Aharon-Rotman, Yaara; Gosbell, Ken; Minton, Clive; Klaassen, Marcel
2016-09-01
Trans-equatorial long-distance migrations of high-latitude breeding animals have been attributed to narrow ecological niche widths. We suggest an alternative hypothesis postulating that trans-equatorial migrations result from a possible increase in the rate at which body stores to fuel migration are deposited with absolute latitude; that is, longer, migrations away from the breeding grounds surpassing the equator may actually enhance fueling rates on the nonbreeding grounds and therewith the chance of a successful, speedy and timely migration back to the breeding grounds. To this end, we first sought to confirm the existence of a latitudinal trend in fuel deposition rate in a global data set of free-living migratory shorebirds and investigated the potential factors causing this trend. We next tested two predictions on how this trend is expected to impact the migratory itineraries on northward migration under the time-minimization hypothesis, using 56 tracks of high-latitude breeding shorebirds migrating along the East Asian-Australasian Flyway. We found a strong positive effect of latitude on fuel deposition rate, which most likely relates to latitudinal variations in primary productivity and available daily foraging time. We next confirmed the resulting predictions that (1) when flying from a stopover site toward the equator, migrants use long jumps that will take them to an equivalent or higher latitude at the opposite hemisphere; and (2) that from here onward, migrants will use small steps, basically fueling only enough to make it to the next suitable staging site. These findings may explain why migrants migrate "the extra mile" across the equator during the nonbreeding season in search of better fueling conditions, ultimately providing secure and fast return migrations to the breeding grounds in the opposite hemisphere.
Hestbeck, J.B.; Nichols, J.D.; Hines, J.E.
1992-01-01
Predictions of the time-allocation hypothesis were tested with several a posteriori analyses of banding data for the mallard (Anas platyrhynchos). The time-allocation hypothesis states that the critical difference between resident and migrant birds is their allocation of time to reproduction on the breeding grounds and survival on the nonbreeding grounds. Residents have higher reproduction and migrants have higher survival. Survival and recovery rates were estimated by standard band-recovery methods for banding reference areas in the central United States and central Canada. A production-rate index was computed for each reference area with data from the U.S. Fish and Wildlife Service May Breeding Population Survey and July Production Survey. An analysis of covariance was used to test for the effects of migration distance and time period (decade) on survival, recovery, and production rates. Differences in migration chronology were tested by comparing direct-recovery distributions for different populations during the fall migration. Differences in winter locations were tested by comparing distributions of direct recoveries reported during December and January. A strong positive relationship was found between survival rate, and migration distance for 3 of the 4 age and sex classes. A weak negative relationship was found between recovery rate and migration distance. No relationship was found between production rate and migration distance. During the fall migration, birds from the northern breeding populations were located north of birds from the southern breeding populations. No pattern could be found in the relative locations of breeding and wintering areas. Although our finding that survival rate increased with migration distance was consistent with the time-allocation hypothesis, our results on migration chronology and location of wintering areas were not consistent with the mechanism underlying the time-allocation hypothesis. Neither this analysis nor other recent studies of life-history characteristics of migratory and resident birds supported the timeallocation hypothesis.
