Oliver, J E; Cobine, P A; De La Fuente, L
2015-07-01
Xylella fastidiosa is a xylem-limited gram-negative plant pathogen that affects numerous crop species, including grape, citrus, peach, pecan, and almond. Recently, X. fastidiosa has also been found to be the cause of bacterial leaf scorch on blueberry in the southeastern United States. Thus far, all X. fastidiosa isolates obtained from infected blueberry have been classified as X. fastidiosa subsp. multiplex; however, X. fastidiosa subsp. fastidiosa isolates are also present in the southeastern United States and commonly cause Pierce's disease of grapevines. In this study, seven southeastern U.S. isolates of X. fastidiosa, including three X. fastidiosa subsp. fastidiosa isolates from grape, one X. fastidiosa subsp. fastidiosa isolate from elderberry, and three X. fastidiosa subsp. multiplex isolates from blueberry, were used to infect the southern highbush blueberry 'Rebel'. Following inoculation, all isolates colonized blueberry, and isolates from both X. fastidiosa subsp. multiplex and X. fastidiosa subsp. fastidiosa caused symptoms, including characteristic stem yellowing and leaf scorch symptoms as well as dieback of the stem tips. Two X. fastidiosa subsp. multiplex isolates from blueberry caused more severe symptoms than the other isolates examined, and infection with these two isolates also had a significant impact on host mineral nutrient content in sap and leaves. These findings have potential implications for understanding X. fastidiosa host adaptation and expansion and the development of emerging diseases caused by this bacterium.
Yuan, Xiaoli; Morano, Lisa; Bromley, Robin; Spring-Pearson, Senanu; Stouthamer, Richard; Nunney, Leonard
2010-06-01
Using a modified multilocus sequence typing (MLST) scheme for the bacterial plant pathogen Xylella fastidiosa based on the same seven housekeeping genes employed in a previously published MLST, we studied the genetic diversity of two subspecies, X. fastidiosa subsp. fastidiosa and X. fastidiosa subsp. sandyi, which cause Pierce's disease and oleander leaf scorch, respectively. Typing of 85 U.S. isolates (plus one from northern Mexico) of X. fastidiosa subsp. fastidiosa from 15 different plant hosts and 21 isolates of X. fastidiosa subsp. sandyi from 4 different hosts in California and Texas supported their subspecific status. Analysis using the MLST genes plus one cell-surface gene showed no significant genetic differentiation based on geography or host plant within either subspecies. Two cases of homologous recombination (with X. fastidiosa subsp. multiplex, the third U.S. subspecies) were detected in X. fastidiosa subsp. fastidiosa. Excluding recombination, MLST site polymorphism in X. fastidiosa subsp. fastidiosa (0.048%) and X. fastidiosa subsp. sandyi (0.000%) was substantially lower than in X. fastidiosa subsp. multiplex (0.240%), consistent with the hypothesis that X. fastidiosa subspp. fastidiosa and sandyi were introduced into the United States (probably just prior to 1880 and 1980, respectively). Using whole-genome analysis, we showed that MLST is more effective at genetic discrimination at the specific and subspecific level than other typing methods applied to X. fastidiosa. Moreover, MLST is the only technique effective in detecting recombination.
Homologous Recombination and Xylella fastidiosa Host-Pathogen Associations in South America.
Coletta-Filho, Helvécio D; Francisco, Carolina S; Lopes, João R S; Muller, Christiane; Almeida, Rodrigo P P
2017-03-01
Homologous recombination affects the evolution of bacteria such as Xylella fastidiosa, a naturally competent plant pathogen that requires insect vectors for dispersal. This bacterial species is taxonomically divided into subspecies, with phylogenetic clusters within subspecies that are host specific. One subspecies, pauca, is primarily limited to South America, with the exception of recently reported strains in Europe and Costa Rica. Despite the economic importance of X. fastidiosa subsp. pauca in South America, little is known about its genetic diversity. Multilocus sequence typing (MLST) has previously identified six sequence types (ST) among plant samples collected in Brazil (both subsp. pauca and multiplex). Here, we report on a survey of X. fastidiosa genetic diversity (MLST based) performed in six regions in Brazil and two in Argentina, by sampling five different plant species. In addition to the six previously reported ST, seven new subsp. pauca and two new subsp. multiplex ST were identified. The presence of subsp. multiplex in South America is considered to be the consequence of a single introduction from its native range in North America more than 80 years ago. Different phylogenetic approaches clustered the South American ST into four groups, with strains infecting citrus (subsp. pauca); coffee and olive (subsp. pauca); coffee, hibiscus, and plum (subsp. pauca); and plum (subsp. multiplex). In areas where these different genetic clusters occurred sympatrically, we found evidence of homologous recombination in the form of bidirectional allelic exchange between subspp. pauca and multiplex. In fact, the only strain of subsp. pauca isolated from a plum host had an allele that originated from subsp. multiplex. These signatures of bidirectional homologous recombination between endemic and introduced ST indicate that gene flow occurs in short evolutionary time frames in X. fastidiosa, despite the ecological isolation (i.e., host plant species) of genotypes.
Hopkins, Donald L.; Morano, Lisa D.; Russell, Stephanie E.; Stouthamer, Richard
2014-01-01
The bacterial pathogen Xylella fastidiosa infects xylem and causes disease in many plant species in the Americas. Different subspecies of this bacterium and different genotypes within subspecies infect different plant hosts, but the genetics of host adaptation are unknown. Here we examined the hypothesis that the introduction of novel genetic variation via intersubspecific homologous recombination (IHR) facilitates host shifts. We investigated IHR in 33 X. fastidiosa subsp. multiplex isolates previously identified as recombinant based on 8 loci (7 multilocus sequence typing [MLST] loci plus 1 locus). We found significant evidence of introgression from X. fastidiosa subsp. fastidiosa in 4 of the loci and, using published data, evidence of IHR in 6 of 9 additional loci. Our data showed that IHR regions in 2 of the 4 loci were inconsistent (12 mismatches) with X. fastidiosa subsp. fastidiosa alleles found in the United States but consistent with alleles from Central America. The other two loci were consistent with alleles from both regions. We propose that the recombinant forms all originated via genomewide recombination of one X. fastidiosa subsp. multiplex ancestor with one X. fastidiosa subsp. fastidiosa donor from Central America that was introduced into the United States but subsequently disappeared. Using all of the available data, 5 plant hosts of the recombinant types were identified, 3 of which also supported non-IHR X. fastidiosa subsp. multiplex, but 2 were unique to recombinant types from blueberry (7 isolates from Georgia, 3 from Florida); and blackberry (1 each from Florida and North Carolina), strongly supporting the hypothesis that IHR facilitated a host shift to blueberry and possibly blackberry. PMID:24296499
Nunney, Leonard; Hopkins, Donald L; Morano, Lisa D; Russell, Stephanie E; Stouthamer, Richard
2014-02-01
The bacterial pathogen Xylella fastidiosa infects xylem and causes disease in many plant species in the Americas. Different subspecies of this bacterium and different genotypes within subspecies infect different plant hosts, but the genetics of host adaptation are unknown. Here we examined the hypothesis that the introduction of novel genetic variation via intersubspecific homologous recombination (IHR) facilitates host shifts. We investigated IHR in 33 X. fastidiosa subsp. multiplex isolates previously identified as recombinant based on 8 loci (7 multilocus sequence typing [MLST] loci plus 1 locus). We found significant evidence of introgression from X. fastidiosa subsp. fastidiosa in 4 of the loci and, using published data, evidence of IHR in 6 of 9 additional loci. Our data showed that IHR regions in 2 of the 4 loci were inconsistent (12 mismatches) with X. fastidiosa subsp. fastidiosa alleles found in the United States but consistent with alleles from Central America. The other two loci were consistent with alleles from both regions. We propose that the recombinant forms all originated via genomewide recombination of one X. fastidiosa subsp. multiplex ancestor with one X. fastidiosa subsp. fastidiosa donor from Central America that was introduced into the United States but subsequently disappeared. Using all of the available data, 5 plant hosts of the recombinant types were identified, 3 of which also supported non-IHR X. fastidiosa subsp. multiplex, but 2 were unique to recombinant types from blueberry (7 isolates from Georgia, 3 from Florida); and blackberry (1 each from Florida and North Carolina), strongly supporting the hypothesis that IHR facilitated a host shift to blueberry and possibly blackberry.
Schuenzel, Erin L.; Scally, Mark; Bromley, Robin E.; Stouthamer, Richard
2014-01-01
Homologous recombination plays an important role in the structuring of genetic variation of many bacteria; however, its importance in adaptive evolution is not well established. We investigated the association of intersubspecific homologous recombination (IHR) with the shift to a novel host (mulberry) by the plant-pathogenic bacterium Xylella fastidiosa. Mulberry leaf scorch was identified about 25 years ago in native red mulberry in the eastern United States and has spread to introduced white mulberry in California. Comparing a sequence of 8 genes (4,706 bp) from 21 mulberry-type isolates to published data (352 isolates representing all subspecies), we confirmed previous indications that the mulberry isolates define a group distinct from the 4 subspecies, and we propose naming the taxon X. fastidiosa subsp. morus. The ancestry of its gene sequences was mixed, with 4 derived from X. fastidiosa subsp. fastidiosa (introduced from Central America), 3 from X. fastidiosa subsp. multiplex (considered native to the United States), and 1 chimeric, demonstrating that this group originated by large-scale IHR. The very low within-type genetic variation (0.08% site polymorphism), plus the apparent inability of native X. fastidiosa subsp. multiplex to infect mulberry, suggests that this host shift was achieved after strong selection acted on genetic variants created by IHR. Sequence data indicate that a single ancestral IHR event gave rise not only to X. fastidiosa subsp. morus but also to the X. fastidiosa subsp. multiplex recombinant group which infects several hosts but is the only type naturally infecting blueberry, thus implicating this IHR in the invasion of at least two novel native hosts, mulberry and blueberry. PMID:24610840
Nunney, Leonard; Schuenzel, Erin L; Scally, Mark; Bromley, Robin E; Stouthamer, Richard
2014-05-01
Homologous recombination plays an important role in the structuring of genetic variation of many bacteria; however, its importance in adaptive evolution is not well established. We investigated the association of intersubspecific homologous recombination (IHR) with the shift to a novel host (mulberry) by the plant-pathogenic bacterium Xylella fastidiosa. Mulberry leaf scorch was identified about 25 years ago in native red mulberry in the eastern United States and has spread to introduced white mulberry in California. Comparing a sequence of 8 genes (4,706 bp) from 21 mulberry-type isolates to published data (352 isolates representing all subspecies), we confirmed previous indications that the mulberry isolates define a group distinct from the 4 subspecies, and we propose naming the taxon X. fastidiosa subsp. morus. The ancestry of its gene sequences was mixed, with 4 derived from X. fastidiosa subsp. fastidiosa (introduced from Central America), 3 from X. fastidiosa subsp. multiplex (considered native to the United States), and 1 chimeric, demonstrating that this group originated by large-scale IHR. The very low within-type genetic variation (0.08% site polymorphism), plus the apparent inability of native X. fastidiosa subsp. multiplex to infect mulberry, suggests that this host shift was achieved after strong selection acted on genetic variants created by IHR. Sequence data indicate that a single ancestral IHR event gave rise not only to X. fastidiosa subsp. morus but also to the X. fastidiosa subsp. multiplex recombinant group which infects several hosts but is the only type naturally infecting blueberry, thus implicating this IHR in the invasion of at least two novel native hosts, mulberry and blueberry.
USDA-ARS?s Scientific Manuscript database
This study reports a de novo assembled draft genome sequence of Xylella fastidiosa subsp. multiplex strain BB01 causing blueberry bacterial leaf scorch in Georgia, USA. The BB01 genome is 2,517,579 bp with a G+C content of 51.8% and 2,943 open reading frames (ORFs) and 48 RNA genes....
Genetic analysis of a novel Xylella fastidiosa subspecies found in the southwestern United States.
Randall, Jennifer J; Goldberg, Natalie P; Kemp, John D; Radionenko, Maxim; French, Jason M; Olsen, Mary W; Hanson, Stephen F
2009-09-01
Xylella fastidiosa, the causal agent of several scorch diseases, is associated with leaf scorch symptoms in Chitalpa tashkentensis, a common ornamental landscape plant used throughout the southwestern United States. For a number of years, many chitalpa trees in southern New Mexico and Arizona exhibited leaf scorch symptoms, and the results from a regional survey show that chitalpa trees from New Mexico, Arizona, and California are frequently infected with X. fastidiosa. Phylogenetic analysis of multiple loci was used to compare the X. fastidiosa infecting chitalpa strains from New Mexico, Arizona, and trees imported into New Mexico nurseries with previously reported X. fastidiosa strains. Loci analyzed included the 16S ribosome, 16S-23S ribosomal intergenic spacer region, gyrase-B, simple sequence repeat sequences, X. fastidiosa-specific sequences, and the virulence-associated protein (VapD). This analysis indicates that the X. fastidiosa isolates associated with infected chitalpa trees in the Southwest are a highly related group that is distinct from the four previously defined taxons X. fastidiosa subsp. fastidiosa (piercei), X. fastidiosa subsp. multiplex, X. fastidiosa subsp. sandyi, and X. fastidiosa subsp. pauca. Therefore, the classification proposed for this new subspecies is X. fastidiosa subsp. tashke.
USDA-ARS?s Scientific Manuscript database
The draft genome sequence of Xylella fastidiosa subsp. multiplex Strain Griffin-1 isolated from a red oak tree (Quercus rubra) in Georgia, U.S.A. is reported. The bacterium has a genome size of 2,387,314 bp with 51.7% G+C content and comprises 2,903 predicted open reading frames (ORFs), and 50 RNA g...
Scally, Mark; Schuenzel, Erin L; Stouthamer, Richard; Nunney, Leonard
2005-12-01
Multilocus sequence typing (MLST) identifies and groups bacterial strains based on DNA sequence data from (typically) seven housekeeping genes. MLST has also been employed to estimate the relative contributions of recombination and point mutation to clonal divergence. We applied MLST to the plant pathogen Xylella fastidiosa using an initial set of sequences for 10 loci (9.3 kb) of 25 strains from five different host plants, grapevine (PD strains), oleander (OLS strains), oak (OAK strains), almond (ALS strains), and peach (PP strains). An eBURST analysis identified six clonal complexes using the grouping criterion that each member must be identical to at least one other member at 7 or more of the 10 loci. These clonal complexes corresponded to previously identified phylogenetic clades; clonal complex 1 (CC1) (all PD strains plus two ALS strains) and CC2 (OLS strains) defined the X. fastidiosa subsp. fastidiosa and X. fastidiosa subsp. sandyi clades, while CC3 (ALS strains), CC4 (OAK strains), and CC5 (PP strains) were subclades of X. fastidiosa subsp. multiplex. CC6 (ALS strains) identified an X. fastidiosa subsp. multiplex-like group characterized by a high frequency of intersubspecific recombination. Compared to the recombination rate in other bacterial species, the recombination rate in X. fastidiosa is relatively low. Recombination between different alleles was estimated to give rise to 76% of the nucleotide changes and 31% of the allelic changes observed. The housekeeping loci holC, nuoL, leuA, gltT, cysG, petC, and lacF were chosen to form the basis of a public database for typing X. fastidiosa (www.mlst.net). These loci identified the same six clonal complexes using the strain grouping criterion of identity at five or more loci with at least one other member.
Giampetruzzi, Annalisa; Saponari, Maria; Loconsole, Giuliana; Boscia, Donato; Savino, Vito Nicola; Almeida, Rodrigo P P; Zicca, Stefania; Landa, Blanca B; Chacón-Diaz, Carlos; Saldarelli, Pasquale
2017-07-01
Xylella fastidiosa is a plant-pathogenic bacterium recently introduced in Europe that is causing decline in olive trees in the South of Italy. Genetic studies have consistently shown that the bacterial genotype recovered from infected olive trees belongs to the sequence type ST53 within subspecies pauca. This genotype, ST53, has also been reported to occur in Costa Rica. The ancestry of ST53 was recently clarified, showing it contains alleles that are monophyletic with those of subsp. pauca in South America. To more robustly determine the phylogenetic placement of ST53 within X. fastidiosa, we performed a comparative analysis based on single nucleotide polymorphisms (SNPs) and the study of the pan-genome of the 27 currently public available whole genome sequences of X. fastidiosa. The resulting maximum-parsimony and maximum likelihood trees constructed using the SNPs and the pan-genome analysis are consistent with previously described X. fastidiosa taxonomy, distinguishing the subsp. fastidiosa, multiplex, pauca, sandyi, and morus. Within the subsp. pauca, the Italian and three Costa Rican isolates, all belonging to ST53, formed a compact phylotype in a clade divergent from the South American pauca isolates, also distinct from the recently described coffee isolate CFBP8072 imported into Europe from Ecuador. These findings were also supported by the gene characterization of a conjugative plasmid shared by all the four ST53 isolates. Furthermore, isolates of the ST53 clade possess an exclusive locus encoding a putative ATP-binding protein belonging to the family of histidine kinase-like ATPase gene, which is not present in isolates from the subspecies multiplex, sandyi, and pauca, but was detected in ST21 isolates of the subspecies fastidiosa from Costa Rica. The clustering and distinctiveness of the ST53 isolates supports the hypothesis of their common origin, and the limited genetic diversity among these isolates suggests this is an emerging clade within subsp. pauca.
Conjugative Plasmid Transfer in Xylella fastidiosa Is Dependent on tra and trb Operon Functions
Van Horn, Christopher R.
2017-01-01
ABSTRACT The insect-transmitted plant pathogen Xylella fastidiosa is capable of efficient horizontal gene transfer (HGT) and recombination. Natural transformation occurs at high rates in X. fastidiosa, but there also is evidence that certain strains of X. fastidiosa carry native plasmids equipped with transfer and mobilization genes, suggesting conjugation as an additional mechanism of HGT in some instances. Two operons, tra and trb, putatively encoding a conjugative type IV secretion system, are found in some but not all X. fastidiosa isolates, often on native plasmids. X. fastidiosa strains that carry the conjugative transfer genes can belong to different subspecies and frequently differ in host ranges. Using X. fastidiosa strain M23 (X. fastidiosa subsp. fastidiosa) or Dixon (X. fastidiosa subsp. multiplex) as the donor strain and Temecula (X. fastidiosa subsp. fastidiosa) as the recipient strain, plasmid transfer was characterized using the mobilizable broad-host-range vector pBBR5pemIK. Transfer of plasmid pBBR5pemIK was observed under in vitro conditions with both donor strains and was dependent on both tra and trb operon functions. A conjugative mechanism likely contributes to gene transfer between diverse strains of X. fastidiosa, possibly facilitating adaptation to new environments or different hosts. IMPORTANCE Xylella fastidiosa is an important plant pathogen worldwide, infecting a wide range of different plant species. The emergence of new diseases caused by X. fastidiosa, or host switching of existing strains, is thought to be primarily due to the high frequency of HGT and recombination in this pathogen. Transfer of plasmids by a conjugative mechanism enables movement of larger amounts of genetic material at one time, compared with other routes of gene transfer such as natural transformation. Establishing the prevalence and functionality of this mechanism in X. fastidiosa contributes to a better understanding of HGT, adaptation, and disease emergence in this diverse pathogen. PMID:28808128
Conjugative Plasmid Transfer in Xylella fastidiosa Is Dependent on tra and trb Operon Functions.
Burbank, Lindsey P; Van Horn, Christopher R
2017-11-01
The insect-transmitted plant pathogen Xylella fastidiosa is capable of efficient horizontal gene transfer (HGT) and recombination. Natural transformation occurs at high rates in X. fastidiosa , but there also is evidence that certain strains of X. fastidiosa carry native plasmids equipped with transfer and mobilization genes, suggesting conjugation as an additional mechanism of HGT in some instances. Two operons, tra and trb , putatively encoding a conjugative type IV secretion system, are found in some but not all X. fastidiosa isolates, often on native plasmids. X. fastidiosa strains that carry the conjugative transfer genes can belong to different subspecies and frequently differ in host ranges. Using X. fastidiosa strain M23 ( X. fastidiosa subsp. fastidiosa ) or Dixon ( X. fastidiosa subsp. multiplex ) as the donor strain and Temecula ( X. fastidiosa subsp. fastidiosa ) as the recipient strain, plasmid transfer was characterized using the mobilizable broad-host-range vector pBBR5pemIK. Transfer of plasmid pBBR5pemIK was observed under in vitro conditions with both donor strains and was dependent on both tra and trb operon functions. A conjugative mechanism likely contributes to gene transfer between diverse strains of X. fastidiosa , possibly facilitating adaptation to new environments or different hosts. IMPORTANCE Xylella fastidiosa is an important plant pathogen worldwide, infecting a wide range of different plant species. The emergence of new diseases caused by X. fastidiosa , or host switching of existing strains, is thought to be primarily due to the high frequency of HGT and recombination in this pathogen. Transfer of plasmids by a conjugative mechanism enables movement of larger amounts of genetic material at one time, compared with other routes of gene transfer such as natural transformation. Establishing the prevalence and functionality of this mechanism in X. fastidiosa contributes to a better understanding of HGT, adaptation, and disease emergence in this diverse pathogen.
New Coffee Plant-Infecting Xylella fastidiosa Variants Derived via Homologous Recombination
Denancé, Nicolas; Legendre, Bruno; Morel, Emmanuelle; Briand, Martial; Mississipi, Stelly; Durand, Karine; Olivier, Valérie; Portier, Perrine; Poliakoff, Françoise; Crouzillat, Dominique
2015-01-01
Xylella fastidiosa is a xylem-limited phytopathogenic bacterium endemic to the Americas that has recently emerged in Asia and Europe. Although this bacterium is classified as a quarantine organism in the European Union, importation of plant material from contaminated areas and latent infection in asymptomatic plants have engendered its inevitable introduction. In 2012, four coffee plants (Coffea arabica and Coffea canephora) with leaf scorch symptoms growing in a confined greenhouse were detected and intercepted in France. After identification of the causal agent, this outbreak was eradicated. Three X. fastidiosa strains were isolated from these plants, confirming a preliminary identification based on immunology. The strains were characterized by multiplex PCR and by multilocus sequence analysis/typing (MLSA-MLST) based on seven housekeeping genes. One strain, CFBP 8073, isolated from C. canephora imported from Mexico, was assigned to X. fastidiosa subsp. fastidiosa/X. fastidiosa subsp. sandyi. This strain harbors a novel sequence type (ST) with novel alleles at two loci. The two other strains, CFBP 8072 and CFBP 8074, isolated from Coffea arabica imported from Ecuador, were allocated to X. fastidiosa subsp. pauca. These two strains shared a novel ST with novel alleles at two loci. These MLST profiles showed evidence of recombination events. We provide genome sequences for CFBP 8072 and CFBP 8073 strains. Comparative genomic analyses of these two genome sequences with publicly available X. fastidiosa genomes, including the Italian strain CoDiRO, confirmed these phylogenetic positions and provided candidate alleles for coffee plant adaptation. This study demonstrates the global diversity of X. fastidiosa and highlights the diversity of strains isolated from coffee plants. PMID:26712553
New Coffee Plant-Infecting Xylella fastidiosa Variants Derived via Homologous Recombination.
Jacques, Marie-Agnès; Denancé, Nicolas; Legendre, Bruno; Morel, Emmanuelle; Briand, Martial; Mississipi, Stelly; Durand, Karine; Olivier, Valérie; Portier, Perrine; Poliakoff, Françoise; Crouzillat, Dominique
2015-12-28
Xylella fastidiosa is a xylem-limited phytopathogenic bacterium endemic to the Americas that has recently emerged in Asia and Europe. Although this bacterium is classified as a quarantine organism in the European Union, importation of plant material from contaminated areas and latent infection in asymptomatic plants have engendered its inevitable introduction. In 2012, four coffee plants (Coffea arabica and Coffea canephora) with leaf scorch symptoms growing in a confined greenhouse were detected and intercepted in France. After identification of the causal agent, this outbreak was eradicated. Three X. fastidiosa strains were isolated from these plants, confirming a preliminary identification based on immunology. The strains were characterized by multiplex PCR and by multilocus sequence analysis/typing (MLSA-MLST) based on seven housekeeping genes. One strain, CFBP 8073, isolated from C. canephora imported from Mexico, was assigned to X. fastidiosa subsp. fastidiosa/X. fastidiosa subsp. sandyi. This strain harbors a novel sequence type (ST) with novel alleles at two loci. The two other strains, CFBP 8072 and CFBP 8074, isolated from Coffea arabica imported from Ecuador, were allocated to X. fastidiosa subsp. pauca. These two strains shared a novel ST with novel alleles at two loci. These MLST profiles showed evidence of recombination events. We provide genome sequences for CFBP 8072 and CFBP 8073 strains. Comparative genomic analyses of these two genome sequences with publicly available X. fastidiosa genomes, including the Italian strain CoDiRO, confirmed these phylogenetic positions and provided candidate alleles for coffee plant adaptation. This study demonstrates the global diversity of X. fastidiosa and highlights the diversity of strains isolated from coffee plants. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Yuan, Xiaoli; Bromley, Robin E.; Stouthamer, Richard
2012-01-01
Documenting the role of novel mutation versus homologous recombination in bacterial evolution, and especially in the invasion of new hosts, is central to understanding the long-term dynamics of pathogenic bacteria. We used multilocus sequence typing (MLST) to study this issue in Xylella fastidiosa subsp. pauca from Brazil, a bacterium causing citrus variegated chlorosis (CVC) and coffee leaf scorch (CLS). All 55 citrus isolates typed (plus one coffee isolate) defined three similar sequence types (STs) dominated by ST11 (85%), while the remaining 22 coffee isolates defined two STs, mainly ST16 (74%). This low level of variation masked unusually large allelic differences (>1% divergence with no intermediates) at five loci (leuA, petC, malF, cysG, and holC). We developed an introgression test to detect whether these large differences were due to introgression via homologous recombination from another X. fastidiosa subspecies. Using additional sequencing around these loci, we established that the seven randomly chosen MLST targets contained seven regions of introgression totaling 2,172 bp of 4,161 bp (52%), only 409 bp (10%) of which were detected by other recombination tests. This high level of introgression suggests the hypothesis that X. fastidiosa subsp. pauca became pathogenic on citrus and coffee (crops cultivated in Brazil for several hundred years) only recently after it gained genetic variation via intersubspecific recombination, facilitating a switch from native hosts. A candidate donor is the subspecies infecting plum in the region since 1935 (possibly X. fastidiosa subsp. multiplex). This hypothesis predicts that nonrecombinant native X. fastidiosa subsp. pauca (not yet isolated) does not cause disease in citrus or coffee. PMID:22544234
Nunney, Leonard; Yuan, Xiaoli; Bromley, Robin E; Stouthamer, Richard
2012-07-01
Documenting the role of novel mutation versus homologous recombination in bacterial evolution, and especially in the invasion of new hosts, is central to understanding the long-term dynamics of pathogenic bacteria. We used multilocus sequence typing (MLST) to study this issue in Xylella fastidiosa subsp. pauca from Brazil, a bacterium causing citrus variegated chlorosis (CVC) and coffee leaf scorch (CLS). All 55 citrus isolates typed (plus one coffee isolate) defined three similar sequence types (STs) dominated by ST11 (85%), while the remaining 22 coffee isolates defined two STs, mainly ST16 (74%). This low level of variation masked unusually large allelic differences (>1% divergence with no intermediates) at five loci (leuA, petC, malF, cysG, and holC). We developed an introgression test to detect whether these large differences were due to introgression via homologous recombination from another X. fastidiosa subspecies. Using additional sequencing around these loci, we established that the seven randomly chosen MLST targets contained seven regions of introgression totaling 2,172 bp of 4,161 bp (52%), only 409 bp (10%) of which were detected by other recombination tests. This high level of introgression suggests the hypothesis that X. fastidiosa subsp. pauca became pathogenic on citrus and coffee (crops cultivated in Brazil for several hundred years) only recently after it gained genetic variation via intersubspecific recombination, facilitating a switch from native hosts. A candidate donor is the subspecies infecting plum in the region since 1935 (possibly X. fastidiosa subsp. multiplex). This hypothesis predicts that nonrecombinant native X. fastidiosa subsp. pauca (not yet isolated) does not cause disease in citrus or coffee.
Vickerman, Danel B.; Bromley, Robin E.; Russell, Stephanie A.; Hartman, John R.; Morano, Lisa D.; Stouthamer, Richard
2013-01-01
The bacterial pathogen, Xylella fastidiosa, infects many plant species in the Americas, making it a good model for investigating the genetics of host adaptation. We used multilocus sequence typing (MLST) to identify isolates of the native U.S. subsp. multiplex that were largely unaffected by intersubspecific homologous recombination (IHR) and to investigate how their evolutionary history influences plant host specialization. We identified 110 “non-IHR” isolates, 2 minimally recombinant “intermediate” ones (including the subspecific type), and 31 with extensive IHR. The non-IHR and intermediate isolates defined 23 sequence types (STs) which we used to identify 22 plant hosts (73% trees) characteristic of the subspecies. Except for almond, subsp. multiplex showed no host overlap with the introduced subspecies (subspecies fastidiosa and sandyi). MLST sequences revealed that subsp. multiplex underwent recent radiation (<25% of subspecies age) which included only limited intrasubspecific recombination (ρ/θ = 0.02); only one isolated lineage (ST50 from ash) was older. A total of 20 of the STs grouped into three loose phylogenetic clusters distinguished by nonoverlapping hosts (excepting purple leaf plum): “almond,” “peach,” and “oak” types. These host differences were not geographical, since all three types also occurred in California. ST designation was a good indicator of host specialization. ST09, widespread in the southeastern United States, only infected oak species, and all peach isolates were ST10 (from California, Florida, and Georgia). Only ST23 had a broad host range. Hosts of related genotypes were sometimes related, but often host groupings crossed plant family or even order, suggesting that phylogenetically plastic features of hosts affect bacterial pathogenicity. PMID:23354698
Nunney, Leonard; Vickerman, Danel B; Bromley, Robin E; Russell, Stephanie A; Hartman, John R; Morano, Lisa D; Stouthamer, Richard
2013-04-01
The bacterial pathogen, Xylella fastidiosa, infects many plant species in the Americas, making it a good model for investigating the genetics of host adaptation. We used multilocus sequence typing (MLST) to identify isolates of the native U.S. subsp. multiplex that were largely unaffected by intersubspecific homologous recombination (IHR) and to investigate how their evolutionary history influences plant host specialization. We identified 110 "non-IHR" isolates, 2 minimally recombinant "intermediate" ones (including the subspecific type), and 31 with extensive IHR. The non-IHR and intermediate isolates defined 23 sequence types (STs) which we used to identify 22 plant hosts (73% trees) characteristic of the subspecies. Except for almond, subsp. multiplex showed no host overlap with the introduced subspecies (subspecies fastidiosa and sandyi). MLST sequences revealed that subsp. multiplex underwent recent radiation (<25% of subspecies age) which included only limited intrasubspecific recombination (ρ/θ = 0.02); only one isolated lineage (ST50 from ash) was older. A total of 20 of the STs grouped into three loose phylogenetic clusters distinguished by nonoverlapping hosts (excepting purple leaf plum): "almond," "peach," and "oak" types. These host differences were not geographical, since all three types also occurred in California. ST designation was a good indicator of host specialization. ST09, widespread in the southeastern United States, only infected oak species, and all peach isolates were ST10 (from California, Florida, and Georgia). Only ST23 had a broad host range. Hosts of related genotypes were sometimes related, but often host groupings crossed plant family or even order, suggesting that phylogenetically plastic features of hosts affect bacterial pathogenicity.
Initial genetic analysis of Xylella fastidiosa in Texas.
Morano, Lisa D; Bextine, Blake R; Garcia, Dennis A; Maddox, Shermel V; Gunawan, Stanley; Vitovsky, Natalie J; Black, Mark C
2008-04-01
Xylella fastidiosa is the causative agent of Pierce's Disease of grape. No published record of X. fastidiosa genetics in Texas exists despite growing financial risk to the U.S. grape industry, a Texas population of the glassy-winged sharpshooter insect vector (Homalodisca vitripennis) now spreading in California, and evidence that the bacterium is ubiquitous to southern states. Using sequences of conserved gyrB and mopB genes, we have established at least two strains in Texas, grape strain and ragweed strain, corresponding genetically with subsp. piercei and multiplex, respectively. The grape strain in Texas is found in Vitis vinifera varieties, hybrid vines, and wild Vitis near vineyards, whereas the ragweed strain in Texas is found in annuals, shrubs, and trees near vineyards or other areas. RFLP and QRT PCR techniques were used to differentiate grape and ragweed strains with greater efficiency than sequencing and are practical for screening numerous X. fastidiosa isolates for clade identity.
A conjugative 38 kB plasmid is present in multiple subspecies of Xylella fastidiosa.
Rogers, Elizabeth E; Stenger, Drake C
2012-01-01
A ≈ 38kB plasmid (pXF-RIV5) was present in the Riv5 strain of Xylella fastidiosa subsp. multiplex isolated from ornamental plum in southern California. The complete nucleotide sequence of pXF-RIV5 is almost identical to that of pXFAS01 from X. fastidiosa subsp. fastidiosa strain M23; the two plasmids vary at only 6 nucleotide positions. BLAST searches and phylogenetic analyses indicate pXF-RIV5 and pXFAS01 share some similarity to chromosomal and plasmid (pXF51) sequences of X. fastidiosa subsp. pauca strain 9a5c and more distant similarity to plasmids from a wide variety of bacteria. Both pXF-RIV5 and pXFAS01 encode homologues of a complete Type IV secretion system involved in conjugation and DNA transfer among bacteria. Mating pair formation proteins (Trb) from Yersinia pseudotuberculosis IP31758 are the mostly closely related non-X. fastidiosa proteins to most of the Trb proteins encoded by pXF-RIV5 and pXFAS01. Unlike many bacterial conjugative plasmids, pXF-RIV5 and pXFAS01 do not carry homologues of known accessory modules that confer selective advantage on host bacteria. However, both plasmids encode seven hypothetical proteins of unknown function and possess a small transposon-associated region encoding a putative transposase and associated factor. Vegetative replication of pXF-RIV5 and pXFAS01 appears to be under control of RepA protein and both plasmids have an origin of DNA replication (oriV) similar to that of pRP4 and pR751 from Escherichia coli. In contrast, conjugative plasmids commonly encode TrfA and have an oriV similar to those found in IncP-1 incompatibility group plasmids. The presence of nearly identical plasmids in single strains from two distinct subspecies of X. fastidiosa is indicative of recent horizontal transfer, probably subsequent to the introduction of subspecies fastidiosa to the United States in the late 19(th) century.
A Conjugative 38 kB Plasmid Is Present in Multiple Subspecies of Xylella fastidiosa
Rogers, Elizabeth E.; Stenger, Drake C.
2012-01-01
A ∼38kB plasmid (pXF-RIV5) was present in the Riv5 strain of Xylella fastidiosa subsp. multiplex isolated from ornamental plum in southern California. The complete nucleotide sequence of pXF-RIV5 is almost identical to that of pXFAS01 from X. fastidiosa subsp. fastidiosa strain M23; the two plasmids vary at only 6 nucleotide positions. BLAST searches and phylogenetic analyses indicate pXF-RIV5 and pXFAS01 share some similarity to chromosomal and plasmid (pXF51) sequences of X. fastidiosa subsp. pauca strain 9a5c and more distant similarity to plasmids from a wide variety of bacteria. Both pXF-RIV5 and pXFAS01 encode homologues of a complete Type IV secretion system involved in conjugation and DNA transfer among bacteria. Mating pair formation proteins (Trb) from Yersinia pseudotuberculosis IP31758 are the mostly closely related non-X. fastidiosa proteins to most of the Trb proteins encoded by pXF-RIV5 and pXFAS01. Unlike many bacterial conjugative plasmids, pXF-RIV5 and pXFAS01 do not carry homologues of known accessory modules that confer selective advantage on host bacteria. However, both plasmids encode seven hypothetical proteins of unknown function and possess a small transposon-associated region encoding a putative transposase and associated factor. Vegetative replication of pXF-RIV5 and pXFAS01 appears to be under control of RepA protein and both plasmids have an origin of DNA replication (oriV) similar to that of pRP4 and pR751 from Escherichia coli. In contrast, conjugative plasmids commonly encode TrfA and have an oriV similar to those found in IncP-1 incompatibility group plasmids. The presence of nearly identical plasmids in single strains from two distinct subspecies of X. fastidiosa is indicative of recent horizontal transfer, probably subsequent to the introduction of subspecies fastidiosa to the United States in the late 19th century. PMID:23251694
Draft genome sequence of Xylella fastidiosa subsp. fastidiosa strain Stag’s Leap
USDA-ARS?s Scientific Manuscript database
Xylella fastidiosa subsp. fastidiosa causes Pierce’s disease of grapevine. Presented here is the draft genome sequence of the Stag’s Leap strain, previously used in pathogenicity/virulence assays to evaluate grapevine germplasm bearing Pierce’s disease....
USDA-ARS?s Scientific Manuscript database
Xylella fastidiosa is a gram-negative member of the gamma proteobacteria. Xylella fastidiosa subsp pauca causes citrus variegated chlorosis in Brazil and enjoys ‘select agent’ status in the United States. Antibody based detection assays are commercially available for Xylella fastidiosa, and are ef...
Nunney, Leonard; Ortiz, Beatriz; Russell, Stephanie A.; Ruiz Sánchez, Rebeca; Stouthamer, Richard
2014-01-01
The bacterium Xylella fastidiosa is a plant pathogen with a history of economically damaging introductions of subspecies to regions where its other subspecies are native. Genetic evidence is presented demonstrating the introduction of two new taxa into Central America and their introgression into the native subspecies, X. fastidiosa subsp. fastidiosa. The data are from 10 genetic outliers detected by multilocus sequence typing (MLST) of isolates from Costa Rica. Six (five from oleander, one from coffee) defined a new sequence type (ST53) that carried alleles at six of the eight loci sequenced (five of the seven MLST loci) diagnostic of the South American subspecies Xylella fastidiosa subsp. pauca which causes two economically damaging plant diseases, citrus variegated chlorosis and coffee leaf scorch. The two remaining loci of ST53 carried alleles from what appears to be a new South American form of X. fastidiosa. Four isolates, classified as X. fastidiosa subsp. fastidiosa, showed a low level of introgression of non-native DNA. One grapevine isolate showed introgression of an allele from X. fastidiosa subsp. pauca while the other three (from citrus and coffee) showed introgression of an allele with similar ancestry to the alleles of unknown origin in ST53. The presence of X. fastidiosa subsp. pauca in Central America is troubling given its disease potential, and establishes another route for the introduction of this economically damaging subspecies into the US or elsewhere, a threat potentially compounded by the presence of a previously unknown form of X. fastidiosa. PMID:25379725
Nunney, Leonard; Ortiz, Beatriz; Russell, Stephanie A; Ruiz Sánchez, Rebeca; Stouthamer, Richard
2014-01-01
The bacterium Xylella fastidiosa is a plant pathogen with a history of economically damaging introductions of subspecies to regions where its other subspecies are native. Genetic evidence is presented demonstrating the introduction of two new taxa into Central America and their introgression into the native subspecies, X. fastidiosa subsp. fastidiosa. The data are from 10 genetic outliers detected by multilocus sequence typing (MLST) of isolates from Costa Rica. Six (five from oleander, one from coffee) defined a new sequence type (ST53) that carried alleles at six of the eight loci sequenced (five of the seven MLST loci) diagnostic of the South American subspecies Xylella fastidiosa subsp. pauca which causes two economically damaging plant diseases, citrus variegated chlorosis and coffee leaf scorch. The two remaining loci of ST53 carried alleles from what appears to be a new South American form of X. fastidiosa. Four isolates, classified as X. fastidiosa subsp. fastidiosa, showed a low level of introgression of non-native DNA. One grapevine isolate showed introgression of an allele from X. fastidiosa subsp. pauca while the other three (from citrus and coffee) showed introgression of an allele with similar ancestry to the alleles of unknown origin in ST53. The presence of X. fastidiosa subsp. pauca in Central America is troubling given its disease potential, and establishes another route for the introduction of this economically damaging subspecies into the US or elsewhere, a threat potentially compounded by the presence of a previously unknown form of X. fastidiosa.
USDA-ARS?s Scientific Manuscript database
Xylella fastidiosa is a member of the gamma proteobacteria. It is fastidious, insect-vectored and xylem-limited and causes a variety of diseases, some severe, on a wide range of economically important perennial crops, including grape and citrus. Xylella fastidiosa subsp pauca causes citrus variegat...
Marcelletti, Simone; Scortichini, Marco
2016-12-01
Xylella fastidiosa, a xylem-limited bacterium transmitted by xylem-fluid-feeding Hemiptera insects, causes economic losses of both woody and herbaceous plant species. A Xyl. fastidiosa subsp. pauca strain, namely CoDiRO, was recently found to be associated with the 'olive quick decline syndrome' in southern Italy (i.e. Apulia region). Recently, some Xyl. fastidiosa strains intercepted in France from Coffea spp. plant cuttings imported from Central and South America were characterized. The introduction of infected plant material from Central America in Apulia was also postulated even though an ad hoc study to confirm this hypothesis is lacking. In the present study, we assessed the complete and draft genome of 27 Xyl. fastidiosa strains. Through a genome-wide approach, we confirmed the occurrence of three subspecies within Xyl. fastidiosa, namely fastidiosa, multiplex and pauca, and demonstrated the occurrence of a genetic clonal complex of four Xyl. fastidiosa strains belonging to subspecies pauca which evolved in Central America. The CoDiRO strain displayed 13 SNPs when compared with a strain isolated in Costa Rica from Coffea sp. and 32 SNPs when compared with two strains obtained from Nerium oleander in Costa Rica. These results support the close relationships of the two strains. The four strains in the clonal complex contain prophage-like genes in their genomes. This study strongly supports the possibility of the introduction of Xyl. fastidiosa in southern Italy via coffee plants grown in Central America. The data also stress how the current global circulation of agricultural commodities potentially threatens the agrosystems worldwide.
USDA-ARS?s Scientific Manuscript database
The bacterium Xylella fastidiosa subsp. pauca is associated with the “olive quick decline syndrome” in the Apulia region of southern Italy. To investigate control of this phytopathogen, a compound containing zinc and copper complexed with citric-acid hydracids (Dentamet®) was evaluated for in vitro ...
USDA-ARS?s Scientific Manuscript database
Ten F2 clones from an initial hybridization of Prunus webbii X P. persica cv Harrow Blood were evaluated under greenhouse conditions for their reaction to Xylella fastidiosa subsp. fastidiosa strain M23 during two growing seasons. Clonal accessions used for the study were selected on the basis of ho...
USDA-ARS?s Scientific Manuscript database
Xylella fastidiosa is a nutritionally fastidious Gram-negative bacterium causing Pierce’s disease (PD) of grapevines. PD was first reported in Anaheim, California in 1892 and is currently endemic in California and the southeastern U.S. PD also was found outside the U.S. but is limited to the America...
Draft Genome Sequence of Xylella fastidiosa subsp. fastidiosa Strain Stag's Leap.
Chen, J; Wu, F; Zheng, Z; Deng, X; Burbank, L P; Stenger, D C
2016-04-21
ITALIC! Xylella fastidiosasubsp. ITALIC! fastidiosacauses Pierce's disease of grapevine. Presented here is the draft genome sequence of the Stag's Leap strain, previously used in pathogenicity/virulence assays to evaluate grapevine germplasm bearing Pierce's disease resistance and a phenotypic assessment of knockout mutants to determine gene function. Copyright © 2016 Chen et al.
Analyses of Xylella whole genome sequences and proposal of Xylella taiwanensis sp. nov.
USDA-ARS?s Scientific Manuscript database
Xylella fastidiosa is a Gram negative, xylem limited and nutritionally fastidious plant pathogenic bacterium that cause disease in many economically important plants. A single species, fastidiosa, with three subspecies (fastidiosa, multiplex, and pauca) have been described. Most Xylella strains were...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cary,; Bruce, R; Stubben, Christopher J
The invention provides highly sensitive and specific assays for the major citrus pathogens Xylella fastidiosa and Xanthomonas axonopodis, including a field deployable multiplexed assay capable of rapidly assaying for both pathogens simultaneously. The assays are directed at particular gene targets derived from pathogenic strains that specifically cause the major citrus diseases of citrus variegated chlorosis (Xylella fastidiosa 9a5c) and citrus canker (Xanthomonas axonopodis pv citri). The citrus pathogen assays of the invention offer femtomole sensitivity, excellent linear dynamic range, and rapid and specific detection.
Yuan, Qing; Jordan, Ramon; Brlansky, Ronald H; Istomina, Olga; Hartung, John
2015-10-01
Xylella fastidiosa is a member of the gamma proteobacteria. It is fastidious, insect-vectored and xylem-limited and causes a variety of diseases, some severe, on a wide range of economically important perennial crops, including grape and citrus. Antibody based detection assays are commercially available for X. fastidiosa, and are effective at the species, but not at the subspecies level. We have made a library of scFv antibody fragments directed against X. fastidiosa subsp. pauca strain 9a5c (citrus) by using phage display technology. Antibody gene repertoires were PCR-amplified using 23 primers for the heavy chain variable region (V(H)) and 21 primers for the light chain variable region (V(L)). The V(H) and V(L) were joined by overlap extension PCR, and then the genes of the scFv library were ligated into the phage vector pKM19. The library contained 1.2×10(7) independent clones with full-length scFv inserts. In each of 3cycles of affinity-selection with 9a5c, about 1.0×10(12) phage were used for panning with 4.1×10(6), 7.1×10(6), 2.1×10(7) phage recovered after the first, second and third cycles, respectively. Sixty-six percent of clones from the final library bound X. fastidiosa 9a5c in an ELISA. Some of these scFv antibodies recognized strain 9a5c and did not recognize X. fastidiosa strains that cause Pierce's disease of grapevine. Published by Elsevier B.V.
Caserta, R; Picchi, S C; Takita, M A; Tomaz, J P; Pereira, W E L; Machado, M A; Ionescu, M; Lindow, S; De Souza, A A
2014-11-01
Xylella fastidiosa and Xanthomonas citri subsp. citri, that cause citrus variegated chlorosis (CVC) and citrus canker diseases, respectively, utilize diffusible signal factor (DSF) for quorum sensing. DSF, produced by RpfF, are similar fatty acids in both organisms, although a different set of genes is regulated by DSF in each species. Because of this similarity, Xylella fastidiosa DSF might be recognized and affect the biology of Xanthomonas citri. Therefore, transgenic Citrus sinensis and Carrizo citrange plants overexpressing the Xylella fastidiosa rpfF were inoculated with Xanthomonas citri and changes in symptoms of citrus canker were observed. X. citri biofilms formed only at wound sites on transgenic leaves and were thicker; however, bacteria were unable to break through the tissue and form pustules elsewhere. Although abundant growth of X. citri occurred at wound sites on inoculated transgenic leaves, little growth was observed on unwounded tissue. Genes in the DFS-responsive core in X. citri were downregulated in bacteria isolated from transgenic leaves. DSF-dependent expression of engA was suppressed in cells exposed to xylem sap from transgenic plants. Thus, altered symptom development appears to be due to reduced expression of virulence genes because of the presence of antagonists of DSF signaling in X. citri in rpfF-expressing plants.
Caserta, R; Souza-Neto, R R; Takita, M A; Lindow, S E; De Souza, A A
2017-11-01
The pathogenicity of Xylella fastidiosa is associated with its ability to colonize the xylem of host plants. Expression of genes contributing to xylem colonization are suppressed, while those necessary for insect vector acquisition are increased with increasing concentrations of diffusible signal factor (DSF), whose production is dependent on RpfF. We previously demonstrated that transgenic citrus plants ectopically expressing rpfF from a citrus strain of X. fastidiosa subsp. pauca exhibited less susceptibility to Xanthomonas citri subsp. citri, another pathogen whose virulence is modulated by DSF accumulation. Here, we demonstrate that ectopic expression of rpfF in both transgenic tobacco and sweet orange also confers a reduction in disease severity incited by X. fastidiosa and reduces its colonization of those plants. Decreased disease severity in the transgenic plants was generally associated with increased expression of genes conferring adhesiveness to the pathogen and decreased expression of genes necessary for active motility, accounting for the reduced population sizes achieved in the plants, apparently by limiting pathogen dispersal through the plant. Plant-derived DSF signal molecules in a host plant can, therefore, be exploited to interfere with more than one pathogen whose virulence is controlled by DSF signaling.
Probe-based real-time PCR method for multilocus melt typing of Xylella fastidiosa strains.
Brady, Jeff A; Faske, Jennifer B; Ator, Rebecca A; Castañeda-Gill, Jessica M; Mitchell, Forrest L
2012-04-01
Epidemiological studies of Pierce's disease (PD) can be confounded by a lack of taxonomic detail on the bacterial causative agent, Xylella fastidiosa (Xf). PD in grape is caused by strains of Xylella fastidiosa subsp. fastidiosa, but is not caused by other subspecies of Xf that typically colonize plants other than grape. Detection assays using ELISA and qPCR are effective at detecting and quantifying Xf presence or absence, but offer no information on Xf subspecies or strain identity. Surveying insects or host plants for Xf by current ELISA or qPCR methods provides only presence/absence and quantity information for any and all Xf subspecies, potentially leading to false assessments of disease threat. This study uses a series of adjacent-hybridizing DNA melt analysis probes that are capable of efficiently discriminating Xf subspecies and strain relationships in rapid real-time PCR reactions. Copyright © 2012 Elsevier B.V. All rights reserved.
Lacava, Paulo Teixeira; Li, Wenbin; Araújo, Welington Luiz; Azevedo, João Lúcio; Hartung, John Stephen
2007-10-01
Citrus variegated chlorosis (CVC) is a disease of the sweet orange [Citrus sinensis (L.)], which is caused by Xylella fastidiosa subsp. pauca, a phytopathogenic bacterium that has been shown to infect all sweet orange cultivars. Sweet orange trees have been occasionally observed to be infected by Xylella fastidiosa without evidencing severe disease symptoms, whereas other trees in the same grove may exhibit severe disease symptoms. The principal endophytic bacterial species isolated from such CVC-asymptomatic citrus plants is Curtobacterium flaccumfaciens. The Madagascar periwinkle [Citrus sinensis (L.)] is a model plant which has been used to study X. fastidiosa in greenhouse environments. In order to characterize the interactions of X. fastidiosa and C. flaccumfaciens, periwinkle plants were inoculated separately with C. flaccumfaciens, X. fastidiosa, and both bacteria together. The number of flowers produced by the plants, the heights of the plants, and the exhibited disease symptoms were evaluated. PCR-primers for C. flaccumfaciens were designed in order to verify the presence of this endophytic bacterium in plant tissue, and to complement an existing assay for X. fastidiosa. These primers were capable of detecting C. flaccumfaciens in the periwinkle in the presence of X. fastidiosa. X. fastidiosa induced stunting and reduced the number of flowers produced by the periwinkle. When C. flaccumfaciens was inoculated together with X. fastidiosa, no stunting was observed. The number of flowers produced by our doubly- inoculated plants was an intermediate between the number produced by the plants inoculated with either of the bacteria separately. Our data indicate that C. flaccumfaciens interacted with X. fastidiosa in C. roseus, and reduced the severity of the disease symptoms induced by X. fastidiosa. Periwinkle is considered to be an excellent experimental system by which the interaction of C. flaccumfaciens and other endophytic bacteria with X. fastidiosa can be studied.
Marcelletti, Simone; Scortichini, Marco
2016-10-01
A total of 21 Xylella fastidiosa strains were assessed by comparing their genomes to infer their taxonomic relationships. The whole-genome-based average nucleotide identity and tetranucleotide frequency correlation coefficient analyses were performed. In addition, a consensus tree based on comparisons of 956 core gene families, and a genome-wide phylogenetic tree and a Neighbor-net network were constructed with 820,088 nucleotides (i.e., approximately 30-33 % of the entire X. fastidiosa genome). All approaches revealed the occurrence of three well-demarcated genetic clusters that represent X. fastidiosa subspecies fastidiosa, multiplex and pauca, with the latter appeared to diverge. We suggest that the proposed but never formally described subspecies 'sandyi' and 'morus' are instead members of the subspecies fastidiosa. These analyses support the view that the Xylella strain isolated from Pyrus pyrifolia in Taiwan is likely to be a new species. A widely used multilocus sequence typing analysis yielded conflicting results.
Nikolaou, Anastasios; Saxami, Georgia; Kourkoutas, Yiannis; Galanis, Alex
2011-02-01
In this study we present a novel multiplex PCR assay for rapid and efficient detection of Lactobacillus delbrueckii subsp. bulgaricus. The accuracy of our method was confirmed by the successful identification of L. delbrueckii subsp. bulgaricus in commercial yoghurts and food supplements and it may be readily applied to the food industry. Copyright © 2010 Elsevier B.V. All rights reserved.
Fletcher, Jacqueline; Melcher, Ulrich; Ochoa Corona, Francisco Manuel
2013-01-01
A reliable, accurate and rapid multigene-based assay combining real time quantitative PCR (qPCR) and a Razor Ex BioDetection System (Razor Ex) was validated for detection of Xylella fastidiosa subsp. pauca (Xfp, a xylem-limited bacterium that causes citrus variegated chlorosis [CVC]). CVC, which is exotic to the United States, has spread through South and Central America and could significantly impact U.S. citrus if it arrives. A method for early, accurate and sensitive detection of Xfp in plant tissues is needed by plant health officials for inspection of products from quarantined locations, and by extension specialists for detection, identification and management of disease outbreaks and reservoir hosts. Two sets of specific PCR primers and probes, targeting Xfp genes for fimbrillin and the periplasmic iron-binding protein were designed. A third pair of primers targeting the conserved cobalamin synthesis protein gene was designed to detect all possible X. fastidiosa (Xf) strains. All three primer sets detected as little as 1 fg of plasmid DNA carrying X. fastidiosa target sequences and genomic DNA of Xfp at as little as 1 - 10 fg. The use of Razor Ex facilitates a rapid (about 30 min) in-field assay capability for detection of all Xf strains, and for specific detection of Xfp. Combined use of three primer sets targeting different genes increased the assay accuracy and broadened the range of detection. To our knowledge, this is the first report of a field-deployable rapid and reliable bioforensic detection and discrimination method for a bacterial phytopathogen based on multigene targets. PMID:24312333
Ouyang, Ping; Arif, Mohammad; Fletcher, Jacqueline; Melcher, Ulrich; Ochoa Corona, Francisco Manuel
2013-01-01
A reliable, accurate and rapid multigene-based assay combining real time quantitative PCR (qPCR) and a Razor Ex BioDetection System (Razor Ex) was validated for detection of Xylella fastidiosa subsp. pauca (Xfp, a xylem-limited bacterium that causes citrus variegated chlorosis [CVC]). CVC, which is exotic to the United States, has spread through South and Central America and could significantly impact U.S. citrus if it arrives. A method for early, accurate and sensitive detection of Xfp in plant tissues is needed by plant health officials for inspection of products from quarantined locations, and by extension specialists for detection, identification and management of disease outbreaks and reservoir hosts. Two sets of specific PCR primers and probes, targeting Xfp genes for fimbrillin and the periplasmic iron-binding protein were designed. A third pair of primers targeting the conserved cobalamin synthesis protein gene was designed to detect all possible X. fastidiosa (Xf) strains. All three primer sets detected as little as 1 fg of plasmid DNA carrying X. fastidiosa target sequences and genomic DNA of Xfp at as little as 1 - 10 fg. The use of Razor Ex facilitates a rapid (about 30 min) in-field assay capability for detection of all Xf strains, and for specific detection of Xfp. Combined use of three primer sets targeting different genes increased the assay accuracy and broadened the range of detection. To our knowledge, this is the first report of a field-deployable rapid and reliable bioforensic detection and discrimination method for a bacterial phytopathogen based on multigene targets.
Guan, Wei; Shao, Jonathan; Singh, Raghuwinder; Davis, Robert E; Zhao, Tingchang; Huang, Qi
2013-02-15
A TaqMan-based real-time PCR assay was developed for specific detection of strains of X. fastidiosa causing oleander leaf scorch. The assay uses primers WG-OLS-F1 and WG-OLS-R1 and the fluorescent probe WG-OLS-P1, designed based on unique sequences found only in the genome of oleander strain Ann1. The assay is specific, allowing detection of only oleander-infecting strains, not other strains of X. fastidiosa nor other plant-associated bacteria tested. The assay is also sensitive, with a detection limit of 10.4fg DNA of X. fastidiosa per reaction in vitro and in planta. The assay can also be applied to detect low numbers of X. fastidiosa in insect samples, or further developed into a multiplex real-time PCR assay to simultaneously detect and distinguish diverse strains of X. fastidiosa that may occupy the same hosts or insect vectors. Specific and sensitive detection and quantification of oleander strains of X. fastidiosa should be useful for disease diagnosis, epidemiological studies, management of oleander leaf scorch disease, and resistance screening for oleander shrubs. Published by Elsevier B.V.
Alencar, Valquíria Campos; Jabes, Daniela Leite; Menegidio, Fabiano Bezerra; Sassaki, Guilherme Lanzi; de Souza, Lucas Rodrigo; Puzer, Luciano; Meneghetti, Maria Cecília Zorél; Lima, Marcelo Andrade; Tersariol, Ivarne Luis Dos Santos; de Oliveira, Regina Costa; Nunes, Luiz R
2017-02-07
Xylella fastidiosa is a plant-infecting bacillus, responsible for many important crop diseases, such as Pierce's disease of vineyards, citrus variegated chlorosis, and coffee leaf scorch (CLS), among others. Recent genomic comparisons involving two CLS-related strains, belonging to X. fastidiosa subsp. pauca, revealed that one of them carries a frameshift mutation that inactivates a gene encoding an oxidoreductase of the short-chain dehydrogenase/reductase (SDR) superfamily, which may play important roles in determining structural variations in bacterial glycans and glycoconjugates. However, the exact nature of this SDR has been a matter of controversy, as different annotations of X. fastidiosa genomes have implicated it in distinct reactions. To confirm the nature of this mutated SDR, a comparative analysis was initially performed, suggesting that it belongs to a subgroup of SDR decarboxylases, representing a UDP-xylose synthase (Uxs). Functional assays, using a recombinant derivative of this enzyme, confirmed its nature as XfUxs, and carbohydrate composition analyses, performed with lipopolysaccharide (LPS) molecules obtained from different strains, indicate that inactivation of the X. fastidiosa uxs gene affects the LPS structure among CLS-related X. fastidiosa strains. Finally, a comparative sequence analysis suggests that this mutation is likely to result in a morphological and evolutionary hallmark that differentiates two subgroups of CLS-related strains, which may influence interactions between these bacteria and their plant and/or insect hosts.
Xylella taiwanensis sp. nov., causing pear leaf scorch disease.
Su, C-C; Deng, W-L; Jan, F-J; Chang, C-J; Huang, H; Shih, H-T; Chen, J
2016-11-01
A Gram-stain-negative, nutritionally fastidious bacterium (PLS229T) causing pear leaf scorch was identified in Taiwan and previously grouped into Xylella fastidiosa. Yet, significant variations between PLS229T and Xylellafastidiosa were noted. In this study, PLS229T was evaluated phenotypically and genotypically against representative strains of Xylellafastidiosa, including strains of the currently known subspecies of Xylellafastidiosa, Xylella fastidiosa subsp. multiplex and 'Xylella fastidiosasubsp.pauca'. Because of the difficulty of in vitro culture characterization, emphases were made to utilize the available whole-genome sequence information. The average nucleotide identity (ANI) values, an alternative for DNA-DNA hybridization relatedness, between PLS229T and Xylellafastidiosa were 83.4-83.9 %, significantly lower than the bacterial species threshold of 95 %. In contrast, sequence similarity of 16S rRNA genes was greater than 98 %, higher than the 97 % threshold to justify if two bacterial strains belong to different species. The uniqueness of PLS229T was also evident by observing only about 87 % similarity in the sequence of the 16S-23S internal transcribed spacer (ITS) between PLS229T and strains of Xylellafastidiosa, discovering significant single nucleotide polymorphisms at 18 randomly selected housekeeping gene loci, observing a distinct fatty acid profile for PLS229T compared with Xylellafastidiosa, and PLS229T having different observable phenotypes, such as different susceptibility to antibiotics. A phylogenetic tree derived from 16S rRNA gene sequences showed a distinct PLS229T phyletic lineage positioning it between Xylellafastidiosa and members of the genus Xanthomonas. On the basis of these data, a novel species, Xylella taiwanensis sp. nov. is proposed. The type strain is PLS229T (=BCRC 80915T=JCM 31187T).
Li, Wenbin; Teixeira, Diva C; Hartung, John S; Huang, Qi; Duan, Yongping; Zhou, Lijuan; Chen, Jianchi; Lin, Hong; Lopes, Silvio; Ayres, A Juliano; Levy, Laurene
2013-01-01
The xylem-limited, Gram-negative, fastidious plant bacterium Xylella fastidiosa is the causal agent of citrus variegated chlorosis (CVC), a destructive disease affecting approximately half of the citrus plantations in the State of São Paulo, Brazil. The disease was recently found in Central America and is threatening the multi-billion U.S. citrus industry. Many strains of X. fastidiosa are pathogens or endophytes in various plants growing in the U.S., and some strains cross infect several host plants. In this study, a TaqMan-based assay targeting the 16S rDNA signature region was developed for the identification of X. fastidiosa at the species level. Another TaqMan-based assay was developed for the specific identification of the CVC strains. Both new assays have been systematically validated in comparison with the primer/probe sets from four previously published assays on one platform and under similar PCR conditions, and shown to be superior. The species specific assay detected all X. fastidiosa strains and did not amplify any other citrus pathogen or endophyte tested. The CVC-specific assay detected all CVC strains but did not amplify any non-CVC X. fastidiosa nor any other citrus pathogen or endophyte evaluated. Both sets were multiplexed with a reliable internal control assay targeting host plant DNA, and their diagnostic specificity and sensitivity remained unchanged. This internal control provides quality assurance for DNA extraction, performance of PCR reagents, platforms and operators. The limit of detection for both assays was equivalent to 2 to 10 cells of X. fastidiosa per reaction for field citrus samples. Petioles and midribs of symptomatic leaves of sweet orange harbored the highest populations of X. fastidiosa, providing the best materials for detection of the pathogen. These new species specific assay will be invaluable for molecular identification of X. fastidiosa at the species level, and the CVC specific assay will be very powerful for the specific identification of X. fastidiosa strains that cause citrus variegated chlorosis. Published by Elsevier B.V.
Control of Pierce's Disease by Phage
Das, Mayukh; Bhowmick, Tushar Suvra; Ahern, Stephen J.; Young, Ry; Gonzalez, Carlos F.
2015-01-01
Pierce’s Disease (PD) of grapevines, caused by Xylella fastidiosa subsp. fastidiosa (Xf), is a limiting factor in the cultivation of grapevines in the US. There are presently no effective control methods to prevent or treat PD. The therapeutic and prophylactic efficacy of a phage cocktail composed of four virulent (lytic) phages was evaluated for control of PD. Xf levels in grapevines were significantly reduced in therapeutically or prophylactically treated grapevines. PD symptoms ceased to progress one week post-therapeutic treatment and symptoms were not observed in prophylactically treated grapevines. Cocktail phage levels increased in grapevines in the presence of the host. No in planta phage-resistant Xf isolates were obtained. Moreover, Xf mutants selected for phage resistance in vitro did not cause PD symptoms. Our results indicate that phages have great potential for biocontrol of PD and other economically important diseases caused by Xylella. PMID:26107261
Muranaka, Lígia S.; Takita, Marco A.; Olivato, Jacqueline C.; Kishi, Luciano T.
2012-01-01
Investigations of biofilm resistance response rarely focus on plant-pathogenic bacteria. Since Xylella fastidiosa is a multihost plant-pathogenic bacterium that forms biofilm in the xylem, the behavior of its biofilm in response to antimicrobial compounds needs to be better investigated. We analyzed here the transcriptional profile of X. fastidiosa subsp. pauca in response to inhibitory and subinhibitory concentrations of copper and tetracycline. Copper-based products are routinely used to control citrus diseases in the field, while antibiotics are more widely used for bacterial control in mammals. The use of antimicrobial compounds triggers specific responses to each compound, such as biofilm formation and phage activity for copper. Common changes in expression responses comprise the repression of genes associated with metabolic functions and movement and the induction of toxin-antitoxin systems, which have been associated with the formation of persister cells. Our results also show that these cells were found in the population at a ca. 0.05% density under inhibitory conditions for both antimicrobial compounds and that pretreatment with subinhibitory concentration of copper increases this number. No previous report has detected the presence of these cells in X. fastidiosa population, suggesting that this could lead to a multidrug tolerance response in the biofilm under a stressed environment. This is a mechanism that has recently become the focus of studies on resistance of human-pathogenic bacteria to antibiotics and, based on our data, it seems to be more broadly applicable. PMID:22730126
Muranaka, Lígia S; Takita, Marco A; Olivato, Jacqueline C; Kishi, Luciano T; de Souza, Alessandra A
2012-09-01
Investigations of biofilm resistance response rarely focus on plant-pathogenic bacteria. Since Xylella fastidiosa is a multihost plant-pathogenic bacterium that forms biofilm in the xylem, the behavior of its biofilm in response to antimicrobial compounds needs to be better investigated. We analyzed here the transcriptional profile of X. fastidiosa subsp. pauca in response to inhibitory and subinhibitory concentrations of copper and tetracycline. Copper-based products are routinely used to control citrus diseases in the field, while antibiotics are more widely used for bacterial control in mammals. The use of antimicrobial compounds triggers specific responses to each compound, such as biofilm formation and phage activity for copper. Common changes in expression responses comprise the repression of genes associated with metabolic functions and movement and the induction of toxin-antitoxin systems, which have been associated with the formation of persister cells. Our results also show that these cells were found in the population at a ca. 0.05% density under inhibitory conditions for both antimicrobial compounds and that pretreatment with subinhibitory concentration of copper increases this number. No previous report has detected the presence of these cells in X. fastidiosa population, suggesting that this could lead to a multidrug tolerance response in the biofilm under a stressed environment. This is a mechanism that has recently become the focus of studies on resistance of human-pathogenic bacteria to antibiotics and, based on our data, it seems to be more broadly applicable.
Montes-Borrego, Miguel; Lopes, Joao R S; Jiménez-Díaz, Rafael M; Landa, Blanca B
2015-03-01
Two haplotypes of Xylella fastidiosa subsp. pauca (Xfp) that correlated with their host of origin were identified in a collection of 90 isolates infecting citrus and coffee plants in Brazil, based on a single-nucleotide polymorphism in the gyrB sequence. A new single-nucleotide primer extension (SNuPE) protocol was designed for rapid identification of Xfp according to the host source. The protocol proved to be robust for the prediction of the Xfp host source in blind tests using DNA from cultures of the bacterium, infected plants, and insect vectors allowed to feed on Xfp-infected citrus plants. AMOVA and STRUCTURE analyses of microsatellite data separated most Xfp populations on the basis of their host source, indicating that they were genetically distinct. The combined use of the SNaPshot protocol and three previously developed multilocus SSR markers showed that two haplotypes and distinct isolates of Xfp infect citrus and coffee in Brazil and that multiple, genetically different isolates can be present in a single orchard or infect a single tree. This combined approach will be very useful in studies of the epidemiology of Xfp-induced diseases, host specificity of bacterial genotypes, the occurrence of Xfp host jumping, vector feeding habits, etc., in economically important cultivated plants or weed host reservoirs of Xfp in Brazil and elsewhere. Copyright© by the Spanish Society for Microbiology and Institute for Catalan Studies.
Xylella fastidiosa: an examination of a re-emerging plant pathogen.
Rapicavoli, Jeannette; Ingel, Brian; Blanco-Ulate, Barbara; Cantu, Dario; Roper, Caroline
2018-04-01
Xylella fastidiosa is a Gram-negative bacterial plant pathogen with an extremely wide host range. This species has recently been resolved into subspecies that correlate with host specificity. This review focuses on the status of X. fastidiosa pathogenic associations in plant hosts in which the bacterium is either endemic or has been recently introduced. Plant diseases associated with X. fastidiosa have been documented for over a century, and much about what is known in the context of host-pathogen interactions is based on these hosts, such as grape and citrus, in which this pathogen has been well described. Recent attention has focused on newly emerging X. fastidiosa diseases, such as in olives. Bacteria; Gammaproteobacteria; family Xanthomonadaceae; genus Xylella; species fastidiosa. Gram-negative rod (0.25-0.35 × 0.9-3.5 μm), non-flagellate, motile via Type IV pili-mediated twitching, fastidious. Xylella fastidiosa has a broad host range that includes ornamental, ecological and agricultural plants belonging to over 300 different species in 63 different families. To date, X. fastidiosa has been found to be pathogenic in over 100 plant species. In addition, it can establish non-symptomatic associations with many plants as a commensal endophyte. Here, we list the four distinct subspecies of X. fastidiosa and some of the agriculturally relevant diseases caused by them: X. fastidiosa ssp. fastidiosa causes Pierce's disease (PD) of grapevine (Vitis vinifera); X. fastidiosa ssp. multiplex causes almond leaf scorch (ALS) and diseases on other nut and shade tree crops; X. fastidiosa ssp. pauca causes citrus variegated chlorosis (CVC) (Citrus spp.), coffee leaf scorch and olive quick decline syndrome (OQDS) (Olea europaea); X. fastidiosa ssp. sandyi causes oleander leaf scorch (OLS) (Nerium oleander). Significant host specificity seemingly exists for some of the subspecies, although this could be a result of technical biases based on the limited number of plants tested, whereas some subspecies are not as stringent in their host range and can infect several plant hosts. Most X. fastidiosa-related diseases appear as marginal leaf necrosis and scorching of the leaves. In the case of PD, X. fastidiosa can also cause desiccation of berries (termed 'raisining'), irregular periderm development and abnormal abscission of petioles. In olive trees affected with OQDS, leaves exhibit marginal necrosis and defoliation, and overall tree decline occurs. Plants with ALS and OLS also exhibit the characteristic leaf scorch symptoms. Not all X. fastidiosa-related diseases exhibit the typical leaf scorch symptoms. These include CVC and Phony Peach disease, amongst others. In the case of CVC, symptoms include foliar wilt and interveinal chlorosis on the upper surfaces of the leaves (similar to zinc deficiency), which correspond to necrotic, gum-like regions on the undersides of the leaves. Additional symptoms of CVC include defoliation, dieback and hardening of fruits. Plants infected with Phony Peach disease exhibit a denser, more compact canopy (as a result of shortened internodes, darker green leaves and delayed leaf senescence), premature bloom and reduced fruit size. Some occlusions occur in the xylem vessels, but there are no foliar wilting, chlorosis or necrosis symptoms . USEFUL WEBSITES: http://www.piercesdisease.org/; https://pubmlst.org/xfastidiosa/; http://www.xylella.lncc.br/; https://nature.berkeley.edu/xylella/; https://ec.europa.eu/food/plant/plant_health_biosecurity/legislation/emergency_measures/xylella-fastidiosa_en. © 2017 BSPP AND JOHN WILEY & SONS LTD.
Park, S H; Ricke, S C
2015-01-01
The aim of this research was to develop multiplex PCR assay that could simultaneously detect Salmonella genus, Salmonella subsp. I, Salm. Enteritidis, Heidelberg and Typhimurium because these Salmonella serovars are the most common isolates associated with poultry products. Five primers were utilized to establish multiplex PCR and applied to Salmonella isolates from chickens and farm environments. These isolates were identified as Salmonella subsp. I and 16 of 66 isolates were classified as Salm. Enteritidis, while Heidelberg or Typhimurium was not detected. We also spiked three Salmonella strains on chicken breast meat to evaluate the specificity and sensitivity of multiplex PCR as well as qPCR to optimize quantification of Salmonella in these samples. The optimized multiplex PCR and qPCR could detect approx. 2·2 CFU of Salmonella per gram after 18 h enrichment. The multiplex PCR and qPCR would provide rapid and consistent results. Also, these techniques would be useful for the detection and quantification of Salmonella in contaminated poultry, foods and environmental samples. The strategy for the rapid detection of Salmonella serovars in poultry is needed to further reduce the incidence of salmonellosis in humans. The optimized multiplex PCR will be useful to detect prevalent Salmonella serovars in poultry products. © 2014 The Society for Applied Microbiology.
Lactobacillus plantarum subsp. argentoratensis subsp. nov., isolated from vegetable matrices.
Bringel, Françoise; Castioni, Anna; Olukoya, Daniel K; Felis, Giovanna E; Torriani, Sandra; Dellaglio, Franco
2005-07-01
Fourteen strains isolated from vegetable sources and identified as belonging to Lactobacillus plantarum presented an atypical pattern of amplification with a species-specific multiplex-PCR assay. Phylogenetic analysis of two protein-encoding genes, recA (encoding the recombinase A protein) and cpn60 (encoding the GroEL chaperonin), as well as phenotypic and genomic traits revealed a homogeneous group of very closely related strains for which subspecies status is proposed, with the name Lactobacillus plantarum subsp. argentoratensis. The type strain is DKO 22(T) (=CIP 108320(T)=DSM 16365(T)).
Xylella fastidiosa: Host Range and Advance in Molecular Identification Techniques
Baldi, Paolo; La Porta, Nicola
2017-01-01
In the never ending struggle against plant pathogenic bacteria, a major goal is the early identification and classification of infecting microorganisms. Xylella fastidiosa, a Gram-negative bacterium belonging to the family Xanthmonadaceae, is no exception as this pathogen showed a broad range of vectors and host plants, many of which may carry the pathogen for a long time without showing any symptom. Till the last years, most of the diseases caused by X. fastidiosa have been reported from North and South America, but recently a widespread infection of olive quick decline syndrome caused by this fastidious pathogen appeared in Apulia (south-eastern Italy), and several cases of X. fastidiosa infection have been reported in other European Countries. At least five different subspecies of X. fastidiosa have been reported and classified: fastidiosa, multiplex, pauca, sandyi, and tashke. A sixth subspecies (morus) has been recently proposed. Therefore, it is vital to develop fast and reliable methods that allow the pathogen detection during the very early stages of infection, in order to prevent further spreading of this dangerous bacterium. To this purpose, the classical immunological methods such as ELISA and immunofluorescence are not always sensitive enough. However, PCR-based methods exploiting specific primers for the amplification of target regions of genomic DNA have been developed and are becoming a powerful tool for the detection and identification of many species of bacteria. The aim of this review is to illustrate the application of the most commonly used PCR approaches to X. fastidiosa study, ranging from classical PCR, to several PCR-based detection methods: random amplified polymorphic DNA (RAPD), quantitative real-time PCR (qRT-PCR), nested-PCR (N-PCR), immunocapture PCR (IC-PCR), short sequence repeats (SSRs, also called VNTR), single nucleotide polymorphisms (SNPs) and multilocus sequence typing (MLST). Amplification and sequence analysis of specific targets is also mentioned. The fast progresses achieved during the last years in the DNA-based classification of this pathogen are described and discussed and specific primers designed for the different methods are listed, in order to provide a concise and useful tool to all the researchers working in the field. PMID:28642764
Iraola, Gregorio; Hernández, Martín; Calleros, Lucía; Paolicchi, Fernando; Silveyra, Silvia; Velilla, Alejandra; Carretto, Luis; Rodríguez, Eliana; Pérez, Ruben
2012-12-01
Campylobacter (C.) fetus (epsilonproteobacteria) is an important veterinary pathogen. This species is currently divided into C. fetus subspecies (subsp.) fetus (Cff) and C. fetus subsp. venerealis (Cfv). Cfv is the causative agent of bovine genital Campylobacteriosis, an infectious disease that leads to severe reproductive problems in cattle worldwide. Cff is a more general pathogen that causes reproductive problems mainly in sheep although cattle can also be affected. Here we describe a multiplex PCR method to detect C. fetus and differentiate between subspecies in a single step. The assay was standardized using cultured strains and successfully used to analyze the abomasal liquid of aborted bovine fetuses without any pre-enrichment step. Results of our assay were completely consistent with those of traditional bacteriological diagnostic methods. Furthermore, the multiplex PCR technique we developed may be easily adopted by any molecular diagnostic laboratory as a complementary tool for detecting C. fetus subspecies and obtaining epidemiological information about abortion events in cattle.
Ito, Takao; Suzaki, Koichi
2017-01-01
Phytoplasmas and Xylella spp. are bacteria that cause many economically important plant diseases worldwide. TaqMan probe-based quantitative real-time polymerase chain reaction (qPCR) assays have been utilized to universally detect phytoplasmas or Xylella fastidiosa. To develop a superior universal qPCR method, we used a dual priming oligonucleotide (DPO) with two annealing sites as a reverse primer to target the well-conserved bacterial 16S rDNA. The new qPCR assays universally detected various species of phytoplasmas and subspecies of X. fastidiosa as well as Xylella taiwanensis, and generally showed superior threshold cycle values when amplifying specific or non-specific products compared to current universal qPCR assays. The proposed qPCR assays were integrated to develop a multiplex qPCR assay that simultaneously detected phytoplasmas, Xylella spp., and an internal plant DNA positive control within 1 hour. This assay could detect a minimum of ten bacterial cells and was compatible with crude extractions used in the rapid screening of various plants. The amplicons were of sufficient lengths to be directly sequenced for preliminary identification, and the primers could be used in universal conventional PCR assays. Additionally, reverse DPO primers can be utilized to improve other probe-based qPCR assays.
Suzaki, Koichi
2017-01-01
Phytoplasmas and Xylella spp. are bacteria that cause many economically important plant diseases worldwide. TaqMan probe-based quantitative real-time polymerase chain reaction (qPCR) assays have been utilized to universally detect phytoplasmas or Xylella fastidiosa. To develop a superior universal qPCR method, we used a dual priming oligonucleotide (DPO) with two annealing sites as a reverse primer to target the well-conserved bacterial 16S rDNA. The new qPCR assays universally detected various species of phytoplasmas and subspecies of X. fastidiosa as well as Xylella taiwanensis, and generally showed superior threshold cycle values when amplifying specific or non-specific products compared to current universal qPCR assays. The proposed qPCR assays were integrated to develop a multiplex qPCR assay that simultaneously detected phytoplasmas, Xylella spp., and an internal plant DNA positive control within 1 hour. This assay could detect a minimum of ten bacterial cells and was compatible with crude extractions used in the rapid screening of various plants. The amplicons were of sufficient lengths to be directly sequenced for preliminary identification, and the primers could be used in universal conventional PCR assays. Additionally, reverse DPO primers can be utilized to improve other probe-based qPCR assays. PMID:28957362
Chi, Kai-Hua; Danavall, Damien; Taleo, Fasihah; Pillay, Allan; Ye, Tun; Nachamkin, Eli; Kool, Jacob L.; Fegan, David; Asiedu, Kingsley; Vestergaard, Lasse S.; Ballard, Ronald C.; Chen, Cheng-Yen
2015-01-01
We developed a TaqMan-based real-time quadriplex polymerase chain reaction (PCR) to simultaneously detect Treponema pallidum subspecies pallidum, T. pallidum subsp. pertenue, and T. pallidum subsp. endemicum, the causative agents of venereal syphilis, yaws, and bejel, respectively. The PCR assay was applied to samples from skin ulcerations of clinically presumptive yaws cases among children on Tanna Island, Vanuatu. Another real-time triplex PCR was used to screen for the point mutations in the 23S rRNA genes that have previously been associated with azithromycin resistance in T. pallidum subsp. pallidum strains. Seropositivity by the classical syphilis serological tests was 35.5% among children with skin ulcerations clinically suspected with yaws, whereas the presence of T. pallidum subsp. pertenue DNA was only found in lesions from 15.5% of children. No evidence of T. pallidum subsp. pertenue infection, by either PCR or serology was found in ∼59% of cases indicating alternative causes of yaws-like lesions in this endemic area. PMID:25404075
Giampetruzzi, Annalisa; Morelli, Massimiliano; Saponari, Maria; Loconsole, Giuliana; Chiumenti, Michela; Boscia, Donato; Savino, Vito N; Martelli, Giovanni P; Saldarelli, Pasquale
2016-06-27
The recent Xylella fastidiosa subsp. pauca (Xfp) outbreak in olive (Olea europaea) groves in southern Italy is causing a destructive disease denoted Olive Quick Decline Syndrome (OQDS). Field observations disclosed that Xfp-infected plants of cv. Leccino show much milder symptoms, than the more widely grown and highly susceptible cv. Ogliarola salentina. To determine whether these field observations underlie a tolerant condition of cv. Leccino, which could be exploited for lessening the economic impact of the disease on the local olive industry, transcriptional changes occurring in plants of the two cultivars affected by Xfp were investigated. A global quantitative transcriptome profiling comparing susceptible (Ogliarola salentina) and tolerant (Leccino) olive cultivars, infected or not by Xfp, was done on messenger RNA (mRNAs) extracted from xylem tissues. The study revealed that 659 and 447 genes were differentially regulated in cvs Leccino and Ogliarola upon Xfp infection, respectively, whereas 512 genes were altered when the transcriptome of both infected cultivars was compared. Analysis of these differentially expressed genes (DEGs) shows that the presence of Xfp is perceived by the plants of both cultivars, in which it triggers a differential response strongly involving the cell wall. Up-regulation of genes encoding receptor-like kinases (RLK) and receptor-like proteins (RLP) is the predominant response of cv. Leccino, which is missing in cv. Ogliarola salentina. Moreover, both cultivars react with a strong re-modelling of cell wall proteins. These data suggest that Xfp elicits a different transcriptome response in the two cultivars, which determines a lower pathogen concentration in cv. Leccino and indicates that this cultivar may harbor genetic constituents and/or regulatory elements which counteract Xfp infection. Collectively these findings suggest that cv. Leccino is endowed with an intrinsic tolerance to Xfp, which makes it eligible for further studies aiming at investigating molecular basis and pathways modulating its different defense response.
