster program) by 2.4% and 1.3%, respectively, and decreased (slower program) by 3.6% and 35.4%. That is, healthy individuals performing submaximal exercise not only worked harder with faster music but also chose to do so and enjoyed the music more when it was played at a faster tempo. Implications of these findings for improving training regimens are discussed.

  6. Fabrication of composite poly(d,l-lactide)/montmorillonite nanoparticles for controlled delivery of acetaminophen by solvent-displacement method using glass capillary microfluidics.

    PubMed

    Othman, Rahimah; Vladisavljević, Goran T; Thomas, Noreen L; Nagy, Zoltan K

    2016-05-01

    Paracetamol (PCM)-loaded composite nanoparticles (NPs) composed of a biodegradable poly(d,l-lactide) (PLA) polymer matrix filled with organically modified montmorillonite (MMT) nanoparticles were fabricated by antisolvent nanoprecipitation in a microfluidic co-flow glass capillary device. The incorporation of MMT in the polymer improved both the drug encapsulation efficiency and the drug loading, and extended the rate of drug release in simulated intestinal fluid (pH 7.4). The particle size increased on increasing both the drug loading and the concentration of MMT in the polymer matrix, and decreased on increasing the aqueous to organic flow rate ratio. The drug encapsulation efficiency in the NPs was higher at higher aqueous to organic flow rate ratio due to faster formation of the NPs. The PCM-loaded PLA NPs containing 2 wt% MMT in PLA prepared at an aqueous to organic flow rate ratio of 10 with an orifice size of 200 μm exhibited a spherical shape with a mean size of 296 nm, a drug encapsulation efficiency of 38.5% and a drug loading of 5.4%. The encapsulation of MMT and PCM in the NPs was confirmed by transmission electron microscopy, energy dispersive X-ray spectroscopy, X-ray diffraction, differential scanning calorimetry, thermogravimetric analysis and attenuated total reflection-Fourier transform infrared spectroscopy. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Treatment of munitions in soils using phytoslurries.

    PubMed

    Medina, Victor F; Larson, Steven L; Agwaramgbo, Lovell; Perez, Waleska

    2002-01-01

    Phytoremediation is an established technology for the treatment of explosives in water and soil. This study investigated the possibility of using slurried plants (or phytoslurries) to treat explosives (TNT and RDX). The degradation of TNT in solution using intact and slurried parrotfeather (Myriophyllum aquaticum), spinach (Spinicia oleracea), and mustard greens (Brassica juncea) was evaluated. Phytoslurries of parrotfeather and spinach removed the TNT faster than the intact plant. Conversely, the removal rate constants for slurried and intact mustard greens were about the same. A study using pressurized heating to destroy enzymatic activity in the phytoslurries was also conducted to compare removal from released plant chemicals to adsorptive removal. Aqueous phase removal of TNT by autoclaved spinach phytoslurry was compared with nonautoclaved spinach phytoslurry. The autoclaved phytoslurry did remove TNT, but not as completely as nonautoclaved slurry. This suggests that some removal is due to adsorption, but not all. Phytoslurries of mustard greens and parrotfeather had higher RDX removal rates compared with intact plant removal, but the rates for parrotfeather in either case were relatively low. Phytoslurries of spinach had relatively modest increases in RDX removal rates compared with intact plant. Studies were then conducted with phytoslurry/soil mixtures at two scales: 60 ml and 1.5 l. In both cases, phytoslurries of mustard greens and spinach removed TNT and RDX at higher levels than control slurries.

  8. RATES OF SOLVOLYSIS OF SOME DEUTERATED 2-PHENYLETHYL p-TOLUENESULFONATES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saunders, W.H. Jr.; Asperger, S.; Edison, D.H.

    1958-05-20

    Rates of solvolysis of 2-phenylethyl (Ia), b 2/ (Ic) p-toluenesulfonates were determined in formic and in acetic acid. In formolysis Ia and Ic react at the same rate, but Ia reacts 17 plus or minus 2% faster than Ib. In acetolysis small effects are observed with both deuterated com. pounds: Ia is 3 plus or minus 1% faster than Ib and 4 plus or minus 3% faster than Ic. The formates and acetates produced in the solvolyses were converted to the corresponding 2phenylethanols II. Comparison of the infrared spectra of the products with those of synthetic mixture of IIb andmore » IIc revealed that ca. 45% phenyl migration had occurred in the formolysis and ca. 10% phenyl migration in acetolysis. These results suggest that phenyl participation predominates in formolysis, but is unimportant in acetolysis. The nature of the transition state in phenyl- participation reactions and the factors contributing to secondary deuterium isotope effects are discussed. (auth)« less

  9. Effect of marbling on volatile generation, oral breakdown and in mouth flavor release of grilled beef.

    PubMed

    Frank, Damian; Kaczmarska, Kornelia; Paterson, Janet; Piyasiri, Udayasika; Warner, Robyn

    2017-11-01

    While the positive effect of intramuscular fat (IMF) on beef tenderness is well-established, its role in flavor generation and flavor release is less defined. To increase understanding, real-time volatile generation was monitored during grilling of beefsteaks (grass and grain-fed Angus and grass-fed Wagyu) with different amounts of IMF by proton transfer reaction mass spectrometry. Volatile concentration increased significantly (p<0.001) when the IMF was >~10%, but did not differ (p>0.05) at lower IMF levels (5.2-10.2%). In vivo release of volatiles during consumption of grilled steaks was also measured using human subjects. Pre- and postswallow volatile release profiles varied according to marbling level and volatile fat solubility. In-mouth release of key hydrophilic volatiles was significantly greater (p<0.05) in high IMF grilled beef, consistent with more intense sensory flavor. Faster oral breakdown and higher peak saliva concentrations of non-volatile flavor compounds in high IMF grilled beef were consistent with higher tenderness and more intense flavor perception. Copyright © 2017. Published by Elsevier Ltd.

  10. Operationalizing the Joint Information Environment: Achieving Information Dominance with the Undersea Constellation

    DTIC Science & Technology

    2014-11-01

    Approved for public release. OPERATIONALIZING THE JOINT INFORMATION ENVIRONMENT: ACHIEVING INFORMATION DOMINANCE WITH THE UNDERSEA CONSTELLATION* Captain...SUBTITLE Operationalizing the Joint Information Environment: Achieving Information Dominance with the Undersea Constellation (U) 5a. CONTRACT NUMBER...predict what is over the horizon, faster than the adversary. As noted in the U.S. Navy’s Vision for Information Dominance , “The Navy will create a

  11. Solar Research Earns Three Prestigious R&D 100 Awards | News | NREL

    Science.gov Websites

    1 » Solar Research Earns Three Prestigious R&D 100 Awards News Release: Solar Research Earns Three Prestigious R&D 100 Awards June 22, 2011 A technique to turn silicon into ink, a faster way to significant innovations by R&D Magazine. The three prestigious awards bring to 50 the number of R&D

  12. A protocol for collecting environmental DNA samples from streams

    Treesearch

    Kellie J. Carim; Kevin S. McKelvey; Michael K. Young; Taylor M. Wilcox; Michael K. Schwartz

    2016-01-01

    Environmental DNA (eDNA) is DNA that has been released by an organism into its environment, such that the DNA can be found in air, water, or soil. In aquatic systems, eDNA has been shown to provide a sampling approach that is more sensitive for detecting target organisms faster, and less expensively than previous approaches. However, eDNA needs to be sampled in a...

  13. 76 FR 2677 - Request Facilities To Report Toxics Release Inventory Information Electronically or Complete Fill...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-14

    ... through Friday, excluding legal holidays. The EPA Docket Center Public Reading Room is open from 8:30 a.m... Reading Room is (202) 566-1744, and the telephone number for the OEI Docket is (202) 566-1752. 2... data faster than when the data are submitted on hard-copy forms. In light of the features and tools TRI...

  14. Kinetic-rheological insights uncovered by the self-accelerating brucite-for-periclase replacement - but only if adjusted on volume. The blind spot of geochemists

    NASA Astrophysics Data System (ADS)

    Merino, E.

    2013-12-01

    Geochemists of weathering, metamorphism, dolomitization, etc., have long adjusted mineral reactions conserving one or another component among the minerals, but paying no attention to whether the volumetric consequences of such adjustments are consistent with independent petrographic evidence. In fact the widespread occurrence of replacement in all types of water-rock interaction implies that the mineral reactions involved did conserve solid volume, not a component. The conflict has been hidden in a blind spot that geochemists appear to be unaware of having. Characteristically, replacement preserves both volume and morphological details of the host. It originates not by dissolution-precipitation, but by guest-growth-driven pressure solution of host by guest (Merino/Dewers 1998; Merino/Canals 2011) The replacement of periclase by brucite common in magnesian marbles is attributed (Turner 1965; Ferry 2000) to: MgO(per) + H2O = Mg(OH)2(bruc), (EQ 1), which conserves Mg between the two minerals. But with formula volumes of pericl & bruc ~11 & 25 cm3, this reaction cannot preserve mineral volume; it conflicts with excellent petrographic evidence that mineral volume was preserved. However, by adjusting the local mass balance on volume, as observed, 2.2MgO(per) + 2.4H+ = Mg(OH)2(bruc) + 1.2Mg++ + 0.2H2O (EQ 2), we gain striking dynamic/geochemical insights: (I) Seeing that Mg++ is locally released to the pore fluid, we suddenly grasp why the brucite is typically surrounded by a rim of dolomite replacing matrix calcite. As it is released, the Mg++ reacts with calcite and produces dolomite that replaces calcite, also isovolumetrically, as observed. (II) The second replacement (dolo-for-calc) was simultaneous and thus adjacent to the first, and must have happened at the same T,P, and at the same rate, as the first. (In the conventional view, the dolomite rim is attributed, ad hoc, to the reaction bruc + calc + CO2 = dolo + water, which necessarily happens later and at different T,P; which doesn't preserve volume; and which tells us nothing about rates.) (III) The Mg++ released by each increment of bruc-for-pericl replacement must increase the local ion-activity product for brucite growth from its ions, and thus the growth rate of the next increment of replacement, and so on: The bruc-for-pericl replacement is self-accelerating. This is why it always reaches completion - the brucite keeps replacing periclase faster and faster until all the periclase is gone. (Also self-accelerating are the dolo-for-calc replacement in dolomitization [Merino/Canals, 2011], and the serp-for-oliv replacement in serpentinization.) (IV) A dramatic feedback arises: As a self-accelerating replacement takes place in a non-newtonian rock of the strain-rate-softening kind (as crystalline carbonates and dunites are), it must reduce the local rock viscosity more and more, and, unless a needed reactant is used up first, the viscosity may become low enough for the growth of the guest mineral to gradually pass by itself from replacive to displacive (both régimes being driven by the guest-growth induced stress). This is how thin, displacive zebra veins form routinely in burial dolomitization (Merino/Canals 2006, 2011) and in serpentinization of dunite.

  15. Polymeric nanoparticles of cholesterol-modified glycol chitosan for doxorubicin delivery: preparation and in-vitro and in-vivo characterization.

    PubMed

    Yu, Jing-Mou; Li, Yong-Jie; Qiu, Li-Yan; Jin, Yi

    2009-06-01

    Polymeric nanoparticles have been extensively studied as drug carriers. Chitosan and its derivatives have attracted significant attention in this regard but have limited application because of insolubility in biological solution. In this work, we attempted to utilize cholesterol-modified glycol chitosan (CHGC) self-aggregated nanoparticles to increase aqueous solubility, and to reduce side effects and enhance the antitumour efficacy of the anticancer drug doxorubicin. Methods CHGC nanoparticles were loaded with doxorubicin by a dialysis method, and their characteristics were determined by transmission electron microscopy examination, light-scattering study, in-vitro drug-release study, pharmacokinetic study in rats and in-vivo antitumour activity in mice. The resulting doxorubicin-loaded CHGC nanoparticles (DCNs) formed self-assembled aggregates in aqueous medium. From the observation by transmission electron microscopy, DCNs were almost spherical in shape. The mean diameters of these nanoparticles determined by dynamic light scattering were in the range of 237-336 nm as the doxorubicin-loading content increased from 1.73% to 9.36%. In-vitro data indicated that doxorubicin release from DCNs was much faster in phosphate-buffered saline at pH 5.5 than at pH 6.5 and 7.4, and the release rate was dependent on the loading content of doxorubicin in these nanoparticles. It was observed that DCN-16 (drug loaded content: 9.36%) exhibited prolonged circulation time in rat plasma and showed higher antitumour efficacy against S180-bearing mice than free doxorubicin. These results indicated that CHGC nanoparticles had potential as a carrier for insoluble anticancer drugs in cancer therapy.

  16. Monitoring Flower Visitation Networks and Interactions between Pairs of Bumble Bees in a Large Outdoor Flight Cage.

    PubMed

    Lihoreau, Mathieu; Chittka, Lars; Raine, Nigel E

    2016-01-01

    Pollinators, such as bees, often develop multi-location routes (traplines) to exploit subsets of flower patches within larger plant populations. How individuals establish such foraging areas in the presence of other foragers is poorly explored. Here we investigated the foraging patterns of pairs of bumble bees (Bombus terrestris) released sequentially into an 880m2 outdoor flight cage containing 10 feeding stations (artificial flowers). Using motion-sensitive video cameras mounted on flowers, we mapped the flower visitation networks of both foragers, quantified their interactions and compared their foraging success over an entire day. Overall, bees that were released first (residents) travelled 37% faster and collected 77% more nectar, thereby reaching a net energy intake rate 64% higher than bees released second (newcomers). However, this prior-experience advantage decreased as newcomers became familiar with the spatial configuration of the flower array. When both bees visited the same flower simultaneously, the most frequent outcome was for the resident to evict the newcomer. On the rare occasions when newcomers evicted residents, the two bees increased their frequency of return visits to that flower. These competitive interactions led to a significant (if only partial) spatial overlap between the foraging patterns of pairs of bees. While newcomers may initially use social cues (such as olfactory footprints) to exploit flowers used by residents, either because such cues indicate higher rewards and/or safety from predation, residents may attempt to preserve their monopoly over familiar resources through exploitation and interference. We discuss how these interactions may favour spatial partitioning, thereby maximising the foraging efficiency of individuals and colonies.

  17. Microscopic and infrared spectroscopic comparison of the underwater adhesives produced by germlings of the brown seaweed species Durvillaea antarctica and Hormosira banksii.

    PubMed

    Dimartino, Simone; Savory, David M; Fraser-Miller, Sara J; Gordon, Keith C; McQuillan, A James

    2016-04-01

    Adhesives from marine organisms are often the source of inspiration for the development of glues able to create durable bonds in wet environments. In this work, we investigated the adhesive secretions produced by germlings of two large seaweed species from the South Pacific, Durvillaea antarctica, also named 'the strongest kelp in the word', and its close relative Hormosira banksii The comparative analysis was based on optical and scanning electron microscopy imaging as well as Fourier transform infrared (FTIR) spectroscopy and principal component analysis (PCA). For both species, the egg surface presents peripheral vesicles which are released soon after fertilization to discharge a primary adhesive. This is characterized by peaks representative of carbohydrate molecules. A secondary protein-based adhesive is then secreted in the early developmental stages of the germlings. Energy dispersive X-ray, FTIR and PCA indicate that D. antarctica secretions also contain sulfated moieties, and become cross-linked with time, both conferring strong adhesive and cohesive properties. On the other hand, H. banksii secretions are complemented by the putative adhesive phlorotannins, and are characterized by a simple mechanism in which all constituents are released with the same rate and with no apparent cross-linking. It is also noted that the release of adhesive materials appears to be faster and more copious in D. antarctica than in H. banksii Overall, this study highlights that both quantity and quality of the adhesives matter in explaining the superior attachment ability of D. antarctica. © 2016 The Author(s).

  18. Transient Kinetics Define a Complete Kinetic Model for Protein Arginine Methyltransferase 1*

    PubMed Central

    Hu, Hao; Luo, Cheng; Zheng, Y. George

    2016-01-01

    Protein arginine methyltransferases (PRMTs) are the enzymes responsible for posttranslational methylation of protein arginine residues in eukaryotic cells, particularly within the histone tails. A detailed mechanistic model of PRMT-catalyzed methylation is currently lacking, but it is essential for understanding the functions of PRMTs in various cellular pathways and for efficient design of PRMT inhibitors as potential treatments for a range of human diseases. In this work, we used stopped-flow fluorescence in combination with global kinetic simulation to dissect the transient kinetics of PRMT1, the predominant type I arginine methyltransferase. Several important mechanistic insights were revealed. The cofactor and the peptide substrate bound to PRMT1 in a random manner and then followed a kinetically preferred pathway to generate the catalytic enzyme-cofactor-substrate ternary complex. Product release proceeded in an ordered fashion, with peptide dissociation followed by release of the byproduct S-adenosylhomocysteine. Importantly, the dissociation rate of the monomethylated intermediate from the ternary complex was much faster than the methyl transfer. Such a result provided direct evidence for distributive arginine dimethylation, which means the monomethylated substrate has to be released to solution and rebind with PRMT1 before it undergoes further methylation. In addition, cofactor binding involved a conformational transition, likely an open-to-closed conversion of the active site pocket. Further, the histone H4 peptide bound to the two active sites of the PRMT1 homodimer with differential affinities, suggesting a negative cooperativity mechanism of substrate binding. These findings provide a new mechanistic understanding of how PRMTs interact with their substrates and transfer methyl groups. PMID:27834681

  19. Microscopic and infrared spectroscopic comparison of the underwater adhesives produced by germlings of the brown seaweed species Durvillaea antarctica and Hormosira banksii

    PubMed Central

    Savory, David M.; McQuillan, A. James

    2016-01-01

    Adhesives from marine organisms are often the source of inspiration for the development of glues able to create durable bonds in wet environments. In this work, we investigated the adhesive secretions produced by germlings of two large seaweed species from the South Pacific, Durvillaea antarctica, also named ‘the strongest kelp in the word’, and its close relative Hormosira banksii. The comparative analysis was based on optical and scanning electron microscopy imaging as well as Fourier transform infrared (FTIR) spectroscopy and principal component analysis (PCA). For both species, the egg surface presents peripheral vesicles which are released soon after fertilization to discharge a primary adhesive. This is characterized by peaks representative of carbohydrate molecules. A secondary protein-based adhesive is then secreted in the early developmental stages of the germlings. Energy dispersive X-ray, FTIR and PCA indicate that D. antarctica secretions also contain sulfated moieties, and become cross-linked with time, both conferring strong adhesive and cohesive properties. On the other hand, H. banksii secretions are complemented by the putative adhesive phlorotannins, and are characterized by a simple mechanism in which all constituents are released with the same rate and with no apparent cross-linking. It is also noted that the release of adhesive materials appears to be faster and more copious in D. antarctica than in H. banksii. Overall, this study highlights that both quantity and quality of the adhesives matter in explaining the superior attachment ability of D. antarctica. PMID:27122179

  20. THE PROCESS OF MASS TRANSFER ON THE SOLID-LIQUID BOUNDARY LAYER DURING THE RELEASE OF DICLOFENAC SODIUM AND PAPAVERINE HYDROCHLORIDE FROM TABLETS IN A PADDLE APPARATUS.

    PubMed

    Kasperek, Regina; Zimmer, Lukasz; Poleszak, Ewa

    2016-01-01

    The release study of diclofenac sodium (DIC) and papaverine hydrochloride (PAP) from two formulations of the tablets in the paddle apparatus using different rotation speeds to characterize the process of mass transfer on the solid-liquid boundary layer was carried out. The dissolution process of active substances was described by values of mass transfer coefficients, the diffusion boundary layer thickness and dimensionless numbers (Sh and Re). The values of calculated parameters showed that the release of DIC and PAP from tablets comprising potato starch proceeded faster than from tablets containing HPMC and microcrystalline cellulose. They were obtained by direct dependencies between Sh and Re in the range from 75 rpm to 125 rpm for both substances from all tablets. The description of the dissolution process with the dimensionless numbers make it possible to plan the drug with the required release profile under given in vitro conditions.

  1. Nanomedicines for Inflammatory Arthritis: Head-To-Head Comparison of Glucocorticoid-Containing Polymers, Micelles and Liposomes

    PubMed Central

    Crielaard, Bart J.; Dusad, Anand; Lele, Subodh M.; Rijcken, Cristianne J. F.; Metselaar, Josbert M; Kostková, Hana; Etrych, Tomáš; Ulbrich, Karel; Kiessling, Fabian; Mikuls, Ted R.; Hennink, Wim E.; Storm, Gert; Lammers, Twan; Wang, Dong

    2014-01-01

    As an emerging research direction, nanomedicine has been increasingly utilized to treat inflammatory diseases. In this head-to-head comparison study, four established nanomedicine formulations of dexamethasone, including liposomes (L-Dex), core-crosslinked micelles (M-Dex), slow releasing polymeric prodrugs (P-Dex-slow) and fast releasing polymeric prodrugs (P-Dex-fast), were evaluated in an adjuvant-induced arthritis rat model with an equivalent dose treatment design. It was found that after a single i.v. injection, the formulations with the slower drug release kinetics (i.e. M-Dex and P-Dex-slow) maintained longer duration of therapeutic activity than those with relatively faster drug release kinetics, resulting in better joint protection. This finding will be instructional in the future development and optimization of nanomedicines for the clinical management of rheumatoid arthritis. The outcome of this study also illustrates the value of such head-to-head comparison studies in translational nanomedicine research. PMID:24341611

  2. Impact of Release Rates on the Effectiveness of Augmentative Biological Control Agents

    PubMed Central

    Crowder, David W.

    2007-01-01

    To access the effect of augmentative biological control agents, 31 articles were reviewed that investigated the impact of release rates of 35 augmentative biological control agents on the control of 42 arthropod pests. In 64% of the cases, the release rate of the biological control agent did not significantly affect the density or mortality of the pest insect. Results where similar when parasitoidsor predators were utilized as the natural enemy. Within any order of natural enemy, there were more cases where release rates did not affect augmentative biological control than cases where release rates were significant. There were more cases in which release rates did not affect augmentative biological control when pests were from the orders Hemiptera, Acari, or Diptera, but not with pests from the order Lepidoptera. In most cases, there was an optimal release rate that produced effective control of a pest species. This was especially true when predators were used as a biological control agent. Increasing the release rate above the optimal rate did not improve control of the pest and thus would be economically detrimental. Lower release rates were of ten optimal when biological control was used in conjunction with insecticides. In many cases, the timing and method of biological control applications were more significant factors impacting the effectiveness of biological control than the release rate. Additional factors that may limit the relative impact of release rates include natural enemy fecundity, establishment rates, prey availability, dispersal, and cannibalism. PMID:20307240

  3. Muscular Oxygen Uptake Kinetics in Aged Adults.

    PubMed

    Koschate, J; Drescher, U; Baum, K; Eichberg, S; Schiffer, T; Latsch, J; Brixius, K; Hoffmann, U

    2016-06-01

    Pulmonary oxygen uptake (V˙O2) kinetics and heart rate kinetics are influenced by age and fitness. Muscular V˙O2 kinetics can be estimated from heart rate and pulmonary V˙O2. In this study the applicability of a test using pseudo-random binary sequences in combination with a model to estimate muscular V˙O2 kinetics was tested. Muscular V˙O2 kinetics were expected to be faster than pulmonary V˙O2 kinetics, slowed in aged subjects and correlated with maximum V˙O2 and heart rate kinetics. 27 elderly subjects (73±3 years; 81.1±8.2 kg; 175±4.7 cm) participated. Cardiorespiratory kinetics were assessed using the maximum of cross-correlation functions, higher maxima implying faster kinetics. Muscular V˙O2 kinetics were faster than pulmonary V˙O2 kinetics (0.31±0.1 vs. 0.29±0.1 s; p=0.004). Heart rate kinetics were not correlated with muscular or pulmonary V˙O2 kinetics or maximum V˙O2. Muscular V˙O2 kinetics correlated with maximum V˙O2 (r=0.35; p=0.033). This suggests, that muscular V˙O2 kinetics are faster than estimates from pulmonary V˙O2 and related to maximum V˙O2 in aged subjects. In the future this experimental approach may help to characterize alterations in muscular V˙O2 under various conditions independent of motivation and maximal effort. © Georg Thieme Verlag KG Stuttgart · New York.

  4. Cognitive Improvement of Attention and Inhibition in the Late Afternoon in Children With Attention-Deficit Hyperactivity Disorder (ADHD) Treated With Osmotic-Release Oral System Methylphenidate.

    PubMed

    Slama, Hichem; Fery, Patrick; Verheulpen, Denis; Vanzeveren, Nathalie; Van Bogaert, Patrick

    2015-07-01

    Long-acting medications have been developed and approved for use in the treatment of attention-deficit hyperactivity disorder (ADHD). These compounds are intended to optimize and maintain symptoms control throughout the day. We tested prolonged effects of osmotic-release oral system methylphenidate on both attention and inhibition, in the late afternoon. A double-blind, randomized, placebo-controlled study was conducted in 36 boys (7-12 years) with ADHD and 40 typically developing children. The ADHD children received an individualized dose of placebo or osmotic-release oral system methylphenidate. They were tested about 8 hours after taking with 2 continuous performance tests (continuous performance test-X [CPT-X] and continuous performance test-AX [CPT-AX]) and a counting Stroop. A positive effect of osmotic-release oral system methylphenidate was present in CPT-AX with faster and less variable reaction times under osmotic-release oral system methylphenidate than under placebo, and no difference with typically developing children. In the counting Stroop, we found a decreased interference with osmotic-release oral system methylphenidate but no difference between children with ADHD under placebo and typically developing children. © The Author(s) 2014.

  5. Accelerated in vitro release testing of implantable PLGA microsphere/PVA hydrogel composite coatings

    PubMed Central

    Shen, Jie; Burgess, Diane J.

    2011-01-01

    Dexamethasone loaded poly(lactic-co-glycolic acid) (PLGA) microsphere/PVA hydrogel composites have been investigated as an outer drug-eluting coating for implantable devices such as glucose sensors to counter negative tissue responses to implants. The objective of this study was to develop a discriminatory, accelerated in vitro release testing method for this drug-eluting coating using United States Pharmacopeia (USP) apparatus 4. Polymer degradation and drug release kinetics were investigated under “real-time” and accelerated conditions (i.e. extreme pH, hydro-alcoholic solutions and elevated temperatures). Compared to “real-time” conditions, the initial burst and lag phases were similar using hydro-alcoholic solutions and extreme pH conditions, while the secondary apparent zero-order release phase was slightly accelerated. Elevated temperatures resulted in a significant acceleration of dexamethasone release. The accelerated release data were able to predict “real-time” release when applying the Arrhenius equation. Microsphere batches with faster and slower release profiles were investigated under “real-time” and elevated temperature (60°C) conditions to determine the discriminatory ability of the method. The results demonstrated both the feasibility and the discriminatory ability of this USP apparatus 4 method for in vitro release testing of drug loaded PLGA microsphere/PVA hydrogel composites. This method may be appropriate for similar drug/device combination products and drug delivery systems. PMID:22016033

  6. Accelerated in vitro release testing of implantable PLGA microsphere/PVA hydrogel composite coatings.

    PubMed

    Shen, Jie; Burgess, Diane J

    2012-01-17

    Dexamethasone loaded poly(lactic-co-glycolic acid) (PLGA) microsphere/PVA hydrogel composites have been investigated as an outer drug-eluting coating for implantable devices such as glucose sensors to counter negative tissue responses to implants. The objective of this study was to develop a discriminatory, accelerated in vitro release testing method for this drug-eluting coating using United States Pharmacopeia (USP) apparatus 4. Polymer degradation and drug release kinetics were investigated under "real-time" and accelerated conditions (i.e. extreme pH, hydro-alcoholic solutions and elevated temperatures). Compared to "real-time" conditions, the initial burst and lag phases were similar using hydro-alcoholic solutions and extreme pH conditions, while the secondary apparent zero-order release phase was slightly accelerated. Elevated temperatures resulted in a significant acceleration of dexamethasone release. The accelerated release data were able to predict "real-time" release when applying the Arrhenius equation. Microsphere batches with faster and slower release profiles were investigated under "real-time" and elevated temperature (60°C) conditions to determine the discriminatory ability of the method. The results demonstrated both the feasibility and the discriminatory ability of this USP apparatus 4 method for in vitro release testing of drug loaded PLGA microsphere/PVA hydrogel composites. This method may be appropriate for similar drug/device combination products and drug delivery systems. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. Impact of engineered zinc oxide nanoparticles on the individual performance of Mytilus galloprovincialis.

    PubMed

    Hanna, Shannon K; Miller, Robert J; Muller, Erik B; Nisbet, Roger M; Lenihan, Hunter S

    2013-01-01

    The increased use of engineered nanoparticles (ENPs) in consumer products raises the concern of environmental release and subsequent impacts in natural communities. We tested for physiological and demographic impacts of ZnO, a prevalent metal oxide ENP, on the mussel Mytilus galloprovincialis. We exposed mussels of two size classes, <4.5 and ≥ 4.5 cm shell length, to 0.1-2 mg l(-1) ZnO ENPs in seawater for 12 wk, and measured the effect on mussel respiration, accumulation of Zn, growth, and survival. After 12 wk of exposure to ZnO ENPs, respiration rates of mussels increased with ZnO concentration. Mussels had up to three fold more Zn in tissues than control groups after 12 wk of exposure, but patterns of Zn accumulation varied with mussel size and Zn concentrations. Small mussels accumulated Zn 10 times faster than large mussels at 0.5 mg l(-1), while large mussels accumulated Zn four times faster than small mussels at 2 mg l(-1). Mussels exposed to 2 mg l(-1) ZnO grew 40% less than mussels in our control group for both size classes. Survival significantly decreased only in groups exposed to the highest ZnO concentration (2 mg l(-1)) and was lower for small mussels than large. Our results indicate that ZnO ENPs are toxic to mussels but at levels unlikely to be reached in natural marine waters.

  8. Pore Pressure Evolution in Shallow Subduction Earthquake Sequences and Effects on Aseismic Slip Transients -- Numerical Modeling With Rate and State Friction

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Rice, J. R.

    2005-12-01

    In 3D modeling of long tectonic loading and earthquake sequences on a shallow subduction fault [Liu and Rice, 2005], with depth-variable rate and state friction properties, we found that aseismic transient slip episodes emerge spontaneously with only a simplified representation of effects of metamorphic fluid release. That involved assumption of a constant in time but uniformly low effective normal stress in the downdip region. As suggested by observations in several major subduction zones [Obara, 2002; Rogers and Dragert, 2003; Kodaira et al, 2004], the presence of fluids, possibly released from dehydration reactions beneath the seismogenic zone, and their pressurization within the fault zone may play an important role in causing aseismic transients and associated non-volcanic tremors. To investigate the effects of fluids in the subduction zone, particularly on the generation of aseismic transients and their various features, we develop a more complete physical description of the pore pressure evolution (specifically, pore pressure increase due to supply from dehydration reactions and shear heating, decrease due to transport and dilatancy during slip), and incorporate that into the rate and state based 3D modeling. We first incorporated two important factors, dilatancy and shear heating, following Segall and Rice [1995, 2004] and Taylor [1998]. In the 2D simulations (slip varies with depth only), a dilatancy-stabilizing effect is seen which slows down the seismic rupture front and can prevent rapid slip from extending all the way to the trench, similarly to Taylor [1998]. Shear heating increases the pore pressure, and results in faster coseismic rupture propagation and larger final slips. In the 3D simulations, dilatancy also stabilizes the along-strike rupture propagation of both seismic and aseismic slips. That is, aseismic slip transients migrate along the strike faster with a shorter Tp (the characteristic time for pore pressure in the fault core to re-equilibrate with that of its surroundings). This is consistent with our previous simulations, which show that the aseismic transients migrate along the strike at a higher speed under a lower, constant in time, effective normal stress. As a combination of the two factors, we show the pore pressure evolution with drops (due to dilatancy during slip) and then rises (due to shear heating) on the fault over multiple time scales. We next plan to formulate, and merge with the slip-rupture analysis, fuller fluid release models based on phase equilibria and models of transport in which the average fault-parallel permeability is a decreasing function of the effective normal stress. The thrust fault zone, at seismogenic depths and slightly downdip, is represented in a conceptually similar manner to the well-studied major continental faults, assuming the fault core materials have a lower permeability than the neighboring damaged zone. Heat diffusion in the fault core and damaged zone will also be considered in the modeling. The simulation results may help to improve our understanding of the processes of the aseismic transients observed within a transform plate boundary along the SAF near Cholame, California [Nadeau and Dolenc, 2005].