Ramos, Grasieli de Oliveira; Bernardi, Lisiane; Lauxen, Isabel; Sant’Ana Filho, Manoel; Horwitz, Alan Rick; Lamers, Marcelo Lazzaron
2016-01-01
Cell migration is regulated by adhesion to the extracellular matrix (ECM) through integrins and activation of small RhoGTPases, such as RhoA and Rac1, resulting in changes to actomyosin organization. During invasion, epithelial-derived tumor cells switch from laminin-enriched basal membrane to collagen and fibronectin-enriched connective tissue. How this switch affects the tumor migration is still unclear. We tested the hypothesis that ECM dictates the invasiveness of Oral Squamous Cell Carcinoma (OSCC). We analyzed the migratory properties of two OSCC lines, a low invasive cell line with high e-cadherin levels (Linv/HE-cad) or a highly invasive cell line with low e-cadherin levels (Hinv/LE-cad), plated on different ECM components. Compared to laminin, fibronectin induced non-directional collective migration and decreased RhoA activity in Linv/HE-cad OSCC. For Hinv/LE-cad OSCC, fibronectin increased Rac1 activity and induced smaller adhesions, resulting in a fast single cell migration in both 2D and 3D environments. Consistent with these observations, human OSCC biopsies exhibited similar changes in cell-ECM adhesion distribution at the invasive front of the tumor, where cells encounter fibronectin. Our results indicate that ECM composition might induce a switch from collective to single cell migration according to tumor invasiveness due to changes in cell-ECM adhesion and the resulting signaling pathways that alter actomyosin organization. PMID:26978651
Confinement and low adhesion induce fast amoeboid migration of slow mesenchymal cells.
Liu, Yan-Jun; Le Berre, Maël; Lautenschlaeger, Franziska; Maiuri, Paolo; Callan-Jones, Andrew; Heuzé, Mélina; Takaki, Tohru; Voituriez, Raphaël; Piel, Matthieu
2015-02-12
The mesenchymal-amoeboid transition (MAT) was proposed as a mechanism for cancer cells to adapt their migration mode to their environment. While the molecular pathways involved in this transition are well documented, the role of the microenvironment in the MAT is still poorly understood. Here, we investigated how confinement and adhesion affect this transition. We report that, in the absence of focal adhesions and under conditions of confinement, mesenchymal cells can spontaneously switch to a fast amoeboid migration phenotype. We identified two main types of fast migration--one involving a local protrusion and a second involving a myosin-II-dependent mechanical instability of the cell cortex that leads to a global cortical flow. Interestingly, transformed cells are more prone to adopt this fast migration mode. Finally, we propose a generic model that explains migration transitions and predicts a phase diagram of migration phenotypes based on three main control parameters: confinement, adhesion, and contractility. Copyright © 2015 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garay, Tamás; Juhász, Éva; Molnár, Eszter
The mortality of patients with solid tumors is mostly due to metastasis that relies on the interplay between migration and proliferation. The “go or grow” hypothesis postulates that migration and proliferation spatiotemporally excludes each other. We evaluated this hypothesis on 35 cell lines (12 mesothelioma, 13 melanoma and 10 lung cancer) on both the individual cell and population levels. Following three-day-long videomicroscopy, migration, proliferation and cytokinesis-length were quantified. We found a significantly higher migration in mesothelioma cells compared to melanoma and lung cancer while tumor types did not differ in mean proliferation or duration of cytokinesis. Strikingly, we found inmore » melanoma and lung cancer a significant positive correlation between mean proliferation and migration. Furthermore, non-dividing melanoma and lung cancer cells displayed slower migration. In contrast, in mesothelioma there were no such correlations. Interestingly, negative correlation was found between cytokinesis-length and migration in melanoma. FAK activation was higher in melanoma cells with high motility. We demonstrate that the cancer cells studied do not defer proliferation for migration. Of note, tumor cells from various organ systems may differently regulate migration and proliferation. Furthermore, our data is in line with the observation of pathologists that highly proliferative tumors are often highly invasive. - Highlights: • We investigated the “go or grow” hypothesis in human cancer cells in vitro. • Proliferation and migration positively correlate in melanoma and lung cancer cells. • Duration of cytokinesis and migration shows inverse correlation. • Increased FAK activation is present in highly motile melanoma cells.« less
Sensing of substratum rigidity and directional migration by fast-crawling cells
NASA Astrophysics Data System (ADS)
Okimura, Chika; Sakumura, Yuichi; Shimabukuro, Katsuya; Iwadate, Yoshiaki
2018-05-01
Living cells sense the mechanical properties of their surrounding environment and respond accordingly. Crawling cells detect the rigidity of their substratum and migrate in certain directions. They can be classified into two categories: slow-moving and fast-moving cell types. Slow-moving cell types, such as fibroblasts, smooth muscle cells, mesenchymal stem cells, etc., move toward rigid areas on the substratum in response to a rigidity gradient. However, there is not much information on rigidity sensing in fast-moving cell types whose size is ˜10 μ m and migration velocity is ˜10 μ m /min . In this study, we used both isotropic substrata with different rigidities and an anisotropic substratum that is rigid on the x axis but soft on the y axis to demonstrate rigidity sensing by fast-moving Dictyostelium cells and neutrophil-like differentiated HL-60 cells. Dictyostelium cells exerted larger traction forces on a more rigid isotropic substratum. Dictyostelium cells and HL-60 cells migrated in the "soft" direction on the anisotropic substratum, although myosin II-null Dictyostelium cells migrated in random directions, indicating that rigidity sensing of fast-moving cell types differs from that of slow types and is induced by a myosin II-related process.