Ramirez, Jose L.; Lacava, Paulo T.; Miller, Thomas A.
2008-01-01
Homalodisca vitripennis (Germar) (Hemiptera: Cicadellidae), the glassy-winged sharpshooter, is one of the most important vectors of the bacterium, Xylella fastidiosa subsp. piercei (Xanthomonadales: Xanthomonadaceae) that causes Pierce's Disease in grapevines in California. In the present study we report a new method for studying pathogen transmission or probing behavior of H. vitripennis. When confined, H. vitripennis attempt to probe the surface of sterile containers 48 hours post-acquisition of X. f. piercei. The saliva deposited during attempted feeding probes was found to contain X. f. piercei. We observed no correlation between X. f. piercei titers in the foregut of H. vitripennis that fed on Xylella-infected grapevines and the presence of this bacterium in the deposited saliva. The infection rate after a 48 h post-acquisition feeding on healthy citrus and grapevines was observed to be 77% for H. vitripennis that fed on grapevines and 81% for H. vitripennis that fed on citrus, with no difference in the number of positive probing sites from H. vitripennis that fed on either grapevine or citrus. This method is amenable for individual assessment of X. f. piercei-infecuvity, with samples less likely to be affected by tissue contamination that is usually present in whole body extracts. PMID:20233080
Bae, Chungyun; Han, Sang Wook; Song, Yu-Rim; Kim, Bo-Young; Lee, Hyung-Jin; Lee, Je-Min; Yeam, Inhwa; Heu, Sunggi; Oh, Chang-Sik
2015-07-01
Disease resistance against xylem-colonizing pathogenic bacteria in crops. Plant pathogenic bacteria cause destructive diseases in many commercially important crops. Among these bacteria, eight pathogens, Ralstonia solanacearum, Xanthomonas oryzae pv. oryzae, X. campestris pv. campestris, Erwinia amylovora, Pantoea stewartii subsp. stewartii, Clavibacter michiganensis subsp. michiganensis, Pseudomonas syringae pv. actinidiae, and Xylella fastidiosa, infect their host plants through different infection sites and paths and eventually colonize the xylem tissues of their host plants, resulting in wilting symptoms by blocking water flow or necrosis of xylem tissues. Noticeably, only a relatively small number of resistant cultivars in major crops against these vascular bacterial pathogens except X. oryzae pv. oryzae have been found or generated so far, although these pathogens threaten productivity of major crops. In this review, we summarize the lifestyles of major xylem-colonizing bacterial pathogens and then discuss the progress of current research on disease resistance controlled by qualitative disease resistance genes or quantitative trait loci against them. Finally, we propose infection processes of xylem-colonizing bacterial pathogens as one of possible reasons for why so few qualitative disease resistance genes against these pathogens have been developed or identified so far in crops.
Dimareli-Malli, Z; Mazaraki, K; Stevenson, K; Tsakos, P; Zdragas, A; Giantzi, V; Petridou, E; Heron, I; Vafeas, G
2013-08-01
In this study the suitability of different solid media was investigated for the isolation of Mycobacterium avium subsp. paratuberculosis (Map) in order to identify the optimum single or combination of media to permit the isolation of all strain types from small ruminants. A subset of these Map strains was then further characterized by molecular typing methods to assess the genetic diversity of Map strains in the study area (Northern Greece). Map strains were isolated from tissues and faeces of infected goats (n=52) and sheep (n=8) and were analysed for polymorphisms in IS1311 to classify the strain type as Type C or S. The study found that M7H11 supplemented with mycobactin j, OADC and new born calf serum (M7H11+Mj) is the best single choice of medium for the primary isolation of Map of both Type C and S from small ruminants. The combination of M7H11+Mj and Herrolds egg yolk medium supplemented with mycobactin j and sodium pyruvate allowed the detection of all Map isolates in this study. Nineteen Map isolates were characterised by pulsed-field gel electrophoresis and the isolates demonstrated significant genetic diversity. Twelve different SnaBI and 16 distinct SpeI profiles were detected of which 25 have not been described previously and are new profiles. The combination of both enzyme profiles gave 13 different multiplex profiles. Ten different multiplex profiles were detected in goats and three in sheep. One ovine isolate gave the same multiplex profile as a caprine isolate and two different profiles were found within a single goat herd. Copyright © 2013 Elsevier Ltd. All rights reserved.
Absence of classical heat shock response in the citrus pathogen Xylella fastidiosa.
Martins-de-Souza, Daniel; Martins, Daniel; Astua-Monge, Gustavo; Coletta-Filho, Helvécio Della; Winck, Flavia Vischi; Baldasso, Paulo Aparecido; de Oliveira, Bruno Menezes; Marangoni, Sérgio; Machado, Marcos Antônio; Novello, José Camillo; Smolka, Marcus Bustamante
2007-02-01
The fastidious bacterium Xylella fastidiosa is associated with important crop diseases worldwide. We have recently shown that X. fastidiosa is a peculiar organism having unusually low values of gene codon bias throughout its genome and, unexpectedly, in the group of the most abundant proteins. Here, we hypothesized that the lack of codon usage optimization in X. fastidiosa would incapacitate this organism to undergo quick and massive changes in protein expression as occurs in a classical stress response. Proteomic analysis of the response to heat stress in X. fastidiosa revealed that no changes in protein expression can be detected. Moreover, stress-inducible proteins identified in the closely related citrus pathogen Xanthomonas axonopodis pv citri were found to be constitutively expressed in X. fastidiosa. These proteins have extremely high codon bias values in the X. citri and other well-studied organisms, but low values in X. fastidiosa. Because biased codon usage is well known to correlate to the rate of protein synthesis, we speculate that the peculiar codon bias distribution in X. fastidiosa is related to the absence of a classical stress response, and, probably, alternative strategies for survival of X. fastidiosa under stressfull conditions.
Roper, M Caroline; Greve, L Carl; Warren, Jeremy G; Labavitch, John M; Kirkpatrick, Bruce C
2007-04-01
Xylella fastidiosa is the causal agent of Pierce's disease of grape, an economically significant disease for the grape industry. X. fastidiosa systemically colonizes the xylem elements of grapevines and is able to breach the pit pore membranes separating xylem vessels by unknown mechanisms. We hypothesized that X. fastidiosa utilizes cell wall degrading enzymes to break down pit membranes, based on the presence of genes involved in plant cell wall degradation in the X. fastidiosa genome. These genes include several beta-1,4 endoglucanases, several xylanases, several xylosidases, and one polygalacturonase (PG). In this study, we demonstrated that the pglA gene encodes a functional PG. A mutant in pglA lost pathogenicity and was compromised in its ability to systemically colonize Vitis vinifera grapevines. The results indicate that PG is required for X. fastidiosa to successfully infect grapevines and is a critical virulence factor for X. fastidiosa pathogenesis in grapevine.
Evaluation of Arabidopsis thaliana as a model host for Xylella fastidiosa.
Rogers, Elizabeth E
2012-06-01
The bacterium Xylella fastidiosa causes a number of plant diseases of significant economic impact. To date, progress determining mechanisms of host-plant susceptibility, tolerance, or resistance has been slow, due in large part to the long generation time and limited available genetic resources for grape, almond, and other known hosts of X. fastidiosa. To overcome many of these limitations, Arabidopsis thaliana has been evaluated as a host for X. fastidiosa. A pin-prick inoculation method has been developed to infect Arabidopsis with X. fastidiosa. Following infection, X. fastidiosa multiplies and can be detected by microscopy, polymerase chain reaction, and isolation. The ecotypes Van-0, LL-0, and Tsu-1 all allow more growth of strain X. fastidiosa Temecula than the reference ecotype Col-0. Affymetrix ATH1 microarray analysis of inoculated vs. noninoculated Tsu-1 reveals gene expression changes that differ greatly from changes seen after infection with apoplast-colonizing bacteria such as Psuedomonas syringae pvs. tomato or syringae. Many genes responsive to oxidative stress are differentially regulated, while classic pathogenesis-related genes are not induced by X. fastidiosa infection.
Transposon mutagenesis of Xylella fastidiosa by electroporation of Tn5 synaptic complexes.
Guilhabert, M R; Hoffman, L M; Mills, D A; Kirkpatrick, B C
2001-06-01
Pierce's disease, a lethal disease of grapevine, is caused by Xylella fastidiosa, a gram-negative, xylem-limited bacterium that is transmitted from plant to plant by xylem-feeding insects. Strains of X. fastidiosa also have been associated with diseases that cause tremendous losses in many other economically important plants, including citrus. Although the complete genome sequence of X. fastidiosa has recently been determined, the inability to transform or produce transposon mutants of X. fastidiosa has been a major impediment to understanding pathogen-, plant-, and insect-vector interactions. We evaluated the ability of four different suicide vectors carrying either Tn5 or Tn10 transposons as well as a preformed Tn5 transposase-transposon synaptic complex (transposome) to transpose X. fastidiosa. The four suicide vectors failed to produce any detectable transposition events. Electroporation of transposomes, however, yielded 6 x 10(3) and 4 x 10(3) Tn5 mutants per microg of DNA in two different grapevine strains of X. fastidiosa. Molecular analysis showed that the transposition insertions were single, independent, stable events. Sequence analysis of the Tn5 insertion sites indicated that the transpositions occur randomly in the X. fastidiosa genome. Transposome-mediated mutagenesis should facilitate the identification of X. fastidiosa genes that mediate plant pathogenicity and insect transmission.
Characterization of a diffusible signaling factor from Xylella fastidiosa.
Beaulieu, Ellen D; Ionescu, Michael; Chatterjee, Subhadeep; Yokota, Kenji; Trauner, Dirk; Lindow, Steven
2013-01-08
Cell-cell signaling in Xylella fastidiosa has been implicated in the coordination of traits enabling colonization in plant hosts as well as insect vectors. This cell density-dependent signaling has been attributed to a diffusible signaling factor (DSF) produced by the DSF synthase RpfF. DSF produced by related bacterial species are unsaturated fatty acids, but that of X. fastidiosa was thought to be different from those of other taxa. We describe here the isolation and characterization of an X. fastidiosa DSF (XfDSF) as 2(Z)-tetradecenoic acid. This compound was isolated both from recombinant Erwinia herbicola expressing X. fastidiosa rpfF and from an X. fastidiosa rpfC deletion mutant that overproduces DSF. Since an rpfF mutant is impaired in biofilm formation and underexpresses the hemagglutinin-like protein-encoding genes hxfA and hxfB, we demonstrate that these traits can be restored by ca. 0.5 µM XfDSF but not by myristic acid, the fully saturated tetradecenoic acid. A phoA-based X. fastidiosa biosensor that assesses DSF-dependent expression of hxfA or hxfB revealed a high level of molecular specificity of DSF signaling. X. fastidiosa causes diseases in many important plants, including grape, where it incites Pierce's disease. Virulence of X. fastidiosa for grape is coordinated by cell-cell signaling molecules, designated DSF (Diffusible Signaling Factor). Mutants blocked in DSF production are hypervirulent for grape, suggesting that virulence is suppressed upon DSF accumulation and that disease could be controlled by artificial elevation of the DSF level in plants. In this work, we describe the isolation of the DSF produced by X. fastidiosa and the verification of its biological activity as an antivirulence factor. We also have developed X. fastidiosa DSF biosensors to evaluate the specificity of cell-cell signaling to be investigated.
Warren, Jeremy G.; Lincoln, James E.; Kirkpatrick, Bruce C.
2015-01-01
Polygalacturonases (EC 3.2.1.15) catalyze the random hydrolysis of 1, 4-alpha-D-galactosiduronic linkages in pectate and other galacturonans. Xylella fastidiosa possesses a single polygalacturonase gene, pglA (PD1485), and X. fastidiosa mutants deficient in the production of polygalacturonase are non-pathogenic and show a compromised ability to systemically infect grapevines. These results suggested that grapevines expressing sufficient amounts of an inhibitor of X. fastidiosa polygalacturonase might be protected from disease. Previous work in our laboratory and others have tried without success to produce soluble active X. fastidiosa polygalacturonase for use in inhibition assays. In this study, we created two enzymatically active X. fastidiosa / A. vitis polygalacturonase chimeras, AX1A and AX2A to explore the functionality of X. fastidiosa polygalacturonase in vitro. The AX1A chimera was constructed to specifically test if recombinant chimeric protein, produced in Escherichia coli, is soluble and if the X. fastidiosa polygalacturonase catalytic amino acids are able to hydrolyze polygalacturonic acid. The AX2A chimera was constructed to evaluate the ability of a unique QMK motif of X. fastidiosa polygalacturonase, most polygalacturonases have a R(I/L)K motif, to bind to and allow the hydrolysis of polygalacturonic acid. Furthermore, the AX2A chimera was also used to explore what effect modification of the QMK motif of X. fastidiosa polygalacturonase to a conserved RIK motif has on enzymatic activity. These experiments showed that both the AX1A and AX2A polygalacturonase chimeras were soluble and able to hydrolyze the polygalacturonic acid substrate. Additionally, the modification of the QMK motif to the conserved RIK motif eliminated hydrolytic activity, suggesting that the QMK motif is important for the activity of X. fastidiosa polygalacturonase. This result suggests X. fastidiosa polygalacturonase may preferentially hydrolyze a different pectic substrate or, alternatively, it has a different mechanism of substrate binding than other polygalacturonases characterized to date. PMID:26571265
Warren, Jeremy G; Lincoln, James E; Kirkpatrick, Bruce C
2015-01-01
Polygalacturonases (EC 3.2.1.15) catalyze the random hydrolysis of 1, 4-alpha-D-galactosiduronic linkages in pectate and other galacturonans. Xylella fastidiosa possesses a single polygalacturonase gene, pglA (PD1485), and X. fastidiosa mutants deficient in the production of polygalacturonase are non-pathogenic and show a compromised ability to systemically infect grapevines. These results suggested that grapevines expressing sufficient amounts of an inhibitor of X. fastidiosa polygalacturonase might be protected from disease. Previous work in our laboratory and others have tried without success to produce soluble active X. fastidiosa polygalacturonase for use in inhibition assays. In this study, we created two enzymatically active X. fastidiosa / A. vitis polygalacturonase chimeras, AX1A and AX2A to explore the functionality of X. fastidiosa polygalacturonase in vitro. The AX1A chimera was constructed to specifically test if recombinant chimeric protein, produced in Escherichia coli, is soluble and if the X. fastidiosa polygalacturonase catalytic amino acids are able to hydrolyze polygalacturonic acid. The AX2A chimera was constructed to evaluate the ability of a unique QMK motif of X. fastidiosa polygalacturonase, most polygalacturonases have a R(I/L)K motif, to bind to and allow the hydrolysis of polygalacturonic acid. Furthermore, the AX2A chimera was also used to explore what effect modification of the QMK motif of X. fastidiosa polygalacturonase to a conserved RIK motif has on enzymatic activity. These experiments showed that both the AX1A and AX2A polygalacturonase chimeras were soluble and able to hydrolyze the polygalacturonic acid substrate. Additionally, the modification of the QMK motif to the conserved RIK motif eliminated hydrolytic activity, suggesting that the QMK motif is important for the activity of X. fastidiosa polygalacturonase. This result suggests X. fastidiosa polygalacturonase may preferentially hydrolyze a different pectic substrate or, alternatively, it has a different mechanism of substrate binding than other polygalacturonases characterized to date.
Guan, Wei; Shao, Jonathan; Elbeaino, Toufic; Davis, Robert E.; Zhao, Tingchang; Huang, Qi
2015-01-01
Xylella fastidiosa causes bacterial leaf scorch in many landscape trees including elm, oak, sycamore and mulberry, but methods for specific identification of a particular tree host species-limited strain or differentiation of tree-specific strains are lacking. It is also unknown whether a particular landscape tree-infecting X. fastidiosa strain is capable of infecting multiple landscape tree species in an urban environment. We developed two PCR primers specific for mulberry-infecting strains of X. fastidiosa based on the nucleotide sequence of a unique open reading frame identified only in mulberry-infecting strains among all the North and South American strains of X. fastidiosa sequenced to date. PCR using the primers allowed for detection and identification of mulberry-infecting X. fastidiosa strains in cultures and in samples collected from naturally infected mulberry trees. In addition, no mixed infections with or non-specific detections of the mulberry-infecting strains of X. fastidiosa were found in naturally X. fastidiosa-infected oak, elm and sycamore trees growing in the same region where naturally infected mulberry trees were grown. This genotype-specific PCR assay will be valuable for disease diagnosis, studies of strain-specific infections in insects and plant hosts, and management of diseases caused by X. fastidiosa. Unexpectedly but interestingly, the unique open reading frame conserved in the mulberry-infecting strains in the U. S. was also identified in the recently sequenced olive-associated strain CoDiRO isolated in Italy. When the primer set was tested against naturally infected olive plant samples collected in Italy, it allowed for detection of olive-associated strains of X. fastidiosa in Italy. This PCR assay, therefore, will also be useful for detection and identification of the Italian group of X. fastidiosa strains to aid understanding of the occurrence, evolution and biology of this new group of X. fastidiosa strains. PMID:26061051
Guan, Wei; Shao, Jonathan; Elbeaino, Toufic; Davis, Robert E; Zhao, Tingchang; Huang, Qi
2015-01-01
Xylella fastidiosa causes bacterial leaf scorch in many landscape trees including elm, oak, sycamore and mulberry, but methods for specific identification of a particular tree host species-limited strain or differentiation of tree-specific strains are lacking. It is also unknown whether a particular landscape tree-infecting X. fastidiosa strain is capable of infecting multiple landscape tree species in an urban environment. We developed two PCR primers specific for mulberry-infecting strains of X. fastidiosa based on the nucleotide sequence of a unique open reading frame identified only in mulberry-infecting strains among all the North and South American strains of X. fastidiosa sequenced to date. PCR using the primers allowed for detection and identification of mulberry-infecting X. fastidiosa strains in cultures and in samples collected from naturally infected mulberry trees. In addition, no mixed infections with or non-specific detections of the mulberry-infecting strains of X. fastidiosa were found in naturally X. fastidiosa-infected oak, elm and sycamore trees growing in the same region where naturally infected mulberry trees were grown. This genotype-specific PCR assay will be valuable for disease diagnosis, studies of strain-specific infections in insects and plant hosts, and management of diseases caused by X. fastidiosa. Unexpectedly but interestingly, the unique open reading frame conserved in the mulberry-infecting strains in the U. S. was also identified in the recently sequenced olive-associated strain CoDiRO isolated in Italy. When the primer set was tested against naturally infected olive plant samples collected in Italy, it allowed for detection of olive-associated strains of X. fastidiosa in Italy. This PCR assay, therefore, will also be useful for detection and identification of the Italian group of X. fastidiosa strains to aid understanding of the occurrence, evolution and biology of this new group of X. fastidiosa strains.
Chitin utilization by the insect-transmitted bacterium Xylella fastidiosa.
Killiny, Nabil; Prado, Simone S; Almeida, Rodrigo P P
2010-09-01
Xylella fastidiosa is an insect-borne bacterium that colonizes xylem vessels of a large number of host plants, including several crops of economic importance. Chitin is a polysaccharide present in the cuticle of leafhopper vectors of X. fastidiosa and may serve as a carbon source for this bacterium. Biological assays showed that X. fastidiosa reached larger populations in the presence of chitin. Additionally, chitin induced phenotypic changes in this bacterium, notably increasing adhesiveness. Quantitative PCR assays indicated transcriptional changes in the presence of chitin, and an enzymatic assay demonstrated chitinolytic activity by X. fastidiosa. An ortholog of the chitinase A gene (chiA) was identified in the X. fastidiosa genome. The in silico analysis revealed that the open reading frame of chiA encodes a protein of 351 amino acids with an estimated molecular mass of 40 kDa. chiA is in a locus that consists of genes implicated in polysaccharide degradation. Moreover, this locus was also found in the genomes of closely related bacteria in the genus Xanthomonas, which are plant but not insect associated. X. fastidiosa degraded chitin when grown on a solid chitin-yeast extract-agar medium and grew in liquid medium with chitin as the sole carbon source; ChiA was also determined to be secreted. The gene encoding ChiA was cloned into Escherichia coli, and endochitinase activity was detected in the transformant, showing that the gene is functional and involved in chitin degradation. The results suggest that X. fastidiosa may use its vectors' foregut surface as a carbon source. In addition, chitin may trigger X. fastidiosa's gene regulation and biofilm formation within vectors. Further work is necessary to characterize the role of chitin and its utilization in X. fastidiosa.
Ionescu, Michael; Baccari, Clelia; Da Silva, Aline Maria; Garcia, Angelica; Yokota, Kenji; Lindow, Steven E
2013-12-01
Xylella fastidiosa, like related Xanthomonas species, employs an Rpf cell-cell communication system consisting of a diffusible signal factor (DSF) synthase, RpfF, and a DSF sensor, RpfC, to coordinate expression of virulence genes. While phenotypes of a ΔrpfF strain in Xanthomonas campestris could be complemented by its own DSF, the DSF produced by X. fastidiosa (XfDSF) did not restore expression of the XfDSF-dependent genes hxfA and hxfB to a ΔrpfF strain of X. fastidiosa, suggesting that RpfF is involved in XfDSF sensing or XfDSF-dependent signaling. To test this conjecture, rpfC and rpfF of X. campestris were replaced by those of X. fastidiosa, and the contribution of each gene to the induction of a X. campestris DSF-dependent gene was assessed. As in X. fastidiosa, XfDSF-dependent signaling required both X. fastidiosa proteins RpfF and RpfC. RpfF repressed RpfC signaling activity, which in turn was derepressed by XfDSF. A mutated X. fastidiosa RpfF protein with two substitutions of glutamate to alanine in its active site was incapable of XfDSF production yet enabled a response to XfDSF, indicating that XfDSF production and the response to XfDSF are two separate functions in which RpfF is involved. This mutant was also hypervirulent to grape, demonstrating the antivirulence effects of XfDSF itself in X. fastidiosa. The Rpf system of X. fastidiosa is thus a novel example of a quorum-sensing signal synthase that is also involved in the response to the signal molecule that it synthesizes.
Ionescu, Michael; Baccari, Clelia; Da Silva, Aline Maria; Garcia, Angelica; Yokota, Kenji
2013-01-01
Xylella fastidiosa, like related Xanthomonas species, employs an Rpf cell-cell communication system consisting of a diffusible signal factor (DSF) synthase, RpfF, and a DSF sensor, RpfC, to coordinate expression of virulence genes. While phenotypes of a ΔrpfF strain in Xanthomonas campestris could be complemented by its own DSF, the DSF produced by X. fastidiosa (XfDSF) did not restore expression of the XfDSF-dependent genes hxfA and hxfB to a ΔrpfF strain of X. fastidiosa, suggesting that RpfF is involved in XfDSF sensing or XfDSF-dependent signaling. To test this conjecture, rpfC and rpfF of X. campestris were replaced by those of X. fastidiosa, and the contribution of each gene to the induction of a X. campestris DSF-dependent gene was assessed. As in X. fastidiosa, XfDSF-dependent signaling required both X. fastidiosa proteins RpfF and RpfC. RpfF repressed RpfC signaling activity, which in turn was derepressed by XfDSF. A mutated X. fastidiosa RpfF protein with two substitutions of glutamate to alanine in its active site was incapable of XfDSF production yet enabled a response to XfDSF, indicating that XfDSF production and the response to XfDSF are two separate functions in which RpfF is involved. This mutant was also hypervirulent to grape, demonstrating the antivirulence effects of XfDSF itself in X. fastidiosa. The Rpf system of X. fastidiosa is thus a novel example of a quorum-sensing signal synthase that is also involved in the response to the signal molecule that it synthesizes. PMID:24056101
Ionescu, Michael; Yokota, Kenji; Antonova, Elena; Garcia, Angelica; Beaulieu, Ellen; Hayes, Terry; Iavarone, Anthony T.
2016-01-01
ABSTRACT Cell density-dependent regulation of gene expression in Xylella fastidiosa that is crucial to its switching between plant hosts and insect vectors is dependent on RpfF and its production of 2-enoic acids known as diffusible signal factor (DSF). We show that X. fastidiosa produces a particularly large variety of similar, relatively long-chain-length 2-enoic acids that are active in modulating gene expression. Both X. fastidiosa itself and a Pantoea agglomerans surrogate host harboring X. fastidiosa RpfF (XfRpfF) is capable of producing a variety of both saturated and unsaturated free fatty acids. However, only 2-cis unsaturated acids were found to be biologically active in X. fastidiosa. X. fastidiosa produces, and is particularly responsive to, a novel DSF species, 2-cis-hexadecanoic acid that we term XfDSF2. It is also responsive to other, even longer 2-enoic acids to which other taxa such as Xanthomonas campestris are unresponsive. The 2-enoic acids that are produced by X. fastidiosa are strongly affected by the cellular growth environment, with XfDSF2 not detected in culture media in which 2-tetradecenoic acid (XfDSF1) had previously been found. X. fastidiosa is responsive to much lower concentrations of XfDSF2 than XfDSF1. Apparently competitive interactions can occur between various saturated and unsaturated fatty acids that block the function of those agonistic 2-enoic fatty acids. By altering the particular 2-enoic acids produced and the relative balance of free enoic and saturated fatty acids, X. fastidiosa might modulate the extent of DSF-mediated quorum sensing. PMID:27435463
A genomic approach to the understanding of Xylella fastidiosa pathogenicity.
Lambais, M R; Goldman, M H; Camargo, L E; Goldman, G H
2000-10-01
Xylella fastidiosa is a fastidious, xylem-limited bacterium that causes several economically important plant diseases, including citrus variegated chlorosis (CVC). X. fastidiosa is the first plant pathogen to have its genome completely sequenced. In addition, it is probably the least previously studied of any organism for which the complete genome sequence is available. Several pathogenicity-related genes have been identified in the X. fastidiosa genome by similarity with other bacterial genes involved in pathogenesis in plants, as well as in animals. The X. fastidiosa genome encodes different classes of proteins directly or indirectly involved in cell-cell interactions, degradation of plant cell walls, iron homeostasis, anti-oxidant responses, synthesis of toxins, and regulation of pathogenicity. Neither genes encoding members of the type III protein secretion system nor avirulence-like genes have been identified in X. fastidiosa.
Shi, Xiangyang; Lin, Hong
2016-04-08
Xylella fastidiosa is a Gram-negative non-flagellated bacterium that causes a number of economically important diseases of plants. The twitching motility provides X. fastidiosa a means for long-distance intra-plant movement and colonization, contributing toward pathogenicity in X. fastidiosa. The twitching motility of X. fastidiosa is operated by type IV pili. Type IV pili of Xylella fastidiosa are regulated by pilG, a chemotaxis regulator in Pil-Chp operon encoding proteins that are involved with signal transduction pathways. To elucidate the roles of pilG in the twitching motility of X. fastidiosa, a pilG-deficient mutant XfΔpilG and its complementary strain XfΔpilG-C containing native pilG were developed. A microfluidic chambers integrated with a time-lapse image recording system was used to observe twitching motility in XfΔpilG, XfΔpilG-C and its wild type strain. Using this recording system, it permits long-term spatial and temporal observations of aggregation, migration of individual cells and populations of bacteria via twitching motility. X. fastidiosa wild type and complementary XfΔpilG-C strain showed typical twitching motility characteristics directly observed in the microfluidic flow chambers, whereas mutant XfΔpliG exhibited the twitching deficient phenotype. This study demonstrates that pilG contributes to the twitching motility of X. fastidiosa. The microfluidic flow chamber is used as a means for observing twitching motility.
Almeida, Rodrigo P P; Killiny, Nabil; Newman, Karyn L; Chatterjee, Subhadeep; Ionescu, Michael; Lindow, Steven E
2012-04-01
In Xylella fastidiosa the fatty acid signal molecule diffusible signaling factor (DSF) is produced and sensed by components of the regulation of pathogenicity factors (rpf) cluster; lack of DSF production in RpfF mutants results in a non-vector-transmissible phenotype yet cells are hypervirulent to grape. rpfB has not been characterized in Xylella fastidiosa, although its homolog has been suggested to be required for DSF synthesis in Xanthomonas campestris pv. campestris. We show that RpfB is involved in DSF processing in both Xylella fastidiosa and Xanthomonas campestris, affecting the profile of DSF-like fatty acids observed in thin-layer chromatography. Although three fatty acids whose production is dependent on RpfF were detected in Xylella fastidiosa and Xanthomonas campestris wild-type strains, their respective rpfB mutants accumulated primarily one chemical species. Although no quantifiable effect of rpfB on plant colonization by Xylella fastidiosa was found, insect colonization and transmission was reduced. Thus, RpfB apparently is involved in DSF processing, and like Xanthomonas campestris, Xylella fastidiosa also produces multiple DSF molecules. It is possible that Xylella fastidiosa coordinates host vector and plant colonization by varying the proportions of different forms of DSF signals via RpfB.
Effect of oxygen on the growth and biofilm formation of Xylella fastidiosa in liquid media.
Shriner, Anthony D; Andersen, Peter C
2014-12-01
Xylella fastidiosa is a xylem-limited bacterial pathogen, and is the causative agent of Pierce's disease of grapevines and scorch diseases of many other plant species. The disease symptoms are putatively due to blocking of the transpiration stream by bacterial-induced biofilm formation and/or by the formation of plant-generated tylosis. Xylella fastidiosa has been classified as an obligate aerobe, which appears unusual given that dissolved O2 levels in the xylem during the growing season are often hypoxic (20-60 μmol L(-1)). We examined the growth and biofilm formation of three strains of X. fastidiosa under variable O2 conditions (21, 2.1, 0.21 and 0 % O2), in comparison to that of Pseudomonas syringae (obligate aerobe) and Erwinia carotovora (facultative anaerobe) under similar conditions. The growth of X. fastidiosa more closely resembled that of the facultative anaerobe, and not the obligate aerobe. Xanthomonas campestris, the closest genetic relative of X. fastidiosa, exhibited no growth in an N2 environment, whereas X. fastidiosa was capable of growing in an N2 environment in PW(+), CHARDS, and XDM2-PR media. The magnitude of growth and biofilm formation in the N2 (0 % O2) treatment was dependent on the specific medium. Additional studies involving the metabolism of X. fastidiosa in response to low O2 are warranted. Whether X. fastidiosa is classified as an obligate aerobe or a facultative anaerobe should be confirmed by gene activation and/or the quantification of the metabolic profiles under hypoxic conditions.
Lacava, P T; Araújo, W L; Marcon, J; Maccheroni, W; Azevedo, J L
2004-01-01
To isolate endophytic bacteria and Xylella fastidiosa and also to evaluate whether the bacterial endophyte community contributes to citrus-variegated chlorosis (CVC) status in sweet orange (Citrus sinensis [L.] Osbeck cv. Pera). The presence of Xylella fastidiosa and the population diversity of culturable endophytic bacteria in the leaves and branches of healthy, CVC-asymptomatic and CVC-symptomatic sweet orange plants and in tangerine (Citrus reticulata cv. Blanco) plants were assessed, and the in vitro interaction between endophytic bacteria and X. fastidiosa was investigated. There were significant differences in endophyte incidence between leaves and branches, and among healthy, CVC-asymptomatic and CVC-symptomatic plants. Bacteria identified as belonging to the genus Methylobacterium were isolated only from branches, mainly from those sampled from healthy and diseased plants, from which were also isolated X. fastidiosa. The in vitro interaction experiments indicated that the growth of X. fastidiosa was stimulated by endophytic Methylobacterium extorquens and inhibited by endophytic Curtobacterium flaccumfaciens. This work provides the first evidence of an interaction between citrus endophytic bacteria and X. fastidiosa and suggests a promising approach that can be used to better understand CVC disease.
Gouran, Hossein; Gillespie, Hyrum; Nascimento, Rafael; Chakraborty, Sandeep; Zaini, Paulo A; Jacobson, Aaron; Phinney, Brett S; Dolan, David; Durbin-Johnson, Blythe P; Antonova, Elena S; Lindow, Steven E; Mellema, Matthew S; Goulart, Luiz R; Dandekar, Abhaya M
2016-08-05
Pierce's disease (PD) is a deadly disease of grapevines caused by the Gram-negative bacterium Xylella fastidiosa. Though disease symptoms were formerly attributed to bacteria blocking the plant xylem, this hypothesis is at best overly simplistic. Recently, we used a proteomic approach to characterize the secretome of X. fastidiosa, both in vitro and in planta, and identified LesA as one of the pathogenicity factors of X. fastidiosa in grapevines that leads to leaf scorching and chlorosis. Herein, we characterize another such factor encoded by PD0956, designated as an antivirulence secreted protease "PrtA" that displays a central role in controlling in vitro cell proliferation, length, motility, biofilm formation, and in planta virulence. The mutant in X. fastidiosa exhibited reduced cell length, hypermotility (and subsequent lack of biofilm formation) and hypervirulence in grapevines. These findings are supported by transcriptomic and proteomic analyses with corresponding plant infection data. Of particular interest, is the hypervirulent response in grapevines observed when X. fastidiosa is disrupted for production of PrtA, and that PD-model tobacco plants transformed to express PrtA exhibited decreased symptoms after infection by X. fastidiosa.
Gouran, Hossein; Gillespie, Hyrum; Nascimento, Rafael; Chakraborty, Sandeep; Zaini, Paulo A.; Jacobson, Aaron; Phinney, Brett S.; Dolan, David; Durbin-Johnson, Blythe P.; Antonova, Elena S.; Lindow, Steven E.; Mellema, Matthew S.; Goulart, Luiz R.; Dandekar, Abhaya M.
2016-01-01
Pierce’s disease (PD) is a deadly disease of grapevines caused by the Gram-negative bacterium Xylella fastidiosa. Though disease symptoms were formerly attributed to bacteria blocking the plant xylem, this hypothesis is at best overly simplistic. Recently, we used a proteomic approach to characterize the secretome of X. fastidiosa, both in vitro and in planta, and identified LesA as one of the pathogenicity factors of X. fastidiosa in grapevines that leads to leaf scorching and chlorosis. Herein, we characterize another such factor encoded by PD0956, designated as an antivirulence secreted protease “PrtA” that displays a central role in controlling in vitro cell proliferation, length, motility, biofilm formation, and in planta virulence. The mutant in X. fastidiosa exhibited reduced cell length, hypermotility (and subsequent lack of biofilm formation) and hypervirulence in grapevines. These findings are supported by transcriptomic and proteomic analyses with corresponding plant infection data. Of particular interest, is the hypervirulent response in grapevines observed when X. fastidiosa is disrupted for production of PrtA, and that PD-model tobacco plants transformed to express PrtA exhibited decreased symptoms after infection by X. fastidiosa. PMID:27492542
Characterization of a Diffusible Signaling Factor from Xylella fastidiosa
Beaulieu, Ellen D.; Ionescu, Michael; Chatterjee, Subhadeep; Yokota, Kenji; Trauner, Dirk; Lindow, Steven
2013-01-01
ABSTRACT Cell-cell signaling in Xylella fastidiosa has been implicated in the coordination of traits enabling colonization in plant hosts as well as insect vectors. This cell density-dependent signaling has been attributed to a diffusible signaling factor (DSF) produced by the DSF synthase RpfF. DSF produced by related bacterial species are unsaturated fatty acids, but that of X. fastidiosa was thought to be different from those of other taxa. We describe here the isolation and characterization of an X. fastidiosa DSF (XfDSF) as 2(Z)-tetradecenoic acid. This compound was isolated both from recombinant Erwinia herbicola expressing X. fastidiosa rpfF and from an X. fastidiosa rpfC deletion mutant that overproduces DSF. Since an rpfF mutant is impaired in biofilm formation and underexpresses the hemagglutinin-like protein-encoding genes hxfA and hxfB, we demonstrate that these traits can be restored by ca. 0.5 µM XfDSF but not by myristic acid, the fully saturated tetradecenoic acid. A phoA-based X. fastidiosa biosensor that assesses DSF-dependent expression of hxfA or hxfB revealed a high level of molecular specificity of DSF signaling. PMID:23300249
The Xylella fastidiosa PD1063 Protein Is Secreted in Association with Outer Membrane Vesicles
Pierce, Brittany K.; Voegel, Tanja; Kirkpatrick, Bruce C.
2014-01-01
Xylella fastidiosa is a gram-negative, xylem-limited plant pathogenic bacterium that causes disease in a variety of economically important agricultural crops including Pierce's disease of grapevines. Xylella fastidiosa biofilms formed in the xylem vessels of plants play a key role in early colonization and pathogenicity by providing a protected niche and enhanced cell survival. Here we investigate the role of Xylella fastidiosa PD1063, the predicted ortholog of Xanthomonas oryzae pv. oryzae PXO_03968, which encodes an outer membrane protein. To assess the function of the Xylella fastidiosa ortholog, we created Xylella fastidiosa mutants deleted for PD1063 and then assessed biofilm formation, cell-cell aggregation and cell growth in vitro. We also assessed disease severity and pathogen titers in grapevines mechanically inoculated with the Xylella fastidiosa PD1063 mutant. We found a significant decrease in cell-cell aggregation among PD1063 mutants but no differences in cell growth, biofilm formation, disease severity or titers in planta. Based on the demonstration that Xanthomonas oryzae pv. oryzae PXO_03968 encodes an outer membrane protein, secreted in association with outer membrane vesicles, we predicted that PD1063 would also be secreted in a similar manner. Using anti-PD1063 antibodies, we found PD1063 in the supernatant and secreted in association with outer membrane vesicles. PD1063 purified from the supernatant, outer membrane fractions and outer membrane vesicles was 19.2 kD, corresponding to the predicted size of the processed protein. Our findings suggest Xylella fastidiosa PD1063 is not essential for development of Pierce's disease in Vitis vinifera grapevines although further research is required to determine the function of the PD1063 outer membrane protein in Xylella fastidiosa. PMID:25426629
The Xylella fastidiosa PD1063 protein is secreted in association with outer membrane vesicles.
Pierce, Brittany K; Voegel, Tanja; Kirkpatrick, Bruce C
2014-01-01
Xylella fastidiosa is a gram-negative, xylem-limited plant pathogenic bacterium that causes disease in a variety of economically important agricultural crops including Pierce's disease of grapevines. Xylella fastidiosa biofilms formed in the xylem vessels of plants play a key role in early colonization and pathogenicity by providing a protected niche and enhanced cell survival. Here we investigate the role of Xylella fastidiosa PD1063, the predicted ortholog of Xanthomonas oryzae pv. oryzae PXO_03968, which encodes an outer membrane protein. To assess the function of the Xylella fastidiosa ortholog, we created Xylella fastidiosa mutants deleted for PD1063 and then assessed biofilm formation, cell-cell aggregation and cell growth in vitro. We also assessed disease severity and pathogen titers in grapevines mechanically inoculated with the Xylella fastidiosa PD1063 mutant. We found a significant decrease in cell-cell aggregation among PD1063 mutants but no differences in cell growth, biofilm formation, disease severity or titers in planta. Based on the demonstration that Xanthomonas oryzae pv. oryzae PXO_03968 encodes an outer membrane protein, secreted in association with outer membrane vesicles, we predicted that PD1063 would also be secreted in a similar manner. Using anti-PD1063 antibodies, we found PD1063 in the supernatant and secreted in association with outer membrane vesicles. PD1063 purified from the supernatant, outer membrane fractions and outer membrane vesicles was 19.2 kD, corresponding to the predicted size of the processed protein. Our findings suggest Xylella fastidiosa PD1063 is not essential for development of Pierce's disease in Vitis vinifera grapevines although further research is required to determine the function of the PD1063 outer membrane protein in Xylella fastidiosa.
Chitin Utilization by the Insect-Transmitted Bacterium Xylella fastidiosa▿ †
Killiny, Nabil; Prado, Simone S.; Almeida, Rodrigo P. P.
2010-01-01
Xylella fastidiosa is an insect-borne bacterium that colonizes xylem vessels of a large number of host plants, including several crops of economic importance. Chitin is a polysaccharide present in the cuticle of leafhopper vectors of X. fastidiosa and may serve as a carbon source for this bacterium. Biological assays showed that X. fastidiosa reached larger populations in the presence of chitin. Additionally, chitin induced phenotypic changes in this bacterium, notably increasing adhesiveness. Quantitative PCR assays indicated transcriptional changes in the presence of chitin, and an enzymatic assay demonstrated chitinolytic activity by X. fastidiosa. An ortholog of the chitinase A gene (chiA) was identified in the X. fastidiosa genome. The in silico analysis revealed that the open reading frame of chiA encodes a protein of 351 amino acids with an estimated molecular mass of 40 kDa. chiA is in a locus that consists of genes implicated in polysaccharide degradation. Moreover, this locus was also found in the genomes of closely related bacteria in the genus Xanthomonas, which are plant but not insect associated. X. fastidiosa degraded chitin when grown on a solid chitin-yeast extract-agar medium and grew in liquid medium with chitin as the sole carbon source; ChiA was also determined to be secreted. The gene encoding ChiA was cloned into Escherichia coli, and endochitinase activity was detected in the transformant, showing that the gene is functional and involved in chitin degradation. The results suggest that X. fastidiosa may use its vectors' foregut surface as a carbon source. In addition, chitin may trigger X. fastidiosa's gene regulation and biofilm formation within vectors. Further work is necessary to characterize the role of chitin and its utilization in X. fastidiosa. PMID:20656858
Cursino, Luciana; Galvani, Cheryl D; Athinuwat, Dusit; Zaini, Paulo A; Li, Yaxin; De La Fuente, Leonardo; Hoch, Harvey C; Burr, Thomas J; Mowery, Patricia
2011-10-01
Xylella fastidiosa is an important phytopathogenic bacterium that causes many serious plant diseases, including Pierce's disease of grapevines. Disease manifestation by X. fastidiosa is associated with the expression of several factors, including the type IV pili that are required for twitching motility. We provide evidence that an operon, named Pil-Chp, with genes homologous to those found in chemotaxis systems, regulates twitching motility. Transposon insertion into the pilL gene of the operon resulted in loss of twitching motility (pilL is homologous to cheA genes encoding kinases). The X. fastidiosa mutant maintained the type IV pili, indicating that the disrupted pilL or downstream operon genes are involved in pili function, and not biogenesis. The mutated X. fastidiosa produced less biofilm than wild-type cells, indicating that the operon contributes to biofilm formation. Finally, in planta the mutant produced delayed and less severe disease, indicating that the Pil-Chp operon contributes to the virulence of X. fastidiosa, presumably through its role in twitching motility.
Validation of Small RNAs In Xylella fastidiosa by qRT-PCR
USDA-ARS?s Scientific Manuscript database
Xylella fastidiosa causes many economically important crop diseases including almond leaf scorch disease and Pierce’ disease of grapevine. Although non-coding small RNAs (sRNAs) are regarded as ubiquitous regulatory elements in bacteria, research attention to sRNAs in X. fastidiosa has been limited...
Effects of grapevine sap phenolics on the in vitro growth of Xylella fastidiosa
USDA-ARS?s Scientific Manuscript database
Pierce’s disease, caused by the bacterium Xylella fastidiosa, poses a serious threat to grape production in the United States. Previous work indicated that grapevines infected with Xylella fastidiosa respond by producing greater levels of phenolic compounds in xylem sap and tissues, presumably to l...
Conjugative plasmid transfer in Xylella fastidiosa is dependent on tra and trb operon functions
USDA-ARS?s Scientific Manuscript database
The insect-transmitted plant pathogen Xylella fastidiosa is capable of efficient horizontal gene transfer and recombination, leading to diversity between strains and the categorization of X. fastidiosa into multiple subspecies. Although natural transformation is shown to occur at high rates in X. fa...
USDA-ARS?s Scientific Manuscript database
Xylella fastidiosa causes diseases in many economically important crops, e.g. Pierce’s disease (PD) of grapevines and blueberry bacterial leaf scorch (BBLS) disease in the U.S. Biological research on X. fastidiosa has been difficult due to its nutritional fastidiousness. Genomic research provides a ...
Origins of the Xylella fastidiosa prophage-like regions and their impact in genome differentiation
USDA-ARS?s Scientific Manuscript database
Xylella fastidiosa is a Gram negative plant pathogen causing many economically important diseases, and analyses of completely sequenced X. fastidiosa genome strains allowed the identification of many prophage-like elements and possibly phage remnants, accounting for up to 15% of the genome compositi...
USDA-ARS?s Scientific Manuscript database
Re-occurrence of Pierce’s disease of grapes, caused by Xylella fastidiosa, is known to be influenced by environmental factors, particularly cold temperatures during overwintering. Grapevines in colder regions are often cured of X. fastidiosa infection over the winter season, depending on cultivar, t...
Xylella fastidiosa in rabbiteye blueberry: A newly studied host of an old foe
USDA-ARS?s Scientific Manuscript database
The bacterium Xylella fastidiosa causes a number of plant diseases, including bacterial leaf scorch of southern highbush blueberry. In Louisiana, X. fastidiosa has been detected in rabbiteye blueberry orchards, and we wanted to know if it affected yield in rabbiteye blueberry plants. We detected X...
Xylella fastidiosa Afimbrial Adhesins Mediate Cell Transmission to Plants by Leafhopper Vectors▿
Killiny, Nabil; Almeida, Rodrigo P. P.
2009-01-01
The interactions between the economically important plant-pathogenic bacterium Xylella fastidiosa and its leafhopper vectors are poorly characterized. We used different approaches to determine how X. fastidiosa cells interact with the cuticular surface of the foreguts of vectors. We demonstrate that X. fastidiosa binds to different polysaccharides with various affinities and that these interactions are mediated by cell surface carbohydrate-binding proteins. In addition, competition assays showed that N-acetylglucosamine inhibits bacterial adhesion to vector foregut extracts and intact wings, demonstrating that attachment to leafhopper surfaces is affected in the presence of specific polysaccharides. In vitro experiments with several X. fastidiosa knockout mutants indicated that hemagglutinin-like proteins are associated with cell adhesion to polysaccharides. These results were confirmed with biological experiments in which hemagglutinin-like protein mutants were transmitted to plants by vectors at lower rates than that of the wild type. Furthermore, although these mutants were defective in adhesion to the cuticle of vectors, their growth rate once attached to leafhoppers was similar to that of the wild type, suggesting that these proteins are important for initial adhesion of X. fastidiosa to leafhoppers. We propose that X. fastidiosa colonization of leafhopper vectors is a complex, stepwise process similar to the formation of biofilms on surfaces. PMID:19011051
Hail, Daymon; Mitchell, Forrest; Lauzière, Isabelle; Marshall, Patrick; Brady, Jeff; Bextine, Blake
2010-01-01
The glassy-winged sharpshooter, Homalodisca vitripeninis Germar (Hemiptera: Cicadellidae), is a xylophagous insect that is an endemic pest of several economically important plants in Texas. H. vitripennis is the main vector of Xylella fastidiosa Wells (Xanthomonadales: Xanthomonadaceae), the bacterium that causes Pierce's disease of grapevine and can travel long distances putting much of Texas grape production at risk. Understanding the movement of H. vitripennis populations capable of transmitting X. fastidiosa into Pierce's-disease-free areas is critical for developing a management program for Pierce's disease. To that end, the USDA-APHIS has developed a program to sample vineyards across Texas to monitor populations of H. vitripennis. From this sampling, H vitripennis collected during 2005 and 2006 over the months of May, June, and July from eight vineyards in different regions of Texas were recovered from yellow sticky traps and tested for the presence of X. fastidiosa. The foregut contents were vacuum extracted and analyzed using RT-PCR to determine the percentage of H. vitripennis within each population that harbor X. fastidiosa and have the potential to transmit this pathogen. H. vitripennis from vineyards known to have Pierce's disease routinely tested positive for the presence of X. fastidiosa. While almost all H. vitripennis collected from vineyards with no history of Pierce's disease tested negative for the presence of the pathogen, three individual insects tested positive. Furthermore, all three insects were determined, by DNA sequencing, to be carrying a strain of X. fastidiosa homologous to known Pierce's disease strains, signifying them as a risk factor for new X. fastidiosa infections.
Hail, Daymon; Mitchell, Forrest; Lauzière, Isabelle; Marshall, Patrick; Brady, Jeff; Bextine, Blake
2010-01-01
The glassy-winged sharpshooter, Homalodisca vitripeninis Germar (Hemiptera: Cicadellidae), is a xylophagous insect that is an endemic pest of several economically important plants in Texas. H. vitripennis is the main vector of Xylella fastidiosa Wells (Xanthomonadales: Xanthomonadaceae), the bacterium that causes Pierce's disease of grapevine and can travel long distances putting much of Texas grape production at risk. Understanding the movement of H. vitripennis populations capable of transmitting X. fastidiosa into Pierce's-disease-free areas is critical for developing a management program for Pierce's disease. To that end, the USDA-APHIS has developed a program to sample vineyards across Texas to monitor populations of H. vitripennis. From this sampling, H vitripennis collected during 2005 and 2006 over the months of May, June, and July from eight vineyards in different regions of Texas were recovered from yellow sticky traps and tested for the presence of X. fastidiosa. The foregut contents were vacuum extracted and analyzed using RT-PCR to determine the percentage of H. vitripennis within each population that harbor X. fastidiosa and have the potential to transmit this pathogen. H. vitripennis from vineyards known to have Pierce's disease routinely tested positive for the presence of X. fastidiosa. While almost all H. vitripennis collected from vineyards with no history of Pierce's disease tested negative for the presence of the pathogen, three individual insects tested positive. Furthermore, all three insects were determined, by DNA sequencing, to be carrying a strain of X. fastidiosa homologous to known Pierce's disease strains, signifying them as a risk factor for new X. fastidiosa infections. PMID:21062210
USDA-ARS?s Scientific Manuscript database
Pierce’s disease of grapevine is a serious threat to grape production and is caused by the xylem-dwelling bacterial pathogen Xylella fastidiosa. Microscopy studies have documented morphological changes to grapevine xylem due to infection by X. fastidiosa. Comparatively, less is known about the bi...
USDA-ARS?s Scientific Manuscript database
Type IV pili of X. fastidiosa are regulated by pilG, a response regulator protein putatively involved in chemotaxis-like operon sensing stimuli through signal transduction pathways. To elucidate roles of pilG in pathogenicity of X. fastidiosa, the pilG-deletion mutant and complementary strain contai...
USDA-ARS?s Scientific Manuscript database
Xylella fastidiosa is a Gram-negative bacterium causing diseases in many economically important crops mostly in the Americas but also in Asia and Europe. A strain of X. fastidiosa was found to cause pear leaf scorch (PLS) disease in Taiwan in 1992. Because of nutritional fastidiousness, characteriza...
USDA-ARS?s Scientific Manuscript database
Xylella fastidiosa is a bacterium that causes leaf scorch diseases of agriculturally important crops including grapevines and almonds. Little is known about virulence factors that are necessary for X. fastidiosa to grow and cause disease in the xylem vessels of a plant host. Any protein secreted by ...
USDA-ARS?s Scientific Manuscript database
Blueberry bacterial leaf scorch (BBLS) disease, a threat to blueberry production in the Southern USA and potentially elsewhere, is caused by Xylella fastidiosa. Efficient control of BBLS requires knowledge of the pathogen. However, this is challenging because Xylella fastidiosa is difficult to cultu...
Evaluation of olive as a host of Xylella fastidiosa and associated sharpshooter vectors
USDA-ARS?s Scientific Manuscript database
Olive (Olea europaea L.) trees exhibiting leaf scorch and/or branch dieback symptoms in California were surveyed for the xylem-limited, fastidious bacterium Xylella fastidiosa. Only ~17% of diseased trees tested positive for X. fastidiosa by PCR, and disease symptoms could not be attributed to X. fa...
In vitro Determination of Extracellular Proteins from Xylella fastidiosa.
Mendes, Juliano S; Santiago, André S; Toledo, Marcelo A S; Horta, Maria A C; de Souza, Alessandra A; Tasic, Ljubica; de Souza, Anete P
2016-01-01
The phytopathogen Xylella fastidiosa causes economic losses in important agricultural crops. Xylem vessel occlusion caused by biofilm formation is the major mechanism underlying the pathogenicity of distinct strains of X. fastidiosa . Here, we provide a detailed in vitro characterization of the extracellular proteins of X. fastidiosa . Based on the results, we performed a comparison with a strain J1a12, which cannot induce citrus variegated chlorosis symptoms when inoculated into citrus plants. We then extend this approach to analyze the extracellular proteins of X. fastidiosa in media supplemented with calcium. We verified increases in extracellular proteins concomitant with the days of growth and, consequently, biofilm development (3-30 days). Outer membrane vesicles carrying toxins were identified beginning at 10 days of growth in the 9a5c strain. In addition, a decrease in extracellular proteins in media supplemented with calcium was observed in both strains. Using mass spectrometry, 71 different proteins were identified during 30 days of X. fastidiosa biofilm development, including proteases, quorum-sensing proteins, biofilm formation proteins, hypothetical proteins, phage-related proteins, chaperones, toxins, antitoxins, and extracellular vesicle membrane components.
In vitro Determination of Extracellular Proteins from Xylella fastidiosa
Mendes, Juliano S.; Santiago, André S.; Toledo, Marcelo A. S.; Horta, Maria A. C.; de Souza, Alessandra A.; Tasic, Ljubica; de Souza, Anete P.
2016-01-01
The phytopathogen Xylella fastidiosa causes economic losses in important agricultural crops. Xylem vessel occlusion caused by biofilm formation is the major mechanism underlying the pathogenicity of distinct strains of X. fastidiosa. Here, we provide a detailed in vitro characterization of the extracellular proteins of X. fastidiosa. Based on the results, we performed a comparison with a strain J1a12, which cannot induce citrus variegated chlorosis symptoms when inoculated into citrus plants. We then extend this approach to analyze the extracellular proteins of X. fastidiosa in media supplemented with calcium. We verified increases in extracellular proteins concomitant with the days of growth and, consequently, biofilm development (3–30 days). Outer membrane vesicles carrying toxins were identified beginning at 10 days of growth in the 9a5c strain. In addition, a decrease in extracellular proteins in media supplemented with calcium was observed in both strains. Using mass spectrometry, 71 different proteins were identified during 30 days of X. fastidiosa biofilm development, including proteases, quorum-sensing proteins, biofilm formation proteins, hypothetical proteins, phage-related proteins, chaperones, toxins, antitoxins, and extracellular vesicle membrane components. PMID:28082960
Elbrissi, Atif; Sabeil, Y A; Khalifa, Khalda A; Enan, Khalid; Khair, Osama M; El Hussein, A M
2017-03-01
The aim of this study was to identify and characterize thermophilic Campylobacter species in faecal samples from goats in Khartoum State, Sudan, by application of multiplex polymerase chain reaction. Campylobacteriosis is a zoonotic disease of global concern, and the organisms can be transmitted to human via food, water and through contact with farm animals and pets. There are five clinically related Campylobacter species: Campylobacter jejuni (C. jejuni). Campylobacter coli, Campylobacter lari, Campylobacter upsaliensis and Campylobacter fetus. Conventional cultural methods to diagnose campylobacteriosis are tedious and time consuming. Wide ranges of genes have been reported to be used for PCR-based identification of Campylobacter spp. We used a multiplex PCR assay to simultaneously detect genes from the major five clinically significant Campylobacter spp. The genes selected were hipO (hippuricase) and 23S rRNA from glyA (serine hydroxymethyl transferase) from each of C. jejuni. C. coli, C. lari, and C. upsaliensis; and sapB2 (surface layer protein) from C. fetus subsp. fetus. The assay was used to identify Campylobacter isolates recovered from 336 cultured faecal samples from goats in three localities in Khartoum State. C. coli was the most predominant isolate (234; 69.6%), followed by C. jejuni (19; 5.7%), C. upsaliensis (13; 3.9%), C. fetus subsp. fetus (7; 2.1%) and C. lari (6; 1.8%). Twenty-nine goats showed mixed infection with Campylobacter spp., 21 of which harbored two Campylobacter spp., while eight animals were infected with three species. Ten out of twelve goats that displayed diarrhea harbored C. coli only. C. coli, C. jejuni and C. upsaliensis showed significant variation with localities. The prevalence of C. coli was significantly higher (87; 25.9%) in goats from Omdurman, whereas C. jejuni and C. upsaliensis were significantly higher (11; 3.3%, 9; 2.7%) in goats from Khartoum. The multiplex PCR assay was found to be rapid and easy to perform and had a high sensitivity and specificity for characterizing the isolates, even in mixed cultures. The study demonstrated the significance of goats as reservoirs in the dissemination of Campylobacter spp. which could be considered as potential agent of caprine enteritis and abortion as well as contamination of the wider environment posing serious public health concern in Khartoum State.
Lindow, Steven; Newman, Karyn; Chatterjee, Subhadeep; Baccari, Clelia; Lavarone, Anthony T; Ionescu, Michael
2014-03-01
The rpfF gene from Xylella fastidiosa, encoding the synthase for diffusible signal factor (DSF), was expressed in 'Freedom' grape to reduce the pathogen's growth and mobility within the plant. Symptoms in such plants were restricted to near the point of inoculation and incidence of disease was two- to fivefold lower than in the parental line. Both the longitudinal and lateral movement of X. fastidiosa in the xylem was also much lower. DSF was detected in both leaves and xylem sap of RpfF-expressing plants using biological sensors, and both 2-Z-tetradecenoic acid, previously identified as a component of X. fastidiosa DSF, and cis-11-methyl-2-dodecenoic acid were detected in xylem sap using electrospray ionization mass spectrometry. A higher proportion of X. fastidiosa cells adhered to xylem vessels of the RpfF-expressing line than parental 'Freedom' plants, reflecting a higher adhesiveness of the pathogen in the presence of DSF. Disease incidence in RpfF-expressing plants in field trials in which plants were either mechanically inoculated with X. fastidiosa or subjected to natural inoculation by sharpshooter vectors was two- to fourfold lower in than that of the parental line. The number of symptomatic leaves on infected shoots was reduced proportionally more than the incidence of infection, reflecting a decreased ability of X. fastidiosa to move within DSF-producing plants.
USDA-ARS?s Scientific Manuscript database
Xylella fastidiosa is a Gram-negative, xylem-limited pathogenic bacterium that causes Pierce’s disease of grapevines. Type IV pili of X. fastidiosa are regulated by pilG, a chemotaxis regulator in Pil-Chp operon involving signal transduction pathways. To elucidate the role of pilG in twitching motil...
Ionescu, Michael; Yokota, Kenji; Antonova, Elena; Garcia, Angelica; Beaulieu, Ellen; Hayes, Terry; Iavarone, Anthony T; Lindow, Steven E
2016-07-19
Cell density-dependent regulation of gene expression in Xylella fastidiosa that is crucial to its switching between plant hosts and insect vectors is dependent on RpfF and its production of 2-enoic acids known as diffusible signal factor (DSF). We show that X. fastidiosa produces a particularly large variety of similar, relatively long-chain-length 2-enoic acids that are active in modulating gene expression. Both X. fastidiosa itself and a Pantoea agglomerans surrogate host harboring X. fastidiosa RpfF (XfRpfF) is capable of producing a variety of both saturated and unsaturated free fatty acids. However, only 2-cis unsaturated acids were found to be biologically active in X. fastidiosa X. fastidiosa produces, and is particularly responsive to, a novel DSF species, 2-cis-hexadecanoic acid that we term XfDSF2. It is also responsive to other, even longer 2-enoic acids to which other taxa such as Xanthomonas campestris are unresponsive. The 2-enoic acids that are produced by X. fastidiosa are strongly affected by the cellular growth environment, with XfDSF2 not detected in culture media in which 2-tetradecenoic acid (XfDSF1) had previously been found. X. fastidiosa is responsive to much lower concentrations of XfDSF2 than XfDSF1. Apparently competitive interactions can occur between various saturated and unsaturated fatty acids that block the function of those agonistic 2-enoic fatty acids. By altering the particular 2-enoic acids produced and the relative balance of free enoic and saturated fatty acids, X. fastidiosa might modulate the extent of DSF-mediated quorum sensing. X. fastidiosa, having a complicated lifestyle in which it moves and multiplies within plants but also must be vectored by insects, utilizes DSF-based quorum sensing to partition the expression of traits needed for these two processes within different cells in this population based on local cellular density. The finding that it can produce a variety of DSF species in a strongly environmentally context-dependent manner provides insight into how it coordinates the many genes under the control of DSF signaling to successfully associate with its two hosts. Since the new DSF variant XfDSF2 described here is much more active than the previously recognized DSF species, it should contribute to plant disease control, given that the susceptibility of plants can be greatly reduced by artificially elevating the levels of DSF in plants, creating "pathogen confusion," resulting in lower virulence. Copyright © 2016 Ionescu et al.
Parker, Jennifer K.; Havird, Justin C.
2012-01-01
Isolates of the plant pathogen Xylella fastidiosa are genetically very similar, but studies on their biological traits have indicated differences in virulence and infection symptomatology. Taxonomic analyses have identified several subspecies, and phylogenetic analyses of housekeeping genes have shown broad host-based genetic differences; however, results are still inconclusive for genetic differentiation of isolates within subspecies. This study employs multilocus sequence analysis of environmentally mediated genes (MLSA-E; genes influenced by environmental factors) to investigate X. fastidiosa relationships and differentiate isolates with low genetic variability. Potential environmentally mediated genes, including host colonization and survival genes related to infection establishment, were identified a priori. The ratio of the rate of nonsynonymous substitutions to the rate of synonymous substitutions (dN/dS) was calculated to select genes that may be under increased positive selection compared to previously studied housekeeping genes. Nine genes were sequenced from 54 X. fastidiosa isolates infecting different host plants across the United States. Results of maximum likelihood (ML) and Bayesian phylogenetic (BP) analyses are in agreement with known X. fastidiosa subspecies clades but show novel within-subspecies differentiation, including geographic differentiation, and provide additional information regarding host-based isolate variation and specificity. dN/dS ratios of environmentally mediated genes, though <1 due to high sequence similarity, are significantly greater than housekeeping gene dN/dS ratios and correlate with increased sequence variability. MLSA-E can more precisely resolve relationships between closely related bacterial strains with low genetic variability, such as X. fastidiosa isolates. Discovering the genetic relationships between X. fastidiosa isolates will provide new insights into the epidemiology of populations of X. fastidiosa, allowing improved disease management in economically important crops. PMID:22194287
Potential complications when developing gene deletion clones in Xylella fastidiosa.
Johnson, Kameka L; Cursino, Luciana; Athinuwat, Dusit; Burr, Thomas J; Mowery, Patricia
2015-04-16
The Gram-negative xylem-limited bacterium, Xylella fastidiosa, is an important plant pathogen that infects a number of high value crops. The Temecula 1 strain infects grapevines and induces Pierce's disease, which causes symptoms such as scorching on leaves, cluster collapse, and eventual plant death. In order to understand the pathogenesis of X. fastidiosa, researchers routinely perform gene deletion studies and select mutants via antibiotic markers. Site-directed pilJ mutant of X. fastidiosa were generated and selected on antibiotic media. Mutant cultures were assessed by PCR to determine if they were composed of purely transformant cells or included mixtures of non-transformants cells. Then pure pilJ mutant and wildtype cells were mixed in PD2 medium and following incubation and exposure to kanamycin were assessed by PCR for presence of mutant and wildtype populations. We have discovered that when creating clones of targeted mutants of X. fastidiosa Temecula 1 with selection on antibiotic plates, X. fastidiosa lacking the gene deletion often persist in association with targeted mutant cells. We believe this phenomenon is due to spontaneous antibiotic resistance and/or X. fastidiosa characteristically forming aggregates that can be comprised of transformed and non-transformed cells. A combined population was confirmed by PCR, which showed that targeted mutant clones were mixed with non-transformed cells. After repeated transfer and storage the non-transformed cells became the dominant clone present. We have discovered that special precautions are warranted when developing a targeted gene mutation in X. fastidiosa because colonies that arise following transformation and selection are often comprised of transformed and non-transformed cells. Following transfer and storage the cells can consist primarily of the non-transformed strain. As a result, careful monitoring of targeted mutant strains must be performed to avoid mixed populations and confounding results.
Parker, Jennifer K; Havird, Justin C; De La Fuente, Leonardo
2012-03-01
Isolates of the plant pathogen Xylella fastidiosa are genetically very similar, but studies on their biological traits have indicated differences in virulence and infection symptomatology. Taxonomic analyses have identified several subspecies, and phylogenetic analyses of housekeeping genes have shown broad host-based genetic differences; however, results are still inconclusive for genetic differentiation of isolates within subspecies. This study employs multilocus sequence analysis of environmentally mediated genes (MLSA-E; genes influenced by environmental factors) to investigate X. fastidiosa relationships and differentiate isolates with low genetic variability. Potential environmentally mediated genes, including host colonization and survival genes related to infection establishment, were identified a priori. The ratio of the rate of nonsynonymous substitutions to the rate of synonymous substitutions (dN/dS) was calculated to select genes that may be under increased positive selection compared to previously studied housekeeping genes. Nine genes were sequenced from 54 X. fastidiosa isolates infecting different host plants across the United States. Results of maximum likelihood (ML) and Bayesian phylogenetic (BP) analyses are in agreement with known X. fastidiosa subspecies clades but show novel within-subspecies differentiation, including geographic differentiation, and provide additional information regarding host-based isolate variation and specificity. dN/dS ratios of environmentally mediated genes, though <1 due to high sequence similarity, are significantly greater than housekeeping gene dN/dS ratios and correlate with increased sequence variability. MLSA-E can more precisely resolve relationships between closely related bacterial strains with low genetic variability, such as X. fastidiosa isolates. Discovering the genetic relationships between X. fastidiosa isolates will provide new insights into the epidemiology of populations of X. fastidiosa, allowing improved disease management in economically important crops.
Ben Moussa, Issam Eddine; Mazzoni, Valerio; Valentini, Franco; Yaseen, Thaer; Lorusso, Donato; Speranza, Stefano; Digiaro, Michele; Varvaro, Leonardo; Krugner, Rodrigo; D'Onghia, Anna Maria
2016-08-01
A study on seasonal abundance of Auchenorrhyncha species and their infectivity by Xylella fastidiosa in the Apulia region of Italy was conducted to identify ideal periods for monitoring and adoption of potential control measures against insect vectors. Adult populations of Auchenorrhyncha species were monitored monthly over a 2-yr period from five olive groves. A total of 15 species were captured, identified, and tested for presence of X. fastidiosa by polymerase chain reaction (PCR). For three species, Philaenus spumarius L., Neophilaenus campestris (Fallèn), and Euscelis lineolatus Brullé, positive reactions to X. fastidiosa were obtained, on average, in 16.3, 15.9 and 18.4% of adult insects, respectively. Philaneous spumarius was the dominant species (39.8% of total Auchenorrhyncha captured) with the highest adult abundance in summer months. Adult P. spumarius and N. campestris were first detected between March and May in both years, and all insects tested during these periods (year 1: n = 42, year 2: n = 132) gave negative reactions to X. fastidiosa by PCR. Similarly, first adults of E. lineolatus that appeared from October to November (year 1: n = 20, year 2: n = 15) tested negative for presence of X. fastidiosa Given the lack of transstadial and transovarial transmission of X. fastidiosa and considering that P. spumarius is univoltine, control measures against nymphal stages of P. spumarius should be investigated as means of population suppression to reduce spread of X. fastidiosa in olive groves. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Chen, Jianchi; Civerolo, Edwin L; Jarret, Robert L; Van Sluys, Marie-Anne; de Oliveira, Mariana C
2005-02-01
Xylella fastidiosa causes many important plant diseases including Pierce's disease (PD) in grape and almond leaf scorch disease (ALSD). DNA-based methodologies, such as randomly amplified polymorphic DNA (RAPD) analysis, have been playing key roles in genetic information collection of the bacterium. This study further analyzed the nucleotide sequences of selected RAPDs from X. fastidiosa strains in conjunction with the available genome sequence databases and unveiled several previously unknown novel genetic traits. These include a sequence highly similar to those in the phage family of Podoviridae. Genome comparisons among X. fastidiosa strains suggested that the "phage" is currently active. Two other RAPDs were also related to horizontal gene transfer: one was part of a broadly distributed cryptic plasmid and the other was associated with conjugal transfer. One RAPD inferred a genomic rearrangement event among X. fastidiosa PD strains and another identified a single nucleotide polymorphism of evolutionary value.
Morphological evidence for phages in Xylella fastidiosa
Chen, Jianchi; Civerolo, Edwin L
2008-01-01
Presumptive phage particles associated with Xylella fastidiosa strain Temecula-1 grown in PW broth were observed by transmission electron microscopy (TEM) in ultrathin sections of bacterial cell-containing low speed centrifugation pellets and in partially purified preparations from CsCl equilibrium centrifugation density gradients. Ultrathin-sectioned cell pellets contained icosahedral particles of about 45 nm in diameter. Samples collected from CsCl density gradients revealed mostly non-tailed icosahedral but also tailed particles. The icosahedral particles could be divided into two types: a large type (about 45 nm) and a small type (about 30 nm). Filamentous phage-like particles (17 × 120 to 6,300 nm) were also observed. The presence of different types of phage-like particles resembling to those in several bacteriophage families provides new physical evidence, in addition to X. fastidiosa genomic information, that X. fastidiosa possesses active phages. This is the first report of phage particles released in X. fastidiosa cultures. PMID:18538030
Devi, Sundru Manjulata; Aishwarya, Subramanian; Halami, Prakash M
2016-12-01
The present study was aimed to evaluate the diversity and probiotic properties of Lactobacillus plantarum-group cultures from vegetable origin. First, genotypic diversity of L. plantarum (n=34) was achieved by PCR of Random Amplified Polymorphic DNA and recA gene-specific multiplex PCR. The isolates were segregated into five groups namely, Lactobacillus pentosus, Lactobacillus paraplantarum, Lactobacillus arizonensis, Lactobacillus plantarum subsp. plantarum and argentoratensis. Further discrimination was achieved by restriction fragment length polymorphism of probiotic adhesion genes viz.fbp, mub and msa gene. As determined by nucleotide sequence analysis and bioinformatics Pfam database, the putative Fbp protein had only one FBP domain, whereas Mub protein had 8-10 MUB domain repeats. However, L. pentosus (except CFR MFT9), L. plantarum subsp. argentoratensis (except CFR MFT5) and L. arizonensis (except CFR MFT2) isolates gave no amplicon for the tested marker genes. Selected cultures (n=15) showed tolerance to simulated digestive fluids (20-85%), exhibited auto-aggregation (10-77%), cellular hydrophobicity (12-78%), and broad spectrum of anti-microbial activity. Concurrently, high adherence capacity to mucin was achieved for L. plantarum subsp. plantarum (MCC 2974 and CFR MFT1) and L. paraplantarum (MTCC 9483, MCC 2977, MCC 2978), which had an additional MUB domain repeat. Copyright © 2016 Elsevier GmbH. All rights reserved.
Cursino, Luciana; Athinuwat, Dusit; Patel, Kelly R.; Galvani, Cheryl D.; Zaini, Paulo A.; Li, Yaxin; De La Fuente, Leonardo; Hoch, Harvey C.; Burr, Thomas J.; Mowery, Patricia
2015-01-01
Xylella fastidiosa is an important phytopathogenic bacterium that causes many serious plant diseases including Pierce’s disease of grapevines. X. fastidiosa is thought to induce disease by colonizing and clogging xylem vessels through the formation of cell aggregates and bacterial biofilms. Here we examine the role in X. fastidiosa virulence of an uncharacterized gene, PD1671, annotated as a two-component response regulator with potential GGDEF and EAL domains. GGDEF domains are found in c-di-GMP diguanylate cyclases while EAL domains are found in phosphodiesterases, and these domains are for c-di-GMP production and turnover, respectively. Functional analysis of the PD1671 gene revealed that it affected multiple X. fastidiosa virulence-related phenotypes. A Tn5 PD1671 mutant had a hypervirulent phenotype in grapevines presumably due to enhanced expression of gum genes leading to increased exopolysaccharide levels that resulted in elevated biofilm formation. Interestingly, the PD1671 mutant also had decreased motility in vitro but did not show a reduced distribution in grapevines following inoculation. Given these responses, the putative PD1671 protein may be a negative regulator of X. fastidiosa virulence. PMID:25811864
Differential expression of genes of Xylella fastidiosa in xylem fluid of citrus and grapevine.
Shi, Xiangyang; Bi, Jianlong; Morse, Joseph G; Toscano, Nick C; Cooksey, Donald A
2010-03-01
Xylella fastidiosa causes a serious Pierce's disease (PD) in grapevine. Xylella fastidiosa cells from a PD strain were grown in a pure xylem fluid of a susceptible grapevine cultivar vs. xylem fluid from citrus, which is not a host for this strain of X. fastidiosa. When grown in grapevine xylem fluid, cells of the PD strain formed clumps and biofilm formed to a greater extent than in citrus xylem fluid, although the PD strain did grow in xylem fluid of three citrus varieties. The differential expression of selected genes of a PD X. fastidiosa strain cultured in the two xylem fluids was analyzed using a DNA macroarray. Compared with citrus xylem fluid, grapevine xylem fluid stimulated the expression of X. fastidiosa genes involved in virulence regulation, such as gacA, algU, xrvA, and hsq, and also genes involved in the biogenesis of pili and twitching motility, such as fimT, pilI, pilU, and pilY1. Increased gene expression likely contributes to PD expression in grapevine, whereas citrus xylem fluid did not support or possibly suppressed the expression of these virulence genes.
Shi, Xiang Yang; Dumenyo, C Korsi; Hernandez-Martinez, Rufina; Azad, Hamid; Cooksey, Donald A
2009-04-01
The xylem-limited, insect-transmitted bacterium Xylella fastidiosa causes Pierce's disease in grapes through cell aggregation and vascular clogging. GacA controls various physiological processes and pathogenicity factors in many gram-negative bacteria, including biofilm formation in Pseudomonas syringae pv. tomato DC3000. Cloned gacA of X. fastidiosa was found to restore the hypersensitive response and pathogenicity in gacA mutants of P. syringae pv. tomato DC3000 and Erwinia amylovora. A gacA mutant of X. fastidiosa (DAC1984) had significantly reduced abilities to adhere to a glass surface, form biofilm, and incite disease symptoms on grapevines, compared with the parent (A05). cDNA microarray analysis identified 7 genes that were positively regulated by GacA, including xadA and hsf, predicted to encode outer membrane adhesion proteins, and 20 negatively regulated genes, including gumC and an antibacterial polypeptide toxin gene, cvaC. These results suggest that GacA of X. fastidiosa regulates many factors, which contribute to attachment and biofilm formation, as well as some physiological processes that may enhance the adaptation and tolerance of X. fastidiosa to environmental stresses and the competition within the host xylem.
Chen, Hongyu; Kandel, Prem P; Cruz, Luisa F; Cobine, Paul A; De La Fuente, Leonardo
2017-11-01
MopB is a major outer membrane protein (OMP) in Xylella fastidiosa, a bacterial plant pathogen that causes losses on many economically important crops. Based on in silico analysis, the uncharacterized MopB protein of X. fastidiosa contains a β-barrel structure with an OmpA-like domain and a predicted calcium-binding motif. Here, MopB function was studied by mutational analysis taking advantage of the natural competence of X. fastidiosa. Mutants of mopB were constructed in two different X. fastidiosa strains, the type strain Temecula and the more virulent WM1-1. Deletion of the mopB gene impaired cell-to-cell aggregation, surface attachment, and biofilm formation in both strains. Interestingly, mopB deletion completely abolished twitching motility. Electron microscopy of the bacterial cell surface revealed that mopB deletion eliminated type IV and type I pili formation, potentially caused by destabilization of the outer membrane. Both mopB mutants showed reduced virulence using tobacco (Nicotiana tabacum) as a host under greenhouse conditions. These results suggest that MopB has pleiotropic functions in biofilm formation and twitching motility and is important for virulence of X. fastidiosa.
Cursino, Luciana; Athinuwat, Dusit; Patel, Kelly R; Galvani, Cheryl D; Zaini, Paulo A; Li, Yaxin; De La Fuente, Leonardo; Hoch, Harvey C; Burr, Thomas J; Mowery, Patricia
2015-01-01
Xylella fastidiosa is an important phytopathogenic bacterium that causes many serious plant diseases including Pierce's disease of grapevines. X. fastidiosa is thought to induce disease by colonizing and clogging xylem vessels through the formation of cell aggregates and bacterial biofilms. Here we examine the role in X. fastidiosa virulence of an uncharacterized gene, PD1671, annotated as a two-component response regulator with potential GGDEF and EAL domains. GGDEF domains are found in c-di-GMP diguanylate cyclases while EAL domains are found in phosphodiesterases, and these domains are for c-di-GMP production and turnover, respectively. Functional analysis of the PD1671 gene revealed that it affected multiple X. fastidiosa virulence-related phenotypes. A Tn5 PD1671 mutant had a hypervirulent phenotype in grapevines presumably due to enhanced expression of gum genes leading to increased exopolysaccharide levels that resulted in elevated biofilm formation. Interestingly, the PD1671 mutant also had decreased motility in vitro but did not show a reduced distribution in grapevines following inoculation. Given these responses, the putative PD1671 protein may be a negative regulator of X. fastidiosa virulence.
Network analysis reveals why Xylella fastidiosa will persist in Europe.
Strona, Giovanni; Carstens, Corrie Jacobien; Beck, Pieter S A
2017-03-06
The insect vector borne bacterium Xylella fastidiosa was first detected in olive trees in Southern Italy in 2013, and identified as the main culprit behind the 'olive quick decline syndrome'. Since then, the disease has spread rapidly through Italy's main olive oil producing region. The epidemiology of the outbreak is largely unstudied, with the list of X. fastidiosa hosts and vectors in Europe likely incomplete, and the role humans play in dispersal unknown. These knowledge gaps have led to management strategies based on general assumptions that require, among others, local vector control and, in certain areas, the destruction of infected plants and healthy ones around them in an attempt to eradicate or halt the spreading pest. Here we show that, regardless of epidemiological uncertainties, the mere distribution of olive orchards in Southern Italy makes the chances of eradicating X. fastidiosa from the region extremely slim. Our results imply that Southern Italy is becoming a reservoir for X. fastidiosa. As a consequence, management strategies should keep the prevalence of X. fastidiosa in the region as low as possible, primarily through vector control, lest the pathogen, that has also been detected in southern France and the island of Mallorca (Spain), continues spreading through Italy and Europe.