  9. Improved performance in NASTRAN (R)

    NASA Technical Reports Server (NTRS)

    Chan, Gordon C.

    1989-01-01

    Three areas of improvement in COSMIC/NASTRAN, 1989 release, were incorporated recently that make the analysis program run faster on large problems. Actual log files and actual timings on a few test samples that were run on IBM, CDC, VAX, and CRAY computers were compiled. The speed improvement is proportional to the problem size and number of continuation cards. Vectorizing certain operations in BANDIT, makes BANDIT run twice as fast in some large problems using structural elements with many node points. BANDIT is a built-in NASTRAN processor that optimizes the structural matrix bandwidth. The VAX matrix packing routine BLDPK was modified so that it is now packing a column of a matrix 3 to 9 times faster. The denser and bigger the matrix, the greater is the speed improvement. This improvement makes a host of routines and modules that involve matrix operation run significantly faster, and saves disc space for dense matrices. A UNIX version, converted from 1988 COSMIC/NASTRAN, was tested successfully on a Silicon Graphics computer using the UNIX V Operating System, with Berkeley 4.3 Extensions. The Utility Modules INPUTT5 and OUTPUT5 were expanded to handle table data, as well as matrices. Both INPUTT5 and OUTPUT5 are general input/output modules that read and write FORTRAN files with or without format. More user informative messages are echoed from PARAMR, PARAMD, and SCALAR modules to ensure proper data values and data types being handled. Two new Utility Modules, GINOFILE and DATABASE, were written for the 1989 release. Seven rigid elements are added to COSMIC/NASTRAN. They are: CRROD, CRBAR, CRTRPLT, CRBE1, CRBE2, CRBE3, and CRSPLINE.

  10. Radio-manganese, -iron, -phosphorus uptake by water hyacinth and economic implications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Colley, T.N.; Gonzalez, M.H.; Martin, D.F.

    To determine the effects of the deprivation of specific micronutrients on the water hyacinth (Eichhornia crassipes), the rate of uptake by the water hyacinth of iron and manganese in comparison with phosphorus was studied. Materials and methodology are described. Experimentation indicates that all three elements are actively absorbed by the root systems, but the rates of absorption differ markedly. The rate of absorption of manganese by roots is 13 and 21 times that for radio-iron and -phosphorous, and iron was taken up by the roots at nearly twice the rate of phosphorous. Manganese translocation appeared to be faster than phosphorusmore » translocation by an order of magnitude and 65 times faster than iron translocation. 9 references, 2 tables.« less

  11. Smart Porous Silicon Nanoparticles with Polymeric Coatings for Sequential Combination Therapy.

    PubMed

    Xu, Wujun; Thapa, Rinez; Liu, Dongfei; Nissinen, Tuomo; Granroth, Sari; Närvänen, Ale; Suvanto, Mika; Santos, Hélder A; Lehto, Vesa-Pekka

    2015-11-02

    In spite of the advances in drug delivery, the preparation of smart nanocomposites capable of precisely controlled release of multiple drugs for sequential combination therapy is still challenging. Here, a novel drug delivery nanocomposite was prepared by coating porous silicon (PSi) nanoparticles with poly(beta-amino ester) (PAE) and Pluronic F-127, respectively. Two anticancer drugs, doxorubicin (DOX) and paclitaxel (PTX), were separately loaded into the core of PSi and the shell of F127. The nanocomposite displayed enhanced colloidal stability and good cytocompatibility. Moreover, a spatiotemporal drug release was achieved for sequential combination therapy by precisely controlling the release kinetics of the two tested drugs. The release of PTX and DOX occurred in a time-staggered manner; PTX was released much faster and earlier than DOX at pH 7.0. The grafted PAE on the external surface of PSi acted as a pH-responsive nanovalve for the site-specific release of DOX. In vitro cytotoxicity tests demonstrated that the DOX and PTX coloaded nanoparticles exhibited a better synergistic effect than the free drugs in inducing cellular apoptosis. Therefore, the present study demonstrates a promising strategy to enhance the efficiency of combination cancer therapies by precisely controlling the release kinetics of different drugs.

  12. Nucleoprotein Complexes Containing Replicating Simian Virus 40 DNA: Comparison with Polyoma Nucleoprotein Complexes

    PubMed Central

    Hall, Mark R.; Meinke, William; Goldstein, David A.

    1973-01-01

    Procedures for isolating nucleoprotein complexes containing replicating polyoma DNA from infected mouse cells were used to prepare short-lived nucleoprotein complexes (r-SV40 complexes) containing replicating simian virus 40 (SV40) DNA from infected monkey cells. Like the polyoma complexes, r-SV40 complexes were only partially released from nuclei by cell lysis but could be extracted from nuclei by prolonged treatment with solutions containing Triton X-100. r-SV40 complexes sedimented faster than complexes containing SV40 supercoiled DNA (SV40 complex) in sucrose gradients, and both types of SV40 nucleoprotein complexes sedimented ahead of polyoma complexes containing supercoiled polyoma DNA (py complex). The sedimentation rates of py complex and SV40 complex were 56 and 61S, respectively, based on the sedimentation rate of the mouse large ribosomal subunit as a marker. r-SV40 complexes sedimented as multiple peaks between 56 and 75S. Sedimentation and buoyant density measurements indicated that protein is bound to all forms of SV40 DNA at about the same ratio of protein to DNA (1-2/1) as was reported for polyoma nucleoproteins. PMID:4359958

  13. Microbial Factors Rather Than Bioavailability Limit the Rate and Extent of PAH Biodegradation in Aged Crude Oil Contaminated Model Soils

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huesemann, Michael H.; Hausmann, Tom S.; Fortman, Timothy J.

    The rate and extent of PAH biodegradation in a set of aged, crude oil contaminated model soils were measured in 90-week slurry bioremediation experiments. Soil properties such as organic matter content, mineral type, particle diameter, surface area, and porosity did not significantly influence the PAH biodegradation kinetics among the ten different model soils. A comparison of aged and freshly spiked soils indicates that aging affects the biodegradation rates and extents only for higher molecular weight PAHs while the effects of aging are insignificant for 3-ring PAHs and total PAHs. In all model soils with the exception of kaolinite clay, themore » rate of abiotic desorption was faster than the rate of biodegradation during the initial phase of bioremediation treatment indicating that PAH biodegradation was limited by microbial factors. Similarly, any of the higher molecular weight PAHs that were still present after 90 weeks of treatment were released rapidly during abiotic desorption tests which demonstrates that bioavailability limitations were not responsible for the recalcitrance of these hydrocarbons. Indeed, an analysis of microbial counts indicates that a severe reduction in hydrocarbon degrader populations may be responsible for the observed incomplete PAH biodegradation. It can therefore be concluded that the recalcitrance of PAHs during bioremediation is not necessarily due to bioavailability limitations and that these residual contaminants might, therefore, pose a greater risk to environmental receptors than previously thought.« less

  14. Acute turpentine inflammation and kinin release in rat-paw thermic oedema.

    PubMed Central

    Limãos, E. A.; Borges, D. R.; Souza-Pinto, J. C.; Gordon, A. H.; Prado, J. L.

    1981-01-01

    Livers from rats at 2-3 days after s.c. injection of turpentine, when perfused, synthesized prekallikrein nearly 3 times faster than did livers from normal rats. On the other hand paw oedema, produced by heating to 46 degrees, in rats injured in this way was less marked. Likewise in such rats the amount of bradykinin release by 50 min. of coaxial perfusion of the paw was only 13.6 +/- 4.6 compared with 63.1 +/- 13.4 ng in normal rats. A possible explanation for the observed reduction in production of bradykinin may be inhibition of kallikrein due to an increased concentration of alpha 2-macroglobulin. PMID:6173056

  15. Performance and efficiency evaluation and heat release study of a direct-injection stratified-charge rotary engine

    NASA Technical Reports Server (NTRS)

    Nguyen, H. L.; Addy, H. E.; Bond, T. H.; Lee, C. M.; Chun, K. S.

    1987-01-01

    A computer simulation which models engine performance of the Direct Injection Stratified Charge (DISC) rotary engines was used to study the effect of variations in engine design and operating parameters on engine performance and efficiency of an Outboard Marine Corporation (OMC) experimental rotary combustion engine. Engine pressure data were used in a heat release analysis to study the effects of heat transfer, leakage, and crevice flows. Predicted engine data were compared with experimental test data over a range of engine speeds and loads. An examination of methods to improve the performance of the rotary engine using advanced heat engine concepts such as faster combustion, reduced leakage, and turbocharging is also presented.

  16. Water-soluble pH-responsive dendritic core-shell nanocarriers for polar dyes based on poly(ethylene imine).

    PubMed

    Xu, Shangjie; Luo, Ying; Haag, Rainer

    2007-08-07

    A simple general synthetic concept to build dendritic core-shell architectures with pH-labile linkers based on hyperbranched PEI cores and biocompatible PEG shells is presented. Using these dendritic core-shell architectures as nanocarriers, the encapsulation and transport of polar dyes of different sizes is studied. The results show that the acid-labile nanocarriers exhibit much higher transport capacities for dyes than unfunctionalized hyperbranched PEI. The cleavage of imine bonds and controlled release of the polar dyes revealed that weak acidic condition (pH approximately 5.0) could cleave the imine bonds linker and release the dyes up to five times faster than neutral conditions (pH = 7.4).

  17. Faster self-paced rate of drinking for alcohol mixed with energy drinks versus alcohol alone.

    PubMed

    Marczinski, Cecile A; Fillmore, Mark T; Maloney, Sarah F; Stamates, Amy L

    2017-03-01

    The consumption of alcohol mixed with energy drinks (AmED) has been associated with higher rates of binge drinking and impaired driving when compared with alcohol alone. However, it remains unclear why the risks of use of AmED are heightened compared with alcohol alone even when the doses of alcohol consumed are similar. Therefore, the purpose of this laboratory study was to investigate if the rate of self-paced beverage consumption was faster for a dose of AmED versus alcohol alone using a double-blind, within-subjects, placebo-controlled study design. Participants (n = 16) of equal gender who were social drinkers attended 4 separate test sessions that involved consumption of alcohol (1.97 ml/kg vodka) and energy drinks, alone and in combination. On each test day, the dose assigned was divided into 10 cups. Participants were informed that they would have a 2-h period to consume the 10 drinks. After the self-paced drinking period, participants completed a cued go/no-go reaction time (RT) task and subjective ratings of stimulation and sedation. The results indicated that participants consumed the AmED dose significantly faster (by ∼16 min) than the alcohol dose. For the performance task, participants' mean RTs were slower in the alcohol conditions and faster in the energy-drink conditions. In conclusion, alcohol consumers should be made aware that rapid drinking might occur for AmED beverages, thus heightening alcohol-related safety risks. The fast rate of drinking may be related to the generalized speeding of responses after energy-drink consumption. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  18. Faster fertilization rate in conspecific versus heterospecific matings in house mice.

    PubMed

    Dean, Matthew D; Nachman, Michael W

    2009-01-01

    Barriers to gene flow can arise at any stage in the reproductive sequence. Most studies of reproductive isolation focus on premating or postzygotic phenotypes, leaving the importance of differences in fertilization rate overlooked. Two closely related species of house mice, Mus domesticus and M. musculus, form a narrow hybrid zone in Europe, suggesting that one or more isolating factors operate in the face of ongoing gene flow. Here, we test for differences in fertilization rate using laboratory matings as well as in vitro sperm competition assays. In noncompetitive matings, we show that fertilization occurs significantly faster in conspecific versus heterospecific matings and that this difference arises after mating and before zygotes form. To further explore the mechanisms underlying this conspecific advantage, we used competitive in vitro assays to isolate gamete interactions. Surprisingly, we discovered that M. musculus sperm consistently outcompeted M. domesticus sperm regardless of which species donated ova. These results suggest that in vivo fertilization rate is mediated by interactions between sperm, the internal female environment, and/or contributions from male seminal fluid. We discuss the implications of faster conspecific fertilization in terms of reproductive isolation among these two naturally hybridizing species.

  19. Music increases alcohol consumption rate in young females.

    PubMed

    Stafford, Lorenzo D; Dodd, Hannah

    2013-10-01

    Previous field research has shown that individuals consumed more alcohol and at a faster rate in environments paired with loud music. Theoretically, this effect has been linked to approach/avoidance accounts of how music influences arousal and mood, but no work has tested this experimentally. In the present study, female participants (n = 45) consumed an alcoholic (4% alcohol-by-volume) beverage in one of three contexts: slow tempo music, fast tempo music, or a no-music control. Results revealed that, compared with the control, the beverage was consumed fastest in the two music conditions. Interestingly, whereas arousal and negative mood declined in the control condition, this was not the case for either of the music conditions, suggesting a downregulation of alcohol effects. We additionally found evidence for music to disrupt sensory systems in that, counterintuitively, faster consumption was driven by increases in perceived alcohol strength, which, in turn, predicted lower breath alcohol level (BrAL). These findings suggest a unique interaction of music environment and psychoactive effects of alcohol itself on consumption rate. Because alcohol consumed at a faster rate induces greater intoxication, these findings have implications for applied and theoretical work. PsycINFO Database Record (c) 2013 APA, all rights reserved.

  20. The effects of L-theanine, caffeine and their combination on cognition and mood.

    PubMed

    Haskell, Crystal F; Kennedy, David O; Milne, Anthea L; Wesnes, Keith A; Scholey, Andrew B

    2008-02-01

    L-Theanine is an amino acid found naturally in tea. Despite the common consumption of L-theanine, predominantly in combination with caffeine in the form of tea, only one study to date has examined the cognitive effects of this substance alone, and none have examined its effects when combined with caffeine. The present randomised, placebo-controlled, double-blind, balanced crossover study investigated the acute cognitive and mood effects of L-theanine (250 mg), and caffeine (150 mg), in isolation and in combination. Salivary caffeine levels were co-monitored. L-Theanine increased 'headache' ratings and decreased correct serial seven subtractions. Caffeine led to faster digit vigilance reaction time, improved Rapid Visual Information Processing (RVIP) accuracy and attenuated increases in self-reported 'mental fatigue'. In addition to improving RVIP accuracy and 'mental fatigue' ratings, the combination also led to faster simple reaction time, faster numeric working memory reaction time and improved sentence verification accuracy. 'Headache' and 'tired' ratings were reduced and 'alert' ratings increased. There was also a significant positive caffeine x L-theanine interaction on delayed word recognition reaction time. These results suggest that beverages containing L-theanine and caffeine may have a different pharmacological profile to those containing caffeine alone.

  1. Preparation of pH-sensitive zwitterionic nano micelles and drug controlled release for enhancing cellular uptake.

    PubMed

    Wu, Luyan; Ni, Caihua; Zhang, Liping; Shi, Gang

    2016-01-01

    Zwitterionic copolymers have exhibited high resistance to nonspecific protein adsorption and have wide applications in drug delivery systems. Herein, a pH-responsive poly(Lysine-alt-N,N'-bis(acryloyl) diaminohexane) was synthesized through the Michael addition polymerization between N, N'-bis(acryloyl) diaminohexane and lysine. Subsequently, nano micelles (NMs) were formed by self-assembly of the copolymer in an aqueous solution. The NMs showed a slightly negative charge in blood environment, but a positively charged surface in extracellular pH of tumor. This feature could be used to enhance permeability and retention effect, and reinforce tumor cell uptake. Vitro release studies revealed that the release of DOX from the DOX-loaded NMs was evidently faster at pH 5.0 than at pH 7.4. MTT assays revealed that NMs were nontoxic. Thus, these smart NMs were feasible candidates and could be potentially used in cancer chemotherapy.

  2. Modulation of drug release from nanocarriers loaded with a poorly water soluble drug (flurbiprofen) comprising natural waxes.

    PubMed

    Baviskar, D T; Amritkar, A S; Chaudhari, H S; Jain, D K

    2012-08-01

    In this study, flurbiprofen (FLB) Solid Lipid Nanoparticles (SLN) composed from a mixture of beeswax and carnauba wax, Tween 80 and egg lecithin as emulsifiers have been prepared. FLB was incorporated as model lipophilic drug to assess the influence of matrix composition in the drug release profile. SLN were produced by microemulsion technique. In vitro studies were performed in Phosphate Buffered Saline (PBS). The FLB loaded SLN showed a mean particle size of 75 +/- 4 nm, a polydispersity index approximately 0.2 +/- 0.02 and an entrapment efficiency (EE) of more than 95%. Suspensions were stable, with zeta potential values in the range of -15 to -17 mV. DSC thermograms and UV analysis indicated the stability of nanoparticles with negligible drug leakage. Nanoparticles with higher beeswax content in their core exhibited faster drug release than those containing more carnauba wax.

  3. The influence of the energy emitted by solar flare soft X-ray bursts on the propagation of their associated interplanetary shock waves

    NASA Technical Reports Server (NTRS)

    Pinter, S.; Dryer, M.

    1985-01-01

    The relationship between the thermal energy released from 29 solar flares and the propagation features of their associated interplanetary shock waves that were detected at 1 AU is investigated. The 29 interplanetary shock waves were identified unambiguously and their tracking from each solar flare was deduced by tracking their associated interplanetary type-II radio emission. The thermal energy released in the solar flares was estimated from the time-intensity profiles of 1-8 A soft X-ray bursts from each flare. A good relationship is found between the flares' thermal energy with the IP shock-waves' transient velocity and arrival time at the earth - that is, the largest flare energy released is associated with the faster shock waves. Finally, a possible scenario of formation of a shock wave during the early phase of the flare and its propagation features is discussed.

  4. Functionalized bimodal mesoporous silicas as carriers for controlled aspirin delivery

    NASA Astrophysics Data System (ADS)

    Gao, Lin; Sun, Jihong; Li, Yuzhen

    2011-08-01

    The bimodal mesoporous silica modified with 3-aminopropyltriethoxysilane was performed as the aspirin carrier. The samples' structure, drug loading and release profiles were characterized with X-ray diffraction, scanning electron microscopy, N 2 adsorption and desorption, Fourier transform infrared spectroscopy, TG analysis, elemental analysis and UV-spectrophotometer. For further exploring the effects of the bimodal mesopores on the drug delivery behavior, the unimodal mesoporous material MCM-41 was also modified as the aspirin carrier. Meantime, Korsmeyer-Peppas equation ft= ktn was employed to analyze the dissolution data in details. It is indicated that the bimodal mesopores are beneficial for unrestricted drug molecules diffusing and therefore lead to a higher loading and faster releasing than that of MCM-41. The results show that the aspirin delivery properties are influenced considerably by the mesoporous matrix, whereas the large pore of bimodal mesoporous silica is the key point for the improved controlled-release properties.

  5. Comparative release studies on suppositories using the basket, paddle, dialysis tubing and flow-through cell methods I. Acetaminophen in a lipophilic base suppository.

    PubMed

    Hori, Seiichi; Kawada, Tsubasa; Kogure, Sanae; Yabu, Shinako; Mori, Kenji; Akimoto, Masayuki

    2017-02-01

    The release characteristics of lipophilic suppositories containing acetaminophen (AAP) were examined using four types of dissolution methods: the basket, paddle, dialysis tubing (DT) and flow-through cell (FTC) methods. The suitability of each apparatus for quality control in AAP compounded suppositories was evaluated using statistical procedures. More than 80% of the drug was released over 60 min in all the release methods studied, with the exception of the basket method. Reproducible and faster release was achieved using the paddle method at 100 and 200 rpm, whereas poor release occurred with the basket method. The mean dissolution time (MDT), maximum dissolved quantity of AAP at the end of the sampling time (Q) and dissolution efficiency (DE) were calculated by model-independent methods. The FTC method with a single chamber used in this study was also appreciable for AAP suppositories (Q of 100%, MDT of 71-91 min and DE of 75-80%). The DT apparatus is considered similar to the FTC apparatus from a quality control perspective for judging the release properties of lipophilic base suppositories containing AAP. However, even the single chamber FTC used in this study has potential as an in vitro drug release test for suppositories. The comparative dissolution method is expected to become one of the valuable tools for selecting an adequate dissolution test.

  6. Host plant volatiles serve to increase the response of male European grape berry moths, Eupoecilia ambiguella, to their sex pheromone.

    PubMed

    Schmidt-Büsser, Daniela; von Arx, Martin; Guerin, Patrick M

    2009-09-01

    The European grape berry moth is an important pest in vineyards. Males respond to the female-produced sex pheromone released from a piezo nebulizer in a dose-dependent manner in a wind tunnel: <50% arrive at the source at 5-50 pg/min (underdosed), 80% arrive at 100 pg/min to 10 ng/min (optimal) and <20% arrive at 100 ng/min (overdosed). Males responding to overdosed pheromone show in flight arrestment at 80 cm from the source. Host plant chemostimuli for Eupoecilia ambiguella increase the responses of males to underdosed and overdosed pheromone. (Z)-3-hexen-1-ol, (+)-terpinen-4-ol, (E)-beta-caryophyllene and methyl salicylate released with the underdosed pheromone cause a significant increase in male E. ambiguella flying to the source. Time-event analysis indicates a positive correlation between faster activation and probability of source contact by the responding males. The four host plant compounds added to the overdosed pheromone permitted males to take off faster and with a higher probability of flying to the source. This suggests that perception of host plant products with the sex pheromone facilitates male E. ambiguella to locate females on host plants, lending credence to the hypothesis that plant products can signal rendezvous sites suitable for mating.

  7. Cellulose nanomaterials as additives for cementitious materials

    Treesearch

    Tengfei Fu; Robert J. Moon; Pablo Zavatierri; Jeffrey Youngblood; William Jason Weiss

    2017-01-01

    Cementitious materials cover a very broad area of industries/products (buildings, streets and highways, water and waste management, and many others; see Fig. 20.1). Annual production of cements is on the order of 4 billion metric tons [2]. In general these industries want stronger, cheaper, more durable concrete, with faster setting times, faster rates of strength gain...

  8. Fast-Dissolving Core-Shell Composite Microparticles of Quercetin Fabricated Using a Coaxial Electrospray Process

    PubMed Central

    Li, Chen; Yu, Deng-Guang; Williams, Gareth R.; Wang, Zhuan-Hua

    2014-01-01

    This study reports on novel fast-dissolving core-shell composite microparticles of quercetin fabricated using coaxial electrospraying. A PVC-coated concentric spinneret was developed to conduct the electrospray process. A series of analyses were undertaken to characterize the resultant particles in terms of their morphology, the physical form of their components, and their functional performance. Scanning and transmission electron microscopies revealed that the microparticles had spherical morphologies with clear core-shell structure visible. Differential scanning calorimetry and X-ray diffraction verified that the quercetin active ingredient in the core and sucralose and sodium dodecyl sulfate (SDS) excipients in the shell existed in the amorphous state. This is believed to be a result of second-order interactions between the components; these could be observed by Fourier transform infrared spectroscopy. In vitro dissolution and permeation studies showed that the microparticles rapidly released the incorporated quercetin within one minute, and had permeation rates across the sublingual mucosa around 10 times faster than raw quercetin. PMID:24643072

  9. Degradation dynamics and bioavailability of land-based dissolved organic nitrogen in the Bohai Sea: Linking experiment with modeling.

    PubMed

    Li, Keqiang; Ma, Yunpeng; Dai, Aiquan; Wang, Xiulin

    2017-11-30

    Dissolved organic nitrogen (DON) is the major nitrogen form in the Bohai Sea. Land-based DON is released into the nitrogen pool and degraded by planktonic microbiota in coastal ocean. In this study, we evaluated the degradation of land-based DON, particularly its dynamics and bioavailability, in coastal water by linking experiment and modeling. Results showed that the degradation rate constant of DON from sewage treatment plant was significantly faster than those of other land-based sources (P<0.05). DON was classified into three categories based on dynamics and bioavailability. The supply of dissolved inorganic nitrogen (DIN) pool from the DON pool of Liao River, Hai River, and Yellow River was explored using a 3D hydrodynamic multi-DON biogeochemical model in the Bohai Sea. In the model, large amounts of DIN were supplied from DON of Liao River than the other rivers because of prolonged flushing time in Liaodong Bay. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Investigation of Water Absorption and Diffusion in Microparticles Containing Xylitol to Provide a Cooling Effect by Thermal Analysis

    NASA Astrophysics Data System (ADS)

    Salaün, F.; Bedek, G.; Devaux, E.; Dupont, D.; Deranton, D.

    2009-08-01

    Polyurethane microparticles containing xylitol as a sweat sensor system were prepared by interfacial polymerization. The structural and thermal properties of the resultant microparticles were studied. The surface morphology and chemical structure of microparticles were investigated using an optical microscope (OM) and a Fourier-transform infrared spectroscope (FTIR), respectively. The thermal properties of samples were investigated by thermogravimetric analysis (TGA) and by differential scanning calorimetry (DSC). Thus, two types of microparticles were synthesized by varying the percentage of monomers introduced. The obtained morphology is directly related to the synthesis conditions. DSC analysis indicated that the mass content of crystalline xylitol was up to 63.8 %, which resulted in a high enthalpy of dilution of 127.7 J · g-1. Furthermore, the water release rate monitored by TGA analysis was found to be faster from the microparticles than from raw xylitol. Thus, the microparticles could be applied for thermal energy storage and moisture sensor enhancement.

  11. Comparative study on the freeze stability of yeast and chemical leavened steamed bread dough.

    PubMed

    Wang, Pei; Yang, Runqiang; Gu, Zhenxin; Xu, Xueming; Jin, Zhengyu

    2017-04-15

    The present study comparatively evaluated the evolution of yeast and chemical leavened steamed bread dough (YLD/CLD) quality during freeze/thaw (FT) cycles. The steamed bread quality of CLD was more freeze-stable than that of the YLD after 3 FT cycles. Decreased yeast viability contributed to the loss of gassing power in YLD while no significant differences were observed for CLD during FT cycles. However, faster gas release rate in frozen CLD indicated gas retention loss due to the distortion of gluten network. Glutenin macropolymers (GMP) depolymerization via breakage of inter-chain disulfide (SS) bonds and conversions of α-helix and β-turn to β-sheet structures were the main indicators of gluten deterioration. Gluten network was more vulnerable in frozen YLD, resulting in detectable loss of viscoelasticity. The results suggested that supplement of chemical leavener contributed to a more freeze-tolerant gluten network besides its stable gassing power. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Performance and Accuracy of LAPACK's Symmetric TridiagonalEigensolvers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Demmel, Jim W.; Marques, Osni A.; Parlett, Beresford N.

    2007-04-19

    We compare four algorithms from the latest LAPACK 3.1 release for computing eigenpairs of a symmetric tridiagonal matrix. These include QR iteration, bisection and inverse iteration (BI), the Divide-and-Conquer method (DC), and the method of Multiple Relatively Robust Representations (MR). Our evaluation considers speed and accuracy when computing all eigenpairs, and additionally subset computations. Using a variety of carefully selected test problems, our study includes a variety of today's computer architectures. Our conclusions can be summarized as follows. (1) DC and MR are generally much faster than QR and BI on large matrices. (2) MR almost always does the fewestmore » floating point operations, but at a lower MFlop rate than all the other algorithms. (3) The exact performance of MR and DC strongly depends on the matrix at hand. (4) DC and QR are the most accurate algorithms with observed accuracy O({radical}ne). The accuracy of BI and MR is generally O(ne). (5) MR is preferable to BI for subset computations.« less

  13. Effect of quantifying peptide release on ruminal protein degradation determined using the inhibitor in vitro system.

    PubMed

    Colombini, S; Broderick, G A; Clayton, M K

    2011-04-01

    The aim of this work was to compare use of an o-phthaldialdehyde (OPA) colorimetric assay (OPA-C), which responds to both free AA and peptides, with an OPA fluorimetric assay (OPA-F), which is insensitive to peptides, to quantify rates of ruminal protein degradation in the inhibitor in vitro system using Michaelis-Menten saturation kinetics. Four protein concentrates (expeller-extracted soybean meal, ESBM; 2 solvent-extracted soybean meals, SSBM1 and SSBM2; and casein) were incubated in a ruminal in vitro system treated with hydrazine and chloramphenicol to inhibit microbial uptake of protein degradation products. Proteins were weighed to give a range of N concentrations (from 0.15 to 3 mg of N/mL of inoculum) and incubated with 10 mL of ruminal inoculum and 5 mL of buffer; fermentations were stopped after 2 h by adding trichloroacetic acid (TCA). Proteins were analyzed for buffer-soluble N and buffer extracts were treated with TCA to determine N degraded at t=0 (FD0). The TCA supernatants were analyzed for ammonia (phenol-hypochlorite assay), total AA (TAA; OPA-F), and TAA plus oligopeptides (OPA-C) by flow injection analysis. Velocity of protein degradation was computed from extent of release of 1) ammonia plus free TAA or 2) ammonia plus free TAA and peptides. Rate of degradation (kd) was quantified using nonlinear regression of the integrated Michaelis-Menten equation. The parameters Km (Michaelis constant) and kd (Vmax/Km), where Vmax=maximum velocity, were estimated directly; kd values were adjusted (Akd) for the fraction FD0 using the equation Akd=kd-FD0/2. The OPA-C assay yielded faster degradation rates due to the contribution of peptides to the fraction degraded (overall mean=0.280/h by OPA-C and 0.219/h by OPA-F). Degradation rates for SSBM samples (0.231/h and 0.181/h) and ESBM (0.086/h) obtained by the OPA-C assay were more rapid than rates reported by the National Research Council (NRC). Both assays indicated that the 2 SSBM differed in rumen-undegradable protein (RUP) content; the more slowly degraded SSBM had RUP content (35% by OPA-C) similar to that reported by the NRC. The RUP content of ESBM (42% by OPA-C) was lower than the NRC value. Preliminary studies with 4 additional protein concentrates confirmed that accounting for peptide formation increased degradation rate; however, a trend for an interaction between assay and protein source suggested that peptide release made a smaller contribution to rate for more slowly degraded proteins. The OPA-C assay is a simple and reliable method to quantify formation of small peptides. Copyright © 2011 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  14. Fatigue crack growth in SA508-CL2 steel in a high temperature, high purity water environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gerber, T.L.; Heald, J.D.; Kiss, E.

    1974-10-01

    Fatigue crack growth tests were conducted with 1 in. plate specimens of SA508-CL 2 steel in room temperature air, 550$sup 0$F air and in a 550$sup 0$F, high purity, water environment. Zero-tension load controlled tests were run at cyclic frequencies as low as 0.037 CPM. Results show that growth rates in the simulated Boiling Water Reactor (BWR) water environment are faster than growth rates observed in 550$sup 0$F air and these rates are faster than the room temperature rate. In the BWR water environment, lowering the cyclic frequency from 0.37 to 0.037 CPM caused only a slight increase in themore » fatigue crack growth rate. All growth rates measured in these tests were below the upper bound design curve presented in Section XI of the ASME Code. (auth)« less

  15. Evolution and plasticity: Divergence of song discrimination is faster in birds with innate song than in song learners in Neotropical passerine birds.