Sensing of substratum rigidity and directional migration by fast-crawling cells.
Okimura, Chika; Sakumura, Yuichi; Shimabukuro, Katsuya; Iwadate, Yoshiaki
2018-05-01
Living cells sense the mechanical properties of their surrounding environment and respond accordingly. Crawling cells detect the rigidity of their substratum and migrate in certain directions. They can be classified into two categories: slow-moving and fast-moving cell types. Slow-moving cell types, such as fibroblasts, smooth muscle cells, mesenchymal stem cells, etc., move toward rigid areas on the substratum in response to a rigidity gradient. However, there is not much information on rigidity sensing in fast-moving cell types whose size is ∼10 μm and migration velocity is ∼10 μm/min. In this study, we used both isotropic substrata with different rigidities and an anisotropic substratum that is rigid on the x axis but soft on the y axis to demonstrate rigidity sensing by fast-moving Dictyostelium cells and neutrophil-like differentiated HL-60 cells. Dictyostelium cells exerted larger traction forces on a more rigid isotropic substratum. Dictyostelium cells and HL-60 cells migrated in the "soft" direction on the anisotropic substratum, although myosin II-null Dictyostelium cells migrated in random directions, indicating that rigidity sensing of fast-moving cell types differs from that of slow types and is induced by a myosin II-related process.
Polymer film-nanoparticle composites as new multimodality, non-migrating breast biopsy markers.
Kaplan, Jonah A; Grinstaff, Mark W; Bloch, B Nicolas
2016-03-01
To develop a breast biopsy marker that resists fast and slow migration and has permanent visibility under commonly used imaging modalities. A polymer-nanoparticle composite film was prepared by embedding superparamagnetic iron oxide nanoparticles and a superelastic Nitinol wire within a flexible polyethylene matrix. MRI, mammography, and ultrasound were used to visualize the marker in agar, ex vivo chicken breast, bovine liver, brisket, and biopsy training phantoms. Fast migration caused by the "accordion effect" was quantified after simulated stereotactic, vacuum-assisted core biopsy/marker placement, and centrifugation was used to simulate accelerated long-term (i.e., slow) migration in ex vivo bovine tissue phantoms. Clear marker visualization under MRI, mammography, and ultrasound was observed. After deployment, the marker partially unfolds to give a geometrically constrained structure preventing fast and slow migration. The marker can be deployed through an 11G introducer without fast migration occurring, and shows substantially less slow migration than conventional markers. The polymer-nanoparticle composite biopsy marker is clearly visible on all clinical imaging modalities and does not show substantial migration, which ensures multimodal assessment of the correct spatial information of the biopsy site, allowing for more accurate diagnosis and treatment planning and improved breast cancer patient care. Polymer-nanoparticle composite biopsy markers are visualized using ultrasound, MRI, and mammography. Embedded iron oxide nanoparticles provide tuneable contrast for MRI visualization. Permanent ultrasound visibility is achieved with a non-biodegradable polymer having a distinct ultrasound signal. Flexible polymer-based biopsy markers undergo shape change upon deployment to minimize migration. Non-migrating multimodal markers will help improve accuracy of pre/post-treatment planning studies.