Dourado, Manuella Nóbrega; Santos, Daiene Souza; Nunes, Luiz Roberto; Costa de Oliveira, Regina Lúcia Batista da; de Oliveira, Marcus Vinicius; Araújo, Welington Luiz
2015-12-01
Xylella fastidiosa, the causal agent of citrus variegated chlorosis (CVC), colonizes plant xylem, reducing sap flow, and inducing internerval chlorosis, leaf size reduction, necrosis, and harder and smaller fruits. This bacterium may be transmitted from plant to plant by sharpshooter insects, including Bucephalogonia xanthopis. The citrus endophytic bacterium Methylobacterium mesophilicum SR1.6/6 colonizes citrus xylem and previous studies showed that this strain is also transferred from plant to plant by B. xanthopis (Insecta), suggesting that this endophytic bacterium may interact with X. fastidiosa in planta and inside the insect vector during co-transmission by the same insect vector. To better understand the X. fastidiosa behavior in the presence of M. mesophilicum, we evaluated the X. fastidiosa transcriptional profile during in vitro interaction with M. mesophilicum SR1.6/6. The results showed that during co-cultivation, X. fastidiosa down-regulated genes related to growth and up-regulated genes related to energy production, stress, transport, and motility, suggesting the existence of a specific adaptive response to the presence of M. mesophilicum in the culture medium. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Chromosome-based genetic complementation system for Xylella fastidiosa.
Matsumoto, Ayumi; Young, Glenn M; Igo, Michele M
2009-03-01
Xylella fastidiosa is a xylem-limited, gram-negative bacterium that causes Pierce's disease of grapevine. Here, we describe the construction of four vectors that facilitate the insertion of genes into a neutral site (NS1) in the X. fastidiosa chromosome. These vectors carry a colE1-like (pMB1) replicon and DNA sequences from NS1 flanking a multiple-cloning site and a resistance marker for one of the following antibiotics: chloramphenicol, erythromycin, gentamicin, or kanamycin. In X. fastidiosa, vectors with colE1-like (pMB1) replicons have been found to result primarily in the recovery of double recombinants rather than single recombinants. Thus, the ease of obtaining double recombinants and the stability of the resulting insertions at NS1 in the absence of selective pressure are the major advantages of this system. Based on in vitro and in planta characterizations, strains carrying insertions within NS1 are indistinguishable from wild-type X. fastidiosa in terms of growth rate, biofilm formation, and pathogenicity. To illustrate the usefulness of this system for complementation analysis, we constructed a strain carrying a mutation in the X. fastidiosa cpeB gene, which is predicted to encode a catalase/peroxidase, and showed that the sensitivity of this mutant to hydrogen peroxide could be overcome by the introduction of a wild-type copy of cpeB at NS1. Thus, this chromosome-based complementation system provides a valuable genetic tool for investigating the role of specific genes in X. fastidiosa cell physiology and virulence.
Backus, Elaine A; Shugart, Holly J; Rogers, Elizabeth E; Morgan, J Kent; Shatters, Robert
2015-05-01
Xylella fastidiosa is unique among insect-transmitted plant pathogens because it is propagative but noncirculative, adhering to and multiplying on the cuticular lining of the anterior foregut. Any inoculation mechanism for X. fastidiosa must explain how bacterial cells exit the vector's stylets via the food canal and directly enter the plant. A combined egestion-salivation mechanism has been proposed to explain these unique features. Egestion is the putative outward flow of fluid from the foregut via hypothesized bidirectional pumping of the cibarium. The present study traced green fluorescent protein-expressing X. fastidiosa or fluorescent nanoparticles acquired from artificial diets by glassy-winged sharpshooters, Homalodisca vitripennis, as they were egested into simultaneously secreted saliva. X. fastidiosa or nanoparticles were shown to mix with gelling saliva to form fluorescent deposits and salivary sheaths on artificial diets, providing the first direct, conclusive evidence of egestion by any hemipteran insect. Therefore, the present results strongly support an egestion-salivation mechanism of X. fastidiosa inoculation. Results also support that a column of fluid is transiently held in the foregut without being swallowed. Evidence also supports (but does not definitively prove) that bacteria were suspended in the column of fluid during the vector's transit from diet to diet, and were egested with the held fluid. Thus, we hypothesize that sharpshooters could be true "flying syringes," especially when inoculation occurs very soon after uptake of bacteria, suggesting the new paradigm of a nonpersistent X. fastidiosa transmission mechanism.
Ciraulo, Maristela Boaceff; Santos, Daiene Souza; Rodrigues, Ana Claudia de Freitas Oliveira; de Oliveira, Marcus Vinícius; Rodrigues, Tiago; de Oliveira, Regina Costa; Nunes, Luiz R
2010-01-01
Xylella fastidiosa is a xylem-limited bacterium responsible for important plant diseases, like citrus-variegated chlorosis (CVC) and grapevine Pierce's disease (PD). Interestingly, in vitro growth of X. fastidiosa in chemically defined media that resemble xylem fluid has been achieved, allowing studies of metabolic processes used by xylem-dwelling bacteria to thrive in such nutrient-poor conditions. Thus, we performed microarray hybridizations to compare transcriptomes of X. fastidiosa cells grown in 3G10-R, a medium that resembles grape sap, and in Periwinkle Wilt (PW), the complex medium traditionally used to cultivate X. fastidiosa. We identified 299 transcripts modulated in response to growth in these media. Some 3G10R-overexpressed genes have been shown to be upregulated in cells directly isolated from infected plants and may be involved in plant colonization, virulence and environmental competition. In contrast, cells cultivated in PW show a metabolic switch associated with increased aerobic respiration and enhanced bacterial growth rates.
Ciraulo, Maristela Boaceff; Santos, Daiene Souza; Rodrigues, Ana Claudia de Freitas Oliveira; de Oliveira, Marcus Vinícius; Rodrigues, Tiago; de Oliveira, Regina Costa; Nunes, Luiz R.
2010-01-01
Xylella fastidiosa is a xylem-limited bacterium responsible for important plant diseases, like citrus-variegated chlorosis (CVC) and grapevine Pierce's disease (PD). Interestingly, in vitro growth of X. fastidiosa in chemically defined media that resemble xylem fluid has been achieved, allowing studies of metabolic processes used by xylem-dwelling bacteria to thrive in such nutrient-poor conditions. Thus, we performed microarray hybridizations to compare transcriptomes of X. fastidiosa cells grown in 3G10-R, a medium that resembles grape sap, and in Periwinkle Wilt (PW), the complex medium traditionally used to cultivate X. fastidiosa. We identified 299 transcripts modulated in response to growth in these media. Some 3G10R-overexpressed genes have been shown to be upregulated in cells directly isolated from infected plants and may be involved in plant colonization, virulence and environmental competition. In contrast, cells cultivated in PW show a metabolic switch associated with increased aerobic respiration and enhanced bacterial growth rates. PMID:20625415
Aldrich, Thomas J; Rolshausen, Philippe E; Roper, M Caroline; Reader, Jordan M; Steinhaus, Matthew J; Rapicavoli, Jeannette; Vosburg, David A; Maloney, Katherine N
2015-08-01
The fastidious phytopathogenic bacterium, Xylella fastidiosa, poses a substantial threat to many economically important crops, causing devastating diseases including Pierce's Disease of grapevine. Grapevines (Vitis vinifera L.) planted in an area under Pierce's Disease pressure often display differences in disease severity and symptom expression, with apparently healthy vines growing alongside the dying ones, despite the fact that all the vines are genetic clones of one another. Under the hypothesis that endophytic microbes might be responsible for this non-genetic resistance to X. fastidiosa, endophytic fungi were isolated from vineyard cvs. 'Chardonnay' and 'Cabernet Sauvignon' grown under high Pierce's Disease pressure. A Cochliobolus sp. isolated from a Cabernet Sauvignon grapevine inhibited the growth of X. fastidiosa in vitro. Bioassay-guided isolation of an organic extract of Cochliobolus sp. yielded the natural product radicinin as the major active compound. Radicinin also inhibited proteases isolated from the culture supernatant of X. fastidiosa. In order to assess structure-activity relationships, three semi-synthetic derivatives of radicinin were prepared and tested for activity against X. fastidiosa in vitro. Assay results of these derivatives are consistent with enzyme inactivation by conjugate addition to carbon-10 of radicinin, as proposed previously. Copyright © 2015 Elsevier Ltd. All rights reserved.
XatA, an AT-1 autotransporter important for the virulence of Xylella fastidiosa Temecula1
Matsumoto, Ayumi; Huston, Sherry L; Killiny, Nabil; Igo, Michele M
2012-01-01
Xylella fastidiosa Temecula1 is the causative agent of Pierce's disease of grapevine, which is spread by xylem-feeding insects. An important feature of the infection cycle is the ability of X. fastidiosa to colonize and interact with two distinct environments, the xylem of susceptible plants and the insect foregut. Here, we describe our characterization of XatA, the X. fastidiosa autotransporter protein encoded by PD0528. XatA, which is classified as an AT-1 (classical) autotransporter, has a C-terminal β-barrel domain and a passenger domain composed of six tandem repeats of approximately 50 amino acids. Localization studies indicate that XatA is present in both the outer membrane and membrane vesicles and its passenger domain can be found in the supernatant. Moreover, XatA is important for X. fastidiosa autoaggregation and biofilm formation based on mutational analysis and the discovery that Escherichia coli expressing XatA acquire these traits. The xatA mutant also shows a significant decrease in Pierce's disease symptoms when inoculated into grapevines. Finally, X. fastidiosa homologs to XatA, which can be divided into three distinct groups based on synteny, form a single, well-supported clade, suggesting that they arose from a common ancestor. PMID:22950010
Burbank, Lindsey P; Stenger, Drake C
2016-05-01
Xylella fastidiosa, causal agent of Pierce's disease (PD) of grapevine, is a fastidious organism that requires very specific conditions for replication and plant colonization. Cold temperatures reduce growth and survival of X. fastidiosa both in vitro and in planta. However, little is known regarding physiological responses of X. fastidiosa to temperature changes. Cold-shock proteins (CSP), a family of nucleic acid-binding proteins, act as chaperones facilitating translation at low temperatures. Bacterial genomes often encode multiple CSP, some of which are strongly induced following exposure to cold. Additionally, CSP contribute to the general stress response through mRNA stabilization and posttranscriptional regulation. A putative CSP homolog (Csp1) with RNA-binding activity was identified in X. fastidiosa Stag's Leap. The csp1 gene lacked the long 5' untranslated region characteristic of cold-inducible genes and was expressed in a temperature-independent manner. As compared with the wild type, a deletion mutant of csp1 (∆csp1) had decreased survival rates following cold exposure and salt stress in vitro. The deletion mutant also was significantly less virulent in grapevine, as compared with the wild type, in the absence of cold stress. These results suggest an important function of X. fastidiosa Csp1 in response to cellular stress and during plant colonization.
Host structural carbohydrate induces vector transmission of a bacterial plant pathogen.
Killiny, Nabil; Almeida, Rodrigo P P
2009-12-29
Many insect-borne pathogens have complex life histories because they must colonize both hosts and vectors for successful dissemination. In addition, the transition from host to vector environments may require changes in gene expression before the pathogen's departure from the host. Xylella fastidiosa is a xylem-limited plant-pathogenic bacterium transmitted by leafhopper vectors that causes diseases in a number of economically important plants. We hypothesized that factors of host origin, such as plant structural polysaccharides, are important in regulating X. fastidiosa gene expression and mediating vector transmission of this pathogen. The addition of pectin and glucan to a simple defined medium resulted in dramatic changes in X. fastidiosa's phenotype and gene-expression profile. Cells grown in the presence of pectin became more adhesive than in other media tested. In addition, the presence of pectin and glucan in media resulted in significant changes in the expression of several genes previously identified as important for X. fastidiosa's pathogenicity in plants. Furthermore, vector transmission of X. fastidiosa was induced in the presence of both polysaccharides. Our data show that host structural polysaccharides mediate gene regulation in X. fastidiosa, which results in phenotypic changes required for vector transmission. A better understanding of how vector-borne pathogens transition from host to vector, and vice versa, may lead to previously undiscovered disease-control strategies.
Cell-cell signaling controls Xylella fastidiosa interactions with both insects and plants
Newman, Karyn L.; Almeida, Rodrigo P. P.; Purcell, Alexander H.; Lindow, Steven E.
2004-01-01
Xylella fastidiosa, which causes Pierce's disease of grapevine and other important plant diseases, is a xylem-limited bacterium that depends on insect vectors for transmission. Although many studies have addressed disease symptom development and transmission of the pathogen by vectors, little is known about the bacterial mechanisms driving these processes. Recently available X. fastidiosa genomic sequences and molecular tools have provided new routes for investigation. Here, we show that a diffusible signal molecule is required for biofilm formation in the vector and for vector transmission to plants. We constructed strains of X. fastidiosa mutated in the rpfF gene and determined that they are unable to produce the signal activity. In addition, rpfF mutants are more virulent than the wild type when mechanically inoculated into plants. This signal therefore directs interaction of X. fastidiosa with both its insect vector and plant host. Interestingly, rpfF mutants can still form in planta biofilms, which differ architecturally from biofilms in insects, suggesting that biofilm architecture, rather than a passive response to the environment, is actively determined by X. fastidiosa gene expression. This article reports a cell-cell signaling requirement for vector transmission. Identification of the genes regulated by rpfF should elucidate bacterial factors involved in transmission and biofilm formation in the insect. PMID:14755059
Li; Zreik; Fernandes; Miranda; Teixeira; Ayres; Garnier; Bov
1999-08-01
Xylella fastidiosa isolate 8.1.b obtained from a sweet orange tree affected by citrus variegated chlorosis in the state of Sao Paulo, Brazil, and shown in 1993 to be the causal agent of the disease, was cloned by repeated culture in liquid and on solid PW medium, yielding triply cloned strain 9a5c. The eighth and the 16th passages of strain 9a5c were mechanically inoculated into sweet orange plants. Presence of X. fastidiosa in sweet orange leaves of shoots having grown after inoculation (first-flush shoots) was detected by DAS-ELISA and PCR. Thirty-eight days after inoculation, 70% of the 20 inoculated plants tested positive, and all plants gave strong positive reactions 90 days after inoculation. Symptoms first appeared after 3 months and were conspicuous after 5 months. X. fastidiosa was reisolated from sweet orange leaves, 44 days after inoculation. These results indicate that X. fastidiosa strain 9a5c, derived from pathogenic isolate 8.1.b by triply cloning, is also pathogenic. Strain 9a5c is now used for the X. fastidiosa genome sequencing project undertaken on a large scale in Brazil.http://link. springer-ny.com/link/service/journals/00284/bibs/39n2p106.html
Quantification of Xylella fastidiosa from Citrus Trees by Real-Time Polymerase Chain Reaction Assay.
Oliveira, Antonio C; Vallim, Marcelo A; Semighini, Camile P; Araújo, Welington L; Goldman, Gustavo H; Machado, Marcos A
2002-10-01
ABSTRACT Xylella fastidiosa is the causal agent of citrus variegated chlorosis (CVC), a destructive disease of sweet orange cultivars in Brazil. Polymerase chain reaction (PCR)-based assays constitute the principal diagnostic method for detection of these bacteria. In this work, we established a real-time quantitative PCR (QPCR) assay to quantify X. fastidiosa in naturally and artificially infected citrus. The X. fastidiosa cell number detected in the leaves increased according to the age of the leaf, and bacteria were not detected in the upper midrib section in young leaves, indicating temporal and spatial distribution patterns of bacteria, respectively. In addition, the X. fastidiosa cell number quantified in leaves of 'Pera' orange and 'Murcott' tangor reflected the susceptible and resistant status of these citrus cultivars. None of the 12 endophytic citrus bacteria or the four strains of X. fastidiosa nonpathogenic to citrus that were tested showed an increase in the fluorescence signal during QPCR. In contrast, all 10 CVC-causing strains exhibited an increase in fluorescence signal, thus indicating the specificity of this QPCR assay. Our QPCR provides a powerful tool for studies of different aspects of the Xylella-citrus interactions, and can be incorporated into breeding programs in order to select CVC-resistant plants more quickly.
Francisco, Carolina S; Ceresini, Paulo C; Almeida, Rodrigo P P; Coletta-Filho, Helvécio D
2017-04-01
Xylella fastidiosa, an economically important plant-pathogenic bacterium, infects both coffee and citrus trees in Brazil. Although X. fastidiosa in citrus is well studied, knowledge about the population structure of this bacterium infecting coffee remains unknown. Here, we studied the population structure of X. fastidiosa infecting coffee trees in São Paulo State, Brazil, in four regions where citrus is also widely cultivated. Genotyping of over 500 isolates from coffee plants using 14 genomic microsatellite markers indicated that populations were largely geographically isolated, as previously found with populations of X. fastidiosa infecting citrus. These results were supported by a clustering analysis, which indicated three major genetic groups among the four sampled regions. Overall, approximately 38% of isolates showed significant membership coefficients not related to their original geographical populations (i.e., migrants), characterizing a significant degree of genotype flow among populations. To determine whether admixture occurred between isolates infecting citrus and coffee plants, one site with citrus and coffee orchards adjacent to each other was selected; over 100 isolates were typed from each host plant. No signal of natural admixture between citrus- and coffee-infecting isolates was found; artificial cross-infection assays with representative isolates also yielded no successful cross infection. A comparison determined that X. fastidiosa populations from coffee have higher genetic diversity and allelic richness compared with citrus. The results showed that coffee and citrus X. fastidiosa populations are effectively isolated from each other and, although coffee populations are spatially structured, migration has an important role in shaping diversity.
Scarpari, Leandra M; Lambais, Marcio R; Silva, Denise S; Carraro, Dirce M; Carrer, Helaine
2003-05-16
Xylella fastidiosa is the causal agent of economically important plant diseases, including citrus variegated chlorosis and Pierce's disease. Hitherto, there has been no information on the molecular mechanisms controlling X. fastidiosa-plant interactions. To determine whether predicted open reading frames (ORFs) encoding putative pathogenicity-related factors were expressed by X. fastidiosa 9a5c cells grown at low (LCD) and high cell density (HCD) conditions in liquid modified PW medium, reverse Northern blot hybridization and reverse transcription-polymerase chain reaction (RT-PCR) experiments were performed. Our results indicated that ORFs XF2344, XF2369, XF1851 and XF0125, encoding putative Fur, GumC, a serine-protease and RsmA, respectively, were significantly suppressed at HCD conditions. In contrast, ORF XF1115, encoding putative RpfF, was significantly induced at HCD conditions. Expressions of ORFs XF2367, XF2362 and XF0290, encoding putative GumD, GumJ and RpfA, respectively, were detected only at HCD conditions, whereas expression of ORF XF0287, encoding putative RpfB was detected only at LCD conditions. Bioassays with an Agrobacterium traG::lacZ reporter system indicated that X. fastidiosa does not synthesize N-acyl-homoserine lactones, whereas bioassays with a diffusible signal factor (DSF)-responsive Xanthomonas campestris pv. campestris mutant indicate that X. fastidiosa synthesizes a molecule similar to DSF in modified PW medium. Our data also suggest that the synthesis of the DSF-like molecule and fastidian gum by X. fastidiosa is affected by cell density in vitro.
Lee, Min Woo; Rogers, Elizabeth E; Stenger, Drake C
2010-12-01
Xylella fastidiosa strain riv11 harbors a 25-kbp plasmid (pXF-RIV11) belonging to the IncP-1 incompatibility group. Replication and stability factors of pXF-RIV11 were identified and used to construct plasmids able to replicate in X. fastidiosa and Escherichia coli. Replication in X. fastidiosa required a 1.4-kbp region from pXF-RIV11 containing a replication initiation gene (trfA) and the adjacent origin of DNA replication (oriV). Constructs containing trfA and oriV from pVEIS01, a related IncP-1 plasmid of the earthworm symbiont Verminephrobacter eiseniae, also were competent for replication in X. fastidiosa. Constructs derived from pXF-RIV11 but not pVEIS01 replicated in Agrobacterium tumefaciens, Xanthomonas campestris, and Pseudomonas syringae. Although plasmids bearing replication elements from pXF-RIV11 or pVEIS01 could be maintained in X. fastidiosa under antibiotic selection, removal of selection resulted in plasmid extinction after 3 weekly passages. Addition of a toxin-antitoxin addiction system (pemI/pemK) from pXF-RIV11 improved plasmid stability such that >80 to 90% of X. fastidiosa cells retained plasmid after 5 weekly passages in the absence of antibiotic selection. Expression of PemK in E. coli was toxic for cell growth, but toxicity was nullified by coexpression of PemI antitoxin. Deletion of N-terminal sequences of PemK containing the conserved motif RGD abolished toxicity. In vitro assays revealed a direct interaction of PemI with PemK, suggesting that antitoxin activity of PemI is mediated by toxin sequestration. IncP-1 plasmid replication and stability factors were added to an E. coli cloning vector to constitute a stable 6.0-kbp shuttle vector (pXF20-PEMIK) suitable for use in X. fastidiosa.
Site-Directed Disruption of the fimA and fimF Fimbrial Genes of Xylella fastidiosa.
Feil, Helene; Feil, William S; Detter, John C; Purcel, Alexander H; Lindow, Steven E
2003-06-01
ABSTRACT Xylella fastidiosa causes Pierce's disease, a serious disease of grape, citrus variegated chlorosis, almond and oleander leaf scorches, and many other similar diseases. Although the complete genome sequences of several strains of this organism are now available, the function of most genes in this organism, especially those conferring virulence, is lacking. Attachment of X. fastidiosa to xylem vessels and insect vectors may be required for virulence and transmission; therefore, we disrupted fimA and fimF, genes encoding the major fimbrial protein FimA and a homolog of the fimbrial adhesin MrkD, to determine their role in the attachment process. Disruption of the fimA and fimF genes in Temecula1 and STL grape strains of X. fastidiosa was obtained by homologous recombination using plasmids pFAK and pFFK, respectively. These vectors contained a kanamycin resistance gene cloned into either the fimA or fimF genes of X. fastidiosa grape strains Temecula1 or STL. Efficiency of transformation was sufficiently high ( approximately 600 transformants per mug of pFFK DNA) to enable selection of rare recombination events. Polymerase chain reaction and Southern blot analyses of the mutants indicated that a double crossover event had occurred exclusively within the fimA and fimF genes, replacing the chromosomal gene with the disrupted gene and abolishing production of the corresponding proteins, FimA or FimF. Scanning electron microscopy revealed that fimbriae size and number, cell aggregation, and cell size were reduced for the FimA or FimF mutants of X. fastidiosa when compared with the parental strain. FimA or FimF mutants of X. fastidiosa remained pathogenic to grapevines, with bacterial populations slightly reduced compared with those of the wild-type X. fastidiosa cells. These mutants maintained their resistance to kanamycin in planta for at least 6 months in the greenhouse.
D'Aimmo, Maria Rosaria; Modesto, Monica; Biavati, Bruno
2007-04-01
The outlines of antibiotic resistance of some probiotic microorganisms were studied. This study was conducted with the double purpose of verifying their ability to survive if they are taken simultaneously with an antibiotic therapy and to increase the selective properties of suitable media for the isolation of samples containing mixed bacterial populations. We isolated from commercial dairy and pharmaceutical products, 34 strains declared as probiotics, belonging to the genera Bifidobacterium and Lactobacillus, and 21 strains of starter culture bacteria. All the microorganisms have been compared by electrophoresis of the soluble proteins for the purpose of identifying them. A Multiplex-PCR with genus- and species-specific primers was used to detect for Bifidobacterium animalis subsp. lactis presence. All bifidobacteria were B. animalis subsp. lactis except one Bifidobacterium longum. Sometimes the identification showed that the used strain was not the one indicated on the label. The lactobacilli were Lactobacillus acidophilus, Lactobacillus casei, and Lactobacillus delbrueckii subsp. bulgaricus. The streptococci were all Streptococcus thermophilus. The minimal inhibitory concentration (MIC) of 24 common antibiotic substances has been valued by the broth microdilution method. All tested strains were susceptible to ampicillin, bacitracin, clindamycin, dicloxacillin, erytromycin, novobiocin, penicillin G, rifampicin (MIC(90) ranging from 0.01 to 4 microg/ml); resistant to aztreonam, cycloserin, kanamycin, nalidixic acid, polymyxin B and spectinomycin (MIC(90) ranging from 64 to >1000 microg/ml). The susceptibility to cephalothin, chloramphenicol, gentamicin, lincomycin, metronidazole, neomycin, paromomycin, streptomycin, tetracycline and vancomycin was variable and depending on the species.
Ahmad, Norazah; Hoon, Shirley Tang Gee; Ghani, Mohamed Kamel Abd; Tee, Koh Yin
2012-06-01
Serotyping is not sufficient to differentiate between Salmonella species that cause paratyphoid fever from the strains that cause milder gastroenteritis as these organisms share the same serotype Salmonella Paratyphi B (S. Paratyphi B). Strains causing paratyphoid fever do not ferment d-tartrate and this key feature was used in this study to determine the prevalence of these strains among the collection of S. Paratyphi B strains isolated from patients in Malaysia. A total of 105 isolates of S. Paratyphi B were discriminated into d-tartrate positive (dT+) and d-tartrate negative (dT) variants by two lead acetate test protocols and multiplex PCR. The lead acetate test protocol 1 differed from protocol 2 by a lower inoculum size and different incubation conditions while the multiplex PCR utilized 2 sets of primers targeting the ATG start codon of the gene STM3356. Lead acetate protocol 1 discriminated 97.1% of the isolates as S. Paratyphi B dT+ and 2.9% as dT while test protocol 2 discriminated all the isolates as S. Paratyphi B dT+. The multiplex PCR test identified all 105 isolates as S. Paratyphi B dT+ strains. The concordance of the lead acetate test relative to that of multiplex PCR was 97.7% and 100% for protocol 1 and 2 respectively. This study showed that S. Paratyphi B dT+ is a common causative agent of gastroenteritis in Malaysia while paratyphoid fever appears to be relatively uncommon. Multiplex PCR was shown to be a simpler, more rapid and reliable method to discriminate S. Paratyphi B than the phenotypic lead acetate test.
Carver-Brown, Rachel K.; Reis, Arthur H.; Rice, Lisa M.; Czajka, John W.; Wangh, Lawrence J.
2012-01-01
Aims. The goal of this study was to construct a single tube molecular diagnostic multiplex assay for the detection of microbial pathogens commonly associated with septicemia, using LATE-PCR and Lights-On/Lights-Off probe technology. Methods and Results. The assay described here identified pathogens associated with sepsis by amplification and analysis of the 16S ribosomal DNA gene sequence for bacteria and specific gene sequences for fungi. A sequence from an unidentified gene in Lactococcus lactis subsp. cremoris served as a positive control for assay function. LATE-PCR was used to generate single-stranded amplicons that were then analyzed at endpoint over a wide temperature range in a specific fluorescent color. Each bacterial target was identified by its pattern of hybridization to Lights-On/Lights-Off probes derived from molecular beacons. Complex mixtures of targets were also detected. Conclusions. All microbial targets were identified in samples containing low starting copy numbers of pathogen genomic DNA, both as individual targets and in complex mixtures. Significance and Impact of the Study. This assay uses new technology to achieve an advance in the field of molecular diagnostics: a single-tube multiplex assay for identification of pathogens commonly associated with sepsis. PMID:23326668
Smolka, Marcus Bustamante; Martins-de-Souza, Daniel; Martins, Daniel; Winck, Flavia Vischi; Santoro, Carlos Eduardo; Castellari, Rafael Ramos; Ferrari, Fernanda; Brum, Itaraju Junior; Galembeck, Eduardo; Della Coletta Filho, Helvécio; Machado, Marcos Antonio; Marangoni, Sergio; Novello, Jose Camillo
2003-02-01
The bacteria Xylella fastidiosa is the causative agent of a number of economically important crop diseases, including citrus variegated chlorosis. Although its complete genome is already sequenced, X. fastidiosa is very poorly characterized by biochemical approaches at the protein level. In an initial effort to characterize protein expression in X. fastidiosa we used one- and two-dimensional gel electrophoresis and mass spectrometry to identify the products of 142 genes present in a whole cell extract and in an extracellular fraction of the citrus isolated strain 9a5c. Of particular interest for the study of pathogenesis are adhesion and secreted proteins. Homologs to proteins from three different adhesion systems (type IV fimbriae, mrk pili and hsf surface fibrils) were found to be coexpressed, the last two being detected only as multimeric complexes in the high molecular weight region of one-dimensional electrophoresis gels. Using a procedure to extract secreted proteins as well as proteins weakly attached to the cell surface we identified 30 different proteins including toxins, adhesion related proteins, antioxidant enzymes, different types of proteases and 16 hypothetical proteins. These data suggest that the intercellular space of X. fastidiosa colonies is a multifunctional microenvironment containing proteins related to in vivo bacterial survival and pathogenesis. A codon usage analysis of the most expressed proteins from the whole cell extract revealed a low biased distribution, which we propose is related to the slow growing nature of X. fastidiosa. A database of the X. fastidiosa proteome was developed and can be accessed via the internet (URL: www.proteome.ibi.unicamp.br).
Qin, X; Miranda, V S; Machado, M A; Lemos, E G; Hartung, J S
2001-06-01
ABSTRACT Strains of Xylella fastidiosa, isolated from sweet orange trees (Citrus sinensis) and coffee trees (Coffea arabica) with symptoms of citrus variegated chlorosis and Requeima do Café, respectively, were indistinguishable based on repetitive extragenic palindromic polymerase chain reaction (PCR) and enterobacterial repetitive intergenic consensus PCR assays. These strains were also indistinguishable with a previously described PCR assay that distinguished the citrus strains from all other strains of Xylella fastidiosa. Because we were not able to document any genomic diversity in our collection of Xylella fastidiosa strains isolated from diseased citrus, the observed gradient of increasing disease severity from southern to northern regions of São Paulo State is unlikely due to the presence of significantly different strains of the pathogen in the different regions. When comparisons were made to reference strains of Xylella fastidiosa isolated from other hosts using these methods, four groups were consistently identified consistent with the hosts and regions from which the strains originated: citrus and coffee, grapevine and almond, mulberry, and elm, plum, and oak. Independent results from random amplified polymorphic DNA (RAPD) PCR assays were also consistent with these results; however, two of the primers tested in RAPD-PCR were able to distinguish the coffee and citrus strains. Sequence comparisons of a PCR product amplified from all strains of Xylella fastidiosa confirmed the presence of a CfoI polymorphism that can be used to distinguish the citrus strains from all others. The ability to distinguish Xylella fastidiosa strains from citrus and coffee with a PCR-based assay will be useful in epidemiological and etiological studies of this pathogen.
Krugner, Rodrigo; Backus, Elaine A
2014-02-01
ABSTRACT The glassy-winged sharpshooter, Homalodisca vitripennis (Germar) (Hemiptera: Cicadellidae), is a xylem fluid-ingesting leafhopper that transmits Xylella fastidiosa Wells et al., a plant-infecting bacterium that causes several plant diseases in the Americas. Although the role of plant water stress on the population density and dispersal ofH. vitripennis has been studied, nothing is known about the effects of plant water stress on the transmission of X. fastidiosa by H. vitripennis. A laboratory study was conducted to determine the influence of plant water stress on the sharpshooter stylet probing behaviors associated with the acquisition and inoculation of X. fastidiosa. Electrical penetration graph was used to monitor H. vitripennis feeding behaviors for 20-h periods on citrus [Citrus sinensis (L.) Osbeck] and almond [Prunus dulcis (Miller) D.A. Webb] plants subjected to levels of water stress. Adult H. vitripennis successfully located xylem vessels, then performed behaviors related to the evaluation of the xylem cell and fluid, and finally ingested xylem fluid from citrus and almond plants under the tested fluid tensions ranging from -5.5 to -33.0 bars and -6.0 to -24.5 bars, respectively. In general, long and frequent feeding events associated with the acquisition and inoculation of X. fastidiosa were observed only in fully irrigated plants (i.e., >-10 bars), which suggests that even low levels of plant water stress may reduce the spread of X. fastidiosa. Results provided insights to disease epidemiology and support the hypothesis that application of regulated deficit irrigation has the potential to reduce the incidence of diseases caused by X.fastidiosa by reducing the number of vectors and by decreasing pathogen transmission efficiency.
Azevedo, João Lúcio; Araújo, Welington Luiz; Lacava, Paulo Teixeira
2016-01-01
The bacterium Xylella fastidiosa is the causal agent of citrus variegated chlorosis (CVC) and has been associated with important losses in commercial orchards of all sweet orange [Citrus sinensis (L.)] cultivars. The development of this disease depends on the environmental conditions, including the endophytic microbial community associated with the host plant. Previous studies have shown that X. fastidiosa interacts with the endophytic community in xylem vessels as well as in the insect vector, resulting in a lower bacterial population and reduced CVC symptoms. The citrus endophytic bacterium Methylobacterium mesophilicum can trigger X. fastidiosa response in vitro, which results in reduced growth and induction of genes associated with energy production, stress, transport, and motility, indicating that X. fastidiosa has an adaptive response to M. mesophilicum. Although this response may result in reduced CVC symptoms, the colonization rate of the endophytic bacteria should be considered in studies that intend to use this endophyte to suppress CVC disease. Symbiotic control is a new strategy that uses symbiotic endophytes as biological control agents to antagonize or displace pathogens. Candidate endophytes for symbiotic control of CVC must occupy the xylem of host plants and attach to the precibarium of sharpshooter insects to access the pathogen. In the present review, we focus on interactions between endophytic bacteria from sweet orange plants and X. fastidiosa, especially those that may be candidates for control of CVC.
Azevedo, João Lúcio; Araújo, Welington Luiz; Lacava, Paulo Teixeira
2016-01-01
Abstract The bacterium Xylella fastidiosa is the causal agent of citrus variegated chlorosis (CVC) and has been associated with important losses in commercial orchards of all sweet orange [Citrus sinensis (L.)] cultivars. The development of this disease depends on the environmental conditions, including the endophytic microbial community associated with the host plant. Previous studies have shown that X. fastidiosa interacts with the endophytic community in xylem vessels as well as in the insect vector, resulting in a lower bacterial population and reduced CVC symptoms. The citrus endophytic bacterium Methylobacterium mesophilicum can trigger X. fastidiosa response in vitro, which results in reduced growth and induction of genes associated with energy production, stress, transport, and motility, indicating that X. fastidiosa has an adaptive response to M. mesophilicum. Although this response may result in reduced CVC symptoms, the colonization rate of the endophytic bacteria should be considered in studies that intend to use this endophyte to suppress CVC disease. Symbiotic control is a new strategy that uses symbiotic endophytes as biological control agents to antagonize or displace pathogens. Candidate endophytes for symbiotic control of CVC must occupy the xylem of host plants and attach to the precibarium of sharpshooter insects to access the pathogen. In the present review, we focus on interactions between endophytic bacteria from sweet orange plants and X. fastidiosa, especially those that may be candidates for control of CVC. PMID:27727362
Transmission of Xylella fastidiosa to Grapevine by the Meadow Spittlebug.
Cornara, D; Sicard, A; Zeilinger, A R; Porcelli, F; Purcell, A H; Almeida, R P P
2016-11-01
There is little information available on Xylella fastidiosa transmission by spittlebugs (Hemiptera, Cercopoidea). This group of insect vectors may be of epidemiological relevance in certain diseases, so it is important to better understand the basic parameters of X. fastidiosa transmission by spittlebugs. We used grapevines as a host plant and the aphrophorid Philaenus spumarius as a vector to estimate the effect of plant access time on X. fastidiosa transmission to plants; in addition, bacterial population estimates in the heads of vectors were determined and correlated with plant infection status. Results show that transmission efficiency of X. fastidiosa by P. spumarius increased with plant access time, similarly to insect vectors in another family (Hemiptera, Cicadellidae). Furthermore, a positive correlation between pathogen populations in P. spumarius and transmission to plants was observed. Bacterial populations in insects were one to two orders of magnitude lower than those observed in leafhopper vectors, and population size peaked within 3 days of plant access period. These results suggest that P. spumarius has either a limited number of sites in the foregut that may be colonized, or that fluid dynamics in the mouthparts of these insects is different from that in leafhoppers. Altogether our results indicate that X. fastidiosa transmission by spittlebugs is similar to that by leafhoppers. In addition, the relationship between cell numbers in vectors and plant infection may have under-appreciated consequences to pathogen spread.
Azizi, Armaghan; Arora, Arinder; Markiv, Anatoliy; Lampe, David J.; Miller, Thomas A.
2012-01-01
Pierce's disease is a devastating lethal disease of Vitus vinifera grapevines caused by the bacterium Xylella fastidiosa. There is no cure for Pierce's disease, and control is achieved predominantly by suppressing transmission of the glassy-winged sharpshooter insect vector. We present a simple robust approach for the generation of panels of recombinant single-chain antibodies against the surface-exposed elements of X. fastidiosa that may have potential use in diagnosis and/or disease transmission blocking studies. In vitro combinatorial antibody ribosome display libraries were assembled from immunoglobulin transcripts rescued from the spleens of mice immunized with heat-killed X. fastidiosa. The libraries were used in a single round of selection against an outer membrane protein, MopB, resulting in the isolation of a panel of recombinant antibodies. The potential use of selected anti-MopB antibodies was demonstrated by the successful application of the 4XfMopB3 antibody in an enzyme-linked immunosorbent assay (ELISA), a Western blot assay, and an immunofluorescence assay (IFA). These immortalized in vitro recombinant single-chain antibody libraries generated against heat-killed X. fastidiosa are a resource for the Pierce's disease research community that may be readily accessed for the isolation of antibodies against a plethora of X. fastidiosa surface-exposed antigenic molecules. PMID:22327580
Silva, Michelli Massaroli da; Andrade, Moacir Dos Santos; Bauermeister, Anelize; Merfa, Marcus Vinícius; Forim, Moacir Rossi; Fernandes, João Batista; Vieira, Paulo Cezar; Silva, Maria Fátima das Graças Fernandes da; Lopes, Norberto Peporine; Machado, Marcos Antônio; Souza, Alessandra Alves de
2017-06-13
Diketopiperazines can be generated by non-enzymatic cyclization of linear dipeptides at extreme temperature or pH, and the complex medium used to culture bacteria and fungi including phytone peptone and trypticase peptone, can also produce cyclic peptides by heat sterilization. As a result, it is not always clear if many diketopiperazines reported in the literature are artifacts formed by the different complex media used in microorganism growth. An ideal method for analysis of these compounds should identify whether they are either synthesized de novo from the products of primary metabolism and deliver true diketopiperazines. A simple defined medium ( X. fastidiosa medium or XFM) containing a single carbon source and no preformed amino acids has emerged as a method with a particularly high potential for the grown of X. fastidiosa and to produce genuine natural products. In this work, we identified a range of diketopiperazines from X. fastidiosa 9a5c growth in XFM, using Ultra-Fast Liquid Chromatography coupled with mass spectrometry. Diketopiperazines are reported for the first time from X. fastidiosa , which is responsible for citrus variegated chlorosis. We also report here fatty acids from X. fastidiosa , which were not biologically active as diffusible signals, and the role of diketopiperazines in signal transduction still remains unknown.
da Silva, F R; Vettore, A L; Kemper, E L; Leite, A; Arruda, P
2001-09-25
The Gram-negative bacterium Xylella fastidiosa was the first plant pathogen to be completely sequenced. This species causes several economically important plant diseases, including citrus variegated chlorosis (CVC). Analysis of the genomic sequence of X. fastidiosa revealed a 12 kb DNA fragment containing an operon closely related to the gum operon of Xanthomonas campestris. The presence of all genes involved in the synthesis of sugar precursors, existence of exopolysaccharide (EPS) production regulators in the genome, and the absence of three of the X. campestris gum genes suggested that X. fastidiosa is able to synthesize an EPS different from that of xanthan gum. This novel EPS probably consists of polymerized tetrasaccharide repeating units assembled by the sequential addition of glucose-1-phosphate, glucose, mannose and glucuronic acid on a polyprenol phosphate carrier.
Santos, Clelton A; Saraiva, Antonio M; Toledo, Marcelo A S; Beloti, Lilian L; Crucello, Aline; Favaro, Marianna T P; Horta, Maria A C; Santiago, André S; Mendes, Juliano S; Souza, Alessandra A; Souza, Anete P
2013-01-01
The 5'-nucleotidases constitute a ubiquitous family of enzymes that catalyze either the hydrolysis or the transfer of esterified phosphate at the 5' position of nucleoside monophosphates. These enzymes are responsible for the regulation of nucleotide and nucleoside levels in the cell and can interfere with the phosphorylation-dependent activation of nucleoside analogs used in therapies targeting solid tumors and viral infections. In the present study, we report the initial biochemical and functional characterization of a 5'-nucleotidase from Xylella fastidiosa that is related to the human cytosolic 5'-nucleotidase I. X. fastidiosa is a plant pathogenic bacterium that is responsible for numerous economically important crop diseases. Biochemical assays confirmed the phosphatase activity of the recombinant purified enzyme and revealed metal ion dependence for full enzyme activity. In addition, we investigated the involvement of Xf5'-Nt in the formation of X. fastidiosa biofilms, which are structures that occlude the xylem vessels of susceptible plants and are strictly associated with bacterial pathogenesis. Using polyclonal antibodies against Xf5'-Nt, we observed an overexpression of Xf5'-Nt during the initial phases of X. fastidiosa biofilm formation that was not observed during X. fastidiosa planktonic growth. Our results demonstrate that the de/phosphorylation network catalyzed by 5'-nucleotidases may play an important role in bacterial biofilm formation, thereby contributing novel insights into bacterial nucleotide metabolism and pathogenicity. Copyright © 2013 Elsevier Ltd. All rights reserved.
Calcium-Enhanced Twitching Motility in Xylella fastidiosa Is Linked to a Single PilY1 Homolog
Cruz, Luisa F.; Parker, Jennifer K.; Cobine, Paul A.
2014-01-01
The plant-pathogenic bacterium Xylella fastidiosa is restricted to the xylem vessel environment, where mineral nutrients are transported through the plant host; therefore, changes in the concentrations of these elements likely impact the growth and virulence of this bacterium. Twitching motility, dependent on type IV pili (TFP), is required for movement against the transpiration stream that results in basipetal colonization. We previously demonstrated that calcium (Ca) increases the motility of X. fastidiosa, although the mechanism was unknown. PilY1 is a TFP structural protein recently shown to bind Ca and to regulate twitching and adhesion in bacterial pathogens of humans. Sequence analysis identified three pilY1 homologs in X. fastidiosa (PD0023, PD0502, and PD1611), one of which (PD1611) contains a Ca-binding motif. Separate deletions of PD0023 and PD1611 resulted in mutants that still showed twitching motility and were not impaired in attachment or biofilm formation. However, the response of increased twitching at higher Ca concentrations was lost in the pilY1-1611 mutant. Ca does not modulate the expression of any of the X. fastidiosa PilY1 homologs, although it increases the expression of the retraction ATPase pilT during active movement. The evidence presented here suggests functional differences between the PilY1 homologs, which may provide X. fastidiosa with an adaptive advantage in environments with high Ca concentrations, such as xylem sap. PMID:25217013
Calcium-Enhanced Twitching Motility in Xylella fastidiosa Is Linked to a Single PilY1 Homolog.
Cruz, Luisa F; Parker, Jennifer K; Cobine, Paul A; De La Fuente, Leonardo
2014-12-01
The plant-pathogenic bacterium Xylella fastidiosa is restricted to the xylem vessel environment, where mineral nutrients are transported through the plant host; therefore, changes in the concentrations of these elements likely impact the growth and virulence of this bacterium. Twitching motility, dependent on type IV pili (TFP), is required for movement against the transpiration stream that results in basipetal colonization. We previously demonstrated that calcium (Ca) increases the motility of X. fastidiosa, although the mechanism was unknown. PilY1 is a TFP structural protein recently shown to bind Ca and to regulate twitching and adhesion in bacterial pathogens of humans. Sequence analysis identified three pilY1 homologs in X. fastidiosa (PD0023, PD0502, and PD1611), one of which (PD1611) contains a Ca-binding motif. Separate deletions of PD0023 and PD1611 resulted in mutants that still showed twitching motility and were not impaired in attachment or biofilm formation. However, the response of increased twitching at higher Ca concentrations was lost in the pilY1-1611 mutant. Ca does not modulate the expression of any of the X. fastidiosa PilY1 homologs, although it increases the expression of the retraction ATPase pilT during active movement. The evidence presented here suggests functional differences between the PilY1 homologs, which may provide X. fastidiosa with an adaptive advantage in environments with high Ca concentrations, such as xylem sap. Copyright © 2014, American Society for Microbiology. All Rights Reserved.
Santos, Clelton A; Toledo, Marcelo A S; Trivella, Daniela B B; Beloti, Lilian L; Schneider, Dilaine R S; Saraiva, Antonio M; Crucello, Aline; Azzoni, Adriano R; Souza, Alessandra A; Aparicio, Ricardo; Souza, Anete P
2012-10-01
Xylella fastidiosa is a Gram-negative bacterium that grows as a biofilm inside the xylem vessels of susceptible plants and causes several economically relevant crop diseases. In the present study, we report the functional and low-resolution structural characterization of the X. fastidiosa disulfide isomerase DsbC (XfDsbC). DsbC is part of the disulfide bond reduction/isomerization pathway in the bacterial periplasm and plays an important role in oxidative protein folding. In the present study, we demonstrate the presence of XfDsbC during different stages of X. fastidiosa biofilm development. XfDsbC was not detected during X. fastidiosa planktonic growth; however, after administering a sublethal copper shock, we observed an overexpression of XfDsbC that also occurred during planktonic growth. These results suggest that X. fastidiosa can use XfDsbC in vivo under oxidative stress conditions similar to those induced by copper. In addition, using dynamic light scattering and small-angle X-ray scattering, we observed that the oligomeric state of XfDsbC in vitro may be dependent on the redox environment. Under reducing conditions, XfDsbC is present as a dimer, whereas a putative tetrameric form was observed under nonreducing conditions. Taken together, our findings demonstrate the overexpression of XfDsbC during biofilm formation and provide the first structural model of a bacterial disulfide isomerase in solution. © 2012 The Authors Journal compilation © 2012 FEBS.
Comparative genomic analysis of coffee-infecting Xylella fastidiosa strains isolated from Brazil.
Barbosa, Deibs; Alencar, Valquíria Campos; Santos, Daiene Souza; de Freitas Oliveira, Ana Cláudia; de Souza, Alessandra A; Coletta-Filho, Helvecio D; de Oliveira, Regina Souza; Nunes, Luiz R
2015-05-01
Strains of Xylella fastidiosa constitute a complex group of bacteria that develop within the xylem of many plant hosts, causing diseases of significant economic importance, such as Pierce's disease in North American grapevines and citrus variegated chlorosis in Brazil. X. fastidiosa has also been obtained from other host plants, in direct correlation with the development of diseases, as in the case of coffee leaf scorch (CLS)--a disease with potential to cause severe economic losses to the Brazilian coffee industry. This paper describes a thorough genomic characterization of coffee-infecting X. fastidiosa strains, initially performed through a microarray-based approach, which demonstrated that CLS strains could be subdivided in two phylogenetically distinct subgroups. Whole-genomic sequencing of two of these bacteria (one from each subgroup) allowed identification of ORFs and horizontally transferred elements (HTEs) that were specific to CLS-related X. fastidiosa strains. Such analyses confirmed the size and importance of HTEs as major mediators of chromosomal evolution amongst these bacteria, and allowed identification of differences in gene content, after comparisons were made with previously sequenced X. fastidiosa strains, isolated from alternative hosts. Although direct experimentation still needs to be performed to elucidate the biological consequences associated with such differences, it was interesting to verify that CLS-related bacteria display variations in genes that produce toxins, as well as surface-related factors (such as fimbrial adhesins and LPS) that have been shown to be involved with recognition of specific host factors in different pathogenic bacteria. © 2015 The Authors.
Kandel, Prem P.; Lopez, Samantha M.; Almeida, Rodrigo P. P.
2016-01-01
ABSTRACT Xylella fastidiosa is a xylem-limited bacterium that is the causal agent of emerging diseases in a number of economically important crops. Genetic diversity studies have demonstrated homologous recombination occurring among X. fastidiosa strains, which has been proposed to contribute to host plant shifts. Moreover, experimental evidence confirmed that X. fastidiosa is naturally competent for recombination in vitro. Here, as an approximation of natural habitats (plant xylem vessels and insect mouthparts), recombination was studied in microfluidic chambers (MCs) filled with media amended with grapevine xylem sap. First, different media were screened for recombination in solid agar plates using a pair of X. fastidiosa strains that were previously reported to recombine in coculture. The highest frequency of recombination was obtained with PD3 medium, compared to those with the other two media (X. fastidiosa medium [XFM] and periwinkle wilt [PW] medium) used in previous studies. Dissection of the media components led to the identification of bovine serum albumin as an inhibitor of recombination that was correlated to its previously known effect on inhibition of twitching motility. When recombination was performed in liquid culture, the frequencies were significantly higher under flow conditions (MCs) than under batch conditions (test tubes). The recombination frequencies in MCs and agar plates were not significantly different from each other. Grapevine xylem sap from both susceptible and tolerant varieties allowed high recombination frequency in MCs when mixed with PD3. These results suggest that X. fastidiosa has the ability to be naturally competent in the natural growth environment of liquid flow, and this phenomenon could have implications in X. fastidiosa environmental adaptation. IMPORTANCE Xylella fastidiosa is a plant pathogen that lives inside xylem vessels (where water and nutrients are transported inside the plant) and the mouthparts of insect vectors. This bacterium causes emerging diseases in various crops worldwide, including recent outbreaks in Europe. The mechanisms by which this bacterium adapts to new hosts is not understood, but it was previously shown that it is naturally competent, meaning that it can take up DNA from the environment and incorporate it into its genome (recombination). In this study, we show that the frequency of recombination is highest when the bacterium is grown under flow conditions in microfluidic chambers modeled after its natural habitats, and recombination was still high when the medium was amended with grapevine sap. Our results suggest that this bacterium is able to recombine when growing inside plants or insects, and this can be a mechanism of adaptation of this pathogen that causes incurable diseases. PMID:27316962
Rinaldi, Fábio C; Meza, Andréia N; Guimarães, Beatriz G
2009-04-21
Disulfide oxidoreductase DsbA catalyzes disulfide bond formation in proteins secreted to the periplasm and has been related to the folding process of virulence factors in many organisms. It is among the most oxidizing of the thioredoxin-like proteins, and DsbA redox power is understood in terms of the electrostatic interactions involving the active site motif CPHC. The plant pathogen Xylella fastidiosa has two chromosomal genes encoding two oxidoreductases belonging to the DsbA family, and in one of them, the canonical motif CPHC is replaced by CPAC. Biochemical assays showed that both X. fastidiosa homologues have similar redox properties and the determination of the crystal structure of XfDsbA revealed substitutions in the active site of X. fastidiosa enzymes, which are proposed to compensate for the lack of the conserved histidine in XfDsbA2. In addition, electron density maps showed a ligand bound to the XfDsbA active site, allowing the characterization of the enzyme interaction with an 8-mer peptide. Finally, surface analysis of XfDsbA and XfDsbA2 suggests that X. fastidiosa enzymes may have different substrate specificities.
Simpson, A J; Reinach, F C; Arruda, P; Abreu, F A; Acencio, M; Alvarenga, R; Alves, L M; Araya, J E; Baia, G S; Baptista, C S; Barros, M H; Bonaccorsi, E D; Bordin, S; Bové, J M; Briones, M R; Bueno, M R; Camargo, A A; Camargo, L E; Carraro, D M; Carrer, H; Colauto, N B; Colombo, C; Costa, F F; Costa, M C; Costa-Neto, C M; Coutinho, L L; Cristofani, M; Dias-Neto, E; Docena, C; El-Dorry, H; Facincani, A P; Ferreira, A J; Ferreira, V C; Ferro, J A; Fraga, J S; França, S C; Franco, M C; Frohme, M; Furlan, L R; Garnier, M; Goldman, G H; Goldman, M H; Gomes, S L; Gruber, A; Ho, P L; Hoheisel, J D; Junqueira, M L; Kemper, E L; Kitajima, J P; Krieger, J E; Kuramae, E E; Laigret, F; Lambais, M R; Leite, L C; Lemos, E G; Lemos, M V; Lopes, S A; Lopes, C R; Machado, J A; Machado, M A; Madeira, A M; Madeira, H M; Marino, C L; Marques, M V; Martins, E A; Martins, E M; Matsukuma, A Y; Menck, C F; Miracca, E C; Miyaki, C Y; Monteriro-Vitorello, C B; Moon, D H; Nagai, M A; Nascimento, A L; Netto, L E; Nhani, A; Nobrega, F G; Nunes, L R; Oliveira, M A; de Oliveira, M C; de Oliveira, R C; Palmieri, D A; Paris, A; Peixoto, B R; Pereira, G A; Pereira, H A; Pesquero, J B; Quaggio, R B; Roberto, P G; Rodrigues, V; de M Rosa, A J; de Rosa, V E; de Sá, R G; Santelli, R V; Sawasaki, H E; da Silva, A C; da Silva, A M; da Silva, F R; da Silva, W A; da Silveira, J F; Silvestri, M L; Siqueira, W J; de Souza, A A; de Souza, A P; Terenzi, M F; Truffi, D; Tsai, S M; Tsuhako, M H; Vallada, H; Van Sluys, M A; Verjovski-Almeida, S; Vettore, A L; Zago, M A; Zatz, M; Meidanis, J; Setubal, J C
2000-07-13
Xylella fastidiosa is a fastidious, xylem-limited bacterium that causes a range of economically important plant diseases. Here we report the complete genome sequence of X. fastidiosa clone 9a5c, which causes citrus variegated chlorosis--a serious disease of orange trees. The genome comprises a 52.7% GC-rich 2,679,305-base-pair (bp) circular chromosome and two plasmids of 51,158 bp and 1,285 bp. We can assign putative functions to 47% of the 2,904 predicted coding regions. Efficient metabolic functions are predicted, with sugars as the principal energy and carbon source, supporting existence in the nutrient-poor xylem sap. The mechanisms associated with pathogenicity and virulence involve toxins, antibiotics and ion sequestration systems, as well as bacterium-bacterium and bacterium-host interactions mediated by a range of proteins. Orthologues of some of these proteins have only been identified in animal and human pathogens; their presence in X. fastidiosa indicates that the molecular basis for bacterial pathogenicity is both conserved and independent of host. At least 83 genes are bacteriophage-derived and include virulence-associated genes from other bacteria, providing direct evidence of phage-mediated horizontal gene transfer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rinaldi, F.; Meza, A; Gulmarges, B
2009-01-01
Disulfide oxidoreductase DsbA catalyzes disulfide bond formation in proteins secreted to the periplasm and has been related to the folding process of virulence factors in many organisms. It is among the most oxidizing of the thioredoxin-like proteins, and DsbA redox power is understood in terms of the electrostatic interactions involving the active site motif CPHC. The plant pathogen Xylella fastidiosa has two chromosomal genes encoding two oxidoreductases belonging to the DsbA family, and in one of them, the canonical motif CPHC is replaced by CPAC. Biochemical assays showed that both X. fastidiosa homologues have similar redox properties and the determinationmore » of the crystal structure of XfDsbA revealed substitutions in the active site of X. fastidiosa enzymes, which are proposed to compensate for the lack of the conserved histidine in XfDsbA2. In addition, electron density maps showed a ligand bound to the XfDsbA active site, allowing the characterization of the enzyme interaction with an 8-mer peptide. Finally, surface analysis of XfDsbA and XfDsbA2 suggests that X. fastidiosa enzymes may have different substrate specificities.« less
Fonseca, Emanuella Maria Barreto; Scorsato, Valéria; Dos Santos, Marcelo Leite; Júnior, Atilio Tomazini; Tada, Susely Ferraz Siqueira; Dos Santos, Clelton Aparecido; de Toledo, Marcelo Augusto Szymanski; de Souza, Anete Pereira; Polikarpov, Igor; Aparicio, Ricardo
2017-04-01
Citrus variegated chlorosis is a disease that attacks economically important citrus plantations and is caused by the plant-pathogenic bacterium Xylella fastidiosa. In this work, the structure of a small heat-shock protein from X. fastidiosa (XfsHSP17.9) is reported. The high-order structures of small heat-shock proteins from other organisms are arranged in the forms of double-disc, hollow-sphere or spherical assemblies. Unexpectedly, the structure reported here reveals a high-order architecture forming a nearly square cavity.
Oliver, J E; Sefick, S A; Parker, J K; Arnold, T; Cobine, P A; De La Fuente, L
2014-10-01
Characterization of ionomes has been used to uncover the basis of nutrient utilization and environmental adaptation of plants. Here, ionomic profiles were used to understand the phenotypic response of a plant to infection by genetically diverse isolates of Xylella fastidiosa, a gram-negative, xylem-limited bacterial plant pathogen. In this study, X. fastidiosa isolates were used to infect a common model host (Nicotiana tabacum 'SR1'), and leaf and sap concentrations of eleven elements together with plant colonization and symptoms were assessed. Multivariate statistical analysis revealed that changes in the ionome were significantly correlated with symptom severity and bacterial populations in host petioles. Moreover, plant ionome modification by infection could be used to differentiate the X. fastidiosa subspecies with which the plant was infected. This report establishes host ionome modification as a phenotypic response to infection.
Lin, Hong; Islam, Md Sajedul; Cabrera-La Rosa, Juan C; Civerolo, Edwin L; Groves, Russell L
2015-06-01
Xylella fastidiosa causes disease in many commercial crops, including almond leaf scorch (ALS) disease in susceptible almond (Prunus dulcis). In this study, genetic diversity and population structure of X. fastidiosa associated with ALS disease were evaluated. Isolates obtained from two almond orchards in Fresno and Kern County in the San Joaquin Valley of California were analyzed for two successive years. Multilocus simple-sequence repeat (SSR) analysis revealed two major genetic clusters that were associated with two host cultivars, 'Sonora' and 'Nonpareil', respectively, regardless of the year of study or location of the orchard. These relationships suggest that host cultivar selection and adaptation are major driving forces shaping ALS X. fastidiosa population structure in the San Joaquin Valley. This finding will provide insight into understanding pathogen adaptation and host selection in the context of ALS disease dynamics.
Rezaie, Mitra; Farhoosh, Reza; Pham, Ngoc; Quinn, Ronald J; Iranshahi, Mehrdad
2016-01-05
Bene is an edible fruit from the tree Pistacia atlantica subsp. mutica, and is of steadily growing interest in recent years due to its significant antioxidant properties and potential health benefits. An antioxidant activity-guided fractionation of the methanol extract from Bene hull together with an integrated approach of HPLC-DAD, LC-MS and (1)H NMR techniques led to the identification of main antioxidant phenolic compounds for the first time. Radical scavenging activity of each fraction/compound was tested using DPPH and FRAP assays. The phenolic content of the fractions was also determined by Folin-Ciocalteu's method. The main identified antioxidant compounds were luteolin (46.53% w/w of total extract), gallic acid (9.84% w/w), 2″-O-galloylisoquercitrin (0.53% w/w), quercetin 3-rutinoside (0.34% w/w) and 2″-O-cis-caffeoylquercitrin (0.26% w/w). The minor antioxidant compounds were also identified by liquid chromatography-positive/negative electrospray ionization tandem mass spectrometry. The structure-antioxidant activity relationship of identified phenolics are also discussed in this paper. Copyright © 2015 Elsevier B.V. All rights reserved.
Chanchaithong, Pattrarat; Prapasarakul, Nuvee
2011-08-01
Coagulase-positive staphylococci (CoPS) including S. pseudintermedius, S. schleiferi subsp. coagulans and S. aureus are etiological agents of dermatitis in companion animals and can be zoonotic pathogens. To date no consensual biochemical marker for routine microbiological identification of these species has been identified. The aim of this study was to evaluate biochemical markers and compare the results with the approved molecular method, multiplex-PCR (M-PCR), and confirm their species-specific phenotypic characteristic by using SDS-PAGE. The distribution and frequency of CoPS species were also determined. Three hundred and thirty-seven canine CoPS isolates were obtained from the nasal mucosa, perineum and groins of 66 healthy dogs and were identified by the M-PCR as S. aureus (n=5), S. pseudintermedius (n=263) and S. schleiferi subsp. coagulans (n=69). Selected biochemical tests including the Voges-Proskauer test, mannitol broth fermentation, the assimilation of maltose, galactose, trahalose and lactose using broth medium, were successfully used to distinguish the three species of canine CoPS from other CoPS species. Additionally, species-specific protein patterns were also found to be useful for phenotypic differentiation, with good agreement with the results of M-PCR and the use of biochemical markers. S. aureus occured infrequently on dog skin while co-colonization with S. pseudintermedius and S. schleiferi subsp. coagulans was observed. We propose the use of consensual biochemical markers of canine CoPS with the presence of the unique protein patterns as an alternative tool for conventional laboratory use. Copyright © 2011 Elsevier B.V. All rights reserved.
Characterization of novel virulent broad-host-range phages of Xylella fastidiosa and Xanthomonas.
Ahern, Stephen J; Das, Mayukh; Bhowmick, Tushar Suvra; Young, Ry; Gonzalez, Carlos F
2014-01-01
The xylem-limited bacterium Xylella fastidiosa is the causal agent of several plant diseases, most notably Pierce's disease of grape and citrus variegated chlorosis. We report the isolation and characterization of the first virulent phages for X. fastidiosa, siphophages Sano and Salvo and podophages Prado and Paz, with a host range that includes Xanthomonas spp. Phages propagated on homologous hosts had observed adsorption rate constants of ~4 × 10(-12) ml cell(-1) min(-1) for X. fastidiosa strain Temecula 1 and ~5 × 10(-10) to 7 × 10(-10) ml cell(-1) min(-1) for Xanthomonas strain EC-12. Sano and Salvo exhibit >80% nucleotide identity to each other in aligned regions and are syntenic to phage BcepNazgul. We propose that phage BcepNazgul is the founding member of a novel phage type, to which Sano and Salvo belong. The lysis genes of the Nazgul-like phage type include a gene that encodes an outer membrane lipoprotein endolysin and also spanin gene families that provide insight into the evolution of the lysis pathway for phages of Gram-negative hosts. Prado and Paz, although exhibiting no significant DNA homology to each other, are new members of the phiKMV-like phage type, based on the position of the single-subunit RNA polymerase gene. The four phages are type IV pilus dependent for infection of both X. fastidiosa and Xanthomonas. The phages may be useful as agents for an effective and environmentally responsible strategy for the control of diseases caused by X. fastidiosa.
Characterization of Novel Virulent Broad-Host-Range Phages of Xylella fastidiosa and Xanthomonas
Ahern, Stephen J.; Das, Mayukh; Bhowmick, Tushar Suvra; Young, Ry
2014-01-01
The xylem-limited bacterium Xylella fastidiosa is the causal agent of several plant diseases, most notably Pierce's disease of grape and citrus variegated chlorosis. We report the isolation and characterization of the first virulent phages for X. fastidiosa, siphophages Sano and Salvo and podophages Prado and Paz, with a host range that includes Xanthomonas spp. Phages propagated on homologous hosts had observed adsorption rate constants of ∼4 × 10−12 ml cell−1 min−1 for X. fastidiosa strain Temecula 1 and ∼5 × 10−10 to 7 × 10−10 ml cell−1 min−1 for Xanthomonas strain EC-12. Sano and Salvo exhibit >80% nucleotide identity to each other in aligned regions and are syntenic to phage BcepNazgul. We propose that phage BcepNazgul is the founding member of a novel phage type, to which Sano and Salvo belong. The lysis genes of the Nazgul-like phage type include a gene that encodes an outer membrane lipoprotein endolysin and also spanin gene families that provide insight into the evolution of the lysis pathway for phages of Gram-negative hosts. Prado and Paz, although exhibiting no significant DNA homology to each other, are new members of the phiKMV-like phage type, based on the position of the single-subunit RNA polymerase gene. The four phages are type IV pilus dependent for infection of both X. fastidiosa and Xanthomonas. The phages may be useful as agents for an effective and environmentally responsible strategy for the control of diseases caused by X. fastidiosa. PMID:24214944
Wang, Peng; Lee, Yunho; Igo, Michele M; Roper, M Caroline
2017-09-01
Bacterial plant pathogens often encounter reactive oxygen species (ROS) during host invasion. In foliar bacterial pathogens, multiple regulatory proteins are involved in the sensing of oxidative stress and the activation of the expression of antioxidant genes. However, it is unclear whether xylem-limited bacteria, such as Xylella fastidiosa, experience oxidative stress during the colonization of plants. Examination of the X. fastidiosa genome uncovered only one homologue of oxidative stress regulatory proteins, OxyR. Here, a knockout mutation in the X. fastidiosa oxyR gene was constructed; the resulting strain was significantly more sensitive to hydrogen peroxide (H 2 O 2 ) relative to the wild-type. In addition, during early stages of grapevine infection, the survival rate was 1000-fold lower for the oxyR mutant than for the wild-type. This supports the hypothesis that grapevine xylem represents an oxidative environment and that X. fastidiosa must overcome this challenge to achieve maximal xylem colonization. Finally, the oxyR mutant exhibited reduced surface attachment and cell-cell aggregation and was defective in biofilm maturation, suggesting that ROS could be a potential environmental cue stimulating biofilm development during the early stages of host colonization. © 2016 BSPP AND JOHN WILEY & SONS LTD.
Fogaça, Andréa C; Zaini, Paulo A; Wulff, Nelson A; da Silva, Patrícia I P; Fázio, Marcos A; Miranda, Antônio; Daffre, Sirlei; da Silva, Aline M
2010-05-01
In the xylem vessels of susceptible hosts, such as citrus trees, Xylella fastidiosa forms biofilm-like colonies that can block water transport, which appears to correlate to disease symptoms. Besides aiding host colonization, bacterial biofilms play an important role in resistance against antimicrobial agents, for instance antimicrobial peptides (AMPs). Here, we show that gomesin, a potent AMP from a tarantula spider, modulates X. fastidiosa gene expression profile upon 60 min of treatment with a sublethal concentration. DNA microarray hybridizations revealed that among the upregulated coding sequences, some are related to biofilm production. In addition, we show that the biofilm formed by gomesin-treated bacteria is thicker than that formed by nontreated cells or cells exposed to streptomycin. We have also observed that the treatment of X. fastidiosa with a sublethal concentration of gomesin before inoculation in tobacco plants correlates with a reduction in foliar symptoms, an effect possibly due to the trapping of bacterial cells to fewer xylem vessels, given the enhancement in biofilm production. These results warrant further investigation of how X. fastidiosa would respond to the AMPs produced by citrus endophytes and by the insect vector, leading to a better understanding of the mechanism of action of these molecules on bacterial virulence.
Kandel, Prem P; Lopez, Samantha M; Almeida, Rodrigo P P; De La Fuente, Leonardo
2016-09-01
Xylella fastidiosa is a xylem-limited bacterium that is the causal agent of emerging diseases in a number of economically important crops. Genetic diversity studies have demonstrated homologous recombination occurring among X. fastidiosa strains, which has been proposed to contribute to host plant shifts. Moreover, experimental evidence confirmed that X. fastidiosa is naturally competent for recombination in vitro Here, as an approximation of natural habitats (plant xylem vessels and insect mouthparts), recombination was studied in microfluidic chambers (MCs) filled with media amended with grapevine xylem sap. First, different media were screened for recombination in solid agar plates using a pair of X. fastidiosa strains that were previously reported to recombine in coculture. The highest frequency of recombination was obtained with PD3 medium, compared to those with the other two media (X. fastidiosa medium [XFM] and periwinkle wilt [PW] medium) used in previous studies. Dissection of the media components led to the identification of bovine serum albumin as an inhibitor of recombination that was correlated to its previously known effect on inhibition of twitching motility. When recombination was performed in liquid culture, the frequencies were significantly higher under flow conditions (MCs) than under batch conditions (test tubes). The recombination frequencies in MCs and agar plates were not significantly different from each other. Grapevine xylem sap from both susceptible and tolerant varieties allowed high recombination frequency in MCs when mixed with PD3. These results suggest that X. fastidiosa has the ability to be naturally competent in the natural growth environment of liquid flow, and this phenomenon could have implications in X. fastidiosa environmental adaptation. Xylella fastidiosa is a plant pathogen that lives inside xylem vessels (where water and nutrients are transported inside the plant) and the mouthparts of insect vectors. This bacterium causes emerging diseases in various crops worldwide, including recent outbreaks in Europe. The mechanisms by which this bacterium adapts to new hosts is not understood, but it was previously shown that it is naturally competent, meaning that it can take up DNA from the environment and incorporate it into its genome (recombination). In this study, we show that the frequency of recombination is highest when the bacterium is grown under flow conditions in microfluidic chambers modeled after its natural habitats, and recombination was still high when the medium was amended with grapevine sap. Our results suggest that this bacterium is able to recombine when growing inside plants or insects, and this can be a mechanism of adaptation of this pathogen that causes incurable diseases. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
USDA-ARS?s Scientific Manuscript database
Leafhoppers are the second most important vectors of agricultural diseases, thus we examined the gene expression across three leafhopper leafhoppers, Homalodisca vitripennis, Graphocephala atropunctata, and Oncometopia nigricans, which are vectors of the plant-infecting bacterium, Xylella fastidiosa...
Plasmid transfer by conjugation in Xylella fastidiosa.
USDA-ARS?s Scientific Manuscript database
Recombination and horizontal gene transfer have been implicated in the adaption of Xylella fastidiosa (Xf) to infect a wide variety of different plant species. There is evidence that certain strains of Xf carry native plasmids equipped with transfer and mobilization genes, suggesting conjugation as ...
Zaini, Paulo A; Fogaça, Andréa C; Lupo, Fernanda G N; Nakaya, Helder I; Vêncio, Ricardo Z N; da Silva, Aline M
2008-04-01
Xylella fastidiosa is the etiologic agent of a wide range of plant diseases, including citrus variegated chlorosis (CVC), a major threat to citrus industry. The genomes of several strains of this phytopathogen were completely sequenced, enabling large-scale functional studies. DNA microarrays representing 2,608 (91.6%) coding sequences (CDS) of X. fastidiosa CVC strain 9a5c were used to investigate transcript levels during growth with different iron availabilities. When treated with the iron chelator 2,2'-dipyridyl, 193 CDS were considered up-regulated and 216 were considered down-regulated. Upon incubation with 100 microM ferric pyrophosphate, 218 and 256 CDS were considered up- and down-regulated, respectively. Differential expression for a subset of 44 CDS was further evaluated by reverse transcription-quantitative PCR. Several CDS involved with regulatory functions, pathogenicity, and cell structure were modulated under both conditions assayed, suggesting that major changes in cell architecture and metabolism occur when X. fastidiosa cells are exposed to extreme variations in iron concentration. Interestingly, the modulated CDS include those related to colicin V-like bacteriocin synthesis and secretion and to functions of pili/fimbriae. We also investigated the contribution of the ferric uptake regulator Fur to the iron stimulon of X. fastidiosa. The promoter regions of the strain 9a5c genome were screened for putative Fur boxes, and candidates were analyzed by electrophoretic mobility shift assays. Taken together, our data support the hypothesis that Fur is not solely responsible for the modulation of the iron stimulon of X. fastidiosa, and they present novel evidence for iron regulation of pathogenicity determinants.
Alves, Claudia A; Pedroso, Mariele M; de Moraes, Marcela C; Souza, Dulce H F; Cass, Quezia B; Faria, Ronaldo C
2011-05-20
Xylella fastidiosa is a gram-negative bacterium that causes serious diseases in economically important crops, including grapevine, coffee, and citrus fruits. X. fastidiosa colonizes the xylem vessels of the infected plants, thereby blocking water and nutrient transport. The genome sequence of X. fastidiosa has revealed an operon containing nine genes possibly involved in the synthesis of an exopolisaccharide (EPS) named fastidian gum that can be related with the pathogenicity of this bacterium. The α-1,3-mannosyltransferase (GumH) enzyme from X. fastidiosa is involved in fastidian gum production. GumH is responsible for the transfer of mannose from guanosine diphosphate mannose (GDP-man) to the cellobiose-pyrophosphate-polyprenol carrier lipid (CPP-Lip) during the assembly and biosynthesis of EPS. In this work, a method for real-time detection of recombinant GumH enzymatic activity was successfully developed using a Quartz Crystal Microbalance with dissipation monitoring (QCM-D). The QCM-D transducer was strategically modified with CPP-Lip by using a solid-supported lipid bilayer that makes use of a self-assembled monolayer of 1-undecanethiol. Monitoring the real-time CPP-Lip QCM-D transducer in the presence of GDP-man and GumH enzyme shows a mass increase, indicating the transfer of mannose. The real-time QCM-D determination of mannosyltransferase function was validated by a High Performance Liquid Chromatography (LC) method developed for determination of GDP produced by enzymatic reaction. LC results confirmed the activity of recombinant GumH protein, which is the first enzyme involved in the biosynthesis of the EPS from X. fastidiosa enzymatically characterized. Copyright © 2011 Elsevier Inc. All rights reserved.
Overall, Lisa M; Rebek, Eric J
2015-12-01
Xylella fastidiosa is the causative agent of diseases of perennial plants including peach, plum, elm, oak, pecan, and grape. This bacterial pathogen is transmitted by xylem-feeding insects. In recent years, Pierce's disease of grape has been detected in 10 counties in central and northeastern Oklahoma, prompting further investigation of the disease epidemiology in this state. We surveyed vineyards and tree nurseries in Oklahoma for potential insect vectors to determine species composition, infectivity, and natural inoculativity of commonly captured insect vectors. Yellow sticky cards were used to sample insect fauna at each location. Insects were removed from sticky cards and screened for X. fastidiosa using immunocapture-PCR to determine their infectivity. A second objective was to test the natural inoculativity of insect vectors that are found in vineyards. Graphocephala versuta (Say), Graphocephala coccinea (Forster), Paraulacizes irrorata (F.), Oncometopia orbona (F.), Cuerna costalis (F.), and Entylia carinata Germar were collected from vineyards and taken back to the lab to determine their natural inoculativity. Immunocapture-PCR was used to test plant and insect samples for presence of X. fastidiosa. The three most frequently captured species from vineyards and tree nurseries were G. versuta, Clastoptera xanthocephala Germar, and O. orbona. Of those insects screened for X. fastidiosa, 2.4% tested positive for the bacterium. Field-collected G. versuta were inoculative to both ragweed and alfalfa. Following a 7-d inoculation access period, a higher percentage of alfalfa became infected than ragweed. Results from this study provide insight into the epidemiology of X. fastidiosa in Oklahoma. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
USDA-ARS?s Scientific Manuscript database
Xylem-feeding leafhoppers such as the glassy-winged sharpshooter, Homalodisca vitripennis (Cicadellidae: Cicadellinae), are thought to inoculate the bacterium Xylella fastidiosa (Xf) from colonies bound to cuticle of the sharpshooter’s functional foregut (precibarium and cibarium). The mechanism of ...
Twitching motility and biofilm formation are associated with tonB1 in Xylella fastidiosa.
Cursino, Luciana; Li, Yaxin; Zaini, Paulo A; De La Fuente, Leonardo; Hoch, Harvey C; Burr, Thomas J
2009-10-01
A mutation in the Xylella fastidiosa tonB1 gene resulted in loss of twitching motility and in significantly less biofilm formation as compared with a wild type. The altered motility and biofilm phenotypes were restored by complementation with a functional copy of the gene. The mutation affected virulence as measured by Pierce's disease symptoms on grapevines. The role of TonB1 in twitching and biofilm formation appears to be independent of the characteristic iron-uptake function of this protein. This is the first report demonstrating a functional role for a tonB homolog in X. fastidiosa.
Fatty Acid Methyl Ester (FAME) analyses for characterization and detection of grapevine pathogens
USDA-ARS?s Scientific Manuscript database
Grapevines can become infected by a variety of devastating pathogens, including the bacterium Xylella fastidiosa and canker fungi. Multiple strains of Xylella fastidiosa exist, each causing different diseases on various hosts. Although sequence-based genotyping can assist in distinguishing these str...
Evidence that explains absence of a latent period for Xylella fastidiosa in its sharpshooter vectors
USDA-ARS?s Scientific Manuscript database
The glassy-winged sharpshooter (GWSS), Homalodisca vitripennis (Germar), and other sharpshooter (Cicadelline) leafhoppers transmit Xylella fastidiosa (Xf), the causative agent of Pierce’s disease of grapevine and other scorch diseases. Past research has supported that vectors have virtually no late...
Functional characterization of the role of rpfA in Xylella fastidiosa
USDA-ARS?s Scientific Manuscript database
Xylella fastidiosa coordinates virulence in grapevines via quorum sensing signal molecules that are regulated and synthesized by the rpf gene cluster (regulation of pathogenicity factors). rpfA encodes aconitate hydratase and could play a regulator role involved in virulence. To elucidate the role o...
RNA metabolism in Xylella fastidiosa during cold adaptation and survival responses
USDA-ARS?s Scientific Manuscript database
Fastidious plant pathogen Xylella fastidiosa has a reduced ability to adapt to cold temperatures, limiting persistence in perennial hosts, such as grapevine, growing in colder regions. RNA metabolism is an essential part of bacterial response to low temperature, including inducible expression of RNA...
Gene regulation mediates host specificity of a bacterial pathogen.
Killiny, Nabil; Almeida, Rodrigo P P
2011-12-01
Many bacterial plant pathogens have a gene-for-gene relationship that determines host specificity. However, there are pathogens such as the xylem-limited bacterium Xylella fastidiosa that do not carry genes considered essential for the gene-for-gene model, such as those coding for a type III secretion system and effector molecules. Nevertheless, X. fastidiosa subspecies are host specific. A comparison of symptom development and host colonization after infection of plants with several mutant strains in two hosts, grapevines and almonds, indicated that X. fastidiosa virulence mechanisms are similar in those plants. Thus, we tested if modification of gene regulation patterns, by affecting the production of a cell-cell signalling molecule (DSF), impacted host specificity in X. fastidiosa. Results show that disruption of the rpfF locus, required for DSF synthesis, in a strain incapable of causing disease in grapevines, leads to symptom development in that host. These data are indicative that the core machinery required for the colonization of grapevines is present in that strain, and that changes in gene regulation alone can lead X. fastidiosa to exploit a novel host. The study of the evolution and mechanisms of host specificity mediated by gene regulation at the genome level could lead to important insights on the emergence of new diseases. © 2011 Society for Applied Microbiology and Blackwell Publishing Ltd.
Burbank, Lindsey P; Stenger, Drake C
2016-08-01
The phytopathogen Xylella fastidiosa causes disease in a variety of important crop and landscape plants. Functional genetic studies have led to a broader understanding of virulence mechanisms used by this pathogen in the grapevine host. Plasmid shuttle vectors are important tools in studies of bacterial genetics but there are only a limited number of plasmid vectors available that replicate in X. fastidiosa, and even fewer that are retained without antibiotic selection. Two plasmids are described here that show stable replication in X. fastidiosa and are effective for gene complementation both in vitro and in planta. Plasmid maintenance is facilitated by incorporation of the PemI/PemK plasmid addiction system, consisting of PemK, an endoribonuclease toxin, and its cognate antitoxin, PemI. Vector pXf20pemIK utilizes a native X. fastidiosa replication origin as well as a high-copy-number pUC origin for propagation in Escherichia coli cloning strains. Broad-host-range vector pBBR5pemIK is a medium- to low-copy-number plasmid based on the pBBR1 backbone. Both plasmids are maintained for extended periods of time in the absence of antibiotic selection, as well as up to 14 weeks in grapevine, without affecting bacterial fitness. These plasmids present an alternative to traditional complementation and expression vectors which rely on antibiotic selection for plasmid retention.