    PubMed

    Freeman, Benjamin G; Montgomery, Graham A; Schluter, Dolph

    2017-09-01

    Plasticity is often thought to accelerate trait evolution and speciation. For example, plasticity in birdsong may partially explain why clades of song learners are more diverse than related clades with innate song. This "song learning" hypothesis predicts that (1) differences in song traits evolve faster in song learners, and (2) behavioral discrimination against allopatric song (a proxy for premating reproductive isolation) evolves faster in song learners. We tested these predictions by analyzing acoustic traits and conducting playback experiments in allopatric Central American sister pairs of song learning oscines (N = 42) and nonlearning suboscines (N = 27). We found that nonlearners evolved mean acoustic differences slightly faster than did leaners, and that the mean evolutionary rate of song discrimination was 4.3 times faster in nonlearners than in learners. These unexpected results may be a consequence of significantly greater variability in song traits in song learners (by 54-79%) that requires song-learning oscines to evolve greater absolute differences in song before achieving the same level of behavioral song discrimination as nonlearning suboscines. This points to "a downside of learning" for the evolution of species discrimination, and represents an important example of plasticity reducing the rate of evolution and diversification by increasing variability. © 2017 The Author(s). Evolution © 2017 The Society for the Study of Evolution.

  16. The Role of Vegetation Cover in Interactions between Climate and Erosion

    NASA Astrophysics Data System (ADS)

    Schildgen, T. F.; Torres-Acosta, V.; Düsing, W.; Garcin, Y.; Strecker, M. R.

    2016-12-01

    Interactions between tectonics, climate and erosion during mountain building are often considered to include a positive feedback between precipitation and erosion, with the onset of orographic rainfall inducing greater erosion, which in turn may drive faster deformation. Here, we consider two different case studies that explore specifically the relationship between climate and erosion. Within the Kenya Rift of East Africa, spatial variations in 10Be derived erosion rates show no clear dependency on yearly precipitation. Instead, we find that the data fall into two categories. In areas that are sparsely vegetated, erosion rates increase rapidly with slope, whereas in areas that are densely vegetated, erosion rates increase slowly with slope. These data imply that vegetation cover plays a major role in stabilizing hillslopes. From these results, we hypothesize that in a sparsely vegetated region, the onset of greater precipitation will lead to faster erosion, but only until vegetation becomes denser, after which erosion rates will strongly decrease. Initial results from an ongoing study that reconstruct paleo-erosion rates from a sedimentary archive support this hypothesis. Hence, we infer that in this region, vegetation cover acts as a negative feedback in the interactions between climate and erosion. Compared to East Africa, we find a very different relationship between climate and 10Be derived erosion rates in the Toro intermontane basin in NW Argentina. There, the fastest erosion rates occur in the wettest areas with dense vegetation cover, implying a positive feedback between increased precipitation and erosion rates. Also, paleo-erosion rates from the nearby Humahuaca Basin derived from fluvial terraces point to faster erosion during wetter periods in the past. In this region, the stabilizing effects of vegetation cover may be muted. Ultimately, whether increased precipitation leads to faster or slower erosion could hinge on the dominant erosion processes. Along the steep slopes of NW Argentina, landslides are the dominant process, and appear to be minimally affected by vegetation cover. In contrast, the more gentle hillslopes in East Africa appear to be stabilized by a dense vegetation cover.

  17. Rate of nicotine metabolism and smoking cessation outcomes in a community-based sample of treatment-seeking smokers.

    PubMed

    Kaufmann, Amanda; Hitsman, Brian; Goelz, Patricia M; Veluz-Wilkins, Anna; Blazekovic, Sonja; Powers, Lindsay; Leone, Frank T; Gariti, Peter; Tyndale, Rachel F; Schnoll, Robert A

    2015-12-01

    In samples from controlled randomized clinical trials, a smoker's rate of nicotine metabolism, measured by the 3-hydroxycotinine to cotinine ratio (NMR), predicts response to transdermal nicotine. Replication of this relationship in community-based samples of treatment-seeking smokers may help guide the implementation of the NMR for personalized treatment for nicotine dependence. Data from a community-based sample of treatment seeking smokers (N=499) who received 8weeks of transdermal nicotine and 4 behavioral counseling sessions were used to evaluate associations between the NMR and smoking cessation. Secondary outcomes included withdrawal and craving, depression and anxiety, side effects, and treatment adherence. The NMR was a significant predictor of abstinence (OR=.56, 95% CI: 0.33-0.95, p=.03), with faster metabolizers showing lower quit rates than slower metabolizers (24% vs. 33%). Faster nicotine metabolizers exhibited significantly higher levels of anxiety symptoms over time during treatment, vs. slower metabolizers (NMR x Time interaction: F[3,357]=3.29, p=.02). NMR was not associated with changes in withdrawal, craving, depression, side effects, and treatment adherence (p's>.05). In a community-based sample of treatment-seeking smokers, faster nicotine metabolizers were significantly less likely to quit smoking and showed higher rates of anxiety symptoms during a smoking cessation treatment program, vs. slower nicotine metabolizers. These results provide further evidence that transdermal nicotine is less effective for faster nicotine metabolizers and suggest the need to address cessation-induced anxiety symptoms among these smokers to increase the chances for successful smoking cessation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Connecting localized DNA strand displacement reactions

    NASA Astrophysics Data System (ADS)

    Mullor Ruiz, Ismael; Arbona, Jean-Michel; Lad, Amitkumar; Mendoza, Oscar; Aimé, Jean-Pierre; Elezgaray, Juan

    2015-07-01

    Logic circuits based on DNA strand displacement reactions have been shown to be versatile enough to compute the square root of four-bit numbers. The implementation of these circuits as a set of bulk reactions faces difficulties which include leaky reactions and intrinsically slow, diffusion-limited reaction rates. In this paper, we consider simple examples of these circuits when they are attached to platforms (DNA origamis). As expected, constraining distances between DNA strands leads to faster reaction rates. However, it also induces side-effects that are not detectable in the solution-phase version of this circuitry. Appropriate design of the system, including protection and asymmetry between input and fuel strands, leads to a reproducible behaviour, at least one order of magnitude faster than the one observed under bulk conditions.Logic circuits based on DNA strand displacement reactions have been shown to be versatile enough to compute the square root of four-bit numbers. The implementation of these circuits as a set of bulk reactions faces difficulties which include leaky reactions and intrinsically slow, diffusion-limited reaction rates. In this paper, we consider simple examples of these circuits when they are attached to platforms (DNA origamis). As expected, constraining distances between DNA strands leads to faster reaction rates. However, it also induces side-effects that are not detectable in the solution-phase version of this circuitry. Appropriate design of the system, including protection and asymmetry between input and fuel strands, leads to a reproducible behaviour, at least one order of magnitude faster than the one observed under bulk conditions. Electronic supplementary information (ESI) available. See DOI: 10.1039/C5NR02434J

  19. Effects of solubilizing surfactants and loading of antiviral, antimicrobial, and antifungal drugs on their release rates from ethylene vinyl acetate copolymer

    PubMed Central

    Tallury, Padmavathy; Randall, Marcus K; Thaw, Khin L; Preisser, John S.; Kalachandra, Sid

    2013-01-01

    Objectives This study investigates the effects of surfactants and drug loading on the drug release rate from ethylene vinyl acetate (EVA) copolymer. The release rate of nystatin from EVA was studied with addition of non-ionic surfactants Tween 60 and Cremophor RH 40. In addition, the effect of increasing drug load on the release rates of nystatin, chlorhexidine diacetate and acyclovir is also presented. Method Polymer casting solutions were prepared by stirring EVA copolymer and nystatin (2.5 wt %) in dichloromethane. Nystatin and surfactants were added in ratios of (1:1), (1:2) and (1:3). Drug loading was studied with 2.5, 5.0, 7.5, and 10.0% wt. proportions of nystatin, chlorhexidine diacetate and acyclovir incorporated into a separate polymer. Three drug loaded polymer square films (3cm × 3cm × 0.08 cm) were cut from dry films to follow the kinetics of drug release at 37°C. 10 ml of either distilled water or PBS was used as the extracting medium that was replaced daily. PBS was used for nystatin release with addition of surfactants and water was used for the study on drug loading and surfactant release. The rate of drug release was measured by UV-spectrophotometer. The amount of surfactant released was determined by HPLC. Results The release of nystatin was low in PBS and its release rate increased with the addition of surfactants. Also, increasing surfactant concentrations resulted in increased drug release rates. The release rates of chlorhexidine diacetate (p<0.0001), acyclovir (p<0.0003) and nystatin (p<0.0017) linearly increased with increasing drug loads. The amount of surfactants released was above the CMC. Significance This study demonstrates that the three therapeutic agents show a sustained rate of drug release from EVA copolymer over extended periods of time. Nystatin release in PBS is low owing to its poor solubility. Its release rate is enhanced by addition of surfactants and increasing the drug load as well. PMID:17049593

  20. Pricing of Water Resources With Depletable Externality: The Effects of Pollution Charges

    NASA Astrophysics Data System (ADS)

    Kitabatake, Yoshifusa

    1990-04-01

    With an abstraction of a real-world situation, the paper views water resources as a depletable capital asset which yields a stream of services such as water supply and the assimilation of pollution discharge. The concept of the concave or convex water resource depletion function is then introduced and applied to a general two-sector, three-factor model. The main theoretical contribution is to prove that when the water resource depletion function is a concave rather than a convex function of pollution, it is more likely that gross regional income will increase with a higher pollution charge policy. The concavity of the function is meant to imply that with an increase in pollution released, the ability of supplying water at a certain minimum quality level diminishes faster and faster. A numerical example is also provided.

  1. Mitochondrial Ca2+ homeostasis during Ca2+ influx and Ca2+ release in gastric myocytes from Bufo marinus

    PubMed Central

    Drummond, Robert M; Mix, T Christian H; Tuft, Richard A; Walsh, John V; Fay, Fredric S

    2000-01-01

    The Ca2+-sensitive fluorescent indicator rhod-2 was used to monitor mitochondrial Ca2+ concentration ([Ca2+]m) in gastric smooth muscle cells from Bufo marinus. In some studies, fura-2 was used in combination with rhod-2, allowing simultaneous measurement of cytoplasmic Ca2+ concentration ([Ca2+]i) and [Ca2+]m, respectively. During a short train of depolarizations, which causes Ca2+ influx from the extracellular medium, there was an increase in both [Ca2+]i and [Ca2+]m. The half-time (t½) to peak for the increase in [Ca2+]m was considerably longer than the t½ to peak for the increase in [Ca2+]i. [Ca2+]m remained elevated for tens of seconds after [Ca2+]i had returned to its resting value. Stimulation with caffeine, which causes release of Ca2+ from the sarcoplasmic reticulum (SR), also produced increases in both [Ca2+]i and [Ca2+]m. The values of t½ to peak for the increase in [Ca2+] in both cytoplasm and mitochondria were similar; however, [Ca2+]i returned to baseline values much faster than [Ca2+]m. Using a wide-field digital imaging microscope, changes in [Ca2+]m were monitored within individual mitochondria in situ, during stimulation of Ca2+ influx or Ca2+ release from the SR. Mitochondrial Ca2+ uptake during depolarizing stimulation caused depolarization of the mitochondrial membrane potential. The mitochondrial membrane potential recovered considerably faster than the recovery of [Ca2+]m. This study shows that Ca2+ influx from the extracellular medium and Ca2+ release from the SR are capable of increasing [Ca2+]m in smooth muscle cells. The efflux of Ca2+ from the mitochondria is a slow process and appears to be dependent upon the amount of Ca2+ in the SR. PMID:10713963

  2. Wetspun poly-L-(lactic acid)-borosilicate bioactive glass scaffolds for guided bone regeneration.

    PubMed

    Fernandes, João S; Reis, Rui L; Pires, Ricardo A

    2017-02-01

    We developed a porous poly-L-lactic acid (PLLA) scaffold compounded with borosilicate bioactive glasses (BBGs) endowing it with bioactive properties. Porous PLLA-BBG fibre mesh scaffolds were successfully prepared by the combination of wet spinning and fibre bonding techniques. Micro-computed tomography (μCT) confirmed that the PLLA-BBG scaffolds containing ≈25% of BBGs (w/w) exhibited randomly interconnected porous (58 to 62% of interconnectivity and 53 to 67% of porosity) with mean pore diameters higher that 100μm. Bioactivity and degradation studies were performed by immersing the scaffolds in simulated body fluid (SBF) and ultrapure water, respectively. The PLLA-BBG scaffolds presented a faster degradation rate with a constant release of inorganic species, which are capable to produce calcium phosphate structures at the surface of the material after 7days of immersion in SBF (Ca/P ratio of ~1.7). Cellular in vitro studies with human osteosarcoma cell line (Saos-2) and human adipose-derived stem cells (hASCs) showed that PLLA-BBGs are not cytotoxic to cells, while demonstrating their capacity to promote cell adhesion and proliferation. Overall, we showed that the proposed scaffolds present a tailored kinetics on the release of inorganic species and controlled biological response under conditions that mimic the bone physiological environment. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Ultrasonic Processing Technique as a Green Preparation Approach for Diacerein-Loaded Niosomes.

    PubMed

    Khan, Muhammad Imran; Madni, Asadullah; Hirvonen, Jouni; Peltonen, Leena

    2017-07-01

    In this study, the feasibility of ultrasonic processing (UP) technique as green preparation method for production of poorly soluble model drug substance, diacerein, loaded niosomes was demonstrated. Also, the effects of different surfactant systems on niosomes' characteristics were analyzed. Niosomes were prepared using both the green UP technique and traditional thin-film hydration (TFH) technique, which requires the use of environmentally hazardous organic solvents. The studied surfactant systems were Span 20, Pluronic L64, and their mixture (Span 20 and Pluronic L64). Both the production techniques produced well-defined spherical vesicles, but the UP technique produced smaller and more monodisperse niosomes than TFH. The entrapment efficiencies with the UP method were lower than with TFH, but still at a feasible level. All the niosomal formulations released diacerein faster than pure drug, and the drug release rates from the niosomes produced by the UP method were higher than those from the TFH-produced niosomes. With UP technique, the optimum process conditions for small niosomal products with low PDI values and high entrapment efficiencies were obtained when 70% amplitude and 45-min sonication time were used. The overall results demonstrated the potency of UP technique as an alternative fast, cost-effective, and green preparation approach for production of niosomes, which can be utilized as drug carrier systems for poorly soluble drug materials.

  4. In situ release rates of Cu and Zn from commercial antifouling paints at different salinities.

    PubMed

    Lagerström, Maria; Lindgren, J Fredrik; Holmqvist, Albin; Dahlström, Mia; Ytreberg, Erik

    2018-02-01

    Antifouling paints are environmentally risk assessed based on their biocidal release rates to the water phase. In situ release rates of copper (Cu) and zinc (Zn) were derived for five commercial paints in two recreational marinas with different salinities (5 and 14 PSU) using an X-Ray Fluorescence spectrometer (XRF). Salinity was found to significantly affect the Cu release, with twice the amount of Cu released at the higher salinity, while its influence on the Zn release was paint-specific. Site-specific release rates for water bodies with salinity gradients, e.g. the Baltic Sea, are therefore necessary for more realistic risk assessments of antifouling paints. Furthermore, the in situ release rates were up to 8 times higher than those generated using standardized laboratory or calculation methods. The environmental risk assessment repeated with the field release rates concludes that it is questionable whether the studied products should be allowed on the Swedish market. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  5. Swelling, erosion and drug release characteristics of salbutamol sulfate from hydroxypropyl methylcellulose-based matrix tablets.

    PubMed

    Chaibva, Faith A; Khamanga, Sandile M M; Walker, Roderick B

    2010-12-01

    Hydrophilic matrix formulations are important and simple technologies that are used to manufacture sustained release dosage forms. Hydroxypropyl methylcellulose-based matrix tablets, with and without additives, were manufactured to investigate the rate of hydration, rate of erosion, and rate and mechanism of drug release. Scanning electron microscopy was used to assess changes in the microstructure of the tablets during drug release testing and whether these changes could be related to the rate of drug release from the formulations. The results revealed that the rate of hydration and erosion was dependent on the polymer combination(s) used, which in turn affected the rate and mechanism of drug release from these formulations. It was also apparent that changes in the microstructure of matrix tablets could be related to the different rates of drug release that were observed from the test formulations. The use of scanning electron microscopy provides useful information to further understand drug release mechanisms from matrix tablets.

  6. Coarse Alignment Technology on Moving base for SINS Based on the Improved Quaternion Filter Algorithm.

    PubMed

    Zhang, Tao; Zhu, Yongyun; Zhou, Feng; Yan, Yaxiong; Tong, Jinwu

    2017-06-17

    Initial alignment of the strapdown inertial navigation system (SINS) is intended to determine the initial attitude matrix in a short time with certain accuracy. The alignment accuracy of the quaternion filter algorithm is remarkable, but the convergence rate is slow. To solve this problem, this paper proposes an improved quaternion filter algorithm for faster initial alignment based on the error model of the quaternion filter algorithm. The improved quaternion filter algorithm constructs the K matrix based on the principle of optimal quaternion algorithm, and rebuilds the measurement model by containing acceleration and velocity errors to make the convergence rate faster. A doppler velocity log (DVL) provides the reference velocity for the improved quaternion filter alignment algorithm. In order to demonstrate the performance of the improved quaternion filter algorithm in the field, a turntable experiment and a vehicle test are carried out. The results of the experiments show that the convergence rate of the proposed improved quaternion filter is faster than that of the tradition quaternion filter algorithm. In addition, the improved quaternion filter algorithm also demonstrates advantages in terms of correctness, effectiveness, and practicability.

  7. Faster proton transfer dynamics of water on SnO2 compared to TiO2.

    PubMed

    Kumar, Nitin; Kent, Paul R C; Bandura, Andrei V; Kubicki, James D; Wesolowski, David J; Cole, David R; Sofo, Jorge O

    2011-01-28

    Proton jump processes in the hydration layer on the iso-structural TiO(2) rutile (110) and SnO(2) cassiterite (110) surfaces were studied with density functional theory molecular dynamics. We find that the proton jump rate is more than three times faster on cassiterite compared with rutile. A local analysis based on the correlation between the stretching band of the O-H vibrations and the strength of H-bonds indicates that the faster proton jump activity on cassiterite is produced by a stronger H-bond formation between the surface and the hydration layer above the surface. The origin of the increased H-bond strength on cassiterite is a combined effect of stronger covalent bonding and stronger electrostatic interactions due to differences of its electronic structure. The bridging oxygens form the strongest H-bonds between the surface and the hydration layer. This higher proton jump rate is likely to affect reactivity and catalytic activity on the surface. A better understanding of its origins will enable methods to control these rates.

  8. Tapioca starch graft copolymers and Dome Matrix® modules II. Effect of modules assemblage on riboflavin release kinetics.

    PubMed

    Casas, Marta; Strusi, Orazio Luca; Jiménez-Castellanos, M Rosa; Colombo, Paolo

    2011-01-01

    This paper studies the Riboflavin release from systems made of assembled modules of Dome Matrix® technology using tapioca starch-ethylmethacrylate (TSEMA) and tapioca hydroxypropylstarch-ethylmethacrylate (THSEMA) graft copolymers produced by two different drying methods. Two different shape modules were manufactured for this study, i.e., female and male modules, in order to facilitate their assemblage in "void configuration", a system with an internal void space. Drug release studies on void configurations based on THSEMA show faster releases than TSEMA; HPMC systems used as a comparative reference showed intermediate release. Moreover, using void configurations made with one module of TSEMA and the other of THSEMA is possible to average the drug release, without difference between the drying methods used for the polymers. With respect to the floatation characteristics, all the void configurations floated immediately and, due to the mass center of the system, the floatation position of the system was always axial with the female module up and the male down. The drug release studies performed with a sinker to force the immersion of the systems in the medium did not show differences with respect to the dissolution test without a sinker. The combination of floatation capability of the assembled modules and the prolonged drug release provided with the graft copolymers make these assembled modules candidates as controlled release gastro-retentive dosage forms. Copyright © 2010 Elsevier B.V. All rights reserved.

  9. The Kinetics of Myosin Light Chain Kinase Activation of Smooth Muscle Myosin in an In Vitro Model System

    PubMed Central

    Hong, Feng; Facemyer, Kevin C.; Carter, Michael S.; Jackson, Del R.; Haldeman, Brian D.; Ruana, Nick; Sutherland, Cindy; Walsh, Michael P.; Cremo, Christine R.; Baker, Josh E.

    2013-01-01

    During activation of smooth muscle contraction, one myosin light chain kinase (MLCK) molecule rapidly phosphorylates many smooth muscle myosin (SMM) molecules, suggesting that muscle activation rates are influenced by the kinetics of MLCK-SMM interactions. To determine the rate-limiting step underlying activation of SMM by MLCK, we measured the kinetics of calcium-calmodulin (Ca2+-CaM)-MLCK-mediated SMM phosphorylation and the corresponding initiation of SMM-based F-actin motility in an in vitro system with SMM attached to a coverslip surface. Fitting the time course of SMM phosphorylation to a kinetic model gave an initial phosphorylation rate, kpo, of ~1.17 heads s−1·MLCK−1. Also we measured the dwell time of single QD-labeled MLCK molecules interacting with surface-attached SMM and phosphorylated SMM using total internal reflection fluorescence microscopy. From these data, the dissociation rate constant from phosphorylated SMM was 0.80 s−1, which was similar to kpo mentioned above and with rates measured in solution. This dissociation rate was essentially independent of the phosphorylation state of SMM. From calculations using our measured dissociation rates and Kds, and estimates of [SMM] and [MLCK] in muscle, we predict that the dissociation of MLCK from phosphorylated SMM is rate-limiting and that the rate of the phosphorylation step is faster than this dissociation rate. Also, association to SMM (11-46 s−1) would be much faster than to pSMM (<0.1-0.2 s−1). This suggests that the probability of MLCK interacting with unphosphorylated versus pSMM is 55-460 times greater. This would avoid sequestering MLCK to unproductive interactions with previously phosphorylated SMM, potentially leading to faster rates of phosphorylation in muscle. PMID:24144337

  10. Kinetic Characterization of Nonmuscle Myosin IIB at the Single Molecule Level*

    PubMed Central

    Nagy, Attila; Takagi, Yasuharu; Billington, Neil; Sun, Sara A.; Hong, Davin K. T.; Homsher, Earl; Wang, Aibing; Sellers, James R.

    2013-01-01

    Nonmuscle myosin IIB (NMIIB) is a cytoplasmic myosin, which plays an important role in cell motility by maintaining cortical tension. It forms bipolar thick filaments with ∼14 myosin molecule dimers on each side of the bare zone. Our previous studies showed that the NMIIB is a moderately high duty ratio (∼20–25%) motor. The ADP release step (∼0.35 s−1) of NMIIB is only ∼3 times faster than the rate-limiting phosphate release (0.13 ± 0.01 s−1). The aim of this study was to relate the known in vitro kinetic parameters to the results of single molecule experiments and to compare the kinetic and mechanical properties of single- and double-headed myosin fragments and nonmuscle IIB thick filaments. Examination of the kinetics of NMIIB interaction with actin at the single molecule level was accomplished using total internal reflection fluorescence (TIRF) with fluorescence imaging with 1-nm accuracy (FIONA) and dual-beam optical trapping. At a physiological ATP concentration (1 mm), the rate of detachment of the single-headed and double-headed molecules was similar (∼0.4 s−1). Using optical tweezers we found that the power stroke sizes of single- and double-headed heavy meromyosin (HMM) were each ∼6 nm. No signs of processive stepping at the single molecule level were observed in the case of NMIIB-HMM in optical tweezers or TIRF/in vitro motility experiments. In contrast, robust motility of individual fluorescently labeled thick filaments of full-length NMIIB was observed on actin filaments. Our results are in good agreement with the previous steady-state and transient kinetic studies and show that the individual nonprocessive nonmuscle myosin IIB molecules form a highly processive unit when polymerized into filaments. PMID:23148220

  11. Polymeric micelles and nanoemulsions as tumor-targeted drug carriers: Insight through intravital imaging.

    PubMed

    Rapoport, Natalya; Gupta, Roohi; Kim, Yoo-Shin; O'Neill, Brian E

    2015-05-28

    Intravital imaging of nanoparticle extravasation and tumor accumulation has revealed, for the first time, detailed features of carrier and drug behavior in circulation and tissue that suggest new directions for optimization of drug nanocarriers. Using intravital fluorescent microscopy, the extent of the extravasation, diffusion in the tissue, internalization by tissue cells, and uptake by the RES system were studied for polymeric micelles, nanoemulsions, and nanoemulsion-encapsulated drug. Discrimination of vascular and tissue compartments in the processes of micelle and nanodroplet extravasation and tissue accumulation was possible. A simple 1-D continuum model was suggested that allowed discriminating between various kinetic regimes of nanocarrier (or released drug) internalization in tumors of various sizes and cell density. The extravasation and tumor cell internalization occurred much faster for polymeric micelles than for nanoemulsion droplets. Fast micelle internalization resulted in the formation of a perivascular fluorescent coating around blood vessels. A new mechanism of micelle extravasation and internalization was suggested, based on the fast extravasation and internalization rates of copolymer unimers while maintaining micelle/unimer equilibrium in the circulation. The data suggested that to be therapeutically effective, nanoparticles with high internalization rate should manifest fast diffusion in the tumor tissue in order to avoid generation of concentration gradients that induce drug resistance. However an extra-fast diffusion should be avoided as it may result in the flow of extravasated nanoparticles from the tumor to normal organs, which would compromise targeting efficiency. The extravasation kinetics were different for nanodroplets and nanodroplet-encapsulated drug F-PTX suggesting a premature release of some fraction of the drug from the carrier. In conclusion, the development of an "ideal" drug carrier should involve the optimization of both drug retention and carrier diffusion parameters. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Endotrophic Calcium, Strontium, and Barium Spores of Bacillus megaterium and Bacillus cereus1

    PubMed Central

    Foerster, Harold F.; Foster, J. W.

    1966-01-01

    Foerster, Harold F. (The University of Texas, Austin), and J. W. Foster. Endotrophic calcium, strontium, and barium spores of Bacillus megaterium and Bacillus cereus. J. Bacteriol. 91:1333–1345. 1966.—Spores were produced by washed vegetative cells suspended in deionized water supplemented with CaCl2, SrCl2, or BaCl2. Normal, refractile spores were produced in each case; a portion of the barium spores lost refractility and darkened. Thin-section electron micrographs revealed no apparent anatomical differences among the three types of spores. Analyses revealed that the different spore types were enriched specifically in the metal to which they were exposed during sporogenesis. The calcium content of the strontium and the barium spores was very small. From binary equimolar mixtures of the metal salts, endotrophic spores accumulated both metals to nearly the same extent. Viability of the barium spores was considerably less than that of the other two types. Strontium and barium spores were heat-resistant; however, calcium was essential for maximal heat resistance. Significant differences existed in the rates of germination; calcium spores germinated fastest, strontium spores were slower, and barium spores were slowest. Calcium-barium and calcium-strontium spores germinated readily. Endotrophic calcium and strontium spores germinated without the prior heat activation essential for growth spores. Chemical germination of the different metal-type spores with n-dodecylamine took place at the same relative rates as physiological germination. Heat-induced release of dipicolinic acid occurred much faster with barium and strontium spores than with calcium spores. The washed “coat fraction” from disrupted spores contained little of the spore calcium but most of the spore barium. The metal in this fraction was released by dilute acid. The demineralized coats reabsorbed calcium and barium at neutral pH. Images PMID:4956334

  13. Northern tamarisk beetle (Diorhabda carinulata) and tamarisk (Tamarix spp.) interactions in the Colorado River basin

    USGS Publications Warehouse

    Nagler, Pamela L.; Nguyen, Uyen; Bateman, Heather L.; Jarchow, Christopher; Glenn, Edward P.; Waugh, William J.; van Riper, Charles

    2018-01-01

    Northern tamarisk beetles (Diorhabda carinulata) were released in the Upper Colorado River Basin in the United States in 2004–2007 to defoliate introduced tamarisk shrubs (Tamarix spp.) in the region’s riparian zones. The primary purpose was to control the invasive shrub and reduce evapotranspiration (ET) by tamarisk in an attempt to increase stream flows. We evaluated beetle–tamarisk interactions with MODIS and Landsat imagery on 13 river systems, with vegetation indices used as indicators of the extent of defoliation and ET. Beetles are widespread and exhibit a pattern of colonize–defoliate–emigrate, so that riparian zones contain a mosaic of completely defoliated, partially defoliated, and refoliated tamarisk stands. Based on satellite data and ET algorithms, mean ET before beetle release (2000–2006) was 416 mm/year compared to postrelease (2007–2015) ET of 355 mm/year (p<0.05) for a net reduction of 61 mm/year. This is lower than initial literature projections that ET would be reduced by 300–460 mm/year. Reasons for the lower-than-expected ET reductions are because baseline ET rates are lower than initially projected, and percentage ET reduction is low because tamarisk stands tend to regrow new leaves after defoliation and other plants help maintain canopy cover. Overall reductions in tamarisk green foliage during the study are 21%. However, ET in the Upper Basin has shown a steady decline since 2007 and equilibrium has not yet been reached. Defoliation is now proceeding from the Upper Basin into the Lower Basin at a rate of 40 km/year, much faster than initially projected.

  14. Comparison of Tear cytokines and clinical outcomes between off-flap and on-flap epi-LASIK with mitomycin C.

    PubMed

    Zhang, Yu; Chen, Yue-Guo; Xia, Ying-Jie; Qi, Hong

    2012-09-01

    To compare tear cytokines and clinical outcomes between off-flap and on-flap epi-LASIK eyes and explore the possible mechanism for the clinical differences. This double-masked, randomized study enrolled 18 myopic patients who underwent off-flap epi-LASIK with mitomycin C (MMC) in 1 eye and on-flap epi-LASIK with MMC in the contralateral eye. Tears were collected from each eye preoperatively and 2 hours, 1 day, and 5 days postoperatively. Concentrations of multiple tear cytokines were measured by a multiplex immunobead assay. Uncorrected distance visual acuity (UDVA), refraction, haze scores, pain scores, and percentage of corneal epithelial healing were evaluated. Compared with the on-flap group, the off-flap group had outcomes of better UDVA and higher percentages of epithelial healing at 5 days after surgery (P<.001) and lower levels of haze at 1 month after surgery (P=.049). Preoperatively, no significant differences were noted in the release rate of all tear cytokines between groups. At 2 hours postoperatively, the release rate of tear basic fibroblast growth factor (bFGF), platelet-derived growth factor-BB (PDGF-BB), interleukin-8 (IL-8), and tumor necrosis factor alpha (TNF-α) in the off-flap group were significantly lower than those in the on-flap group (P=.011, .017, .048, and .041, respectively). Off-flap epi-LASIK with MMC offers faster corneal epithelial healing and visual recovery, and temporary less haze than on-flap epi-LASIK with MMC. The lower tear levels of bFGF, PDGF-BB, IL-8, and TNF-α in the offflap group 2 hours after surgery may suggest a possible mechanism for the clinical differences. Copyright 2012, SLACK Incorporated.