Duerr, Adam E.; Miller, Tricia A.; Lanzone, Michael; Brandes, Dave; Cooper, Jeff; O'Malley, Kieran; Maisonneuve, Charles; Tremblay, Junior; Katzner, Todd
2012-01-01
To maximize fitness, flying animals should maximize flight speed while minimizing energetic expenditure. Soaring speeds of large-bodied birds are determined by flight routes and tradeoffs between minimizing time and energetic costs. Large raptors migrating in eastern North America predominantly glide between thermals that provide lift or soar along slopes or ridgelines using orographic lift (slope soaring). It is usually assumed that slope soaring is faster than thermal gliding because forward progress is constant compared to interrupted progress when birds pause to regain altitude in thermals. We tested this slope-soaring hypothesis using high-frequency GPS-GSM telemetry devices to track golden eagles during northbound migration. In contrast to expectations, flight speed was slower when slope soaring and eagles also were diverted from their migratory path, incurring possible energetic costs and reducing speed of progress towards a migratory endpoint. When gliding between thermals, eagles stayed on track and fast gliding speeds compensated for lack of progress during thermal soaring. When thermals were not available, eagles minimized migration time, not energy, by choosing energetically expensive slope soaring instead of waiting for thermals to develop. Sites suited to slope soaring include ridges preferred for wind-energy generation, thus avian risk of collision with wind turbines is associated with evolutionary trade-offs required to maximize fitness of time-minimizing migratory raptors. PMID:22558166
Duerr, Adam E; Miller, Tricia A; Lanzone, Michael; Brandes, Dave; Cooper, Jeff; O'Malley, Kieran; Maisonneuve, Charles; Tremblay, Junior; Katzner, Todd
2012-01-01
To maximize fitness, flying animals should maximize flight speed while minimizing energetic expenditure. Soaring speeds of large-bodied birds are determined by flight routes and tradeoffs between minimizing time and energetic costs. Large raptors migrating in eastern North America predominantly glide between thermals that provide lift or soar along slopes or ridgelines using orographic lift (slope soaring). It is usually assumed that slope soaring is faster than thermal gliding because forward progress is constant compared to interrupted progress when birds pause to regain altitude in thermals. We tested this slope-soaring hypothesis using high-frequency GPS-GSM telemetry devices to track golden eagles during northbound migration. In contrast to expectations, flight speed was slower when slope soaring and eagles also were diverted from their migratory path, incurring possible energetic costs and reducing speed of progress towards a migratory endpoint. When gliding between thermals, eagles stayed on track and fast gliding speeds compensated for lack of progress during thermal soaring. When thermals were not available, eagles minimized migration time, not energy, by choosing energetically expensive slope soaring instead of waiting for thermals to develop. Sites suited to slope soaring include ridges preferred for wind-energy generation, thus avian risk of collision with wind turbines is associated with evolutionary trade-offs required to maximize fitness of time-minimizing migratory raptors.
Benefits of the destinations, not costs of the journeys, shape partial migration patterns.