USDA-ARS?s Scientific Manuscript database
Epidemiology of Pierce’s disease of grape, caused by the bacterial pathogen Xylella fastidiosa (Xf), is largely dependent on populations of insect vectors such as the invasive glassy-winged sharpshooter (GWSS) (Homalodisca vitripennis). In the grape-growing regions of the southern San Joaquin Valley...
Effects of rootstock on Xylella fastidiosa infection and grapevine sap phenolics
USDA-ARS?s Scientific Manuscript database
Pierce’s disease, caused by the bacterium Xylella fastidiosa, poses a threat to grape production in the United States and warm climates elsewhere. There are numerous grapevine rootstocks available that may impart increased vigor or tolerance to soil-borne pests. However, little is known about the po...
USDA-ARS?s Scientific Manuscript database
Pierce’s disease (PD) is a devastating disease of grapevine caused by the bacterial pathogen Xylella fastidiosa (Xf). Key to the development and optimization of PD-tolerant grape cultivars is improved understanding about how grapevines defend themselves against Xf. This study complements histologica...
USDA-ARS?s Scientific Manuscript database
The glassy-winged sharpshooter (GWSS) is an invasive insect species that transmits Xylella fastidiosa, the bacterium causing Pierce’s disease of grapevine and other leaf scorch diseases. X. fastidiosa has been shown to colonize the anterior foregut (cibarium and precibarium) of sharpshooters, where ...
USDA-ARS?s Scientific Manuscript database
The glassy-winged sharpshooter (GWSS) is an invasive insect species that transmits Xylella fastidiosa, the bacterium causing Pierce’s disease of grapevine and other leaf scorch diseases. X. fastidiosa has been shown to colonize the anterior foregut (cibarium and precibarium) of sharpshooters, where ...
USDA-ARS?s Scientific Manuscript database
Xylella fastidiosa is a xylem-limited bacterium that causes disease in grapevines, almonds, citrus, pear, alfalfa, and many other economically important plants. In California, USA, the bacteria are transmitted by several species of leafhoppers including the cicadellids Draeculacephala minerva Ball a...
The DinJ/RelE toxin-antitoxin system suppresses virulence in Xylella fastidiosa
USDA-ARS?s Scientific Manuscript database
Xylella fastidiosa, the causal agent of a number agriculturally important plant diseases, encodes multiple toxin-antitoxin (TA) systems. TA modules consist of a toxin protein co-expressed with a specific antitoxin, and are often acquired through horizontal gene transfer. Antitoxin molecules (RNA or ...
Xylella taiwanensis sp. nov. cause of pear leaf scorch disease in Taiwan
USDA-ARS?s Scientific Manuscript database
Xylella fastidiosa is a group of xylem-limited and nutritionally fastidious plant pathogenic bacteria. While mostly found in the Americas, new X. fastidiosa strains have been reported from other continents such as Asia, including a pear leaf scorch (PLS) strain from Taiwan. Current taxonomy of X. fa...
Alfalfa and pastures: sources of pests or generalist natural enemies?
USDA-ARS?s Scientific Manuscript database
Pierce’s disease of grapevine and almond leaf scorch disease are both caused by the bacterial pathogen Xyllela fastidiosa. In the Central Valley of California, the green sharpshooter is the most common vector of X. fastidiosa. As alfalfa fields and pastures are considered source habitats for green s...
Prendergast, Deirdre M; Hand, Darren; Nί Ghallchóir, Eadaoin; McCabe, Evonne; Fanning, Seamus; Griffin, Margaret; Egan, John; Gutierrez, Montserrat
2013-08-16
Salmonella enterica subsp. enterica serovar 4,[5],12:i:- is considered to be a monophasic variant of Salmonella Typhimurium and is increasingly associated with human infections. The use of PCR for the unequivocal identification of strains identified by conventional serotyping as 4,[5],12:i:- has been recommended by the European Food Safety Authority (EFSA), in particular the conventional multiplex PCR developed by Tennant et al. (2010). An alternative protocol for the identification and differentiation of S. Typhimurium and S. Typhimurium-like strains, including its monophasic variants, based on a multiplex real-time PCR assay was developed in our laboratory. A panel of 206 Salmonella strains was used to validate our multiplex real-time PCR against the conventional multiplex PCR recommended by EFSA, i.e. 43 Salmonella strains of serovars other than Typhimurium and 163 routine isolates determined by slide agglutination serotyping to have an incomplete antigenic formula compatible with the S. Typhimurium formula 4,[5],12:i:1,2. Both methods correctly identified the 43 Salmonella strains as non S. Typhimurium. Among the 163 isolates of undetermined serovar by conventional serotyping, both PCR protocols identified 54 isolates as S. Typhimurium, 101 as monophasic S. Typhimurium and 8 as non-S. Typhimurium. Twenty isolates phenotypically lacking the phase-2 H antigen were positive for the fljB.1,2 gene. These strains have been recently described in the literature by other workers and have been referred to as "inconsistent" variants of S. Typhimurium. Antimicrobial resistance and phage typing were also performed on the S. Typhimurium isolates, including monophasic variants, and approximately half of the isolates identified as monophasic S. Typhimurium by our multiplex real-time PCR protocol were DT193 with the resistance pattern ASSuT. There was 100% concordance between the conventional PCR and the multiplex real-time PCR method developed in this study which proved that our protocol is equivalent to the one recommended by EFSA. In comparison to the conventional PCR, this new protocol is faster and is currently being applied routinely in our laboratory to all isolates that could potentially be S. Typhimurium. Copyright © 2013 Elsevier B.V. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Pierce’s disease (PD), caused by the xylem-dwelling pathogen Xylella fastidiosa (X.f.), is a serious threat to grape production. The effects of X.f. infection six months post-inoculation on defense-associated proteins and phenolic compounds found in xylem sap and tissue were evaluated. Defense-assoc...
USDA-ARS?s Scientific Manuscript database
Pierce’s disease of grapevine (PD), caused by the bacterial pathogen Xylella fastidiosa (X.f.), remains a serious problem for grape production in California and elsewhere. This research examined induction of phenolic compounds in grapevines (cv. Thompson Seedless) infected with X.f. over a six month...
Toxin-antitoxin systems mqsR/ygiT and dinJ/RelE of Xylella fastidiosa
USDA-ARS?s Scientific Manuscript database
The plant pathogen Xylella fastidiosa (Xf) encodes multiple toxin-antitoxin (TA) system homologues, including relE/dinJ and mqsR/ygiT. Phylogenetic analyses indicate these two Xf TA systems have distinct evolutionary histories. Genomic comparisons among Xf subspecies/strains reveal TA systems are ...
USDA-ARS?s Scientific Manuscript database
Pierce’s disease of grapes and almond leaf scorch are devastating diseases caused by the bacterium Xylella fastidiosa (Xf). To date, progress in determining the mechanisms of host plant susceptibility, tolerance or resistance has been slow, due in large part to the long generation time and limited a...
USDA-ARS?s Scientific Manuscript database
The glassy-winged sharpshooter (GWSS) is an invasive insect species that transmits Xylella fastidiosa, the bacterium causing Pierce’s disease of grapevine and other leaf scorch diseases. X. fastidiosa has been shown to colonize the anterior foregut (cibarium and precibarium) of sharpshooters, where ...
USDA-ARS?s Scientific Manuscript database
Xylella fastidiosa causes disease in a number of plants in the southeastern United States, including southern highbush blueberry, but little was known concerning its potential impact in rabbiteye blueberry (Vaccinium virgatum). In a naturally infected orchard in Louisiana, mean yields of X. fastidi...
The role of Xylella fastidiosa cold shock proteins in Pierce’s disease of grapes
USDA-ARS?s Scientific Manuscript database
Pierce’s disease of grapevine, caused by the bacterial pathogen Xylella fastidiosa (Xf) is limited to warmer climates, and plant infection can be eliminated by cold winter conditions. Milder winters can increase the likelihood of pathogen persistence from one growing season to the next. Cold adaptat...
Evaluation of pathogenicity and insect transmission of Xylella fastidiosa strains to olive plants
USDA-ARS?s Scientific Manuscript database
Xylella fastidiosa (Xf) is a xylem-limited bacterium that causes disease in a number of economically important crops in California and worldwide. Newly observed scorching symptoms in olive trees may be due to Xf infection. If true, “olive leaf scorch disease” (OLSD) would represent a new threat to...
USDA-ARS?s Scientific Manuscript database
This project aims to elucidate molecular mechanisms of Xylella fastidiosa (Xf) pathogenicity. Work is focused on the lipopolysaccharide (LPS) component of the outer membrane, which consists of lipid A, core oligosaccharides, and a variable O-antigen moiety. Specifically, the O-antigen portion of LPS...
USDA-ARS?s Scientific Manuscript database
A study on seasonal abundance and infectivity by Xylella fastidiosa of Auchenorrhyncha species in the Apulia region of Italy was conducted to identify ideal periods for monitoring and adoption of potential control measures against insect vectors. Adult populations of Auchenorrhyncha species were mon...
USDA-ARS?s Scientific Manuscript database
Xylella fastidiosa, the causal agent of Pierce’s disease of grapes, is a slow-growing, xylem-limited, bacterial pathogen. Disease progression is characterized by systemic spread of the bacterium through xylem vessel networks, causing leaf scorching symptoms, senescence, and vine decline. It appears ...
Rootstock effects on almond leaf scorch disease incidence and severity
USDA-ARS?s Scientific Manuscript database
A five-year field study was conducted to evaluate effects of duration and exclusion of Xylella fastidiosa infections on young almond tree performance and their links to tree vigor. ‘Nemaguard’, ‘Okinawa’, ‘Nonpareil’, and Y119 were used as rootstocks for almond scion ‘Sonora’. Among X.fastidiosa-inf...
Whole genome sequence analyses of Xylella fastidiosa PD strains from different geographical regions
USDA-ARS?s Scientific Manuscript database
Genome sequences were determined for two Pierce’s disease (PD) causing Xylella fastidiosa (Xf) strains, one from Florida and one from Taiwan. The Florida strain was ATCC 35879, the type of strain used as a standard reference for related taxonomy research. By contrast, the Taiwan strain used was only...
USDA-ARS?s Scientific Manuscript database
The xylem-limited bacterium Xylella fastidiosa (Xf) causes Pierce’s disease (PD), an important disease of grapevine, Vitis vinifera L. Grapevine rootstocks were developed to provide increased resistance to root disease, but rootstock effects on cane and vine diseases remain unclear. Grapevines that ...
USDA-ARS?s Scientific Manuscript database
Xylella fastidiosa Strain Stag’s Leap, originally isolated from Napa Valley, California, is highly virulent in causing Pierce’s Disease (PD) of grapevine. Plasmids are extrachromosomal genetic elements associated with bacterial environmental adaptation such as virulence development. In this study, t...
USDA-ARS?s Scientific Manuscript database
Xylella fastidiosa is a Gram negative, nutritionally fastidious plant pathogenic bacterium that causes many economically important diseases including almond leaf scorch disease (ALSD) and Pierce’s disease of grape in California, as well as citrus variegated chlorosis in South America. Genome inform...
USDA-ARS?s Scientific Manuscript database
Horizontal gene transfer is an important component of evolution and adaptation of bacterial species. Xylella fastidiosa has the ability to incorporate exogenous DNA into its genome by homologous recombination at relatively high rates. This genetic recombination is believed to play a role in adaptati...
Voegel, Tanja M; Doddapaneni, Harshavardhan; Cheng, Davis W; Lin, Hong; Stenger, Drake C; Kirkpatrick, Bruce C; Roper, M Caroline
2013-04-01
Xylella fastidiosa, the causal agent of Pierce's disease of grapevine, possesses several two-component signal transduction systems that allow the bacterium to sense and respond to changes in its environment. Signals are perceived by sensor kinases that autophosphorylate and transfer the phosphate to response regulators (RRs), which direct an output response, usually by acting as transcriptional regulators. In the X. fastidiosa genome, 19 RRs were found. A site-directed knockout mutant in one unusual RR, designated XhpT, composed of a receiver domain and a histidine phosphotransferase output domain, was constructed. The resulting mutant strain was analysed for changes in phenotypic traits related to biofilm formation and gene expression using microarray analysis. We found that the xhpT mutant was altered in surface attachment, cell-cell aggregation, exopolysaccharide (EPS) production and virulence in grapevine. In addition, this mutant had an altered transcriptional profile when compared with wild-type X. fastidiosa in genes for several biofilm-related traits, such as EPS production and haemagglutinin adhesins. © 2012 BSPP AND BLACKWELL PUBLISHING LTD.
Xylella fastidiosa gene expression analysis by DNA microarrays.
Travensolo, Regiane F; Carareto-Alves, Lucia M; Costa, Maria V C G; Lopes, Tiago J S; Carrilho, Emanuel; Lemos, Eliana G M
2009-04-01
Xylella fastidiosa genome sequencing has generated valuable data by identifying genes acting either on metabolic pathways or in associated pathogenicity and virulence. Based on available information on these genes, new strategies for studying their expression patterns, such as microarray technology, were employed. A total of 2,600 primer pairs were synthesized and then used to generate fragments using the PCR technique. The arrays were hybridized against cDNAs labeled during reverse transcription reactions and which were obtained from bacteria grown under two different conditions (liquid XDM(2) and liquid BCYE). All data were statistically analyzed to verify which genes were differentially expressed. In addition to exploring conditions for X. fastidiosa genome-wide transcriptome analysis, the present work observed the differential expression of several classes of genes (energy, protein, amino acid and nucleotide metabolism, transport, degradation of substances, toxins and hypothetical proteins, among others). The understanding of expressed genes in these two different media will be useful in comprehending the metabolic characteristics of X. fastidiosa, and in evaluating how important certain genes are for the functioning and survival of these bacteria in plants.
VapD in Xylella fastidiosa Is a Thermostable Protein with Ribonuclease Activity.
Mendes, Juliano S; Santiago, André da S; Toledo, Marcelo A S; Rosselli-Murai, Luciana K; Favaro, Marianna T P; Santos, Clelton A; Horta, Maria Augusta C; Crucello, Aline; Beloti, Lilian L; Romero, Fabian; Tasic, Ljubica; de Souza, Alessandra A; de Souza, Anete P
2015-01-01
Xylella fastidiosa strain 9a5c is a gram-negative phytopathogen that is the causal agent of citrus variegated chlorosis (CVC), a disease that is responsible for economic losses in Brazilian agriculture. The most well-known mechanism of pathogenicity for this bacterial pathogen is xylem vessel occlusion, which results from bacterial movement and the formation of biofilms. The molecular mechanisms underlying the virulence caused by biofilm formation are unknown. Here, we provide evidence showing that virulence-associated protein D in X. fastidiosa (Xf-VapD) is a thermostable protein with ribonuclease activity. Moreover, protein expression analyses in two X. fastidiosa strains, including virulent (Xf9a5c) and nonpathogenic (XfJ1a12) strains, showed that Xf-VapD was expressed during all phases of development in both strains and that increased expression was observed in Xf9a5c during biofilm growth. This study is an important step toward characterizing and improving our understanding of the biological significance of Xf-VapD and its potential functions in the CVC pathosystem.
Hao, Lingyun; Zaini, Paulo A; Hoch, Harvey C; Burr, Thomas J; Mowery, Patricia
2016-01-01
Xylella fastidiosa is a xylem-limited bacterium in plant hosts and causes Pierce's disease (PD) of grapevines, which differ in susceptibility according to the Vitis species (spp.). In this work we compared X. fastidiosa biofilm formation and population dynamics when cultured in xylem saps from PD-susceptible and -resistant Vitis spp. under different conditions. Behaviors in a closed-culture system were compared to those in different sap-renewal cultures that would more closely mimic the physicochemical environment encountered in planta. Significant differences in biofilm formation and growth in saps from PD-susceptible and -resistant spp. were only observed using sap renewal culture. Compared to saps from susceptible V. vinifera, those from PD-resistant V. aestivalis supported lower titers of X. fastidiosa and less biofilm and V. champinii suppressed both growth and biofilm formation, behaviors which are correlated with disease susceptibility. Furthermore, in microfluidic chambers X. fastidiosa formed thick mature biofilm with three-dimensional (3-D) structures, such as pillars and mounds, in saps from all susceptible spp. In contrast, only small aggregates of various shapes were formed in saps from four out of five of the resistant spp.; sap from the resistant spp. V. mustangensis was an exception in that it also supported thick lawns of biofilm but not the above described 3-D structures typically seen in a mature biofilm from the susceptible saps. Our findings provide not only critical technical information for future bioassays, but also suggest further understanding of PD susceptibility.
Ionescu, Michael; Zaini, Paulo A; Baccari, Clelia; Tran, Sophia; da Silva, Aline M; Lindow, Steven E
2014-09-16
Outer membrane vesicles (OMVs) of Gram-negative bacteria have been studied intensively in recent years, primarily in their role in delivering virulence factors and antigens during pathogenesis. However, the near ubiquity of their production suggests that they may play other roles, such as responding to envelope stress or trafficking various cargoes to prevent dilution or degradation by other bacterial species. Here we show that OMVs produced by Xylella fastidiosa, a xylem-colonizing plant pathogenic bacterium, block its interaction with various surfaces such as the walls of xylem vessels in host plants. The release of OMVs was suppressed by the diffusible signal factor-dependent quorum-sensing system, and a X. fastidiosa ΔrpfF mutant in which quorum signaling was disrupted was both much more virulent to plants and less adhesive to glass and plant surfaces than the WT strain. The higher virulence of the ΔrpfF mutant was associated with fivefold higher numbers of OMVs recovered from xylem sap of infected plants. The frequency of attachment of X. fastidiosa to xylem vessels was 20-fold lower in the presence of OMVs than in their absence. OMV production thus is a strategy used by X. fastidiosa cells to adjust attachment to surfaces in its transition from adhesive cells capable of insect transmission to an "exploratory" lifestyle for systemic spread within the plant host which would be hindered by attachment. OMV production may contribute to the movement of other bacteria in porous environments by similarly reducing their contact with environmental constituents.
Zhang, Shujian; Chakrabarty, Pranjib K; Fleites, Laura A; Rayside, Patricia A; Hopkins, Donald L; Gabriel, Dean W
2015-01-01
Xylella fastidiosa (X. fastidiosa) infects a wide range of plant hosts and causes economically serious diseases, including Pierce's Disease (PD) of grapevines. X. fastidiosa biocontrol strain EB92-1 was isolated from elderberry and is infectious and persistent in grapevines but causes only very slight symptoms under ideal conditions. The draft genome of EB92-1 revealed that it appeared to be missing genes encoding 10 potential PD pathogenicity effectors found in Temecula1. Subsequent PCR and sequencing analyses confirmed that EB92-1 was missing the following predicted effectors found in Temecula1: two type II secreted enzymes, including a lipase (LipA; PD1703) and a serine protease (PD0956); two identical genes encoding proteins similar to Zonula occludens toxins (Zot; PD0915 and PD0928), and at least one relatively short, hemagglutinin-like protein (PD0986). Leaves of tobacco and citrus inoculated with cell-free, crude protein extracts of E. coli BL21(DE3) overexpressing PD1703 exhibited a hypersensitive response (HR) in less than 24 hours. When cloned into shuttle vector pBBR1MCS-5, PD1703 conferred strong secreted lipase activity to Xanthomonas citri, E. coli and X. fastidiosa EB92-1 in plate assays. EB92-1/PD1703 transformants also showed significantly increased disease symptoms on grapevines, characteristic of PD. Genes predicted to encode PD0928 (Zot) and a PD0986 (hemagglutinin) were also cloned into pBBR1MCS-5 and moved into EB92-1; both transformants also showed significantly increased symptoms on V. vinifera vines, characteristic of PD. Together, these results reveal that PD effectors include at least a lipase, two Zot-like toxins and a possibly redundant hemagglutinin, none of which are necessary for parasitic survival of X. fastidiosa populations in grapevines or elderberry.
Almeida, Rodrigo P. P.
2014-01-01
Vector transmission of bacterial plant pathogens involves three steps: pathogen acquisition from an infected host, retention within the vector, and inoculation of cells into susceptible tissue of an uninfected plant. In this study, a combination of plant and artificial diet systems were used to determine the importance of several genes on the initial adhesion and retention of the bacterium Xylella fastidiosa to an efficient insect vector. Mutant strains included fimbrial (fimA and pilB) and afimbrial (hxfA and hxfB) adhesins and three loci involved in regulatory systems (rpfF, rpfC, and cgsA). Transmission assays with variable retention time indicated that HxfA and HxfB were primarily important for early adhesion to vectors, while FimA was necessary for both adhesion and retention. The long pilus protein PilB was not deficient in initial adhesion but may be important for retention. Genes upregulated under the control of rpfF are important for both initial adhesion and retention, as transmission rates of this mutant strain were initially low and decreased over time, while disruption of rpfC and cgsA yielded trends similar to that shown by the wild-type control. Because induction of an X. fastidiosa transmissible state requires pectin, a series of experiments were used to test the roles of a polygalacturonase (pglA) and the pectin and galacturonic acid carbohydrates on the transmission of X. fastidiosa. Results show that galacturonic acid, or PglA activity breaking pectin into its major subunit (galacturonic acid), is required for X. fastidiosa vector transmission using an artificial diet system. This study shows that early adhesion and retention of X. fastidiosa are mediated by different factors. It also illustrates that the interpretation of results of vector transmission experiments, in the context of vector-pathogen interaction studies, is highly dependent on experimental design. PMID:24185853
Zhang, Shujian; Chakrabarty, Pranjib K.; Fleites, Laura A.; Rayside, Patricia A.; Hopkins, Donald L.; Gabriel, Dean W.
2015-01-01
Xylella fastidiosa (X. fastidiosa) infects a wide range of plant hosts and causes economically serious diseases, including Pierce's Disease (PD) of grapevines. X. fastidiosa biocontrol strain EB92-1 was isolated from elderberry and is infectious and persistent in grapevines but causes only very slight symptoms under ideal conditions. The draft genome of EB92-1 revealed that it appeared to be missing genes encoding 10 potential PD pathogenicity effectors found in Temecula1. Subsequent PCR and sequencing analyses confirmed that EB92-1 was missing the following predicted effectors found in Temecula1: two type II secreted enzymes, including a lipase (LipA; PD1703) and a serine protease (PD0956); two identical genes encoding proteins similar to Zonula occludens toxins (Zot; PD0915 and PD0928), and at least one relatively short, hemagglutinin-like protein (PD0986). Leaves of tobacco and citrus inoculated with cell-free, crude protein extracts of E. coli BL21(DE3) overexpressing PD1703 exhibited a hypersensitive response (HR) in less than 24 hours. When cloned into shuttle vector pBBR1MCS-5, PD1703 conferred strong secreted lipase activity to Xanthomonas citri, E. coli and X. fastidiosa EB92-1 in plate assays. EB92-1/PD1703 transformants also showed significantly increased disease symptoms on grapevines, characteristic of PD. Genes predicted to encode PD0928 (Zot) and a PD0986 (hemagglutinin) were also cloned into pBBR1MCS-5 and moved into EB92-1; both transformants also showed significantly increased symptoms on V. vinifera vines, characteristic of PD. Together, these results reveal that PD effectors include at least a lipase, two Zot-like toxins and a possibly redundant hemagglutinin, none of which are necessary for parasitic survival of X. fastidiosa populations in grapevines or elderberry. PMID:26218423
Killiny, Nabil; Almeida, Rodrigo P P
2014-01-01
Vector transmission of bacterial plant pathogens involves three steps: pathogen acquisition from an infected host, retention within the vector, and inoculation of cells into susceptible tissue of an uninfected plant. In this study, a combination of plant and artificial diet systems were used to determine the importance of several genes on the initial adhesion and retention of the bacterium Xylella fastidiosa to an efficient insect vector. Mutant strains included fimbrial (fimA and pilB) and afimbrial (hxfA and hxfB) adhesins and three loci involved in regulatory systems (rpfF, rpfC, and cgsA). Transmission assays with variable retention time indicated that HxfA and HxfB were primarily important for early adhesion to vectors, while FimA was necessary for both adhesion and retention. The long pilus protein PilB was not deficient in initial adhesion but may be important for retention. Genes upregulated under the control of rpfF are important for both initial adhesion and retention, as transmission rates of this mutant strain were initially low and decreased over time, while disruption of rpfC and cgsA yielded trends similar to that shown by the wild-type control. Because induction of an X. fastidiosa transmissible state requires pectin, a series of experiments were used to test the roles of a polygalacturonase (pglA) and the pectin and galacturonic acid carbohydrates on the transmission of X. fastidiosa. Results show that galacturonic acid, or PglA activity breaking pectin into its major subunit (galacturonic acid), is required for X. fastidiosa vector transmission using an artificial diet system. This study shows that early adhesion and retention of X. fastidiosa are mediated by different factors. It also illustrates that the interpretation of results of vector transmission experiments, in the context of vector-pathogen interaction studies, is highly dependent on experimental design.
Distribution of Xylella fastidiosa in Sycamore associated with low temperature and host resistance
T.S.M. Henneberger; K.L. Stevenson; C.J. Chang
2004-01-01
Experiments were conducted in the field and laboratory to determine effects of low temperatures 4% on Xylella fastidiosa populations in American sycamore. Roots and shoots from naturally infected trees at two locations were collected monthly. Sap extracted from the samples was tested by enzyme-linked immunosorbent assay for presence of X...
USDA-ARS?s Scientific Manuscript database
Discovery of X. fastidiosa from olive trees with “Olive quick decline syndrome" (OQDS) in October 2013 on the western coast of the Salento Peninsula prompted an immediate search for insect vectors of the bacterium. The dominant xylem-fluid feeding hemipteran collected in olive orchards was the meado...
USDA-ARS?s Scientific Manuscript database
The phytopathogen Xylella fastidiosa causes disease in a variety of important crop and landscape plants. Functional genetic studies have led to a broader understanding of virulence mechanisms used by this pathogen in the grapevine host. Plasmid shuttle vectors are important tools in studies of bacte...
Xylella fastidiosa plasmid-encoded PemK toxin is an endoribonuclease.
USDA-ARS?s Scientific Manuscript database
Stable inheritance of pXF-RIV11 in Xylella fastidiosa is conferred by the pemI/pemK plasmid addiction system. PemK serves as a toxin inhibiting bacterial growth; PemI is the corresponding antitoxin that blocks activity of PemK toxin by direct binding. PemK toxin and PemI antitoxin were over-expre...
USDA-ARS?s Scientific Manuscript database
Purified cell-wall constituents or grape xylem sap added to media affected in vitro growth, biofilm formation, cell aggregation and gene expression of Xylella fastidiosa. Media containing xylem sap from Pierce’s disease (PD)-susceptible plants provided better support for bacterial growth and biofil...
USDA-ARS?s Scientific Manuscript database
The salivation-egestion hypothesis for the inoculation mechanism of Xylella fastidiosa (Xf) proposes that saliva secreted into plants is taken up into the vector’s precibarium. There, saliva loosens the Xf bacterial biofilm by enzymatically degrading ß-1, 4 glucans that form the chemical backbone o...
USDA-ARS?s Scientific Manuscript database
Management of a plant disease requires knowledge of all possible infection pathways. Almond leaf scorch disease (ALSD) is caused by the xylem-limited bacterium Xylella fastidiosa, which is transmitted by several species of leafhoppers. The objectives of this research were to elucidate the fate of b...
USDA-ARS?s Scientific Manuscript database
Plant diseases caused by Xylella fastidiosa (Wells et al.) (Xf) surround the Caribbean Basin. Two major commodities of Puerto Rico, coffee and citrus, are highly susceptible to Xf. We surveyed potential vectors of Xf in coffee and citrus farms in western Puerto Rico over an 18 month period. Cicadel...
Identification of a low copy number plasmid in Xylella fastidiosa Strain Stag’s Leap
USDA-ARS?s Scientific Manuscript database
Xylella fastidiosa (Xf) causes Pierce’s Disease (PD) in grapevine. The Stag’s Leap strain is known for its high virulence level and is a model for PD research. Research on Xf has been difficult due to its nutritional fastidiousness. One difficult research issue is the low copy number plasmid. Plasmi...
USDA-ARS?s Scientific Manuscript database
During the past ten years, Xylella fastidiosa has been confirmed as a pathogen of Southern highbush blueberry (Vaccinium corymbosum interspecific hybrids) in Georgia and Florida. Recent work in Louisiana has shown that it is also associated with reduced yield and altered fruit quality in ‘Tifblue’ ...
USDA-ARS?s Scientific Manuscript database
Xylella fastidiosa (Xf) is a foregut-borne bacterium that is inoculated into xylem cells of a healthy plant during feeding by sharpshooter vectors. Inoculation occurs during salivation and egestion behaviors that are likely represented by the sharpshooter X wave. The objective of this study was to t...
Cardinale, Massimiliano; Luvisi, Andrea; Meyer, Joana B.; Sabella, Erika; De Bellis, Luigi; Cruz, Albert C.; Ampatzidis, Yiannis; Cherubini, Paolo
2018-01-01
The colonization behavior of the Xylella fastidiosa strain CoDiRO, the causal agent of olive quick decline syndrome (OQDS), within the xylem of Olea europaea L. is still quite controversial. As previous literature suggests, even if xylem vessel occlusions in naturally infected olive plants were observed, cell aggregation in the formation of occlusions had a minimal role. This observation left some open questions about the whole behavior of the CoDiRO strain and its actual role in OQDS pathogenesis. In order to evaluate the extent of bacterial infection in olive trees and the role of bacterial aggregates in vessel occlusions, we tested a specific fluorescence in situ hybridization (FISH) probe (KO 210) for X. fastidiosa and quantified the level of infection and vessel occlusion in both petioles and branches of naturally infected and non-infected olive trees. All symptomatic petioles showed colonization by X. fastidiosa, especially in the larger innermost vessels. In several cases, the vessels appeared completely occluded by a biofilm containing bacterial cells and extracellular matrix and the frequent colonization of adjacent vessels suggested a horizontal movement of the bacteria. Infected symptomatic trees had 21.6 ± 10.7% of petiole vessels colonized by the pathogen, indicating an irregular distribution in olive tree xylem. Thus, our observations point out the primary role of the pathogen in olive vessel occlusions. Furthermore, our findings indicate that the KO 210 FISH probe is suitable for the specific detection of X. fastidiosa. PMID:29681910
Rodrigues, Carolina M; de Souza, Alessandra A; Takita, Marco A; Kishi, Luciano T; Machado, Marcos A
2013-10-03
Citrus variegated chlorosis (CVC), caused by Xylella fastidiosa, is one the most important citrus diseases, and affects all varieties of sweet orange (Citrus sinensis L. Osb). On the other hand, among the Citrus genus there are different sources of resistance against X. fastidiosa. For these species identifying these defense genes could be an important step towards obtaining sweet orange resistant varieties through breeding or genetic engineering. To assess these genes we made use of mandarin (C. reticulata Blanco) that is known to be resistant to CVC and shares agronomical characteristics with sweet orange. Thus, we investigated the gene expression in Ponkan mandarin at one day after infection with X. fastidiosa, using RNA-seq. A set of genes considered key elements in the resistance was used to confirm its regulation in mandarin compared with the susceptible sweet orange. Gene expression analysis of mock inoculated and infected tissues of Ponkan mandarin identified 667 transcripts repressed and 724 significantly induced in the later. Among the induced transcripts, we identified genes encoding proteins similar to Pattern Recognition Receptors. Furthermore, many genes involved in secondary metabolism, biosynthesis and cell wall modification were upregulated as well as in synthesis of abscisic acid, jasmonic acid and auxin. This work demonstrated that the defense response to the perception of bacteria involves cell wall modification and activation of hormone pathways, which probably lead to the induction of other defense-related genes. We also hypothesized the induction of auxin-related genes indicates that resistant plants initially recognize X. fastidiosa as a necrotrophic pathogen.
A cell–cell signaling sensor is required for virulence and insect transmission of Xylella fastidiosa
Chatterjee, Subhadeep; Wistrom, Christina; Lindow, Steven E.
2008-01-01
Cell–cell signaling in Xylella fastidiosa, a xylem-colonizing plant pathogenic bacterium, mediated by a fatty acid Diffusible Signaling Factor (DSF), is required to colonize insect vectors and to suppress virulence to grape. Here, we show that a hybrid two-component regulatory protein RpfC is involved in negative regulation of DSF synthesis by RpfF in X. fastidiosa. X. fastidiosa rpfC mutants hyperexpress rpfF and overproduce DSF and are deficient in virulence and movement in the xylem vessels of grape. The expression of the genes encoding the adhesins FimA, HxfA, and HxfB is much higher in rpfC mutants, which also exhibit a hyperattachment phenotype in culture that is associated with their inability to migrate in xylem vessels and cause disease. rpfF mutants deficient in DSF production have the opposite phenotypes for all of these traits. RpfC is also involved in the regulation of other signaling components including rpfG, rpfB, a GGDEF domain protein that may be involved in intracellular signaling by modulating the levels of cyclic-di-GMP, and the virulence factors tolC and pglA required for disease. rpfC mutants are able to colonize the mouthparts of insect vectors and wild-type strains but are not transmitted as efficiently to new host plants, apparently because of their high levels of adhesiveness. Because of the conflicting contributions of adhesiveness and other traits to movement within plants and vectoring to new host plants, X. fastidiosa apparently coordinates these traits in a population-size-dependent fashion involving accumulation of DSF. PMID:18268318
Navarrete, Fernando
2014-01-01
The bacterial plant pathogen Xylella fastidiosa produces biofilm that accumulates in the host xylem vessels, affecting disease development in various crops and bacterial acquisition by insect vectors. Biofilms are sensitive to the chemical composition of the environment, and mineral elements being transported in the xylem are of special interest for this pathosystem. Here, X. fastidiosa liquid cultures were supplemented with zinc and compared with nonamended cultures to determine the effects of Zn on growth, biofilm, and exopolysaccharide (EPS) production under batch and flow culture conditions. The results show that Zn reduces growth and biofilm production under both conditions. However, in microfluidic chambers under liquid flow and with constant bacterial supplementation (closer to conditions inside the host), a dramatic increase in biofilm aggregates was seen in the Zn-amended medium. Biofilms formed under these conditions were strongly attached to surfaces and were not removed by medium flow. This phenomenon was correlated with increased EPS production in stationary-phase cells grown under high Zn concentrations. Zn did not cause greater adhesion to surfaces by individual cells. Additionally, viability analyses suggest that X. fastidiosa may be able to enter the viable but nonculturable state in vitro, and Zn can hasten the onset of this state. Together, these findings suggest that Zn can act as a stress factor with pleiotropic effects on X. fastidiosa and indicate that, although Zn could be used as a bactericide treatment, it could trigger the undesired effect of stronger biofilm formation upon reinoculation events. PMID:24271184
Hoch, Harvey C.; Burr, Thomas J.; Mowery, Patricia
2016-01-01
Xylella fastidiosa is a xylem-limited bacterium in plant hosts and causes Pierce’s disease (PD) of grapevines, which differ in susceptibility according to the Vitis species (spp.). In this work we compared X. fastidiosa biofilm formation and population dynamics when cultured in xylem saps from PD-susceptible and -resistant Vitis spp. under different conditions. Behaviors in a closed-culture system were compared to those in different sap-renewal cultures that would more closely mimic the physicochemical environment encountered in planta. Significant differences in biofilm formation and growth in saps from PD-susceptible and -resistant spp. were only observed using sap renewal culture. Compared to saps from susceptible V. vinifera, those from PD-resistant V. aestivalis supported lower titers of X. fastidiosa and less biofilm and V. champinii suppressed both growth and biofilm formation, behaviors which are correlated with disease susceptibility. Furthermore, in microfluidic chambers X. fastidiosa formed thick mature biofilm with three-dimensional (3-D) structures, such as pillars and mounds, in saps from all susceptible spp. In contrast, only small aggregates of various shapes were formed in saps from four out of five of the resistant spp.; sap from the resistant spp. V. mustangensis was an exception in that it also supported thick lawns of biofilm but not the above described 3-D structures typically seen in a mature biofilm from the susceptible saps. Our findings provide not only critical technical information for future bioassays, but also suggest further understanding of PD susceptibility. PMID:27508296
Ionescu, Michael; Zaini, Paulo A.; Baccari, Clelia; Tran, Sophia; da Silva, Aline M.; Lindow, Steven E.
2014-01-01
Outer membrane vesicles (OMVs) of Gram-negative bacteria have been studied intensively in recent years, primarily in their role in delivering virulence factors and antigens during pathogenesis. However, the near ubiquity of their production suggests that they may play other roles, such as responding to envelope stress or trafficking various cargoes to prevent dilution or degradation by other bacterial species. Here we show that OMVs produced by Xylella fastidiosa, a xylem-colonizing plant pathogenic bacterium, block its interaction with various surfaces such as the walls of xylem vessels in host plants. The release of OMVs was suppressed by the diffusible signal factor-dependent quorum-sensing system, and a X. fastidiosa ΔrpfF mutant in which quorum signaling was disrupted was both much more virulent to plants and less adhesive to glass and plant surfaces than the WT strain. The higher virulence of the ΔrpfF mutant was associated with fivefold higher numbers of OMVs recovered from xylem sap of infected plants. The frequency of attachment of X. fastidiosa to xylem vessels was 20-fold lower in the presence of OMVs than in their absence. OMV production thus is a strategy used by X. fastidiosa cells to adjust attachment to surfaces in its transition from adhesive cells capable of insect transmission to an “exploratory” lifestyle for systemic spread within the plant host which would be hindered by attachment. OMV production may contribute to the movement of other bacteria in porous environments by similarly reducing their contact with environmental constituents. PMID:25197068
Chatterjee, Subhadeep; Wistrom, Christina; Lindow, Steven E
2008-02-19
Cell-cell signaling in Xylella fastidiosa, a xylem-colonizing plant pathogenic bacterium, mediated by a fatty acid Diffusible Signaling Factor (DSF), is required to colonize insect vectors and to suppress virulence to grape. Here, we show that a hybrid two-component regulatory protein RpfC is involved in negative regulation of DSF synthesis by RpfF in X. fastidiosa. X. fastidiosa rpfC mutants hyperexpress rpfF and overproduce DSF and are deficient in virulence and movement in the xylem vessels of grape. The expression of the genes encoding the adhesins FimA, HxfA, and HxfB is much higher in rpfC mutants, which also exhibit a hyperattachment phenotype in culture that is associated with their inability to migrate in xylem vessels and cause disease. rpfF mutants deficient in DSF production have the opposite phenotypes for all of these traits. RpfC is also involved in the regulation of other signaling components including rpfG, rpfB, a GGDEF domain protein that may be involved in intracellular signaling by modulating the levels of cyclic-di-GMP, and the virulence factors tolC and pglA required for disease. rpfC mutants are able to colonize the mouthparts of insect vectors and wild-type strains but are not transmitted as efficiently to new host plants, apparently because of their high levels of adhesiveness. Because of the conflicting contributions of adhesiveness and other traits to movement within plants and vectoring to new host plants, X. fastidiosa apparently coordinates these traits in a population-size-dependent fashion involving accumulation of DSF.
Navarrete, Fernando; De La Fuente, Leonardo
2014-02-01
The bacterial plant pathogen Xylella fastidiosa produces biofilm that accumulates in the host xylem vessels, affecting disease development in various crops and bacterial acquisition by insect vectors. Biofilms are sensitive to the chemical composition of the environment, and mineral elements being transported in the xylem are of special interest for this pathosystem. Here, X. fastidiosa liquid cultures were supplemented with zinc and compared with nonamended cultures to determine the effects of Zn on growth, biofilm, and exopolysaccharide (EPS) production under batch and flow culture conditions. The results show that Zn reduces growth and biofilm production under both conditions. However, in microfluidic chambers under liquid flow and with constant bacterial supplementation (closer to conditions inside the host), a dramatic increase in biofilm aggregates was seen in the Zn-amended medium. Biofilms formed under these conditions were strongly attached to surfaces and were not removed by medium flow. This phenomenon was correlated with increased EPS production in stationary-phase cells grown under high Zn concentrations. Zn did not cause greater adhesion to surfaces by individual cells. Additionally, viability analyses suggest that X. fastidiosa may be able to enter the viable but nonculturable state in vitro, and Zn can hasten the onset of this state. Together, these findings suggest that Zn can act as a stress factor with pleiotropic effects on X. fastidiosa and indicate that, although Zn could be used as a bactericide treatment, it could trigger the undesired effect of stronger biofilm formation upon reinoculation events.
2010-01-01
Background Xylella fastidiosa, a Gram-negative fastidious bacterium, grows in the xylem of several plants causing diseases such as citrus variegated chlorosis. As the xylem sap contains low concentrations of amino acids and other compounds, X. fastidiosa needs to cope with nitrogen limitation in its natural habitat. Results In this work, we performed a whole-genome microarray analysis of the X. fastidiosa nitrogen starvation response. A time course experiment (2, 8 and 12 hours) of cultures grown in defined medium under nitrogen starvation revealed many differentially expressed genes, such as those related to transport, nitrogen assimilation, amino acid biosynthesis, transcriptional regulation, and many genes encoding hypothetical proteins. In addition, a decrease in the expression levels of many genes involved in carbon metabolism and energy generation pathways was also observed. Comparison of gene expression profiles between the wild type strain and the rpoN null mutant allowed the identification of genes directly or indirectly induced by nitrogen starvation in a σ54-dependent manner. A more complete picture of the σ54 regulon was achieved by combining the transcriptome data with an in silico search for potential σ54-dependent promoters, using a position weight matrix approach. One of these σ54-predicted binding sites, located upstream of the glnA gene (encoding glutamine synthetase), was validated by primer extension assays, confirming that this gene has a σ54-dependent promoter. Conclusions Together, these results show that nitrogen starvation causes intense changes in the X. fastidiosa transcriptome and some of these differentially expressed genes belong to the σ54 regulon. PMID:20799976
Pérez-Donoso, Alonso G.; Sun, Qiang; Roper, M. Caroline; Greve, L. Carl; Kirkpatrick, Bruce; Labavitch, John M.
2010-01-01
The pit membrane (PM) is a primary cell wall barrier that separates adjacent xylem water conduits, limiting the spread of xylem-localized pathogens and air embolisms from one conduit to the next. This paper provides a characterization of the size of the pores in the PMs of grapevine (Vitis vinifera). The PM porosity (PMP) of stems infected with the bacterium Xylella fastidiosa was compared with the PMP of healthy stems. Stems were infused with pressurized water and flow rates were determined; gold particles of known size were introduced with the water to assist in determining the size of PM pores. The effect of introducing trans-1,2-diaminocyclohexane-N,N,N′,N′-tetraacetic acid (CDTA), oligogalacturonides, and polygalacturonic acid into stems on water flux via the xylem was also measured. The possibility that cell wall-degrading enzymes could alter the pore sizes, thus facilitating the ability of X. fastidiosa to cross the PMs, was tested. Two cell wall-degrading enzymes likely to be produced by X. fastidiosa (polygalactuoronase and endo-1,4- β -glucanase) were infused into stems, and particle passage tests were performed to check for changes in PMP. Scanning electron microscopy of control and enzyme-infused stem segments revealed that the combination of enzymes opened holes in PMs, probably explaining enzyme impacts on PMP and how a small X. fastidiosa population, introduced into grapevines by insect vectors, can multiply and spread throughout the vine and cause Pierce's disease. PMID:20107028
Marucci, Rosangela C; Lopes, João R S; Cavichioli, Rodney R
2008-08-01
Xylella fastidiosa (Wells, Raju, Hung, Weisburg, Mandelco-Paul, and Brenner) is a bacterial pathogen transmitted by several sharpshooters in two tribes of Cicadellinae (Proconiini and Cicadellini). Here, we compared the transmission efficiency of X. fastidiosa in coffee (Coffea arabica L.) and citrus [Citrus sinensis (L.) Osbeck] by Cicadellini [Bucephalogonia xanthophis (Berg) and Dilobopterus costalimai Young] and Proconiini [Homalodisca ignorata Melichar and Oncometopia facialis (Signoret)] sharpshooters that occur in both crops. At different seasons, healthy adults of each species were submitted to a 48-h acquisition access period on citrus or coffee source plants infected with X. fastidiosa isolates that cause Citrus variegated chlorosis (CVC) and Coffee leaf scorch (CLS), respectively, and then confined on healthy seedlings of the corresponding host plant for a 48-h inoculation access period. No significant effect of inoculation season was observed when comparing infection rates of citrus or coffee plants inoculated by vectors at different times of the year. In citrus, the transmission rate by single insects was significantly higher for H. ignorata (30%) in relation to B. xanthophis (5%) and O. facialis (1.1%), but there was no difference among vector species in coffee, whose transmission rates ranged from 1.2 to 7.2%. Comparing host plants, H. ignorata was more effective in transmitting X. fastidiosa to citrus (30%) in relation to coffee (2.2%), whereas the other vectors transmitted the bacterium to both hosts with similar efficiencies. Despite these variations, vector efficiency in coffee and citrus is lower than that reported in other hosts.
Draft genome sequence of Xylella fastidiosa pear leaf scorch strain in Taiwan
USDA-ARS?s Scientific Manuscript database
The draft genome sequence of Xylella fastidiosa pear leaf scorch strain (PLS229) isolated from pear cultivar Hengshan (Pyrus pyrifolia) in Taiwan is reported. The bacterium has a genome size of 2,733,013 bp with a G+C content of 53.1%. The PLS229 strain genome was annotated to have 3,259 open readin...
Harakava, Ricardo; Gabriel, Dean W
2003-02-01
Suppression subtractive hybridization was used to rapidly identify 18 gene differences between a citrus variegated chlorosis (CVC) strain and a Pierce's disease of grape (PD) strain of Xylella fastidiosa. The results were validated as being highly representative of actual differences by comparison of the completely sequenced genome of a CVC strain with that of a PD strain.
USDA-ARS?s Scientific Manuscript database
The glassy-winged sharpshooter, Homalodisca vitripennis, is a xylem fluid-ingesting leafhopper that transmits Xylella fastidiosa, the causal agent of several plant diseases in the Americas. While the role of plant water stress on the population density and dispersal of H. vitripennis has been studie...
USDA-ARS?s Scientific Manuscript database
Whole genome tandem repeat polymorphisms were evaluated between two closely related Xylella fastidiosa strains, M23 and Temecula1, both cause almond leaf scorch disease (ALSD) and grape Pierce’s disease (PD) in California. Strain M23 was isolated from almond and the genome was sequenced in this stu...
USDA-ARS?s Scientific Manuscript database
Despite several decades of study, the mechanism of inoculation of X. fastidiosa (Xf) to grapevines by its sharpshooter vectors still is not fully understood. Recent research showed that Xf is inoculated into or onto artificial diets by a combination of egestion and salivation. However, the salivatio...
Harris, Jordan Lee; Balci, Yilmaz
2015-01-01
Bacterial leaf scorch, associated with the bacterial pathogen Xylella fastidiosa, is a widely established and problematic disease of landscape ornamentals in Washington D.C. A multi-locus sequence typing analysis was performed using 10 housekeeping loci for X. fastidiosa strains in order to better understand the epidemiology of leaf scorch disease in this municipal environment. Samples were collected from 7 different tree species located throughout the District of Columbia, consisting of 101 samples of symptomatic and asymptomatic foliage from 84 different trees. Five strains of the bacteria were identified. Consistent with prior data, these strains were host specific, with only one strain associated with members of the red oak family, one strain associated with American elm, one strain associated with American sycamore, and two strains associated with mulberry. Strains found for asymptomatic foliage were the same as strains from the symptomatic foliage on individual trees. Cross transmission of the strains was not observed at sites with multiple species of infected trees within an approx. 25 m radius of one another. X. fastidiosa strain specificity observed for each genus of tree suggests a highly specialized host-pathogen relationship. PMID:25815838
Nunney, L; Elfekih, S; Stouthamer, R
2012-05-01
Microbial identification methods have evolved rapidly over the last few decades. One such method is multilocus sequence typing (MLST). MLST is a powerful tool for understanding the evolutionary dynamics of pathogens and to gain insight into their genetic diversity. We illustrate the importance of accurate typing by reporting on three problems that have arisen in the study of a single bacterial species, the plant pathogen Xylella fastidiosa. Two of these were particularly serious since they concerned contamination of important research material that has had detrimental consequences for Xylella research: the contamination of DNA used in the sequencing of an X. fastidiosa genome (Ann-1) with DNA from another X. fastidiosa strain, and the unrecognized mislabeling of a strain (Temecula1) distributed from a culture collection (ATCC). We advocate the routine use of MLST to define strains maintained in culture collections and emphasize the importance of confirming the purity of DNA submitted for sequencing. We also present a third example that illustrates the value of MLST in guiding the choice of taxonomic types. Beyond these situations, there is a strong case for MLST whenever an isolate is used experimentally, especially where genotypic differences are suspected to influence the outcome.
Lorite, Gabriela S; de Souza, Alessandra A; Neubauer, Daniel; Mizaikoff, Boris; Kranz, Christine; Cotta, Mônica A
2013-02-01
The structural integrity and protection of bacterial biofilms are intrinsically associated with a matrix of extracellular polymeric substances (EPS) produced by the bacteria cells. However, the role of these substances during biofilm adhesion to a surface remains largely unclear. In this study, the influence of EPS on Xylella fastidiosa biofilm formation was investigated. This bacterium is associated with economically important plant diseases; it presents a slow growth rate and thus allows us to pinpoint more precisely the early stages of cell-surface adhesion. Scanning electron microscopy and atomic force microscopy show evidence of EPS production in such early stages and around individual bacteria cells attached to the substrate surface even a few hours after inoculation. In addition, EPS formation was investigated via attenuated total reflectance (ATR) Fourier transform infrared spectroscopy (FTIR). To this end, X. fastidiosa cells were inoculated within an ATR liquid cell assembly. IR-ATR spectra clearly reveal EPS formation already during the early stages of X. fastidiosa biofilm formation, thereby providing supporting evidence for the hypothesis of the relevance of the EPS contribution to the adhesion process. Copyright © 2012 Elsevier B.V. All rights reserved.
Harris, Jordan Lee; Balci, Yilmaz
2015-01-01
Bacterial leaf scorch, associated with the bacterial pathogen Xylella fastidiosa, is a widely established and problematic disease of landscape ornamentals in Washington D.C. A multi-locus sequence typing analysis was performed using 10 housekeeping loci for X. fastidiosa strains in order to better understand the epidemiology of leaf scorch disease in this municipal environment. Samples were collected from 7 different tree species located throughout the District of Columbia, consisting of 101 samples of symptomatic and asymptomatic foliage from 84 different trees. Five strains of the bacteria were identified. Consistent with prior data, these strains were host specific, with only one strain associated with members of the red oak family, one strain associated with American elm, one strain associated with American sycamore, and two strains associated with mulberry. Strains found for asymptomatic foliage were the same as strains from the symptomatic foliage on individual trees. Cross transmission of the strains was not observed at sites with multiple species of infected trees within an approx. 25 m radius of one another. X. fastidiosa strain specificity observed for each genus of tree suggests a highly specialized host-pathogen relationship.
Expression of Xylella fastidiosa Fimbrial and Afimbrial Proteins during Biofilm Formation▿
Caserta, R.; Takita, M. A.; Targon, M. L.; Rosselli-Murai, L. K.; de Souza, A. P.; Peroni, L.; Stach-Machado, D. R.; Andrade, A.; Labate, C. A.; Kitajima, E. W.; Machado, M. A.; de Souza, A. A.
2010-01-01
Complete sequencing of the Xylella fastidiosa genome revealed characteristics that have not been described previously for a phytopathogen. One characteristic of this genome was the abundance of genes encoding proteins with adhesion functions related to biofilm formation, an essential step for colonization of a plant host or an insect vector. We examined four of the proteins belonging to this class encoded by genes in the genome of X. fastidiosa: the PilA2 and PilC fimbrial proteins, which are components of the type IV pili, and XadA1 and XadA2, which are afimbrial adhesins. Polyclonal antibodies were raised against these four proteins, and their behavior during biofilm development was assessed by Western blotting and immunofluorescence assays. In addition, immunogold electron microscopy was used to detect these proteins in bacteria present in xylem vessels of three different hosts (citrus, periwinkle, and hibiscus). We verified that these proteins are present in X. fastidiosa biofilms but have differential regulation since the amounts varied temporally during biofilm formation, as well as spatially within the biofilms. The proteins were also detected in bacteria colonizing the xylem vessels of infected plants. PMID:20472735
USDA-ARS?s Scientific Manuscript database
Development of grape varieties resistant to Pierce’s Disease, caused by the lethal bacterium Xylella fastidiosa (Xf), is considered the most sustainable, long-term solution to the disease. Grape breeders are working to develop varieties resistant to multiplication and spread of the bacterium, by in...
2008-01-01
sandii FK-53; OLF#1 Oleander; USA 1 Xylophilus ampelinus FB-1178 Grape; S. Africa 1 Xylophilus ampelinus FJ-3; 60002 Grape; S. Africa 1 1160...campestris Xanthomonas campestris Xylella fastidiosa (6 strains) Xylella fastidiosa Xylophilus ampelinus (2 strains) Xylophilus ampelinus ...Rathayibacter iranicus Rathayibacter iranicus Xylophilus ampelinus Xylophilus ampelinus a Purified DNAs from multiple bacteria were mixed at equal
Invasive Threats to the American Homeland
2004-04-01
The second example is the glassy-winged sharpshooter, an invasive insect that hosts the bacterium Xylella Fastidiosa . The insect was first de- tected... Xylella Fastidiosa causes Pierce’s Disease in grapes, which infects and kills the grapevine. The glassy-winged sharpshooter transmits and spreads the...netic processes.” Adversaries of the United States may modify the genetics of an invasive species to increase its competitiveness, virulence , lethality
Invasive Species - A Threat to the Homeland?
2003-04-07
sharpshooter, an invasive insect that hosts the bacterium Xylella Fastidiosa . The insect was first detected in California in 1990. Although it is...uncertain how it arrived in California, it is believed to have arrived on plants imported from an infected area. The bacterium Xylella Fastidiosa causes...United States may modify the genetics of an invasive species to increase its competitiveness, virulence , lethality, or resistance to control measures
Chatterjee, Subhadeep; Newman, Karyn L; Lindow, Steven E
2008-10-01
Cell-to-cell signaling mediated by a fatty acid diffusible signaling factor (DSF) is central to the regulation of the virulence of Xylella fastidiosa. DSF production by X. fastidiosa is dependent on rpfF and, although required for insect colonization, appears to reduce its virulence to grape. To understand what aspects of colonization of grape are controlled by DSF in X. fastidiosa and, thus, those factors that contribute to virulence, we assessed the colonization of grape by a green fluorescent protein-marked rpfF-deficient mutant. The rpfF-deficient mutant was detected at a greater distance from the point of inoculation than the wild-type strain at a given sampling time, and also attained a population size that was up to 100-fold larger than that of the wild-type strain at a given distance from the point of inoculation. Confocal laser-scanning microscopy revealed that approximately 10-fold more vessels in petioles of symptomatic leaves harbored at least some cells of either the wild type or rpfF mutant when compared with asymptomatic leaves and, thus, that disease symptoms were associated with the extent of vessel colonization. Importantly, the rpfF mutant colonized approximately threefold more vessels than the wild-type strain. Although a wide range of colony sizes were observed in vessels colonized by both the wild type and rpfF mutant, the proportion of colonized vessels harboring large numbers of cells was significantly higher in plants inoculated with the rpfF mutant than with the wild-type strain. These studies indicated that the hypervirulence phenotype of the rpfF mutant is due to both a more extensive spread of the pathogen to xylem vessels and unrestrained multiplication within vessels leading to blockage. These results suggest that movement and multiplication of X. fastidiosa in plants are linked, perhaps because cell wall degradation products are a major source of nutrients. Thus, DSF-mediated cell-to-cell signaling, which restricts movement and colonization of X. fastidiosa, may be an adaptation to endophytic growth of the pathogen that prevents the excessive growth of cells in vessels.
Origins of the Xylella fastidiosa prophage-like regions and their impact in genome differentiation.
de Mello Varani, Alessandro; Souza, Rangel Celso; Nakaya, Helder I; de Lima, Wanessa Cristina; Paula de Almeida, Luiz Gonzaga; Kitajima, Elliot Watanabe; Chen, Jianchi; Civerolo, Edwin; Vasconcelos, Ana Tereza Ribeiro; Van Sluys, Marie-Anne
2008-01-01
Xylella fastidiosa is a Gram negative plant pathogen causing many economically important diseases, and analyses of completely sequenced X. fastidiosa genome strains allowed the identification of many prophage-like elements and possibly phage remnants, accounting for up to 15% of the genome composition. To better evaluate the recent evolution of the X. fastidiosa chromosome backbone among distinct pathovars, the number and location of prophage-like regions on two finished genomes (9a5c and Temecula1), and in two candidate molecules (Ann1 and Dixon) were assessed. Based on comparative best bidirectional hit analyses, the majority (51%) of the predicted genes in the X. fastidiosa prophage-like regions are related to structural phage genes belonging to the Siphoviridae family. Electron micrograph reveals the existence of putative viral particles with similar morphology to lambda phages in the bacterial cell in planta. Moreover, analysis of microarray data indicates that 9a5c strain cultivated under stress conditions presents enhanced expression of phage anti-repressor genes, suggesting switches from lysogenic to lytic cycle of phages under stress-induced situations. Furthermore, virulence-associated proteins and toxins are found within these prophage-like elements, thus suggesting an important role in host adaptation. Finally, clustering analyses of phage integrase genes based on multiple alignment patterns reveal they group in five lineages, all possessing a tyrosine recombinase catalytic domain, and phylogenetically close to other integrases found in phages that are genetic mosaics and able to perform generalized and specialized transduction. Integration sites and tRNA association is also evidenced. In summary, we present comparative and experimental evidence supporting the association and contribution of phage activity on the differentiation of Xylella genomes.
2013-01-01
Background Citrus variegated chlorosis (CVC), caused by Xylella fastidiosa, is one the most important citrus diseases, and affects all varieties of sweet orange (Citrus sinensis L. Osb). On the other hand, among the Citrus genus there are different sources of resistance against X. fastidiosa. For these species identifying these defense genes could be an important step towards obtaining sweet orange resistant varieties through breeding or genetic engineering. To assess these genes we made use of mandarin (C. reticulata Blanco) that is known to be resistant to CVC and shares agronomical characteristics with sweet orange. Thus, we investigated the gene expression in Ponkan mandarin at one day after infection with X. fastidiosa, using RNA-seq. A set of genes considered key elements in the resistance was used to confirm its regulation in mandarin compared with the susceptible sweet orange. Results Gene expression analysis of mock inoculated and infected tissues of Ponkan mandarin identified 667 transcripts repressed and 724 significantly induced in the later. Among the induced transcripts, we identified genes encoding proteins similar to Pattern Recognition Receptors. Furthermore, many genes involved in secondary metabolism, biosynthesis and cell wall modification were upregulated as well as in synthesis of abscisic acid, jasmonic acid and auxin. Conclusions This work demonstrated that the defense response to the perception of bacteria involves cell wall modification and activation of hormone pathways, which probably lead to the induction of other defense-related genes. We also hypothesized the induction of auxin-related genes indicates that resistant plants initially recognize X. fastidiosa as a necrotrophic pathogen. PMID:24090429
Origins of the Xylella fastidiosa Prophage-Like Regions and Their Impact in Genome Differentiation
de Mello Varani, Alessandro; Souza, Rangel Celso; Nakaya, Helder I.; de Lima, Wanessa Cristina; Paula de Almeida, Luiz Gonzaga; Kitajima, Elliot Watanabe; Chen, Jianchi; Civerolo, Edwin; Vasconcelos, Ana Tereza Ribeiro; Van Sluys, Marie-Anne
2008-01-01
Xylella fastidiosa is a Gram negative plant pathogen causing many economically important diseases, and analyses of completely sequenced X. fastidiosa genome strains allowed the identification of many prophage-like elements and possibly phage remnants, accounting for up to 15% of the genome composition. To better evaluate the recent evolution of the X. fastidiosa chromosome backbone among distinct pathovars, the number and location of prophage-like regions on two finished genomes (9a5c and Temecula1), and in two candidate molecules (Ann1 and Dixon) were assessed. Based on comparative best bidirectional hit analyses, the majority (51%) of the predicted genes in the X. fastidiosa prophage-like regions are related to structural phage genes belonging to the Siphoviridae family. Electron micrograph reveals the existence of putative viral particles with similar morphology to lambda phages in the bacterial cell in planta. Moreover, analysis of microarray data indicates that 9a5c strain cultivated under stress conditions presents enhanced expression of phage anti-repressor genes, suggesting switches from lysogenic to lytic cycle of phages under stress-induced situations. Furthermore, virulence-associated proteins and toxins are found within these prophage-like elements, thus suggesting an important role in host adaptation. Finally, clustering analyses of phage integrase genes based on multiple alignment patterns reveal they group in five lineages, all possessing a tyrosine recombinase catalytic domain, and phylogenetically close to other integrases found in phages that are genetic mosaics and able to perform generalized and specialized transduction. Integration sites and tRNA association is also evidenced. In summary, we present comparative and experimental evidence supporting the association and contribution of phage activity on the differentiation of Xylella genomes. PMID:19116666
Hansen, Sarah J Z; Morovic, Wesley; DeMeules, Martha; Stahl, Buffy; Sindelar, Connie W
2018-01-01
The current standard for enumeration of probiotics to obtain colony forming units by plate counts has several drawbacks: long time to results, high variability and the inability to discern between bacterial strains. Accurate probiotic cell counts are important to confirm the delivery of a clinically documented dose for its associated health benefits. A method is described using chip-based digital PCR (cdPCR) to enumerate Bifidobacterium animalis subsp. lactis Bl-04 and Lactobacillus acidophilus NCFM both as single strains and in combination. Primers and probes were designed to differentiate the target strains against other strains of the same species using known single copy, genetic differences. The assay was optimized to include propidium monoazide pre-treatment to prevent amplification of DNA associated with dead probiotic cells as well as liberation of DNA from cells with intact membranes using bead beating. The resulting assay was able to successfully enumerate each strain whether alone or in multiplex. The cdPCR method had a 4 and 5% relative standard deviation (RSD) for Bl-04 and NCFM, respectively, making it more precise than plate counts with an industry accepted RSD of 15%. cdPCR has the potential to replace traditional plate counts because of its precision, strain specificity and the ability to obtain results in a matter of hours.
Frederiksen, Kristine; Rosenquist, Hanne; Jørgensen, Kirsten; Wilcks, Andrea
2006-01-01
A total of 128 Bacillus cereus-like strains isolated from fresh fruits and vegetables for sale in retail shops in Denmark were characterized. Of these strains, 39% (50/128) were classified as Bacillus thuringiensis on the basis of their content of cry genes determined by PCR or crystal proteins visualized by microscopy. Random amplified polymorphic DNA analysis and plasmid profiling indicated that 23 of the 50 B. thuringiensis strains were of the same subtype as B. thuringiensis strains used as commercial bioinsecticides. Fourteen isolates were indistinguishable from B. thuringiensis subsp. kurstaki HD1 present in the products Dipel, Biobit, and Foray, and nine isolates grouped with B. thuringiensis subsp. aizawai present in Turex. The commercial strains were primarily isolated from samples of tomatoes, cucumbers, and peppers. A multiplex PCR method was developed to simultaneously detect all three genes in the enterotoxin hemolysin BL (HBL) and the nonhemolytic enterotoxin (NHE), respectively. This revealed that the frequency of these enterotoxin genes was higher among the strains indistinguishable from the commercial strains than among the other B. thuringiensis and B. cereus-like strains isolated from fruits and vegetables. The same was seen for a third enterotoxin, CytK. In conclusion, the present study strongly indicates that residues of B. thuringiensis-based insecticides can be found on fresh fruits and vegetables and that these are potentially enterotoxigenic. PMID:16672488
PemK toxin encoded by the Xylella fastidiosa IncP-1 plasmid pXF-RIV11 is a ribonuclease
USDA-ARS?s Scientific Manuscript database
Stable inheritance of the IncP-1 plasmid pXF-RIV11 in Xylella fastidiosa is conferred by the pemI/pemK plasmid addiction system. PemK serves as a toxin inhibiting bacterial growth; PemI is the corresponding antitoxin that blocks activity of PemK toxin by direct binding. Here, PemK toxin and PemI ant...
USDA-ARS?s Scientific Manuscript database
The most successful example of classical grapevine breeding for resistance to Xylella fastidiosa (Xf) is the PdR1 gene, which mediates resistance to Xf multiplication and spread in the host, once Xf has been inoculated. No effort has been made to determine whether resistance of PdR1 or its parent wi...
USDA-ARS?s Scientific Manuscript database
Homalodisca vitripennis, one of the main vectors of Xylella fastidiosa, is associated with citrus plantings in California, USA. Infested citrus orchards act as a source of vectors to adjacent vineyards where X. fastidiosa causes Pierce’s disease (PD). An analysis of the pattern and rate of movement ...
Qin, Xiaoting; Hartung, John S
2004-09-01
Xylella fastidiosa, a Gram-negative bacterial plant pathogen, causes Pierce's disease of grapevine in North America. In South America the pathogen causes citrus variegated chlorosis, which is widespread in Brazil. We have introduced into Xylella fastidiosa a mini-Tn5 transposon that encodes a green fluorescent protein (GFP) gene optimized for expression in bacteria. The mini-Tn5 derivative was inserted into different sites of the genome in independent transconjugants as determined by Southern blotting. The GFP gene was expressed well and to different levels in different transconjugants. Four independent transconjugants were separately used to inoculate sweet orange and tobacco seedlings. The transconjugants were able to colonize the plants and were subsequently isolated from points distal to the inoculation sites. When the relative fluorescence of the transconjugants that had been passed through either tobacco or sweet orange was compared with that of the same transconjugant maintained continuously in vitro, we observed that passage through either plant host significantly increased the level of expression of the GFP. The increased level of expression of GFP was transient, and was lost upon further culture in vitro. Xylella fastidiosa forms biofilms in planta which are believed to represent a metabolically differentiated state. The increased expression of GFP observed after passage through plants may be accounted for by this phenomenon.
Merfa, Marcus V; Niza, Bárbara; Takita, Marco A; De Souza, Alessandra A
2016-01-01
Through the formation of persister cells, bacteria exhibit tolerance to multidrug and other environmental stresses without undergoing genetic changes. The toxin-antitoxin (TA) systems are involved in the formation of persister cells because they are able to induce cell dormancy. Among the TA systems, the MqsRA system has been observed to be highly induced in persister cells of Xylella fastidiosa (causal agent of citrus variegated chlorosis-CVC) activated by copper stress, and has been described in Escherichia coli as related to the formation of persister cells and biofilms. Thus, we evaluated the role of this TA system in X. fastidiosa by overexpressing the MqsR toxin, and verified that the toxin positively regulated biofilm formation and negatively cell movement, resulting in reduced pathogenicity in citrus plants. The overexpression of MqsR also increased the formation of persister cells under copper stress. Analysis of the gene and protein expression showed that this system likely has an autoregulation mechanism to express the toxin and antitoxin in the most beneficial ratio for the cell to oppose stress. Our results suggest that this TA system plays a key role in the adaptation and survival of X. fastidiosa and reveal new insights into the physiology of phytopathogen-host interactions.
Gene expression profile of the plant pathogen Xylella fastidiosa during biofilm formation in vitro.
de Souza, Alessandra A; Takita, Marco A; Coletta-Filho, Helvécio D; Caldana, Camila; Yanai, Giane M; Muto, Nair H; de Oliveira, Regina C; Nunes, Luiz R; Machado, Marcos A
2004-08-15
A biofilm is a community of microorganisms attached to a solid surface. Cells within biofilms differ from planktonic cells, showing higher resistance to biocides, detergent, antibiotic treatments and host defense responses. Even though there are a number of gene expression studies in bacterial biofilm formation, limited information is available concerning plant pathogen. It was previously demonstrated that the plant pathogen Xylella fastidiosa could grow as a biofilm, a possibly important factor for its pathogenicity. In this study we utilized analysis of microarrays to specifically identify genes expressed in X. fastidiosa cells growing in a biofilm, when compared to planktonic cells. About half of the differentially expressed genes encode hypothetical proteins, reflecting the large number of ORFs with unknown functions in bacterial genomes. However, under the biofilm condition we observed an increase in the expression of some housekeeping genes responsible for metabolic functions. We also found a large number of genes from the pXF51 plasmid being differentially expressed. Some of the overexpressed genes in the biofilm condition encode proteins involved in attachment to surfaces. Other genes possibly confer advantages to the bacterium in the environment that it colonizes. This study demonstrates that the gene expression in the biofilm growth condition of the plant pathogen X. fastidiosa is quite similar to other characterized systems.
Navarrete, Fernando; De La Fuente, Leonardo
2015-04-01
Zinc (Zn) is an essential element for all forms of life because it is a structural or catalytic cofactor of many proteins, but it can have toxic effects at high concentrations; thus, microorganisms must tightly regulate its levels. Here, we evaluated the role of Zn homeostasis proteins in the virulence of the xylem-limited bacterium Xylella fastidiosa, causal agent of Pierce's disease of grapevine, among other diseases. Two mutants of X. fastidiosa 'Temecula' affected in genes which regulate Zn homeostasis (zur) and Zn detoxification (czcD) were constructed. Both knockouts showed increased sensitivity to Zn at physiologically relevant concentrations and increased intracellular accumulation of this metal compared with the wild type. Increased Zn sensitivity was correlated with decreased growth in grapevine xylem sap, reduced twitching motility, and downregulation of exopolysaccharide biosynthetic genes. Tobacco plants inoculated with either knockout mutant showed reduced foliar symptoms and a much reduced (czcD) or absent (zur) modification of the leaf ionome (i.e., the mineral nutrient and trace element composition), as well as reduced bacterial populations. The results show that detoxification of Zn is crucial for the virulence of X. fastidiosa and verifies our previous findings that modification of the host leaf ionome correlates with bacterial virulence.
de Souza, Alessandra A; Takita, Marco A; Coletta-Filho, Helvécio D; Caldana, Camila; Goldman, Gustavo H; Yanai, Giane M; Muto, Nair H; de Oliveira, Regina C; Nunes, Luiz R; Machado, Marcos A
2003-10-01
Xylella fastidiosa is a plant pathogen responsible for diseases of economically important crops. Although there is considerable disagreement about its mechanism of pathogenicity, blockage of the vessels is one of the most accepted hypotheses. Loss of virulence by this bacterium was observed after serial passages in axenic culture. To confirm the loss of pathogenicity of X. fastidiosa, the causing agent of citrus variegated chlorosis (CVC), freshly-isolated bacteria (first passage [FP] condition) as well as bacteria obtained after 46 passages in axenic culture (several passage [SP] condition) were inoculated into sweet orange and periwinkle plants. Using real time quantitative polymerase chain reaction, we verified that the colonization of FP cells was more efficient for both hosts. The sequence of the complete X. fastidiosa genome allowed the construction of a DNA microarray that was used to investigate the total changes in gene expression associated with the FP condition. Most genes found to be induced in the FP condition were associated with adhesion and probably with adaptation to the host environment. This report represents the first study of the transcriptome of this pathogen, which has recently gained more importance, since the genome of several strains has been either partially or entirely sequenced.
Merfa, Marcus V.; Niza, Bárbara; Takita, Marco A.; De Souza, Alessandra A.
2016-01-01
Through the formation of persister cells, bacteria exhibit tolerance to multidrug and other environmental stresses without undergoing genetic changes. The toxin-antitoxin (TA) systems are involved in the formation of persister cells because they are able to induce cell dormancy. Among the TA systems, the MqsRA system has been observed to be highly induced in persister cells of Xylella fastidiosa (causal agent of citrus variegated chlorosis—CVC) activated by copper stress, and has been described in Escherichia coli as related to the formation of persister cells and biofilms. Thus, we evaluated the role of this TA system in X. fastidiosa by overexpressing the MqsR toxin, and verified that the toxin positively regulated biofilm formation and negatively cell movement, resulting in reduced pathogenicity in citrus plants. The overexpression of MqsR also increased the formation of persister cells under copper stress. Analysis of the gene and protein expression showed that this system likely has an autoregulation mechanism to express the toxin and antitoxin in the most beneficial ratio for the cell to oppose stress. Our results suggest that this TA system plays a key role in the adaptation and survival of X. fastidiosa and reveal new insights into the physiology of phytopathogen-host interactions. PMID:27375608
Vojnov, Adrián Alberto; do Amaral, Alexandre Morais; Dow, John Maxwell; Castagnaro, Atilio Pedro; Marano, Marìa Rosa
2010-06-01
In this review, we summarise the current knowledge on three pathogens that exhibit distinct tissue specificity and modes of pathogenesis in citrus plants. Xanthomonas axonopodis pv. citri causes canker disease and invades the host leaf mesophyll tissue through natural openings and can also survive as an epiphyte. Xylella fastidiosa and Candidatus Liberibacter are vectored by insects and proliferate in the vascular system of the host, either in the phloem (Candidatus Liberibacter) or xylem (X. fastidiosa) causing variegated chlorosis and huanglongbing diseases, respectively. Candidatus Liberibacter can be found within host cells and is thus unique as an intracellular phytopathogenic bacterium. Genome sequence comparisons have identified groups of species-specific genes that may be associated with the particular lifestyle, mode of transmission or symptoms produced by each phytopathogen. In addition, components that are conserved amongst bacteria may have diverse regulatory actions underpinning the different bacterial lifestyles; one example is the divergent role of the Rpf/DSF cell-cell signalling system in X. citri and X. fastidiosa. Biofilm plays a key role in epiphytic fitness and canker development in X. citri and in the symptoms produced by X. fastidiosa. Bacterial aggregation may be associated with vascular occlusion of the xylem vessels and symptomatology of variegated chlorosis.
Expression of pathogenicity-related genes of Xylella fastidiosa in vitro and in planta.
de Souza, Alessandra A; Takita, Marco A; Pereira, Eridan O; Coletta-Filho, Helvécio D; Machado, Marcos A
2005-04-01
Xylella fastidiosa is responsible for several economically important plant diseases. It is currently assumed that the symptoms are caused by vascular occlusion due to biofilm formation. Microarray technology was previously used to examine the global gene expression profile of X. fastidiosa freshly isolated from symptomatic plants or after several passages by axenic culture medium, and different pathogenicity profiles have been obtained. In the present study the expression of some pathogenicity-related genes was evaluated in vitro and in planta by RT-PCR. The results suggest that adhesion is important at the beginning of biofilm formation, while the genes related to adaptation are essential for the organism's maintenance in planta. Similar results were observed in vitro mainly for the adhesion genes. The pattern of expression observed suggests that adhesion modulates biofilm formation whereas the expression of some adaptation genes may be related to the environment in which the organism is living.
TolC is required for pathogenicity of Xylella fastidiosa in Vitis vinifera grapevines.
Reddy, Joseph D; Reddy, Stephanie L; Hopkins, Don L; Gabriel, Dean W
2007-04-01
Xylella fastidiosa infects a wide range of hosts and causes serious diseases on some of them. The complete genomic sequences of both a citrus variegated chlorosis (CVC) and a Pierce's disease (PD) strain revealed two type I protein secretion plus two multidrug resistance efflux systems, and all evidently were dependent on a single tolC homolog. Marker exchange mutagenesis of the single tolC gene in PD strain Temecula resulted in a total loss of pathogenicity on grape. Importantly, the tolC- mutant strains were not recovered after inoculation into grape xylem, strongly indicating that multidrug efflux is critical to survival of this fastidious pathogen. Both survival and pathogenicity were restored by complementation using tolC cloned in shuttle vector pBBR1MCS-5, which was shown to replicate autonomously, without selection, for 60 days in Temecula growing in planta. These results also demonstrate the ability to complement mutations in X. fastidiosa.
Natural Competence and Recombination in the Plant Pathogen Xylella fastidiosa ▿
Kung, Stephanie H.; Almeida, Rodrigo P. P.
2011-01-01
Homologous recombination is one of many forces contributing to the diversity, adaptation, and emergence of pathogens. For naturally competent bacteria, transformation is one possible route for the acquisition of novel genetic material. This study demonstrates that Xylella fastidiosa, a generalist bacterial plant pathogen responsible for many emerging plant diseases, is naturally competent and able to homologously recombine exogenous DNA into its genome. Several factors that affect transformation and recombination efficiencies, such as nutrient availability, growth stage, and methylation of transforming DNA, were identified. Recombination was observed in at least one out of every 106 cells when exogenous plasmid DNA was supplied and one out of every 107 cells when different strains were grown together in vitro. Based on previous genomic studies and experimental data presented here, there is mounting evidence that recombination can occur at relatively high rates and could play a large role in shaping the genetic diversity of X. fastidiosa. PMID:21666009
Paradigms: examples from the bacterium Xylella fastidiosa.
Purcell, Alexander
2013-01-01
The history of advances in research on Xylella fastidiosa provides excellent examples of how paradigms both advance and limit our scientific understanding of plant pathogens and the plant diseases they cause. I describe this from a personal perspective, having been directly involved with many persons who made paradigm-changing discoveries, beginning with the discovery that a bacterium, not a virus, causes Pierce's disease of grape and other plant diseases in numerous plant species, including important crop and forest species.
Parker, Jennifer K; Chen, Hongyu; McCarty, Sara E; Liu, Lawrence Y; De La Fuente, Leonardo
2016-05-01
The functions of calcium (Ca) in bacteria are less characterized than in eukaryotes, where its role has been studied extensively. The plant-pathogenic bacterium Xylella fastidiosa has several virulence features that are enhanced by increased Ca concentrations, including biofilm formation. However, the specific mechanisms driving modulation of this feature are unclear. Characterization of biofilm formation over time showed that 4 mM Ca supplementation produced denser biofilms that were still developing at 96 h, while biofilm in non-supplemented media had reached the dispersal stage by 72 h. To identify changes in global gene expression in X. fastidiosa grown in supplemental Ca, RNA-Seq of batch culture biofilm cells was conducted at three 24-h time intervals. Results indicate that a variety of genes are differentially expressed in response to Ca, including genes related to attachment, motility, exopolysaccharide synthesis, biofilm formation, peptidoglycan synthesis, regulatory functions, iron homeostasis, and phages. Collectively, results demonstrate that Ca supplementation induces a transcriptional response that promotes continued biofilm development, while biofilm cells in nonsupplemented media are driven towards dispersion of cells from the biofilm structure. These results have important implications for disease progression in planta, where xylem sap is the source of Ca and other nutrients for X. fastidiosa. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.
The Bacterial Pathogen Xylella fastidiosa Affects the Leaf Ionome of Plant Hosts during Infection
De La Fuente, Leonardo; Parker, Jennifer K.; Oliver, Jonathan E.; Granger, Shea; Brannen, Phillip M.; van Santen, Edzard; Cobine, Paul A.