  15. Nucleotide binding properties of bovine brain uncoating ATPase.

    PubMed

    Gao, B; Emoto, Y; Greene, L; Eisenberg, E

    1993-04-25

    Many functions of the 70-kDa heat-shock proteins (hsp70s) appear to be regulated by bound nucleotide. In this study we examined the nucleotide binding properties of purified bovine brain uncoating ATPase, one of the constitutively expressed members of the hsp70 family. We found that uncoating ATPase purified by ATP-agarose column chromatography retained one ADP molecule bound per enzyme molecule which could not be removed by extensive dialysis. Since this bound ADP exchanged rapidly with free ADP or ATP, the inability to remove the bound nucleotide was not due to slow dissociation but rather to strong binding of the nucleotide to the uncoating ATPase. In confirmation of this view, equilibrium dialysis experiments suggested that the dissociation constants for both ADP and ATP were less than 0.1 microM. Schmid et al. (Schmid, S. L., Braell, W. A., and Rothman, J. E. (1985) J. Biol. Chem 260, 10057-10062) suggested that the uncoating ATPase had two sites for bound nucleotide, one specific for ATP and one binding both ATP and ATP analogues but not ADP. In contrast, we found that enzyme with bound ADP did not bind further adenosine 5'-(beta,gamma-imino)triphosphate or dATP, nor did more than one ATP molecule bind per enzyme even in 200 microM free ATP. These results strongly suggest that the enzyme has only one binding site for nucleotide. During steady-state ATP hydrolysis, 85% of the bound nucleotide at this site was determined to be ATP and 15% ADP; this is consistent with the rate of ADP release determined in the exchange experiments noted above, where ADP release was found to be six times faster than the overall rate of ATP hydrolysis.

  16. Potential Application of Silica Mineral from Dieng Mountain in Agriculture Sector to Control the Release Rate of Fertilizer Elements

    NASA Astrophysics Data System (ADS)

    Solihin; Mursito, Anggoro Tri; Dida, Eki N.; Erlangga, Bagus D.; Widodo

    2017-07-01

    Silica mineral, which comes along with geothermal fluid in Dieng, is a product of erosion, decomposition and dissolution of silicon oxide based mineral, which is followed by precipitation to form silica mineral. This silica cell structure is non crystalline, and it contains 85,60 % silicon oxide, 6.49 volatile elements, and also other oxide elements. Among the direct potential application of this silica is as raw material in slow release fertilizer. Silica in compacted slow release fertilizer is able control the release rate of fertilizer elements. Two type of slow release fertilizer has been made by using silica as the matrix in these slow release fertilizer. The first type is the mixing of ordinary solid fertilizer with Dieng silica, whereas the second one is the mixing of disposal leach water with Dieng silica. The release test shows that both of these modified fertilizers have slow release fertilizer characteristic. The release rate of fertilizer elements (magnesium, potassium, ammonium, and phosphate) can be significantly reduced. The addition of kaolin in the first type of slow release fertilizer makes the release rate of fertilizer elements can be more slowed down. Meanwhile in the second type of slow release fertilizer, the release rate is determined by ratio of silica/hydrogel. The lowest release rate is achieved by sample that has highest ratio of silica/hydrogel.

  17. Rhinoscintigraphic analysis of nasal mucociliary function in patients with Bell's palsy.

    PubMed

    Boynuegri, S; Ozer, S; Peksoy, I; Acikalin, A; Tuna, E Ü; Dursun, E; Eryilmaz, A

    2016-01-01

    Mucociliary transport (MCT) is an important defense mechanism of the respiratory tract. One of the major factors determining MCT is the ciliary activity of the respiratory epithelium. Rhinoscintigraphy is the most commonly used method for the analysis of mucociliary activity. The aim of this study was to investigate the effect of facial paralysis on the nasal mucociliary clearance. This study included 38 Bell's palsy patients as the study group and 10 subjects without any history of paranasal sinus disease or facial paralysis as the control group. A drop of technetium 99m-labeled macroaggregated albumin (Tc-99m MAA) was placed posterior to the head of the inferior turbinate and followed with a gamma camera. MCT rate was measured as the velocity of Tc-99m MAA drop. The mean MCT rate was 4.27 ± 0.76 millimeters per minute (mm/min) on 20 sides of 10 healthy controls, 4.11 ± 2.91 mm/min on the affected sides of the patients with Bell's palsy, and 6.03 ± 3.13 mm/min on the nonparalyzed sides of the patients. MCT rate was statistically significantly faster in the nonparalyzed side when compared to the paralyzed side in Bell's palsy patients (P = 0.001). MCT rates were not significantly different in the control group and paralyzed sides of the Bell's palsy patients (P = 0.810). The MCT rate was statistically significantly faster in the nonparalyzed sides of Bell's palsy patients when compared to the controls (P = 0.017). This study showed a faster MCT rate on the nonparalyzed side in Bell's palsy patients when compared to the paralyzed side and the control subjects. A compensatory mechanism could be the underlying reason for faster MCT on the nonparalyzed side. Further studies on larger patient groups are needed to investigate the effect of facial paralysis on the MCT and changes of facial nerve function on the opposite, nonparalyzed side of the face.

  18. Improved estimates of environmental copper release rates from antifouling products.

    PubMed

    Finnie, Alistair A

    2006-01-01

    The US Navy Dome method for measuring copper release rates from antifouling paint in-service on ships' hulls can be considered to be the most reliable indicator of environmental release rates. In this paper, the relationship between the apparent copper release rate and the environmental release rate is established for a number of antifouling coating types using data from a variety of available laboratory, field and calculation methods. Apart from a modified Dome method using panels, all laboratory, field and calculation methods significantly overestimate the environmental release rate of copper from antifouling coatings. The difference is greatest for self-polishing copolymer antifoulings (SPCs) and smallest for certain erodible/ablative antifoulings, where the ASTM/ISO standard and the CEPE calculation method are seen to typically overestimate environmental release rates by factors of about 10 and 4, respectively. Where ASTM/ISO or CEPE copper release rate data are used for environmental risk assessment or regulatory purposes, it is proposed that the release rate values should be divided by a correction factor to enable more reliable generic environmental risk assessments to be made. Using a conservative approach based on a realistic worst case and accounting for experimental uncertainty in the data that are currently available, proposed default correction factors for use with all paint types are 5.4 for the ASTM/ISO method and 2.9 for the CEPE calculation method. Further work is required to expand this data-set and refine the correction factors through correlation of laboratory measured and calculated copper release rates with the direct in situ environmental release rate for different antifouling paints under a range of environmental conditions.

  19. Harvest and reporting rates of game-farm ring-necked pheasants

    USGS Publications Warehouse

    Diefenbach, D.R.; Riegner, C.F.; Hardisky, T.S.

    2000-01-01

    Many state natural resource agencies release ring-necked pheasants (Phasianus colchicus) for hunting, but the effectiveness of these programs has never been evaluated on a statewide basis. We conducted a reward-band study to estimate harvest, reporting, and survival rates of pheasants raised and released by the Pennsylvania Game Commission (PGC) for the fall 1998 hunting season. We banded 6,770 of 199,613 released pheasants with leg bands worth $0-$400. Rewards >$75 produced 100% reporting rates. Hunters reported 71.0% of harvested pheasants banded with standard bands (no reward). Cocks had an estimated 62.3% harvest rate when released on public land and a 46.8% harvest rate on private land. Hens had an estimated 50.4% harvest rate when released on public land and a 31.1% harvest rate on private land. Estimated harvest rate for hen pheasants released in September in the either-sex zone was 15.5%. In the late season, pheasants released on public land had a 33.6% harvest rate and a 23.5% harvest rate on private land. We found that few pheasants (30 days and birds released on public land had reduced survival rates primarily because of greater harvest rates. In fiscal year 1998-99, the net cost to raise and release 199,613 pheasants was $2,813,138 ($14.09 per bird). The average cost per harvested pheasant was $29.10, but ranged from $22.63 to $90.74 depending on the date and location of release. We estimated that 49.9% (82,017 birds) of pheasants stocked immediately prior to and during the regular and late seasons (excluding September releases of hens) were harvested by hunters. Percentage of pheasants harvested by hunters could be increased by expanding the either-sex zone in Pennsylvania so that more hens could be legally killed by hunters and by allocating releases to seasons and locations with greater harvest rates. However, before such changes are implemented, we recommend a survey of Pennsylvania pheasant hunters to ascertain their opinions and desires regarding releases of game-farm pheasants.

  20. Energetics and biomechanics of locomotion by red kangaroos (Macropus rufus).

    PubMed

    Kram, R; Dawson, T J

    1998-05-01

    As red kangaroos hop faster over level ground, their rate of oxygen consumption (indicating metabolic energy consumption) remains nearly the same. This phenomenon has been attributed to exceptional elastic energy storage and recovery via long compliant tendons in the legs. Alternatively, red kangaroos may have exceptionally efficient muscles. To estimate efficiency, we measured the metabolic cost of uphill hopping, where muscle fibers must perform mechanical work against gravity. We found that uphill hopping was much more expensive than level hopping. The maximal rate of oxygen consumption measured (3 ml O2 kg-1 s-1) exceeds all but a few vertebrate species. However, efficiency values were normal, approximately 30%. At faster level hopping speeds the effective mechanical advantage of the extensor muscles of the ankle joint remained the same. Thus, kangaroos generate the same muscular force at all speeds but do so more rapidly at faster hopping speeds. This contradicts a recent hypothesis for what sets the cost of locomotion. The cost of transport (J kg-1 m-1) decreases at faster hopping speeds, yet red kangaroos prefer to use relatively slow speeds that avoid high levels of tendon stress.

  1. Novel meloxicam releasing electrospun polymer/ceramic reinforced biodegradable membranes for periodontal regeneration applications.

    PubMed

    Yar, Muhammad; Farooq, Ariba; Shahzadi, Lubna; Khan, Abdul Samad; Mahmood, Nasir; Rauf, Abdul; Chaudhry, Aqif Anwar; Rehman, Ihtesham Ur

    2016-07-01

    Periodontal disease is associated with the destruction of periodontal tissues, along with other disorders/problems including inflammation of tissues and severe pain. This paper reports the synthesis of meloxicam (MX) immobilized biodegradable chitosan (CS)/poly(vinyl alcohol) (PVA)/hydroxyapatite (HA) based electrospun (e-spun) fibers and films. Electrospinning was employed to produce drug loaded fibrous mats, whereas films were generated by solvent casting method. In-vitro drug release from materials containing varying concentrations of MX revealed that the scaffolds containing higher amount of drug showed comparatively faster release. During initial first few hours fast release was noted from membranes and films; however after around 5h sustained release was achieved. The hydrogels showed good swelling property, which is highly desired for soft tissue engineered implants. To investigate the biocompatibility of our synthesized materials, VERO cells (epithelial cells) were selected and cell culture results showed that these all materials were non-cytotoxic and also these cells were very well proliferated on these synthesized scaffolds. These properties along with the anti-inflammatory potential of our fabricated materials suggest their effective utilization in periodontital treatments. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Magnetic Active Agent Release System (MAARS): evaluation of a new way for a reproducible, externally controlled drug release into the small intestine.

    PubMed

    Dietzel, Christian T; Richert, Hendryk; Abert, Sandra; Merkel, Ute; Hippius, Marion; Stallmach, Andreas

    2012-08-10

    Human absorption studies are used to test new drug candidates for their bioavailability in different regions of the gastrointestinal tract. In order to replace invasive techniques (e.g. oral or rectal intubation) a variety of externally controlled capsule-based drug release systems has been developed. Most of these use ionizing radiation, internal batteries, heating elements or even chemicals for the localization and disintegration process of the capsule. This embodies potential harms for volunteers and patients. We report about a novel technique called "Magnetic Active Agent Release System" (MAARS), which uses purely magnetic effects for this purpose. In our trial thirteen healthy volunteers underwent a complete monitoring and release procedure of 250 mg acetylsalicylic acid (ASA) targeting the flexura duodenojejunalis and the mid-part of the jejunum. During all experiments MAARS initiated a sufficient drug release and was well tolerated. Beside this we also could show that the absorption of ASA is about two times faster in the more proximal region of the flexura duodenojejunalis with a tmax of 47±13 min compared to the more distal jejunum with tmax values of 100±10 min (p=0.031). Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Sulindac loaded alginate beads for a mucoprotective and controlled drug release.

    PubMed

    Yegin, Betül Arica; Moulari, Brice; Durlu-Kandilci, N Tugba; Korkusuz, Petek; Pellequer, Yann; Lamprecht, Alf

    2007-06-01

    Ionotropic gelation was used to entrap sulindac into calcium alginate beads as a potential drug carrier for the oral delivery of this anti-inflammatory drug. Beads were investigated in vitro for a possible sustained drug release and their use in vivo as a gastroprotective system for sulindac. Process parameters such as the polymer concentration, polymer/drug ratio, and different needle diameter were analysed for their influences on the bead properties. Size augmented with increasing needle diameter (0.9 mm needle: 1.28 to 1.44 mm; 0.45 mm needle: 1.04 to 1.07 mm) due to changes in droplet size as well as droplet viscosity. Yields varied between 87% and 98% while sulindac encapsulation efficiencies of about 88% and 94% were slightly increasing with higher alginate concentrations. Drug release profiles exhibited a complete release for all formulations within 4 hours with a faster release for smaller beads. Sulindac loaded alginate beads led to a significant reduction of macroscopic histological damage in the stomach and duodenum in mice. Similarly, microscopic analyses of the mucosal damage demonstrated a significant mucoprotective effect of all bead formulation compared to the free drug. The present alginate formulations exhibit promising properties of a controlled release form for sulindac; meanwhile they provide a distinct tissue protection in the stomach and duodenum.

  4. A reproducible accelerated in vitro release testing method for PLGA microspheres.

    PubMed

    Shen, Jie; Lee, Kyulim; Choi, Stephanie; Qu, Wen; Wang, Yan; Burgess, Diane J

    2016-02-10

    The objective of the present study was to develop a discriminatory and reproducible accelerated in vitro release method for long-acting PLGA microspheres with inner structure/porosity differences. Risperidone was chosen as a model drug. Qualitatively and quantitatively equivalent PLGA microspheres with different inner structure/porosity were obtained using different manufacturing processes. Physicochemical properties as well as degradation profiles of the prepared microspheres were investigated. Furthermore, in vitro release testing of the prepared risperidone microspheres was performed using the most common in vitro release methods (i.e., sample-and-separate and flow through) for this type of product. The obtained compositionally equivalent risperidone microspheres had similar drug loading but different inner structure/porosity. When microsphere particle size appeared similar, porous risperidone microspheres showed faster microsphere degradation and drug release compared with less porous microspheres. Both in vitro release methods investigated were able to differentiate risperidone microsphere formulations with differences in porosity under real-time (37 °C) and accelerated (45 °C) testing conditions. Notably, only the accelerated USP apparatus 4 method showed good reproducibility for highly porous risperidone microspheres. These results indicated that the accelerated USP apparatus 4 method is an appropriate fast quality control tool for long-acting PLGA microspheres (even with porous structures). Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Applicability of low-melting-point microcrystalline wax to develop temperature-sensitive formulations.

    PubMed

    Matsumoto, Kohei; Kimura, Shin-Ichiro; Iwao, Yasunori; Itai, Shigeru

    2017-10-30

    Low-melting-point substances are widely used to develop temperature-sensitive formulations. In this study, we focused on microcrystalline wax (MCW) as a low-melting-point substance. We evaluated the drug release behavior of wax matrix (WM) particles using various MCW under various temperature conditions. WM particles containing acetaminophen were prepared using a spray congealing technique. In the dissolution test at 37°C, WM particles containing low-melting-point MCWs whose melting was starting at approx. 40°C (Hi-Mic-1045 or 1070) released the drug initially followed by the release of only a small amount. On the other hand, in the dissolution test at 20 and 25°C for WM particles containing Hi-Mic-1045 and at 20, 25, and 30°C for that containing Hi-Mic-1070, both WM particles showed faster drug release than at 37°C. The characteristic drug release suppression of WM particles containing low-melting-point MCWs at 37°C was thought attributable to MCW melting, as evidenced by differential scanning calorimetry analysis and powder X-ray diffraction analysis. Taken together, low-melting-point MCWs may be applicable to develop implantable temperature-sensitive formulations that drug release is accelerated by cooling at administered site. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. In vitro degradation and biocompatibility of Fe-Pd and Fe-Pt composites fabricated by spark plasma sintering.

    PubMed

    Huang, T; Cheng, J; Zheng, Y F

    2014-02-01

    In order to obtain biodegradable Fe-based materials with similar mechanical properties as 316L stainless steel and faster degradation rate than pure iron, Fe-5 wt.%Pd and Fe-5 wt.%Pt composites were prepared by spark plasma sintering with powders of pure Fe and Pd/Pt, respectively. The grain size of Fe-5 wt.%Pd and Fe-5 wt.%Pt composites was much smaller than that of as-cast pure iron. The metallic elements Pd and Pt were uniformly distributed in the matrix and the mechanical properties of these materials were improved. Uniform corrosion of Fe-Pd and Fe-Pt composites was observed in both electrochemical tests and immersion tests, and the degradation rates of Fe-Pd and Fe-Pt composites were much faster than that of pure iron. It was found that viabilities of mouse fibroblast L-929 cells and human umbilical vein endothelial cells (ECV304) cultured in extraction mediums of Fe-Pd and Fe-Pt composites were close to that of pure iron. After 4 days' culture, the viabilities of L-929 and ECV304 cells in extraction medium of experimental materials were about 80%. The result of direct contact cytotoxicity also indicated that experimental materials exhibited no inhibition on vascular endothelial process. Meanwhile, iron ions released from experimental materials could inhibit proliferation of vascular smooth muscle cells (VSMC), which may be beneficial for hindering vascular restenosis. Furthermore, compared with that of as-cast pure iron, the hemolysis rates of Fe-Pd and Fe-Pt composites were slightly higher, but still within the range of 5%, which is the criteria for good blood compatibility. The numbers of platelet adhered on the surface of Fe-Pd and Fe-Pt composites were lower than that of pure iron, and the morphology of platelets kept spherical. To sum up, the Fe-5 wt.%Pd and Fe-5 wt.%Pt composites exhibited good mechanical properties and degradation behavior, closely approaching the requirements for biodegradable metallic stents. © 2013.

  7. Spatially resolved heat release rate measurements in turbulent premixed flames

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ayoola, B.O.; Kaminski, C.F.; Balachandran, R.

    Heat release rate is a fundamental property of great importance for the theoretical and experimental elucidation of unsteady flame behaviors such as combustion noise, combustion instabilities, and pulsed combustion. Investigations of such thermoacoustic interactions require a reliable indicator of heat release rate capable of resolving spatial structures in turbulent flames. Traditionally, heat release rate has been estimated via OH or CH radical chemiluminescence; however, chemiluminescence suffers from being a line-of-sight technique with limited capability for resolving small-scale structures. In this paper, we report spatially resolved two-dimensional measurements of a quantity closely related to heat release rate. The diagnostic technique usesmore » simultaneous OH and CH{sub 2}O planar laser-induced fluorescence (PLIF), and the pixel-by-pixel product of the OH and CH{sub 2}O PLIF signals has previously been shown to correlate well with local heat release rates. Results from this diagnostic technique, which we refer to as heat release rate imaging (HR imaging), are compared with traditional OH chemiluminescence measurements in several flames. Studies were performed in lean premixed ethylene flames stabilized between opposed jets and with a bluff body. Correlations between bulk strain rates and local heat release rates were obtained and the effects of curvature on heat release rate were investigated. The results show that the heat release rate tends to increase with increasing negative curvature for the flames investigated for which Lewis numbers are greater than unity. This correlation becomes more pronounced as the flame gets closer to global extinction.« less

  8. NMR Studies of the Dynamics of Nitrophorin 2 Bound to Nitric Oxide†

    PubMed Central

    Muthu, Dhanasekaran; Berry, Robert E.; Zhang, Hongjun; Walker, F. Ann

    2013-01-01

    The Rhodnius nitrophorins are β-barrel proteins of the lipocalin fold with a heme protruding from the open end of the barrel. They are found in the saliva of the blood-sucking insect Rhodnius prolixus, which synthesizes and stores nitric oxide (NO) in the salivary glands, where NO is bound to iron. NO is released by dilution and pH rise when the insect spits its saliva into the tissues of a victim, to aid in obtaining a blood meal. In the adult insect there are four nitrophorins, NP1, NP2, NP3 and NP4. At pH 7.3, NP4 releases NO 17 times faster than does NP2, as measured by stopped-flow kinetics. A number of crystal structures of the least abundant protein, NP4, are available. These structures have been used to propose that two loops between adjacent β-strands at the front opening of the protein, the A-B and G-H loops, determine the rate of NO release. In order to learn how the protein loops contribute to release of NO for each of the nitrophorins, the dynamics of these proteins are being studied in our laboratory. In this work, the NP2-NO complex has been investigated by NMR relaxation measurements to probe the pico- to nanosecond and micro- to millisecond time scale motions at three pH values, 5.0, 6.5, and 7.3. It is found that at pH 5.0 and 6.5, NP2-NO is rigid and only a few residues in the loop regions show dynamics, while at pH 7.3 somewhat more dynamics, particularly of the A-B loop, are observed. Comparison to other lipocalins shows that all are relatively rigid, and that the dynamics of lipocalins in general are much more subtle than those of mainly α-helical proteins. PMID:24116947

  9. Solid State NMR Characterization of Ibuprofen:Nicotinamide Cocrystals and New Idea for Controlling Release of Drugs Embedded into Mesoporous Silica Particles.

    PubMed

    Skorupska, Ewa; Kaźmierski, Sławomir; Potrzebowski, Marek J

    2017-05-01

    Grinding and melting methods were employed for synthesis of pharmaceutical cocrystals formed by racemic (R/S) and entiomeric (S) ibuprofen (IBU) and nicotinamide (NA) as coformer. Obtained (R/S)-IBU:NA and (S)-IBU:NA cocrystals were fully characterized by means of advanced one- and two-dimensional solid state nuclear magnetic resonance (SS NMR) techniques with very fast magic angle spinning (MAS) at 60 kHz. The distinction in molecular packing and specific hydrogen bonding pattern was clearly recognized by analysis of 1 H, 13 C, and 15 N spectra. It is concluded from these studies that both methods (grinding and melting) provide exactly the same, specific forms of cocrystals. Thermal solvent-free (TSF) approach was used for loading of (R/S)-IBU:NA and (S)-IBU:NA into the pores of MCM-41 mesoporous silica particle (MSP). The progress and efficiency of this process was analyzed by NMR spectroscopy. It has been confirmed that TSF method is an effective and safe technique of filling the MSP pores with active pharmaceutical ingredients (APIs). By analyzing the NMR results, it has been further proved that excess of IBU and NA components, which are not embedded into the pores during melting and cooling, crystallize on the MCM-41 walls preserving very specific arrangement, characteristic for crystalline samples. By investigating kinetic of release for (R/S)-IBU/MCM-41, (S)-IBU:NA/MCM-41, and (R/S)-IBU:NA/MCM-41 samples containing active components exclusively inside of the pores, it was revealed that release of IBU is much faster for the first of the samples compared to those containing IBU and NA inside the pores. The hypothesis that the rate of release of API can be controlled by specific composition of cocrystal embedded into the MSP pore was further supported by study of (R/S)-IBU:BA/MCM-41 sample with benzoic acid (BA) as coformer.

  10. The effect of speaking rate on supersegmentals: An acoustic and perceptual analysis

    NASA Astrophysics Data System (ADS)

    Chiou, Hsin-Huei; Watson, Peter

    2005-09-01

    Rate manipulation has been used to study change in prosodic contrasts such as emphatic stress. Timing contrasts in stressed words are reduced or eliminated when speaking rate is increased. However, reports of intonation and rate change are mixed. Some studies have reported an increase of F0 movement [M. Steppling and A. Montgomery, J. Phonetics 64, 451-461 (2002)], and other reports have found that F0 movement is decreased at faster speaking rates [C. Fougeron and S. Jun, Percept. Psychophys. 26, 45-69 (1998)]. This study examined the effect of speaking rate on F0 and duration in sentences produced with emphatic stress in different sentential position and in declarative and interrogative forms. Essentially, durational contrasts were reduced at faster speaking rates and were more pronounced at slower speaking rates. Intonation, on the other hand, was more pronounced for the fast rate and somewhat reduced for the slow rate. A perceptual component will also be reported that examines a listener's ability to recognize stressed words and mode of sentence production (declarative and interrogative) at different speaking rates.

  11. Association between rates of binocular visual field loss and vision-related quality of life in patients with glaucoma.

    PubMed

    Lisboa, Renato; Chun, Yeoun Sook; Zangwill, Linda M; Weinreb, Robert N; Rosen, Peter N; Liebmann, Jeffrey M; Girkin, Christopher A; Medeiros, Felipe A

    2013-04-01

    It is reasonable to hypothesize that for 2 patients with similar degrees of integrated binocular visual field (BVF) loss, the patient with a history of faster disease progression will report worse vision-related quality of life (VRQOL) than the patient with slowly progressing damage. However, to our knowledge, this hypothesis has not been investigated in the literature. To evaluate the association between binocular rates of visual field change and VRQOL in patients with glaucoma. DESIGN Observational cohort study. Patients were recruited from the Diagnostic Innovations in Glaucoma Study and the African Descent and Glaucoma Evaluation Study. The study included 796 eyes of 398 patients with diagnosed or suspected glaucoma followed up from October 1, 1998, until January 31, 2012, for a mean (SD) of 7.3 (2.0) years. The VRQOL was evaluated using the 25-item National Eye Institute Visual Function Questionnaire (NEI VFQ-25) at the last follow-up visit. The NEI VFQ-25 was completed for all patients during the period extending from December 1, 2009, through January 31, 2012. Integrated BVFs were calculated from the monocular fields of each patient. Linear regression of mean deviation values was used to evaluate rates of BVF change during the follow-up period. Logistic regression models were used to investigate the association between abnormal VRQOL and rates of BVF change, while adjusting for potentially confounding socioeconomic and demographic variables. Thirty-two patients (8.0%) had abnormal VRQOL as determined by the results of the NEI VFQ-25. Patients with abnormal VRQOL had significantly faster rates of BVF change than those with normal VRQOL (-0.18 vs -0.06 dB/y; P < .001). Rates of BVF change were significantly associated with abnormality in VRQOL (odds ratio = 1.31 per 0.1 dB/y faster; P = .04), after adjustment for confounding variables. Patients with faster rates of BVF change were at higher risk of reporting abnormal VRQOL. Assessment of rates of BVF change may provide useful information in determining risk of functional impairment in glaucoma.

  12. Formulation and characterization of a compacted multiparticulate system for modified release of water-soluble drugs--part 1--acetaminophen.

    PubMed

    Cantor, Stuart L; Hoag, Stephen W; Augsburger, Larry L

    2009-03-01

    The aim of this study was to characterize and evaluate a modified release, multiparticulate tablet formulation consisting of placebo beads and drug-loaded beads. Acetaminophen (APAP) bead formulations containing ethylcellulose (EC) from 40-60% and placebo beads containing 30% calcium silicate and prepared using 0-20% alcohol were developed using extrusion-spheronization and studied using a central composite experimental design. Particle size and true density of beads were measured. Segregation testing was performed using the novel ASTM D6940-04 method on a 50:50 blend of uncoated APAP beads (60%EC) : calcium silicate placebo beads (10% alcohol). Tablets were prepared using an instrumented Stokes-B2 rotary tablet press and evaluated for crushing strength and dissolution rate. Compared with drug beads (60%EC), placebo beads (10% alcohol) were smaller but had higher true densities: 864.8 mum and 1.27 g/cm(3), and 787.1 mum and 1.73 g/cm(3), respectively. Segregation testing revealed that there was approximately a 20% difference in drug content (as measured by the coefficient of variation) between initial and final blend samples. Although calcium silicate-based placebo beads were shown to be ineffective cushioning agents in blends with Surelease(R)-coated APAP beads, they were found to be very compactibile when used alone and gave tablet crushing strength values between 14 and 17 kP. The EC in the APAP bead matrix minimally suppressed the drug release from uncoated beads (t(100%) = 2 h). However, while tablets containing placebo beads reformulated with glycerol monostearate (GMS) showed a slower release rate (t(60%)= 5 h) compared with calcium silicate-based placebos, some coating damage ( approximately 30%) still occurred on compression as release was faster than coated APAP beads alone. While tablets containing coated drug beads can be produced with practical crushing strengths (>8 kP) and low compression pressures (10-35 MPa), dissolution studies revealed that calcium silicate-based placebos are ineffective as cushioning agents. Blend segregation was likely observed due to the particle size and the density differences between APAP beads and calcium silicate-based placebo beads; placebo bead percolation can perhaps be minimized by increasing their size during the extrusion-spheronization process. The GMS- based placebos offer greater promise as cushioning agents for compacted, coated drug beads; however, this requires an optimized compression pressure range and drug bead : placebo bead ratio (i.e., 50:50).

  13. Cheaper, Faster, Better? Commercial Approaches to Weapons Acquisition

    DTIC Science & Technology

    2000-01-01

    Heppenheimer , T. A ., Turbulent Skies: The History of Commercial Aviation, John Wiley & Sons, Inc., New York, 1995. Holley, Irving B., Ideas and Weapons, New...DISTRIBUTION STATEMENT A Approved for Public Release Distribution Unlimited ,**■’ .% Project AIR FORCE * RAND The research reported here was sponsored...United States. I. Lorell, MarkA., 1947- . UC263.C494 2000 355.6�—dc21 99-058412 RAND is a nonprofit institution that helps improve policy and

  14. Market Research: Faster, Smarter and Predictive

    DTIC Science & Technology

    2015-08-01

    for acquisition workforce, and mar- ket research report generation. MRCOE Release 3 will include full transition of capability to strategic platform...2015 Wesley,deputy director for technology and innovation, is acting director of the Department of Defense Office of Small Business Programs (OSBP...where Chowdhury provides senior man- agement support. S P E C I A L • I S S U E BBP 3.0 T hrough implementation of the “Increasing Small Business

  15. Fission-gas release from uranium nitride at high fission rate density

    NASA Technical Reports Server (NTRS)

    Weinstein, M. B.; Kirchgessner, T. A.; Tambling, T. N.

    1973-01-01

    A sweep gas facility has been used to measure the release rates of radioactive fission gases from small UN specimens irradiated to 8-percent burnup at high fission-rate densities. The measured release rates have been correlated with an equation whose terms correspond to direct recoil release, fission-enhanced diffusion, and atomic diffusion (a function of temperature). Release rates were found to increase linearly with burnups between 1.5 and 8 percent. Pore migration was observed after operation at 1550 K to over 6 percent burnup.