Yackulic, Charles B; Blake, Stephen; Bastille-Rousseau, Guillaume
2017-07-01
The reasons that lead some animals to seasonally migrate, and others to remain in the same area year-round, are poorly understood. Associations between traits, such as body size, and migration provide clues. For example, larger species and individuals are more likely to migrate. One explanation for this size bias in migration is that larger animals are capable of moving faster (movement hypothesis). However, body size is linked to many other biological processes. For instance, the energetic balances of larger animals are generally more sensitive to variation in food density because of body size effects on foraging and metabolism and this sensitivity could drive migratory decisions (forage hypothesis). Identifying the primary selective forces that drive migration ultimately requires quantifying fitness impacts over the full annual migratory cycle. Here, we develop a full annual migratory cycle model from metabolic and foraging theory to compare the importance of the forage and movement hypotheses. We parameterize the model for Galapagos tortoises, which were recently discovered to be size-dependent altitudinal migrants. The model predicts phenomena not included in model development including maximum body sizes, the body size at which individuals begin to migrate, and the seasonal timing of migration and these predictions generally agree with available data. Scenarios strongly support the forage hypothesis over the movement hypothesis. Furthermore, male Galapagos tortoises on Santa Cruz Island would be unable to grow to their enormous sizes without access to both highlands and lowlands. Whereas recent research has focused on links between traits and the migratory phases of the migratory cycle, we find that effects of body size on the non-migratory phases are far more important determinants of the propensity to migrate. Larger animals are more sensitive to changing forage conditions than smaller animals with implications for maintenance of migration and body size in the face of environmental change. © 2017 The Authors. Journal of Animal Ecology © 2017 British Ecological Society.
Benefits of the destinations, not costs of the journeys, shape partial migration patterns
Yackulic, Charles B.; Blake, Stephen; Bastille-Rousseau, Guillaume
2017-01-01
1. The reasons that lead some animals to seasonally migrate, and others to remain in the same area year-round, are poorly understood. Associations between traits, such as body size, and migration provide clues. For example, larger species and individuals are more likely to migrate.2. One explanation for this size bias in migration is that larger animals are capable of moving faster (movement hypothesis). However, body size is linked to many other biological processes. For instance, the energetic balances of larger animals are generally more sensitive to variation in food density because of body size effects on foraging and metabolism and this sensitivity could drive migratory decisions (forage hypothesis).3. Identifying the primary selective forces that drive migration ultimately requires quantifying fitness impacts over the full annual migratory cycle. Here, we develop a full annual migratory cycle model from metabolic and foraging theory to compare the importance of the forage and movement hypotheses. We parameterize the model for Galapagos tortoises, which were recently discovered to be size-dependent altitudinal migrants.4. The model predicts phenomena not included in model development including maximum body sizes, the body size at which individuals begin to migrate, and the seasonal timing of migration and these predictions generally agree with available data. Scenarios strongly support the forage hypothesis over the movement hypothesis. Furthermore, male Galapagos tortoises on Santa Cruz Island would be unable to grow to their enormous sizes without access to both highlands and lowlands.5. Whereas recent research has focused on links between traits and the migratory phases of the migratory cycle, we find that effects of body size on the non-migratory phases are far more important determinants of the propensity to migrate. Larger animals are more sensitive to changing forage conditions than smaller animals with implications for maintenance of migration and body size in the face of environmental change.
NASA Astrophysics Data System (ADS)
Sharma, Rishi; Quinn, Thomas P.
2012-05-01
Chinook salmon, Oncorhynchus tshawytscha, are commonly categorized as ocean-type (migrating to the ocean in their first year of life) or stream-type (migrating after a full year in freshwater). These two forms have been hypothesized to display different ocean migration pathways; the former are hypothesized to migrate primarily on the continental shelf whereas the latter are hypothesized to migrate off the shelf to the open ocean. These differences in migration patterns have important implications for management, as fishing mortality rates are strongly influenced by ocean migration. Ocean-type Chinook salmon predominate in coastal rivers in the southern part of the species' range, whereas stream-type predominate in the interior and northerly rivers. This latitudinal gradient has confounded previous efforts to test the hypothesis regarding ocean migration pathways. To address this problem, we used a pair-wise design based on coded wire tagging data to compare the marine distributions of stream- and ocean-type Chinook salmon from a suite of rivers producing both forms. Both forms of Chinook salmon from the lower Columbia River, Oregon coast, lower Fraser River, and northern British Columbia rivers followed similar migration paths, contradicting the hypothesis. In contrast, recoveries of tagged Chinook salmon from the upper Columbia River, Snake River, and the upper Fraser River revealed migration patterns consistent with the hypothesis. These findings have important implications for our understanding of these life history types, and also for the conservation and management of declining, threatened, or endangered stream-type Chinook salmon populations in the US and Canada.