2013-01-01
Xylella fastidiosa is a plant pathogenic bacterium that lives inside the host xylem vessels, where it forms biofilm believed to be responsible for disrupting the passage of water and nutrients. Here, Nicotiana tabacum was infected with X. fastidiosa, and the spatial and temporal changes in the whole-leaf ionome (i.e. the mineral and trace element composition) were measured as the host plant transitioned from healthy to diseased physiological status. The elemental composition of leaves was used as an indicator of the physiological changes in the host at a specific time and relative position during plant development. Bacterial infection was found to cause significant increases in concentrations of calcium prior to the appearance of symptoms and decreases in concentrations of phosphorous after symptoms appeared. Field-collected leaves from multiple varieties of grape, blueberry, and pecan plants grown in different locations over a four-year period in the Southeastern US showed the same alterations in Ca and P. This descriptive ionomics approach characterizes the existence of a mineral element-based response to X. fastidiosa using a model system suitable for further manipulation to uncover additional details of the role of mineral elements during plant-pathogen interactions. This is the first report on the dynamics of changes in the ionome of the host plant throughout the process of infection by a pathogen. PMID:23667547
Santos, Clelton A; Janissen, Richard; Toledo, Marcelo A S; Beloti, Lilian L; Azzoni, Adriano R; Cotta, Monica A; Souza, Anete P
2015-10-01
The intriguing roles of the bacterial Tol-Pal trans-envelope protein complex range from maintenance of cell envelope integrity to potential participation in the process of cell division. In this study, we report the characterization of the XfTolB and XfPal proteins of the Tol-Pal complex of Xylella fastidiosa. X. fastidiosa is a major plant pathogen that forms biofilms inside xylem vessels, triggering the development of diseases in important cultivable plants around the word. Based on functional complementation experiments in Escherichia coli tolB and pal mutant strains, we confirmed the role of xftolB and xfpal in outer membrane integrity. In addition, we observed a dynamic and coordinated protein expression profile during the X. fastidiosa biofilm development process. Using small-angle X-ray scattering (SAXS), the low-resolution structure of the isolated XfTolB-XfPal complex in solution was solved for the first time. Finally, the localization of the XfTolB and XfPal polar ends was visualized via immunofluorescence labeling in vivo during bacterial cell growth. Our results highlight the major role of the components of the cell envelope, particularly the TolB-Pal complex, during the different phases of bacterial biofilm development. Copyright © 2015 Elsevier B.V. All rights reserved.
Babbar, Anshu; Itzek, Andreas; Pieper, Dietmar H; Nitsche-Schmitz, D Patric
2018-03-12
Streptococcus dysgalactiae subsp. equisimilis (SDSE), belonging to the group C and G streptococci, are human pathogens reported to cause clinical manifestations similar to infections caused by Streptococcus pyogenes. To scrutinize the distribution of gene coding for S. pyogenes virulence factors in SDSE, 255 isolates were collected from humans infected with SDSE in Vellore, a region in southern India, with high incidence of SDSE infections. Initial evaluation indicated SDSE isolates comprising of 82.35% group G and 17.64% group C. A multiplex PCR system was used to detect 21 gene encoding virulence-associated factors of S. pyogenes, like superantigens, DNases, proteinases, and other immune modulatory toxins. As validated by DNA sequencing of the PCR products, sequences homologous to speC, speG, speH, speI, speL, ssa and smeZ of the family of superantigen coding genes and for DNases like sdaD and sdc were detected in the SDSE collection. Furthermore, there was high abundance (48.12% in group G and 86.6% in group C SDSE) of scpA, the gene coding for C5a peptidase in these isolates. Higher abundance of S. pyogenes virulence factor genes was observed in SDSE of Lancefield group C as compared to group G, even though the incidence rates in former were lower. This study not only substantiates detection of S. pyogenes virulence factor genes in whole genome sequenced SDSE but also makes significant contribution towards the understanding of SDSE and its increasing virulence potential.
A suitable Xylella fastidiosa CVC strain for post-genome studies.
Teixeira, Diva do Carmo; Rocha, Sanvai Regina Prado; de Santos, Mateus Almeida; Mariano, Anelise Galdino; Li, Wen Bin; Monteiro, Patricia Brant
2004-12-01
The genome sequence of the pathogen Xylella fastidiosa Citrus Variegated Chlorosis (CVC) strain 9a5c has revealed many genes related to pathogenicity mechanisms and virulence determinants. However, strain 9a5c is resistant to genetic transformation, impairing mutant production for the analysis of pathogenicity mechanisms and virulence determinants of this fastidious phytopathogen. By screening different strains, we found out that cloned strains J1a12, B111, and S11400, all isolated from citrus trees affected by CVC, are amenable to transformation, and J1a12 has been used as a model strain in a functional genomics program supported by FAPESP (São Paulo State Research Foundation). However, we have found that strain J1a12, unlike strains 9a5c and B111, was incapable of inducing CVC symptoms when inoculated in citrus plants. We have now determined that strain B111 is an appropriate candidate for post-genome studies of the CVC strain of X. fastidiosa.
Gene expression analysis of six GC-rich Gram-negative phytopathogens.
Fu, Qing-Shan; Li, Feng; Chen, Ling-Ling
2005-07-01
Predicted highly expressed (PHX) genes are comparatively analyzed for six GC-rich Gram-negative phytopathogens, i.e., Ralstonia solanacearum, Agrobacterium tumefaciens, Xanthomonas campestris pv. campestris (Xcc), Xanthomonas axonopodis pv. citri (Xac), Pseudomonas syringae pv. tomato, and Xylella fastidiosa. Enzymes involved in energy metabolism, such as ATP synthase, and genes involved in TCA cycle, are PHX in most bacteria except X. fastidiosa, which prefers an anaerobic environment. Most pathogenicity-related factors, including flagellar proteins and some outer membrane proteins, are PHX, except that flagellar proteins are missing in X. fastidiosa which is spread by insects and does not need to move during invasion. Although type III secretion system apparatus are homologous to flagellar proteins, none of them is PHX, which support the viewpoint that the two types of genes have evolved independently. Furthermore, it is revealed that some biosynthesis-related enzymes are highly expressed in certain bacteria. The PHX genes may provide potential drug targets for the design of new bactericide.
de Souza, Alessandra A; Ionescu, Michael; Baccari, Clelia; da Silva, Aline M; Lindow, Steven E
2013-06-01
Eal is an EAL domain protein in Xylella fastidiosa homologous to one involved in resistance to tobramycin in Pseudomonas aeruginosa. EAL and HD-GYP domain proteins are implicated in the hydrolysis of the secondary messenger bis-(3'-5')-cyclic dimeric GMP (cyclic di-GMP). Cell density-dependent communication mediated by a Diffusible Signal Factor (DSF) also modulates cyclic di-GMP levels in X. fastidiosa, thereby controlling the expression of virulence genes and genes involved in insect transmission. The possible linkage of Eal to both extrinsic factors such as antibiotics and intrinsic factors such as quorum sensing, and whether both affect virulence, was thus addressed. Expression of eal was induced by subinhibitory concentrations of tobramycin, and an eal deletion mutant was more susceptible to this antibiotic than the wild-type strain and exhibited phenotypes similar to those of an rpfF deletion mutant blocked in DSF production, such as hypermotility, reduced biofilm formation, and hypervirulence to grape. Consistent with that, the rpfF mutant was more susceptible than the wild-type strain to tobramycin. Therefore, we propose that cell-cell communication and antibiotic stress can apparently lead to similar modulations of cyclic di-GMP in X. fastidiosa, resulting in similar phenotypes. However, the effect of cell density is dominant compared to that of antibiotic stress, since eal is suppressed by RpfF, which may prevent inappropriate behavioral changes in response to antibiotic stress when DSF accumulates.
Lorite, Gabriela S; Janissen, Richard; Clerici, João H; Rodrigues, Carolina M; Tomaz, Juarez P; Mizaikoff, Boris; Kranz, Christine; de Souza, Alessandra A; Cotta, Mônica A
2013-01-01
The phytopathogen Xylella fastidiosa grows as a biofilm causing vascular occlusion and consequently nutrient and water stress in different plant hosts by adhesion on xylem vessel surfaces composed of cellulose, hemicellulose, pectin and proteins. Understanding the factors which influence bacterial adhesion and biofilm development is a key issue in identifying mechanisms for preventing biofilm formation in infected plants. In this study, we show that X. fastidiosa biofilm development and architecture correlate well with physicochemical surface properties after interaction with the culture medium. Different biotic and abiotic substrates such as silicon (Si) and derivatized cellulose films were studied. Both biofilms and substrates were characterized at the micro- and nanoscale, which corresponds to the actual bacterial cell and membrane/ protein length scales, respectively. Our experimental results clearly indicate that the presence of surfaces with different chemical composition affect X. fastidiosa behavior from the point of view of gene expression and adhesion functionality. Bacterial adhesion is facilitated on more hydrophilic surfaces with higher surface potentials; XadA1 adhesin reveals different strengths of interaction on these surfaces. Nonetheless, despite different architectural biofilm geometries and rates of development, the colonization process occurs on all investigated surfaces. Our results univocally support the hypothesis that different adhesion mechanisms are active along the biofilm life cycle representing an adaptation mechanism for variations on the specific xylem vessel composition, which the bacterium encounters within the infected plant.
Lorite, Gabriela S.; Janissen, Richard; Clerici, João H.; Rodrigues, Carolina M.; Tomaz, Juarez P.; Mizaikoff, Boris; Kranz, Christine; de Souza, Alessandra A.; Cotta, Mônica A.
2013-01-01
The phytopathogen Xylella fastidiosa grows as a biofilm causing vascular occlusion and consequently nutrient and water stress in different plant hosts by adhesion on xylem vessel surfaces composed of cellulose, hemicellulose, pectin and proteins. Understanding the factors which influence bacterial adhesion and biofilm development is a key issue in identifying mechanisms for preventing biofilm formation in infected plants. In this study, we show that X. fastidiosa biofilm development and architecture correlate well with physicochemical surface properties after interaction with the culture medium. Different biotic and abiotic substrates such as silicon (Si) and derivatized cellulose films were studied. Both biofilms and substrates were characterized at the micro- and nanoscale, which corresponds to the actual bacterial cell and membrane/ protein length scales, respectively. Our experimental results clearly indicate that the presence of surfaces with different chemical composition affect X. fastidiosa behavior from the point of view of gene expression and adhesion functionality. Bacterial adhesion is facilitated on more hydrophilic surfaces with higher surface potentials; XadA1 adhesin reveals different strengths of interaction on these surfaces. Nonetheless, despite different architectural biofilm geometries and rates of development, the colonization process occurs on all investigated surfaces. Our results univocally support the hypothesis that different adhesion mechanisms are active along the biofilm life cycle representing an adaptation mechanism for variations on the specific xylem vessel composition, which the bacterium encounters within the infected plant. PMID:24073256
A chitinase is required for Xylella fastidiosa colonization of its insect and plant hosts.
Labroussaa, Fabien; Ionescu, Michael; Zeilinger, Adam R; Lindow, Steven E; Almeida, Rodrigo P P
2017-04-01
Xylella fastidiosa colonizes the xylem network of host plant species as well as the foregut of its required insect vectors to ensure efficient propagation. Disease management strategies remain inefficient due to a limited comprehension of the mechanisms governing both insect and plant colonization. It was previously shown that X. fastidiosa has a functional chitinase (ChiA), and that chitin likely serves as a carbon source for this bacterium. We expand on that research, showing that a chiA mutant strain is unable to grow on chitin as the sole carbon source. Quantitative PCR assays allowed us to detect bacterial cells in the foregut of vectors after pathogen acquisition; populations of the wild-type and complemented mutant strain were both significantly larger than the chiA mutant strain 10 days, but not 3 days, post acquisition. These results indicate that adhesion of the chiA mutant strain to vectors may not be impaired, but that cell multiplication is limited. The mutant was also affected in its transmission by vectors to plants. In addition, the chiA mutant strain was unable to colonize host plants, suggesting that the enzyme has other substrates associated with plant colonization. Lastly, ChiA requires other X. fastidiosa protein(s) for its in vitro chitinolytic activity. The observation that the chiA mutant strain is not able to colonize plants warrants future attention to be paid to the substrates for this enzyme.
Identification of Mycobacterium avium subsp. hominissuis Isolated From Drinking Water
Mycobacterium avium (MA) is divided into four subspecies based primarily on host-range and consists of MA subsp. avium (birds), MA subsp. silvaticum (wood pigeons), MA subsp. paratuberculosis (broad, poorly-defined host range), and the recently described MA subsp. hominissuis (hu...
USDA-ARS?s Scientific Manuscript database
Campylobacter fetus currently comprises three recognized subspecies: C. fetus subsp. fetus, C. fetus subsp. venerealis, and C. fetus subsp. testudinum, which display a distinct host association. Both C. fetus subsp. fetus and C. fetus subsp. venerealis are associated with endothermic mammals, primar...
Analysis of the biofilm proteome of Xylella fastidiosa.
Silva, Mariana S; De Souza, Alessandra A; Takita, Marco A; Labate, Carlos A; Machado, Marcos A
2011-09-22
Xylella fastidiosa is limited to the xylem of the plant host and the foregut of insect vectors (sharpshooters). The mechanism of pathogenicity of this bacterium differs from other plant pathogens, since it does not present typical genes that confer specific interactions between plant and pathogens (avr and/or hrp). The bacterium is injected directly into the xylem vessels where it adheres and colonizes. The whole process leads to the formation of biofilms, which are considered the main mechanism of pathogenicity. Cells in biofilms are metabolically and phenotypically different from their planktonic condition. The mature biofilm stage (phase of higher cell density) presents high virulence and resistance to toxic substances such as antibiotics and detergents. Here we performed proteomic analysis of proteins expressed exclusively in the mature biofilm of X. fastidiosa strain 9a5c, in comparison to planktonic growth condition. We found a total of 456 proteins expressed in the biofilm condition, which correspond to approximately 10% of total protein in the genome. The biofilm showed 37% (or 144 proteins) different protein than we found in the planktonic growth condition. The large difference in protein pattern in the biofilm condition may be responsible for the physiological changes of the cells in the biofilm of X. fastidiosa. Mass spectrometry was used to identify these proteins, while real-time quantitative polymerase chain reaction monitored expression of genes encoding them. Most of proteins expressed in the mature biofilm growth were associated with metabolism, adhesion, pathogenicity and stress conditions. Even though the biofilm cells in this work were not submitted to any stress condition, some stress related proteins were expressed only in the biofilm condition, suggesting that the biofilm cells would constitutively express proteins in different adverse environments. We observed overexpression of proteins related to quorum sensing, proving the existence of communication between cells, and thus the development of structuring the biofilm (mature biofilm) leading to obstruction of vessels and development of disease. This paper reports a first proteomic analysis of mature biofilm of X. fastidiosa, opening new perspectives for understanding the biochemistry of mature biofilm growth in a plant pathogen.
Analysis of the biofilm proteome of Xylella fastidiosa
2011-01-01
Background Xylella fastidiosa is limited to the xylem of the plant host and the foregut of insect vectors (sharpshooters). The mechanism of pathogenicity of this bacterium differs from other plant pathogens, since it does not present typical genes that confer specific interactions between plant and pathogens (avr and/or hrp). The bacterium is injected directly into the xylem vessels where it adheres and colonizes. The whole process leads to the formation of biofilms, which are considered the main mechanism of pathogenicity. Cells in biofilms are metabolically and phenotypically different from their planktonic condition. The mature biofilm stage (phase of higher cell density) presents high virulence and resistance to toxic substances such as antibiotics and detergents. Here we performed proteomic analysis of proteins expressed exclusively in the mature biofilm of X. fastidiosa strain 9a5c, in comparison to planktonic growth condition. Results We found a total of 456 proteins expressed in the biofilm condition, which correspond to approximately 10% of total protein in the genome. The biofilm showed 37% (or 144 proteins) different protein than we found in the planktonic growth condition. The large difference in protein pattern in the biofilm condition may be responsible for the physiological changes of the cells in the biofilm of X. fastidiosa. Mass spectrometry was used to identify these proteins, while real-time quantitative polymerase chain reaction monitored expression of genes encoding them. Most of proteins expressed in the mature biofilm growth were associated with metabolism, adhesion, pathogenicity and stress conditions. Even though the biofilm cells in this work were not submitted to any stress condition, some stress related proteins were expressed only in the biofilm condition, suggesting that the biofilm cells would constitutively express proteins in different adverse environments. Conclusions We observed overexpression of proteins related to quorum sensing, proving the existence of communication between cells, and thus the development of structuring the biofilm (mature biofilm) leading to obstruction of vessels and development of disease. This paper reports a first proteomic analysis of mature biofilm of X. fastidiosa, opening new perspectives for understanding the biochemistry of mature biofilm growth in a plant pathogen. PMID:21939513
De Miranda, Marcelo P; Lopes, João R S; Do Nascimento, Antonio S; Dos Santos, José L; Cavichioli, Rodney R
2009-01-01
The causal agent of citrus variegated clorosis, Xylella fastidiosa, is transmitted by leafhoppers of the subfamily Cicadellinae, whose species vary regionally. The goal of this study was to identify potential vectors of this pathogen in citrus groves of Bahia North Coast, Brazil. The survey was done from March/2002 to February/2003 in three seven- to nine-year-old sweet orange (Citrus sinensis, Pêra variety) groves located in Rio Real, BA. Fifteen yellow sticky cards (8.5x11.5 cm) were installed 40 m apart in each grove, hanged at 1.5 m high on the upper north side of citrus canopies, and replaced fortnightly. A sweep net was periodically used to sample leafhoppers on herbaceous weeds inside the groves, by selecting five points at random and performing 30 sweeps in each point. A total of 1,360 specimens of 49 Auchenorrhyncha species were collected in this study, mostly in the family Cicadellidae (90.2%). The subfamily Cicadellinae, which includes the sharpshooter vectors of X. fastidiosa, showed the largest number of species (14) and specimens (84.8%). Acrogonia flagellata Young, A. citrina Marucci & Cavichioli, Homalodisca spottii Takiya, Cavichioli & McKamey and an unidentified Cicadellini (species 1) were the dominant species trapped on citrus canopies, while Hortensia similis (Walker) and Erythrogonia dubia (Medler) were dominant in the weedy vegetation. Among the Cicadellinae species already known as vectors of X. fastidiosa in citrus, only A. citrina, Bucephalogonia xanthophis (Berg) e Ferrariana trivittata (Signoret) were found. The two latter species were accidentally trapped by sweep net in the weedy vegetation.
O Antigen Modulates Insect Vector Acquisition of the Bacterial Plant Pathogen Xylella fastidiosa
Rapicavoli, Jeannette N.; Kinsinger, Nichola; Perring, Thomas M.; Backus, Elaine A.; Shugart, Holly J.; Walker, Sharon
2015-01-01
Hemipteran insect vectors transmit the majority of plant pathogens. Acquisition of pathogenic bacteria by these piercing/sucking insects requires intimate associations between the bacterial cells and insect surfaces. Lipopolysaccharide (LPS) is the predominant macromolecule displayed on the cell surface of Gram-negative bacteria and thus mediates bacterial interactions with the environment and potential hosts. We hypothesized that bacterial cell surface properties mediated by LPS would be important in modulating vector-pathogen interactions required for acquisition of the bacterial plant pathogen Xylella fastidiosa, the causative agent of Pierce's disease of grapevines. Utilizing a mutant that produces truncated O antigen (the terminal portion of the LPS molecule), we present results that link this LPS structural alteration to a significant decrease in the attachment of X. fastidiosa to blue-green sharpshooter foreguts. Scanning electron microscopy confirmed that this defect in initial attachment compromised subsequent biofilm formation within vector foreguts, thus impairing pathogen acquisition. We also establish a relationship between O antigen truncation and significant changes in the physiochemical properties of the cell, which in turn affect the dynamics of X. fastidiosa adhesion to the vector foregut. Lastly, we couple measurements of the physiochemical properties of the cell with hydrodynamic fluid shear rates to produce a Comsol model that predicts primary areas of bacterial colonization within blue-green sharpshooter foreguts, and we present experimental data that support the model. These results demonstrate that, in addition to reported protein adhesin-ligand interactions, O antigen is crucial for vector-pathogen interactions, specifically in the acquisition of this destructive agricultural pathogen. PMID:26386068
Global gene expression analysis of the heat shock response in the phytopathogen Xylella fastidiosa.
Koide, Tie; Vêncio, Ricardo Z N; Gomes, Suely L
2006-08-01
Xylella fastidiosa is a phytopathogenic bacterium that is responsible for diseases in many economically important crops. Although different strains have been studied, little is known about X. fastidiosa stress responses. One of the better characterized stress responses in bacteria is the heat shock response, which induces the expression of specific genes to prevent protein misfolding and aggregation and to promote degradation of the irreversibly denatured polypeptides. To investigate X. fastidiosa genes involved in the heat shock response, we performed a whole-genome microarray analysis in a time course experiment. Globally, 261 genes were induced (9.7%) and 222 genes were repressed (8.3%). The expression profiles of the differentially expressed genes were grouped, and their expression patterns were validated by quantitative reverse transcription-PCR experiments. We determined the transcription start sites of six heat shock-inducible genes and analyzed their promoter regions, which allowed us to propose a putative consensus for sigma(32) promoters in Xylella and to suggest additional genes as putative members of this regulon. Besides the induction of classical heat shock protein genes, we observed the up-regulation of virulence-associated genes such as vapD and of genes for hemagglutinins, hemolysin, and xylan-degrading enzymes, which may indicate the importance of heat stress to bacterial pathogenesis. In addition, we observed the repression of genes related to fimbriae, aerobic respiration, and protein biosynthesis and the induction of genes related to the extracytoplasmic stress response and some phage-related genes, revealing the complex network of genes that work together in response to heat shock.
Hao, Lingyun; Johnson, Kameka; Cursino, Luciana; Mowery, Patricia; Burr, Thomas J
2017-06-01
Xylella fastidiosa causes Pierce's disease (PD) on grapevines, leading to significant economic losses in grape and wine production. To further our understanding of X. fastidiosa virulence on grapevines, we examined the PD1311 gene, which encodes a putative acyl-coenzyme A (acyl-CoA) synthetase, and is highly conserved across Xylella species. It was determined that PD1311 is required for virulence, as the deletion mutant, ΔPD1311, was unable to cause disease on grapevines. The ΔPD1311 strain was impaired in behaviours known to be associated with PD development, including motility, aggregation and biofilm formation. ΔPD1311 also expressed enhanced sensitivity to H 2 O 2 and polymyxin B, and showed reduced survival in grapevine sap, when compared with wild-type X. fastidiosa Temecula 1 (TM1). Following inoculation, ΔPD1311 could not be detected in grape shoots, which may be related to its altered growth and sensitivity phenotypes. Inoculation with ΔPD1311 2 weeks prior to TM1 prevented the development of PD in a significant fraction of vines and eliminated detectable levels of TM1. In contrast, vines inoculated simultaneously with TM1 and ΔPD1311 developed disease at the same level as TM1 alone. In these vines, TM1 populations were distributed similarly to populations in TM1-only inoculated plants. These findings suggest that, through an indirect mechanism, pretreatment of vines with ΔPD1311 suppresses pathogen population and disease. © 2016 BSPP AND JOHN WILEY & SONS LTD.
Xylella fastidiosa Differentially Accumulates Mineral Elements in Biofilm and Planktonic Cells
Cobine, Paul A.; Cruz, Luisa F.; Navarrete, Fernando; Duncan, Daniel; Tygart, Melissa; De La Fuente, Leonardo
2013-01-01
Xylella fastidiosa is a bacterial plant pathogen that infects numerous plant hosts. Disease develops when the bacterium colonizes the xylem vessels and forms a biofilm. Inductively coupled plasma optical emission spectroscopy was used to examine the mineral element content of this pathogen in biofilm and planktonic states. Significant accumulations of copper (30-fold), manganese (6-fold), zinc (5-fold), calcium (2-fold) and potassium (2-fold) in the biofilm compared to planktonic cells were observed. Other mineral elements such as sodium, magnesium and iron did not significantly differ between biofilm and planktonic cells. The distribution of mineral elements in the planktonic cells loosely mirrors the media composition; however the unique mineral element distribution in biofilm suggests specific mechanisms of accumulation from the media. A cell-to-surface attachment assay shows that addition of 50 to 100 µM Cu to standard X. fastidiosa media increases biofilm, while higher concentrations (>200 µM) slow cell growth and prevent biofilm formation. Moreover cell-to-surface attachment was blocked by specific chelation of copper. Growth of X. fastidiosa in microfluidic chambers under flow conditions showed that addition of 50 µM Cu to the media accelerated attachment and aggregation, while 400 µM prevented this process. Supplementation of standard media with Mn showed increased biofilm formation and cell-to-cell attachment. In contrast, while the biofilm accumulated Zn, supplementation to the media with this element caused inhibited growth of planktonic cells and impaired biofilm formation. Collectively these data suggest roles for these minerals in attachment and biofilm formation and therefore the virulence of this pathogen. PMID:23349991
Dwivedi, Upendra N; Tiwari, Sameeksha; Prasanna, Pragya; Awasthi, Manika; Singh, Swati; Pandey, Veda P
2016-08-01
Citrus are among the economically most important fruit tree crops in the world. Citrus variegated chlorosis (CVC), caused by Xylella fastidiosa infection, is a serious disease limiting citrus production at a global scale. With availability of citrus genomic resources, it is now possible to compare citrus expressed sequence tag (EST) data sets and identify single-nucleotide polymorphisms (SNPs) within and among different citrus cultivars that can be exploited for citrus resistance to infections, citrus breeding, among others. We report here, for the first time, SNPs in the EST data sets of X. fastidiosa-infected Citrus sinensis (sweet orange) and their functional annotation that revealed the involvement of eight C. sinensis candidate genes in CVC pathogenesis. Among these genes were xyloglucan endotransglycosylase, myo-inositol-1-phosphate synthase, and peroxidase were found to be involved in plant cell wall metabolism. These have been further investigated by molecular modeling for their role in CVC infection and defense. Molecular docking analyses of the wild and the mutant (SNP containing) types of the selected three enzymes with their respective substrates revealed a significant decrease in the binding affinity of substrates for the mutant enzymes, thus suggesting a decrease in the catalytic efficiency of these enzymes during infection, thereby facilitating a favorable condition for infection by the pathogen. These findings offer novel agrigenomics insights in developing future molecular targets and strategies for citrus fruit cultivation in ways that are resistant to X. fastidiosa infection, and by extension, with greater harvesting efficiency and economic value.
de Souza, Alessandra A.; Ionescu, Michael; Baccari, Clelia; da Silva, Aline M.
2013-01-01
Eal is an EAL domain protein in Xylella fastidiosa homologous to one involved in resistance to tobramycin in Pseudomonas aeruginosa. EAL and HD-GYP domain proteins are implicated in the hydrolysis of the secondary messenger bis-(3′-5′)-cyclic dimeric GMP (cyclic di-GMP). Cell density-dependent communication mediated by a Diffusible Signal Factor (DSF) also modulates cyclic di-GMP levels in X. fastidiosa, thereby controlling the expression of virulence genes and genes involved in insect transmission. The possible linkage of Eal to both extrinsic factors such as antibiotics and intrinsic factors such as quorum sensing, and whether both affect virulence, was thus addressed. Expression of eal was induced by subinhibitory concentrations of tobramycin, and an eal deletion mutant was more susceptible to this antibiotic than the wild-type strain and exhibited phenotypes similar to those of an rpfF deletion mutant blocked in DSF production, such as hypermotility, reduced biofilm formation, and hypervirulence to grape. Consistent with that, the rpfF mutant was more susceptible than the wild-type strain to tobramycin. Therefore, we propose that cell-cell communication and antibiotic stress can apparently lead to similar modulations of cyclic di-GMP in X. fastidiosa, resulting in similar phenotypes. However, the effect of cell density is dominant compared to that of antibiotic stress, since eal is suppressed by RpfF, which may prevent inappropriate behavioral changes in response to antibiotic stress when DSF accumulates. PMID:23542613
Xylella fastidiosa differentially accumulates mineral elements in biofilm and planktonic cells.
Cobine, Paul A; Cruz, Luisa F; Navarrete, Fernando; Duncan, Daniel; Tygart, Melissa; De La Fuente, Leonardo
2013-01-01
Xylella fastidiosa is a bacterial plant pathogen that infects numerous plant hosts. Disease develops when the bacterium colonizes the xylem vessels and forms a biofilm. Inductively coupled plasma optical emission spectroscopy was used to examine the mineral element content of this pathogen in biofilm and planktonic states. Significant accumulations of copper (30-fold), manganese (6-fold), zinc (5-fold), calcium (2-fold) and potassium (2-fold) in the biofilm compared to planktonic cells were observed. Other mineral elements such as sodium, magnesium and iron did not significantly differ between biofilm and planktonic cells. The distribution of mineral elements in the planktonic cells loosely mirrors the media composition; however the unique mineral element distribution in biofilm suggests specific mechanisms of accumulation from the media. A cell-to-surface attachment assay shows that addition of 50 to 100 µM Cu to standard X. fastidiosa media increases biofilm, while higher concentrations (>200 µM) slow cell growth and prevent biofilm formation. Moreover cell-to-surface attachment was blocked by specific chelation of copper. Growth of X. fastidiosa in microfluidic chambers under flow conditions showed that addition of 50 µM Cu to the media accelerated attachment and aggregation, while 400 µM prevented this process. Supplementation of standard media with Mn showed increased biofilm formation and cell-to-cell attachment. In contrast, while the biofilm accumulated Zn, supplementation to the media with this element caused inhibited growth of planktonic cells and impaired biofilm formation. Collectively these data suggest roles for these minerals in attachment and biofilm formation and therefore the virulence of this pathogen.
O antigen modulates insect vector acquisition of the bacterial plant pathogen Xylella fastidiosa.
Rapicavoli, Jeannette N; Kinsinger, Nichola; Perring, Thomas M; Backus, Elaine A; Shugart, Holly J; Walker, Sharon; Roper, M Caroline
2015-12-01
Hemipteran insect vectors transmit the majority of plant pathogens. Acquisition of pathogenic bacteria by these piercing/sucking insects requires intimate associations between the bacterial cells and insect surfaces. Lipopolysaccharide (LPS) is the predominant macromolecule displayed on the cell surface of Gram-negative bacteria and thus mediates bacterial interactions with the environment and potential hosts. We hypothesized that bacterial cell surface properties mediated by LPS would be important in modulating vector-pathogen interactions required for acquisition of the bacterial plant pathogen Xylella fastidiosa, the causative agent of Pierce's disease of grapevines. Utilizing a mutant that produces truncated O antigen (the terminal portion of the LPS molecule), we present results that link this LPS structural alteration to a significant decrease in the attachment of X. fastidiosa to blue-green sharpshooter foreguts. Scanning electron microscopy confirmed that this defect in initial attachment compromised subsequent biofilm formation within vector foreguts, thus impairing pathogen acquisition. We also establish a relationship between O antigen truncation and significant changes in the physiochemical properties of the cell, which in turn affect the dynamics of X. fastidiosa adhesion to the vector foregut. Lastly, we couple measurements of the physiochemical properties of the cell with hydrodynamic fluid shear rates to produce a Comsol model that predicts primary areas of bacterial colonization within blue-green sharpshooter foreguts, and we present experimental data that support the model. These results demonstrate that, in addition to reported protein adhesin-ligand interactions, O antigen is crucial for vector-pathogen interactions, specifically in the acquisition of this destructive agricultural pathogen. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Pérez, Tania; Balcázar, José Luis; Peix, Alvaro; Valverde, Angel; Velázquez, Encarna; de Blas, Ignacio; Ruiz-Zarzuela, Imanol
2011-08-01
The species Lactococcus lactis currently includes three subspecies; L. lactis subsp. lactis and L. lactis subsp. cremoris, isolated from milk sources, and L. lactis subsp. hordniae, isolated from the leafhopper Hordnia circellata. In this study, three strains, designated L105(T), I3 and L101, were isolated from the intestinal mucus of brown trout (Salmo trutta) and rainbow trout (Oncorhynchus mykiss). These strains were closely related to members of the species Lactococcus lactis. Strain L105(T) showed 99.4 % 16S rRNA gene sequence similarity to that of the type strains L. lactis subsp. lactis NCDO 604(T) and L. lactis subsp. hordniae NCDO 2181(T) and showed 99.9 % similarity to the type strain Lactococcus lactis subsp. cremoris NCDO 607(T). Analysis of two housekeeping genes, rpoB and recA, confirmed the close relationship between the novel strains and L. lactis subsp. cremoris with similarities of 99.3 and 99.7 %, respectively. The three strains could, however, be differentiated from their closest relatives on the basis of several phenotypic characteristics, as was the case for L. lactis subsp. lactis and L. lactis subsp. hordniae, which were also closely related on the basis of 16S rRNA, rpoB and recA gene sequence similarities. The strains isolated in this study represent a new subspecies, for which the name Lactococcus lactis subsp. tructae subsp. nov. is proposed. The type strain is L105(T) ( = LMG 24662(T) = DSM 21502(T)).
Clifford, Jennifer C; Rapicavoli, Jeannette N; Roper, M Caroline
2013-06-01
Xylella fastidiosa is a gram-negative, xylem-limited bacterium that causes a lethal disease of grapevine called Pierce's disease. Lipopolysaccharide (LPS) composes approximately 75% of the outer membrane of gram-negative bacteria and, because it is largely displayed on the cell surface, it mediates interactions between the bacterial cell and its surrounding environment. LPS is composed of a conserved lipid A-core oligosaccharide component and a variable O-antigen portion. By targeting a key O-antigen biosynthetic gene, we demonstrate the contribution of the rhamnose-rich O-antigen to surface attachment, cell-cell aggregation, and biofilm maturation: critical steps for successful infection of the host xylem tissue. Moreover, we have demonstrated that a fully formed O-antigen moiety is an important virulence factor for Pierce's disease development in grape and that depletion of the O-antigen compromises its ability to colonize the host. It has long been speculated that cell-surface polysaccharides play a role in X. fastidiosa virulence and this study confirms that LPS is a major virulence factor for this important agricultural pathogen.
Killiny, N; Martinez, R Hernandez; Dumenyo, C Korsi; Cooksey, D A; Almeida, R P P
2013-09-01
Exopolysaccharides (EPS) synthesized by plant-pathogenic bacteria are generally essential for virulence. The role of EPS produced by the vector-transmitted bacterium Xylella fastidiosa was investigated by knocking out two genes implicated in the EPS biosynthesis, gumD and gumH. Mutant strains were affected in growth characteristics in vitro, including adhesion to surfaces and biofilm formation. In addition, different assays were used to demonstrate that the mutant strains produced significantly less EPS compared with the wild type. Furthermore, gas chromatography-mass spectrometry showed that both mutant strains did not produce oligosaccharides. Biologically, the mutants were deficient in movement within plants, resulting in an avirulent phenotype. Additionally, mutant strains were affected in transmission by insects: they were very poorly transmitted by and retained within vectors. The gene expression profile indicated upregulation of genes implicated in cell-to-cell signaling and adhesins while downregulation in genes was required for within-plant movement in EPS-deficient strains. These results suggest an essential role for EPS in X. fastidiosa interactions with both plants and insects.
Transcription analysis of pilS and xpsEL genes from Xylella fastidiosa.
Coltri, Patricia P; Rosato, Yoko B
2005-04-01
Xylella fastidiosa is a xylem-limited phytopathogen responsible for diseases in several plants such as citrus and coffee. Analysis of the bacterial genome revealed some putative pathogenicity-related genes that could help to elucidate the molecular mechanisms of plant-pathogen interactions. In the present work, the transcription of three genes of the bacterium, grown in defined and rich media and also in media containing host plant extracts (sweet orange, 'ponkan' and coffee) was analyzed by RT-PCR. The pilS gene, which encodes a sensor histidine kinase responsible for the biosynthesis of fimbriae, was transcribed when the bacterium was grown in more complex media such as PW and in medium containing plant extracts. The xps genes (xpsL and xpsE) which are related to the type II secretion system were also detected when the bacterium was grown in rich media and media with 'ponkan' and coffee extracts. It was thus observed that pilS and xpsEL genes of X. fastidiosa can be modulated by environmental factors and their expression is dependent on the nutritional status of the growth medium.
Butot, Sophie; Jagadeesan, Balamurugan; Bakker, Douwe; Donaghy, John
2016-01-01
ABSTRACT The efficiency of direct steam injection (DSI) at 105°C for 3 s to inactivate Mycobacterium avium subsp. paratuberculosis in milk at a pilot-plant scale was investigated. Milk samples were artificially contaminated with M. avium subsp. paratuberculosis and also with cow fecal material naturally infected with M. avium subsp. paratuberculosis. We also tested milk artificially contaminated with Mycobacterium smegmatis as a candidate surrogate to compare thermal inactivation between M. smegmatis and M. avium subsp. paratuberculosis. Following the DSI process, no viable M. avium subsp. paratuberculosis or M. smegmatis was recovered using culture methods for both strains. For pure M. avium subsp. paratuberculosis cultures, a minimum reduction of 5.6 log10 was achieved with DSI, and a minimum reduction of 5.7 log10 was found with M. smegmatis. The minimum log10 reduction for wild-type M. avium subsp. paratuberculosis naturally present in feces was 3.3. In addition, 44 dairy and nondairy powdered infant formula (PIF) ingredients used during the manufacturing process of PIF were tested for an alternate source for M. avium subsp. paratuberculosis and were found to be negative by quantitative PCR (qPCR). In conclusion, the results obtained from this study indicate that a >7-fold-log10 reduction of M. avium subsp. paratuberculosis in milk can be achieved with the applied DSI process. IMPORTANCE M. avium subsp. paratuberculosis is widespread in dairy herds in many countries. M. avium subsp. paratuberculosis is the causative agent of Johne's disease in cattle, and infected animals can directly or indirectly (i.e., fecal contamination) contaminate milk. Despite much research and debate, there is no conclusive evidence that M. avium subsp. paratuberculosis is a zoonotic bacterium, i.e., one that causes disease in humans. The presence of M. avium subsp. paratuberculosis or its DNA has been reported in dairy products, including pasteurized milk, cheese, and infant formula. In light of this, it is appropriate to evaluate existing mitigation measures to inactivate M. avium subsp. paratuberculosis in dairy products. The work conducted in this study describes the efficacy of direct steam injection, a thermal process commonly used in the dairy industry, to eliminate M. avium subsp. paratuberculosis and a surrogate bacterium in milk, thus ensuring the absence of M. avium subsp. paratuberculosis in dairy products subject to these process conditions. PMID:26944840
Behlau, Franklin; Canteros, Blanca I.; Minsavage, Gerald V.; Jones, Jeffrey B.; Graham, James H.
2011-01-01
Copper sprays have been widely used for control of endemic citrus canker caused by Xanthomonas citri subsp. citri in citrus-growing areas for more than 2 decades. Xanthomonas alfalfae subsp. citrumelonis populations were also exposed to frequent sprays of copper for several years as a protective measure against citrus bacterial spot (CBS) in Florida citrus nurseries. Long-term use of these bactericides has led to the development of copper-resistant (Cur) strains in both X. citri subsp. citri and X. alfalfae subsp. citrumelonis, resulting in a reduction of disease control. The objectives of this study were to characterize for the first time the genetics of copper resistance in X. citri subsp. citri and X. alfalfae subsp. citrumelonis and to compare these organisms to other Cur bacteria. Copper resistance determinants from X. citri subsp. citri strain A44(pXccCu2) from Argentina and X. alfalfae subsp. citrumelonis strain 1381(pXacCu2) from Florida were cloned and sequenced. Open reading frames (ORFs) related to the genes copL, copA, copB, copM, copG, copC, copD, and copF were identified in X. citri subsp. citri A44. The same ORFs, except copC and copD, were also present in X. alfalfae subsp. citrumelonis 1381. Transposon mutagenesis of the cloned copper resistance determinants in pXccCu2 revealed that copper resistance in X. citri subsp. citri strain A44 is mostly due to copL, copA, and copB, which are the genes in the cloned cluster with the highest nucleotide homology (≥92%) among different Cur bacteria. PMID:21515725
Dekio, Itaru; Culak, Renata; Misra, Raju; Gaulton, Tom; Fang, Min; Sakamoto, Mitsuo; Ohkuma, Moriya; Oshima, Kenshiro; Hattori, Masahira; Klenk, Hans-Peter; Rajendram, Dunstan; Gharbia, Saheer E; Shah, Haroun N
2015-12-01
Propionibacterium acnes subsp. acnes subsp. nov. and Propionibacterium acnes subsp. elongatum subsp. nov. are described. These emanate from the three known phylotypes of P. acnes, designated types I, II and III. Electron microscopy confirmed the filamentous cell shape of type III, showing a striking difference from types I/II, which were short rods. Biochemical tests indicated that, in types I/II, either the pyruvate, l-pyrrolidonyl arylamidase or d-ribose 2 test was positive, whereas all of these were negative among type III strains. Matrix-assisted laser-desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) spectra, which profile mainly their ribosomal proteins, were different between these two groups. Surface-enhanced laser-desorption/ionization time-of-flight mass spectrometry (SELDI-TOF MS) spectra of all phylotypes revealed a specific protein biomarker that was overexpressed in type III strains compared with types I/II only when grown aerobically. Reference strains had high whole-genome similarity between types I (>91 %) and II (>75 %), but a considerably lower level of 72 % similarity with type III. recA and gyrB sequence dendrograms confirmed the distant relatedness of type III, indicating the presence of two distinct centres of variation within the species P. acnes. On the other hand, cellular fatty acid profiles and 16S rRNA gene sequence relatedness (>99.3 %) circumscribed the species. Thus, we propose two subspecies, Propionibacterium acnes subsp. acnes subsp. nov. for types I/II and Propionibacterium acnes subsp. elongatum subsp. nov. for type III. The type strain of Propionibacterium acnes subsp. acnes is NCTC 737T ( = ATCC 6919T = JCM 6425T = DSM 1897T = CCUG 1794T), while the type strain of Propionibacterium acnes subsp. elongatum is K124T ( = NCTC 13655T = JCM 18919T).
Role of Antibiosis in Competition of Erwinia Strains in Potato Infection Courts
Axelrood, Paige E.; Rella, Manuela; Schroth, Milton N.
1988-01-01
Erwinia carotovora subsp. betavasculorum strains produced a bactericidal antibiotic in vitro that inhibited a wide spectrum of gram-negative and gram-positive bacteria. The optimum temperature for production was 24°C, and the addition of glycerol to culture media enhanced antibiotic production. Antibiotic production by these strains in the infection court of potato was the principal determinant enabling it to gain ascendancy over competing antibiotic-sensitive Erwinia carotovora subsp. carotovora strains. There was a complete correlation between antibiotic production by E. carotovora subsp. betavasculorum in vitro and inhibition of competing E. carotovora subsp. carotovora strains in planta. Inhibition of the latter by the former was apparent after 10 h of incubation in potato tuber wounds. Population densities of sensitive E. carotovora subsp. carotovora strains in mixed potato tuber infections with E. carotovora subsp. betavasculorum were approximately 106-fold lower after 48 h of incubation than in corresponding single sensitive strain infections. E. carotovora subsp. carotovora were not inhibited in tuber infections that were incubated anaerobically. This correlated with the absence of antibiotic production during anaerobic incubation in vitro. Antibiotic-resistant strains of E. carotovora subsp. carotovora were not inhibited in planta or in vitro by E. carotovora subsp. betavasculorum. Moreover, isogenic antibiotic-negative (Ant−) mutant E. carotovora subsp. betavasculorum strains were not inhibitory to sensitive E. carotovora subsp. carotovora strains in tuber infections. PMID:16347633
Cruz, Albert C; Luvisi, Andrea; De Bellis, Luigi; Ampatzidis, Yiannis
2017-01-01
We have developed a vision-based program to detect symptoms of Olive Quick Decline Syndrome (OQDS) on leaves of Olea europaea L. infected by Xylella fastidiosa , named X-FIDO ( Xylella FastIdiosa Detector for O. europaea L.). Previous work predicted disease from leaf images with deep learning but required a vast amount of data which was obtained via crowd sourcing such as the PlantVillage project. This approach has limited applicability when samples need to be tested with traditional methods (i.e., PCR) to avoid incorrect training input or for quarantine pests which manipulation is restricted. In this paper, we demonstrate that transfer learning can be leveraged when it is not possible to collect thousands of new leaf images. Transfer learning is the re-application of an already trained deep learner to a new problem. We present a novel algorithm for fusing data at different levels of abstraction to improve performance of the system. The algorithm discovers low-level features from raw data to automatically detect veins and colors that lead to symptomatic leaves. The experiment included images of 100 healthy leaves, 99 X. fastidiosa -positive leaves and 100 X. fastidiosa -negative leaves with symptoms related to other stress factors (i.e., abiotic factors such as water stress or others diseases). The program detects OQDS with a true positive rate of 98.60 ± 1.47% in testing, showing great potential for image analysis for this disease. Results were obtained with a convolutional neural network trained with the stochastic gradient descent method, and ten trials with a 75/25 split of training and testing data. This work shows potential for massive screening of plants with reduced diagnosis time and cost.
Chakraborty, Sandeep; Nascimento, Rafael; Zaini, Paulo A; Gouran, Hossein; Rao, Basuthkar J; Goulart, Luiz R; Dandekar, Abhaya M
2016-01-01
Background. Xylella fastidiosa, the causative agent of various plant diseases including Pierce's disease in the US, and Citrus Variegated Chlorosis in Brazil, remains a continual source of concern and economic losses, especially since almost all commercial varieties are sensitive to this Gammaproteobacteria. Differential expression of proteins in infected tissue is an established methodology to identify key elements involved in plant defense pathways. Methods. In the current work, we developed a methodology named CHURNER that emphasizes relevant protein functions from proteomic data, based on identification of proteins with similar structures that do not necessarily have sequence homology. Such clustering emphasizes protein functions which have multiple copies that are up/down-regulated, and highlights similar proteins which are differentially regulated. As a working example we present proteomic data enumerating differentially expressed proteins in xylem sap from grapevines that were infected with X. fastidiosa. Results. Analysis of this data by CHURNER highlighted pathogenesis related PR-1 proteins, reinforcing this as the foremost protein function in xylem sap involved in the grapevine defense response to X. fastidiosa. β-1, 3-glucanase, which has both anti-microbial and anti-fungal activities, is also up-regulated. Simultaneously, chitinases are found to be both up and down-regulated by CHURNER, and thus the net gain of this protein function loses its significance in the defense response. Discussion. We demonstrate how structural data can be incorporated in the pipeline of proteomic data analysis prior to making inferences on the importance of individual proteins to plant defense mechanisms. We expect CHURNER to be applicable to any proteomic data set.
Koide, Tie; Zaini, Paulo A; Moreira, Leandro M; Vêncio, Ricardo Z N; Matsukuma, Adriana Y; Durham, Alan M; Teixeira, Diva C; El-Dorry, Hamza; Monteiro, Patrícia B; da Silva, Ana Claudia R; Verjovski-Almeida, Sergio; da Silva, Aline M; Gomes, Suely L
2004-08-01
Xylella fastidiosa is a phytopathogenic bacterium that causes serious diseases in a wide range of economically important crops. Despite extensive comparative analyses of genome sequences of Xylella pathogenic strains from different plant hosts, nonpathogenic strains have not been studied. In this report, we show that X. fastidiosa strain J1a12, associated with citrus variegated chlorosis (CVC), is nonpathogenic when injected into citrus and tobacco plants. Furthermore, a DNA microarray-based comparison of J1a12 with 9a5c, a CVC strain that is highly pathogenic and had its genome completely sequenced, revealed that 14 coding sequences of strain 9a5c are absent or highly divergent in strain J1a12. Among them, we found an arginase and a fimbrial adhesin precursor of type III pilus, which were confirmed to be absent in the nonpathogenic strain by PCR and DNA sequencing. The absence of arginase can be correlated to the inability of J1a12 to multiply in host plants. This enzyme has been recently shown to act as a bacterial survival mechanism by down-regulating host nitric oxide production. The lack of the adhesin precursor gene is in accordance with the less aggregated phenotype observed for J1a12 cells growing in vitro. Thus, the absence of both genes can be associated with the failure of the J1a12 strain to establish and spread in citrus and tobacco plants. These results provide the first detailed comparison between a nonpathogenic strain and a pathogenic strain of X. fastidiosa, constituting an important step towards understanding the molecular basis of the disease.
Koide, Tie; Zaini, Paulo A.; Moreira, Leandro M.; Vêncio, Ricardo Z. N.; Matsukuma, Adriana Y.; Durham, Alan M.; Teixeira, Diva C.; El-Dorry, Hamza; Monteiro, Patrícia B.; da Silva, Ana Claudia R.; Verjovski-Almeida, Sergio; da Silva, Aline M.; Gomes, Suely L.
2004-01-01
Xylella fastidiosa is a phytopathogenic bacterium that causes serious diseases in a wide range of economically important crops. Despite extensive comparative analyses of genome sequences of Xylella pathogenic strains from different plant hosts, nonpathogenic strains have not been studied. In this report, we show that X. fastidiosa strain J1a12, associated with citrus variegated chlorosis (CVC), is nonpathogenic when injected into citrus and tobacco plants. Furthermore, a DNA microarray-based comparison of J1a12 with 9a5c, a CVC strain that is highly pathogenic and had its genome completely sequenced, revealed that 14 coding sequences of strain 9a5c are absent or highly divergent in strain J1a12. Among them, we found an arginase and a fimbrial adhesin precursor of type III pilus, which were confirmed to be absent in the nonpathogenic strain by PCR and DNA sequencing. The absence of arginase can be correlated to the inability of J1a12 to multiply in host plants. This enzyme has been recently shown to act as a bacterial survival mechanism by down-regulating host nitric oxide production. The lack of the adhesin precursor gene is in accordance with the less aggregated phenotype observed for J1a12 cells growing in vitro. Thus, the absence of both genes can be associated with the failure of the J1a12 strain to establish and spread in citrus and tobacco plants. These results provide the first detailed comparison between a nonpathogenic strain and a pathogenic strain of X. fastidiosa, constituting an important step towards understanding the molecular basis of the disease. PMID:15292146
Electrophoretic Analysis of Diversity and Phylogeny of Pinus brutia and Closely Related Taxa
M. T. Conkle; G. Schiller; C. Grunwald
1988-01-01
Rangewide samples from mature natural stands of Pinus brutia Ten. subsp. brutia, subsp. stankewiczii (Sukaczew) Nahal, subsp. pithyusa (Stevenson) Nahal, and subsp. eldarica (Medw.) Nahal from throughout the eastern Mediterranean display a continuum of allozyme variation for...
Alfaro, M.; Salazar, F.; Troncoso, E.; Mitchell, R. M.; Ramirez, L.; Naguil, A.; Zamorano, P.; Collins, M. T.
2013-01-01
The study assessed the effect of soil slope on Mycobacterium avium subsp. paratuberculosis transport into rainwater runoff from agricultural soil after application of M. avium subsp. paratuberculosis-contaminated slurry. Under field conditions, 24 plots of undisturbed loamy soil 1 by 2 m2 were placed on platforms. Twelve plots were used for water runoff: 6 plots at a 3% slope and 6 plots at a 15% slope. Half of the plots of each slope were treated with M. avium subsp. paratuberculosis-contaminated slurry, and half were not treated. Using the same experimental design, 12 plots were established for soil sampling on a monthly basis using the same spiked slurry application and soil slopes. Runoff following natural rainfall was collected and analyzed for M. avium subsp. paratuberculosis, coliforms, and turbidity. M. avium subsp. paratuberculosis was detected in runoff from all plots treated with contaminated slurry and one control plot. A higher slope (15%) increased the likelihood of M. avium subsp. paratuberculosis detection but did not affect the likelihood of finding coliforms. Daily rainfall increased the likelihood that runoff would have coliforms and the coliform concentration, but it decreased the M. avium subsp. paratuberculosis concentration in the runoff. When there was no runoff, rain was associated with increased M. avium subsp. paratuberculosis concentrations. Coliform counts in runoff were related to runoff turbidity. M. avium subsp. paratuberculosis presence/absence, however, was related to turbidity. Study duration decreased bacterial detection and concentration. These findings demonstrate the high likelihood that M. avium subsp. paratuberculosis in slurry spread on pastures will contaminate water runoff, particularly during seasons with high rainfall. M. avium subsp. paratuberculosis contamination of water has potential consequences for both animal and human health. PMID:23542616
The first closed genome sequence of Campylobacter fetus subsp. venerealis biovar intermedius
USDA-ARS?s Scientific Manuscript database
Campylobacter fetus venerealis biovar intermedius is a variant of Campylobacter fetus subsp. venerealis, the causative agent of Bovine Genital Campylobacteriosis. In contrast to Campylobacter fetus subsp. venerealis which is restricted to the genital tract of cattle, Campylobacter fetus subsp. vener...
Louws, F J; Bell, J; Medina-Mora, C M; Smart, C D; Opgenorth, D; Ishimaru, C A; Hausbeck, M K; de Bruijn, F J; Fulbright, D W
1998-08-01
ABSTRACT The genomic DNA fingerprinting technique known as repetitive-sequence-based polymerase chain reaction (rep-PCR) was evaluated as a tool to differentiate subspecies of Clavibacter michiganensis, with special emphasis on C. michiganensis subsp. michiganensis, the pathogen responsible for bacterial canker of tomato. DNA primers (REP, ERIC, and BOX), corresponding to conserved repetitive element motifs in the genomes of diverse bacterial species, were used to generate genomic fingerprints of C. michiganensis subsp. michiganensis, C. michiganensis subsp. sepedonicus, C. michiganensis subsp. nebraskensis, C. michiganensis subsp. tessellarius, and C. michiganensis subsp. insidiosum. The rep-PCR-generated patterns of DNA fragments observed after agarose gel electrophoresis support the current division of C. michiganensis into five subspecies. In addition, the rep-PCR fingerprints identified at least four types (A, B, C, and D) within C. michiganensis subsp. michiganensis based on limited DNA polymorphisms; the ability to differentiate individual strains may be of potential use in studies on the epidemiology and host-pathogen interactions of this organism. In addition, we have recovered from diseased tomato plants a relatively large number of naturally occurring avirulent C. michiganensis subsp. michiganensis strains with rep-PCR fingerprints identical to those of virulent C. michiganensis subsp. michiganensis strains.
Tulipa cinnabarina subsp. toprakii (Liliaceae), a new subspecies from southwestern Anatolia.
Eker, İsmail; Yıldırım, Hasan; Altıoğlu, Yusuf
2016-01-01
A new subpecies, Tulipa cinnabarina subsp. toprakii subsp. nov. (Liliaceae) from Turkey is described. Diagnostic characters, descriptions, detailed illustrations, geographical distribution, conservation status and ecological observations on the new taxon are provided. It is also compared with the closely related Tulipa cinnabarina subsp. cinnabarina.
McNally, R Ryan; Ishimaru, Carol A; Malvick, Dean K
2016-12-01
Goss's leaf blight and wilt of maize (corn) is a significant and reemerging disease caused by the bacterium Clavibacter michiganensis subsp. nebraskensis. Despite its importance, molecular tools for diagnosing and studying this disease remain limited. We report the identification of CMN_01184 as a novel gene target and its use in conventional PCR (cPCR) and SYBR green-based quantitative PCR (qPCR) assays for specific detection and quantification of C. michiganensis subsp. nebraskensis. The cPCR and qPCR assays based on primers targeting CMN_01184 specifically amplified only C. michiganensis subsp. nebraskensis among a diverse collection of 129 bacterial and fungal isolates, including multiple maize bacterial and fungal pathogens, environmental organisms from agricultural fields, and all known subspecies of C. michiganensis. Specificity of the assays for detection of only C. michiganensis subsp. nebraskensis was also validated with field samples of C. michiganensis subsp. nebraskensis-infected and uninfected maize leaves and C. michiganensis subsp. nebraskensis-infested and uninfested soil. Detection limits were determined at 30 and 3 ng of pure C. michiganensis subsp. nebraskensis DNA, and 100 and 10 CFU of C. michiganensis subsp. nebraskensis for the cPCR and qPCR assays, respectively. Infection of maize leaves by C. michiganensis subsp. nebraskensis was quantified from infected field samples and was standardized using an internal maize DNA control. These novel, specific, and sensitive PCR assays based on CMN_01184 are effective for diagnosis of Goss's wilt and for studies of the epidemiology and host-pathogen interactions of C. michiganensis subsp. nebraskensis.
Tulipa cinnabarina subsp. toprakii (Liliaceae), a new subspecies from southwestern Anatolia
Eker, İsmail; Yıldırım, Hasan; Altıoğlu, Yusuf
2016-01-01
Abstract A new subpecies, Tulipa cinnabarina subsp. toprakii subsp. nov. (Liliaceae) from Turkey is described. Diagnostic characters, descriptions, detailed illustrations, geographical distribution, conservation status and ecological observations on the new taxon are provided. It is also compared with the closely related Tulipa cinnabarina subsp. cinnabarina. PMID:27698585
Torriani, Sandra; Zapparoli, Giacomo; Dellaglio, Franco
1999-01-01
Two PCR-based methods, specific PCR and randomly amplified polymorphic DNA PCR (RAPD-PCR), were used for rapid and reliable differentiation of Lactobacillus delbrueckii subsp. bulgaricus and L. delbrueckii subsp. lactis. PCR with a single combination of primers which targeted the proline iminopeptidase (pepIP) gene of L. delbrueckii subsp. bulgaricus allowed amplification of genomic fragments specific for the two subspecies when either DNA from a single colony or cells extracted from dairy products were used. A numerical analysis of the RAPD-PCR patterns obtained with primer M13 gave results that were consistent with the results of specific PCR for all strains except L. delbrueckii subsp. delbrueckii LMG 6412T, which clustered with L. delbrueckii subsp. lactis strains. In addition, RAPD-PCR performed with primer 1254 provided highly polymorphic profiles and thus was superior for distinguishing individual L. delbrueckii strains. PMID:10508059
Torriani, S; Zapparoli, G; Dellaglio, F
1999-10-01
Two PCR-based methods, specific PCR and randomly amplified polymorphic DNA PCR (RAPD-PCR), were used for rapid and reliable differentiation of Lactobacillus delbrueckii subsp. bulgaricus and L. delbrueckii subsp. lactis. PCR with a single combination of primers which targeted the proline iminopeptidase (pepIP) gene of L. delbrueckii subsp. bulgaricus allowed amplification of genomic fragments specific for the two subspecies when either DNA from a single colony or cells extracted from dairy products were used. A numerical analysis of the RAPD-PCR patterns obtained with primer M13 gave results that were consistent with the results of specific PCR for all strains except L. delbrueckii subsp. delbrueckii LMG 6412(T), which clustered with L. delbrueckii subsp. lactis strains. In addition, RAPD-PCR performed with primer 1254 provided highly polymorphic profiles and thus was superior for distinguishing individual L. delbrueckii strains.
USDA-ARS?s Scientific Manuscript database
During independent diagnostic screenings of otariid seals in California (US) and phocid seals in Scotland (UK), Campylobacter-like isolates, which differed from the established Campylobacter taxa, were cultured from abscesses and internal organs of different seal species. A polyphasic study was unde...
Campylobacter fetus subsp. testudinum subsp. nov., isolated from humans and reptiles.
Fitzgerald, Collette; Tu, Zheng Chao; Patrick, Mary; Stiles, Tracy; Lawson, Andy J; Santovenia, Monica; Gilbert, Maarten J; van Bergen, Marcel; Joyce, Kevin; Pruckler, Janet; Stroika, Steven; Duim, Birgitta; Miller, William G; Loparev, Vladimir; Sinnige, Jan C; Fields, Patricia I; Tauxe, Robert V; Blaser, Martin J; Wagenaar, Jaap A
2014-09-01
A polyphasic study was undertaken to determine the taxonomic position of 13 Campylobacter fetus-like strains from humans (n = 8) and reptiles (n = 5). The results of matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) MS and genomic data from sap analysis, 16S rRNA gene and hsp60 sequence comparison, pulsed-field gel electrophoresis, amplified fragment length polymorphism analysis, DNA-DNA hybridization and whole genome sequencing demonstrated that these strains are closely related to C. fetus but clearly differentiated from recognized subspecies of C. fetus. Therefore, this unique cluster of 13 strains represents a novel subspecies within the species C. fetus, for which the name Campylobacter fetus subsp. testudinum subsp. nov. is proposed, with strain 03-427(T) ( = ATCC BAA-2539(T) = LMG 27499(T)) as the type strain. Although this novel taxon could not be differentiated from C. fetus subsp. fetus and C. fetus subsp. venerealis using conventional phenotypic tests, MALDI-TOF MS revealed the presence of multiple phenotypic biomarkers which distinguish Campylobacter fetus subsp. testudinum subsp. nov. from recognized subspecies of C. fetus.
Darrasse, A; Priou, S; Kotoujansky, A; Bertheau, Y
1994-01-01
Using a sequenced pectate lyase-encoding gene (pel gene), we developed a PCR test for Erwinia carotovora. A set of primers allowed the amplification of a 434-bp fragment in E. carotovora strains. Among the 89 E. carotovora strains tested, only the Erwinia carotovora subsp. betavasculorum strains were not detected. A restriction fragment length polymorphism (RFLP) study was undertaken on the amplified fragment with seven endonucleases. The Sau3AI digestion pattern specifically identified the Erwinia carotovora subsp. atroseptica strains, and the whole set of data identified the Erwinia carotovora subsp. wasabiae strains. However, Erwinia carotovora subsp. carotovora and Erwinia carotovora subsp. odorifera could not be separated. Phenetic and phylogenic analyses of RFLP results showed E. carotovora subsp. atroseptica as a homogeneous group while E. carotovora subsp. carotovora and E. carotovora subsp. odorifera strains exhibited a genetic diversity that may result from a nonmonophyletic origin. The use of RFLP on amplified fragments in epidemiology and for diagnosis is discussed. Images PMID:7912502
Zhang, Shuwen; Lv, Jiaping; Menghe, Bilige; Zhang, Heping; Zhang, Liyu; Song, Jinhui; Wang, Zhifei
2009-02-01
We evaluated antioxidative effect of two antioxidative strains, isolated from the traditional fermented dairy products. Both intact cells and cell-free extract of Lactobacillus casei subsp. casei SY13 and Lactobacillus delbrueckii subsp. bulgaricus LJJ were used to study the inhibited effect of linoleic acid peroxidation, the ability of scavenging 1,1-diphenyl-2-picrylhydrazyl radical, hydroxyl radical, superoxide anion radical,the ability of tolerancing hydrogen peroxide and the chelating capacity of ferrous ion and reducting activity. Lactobacillus casei subsp. casei SY13 and Lactobacillus delbrueckii subsp. bulgaricus LJJ demonstrated highest inhibition on linoleic acid peroxidation by 62.95% and 66.16%, respectively. The cell-free extract showed excellent scavenging superoxide anion and hydroxyl radicals activity. However, the intact cells of Lactobacillus delbrueckii subsp. bulgaricus LJJ scavenging superoxide and hydroxyl radicals capacity were not detected. The intact cells of Lactobacillus casei subsp. casei SY13 and Lactobacillus delbrueckii subsp. bulgaricus LJJ on 1,1-diphenyl-2-picrylhydrazyl radical scavenging ability and chelating ferrous ion capacity were superior to cell-free extract. The highest reduced activety was equivalent to 305 micromol/L and 294 micromol/L L-cysteine. Two latobacilli strains had good antioxidant capacity. As potential probiotics, it can be used in future.
Galbany-Casals, M; Blanco-Moreno, J M; Garcia-Jacas, N; Breitwieser, I; Smissen, R D
2011-07-01
The yellow-flowered everlasting daisy Helichrysum italicum (Asteraceae, Gnaphalieae) is widely distributed in the Mediterranean basin, where it grows in continuous and widespread populations in diverse open habitats. Helichrysum italicum subsp. microphyllum has a disjunct distribution in the Balearic Islands (Majorca and Dragonera), Corsica, Sardinia, Crete and Cyprus. Numerous morphological intermediates between subsp. italicum and subsp. microphyllum are known from Corsica, where the two subspecies co-occur. The aims of the study were to investigate if subsp. microphyllum has a common origin, constituting an independent gene pool from subsp. italicum, or if the morphological differences between subsp. microphyllum and subsp. italicum have arisen independently in different locations from a common wider gene pool. Our analyses of AFLP, cpDNA sequences and morphological characters show that there is geographic structure to the genetic variation within H. italicum, with eastern and western Mediterranean groups, which do not correspond with the division into subsp. microphyllum and subsp. italicum as currently circumscribed. Local selection on quantitative trait loci provides sufficient explanation for the morphological divergence observed and is consistent with genetic data. Within the western Mediterranean group of the species we found considerable polymorphism in chloroplast DNA sequences among and within some populations. Comparison with chloroplast DNA sequences from other Helichrysum species showed that some chloroplast haplotypes are shared across species. © 2010 German Botanical Society and The Royal Botanical Society of the Netherlands.
Eisenberg, Susanne W F; Chuchaisangrat, Ruj; Nielen, Mirjam; Koets, Ad P
2013-09-01
Paratuberculosis, or Johne's disease, in cattle is caused by Mycobacterium avium subsp. paratuberculosis, which has recently been suspected to be transmitted through dust. This longitudinal study on eight commercial M. avium subsp. paratuberculosis-positive dairy farms studied the relationship between the number of cows with M. avium subsp. paratuberculosis antibody-positive milk and the presence of viable M. avium subsp. paratuberculosis in settled-dust samples, including their temporal relationship. Milk and dust samples were collected in parallel monthly for 2 years. M. avium subsp. paratuberculosis antibodies in milk were measured by enzyme-linked immunosorbent assay (ELISA) and used as a proxy for M. avium subsp. paratuberculosis shedding. Settled-dust samples were collected by using electrostatic dust collectors (EDCs) at six locations in housing for dairy cattle and young stock. The presence of viable M. avium subsp. paratuberculosis was identified by liquid culture and PCR. The results showed a positive relationship (odds ratio [OR], 1.2) between the number of cows with ELISA-positive milk and the odds of having positive EDCs in the same airspace as the adult dairy cattle. Moreover, the total number of lactating cows also showed an OR slightly above 1. This relationship remained the same for settled-dust samples collected up to 2 months before or after the time of milk sampling. The results suggest that removal of adult cows with milk positive for M. avium subsp. paratuberculosis-specific antibody by ELISA might result in a decrease in the presence of viable M. avium subsp. paratuberculosis in dust and therefore in the environment. However, this decrease is likely delayed by several weeks at least. In addition, the data support the notion that M. avium subsp. paratuberculosis exposure of young stock is reduced by separate housing.
Chuchaisangrat, Ruj; Nielen, Mirjam; Koets, Ad P.
2013-01-01
Paratuberculosis, or Johne's disease, in cattle is caused by Mycobacterium avium subsp. paratuberculosis, which has recently been suspected to be transmitted through dust. This longitudinal study on eight commercial M. avium subsp. paratuberculosis-positive dairy farms studied the relationship between the number of cows with M. avium subsp. paratuberculosis antibody-positive milk and the presence of viable M. avium subsp. paratuberculosis in settled-dust samples, including their temporal relationship. Milk and dust samples were collected in parallel monthly for 2 years. M. avium subsp. paratuberculosis antibodies in milk were measured by enzyme-linked immunosorbent assay (ELISA) and used as a proxy for M. avium subsp. paratuberculosis shedding. Settled-dust samples were collected by using electrostatic dust collectors (EDCs) at six locations in housing for dairy cattle and young stock. The presence of viable M. avium subsp. paratuberculosis was identified by liquid culture and PCR. The results showed a positive relationship (odds ratio [OR], 1.2) between the number of cows with ELISA-positive milk and the odds of having positive EDCs in the same airspace as the adult dairy cattle. Moreover, the total number of lactating cows also showed an OR slightly above 1. This relationship remained the same for settled-dust samples collected up to 2 months before or after the time of milk sampling. The results suggest that removal of adult cows with milk positive for M. avium subsp. paratuberculosis-specific antibody by ELISA might result in a decrease in the presence of viable M. avium subsp. paratuberculosis in dust and therefore in the environment. However, this decrease is likely delayed by several weeks at least. In addition, the data support the notion that M. avium subsp. paratuberculosis exposure of young stock is reduced by separate housing. PMID:23793639
Patterson, Adriana S.; Heithoff, Douglas M.; Ferguson, Brian S.; Soh, H. Tom; Mahan, Michael J.
2013-01-01
Salmonella is a zoonotic pathogen that poses a considerable public health and economic burden in the United States and worldwide. Resultant human diseases range from enterocolitis to bacteremia to sepsis and are acutely dependent on the particular serovar of Salmonella enterica subsp. enterica, which comprises over 99% of human-pathogenic S. enterica isolates. Point-of-care methods for detection and strain discrimination of Salmonella serovars would thus have considerable benefit to medical, veterinary, and field applications that safeguard public health and reduce industry-associated losses. Here we describe a single, disposable microfluidic chip that supports isothermal amplification and sequence-specific detection and discrimination of Salmonella serovars derived from whole blood of septic mice. The integrated microfluidic electrochemical DNA (IMED) chip consists of an amplification chamber that supports loop-mediated isothermal amplification (LAMP), a rapid, single-temperature amplification method as an alternative to PCR that offers advantages in terms of sensitivity, reaction speed, and amplicon yield. The amplification chamber is connected via a microchannel to a detection chamber containing a reagentless, multiplexed (here biplex) sensing array for sequence-specific electrochemical DNA (E-DNA) detection of the LAMP products. Validation of the IMED device was assessed by the detection and discrimination of S. enterica subsp. enterica serovars Typhimurium and Choleraesuis, the causative agents of enterocolitis and sepsis in humans, respectively. IMED chips conferred rapid (under 2 h) detection and discrimination of these strains at clinically relevant levels (<1,000 CFU/ml) from whole, unprocessed blood collected from septic animals. The IMED-based chip assay shows considerable promise as a rapid, inexpensive, and portable point-of-care diagnostic platform for the detection and strain-specific discrimination of microbial pathogens. PMID:23354710
Speer, C. A.; Scott, M. Cathy; Bannantine, John P.; Waters, W. Ray; Mori, Yasuyuki; Whitlock, Robert H.; Eda, Shigetoshi
2006-01-01
Enzyme-linked immunosorbent assays (ELISAs) for the diagnosis of Johne's disease (JD), caused by Mycobacterium avium subsp. paratuberculosis, were developed using whole bacilli treated with formaldehyde (called WELISA) or surface antigens obtained by treatment of M. avium subsp. paratuberculosis bacilli with formaldehyde and then brief sonication (called SELISA). ELISA plates were coated with either whole bacilli or sonicated antigens and tested for reactivity against serum obtained from JD-positive and JD-negative cattle or from calves experimentally inoculated with M. avium subsp. paratuberculosis, Mycobacterium avium subsp. avium, or Mycobacterium bovis. Because the initial results obtained from the WELISA and SELISA were similar, most of the subsequent experiments reported herein were performed using the SELISA method. To optimize the SELISA test, various concentrations (3.7 to 37%) of formaldehyde and intervals of sonication (2 to 300 s) were tested. With an increase in formaldehyde concentration and a decreased interval of sonication, there was a concomitant decrease in nonspecific binding by the SELISA. SELISAs prepared by treating M. avium subsp. paratuberculosis with 37% formaldehyde and then a 2-s burst of sonication produced the greatest difference (7×) between M. avium subsp. paratuberculosis-negative and M. avium subsp. paratuberculosis-positive serum samples. The diagnostic sensitivity and specificity for JD by the SELISA were greater than 95%. The SELISA showed subspecies-specific detection of M. avium subsp. paratuberculosis infections in calves experimentally inoculated with M. avium subsp. paratuberculosis or other mycobacteria. Based on diagnostic sensitivity and specificity, the SELISA appears superior to the commercial ELISAs routinely used for the diagnosis of JD. PMID:16682472
Gilbert, Maarten J.; Miller, William G.; Yee, Emma; Zomer, Aldert L.; van der Graaf-van Bloois, Linda; Fitzgerald, Collette; Forbes, Ken J.; Méric, Guillaume; Sheppard, Samuel K.; Wagenaar, Jaap A.; Duim, Birgitta
2016-01-01
Campylobacter fetus currently comprises three recognized subspecies, which display distinct host association. Campylobacter fetus subsp. fetus and C. fetus subsp. venerealis are both associated with endothermic mammals, primarily ruminants, whereas C. fetus subsp. testudinum is primarily associated with ectothermic reptiles. Both C. fetus subsp. testudinum and C. fetus subsp. fetus have been associated with severe infections, often with a systemic component, in immunocompromised humans. To study the genetic factors associated with the distinct host dichotomy in C. fetus, whole-genome sequencing and comparison of mammal- and reptile-associated C. fetus was performed. The genomes of C. fetus subsp. testudinum isolated from either reptiles or humans were compared with elucidate the genetic factors associated with pathogenicity in humans. Genomic comparisons showed conservation of gene content and organization among C. fetus subspecies, but a clear distinction between mammal- and reptile-associated C. fetus was observed. Several genomic regions appeared to be subspecies specific, including a putative tricarballylate catabolism pathway, exclusively present in C. fetus subsp. testudinum strains. Within C. fetus subsp. testudinum, sapA, sapB, and sapAB type strains were observed. The recombinant locus iamABC (mlaFED) was exclusively associated with invasive C. fetus subsp. testudinum strains isolated from humans. A phylogenetic reconstruction was consistent with divergent evolution in host-associated strains and the existence of a barrier to lateral gene transfer between mammal- and reptile-associated C. fetus. Overall, this study shows that reptile-associated C. fetus subsp. testudinum is genetically divergent from mammal-associated C. fetus subspecies. PMID:27333878
USDA-ARS?s Scientific Manuscript database
Cross-reactivity of mycobacterial antigens in immune-based diagnostic assays has been a major concern and criticism of current tests for the detection of paratuberculosis. In the present study, host immune responses to antigen preparations of Mycobacterium avium subsp. paratuberculosis (MAP), consis...
Staphylococcus petrasii subsp. pragensis subsp. nov., occurring in human clinical material.
Švec, Pavel; De Bel, Annelies; Sedláček, Ivo; Petráš, Petr; Gelbíčová, Tereza; Černohlávková, Jitka; Mašlanˇová, Ivana; Cnockaert, Margo; Varbanovová, Ivana; Echahidi, Fedoua; Vandamme, Peter; Pantuček, Roman
2015-07-01
Seven coagulase-negative, oxidase-negative and novobiocin-susceptible staphylococci assigned tentatively as Staphylococcus petrasii were investigated in this study in order to elucidate their taxonomic position. All strains were initially shown to form a genetically homogeneous group separated from remaining species of the genus Staphylococcus by using a repetitive sequence-based PCR fingerprinting with the (GTG)5 primer. Phylogenetic analysis based on 16S rRNA gene, hsp60, rpoB, dnaJ, gap and tuf sequences showed that the group is closely related to Staphylococcus petrasii but separated from the three hitherto known subspecies, S. petrasii subsp. petrasii, S. petrasii subsp. croceilyticus and S. petrasii subsp. jettensis. Further investigation using automated ribotyping, MALDI-TOF mass spectrometry, fatty acid methyl ester analysis, DNA-DNA hybridization and extensive biotyping confirmed that the analysed group represents a novel subspecies within S. petrasii, for which the name Staphylococcus petrasii subsp. pragensis subsp. nov. is proposed. The type strain is NRL/St 12/356(T) ( = CCM 8529(T) = LMG 28327(T)).
USDA-ARS?s Scientific Manuscript database
Mycobacterium avium subsp paratuberculosis (Map) and Salmonella enterica subsp enterica (S. enterica) are two pathogens that are a concern to food and animal safety due to their ability to withstand harsh conditions encountered in the natural environment and within the host during pathogenesis. Acid...
Bull, Tim J.; McMinn, Elizabeth J.; Sidi-Boumedine, Karim; Skull, Angela; Durkin, Damien; Neild, Penny; Rhodes, Glenn; Pickup, Roger; Hermon-Taylor, John
2003-01-01
Mycobacterium avium subsp. paratuberculosis is a robust and phenotypically versatile pathogen which causes chronic inflammation of the intestine in many species, including primates. M. avium subsp. paratuberculosis infection is widespread in domestic livestock and is present in retail pasteurized cows' milk in the United Kingdom and, potentially, elsewhere. Water supplies are also at risk. The involvement of M. avium subsp. paratuberculosis in Crohn's disease (CD) in humans has been uncertain because of the substantial difficulties in detecting this pathogen. In its Ziehl-Neelsen staining-negative form, M. avium subsp. paratuberculosis is highly resistant to chemical and enzymatic lysis. The present study describes the development of optimized sample processing and DNA extraction procedures with fresh human intestinal mucosal biopsy specimens which ensure access to M. avium subsp. paratuberculosis DNA and maximize detection of these low-abundance pathogens. Also described are two nested PCR methodologies targeted at IS900, designated IS900[L/AV] and IS900[TJ1-4], which are uniquely specific for IS900. Detection of M. avium subsp. paratuberculosis in mucosal biopsy specimens was also evaluated by using mycobacterial growth indicator tube (MGIT) cultures (Becton Dickinson). IS900[L/AV] PCR detected M. avium subsp. paratuberculosis in 34 of 37 (92%) patients with CD and in 9 of 34 (26%) controls without CD (noninflammatory bowel disease [nIBD] controls) (P = 0.0002; odds ratio = 3.47). M. avium subsp. paratuberculosis was detected by IS900[L/AV] PCR in MGIT cultures after 14 to 88 weeks of incubation in 14 of 33 (42%) CD patients and 3 of 33 (9%) nIBD controls (P = 0.0019; odds ratio = 4.66). Nine of 15 (60%) MGIT cultures of specimens from CD patients incubated for more than 38 weeks were positive for M. avium subsp. paratuberculosis. In each case the identity of IS900 from M. avium subsp. paratuberculosis was verified by amplicon sequencing. The rate of detection of M. avium subsp. paratuberculosis in individuals with CD is highly significant and implicates this chronic enteric pathogen in disease causation. PMID:12843021
Tkachuk, Victoria L; Krause, Denis O; McAllister, Tim A; Buckley, Katherine E; Reuter, Tim; Hendrick, Steve; Ominski, Kim H
2013-05-01
Mycobacterium avium subsp. paratuberculosis causes Johne's disease (JD) in ruminants, with substantial economic impacts on the cattle industry. Johne's disease is known for its long latency period, and difficulties in diagnosis are due to insensitivities of current detection methods. Eradication is challenging as M. avium subsp. paratuberculosis can survive for extended periods within the environment, resulting in new infections in naïve animals (W. Xu et al., J. Environ. Qual. 38:437-450, 2009). This study explored the use of a biosecure, static composting structure to inactivate M. avium subsp. paratuberculosis. Mycobacterium smegmatis was also assessed as a surrogate for M. avium subsp. paratuberculosis. Two structures were constructed to hold three cattle carcasses each. Naturally infected tissues and ground beef inoculated with laboratory-cultured M. avium subsp. paratuberculosis and M. smegmatis were placed in nylon and plastic bags to determine effects of temperature and compost environment on viability over 250 days. After removal, samples were cultured and growth of both organisms was assessed after 12 weeks. After 250 days, M. avium subsp. paratuberculosis was still detectable by PCR, while M. smegmatis was not detected after 67 days of composting. Furthermore, M. avium subsp. paratuberculosis remained viable in both implanted nylon and plastic bags over the composting period. As the compost never reached a homogenous thermophilic (55 to 65°C) state throughout each structure, an in vitro experiment was conducted to examine viability of M. avium subsp. paratuberculosis after exposure to 80°C for 90 days. Naturally infected lymph tissues were mixed with and without compost. After 90 days, M. avium subsp. paratuberculosis remained viable despite exposure to temperatures typically higher than that achieved in compost. In conclusion, it is unlikely composting can be used as a means of inactivating M. avium subsp. paratuberculosis associated with cattle mortalities.