  16. Single-domain angiotensin I converting enzyme (kininase II): characterization and properties.

    PubMed

    Deddish, P A; Wang, L X; Jackman, H L; Michel, B; Wang, J; Skidgel, R A; Erdös, E G

    1996-12-01

    Somatic angiotensin I converting enzyme (ACE; kininase II) has two active sites, in two (N and C) domains. We studied the active centers with separate N-domain ACE (N-ACE), testicular C-domain ACE (germinal ACE) and, as control, renal somatic ACE. Germinal ACE cleaved the nonapeptide bradykinin about two times faster than N-ACE in 20 mM Cl-. Bradykinin1-7 was hydrolyzed further to bradykinin1-5 by N-ACE four times faster in the absence of Cl-, but at 300 mM Cl- the C-domain hydrolyzed it twice as fast. The hematopoietic system regulatory peptide acetyl-Ser-Asp-Lys-Pro was split to two dipeptides by N-ACE, depending on the chloride concentration, 8 to 24 times faster than by germinal ACE; at 100 mM Cl-, the Kcat with N-ACE was eight times higher. One millimolar 1-fluoro-2,4-dinitrobenzene inhibited germinal ACE 96% but it inhibited N-ACE by only 31%. [3H]Ramiprilat was displaced by other unlabeled ACE inhibitors to establish their relative affinities. Captopril had the lowest IC50 (0.5 nM) with N-ACE and the highest IC50 (8.3 nM) with the germinal ACE. The IC50 values of ramiprilat and quinaprilat were about the same with both active sites. The association and dissociation constants of [3H]ramiprilat indicated faster association with and faster dissociation from N-ACE than from germinal ACE. After exposure to alkali or moderate heat, somatic ACE was cleaved by plasmin and kallikrein, releasing N-ACE and apparently inactivating the C-domain. These studies affirm the differences in the activity, stability and inhibition of the two active sites of ACE.

  17. Mechanisms of viral mutation.

    PubMed

    Sanjuán, Rafael; Domingo-Calap, Pilar

    2016-12-01

    The remarkable capacity of some viruses to adapt to new hosts and environments is highly dependent on their ability to generate de novo diversity in a short period of time. Rates of spontaneous mutation vary amply among viruses. RNA viruses mutate faster than DNA viruses, single-stranded viruses mutate faster than double-strand virus, and genome size appears to correlate negatively with mutation rate. Viral mutation rates are modulated at different levels, including polymerase fidelity, sequence context, template secondary structure, cellular microenvironment, replication mechanisms, proofreading, and access to post-replicative repair. Additionally, massive numbers of mutations can be introduced by some virus-encoded diversity-generating elements, as well as by host-encoded cytidine/adenine deaminases. Our current knowledge of viral mutation rates indicates that viral genetic diversity is determined by multiple virus- and host-dependent processes, and that viral mutation rates can evolve in response to specific selective pressures.

  18. Visible quality aluminum and nickel superpolish polishing technology enabling new missions

    NASA Astrophysics Data System (ADS)

    Carrigan, Keith G.

    2011-06-01

    It is now well understood that with US Department of Defense (DoD) budgets shrinking and the Services and Agencies demanding new systems which can be fielded more quickly, cost and schedule are being emphasized more and more. At the same time, the US has ever growing needs for advanced capabilities to support evolving Intelligence, Surveillance and Reconnaissance objectives. In response to this market demand for ever more cost-effective, faster to market, single-channel, athermal optical systems, we have developed new metal polishing technologies which allow for short-lead, low-cost metal substrates to replace more costly, longer-lead material options. In parallel, the commercial marketplace is being driven continually to release better, faster and cheaper electronics. Growth according to Moore's law, enabled by advancements in photolithography, has produced denser memory, higher resolution displays and faster processors. While the quality of these products continues to increase, their price is falling. This seeming paradox is driven by industry advancements in manufacturing technology. The next steps on this curve can be realized via polishing technology which allows low-cost metal substrates to replace costly Silicon based optics for use in ultra-short wavelength systems.

  19. Sun-compass orientation in homing pigeons: compensation for different rates of change in azimuth?

    PubMed

    Wiltschko, R; Walker, M; Wiltschko, W

    2000-03-01

    Birds using their sun compass must compensate for the apparent movement of the sun with the help of their internal clock. The movement of the sun is not uniform, being much faster around noon than near sunrise and sunset. If the sun-compass mechanisms are not adjusted to these variations, considerable errors might arise. To learn whether birds are able to take the different rates of sun azimuth change into account, we subjected homing pigeons to a 4 h fast clock-shift. The experiments were performed near Auckland, New Zealand, at a latitude of 37 degrees S, where the expected deflections for a 4 h shift in summer vary from less than 40 degrees to more than 120 degrees, depending on time of day. One group of birds was released just after sunrise or during the corresponding period in the afternoon when the expected deflections were minimal, the other group during late morning when they were maximal. The different sizes of the observed deflections - between 26 degrees and 51 degrees in the first group, and between 107 degrees and 153 degrees in the second group - clearly show that the birds' compensation mechanisms are closely tuned to the varying rates of change in sun azimuth. The results suggest that pigeons have a rather precise internal representation of the sun curve, which makes the avian sun compass a highly accurate mechanism of direction finding.

  20. Caffeine affects autonomic control of heart rate and blood pressure recovery after aerobic exercise in young adults: a crossover study.

    PubMed

    Gonzaga, Luana Almeida; Vanderlei, Luiz Carlos Marques; Gomes, Rayana Loch; Valenti, Vitor Engrácia

    2017-10-26

    The post-exercise recovery period is associated with changes in autonomic modulation, which can promote an intercurrent-favorable environment. Caffeine has the ability to release catecholamines, but its effects after exercises is little explored. The present study aims to evaluate the acute effects of caffeine on the autonomic control and cardiorespiratory parameters after moderate intensity aerobic exercise. 32 young males (23,59 ± 3,45 years) were submitted to two protocols: Placebo and Caffeine, consisting of 15 minutes of rest, 30 minutes of exercise on a treadmill to 60% on VO2peak, followed by 60 minutes of recovery. Heart rate variability indices and cardiorespiratory parameters were determined at different times during the protocols. The RMSSD and SD1 indices recovered faster in placebo (p < 0.05). The systolic blood pressure differences were found from the 1st to the 5th minute of recovery with the caffeine protocol and from the 1st and 3rd minute with the placebo, whereas, for diastolic blood pressure, significant differences (p < 0.0001) were observed only for the caffeine protocol at the 1st and 3rd minutes of recovery. Caffeine was shown to be capable of delaying parasympathetic recovery but did not influence the behavior of the respiratory rate, oxygen saturation or frequency-domain HRV indices.

  1. Validation of the SimSET simulation package for modeling the Siemens Biograph mCT PET scanner

    NASA Astrophysics Data System (ADS)

    Poon, Jonathan K.; Dahlbom, Magnus L.; Casey, Michael E.; Qi, Jinyi; Cherry, Simon R.; Badawi, Ramsey D.

    2015-02-01

    Monte Carlo simulation provides a valuable tool in performance assessment and optimization of system design parameters for PET scanners. SimSET is a popular Monte Carlo simulation toolkit that features fast simulation time, as well as variance reduction tools to further enhance computational efficiency. However, SimSET has lacked the ability to simulate block detectors until its most recent release. Our goal is to validate new features of SimSET by developing a simulation model of the Siemens Biograph mCT PET scanner and comparing the results to a simulation model developed in the GATE simulation suite and to experimental results. We used the NEMA NU-2 2007 scatter fraction, count rates, and spatial resolution protocols to validate the SimSET simulation model and its new features. The SimSET model overestimated the experimental results of the count rate tests by 11-23% and the spatial resolution test by 13-28%, which is comparable to previous validation studies of other PET scanners in the literature. The difference between the SimSET and GATE simulation was approximately 4-8% for the count rate test and approximately 3-11% for the spatial resolution test. In terms of computational time, SimSET performed simulations approximately 11 times faster than GATE simulations. The new block detector model in SimSET offers a fast and reasonably accurate simulation toolkit for PET imaging applications.

  2. Monitoring Flower Visitation Networks and Interactions between Pairs of Bumble Bees in a Large Outdoor Flight Cage

    PubMed Central

    Lihoreau, Mathieu; Chittka, Lars; Raine, Nigel E.

    2016-01-01

    Pollinators, such as bees, often develop multi-location routes (traplines) to exploit subsets of flower patches within larger plant populations. How individuals establish such foraging areas in the presence of other foragers is poorly explored. Here we investigated the foraging patterns of pairs of bumble bees (Bombus terrestris) released sequentially into an 880m2 outdoor flight cage containing 10 feeding stations (artificial flowers). Using motion-sensitive video cameras mounted on flowers, we mapped the flower visitation networks of both foragers, quantified their interactions and compared their foraging success over an entire day. Overall, bees that were released first (residents) travelled 37% faster and collected 77% more nectar, thereby reaching a net energy intake rate 64% higher than bees released second (newcomers). However, this prior-experience advantage decreased as newcomers became familiar with the spatial configuration of the flower array. When both bees visited the same flower simultaneously, the most frequent outcome was for the resident to evict the newcomer. On the rare occasions when newcomers evicted residents, the two bees increased their frequency of return visits to that flower. These competitive interactions led to a significant (if only partial) spatial overlap between the foraging patterns of pairs of bees. While newcomers may initially use social cues (such as olfactory footprints) to exploit flowers used by residents, either because such cues indicate higher rewards and/or safety from predation, residents may attempt to preserve their monopoly over familiar resources through exploitation and interference. We discuss how these interactions may favour spatial partitioning, thereby maximising the foraging efficiency of individuals and colonies. PMID:26982030

  3. Hot-melt extrusion as a continuous manufacturing process to form ternary cyclodextrin inclusion complexes.

    PubMed

    Thiry, Justine; Krier, Fabrice; Ratwatte, Shenelka; Thomassin, Jean-Michel; Jerome, Christine; Evrard, Brigitte

    2017-01-01

    The aim of this study was to evaluate hot-melt extrusion (HME) as a continuous process to form cyclodextrin (CD) inclusion complexes in order to increase the solubility and dissolution rate of itraconazole (ITZ), a class II model drug molecule of the Biopharmaceutics Classification System. Different CD derivatives were tested in a 1:1 (CD:ITZ) molar ratio to obtain CD ternary inclusion complexes in the presence of a polymer, namely Soluplus ® (SOL). The CD used in this series of experiments were β-cyclodextrin (βCD), hydroxypropyl-β-cyclodextrin (HPβCD) with degrees of substitution of 0.63 and 0.87, randomly methylated β-cyclodextrin (Rameb ® ), sulfobutylether-β-cyclodextrin (Captisol ® ) and methyl-β-cyclodextrin (Crysmeb ® ). Rheology testing and mini extrusion using a conical twin screw mini extruder were performed to test the processability of the different CD mixtures since CD are not thermoplastic. This allowed Captisol ® and Crysmeb ® to be discarded from the study due to their high impact on the viscosity of the SOL/ITZ mixture. The remaining CD were processed by HME in an 18mm twin screw extruder. Saturation concentration measurements confirmed the enhancement of solubility of ITZ for the four CD formulations. Biphasic dissolution tests indicated that all four formulations had faster release profiles compared to the SOL/ITZ solid dispersion. Formulations of HPβCD 0.63 and Rameb ® even reached 95% of ITZ released in both phases after 1h. The formulations were characterized using thermal differential scanning calorimetry and attenuated total reflectance infra-red analysis. These analyses confirmed that the increased release profile was due to the formation of ternary inclusion complexes. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Salicylic Acid-Based Polymers for Guided Bone Regeneration Using Bone Morphogenetic Protein-2

    PubMed Central

    Subramanian, Sangeeta; Mitchell, Ashley; Yu, Weiling; Snyder, Sabrina; Uhrich, Kathryn

    2015-01-01

    Bone morphogenetic protein-2 (BMP-2) is used clinically to promote spinal fusion, treat complex tibia fractures, and to promote bone formation in craniomaxillofacial surgery. Excessive bone formation at sites where BMP-2 has been applied is an established complication and one that could be corrected by guided tissue regeneration methods. In this study, anti-inflammatory polymers containing salicylic acid [salicylic acid-based poly(anhydride-ester), SAPAE] were electrospun with polycaprolactone (PCL) to create thin flexible matrices for use as guided bone regeneration membranes. SAPAE polymers hydrolyze to release salicylic acid, which is a nonsteroidal anti-inflammatory drug. PCL was used to enhance the mechanical integrity of the matrices. Two different SAPAE-containing membranes were produced and compared: fast-degrading (FD-SAPAE) and slow-degrading (SD-SAPAE) membranes that release salicylic acid at a faster and slower rate, respectively. Rat femur defects were treated with BMP-2 and wrapped with FD-SAPAE, SD-SAPAE, or PCL membrane or were left unwrapped. The effects of different membranes on bone formation within and outside of the femur defects were measured by histomorphometry and microcomputed tomography. Bone formation within the defect was not affected by membrane wrapping at BMP-2 doses of 12 μg or more. In contrast, the FD-SAPAE membrane significantly reduced bone formation outside the defect compared with all other treatments. The rapid release of salicylic acid from the FD-SAPAE membrane suggests that localized salicylic acid treatment during the first few days of BMP-2 treatment can limit ectopic bone formation. The data support development of SAPAE polymer membranes for guided bone regeneration applications as well as barriers to excessive bone formation. PMID:25813520

  5. Taste masking of ondansetron hydrochloride by polymer carrier system and formulation of rapid-disintegrating tablets.

    PubMed

    Khan, Shagufta; Kataria, Prashant; Nakhat, Premchand; Yeole, Pramod

    2007-06-22

    The purpose of this research was to mask the intensely bitter taste of ondansetron HCl and to formulate a rapid-disintegrating tablet (RDT) of the taste-masked drug. Taste masking was done by complexing ondansetron HCl with aminoalkyl methacrylate copolymer (Eudragit EPO) in different ratios by the precipitation method. Drug-polymer complexes (DPCs) were tested for drug content, in vitro taste in simulated salivary fluid (SSF) of pH 6.2, and molecular property. Complex that did not release drug in SSF was considered taste-masked and selected for formulation RDTs. The complex with drug-polymer ratio of 8:2 did not show drug release in SSF; therefore, it was selected. The properties of tablets such as tensile strength, wetting time, water absorption ratio, in vitro disintegration time, and disintegration in the oral cavity were investigated to elucidate the wetting and disintegration characteristics of tablets. Polyplasdone XL-10 7% wt/wt gave the minimum disintegration time. Tablets of batch F4 containing spray-dried mannitol and microcrystalline cellulose in the ratio 1:1 and 7% wt/wt Polyplasdone XL-10 showed faster disintegration, within 12.5 seconds, than the marketed tablet (112 seconds). Good correlation between in vitro disintegration behavior and in the oral cavity was recognized. Taste evaluation of RDT in human volunteers revealed considerable taste masking with the degree of bitterness below threshold value (0.5) ultimately reaching to 0 within 15 minutes, whereas ondansetron HCl was rated intensely bitter with a score of 3 for 10 minutes. Tablets of batch F4 also revealed rapid drug release (t(90), 60 seconds) in SGF compared with marketed formulation (t(90), 240 seconds; P < .01). Thus, results conclusively demonstrated successful masking of taste and rapid disintegration of the formulated tablets in the oral cavity.

  6. Polyurethane foam containing rhEGF as a dressing material for healing diabetic wounds: Synthesis, characterization, in vitro and in vivo studies.

    PubMed

    Pyun, Do Gi; Choi, Hyun Jun; Yoon, Hyoung Soon; Thambi, Thavasyappan; Lee, Doo Sung

    2015-11-01

    Diabetic wounds are a major health issue associated with diabetes mellitus. To surmount this issue, we developed polyurethane foams (PUFs) incorporating varying amounts of recombinant human epidermal growth factor (rhEGF) (rhEGF-PUFs) as a wound dressing for diabetic wounds. From electron microscopy images, it was found that the pore size of the rhEGF-PUFs surface (the wound contact layer) was less than 100μm, regardless of rhEGF content. The release of rhEGF from the PUFs was evaluated using an enzyme-linked immunosorbent assay. The result showed that the release of rhEGF was time and concentration dependent, i.e., the amount of released rhEGF significantly increased as the immersion time and the rhEGF content of the PUFs increased. In vitro cytotoxicity testing showed that rhEGF-PUFs increased the viability of HaCaT human keratinocytes and CCD986-sk human fibroblasts, which indicated that the incorporated rhEGF maintained its biological activity. In an in vitro scratch wound healing assay, the wound closure rate was faster in CCD986-sk human fibroblasts than in HaCaT human keratinocytes. Finally, the rhEGF-PUFs were evaluated as an in vivo treatment in a full-thickness wound model in diabetized Sprague-Dawley rats. The result indicated that compared with PUFs, rhEGF-PUFs accelerated wound healing by promoting wound contraction, re-epithelialization, collagen deposition and the formation of a skin appendage. These findings demonstrate that rhEGF-PUFs are a promising dressing for diabetic wounds. Copyright © 2015. Published by Elsevier B.V.

  7. Positive selection drives faster-Z evolution in silkmoths

    PubMed Central

    Sackton, Timothy B.; Corbett-Detig, Russell B.; Nagaraju, Javaregowda; Vaishna, R. Lakshmi; Arunkumar, Kallare P.; Hartl, Daniel L.

    2014-01-01

    Genes linked to X or Z chromosomes, which are hemizygous in the heterogametic sex, are predicted to evolve at different rates than those on autosomes. This “faster-X effect” can arise either as a consequence of hemizygosity, which leads to more efficient selection for recessive beneficial mutations in the heterogametic sex, or as a consequence of reduced effective population size of the hemizygous chromosome, which leads to increased fixation of weakly deleterious mutations due to genetic drift. Empirical results to date suggest that, while the overall pattern across taxa is complicated, systems with male-heterogamy show a faster-X effect attributable to more efficient selection, while the faster-Z effect in female-heterogametic taxa is attributable to increased drift. To test the generality of the faster-Z pattern seen in birds and snakes, we sequenced the genome of the Lepidopteran silkmoth Bombyx huttoni. We show that silkmoths experience faster-Z evolution, but unlike in birds and snakes, the faster-Z effect appears to be attributable to more efficient positive selection. These results suggest that female-heterogamy alone is unlikely to explain the reduced efficacy of selection on the bird Z chromosome. It is likely that many factors, including differences in overall effective population size, influence Z chromosome evolution. PMID:24826901

  8. Recent advances in the UltraScan SOlution MOdeller (US-SOMO) hydrodynamic and small-angle scattering data analysis and simulation suite.

    PubMed

    Brookes, Emre; Rocco, Mattia

    2018-03-28

    The UltraScan SOlution MOdeller (US-SOMO) is a comprehensive, public domain, open-source suite of computer programs centred on hydrodynamic modelling and small-angle scattering (SAS) data analysis and simulation. We describe here the advances that have been implemented since its last official release (#3087, 2017), which are available from release #3141 for Windows, Linux and Mac operating systems. A major effort has been the transition from the legacy Qt3 cross platform software development and user interface library to the modern Qt5 release. Apart from improved graphical support, this has allowed the direct implementation of the newest, almost two-orders of magnitude faster version of the ZENO hydrodynamic computation algorithm for all operating systems. Coupled with the SoMo-generated bead models with overlaps, ZENO provides the most accurate translational friction computations from atomic-level structures available (Rocco and Byron Eur Biophys J 44:417-431, 2015a), with computational times comparable with or faster than those of other methods. In addition, it has allowed us to introduce the direct representation of each atom in a structure as a (hydrated) bead, opening interesting new modelling possibilities. In the small-angle scattering (SAS) part of the suite, an indirect Fourier transform Bayesian algorithm has been implemented for the computation of the pairwise distance distribution function from SAS data. Finally, the SAS HPLC module, recently upgraded with improved baseline correction and Gaussian decomposition of not baseline-resolved peaks and with advanced statistical evaluation tools (Brookes et al. J Appl Cryst 49:1827-1841, 2016), now allows automatic top-peak frame selection and averaging.

  9. A systematic review of cognitive decline in dementia with Lewy bodies versus Alzheimer’s disease

    PubMed Central

    2014-01-01

    Introduction The aim of this review was to investigate whether there is a faster cognitive decline in dementia with Lewy bodies (DLB) than in Alzheimer’s disease (AD) over time. Methods PsycINFO and Medline were searched from 1946 to February 2013. A quality rating from 1 to 15 (best) was applied to the included studies. A quantitative meta-analysis was done on studies with mini mental state examination (MMSE) as the outcome measure. Results A total of 18 studies were included. Of these, six (36%) reported significant differences in the rate of cognitive decline. Three studies reported a faster cognitive decline on MMSE in patients with mixed DLB and AD compared to pure forms, whereas two studies reported a faster decline on delayed recall and recognition in AD and one in DLB on verbal fluency. Mean quality scores for studies that did or did not differ were not significantly different. Six studies reported MMSE scores and were included in the meta-analysis, which showed no significant difference in annual decline on MMSE between DLB (mean 3.4) and AD (mean 3.3). Conclusions Our findings do not support the hypothesis of a faster rate of cognitive decline in DLB compared to AD. Future studies should apply recent diagnostic criteria, as well as extensive diagnostic evaluation and ideally autopsy diagnosis. Studies with large enough samples, detailed cognitive tests, at least two years follow up and multivariate statistical analysis are also needed. PMID:25478024

  10. Metal release from stainless steel particles in vitro-influence of particle size.

    PubMed

    Midander, K; Pan, J; Wallinder, I Odnevall; Leygraf, C

    2007-01-01

    Human inhalation of airborne metallic particles is important for health risk assessment. To study interactions between metallic particles and the human body, metal release measurements of stainless steel powder particles were performed in two synthetic biological media simulating lung-like environments. Particle size and media strongly influence the metal release process. The release rate of Fe is enhanced compared with Cr and Ni. In artificial lysosomal fluid (ALF, pH 4.5), the accumulated amounts of released metal per particle loading increase drastically with decreasing particle size. The release rate of Fe per unit surface area increases with decreasing particle size. Compared with massive sheet metal, fine powder particles (<4 microm) show similar release rates of Cr and Ni, but a higher release rate of Fe. Release rates in Gamble's solution (pH 7.4), for all powders investigated, are significantly lower compared to ALF. No clear trend is seen related to particle size in Gamble's solution.

  11. Biotransformation of tributyltin to tin in freshwater river-bed sediments contaminated by an organotin release

    USGS Publications Warehouse

    Landmeyer, J.E.; Tanner, T.L.; Watt, B.E.

    2004-01-01

    The largest documented release of organotin compounds to a freshwater river system in the United States occurred in early 2000 in central South Carolina. The release consisted of an unknown volume of various organotin compounds such tetrabutyltin (TTBT), tributyltin (TBT), tetraoctyltin (TTOT), and trioctyl tin (TOT) and resulted in a massive fish kill and the permanent closures of a municipal wastewater treatment plant and a local city's only drinking-water intake. Initial sampling events in 2000 and 2001 indicated that concentrations of the ecologically toxic TTBT and TBT were each greater than 10 000 ??g/kg in surface-water bed sediments in depositional areas, such as lakes and beaver ponds downstream of the release. Bed-sediment samples collected between 2001 and 2003, however, revealed a substantial decrease in bed-sediment organotin concentrations and an increase in concentrations of degradation intermediate compounds. For example, in bed sediments of a representative beaver pond located about 1.6 km downstream of the release, total organotin concentrations [the sum of TTBT, TBT, and the TBT degradation intermediates dibutyltin (DBT) and monobutyltin (MBT)] decreased from 38 670 to 298 ??g/kg. In Crystal Lake, a large lake about 0.4 km downstream from the beaver pond, total organotin concentrations decreased from 28 300 to less than 5 ??g/kg during the same time period. Moreover, bed-sediment inorganic tin concentrations increased from pre-release levels of less than 800 to 32 700 ??g/kg during this time. These field data suggest that the released organotin compounds, such as TBT, are being transformed into inorganic tin by bed-sediment microbial processes. Microcosms were created in the laboratory that contained bed sediment from the two sites and were amended with tributyltin (as tributyltin chloride) under an ambient air headspace and sacrificially analyzed periodically for TBT, the biodegradation intermediates DBT and MBT, and tin. TBT concentrations decreased faster [half-life (t1/2) = 28 d] in the organic-rich sediments (21.5%) that characterized the beaver pond as compared to the slower (t1/2 = 78 d) degradation rate in the sandy, organic-poor, sediments (0.43%) of Crystal Lake. Moreover, the concentration of inorganic tin increased in microcosms containing bed sediments from both locations. These field and laboratory results suggest that biotransformation of the released organotins, in particular the ecologically detrimental TBT, does occur in this fresh surface-water system impacted with high concentrations of neat organotin compounds.

  12. Disease course in patients with autosomal recessive retinitis pigmentosa due to the USH2A gene.

    PubMed

    Sandberg, Michael A; Rosner, Bernard; Weigel-DiFranco, Carol; McGee, Terri L; Dryja, Thaddeus P; Berson, Eliot L

    2008-12-01

    To estimate the mean rates of ocular function loss in patients with autosomal recessive retinitis pigmentosa due to USH2A mutations. In 125 patients with USH2A mutations, longitudinal regression was used to estimate mean rates of change in Snellen visual acuity, Goldmann visual field area (V4e white test light), and 30-Hz (cone) full-field electroretinogram amplitude. These rates were compared with those of previously studied cohorts with dominant retinitis pigmentosa due to RHO mutations and with X-linked retinitis pigmentosa due to RPGR mutations. Rates of change in patients with the Cys759Phe mutation, the USH2A mutation associated with nonsyndromic disease, were compared with rates of change in patients with the Glu767fs mutation, the most common USH2A mutation associated with Usher syndrome type II (i.e., retinitis pigmentosa and hearing loss). Mean annual exponential rates of decline for the USH2A patients were 2.6% for visual acuity, 7.0% for visual field area, and 13.2% for electroretinogram amplitude. The rate of acuity loss fell between the corresponding rates for the RHO and RPGR patients, whereas the rates for field and ERG amplitude loss were faster than those for the RHO and RPGR patients. No significant differences were found for patients with the Cys759Phe mutation versus patients with the Glu767fs mutation. On average, USH2A patients lose visual acuity faster than RHO patients and slower than RPGR patients. USH2A patients lose visual field and cone electroretinogram amplitude faster than patients with RHO or RPGR mutations. Patients with a nonsyndromic USH2A mutation have the same retinal disease course as patients with syndromic USH2A disease.

  13. Accelerating gravitational microlensing simulations using the Xeon Phi coprocessor

    NASA Astrophysics Data System (ADS)

    Chen, B.; Kantowski, R.; Dai, X.; Baron, E.; Van der Mark, P.

    2017-04-01

    Recently Graphics Processing Units (GPUs) have been used to speed up very CPU-intensive gravitational microlensing simulations. In this work, we use the Xeon Phi coprocessor to accelerate such simulations and compare its performance on a microlensing code with that of NVIDIA's GPUs. For the selected set of parameters evaluated in our experiment, we find that the speedup by Intel's Knights Corner coprocessor is comparable to that by NVIDIA's Fermi family of GPUs with compute capability 2.0, but less significant than GPUs with higher compute capabilities such as the Kepler. However, the very recently released second generation Xeon Phi, Knights Landing, is about 5.8 times faster than the Knights Corner, and about 2.9 times faster than the Kepler GPU used in our simulations. We conclude that the Xeon Phi is a very promising alternative to GPUs for modern high performance microlensing simulations.

  14. Rates of genomic divergence in humans, chimpanzees and their lice.

    PubMed

    Johnson, Kevin P; Allen, Julie M; Olds, Brett P; Mugisha, Lawrence; Reed, David L; Paige, Ken N; Pittendrigh, Barry R

    2014-02-22

    The rate of DNA mutation and divergence is highly variable across the tree of life. However, the reasons underlying this variation are not well understood. Comparing the rates of genetic changes between hosts and parasite lineages that diverged at the same time is one way to begin to understand differences in genetic mutation and substitution rates. Such studies have indicated that the rate of genetic divergence in parasites is often faster than that of their hosts when comparing single genes. However, the variation in this relative rate of molecular evolution across different genes in the genome is unknown. We compared the rate of DNA sequence divergence between humans, chimpanzees and their ectoparasitic lice for 1534 protein-coding genes across their genomes. The rate of DNA substitution in these orthologous genes was on average 14 times faster for lice than for humans and chimpanzees. In addition, these rates were positively correlated across genes. Because this correlation only occurred for substitutions that changed the amino acid, this pattern is probably produced by similar functional constraints across the same genes in humans, chimpanzees and their ectoparasites.

  15. Rates of genomic divergence in humans, chimpanzees and their lice

    PubMed Central

    Johnson, Kevin P.; Allen, Julie M.; Olds, Brett P.; Mugisha, Lawrence; Reed, David L.; Paige, Ken N.; Pittendrigh, Barry R.

    2014-01-01

    The rate of DNA mutation and divergence is highly variable across the tree of life. However, the reasons underlying this variation are not well understood. Comparing the rates of genetic changes between hosts and parasite lineages that diverged at the same time is one way to begin to understand differences in genetic mutation and substitution rates. Such studies have indicated that the rate of genetic divergence in parasites is often faster than that of their hosts when comparing single genes. However, the variation in this relative rate of molecular evolution across different genes in the genome is unknown. We compared the rate of DNA sequence divergence between humans, chimpanzees and their ectoparasitic lice for 1534 protein-coding genes across their genomes. The rate of DNA substitution in these orthologous genes was on average 14 times faster for lice than for humans and chimpanzees. In addition, these rates were positively correlated across genes. Because this correlation only occurred for substitutions that changed the amino acid, this pattern is probably produced by similar functional constraints across the same genes in humans, chimpanzees and their ectoparasites. PMID:24403325

  16. Kraken: ultrafast metagenomic sequence classification using exact alignments

    PubMed Central

    2014-01-01

    Kraken is an ultrafast and highly accurate program for assigning taxonomic labels to metagenomic DNA sequences. Previous programs designed for this task have been relatively slow and computationally expensive, forcing researchers to use faster abundance estimation programs, which only classify small subsets of metagenomic data. Using exact alignment of k-mers, Kraken achieves classification accuracy comparable to the fastest BLAST program. In its fastest mode, Kraken classifies 100 base pair reads at a rate of over 4.1 million reads per minute, 909 times faster than Megablast and 11 times faster than the abundance estimation program MetaPhlAn. Kraken is available at http://ccb.jhu.edu/software/kraken/. PMID:24580807

  17. Synthesis of bio-based nanocomposites for controlled release of antimicrobial agents in food packaging

    NASA Astrophysics Data System (ADS)

    DeGruson, Min Liu

    The utilization of bio-based polymers as packaging materials has attracted great attention in both scientific and industrial areas due to the non-renewable and nondegradable nature of synthetic plastic packaging. Polyhydroxyalkanoate (PHA) is a biobased polymer with excellent film-forming and coating properties, but exhibits brittleness, insufficient gas barrier properties, and poor thermal stability. The overall goal of the project was to develop the polyhydroxyalkanoate-based bio-nanocomposite films modified by antimicrobial agents with improved mechanical and gas barrier properties, along with a controlled release rate of antimicrobial agents for the inhibition of foodborne pathogens and fungi in food. The ability for antimicrobial agents to intercalate into layered double hydroxides depended on the nature of the antimicrobial agents, such as size, spatial structure, and polarity, etc. Benzoate and gallate anions were successfully intercalated into LDH in the present study and different amounts of benzoate anion were loaded into LDH under different reaction conditions. Incorporation of nanoparticles showed no significant effect on mechanical properties of polyhydroxybutyrate (PHB) films, however, significantly increased the tensile strength and elongation at break of polyhydroxybutyrate-co-valerate (PHBV) films. The effects of type and concentration of LDH nanoparticles (unmodified LDH and LDH modified by sodium benzoate and sodium gallate) on structure and properties of PHBV films were then studied. The arrangement of LDH in the bio-nanocomposite matrices ranged from exfoliated to phase-separated depending on the type and concentration of LDH nanoparticles. Intercalated or partially exfoliated structures were obtained using modified LDH, however, only phase-separated structures were formed using unmodified LDH. The mechanical (tensile strength and elongation at break) and thermo-mechanical (storage modulus) properties were significantly improved with low concentrations of nanoparticles incorporated into the polymer. The incorporation of LDH modified by sodium benzoate further improved the mechanical properties in comparison with unmodified LDH, which may be due to the increased compatibility between PHBV and nanoparticles and the larger basal distance between nanolayers after modification. The concentration of benzoate anions in LDH nanoparticles was another factor which affected the properties of PHBV composite films. The PHBV film with 2% modified LDH with 20.9 % w/w of benzoate anions in LDH had the best mechanical and thermomechanical properties. Apparent glass transition temperature increased with the addition of modified LDH but did not change with the addition of unmodified LDH. Moreover, the effect of nanoparticles on thermal properties as well as crystallization of PHBV composites was dependent on the type of nanoparticles. A comparison of mechanical properties and release kinetics of antimicrobial agents directly dispersed in PHBV and modified in LDH and then dispersed in PHBV was made. The results indicated that mechanical properties increased and release rate decreased in the latter case. The release of benzoate and gallate into DI water from PHBV composite films with LDH modified by benzoate and gallate followed pseudo-Fickian behavior fitted with a power law model. The release of benzoate from PHBV composite films with LDH modified by benzoate was also fitted with a Weibull model indicating Fickian behavior in fractal substrate morphologically similar to the percolation cluster. The concentration of modified LDH and the loading of benzoate in modified LDH showed a significant effect on the release kinetics of benzoate. The diffusivities of benzoate at 21 °C ranged from 3.41 to14.97 x 10-16 m 2/s. The slowest release rate was achieved by the PHBV film containing 5 % w/w of modified LDH with medium loading of benzoate (21 % w/w of benzoate) in nanoparticles. The release of gallate from PHBV was much faster than that of benzoate. The effective diffusivity of benzoate increased with increase of temperature and the activation energy Ea for benzoate diffusion was calculated as 66.4 kJ/mol. It will be thus possible to design biodegradable polymeric nanocomposites with a tunable release of active molecules for various applications. (Abstract shortened by UMI.).