Slonim-Nevo, Vered; Sharaga, Yana; Mirsky, Julia; Petrovsky, Vadim; Borodenko, Marina
2006-01-01
STUDY BACKGROUND AND AIMS: This study investigates the psychosocial adjustment of immigrant adolescents and examines two hypotheses: the ethnicity hypothesis, which suggests that ethnic background determines the psychosocial reactions of immigrant adolescents; and the migration hypothesis, which suggests that the migration experience determines such reactions. The study compared four groups of respondents: first-generation immigrants (N = 63) and second-generation immigrants (N = 64) from the former Soviet Union (FSU) in Israel; and Jewish (N = 212) and non-Jewish (N = 184) adolescents in the FSU. A self-report questionnaire administered to the respondents collected demographic, educational and psychological data using standardised scales. Immigrant adolescents reported higher psychological distress, lower self-esteem and higher alchohol consumption than non-immigrant adolescents. Second-generation immigrants generally showed a higher level of functioning than first-generation immigrants. These findings favor the migration hypothesis. Our findings support the widely accepted view of migration as a potentially distress-provoking experience. They suggest that psychological reactions of immigrant adolescents, and in fact all immigrants, are best interpreted as reactive and are related to the universal stressful qualities of the migration experience. Further multiethnic comparative studies, however, are needed to confirm and refine these findings.
Hybrid mechanosensing system to generate the polarity needed for migration in fish keratocytes
Okimura, Chika; Iwadate, Yoshiaki
2016-01-01
ABSTRACT Crawling cells can generate polarity for migration in response to forces applied from the substratum. Such reaction varies according to cell type: there are both fast- and slow-crawling cells. In response to periodic stretching of the elastic substratum, the intracellular stress fibers in slow-crawling cells, such as fibroblasts, rearrange themselves perpendicular to the direction of stretching, with the result that the shape of the cells extends in that direction; whereas fast-crawling cells, such as neutrophil-like differentiated HL-60 cells and Dictyostelium cells, which have no stress fibers, migrate perpendicular to the stretching direction. Fish epidermal keratocytes are another type of fast-crawling cell. However, they have stress fibers in the cell body, which gives them a typical slow-crawling cell structure. In response to periodic stretching of the elastic substratum, intact keratocytes rearrange their stress fibers perpendicular to the direction of stretching in the same way as fibroblasts and migrate parallel to the stretching direction, while blebbistatin-treated stress fiber-less keratocytes migrate perpendicular to the stretching direction, in the same way as seen in HL-60 cells and Dictyostelium cells. Our results indicate that keratocytes have a hybrid mechanosensing system that comprises elements of both fast- and slow-crawling cells, to generate the polarity needed for migration. PMID:27124267
Fasting augments PCB impact on liver metabolism in anadromous Arctic Char
Vijayan, M.M.; Aluru, N.; Maule, A.G.; Jorgensen, E.H.