Tkachuk, Victoria L.; Krause, Denis O.; McAllister, Tim A.; Buckley, Katherine E.; Reuter, Tim; Hendrick, Steve
2013-01-01
Mycobacterium avium subsp. paratuberculosis causes Johne's disease (JD) in ruminants, with substantial economic impacts on the cattle industry. Johne's disease is known for its long latency period, and difficulties in diagnosis are due to insensitivities of current detection methods. Eradication is challenging as M. avium subsp. paratuberculosis can survive for extended periods within the environment, resulting in new infections in naïve animals (W. Xu et al., J. Environ. Qual. 38:437-450, 2009). This study explored the use of a biosecure, static composting structure to inactivate M. avium subsp. paratuberculosis. Mycobacterium smegmatis was also assessed as a surrogate for M. avium subsp. paratuberculosis. Two structures were constructed to hold three cattle carcasses each. Naturally infected tissues and ground beef inoculated with laboratory-cultured M. avium subsp. paratuberculosis and M. smegmatis were placed in nylon and plastic bags to determine effects of temperature and compost environment on viability over 250 days. After removal, samples were cultured and growth of both organisms was assessed after 12 weeks. After 250 days, M. avium subsp. paratuberculosis was still detectable by PCR, while M. smegmatis was not detected after 67 days of composting. Furthermore, M. avium subsp. paratuberculosis remained viable in both implanted nylon and plastic bags over the composting period. As the compost never reached a homogenous thermophilic (55 to 65°C) state throughout each structure, an in vitro experiment was conducted to examine viability of M. avium subsp. paratuberculosis after exposure to 80°C for 90 days. Naturally infected lymph tissues were mixed with and without compost. After 90 days, M. avium subsp. paratuberculosis remained viable despite exposure to temperatures typically higher than that achieved in compost. In conclusion, it is unlikely composting can be used as a means of inactivating M. avium subsp. paratuberculosis associated with cattle mortalities. PMID:23503307
Janissen, Richard; Murillo, Duber M.; Niza, Barbara; Sahoo, Prasana K.; Nobrega, Marcelo M.; Cesar, Carlos L.; Temperini, Marcia L. A.; Carvalho, Hernandes F.; de Souza, Alessandra A.; Cotta, Monica A.
2015-01-01
Microorganism pathogenicity strongly relies on the generation of multicellular assemblies, called biofilms. Understanding their organization can unveil vulnerabilities leading to potential treatments; spatially and temporally-resolved comprehensive experimental characterization can provide new details of biofilm formation, and possibly new targets for disease control. Here, biofilm formation of economically important phytopathogen Xylella fastidiosa was analyzed at single-cell resolution using nanometer-resolution spectro-microscopy techniques, addressing the role of different types of extracellular polymeric substances (EPS) at each stage of the entire bacterial life cycle. Single cell adhesion is caused by unspecific electrostatic interactions through proteins at the cell polar region, where EPS accumulation is required for more firmly-attached, irreversibly adhered cells. Subsequently, bacteria form clusters, which are embedded in secreted loosely-bound EPS, and bridged by up to ten-fold elongated cells that form the biofilm framework. During biofilm maturation, soluble EPS forms a filamentous matrix that facilitates cell adhesion and provides mechanical support, while the biofilm keeps anchored by few cells. This floating architecture maximizes nutrient distribution while allowing detachment upon larger shear stresses; it thus complies with biological requirements of the bacteria life cycle. Using new approaches, our findings provide insights regarding different aspects of the adhesion process of X. fastidiosa and biofilm formation. PMID:25891045
Janissen, Richard; Murillo, Duber M; Niza, Barbara; Sahoo, Prasana K; Nobrega, Marcelo M; Cesar, Carlos L; Temperini, Marcia L A; Carvalho, Hernandes F; de Souza, Alessandra A; Cotta, Monica A
2015-04-20
Microorganism pathogenicity strongly relies on the generation of multicellular assemblies, called biofilms. Understanding their organization can unveil vulnerabilities leading to potential treatments; spatially and temporally-resolved comprehensive experimental characterization can provide new details of biofilm formation, and possibly new targets for disease control. Here, biofilm formation of economically important phytopathogen Xylella fastidiosa was analyzed at single-cell resolution using nanometer-resolution spectro-microscopy techniques, addressing the role of different types of extracellular polymeric substances (EPS) at each stage of the entire bacterial life cycle. Single cell adhesion is caused by unspecific electrostatic interactions through proteins at the cell polar region, where EPS accumulation is required for more firmly-attached, irreversibly adhered cells. Subsequently, bacteria form clusters, which are embedded in secreted loosely-bound EPS, and bridged by up to ten-fold elongated cells that form the biofilm framework. During biofilm maturation, soluble EPS forms a filamentous matrix that facilitates cell adhesion and provides mechanical support, while the biofilm keeps anchored by few cells. This floating architecture maximizes nutrient distribution while allowing detachment upon larger shear stresses; it thus complies with biological requirements of the bacteria life cycle. Using new approaches, our findings provide insights regarding different aspects of the adhesion process of X. fastidiosa and biofilm formation.
Moravkova, M; Babak, V; Kralova, A; Pavlik, I; Slana, I
2012-09-01
The aim of this study was to monitor the persistence of Mycobacterium avium subsp. paratuberculosis in environmental samples taken from a Holstein farm with a long history of clinical paratuberculosis. A herd of 606 head was eradicated, and mechanical cleaning and disinfection with chloramine B with ammonium (4%) was carried out on the farm; in the surrounding areas (on the field and field midden) lime was applied. Environmental samples were collected before and over a period of 24 months after destocking. Only one sample out of 48 (2%) examined on the farm (originating from a waste pit and collected before destocking) was positive for M. avium subsp. paratuberculosis by cultivation on solid medium (Herrold's egg yolk medium). The results using real-time quantitative PCR (qPCR) showed that a total of 81% of environmental samples with an average mean M. avium subsp. paratuberculosis cell number of 3.09 × 10(3) were positive for M. avium subsp. paratuberculosis before destocking compared to 43% with an average mean M. avium subsp. paratuberculosis cell number of 5.86 × 10(2) after 24 months. M. avium subsp. paratuberculosis-positive samples were detected in the cattle barn as well as in the calf barn and surrounding areas. M. avium subsp. paratuberculosis was detected from different matrices: floor and instrument scrapings, sediment, or scraping from watering troughs, waste pits, and cobwebs. M. avium subsp. paratuberculosis DNA was also detected in soil and plants collected on the field midden and the field 24 months after destocking. Although the proportion of positive samples decreased from 64% to 23% over time, the numbers of M. avium subsp. paratuberculosis cells were comparable.
Moravkova, M.; Babak, V.; Kralova, A.; Pavlik, I.
2012-01-01
The aim of this study was to monitor the persistence of Mycobacterium avium subsp. paratuberculosis in environmental samples taken from a Holstein farm with a long history of clinical paratuberculosis. A herd of 606 head was eradicated, and mechanical cleaning and disinfection with chloramine B with ammonium (4%) was carried out on the farm; in the surrounding areas (on the field and field midden) lime was applied. Environmental samples were collected before and over a period of 24 months after destocking. Only one sample out of 48 (2%) examined on the farm (originating from a waste pit and collected before destocking) was positive for M. avium subsp. paratuberculosis by cultivation on solid medium (Herrold's egg yolk medium). The results using real-time quantitative PCR (qPCR) showed that a total of 81% of environmental samples with an average mean M. avium subsp. paratuberculosis cell number of 3.09 × 103 were positive for M. avium subsp. paratuberculosis before destocking compared to 43% with an average mean M. avium subsp. paratuberculosis cell number of 5.86 × 102 after 24 months. M. avium subsp. paratuberculosis-positive samples were detected in the cattle barn as well as in the calf barn and surrounding areas. M. avium subsp. paratuberculosis was detected from different matrices: floor and instrument scrapings, sediment, or scraping from watering troughs, waste pits, and cobwebs. M. avium subsp. paratuberculosis DNA was also detected in soil and plants collected on the field midden and the field 24 months after destocking. Although the proportion of positive samples decreased from 64% to 23% over time, the numbers of M. avium subsp. paratuberculosis cells were comparable. PMID:22773642
Xu, Xiulan; Miller, Sally A; Baysal-Gurel, Fulya; Gartemann, Karl-Heinz; Eichenlaub, Rudolf; Rajashekara, Gireesh
2010-06-01
Clavibacter michiganensis subsp. michiganensis is a Gram-positive bacterium that causes wilting and cankers, leading to severe economic losses in commercial tomato production worldwide. The disease is transmitted from infected seeds to seedlings and mechanically from plant to plant during seedling production, grafting, pruning, and harvesting. Because of the lack of tools for genetic manipulation, very little is known regarding the mechanisms of seed and seedling infection and movement of C. michiganensis subsp. michiganensis in grafted plants, two focal points for application of bacterial canker control measures in tomato. To facilitate studies on the C. michiganensis subsp. michiganensis movement in tomato seed and grafted plants, we isolated a bioluminescent C. michiganensis subsp. michiganensis strain using the modified Tn1409 containing a promoterless lux reporter. A total of 19 bioluminescent C. michiganensis subsp. michiganensis mutants were obtained. All mutants tested induced a hypersensitive response in Mirabilis jalapa and caused wilting of tomato plants. Real-time colonization studies of germinating seeds using a virulent, stable, constitutively bioluminescent strain, BL-Cmm17, showed that C. michiganensis subsp. michiganensis aggregated on hypocotyls and cotyledons at an early stage of germination. In grafted seedlings in which either the rootstock or scion was exposed to BL-Cmm17 via a contaminated grafting knife, bacteria were translocated in both directions from the graft union at higher inoculum doses. These results emphasize the use of bioluminescent C. michiganensis subsp. michiganensis to help better elucidate the C. michiganensis subsp. michiganensis-tomato plant interactions. Further, we demonstrated the broader applicability of this tool by successful transformation of C. michiganensis subsp. nebraskensis with Tn1409::lux. Thus, our approach would be highly useful to understand the pathogenesis of diseases caused by other subspecies of the agriculturally important C. michiganensis.
Xu, Xiulan; Miller, Sally A.; Baysal-Gurel, Fulya; Gartemann, Karl-Heinz; Eichenlaub, Rudolf; Rajashekara, Gireesh
2010-01-01
Clavibacter michiganensis subsp. michiganensis is a Gram-positive bacterium that causes wilting and cankers, leading to severe economic losses in commercial tomato production worldwide. The disease is transmitted from infected seeds to seedlings and mechanically from plant to plant during seedling production, grafting, pruning, and harvesting. Because of the lack of tools for genetic manipulation, very little is known regarding the mechanisms of seed and seedling infection and movement of C. michiganensis subsp. michiganensis in grafted plants, two focal points for application of bacterial canker control measures in tomato. To facilitate studies on the C. michiganensis subsp. michiganensis movement in tomato seed and grafted plants, we isolated a bioluminescent C. michiganensis subsp. michiganensis strain using the modified Tn1409 containing a promoterless lux reporter. A total of 19 bioluminescent C. michiganensis subsp. michiganensis mutants were obtained. All mutants tested induced a hypersensitive response in Mirabilis jalapa and caused wilting of tomato plants. Real-time colonization studies of germinating seeds using a virulent, stable, constitutively bioluminescent strain, BL-Cmm17, showed that C. michiganensis subsp. michiganensis aggregated on hypocotyls and cotyledons at an early stage of germination. In grafted seedlings in which either the rootstock or scion was exposed to BL-Cmm17 via a contaminated grafting knife, bacteria were translocated in both directions from the graft union at higher inoculum doses. These results emphasize the use of bioluminescent C. michiganensis subsp. michiganensis to help better elucidate the C. michiganensis subsp. michiganensis-tomato plant interactions. Further, we demonstrated the broader applicability of this tool by successful transformation of C. michiganensis subsp. nebraskensis with Tn1409::lux. Thus, our approach would be highly useful to understand the pathogenesis of diseases caused by other subspecies of the agriculturally important C. michiganensis. PMID:20400561
Gilbert, Maarten J; Miller, William G; Yee, Emma; Zomer, Aldert L; van der Graaf-van Bloois, Linda; Fitzgerald, Collette; Forbes, Ken J; Méric, Guillaume; Sheppard, Samuel K; Wagenaar, Jaap A; Duim, Birgitta
2016-07-02
Campylobacter fetus currently comprises three recognized subspecies, which display distinct host association. Campylobacter fetus subsp. fetus and C fetus subsp. venerealis are both associated with endothermic mammals, primarily ruminants, whereas C fetus subsp. testudinum is primarily associated with ectothermic reptiles. Both C. fetus subsp. testudinum and C. fetus subsp. fetus have been associated with severe infections, often with a systemic component, in immunocompromised humans. To study the genetic factors associated with the distinct host dichotomy in C. fetus, whole-genome sequencing and comparison of mammal- and reptile-associated C fetus was performed. The genomes of C fetus subsp. testudinum isolated from either reptiles or humans were compared with elucidate the genetic factors associated with pathogenicity in humans. Genomic comparisons showed conservation of gene content and organization among C fetus subspecies, but a clear distinction between mammal- and reptile-associated C fetus was observed. Several genomic regions appeared to be subspecies specific, including a putative tricarballylate catabolism pathway, exclusively present in C fetus subsp. testudinum strains. Within C fetus subsp. testudinum, sapA, sapB, and sapAB type strains were observed. The recombinant locus iamABC (mlaFED) was exclusively associated with invasive C fetus subsp. testudinum strains isolated from humans. A phylogenetic reconstruction was consistent with divergent evolution in host-associated strains and the existence of a barrier to lateral gene transfer between mammal- and reptile-associated C fetus Overall, this study shows that reptile-associated C fetus subsp. testudinum is genetically divergent from mammal-associated C fetus subspecies. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Rademaker, Jan L. W.; Herbet, Hélène; Starrenburg, Marjo J. C.; Naser, Sabri M.; Gevers, Dirk; Kelly, William J.; Hugenholtz, Jeroen; Swings, Jean; van Hylckama Vlieg, Johan E. T.
2007-01-01
The diversity of a collection of 102 lactococcus isolates including 91 Lactococcus lactis isolates of dairy and nondairy origin was explored using partial small subunit rRNA gene sequence analysis and limited phenotypic analyses. A subset of 89 strains of L. lactis subsp. cremoris and L. lactis subsp. lactis isolates was further analyzed by (GTG)5-PCR fingerprinting and a novel multilocus sequence analysis (MLSA) scheme. Two major genomic lineages within L. lactis were found. The L. lactis subsp. cremoris type-strain-like genotype lineage included both L. lactis subsp. cremoris and L. lactis subsp. lactis isolates. The other major lineage, with a L. lactis subsp. lactis type-strain-like genotype, comprised L. lactis subsp. lactis isolates only. A novel third genomic lineage represented two L. lactis subsp. lactis isolates of nondairy origin. The genomic lineages deviate from the subspecific classification of L. lactis that is based on a few phenotypic traits only. MLSA of six partial genes (atpA, encoding ATP synthase alpha subunit; pheS, encoding phenylalanine tRNA synthetase; rpoA, encoding RNA polymerase alpha chain; bcaT, encoding branched chain amino acid aminotransferase; pepN, encoding aminopeptidase N; and pepX, encoding X-prolyl dipeptidyl peptidase) revealed 363 polymorphic sites (total length, 1,970 bases) among 89 L. lactis subsp. cremoris and L. lactis subsp. lactis isolates with unique sequence types for most isolates. This allowed high-resolution cluster analysis in which dairy isolates form subclusters of limited diversity within the genomic lineages. The pheS DNA sequence analysis yielded two genetic groups dissimilar to the other genotyping analysis-based lineages, indicating a disparate acquisition route for this gene. PMID:17890345
Rademaker, Jan L W; Herbet, Hélène; Starrenburg, Marjo J C; Naser, Sabri M; Gevers, Dirk; Kelly, William J; Hugenholtz, Jeroen; Swings, Jean; van Hylckama Vlieg, Johan E T
2007-11-01
The diversity of a collection of 102 lactococcus isolates including 91 Lactococcus lactis isolates of dairy and nondairy origin was explored using partial small subunit rRNA gene sequence analysis and limited phenotypic analyses. A subset of 89 strains of L. lactis subsp. cremoris and L. lactis subsp. lactis isolates was further analyzed by (GTG)(5)-PCR fingerprinting and a novel multilocus sequence analysis (MLSA) scheme. Two major genomic lineages within L. lactis were found. The L. lactis subsp. cremoris type-strain-like genotype lineage included both L. lactis subsp. cremoris and L. lactis subsp. lactis isolates. The other major lineage, with a L. lactis subsp. lactis type-strain-like genotype, comprised L. lactis subsp. lactis isolates only. A novel third genomic lineage represented two L. lactis subsp. lactis isolates of nondairy origin. The genomic lineages deviate from the subspecific classification of L. lactis that is based on a few phenotypic traits only. MLSA of six partial genes (atpA, encoding ATP synthase alpha subunit; pheS, encoding phenylalanine tRNA synthetase; rpoA, encoding RNA polymerase alpha chain; bcaT, encoding branched chain amino acid aminotransferase; pepN, encoding aminopeptidase N; and pepX, encoding X-prolyl dipeptidyl peptidase) revealed 363 polymorphic sites (total length, 1,970 bases) among 89 L. lactis subsp. cremoris and L. lactis subsp. lactis isolates with unique sequence types for most isolates. This allowed high-resolution cluster analysis in which dairy isolates form subclusters of limited diversity within the genomic lineages. The pheS DNA sequence analysis yielded two genetic groups dissimilar to the other genotyping analysis-based lineages, indicating a disparate acquisition route for this gene.
Muñoz, Nélida; Diaz-Osorio, Miguel; Moreno, Jaime; Sánchez-Jiménez, Miryan; Cardona-Castro, Nora
2010-01-01
A multiplex real-time polymerase chain reaction procedure was developed to identify the most prevalent clinical isolates of Salmonella enterica subsp. enterica. Genes from the rfb, fliC, fljB, and viaB groups that encode the O, H, and Vi antigens were used to design 15 primer pairs and TaqMan probes specific for the genes rfbJ, wzx, fliC, fljB, wcdB, the sdf-l sequence, and invA, which was used as an internal amplification control. The primers and probes were variously combined into six sets. The first round of reactions used two of these sets to detect Salmonella O:4, O:9, O:7, O:8, and O:3,10 serogroups. Once the serogroups were identified, the results of a second round of reactions that used primers and probes for the flagellar antigen l genes, 1,2; e,h; g,m; d; e,n,x; and z10, and the Vi gene were used to identify individual serovars. The procedure was standardized using 18 Salmonella reference strains and other enterobacteria. The procedure's reliability and sensitivity was evaluated using 267 randomly chosen serotyped Salmonella clinical isolates. The procedure had a sensitivity of 95.5% and was 100% specific. Thus, our technique is a quick, sensitive, reliable, and specific means of identifying S. enterica serovars and can be used in conjunction with traditional serotyping. Other primer and probe combinations could be used to increase the number of identifiable serovars. PMID:20110454
Guidi, Valeria; Patocchi, Nicola; Lüthy, Peter; Tonolla, Mauro
2011-01-01
Recurrent treatments with Bacillus thuringiensis subsp. israelensis are required to control the floodwater mosquito Aedes vexans that breeds in large numbers in the wetlands of the Bolle di Magadino Reserve in Canton Ticino, Switzerland. Interventions have been carried out since 1988. In the present study, the spatial distribution of resting B. thuringiensis subsp. israelensis spores in the soil was measured. The B. thuringiensis subsp. israelensis concentration was determined in soil samples collected along six transects covering different elevations within the periodically flooded zones. A total of 258 samples were processed and analyzed by quantitative PCR that targeted an identical fragment of 159 bp for the B. thuringiensis subsp. israelensis cry4Aa and cry4Ba genes. B. thuringiensis subsp. israelensis spores were found to persist in soils of the wetland reserve at concentrations of up to 6.8 log per gram of soil. Continuous accumulation due to regular treatments could be excluded, as the decrease in spores amounted to 95.8% (95% confidence interval, 93.9 to 97.7%). The distribution of spores was correlated to the number of B. thuringiensis subsp. israelensis treatments, the elevation of the sampling point, and the duration of the flooding periods. The number of B. thuringiensis subsp. israelensis treatments was the major factor influencing the distribution of spores in the different topographic zones (P < 0.0001). These findings indicated that B. thuringiensis subsp. israelensis spores are rather immobile after their introduction into the environment. PMID:21498758
Regulation and Adaptive Evolution of Lactose Operon Expression in Lactobacillus delbrueckii
Lapierre, Luciane; Mollet, Beat; Germond, Jacques-Edouard
2002-01-01
Lactobacillus delbrueckii subsp. bulgaricus and L. delbrueckii subsp. lactis are both used in the dairy industry as homofermentative lactic acid bacteria in the production of fermented milk products. After selective pressure for the fast fermentation of milk in the manufacture of yogurts, L. delbrueckii subsp. bulgaricus loses its ability to regulate lac operon expression. A series of mutations led to the constitutive expression of the lac genes. A complex of insertion sequence (IS) elements (ISL4 inside ISL5), inserted at the border of the lac promoter, induced the loss of the palindromic structure of one of the operators likely involved in the binding of regulatory factors. A lac repressor gene was discovered downstream of the β-galactosidase gene of L. delbrueckii subsp. lactis and was shown to be inactivated by several mutations in L. delbrueckii subsp. bulgaricus. Regulatory mechanisms of the lac gene expression of L. delbrueckii subsp. bulgaricus and L. delbrueckii subsp. lactis were compared by heterologous expression in Lactococcus lactis of the two lac promoters in front of a reporter gene (β-glucuronidase) in the presence or absence of the lac repressor gene. Insertion of the complex of IS elements in the lac promoter of L. delbrueckii subsp. bulgaricus increased the promoter's activity but did not prevent repressor binding; rather, it increased the affinity of the repressor for the promoter. Inactivation of the lac repressor by mutations was then necessary to induce the constitutive expression of the lac genes in L. delbrueckii subsp. bulgaricus. PMID:11807052
Establishment of Three Francisella Infections in Zebrafish Embryos at Different Temperatures
Brudal, Espen; Ulanova, Lilia S.; O. Lampe, Elisabeth; Rishovd, Anne-Lise; Winther-Larsen, Hanne C.
2014-01-01
Francisella spp. are facultative intracellular pathogens identified in increasingly diverse hosts, including mammals. F. noatunensis subsp. orientalis and F. noatunensis subsp. noatunensis infect fish inhabiting warm and cold waters, respectively, while F. tularensis subsp. novicida is highly infectious for mice and has been widely used as a model for the human pathogen F. tularensis. Here, we established zebrafish embryo infection models of fluorescently labeled F. noatunensis subsp. noatunensis, F. noatunensis subsp. orientalis, and F. tularensis subsp. novicida at 22, 28, and 32°C, respectively. All infections led to significant bacterial growth, as shown by reverse transcription-quantitative PCR (RT-qPCR), and to a robust proinflammatory immune response, dominated by increased transcription of tumor necrosis factor alpha (TNF-α) and interleukin-1β (IL-1β). F. noatunensis subsp. orientalis was the most virulent, F. noatunensis subsp. noatunensis caused chronic infection, and F. tularensis subsp. novicida showed moderate virulence and led to formation of relatively small granuloma-like structures. The use of transgenic zebrafish strains with enhanced green fluorescent protein (EGFP)-labeled immune cells revealed their detailed interactions with Francisella species. All three strains entered preferentially into macrophages, which eventually assembled into granuloma-like structures. Entry into neutrophils was also observed, though the efficiency of this event depended on the route of infection. The results demonstrate the usefulness of the zebrafish embryo model for studying infections caused by different Francisella species at a wide range of temperatures and highlight their interactions with immune cells. PMID:24614659
Guidi, Valeria; Patocchi, Nicola; Lüthy, Peter; Tonolla, Mauro
2011-06-01
Recurrent treatments with Bacillus thuringiensis subsp. israelensis are required to control the floodwater mosquito Aedes vexans that breeds in large numbers in the wetlands of the Bolle di Magadino Reserve in Canton Ticino, Switzerland. Interventions have been carried out since 1988. In the present study, the spatial distribution of resting B. thuringiensis subsp. israelensis spores in the soil was measured. The B. thuringiensis subsp. israelensis concentration was determined in soil samples collected along six transects covering different elevations within the periodically flooded zones. A total of 258 samples were processed and analyzed by quantitative PCR that targeted an identical fragment of 159 bp for the B. thuringiensis subsp. israelensis cry4Aa and cry4Ba genes. B. thuringiensis subsp. israelensis spores were found to persist in soils of the wetland reserve at concentrations of up to 6.8 log per gram of soil. Continuous accumulation due to regular treatments could be excluded, as the decrease in spores amounted to 95.8% (95% confidence interval, 93.9 to 97.7%). The distribution of spores was correlated to the number of B. thuringiensis subsp. israelensis treatments, the elevation of the sampling point, and the duration of the flooding periods. The number of B. thuringiensis subsp. israelensis treatments was the major factor influencing the distribution of spores in the different topographic zones (P < 0.0001). These findings indicated that B. thuringiensis subsp. israelensis spores are rather immobile after their introduction into the environment.
Muranaka, Lígia S.; Giorgiano, Thais E.; Takita, Marco A.; Forim, Moacir R.; Silva, Luis F. C.; Coletta-Filho, Helvécio D.; Machado, Marcos A.; de Souza, Alessandra A.
2013-01-01
Xylella fastidiosa is a plant pathogen bacterium that causes diseases in many different crops. In citrus, it causes Citrus Variegated Chlorosis (CVC). The mechanism of pathogenicity of this bacterium is associated with its capacity to colonize and form a biofilm in the xylem vessels of host plants, and there is not yet any method to directly reduce populations of this pathogen in the field. In this study, we investigated the inhibitory effect of N-Acetylcysteine (NAC), a cysteine analogue used mainly to treat human diseases, on X. fastidiosa in different experimental conditions. Concentrations of NAC over 1 mg/mL reduced bacterial adhesion to glass surfaces, biofilm formation and the amount of exopolysaccharides (EPS). The minimal inhibitory concentration of NAC was 6 mg/mL. NAC was supplied to X. fastidiosa-infected plants in hydroponics, fertigation, and adsorbed to organic fertilizer (NAC-Fertilizer). HPLC analysis indicated that plants absorbed NAC at concentrations of 0.48 and 2.4 mg/mL but not at 6 mg/mL. Sweet orange plants with CVC symptoms treated with NAC (0.48 and 2.4 mg/mL) in hydroponics showed clear symptom remission and reduction in bacterial population, as analyzed by quantitative PCR and bacterial isolation. Experiments using fertigation and NAC-Fertilizer were done to simulate a condition closer to that normally is used in the field. For both, significant symptom remission and a reduced bacterial growth rate were observed. Using NAC-Fertilizer the lag for resurgence of symptoms on leaves after interruption of the treatment increased to around eight months. This is the first report of the anti-bacterial effect of NAC against a phytopathogenic bacterium. The results obtained in this work together with the characteristics of this molecule indicate that the use of NAC in agriculture might be a new and sustainable strategy for controlling plant pathogenic bacteria. PMID:24009716
A new member of the aldo-keto reductase family from the plant pathogen Xylella fastidiosa.
Rosselli, Luciana K; Oliveira, Cristiano L P; Azzoni, Adriano R; Tada, Susely F S; Catani, Cleide F; Saraiva, Antonio M; Soares, José Sérgio M; Medrano, Francisco J; Torriani, Iris L; Souza, Anete P
2006-09-15
The Xylella fastidiosa genome program generated a large number of gene sequences that belong to pathogenicity, virulence and adaptation categories from this important plant pathogen. One of these genes (XF1729) encodes a protein similar to a superfamily of aldo-keto reductase together with a number of structurally and functionally related NADPH-dependent oxidoreductases. In this work, the similar sequence XF1729 from X. fastidiosa was cloned onto the pET32Xa/LIC vector in order to overexpress a recombinant His-tag fusion protein in Escherichia coli BL21(DE3). The expressed protein in the soluble fraction was purified by immobilized metal affinity chromatography (agarose-IDA-Ni resin). Secondary structure contents were verified by circular dichroism spectroscopy. Small angle X-ray scattering (SAXS) measurements furnish general structural parameters and provide a strong indication that the protein has a monomeric form in solution. Also, ab initio calculations show that the protein has some similarities with a previously crystallized aldo-keto reductase protein. The recombinant XF1729 purified to homogeneity catalyzed the reduction of dl-glyceraldehyde (K(cat) 2.26s(-1), Km 8.20+/-0.98 mM) and 2-nitrobenzaldehyde (K(cat) 11.74 s(-1), Km 0.14+/-0.04 mM) in the presence of NADPH. The amino acid sequence deduced from XF1729 showed the highest identity (40% or higher) with several functional unknown proteins. Among the identified AKRs, we found approximately 29% of identity with YakC (AKR13), 30 and 28% with AKR11A and AKR11B, respectively. The results establish XF1729 as the new member of AKR family, AKR13B1. Finally, the first characterization by gel filtration chromatography assays indicates that the protein has an elongated shape, which generates an apparent higher molecular weight. The study of this protein is an effort to fight X. fastidiosa, which causes tremendous losses in many economically important plants.
Muranaka, Lígia S; Giorgiano, Thais E; Takita, Marco A; Forim, Moacir R; Silva, Luis F C; Coletta-Filho, Helvécio D; Machado, Marcos A; de Souza, Alessandra A
2013-01-01
Xylella fastidiosa is a plant pathogen bacterium that causes diseases in many different crops. In citrus, it causes Citrus Variegated Chlorosis (CVC). The mechanism of pathogenicity of this bacterium is associated with its capacity to colonize and form a biofilm in the xylem vessels of host plants, and there is not yet any method to directly reduce populations of this pathogen in the field. In this study, we investigated the inhibitory effect of N-Acetylcysteine (NAC), a cysteine analogue used mainly to treat human diseases, on X. fastidiosa in different experimental conditions. Concentrations of NAC over 1 mg/mL reduced bacterial adhesion to glass surfaces, biofilm formation and the amount of exopolysaccharides (EPS). The minimal inhibitory concentration of NAC was 6 mg/mL. NAC was supplied to X. fastidiosa-infected plants in hydroponics, fertigation, and adsorbed to organic fertilizer (NAC-Fertilizer). HPLC analysis indicated that plants absorbed NAC at concentrations of 0.48 and 2.4 mg/mL but not at 6 mg/mL. Sweet orange plants with CVC symptoms treated with NAC (0.48 and 2.4 mg/mL) in hydroponics showed clear symptom remission and reduction in bacterial population, as analyzed by quantitative PCR and bacterial isolation. Experiments using fertigation and NAC-Fertilizer were done to simulate a condition closer to that normally is used in the field. For both, significant symptom remission and a reduced bacterial growth rate were observed. Using NAC-Fertilizer the lag for resurgence of symptoms on leaves after interruption of the treatment increased to around eight months. This is the first report of the anti-bacterial effect of NAC against a phytopathogenic bacterium. The results obtained in this work together with the characteristics of this molecule indicate that the use of NAC in agriculture might be a new and sustainable strategy for controlling plant pathogenic bacteria.
Santiago, André S; Santos, Clelton A; Mendes, Juliano S; Toledo, Marcelo A S; Beloti, Lilian L; Souza, Alessandra A; Souza, Anete P
2015-09-01
The Xylella fastidiosa 9a5c strain is a xylem-limited phytopathogen that is the causal agent of citrus variegated chlorosis (CVC). This bacterium is able to form a biofilm and occlude the xylem vessels of susceptible plants, which leads to significant agricultural and economic losses. Biofilms are associated with bacterial pathogenicity because they are very resistant to antibiotics and other metal-based chemicals that are used in agriculture. The X. fastidiosa YcjZ-like (XfYcjZ-like) protein belongs to the LysR-type transcriptional regulator (LTTR) family and is involved in various cellular functions that range from quorum sensing to bacterial survival. In the present study, we report the cloning, expression and purification of XfYcjZ-like, which was overexpressed in Escherichia coli. The secondary folding of the recombinant and purified protein was assessed by circular dichroism, which revealed that XfYcjZ-like contains a typical α/β fold. An initial hydrodynamic characterization showed that XfYcjZ-like is a globular tetramer in solution. In addition, using a polyclonal antibody against XfYcjZ-like, we assessed the expression profile of this protein during the different developmental phases of X. fastidiosa in in vitro cultivated biofilm cells and demonstrated that XfYcjZ-like is upregulated in planktonic cells in response to a copper shock treatment. Finally, the ability of XfYcjZ-like to interact with its own predicted promoter was confirmed in vitro, which is a typical feature of LysR. Taken together, our findings indicated that the XfYcjZ-like protein is involved in both the organization of the architecture and the maturation of the bacterial biofilm and that it is responsive to oxidative stress. Copyright © 2015 Elsevier Inc. All rights reserved.
Backus, Elaine A; Andrews, Kim B; Shugart, Holly J; Carl Greve, L; Labavitch, John M; Alhaddad, Hasan
2012-07-01
A few phytophagous hemipteran species such as the glassy-winged sharpshooter, Homalodisca vitripennis, (Germar), subsist entirely on xylem fluid. Although poorly understood, aspects of the insect's salivary physiology may facilitate both xylem-feeding and transmission of plant pathogens. Xylella fastidiosa is a xylem-limited bacterium that causes Pierce's disease of grape and other scorch diseases in many important crops. X. fastidiosa colonizes the anterior foregut (precibarium and cibarium) of H. vitripennis and other xylem-feeding vectors. Bacteria form a dense biofilm anchored in part by an exopolysaccharide (EPS) matrix that is reported to have a β-1,4-glucan backbone. Recently published evidence supports the following, salivation-egestion hypothesis for the inoculation of X. fastidiosa during vector feeding. The insect secretes saliva into the plant and then rapidly takes up a mixture of saliva and plant constituents. During turbulent fluid movements in the precibarium, the bacteria may become mechanically and enzymatically dislodged; the mixture is then egested back out through the stylets into plant cells, possibly including xylem vessels. The present study found that proteins extracted from dissected H. vitripennis salivary glands contain several enzyme activities capable of hydrolyzing glycosidic linkages in polysaccharides such as those found in EPS and plant cell walls, based on current information about the structures of those polysaccharides. One of these enzymes, a β-1,4-endoglucanase (EGase) was enriched in the salivary gland protein extract by subjecting the extract to a few, simple purification steps. The EGase-enriched extract was then used to generate a polyclonal antiserum that was used for immunohistochemical imaging of enzymes in sharpshooter salivary sheaths in grape. Results showed that enzyme-containing gelling saliva is injected into xylem vessels during sharpshooter feeding, in one case being carried by the transpiration stream away from the injection site. Thus, the present study provides support for the salivation-egestion hypothesis. Published by Elsevier Ltd.
Lee, I M; Bartoszyk, I M; Gundersen, D E; Mogen, B; Davis, R E
1997-07-01
Oligonucleotide primers derived from sequences of the 16S rRNA gene (CMR16F1, CMR16R1, CMR16F2, and CMR16R2) and insertion element IS1121 of Clavibacter michiganensis subsp. sepedonicus (CMSIF1, CMSIR1, CMSIF2, and CMISR2) were used in nested PCR to detect the potato ring rot bacterium C. michiganensis subsp. sepedonicus. Nested PCR with primer pair CMSIF1-CMSIR1 followed by primer pair CMSIF2-CMSIR2 specifically detected C. michiganensis subsp. sepedonicus, while nested PCR with CMR16F1-CMR16R1 followed by CMR16F2-CMR16R2 detected C. michiganensis subsp. sepedonicus and the other C. michiganensis subspecies. In the latter case, C. michiganensis subsp. sepedonicus can be differentiated from the other subspecies by restriction fragment length polymorphism (RFLP) analyses of the nested PCR products (16S rDNA sequences). The nested PCR assays developed in this work allow ultrasensitive detection of very low titers of C. michiganensis subsp. sepedonicus which may be present in symptomiess potato plants or tubers and which cannot be readily detected by direct PCR (single PCR amplification). RFLP analysis of PCR products provides for an unambiguous confirmation of the identify of C. michiganensis subsp. sepedonicus.
Adams
2000-07-01
The composition of the leaf essential oils of all the species of Juniperus in sect. Juniperus (=sect. Oxycedrus) are reported and compared (J. brevifolia, J. cedrus, J. communis, J. c. var. saxatilis, J. c. var. oblonga, J. formosana, J. oxycedrus, J. o. subsp. badia, J. o. subsp. macrocarpa, J. o. subsp. transtagana, J. rigida, J. r. subsp. conferta, J. sibirica, J. taxifolia and J. t. var. lutchuensis). In addition, DNA fingerprinting by RAPDs was utilized. Based on these data, several taxa remained at the same taxonomic level: J. brevifolia, J. cedrus, J. communis, J. c. var. saxatilis, J. formosana, J. oxycedrus, J. rigida, J. r. var. conferta, and J. taxifolia. However, several taxa exhibited considerable differentiation that warranted their recognition at the specific level: J. oblonga M.-Bieb. (=J. communis var. oblonga), J. badia H. Gay (=J. oxycedrus subsp. badia), J. macrocarpa Sibth. and Sm. (=J. oxycedrus subsp. macrocarpa), J. navicularis Gand. (=J. oxycedrus subsp. transtagana), J. sibirica Brugsd. (=J. communis var. saxatilis in part), and J. lutchuensis Koidz. (= J. taxifolia var. lutchuensis).
Mirza, M S; Rademaker, J L; Janse, J D; Akkermans, A D
1993-11-01
In this article we report on the polymerase chain reaction amplification of a partial 16S rRNA gene from the plant pathogenic bacterium Clavibacter michiganensis subsp. sepedonicus. A partial sequence (about 400 base pairs) of the gene was determined that covered two variable regions important for oligonucleotide probe development. A specific 24mer oligonucleotide probe targeted against the V6 region of 16S rRNA was designed. Specificity of the probe was determined using dot blot hybridization. Under stringent conditions (60 degrees C), the probe hybridized with all 16 Cl. michiganensis subsp. sepedonicus strains tested. Hybridization did not occur with 32 plant pathogenic and saprophytic bacteria used as controls under the same conditions. Under less stringent conditions (55 degrees C) the related Clavibacter michiganensis subsp. insidiosus, Clavibacter michiganensis subsp. nebraskensis, and Clavibacter michiganensis subsp. tesselarius also showed hybridization. At even lower stringency (40 degrees C), all Cl. michiganensis subspecies tested including Clavibacter michiganensis subsp. michiganensis showed hybridization signal, suggesting that under these conditions the probe may be used as a species-specific probe for Cl. michiganensis.
Wang, Chuan; Zhang, Chaowu; Pei, Xiaofang; Liu, Hengchuan
2007-11-01
For being further applied and studied, one strain of Lactobacillus delbrueckii subsp. bulgaricus (wch9901) separated from yoghourt which had been identified by phenotype characteristic analysis was identified by 16S rDNA and phylogenetic analyzed. The 16S rDNA of wch9901 was amplified with the genomic DNA of wch9901 as template, and the conservative sequences of the 16S rDNA as primers. Inserted 16S rDNA amplified into clonal vector pGEM-T under the function of T4 DNA ligase to construct recombined plasmid pGEM-wch9901 16S rDNA. The recombined plasmid was identified by restriction enzyme digestion, and the eligible plasmid was presented to sequencing company for DNA sequencing. Nucleic acid sequence was blast in GenBank and phylogenetic tree was constructed using neighbor-joining method of distance methods by Mega3.1 soft. Results of blastn showed that the homology of 16S rDNA of wch9901 with the 16S rDNA of Lactobacillus delbrueckii subsp. bulgaricus strains was higher than 96%. On the phylogenetic tree, wch9901 formed a separate branch and located between Lactobacillus delbrueckii subsp. bulgaricus LGM2 evolution branch and another evolution branch which was composed of Lactobacillus delbrueckii subsp. bulgaricus DL2 evolution cluster and Lactobacillus delbrueckii subsp. bulgaricus JSQ evolution cluster. The distance between wch9901 evolution branch and Lactobacillus delbrueckii subsp. bulgaricus LGM2 evolution branch was the closest. wch9901 belonged to Lactobacillus delbrueckii subsp. bulgaricus. wch9901 showed the closest evolution relationship to Lactobacillus delbrueckii subsp. bulgaricus LGM2.
Taxonomic Subgroups of Pasteurella multocida Correlate with Clinical Presentation
Chen, Henry I.; Hulten, Kristina; Clarridge III, Jill E.
2002-01-01
Pasteurella multocida is a small nonmotile gram-negative coccobacillus that is found in the nasopharynx and gastrointestinal tract of many wild and domesticated animals. In humans it most commonly causes cellulitis and localized superficial skin abscesses following an animal bite or scratch. The respiratory tract is the second most common site of infection for Pasteurella. Of the more than 17 species of Pasteurella known, Pasteurella multocida subsp. multocida and Pasteurella multocida subsp. septica are among the most common pathogens in humans. With the use of molecular techniques, distinction between different subspecies of P. multocida can be made more easily and accurately. We used the sequence of the 16S ribosomal DNA (rDNA) and repetitive extragenic palindromic sequence-PCR (REP-PCR) to characterize 20 strains (14 of P. multocida subsp. multocida and 6 of P. multocida subsp. septica; the 16S rDNA is identical for P. multocida subsp. multocida and Pasteurella multocida subsp. gallicida but differs from that of P. multocida subsp. septica) isolated from various anatomic sites. We found excellent correlation between the 16S rDNA sequence (a marker for a small conserved region of the genome), REP-PCR (a marker for a large portion of the genome), and biochemical tests (trehalose and sorbitol). We also found a correlation between the clinical presentation and the taxonomic group, with P. multocida subsp. septica more often associated with wounds than with respiratory infections (67 versus 17%, respectively) (P < 0.05, Z test) and P. multocida subsp. multocida more often associated with respiratory infections than with wounds (71 versus 14%, respectively) (P < 0.05, Z test). PMID:12202590
Mundo, Silvia Leonor; Gilardoni, Liliana Rosa; Hoffman, Federico José; Lopez, Osvaldo Jorge
2013-03-01
Paratuberculosis is an infectious, chronic, and incurable disease that affects ruminants, caused by Mycobacterium avium subsp. paratuberculosis. This bacterium is shed primarily through feces of infected cows but can be also excreted in colostrum and milk and might survive pasteurization. Since an association of genomic sequences of M. avium subsp. paratuberculosis in patients with Crohn's disease has been described; it is of interest to rapidly detect M. avium subsp. paratuberculosis in milk for human consumption. IS900 insertion is used as a target for PCR amplification to identify the presence of M. avium subsp. paratuberculosis in biological samples. Two target sequences were selected: IS1 (155 bp) and IS2 (94 bp). These fragments have a 100% identity among all M. avium subsp. paratuberculosis strains sequenced. M. avium subsp. paratuberculosis was specifically concentrated from milk samples by immunomagnetic separation prior to performing PCR. The amplicons were characterized using DNA methylase Genotyping, i.e., the amplicons were methylated with 6-methyl-adenine and digested with restriction enzymes to confirm their identity. The methylated amplicons from 100 CFU of M. avium subsp. paratuberculosis can be visualized in a Western blot format using an anti-6-methyl-adenine monoclonal antibody. The use of DNA methyltransferase genotyping coupled to a scintillation proximity assay allows for the detection of up to 10 CFU of M. avium subsp. paratuberculosis per ml of milk. This test is rapid and sensitive and allows for automation and thus multiple samples can be tested at the same time.
Mundo, Silvia Leonor; Gilardoni, Liliana Rosa; Hoffman, Federico José
2013-01-01
Paratuberculosis is an infectious, chronic, and incurable disease that affects ruminants, caused by Mycobacterium avium subsp. paratuberculosis. This bacterium is shed primarily through feces of infected cows but can be also excreted in colostrum and milk and might survive pasteurization. Since an association of genomic sequences of M. avium subsp. paratuberculosis in patients with Crohn's disease has been described; it is of interest to rapidly detect M. avium subsp. paratuberculosis in milk for human consumption. IS900 insertion is used as a target for PCR amplification to identify the presence of M. avium subsp. paratuberculosis in biological samples. Two target sequences were selected: IS1 (155 bp) and IS2 (94 bp). These fragments have a 100% identity among all M. avium subsp. paratuberculosis strains sequenced. M. avium subsp. paratuberculosis was specifically concentrated from milk samples by immunomagnetic separation prior to performing PCR. The amplicons were characterized using DNA methylase Genotyping, i.e., the amplicons were methylated with 6-methyl-adenine and digested with restriction enzymes to confirm their identity. The methylated amplicons from 100 CFU of M. avium subsp. paratuberculosis can be visualized in a Western blot format using an anti-6-methyl-adenine monoclonal antibody. The use of DNA methyltransferase genotyping coupled to a scintillation proximity assay allows for the detection of up to 10 CFU of M. avium subsp. paratuberculosis per ml of milk. This test is rapid and sensitive and allows for automation and thus multiple samples can be tested at the same time. PMID:23275511
Tohno, Masanori; Kobayashi, Hisami; Nomura, Masaru; Uegaki, Ryuichi; Cai, Yimin
2012-04-01
In order to understand the relationship between lactic acid bacteria (LAB) species and silage fermentation, a total of 65 LAB strains isolated from mixed pasture of timothy (Phleum pratense L.) and orchardgrass (Dactylis glomerata L.), and its badly preserved silages were subjected to phenotypic and genetic analysis. According to these analyses, the isolates were divided into 13 groups, including Enterococcus gallinarum, Lactobacillus acidipiscis, L. coryniformis subsp. coryniformis, L. coryniformis subsp. torquens, L. curvatus, L. paraplantarum, L. plantarum subsp. argentoratensis, L. plantarum subsp. plantarum, L. sakei subsp. carnosus, Lactococcus garvieae, Lactococcus lactis subsp. cremoris, Leuconostoc pseudomesenteroides, Pediococcus acidilactici, Pediococcus pentosaceus, Weissella hellenica, Weissella paramesenteroides and Carnobacterium divergens. This is the first report to document that C. divergens, L. acidipiscis, L. sakei subsp. carnosus, L. garvieae, phenotypically novel L. lactis subsp. cremoris, E. gallinarum and W. hellenica are present in vegetative forage crops. L. plantarum group strains were most frequently isolated from the badly preserved silages. Some isolates showed a wide range of growth preferences for carbohydrate utilization, optimal growth pH and temperature in vitro, indicating that they have a high growth potential. These results are useful in understanding the diversity of LAB associated with decayed silage of timothy and orchardgrass. © 2011 The Authors. Animal Science Journal © 2011 Japanese Society of Animal Science.
Corroler, D.; Mangin, I.; Desmasures, N.; Gueguen, M.
1998-01-01
The genetic diversity of lactococci isolated from raw milk in the Camembert cheese Registered Designation of Origin area was studied. Two seasonal samples (winter and summer) of raw milk were obtained from six farms in two areas (Bessin and Bocage Falaisien) of Normandy. All of the strains analyzed had a Lactococcus lactis subsp. lactis phenotype, whereas the randomly amplified polymorphic DNA (RAPD) technique genotypically identified the strains as members of L. lactis subsp. lactis or L. lactis subsp. cremoris. The genotypes were confirmed by performing standard PCR with primers corresponding to a region of the histidine biosynthesis operon. The geographic distribution of each subspecies of L. lactis was determined; 80% of the Bocage Falaisien strains were members of L. lactis subsp. lactis, and 30.5% of the Bessin strains were members of L. lactis subsp. lactis. A dendrogram was produced from a computer analysis of the RAPD profiles in order to evaluate the diversity of the lactococci below the subspecies level. The coefficient of similarity for 117 of the 139 strains identified as members of L. lactis subsp. cremoris was as high as 66%. The L. lactis subsp. lactis strains were more heterogeneous and formed 10 separate clusters (the level of similarity among the clusters was 18%). Reference strains of L. lactis subsp. lactis fell into 2 of these 10 clusters, demonstrating that lactococcal isolates are clearly different. As determined by the RAPD profiles, some L. lactis subsp. lactis strains were specific to the farms from which they originated and were recovered throughout the year (in both summer and winter). Therefore, the typicality of L. lactis subsp. lactis strains was linked to the farm of origin rather than the area. These findings emphasize the significance of designation of origin and the specificity of “Camembert de Normandie” cheese. PMID:9835555
Corroler, D; Mangin, I; Desmasures, N; Gueguen, M
1998-12-01
The genetic diversity of lactococci isolated from raw milk in the Camembert cheese Registered Designation of Origin area was studied. Two seasonal samples (winter and summer) of raw milk were obtained from six farms in two areas (Bessin and Bocage Falaisien) of Normandy. All of the strains analyzed had a Lactococcus lactis subsp. lactis phenotype, whereas the randomly amplified polymorphic DNA (RAPD) technique genotypically identified the strains as members of L. lactis subsp. lactis or L. lactis subsp. cremoris. The genotypes were confirmed by performing standard PCR with primers corresponding to a region of the histidine biosynthesis operon. The geographic distribution of each subspecies of L. lactis was determined; 80% of the Bocage Falaisien strains were members of L. lactis subsp. lactis, and 30.5% of the Bessin strains were members of L. lactis subsp. lactis. A dendrogram was produced from a computer analysis of the RAPD profiles in order to evaluate the diversity of the lactococci below the subspecies level. The coefficient of similarity for 117 of the 139 strains identified as members of L. lactis subsp. cremoris was as high as 66%. The L. lactis subsp. lactis strains were more heterogeneous and formed 10 separate clusters (the level of similarity among the clusters was 18%). Reference strains of L. lactis subsp. lactis fell into 2 of these 10 clusters, demonstrating that lactococcal isolates are clearly different. As determined by the RAPD profiles, some L. lactis subsp. lactis strains were specific to the farms from which they originated and were recovered throughout the year (in both summer and winter). Therefore, the typicality of L. lactis subsp. lactis strains was linked to the farm of origin rather than the area. These findings emphasize the significance of designation of origin and the specificity of "Camembert de Normandie" cheese.
Pachschwöll, Clemens; Escobar García, Pedro; Winkler, Manuela; Schneeweiss, Gerald M.; Schönswetter, Peter
2015-01-01
Range shifts (especially during the Pleistocene), polyploidisation and hybridization are major factors affecting high-mountain biodiversity. A good system to study their role in the European high mountains is the Doronicum clusii aggregate (Asteraceae), whose four taxa (D. clusii s.s., D. stiriacum, D. glaciale subsp. glaciale and D. glaciale subsp. calcareum) are differentiated geographically, ecologically (basiphilous versus silicicolous) and/or via their ploidy levels (diploid versus tetraploid). Here, we use DNA sequences (three plastid and one nuclear spacer) and AFLP fingerprinting data generated for 58 populations to infer phylogenetic relationships, origin of polyploids—whose ploidy level was confirmed by chromosomally calibrated DNA ploidy level estimates—and phylogeographic history. Taxonomic conclusions were informed, among others, by a Gaussian clustering method for species delimitation using dominant multilocus data. Based on molecular data we identified three lineages: (i) silicicolous diploid D. clusii s.s. in the Alps, (ii) silicicolous tetraploid D. stiriacum in the eastern Alps (outside the range of D. clusii s.s.) and the Carpathians and (iii) the basiphilous diploids D. glaciale subsp. glaciale (eastern Alps) and D. glaciale subsp. calcareum (northeastern Alps); each taxon was identified as distinct by the Gaussian clustering, but the separation of D. glaciale subsp. calcareum and D. glaciale subsp. glaciale was not stable, supporting their taxonomic treatment as subspecies. Carpathian and Alpine populations of D. stiriacum were genetically differentiated suggesting phases of vicariance, probably during the Pleistocene. The origin (autopolyploid versus allopolyploid) of D. stiriacum remained unclear. Doronicum glaciale subsp. calcareum was genetically and morphologically weakly separated from D. glaciale subsp. glaciale but exhibited significantly higher genetic diversity and rarity. This suggests that the more widespread D. glaciale subsp. glaciale originated from D. glaciale subsp. calcareum, which is restricted to a prominent Pleistocene refugium previously identified in other alpine plant species. PMID:25749621
Bradner, L; Robbe-Austerman, S; Beitz, D C; Stabel, J R
2013-07-01
Mycobacterium avium subsp. paratuberculosis is shed into the milk and feces of cows with advanced Johne's disease, allowing the transmission of M. avium subsp. paratuberculosis between animals. The objective of this study was to formulate an optimized protocol for the isolation of M. avium subsp. paratuberculosis in milk. The parameters investigated included chemical decontamination with N-acetyl-l-cysteine-sodium hydroxide (NALC-NaOH), alone and in combination with antibiotics (vancomycin, amphotericin B, and nalidixic acid), and the efficacy of solid (Herrold's egg yolk medium [HEY]) and liquid (Bactec 12B and para-JEM) culture media. For each experiment, raw milk samples from a known noninfected cow were inoculated with 10(2) to 10(8) CFU/ml of live M. avium subsp. paratuberculosis organisms. The results indicate that an increased length of exposure to NALC-NaOH from 5 to 30 min and an increased concentration of NaOH from 0.5 to 2.0% did not affect the viability of M. avium subsp. paratuberculosis. Additional treatment of milk samples with the antibiotics following NALC-NaOH treatment decreased the recovery of viable M. avium subsp. paratuberculosis cells more than treatment with NALC-NaOH alone. The Bactec 12B medium was the superior medium of the three evaluated for the isolation of M. avium subsp. paratuberculosis from milk, as it achieved the lowest threshold of detection. The optimal conditions for NALC-NaOH decontamination were determined to be exposure to 1.50% NaOH for 15 min followed by culture in Bactec 12B medium. This study demonstrates that chemical decontamination with NALC-NaOH resulted in a greater recovery of viable M. avium subsp. paratuberculosis cells from milk than from samples treated with hexadecylpyridinium chloride (HPC). Therefore, it is important to optimize milk decontamination protocols to ensure that low concentrations of M. avium subsp. paratuberculosis can be detected.
Sung, Nackmoon; Collins, Michael T.
2000-01-01
Low pH and salt are two factors contributing to the inactivation of bacterial pathogens during a 60-day curing period for cheese. The kinetics of inactivation for Mycobacterium avium subsp. paratuberculosis strains ATCC 19698 and Dominic were measured at 20°C under different pH and NaCl conditions commonly used in processing cheese. The corresponding D values (decimal reduction times; the time required to kill 1 log10 concentration of bacteria) were measured. Also measured were the D values for heat-treated and nonheated M. avium subsp. paratuberculosis in 50 mM acetate buffer (pH 5.0, 2% [wt/vol] NaCl) and a soft white Hispanic-style cheese (pH 6.0, 2% [wt/vol] NaCl). Samples were removed at various intervals until no viable cells were detected using the radiometric culture method (BACTEC) for enumeration of M. avium subsp. paratuberculosis. NaCl had little or no effect on the inactivation of M. avium subsp. paratuberculosis, and increasing NaCl concentrations were not associated with decreasing D values (faster killing) in the acetate buffer. Lower pHs, however, were significantly correlated with decreasing D values of M. avium subsp. paratuberculosis in the acetate buffer. The D values for heat-treated M. avium subsp. paratuberculosis ATCC 19698 in the cheese were higher than those predicted by studies done in acetate buffer. The heat-treated M. avium subsp. paratuberculosis strains had lower D values than the nonheated cells (faster killing) both in the acetate buffer (pH 5, 2% [wt/vol] NaCl) and in the soft white cheese. The D value for heat-treated M. avium subsp. paratuberculosis ATCC 19698 in the cheese (36.5 days) suggests that heat treatment of raw milk coupled with a 60-day curing period will inactivate about 103 cells of M. avium subsp. paratuberculosis per ml. PMID:10742208
Rose, Sasha J; Bermudez, Luiz E
2014-01-01
Mycobacterium avium subsp. hominissuis is an opportunistic human pathogen that has been shown to form biofilm in vitro and in vivo. Biofilm formation in vivo appears to be associated with infections in the respiratory tract of the host. The reasoning behind how M. avium subsp. hominissuis biofilm is allowed to establish and persist without being cleared by the innate immune system is currently unknown. To identify the mechanism responsible for this, we developed an in vitro model using THP-1 human mononuclear phagocytes cocultured with established M. avium subsp. hominissuis biofilm and surveyed various aspects of the interaction, including phagocyte stimulation and response, bacterial killing, and apoptosis. M. avium subsp. hominissuis biofilm triggered robust tumor necrosis factor alpha (TNF-α) release from THP-1 cells as well as superoxide and nitric oxide production. Surprisingly, the hyperstimulated phagocytes did not effectively eliminate the cells of the biofilm, even when prestimulated with gamma interferon (IFN-γ) or TNF-α or cocultured with natural killer cells (which have been shown to induce anti-M. avium subsp. hominissuis activity when added to THP-1 cells infected with planktonic M. avium subsp. hominissuis). Time-lapse microscopy and the TUNEL (terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end labeling) assay determined that contact with the M. avium subsp. hominissuis biofilm led to early, widespread onset of apoptosis, which is not seen until much later in planktonic M. avium subsp. hominissuis infection. Blocking TNF-α or TNF-R1 during interaction with the biofilm significantly reduced THP-1 apoptosis but did not lead to elimination of M. avium subsp. hominissuis. Our data collectively indicate that M. avium subsp. hominissuis biofilm induces TNF-α-driven hyperstimulation and apoptosis of surveilling phagocytes, which prevents clearance of the biofilm by cells of the innate immune system and allows the biofilm-associated infection to persist.
Tancos, Matthew A; Chalupowicz, Laura; Barash, Isaac; Manulis-Sasson, Shulamit; Smart, Christine D
2013-11-01
The Gram-positive bacterium Clavibacter michiganensis subsp. michiganensis, causal agent of bacterial wilt and canker of tomato, is an economically devastating pathogen that inflicts considerable damage throughout all major tomato-producing regions. Annual outbreaks continue to occur in New York, where C. michiganensis subsp. michiganensis spreads via infected transplants, trellising stakes, tools, and/or soil. Globally, new outbreaks can be accompanied by the introduction of contaminated seed stock; however, the route of seed infection, especially the role of fruit lesions, remains undefined. In order to investigate the modes of seed infection, New York C. michiganensis subsp. michiganensis field strains were stably transformed with a gene encoding enhanced green fluorescent protein (eGFP). A constitutively eGFP-expressing virulent C. michiganensis subsp. michiganensis isolate, GCMM-22, was used to demonstrate that C. michiganensis subsp. michiganensis could not only access seeds systemically through the xylem but also externally through tomato fruit lesions, which harbored high intra- and intercellular populations. Active movement and expansion of bacteria into the fruit mesocarp and nearby xylem vessels followed, once the fruits began to ripen. These results highlight the ability of C. michiganensis subsp. michiganensis to invade tomato fruits and seeds through multiple entry routes.
Tancos, Matthew A.; Chalupowicz, Laura; Barash, Isaac; Manulis-Sasson, Shulamit
2013-01-01
The Gram-positive bacterium Clavibacter michiganensis subsp. michiganensis, causal agent of bacterial wilt and canker of tomato, is an economically devastating pathogen that inflicts considerable damage throughout all major tomato-producing regions. Annual outbreaks continue to occur in New York, where C. michiganensis subsp. michiganensis spreads via infected transplants, trellising stakes, tools, and/or soil. Globally, new outbreaks can be accompanied by the introduction of contaminated seed stock; however, the route of seed infection, especially the role of fruit lesions, remains undefined. In order to investigate the modes of seed infection, New York C. michiganensis subsp. michiganensis field strains were stably transformed with a gene encoding enhanced green fluorescent protein (eGFP). A constitutively eGFP-expressing virulent C. michiganensis subsp. michiganensis isolate, GCMM-22, was used to demonstrate that C. michiganensis subsp. michiganensis could not only access seeds systemically through the xylem but also externally through tomato fruit lesions, which harbored high intra- and intercellular populations. Active movement and expansion of bacteria into the fruit mesocarp and nearby xylem vessels followed, once the fruits began to ripen. These results highlight the ability of C. michiganensis subsp. michiganensis to invade tomato fruits and seeds through multiple entry routes. PMID:24014525
Tepe, Bektas; Sokmen, Atalay
2007-11-01
Methanolic extracts of three different Tanacetum subspecies [Tanacetum densum (Lab.) Schultz Bip. subsp. sivasicum Hub-Mor and Grierson, Tanacetum densum (Lab.) Schultz Bip. subsp. eginense Heywood and Tanacetum densum (Lab.) Schultz Bip. subsp. amani Heywood] which are endemic to Turkish flora were screened for their possible antioxidant activities by two complementary test systems namely DPPH free radical scavenging and beta-carotene/linoleic acid. In DPPH system, the most active plant was T. densum subsp. amani with an IC(50) value of 69.30+/-0.37 microg/ml. On the other hand, T. densum subsp. sivasicum exerted greater antioxidant activity than those of other subspecies in beta-carotene/linoleic acid system (79.10%+/-1.83). Antioxidant activities of BHT, curcumine and ascorbic acid were also determined as positive controls in parallel experiments. Total phenolic constituents of the extracts of Tanacetum subspecies were performed employing the literature methods involving Folin-Ciocalteu reagent and gallic acid as standard. The amount of total phenolics was highest in subsp. sivasicum (162.33+/-3.57 microg/mg), followed by subsp. amani (158.44+/-2.17 microg/mg). Especially, a positive correlation was observed between total phenolic content and antioxidant activity of the extracts.
Yasuhara-Bell, Jarred; Kubota, Ryo; Jenkins, Daniel M; Alvarez, Anne M
2013-12-01
Loop-mediated amplification (LAMP) was used to specifically identify Clavibacter michiganensis subsp. michiganensis, causal agent of bacterial canker of tomato. LAMP primers were developed to detect micA, a chromosomally stable gene that encodes a type II lantibiotic, michiganin A, which inhibits growth of other C. michiganensis subspecies. In all, 409 bacterial strains (351 C. michiganensis subsp. michiganensis and 58 non-C. michiganensis subsp. michiganensis) from a worldwide collection were tested with LAMP to determine its specificity. LAMP results were compared with genetic profiles established using polymerase chain reaction (PCR) amplification of seven genes (dnaA, ppaJ, pat-1, chpC, tomA, ppaA, and ppaC). C. michiganensis subsp. michiganensis strains produced eight distinct profiles. The LAMP reaction identified all C. michiganensis subsp. michiganensis strains and discriminated them from other C. michiganensis subspecies and non-Clavibacter bacteria. LAMP has advantages over immunodiagnostic and other molecular detection methods because of its specificity and isothermal nature, which allows for easy field application. The LAMP reaction is also not affected by as many inhibitors as PCR. This diagnostic tool has potential to provide an easy, one-step test for rapid identification of C. michiganensis subsp. michiganensis.
Environmental Mycobacterium avium subsp. paratuberculosis hosted by free-living amoebae
USDA-ARS?s Scientific Manuscript database
Mycobacterium avium subsp. paratuberculosis is responsible for paratuberculosis in animals. This disease, leading to an inflammation of the gastrointestinal tract, has a high impact on animal health and an important economic burden. The environmental life cycle of Mycobacterium avium subsp. paratube...
Laiño, Jonathan Emiliano; Hebert, Elvira María; Savoy de Giori, Graciela; LeBlanc, Jean Guy
2015-06-25
Lactobacillus delbrueckii subsp. bulgaricus CRL871 is the first strain of L. delbrueckii subsp. bulgaricus reported as a folate-producing strain. We report the draft genome sequence of L. delbrueckii subsp. bulgaricus CRL871 (2,063,981 bp, G+C content of 49.1%). This strain is of great biotechnological importance to the dairy industry because it constitutes an alternative to folic acid fortification. Copyright © 2015 Laiño et al.
Yasuhara-Bell, Jarred; Alvarez, Anne M
2015-03-01
The genus Clavibacter contains one recognized species, Clavibacter michiganensis. Clavibacter michiganensis is subdivided into subspecies based on host specificity and bacteriological characteristics, with Clavibacter michiganensis subsp. michiganensis causing bacterial canker of tomato. Clavibacter michiganensis subsp. michiganensis is often spread through contaminated seed leading to outbreaks of bacterial canker in tomato production areas worldwide. The frequent occurrence of non-pathogenic Clavibacter michiganensis subsp. michiganensis-like bacteria (CMB) is a concern for seed producers because Clavibacter michiganensis subsp. michiganensis is a quarantine organism and detection of a non-pathogenic variant may result in destruction of an otherwise healthy seed lot. A thorough biological and genetic characterization of these seed-associated CMB strains was performed using standard biochemical tests, cell wall analyses, metabolic profiling using Biolog, and single-gene and multilocus sequence analyses. Combined, these tests revealed two distinct populations of seed-associated members of the genus Clavibacter that differed from each other, as well as from all other described subspecies of Clavibacter michiganensis. DNA-DNA hybridization values are 70 % or higher, justifying placement into the single recognized species, C. michiganensis, but other analyses justify separate subspecies designations. Additionally, strains belonging to the genus Clavibacter isolated from pepper also represent a distinct population and warrant separate subspecies designation. On the basis of these data we propose subspecies designations for separate non-pathogenic subpopulations of Clavibacter michiganensis: Clavibacter michiganensis subsp. californiensis subsp. nov. and Clavibacter michiganensis subsp. chilensis subsp. nov. for seed-associated strains represented by C55(T) ( = ATCC BAA-2691(T) = CFBP 8216(T)) and ZUM3936(T) ( = ATCC BAA-2690(T) = CFBP 8217(T)), respectively. Recognition of separate subspecies is essential for improved international seed testing operations. © 2015 IUMS.
Grant, Irene R; Williams, Alan G; Rowe, Michael T; Muir, D Donald
2005-06-01
The effect of various pasteurization time-temperature conditions with and without homogenization on the viability of Mycobacterium avium subsp. paratuberculosis was investigated using a pilot-scale commercial high-temperature, short-time (HTST) pasteurizer and raw milk spiked with 10(1) to 10(5) M. avium subsp. paratuberculosis cells/ml. Viable M. avium subsp. paratuberculosis was cultured from 27 (3.3%) of 816 pasteurized milk samples overall, 5 on Herrold's egg yolk medium and 22 by BACTEC culture. Therefore, in 96.7% of samples, M. avium subsp. paratuberculosis had been completely inactivated by HTST pasteurization, alone or in combination with homogenization. Heat treatments incorporating homogenization at 2,500 lb/in2, applied upstream (as a separate process) or in hold (at the start of a holding section), resulted in significantly fewer culture-positive samples than pasteurization treatments without homogenization (P < 0.001 for those in hold and P < 0.05 for those upstream). Where colony counts were obtained, the number of surviving M. avium subsp. paratuberculosis cells was estimated to be 10 to 20 CFU/150 ml, and the reduction in numbers achieved by HTST pasteurization with or without homogenization was estimated to be 4.0 to 5.2 log10. The impact of homogenization on clump size distribution in M. avium subsp. paratuberculosis broth suspensions was subsequently assessed using a Mastersizer X spectrometer. These experiments demonstrated that large clumps of M. avium subsp. paratuberculosis cells were reduced to single-cell or "miniclump" status by homogenization at 2,500 lb/in2. Consequently, when HTST pasteurization was being applied to homogenized milk, the M. avium subsp. paratuberculosis cells would have been present as predominantly declumped cells, which may possibly explain the greater inactivation achieved by the combination of pasteurization and homogenization.
Grant, Irene R.; Williams, Alan G.; Rowe, Michael T.; Muir, D. Donald
2005-01-01
The effect of various pasteurization time-temperature conditions with and without homogenization on the viability of Mycobacterium avium subsp. paratuberculosis was investigated using a pilot-scale commercial high-temperature, short-time (HTST) pasteurizer and raw milk spiked with 101 to 105 M. avium subsp. paratuberculosis cells/ml. Viable M. avium subsp. paratuberculosis was cultured from 27 (3.3%) of 816 pasteurized milk samples overall, 5 on Herrold's egg yolk medium and 22 by BACTEC culture. Therefore, in 96.7% of samples, M. avium subsp. paratuberculosis had been completely inactivated by HTST pasteurization, alone or in combination with homogenization. Heat treatments incorporating homogenization at 2,500 lb/in2, applied upstream (as a separate process) or in hold (at the start of a holding section), resulted in significantly fewer culture-positive samples than pasteurization treatments without homogenization (P < 0.001 for those in hold and P < 0.05 for those upstream). Where colony counts were obtained, the number of surviving M. avium subsp. paratuberculosis cells was estimated to be 10 to 20 CFU/150 ml, and the reduction in numbers achieved by HTST pasteurization with or without homogenization was estimated to be 4.0 to 5.2 log10. The impact of homogenization on clump size distribution in M. avium subsp. paratuberculosis broth suspensions was subsequently assessed using a Mastersizer X spectrometer. These experiments demonstrated that large clumps of M. avium subsp. paratuberculosis cells were reduced to single-cell or “miniclump” status by homogenization at 2,500 lb/in2. Consequently, when HTST pasteurization was being applied to homogenized milk, the M. avium subsp. paratuberculosis cells would have been present as predominantly declumped cells, which may possibly explain the greater inactivation achieved by the combination of pasteurization and homogenization. PMID:15932977
McDowell, Andrew; Barnard, Emma; Liu, Jared; Li, Huiying; Patrick, Sheila
2016-12-01
Recently, it has been proposed that strains of Propionibacterium acnes from the type III genetic division should be classified as P. acnessubsp. elongatum subsp. nov., with strains from the type I and II divisions collectively classified as P. acnessubsp. acnes subsp. nov. Under such a taxonomic re-appraisal, we believe that types I and II should also have their own separate rank of subspecies. In support of this, we describe a polyphasic taxonomic study based on the analysis of publicly available multilocus and whole-genome sequence datasets, alongside a systematic review of previously published phylogenetic, genomic, phenotypic and clinical data. Strains of types I and II form highly distinct clades on the basis of multilocus sequence analysis (MLSA) and whole-genome phylogenetic reconstructions. In silico or digital DNA-DNA similarity values also fall within the 70-80 % boundary recommended for bacterial subspecies. Furthermore, we see important differences in genome content, including the presence of an active CRISPR/Cas system in type II strains, but not type I, and evidence for increasing linkage equilibrium within the separate divisions. Key biochemical differences include positive test results for β-haemolytic, neuraminidase and sorbitol fermentation activities with type I strains, but not type II. We now propose that type I strains should be classified as P. acnessubsp. acnes subsp. nov., and type II as P. acnessubsp. defendens subsp. nov. The type strain of P. acnessubsp. acnes subsp. nov. is NCTC 737T (=ATCC 6919T=JCM 6425T=DSM 1897T=CCUG 1794T), while the type strain of P. acnessubsp. defendens subsp. nov. is ATCC 11828 (=JCM 6473=CCUG 6369).
Toledo, M A S; Schneider, D R; Azzoni, A R; Favaro, M T P; Pelloso, A C; Santos, C A; Saraiva, A M; Souza, A P
2011-02-01
The OxyR oxidative stress transcriptional regulator is a DNA-binding protein that belongs to the LysR-type transcriptional regulators (LTTR) family. It has the ability to sense oxidative species inside the cell and to trigger the cell's response, activating the transcription of genes involved in scavenging oxidative species. In the present study, we have overexpressed, purified and characterized the predicted OxyR homologue (orf xf1273) of the phytopathogen Xylella fastidiosa. This bacterium is the causal agent of citrus variegated chlorosis (CVC) disease caused by the 9a5c strain, resulting in economic and social losses. The secondary structure of the recombinant protein was analyzed by circular dichroism. Gel filtration showed that XfoxyR is a dimer in solution. Gel shift assays indicated that it does bind to its own predicted promoter under in vitro conditions. However, considering our control experiment we cannot state that this interaction occurs in vivo. Functional complementation assays indicated that xfoxyR is able to restore the oxidative stress response in an oxyr knockout Escherichia coli strain. These results show that the predicted orfxf1273 codes for a transcriptional regulator, homologous to E. coli OxyR, involved in the oxidative stress response. This may be important for X. fastidiosa to overcome the defense mechanisms of its host during the infection and colonization processes. Copyright © 2010 Elsevier Inc. All rights reserved.
Riccobono, Luana; Maggio, Antonella; Bruno, Maurizio; Spadaro, Vivienne; Raimondo, Francesco Maria
2017-12-01
The chemical composition of the essential oils isolated from the aerial parts of Anthemis arvensis L. subsp. arvensis, Anthemis cretica subsp. messanensis (Brullo) Giardina & Raimondo and from flowers and leaves of Anthemis cretica subsp. columnae (Ten.) Frezén were determinated by GC-FID and GC-MS analyses. Torreyol (85.4%) was recognised as the main constituent of the Anthemis arvensis subsp. arvensis essential oil, while in the essential oils of Anthemis cretica subsp. messanensis, collected on the rock and cultivated in Hortus Botanicus Panormitanus, (E)-chrysanthenyl acetate (28.8 and 24.2% resp.), 14-hydroxy-α-humulene (8.1 and 5.3% resp.), santolina triene (8 and 5.8% resp.) and α-pinene (6.7 and 5.4% resp.) prevailed. 18-cineole (13.3 and 12.2% resp.), was the main component of both flower and leaf oils of Anthemis cretica subsp. columnae together with δ-cadinene (9.0 and 8.2% resp.) and (E)-caryophyllene (8.3 and 5.6% resp.).
Li, X; De Boer, S H
1995-10-01
Nearly complete sequences (97-99%) of the 16S rRNA genes were determined for type strains of Clavibacter michiganensis subsp. michiganensis, Clavibacter michiganensis subsp. insidiosus, Clavibacter michiganensis subsp. sepedonicus, and Clavibacter michiganensis subsp. nebraskensis. The four subspecies had less than 1% dissimilarity in their 16S rRNA genes. Comparative studies indicated that the C. michiganensis subsp. shared relatively high homology with the 16S rRNA gene of Clavibacter xyli. Further comparison with representatives of other Gram-positive coryneform and related bacteria with high G+C% values showed that this group of bacteria was subdivided into three clusters. One cluster consisted of the Clavibacter michiganensis subsp., Clavibacter xyli, Arthrobacter globiformis, Arthrobacter simplex, and Frankia sp.; another cluster consisted of members of the corynebacteria-mycobacteria-nocardia (CMN) group of Mycobacteriaceae including Tsukamurella paurometabolum; and Propionibacterium freudenreichii alone formed a unique cluster, which was remote from other coryneform bacteria analyzed. The three clusters may reflect a systematic rank higher than the genus level among these bacteria.
Slana, I.; Pribylova, R.; Kralova, A.; Pavlik, I.
2011-01-01
In this study, products from all steps of anaerobic digestion at a farm-scale biogas plant supplied with manure from paratuberculosis-affected dairy cattle were examined and quantified for the presence of the causal agent of paratuberculosis, Mycobacterium avium subsp. paratuberculosis, using culture and quantitative real-time PCR (qPCR). Viable M. avium subsp. paratuberculosis cells were detected using culture in fermentors for up to 2 months; the presence of M. avium subsp. paratuberculosis DNA (101 cells/g) was demonstrated in all anaerobic fermentors and digestate 16 months after initiation of work at a biogas plant, using IS900 qPCR. F57 qPCR was able to detect M. avium subsp. paratuberculosis DNA (102 cells/g) at up to 12 months. According to these results, a fermentation process that extended beyond 2 months removed all viable M. avium subsp. paratuberculosis cells and therefore rendered its product M. avium subsp. paratuberculosis free. However, M. avium subsp. paratuberculosis DNA was found during all the examined periods (more than 1 year), which could be explained by either residual DNA being released from dead cells or by the presence of viable cells whose amount was under the limit of cultivability. As the latter hypothesis cannot be excluded, the safety of the final products of digestion used for fertilization or animal bedding cannot be defined, and further investigation is necessary to confirm or refute this risk. PMID:21398476
Mills, D; Russell, B W; Hanus, J W
1997-08-01
ABSTRACT Three single-copy, unique DNA fragments, designated Cms50, Cms72, and Cms85, were isolated from strain CS3 of Clavibacter michiganensis subsp. sepedonicus by subtraction hybridization using driver DNA from C. michiganensis subsp. insidiosus, C. michiganensis subsp. michiganensis, and Rhodococcus facians. Radio-labeled probes made of these fragments and used in Southern blot analysis revealed each to be absolutely specific to all North American C. michiganensis subsp. sepedonicus strains tested, including plasmidless and nonmucoid strains. The probes have no homology with genomic DNA from related C. michiganensis subspecies insidiosus, michiganensis, and tessellarius, nor with DNA from 11 additional bacterial species and three unidentified strains, some of which have been previously reported to display cross-reactivity with C. michiganensis subsp. sepedonicus-specific antisera. The three fragments shared no homology, and they appeared to be separated from each other by at least 20 kbp in the CS3 genome. Internal primer sets permitted amplification of each fragment by the polymerase chain reaction (PCR) only from C. michiganensis subsp. sepedonicus DNA. In a PCR-based sensitivity assay using a primer set that amplifies Cms85, the lowest level of detection of C. michiganensis subsp. sepedonicus was 100 CFU per milliliter when cells were added to potato core fluid. Erroneous results that may arise from PCR artifacts and mutational events are, therefore, minimized by the redundancy of the primer sets, and the products should be verifiable with unique capture probes in sequence-based detection systems.
USDA-ARS?s Scientific Manuscript database
Mycobacterium avium subsp paratuberculosis is the etiologic agent of Johne’s disease. We report the draft genome sequences of six M. avium subsp paratuberculosis isolates obtained from diverse hosts including bison, cattle and sheep. These sequences will deepen our understanding of host association ...
Fiers, Mark W. E. J.; Lu, Ashley; Armstrong, Karen F.
2015-01-01
Blackleg is a disease caused by several species of Pectobacterium that results in losses to potato crops worldwide. Here, we report the draft genomes of three taxonomically and geographically distinct blackleg-causing strains of Pectobacterium: P. carotovorum subsp. brasiliensis ICMP 19477, P. atrosepticum ICMP 1526, and P. carotovorum subsp. carotovorum UGC32. Comparison of these genomes will support the identification of common traits associated with their capacity to cause blackleg. PMID:26251497
Kaevska, Marija; Videnska, Petra; Sedlar, Karel; Bartejsova, Iva; Kralova, Alena; Slana, Iva
2016-06-01
The aim of this study was to determine possible differences in the faecal microbiota of dairy cows infected with Mycobacterium avium subsp. paratuberculosis (Johne's disease) in comparison with noninfected cows from the same herds. Faecal samples from cows in 4 herds were tested for M. avium subsp. paratuberculosis by real-time PCR, and faecal bacterial populations were analysed by 454 pyrosequencing of the 16S rRNA gene. The most notable differences between shedding and nonshedding cows were an increase in the genus Psychrobacter and a decrease in the genera Oscillospira, Ruminococcus, and Bifidobacterium in cows infected with M. avium subsp. paratuberculosis. The present study is the first to report the faecal microbial composition in dairy cows infected with M. avium subsp. paratuberculosis.
Al-Momani, W; Nicholas, R A J; Janakat, S; Abu-Basha, E; Ayling, R D
2006-01-01
Respiratory disease in sheep and goats is a major problem in Jordan and is often associated with Mycoplasma species. Without effective vaccines, control is mainly by chemotherapy, but the uncontrolled use of antimicrobials has led to concerns about the potential development of antimicrobial resistance. The in vitro effect of chloramphenicol, florfenicol, enrofloxacin, tylosin, erythromycin and oxytetracycline was determined against 32 isolates of Mycoplasma species-M. mycoides subsp. mycoides LC (6), M. capricolum subsp. capricolum (8) and M. putrefaciens (18), all isolated from either nasal swabs or milk, from sheep and goats in different regions of Jordan. The antimicrobial susceptibility showed some Mycoplasma species-specific differences, with M. capricolum subsp. capricolum being more susceptible to tylosin and erythromycin. Chloramphenicol and florfenicol were the least effective for all three Mycoplasma species. No trends or significant differences in antimicrobial susceptibilities were observed between sheep and goat isolates, between milk or nasal swab isolates, or between isolates from different regions of Jordan. Some isolates of M. capricolum subsp. capricolum and M. putrefaciens showed higher MIC levels with oxytetracycline, as did two isolates of M. mycoides subsp. mycoides LC with tylosin, possibly indicating signs of development of antimicrobial resistance.