  18. Light induced cytosolic drug delivery from liposomes with gold nanoparticles.

    PubMed

    Lajunen, Tatu; Viitala, Lauri; Kontturi, Leena-Stiina; Laaksonen, Timo; Liang, Huamin; Vuorimaa-Laukkanen, Elina; Viitala, Tapani; Le Guével, Xavier; Yliperttula, Marjo; Murtomäki, Lasse; Urtti, Arto

    2015-04-10

    Externally triggered drug release at defined targets allows site- and time-controlled drug treatment regimens. We have developed liposomal drug carriers with encapsulated gold nanoparticles for triggered drug release. Light energy is converted to heat in the gold nanoparticles and released to the lipid bilayers. Localized temperature increase renders liposomal bilayers to be leaky and triggers drug release. The aim of this study was to develop a drug releasing system capable of releasing its cargo to cell cytosol upon triggering with visible and near infrared light signals. The liposomes were formulated using either heat-sensitive or heat- and pH-sensitive lipid compositions with star or rod shaped gold nanoparticles. Encapsulated fluorescent probe, calcein, was released from the liposomes after exposure to the light. In addition, the pH-sensitive formulations showed a faster drug release in acidic conditions than in neutral conditions. The liposomes were internalized into human retinal pigment epithelial cells (ARPE-19) and human umbilical vein endothelial cells (HUVECs) and did not show any cellular toxicity. The light induced cytosolic delivery of calcein from the gold nanoparticle containing liposomes was shown, whereas no cytosolic release was seen without light induction or without gold nanoparticles in the liposomes. The light activated liposome formulations showed a controlled content release to the cellular cytosol at a specific location and time. Triggering with visual and near infrared light allows good tissue penetration and safety, and the pH-sensitive liposomes may enable selective drug release in the intracellular acidic compartments (endosomes, lysosomes). Thus, light activated liposomes with gold nanoparticles are an attractive option for time- and site-specific drug delivery into the target cells. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Levonorgestrel release rates over 5 years with the Liletta® 52-mg intrauterine system.

    PubMed

    Creinin, Mitchell D; Jansen, Rolf; Starr, Robert M; Gobburu, Joga; Gopalakrishnan, Mathangi; Olariu, Andrea

    2016-10-01

    To understand the potential duration of action for Liletta®, we conducted this study to estimate levonorgestrel (LNG) release rates over approximately 5½years of product use. Clinical sites in the U.S. Phase 3 study of Liletta collected the LNG intrauterine systems (IUSs) from women who discontinued the study. We randomly selected samples within 90-day intervals after discontinuation of IUS use through 900days (approximately 2.5years) and 180-day intervals for the remaining duration through 5.4years (1980days) to evaluate residual LNG content. We also performed an initial LNG content analysis using 10 randomly selected samples from a single lot. We calculated the average ex vivo release rate using the residual LNG content over the duration of the analysis. We analyzed 64 samples within 90-day intervals (range 6-10 samples per interval) through 900days and 36 samples within 180-day intervals (6 samples per interval) for the remaining duration. The initial content analysis averaged 52.0±1.8mg. We calculated an average initial release rate of 19.5mcg/day that decreased to 17.0, 14.8, 12.9, 11.3 and 9.8mcg/day after 1, 2, 3, 4 and 5years, respectively. The 5-year average release rate is 14.7mcg/day. The estimated initial LNG release rate and gradual decay of the estimated release rate are consistent with the target design and function of the product. The calculated LNG content and release rate curves support the continued evaluation of Liletta as a contraceptive for 5 or more years of use. Liletta LNG content and release rates are comparable to published data for another LNG 52-mg IUS. The release rate at 5years is more than double the published release rate at 3years with an LNG 13.5-mg IUS, suggesting continued efficacy of Liletta beyond 5years. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wong, Melissa; Bolovan-Fritts, Cynthia; Dar, Roy D.

    Signal transduction circuits have long been known to differentiate between signals by amplifying inputs to different levels. Here, we describe a novel transcriptional circuitry that dynamically converts greater input levels into faster rates, without increasing the final equilibrium level (i.e. a rate amplifier). We utilize time-lapse microscopy to study human herpesvirus (cytomegalovirus) infection of live cells in real time. Strikingly, our results show that transcriptional activators accelerate viral gene expression in single cells without amplifying the steady-state levels of gene products in these cells. Experiment and modeling show that rate amplification operates by dynamically manipulating the traditional gain-bandwidth feedback relationshipmore » from electrical circuit theory to convert greater input levels into faster rates, and is driven by highly self-cooperative transcriptional feedback encoded by the virus s essential transactivator, IE2. This transcriptional rate-amplifier provides a significant fitness advantage for the virus and for minimal synthetic circuits. In general, rate-amplifiers may provide a mechanism for signal-transduction circuits to respond quickly to external signals without increasing steady-state levels of potentially cytotoxic molecules.« less

  1. The Influence of Stellar Spin on Ignition of Thermonuclear Runaways

    NASA Astrophysics Data System (ADS)

    Galloway, Duncan K.; in ’t Zand, Jean J. M.; Chenevez, Jérôme; Keek, Laurens; Sanchez-Fernandez, Celia; Worpel, Hauke; Lampe, Nathanael; Kuulkers, Erik; Watts, Anna; Ootes, Laura; The MINBAR collaboration

    2018-04-01

    Runaway thermonuclear burning of a layer of accumulated fuel on the surface of a compact star provides a brief but intense display of stellar nuclear processes. For neutron stars accreting from a binary companion, these events manifest as thermonuclear (type-I) X-ray bursts, and recur on typical timescales of hours to days. We measured the burst rate as a function of accretion rate, from seven neutron stars with known spin rates, using a burst sample accumulated over several decades. At the highest accretion rates, the burst rate is lower for faster spinning stars. The observations imply that fast (>400 Hz) rotation encourages stabilization of nuclear burning, suggesting a dynamical dependence of nuclear ignition on the spin rate. This dependence is unexpected, because faster rotation entails less shear between the surrounding accretion disk and the star. Large-scale circulation in the fuel layer, leading to enhanced mixing of the burst ashes into the fuel layer, may explain this behavior; further numerical simulations are required to confirm this.

  2. Metal release rate from AISI 316L stainless steel and pure Fe, Cr and Ni into a synthetic biological medium--a comparison.

    PubMed

    Herting, G; Wallinder, I Odnevall; Leygraf, C

    2008-09-01

    Metal release rates from stainless steel grade 316L were investigated in artificial lysosomal fluid (ALF), simulating a human inflammatory cell response. The main focus was placed on release rates of main alloying elements using graphite furnace atomic absorption spectroscopy, and changes in surface oxide composition by means of X-ray photoelectron spectroscopy. To emphasise that alloys and pure metals possess totally different intrinsic properties, comparative studies were performed on the pure alloying constituents: iron, nickel and chromium. Significant differences in release rates were observed due to the presence of a passive surface film on stainless steel. Iron and nickel were released at rates more than 300 times lower from the 316L alloy compared with the pure metals whereas the release rate of chromium was similar. Iron was preferentially released compared with nickel and chromium. Immersion in ALF resulted in the gradual enrichment of chromium in the surface film, a small increase of nickel, and the reduction of oxidized iron with decreasing release rates of alloy constituents as a result. As expected, released metals from stainless steel grade 316L were neither in proportion to the bulk alloy composition nor to the surface film composition.

  3. Biochemical stability of organic matter in soils amended with organic slow N-release fertilizer derived from charred plant residues and ammonoxidized lignin

    NASA Astrophysics Data System (ADS)

    Knicker, Heike; de la Rosa, José Maria; López Martín, María; Clemente Barragan, Reyes; Liebner, Falk

    2013-04-01

    As an important plant nutrient, N that has been removed from the soil by plant growth is replaced mainly by the use of synthetic fertilizers. Although this practice has dramatically increased food production, the unintended costs to the environment and human health due to surplus and inefficient application have also been substantial. Major losses of N to the environment can be minimized if "sustainable" agricultural practices are combined with reasonable fertilization. The latter can be achieved by applying slow N-release fertilizers. Here, the N is incorporated into an organic matrix, which after its amendment to soils, slowly decompose, allowing the liberation of the nutrient. Deriving from organic waste, such an amendment helps to efficiently recycle resources and increases the C sequestration potential of soils. However, in order to turn this approach into a successful strategy, the material has to be bioavailable but still sufficiently recalcitrant to ensure slow and controlled N-release. In the present study, we tested potential slow N-release fertilizers recycled from organic waste for their biochemical stability in soils. They comprised N-rich charred grass residues and N-lignin derived from waste of the pulp and paper industry and enriched in N by ammonoxidation. The substrates were mixed with soil of an Histic Humaquept and subsequently subjected to microbial degradation at 28°C in a Respicond IV Apparatus for 10 weeks. Additionally, soil material without organic amendment and soils mixed with lignin or charcoal both with and without KNO3 were included into the experiment. During the degradation experiment the CO2 production was determined on an hourly base. The degradation rate constants and the mean residence times were calculated using a double exponential decay model (pools with fast and slow turnover). Alterations of the chemical composition of the organic matter during degradation were studied by solid-state 13C NMR spectroscopy. First results indicated that without N addition, lignin only slightly altered the degradation rate of the slow turning soil organic matter pool (mean residence time of the slow pool: 10 years). Additional fertilization with KNO3, increased the respective mean residence time, possibly because the presence of easily available N decreased the activity of the lignolytic enzymes. A comparable behavior was observed for the experiment with the barbeque charcoal. However, application of N-lignin resulted in faster degradation, possibly because the restricted N-availability augmented the decomposition of the lignin backbone. The N-rich charred grass residues/soil mixture, on the other hand, showed mean residence times being in the range observed for the soil without amendment and fertilization, indicating comparable degradation rates of soil organic matter and grass char. The present results confirm the close relationship between N availability and C degradation of soil organic matter. Producing slow N-release fertilizers, one has to bear in mind that not only the C/N ratio but also the quality of the organic carbon and nitrogen determines the degradation rate of the substrate and thus the availability of the applied N.

  4. Catch-Disperse-Release Readout for Superconducting Qubits

    DTIC Science & Technology

    2013-03-01

    adiabatic, a fast high-fidelity qubit readout is possible even in the strongly nonlinear dispersive regime. Interestingly, the Jaynes - Cummings nonlinearity...will be included later) and describe the system by the Jaynes - Cummings (JC) Hamiltonian [7] with a microwave drive (we use ~ = 1) H = ωq(t)σ+σ− + ωra...λeff,0 rotates on the phase plane faster than in the two-level approximation , while λeff,1 rotates slower (some- times even in the opposite

  5. Aligning HST Images to Gaia: A Faster Mosaicking Workflow

    NASA Astrophysics Data System (ADS)

    Bajaj, V.

    2017-11-01

    We present a fully programmatic workflow for aligning HST images using the high-quality astrometry provided by Gaia Data Release 1. Code provided in a Jupyter Notebook works through this procedure, including parsing the data to determine the query area parameters, querying Gaia for the coordinate catalog, and using the catalog with TweakReg as reference catalog. This workflow greatly simplifies the normally time-consuming process of aligning HST images, especially those taken as part of mosaics.

  6. Doxorubicin conjugation and drug linker chemistry alter the intravenous and pulmonary pharmacokinetics of a PEGylated Generation 4 polylysine dendrimer in rats.

    PubMed

    Leong, Nathania J; Mehta, Dharmini; McLeod, Victoria M; Kelly, Brian D; Pathak, Rashmi; Owen, David J; Porter, Christopher Jh; Kaminskas, Lisa M

    2018-05-28

    PEGylated polylysine dendrimers have demonstrated potential as inhalable drug delivery systems that can improve the treatment of lung cancers. Their treatment potential may be enhanced by developing constructs that display prolonged lung retention, together with good systemic absorption, the capacity to passively target lung tumours from the blood and highly selective, yet rapid liberation in the tumour microenvironment. This study sought to characterise how the nature of cathepsin B cleavable peptide linkers, used to conjugate doxorubicin to a PEGylated (PEG570) G4 polylysine dendrimer, affect drug liberation kinetics and intravenous and pulmonary pharmacokinetics in rats. The construct bearing a self-emolative diglycolic acid-V-Citrulline linker exhibited faster doxorubicin release kinetics compared to constructs bearing self emolative diglycolic acid-GLFG, or non-self emolative glutaric acid-GLFG linkers. The V-Citrulline construct exhibited slower plasma clearance, but faster absorption from the lungs than a GLFG construct, although mucociliary clearance and urinary elimination were unchanged. Doxorubicin-conjugation enhanced localisation in the bronchoalveolar lavage fluid compared to lung tissue, suggesting that projection of doxorubicin from the dendrimer surface reduced tissue uptake. These data show that the linker chemistry employed to conjugate drugs to PEGylated carriers can affect drug release profiles and systemic and lung disposition. Copyright © 2018. Published by Elsevier Inc.

  7. Enhancement of wound closure by modifying dual release patterns of stromal-derived cell factor-1 and a macrophage recruitment agent from gelatin hydrogels.

    PubMed

    Kim, Yang-Hee; Tabata, Yasuhiko

    2017-11-01

    The objective of the present study is to evaluate the effects of the release patterns of stromal derived factor (SDF)-1 and sphingosine-1 phosphate agonist (SEW2871), used as MSC and macrophage recruitment agents, on the wound closure of diabetic mouse skin defects. To achieve different release patterns, hydrogels were prepared using two types of gelatin with isoelectric points (IEP) of 5 and 9, into which SDF-1 and SEW2871 were then incorporated in various combinations. When the hydrogels incorporating SDF-1 and SEW2871 were applied into wound defects of diabetic mice, the number of MSCs and macrophages recruited to the defects and the levels of pro- and anti- inflammatory cytokines were found to be dependent on the release profiles of SDF-1 and SEW2871. Of particular interest was the case of a rapid release of SDF-1 combined with a controlled release of SEW2871. This resulted in a higher number of M2 macrophages and gene expression levels of anti-inflammatory cytokines 3 days after implantation and faster wound closure than when pairing the controlled release of SDF-1 with a rapid release of SEW2871. Therefore, the present study demonstrates that different release patterns of SDF-1 and SEW2871 can enhance the in vivo recruitment of MSCs and macrophages, and can promote skin wound closure through the modulation of inflammation. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  8. Synthesis and characterization of zinc adeninate metal-organic frameworks (bioMOF1) as potential anti-inflammatory drug delivery material

    NASA Astrophysics Data System (ADS)

    Usman, Ken Aldren S.; Buenviaje, Salvador C.; Razal, Joselito M.; Conato, Marlon T.; Payawan, Leon M.

    2018-05-01

    Zn8(ad)4(BPDC)6O•2Me2NH2 (bioMOF1), a porous metal-organic framework with zinc-adeninate secondary building units (SBUs), interconnected via biphenyldicarboxylate linkers, shows great potential for drug delivery applications due to its non-toxic and biocompatible components (zinc and adenine). In this study, bioMOF1 crystals synthesized solvothermally at 130°C for 24 hours, were characterized thoroughly and loaded with a known anti-inflammatory drug, nimesulide (NIM). The crystalline nature of the material was confirmed using powder x-ray diffraction crystallography (PXRD) along with morphology assessment using focused-ion beam/field emission scanning electron microscopy (FIB/FESEM). NIM was introduced to the crystals via solvent exchange accompanied with vigorous stirring and quantified using thermogravimetric analysis (TGA) with loading saturation of ˜30% attained during the 2nd to 3rd day of drug immersion. Drug release in phosphate buffer saline and in deionized water was done to monitor the kinetic of drug release in vitro. The drug release showed a controlled discharge profile which slowed down at the 24th and 48th hour of release. Drug release in buffer showed a faster release of drug from the material, which means that the presence of cations in the solution could further trigger the release of drug. Slow drug release was observed for all of the set-ups with maximum % drug release of 24.47%, and 16.14% for the bioMOF1 in buffer and bioMOF1 in water respectively for the span of 48 hours.

  9. Individual Differences in Beat Perception Affect Gait Responses to Low- and High-Groove Music

    PubMed Central

    Leow, Li-Ann; Parrott, Taylor; Grahn, Jessica A.

    2014-01-01

    Slowed gait in patients with Parkinson’s disease (PD) can be improved when patients synchronize footsteps to isochronous metronome cues, but limited retention of such improvements suggest that permanent cueing regimes are needed for long-term improvements. If so, music might make permanent cueing regimes more pleasant, improving adherence; however, music cueing requires patients to synchronize movements to the “beat,” which might be difficult for patients with PD who tend to show weak beat perception. One solution may be to use high-groove music, which has high beat salience that may facilitate synchronization, and affective properties, which may improve motivation to move. As a first step to understanding how beat perception affects gait in complex neurological disorders, we examined how beat perception ability affected gait in neurotypical adults. Synchronization performance and gait parameters were assessed as healthy young adults with strong or weak beat perception synchronized to low-groove music, high-groove music, and metronome cues. High-groove music was predicted to elicit better synchronization than low-groove music, due to its higher beat salience. Two musical tempi, or rates, were used: (1) preferred tempo: beat rate matched to preferred step rate and (2) faster tempo: beat rate adjusted to 22.5% faster than preferred step rate. For both strong and weak beat-perceivers, synchronization performance was best with metronome cues, followed by high-groove music, and worst with low-groove music. In addition, high-groove music elicited longer and faster steps than low-groove music, both at preferred tempo and at faster tempo. Low-groove music was particularly detrimental to gait in weak beat-perceivers, who showed slower and shorter steps compared to uncued walking. The findings show that individual differences in beat perception affect gait when synchronizing footsteps to music, and have implications for using music in gait rehabilitation. PMID:25374521

  10. Rate and Pattern of Rim Area Loss in Healthy and Progressing Glaucoma Eyes

    PubMed Central

    Hammel, Na’ama; Belghith, Akram; Bowd, Christopher; Medeiros, Felipe A.; Sharpsten, Lucie; Mendoza, Nadia; Tatham, Andrew J.; Khachatryan, Naira; Liebmann, Jeffrey M.; Girkin, Christopher A.; Weinreb, Robert N.; Zangwill, Linda M.

    2015-01-01

    Objective To characterize the rate and pattern of age-related and glaucomatous neuroretinal rim area changes in subjects of African descent (AD) and European descent (ED). Design Prospective longitudinal study. Subjects 296 eyes of 157 healthy subjects (88 AD and 69 ED) and 73 progressing glaucoma eyes of 67 subjects (24 AD and 43 ED) from the Diagnostic Innovations in Glaucoma Study (DIGS) and the African Descent and Glaucoma Evaluation Study (ADAGES) were included. Methods Global and sectoral rim area was measured using confocal laser scanning ophthalmoscopy (CSLO). Progression of glaucomatous optic disc damage was determined by masked stereophoto review. The rates of absolute rim area loss and percent rim area loss in healthy and progressing glaucomatous eyes were compared using multivariable nested mixed-effects models. Main Outcome Measures Rate of rim area loss over time. Results The median (inter-quartile range) follow-up time was 5.0 years (2.0–7.4) for healthy eyes and 8.3 years (7.5–9.9) for progressing glaucoma eyes. The mean rate of global rim area loss was significantly faster in progressing glaucoma eyes compared with healthy eyes for both rim area loss (−10.2 ×10−3 mm2/year vs. −2.8 ×10−3 mm2/year, respectively, P<.001) and percent rim area loss (−1.1 %/year vs. −0.2 %/year, respectively, P<.001), but there was considerable overlap between the two groups. 63% of progressing glaucoma eyes had a rate of change faster than the 5th quantile of healthy eyes. For both healthy and progressing eyes, the pattern of rim area loss and percent rim area loss was similar; it tended to be fastest in the superior temporal and inferior temporal sectors. The rate of change was similar in AD and ED progressing eyes. Conclusions Compared with healthy eyes, the mean rate of global rim area loss was 3.7 times faster and the mean rate of global percent rim area loss was 5.4 times faster in progressing glaucoma eyes. A reference database of healthy eyes can be used to help clinicians distinguish age-related rim area loss from rim area loss due to glaucoma. PMID:26746597

  11. Synaptic transmission at the endbulb of Held deteriorates during age‐related hearing loss

    PubMed Central

    Manis, Paul B.

    2016-01-01

    Key points Synaptic transmission at the endbulb of Held was assessed by whole‐cell patch clamp recordings from auditory neurons in mature (2–4 months) and aged (20–26 months) mice.Synaptic transmission is degraded in aged mice, which may contribute to the decline in neural processing of the central auditory system during age‐related hearing loss.The changes in synaptic transmission in aged mice can be partially rescued by improving calcium buffering, or decreasing action potential‐evoked calcium influx.These experiments suggest potential mechanisms, such as regulating intraterminal calcium, that could be manipulated to improve the fidelity of transmission at the aged endbulb of Held. Abstract Age‐related hearing loss (ARHL) is associated with changes to the auditory periphery that raise sensory thresholds and alter coding, and is accompanied by alterations in excitatory and inhibitory synaptic transmission, and intrinsic excitability in the circuits of the central auditory system. However, it remains unclear how synaptic transmission changes at the first central auditory synapses during ARHL. Using mature (2–4 months) and old (20–26 months) CBA/CaJ mice, we studied synaptic transmission at the endbulb of Held. Mature and old mice showed no difference in either spontaneous quantal synaptic transmission or low frequency evoked synaptic transmission at the endbulb of Held. However, when challenged with sustained high frequency stimulation, synapses in old mice exhibited increased asynchronous transmitter release and reduced synchronous release. This suggests that the transmission of temporally precise information is degraded at the endbulb during ARHL. Increasing intraterminal calcium buffering with EGTA‐AM or decreasing calcium influx with ω‐agatoxin IVA decreased the amount of asynchronous release and restored synchronous release in old mice. In addition, recovery from depression following high frequency trains was faster in old mice, but was restored to a normal time course by EGTA‐AM treatment. These results suggest that intraterminal calcium in old endbulbs may rise to abnormally high levels during high rates of auditory nerve firing, or that calcium‐dependent processes involved in release are altered with age. These observations suggest that ARHL is associated with a decrease in temporal precision of synaptic release at the first central auditory synapse, which may contribute to perceptual deficits in hearing. PMID:27618790

  12. Screening of transporters to improve xylodextrin utilization in the yeast Saccharomyces cerevisiae.

    PubMed

    Zhang, Chenlu; Acosta-Sampson, Ligia; Yu, Vivian Yaci; Cate, Jamie H D

    2017-01-01

    The economic production of cellulosic biofuel requires efficient and full utilization of all abundant carbohydrates naturally released from plant biomass by enzyme cocktails. Recently, we reconstituted the Neurospora crassa xylodextrin transport and consumption system in Saccharomyces cerevisiae, enabling growth of yeast on xylodextrins aerobically. However, the consumption rate of xylodextrin requires improvement for industrial applications, including consumption in anaerobic conditions. As a first step in this improvement, we report analysis of orthologues of the N. crassa transporters CDT-1 and CDT-2. Transporter ST16 from Trichoderma virens enables faster aerobic growth of S. cerevisiae on xylodextrins compared to CDT-2. ST16 is a xylodextrin-specific transporter, and the xylobiose transport activity of ST16 is not inhibited by cellobiose. Other transporters identified in the screen also enable growth on xylodextrins including xylotriose. Taken together, these results indicate that multiple transporters might prove useful to improve xylodextrin utilization in S. cerevisiae. Efforts to use directed evolution to improve ST16 from a chromosomally-integrated copy were not successful, due to background growth of yeast on other carbon sources present in the selection medium. Future experiments will require increasing the baseline growth rate of the yeast population on xylodextrins, to ensure that the selective pressure exerted on xylodextrin transport can lead to isolation of improved xylodextrin transporters.

  13. Leaching of Arsenic from Granular Ferric Hydroxide Residuals under Mature Landfill Conditions

    PubMed Central

    Ghosh, Amlan; Mukiibi, Muhammed; Sáez, A. Eduardo; Ela, Wendell P.

    2008-01-01

    Most arsenic bearing solid residuals (ABSR) from water treatment will be disposed in non-hazardous landfills. The lack of an appropriate leaching test to predict arsenic mobilization from ABSR creates a need to evaluate the magnitude and mechanisms of arsenic release under landfill conditions. This work studies the leaching of arsenic and iron from a common ABSR, granular ferric hydroxide, in a laboratory-scale column that simulates the biological and physicochemical conditions of a mature, mixed solid waste landfill. The column operated for approximately 900 days and the mode of transport as well as chemical speciation of iron and arsenic changed with column age. Both iron and arsenic were readily mobilized under the anaerobic, reducing conditions. During the early stages of operation, most arsenic and iron leaching (80% and 65%, respectively) was associated with suspended particulate matter and iron was lost proportionately faster than arsenic. In later stages, while the rate of iron leaching declined, the arsenic leaching rate increased greater than 7-fold. The final phase was characterized by dissolved species leaching. Future work on the development of standard batch leaching tests should take into account the dominant mobilization mechanisms identified in this work: solid associated transport, reductive sorbent dissolution, and microbially mediated arsenic reduction. PMID:17051802

  14. Leaching of arsenic from granular ferric hydroxide residuals under mature landfill conditions.

    PubMed

    Ghosh, Amlan; Mukiibi, Muhammed; Sáez, A Eduardo; Ela, Wendell P

    2006-10-01

    Most arsenic bearing solid residuals (ABSR) from water treatment will be disposed in nonhazardous landfills. The lack of an appropriate leaching test to predict arsenic mobilization from ABSR creates a need to evaluate the magnitude and mechanisms of arsenic release under landfill conditions. This work studies the leaching of arsenic and iron from a common ABSR, granular ferric hydroxide, in a laboratory-scale column that simulates the biological and physicochemical conditions of a mature, mixed solid waste landfill. The column operated for approximately 900 days and the mode of transport as well as chemical speciation of iron and arsenic changed with column age. Both iron and arsenic were readily mobilized under the anaerobic, reducing conditions. During the early stages of operation, most arsenic and iron leaching (80% and 65%, respectively) was associated with suspended particulate matter, and iron was lost proportionately faster than arsenic. In later stages, while the rate of iron leaching declined, the arsenic leaching rate increased greater than 7-fold. The final phase was characterized by dissolved species leaching. Future work on the development of standard batch leaching tests should take into account the dominant mobilization mechanisms identified in this work: solid associated transport, reductive sorbent dissolution, and microbially mediated arsenic reduction.

  15. Relationship Between Rates of Binocular Visual Field Loss and Vision-Related Quality of Life in Glaucoma

    PubMed Central

    Lisboa, Renato; Chun, Yeoun Sook; Zangwill, Linda M.; Weinreb, Robert N.; Rosen, Peter N.; Liebmann, Jeffrey M.; Girkin, Christopher A.; Medeiros, Felipe A.

    2013-01-01

    Objective To evaluate the relationship between binocular rates of visual field change and vision-related quality of life (VRQOL) in glaucoma. Methods The study included 796 eyes of 398 participants that had diagnosed or suspected glaucoma followed for an average of 7.3 ± 2.0 years. Subjects were recruited from the Diagnostic Innovations in Glaucoma Study (DIGS) and the African Descent and Glaucoma Evaluation Study (ADAGES). VRQOL was evaluated using the National Eye Institute Visual Function Questionnaire (NEI VFQ-25) at the last follow-up visit. Integrated binocular visual fields (BVF) were calculated from the monocular fields of each patient. Linear regression of mean deviation (MD) values was used to evaluate rates of visual field change during the follow-up period. Logistic regression models were used to investigate the relationship between abnormal VRQOL and rates of visual field change, while adjusting for potentially confounding socio-economic and demographic variables. Results Thirty-two patients (8.0%) had abnormal VRQOL as determined by the results of the NEI VFQ-25 questionnaire. Subjects with abnormal VRQOL had significantly faster rates of BVF change than those with normal VRQOL (−0.18 db/year vs. −0.06 dB/year, respectively; P < 0.001). Rates of BVF change were significantly associated with abnormality in VRQOL (OR = 1.31 per 0.1dB/year faster; P = 0.038), after adjustment for confounding variables. Conclusions Patients with faster rates of BVF change were at higher risk of reporting abnormal VRQOL. Assessment of rates of BVF change may provide useful information in determining risk of functional impairment in glaucoma. PMID:23450425

  16. Modelling and assessment of accidental oil release from damaged subsea pipelines.

    PubMed

    Li, Xinhong; Chen, Guoming; Zhu, Hongwei

    2017-10-15

    This paper develops a 3D, transient, mathematical model to estimate the oil release rate and simulate the oil dispersion behavior. The Euler-Euler method is used to estimate the subsea oil release rate, while the Eulerian-Lagrangian method is employed to track the migration trajectory of oil droplets. This model accounts for the quantitative effect of backpressure and hole size on oil release rate, and the influence of oil release rate, oil density, current speed, water depth and leakage position on oil migration is also investigated in this paper. Eventually, the results, e.g. transient release rate of oil, the rise time of oil and dispersion distance are determined by above-mentioned model, and the oil release and dispersion behavior under different scenarios is revealed. Essentially, the assessment results could provide a useful guidance for detection of leakage positon and placement of oil containment boom. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Selection for rapid embryo development correlates with embryo exposure to maternal androgens among passerine birds

    USGS Publications Warehouse

    Schwabl, H.; Palacios, M.G.; Martin, T.E.