2006-01-01
Anadromous arctic char (Salvelinus alpinus) undertake short feeding migrations to seawater every summer and accumulate lipids, while the rest of the year is spent in fresh water where the accumulated lipid reserves are mobilized. We tested the hypothesis that winter fasting and the associated polychlorinated biphenyls' (PCBs) redistribution from lipid depots to critical tissues impair the liver metabolic capacity in these animals. Char were administered Aroclor 1254 (0, 1, 10, and 100 mg/ kg body mass) orally and maintained for 4 months without feeding to mimic seasonal winter fasting, while fed groups (0 and 100 mg Aroclor 1254/kg) were maintained for comparison. A clear dose-related increase in PCB accumulation and cytochrome P4501A (CYP1A) protein content was observed in the livers of fasted fish. This PCB concentration and CYP1A response with the high dose of Aroclor were 1.5-fold and 3-fold greater in the fasted than in the fed fish, respectively. In fed fish, PCB exposure lowered liver glycogen content, whereas none of the other metabolic indicators were significantly affected. In fasted fish, PCB exposure depressed liver glycogen content and activities of glucose-6-phosphate dehydrogenase, alanine aminotransferase, lactate dehydrogenase, and phosphoenolpyruvate carboxykinase and elevated 3-hydroxyacylcoA dehydrogenase activity and glucocorticoid receptor protein expression. There were no significant impacts of PCB on heat shock protein 70 (hsp70) and hsp90 contents in either fed or fasted fish. Collectively, our study demonstrates that winter emaciation associated with the anadromous lifestyle predisposes arctic char to PCB impact on hepatic metabolism including disruption of the adaptive metabolic responses to extended fasting. ?? 2006 Oxford University Press.
Fast-crawling cell types migrate to avoid the direction of periodic substratum stretching
Okimura, Chika; Ueda, Kazuki; Sakumura, Yuichi; Iwadate, Yoshiaki
2016-01-01
ABSTRACT To investigate the relationship between mechanical stimuli from substrata and related cell functions, one of the most useful techniques is the application of mechanical stimuli via periodic stretching of elastic substrata. In response to this stimulus, Dictyostelium discoideum cells migrate in a direction perpendicular to the stretching direction. The origins of directional migration, higher migration velocity in the direction perpendicular to the stretching direction or the higher probability of a switch of migration direction to perpendicular to the stretching direction, however, remain unknown. In this study, we applied periodic stretching stimuli to neutrophil-like differentiated HL-60 cells, which migrate perpendicular to the direction of stretch. Detailed analysis of the trajectories of HL-60 cells and Dictyostelium cells obtained in a previous study revealed that the higher probability of a switch of migration direction to that perpendicular to the direction of stretching was the main cause of such directional migration. This directional migration appears to be a strategy adopted by fast-crawling cells in which they do not migrate faster in the direction they want to go, but migrate to avoid a direction they do not want to go. PMID:26980079
Linguistic Phylogenies Support Back-Migration from Beringia to Asia
Sicoli, Mark A.; Holton, Gary
2014-01-01
Recent arguments connecting Na-Dene languages of North America with Yeniseian languages of Siberia have been used to assert proof for the origin of Native Americans in central or western Asia. We apply phylogenetic methods to test support for this hypothesis against an alternative hypothesis that Yeniseian represents a back-migration to Asia from a Beringian ancestral population. We coded a linguistic dataset of typological features and used neighbor-joining network algorithms and Bayesian model comparison based on Bayes factors to test the fit between the data and the linguistic phylogenies modeling two dispersal hypotheses. Our results support that a Dene-Yeniseian connection more likely represents radiation out of Beringia with back-migration into central Asia than a migration from central or western Asia to North America. PMID:24621925
Why are idioms recognized fast?
Tabossi, Patrizia; Fanari, Rachele; Wolf, Kinou
2009-06-01
It is an established fact that idiomatic expressions are fast to process. However, the explanation of the phenomenon is controversial. Using a semantic judgment paradigm, where people decide whether a string is meaningful or not, the present experiment tested the predictions deriving from the three main theories of idiom recognition-the lexical representation hypothesis, the idiom decomposition hypothesis, and the configuration hypothesis. Participants were faster at judging decomposable idioms, nondecomposable idioms, and clichés than at judging their matched controls. The effect was comparable for all conventional expressions. The results were interpreted as suggesting that, as posited by the configuration hypothesis, the fact that they are known expressions, rather than idiomaticity, explains their fast recognition.