Chen, He; Huang, Jie; Shi, Xiaoyu; Li, Yichao; Liu, Yu
2017-01-01
The efficacy of Lactobacillus delbrueckii subsp. bulgaricus as starter cultures for the dairy industry depends largely on the number of viable and active cells. Freeze-drying is the most convenient and successful method to preserve the bacterial cells. However, not all strains survived during freeze-drying. The effects of six substances including NaCl, sorbitol, mannitol, mannose, sodium glutamate, betaine added to the MRS medium on the growth and freeze-drying survival rate and viable counts of Lb. delbrueckii subsp. bulgaricus were studied through a single-factor test and Plackett-Burman design. Subsequently, the optimum freeze-drying conditions of Lb. delbrueckii subsp. bulgaricus were determined. Lb. delbrueckii subsp. bulgaricus survival rates were up to the maximum of 42.7%, 45.4%, 23.6%, while the concentrations of NaCl, sorbitol, sodium glutamate were 0.6%, 0.15%, 0.09%, respectively. In the optimum concentration, the viable counts in broth is 6.1, 6.9, 5.13 (×108 CFU/mL), respectively; the viable counts in freeze-drying power are 3.09, 5.2, 2.7 (×1010 CFU/g), respectively. Three antifreeze factors including NaCl, sorbitol, sodium glutamate have a positive effect on the growth and freeze-drying of Lb. delbrueckii subsp. bulgaricus. The results are beneficial for developing Lb. delbrueckii subsp. bulgaricus.
Costa, José M.; Loper, Joyce E.
1994-01-01
Erwinia carotovora subsp. betavasculorum Ecb168 produces an antibiotic(s) that suppresses growth of the related bacterium Erwinia carotovora subsp. carotovora in culture and in wounds of potato tubers. Strain Ecb168 also produces and secretes pectolytic enzymes and causes a vascular necrosis and root rot of sugar beet. Genes (out) involved in secretion of pectolytic enzymes by Ecb168 were localized to two HindIII fragments (8.5 and 10.5 kb) of Ecb168 genomic DNA by hybridization to the cloned out region of E. carotovora subsp. carotovora and by complementation of Out- mutants of E. carotovora subsp. carotovora. Out- mutants of Ecb168, which did not secrete pectate lyase into the culture medium, were obtained when deletions internal to either HindIII fragment were introduced into the genome of Ecb168 through marker exchange mutagenesis. Out- mutants of Ecb168 were complemented to the Out+ phenotype by introduction of the corresponding cloned HindIII fragment. Out- mutants of Ecb168 were less virulent than the Out+ parental strain on potato tubers. Strain Ecb168 and Out- derivatives inhibited the growth of E. carotovora subsp. carotovora in culture, indicating that the uncharacterized antibiotic(s) responsible for antagonism was exported through an out-independent mechanism. Strain Ecb168 and Out- derivatives reduced the establishment of large populations of E. carotovora subsp. carotovora in wounds of potato tubers and suppressed tuber soft rot caused by E. carotovora subsp. carotovora. PMID:16349316
Breitschwerdt, Edward B.; Maggi, Ricardo G.; Varanat, Mrudula; Linder, Keith E.; Weinberg, Guy
2009-01-01
In this report, we describe isolation of Bartonella vinsonii subsp. berkhoffii genotype II from a boy with epithelioid hemangioendothelioma and a dog with hemangiopericytoma. These results suggest that B. vinsonii subsp. berkhoffii may cause vasoproliferative lesions in both humans and dogs. PMID:19369441
Breitschwerdt, Edward B; Maggi, Ricardo G; Varanat, Mrudula; Linder, Keith E; Weinberg, Guy
2009-06-01
In this report, we describe isolation of Bartonella vinsonii subsp. berkhoffii genotype II from a boy with epithelioid hemangioendothelioma and a dog with hemangiopericytoma. These results suggest that B. vinsonii subsp. berkhoffii may cause vasoproliferative lesions in both humans and dogs.
Yin, Xiaochen; Salemi, Michelle R.; Phinney, Brett S.; Gotcheva, Velitchka; Angelov, Angel
2017-01-01
ABSTRACT We identified the proteins synthesized by Lactobacillus delbrueckii subsp. bulgaricus strain LBB.B5 in laboratory culture medium (MRS) at 37°C and milk at 37 and 4°C. Cell-associated proteins were measured by gel-free, shotgun proteomics using high-performance liquid chromatography coupled with tandem mass spectrophotometry. A total of 635 proteins were recovered from all cultures, among which 72 proteins were milk associated (unique or significantly more abundant in milk). LBB.B5 responded to milk by increasing the production of proteins required for purine biosynthesis, carbohydrate metabolism (LacZ and ManM), energy metabolism (TpiA, PgK, Eno, SdhA, and GapN), amino acid synthesis (MetE, CysK, LBU0412, and AspC) and transport (GlnM and GlnP), and stress response (Trx, MsrA, MecA, and SmpB). The requirement for purines was confirmed by the significantly improved cell yields of L. delbrueckii subsp. bulgaricus when incubated in milk supplemented with adenine and guanine. The L. delbrueckii subsp. bulgaricus-expressed proteome in milk changed upon incubation at 4°C for 5 days and included increased levels of 17 proteins, several of which confer functions in stress tolerance (AddB, UvrC, RecA, and DnaJ). However, even with the activation of stress responses in either milk or MRS, L. delbrueckii subsp. bulgaricus did not survive passage through the murine digestive tract. These findings inform efforts to understand how L. delbrueckii subsp. bulgaricus is adapted to the dairy environment and its implications for its health-benefiting properties in the human digestive tract. IMPORTANCE Lactobacillus delbrueckii subsp. bulgaricus has a long history of use in yogurt production. Although commonly cocultured with Streptococcus salivarius subsp. thermophilus in milk, fundamental knowledge of the adaptive responses of L. delbrueckii subsp. bulgaricus to the dairy environment and the consequences of those responses on the use of L. delbrueckii subsp. bulgaricus as a probiotic remain to be elucidated. In this study, we identified proteins of L. delbrueckii subsp. bulgaricus LBB.B5 that are synthesized in higher quantities in milk at growth-conducive and non-growth-conductive (refrigeration) temperatures compared to laboratory culture medium and further examined whether those L. delbrueckii subsp. bulgaricus cultures were affected differently in their capacity to survive transit through the murine digestive tract. This work provides novel insight into how a major, food-adapted microbe responds to its primary habitat. Such knowledge can be applied to improve starter culture and yogurt production and to elucidate matrix effects on probiotic performance. PMID:28951887
Kwan, Grace; Charkowski, Amy O; Barak, Jeri D
2013-02-12
Although enteric human pathogens are usually studied in the context of their animal hosts, a significant portion of their life cycle occurs on plants. Plant disease alters the phyllosphere, leading to enhanced growth of human pathogens; however, the impact of human pathogens on phytopathogen biology and plant health is largely unknown. To characterize the interaction between human pathogens and phytobacterial pathogens in the phyllosphere, we examined the interactions between Pectobacterium carotovorum subsp. carotovorum and Salmonella enterica or Escherichia coli O157:H7 with regard to bacterial populations, soft rot progression, and changes in local pH. The presence of P. carotovorum subsp. carotovorum enhanced the growth of both S. enterica and E. coli O157:H7 on leaves. However, in a microaerophilic environment, S. enterica reduced P. carotovorum subsp. carotovorum populations and soft rot progression by moderating local environmental pH. Reduced soft rot was not due to S. enterica proteolytic activity. Limitations on P. carotovorum subsp. carotovorum growth, disease progression, and pH elevation were not observed on leaves coinoculated with E. coli O157:H7 or when leaves were coinoculated with S. enterica in an aerobic environment. S. enterica also severely undermined the relationship between the phytobacterial population and disease progression of a P. carotovorum subsp. carotovorum budB mutant defective in the 2,3-butanediol pathway for acid neutralization. Our results show that S. enterica and E. coli O157:H7 interact differently with the enteric phytobacterial pathogen P. carotovorum subsp. carotovorum. S. enterica inhibition of soft rot progression may conceal a rapidly growing human pathogen population. Whereas soft rotted produce can alert consumers to the possibility of food-borne pathogens, healthy-looking produce may entice consumption of contaminated vegetables. Salmonella enterica and Escherichia coli O157:H7 may use plants to move between animal and human hosts. Their populations are higher on plants cocolonized with the common bacterial soft rot pathogen Pectobacterium carotovorum subsp. carotovorum, turning edible plants into a risk factor for human disease. We inoculated leaves with P. carotovorum subsp. carotovorum and S. enterica or E. coli O157:H7 to study the interactions between these bacteria. While P. carotovorum subsp. carotovorum enhanced the growth of both S. enterica and E. coli O157:H7, these human pathogens affected P. carotovorum subsp. carotovorum fundamentally differently. S. enterica reduced P. carotovorum subsp. carotovorum growth and acidified the environment, leading to less soft rot on leaves; E. coli O157:H7 had no such effects. As soft rot signals a food safety risk, the reduction of soft rot symptoms in the presence of S. enterica may lead consumers to eat healthy-looking but S. enterica-contaminated produce.
Yin, Xiaochen; Salemi, Michelle R; Phinney, Brett S; Gotcheva, Velitchka; Angelov, Angel; Marco, Maria L
2017-01-01
We identified the proteins synthesized by Lactobacillus delbrueckii subsp. bulgaricus strain LBB.B5 in laboratory culture medium (MRS) at 37°C and milk at 37 and 4°C. Cell-associated proteins were measured by gel-free, shotgun proteomics using high-performance liquid chromatography coupled with tandem mass spectrophotometry. A total of 635 proteins were recovered from all cultures, among which 72 proteins were milk associated (unique or significantly more abundant in milk). LBB.B5 responded to milk by increasing the production of proteins required for purine biosynthesis, carbohydrate metabolism (LacZ and ManM), energy metabolism (TpiA, PgK, Eno, SdhA, and GapN), amino acid synthesis (MetE, CysK, LBU0412, and AspC) and transport (GlnM and GlnP), and stress response (Trx, MsrA, MecA, and SmpB). The requirement for purines was confirmed by the significantly improved cell yields of L. delbrueckii subsp. bulgaricus when incubated in milk supplemented with adenine and guanine. The L. delbrueckii subsp. bulgaricus -expressed proteome in milk changed upon incubation at 4°C for 5 days and included increased levels of 17 proteins, several of which confer functions in stress tolerance (AddB, UvrC, RecA, and DnaJ). However, even with the activation of stress responses in either milk or MRS, L. delbrueckii subsp. bulgaricus did not survive passage through the murine digestive tract. These findings inform efforts to understand how L. delbrueckii subsp. bulgaricus is adapted to the dairy environment and its implications for its health-benefiting properties in the human digestive tract. IMPORTANCE Lactobacillus delbrueckii subsp. bulgaricus has a long history of use in yogurt production. Although commonly cocultured with Streptococcus salivarius subsp. thermophilus in milk, fundamental knowledge of the adaptive responses of L. delbrueckii subsp. bulgaricus to the dairy environment and the consequences of those responses on the use of L. delbrueckii subsp. bulgaricus as a probiotic remain to be elucidated. In this study, we identified proteins of L. delbrueckii subsp. bulgaricus LBB.B5 that are synthesized in higher quantities in milk at growth-conducive and non-growth-conductive (refrigeration) temperatures compared to laboratory culture medium and further examined whether those L. delbrueckii subsp. bulgaricus cultures were affected differently in their capacity to survive transit through the murine digestive tract. This work provides novel insight into how a major, food-adapted microbe responds to its primary habitat. Such knowledge can be applied to improve starter culture and yogurt production and to elucidate matrix effects on probiotic performance.
Pork Meat as a Potential Source of Salmonella enterica subsp. arizonae Infection in Humans
Kritas, Spyridon; Govaris, Alexander; Burriel, Angeliki R.
2014-01-01
Salmonella enterica subsp. arizonae was isolated from 13 of 123 slaughtered pigs in central Greece. The samples cultured were feces, ileum tissue, mesenteric lymph nodes, and gallbladder swabs. A total of 74 isolates from 492 samples were identified as Salmonella spp. by use of standard laboratory culture media and two commercial micromethods and by use of a polyvalent slide agglutination test for the detection of O and H antigens. Among them were 19 (25.68%) suspected to be S. enterica subsp. arizonae according to analysis with standard laboratory culture media. Of those, 14 were identified as S. enterica subsp. arizonae by the API 20E (bioMérieux, France) and the Microgen GnA+B-ID (Microgen Bioproducts, Ltd., United Kingdom) identification systems. All the isolates were tested for resistance to 23 antimicrobials. Strains identified as S. enterica subsp. arizonae were resistant to 17 (70.8%) antibiotics. The highest proportions of resistance were observed for sulfamethoxazole-trimethoprim (71.4%), tetracycline (71.4%), ampicillin (64.3%), and amoxicillin (57.1%). Two isolates were resistant to aztreonam (7.1%) and tigecycline (7.1%), used only for the treatment of humans. Thus, pork meat may play a role in the transmission of antibiotic-resistant S. enterica subsp. arizonae to human consumers. This is the first report of S. enterica subsp. arizonae isolation from pigs. PMID:24335956
Pork meat as a potential source of Salmonella enterica subsp. arizonae infection in humans.
Evangelopoulou, Grammato; Kritas, Spyridon; Govaris, Alexander; Burriel, Angeliki R
2014-03-01
Salmonella enterica subsp. arizonae was isolated from 13 of 123 slaughtered pigs in central Greece. The samples cultured were feces, ileum tissue, mesenteric lymph nodes, and gallbladder swabs. A total of 74 isolates from 492 samples were identified as Salmonella spp. by use of standard laboratory culture media and two commercial micromethods and by use of a polyvalent slide agglutination test for the detection of O and H antigens. Among them were 19 (25.68%) suspected to be S. enterica subsp. arizonae according to analysis with standard laboratory culture media. Of those, 14 were identified as S. enterica subsp. arizonae by the API 20E (bioMérieux, France) and the Microgen GnA+B-ID (Microgen Bioproducts, Ltd., United Kingdom) identification systems. All the isolates were tested for resistance to 23 antimicrobials. Strains identified as S. enterica subsp. arizonae were resistant to 17 (70.8%) antibiotics. The highest proportions of resistance were observed for sulfamethoxazole-trimethoprim (71.4%), tetracycline (71.4%), ampicillin (64.3%), and amoxicillin (57.1%). Two isolates were resistant to aztreonam (7.1%) and tigecycline (7.1%), used only for the treatment of humans. Thus, pork meat may play a role in the transmission of antibiotic-resistant S. enterica subsp. arizonae to human consumers. This is the first report of S. enterica subsp. arizonae isolation from pigs.
Lipopolysaccharide O-antigen delays plant innate immune recognition of Xylella fastidiosa.
Rapicavoli, Jeannette N; Blanco-Ulate, Barbara; Muszyński, Artur; Figueroa-Balderas, Rosa; Morales-Cruz, Abraham; Azadi, Parastoo; Dobruchowska, Justyna M; Castro, Claudia; Cantu, Dario; Roper, M Caroline
2018-01-26
Lipopolysaccharides (LPS) are among the known pathogen-associated molecular patterns (PAMPs). LPSs are potent elicitors of PAMP-triggered immunity (PTI), and bacteria have evolved intricate mechanisms to dampen PTI. Here we demonstrate that Xylella fastidiosa (Xf), a hemibiotrophic plant pathogenic bacterium, possesses a long chain O-antigen that enables it to delay initial plant recognition, thereby allowing it to effectively skirt initial elicitation of innate immunity and establish itself in the host. Lack of the O-antigen modifies plant perception of Xf and enables elicitation of hallmarks of PTI, such as ROS production specifically in the plant xylem tissue compartment, a tissue not traditionally considered a spatial location of PTI. To explore translational applications of our findings, we demonstrate that pre-treatment of plants with Xf LPS primes grapevine defenses to confer tolerance to Xf challenge.
Genetic organization of plasmid pXF51 from the plant pathogen Xylella fastidiosa.
Marques, M V; da Silva, A M; Gomes, S L
2001-05-01
The sequence of plasmid pXF51 from the plant pathogen Xylella fastidiosa, the causal agent of citrus variegated chlorosis, has been analyzed. This plasmid codes for 65 open reading frames (ORFs), organized into four main regions, containing genes related to replication, mobilization, and conjugative transfer. Twenty-five ORFs have no counterparts in the public sequence databases, and 7 are similar to conserved hypothetical proteins from other bacteria. A pXF51 incompatibility group has not been determined, as we could not find a typical replication origin. One cluster of conjugation-related genes (trb) seems to be incomplete in pXF51, and a copy of this sequence is found in the chromosome, suggesting it was generated by a duplication event. A second cluster (tra) contains all genes necessary for conjugation transfer to occur, showing a conserved organization with other conjugative plasmids. An identifiable origin of transfer similar to oriT from IncP plasmids is found adjacent to genes encoding two mobilization proteins. None of the ORFs with putative assigned function could be predicted as having a role in pathogenesis, except for a virulence-associated protein D homolog. These results indicate that even though pXF51 appears not to have a direct role in Xylella pathogenesis, it is a conjugative plasmid that could be important for lateral gene transfer in this bacterium. This property may be of great importance for future development of transformation techniques in X. fastidiosa.
Paulin, Mélanie M.; Novinscak, Amy; Lanteigne, Carine; Gadkar, Vijay J.
2017-01-01
ABSTRACT We have previously demonstrated that inoculation of tomato plants with 2,4-diacetylphloroglucinol (DAPG)- and hydrogen cyanide (HCN)-producing Pseudomonas brassicacearum LBUM300 could significantly reduce bacterial canker symptoms caused by Clavibacter michiganensis subsp. michiganensis. In this study, in order to better characterize the population dynamics of LBUM300 in the rhizosphere of tomato plants, we characterized the role played by DAPG and HCN production by LBUM300 on rhizosphere colonization of healthy and C. michiganensis subsp. michiganensis-infected tomato plants. The impact of C. michiganensis subsp. michiganensis presence on the expression of DAPG and HCN biosynthetic genes in the rhizosphere was also examined. In planta assays were performed using combinations of C. michiganensis subsp. michiganensis and wild-type LBUM300 or DAPG (LBUM300ΔphlD) or HCN (LBUM300ΔhcnC) isogenic mutant strains. Populations of LBUM300 and phlD and hcnC gene expression levels were quantified in rhizosphere soil at several time points up to 264 h postinoculation using culture-independent quantitative PCR (qPCR) and reverse transcriptase quantitative PCR (RT-qPCR) TaqMan assays, respectively. The presence of C. michiganensis subsp. michiganensis significantly increased rhizospheric populations of LBUM300. In C. michiganensis subsp. michiganensis-infected tomato rhizospheres, the populations of wild-type LBUM300 and strain LBUM300ΔhcnC, both producing DAPG, were significantly higher than the population of strain LBUM300ΔphlD. A significant upregulation of phlD expression was observed in the presence of C. michiganensis subsp. michiganensis, while hcnC expression was only slightly increased in the mutant strain LBUM300ΔphlD when C. michiganensis subsp. michiganensis was present. Additionally, biofilm production was found to be significantly reduced in strain LBUM300ΔphlD compared to the wild-type and LBUM300ΔhcnC strains. IMPORTANCE The results of this study suggest that C. michiganensis subsp. michiganensis infection of tomato plants contributes to increasing rhizospheric populations of LBUM300, a biocontrol agent, as well as the overexpression of the DAPG biosynthetic operon in this bacterium. The increasing rhizospheric populations of LBUM300 represent one of the key factors in controlling C. michiganensis subsp. michiganensis in tomato plants, as DAPG-producing bacteria have shown the ability to decrease bacterial canker symptoms in tomato plants. PMID:28432096
A foundation monograph of Convolvulus L. (Convolvulaceae)
Wood, John R.I.; Williams, Bethany R.M.; Mitchell, Thomas C.; Carine, Mark A.; Harris, David J.; Scotland, Robert W.
2015-01-01
Abstract A global revision of Convolvulus L. is presented, Calystegia R.Br. being excluded on pragmatic grounds. One hundred and ninety species are recognised with the greatest diversity in the Irano-Turanian region. All recognised species are described and the majority are illustrated. Distribution details, keys to species identification and taxonomic notes are provided. Four new species, Convolvulus austroafricanus J.R.I.Wood & R.W.Scotland, sp. nov., Convolvulus iranicus J.R.I.Wood & R.W.Scotland, sp. nov., Convolvulus peninsularis J.R.I.Wood & R.W.Scotland, sp. nov. and Convolvulus xanthopotamicus J.R.I.Wood & R.W.Scotland, sp. nov., one new subspecies Convolvulus chinensis subsp. triangularis J.R.I.Wood & R.W.Scotland, subsp. nov., and two new varieties Convolvulus equitans var. lindheimeri J.R.I.Wood & R.W.Scotland, var. nov., Convolvulus glomeratus var. sachalitarum J.R.I.Wood & R.W.Scotland, var. nov. are described. Convolvulus incisodentatus J.R.I.Wood & R.W.Scotland, nom. nov., is provided as a replacement name for the illegitimate Convolvulus incisus Choisy. Several species treated as synonyms of other species in recent publications are reinstated including Convolvulus chinensis Ker-Gawl., Convolvulus spinifer M.Popov., Convolvulus randii Rendle and Convolvulus aschersonii Engl. Ten taxa are given new status and recognised at new ranks: Convolvulus namaquensis (Schltr. ex. A.Meeuse) J.R.I.Wood & R.W.Scotland, stat. nov., Convolvulus hermanniae subsp. erosus (Desr.) J.R.I.Wood & R.W.Scotland, stat. nov., Convolvulus crenatifolius subsp. montevidensis (Spreng.) J.R.I.Wood & R.W.Scotland, stat. nov., Convolvulus fruticulosus subsp. glandulosus (Webb) J.R.I.Wood & R.W.Scotland, stat. nov., Convolvulus capituliferus subsp. foliaceus (Verdc.) J.R.I.Wood & R.W.Scotland, stat. nov., Convolvulus hystrix subsp. ruspolii (Dammer ex Hallier f.) J.R.I.Wood & R.W.Scotland, stat. nov., Convolvulus hystrix subsp. inermis (Chiov.) J.R.I.Wood & R.W.Scotland, stat. nov., Convolvulus rottlerianus subsp. stocksii (Boiss.) J.R.I.Wood & R.W.Scotland, comb. et stat. nov., Convolvulus calvertii subsp. ruprechtii (Boiss.) J.R.I.Wood & R.W.Scotland, stat. nov., Convolvulus cephalopodus subsp. bushiricus (Bornm.) J.R.I.Wood & R.W.Scotland, stat. nov. The status of various infraspecific taxa is clarified and numerous taxa are lectotypified. This account represents a new initiative in terms of taxonomic monography, being an attempt to bring together the global approach of the traditional monograph with the more pragmatic and identification-focussed approach of most current floras while at the same time being informed by insights from molecular systematics. PMID:26140023
Campo, Joseph J.; Li, Lingling; Randall, Arlo; Pablo, Jozelyn; Praul, Craig A.; Raygoza Garay, Juan Antonio; Stabel, Judith R.
2017-01-01
ABSTRACT Johne's disease, a chronic gastrointestinal inflammatory disease caused by Mycobacterium avium subspecies paratuberculosis, is endemic in dairy cattle and other ruminants worldwide and remains a challenge to diagnose using traditional serological methods. Given the close phylogenetic relationship between M. avium subsp. paratuberculosis and the human pathogen Mycobacterium tuberculosis, here, we applied a whole-proteome M. tuberculosis protein array to identify seroreactive and diagnostic M. avium subsp. paratuberculosis antigens. A genome-scale pairwise analysis of amino acid identity levels between orthologous proteins in M. avium subsp. paratuberculosis and M. tuberculosis showed an average of 62% identity, with more than half the orthologous proteins sharing >75% identity. Analysis of the M. tuberculosis protein array probed with sera from M. avium subsp. paratuberculosis-infected cattle showed antibody binding to 729 M. tuberculosis proteins, with 58% of them having ≥70% identity to M. avium subsp. paratuberculosis orthologs. The results showed that only 4 of the top 40 seroreactive M. tuberculosis antigens were orthologs of previously reported M. avium subsp. paratuberculosis antigens, revealing the existence of a large number of previously unrecognized candidate diagnostic antigens. Enzyme-linked immunosorbent assay (ELISA) testing of 20 M. avium subsp. paratuberculosis recombinant proteins, representing reactive and nonreactive M. tuberculosis orthologs, further confirmed that the M. tuberculosis array has utility as a screening tool for identifying candidate antigens for Johne's disease diagnostics. Additional ELISA testing of field serum samples collected from dairy herds around the United States revealed that MAP2942c had the strongest seroreactivity with Johne's disease-positive samples. Collectively, our studies have considerably expanded the number of candidate M. avium subsp. paratuberculosis proteins with potential utility in the next generation of rationally designed Johne's disease diagnostic assays. PMID:28515134
Bannantine, John P; Campo, Joseph J; Li, Lingling; Randall, Arlo; Pablo, Jozelyn; Praul, Craig A; Raygoza Garay, Juan Antonio; Stabel, Judith R; Kapur, Vivek
2017-07-01
Johne's disease, a chronic gastrointestinal inflammatory disease caused by Mycobacterium avium subspecies paratuberculosis , is endemic in dairy cattle and other ruminants worldwide and remains a challenge to diagnose using traditional serological methods. Given the close phylogenetic relationship between M. avium subsp. paratuberculosis and the human pathogen Mycobacterium tuberculosis , here, we applied a whole-proteome M. tuberculosis protein array to identify seroreactive and diagnostic M. avium subsp. paratuberculosis antigens. A genome-scale pairwise analysis of amino acid identity levels between orthologous proteins in M. avium subsp. paratuberculosis and M. tuberculosis showed an average of 62% identity, with more than half the orthologous proteins sharing >75% identity. Analysis of the M. tuberculosis protein array probed with sera from M. avium subsp. paratuberculosis -infected cattle showed antibody binding to 729 M. tuberculosis proteins, with 58% of them having ≥70% identity to M. avium subsp. paratuberculosis orthologs. The results showed that only 4 of the top 40 seroreactive M. tuberculosis antigens were orthologs of previously reported M. avium subsp. paratuberculosis antigens, revealing the existence of a large number of previously unrecognized candidate diagnostic antigens. Enzyme-linked immunosorbent assay (ELISA) testing of 20 M. avium subsp. paratuberculosis recombinant proteins, representing reactive and nonreactive M. tuberculosis orthologs, further confirmed that the M. tuberculosis array has utility as a screening tool for identifying candidate antigens for Johne's disease diagnostics. Additional ELISA testing of field serum samples collected from dairy herds around the United States revealed that MAP2942c had the strongest seroreactivity with Johne's disease-positive samples. Collectively, our studies have considerably expanded the number of candidate M. avium subsp. paratuberculosis proteins with potential utility in the next generation of rationally designed Johne's disease diagnostic assays. Copyright © 2017 American Society for Microbiology.
Khodavaisy, Sadegh; Rezaie, Sassan; Noorbakhsh, Fatemeh; Baghdadi, Elham; Sharifynia, Somayeh; Aala, Farzad
2016-01-01
Background Aflatoxins are highly toxic secondary metabolites mainly produced by Aspergillus parasiticus. This species can contaminate a wide range of agricultural commodities, including cereals, peanuts, and crops in the field. In recent years, research on medicinal herbs, such as Pistacia atlantica subsp. kurdica, have led to reduced microbial growth, and these herbs also have a particular effect on the production of aflatoxins as carcinogenic compounds. Objectives In this study, we to examine P. atlantica subsp. kurdica as a natural compound used to inhibit the growth of A. parasiticus and to act as an anti-mycotoxin. Materials and Methods In vitro antifungal susceptibility testing of P. atlantica subsp. kurdica for A. parasiticus was performed according to CLSI document M38-A2. The rate of aflatoxin production was determined using the HPLC technique after exposure to different concentrations (62.5 - 125 mg/mL) of the gum. The changes in expression levels of the aflR gene were analyzed with a quantitative real-time PCR assay. Results The results showed that P. atlantica subsp. kurdica can inhibit A. parasiticus growth at a concentration of 125 mg/mL. HPLC results revealed a significant decrease in aflatoxin production with 125 mg/mL of P. atlantica subsp. kurdica, and AFL-B1 production was entirely inhibited. Based on quantitative real-time PCR results, the rate of aflR gene expression was significantly decreased after treatment with P. atlantica subsp. kurdica. Conclusions Pistacia atlantica subsp. kurdica has anti-toxic properties in addition to an inhibitory effect on A. parasiticus growth, and is able to decrease aflatoxin production effectively in a dose-dependent manner. Therefore, this herbal extract maybe considered a potential anti-mycotoxin agent in medicine or industrial agriculture. PMID:27800127
Loquasto, Joseph R.; Barrangou, Rodolphe; Dudley, Edward G.; Stahl, Buffy; Chen, Chun
2013-01-01
Many strains of Bifidobacterium animalis subsp. lactis are considered health-promoting probiotic microorganisms and are commonly formulated into fermented dairy foods. Analyses of previously sequenced genomes of B. animalis subsp. lactis have revealed little genetic diversity, suggesting that it is a monomorphic subspecies. However, during a multilocus sequence typing survey of Bifidobacterium, it was revealed that B. animalis subsp. lactis ATCC 27673 gave a profile distinct from that of the other strains of the subspecies. As part of an ongoing study designed to understand the genetic diversity of this subspecies, the genome of this strain was sequenced and compared to other sequenced genomes of B. animalis subsp. lactis and B. animalis subsp. animalis. The complete genome of ATCC 27673 was 1,963,012 bp, contained 1,616 genes and 4 rRNA operons, and had a G+C content of 61.55%. Comparative analyses revealed that the genome of ATCC 27673 contained six distinct genomic islands encoding 83 open reading frames not found in other strains of the same subspecies. In four islands, either phage or mobile genetic elements were identified. In island 6, a novel clustered regularly interspaced short palindromic repeat (CRISPR) locus which contained 81 unique spacers was identified. This type I-E CRISPR-cas system differs from the type I-C systems previously identified in this subspecies, representing the first identification of a different system in B. animalis subsp. lactis. This study revealed that ATCC 27673 is a strain of B. animalis subsp. lactis with novel genetic content and suggests that the lack of genetic variability observed is likely due to the repeated sequencing of a limited number of widely distributed commercial strains. PMID:23995933
Gartemann, Karl-Heinz; Abt, Birte; Bekel, Thomas; Burger, Annette; Engemann, Jutta; Flügel, Monika; Gaigalat, Lars; Goesmann, Alexander; Gräfen, Ines; Kalinowski, Jörn; Kaup, Olaf; Kirchner, Oliver; Krause, Lutz; Linke, Burkhard; McHardy, Alice; Meyer, Folker; Pohle, Sandra; Rückert, Christian; Schneiker, Susanne; Zellermann, Eva-Maria; Pühler, Alfred; Eichenlaub, Rudolf; Kaiser, Olaf; Bartels, Daniela
2008-01-01
Clavibacter michiganensis subsp. michiganensis is a plant-pathogenic actinomycete that causes bacterial wilt and canker of tomato. The nucleotide sequence of the genome of strain NCPPB382 was determined. The chromosome is circular, consists of 3.298 Mb, and has a high G+C content (72.6%). Annotation revealed 3,080 putative protein-encoding sequences; only 26 pseudogenes were detected. Two rrn operons, 45 tRNAs, and three small stable RNA genes were found. The two circular plasmids, pCM1 (27.4 kbp) and pCM2 (70.0 kbp), which carry pathogenicity genes and thus are essential for virulence, have lower G+C contents (66.5 and 67.6%, respectively). In contrast to the genome of the closely related organism Clavibacter michiganensis subsp. sepedonicus, the genome of C. michiganensis subsp. michiganensis lacks complete insertion elements and transposons. The 129-kb chp/tomA region with a low G+C content near the chromosomal origin of replication was shown to be necessary for pathogenicity. This region contains numerous genes encoding proteins involved in uptake and metabolism of sugars and several serine proteases. There is evidence that single genes located in this region, especially genes encoding serine proteases, are required for efficient colonization of the host. Although C. michiganensis subsp. michiganensis grows mainly in the xylem of tomato plants, no evidence for pronounced genome reduction was found. C. michiganensis subsp. michiganensis seems to have as many transporters and regulators as typical soil-inhabiting bacteria. However, the apparent lack of a sulfate reduction pathway, which makes C. michiganensis subsp. michiganensis dependent on reduced sulfur compounds for growth, is probably the reason for the poor survival of C. michiganensis subsp. michiganensis in soil. PMID:18192381
Rella, M; Axelrood, P E; Weinhold, A R; Schroth, M N
1989-01-01
The production of antibiotics and their role in microbial competition under natural conditions can be readily studied by the use of transposon mutants. Several antibiotic-producing strains of Erwinia carotovora subsp. betavasculorum were unable to accept foreign DNA. A plasmid delivery system was developed, using ethyl methanesulfonate mutagenesis, which entailed isolating E. carotovora subsp. betavasculorum mutants able to accept foreign DNA and transfer it to other strains. This enabled transposon mutagenesis of a wild-type antibiotic-producing strain of E. carotovora subsp. betavasculorum. Twelve antibiotic-negative mutants were isolated, and one of these showed a reduction in antibiotic production in vitro. Many of these mutants also showed a reduction in their ability to macerate potato tissue. The mutants were classified into four genetic groups on the basis of their genetic and phenotypic characteristics, indicating that several genes are involved in antibiotic biosynthesis by E. carotovora subsp. betavasculorum. PMID:2543291
Iraola, Gregorio; Pérez, Ruben; Naya, Hugo; Paolicchi, Fernando; Harris, David; Lawley, Trevor D.; Rego, Natalia; Hernández, Martín; Calleros, Lucía; Carretto, Luis; Velilla, Alejandra; Morsella, Claudia; Méndez, Alejandra
2013-01-01
Campylobacter fetus subsp. venerealis is the causative agent of bovine genital campylobacteriosis, a sexually transmitted disease distributed worldwide. Campylobacter fetus subsp. venerealis biovar Intermedius strains differ in their biochemical behavior and are prevalent in some countries. We report the first genome sequence for this biovar, isolated from bull prepuce. PMID:23908278
Potato (Solanum tuberosum L.).
Chetty, Venkateswari J; Narváez-Vásquez, Javier; Orozco-Cárdenas, Martha L
2015-01-01
Agrobacterium-mediated transformation is the most common method for the incorporation of foreign genes into the genome of potato as well as many other species in the Solanaceae family. This chapter describes protocols for the genetic transformation of three species of potato: Solanum tuberosum subsp. tuberosum (Desiréé), S. tuberosum subsp. andigenum (Blue potato), and S. tuberosum subsp. andigena using internodal segments as explants.
USDA-ARS?s Scientific Manuscript database
Campylobacter fetus can cause disease in both humans and animals. C. fetus has been divided into three subspecies: C. fetus subsp. fetus (Cff), C. fetus subsp. venerealis (Cfv) and C. fetus subsp. testudinum. Subspecies identification of C. fetus strains is crucial in the control of Bovine Genital C...
USDA-ARS?s Scientific Manuscript database
Xanthomonas citri subsp. citri, causal agent of Asiatic citrus canker, is an important pathogen of citrus in Brazil and elsewhere. The genetic diversity of X. citri subsp. citri pathtype ‘A’ has not been studied in Brazil at a local scale (up to 300 km). A total of 40 isolates were collected from le...
Alexandraki, Voula; Kazou, Maria; Pot, Bruno; Tsakalidou, Effie; Papadimitriou, Konstantinos
2017-08-24
Lactobacillus delbrueckii subsp. bulgaricus is widely used in the production of yogurt and cheese. In this study, we present the complete genome sequence of L. delbrueckii subsp. bulgaricus ACA-DC 87 isolated from traditional Greek yogurt. Whole-genome analysis may reveal desirable technological traits of the strain for dairy fermentations. Copyright © 2017 Alexandraki et al.
USDA-ARS?s Scientific Manuscript database
A quick polymerase chain reaction (PCR) assay was developed for the detection of Leifsonia xyli subsp. xyli (Lxx), the bacterial causal agent of ratoon stunting disease (RSD) of sugarcane, in crude juice samples from stalks. After removal of abiotic impurities and large molecular weight microorgani...
Yamaki, S; Kawai, Y; Yamazaki, K
2015-06-01
Photobacterium damselae subsp. damselae is a potent histamine-producing micro-organism. The aim of this study was to isolate and characterize a bacteriophage Phda1 that infected P. damselae subsp. damselae to inhibit its growth and histamine accumulation. Phda1 was isolated from a raw oyster, and the host range, morphology and the bacteriophage genome size were analysed. Phda1 formed a clear plaque only against P. damselae subsp. damselae JCM8969 among five Gram-positive and 32 Gram-negative bacterial strains tested. Phda1 belongs to the family Myoviridae, and its genome size was estimated as 35·2-39·5 kb. According to the one-step growth curve analysis, the latent period, rise period and burst size of Phda1 were 60 min, 50 min and 19 plaque-forming units per infected cell, respectively. Divalent cations, especially Ca(2+) and Mg(2+) , strongly improved Phda1 adsorption to the host cells and its propagation. Phda1 treatment delayed the growth and histamine production of P. damselae subsp. damselae in an in vitro challenge test. The bacteriophage Phda1 might serve as a potential antimicrobial agent to inhibit the histamine poisoning caused by P. damselae subsp. damselae. This is the first description of a bacteriophage specifically infecting P. damselae subsp. damselae and its potential applications. Bacteriophage therapy could prove useful in the prevention of histamine poisoning. © 2015 The Society for Applied Microbiology.
Yasuhara-Bell, Jarred; de Silva, Asoka; Heuchelin, Scott A; Chaky, Jennifer L; Alvarez, Anne M
2016-03-01
The Goss's wilt pathogen, Clavibacter michiganensis subsp. nebraskensis, can cause considerable losses in maize (Zea mays) production. Diagnosis of Goss's wilt currently is based on symptomology and identification of C. michiganensis subsp. nebraskensis, following isolation on a semiselective medium and/or serological testing. In an effort to provide a more efficient identification method, a loop-mediated amplification (LAMP) assay was developed to detect the tripartite ATP-independent periplasmic (TRAP)-type C4-dicarboxylate transport system large permease component and tested using strains of C. michiganensis subsp. nebraskensis, all other C. michiganensis subspecies and several genera of nontarget bacteria. Only strains of C. michiganensis subsp. nebraskensis reacted positively with the LAMP assay. The LAMP assay was then used to identify bacterial isolates from diseased maize. 16S rDNA and dnaA sequence analyses were used to confirm the identity of the maize isolates and validate assay specificity. The Cmm ImmunoStrip assay was included as a presumptive identification test of C. michiganensis subsp. nebraskensis at the species level. The Cmn-LAMP assay was further tested using symptomatic leaf tissue. The Cmn-LAMP assay was run in a hand-held real-time monitoring device (SMART-DART) and performed equally to in-lab quantitative polymerase chain reaction equipment. The Cmn-LAMP assay accurately identified C. michiganensis subsp. nebraskensis and has potential as a field test. The targeted sequence also has potential application in other molecular detection platforms.
Cho, Min Seok; Lee, Jang Ha; Her, Nam Han; Kim, Changkug; Seol, Young-Joo; Hahn, Jang Ho; Baeg, Ji Hyoun; Kim, Hong Gi; Park, Dong Suk
2012-06-01
The Gram-positive bacterium Clavibacter michiganensis subsp. michiganensis is the causal agent of canker disease in tomato. Because it is very important to control newly introduced inoculum sources from commercial materials, the specific detection of this pathogen in seeds and seedlings is essential for effective disease control. In this study, a novel and efficient assay for the detection and quantitation of C. michiganensis subsp. michiganensis in symptomless tomato and red pepper seeds was developed. A pair of polymerase chain reaction (PCR) primers (Cmm141F/R) was designed to amplify a specific 141 bp fragment on the basis of a ferredoxin reductase gene of C. michiganensis subsp. michiganensis NCPPB 382. The specificity of the primer set was evaluated using purified DNA from 16 isolates of five C. michiganensis subspecies, one other Clavibacter species, and 17 other reference bacteria. The primer set amplified a single band of expected size from the genomic DNA obtained from the C. michiganensis subsp. michiganensis strains but not from the other C. michiganensis subspecies or from other Clavibacter species. The detection limit was a single cloned copy of the ferredoxin reductase gene of C. michiganensis subsp. michiganensis. In conclusion, this quantitative direct PCR assay can be applied as a practical diagnostic method for epidemiological research and the sanitary management of seeds and seedlings with a low level or latent infection of C. michiganensis subsp. michiganensis.
Murata, H; Chatterjee, A; Liu, Y; Chatterjee, A K
1994-01-01
The production of pectolytic enzymes (pectate lyase [Pel] and polygalacturonase [Peh]), cellulase (Cel), and protease (Prt) is activated in the soft rot bacterium Erwinia carotovora subsp. carotovora by aepA (activator of extracellular protein production) and celery extract (Y. Liu, H. Murata, A. Chatterjee, and A. K. Chatterjee, Mol. Plant-Microbe Interact. 6:299-308, 1993). We recently isolated a new class of mutants of strain E. carotovora subsp. carotovora 71 which overproduces Pel, Peh, Cel, and Prt. From the overproducing strain AC5034, we identified an activator locus, designated aepH*, which stimulated Pel, Peh, Cel, and Prt production in E. carotovora subsp. carotovora 71 or its derivatives. The nucleotide sequence of the aepH* DNA segment revealed an open reading frame of 141 bp that could encode a small (5.45-kDa) highly basic (pI 11.7) protein of 47 amino acid residues. Analyses of deletions and MudI insertions indicated that the activator function required the 508-bp DNA segment which contains this open reading frame. The wild-type locus, aepH+, is localized within a DNA segment upstream of aepA. An AepH- strain constructed by exchanging aepH+ with aepH*::MudI was deficient in Pel, Peh, Cel, and Prt production; exoenzyme production was restored upon the introduction of a plasmid carrying aepH+ or aepH*. Plasmids carrying either aepH+ or aepH* activated the production of Pel-1, Peh-1, and Cel in Escherichia coli HB101 carrying the cognate genes. The aepH effect in E. coli was due to the activation of transcription, as indicated by assays of pel-1 and peh-1 mRNAs. The aepH+ and aepH* plasmids also stimulated Pel, Peh, Cel, and Prt production in other wild-type E. carotovora subsp. carotovora strains as well as in E. carotovora subsp. atroseptica. Although the stimulatory effect was generally more pronounced with aepH* than with aepH+, the extent of activation in the wild-type strains depended upon the bacterial strain and the growth medium. Southern blot hybridization revealed the presence of aepH homologs in E. carotovora subsp. carotovora and E. carotovora subsp. atroseptica, and provided physical evidence for linkage between aepA and aepH homologs in genomes of these bacteria. We conclude that aepH-mediated activation of exoprotein gene expression is a feature common to most strains of E. carotovora. Images PMID:7944360
Hernández-Montelongo, Jacobo; Nascimento, Vicente F; Murillo, Duber; Taketa, Thiago B; Sahoo, Prasana; de Souza, Alessandra A; Beppu, Marisa M; Cotta, Monica A
2016-01-20
In this work, nanofilms of hyaluronan/chitosan (HA/CHI) assembled layer by layer were synthesized; their application as a potential antimicrobial material was demonstrated for the phytopathogen Xylella fastidiosa, a gram-negative bacterium, here used as a model. For the synthesis, the influence of pH and ionic strength of these natural polymer stem-solutions on final characteristics of the HA/CHI nanofilms was studied in detail. The antibacterial effect was evaluated using widefield fluorescence microscopy. These results were correlated with the chemical properties of the nanofilms, studied by FTIR and Raman spectroscopy, as well as with their morphology and surface properties characterized using SEM and AFM. The present findings can be extended to design and optimize HA/CHI nanofilms with enhanced antimicrobial behavior for other type of phytopathogenic gram-negative bacteria species, such as Xanthomonas citri, Xanthomas campestri and Ralstonia solanacearum. Copyright © 2015 Elsevier Ltd. All rights reserved.
Xylella fastidiosa esterase rather than hydroxynitrile lyase.
Torrelo, Guzman; Ribeiro de Souza, Fayene Zeferino; Carrilho, Emanuel; Hanefeld, Ulf
2015-03-02
In 2009, we reported that the product of the gene SCJ21.16 (XFa0032) from Xylella fastidiosa, a xylem-restricted plant pathogen that causes a range of diseases in several important crops, encodes a protein (XfHNL) with putative hydroxynitrile lyase activity. Sequence analysis and activity tests indicated that XfHNL exhibits an α/β-hydrolase fold and could be classified as a member of the family of FAD-independent HNLs. Here we provide a more detailed sequence analysis and new experimental data. Using pure heterologously expressed XfHNL we show that this enzyme cannot catalyse the cleavage/synthesis of mandelonitrile and that this protein is in fact a non-enantioselective esterase. Homology modelling and ligand docking simulations were used to study the active site and support these results. This finding could help elucidate the common ancestor of esterases and hydroxynitrile lyases with an α/β -hydrolase fold. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Roy, D; Sirois, S; Vincent, D
2001-04-01
Lactic acid bacteria such as Lactobacillus helveticus, L. delbrueckii subsp. delbrueckii, L. delbrueckii subsp. lactis, L. delbrueckii subsp. bulgaricus, L. acidophilus, and L. casei related taxa which are widely used as starter or probiotic cultures can be identified by amplified ribosomal DNA restriction analysis (ARDRA). The genetic discrimination of the related species belonging to these groups was first obtained by PCR amplifications by using group-specific or species-specific 16S rDNA primers. The numerical analysis of the ARDRA patterns obtained by using CfoI, HinfI, Tru9I, and ScrFI was an efficient typing tool for identification of species of the L. acidophilus and L. casei complex. ARDRA by using CfoI was a reliable method for differentiation of L. delbrueckii subsp. bulgaricus and L. delbrueckii subsp. lactis. Finally, strains ATCC 393 and ATCC 15820 exhibited unique ARDRA patterns with CfoI and Tru9I restriction enzymes as compared with the other strains of L. casei, L. paracasei, and L. rhamnosus.
Cremonesi, Paola; Vanoni, Laura; Morandi, Stefano; Silvetti, Tiziana; Castiglioni, Bianca; Brasca, Milena
2011-03-30
A pentaplex PCR assay for the rapid, selective and simultaneous detection of Lactobacillus helveticus, L. delbrueckii subsp. lactis, L. delbrueckii subsp. bulgaricus, Streptococcus thermophilus, and L. fermentum, was developed. The target sequences were a group of genes coding for beta-galactosidase production (S. thermophilus and L. delbrueckii subsp. bulgaricus), for cell-enveloped associated proteinase synthesis (L. helveticus), for dipeptide transport system production (L. delbrueckii subsp. lactis) and for arginine-ornithine antiporter protein production (L. fermentum). The analytical specificity of the assay was evaluated with 5 reference strains and 140 lactic acid bacterial strains derived from raw milk cheeses and belonging to the Lactobacillus, Streptococcus, Lactococcus and Enterococcus genera. The identification limit for each target strain was 10(3)CFU/ml. This new molecular assay was used to investigate the LAB population by direct extraction of DNA from the 12 whey cultures for Grana Padano. The pentaplex PCR assay revealed a good correspondence with microbiological analyses and allowed to identify even minor LAB community members which, can be out-competed in vitro by numerically more abundant microbial species. Copyright © 2011 Elsevier B.V. All rights reserved.
Spahr, U; Schafroth, K
2001-09-01
Raw milk was artificially contaminated with declumped cells of Mycobacterium avium subsp. paratuberculosis at a concentration of 10(4) to 10(5) CFU/ml and was used to manufacture model hard (Swiss Emmentaler) and semihard (Swiss Tisliter) cheese. Two different strains of M. avium subsp. paratuberculosis were tested, and for each strain, two model hard and semihard cheeses were produced. The survival of M. avium subsp. paratuberculosis cells was monitored over a ripening period of 120 days by plating out homogenized cheese samples onto 7H10-PANTA agar. In both the hard and the semihard cheeses, counts decreased steadily but slowly during cheese ripening. Nevertheless, viable cells could still be detected in 120-day cheese. D values were calculated at 27.8 days for hard and 45.5 days for semihard cheese. The most important factors responsible for the death of M. avium subsp. paratuberculosis in cheese were the temperatures applied during cheese manufacture and the low pH at the early stages of cheese ripening. Since the ripening period for these raw milk cheeses lasts at least 90 to 120 days, the D values found indicate that 10(3) to 10(4) cells of M. avium subsp. paratuberculosis per g will be inactivated.
Itoi, S; Yuasa, K; Washio, S; Abe, T; Ikuno, E; Sugita, H
2009-09-01
We compared phenotypic characteristics of Lactococcus lactis subsp. lactis derived from different sources including the intestinal tract of marine fish and freshwater fish, and cheese starter culture. In the phylogenetic analysis based on partial 16S rRNA gene nucleotide sequences (1371 bp), freshwater fish-, marine fish- and cheese starter culture-derived strains were identical to that of L. lactis subsp. lactis previously reported. Fermentation profiles determined using the API 50 CH system were similar except for fermentation of several sugars including l-arabinose, mannitol, amygdalin, saccharose, trehalose, inulin and gluconate. The strains did have distinct levels of halotolerance: marine fish-derived strains > cheese starter-derived strain > freshwater fish-derived isolate. Lactococcus lactis subsp. lactis showed extensive diversity in phenotypic adaptation to various environments. The phenotypic properties of these strains suggested that L. lactis subsp. lactis strains from fish intestine have additional functions compared with the cheese starter-derived strain that has previously described. The unique phenotypic traits of the fish intestinal tract-derived L. lactis subsp. lactis might make them useful as a probiotics in aquaculture, and contribute to the development of functional foods and novel food additives, since the strains derived from fish intestines might have additional functions such as antibacterial activity.
Spahr, U.; Schafroth, K.
2001-01-01
Raw milk was artificially contaminated with declumped cells of Mycobacterium avium subsp. paratuberculosis at a concentration of 104 to 105 CFU/ml and was used to manufacture model hard (Swiss Emmentaler) and semihard (Swiss Tisliter) cheese. Two different strains of M. avium subsp. paratuberculosis were tested, and for each strain, two model hard and semihard cheeses were produced. The survival of M. avium subsp. paratuberculosis cells was monitored over a ripening period of 120 days by plating out homogenized cheese samples onto 7H10-PANTA agar. In both the hard and the semihard cheeses, counts decreased steadily but slowly during cheese ripening. Nevertheless, viable cells could still be detected in 120-day cheese. D values were calculated at 27.8 days for hard and 45.5 days for semihard cheese. The most important factors responsible for the death of M. avium subsp. paratuberculosis in cheese were the temperatures applied during cheese manufacture and the low pH at the early stages of cheese ripening. Since the ripening period for these raw milk cheeses lasts at least 90 to 120 days, the D values found indicate that 103 to 104 cells of M. avium subsp. paratuberculosis per g will be inactivated. PMID:11526024
Mendes, Filipa; Sieuwerts, Sander; de Hulster, Erik; Almering, Marinka J. H.; Luttik, Marijke A. H.; Pronk, Jack T.; Smid, Eddy J.; Bron, Peter A.
2013-01-01
Mixed populations of Saccharomyces cerevisiae yeasts and lactic acid bacteria occur in many dairy, food, and beverage fermentations, but knowledge about their interactions is incomplete. In the present study, interactions between Saccharomyces cerevisiae and Lactobacillus delbrueckii subsp. bulgaricus, two microorganisms that co-occur in kefir fermentations, were studied during anaerobic growth on lactose. By combining physiological and transcriptome analysis of the two strains in the cocultures, five mechanisms of interaction were identified. (i) Lb. delbrueckii subsp. bulgaricus hydrolyzes lactose, which cannot be metabolized by S. cerevisiae, to galactose and glucose. Subsequently, galactose, which cannot be metabolized by Lb. delbrueckii subsp. bulgaricus, is excreted and provides a carbon source for yeast. (ii) In pure cultures, Lb. delbrueckii subsp. bulgaricus grows only in the presence of increased CO2 concentrations. In anaerobic mixed cultures, the yeast provides this CO2 via alcoholic fermentation. (iii) Analysis of amino acid consumption from the defined medium indicated that S. cerevisiae supplied alanine to the bacterium. (iv) A mild but significant low-iron response in the yeast transcriptome, identified by DNA microarray analysis, was consistent with the chelation of iron by the lactate produced by Lb. delbrueckii subsp. bulgaricus. (v) Transcriptome analysis of Lb. delbrueckii subsp. bulgaricus in mixed cultures showed an overrepresentation of transcripts involved in lipid metabolism, suggesting either a competition of the two microorganisms for fatty acids or a response to the ethanol produced by S. cerevisiae. This study demonstrates that chemostat-based transcriptome analysis is a powerful tool to investigate microbial interactions in mixed populations. PMID:23872557
Mendes, Filipa; Sieuwerts, Sander; de Hulster, Erik; Almering, Marinka J H; Luttik, Marijke A H; Pronk, Jack T; Smid, Eddy J; Bron, Peter A; Daran-Lapujade, Pascale
2013-10-01
Mixed populations of Saccharomyces cerevisiae yeasts and lactic acid bacteria occur in many dairy, food, and beverage fermentations, but knowledge about their interactions is incomplete. In the present study, interactions between Saccharomyces cerevisiae and Lactobacillus delbrueckii subsp. bulgaricus, two microorganisms that co-occur in kefir fermentations, were studied during anaerobic growth on lactose. By combining physiological and transcriptome analysis of the two strains in the cocultures, five mechanisms of interaction were identified. (i) Lb. delbrueckii subsp. bulgaricus hydrolyzes lactose, which cannot be metabolized by S. cerevisiae, to galactose and glucose. Subsequently, galactose, which cannot be metabolized by Lb. delbrueckii subsp. bulgaricus, is excreted and provides a carbon source for yeast. (ii) In pure cultures, Lb. delbrueckii subsp. bulgaricus grows only in the presence of increased CO2 concentrations. In anaerobic mixed cultures, the yeast provides this CO2 via alcoholic fermentation. (iii) Analysis of amino acid consumption from the defined medium indicated that S. cerevisiae supplied alanine to the bacterium. (iv) A mild but significant low-iron response in the yeast transcriptome, identified by DNA microarray analysis, was consistent with the chelation of iron by the lactate produced by Lb. delbrueckii subsp. bulgaricus. (v) Transcriptome analysis of Lb. delbrueckii subsp. bulgaricus in mixed cultures showed an overrepresentation of transcripts involved in lipid metabolism, suggesting either a competition of the two microorganisms for fatty acids or a response to the ethanol produced by S. cerevisiae. This study demonstrates that chemostat-based transcriptome analysis is a powerful tool to investigate microbial interactions in mixed populations.
Szabo, Jeffrey G.; Rice, Eugene W.; Bishop, Paul L.
2007-01-01
Persistence of Bacillus atrophaeus subsp. globigii spores on corroded iron coupons in drinking water was studied using a biofilm annular reactor. Spores were inoculated at 106 CFU/ml in the dechlorinated reactor bulk water. The dechlorination allowed for observation of the effects of hydraulic shear and biofilm sloughing on persistence. Approximately 50% of the spores initially adhered to the corroded iron surface were not detected after 1 month. Addition of a stable 10 mg/liter free chlorine residual after 1 month led to a 2-log10 reduction of adhered B. atrophaeus subsp. globigii, but levels on the coupons quickly stabilized thereafter. Increasing the free chlorine concentration to 25 or 70 mg/liter had no additional effect on inactivation. B. atrophaeus subsp. globigii spores injected in the presence of a typical distribution system chlorine residual (∼0.75 mg/liter) resulted in a steady reduction of adhered B. atrophaeus subsp. globigii over 1 month, but levels on the coupons eventually stabilized. Adding elevated chlorine levels (10, 25, and 70 mg/liter) after 1 month had no effect on the rate of inactivation. Decontamination with elevated free chlorine levels immediately after spore injection resulted in a 3-log10 reduction within 2 weeks, but the rate of inactivation leveled off afterward. This indicates that free chlorine did not reach portions of the corroded iron surface where B. atrophaeus subsp. globigii spores had adhered. B. atrophaeus subsp. globigii spores are capable of persisting for an extended time in the presence of high levels of free chlorine. PMID:17308186
Kim, Byoung-Jun; Kim, Ga-Na; Kim, Bo-Ram; Jeon, Che Ok; Jeong, Joseph; Lee, Seon Ho; Lim, Ji-Hun; Lee, Seung-Heon; Kim, Chang Ki; Kook, Yoon-Hoh; Kim, Bum-Joon
2017-10-01
Three rapidly growing mycobacterial strains, QIA-37 T , QIA-40 and QIA-41, were isolated from the lymph nodes of three separate Korean native cattle, Hanwoo (Bos taurus coreanae). These strains were previously shown to be phylogenetically distinct but closely related to Mycobacterium chelonae ATCC 35752 T by taxonomic approaches targeting three genes (16S rRNA, hsp6 and rpoB) and were further characterized using a polyphasic approach in this study. The 16S rRNA gene sequences of all three strains showed 99.7 % sequence similarity with that of the M. chelonae type strain. A multilocus sequence typing analysis targeting 10 housekeeping genes, including hsp65 and rpoB, revealed a phylogenetic cluster of these strains with M. chelonae. DNA-DNA hybridization values of 78.2 % between QIA-37 T and M. chelonae indicated that it belongs to M. chelonae but is a novel subspecies distinct from M. chelonae. Phylogenetic analysis based on whole-genome sequences revealed a 95.44±0.06 % average nucleotide identity (ANI) value with M. chelonae, slightly higher than the 95.0 % ANI criterion for determining a novel species. In addition, distinct phenotypic characteristics such as positive growth at 37 °C, at which temperature M. chelonae does not grow, further support the taxonomic status of these strains as representatives of a novel subspecies of M. chelonae. Therefore, we propose an emended description of Mycobacterium chelonae, and descriptions of M. chelonae subsp. chelonae subsp. nov. and M. chelonae subsp. bovis subsp. nov. are presented; strains ATCC 35752 T (=CCUG 47445 T =CIP 104535 T =DSM 43804 T =JCM 6388 T =NCTC 946 T ) and QIA-37 T (=KCTC 39630 T =JCM 30986 T ) are the type strains of the two novel subspecies.
Zhang, Chong-Xing; Yang, Shou-Yun; Xu, Ming-Xu; Sun, Jie; Liu, Huan; Liu, Jing-Rui; Liu, Hui; Kan, Fei; Sun, Jing; Lai, Ren; Zhang, Ke-Yun
2009-07-01
A novel red-pigmented, Gram-negative, motile, fluorescent, rod-shaped strain, DZ0503SBS1(T), with a single lateral flagellum, was isolated from the intestine of the nematode Heterorhabditidoides chongmingensis. Comparative 16S rRNA gene sequence analysis indicated that the strain is a member of the genus Serratia, sharing highest sequence similarities with Serratia marcescens subsp. sakuensis JCM 11315(T) (99.8 %), S. marcescens subsp. marcescens DSM 30121(T) (99.5 %) and Serratia ureilytica LMG 22860(T) (98.3 %). Similarities between the rpoB gene sequence of strain DZ0503SBS1(T) and those of S. marcescens subsp. sakuensis JCM 11315(T), S. marcescens subsp. marcescens DSM 30121(T) and S. ureilytica LMG 22860(T) were 98.0, 97.4 and 98.3 %, respectively. DNA-DNA hybridization values of strain DZ0503SBS1(T) with S. marcescens subsp. sakuensis JCM 11315(T), S. marcescens subsp. marcescens DSM 30121(T) and S. ureilytica LMG 22860(T) were 68.2, 65.1 and 53.0 %, respectively. The major isoprenoid quinone of strain DZ0503SBS1(T) was Q-8 and the predominant fatty acids were C(16 : 0) (34.76 %), cyclo-C(17 : 0) (20.03 %) and cyclo-C(19 : 0)omega8c (17.24 %). The cyclo-C(19 : 0)omega8c content (17.24 %) was significantly different from those found in S. marcescens subsp. sakuensis JCM 11315(T) and S. marcescens subsp. marcescens DSM 30121(T). Some characteristics of strain DZ0503SBS1(T), i.e. fluorescence and its symbiotic association with nematodes, have not been reported previously in any species of the genus Serratia. Phenotypic and biochemical characteristics and molecular data show that strain DZ0503SBS1(T) represents a novel species, for which the name Serratia nematodiphila sp. nov. is proposed; the type strain is DZ0503SBS1(T) (=KCTC 22130(T) =CGMCC 1.6853(T)).
Wound healing and anti-inflammatory activity of some Ononis taxons.
Ergene Öz, Burçin; Saltan İşcan, Gülçin; Küpeli Akkol, Esra; Süntar, İpek; Keleş, Hikmet; Bahadır Acıkara, Özlem
2017-07-01
Ononis species are used for their laxative, diuretic, analgesic, anti-inflammatory, antiviral, cytotoxic and antifungal effects as well as against skin diseases for wound healing activity. In the light of this information n-hexane, ethylacetate and methanol extracts prepared from Ononis spinosa L. subsp. leiosperma (Boiss.) Sirj., Ononis variegata L., Ononis viscosa L. subsp. brevifolia (DC) Nym. and Ononis natrix L. subsp. natrix L. were tested for their wound healing, anti-inflammatory and antioxidant activities. Linear incision and circular excision wound models and hydroxypyroline estimation assay were used for the wound healing activity. For the assessment of chronic inflammation FCA-induced arthritis and for acute inflammation carrageenan-induced hind paw edema, TPA-induced ear edema and acetic acid-induced increase in capillary permeability tests were conducted. 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay, 2,2-azino-bis-(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) scavenging activity assay, reducing power assay and hydroxyl radical (OH - ) scavenging assay were used for determining antioxidant activities of the extracts. Results showed that O. spinosa subsp. leiosperma roots ethyl acetate extract exhibited remarkable wound healing activity with the 42.6% tensile strength value on the linear incision wound model and 60.1% reduction of the wound area at the day 12 on the circular excision wound model. Hydroxyproline content of the tissue treated by O. spinosa subsp. leiosperma roots ethyl acetate extract was found to be 41.3μg/mg. Acetic acid induced increase in capillary permeability test results revealed that O. spinosa subsp. leiosperma roots ethyl acetate extract and O. spinosa subsp. leiosperma roots methanol extract inhibited inflammation by 40.4% and 35.4% values respectively. O. spinosa subsp. leiosperma roots ethyl acetate extract showed 21.2-27.2% inhibition in carrageenan-induced hind paw edema test while did not posses activity on TPA-induced ear edema and FCA-induced arthritis models. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Zhao, Gengxiang; Jin, Zhongmin; Allewell, Norma M; Tuchman, Mendel; Shi, Dashuang
2015-01-01
Structures of the catalytic N-acetyltransferase (NAT) domain of the bifunctional N-acetyl-L-glutamate synthase/kinase (NAGS/K) from Xylella fastidiosa bound to N-acetyl-L-glutamate (NAG) with and without an N-terminal His tag have been solved and refined at 1.7 and 1.4 Å resolution, respectively. The NAT domain with an N-terminal His tag crystallized in space group P4(1)2(1)2, with unit-cell parameters a=b=51.72, c=242.31 Å. Two subunits form a molecular dimer in the asymmetric unit, which contains ∼41% solvent. The NAT domain without an N-terminal His tag crystallized in space group P21, with unit-cell parameters a=63.48, b=122.34, c=75.88 Å, β=107.6°. Eight subunits, which form four molecular dimers, were identified in the asymmetric unit, which contains ∼38% solvent. The structures with and without the N-terminal His tag provide an opportunity to evaluate how the His tag affects structure and function. Furthermore, multiple subunits in different packing environments allow an assessment of the plasticity of the NAG binding site, which might be relevant to substrate binding and product release. The dimeric structure of the X. fastidiosa N-acetytransferase (xfNAT) domain is very similar to that of human N-acetyltransferase (hNAT), reinforcing the notion that mammalian NAGS is evolutionally derived from bifunctional bacterial NAGS/K.
RpfF-dependent regulon of Xylella fastidiosa.
Wang, Nian; Li, Jian-Liang; Lindow, Steven E
2012-11-01
ABSTRACT Xylella fastidiosa regulates traits important to both virulence of grape as well as colonization of sharpshooter vectors via its production of a fatty acid signal molecule known as DSF whose production is dependent on rpfF. Although X. fastidiosa rpfF mutants exhibit increased virulence to plants, they are unable to be spread from plant to plant by insect vectors. To gain more insight into the traits that contribute to these processes, a whole-genome Agilent DNA microarray for this species was developed and used to determine the RpfF-dependent regulon by transcriptional profiling. In total, 446 protein coding genes whose expression was significantly different between the wild type and an rpfF mutant (false discovery rate < 0.05) were identified when cells were grown in PW liquid medium. Among them, 165 genes were downregulated in the rpfF mutant compared with the wild-type strain whereas 281 genes were over-expressed. RpfF function was required for regulation of 11 regulatory and σ factors, including rpfE, yybA, PD1177, glnB, rpfG, PD0954, PD0199, PD2050, colR, rpoH, and rpoD. In general, RpfF is required for regulation of genes involved in attachment and biofilm formation, enhancing expression of hemagglutinin genes hxfA and hxfB, and suppressing most type IV pili and gum genes. A large number of other RpfF-dependent genes that might contribute to virulence or insect colonization were also identified such as those encoding hemolysin and colicin V, as well as genes with unknown functions.
NASA Astrophysics Data System (ADS)
Janissen, Richard; Murillo, Duber M.; Niza, Barbara; Sahoo, Prasana K.; Monteiro, Moniellen P.; César, Carlos L.; Carvalho, Hernandes F.; de Souza, Alessandra A.; Cotta, Monica A.
2016-04-01
Biofilms can be defined as a community of microorganisms attached to a surface, living embedded in a self- produced matrix of hydrated extracellular polymeric substances (EPS) which comprises most of the biofilm mass. We have recently used an extensive pool of microscopy techniques (confocal fluorescence, electron and scanning probe microscopies) at the micro and nanoscales in order to create a detailed temporal observation of Xylella fastidiosa biofilm formation, using both wild type strain and Green Fluorescent Protein (GFP)-modified cells of this citrus phytopathogen. We have identified three different EPS compositions, as well as their spatial and temporal distribution from single cell to mature biofilm formation stages. In the initial adhesion stage, soluble-EPS (S-EPS) accumulates at cell polar regions and forms a surface layer which facilitates irreversible cell attachment and cell cluster formation. These small clusters are subsequently connected by filamentous cells; further S-EPS surface coverage facilitates cell attachment and form filaments, leading to a floating framework of mature biofilms. The important role of EPS in X.fastidiosa biology was further investigated by imunolabelling experiments to detect the distribution of XadA1 adhesin, which is expressed in early stages of biofilm formation and released in outer membrane vesicles. This protein is located mainly in S-EPS covered areas, as well as on the filaments, indicating a molecular pathway to the enhanced cell attachment previously observed. These results suggest that S-EPS may thus represent an important target for disease control, slow plant colonization by the bacteria, keeping the plant more productive in the field.
Doddapaneni, Harshavardhan; Yao, Jiqiang; Lin, Hong; Walker, M Andrew; Civerolo, Edwin L
2006-01-01
Background The Gram-negative, xylem-limited phytopathogenic bacterium Xylella fastidiosa is responsible for causing economically important diseases in grapevine, citrus and many other plant species. Despite its economic impact, relatively little is known about the genomic variations among strains isolated from different hosts and their influence on the population genetics of this pathogen. With the availability of genome sequence information for four strains, it is now possible to perform genome-wide analyses to identify and categorize such DNA variations and to understand their influence on strain functional divergence. Results There are 1,579 genes and 194 non-coding homologous sequences present in the genomes of all four strains, representing a 76. 2% conservation of the sequenced genome. About 60% of the X. fastidiosa unique sequences exist as tandem gene clusters of 6 or more genes. Multiple alignments identified 12,754 SNPs and 14,449 INDELs in the 1528 common genes and 20,779 SNPs and 10,075 INDELs in the 194 non-coding sequences. The average SNP frequency was 1.08 × 10-2 per base pair of DNA and the average INDEL frequency was 2.06 × 10-2 per base pair of DNA. On an average, 60.33% of the SNPs were synonymous type while 39.67% were non-synonymous type. The mutation frequency, primarily in the form of external INDELs was the main type of sequence variation. The relative similarity between the strains was discussed according to the INDEL and SNP differences. The number of genes unique to each strain were 60 (9a5c), 54 (Dixon), 83 (Ann1) and 9 (Temecula-1). A sub-set of the strain specific genes showed significant differences in terms of their codon usage and GC composition from the native genes suggesting their xenologous origin. Tandem repeat analysis of the genomic sequences of the four strains identified associations of repeat sequences with hypothetical and phage related functions. Conclusion INDELs and strain specific genes have been identified as the main source of variations among strains, with individual strains showing different rates of genome evolution. Based on these genome comparisons, it appears that the Pierce's disease strain Temecula-1 genome represents the ancestral genome of the X. fastidiosa. Results of this analysis are publicly available in the form of a web database. PMID:16948851
Resident lactic acid bacteria in raw milk Canestrato Pugliese cheese.
Aquilanti, L; Dell'Aquila, L; Zannini, E; Zocchetti, A; Clementi, F
2006-08-01
Investigation of the autochthonous lactic acid bacteria (LAB) population of the raw milk protected designation of origin Canestrato Pugliese cheese using phenotypic and genotypic methodologies. Thirty phenotypic assays and three molecular techniques (restriction fragment length polymorphism, partial sequencing of the 16S rRNA gene and recA multiplex PCR assay) were applied to the identification of 304 isolates from raw milk Canestrato Pugliese cheese. As a result, 168 of 207 isolates identified were ascribed to genus Enterococcus, 25 to Lactobacillus, 13 to Lactococcus and one to Leuconostoc. More in details among the lactobacilli, the species Lactobacillus brevis and Lactobacillus plantarum were predominant, including 13 and 10 isolates respectively, whereas among the lactococci, Lactococcus lactis subsp.cremoris [corrected] was the species more frequently detected (seven isolates). Except for the enterococci, phenotypic tests were not reliable enough for the identification of the isolates, if not combined to the genotype-based molecular techniques. The polyphasic approach utilized allowed 10 different LAB species to be detected; thus suggesting the appreciable LAB diversity of the autochthonous microbial population of the Canestrato Pugliese cheese. A comprehensive study of the resident raw milk Canestrato Pugliese cheese microbial population has been undertaken.
76 FR 63298 - Pesticide Products; Registration Applications
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-12
... thuringiensis subsp. kurstaki strain VBTS 2546 fermentation solids, spores, and insecticidal toxins at 67... ingredient: Bacillus thuringiensis subsp. kurstaki strain VBTS 2546 fermentation solids, spores, and...
Lawley, Blair; Centanni, Manuela; Watanabe, Jun; Sims, Ian; Carnachan, Susan; Broadbent, Roland; Lee, Pheng Soon; Wong, Khai Hong; Tannock, Gerald W
2018-07-01
Members of the bacterial genus Bifidobacterium generally dominate the fecal microbiota of infants. The species Bifidobacterium longum is prevalent, but the B. longum subsp. longum and B. longum subsp. infantis strains that are known to colonize the infant bowel are not usually differentiated in microbiota investigations. These subspecies differ in their capacities to metabolize human milk oligosaccharides (HMO) and may have different ecological and symbiotic roles in humans. Quantitative PCR provides a quick analytical method by which to accurately ascertain the abundances of target species in microbiotas and microcosms. However, amplification targets in DNA extracted from samples need to be dependably differential. We evaluated the tuf gene sequence as a molecular target for quantitative PCR measurements of the abundances of B. longum subsp. infantis and B. longum subsp. longum in fecal microbiotas. This approach resulted in the detection of a tuf gene variant (operational taxonomic unit 49 [OTU49]) in Chinese infants that has sequence similarities to both B. longum subsp. infantis and B. longum subsp. longum We compared the genome sequence and growth and transcriptional characteristics of an OTU49 isolate cultured in HMO medium to those of other B. longum subsp. infantis cultures. We concluded from these studies that OTU49 belongs to B. longum subsp. infantis , that dependable quantitative PCR (qPCR) differentiation between the B. longum subspecies cannot be achieved by targeting tuf gene sequences, and that functional genes involved in carbohydrate metabolism might be better targets because they delineate ecological functions. IMPORTANCE High-throughput DNA sequencing methods and advanced bioinformatics analysis have revealed the composition and biochemical capacities of microbial communities (microbiota and microbiome), including those that inhabit the gut of human infants. However, the microbiology and function of natural ecosystems have received little attention in recent decades, so an appreciation of the dynamics of gut microbiota interactions is lacking. With respect to infants, rapid methodologies, such as quantitative PCR, are needed to determine the prevalences and proportions of different bifidobacterial species in observational and microcosm studies in order to obtain a better understanding of the dynamics of bifidobacterial nutrition and syntrophy, knowledge that might be used to manipulate the microbiota and perhaps ensure the better health of infants. Copyright © 2018 American Society for Microbiology.
Waldron, Anna M.; Galea, Francesca; Whittington, Ann-Michele; Saunders, Vanessa F.; Begg, Douglas J.; de Silva, Kumudika; Purdie, Auriol C.; Whittington, Richard J.
2014-01-01
Johne's disease (JD) is a chronic enteric disease caused by Mycobacterium avium subsp. paratuberculosis that affects ruminants. Transmission occurs by the fecal-oral route. A commonly used antemortem diagnostic test for the detection of M. avium subsp. paratuberculosis in feces is liquid culture; however, a major constraint is the 2- to 3-month incubation period needed for this method. Rapid methods for the detection of M. avium subsp. paratuberculosis based on PCR have been reported, but comprehensive validation data are lacking. We describe here a new test, the high-throughput-Johnes (HT-J), to detect M. avium subsp. paratuberculosis in feces. Its diagnostic accuracy was compared with that of liquid radiometric (Bactec) fecal culture using samples from cattle (1,330 samples from 23 herds) and sheep (596 samples from 16 flocks). The multistage protocol involves the recovery of M. avium subsp. paratuberculosis cells from a fecal suspension, cell rupture by bead beating, extraction of DNA using magnetic beads, and IS900 quantitative PCR. The limit of detection of the assay was 0.0005 pg, and the limit of quantification was 0.005 pg M. avium subsp. paratuberculosis genomic DNA. Only M. avium subsp. paratuberculosis was detected from a panel of 51 mycobacterial isolates, including 10 with IS900-like sequences. Of the 549 culture-negative fecal samples from unexposed herds and flocks, 99% were negative in the HT-J test, while 60% of the bovine- and 84% of the ovine-culture-positive samples were positive in the HT-J test. As similar total numbers of samples from M. avium subsp. paratuberculosis-exposed animals were positive in culture and HT-J tests in both species, and as the results of a McNemar's test were not significant, these methods probably have similar sensitivities, but the true diagnostic sensitivities of these tests are unknown. These validation data meet the consensus-based reporting standards for diagnostic test accuracy studies for paratuberculosis and the Minimum Information for Publication of Quantitative Real-Time PCR Experiments (MIQE) guidelines (S. A. Bustin et al., Clin. Chem. 55:611–622, 2009, doi:10.1373/clinchem.2008.112797). The HT-J assay has been approved for use in JD control programs in Australia and New Zealand. PMID:24352996
Durand, Karine; Orgeur, Geoffrey; Balidas, Samuel; Fricot, Céline; Bonneau, Sophie; Quillévéré, Anne; Audusseau, Corinne; Olivier, Valérie; Grimault, Valérie; Mathis, René
2012-01-01
The genus Clavibacter comprises one species and five subspecies of plant-pathogenic bacteria, four of which are classified as quarantine organisms due to the high economic threat they pose. Clavibacter michiganensis subsp. michiganensis is one of the most important pathogens of tomato, but the recommended diagnostic tools are not satisfactory due to false-negative and/or -positive results. To provide a robust analysis of the genetic relatedness among a worldwide collection of C. michiganensis subsp. michiganensis strains, relatives (strains from the four other C. michiganensis subspecies), and nonpathogenic Clavibacter-like strains isolated from tomato, we performed multilocus sequence-based analysis and typing (MLSA and MLST) based on six housekeeping genes (atpD, dnaK, gyrB, ppK, recA, and rpoB). We compared this “framework” with phenotypic and genotypic characteristics such as pathogenicity on tomato, reaction to two antisera by immunofluorescence and to five PCR identification tests, and the presence of four genes encoding the main C. michiganensis subsp. michiganensis pathogenicity determinants. We showed that C. michiganensis subsp. michiganensis is monophyletic and is distinct from its closest taxonomic neighbors. The nonpathogenic Clavibacter-like strains were identified as C. michiganensis using 16S rRNA gene sequencing. These strains, while cross-reacting with C. michiganensis subsp. michiganensis identification tools, are phylogenetically distinct from the pathogenic strains but belong to the C. michiganensis clade. C. michiganensis subsp. michiganensis clonal complexes linked strains from highly diverse geographical origins and also strains isolated over long periods of time in the same location. This illustrates the importance of seed transmission in the worldwide dispersion of this pathogen and its survival and adaptation abilities in a new environment once introduced. PMID:23001675
Chomel, Bruno B.; Molia, Sophie; Kasten, Rickie W.; Borgo, Gina M.; Stuckey, Matthew J.; Maruyama, Soichi; Chang, Chao-chin; Haddad, Nadia; Koehler, Jane E.
2016-01-01
Domestic cats are the natural reservoir of Bartonella henselae, B. clarridgeiae and B. koehlerae. To determine the role of wild felids in the epidemiology of Bartonella infections, blood was collected from 14 free-ranging California mountain lions (Puma concolor) and 19 bobcats (Lynx rufus). Bartonella spp. were isolated from four (29%) mountain lions and seven (37%) bobcats. These isolates were characterized using growth characteristics, biochemical reactions, molecular techniques, including PCR-RFLP of selected genes or interspacer region, pulsed-field gel electrophoresis (PFGE), partial sequencing of several genes, and DNA-DNA hybridization. Two isolates were identical to B. henselae genotype II. All other isolates were distinguished from B. henselae and B. koehlerae by PCR-RFLP of the gltA gene using endonucleases HhaI, TaqI and AciI, with the latter two discriminating between the mountain lion and the bobcat isolates. These two novel isolates displayed specific PFGE profiles distinct from B. henselae, B. koehlerae and B. clarridgeiae. Sequences of amplified gene fragments from the three mountain lion and six bobcat isolates were closely related to, but distinct from, B. henselae and B. koehlerae. Finally, DNA-DNA hybridization studies demonstrated that the mountain lion and bobcat strains are most closely related to B. koehlerae. We propose naming the mountain lion isolates B. koehlerae subsp. boulouisii subsp. nov. (type strain: L-42-94), and the bobcat isolates B. koehlerae subsp. bothieri subsp. nov. (type strain: L-17-96), and to emend B. koehlerae as B. koehlerae subsp. koehlerae. The mode of transmission and the zoonotic potential of these new Bartonella subspecies remain to be determined. PMID:26981874
Jacques, Marie-Agnès; Durand, Karine; Orgeur, Geoffrey; Balidas, Samuel; Fricot, Céline; Bonneau, Sophie; Quillévéré, Anne; Audusseau, Corinne; Olivier, Valérie; Grimault, Valérie; Mathis, René
2012-12-01
The genus Clavibacter comprises one species and five subspecies of plant-pathogenic bacteria, four of which are classified as quarantine organisms due to the high economic threat they pose. Clavibacter michiganensis subsp. michiganensis is one of the most important pathogens of tomato, but the recommended diagnostic tools are not satisfactory due to false-negative and/or -positive results. To provide a robust analysis of the genetic relatedness among a worldwide collection of C. michiganensis subsp. michiganensis strains, relatives (strains from the four other C. michiganensis subspecies), and nonpathogenic Clavibacter-like strains isolated from tomato, we performed multilocus sequence-based analysis and typing (MLSA and MLST) based on six housekeeping genes (atpD, dnaK, gyrB, ppK, recA, and rpoB). We compared this "framework" with phenotypic and genotypic characteristics such as pathogenicity on tomato, reaction to two antisera by immunofluorescence and to five PCR identification tests, and the presence of four genes encoding the main C. michiganensis subsp. michiganensis pathogenicity determinants. We showed that C. michiganensis subsp. michiganensis is monophyletic and is distinct from its closest taxonomic neighbors. The nonpathogenic Clavibacter-like strains were identified as C. michiganensis using 16S rRNA gene sequencing. These strains, while cross-reacting with C. michiganensis subsp. michiganensis identification tools, are phylogenetically distinct from the pathogenic strains but belong to the C. michiganensis clade. C. michiganensis subsp. michiganensis clonal complexes linked strains from highly diverse geographical origins and also strains isolated over long periods of time in the same location. This illustrates the importance of seed transmission in the worldwide dispersion of this pathogen and its survival and adaptation abilities in a new environment once introduced.