    2007-01-01

    Greater offspring predation favors evolution of faster development among species. We hypothesized that greater offspring predation exerts selection on mothers to increase levels of anabolic androgens in egg yolks to achieve faster development. Here, we tested whether (1) concentrations of yolk androgens in passerine species were associated with offspring predation and (2) embryo and nestling development rates were associated with yolk androgen concentrations. We examined three androgens that increase in potency along the synthesis pathway: androstenedione (A4) to testosterone (T) to 5??- dihydrotestosterone (5??-DHT). Concentrations of none of these steroids were related to clutch size; only A4 was allometrically related to egg volume. Species that experience greater predation showed higher yolk concentrations of T and 5??-DHT. Higher concentrations of T and particularly 5??-DHT were strongly correlated with faster development during the embryo period and less so during the nestling period. Development rates were most strongly correlated with 5??-DHT, suggesting that potency increases along the androgen synthesis pathway and that effects are mediated by the androgen receptor pathway. These results are consistent with the hypothesis that selection for faster development by time-dependent offspring mortality may be achieved epigenetically by varying embryo exposure to maternal anabolic steroids. ?? 2007 by The University of Chicago. All rights reserved.

  18. Lung cancer death rates fall, helping drive decrease in overall cancer death rates

    Cancer.gov

    The Annual Report to the Nation on the Status of Cancer, covering the period 1975–2010, showed death rates for lung cancer, which accounts for more than one in four cancer deaths, dropping at a faster pace than in previous years.

  19. Trajectories of Infants' Biobehavioral Development: Timing and Rate of A-Not-B Performance Gains and EEG Maturation.

    PubMed

    MacNeill, Leigha A; Ram, Nilam; Bell, Martha Ann; Fox, Nathan A; Pérez-Edgar, Koraly

    2018-05-01

    This study examined how timing (i.e., relative maturity) and rate (i.e., how quickly infants attain proficiency) of A-not-B performance were related to changes in brain activity from age 6 to 12 months. A-not-B performance and resting EEG (electroencephalography) were measured monthly from age 6 to 12 months in 28 infants and were modeled using logistic and linear growth curve models. Infants with faster performance rates reached performance milestones earlier. Infants with faster rates of increase in A-not-B performance had lower occipital power at 6 months and greater linear increases in occipital power. The results underscore the importance of considering nonlinear change processes for studying infants' cognitive development as well as how these changes are related to trajectories of EEG power. © 2018 The Authors. Child Development © 2018 Society for Research in Child Development, Inc.

  20. A microstructural study of the degradation and calcium release from hydroxyapatite-calcium oxide ceramics made by infiltration.

    PubMed

    Zhang, Qinghao; Schmelzer, Eva; Gerlach, Jörg C; Nettleship, Ian

    2017-04-01

    Hydroxyapatite pellets, partially densified in a low-temperature heat treatment, were infiltrated with calcium nitrate solution followed by in-situ precipitation of Ca(OH) 2 and CaCO 3 . The infiltrated bodies were then densified to high relative density and the calcium carbonate transformed to calcium oxide during sintering and resulted in biphasic hydroxyapatite-CaO ceramics. This work investigated the influence of the infiltration on surface morphology, weight change, and microstructural-level degradation caused by exposure to saline at pH=7.4 and a temperature of 20°C. The CaO rendered the materials more susceptible to degradation, and released calcium into the saline faster than single phase, calcium deficient hydroxyapatite (HA) that were used as a control. In consequence, these ceramics could be used to release calcium into the culture microenvironments of bone tissue or bone marrow cells next to a scaffold surface. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Active starch biopolymeric packaging film for sausages embedded with essential oil of Syzygium aromaticum.

    PubMed

    Ugalde, Mariane L; de Cezaro, Aline M; Vedovatto, Felipe; Paroul, Natalia; Steffens, Juliana; Valduga, Eunice; Backes, Geciane T; Franceschi, Elton; Cansian, Rogério L

    2017-06-01

    Starch polymer matrices were developed with the incorporation of 1% clove essential oil (EO) ( Syzygium aromaticum ) aiming for use as active packaging for sausages. At the concentration of 1% EO in the polymer matrix, it showed exponential behavior with respect to oil release over 30 days, with faster release in the beginning and a tendency towards a reduction in release velocity over time. The presence of OE in the biofilm led to significant differences versus the control in terms of aroma and flavor parameters. It was found that EO had an antioxidant effect in sausages with a significant difference between treatments with respect to TBA (thiobarbituric acid) values at the end of a 15 day period of refrigerated storage. There were no significant variations in pH and Aw among treatments during the evaluated period. A significant negative correlation (-0.78) between brightness (L*) and the lipid oxidation of the products was observed.

  2. Influence of mastication rate on dynamic flavour release analysed by combined model mouth/proton transfer reaction-mass spectrometry

    NASA Astrophysics Data System (ADS)

    van Ruth, Saskia M.; Buhr, Katja

    2004-12-01

    The influence of mastication rate on the dynamic release of seven volatile flavour compounds from sunflower oil was evaluated by combined model mouth/proton transfer reaction-mass spectrometry (PTR-MS). Air/oil partition coefficients were measured by static headspace gas chromatography. The dynamic release of the seven volatile flavour compounds from sunflower oil was significantly affected by the compounds' hydrophobicity and the mastication rate employed in the model mouth. The more hydrophobic compounds were released at a higher rate than their hydrophilic counterparts. Increase in mastication rate increased the maximum concentration measured by 36% on average, and the time to reach this maximum by 35% on average. Mastication affected particularly the release of the hydrophilic compounds. The maximum concentration of the compounds correlated significantly with the compounds' air/oil partition coefficients. The initial release rates over the first 15 s were affected by the type of compound, but not by the mastication rate. During the course of release, the proportions of the hydrophilic compounds to the overall flavour mixture in air decreased. The contribution of the hydrophobic compounds increased. Higher mastication rates, however, increased the proportions of the hydrophilic compounds and decreased those of the hydrophobic compounds.

  3. Heat release rate of wood-plastic composites

    Treesearch

    N. M. Stark; R. H. White; C. M. Clemons

    1997-01-01

    Wood-plastic composites are becoming more important as a material that fulfills recycling needs. In this study, fire performance tests were conducted on several compositions of wood and plastic materials using the Ohio State University rate of heat release apparatus. Test results included five-minute average heat release rate in kW/m2 (HRR avg) and maximum heat release...

  4. Pushing Harder, Pushing Faster, Minimizing Interruptions… But Falling Short of 2010 Cardiopulmonary Resuscitation Targets During In-hospital Pediatric and Adolescent Resuscitation

    PubMed Central

    Sutton, Robert M.; Wolfe, Heather; Nishisaki, Akira; Leffelman, Jessica; Niles, Dana; Meaney, Peter A.; Donoghue, Aaron; Maltese, Matthew R.; Berg, Robert A.; Nadkarni, Vinay M.

    2013-01-01

    Aim The objective of this study was to evaluate the effect of instituting the 2010 Basic Life Support Guidelines on in-hospital pediatric and adolescent cardiopulmonary resuscitation (CPR) quality. We hypothesized that quality would improve, but that targets for chest compression (CC) depth would be difficult to achieve. Methods Prospective in-hospital observational study comparing CPR quality 24 months before and after release of the 2010 Guidelines. CPR recording/feedback-enabled defibrillators collected CPR data (rate (CC/min), depth (mm), CC fraction (CCF, %), leaning (% > 2.5 kg.)). Audiovisual feedback for depth was: 2005 ≥ 38mm; 2010 ≥ 50mm; for rate: 2005 ≥ 90 and ≤ 120 CC/min; 2010 ≥ 100 and ≤ 120 CC/min. The primary outcome was average event depth compared with Student’s t-test. Results 45 CPR events (25 before; 20 after) occurred, resulting in 1336 thirty-second epochs (909 before; 427 after). Compared to 2005, average event depth (50 ± 13 vs. 43 ± 9 mm; p=0.047), rate (113 ± 11 vs. 104 ± 8 CC/min; p<0.01), and CCF (0.94 [0.93, 0.96] vs. 0.9 [0.85, 0.94]; p=0.013) increased during 2010. CPR epochs during the 2010 period more likely to meet Guidelines for CCF (OR 1.7; CI 95: 1.2–2.4; p<0.01), but less likely for rate (OR 0.23; CI 95: 0.12–0.44; p<0.01), and depth (OR 0.31; CI 95: 0.12–0.86; p=0.024). Conclusions Institution of the 2010 Guidelines was associated with increased CC depth, rate, and CC fraction; yet, achieving 2010 targets for rate and depth was difficult. PMID:23954664

  5. Pushing harder, pushing faster, minimizing interruptions… but falling short of 2010 cardiopulmonary resuscitation targets during in-hospital pediatric and adolescent resuscitation.

    PubMed

    Sutton, Robert M; Wolfe, Heather; Nishisaki, Akira; Leffelman, Jessica; Niles, Dana; Meaney, Peter A; Donoghue, Aaron; Maltese, Matthew R; Berg, Robert A; Nadkarni, Vinay M

    2013-12-01

    The objective of this study was to evaluate the effect of instituting the 2010 Basic Life Support Guidelines on in-hospital pediatric and adolescent cardiopulmonary resuscitation (CPR) quality. We hypothesized that quality would improve, but that targets for chest compression (CC) depth would be difficult to achieve. Prospective in-hospital observational study comparing CPR quality 24 months before and after release of the 2010 Guidelines. CPR recording/feedback-enabled defibrillators collected CPR data (rate (CC/min), depth (mm), CC fraction (CCF, %), leaning (%>2.5kg)). Audiovisual feedback for depth was: 2005, ≥38mm; 2010, ≥50mm; for rate: 2005, ≥90 and ≤120CC/min; 2010, ≥100 and ≤120CC/min. The primary outcome was average event depth compared with Student's t-test. 45 CPR events (25 before; 20 after) occurred, resulting in 1336 thirty-second epochs (909 before; 427 after). Compared to 2005, average event depth (50±13mm vs. 43±9mm; p=0.047), rate (113±11CC/min vs. 104±8CC/min; p<0.01), and CCF (0.94 [0.93, 0.96] vs. 0.9 [0.85, 0.94]; p=0.013) increased during 2010. CPR epochs during the 2010 period more likely to meet Guidelines for CCF (OR 1.7; CI95: 1.2-2.4; p<0.01), but less likely for rate (OR 0.23; CI95: 0.12-0.44; p<0.01), and depth (OR 0.31; CI95: 0.12-0.86; p=0.024). Institution of the 2010 Guidelines was associated with increased CC depth, rate, and CC fraction; yet, achieving 2010 targets for rate and depth was difficult. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  6. Morphology and genesis of carbonate soils on the Kyle Canyon fan, Nevada, U.S.A.

    USGS Publications Warehouse

    Reheis, M.C.; Sowers, J.M.; Taylor, E.M.; McFadden, L.D.; Harden, J.W.

    1992-01-01

    The physical and chemical properties of soils formed in an arid climate on calcareous alluvium of the Kyle Canyon alluvial fan, southern Nevada, were studied in order to infer the rates and relative importance of various soil-forming processes. These studies included field and microscopic observations and analyses of thin sections, major oxides, extractable iron, and clay minerals. The results are interpreted to reflect five major pedogenic processes: (1) The calcic horizons and calcretes of Kyle Canyon soils form by precipitation of CaCO3, derived from eolian dust and alluvium, as clast coats, matrix cement, and massive layers. (2) The A and uppermost B horizons are essentially dust-derived, for they contain large amounts of detrital material not present in the alluvial parent material, and their major-oxide content is similar to that of modern dust. (3) Clay particles are translocated from A into B horizons. (4) Iron-bearing minerals in the near-surface B horizons are slowly oxidized. (5) Carbonate and aluminosilicate grains are both displaced and replaced by pedogenic CaCO3; the silica released by replacement of aluminosilicates may be locally precipitated as amorphous or opaline silica and (or) incorporated into newly formed palygorskite and sepiolite. Rates of soil development at Kyle Canyon are approximate due to uncertainties in age estimates. Some soil field properties change at rates that are similar to rates for soils formed in rhyolitic parent material near Mercury, Nevada. The rate of accumulation of CaCO3 (3-5 g m-2 yr-1) at Kyle Canyon is an order of magnitude faster than that near Mercury, but is comparable to rates calculated for soils in southern New Mexico and Utah. ?? 1992.

  7. Burning rate of solid wood measured in a heat release rate calorimeter

    Treesearch

    H. C. Tran; R. H. White

    1992-01-01

    Burning rate is a key factor in modeling fire growth and fire endurance of wood structures. This study investigated the burning rate of selected wood materials as determined by heat release, mass loss and charring rates. Thick samples of redwood, southern pine, red oak and basswood were tested in a heat release rate calorimeter. Results on ignitability and average beat...

  8. Drug Release as a function of bioactivity, incubation regime, liquid, and initial load: Release of bortezomib from calcium phosphate-containing silica/collagen xerogels.

    PubMed

    Kruppke, Benjamin; Hose, Dirk; Schnettler, Reinhard; Seckinger, Anja; Rößler, Sina; Hanke, Thomas; Heinemann, Sascha

    2018-04-01

    The ability of silica-/collagen-based composite xerogels to act as drug delivery systems was evaluated by taking into account the initial drug concentration, bioactivity of the xerogels, liquid, and incubation regime. The proteasome inhibitor bortezomib was chosen as a model drug, used for the systemic treatment of multiple myeloma. Incubation during 14 days in phosphate-buffered saline (PBS) or simulated body fluid (SBF) showed a weak initial burst and was identified to be of first order with subsequent release being independent from the initial load of 0.1 or 0.2 mg bortezomib per 60 mg monolithic sample. Faster drug release occurred during incubation in SBF compared to PBS, and during static incubation without changing the liquid, compared to dynamic incubation with daily liquid changes. Drug-loaded xerogels with hydroxyapatite as a third component exhibited enhanced bioactivity retarding drug release, explained by formation of a surface calcium phosphate layer. The fastest release of 50% of the total drug load was observed for biphasic xerogels after 7 days during dynamic incubation in SBF. As a result, the presented concept is suitable for the intended combination of the advantageous bone substitution properties of xerogels and local application of drugs exemplified by bortezomib. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 1165-1173, 2018. © 2017 Wiley Periodicals, Inc.

  9. Heat release, time required, and cleaning ability of MTwo R and ProTaper universal retreatment systems in the removal of filling material.

    PubMed

    Bramante, Clovis Monteiro; Fidelis, Natasha Siqueira; Assumpção, Tatiana Santos; Bernardineli, Norberti; Garcia, Roberto Brandão; Bramante, Alexandre Silva; de Moraes, Ivaldo Gomes

    2010-11-01

    This ex vivo study evaluated the heat release, time required, and cleaning efficacy of MTwo (VDW, Munich, Germany) and ProTaper Universal Retreatment systems (Dentsply/Maillefer, Ballaigues, Switzerland) and hand instrumentation in the removal of filling material. Sixty single-rooted human teeth with a single straight canal were obturated with gutta-percha and zinc oxide and eugenol-based cement and randomly allocated to 3 groups (n = 20). After 30-day storage at 37 °C and 100% humidity, the root fillings were removed using ProTaper UR, MTwo R, or hand files. Heat release, time required, and cleaning efficacy data were analyzed statistically (analysis of variance and the Tukey test, α = 0.05). None of the techniques removed the root fillings completely. Filling material removal with ProTaper UR was faster but caused more heat release. Mtwo R produced less heat release than the other techniques but was the least efficient in removing gutta-percha/sealer. ProTaper UR and MTwo R caused the greatest and lowest temperature increase on root surface, respectively; regardless of the type of instrument, more heat was released in the cervical third. Pro Taper UR needed less time to remove fillings than MTwo R. All techniques left filling debris in the root canals. Copyright © 2010 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  10. Exploring the influence of Diels-Alder linker length on photothermal molecule release from gold nanorods.

    PubMed

    Vetterlein, Claudia; Vásquez, Rodrigo; Bolaños, Karen; Acosta, Gerardo A; Guzman, Fanny; Albericio, Fernando; Celis, Freddy; Campos, Marcelo; Kogan, Marcelo J; Araya, Eyleen

    2018-06-01

    We studied the photothermal release of carboxyfluorescein (CF) linked to the gold surface of gold nanorods (GNRs) by two Diels-Alder adducts of different lengths (n = 4 and n = 9). The functionalized GNRs were irradiated with infrared light to produce photothermal release of CF by a retro-Diels-Alder reaction. The adducts were chemisorbed on the GNRs and the functionalized nanoparticles were characterized by UV-vis, DLS, zeta potential and Raman and surface-enhanced Raman spectroscopy (SERS). On the basis of the degree of nanoparticle functionalization and the SERS results, we inferred the orientation of CF on the surface of the gold nanoparticle. Moreover, we determined the photothermal release profiles of CF from the gold surface by laser irradiation. The release was faster for the longer linker (n = 9). SERS revealed that, for the shorter linker (n = 4), molecules are oriented perpendicularly with respect to the gold surface, thereby maintaining the CF far from the surface. In contrast, the longer linker was observed to be tilted, thus maintaining CF close to the gold surface and therefore potentially favoring the photothermal transfer of energy. These results are relevant for the future development of the spatial and temporal controlled release of drugs by means of gold nanoparticles. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Enzymatic triggered release of an HIV-1 entry inhibitor from prostate specific antigen degradable microparticles.

    PubMed

    Clark, Meredith R; Aliyar, Hyder A; Lee, Chang-won; Jay, Julie I; Gupta, Kavita M; Watson, Karen M; Stewart, Russell J; Buckheit, Robert W; Kiser, Patrick F

    2011-07-15

    This paper describes the design, construction and characterization of the first anti-HIV drug delivery system that is triggered to release its contents in the presence of human semen. Microgel particles were synthesized with a crosslinker containing a peptide substrate for the seminal serine protease prostate specific antigen (PSA) and were loaded with the HIV-1 entry inhibitor sodium poly(styrene-4-sulfonate) (pSS). The particles were composed of N-2-hydroxyproplymethacrylamide and bis-methacrylamide functionalized peptides based on the PSA substrates GISSFYSSK and GISSQYSSK. Exposure to human seminal plasma (HSP) degraded the microgel network and triggered the release of the entrapped antiviral polymer. Particles with the crosslinker composed of the substrate GISSFYSSK showed 17 times faster degradation in seminal plasma than that of the crosslinker composed of GISSQYSSK. The microgel particles containing 1 mol% GISSFYSSK peptide crosslinker showed complete degradation in 30 h in the presence of HSP at 37°C and pSS released from the microgels within 30 min reached a concentration of 10 μg/mL, equivalent to the published IC(90) for pSS. The released pSS inactivated HIV-1 in the presence of HSP. The solid phase synthesis of the crosslinkers, preparation of the particles by inverse microemulsion polymerization, HSP-triggered release of pSS and inactivation of HIV-1 studies are described. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. Drug loading optimization and extended drug delivery of corticoids from pHEMA based soft contact lenses hydrogels via chemical and microstructural modifications.

    PubMed

    García-Millán, Eva; Koprivnik, Sandra; Otero-Espinar, Francisco Javier

    2015-06-20

    This paper proposes an approach to improve drug loading capacity and release properties of poly(2-hydroxyethyl methacrylate) (p(HEMA)) soft contact lenses based on the optimization of the hydrogel composition and microstructural modifications using water during the polymerization process. P(HEMA) based soft contact lenses were prepared by thermal or photopolymerization of 2-hydroxyethyl methacrylate (HEMA) solutions containing ethylene glycol di-methacrylate as crosslinker and different proportions of N-vinyl-2-pyrrolidone (NVP) or methacrylic acid (MA) as co-monomers. Transmittance, water uptake, swelling, microstructure, drug absorption isotherms and in vitro release were characterized using triamcinolone acetonide (TA) as model drug. Best drug loading ratios were obtained with lenses containing the highest amount (200 mM) of MA. Incorporation of 40% V/V of water during the polymerization increases the hydrogel porosity giving a better drug loading capacity. In vitro TA release kinetics shows that MA hydrogels released the drug significantly faster than NVP-hydrogels. Drug release was found to be diffusion controlled and kinetics was shown to be reproducible after consecutive drug loading/release processes. Results of p(HEMA) based soft contact lenses copolymerized with ethylene glycol dimethacrylate (EGDMA) and different co-monomers could be a good alternative to optimize the loading and ocular drug delivery of this corticosteroid drug. Copyright © 2015. Published by Elsevier B.V.

  13. Comparison of the Kinetic Rate Law Parameters for the Dissolution of Natural and Synthetic Autunite in the Presence of Aqueous Bicarbonate Ions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gudavalli, Ravi; Katsenovich, Yelena; Wellman, Dawn M.

    2013-08-02

    Bicarbonate is one of the most significant components within the uranium geochemical cycle. In aqueous solutions, bicarbonate forms strong complexes with uranium. As such, aqueous bicarbonate may significantly increase the rate of uranium release from uranium minerals. Quantifying the relationship of aqueous bicarbonate concentration to the rate of uranium release during dissolution is critical to understanding the long-term fate of uranium within the environment. Single-pass flow-through (SPTF) experiments were conducted to estimate the rate of uranium release from Na meta-autunite as a function of bicarbonate (0.0005-0.003 M) under the pH range of 6-11 and a temperature range of 5-60oC. Consistentmore » with the results of previous investigation, the rate of uranium release exhibited minimal dependency on temperature; but were strongly dependent on pH. Increasing aqueous bicarbonate concentrations afforded comparable increases in the rate of release of uranium. Most notably under low pH conditions the aqueous bicarbonate resulted in up to 370 fold increases in the rate of uranium release in relative to the rate of uranium release in the absence of bicarbonate. However, the effect of aqueous bicarbonate on the release of uranium was significantly less under higher pH conditions. It is postulated that at high pH values, surface sites are saturated with carbonate, thus the addition of more bicarbonate would have less effect on uranium release.« less

  14. Tomosyn-2 is required for normal motor performance in mice and sustains neurotransmission at motor endplates.

    PubMed

    Geerts, Cornelia J; Plomp, Jaap J; Koopmans, Bastijn; Loos, Maarten; van der Pijl, Elizabeth M; van der Valk, Martin A; Verhage, Matthijs; Groffen, Alexander J A

    2015-07-01

    Tomosyn-1 (STXBP5) is a soluble NSF attachment protein receptor complex-binding protein that inhibits vesicle fusion, but the role of tomosyn-2 (STXBP5L) in the mammalian nervous system is still unclear. Here we generated tomosyn-2 null (Tom2(KO/KO)) mice, which showed impaired motor performance. This was accompanied by synaptic changes at the neuromuscular junction, including enhanced spontaneous acetylcholine release frequency and faster depression of muscle motor endplate potentials during repetitive stimulation. The postsynaptic geometric arrangement and function of acetylcholine receptors were normal. We conclude that tomosyn-2 supports motor performance by regulation of transmitter release willingness to sustain synaptic strength during high-frequency transmission, which makes this gene a candidate for involvement in neuromuscular disorders.

  15. Long-term flow-through column experiments and their relevance to natural granitoid weathering rates

    USGS Publications Warehouse

    White, Arthur F.; Schulz, Marjorie S.; Lawrence, Corey R.; Vivit, Davison V.; Stonestrom, David A.

    2017-01-01

    Four pairs of fresh and partly-weathered granitoids, obtained from well-characterized watersheds—Merced River, CA, USA; Panola, GA, USA; Loch Vale, CO, USA, and Rio Icacos, Puerto Rico—were reacted in columns under ambient laboratory conditions for 13.8 yrs, the longest running experimental weathering study to date. Low total column mass losses (<1 wt. %), correlated with the absence of pitting or surface roughening of primary silicate grains. BET surface area (SBET) increased, primarily due to Fe-oxyhydroxide precipitation. Surface areas returned to within factors of 2 to 3 of their original values after dithionite extraction. Miscible displacement experiments indicated homogeneous plug flow with negligible immobile water, commonly cited for column experiments. Fresh granitoid effluent solute concentrations initially declined rapidly, followed by much slower decreases over the next decade. Weathered granitoid effluent concentrations increased modestly over the same time period, indicating losses of natural Fe-oxide and/or clay coatings and the increased exposure of primary mineral surfaces. Corresponding (fresh and weathered) elemental effluent concentrations trended toward convergence during the last decade of reaction. NETPATH/PHREEQC code simulations indicated non-stoichiometric dissolution involving Ca release from disseminated calcite and excess K release from interlayer biotite. Effluent 87Sr/85Sr ratios reflected a progressive weathering sequence beginning and ending with 87Sr/85Sr values of plagioclase with an additional calcite input and a radiogenic biotite excursion proportional to the granitoid ages.Effluents became thermodynamically saturated with goethite and gibbsite, slightly under-saturated with kaolinite and strongly under-saturated with plagioclase, consistent with kinetically-limited weathering in which solutes such as Na varied with column flow rates. Effluent Na concentrations showed no clear trend with time during the last decade of reaction (fresh granitoids) or increased slowly with time (weathered granitoids). Analysis of cumulative Na release indicated that plagioclase dissolution achieved steady state in 3 of the 4 fresh granitoids during the last decade of reaction. Surface-area normalized plagioclase dissolution rates exhibited a narrow range (0.95 to 1.26 10-13 moles m-2 s-1), in spite of significant stoichiometric differences (An0.21 to An0.50). Rates were an order of magnitude slower than previously reported in shorter duration experiments but generally 2 to 3 orders of magnitude faster than corresponding natural analogs. CrunchFlow simulations indicated that more than a hundredfold decrease in column flow rates would be required to produce near-saturation reaction affinities that would start to slow plagioclase weathering to real-world levels. Extending simulations to approximate long term weathering in naturally weathered profiles required additional decreases in the intrinsic plagioclase dissolution and kaolinite precipitation rates and relatively large decreases in the fluid flow rate, implying that exposure to reactive mineral surfaces is significantly limited in the natural environment compared to column experiments.

  16. Long-term flow-through column experiments and their relevance to natural granitoid weathering rates

    NASA Astrophysics Data System (ADS)

    White, Art F.; Schulz, Marjorie S.; Lawrence, Corey R.; Vivit, Davison V.; Stonestrom, David A.

    2017-04-01

    Four pairs of fresh and partly-weathered granitoids, obtained from well-characterized watersheds-Merced River, CA, USA; Panola, GA, USA; Loch Vale, CO, USA, and Rio Icacos, Puerto Rico-were reacted in columns under ambient laboratory conditions for 13.8 yrs, the longest running experimental weathering study to date. Low total column mass losses (<1 wt.%), correlated with the absence of pitting or surface roughening of primary silicate grains. BET surface area (SBET) increased, primarily due to Fe-oxyhydroxide precipitation. Surface areas returned to within factors of 2-3 of their original values after dithionite extraction. Miscible displacement experiments indicated homogeneous plug flow with negligible immobile water, commonly cited for column experiments. Fresh granitoid effluent solute concentrations initially declined rapidly, followed by much slower decreases over the next decade. Weathered granitoid effluent concentrations increased modestly over the same time period, indicating losses of natural Fe-oxide and/or clay coatings and the increased exposure of primary mineral surfaces. Corresponding (fresh and weathered) elemental effluent concentrations trended toward convergence during the last decade of reaction. NETPATH/PHREEQC code simulations indicated non-stoichiometric dissolution involving Ca release from disseminated calcite and excess K release from interlayer biotite. Effluent 87Sr/85Sr ratios reflected a progressive weathering sequence beginning and ending with 87Sr/85Sr values of plagioclase with an additional calcite input and a radiogenic biotite excursion proportional to the granitoid ages. Effluents became thermodynamically saturated with goethite and gibbsite, slightly under-saturated with kaolinite and strongly under-saturated with plagioclase, consistent with kinetically-limited weathering in which solutes such as Na varied with column flow rates. Effluent Na concentrations showed no clear trend with time during the last decade of reaction (fresh granitoids) or increased slowly with time (weathered granitoids). Analysis of cumulative Na release indicated that plagioclase dissolution achieved steady state in 3 of the 4 fresh granitoids during the last decade of reaction. Surface-area normalized plagioclase dissolution rates exhibited a narrow range (0.95-1.26 10-13 moles m-2 s-1), in spite of significant stoichiometric differences (An0.21 to An0.50). Rates were an order of magnitude slower than previously reported in shorter duration experiments but generally 2-3 orders of magnitude faster than corresponding natural analogs. CrunchFlow simulations indicated that more than a hundredfold decrease in column flow rates would be required to produce near-saturation reaction affinities that would start to slow plagioclase weathering to real-world levels. Extending simulations to approximate long term weathering in naturally weathered profiles required additional decreases in the intrinsic plagioclase dissolution and kaolinite precipitation rates and relatively large decreases in the fluid flow rate, implying that exposure to reactive mineral surfaces is significantly limited in the natural environment compared to column experiments.

  17. Facile synthesis of functionalized ionic surfactant templated mesoporous silica for incorporation of poorly water-soluble drug.

    PubMed

    Li, Jing; Xu, Lu; Yang, Baixue; Wang, Hongyu; Bao, Zhihong; Pan, Weisan; Li, Sanming

    2015-08-15

    The present paper reported amino group functionalized anionic surfactant templated mesoporous silica (Amino-AMS) for loading and release of poorly water-soluble drug indomethacin (IMC) and carboxyl group functionalized cationic surfactant templated mesoporous silica (Carboxyl-CMS) for loading and release of poorly water-soluble drug famotidine (FMT). Herein, Amino-AMS and Carboxyl-CMS were facilely synthesized using co-condensation method through two types of silane coupling agent. Amino-AMS was spherical nanoparticles, and Carboxyl-CMS was well-formed spherical nanosphere with a thin layer presented at the edge. Drug loading capacity was obviously enhanced when using Amino-AMS and Carboxyl-CMS as drug carriers due to the stronger hydrogen bonding force formed between surface modified carrier and drug. Amino-AMS and Carboxyl-CMS had the ability to transform crystalline state of loaded drug from crystalline phase to amorphous phase. Therefore, IMC loaded Amino-AMS presented obviously faster release than IMC because amorphous phase of IMC favored its dissolution. The application of asymmetric membrane capsule delayed FMT release significantly, and Carboxyl-CMS favored sustained release of FMT due to its long mesoporous channels and strong interaction formed between its carboxyl group and amino group of FMT. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Analgesic and anti-inflammatory controlled-released injectable microemulsion: Pseudo-ternary phase diagrams, in vitro, ex vivo and in vivo evaluation.

    PubMed

    Pineros, Isabel; Slowing, Karla; Serrano, Dolores R; de Pablo, Esther; Ballesteros, Maria Paloma

    2017-04-01

    Development of analgesic and anti-inflammatory controlled-released injectable microemulsions utilising lysine clonixinate (LC) as model drug and generally regarded as safe (GRAS) excipients. Different microemulsions were optimised through pseudo-ternary phase diagrams and characterised measuring droplet size, viscosity, ex vivo haemolytic activity and in vitro drug release. The anti-inflammatory and analgesic activity was tested in mice (Hot plate test) and rats (Carrageenan-induced paw edema test) respectively and their activity was compared to an aqueous solution of LC salt. The aqueous solution showed a faster and shorter response whereas the optimised microemulsion increased significantly (p<0.01) the potency and duration of the analgesic and anti-inflammatory activity after deep intramuscular injection. The droplet size and the viscosity were key factors to control the drug release from the systems and enhance the effect of the formulations. The microemulsion consisting of Labrafil®/Lauroglycol®/Polysorbate 80/water with LC (56.25/18.75/15/10, w/w) could be a promising formulation after buccal surgery due to its ability to control the drug release and significantly achieve greater analgesic and anti-inflammatory effect over 24h. Copyright © 2016. Published by Elsevier B.V.