Albuquerque, Marcela Albuquerque Cavalcanti de; Bedani, Raquel; Vieira, Antônio Diogo Silva; LeBlanc, Jean Guy; Saad, Susana Marta Isay
2016-11-07
The ability of two starter cultures (Streptococcus (S.) thermophilus ST-M6 and St. thermophilus TA-40) and eleven probiotic cultures (St. thermophilus TH-4, Lactobacillus (Lb.) acidophilus LA-5, Lb. fermentum PCC, Lb. reuteri RC-14, Lb. paracasei subsp. paracasei, Lb. casei 431, Lb. paracasei subsp. paracasei F19, Lb. rhamnosus GR-1, and Lb. rhamnosus LGG, Bifidobacterium (B.) animalis subsp. lactis BB-12, B. longum subsp. longum BB-46, and B. longum subsp. infantis BB-02) to produce folate in a modified MRS broth (mMRS) supplemented with different fruit (passion fruit, acerola, orange, and mango) and okara soybean by-products and amaranth flour was investigated. Initially, the folate content of each vegetable substrate was determined: passion fruit by-product showed the lowest folate content (8±2ng/mL) and okara the highest (457±22ng/mL). When the orange by-product and amaranth flour were added to mMRS, all strains were able to increase folate production after 24h of fermentation. B. longum subsp infantis BB-02 produced the highest concentrations (1223±116ng/mL) in amaranth flour. Okara was the substrate that had the lowest impact on the folate production by all strains evaluated. Lb. acidophilus LA-5 (297±36ng/mL) and B. animalis subsp. lactis BB-12 (237±23ng/mL) were also able to produce folate after growth in mMRS containing acerola and orange by-products, respectively. The results of this study demonstrate that folate production is not only strain-dependent but also influenced by the addition of different substrates in the growth media. Copyright © 2016 Elsevier B.V. All rights reserved.
Aeromonas hydrophila subsp. dhakensis Isolated from Feces, Water and Fish in Mediterranean Spain
Esteve, Consuelo; Alcaide, Elena; Blasco, María Dolores
2012-01-01
Eight Aeromonas hydrophila-like arabinose-negative isolates from diverse sources (i.e., river freshwater, cooling-system water pond, diseased wild European eels, and human stools) sampled in Valencia (Spain) during 2004–2005, were characterized by 16S rRNA gene sequencing and extensive biochemical testing along with reference strains of most Aeromonas species. These isolates and all reference strains of A. hydrophila subsp. dhakensis and A. aquariorum showed a 16S rRNA sequence similarity of 99.8–100%, and they all shared an identical phenotype. This matched exactly with that of A. hydrophila subsp. dhakensis since all strains displayed positive responses to the Voges-Prokauer test and to the use of dl-lactate. This is the first report of A. hydrophila subsp. dhakensis recovered from environmental samples, and further, from its original isolation in India during 1993–1994. This was accurately identified and segregated from other clinical aeromonads (A. hydrophila subsp. hydrophila, A. caviae, A. veronii biovars veronii and sobria, A. trota, A. schubertii and A. jandaei) by using biochemical key tests. The API 20 E profile for all strains included in A. hydrophila subsp. dhakensis was 7047125. The prevalence of this species in Spanish sources was higher for water (9.4%) than for feces (6%) or eels (1.3%). Isolates recovered as pure cultures from diseased eels were moderately virulent (LD50 of 3.3×106 CFU fish−1) to challenged eels in experimental trials. They were all resistant to ticarcillin, amoxicillin-clavuranic acid, cefoxitin, and imipenem, regardless of its source. Our data point to A. hydrophila subsp. dhakensis as an emerging pathogen for humans and fish in temperate countries. PMID:22472298
Playback interference of glassy-winged sharp shooter communication
USDA-ARS?s Scientific Manuscript database
Animal communication is vital to reproduction, particularly for securing a mate. Insects commonly communicate by exchanging vibrational signals that are transmitted through host plants. The glassy-winged sharpshooter (GWSS), Homalodisca vitripennis, is an important vector of Xylella fastidiosa, a pl...
Las Heras, Alfonso; Vela, Ana I.; Fernández, Elena; Legaz, Emilio; Domínguez, Lucas; Fernández-Garayzábal, Jose F.
2002-01-01
This work describes an outbreak of clinical mastitis affecting 13 of 58 lactating ewes due to Streptococcus equi subsp. zooepidemicus. S. equi subsp. zooepidemicus was isolated in pure culture from all milk samples. All the clinical isolates had identical biochemical profiles and antimicrobial susceptibility patterns and also exhibited indistinguishable macrorestriction patterns by pulsed-field gel electrophoresis, indicating that all cases of mastitis were produced by a single strain. PMID:11880454
Multilocus sequence typing reveals a novel subspeciation of Lactobacillus delbrueckii.
Tanigawa, Kana; Watanabe, Koichi
2011-03-01
Currently, the species Lactobacillus delbrueckii is divided into four subspecies, L. delbrueckii subsp. delbrueckii, L. delbrueckii subsp. bulgaricus, L. delbrueckii subsp. indicus and L. delbrueckii subsp. lactis. These classifications were based mainly on phenotypic identification methods and few studies have used genotypic identification methods. As a result, these subspecies have not yet been reliably delineated. In this study, the four subspecies of L. delbrueckii were discriminated by phenotype and by genotypic identification [amplified-fragment length polymorphism (AFLP) and multilocus sequence typing (MLST)] methods. The MLST method developed here was based on the analysis of seven housekeeping genes (fusA, gyrB, hsp60, ileS, pyrG, recA and recG). The MLST method had good discriminatory ability: the 41 strains of L. delbrueckii examined were divided into 34 sequence types, with 29 sequence types represented by only a single strain. The sequence types were divided into eight groups. These groups could be discriminated as representing different subspecies. The results of the AFLP and MLST analyses were consistent. The type strain of L. delbrueckii subsp. delbrueckii, YIT 0080(T), was clearly discriminated from the other strains currently classified as members of this subspecies, which were located close to strains of L. delbrueckii subsp. lactis. The MLST scheme developed in this study should be a useful tool for the identification of strains of L. delbrueckii to the subspecies level.
Identification of the "A" genome of finger millet using chloroplast DNA.
Hilu, K W
1988-01-01
Finger millet (Eleusine corocana subsp. coracana), an important cereal in East Africa and India, is a tetraploid species with unknown genomic components. A recent cytogenetic study confirmed the direct origin of this millet from the tetraploid E. coracana subsp. africana but questioned Eleusine indica as a genomic donor. Chloroplast (ct) DNA sequence analysis using restriction fragment pattern was used to examine the phylogenetic relationships between E. coracana subsp. coracana (domesticated finger millet), E. coracana subspecies africana (wild finger millet), and E. indica. Eleusine tristachya was included since it is the only other annual diploid species in the genus with a basic chromosome number of x = 9 like finger millet. Eight of the ten restriction endonucleases used had 16 to over 30 restriction sites per genome and were informative. E. coracana subsp. coracana and subsp. africana and E. indica were identical in all the restriction sites surveyed, while the ct genome of E, tristachya differed consistently by at least one mutational event for each restriction enzyme surveyed. This random survey of the ct genomes of these species points out E. indica as one of the genome donors (maternal genome donor) of domesticated finger millet contrary to a previous cytogenetic study. The data also substantiate E. coracana subsp. africana as the progenitor of domesticated finger millet. The disparity between the cytogenetic and the molecular approaches is discussed in light of the problems associated with chromosome pairing and polyploidy.
Cho, Yong-Joon; Yi, Hana; Chun, Jongsik; Cho, Sang-Nae; Daley, Charles L; Koh, Won-Jung; Shin, Sung Jae
2013-01-01
Members of the Mycobacterium abscessus complex are rapidly growing mycobacteria that are emerging as human pathogens. The M. abscessus complex was previously composed of three species, namely M. abscessus sensu stricto, 'M. massiliense', and 'M. bolletii'. In 2011, 'M. massiliense' and 'M. bolletii' were united and reclassified as a single subspecies within M. abscessus: M. abscessus subsp. bolletii. However, the placement of 'M. massiliense' within the boundary of M. abscessus subsp. bolletii remains highly controversial with regard to clinical aspects. In this study, we revisited the taxonomic status of members of the M. abscessus complex based on comparative analysis of the whole-genome sequences of 53 strains. The genome sequence of the previous type strain of 'Mycobacterium massiliense' (CIP 108297) was determined using next-generation sequencing. The genome tree based on average nucleotide identity (ANI) values supported the differentiation of 'M. bolletii' and 'M. massiliense' at the subspecies level. The genome tree also clearly illustrated that 'M. bolletii' and 'M. massiliense' form a distinct phylogenetic clade within the radiation of the M. abscessus complex. The genomic distances observed in this study suggest that the current M. abscessus subsp. bolletii taxon should be divided into two subspecies, M. abscessus subsp. massiliense subsp. nov. and M. abscessus subsp. bolletii, to correspondingly accommodate the previously known 'M. massiliense' and 'M. bolletii' strains.
Haddouchi, Farah; Chaouche, Tarik Mohammed; Ksouri, Riadh; Medini, Faten; Sekkal, Fatima Zohra; Benmansour, Abdelhafid
2014-06-01
The aqueous methanolic extracts of two plants from Algeria, Helichrysum stoechas subsp. rupestre and Phagnalon saxatile subsp. saxatile, were investigated for their antioxidant activity. Total phenolics, flavonoids, and tannins were determined by spectrophotometric techniques. In vitro antioxidant and radical scavenging profiling was determined by spectrophotometric methods, through: Total antioxidant capacity, and radical scavenging effects by the DPPH and ABTS methods, reducing and chelating power, and blanching inhibition of the β-carotene. All of the extracts showed interesting antioxidant and radical scavenging activity. The highest contents in phenolics, tannins, and the highest total antioxidant capacity as gallic acid equivalents of 97.5 ± 0.33 mg GAE/g DW was obtained for the flowers of H. stoechas subsp. rupestre extract in the phosphomolybdenum assay. An extract of the leafy stems of P. saxatile subsp. saxatile revealed the highest content of flavonoids, and the highest antioxidant activity by the radical scavenging and β-carotene assays when compared with standards. The best activity was by the scavenging radical DPPH with an IC50 value of 5.65 ± 0.10 μg·mL(-1). The studied medicinal plants could provide scientific evidence for some traditional uses in the treatment of diseases related to the production of reactive oxygen species (ROS) and oxidative stress. Copyright © 2014 China Pharmaceutical University. Published by Elsevier B.V. All rights reserved.
Miko, Angelika; Guerra, Beatriz; Schroeter, Andreas; Dorn, Christina; Helmuth, Reiner
2002-01-01
Since 1996, the National Salmonella Reference Laboratory of Germany has received an increasing number of Salmonella enterica subsp. enterica serovar Paratyphi B isolates. Nearly all of these belonged to the dextrorotatory tartrate-positive variant (S. enterica subsp. enterica serovar Paratyphi B dT+), formerly called S. enterica subsp. enterica serovar Java. A total of 55 selected contemporary and older S. enterica subsp. enterica serovar Paratyphi B dT+ isolates were analyzed by plasmid profiling, antimicrobial resistance testing, pulsed-field gel electrophoresis, IS200 profiling, and PCR-based detection of integrons. The results showed a high genetic heterogeneity among 10 old strains obtained from 1960 to 1993. In the following years, however, new distinct multiresistant S. enterica subsp. enterica serovar Paratyphi B dT+ clones emerged, and one clonal lineage successfully displaced the older ones. Since 1994, 88% of the isolates investigated were multiple drug resistant. Today, a particular clone predominates in some German poultry production lines, poultry products, and various other sources. It was also detected in contemporary isolates from two neighboring countries as well. PMID:12202551
Biological suppression of potato ring rot by fluorescent pseudomonads.
de la Cruz, A R; Poplawsky, A R; Wiese, M V
1992-01-01
Three strains of fluorescent pseudomonads (IS-1, IS-2, and IS-3) isolated from potato underground stems with roots showed in vitro antibiosis against 30 strains of the ring rot bacterium Clavibacter michiganensis subsp. sepedonicus. On the basis of morphological and biochemical tests and fatty acid analysis, IS-1 and IS-2 were identified as Pseudomonas aureofaciens and IS-3 was identified as P. fluorescens biovar III. IS-1 was the most inhibitory to C. michiganensis subsp. sepedonicus strains in vitro, followed by IS-3 and IS-2. Suppression of ring rot by these antagonists was demonstrated in greenhouse trials with stem-cultured potato (cv. Russet Burbank) seedlings. Although each antagonist significantly reduced C. michiganensis subsp. sepedonicus populations, only IS-1 reduced infection by C. michiganensis subsp. sepedonicus. In a second experiment, treatment with IS-1 (10(9) CFU/ml) significantly reduced ring rot infection by 23.4 to 26.7% after 5 to 8 weeks. The average C. michiganensis subsp. sepedonicus population was also significantly reduced by 50 to 52%. Application of different combinations of antagonist strains was not more effective than single-strain treatment. Images PMID:1622275
Zhang, Justina Su; Guri, Anilda; Corredig, Milena; Morales-Rayas, Rocio; Hassan, Ashraf; Griffiths, Mansel; LaPointe, Gisèle
2016-12-01
Lactococcus lactis subsp. cremoris JFR1 has been studied in reduced fat cheese due to its ability to produce exopolysaccharides (EPS) in situ, contributing to improved textural and organoleptic properties. In this study, the effect of strain JFR1 on virulence gene expression and attachment of Salmonella to HT-29 human colon carcinoma cells was investigated. Overnight cultures of L. lactis subsp. cremoris JFR1 containing EPS, grown in M17 media with 0.5% glucose supplementation, decreased attachment as well as down regulated virulence gene expression in Salmonella enterica subsp. enterica when tested on HT-29 cells. However, EPS isolated from milk fermented with L. lactis subsp. cremoris JFR1 did not affect Salmonella virulence gene expression or attachment to HT-29 cells. These results suggest that EPS does not contribute to the attachment of Salmonella to human intestinal cells. However, the possibility that the isolation process may have affected the structural features of EPS cannot be ruled out. Copyright © 2016 Elsevier Ltd. All rights reserved.
A Proteomic Study of Clavibacter Michiganensis Subsp. Michiganensis Culture Supernatants
Hiery, Eva; Poetsch, Ansgar; Moosbauer, Tanja; Amin, Bushra; Hofmann, Jörg; Burkovski, Andreas
2015-01-01
Clavibacter michiganensis, subsp. michiganensis is a Gram-positive plant pathogen infecting tomato (Solanum lycopersicum). Despite a considerable economic importance due to significant losses of infected plants and fruits, knowledge about virulence factors of C. michiganensis subsp. michiganensis and host-pathogen interactions on a molecular level are rather limited. In the study presented here, the proteome of culture supernatants from C. michiganensis subsp. michiganensis NCPPB382 was analyzed. In total, 1872 proteins were identified in M9 and 1766 proteins in xylem mimicking medium. Filtration of supernatants before protein precipitation reduced these to 1276 proteins in M9 and 976 proteins in the xylem mimicking medium culture filtrate. The results obtained indicate that C. michiganensis subsp. michiganensis reacts to a sucrose- and glucose-depleted medium similar to the xylem sap by utilizing amino acids and host cell polymers as well as their degradation products, mainly peptides, amino acids and various C5 and C6 sugars. Interestingly, the bacterium expresses the previously described virulence factors Pat-1 and CelA not exclusively after host cell contact in planta but already in M9 minimal and xylem mimicking medium. PMID:28248277
Cho, Min Seok; Jin, Yong Ju; Kang, Bo Kyoung; Park, Yu Kyoung; Kim, ChangKug; Park, Dong Suk
2018-05-04
Bacillus subtilis and B. velezensis are frequently isolated from various niches, including fermented foods, water, and soil. Within the Bacillus subtilis group, B. velezensis and B. subtilis subsp. subtilis have received significant attention as biological resources for biotechnology-associated industries. Nevertheless, radical solutions are urgently needed to identify microbes during their ecological succession to accurately confirm their action at the species or subspecies level in diverse environments, such as fermented materials. Thus, in this study, previously published genome data of the B. subtilis group were compared to exploit species- or subspecies-specific genes for use as improved qPCR targets to detect B. velezensis and B. subtilis subsp. subtilis in kimchi samples. In silico analyses of the selected genes and designed primer sequences, in conjunction with SYBR Green real-time PCR, confirmed the robustness of this newly developed assay. Consequently, this study will allow for new insights into the ontogeny and succession of B. velezensis and B. subtilis subsp. subtilis in various niches. Interestingly, in white kimchi without red pepper powder, neither B. subtilis subsp. subtilis nor B. velezensis was detected.
Myasnik, M; Manasherob, R; Ben-Dov, E; Zaritsky, A; Margalith, Y; Barak, Z
2001-08-01
Susceptibility of Bacillus thuringiensis spores and toxins to the UV-B range (280--330 nm) of the solar spectrum reaching Earth's surface may be responsible for its inactivation and low persistence in nature. Spores of the mosquito larvicidal B. thuringiensis subsp. israelensis were significantly more resistant to UV-B than spores of the lepidopteran-active subsp. kurstaki. Spores of subsp. israelensis were as resistant to UV-B as spores of B. subtilis and more resistant than spores of the closely related B. cereus and another mosquito larvicidal species B. sphaericus. Sensitivity of B. thuringiensis subsp. israelensis spores to UV-B radiation depended upon their culture age; 24-h cultures, approaching maximal larvicidal activity, were still sensitive. Maximal resistance to UV-B was achieved only at 48 h.
Lactic Acid Bacteria from Kefir Increase Cytotoxicity of Natural Killer Cells to Tumor Cells.
Yamane, Takuya; Sakamoto, Tatsuji; Nakagaki, Takenori; Nakano, Yoshihisa
2018-03-27
The Japanese fermented beverage, homemade kefir, contains six lactic acid bacteria: Lactococcus. lactis subsp. Lactis , Lactococcus . lactis subsp. Cremoris , Lactococcus. Lactis subsp. Lactis biovar diacetylactis , Lactobacillus plantarum , Leuconostoc meseuteroides subsp. Cremoris and Lactobacillus casei . In this study, we found that a mixture of the six lactic acid bacteria from kefir increased the cytotoxicity of human natural killer KHYG-1 cells to human chronic myelogenous leukemia K562 cells and colorectal tumor HCT116 cells. Furthermore, levels of mRNA expression and secretion of IFN-γ (interferon gamma) increased in KHYG-1 cells that had been treated with the six lactic acid bacteria mixture from kefir. The results suggest that the six lactic acid bacteria mixture from kefir has strong effects on natural immunity and tumor cell cytotoxicity.
Lactic Acid Bacteria from Kefir Increase Cytotoxicity of Natural Killer Cells to Tumor Cells
Yamane, Takuya; Sakamoto, Tatsuji; Nakagaki, Takenori; Nakano, Yoshihisa
2018-01-01
The Japanese fermented beverage, homemade kefir, contains six lactic acid bacteria: Lactococcus. lactis subsp. Lactis, Lactococcus. lactis subsp. Cremoris, Lactococcus. Lactis subsp. Lactis biovar diacetylactis, Lactobacillus plantarum, Leuconostoc meseuteroides subsp. Cremoris and Lactobacillus casei. In this study, we found that a mixture of the six lactic acid bacteria from kefir increased the cytotoxicity of human natural killer KHYG-1 cells to human chronic myelogenous leukemia K562 cells and colorectal tumor HCT116 cells. Furthermore, levels of mRNA expression and secretion of IFN-γ (interferon gamma) increased in KHYG-1 cells that had been treated with the six lactic acid bacteria mixture from kefir. The results suggest that the six lactic acid bacteria mixture from kefir has strong effects on natural immunity and tumor cell cytotoxicity. PMID:29584690
Subspecific variation in the widespread burl-forming Arctostaphylos glandulosa
Keeley, Jon E.; Vasey, Michael C.; Parker, V. Thomas
2007-01-01
The genus Arctostaphylos consists mostly of chaparral shrubs known by the common name manzanita, and one of the widest ranging of these is A. glandulosa Eastw., distributed from Baja California to Oregon. Particularly in the southern half of its range it exhibits complex patterns of morphological variation that have long presented taxonomic challenges. Phenetic analysis of morphological traits from over 1400 individuals from throughout the range were used to examine intra- and inter-population patterns of variation. Multivariate ordination and hierarchical cluster analysis were used to determine phenetic patterns linked with ecological and geographical distributions. These analyses suggest the hypothesis that this species comprises two lineages with a common origin but divergent in the presence or absence of glandularity: A. glandulosa Eastw. subsp. glandulosa, characterized by branchlets with long glandular hairs, scabrous or pubescent leaves, and nascent inflorescences with mostly foliaceous bracts; and A. glandulosa Eastw. subsp. cushingiana(Eastw.) Keeley, Vasey and Parker comb. nov., with non-glandular tomentose branchlets, glabrate or pubescent leaves and either foliaceous or short deltoid bracts. Populations dominated by one or the other of these morphotypes occur throughout the range and tend to be separated by elevation or distance from the coast, although mixed populations occur where these taxa come together.Two other glandular subspecies are named here. One is A. glandulosa Eastw. subsp. leucophyllaKeeley, Vasey and Parker, subsp. nov., with intensely glaucous leaves and commonly with foliaceous bracts. A second glandular subspecies is A. glandulosa Eastw. subsp. atumescens Keeley, Vasey & Parker, subsp. nov., a narrowly distributed Baja California endemic similar to the nominate subspecies except that it lacks a basal burl and does not resprout after fire.Of the non-glandular tomentose taxa, in addition to A. glandulosa subsp cushingiana, several others are also recognized. One is A. glandulosa Eastw. subsp. crassifolia (Jepson) Wells, a well established coastal San Diego endemic recognized by darker and thicker leaves and smaller and flatter fruits. Another is a newly described taxon A. glandulosa Eastw. subsp. erecta Keeley, Vasey & Parker, subsp. nov., an endemic to northern Baja California recognized by the erect nascent inflorescenses. Two others have glabrate leaves and highly reduced deltoid often marcescent bracts; A. glandulosasubsp. adamsii (Munz) Wells, which has intensely glaucous leaves and is distributed from interior Riverside Co. south, and A. glandulosa Eastw. subsp. gabrielensis (Wells) Keeley, Vasey and Parker comb. nov., which has bright lustrous green leaves and greater fusion of nutlets, and is distributed from the interior San Gabriel Mountains of Los Angeles Co. north to the Sierra Madre Mountains of Santa Barbara Co. All non-glandular plants with long setose or villous hairs are A. glandulosa Eastw. subsp. mollis (Adams) Wells. This taxon includes plants with foliaceous as well as reduced bracts and is distributed throughout the Transverse Ranges from Santa Barbara to San Bernardino counties, with some outlying populations further south. This taxon shows a marked tendency for reduced stomatal densities on the upper leaf surface in the westernmost populations. Although all of the A. glandulosataxa described here are known from allopatric populations, intergradations of these closely related taxa occur and thus some populations reflect a mixture of traits and can not be assigned a unique name of practical value.
Modeling deployment of Pierce’s disease resistant grapevines
USDA-ARS?s Scientific Manuscript database
Deployment of Pierce’s disease resistant grapevines is a key solution to mitigating economic losses caused by Xylella fastidiosa. While Pierce’s disease resistant grapevines under development display mild symptoms and have lower bacterial populations than susceptible varieties, all appear to remain ...
den Bakker, Henk C; Manuel, Clyde S; Fortes, Esther D; Wiedmann, Martin; Nightingale, Kendra K
2013-09-01
Twenty Listeria-like isolates were obtained from environmental samples collected on a cattle ranch in northern Colorado; all of these isolates were found to share an identical partial sigB sequence, suggesting close relatedness. The isolates were similar to members of the genus Listeria in that they were Gram-stain-positive, short rods, oxidase-negative and catalase-positive; the isolates were similar to Listeria fleischmannii because they were non-motile at 25 °C. 16S rRNA gene sequencing for representative isolates and whole genome sequencing for one isolate was performed. The genome of the type strain of Listeria fleischmannii (strain LU2006-1(T)) was also sequenced. The draft genomes were very similar in size and the average MUMmer nucleotide identity across 91% of the genomes was 95.16%. Genome sequence data were used to design primers for a six-gene multi-locus sequence analysis (MLSA) scheme. Phylogenies based on (i) the near-complete 16S rRNA gene, (ii) 31 core genes and (iii) six housekeeping genes illustrated the close relationship of these Listeria-like isolates to Listeria fleischmannii LU2006-1(T). Sufficient genetic divergence of the Listeria-like isolates from the type strain of Listeria fleischmannii and differing phenotypic characteristics warrant these isolates to be classified as members of a distinct infraspecific taxon, for which the name Listeria fleischmannii subsp. coloradonensis subsp. nov. is proposed. The type strain is TTU M1-001(T) ( =BAA-2414(T) =DSM 25391(T)). The isolates of Listeria fleischmannii subsp. coloradonensis subsp. nov. differ from the nominate subspecies by the inability to utilize melezitose, turanose and sucrose, and the ability to utilize inositol. The results also demonstrate the utility of whole genome sequencing to facilitate identification of novel taxa within a well-described genus. The genomes of both subspecies of Listeria fleischmannii contained putative enhancin genes; the Listeria fleischmannii subsp. coloradonensis subsp. nov. genome also encoded a putative mosquitocidal toxin. The presence of these genes suggests possible adaptation to an insect host, and further studies are needed to probe niche adaptation of Listeria fleischmannii.
Foddai, Antonio; Elliott, Christopher T.; Grant, Irene R.
2010-01-01
Thermal inactivation experiments were carried out to assess the utility of a recently optimized phage amplification assay to accurately enumerate viable Mycobacterium avium subsp. paratuberculosis cells in milk. Ultra-heat-treated (UHT) whole milk was spiked with large numbers of M. avium subsp. paratuberculosis organisms (106 to 107 CFU/ml) and dispensed in 100-μl aliquots in thin-walled 200-μl PCR tubes. A Primus 96 advanced thermal cycler (Peqlab, Erlangen, Germany) was used to achieve the following time and temperature treatments: (i) 63°C for 3, 6, and 9 min; (ii) 68°C for 20, 40, and 60 s; and (iii) 72°C for 5, 10, 15, and 25 s. After thermal stress, the number of surviving M. avium subsp. paratuberculosis cells was assessed by both phage amplification assay and culture on Herrold's egg yolk medium (HEYM). A high correlation between PFU/ml and CFU/ml counts was observed for both unheated (r2 = 0.943) and heated (r2 = 0.971) M. avium subsp. paratuberculosis cells. D and z values obtained using the two types of counts were not significantly different (P > 0.05). The D68°C, mean D63°C, and D72°C for four M. avium subsp. paratuberculosis strains were 81.8, 9.8, and 4.2 s, respectively, yielding a mean z value of 6.9°C. Complete inactivation of 106 to 107 CFU of M. avium subsp. paratuberculosis/ml milk was not observed for any of the time-temperature combinations studied; 5.2- to 6.6-log10 reductions in numbers were achieved depending on the temperature and time. Nonlinear thermal inactivation kinetics were consistently observed for this bacterium. This study confirms that the optimized phage assay can be employed in place of conventional culture on HEYM to speed up the acquisition of results (48 h instead of a minimum of 6 weeks) for inactivation experiments involving M. avium subsp. paratuberculosis-spiked samples. PMID:20097817
Pooley, Hannah B.; de Silva, Kumudika; Purdie, Auriol C.; Begg, Douglas J.; Whittington, Richard J.
2016-01-01
ABSTRACT Determining the viability of bacteria is a key outcome of in vitro cellular infection assays. Currently, this is done by culture, which is problematic for fastidious slow-growing bacteria such as Mycobacterium avium subsp. paratuberculosis, where it can take up to 4 months to confirm growth. This study aimed to identify an assay that can rapidly quantify the number of viable M. avium subsp. paratuberculosis cells in a cellular sample. Three commercially available bacterial viability assays along with a modified liquid culture method coupled with high-throughput quantitative PCR growth detection were assessed. Criteria for assessment included the ability of each assay to differentiate live and dead M. avium subsp. paratuberculosis organisms and their accuracy at low bacterial concentrations. Using the culture-based method, M. avium subsp. paratuberculosis growth was reliably detected and quantified within 2 weeks. There was a strong linear association between the 2-week growth rate and the initial inoculum concentration. The number of viable M. avium subsp. paratuberculosis cells in an unknown sample was quantified based on the growth rate, by using growth standards. In contrast, none of the commercially available viability assays were suitable for use with samples from in vitro cellular infection assays. IMPORTANCE Rapid quantification of the viability of Mycobacterium avium subsp. paratuberculosis in samples from in vitro cellular infection assays is important, as it allows these assays to be carried out on a large scale. In vitro cellular infection assays can function as a preliminary screening tool, for vaccine development or antimicrobial screening, and also to extend findings derived from experimental animal trials. Currently, by using culture, it takes up to 4 months to obtain quantifiable results regarding M. avium subsp. paratuberculosis viability after an in vitro infection assay; however, with the quantitative PCR and liquid culture method developed, reliable results can be obtained at 2 weeks. This method will be important for vaccine and antimicrobial screening work, as it will allow a greater number of candidates to be screened in the same amount of time, which will increase the likelihood that a favorable candidate will be found to be subjected to further testing. PMID:27371585
Perin, Luana Martins; Dal Bello, Barbara; Belviso, Simona; Zeppa, Giuseppe; Carvalho, Antônio Fernandes de; Cocolin, Luca; Nero, Luís Augusto
2015-12-02
Minas cheese is a popular dairy product in Brazil that is traditionally produced using raw or pasteurized cow milk. This study proposed an alternative production of Minas cheese using raw goat milk added of a nisin producer Lactococcus lactis subsp. lactis GLc05. An in situ investigation was carried on to evaluate the interactions between the L. lactis subsp. lactis GLc05 and the autochthonous microbiota of a Minas cheese during the ripening; production of biogenic amines (BAs) was assessed as a safety aspect. Minas cheese was produced in two treatments (A, by adding L. lactis subsp. lactis GLc05, and B, without adding this strain), in three independent repetitions (R1, R2, and R3). Culture dependent (direct plating) and independent (rep-PCR and PCR-DGGE) methods were employed to characterize the microbiota and to assess the possible interferences caused by L. lactis subsp. lactis GLc05. BA amounts were measured using HPLC. A significant decrease in coagulase-positive cocci was observed in the cheeses produced by adding L. lactis subsp. lactis GLc05 (cheese A). The rep-PCR and PCR-DGGE highlighted the differences in the microbiota of both cheeses, separating them into two different clusters. Lactococcus sp. was found as the main microorganism in both cheeses, and the microbiota of cheese A presented a higher number of species. High concentrations of tyramine were found in both cheeses and, at specific ripening times, the BA amounts in cheese B were significantly higher than in cheese A (p<0.05). The interaction of nisin producer L. lactis subsp. lactis GLc05 was demonstrated in situ, by demonstration of its influence in the complex microbiota naturally present in a raw goat milk cheese and by controlling the growth of coagulase-positive cocci. L. lactis subsp. lactis GLc05 influenced also the production of BA determining that their amounts in the cheeses were maintained at acceptable levels for human consumption. Copyright © 2015 Elsevier B.V. All rights reserved.
Calcium Increases Xylella fastidiosa Surface Attachment, Biofilm Formation, and Twitching Motility
Cruz, Luisa F.; Cobine, Paul A.
2012-01-01
Xylella fastidiosa is a plant-pathogenic bacterium that forms biofilms inside xylem vessels, a process thought to be influenced by the chemical composition of xylem sap. In this work, the effect of calcium on the production of X. fastidiosa biofilm and movement was analyzed under in vitro conditions. After a dose-response study with 96-well plates using eight metals, the strongest increase of biofilm formation was observed when medium was supplemented with at least 1.0 mM CaCl2. The removal of Ca by extracellular (EGTA, 1.5 mM) and intracellular [1,2-bis(o-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid acetoxymethyl ester (BAPTA/AM), 75 μM] chelators reduced biofilm formation without compromising planktonic growth. The concentration of Ca influenced the force of adhesion to the substrate, biofilm thickness, cell-to-cell aggregation, and twitching motility, as shown by assays with microfluidic chambers and other assays. The effect of Ca on attachment was lost when cells were treated with tetracycline, suggesting that Ca has a metabolic or regulatory role in cell adhesion. A double mutant (fimA pilO) lacking type I and type IV pili did not improve biofilm formation or attachment when Ca was added to the medium, while single mutants of type I (fimA) or type IV (pilB) pili formed more biofilm under conditions of higher Ca concentrations. The concentration of Ca in the medium did not significantly influence the levels of exopolysaccharide produced. Our findings indicate that the role of Ca in biofilm formation may be related to the initial surface and cell-to-cell attachment and colonization stages of biofilm establishment, which rely on critical functions by fimbrial structures. PMID:22194297
Comparative analyses of Xanthomonas and Xylella complete genomes.
Moreira, Leandro M; De Souza, Robson F; Digiampietri, Luciano A; Da Silva, Ana C R; Setubal, João C
2005-01-01
Computational analyses of four bacterial genomes of the Xanthomonadaceae family reveal new unique genes that may be involved in adaptation, pathogenicity, and host specificity. The Xanthomonas genus presents 3636 unique genes distributed in 1470 families, while Xylella genus presents 1026 unique genes distributed in 375 families. Among Xanthomonas-specific genes, we highlight a large number of cell wall degrading enzymes, proteases, and iron receptors, a set of energy metabolism genes, second copy of the type II secretion system, type III secretion system, flagella and chemotactic machinery, and the xanthomonadin synthesis gene cluster. Important genes unique to the Xylella genus are an additional copy of a type IV pili gene cluster and the complete machinery of colicin V synthesis and secretion. Intersections of gene sets from both genera reveal a cluster of genes homologous to Salmonella's SPI-7 island in Xanthomonas axonopodis pv citri and Xylella fastidiosa 9a5c, which might be involved in host specificity. Each genome also presents important unique genes, such as an HMS cluster, the kdgT gene, and O-antigen in Xanthomonas axonopodis pv citri; a number of avrBS genes and a distinct O-antigen in Xanthomonas campestris pv campestris, a type I restriction-modification system and a nickase gene in Xylella fastidiosa 9a5c, and a type II restriction-modification system and two genes related to peptidoglycan biosynthesis in Xylella fastidiosa temecula 1. All these differences imply a considerable number of gene gains and losses during the divergence of the four lineages, and are associated with structural genome modifications that may have a direct relation with the mode of transmission, adaptation to specific environments and pathogenicity of each organism.
Meinhardt, Lyndel W; Ribeiro, Milena P M A; Coletta-Filho, Helvécio D; Dumenyo, C Korsi; Tsai, Sui M; De M Bellato, Cláudia
2003-09-01
SUMMARY This is the first report of a genotypic analysis of the phytopathogenic bacteria Xylella fastidiosa (Xf) using differences within intra- and intergenic regions of pathogenic genes. Orthologous sequences from the genome of Xf were identified for genes involved in the regulation of pathogenicity factors (rpf) from Xanthomonas campestris pv. campestris (Xcc). While the rpf genes were conserved, the chromosomal region revealed differences in gene sizes and intergenic spacings and a major translocational event when compared to Xcc. Primers were designed to amplify three regions: the intragenic region of rpfA (2354 bp), the intergenic region between rpfA and rpfB (5772 bp), and the intergenic region between rpfC and rpfF (2314 bp). Amplicons were obtained for all three regions from 32 of the 33 Xf isolates tested from citrus, grape, coffee, plum, hibiscus and periwinkle. Three Xcc isolates from cruciferous plants only generated PCR products for the rpfC-F region. Cleaved amplified polymorphic sequences (CAPS) (Taq(alpha)I) revealed differential banding profiles for the rpfA-B and rpfC-F regions. Xylella isolates were separated into seven groups via rpfA-B, of which five contained only citrus, while the other two had citrus, grape and coffee, and citrus, coffee, plum and hibiscus isolates. rpfC-F separated the isolates into three host-related groups. Citrus, coffee and hibiscus isolates formed one group, while the other two groups were comprised solely of grape and plum isolates. Xcc isolates formed an out-group. In silico analysis supports these results, which reveal the potential of the rpf genes for genotypic analysis of Xylella fastidiosa.
Calcium increases Xylella fastidiosa surface attachment, biofilm formation, and twitching motility.
Cruz, Luisa F; Cobine, Paul A; De La Fuente, Leonardo
2012-03-01
Xylella fastidiosa is a plant-pathogenic bacterium that forms biofilms inside xylem vessels, a process thought to be influenced by the chemical composition of xylem sap. In this work, the effect of calcium on the production of X. fastidiosa biofilm and movement was analyzed under in vitro conditions. After a dose-response study with 96-well plates using eight metals, the strongest increase of biofilm formation was observed when medium was supplemented with at least 1.0 mM CaCl(2). The removal of Ca by extracellular (EGTA, 1.5 mM) and intracellular [1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid acetoxymethyl ester (BAPTA/AM), 75 μM] chelators reduced biofilm formation without compromising planktonic growth. The concentration of Ca influenced the force of adhesion to the substrate, biofilm thickness, cell-to-cell aggregation, and twitching motility, as shown by assays with microfluidic chambers and other assays. The effect of Ca on attachment was lost when cells were treated with tetracycline, suggesting that Ca has a metabolic or regulatory role in cell adhesion. A double mutant (fimA pilO) lacking type I and type IV pili did not improve biofilm formation or attachment when Ca was added to the medium, while single mutants of type I (fimA) or type IV (pilB) pili formed more biofilm under conditions of higher Ca concentrations. The concentration of Ca in the medium did not significantly influence the levels of exopolysaccharide produced. Our findings indicate that the role of Ca in biofilm formation may be related to the initial surface and cell-to-cell attachment and colonization stages of biofilm establishment, which rely on critical functions by fimbrial structures.
Machado, Agnes Thiane Pereira; Fonseca, Emanuella Maria Barreto; Reis, Marcelo Augusto Dos; Saraiva, Antonio Marcos; Santos, Clelton Aparecido Dos; de Toledo, Marcelo Augusto Szymanski; Polikarpov, Igor; de Souza, Anete Pereira; Aparicio, Ricardo; Iulek, Jorge
2017-10-01
Xylella fastidiosa is a xylem-limited bacterium that infects a wide variety of plants. Stationary phase survival protein E is classified as a nucleotidase, which is expressed when bacterial cells are in the stationary growth phase and subjected to environmental stresses. Here, we report four refined X-ray structures of this protein from X. fastidiosa in four different crystal forms in the presence and/or absence of the substrate 3'-AMP. In all chains, the conserved loop verified in family members assumes a closed conformation in either condition. Therefore, the enzymatic mechanism for the target protein might be different of its homologs. Two crystal forms exhibit two monomers whereas the other two show four monomers in the asymmetric unit. While the biological unit has been characterized as a tetramer, differences of their sizes and symmetry are remarkable. Four conformers identified by Small-Angle X-ray Scattering (SAXS) in a ligand-free solution are related to the low frequency normal modes of the crystallographic structures associated with rigid body-like protomer arrangements responsible for the longitudinal and symmetric adjustments between tetramers. When the substrate is present in solution, only two conformers are selected. The most prominent conformer for each case is associated to a normal mode able to elongate the protein by moving apart two dimers. To our knowledge, this work was the first investigation based on the normal modes that analyzed the quaternary structure variability for an enzyme of the SurE family followed by crystallography and SAXS validation. The combined results raise new directions to study allosteric features of XfSurE protein. © 2017 Wiley Periodicals, Inc.
Kudo, Yuko; Oki, Kaihei; Watanabe, Koichi
2012-11-01
Although four strains of bacteria isolated from sunki, a traditional Japanese, non-salted pickle, were initially identified as Lactobacillus delbrueckii, the molecular and phenotypic characteristics of the strains did not match those of any of the four recognized subspecies of L. delbrueckii. Together, the results of phenotypic characterization, DNA-DNA hybridizations (in which the relatedness values between the novel strains and type strains of the recognized subspecies of L. delbrueckii were all >88.7%) and 16S rRNA gene sequence, amplified fragment length polymorphism (AFLP) and whole-cell MALDI-TOF/MS spectral pattern analyses indicated that the four novel strains represented a single, novel subspecies, for which the name Lactobacillus delbrueckii subsp. sunkii subsp. nov. is proposed. The type strain is YIT 11221(T) (=JCM 17838(T) =DSM 24966(T)).
De la Fe, C; Gutiérrez, A; Poveda, J B; Assunção, P; Ramírez, A S; Fabelo, F
2007-03-01
During an unusually long period of bad weather, several outbreaks of caprine contagious agalactia (CCA) were reported in a number of flocks on the island of Lanzarote (Canary Islands, Spain). Clinical and subclinical mastitis in lactating goats and some cases of arthritis and pneumonia in kids were observed in the affected flocks. Mycoplasma capricolum subsp. capricolum was isolated as the main causal agent of the outbreaks, associated with M. mycoides subsp. mycoides "large colony type" (Mmm LC) in two flocks. This is the first report of an isolation of M. capricolum subsp. capricolum on the island of Lanzarote. The finding is of epidemiological importance and could complicate plans to control the disease. The significance of this mycoplasma species in association with CCA must now be studied in detail.
Identification of the ``a'' Genome of Finger Millet Using Chloroplast DNA
Hilu, K. W.
1988-01-01
Finger millet (Eleusine corocana subsp. coracana), an important cereal in East Africa and India, is a tetraploid species with unknown genomic components. A recent cytogenetic study confirmed the direct origin of this millet from the tetraploid E. coracana subsp. africana but questioned Eleusine indica as a genomic donor. Chloroplast (ct) DNA sequence analysis using restriction fragment pattern was used to examine the phylogenetic relationships between E. coracana subsp. coracana (domesticated finger millet), E. coracana subspecies africana (wild finger millet), and E. indica. Eleusine tristachya was included since it is the only other annual diploid species in the genus with a basic chromosome number of x = 9 like finger millet. Eight of the ten restriction endonucleases used had 16 to over 30 restriction sites per genome and were informative. E. coracana subsp. coracana and subsp. africana and E. indica were identical in all the restriction sites surveyed, while the ct genome of E. tristachya differed consistently by at least one mutational event for each restriction enzyme surveyed. This random survey of the ct genomes of these species points out E. indica as one of the genome donors (maternal genome donor) of domesticated finger millet contrary to a previous cytogenetic study. The data also substantiate E. coracana subsp. africana as the progenitor of domesticated finger millet. The disparity between the cytogenetic and the molecular approaches is discussed in light of the problems associated with chromosome pairing and polyploidy. PMID:8608927
Dan, Tong; Wang, Dan; Wu, Shimei; Jin, Rulin; Ren, Weiyi; Sun, Tiansong
2017-09-29
Lactobacillus delbrueckii subsp. bulgaricus and Streptococcus thermophilus are key factors in the fermentation process and the final quality of dairy products worldwide. This study was performed to investigate the effects of the proportions of Lactobacillus delbrueckii subsp. bulgaricus and Streptococcus thermophilus isolated from traditionally fermented dairy products in China and Mongolia on the profile of volatile compounds produced in samples. Six proportional combinations (1:1, 1:10, 1:50, 1:100, 1:1000, and 1:10,000) of L. delbrueckii subsp. bulgaricus IMAU20401 to S. thermophilus ND03 were considered, and the volatiles were identified and quantified by solid-phase microextraction and gas chromatography-mass spectrometry (SPME-GC-MS) against an internal standard. In total, 89 volatile flavor compounds, consisting of aldehydes, ketones, acids, alcohols, esters, and aromatic hydrocarbons, were identified. Among these, some key flavor volatile compounds were identified, including acetaldehyde, 3-methylbutanal, acetoin, 2-heptanone, acetic acid, butanoic acid, and 3-methyl-1-butanol. The of L. delbrueckii subsp. bulgaricus IMAU20401 to S. thermophilus ND03 influenced the type and concentration of volatiles produced. In particular, aldehydes and ketones were present at higher concentrations in the 1:1000 treatment combination than in the other combinations. Our findings emphasize the importance of selecting the appropriate proportions of L. delbrueckii subsp. bulgaricus and S. thermophilus for the starter culture in determining the final profile of volatiles and the overall flavor of dairy products.
Lacava, Paulo Teixeira; Araújo, Welington Luiz; Azevedo, João Lúcio
2007-02-01
Over the last few years, the endophytic bacterial community associated with citrus has been studied as an important component interacting with Xylella fastidiosa, the causal agent of citrus variegated chlorosis (CVC). This bacterium may also colonize some model plants, such as Catharanthus roseus and Nicotiana clevelandii. In the present study, we compared the endophytic colonization of Citrus sinensis and Catharanthus roseus using the endophytic bacteria Klebsiella pneumoniae. We chose an appropriate strain, K. pneumoniae 342 (Kp342), labeled with the GFP gene. This strain was inoculated onto seedlings of C. sinensis and C. roseus. The isolation frequency was determined one week after the inoculation and the endophytic colonization of K. pneumoniae was observed using fluorescence microscopy. Although the endophytic bacterium was more frequently isolated from C. roseus than from C. sinensis, the colonization profiles for both host plants were similar, suggesting that C. roseus could be used as a model plant to study the interaction between endophytic bacteria and X. fastidiosa.
Cloning, expression, and purification of the virulence-associated protein D from Xylella fastidiosa.
Catani, Cleide Ferreira; Azzoni, Adriano Rodrigues; Paula, Débora Pires; Tada, Susely Ferraz Siqueira; Rosselli, Luciana Kauer; de Souza, Anete Pereira; Yano, Tomomasa
2004-10-01
In this study, an efficient expression system, based on the pET32Xa/LIC vector, for producing a Xylella fastidiosa virulence-associated protein D, found to have a strong similarity to Riemerella anatipestifer and Actinobacillus actinomycetencomitans VapD protein, is presented. The protein has a molecular mass of 17.637 Da and a calculated pI of 5.49. The selected XFa0052 gene was cloned in the pET32Xa/LIC vector and the plasmid was transformed into Escherichia coli BL21 (DE3) strain at 37 degrees C, with an induction time of 2 h and 1 mM IPTG concentration. The protein present in the soluble fraction was purified by immobilized metal affinity chromatography (IMAC), and had its identity determined by mass spectrometry (MALDI-TOF) and N-terminal sequencing. The purified protein was found as a single band on SDS-PAGE and its correct folding was verified by circular dichroism spectroscopy.
Living in two worlds: the plant and insect lifestyles of Xylella fastidiosa.
Chatterjee, Subhadeep; Almeida, Rodrigo P P; Lindow, Steven
2008-01-01
Diseases caused by Xylella fastidiosa have attained great importance worldwide as the pathogen and its insect vectors have been disseminated. Since this is the first plant pathogenic bacterium for which a complete genome sequence was determined, much progress has been made in understanding the process by which it spreads within the xylem vessels of susceptible plants as well as the traits that contribute to its acquisition and transmission by sharpshooter vectors. Although this pathogen shares many similarities with Xanthomonas species, such as its use of a small fatty acid signal molecule to coordinate virulence gene expression, the traits that it utilizes to cause disease and the manner in which they are regulated differ substantially from those of related plant pathogens. Its complex lifestyle as both a plant and insect colonist involves traits that are in conflict with these stages, thus apparently necessitating the use of a gene regulatory scheme that allows cells expressing different traits to co-occur in the plant.
Nunes, Luiz R; Rosato, Yoko B; Muto, Nair H; Yanai, Giane M; da Silva, Vivian S; Leite, Daniela B; Gonçalves, Edmilson R; de Souza, Alessandra A; Coletta-Filho, Helvécio D; Machado, Marcos A; Lopes, Silvio A; de Oliveira, Regina Costa
2003-04-01
Genetically distinct strains of the plant bacterium Xylella fastidiosa (Xf) are responsible for a variety of plant diseases, accounting for severe economic damage throughout the world. Using as a reference the genome of Xf 9a5c strain, associated with citrus variegated chlorosis (CVC), we developed a microarray-based comparison involving 12 Xf isolates, providing a thorough assessment of the variation in genomic composition across the group. Our results demonstrate that Xf displays one of the largest flexible gene pools characterized to date, with several horizontally acquired elements, such as prophages, plasmids, and genomic islands (GIs), which contribute up to 18% of the final genome. Transcriptome analysis of bacteria grown under different conditions shows that most of these elements are transcriptionally active, and their expression can be influenced in a coordinated manner by environmental stimuli. Finally, evaluation of the genetic composition of these laterally transferred elements identified differences that may help to explain the adaptability of Xf strains to infect such a wide range of plant species.
Fractal analysis of Xylella fastidiosa biofilm formation
NASA Astrophysics Data System (ADS)
Moreau, A. L. D.; Lorite, G. S.; Rodrigues, C. M.; Souza, A. A.; Cotta, M. A.
2009-07-01
We have investigated the growth process of Xylella fastidiosa biofilms inoculated on a glass. The size and the distance between biofilms were analyzed by optical images; a fractal analysis was carried out using scaling concepts and atomic force microscopy images. We observed that different biofilms show similar fractal characteristics, although morphological variations can be identified for different biofilm stages. Two types of structural patterns are suggested from the observed fractal dimensions Df. In the initial and final stages of biofilm formation, Df is 2.73±0.06 and 2.68±0.06, respectively, while in the maturation stage, Df=2.57±0.08. These values suggest that the biofilm growth can be understood as an Eden model in the former case, while diffusion-limited aggregation (DLA) seems to dominate the maturation stage. Changes in the correlation length parallel to the surface were also observed; these results were correlated with the biofilm matrix formation, which can hinder nutrient diffusion and thus create conditions to drive DLA growth.
Pfeiffer, Friedhelm; Zamora-Lagos, Maria-Antonia; Blettinger, Martin; Yeroslaviz, Assa; Dahl, Andreas; Gruber, Stephan; Habermann, Bianca H
2018-01-05
Due to the predominant usage of short-read sequencing to date, most bacterial genome sequences reported in the last years remain at the draft level. This precludes certain types of analyses, such as the in-depth analysis of genome plasticity. Here we report the finalized genome sequence of the environmental strain Aeromonas salmonicida subsp. pectinolytica 34mel, for which only a draft genome with 253 contigs is currently available. Successful completion of the transposon-rich genome critically depended on the PacBio long read sequencing technology. Using finalized genome sequences of A. salmonicida subsp. pectinolytica and other Aeromonads, we report the detailed analysis of the transposon composition of these bacterial species. Mobilome evolution is exemplified by a complex transposon, which has shifted from pathogenicity-related to environmental-related gene content in A. salmonicida subsp. pectinolytica 34mel. Obtaining the complete, circular genome of A. salmonicida subsp. pectinolytica allowed us to perform an in-depth analysis of its mobilome. We demonstrate the mobilome-dependent evolution of this strain's genetic profile from pathogenic to environmental.
Isolation of Campylobacter fetus subsp. jejuni from migratory waterfowl.
Luechtefeld, N A; Blaser, M J; Reller, L B; Wang, W L
1980-01-01
Since the sources from which humans acquire Campylobacter enteritis are only partially known, we studied the frequency of carriage of Campylobacter fetus subsp. jejuni in migratory waterfowl. Cecal contents of various species of wild ducks were cultured on selective media that contained antibiotics to inhibit normal flora. Thirty-five percent of the 445 ducks cultured harbored C. fetus subsp. jejuni. Migratory waterfowl are yet another reservoir for this enteric pathogen and may be of public health importance for humans in the contamination of water or when used as food. PMID:7217334
Serror, Pascale; Sasaki, Takashi; Ehrlich, S. Dusko; Maguin, Emmanuelle
2002-01-01
We describe, for the first time, a detailed electroporation procedure for Lactobacillus delbrueckii. Three L. delbrueckii strains were successfully transformed. Under optimal conditions, the transformation efficiency was 104 transformants per μg of DNA. Using this procedure, we identified several plasmids able to replicate in L. delbrueckii and integrated an integrative vector based on phage integrative elements into the L. delbrueckii subsp. bulgaricus chromosome. These vectors provide a good basis for developing molecular tools for L. delbrueckii and open the field of genetic studies in L. delbrueckii. PMID:11772607
Campylobacter fetus subsp. jejuni in poultry reared under different management systems in Nigeria.
Adekeye, J O; Abdu, P A; Bawa, E K
1989-01-01
Cloacal swabs from 487 live birds in 36 flocks and 70 poultry carcasses were cultured for Campylobacter fetus subsp. jejuni. It was isolated from 12.3% of the birds in 19 flocks. Chickens, turkeys, and guinea fowl differed from one another in isolation rates of the organism. Management system affected its occurrence, and only 7.1% of eviscerated carcasses yielded it. It was concluded that bird species, management system, and immersing slaughtered poultry in boiling water before dressing affect recovery of C. fetus subsp. jejuni from live birds and carcasses.
McMillen, Lyle; Fordyce, Geoffry; Doogan, Vivienne J; Lew, Ala E
2006-03-01
A Campylobacter fetus subsp. venerealis-specific 5' Taq nuclease PCR assay using a 3' minor groove binder-DNA probe (TaqMan MGB) was developed based on a subspecies-specific fragment of unknown identity (S. Hum, K. Quinn, J. Brunner, and S. L. On, Aust. Vet. J. 75:827-831, 1997). The assay specifically detected four C. fetus subsp. venerealis strains with no observed cross-reaction with C. fetus subsp. fetus-related Campylobacter species or other bovine venereal microflora. The 5' Taq nuclease assay detected approximately one single cell compared to 100 and 10 cells in the conventional PCR assay and 2,500 and 25,000 cells from selective culture from inoculated smegma and mucus, respectively. The respective detection limits following the enrichments from smegma and mucus were 5,000 and 50 cells/inoculum for the conventional PCR compared to 500 and 50 cells/inoculum for the 5' Taq nuclease assay. Field sampling confirmed the sensitivity and the specificity of the 5' Taq nuclease assay by detecting an additional 40 bulls that were not detected by culture. Urine-inoculated samples demonstrated comparable detection of C. fetus subsp. venerealis by both culture and the 5' Taq nuclease assay; however, urine was found to be less effective than smegma for bull sampling. Three infected bulls were tested repetitively to compare sampling tools, and the bull rasper proved to be the most suitable, as evidenced by the improved ease of specimen collection and the consistent detection of higher levels of C. fetus subsp. venerealis. The 5' Taq nuclease assay demonstrates a statistically significant association with culture (chi2 = 29.8; P < 0.001) and significant improvements for the detection of C. fetus subsp. venerealis-infected animals from crude clinical extracts following prolonged transport.
Kwan, Grace; Charkowski, Amy O.; Barak, Jeri D.
2013-01-01
ABSTRACT Although enteric human pathogens are usually studied in the context of their animal hosts, a significant portion of their life cycle occurs on plants. Plant disease alters the phyllosphere, leading to enhanced growth of human pathogens; however, the impact of human pathogens on phytopathogen biology and plant health is largely unknown. To characterize the interaction between human pathogens and phytobacterial pathogens in the phyllosphere, we examined the interactions between Pectobacterium carotovorum subsp. carotovorum and Salmonella enterica or Escherichia coli O157:H7 with regard to bacterial populations, soft rot progression, and changes in local pH. The presence of P. carotovorum subsp. carotovorum enhanced the growth of both S. enterica and E. coli O157:H7 on leaves. However, in a microaerophilic environment, S. enterica reduced P. carotovorum subsp. carotovorum populations and soft rot progression by moderating local environmental pH. Reduced soft rot was not due to S. enterica proteolytic activity. Limitations on P. carotovorum subsp. carotovorum growth, disease progression, and pH elevation were not observed on leaves coinoculated with E. coli O157:H7 or when leaves were coinoculated with S. enterica in an aerobic environment. S. enterica also severely undermined the relationship between the phytobacterial population and disease progression of a P. carotovorum subsp. carotovorum budB mutant defective in the 2,3-butanediol pathway for acid neutralization. Our results show that S. enterica and E. coli O157:H7 interact differently with the enteric phytobacterial pathogen P. carotovorum subsp. carotovorum. S. enterica inhibition of soft rot progression may conceal a rapidly growing human pathogen population. Whereas soft rotted produce can alert consumers to the possibility of food-borne pathogens, healthy-looking produce may entice consumption of contaminated vegetables. PMID:23404399
Infection of sea lamprey with an unusual strain of Aeromonas salmonicida
Diamanka, Arfang; Loch, Thomas P.; Cipriano, Rocco C.; Winters, Andrew D.; Faisal, Mohamed
2014-01-01
The invasion of the Laurentian Great Lakes by the fish-parasitic sea lamprey has led to catastrophic consequences, including the potential introduction of fish pathogens. Aeromonas salmonicida is a bacterial fish pathogen that causes devastating losses worldwide. Currently, there are five accepted subspecies of Aeromonas salmonicida: A. salmonicida subsp. salmonicida, masoucida, smithia, achromogenes, and pectinolytica. We discuss the discovery of an isolate of A. salmonicida that is pathogenic to rainbow trout (Oncorhynchus mykiss) and exhibits unique phenotypic and molecular characteristics. We examined 181 adult sea lamprey (Petromyzon marinus) from the Humber River (Lake Ontario watershed) and 162 adult sea lamprey from Duffins Creek (Lake Ontario watershed) during the spring seasons of 2005–11. Among those, 4/343 (1.2%) sea lamprey were culture positive for A. salmonicida, whereby biochemical and molecular studies identified three of the isolates as A. salmonicida subsp. salmonicida. The remaining isolate (As-SL1) recovered from Humber River sea lamprey was phenotypically more similar to A. salmonicida subsp. salmonicida than to the four other A. salmonicida subspecies. However, unlike A. salmonicida subsp. salmonicida, As-SL1 was sucrose positive, produced an acid-over-acid reaction on triple-sugar iron medium and did not amplify with A. salmonicida subsp. salmonicida specific primers. Phylogenetic analysis based on partial stretches of the 16S rRNA and DNA gyrase subunit B genes further confirmed that the As-SL1 isolate was not A. salmonicida subsp. masoucida, smithia, achromogenes, or pectinolytica. Based on our analyses, the As-SL1 isolate is either an unusual strain of A. salmonicida subsp. salmonicida or a novel A. salmonicida subspecies. The four A. salmonicida isolates that were recovered from sea lamprey were pathogenic to rainbow trout in experimental challenge studies. Our study also underscores the potential role of sea lamprey in the ecology of infectious fish diseases.
Whittington, Richard J.; Marsh, Ian B.; Saunders, Vanessa; Grant, Irene R.; Juste, Ramon; Sevilla, Iker A.; Manning, Elizabeth J. B.; Whitlock, Robert H.
2011-01-01
Mycobacterium avium subsp. paratuberculosis causes paratuberculosis (Johne's disease) in ruminants in most countries. Historical data suggest substantial differences in culturability of M. avium subsp. paratuberculosis isolates from small ruminants and cattle; however, a systematic comparison of culture media and isolates from different countries and hosts has not been undertaken. Here, 35 field isolates from the United States, Spain, Northern Ireland, and Australia were propagated in Bactec 12B medium and Middlebrook 7H10 agar, genomically characterized, and subcultured to Lowenstein-Jensen (LJ), Herrold's egg yolk (HEY), modified Middlebrook 7H10, Middlebrook 7H11, and Watson-Reid (WR) agars, all with and without mycobactin J and some with sodium pyruvate. Fourteen genotypes of M. avium subsp. paratuberculosis were represented as determined by BstEII IS900 and IS1311 restriction fragment length polymorphism analysis. There was no correlation between genotype and overall culturability, although most S strains tended to grow poorly on HEY agar. Pyruvate was inhibitory to some isolates. All strains grew on modified Middlebrook 7H10 agar but more slowly and less prolifically on LJ agar. Mycobactin J was required for growth on all media except 7H11 agar, but growth was improved by the addition of mycobactin J to 7H11 agar. WR agar supported the growth of few isolates. The differences in growth of M. avium subsp. paratuberculosis that have historically been reported in diverse settings have been strongly influenced by the type of culture medium used. When an optimal culture medium, such as modified Middlebrook 7H10 agar, is used, very little difference between the growth phenotypes of diverse strains of M. avium subsp. paratuberculosis was observed. This optimal medium is recommended to remove bias in the isolation and cultivation of M. avium subsp. paratuberculosis. PMID:21430104
Infection of sea lamprey with an unusual strain of Aeromonas salmonicida.
Diamanka, Arfang; Loch, Thomas P; Cipriano, Rocco C; Winters, Andrew D; Faisal, Mohamed
2014-04-01
The invasion of the Laurentian Great Lakes by the fish-parasitic sea lamprey has led to catastrophic consequences, including the potential introduction of fish pathogens. Aeromonas salmonicida is a bacterial fish pathogen that causes devastating losses worldwide. Currently, there are five accepted subspecies of Aeromonas salmonicida: A. salmonicida subsp. salmonicida, masoucida, smithia, achromogenes, and pectinolytica. We discuss the discovery of an isolate of A. salmonicida that is pathogenic to rainbow trout (Oncorhynchus mykiss) and exhibits unique phenotypic and molecular characteristics. We examined 181 adult sea lamprey (Petromyzon marinus) from the Humber River (Lake Ontario watershed) and 162 adult sea lamprey from Duffins Creek (Lake Ontario watershed) during the spring seasons of 2005-11. Among those, 4/343 (1.2%) sea lamprey were culture positive for A. salmonicida, whereby biochemical and molecular studies identified three of the isolates as A. salmonicida subsp. salmonicida. The remaining isolate (As-SL1) recovered from Humber River sea lamprey was phenotypically more similar to A. salmonicida subsp. salmonicida than to the four other A. salmonicida subspecies. However, unlike A. salmonicida subsp. salmonicida, As-SL1 was sucrose positive, produced an acid-over-acid reaction on triple-sugar iron medium and did not amplify with A. salmonicida subsp. salmonicida specific primers. Phylogenetic analysis based on partial stretches of the 16S rRNA and DNA gyrase subunit B genes further confirmed that the As-SL1 isolate was not A. salmonicida subsp. masoucida, smithia, achromogenes, or pectinolytica. Based on our analyses, the As-SL1 isolate is either an unusual strain of A. salmonicida subsp. salmonicida or a novel A. salmonicida subspecies. The four A. salmonicida isolates that were recovered from sea lamprey were pathogenic to rainbow trout in experimental challenge studies. Our study also underscores the potential role of sea lamprey in the ecology of infectious fish diseases.
Wang, Xinhui; Ren, Hongyang; Liu, Dayu; Wang, Bing; Zhu, Wenyou; Wang, Wei
2013-02-01
Continued acid production by Lactobacillus delbrueckii subsp. bulgaricus during the chilled storage of yogurt is the major cause of postacidification, resulting in a short shelf life. Two H(+) -ATPase defective variants of L. delbrueckii subsp. bulgaricus were successfully isolated and their H(+) -ATPase activities were reduced by 51.3% and 34.3%, respectively. It was shown that growth and acid production of variants were remarkably inhibited. The variants were more sensitive to acidic condition and had a significant rate for inactivation of H(+) -ATPase by N, N-dicyclohexylcarbodiimide (DCCD), along with a low H(+) -extrusion, suggesting that H(+) -ATPase is direct response for H(+) -extrusion. In addition, the variants were also more sensitive to NaCl, while H(+) -ATPase activities of variants and parent strain were significantly enhanced by NaCl stress. Obviously, H(+) -ATPase might be involved in Na(+) transportation. Furthermore, variants were inoculated in fermented milk to ferment yogurt. There was no significant difference in flavor, whereas the postacidification of yogurt during chilled storage was remarkably inhibited. It is suggested that application of L. delbrueckii subsp. bulgaricus with reduced H(+) -ATPase activity in yogurt fermentation is one of effect, economic and simple avenues of inhibiting postacidification of yogurt during refrigerated storage, giving a longer shelf life. During yogurt fermentation, continued acid production by Lactobacillus delbrueckii subsp. bulgaricus during the chilled storage of yogurt leads to milk fermentation with high postacidification, resulting in a short shelf life. In this work, 2 acid-sensitive variant strains of L. delbrueckii subsp. bulgaricus were isolated. The characteristics related to H(+) -ATPase were compared and it was observed that milk fermented by the variants had lower postacidification, giving a longer shelf life. Application of L. delbrueckii subsp. bulgaricus with reduced H(+) -ATPase activity in yogurt fermentation might be one of effect, economic and simple avenues of inhibiting yogurt postacidification during chilled storage, giving a longer shelf life. © 2013 Institute of Food Technologists®
Taxonomic changes in Oenothera sections Gaura and Calylophus (Onagraceae).
Wagner, Warren L; Krakos, Kyra N; Hoch, Peter C
2013-01-01
The long-recognized genus Gaura was shown recently to be deeply nested within one of two major clades of Oenothera. New molecular data indicate further taxonomic changes are necessary in Oenothera sect. Gaura. We make these changes here, including three new combinations, in advance of the Onagraceae treatment for the Flora of North America. The new phylogenetic studies show that several pairs of taxa treated as subspecies in the most recent revision by Raven and Gregory (1972) had independent origins within sect. Gaura, and are here elevated to species level (Oenothera nealleyi for Gaura suffulta subsp. nealleyi; Oenothera dodgeniana for Gaura neomexicana subsp. neomexicana; and Oenothera podocarpa for Gaura hexandra subsp. gracilis). Also, a nomenclatural problem in Oenothera sect. Calylophus is corrected by adopting the name Oenothera capillifolia Scheele for the species known previously, and nomenclaturally correct, as Calylophus berlandieri Spach. This problem necessitates a new combination Oenothera capillifolia subsp. berlandieri.
Taxonomic changes in Oenothera sections Gaura and Calylophus (Onagraceae)
Wagner, Warren L.; Krakos, Kyra N.; Hoch, Peter C.
2013-01-01
Abstract The long-recognized genus Gaura was shown recently to be deeply nested within one of two major clades of Oenothera. New molecular data indicate further taxonomic changes are necessary in Oenothera sect. Gaura. We make these changes here, including three new combinations, in advance of the Onagraceae treatment for the Flora of North America. The new phylogenetic studies show that several pairs of taxa treated as subspecies in the most recent revision by Raven and Gregory (1972) had independent origins within sect. Gaura, and are here elevated to species level (Oenothera nealleyi for Gaura suffulta subsp. nealleyi; Oenothera dodgeniana for Gaura neomexicana subsp. neomexicana; and Oenothera podocarpa for Gaura hexandra subsp. gracilis). Also, a nomenclatural problem in Oenothera sect. Calylophus is corrected by adopting the name Oenothera capillifolia Scheele for the species known previously, and nomenclaturally correct, as Calylophus berlandieri Spach. This problem necessitates a new combination Oenothera capillifolia subsp. berlandieri. PMID:24399892
Mshelia, Gideon Dauda; Amin, Jibrilla Dahiru; Egwu, Godwin Onyeamaechi; Woldehiwet, Zerai; Murray, Richard Donald
2012-10-01
The prevalence of bovine venereal campylobacteriosis (BVC) was investigated in the Lake Chad basin of Nigeria. Preputial washings and cervico-vaginal mucus samples were obtained from 270 cattle presenting a history of abortion and lowered fertility, kept in traditional and institutional farms. All the samples investigated were cultured using standard bacteriological technique. Campylobacter fetus was isolated from six bulls and four cows. In all cattle sampled, the isolation rates were 2.2% for C. fetus subsp. venerealis and 1.5% for C. fetus subsp. fetus; the herd and within-herd prevalence rates for C. fetus were 22.2% and 3.4%, respectively, while the overall active infectivity rate was 3.7%. BVC probably contributes to lowered fertility and abortions found in cattle in the Lake Chad basin of Nigeria, associated more with C. fetus subsp. venerealis than C. fetus subsp. fetus.
Clavibacter michiganensis subsp. phaseoli subsp. nov., pathogenic in bean.
González, Ana J; Trapiello, Estefanía
2014-05-01
A yellow Gram-reaction-positive bacterium isolated from bean seeds (Phaseolus vulgaris L.) was identified as Clavibacter michiganensis by 16S rRNA gene sequencing. Molecular methods were employed in order to identify the subspecies. Such methods included the amplification of specific sequences by PCR, 16S amplified rDNA restriction analysis (ARDRA), RFLP and multilocus sequence analysis as well as the analysis of biochemical and phenotypic traits including API 50CH and API ZYM results. The results showed that strain LPPA 982T did not represent any known subspecies of C. michiganensis. Pathogenicity tests revealed that the strain is a bean pathogen causing a newly identified bacterial disease that we name bacterial bean leaf yellowing. On the basis of these results, strain LPPA 982T is regarded as representing a novel subspecies for which the name Clavibacter michiganensis subsp. phaseoli subsp. nov. is proposed. The type strain is LPPA 982T (=CECT 8144T=LMG 27667T).
Diniz, Pedro Paulo Vissotto de Paiva; Wood, Michael; Maggi, Ricardo G; Sontakke, Sushama; Stepnik, Matt; Breitschwerdt, Edward B
2009-09-18
This report describes the clinical presentation, isolation and treatment of two dogs naturally infected with Bartonella henselae and Bartonella vinsonii subsp. berkhoffii. Chronic and progressive polyarthritis was the primary complaint for dog #1, from which B. henselae and B. vinsonii subsp. berkhoffii were cultured on three independent occasions from blood and joint fluid samples, despite administration of nearly 4 months of non-consecutive antibiotic therapy. A clinically atypical and progressively severe trauma-associated seroma was the primary complaint for dog #2, from which B. henselae and B. vinsonii subsp. berkhoffii were isolated from serum, blood and seroma fluid. Dogs can be co-infected with two Bartonella spp. and infection with these organisms should not be ruled out if specific antibodies are not detected. Specialized culture techniques should be used for isolation and to assess antibiotic efficacy.
Septic pneumonic tularaemia caused by Francisella tularensis subsp. holarctica biovar II.
Fritzsch, Joerg; Splettstoesser, Wolf D
2010-09-01
This case of pneumonic tularaemia elucidates two aspects: it is believed to be the first documented case of bacteraemia caused by Francisella tularensis subsp. holarctica biovar II; furthermore, it illustrates the remission of septic pneumonic tularaemia without appropriate anti-infective therapy. A blood culture from a patient with community-acquired pneumonia was found to be positive for F. tularensis subsp. holarctica biovar II after 10 days of cultivation. Meanwhile, the patient had been treated with ceftriaxone, followed by sultamicillin and clindamycin. The patient continued suffering from fever of up to 40.7 degrees C and rising C-reactive protein (CRP) for 4 days before the fever and CRP declined. The isolated strain was later tested and found to be resistant to the antibiotics used. The present case underlines that F. tularensis subsp. holarctica infections may cause severe symptoms but mostly have a favourable outcome.
USDA-ARS?s Scientific Manuscript database
BACKGROUND: Glassy-winged sharpshooter (GWSS), Homalodisca vitripennis (Germar) (Hemiptera: Cicadellidae), is an important vector of the bacterium Xylella fastidiosa, the causal agent of Pierce’s disease of grapevine. Area-wide applications of neonicotinoid insecticides have suppressed GWSS populati...
Propagation of Homalodisca Coagulata Virus-01 via Homalodisca Vitripennis cell culture
USDA-ARS?s Scientific Manuscript database
The glassy-winged sharpshooter (Homalodisca vitripennis) is a highly vagile and polyphagous insect found throughout the southwestern United States. These insects are the predominant vectors of Xylella fastidiosa, a xylem-limited bacterium that is the causal agent of Pierce's disease (PD) of grapevin...
Whittamore, Jonathan M.; Hatch, Marguerite
2015-01-01
Hyperoxaluria significantly increases the risk of calcium oxalate kidney stone formation. Since several bacteria have been shown to metabolize oxalate in vitro, including probiotic bifidobacteria, we focused on the efficiency and possible mechanisms by which bifidobacteria can infuence oxalate handling in vivo, especially in the intestines, and compared these results with the reported effects of Oxalobacter formigenes. Bifidobacterium animalis subsp. lactis DSM 10140 and B. adolescentis ATCC 15703 were administered to wild-type (WT) mice and to mice defcient in the hepatic enzyme alanine-glyoxylate aminotransferase (Agxt−/−, a mouse model of Primary Hyperoxaluria) that were fed an oxalate-supplemented diet. The administration of B. animalis subsp. lactis led to a significant decrease in urinary oxalate excretion in WT and Agxt−/− mice when compared to treatment with B. adolescent-is. Detection of B. animalis subsp. lactis in feces revealed that 3 weeks after oral gavage with the bacteria 64 % of WT mice, but only 37 % of Agxt−/− mice were colonized. Examining intestinal oxalate fuxes showed there were no significant changes to net oxalate secretion in colonized animals and were therefore not associated with the changes in urinary oxalate excretion. These results indicate that colonization with B. animalis subsp. lactis decreased urinary oxalate excretion by degrading dietary oxalate thus limiting its absorption across the intestine but it did not promote enteric oxalate excretion as reported for O. formigenes. Preventive or therapeutic administration of B. animalis subsp. lactis appears to have some potential to beneficially infuence dietary hyperoxaluria in mice. PMID:25269440
Pelletier, C; Bouley, C; Cayuela, C; Bouttier, S; Bourlioux, P; Bellon-Fontaine, M N
1997-01-01
Hydrophilic and electrostatic cell surface properties of eight Lactobacillus strains were characterized by using the microbial adhesion to solvents method and microelectrophoresis, respectively. All strains appeared relatively hydrophilic. The strong microbial adhesion to chloroform, an acidic solvent, in comparison with microbial adhesion to hexadecane, an apolar n-alkane, demonstrated the particularity of lactobacilli to have an important electron donor and basic character and consequently their potential ability to generate Lewis acid-base interactions with a support. Regardless of their electrophoretic mobility (EM), strains were in general slightly negatively charged at alkaline pH. A pH-dependent behavior concerning cell surface charges was observed. The EM decreased progressively with more acidic pHs for the L. casei subsp. casei and L. paracasei subsp. paracasei strains until the isoelectric point (IEP), i.e., the pH value for which the EM is zero. On the other hand, the EM for the L. rhamnosus strains was stable from pH 8 to pH 3 to 4, at which point there was a shift near the IEP. Both L. casei subsp. casei and L. paracasei subsp. paracasei strains were characterized by an IEP of around 4, whereas L. rhamnosus strains possessed a markedly lower IEP of 2. The present study showed that the cell surface physicochemical properties of lactobacilli seem to be, at least in part and under certain experimental conditions, particular to the bacterial species. Such differences detected between species are likely to be accompanied by some particular changes in cell wall chemical composition. PMID:9143109
Franco, Fernando Faria; Jojima, Cecília Leiko; Perez, Manolo Fernandez; Zappi, Daniela Cristina; Taylor, Nigel; Moraes, Evandro Marsola
2017-11-01
In order to investigate biogeographic influences on xeric biota in the Brazilian Atlantic Forest (BAF), a biodiversity hotspot, we used a monophyletic group including three cactus taxa as a model to perform a phylogeographic study: Cereus fernambucensis subsp. fernambucensis , C. fernambucensis subsp. sericifer , and C. insularis . These cacti are allopatric and grow in xeric habitats along BAF, including isolated granite and gneiss rock outcrops (Inselbergs), sand dune vegetation (Restinga forest), and the rocky shore of an oceanic archipelago (islands of Fernando de Noronha). The nucleotide information from nuclear gene phytochrome C and plastid intergenic spacer trnS-trnG was used to perform different approaches and statistical analyses, comprising population structure, demographic changes, phylogenetic relationships, and biogeographic reconstruction in both spatial and temporal scales. We recovered four allopatric population groups with highly supported branches in the phylogenetic tree with divergence initiated in the middle Pleistocene: southern distribution of C. fernambucensis subsp. fernambucensis , northern distribution of C. fernambucensis subsp. fernambucensis together with C. insularis , southern distribution of C. fernambucensis subsp. sericifer , and northern distribution of C. fernambucensis subsp. sericifer . Further, the results suggest that genetic diversity of population groups was strongly shaped by an initial colonization event from south to north followed by fragmentation. The phylogenetic pattern found for C. insularis is plausible with peripatric speciation in the archipelago of Fernando de Noronha. To explain the phylogeographic patterns, the putative effects of both climatic and sea level changes as well as neotectonic activity during the Pleistocene are discussed.
Adimpong, David B; Nielsen, Dennis S; Sørensen, Kim I; Vogensen, Finn K; Sawadogo-Lingani, Hagrétou; Derkx, Patrick M F; Jespersen, Lene
2013-10-01
Lactobacillus delbrueckii is divided into five subspecies based on phenotypic and genotypic differences. A novel isolate, designated ZN7a-9(T), was isolated from malted sorghum wort used for making an alcoholic beverage (dolo) in Burkina Faso. The results of 16S rRNA gene sequencing, DNA-DNA hybridization and peptidoglycan cell-wall structure type analyses indicated that it belongs to the species L. delbrueckii. The genome sequence of isolate ZN7a-9(T) was determined by Illumina-based sequencing. Multilocus sequence typing (MLST) and split-decomposition analyses were performed on seven concatenated housekeeping genes obtained from the genome sequence of strain ZN7a-9(T) together with 41 additional L. delbrueckii strains. The results of the MLST and split-decomposition analyses could not establish the exact subspecies of L. delbrueckii represented by strain ZN7a-9(T) as it clustered with L. delbrueckii strains unassigned to any of the recognized subspecies of L. delbrueckii. Strain ZN7a-9(T) additionally differed from the recognized type strains of the subspecies of L. delbrueckii with respect to its carbohydrate fermentation profile. In conclusion, the cumulative results indicate that strain ZN7a-9(T) represents a novel subspecies of L. delbrueckii closely related to Lactobacillus delbrueckii subsp. lactis and Lactobacillus delbrueckii subsp. delbrueckii for which the name Lactobacillus delbrueckii subsp. jakobsenii subsp. nov. is proposed. The type strain is ZN7a-9(T) = DSM 26046(T) = LMG 27067(T).
Waleron, Małgorzata; Waleron, Krzysztof; Podhajska, Anna J; Lojkowska, Ewa
2002-02-01
Genotypic characterization, based on the analysis of restriction fragment length polymorphism of the recA gene fragment PCR product (recA PCR-RFLP), was performed on members of the former Erwinia genus. PCR primers deduced from published recA gene sequences of Erwinia carotovora allowed the amplification of an approximately 730 bp DNA fragment from each of the 19 Erwinia species tested. Amplified recA fragments were compared using RFLP analysis with four endonucleases (AluI, HinfI, TasI and Tru1I), allowing the detection of characteristic patterns of RFLP products for most of the Erwinia species. Between one and three specific RFLP groups were identified among most of the species tested (Erwinia amylovora, Erwinia ananas, Erwinia cacticida, Erwinia cypripedii, Erwinia herbicola, Erwinia mallotivora, Erwinia milletiae, Erwinia nigrifluens, Erwinia persicina, Erwinia psidii, Erwinia quercina, Erwinia rhapontici, Erwinia rubrifaciens, Erwinia salicis, Erwinia stewartii, Erwinia tracheiphila, Erwinia uredovora, Erwinia carotovora subsp. atroseptica, Erwinia carotovora subsp. betavasculorum, Erwinia carotovora subsp. odorifera and Erwinia carotovora subsp. wasabiae). However, in two cases, Erwinia chrysanthemi and Erwinia carotovora subsp. carotovora, 15 and 18 specific RFLP groups were detected, respectively. The variability of genetic patterns within these bacteria could be explained in terms of their geographic origin and/or wide host-range. The results indicated that PCR-RFLP analysis of the recA gene fragment is a useful tool for identification of species and subspecies belonging to the former Erwinia genus, as well as for differentiation of strains within E. carotovora subsp. carotovora and E. chrysanthemi.