  19. Investigation of Methylene Blue Release from Functional Polymeric Systems Using Dielectric Analysis.

    PubMed

    Bruschi, Marcos Luciano; Junqueira, Mariana Volpato; Borghi-Pangoni, Fernanda Belincanta; Yu, Tao; Andrews, Gavin Paul; Jones, David Simon

    2018-01-01

    Methylene blue (MB) is a photosensitizer used in photodynamic therapy (PDT) to treat colorectal cancer tumors and leishmaniasis infection. The clinical efficacy of PDT using MB is dependent on the physicochemical characteristics of the formulation. Bioadhesive thermoresponsive systems containing poloxamer 407 and Carbopol 934P have been proposed as platforms for PDT. However, the effect of MB on the physicochemical properties of these platforms is not fully understood, particularly in light of the MB availability. The aim of this study was to investigate the dielectric characteristics of functional polymeric systems containing MB and their influence on mucoadhesion and drug release. Binary polymeric systems containing different concentrations of poloxamer 407, Carbopol 934P and MB were evaluated as dielectric and mucoadhesive properties, as well as in vitro drug release profile. MB, temperature and polymeric composition influenced the physicochemical properties of the systems. The presence of MB altered the supramolecular structure of the preparations. The mucoadhesive properties of systems were influenced by MB presence and the formulation with the lowest amount of MB displayed faster release. The lower MB concentration in the systems displayed better results in terms of ionic mobility and drug release, and is indicative of a suitable clinical performance. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  20. Cardiorespiratory Kinetics Determined by Pseudo-Random Binary Sequences - Comparisons between Walking and Cycling.

    PubMed

    Koschate, J; Drescher, U; Thieschäfer, L; Heine, O; Baum, K; Hoffmann, U

    2016-12-01

    This study aims to compare cardiorespiratory kinetics as a response to a standardised work rate protocol with pseudo-random binary sequences between cycling and walking in young healthy subjects. Muscular and pulmonary oxygen uptake (V̇O 2 ) kinetics as well as heart rate kinetics were expected to be similar for walking and cycling. Cardiac data and V̇O 2 of 23 healthy young subjects were measured in response to pseudo-random binary sequences. Kinetics were assessed applying time series analysis. Higher maxima of cross-correlation functions between work rate and the respective parameter indicate faster kinetics responses. Muscular V̇O 2 kinetics were estimated from heart rate and pulmonary V̇O 2 using a circulatory model. Muscular (walking vs. cycling [mean±SD in arbitrary units]: 0.40±0.08 vs. 0.41±0.08) and pulmonary V̇O 2 kinetics (0.35±0.06 vs. 0.35±0.06) were not different, although the time courses of the cross-correlation functions of pulmonary V̇O 2 showed unexpected biphasic responses. Heart rate kinetics (0.50±0.14 vs. 0.40±0.14; P=0.017) was faster for walking. Regarding the biphasic cross-correlation functions of pulmonary V̇O 2 during walking, the assessment of muscular V̇O 2 kinetics via pseudo-random binary sequences requires a circulatory model to account for cardio-dynamic distortions. Faster heart rate kinetics for walking should be considered by comparing results from cycle and treadmill ergometry. © Georg Thieme Verlag KG Stuttgart · New York.

  1. The relationship between functional sciatic nerve block duration and the rate of release of lidocaine from a controlled-release matrix.

    PubMed

    Gerner, Peter; Wang, Chi-Fei; Lee, Byung-Sang; Suzuki, Suzuko; Degirolami, Umberto; Gandhi, Ankur; Knaack, David; Strichartz, Gary

    2010-07-01

    Nerve blocks of long duration are often desirable in perioperative and postoperative situations. The relationship between the duration of such blocks and the rate at which a local anesthetic is released is important to know for developing a localized drug delivery system that will optimize block duration. Lidocaine concentration was varied in 1 series of formulations (OSB-L) containing a constant amount of release rate modifier. In another series (OST-R), the release rate modifier was varied while the lidocaine content was held constant. Release kinetics were measured in vitro and correlated to the in vivo duration of antinociceptive and motor block effects when the formulation was implanted next to the rat sciatic nerve. In parallel studies, rats receiving different formulations of slow-release lidocaine were fixed by intracardiac perfusion with 4% paraformaldehyde and nerve-muscle tissue taken for histopathological analysis. In this study, we have demonstrated that the most important variable for effecting functional nerve block, i.e., the blockade of impulses in the relevant fibers of the sciatic nerve, is the rate of lidocaine release at that time. For the OSB-L formulations (lidocaine concentrations of 1.875%, 3.75%, 7.5%, and 15% at a constant release rate modifier of 5%), the average in vitro release rates at 50% recovery of motor block and nociceptive block were 0.91 +/- 0.28 and 1.75 +/- 0.61 mg/h, respectively. For the OST-R formulations (16% lidocaine with release rate modifier concentrations of 1.875%, 3.75%, 7.5%, and 15%), the average in vitro release rates at 50% recovery of motor block and nociceptive block were 2.33 +/- 1.39 and 4.34 +/- 1.09 mg/h, respectively. The OSB-L formulations showed a dose-dependent increase in block duration proportional to an increase in initial lidocaine concentration, whereas the OST-R formulations showed a nonmonotonic relationship between release rate modifier concentration and block duration. The histopathological studies at 24 hours, 3, 5, or 7 days, and 4 weeks after the implantation revealed inflammatory reactions with degrees correlated with lidocaine content, but limited to the connective tissue and muscle immediately surrounding the implanted material. Despite these observed inflammatory reactions, nociceptive and motor block function returned to normal, preimplantation values in all animals. Increasing initial lidocaine content proportionately increased the duration of functional sciatic nerve block. However, decreasing the release rate per se does not give a proportional increase in block duration. Instead, there seems to be an optimal, intermediate release rate for achieving the maximum duration of block.

  2. Patterns of Interspecific Variation in the Heart Rates of Embryonic Reptiles

    PubMed Central

    Du, Wei-Guo; Ye, Hua; Zhao, Bo; Pizzatto, Ligia; Ji, Xiang; Shine, Richard

    2011-01-01

    New non-invasive technologies allow direct measurement of heart rates (and thus, developmental rates) of embryos. We applied these methods to a diverse array of oviparous reptiles (24 species of lizards, 18 snakes, 11 turtles, 1 crocodilian), to identify general influences on cardiac rates during embryogenesis. Heart rates increased with ambient temperature in all lineages, but (at the same temperature) were faster in lizards and turtles than in snakes and crocodilians. We analysed these data within a phylogenetic framework. Embryonic heart rates were faster in species with smaller adult sizes, smaller egg sizes, and shorter incubation periods. Phylogenetic changes in heart rates were negatively correlated with concurrent changes in adult body mass and residual incubation period among the lizards, snakes (especially within pythons) and crocodilians. The total number of embryonic heart beats between oviposition and hatching was lower in squamates than in turtles or the crocodilian. Within squamates, embryonic iguanians and gekkonids required more heartbeats to complete development than did embryos of the other squamate families that we tested. These differences plausibly reflect phylogenetic divergence in the proportion of embryogenesis completed before versus after laying. PMID:22174948

  3. Fission-gas-release rates from irradiated uranium nitride specimens

    NASA Technical Reports Server (NTRS)

    Weinstein, M. B.; Kirchgessner, T. A.; Tambling, T. N.

    1973-01-01

    Fission-gas-release rates from two 93 percent dense UN specimens were measured using a sweep gas facility. Specimen burnup rates averaged .0045 and .0032 percent/hr, and the specimen temperatures ranged from 425 to 1323 K and from 552 to 1502 K, respectively. Burnups up to 7.8 percent were achieved. Fission-gas-release rates first decreased then increased with burnup. Extensive interconnected intergranular porosity formed in the specimen operated at over 1500 K. Release rate variation with both burnup and temperature agreed with previous irradiation test results.

  4. Lysozyme-immobilized electrospun PAMA/PVA and PSSA-MA/PVA ion-exchange nanofiber for wound healing.

    PubMed

    Tonglairoum, Prasopchai; Ngawhirunpat, Tanasait; Rojanarata, Theerasak; Opanasopit, Praneet

    2014-08-27

    Abstract This research was aimed to develop the lysozyme immobilized ion-exchange nanofiber mats for wound healing. To promote the healing process, the PSSA-MA/PVA and PAMA ion-exchange nanofiber mats were fabricated to mimic the extracellular matrix structure using electrospinning process followed by thermally crosslinked. Lysozyme was immobilized on the ion-exchane nanofibers by an adsorption method. The ion-exchange nanofibers were investigated using SEM, FTIR and XRPD. Moreover, the lysozyme-immobilized ion-exchange nanofibers were further investigated for lysozyme content and activity, lysozyme release and wound healing activity. The fiber diameters of the mats were in the nanometer range. Lysozyme was gradually absorbed into the PSSA-MA/PVA nanofiber with higher extend than that is absorbed on the PAMA/PVA nanofiber and exhibited higher activity than lysozyme-immobilized PAMA/PVA nanofiber. The total contents of lysozyme on the PSSA-MA/PVA and PAMA/PVA nanofiber were 648 and 166 µg/g, respectively. FTIR and lysozyme activity results confirmed the presence of lysozyme on the nanofiber mats. The lysozyme was released from the PSSA-MA/PVA and PAMA/PVA nanofiber in the same manner. The lysozyme-immobilized PSSA-MA/PVA nanofiber mats and lysozyme-immobilized PAMA/PVA nanofiber mats exhibited significantly faster healing rate than gauze and similar to the commercial antibacterial gauze dressing. These results suggest that these nanofiber mats could provide the promising candidate for wound healing application.

  5. Effect of mean diameter and polydispersity of PLG microspheres on drug release: experiment and theory.

    PubMed

    Berchane, N S; Carson, K H; Rice-Ficht, A C; Andrews, M J

    2007-06-07

    The need to tailor release rate profiles from polymeric microspheres is a significant problem. Microsphere size, which has a significant effect on drug release rate, can potentially be varied to design a controlled drug delivery system with desired release profile. In this work the effects of microspheres mean diameter, polydispersity, and polymer degradation on drug release rate from poly(lactide-co-glycolide) (PLG) microspheres are described. Piroxicam containing PLG microspheres were fabricated at 20% loading, and at three different impeller speeds. A portion of the microspheres was then sieved giving five different size distributions. In vitro release kinetics were determined for each preparation. Based on these experimental results, a suitable mathematical theory has been developed that incorporates the effect of microsphere size distribution and polymer degradation on drug release. We show from in vitro release experiments that microsphere size has a significant effect on drug release rate. The initial release rate decreased with an increase in microsphere size. In addition, the release profile changed from first order to concave-upward (sigmoidal) as the microsphere size was increased. The mathematical model gave a good fit to the experimental release data. For highly polydisperse populations (polydispersity parameter b<3), incorporating the microsphere size distribution into the mathematical model gave a better fit to the experimental results than using the representative mean diameter. The validated mathematical model can be used to predict small-molecule drug release from PLG microsphere populations.

  6. Effect of Quaternary Ammonium Carboxymethylchitosan on Release Rate In-vitro of Aspirin Sustained-release Matrix Tablets

    PubMed Central

    Meng, Lingbin; Teng, Zhongqiu; Zheng, Nannan; Meng, Weiwei; Dai, Rongji; Deng, Yulin

    2013-01-01

    The aim of this study was to develop a derivative of chitosan as pharmaceutical excipient used in sustained-release matrix tablets of poorly soluble drugs. A water-soluble quaternary ammonium carboxymethylchitosan was synthesized by a two-step reaction with carboxymethylchitosan (CMCTS), decylalkyl dimethyl ammonium and epichlorohydrin. The elemental analysis showed that the target product with 10.27% of the maximum grafting degree was obtained. To assess the preliminary safety of this biopolymer, cell toxicity assay was employed. In order to further investigate quaternary ammonium carboxymethylchitosan application as pharmaceutical excipient, aspirin was chosen as model drug. The effect of quaternary ammonium CMCTS on aspirin release rate from sustained-release matrix tablets was examined by in-vitro dissolution experiments. The results showed that this biopolymer had a great potential in increasing the dissolution of poorly soluble drug. With the addition of CMCTS-CEDA, the final cumulative release rate of drug rose up to 90%. After 12 h, at the grade of 10, 20 and 50 cps, the drug release rate increased from 58.1 to 90.7%, from 64.1 to 93.9%, from 69.3 to 96.1%, respectively. At the same time, aspirin release rate from sustainedrelease model was found to be related to the amount of quaternary ammonium CMCTS employed. With the increase of CMCTS-CEDA content, the accumulated release rate increased from 69.1% to 86.7%. The mechanism of aspirin release from sustained-release matrix tablets was also preliminary studied to be Fick diffusion. These data demonstrated that the chitosan derivative has positive effect on drug release from sustained-release matrix tablets. PMID:24250627

  7. The Relationship between Speech Rate and Memory Span in Children.

    ERIC Educational Resources Information Center

    Henry, Lucy A.

    1994-01-01

    Examined whether speech rate is related to the amount recalled and if developmental increases in speech rate allow faster rehearsal with age, and hence, greater recall. Found that the group relationship was clear and replicable but that speech rates of individual children were not good predictors of those children's memory spans; age was found to…

  8. Testing the Effectiveness of the iRelate Program on Marines: An Enhanced Program Evaluation

    ERIC Educational Resources Information Center

    Lloyd, Griselda M.

    2017-01-01

    Junior enlisted Marines are getting married at a faster rate than their civilian counterparts and nearly twice that of senior personnel (Gomulka, 2010; Cohen, Passel, Wang, & Livingston, 2011). With the high rate of marriage, these same junior Marines have a disproportionately high divorce rate. While the high rate of divorce is a significant…

  9. BPERM version 3.0: A 2-D wakepotential/impedance code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barts, T.; Chou, W.

    1996-10-01

    BPERM 3.0 is an improved version of a previous release. The main purpose of this version is to make it more user friendly. Following a simple 1-2-3 procedure, one obtains both text and graphical output of the wakepotential and impedance for a given geometry. The calculation is based on a boundary perturbation method, which is significantly faster than numerical simulations. It is accurate when the discontinuities are small. In particular, it works well for tapered structures. 5 refs., 3 figs.

  10. Capacious and programmable multi-liposomal carriers

    NASA Astrophysics Data System (ADS)

    Yaroslavov, Alexander A.; Sybachin, Andrey V.; Zaborova, Olga V.; Migulin, Vasiliy A.; Samoshin, Vyacheslav V.; Ballauff, Matthias; Kesselman, Ellina; Schmidt, Judith; Talmon, Yeshayahu; Menger, Fredric M.

    2015-01-01

    Spherical polycationic brushes (SPBs) were synthesized by grafting polycationic chains onto 100 nm polystyrene particles. These particles were exposed to unilamellar egg-lecithin (EL) liposomes with a mean diameter of 40 nm that had been rendered anionic via the presence of 10 molar% of phosphatidylserine (PS1-). The liposomes also contained 30 mole% of a morpholinocyclohexanol-based lipid (MOCH) that undergoes a conformational flip when the pH is decreased from 7.0 to 5.0. Mixtures of SPBs and liposomes at pH 7 gave an electrostatically-driven complex possessing, on average, about 40 liposomes for each SPB particle. It was found that the bound liposomes rapidly release much of their contents when the pH is reduced from 7.0 to 5.0 owing mostly to a MOCH conformational change that creates defects in the bilayer membrane. The drop in pH does not, however, induce a separation of the liposomes from the SPBs. Around 50-60% of the liposome contents escape before, it is reasoned, lateral and transmembrane motion of the membrane components heals the defects and prevents further release. Remarkably, the liposomes complexed with SPB release their cargo much faster than the identical but non-complexed liposomes.Spherical polycationic brushes (SPBs) were synthesized by grafting polycationic chains onto 100 nm polystyrene particles. These particles were exposed to unilamellar egg-lecithin (EL) liposomes with a mean diameter of 40 nm that had been rendered anionic via the presence of 10 molar% of phosphatidylserine (PS1-). The liposomes also contained 30 mole% of a morpholinocyclohexanol-based lipid (MOCH) that undergoes a conformational flip when the pH is decreased from 7.0 to 5.0. Mixtures of SPBs and liposomes at pH 7 gave an electrostatically-driven complex possessing, on average, about 40 liposomes for each SPB particle. It was found that the bound liposomes rapidly release much of their contents when the pH is reduced from 7.0 to 5.0 owing mostly to a MOCH conformational change that creates defects in the bilayer membrane. The drop in pH does not, however, induce a separation of the liposomes from the SPBs. Around 50-60% of the liposome contents escape before, it is reasoned, lateral and transmembrane motion of the membrane components heals the defects and prevents further release. Remarkably, the liposomes complexed with SPB release their cargo much faster than the identical but non-complexed liposomes. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr06037g

  11. Strain Rate Dependency of Fracture Toughness, Energy Release Rate and Geomechanical Attributes of Select Indian Shales

    NASA Astrophysics Data System (ADS)

    Mahanta, B.; Vishal, V.; Singh, T. N.; Ranjith, P.

    2016-12-01

    In addition to modern improved technology, it requires detailed understanding of rock fractures for the purpose of enhanced energy extraction through hydraulic fracturing of gas shales and geothermal energy systems. The understanding of rock fracture behavior, patterns and properties such as fracture toughness; energy release rate; strength and deformation attributes during fracturing hold significance. Environmental factors like temperature, pressure, humidity, water vapor and experimental condition such as strain rate influence the estimation of these properties. In this study, the effects of strain rates on fracture toughness, energy release rate as well as geomechanical properties like uniaxial compressive strength, Young's modulus, failure strain, tensile strength, and brittleness index of gas shales were investigated. In addition to the rock-mechanical parameters, the fracture toughness and the energy release rates were measured for three different modes viz. mode I, mixed mode (I-II) and mode II. Petrographic and X-ray diffraction (XRD) analyses were performed to identify the mineral composition of the shale samples. Scanning electron microscope (SEM) analyses were conducted to have an insight about the strain rate effects on micro-structure of the rock. The results suggest that the fracture toughness; the energy release rate as well as other geomechanical properties are a function of strain rates. At high strain rates, the strength and stiffness of shale increases which in turn increases the fracture toughness and the energy release rate of shale that may be due to stress redistribution during grain fracturing. The fracture toughness and the strain energy release rates for all the modes (I/I-II/II) are comparable at lower strain rates, but they vary considerably at higher strain rates. In all the cases, mode I and mode II fracturing requires minimum and maximum applied energy, respectively. Mode I energy release rate is maximum, compared to the other modes.

  12. Hindered disulfide bonds to regulate release rate of model drug from mesoporous silica.

    PubMed

    Nadrah, Peter; Maver, Uroš; Jemec, Anita; Tišler, Tatjana; Bele, Marjan; Dražić, Goran; Benčina, Mojca; Pintar, Albin; Planinšek, Odon; Gaberšček, Miran

    2013-05-01

    With the advancement of drug delivery systems based on mesoporous silica nanoparticles (MSNs), a simple and efficient method regulating the drug release kinetics is needed. We developed redox-responsive release systems with three levels of hindrance around the disulfide bond. A model drug (rhodamine B dye) was loaded into MSNs' mesoporous voids. The pore opening was capped with β-cyclodextrin in order to prevent leakage of drug. Indeed, in absence of a reducing agent the systems exhibited little leakage, while the addition of dithiothreitol cleaved the disulfide bonds and enabled the release of cargo. The release rate and the amount of released dye were tuned by the level of hindrance around disulfide bonds, with the increased hindrance causing a decrease in the release rate as well as in the amount of released drug. Thus, we demonstrated the ability of the present mesoporous systems to intrinsically control the release rate and the amount of the released cargo by only minor structural variations. Furthermore, an in vivo experiment on zebrafish confirmed that the present model delivery system is nonteratogenic.

  13. In vitro-in vivo evaluation of in situ gelling and thermosensitive ketoprofen liquid suppositories.

    PubMed

    Ozgüney, Işık; Kardhiqi, Anita; Yıldız, Gülbeyaz; Ertan, Gökhan

    2014-12-01

    The main objective of this study was to investigate the release and pharmacokinetic profiles of ketoprofen (KP) from developed thermosensitive and mucoadhesive liquid suppositories. Thermosensitive liquid suppositories were prepared using KP, poloxamer 407 (P 407), poloxamer 188 (P 188) and various amounts of different mucoadhesive polymers. In vitro release studies was monitored by the USP XXVI paddle method. The results thus obtained were evaluated kinetically and mechanism of release was analyzed. Identification of poloxamer gel localization in vivo was conducted using white male rabbits by adding 1 % methylene blue. For in vivo studies, twenty-four white male rabbits were randomly divided into three groups. The rabbits in each group were administered with liquid suppository F1 [P407/P188/KP (4/20/2.5 %)], F5 [P407/P188/KP/C (4/20/2.5/0.8 %)] or conventional suppository (F-C) into the rectum. The plasma concentration of KP was analyzed by high performance liquid chromatography (HPLC). C max, AUC, MRT and T max were evaluated. The release of KP was variously affected by the mucoadhesive polymers. In vitro release studies showed that Carbopol 934 P(C) has significant effect on release rate among the mucoadhesive polymers. When the formulations were evaluated kinetically, different kinetic models were obtained. Formulation F6 [P407/P188/KP/C (4/20/2.5/1.6 %)] which contains the highest C concentration and very high viscosity, shows a significantly better fit with Higuchi kinetic model. n value of this formulation was also found approximately 0.5. n exponent results of the other formulations showed that KP might be released from the suppositories by non-Fickian diffusion. Identification of poloxamer gel localization in vivo showed that the suppositories remain in the rectum without leakage after administration. With regard to the results of in vivo studies, the AUC6→14 values of KP in liquid suppository containing C are significantly higher than those in liquid suppository without C. MRT0→24 and MRT0→∞ values of liquid suppository containing C are significantly higher than those in liquid suppository without C and conventional suppository. Conventional suppository and liquid suppository without C significantly gave faster time to reach the maximum plasma concentrations of KP. With regard to the in vitro and in vivo experiments, liquid suppository formulation F5 might be a promising formulation for the development of an effective rectal dosage form.

  14. Relative bioavailability of single doses of prolonged-release tacrolimus administered as a suspension, orally or via a nasogastric tube, compared with intact capsules: a phase 1 study in healthy participants.

    PubMed

    Undre, Nasrullah; Dickinson, James

    2017-04-04

    Tacrolimus, an immunosuppressant widely used in solid organ transplantation, is available as a prolonged-release capsule for once-daily oral administration. In the immediate postsurgical period, if patients cannot take intact capsules orally, tacrolimus therapy is often initiated as a suspension of the capsule contents, delivered orally or via a nasogastric tube. This study evaluated the relative bioavailability of prolonged-release tacrolimus suspension versus intact capsules in healthy participants. A phase 1, open-label, single-dose, cross-over study. A single clinical research unit. In total, 20 male participants, 18-55 years old, entered and completed the study. All participants received nasogastric administration of tacrolimus 10 mg suspension in treatment period 1, with randomisation to oral administration of suspension or intact capsules in periods 2 and 3. Blood concentration-time profile over 144 hours was used to estimate pharmacokinetic parameters. Primary end point: relative bioavailability of prolonged-release intact capsule versus oral or nasogastric administration of prolonged-release tacrolimus suspension (area under the concentration-time curve (AUC) from time 0 to infinity post-tacrolimus dose (AUC 0-∞ ); AUC measured until the last quantifiable concentration (AUC 0-tz ); maximum observed concentration (C max ); time to C max (T max )). Tolerability was assessed throughout the study. Relative bioavailability of prolonged-release tacrolimus suspension administered orally was similar to intact capsules, with a ratio of least-square means for AUC 0-tz and AUC 0-∞ of 1.05 (90% CI 0.96 to 1.14). Bioavailability was lower with suspension administered via a nasogastric tube versus intact capsules (17%; ratio 0.83; CI 0.76 to 0.92). C max was higher for oral and nasogastric suspension (30% and 28%, respectively), and median T max was shorter (difference 1.0 and 1.5 hours postdose, respectively) versus intact capsules (2.0 hours). Single 10 mg doses of tacrolimus were well tolerated. Compared with intact capsules, the rate of absorption of prolonged-release tacrolimus from suspension was faster, leading to higher peak blood concentrations and shorter time to peak; relative bioavailability was similar with suspension administered orally. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  15. Release from or through a wax matrix system. I. Basic release properties of the wax matrix system.

    PubMed

    Yonezawa, Y; Ishida, S; Sunada, H

    2001-11-01

    Release properties from a wax matrix tablet was examined. To obtain basic release properties, the wax matrix tablet was prepared from a physical mixture of drug and wax powder (hydrogenated caster oil) at a fixed mixing ratio. Properties of release from the single flat-faced surface or curved side surface of the wax matrix tablet were examined. The applicability of the square-root time law and of Higuchi equations was confirmed. The release rate constant obtained as g/min(1/2) changed with the release direction. However, the release rate constant obtained as g/cm2 x min(1/2) was almost the same. Hence it was suggested that the release property was almost the same and the wax matrix structure was uniform independent of release surface or direction at a fixed mixing ratio. However, these equations could not explain the entire release process. The applicability of a semilogarithmic equation was not as good compared with the square-root time law or Higuchi equation. However, it was revealed that the semilogarithmic equation was available to simulate the entire release process, even though the fit was somewhat poor. Hence it was suggested that the semilogarithmic equation was sufficient to describe the release process. The release rate constant was varied with release direction. However, these release rate constants were expressed by a function of the effective surface area and initial amount, independent of the release direction.

  16. Reconviction and revocation rates in Flanders after medium security treatment.

    PubMed

    Jeandarme, Inge; Habets, Petra; Oei, T I; Bogaerts, Stefan

    2016-01-01

    To examine the criminal outcome of Flemish forensic psychiatric patients ('internees') after medium security treatment. Also, the effect of conditional release on recidivism of two subgroups (internees under conditional release and internees who received unconditional release) was examined. Reconviction rates and revocation rates were collected for all participants. Kaplan-Meier survival analyses were used to investigate recidivism rates while controlling for time at risk. During the 10-year period, 502 offenders were discharged from medium security treatment. Over a follow-up period averaging 3.6years, 7.4% of discharged patients were reconvicted or received a new 'not guilty by reason of insanity' (NGRI) verdict for a violent offence. One-quarter of the population had their conditional release revoked. Part of the study population was granted unconditional release. Reconviction rates were higher after unconditional release in comparison to conditional release. The results of this study suggest that the court supervision of NGRI patients in Flanders is effective in protecting the community from further offending. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Development of extended release dosage forms using non-uniform drug distribution techniques.

    PubMed

    Huang, Kuo-Kuang; Wang, Da-Peng; Meng, Chung-Ling

    2002-05-01

    Development of an extended release oral dosage form for nifedipine using the non-uniform drug distribution matrix method was conducted. The process conducted in a fluid bed processing unit was optimized by controlling the concentration gradient of nifedipine in the coating solution and the spray rate applied to the non-pareil beads. The concentration of nifedipine in the coating was controlled by instantaneous dilutions of coating solution with polymer dispersion transported from another reservoir into the coating solution at a controlled rate. The USP dissolution method equipped with paddles at 100 rpm in 0.1 N hydrochloric acid solution maintained at 37 degrees C was used for the evaluation of release rate characteristics. Results indicated that (1) an increase in the ethyl cellulose content in the coated beads decreased the nifedipine release rate, (2) incorporation of water-soluble sucrose into the formulation increased the release rate of nifedipine, and (3) adjustment of the spray coating solution and the transport rate of polymer dispersion could achieve a dosage form with a zero-order release rate. Since zero-order release rate and constant plasma concentration were achieved in this study using the non-uniform drug distribution technique, further studies to determine in vivo/in vitro correlation with various non-uniform drug distribution dosage forms will be conducted.

  18. Polymer/reduced graphene oxide functionalized sponges as superabsorbents for oil removal and recovery.

    PubMed

    Periasamy, Arun Prakash; Wu, Wen-Ping; Ravindranath, Rini; Roy, Prathik; Lin, Guan-Lin; Chang, Huan-Tsung

    2017-01-30

    Polyurethane dish-washing (PU-DW) sponges are functionalized sequentially with polyethylenimine (PEI) and graphene oxide (GO) to form PEI/reduced graphene oxide (RGO) PU-DW sponges. The PEI/RGO PU-DW sponge consists of PEI/RGO sheets having numerous pores, with diameters ranging from 236 to 254nm. To further enhance hydrophobicity and absorption capacity of oil, PEI/RGO PU-DW sponge is further coated with 20% phenyltrimethoxysilane (PTMOS). The PTMOS/PEI/RGO PU-DW sponge absorbs various oils within 20s, with maximum absorption capacity values of 880% and 840% for bicycle chain oil and motorcycle engine oil, respectively. The absorbed oils were released completely by squeezing or immersed in hexane. The PTMOS/PEI/RGO PU-DW sponge efficiently separates oil/water mixtures through a flowing system. Having the advantages of faster absorption rate, reusability, and low cost, the PTMOS/PEI/RGO PU-DW sponge holds great potential as a superabsorbent for efficient removal and recovery of oil spills as well as for the separation of oil/water mixtures. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Targeting GLP-1 receptor trafficking to improve agonist efficacy.

    PubMed

    Jones, Ben; Buenaventura, Teresa; Kanda, Nisha; Chabosseau, Pauline; Owen, Bryn M; Scott, Rebecca; Goldin, Robert; Angkathunyakul, Napat; Corrêa, Ivan R; Bosco, Domenico; Johnson, Paul R; Piemonti, Lorenzo; Marchetti, Piero; Shapiro, A M James; Cochran, Blake J; Hanyaloglu, Aylin C; Inoue, Asuka; Tan, Tricia; Rutter, Guy A; Tomas, Alejandra; Bloom, Stephen R

    2018-04-23

    Glucagon-like peptide-1 receptor (GLP-1R) activation promotes insulin secretion from pancreatic beta cells, causes weight loss, and is an important pharmacological target in type 2 diabetes (T2D). Like other G protein-coupled receptors, the GLP-1R undergoes agonist-mediated endocytosis, but the functional and therapeutic consequences of modulating GLP-1R endocytic trafficking have not been clearly defined. Here, we investigate a series of biased GLP-1R agonists with variable propensities for GLP-1R internalization and recycling. Compared to a panel of FDA-approved GLP-1 mimetics, compounds that retain GLP-1R at the plasma membrane produce greater long-term insulin release, which is dependent on a reduction in β-arrestin recruitment and faster agonist dissociation rates. Such molecules elicit glycemic benefits in mice without concomitant increases in signs of nausea, a common side effect of GLP-1 therapies. Our study identifies a set of agents with specific GLP-1R trafficking profiles and the potential for greater efficacy and tolerability as T2D treatments.

  20. Impacts of ocean acidification on sperm develop with exposure time for a polychaete with long lived sperm.

    PubMed

    Campbell, Anna L; Ellis, Robert P; Urbina, Mauricio A; Mourabit, Sulayman; Galloway, Tamara S; Lewis, Ceri

    2017-08-01

    The majority of marine invertebrate species release eggs and sperm into seawater for external fertilisation. Seawater conditions are currently changing at an unprecedented rate as a consequence of ocean acidification (OA). Sperm are thought to be particularly vulnerable to these changes and may be exposed to external environmental conditions for variable periods of time between spawning and fertilisation. Here, we undertook a mechanistic investigation of sperm swimming performance in the coastal polychaete Arenicola marina during an extended exposure to OA conditions (pH NBS 7.77, 1000 μatm pCO 2 ). We found that key fitness-related aspects of sperm functioning declined faster under OA conditions i.e. impacts became apparent with exposure time. Sperm swimming speed (VCL), the number of motile sperm and sperm path linearity all dropped significantly after 4 h under OA conditions whilst remaining constant under ambient conditions at this time point. Our results highlight the importance of sperm exposure duration in ocean acidification experiments and may help towards explaining species specific differences in response. Copyright © 2017 Elsevier Ltd. All rights reserved.

Top