Tiffan, Kenneth F.; Kock, Tobias J.; Haskell, Craig A.; Connor, William P.; Steinhorst, R. Kirk
2009-01-01
We studied the migratory behavior of subyearling fall Chinook salmon Oncorhynchus tshawytscha in free-flowing and impounded reaches of the Snake River to evaluate the hypothesis that velocity and turbulence are the primary causal mechanisms of downstream migration. The hypothesis states that impoundment reduces velocity and turbulence and alters the migratory behavior of juvenile Chinook salmon as a result of their reduced perception of these cues. At a constant flow (m3 /s), both velocity (km/d) and turbulence (the SD of velocity) decreased from riverine to impounded habitat as cross-sectional areas increased. We found evidence for the hypothesis that subyearling Chinook salmon perceive velocity and turbulence cues and respond to these cues by varying their behavior. The percentage of the subyearlings that moved faster than the average current speed decreased as fish made the transition from riverine reaches with high velocities and turbulence to upper reservoir reaches with low velocities and turbulence but increased to riverine levels again as the fish moved further down in the reservoir, where velocity and turbulence remained low. The migration rate (km/d) decreased in accordance with longitudinal reductions in velocity and turbulence, as predicted by the hypothesis. The variation in migration rate was better explained by a repeatedmeasures regression model containing velocity (Akaike’s information criterion ¼ 1,769.0) than a model containing flow (2,232.6). We conclude that subyearling fall Chinook salmon respond to changes in water velocity and turbulence, which work together to affect the migration rate.
Williams, Nathalie E.
2015-01-01
Historically, legal, policy, and academic communities largely ascribed to a dichotomy between forced and voluntary migration, creating a black and white vision that was convenient for legal and policy purposes. More recently, discussions have begun addressing the possibility of mixed migration, acknowledging that there is likely a wide continuum between forced and voluntary, and most migrants likely move with some amount of compulsion and some volition, even during armed conflict. While the mixed migration hypothesis is well-received, empirical evidence is disparate and somewhat blunt at this point. In this article, I contribute a direct theoretical and causal pathway discussion of mixed migration. I also propose the complex mixed migration hypothesis, which argues that not only do non-conflict related factors influence migration during conflict, but they do so differently than during periods of relative peace. I empirically test both hypotheses in the context of the recent armed conflict in Nepal. Using detailed survey data and event history models, results provide strong evidence for both mixed migration and complex mixed migration during conflict hypotheses. These hypotheses and evidence suggest that armed conflict might have substantial impacts on long-term population growth and change, with significant relevance in both academic and policy spheres. PMID:26366007
Cryptochrome expression in the eye of migratory birds depends on their migratory status.
Fusani, Leonida; Bertolucci, Cristiano; Frigato, Elena; Foà, Augusto
2014-03-15
Most passerine birds are nocturnal migrants. When kept in captivity during the migratory periods, these species show a migratory restlessness, or Zugunruhe. Recent studies on Sylvia warblers have shown that Zugunruhe is an excellent proxy of migratory disposition. Passerine birds can use the Earth's geomagnetic field as a compass to keep their course during their migratory flight. Among the candidate magnetoreceptive mechanisms are the cryptochromes, flavoproteins located in the retina that are supposed to perceive the magnetic field through a light-mediated process. Previous work has suggested that expression of Cryptochrome 1 (Cry1) is increased in migratory birds compared with non-migratory species. Here we tested the hypothesis that Cry1 expression depends on migratory status. Blackcaps Sylvia atricapilla were caught before fall migration and held in registration cages. When the birds were showing robust Zugunruhe, we applied a food deprivation protocol that simulates a long migratory flight. When the birds were refed after 2 days, their Zugunruhe decreased substantially, as is expected from birds that would interrupt migration for a refuelling stopover. We found that Cry1 expression was higher at night than during daytime in birds showing Zugunruhe, whereas in birds that underwent the fasting-and-refeeding protocol and reduced their levels of Zugunruhe, night Cry1 expression decreased to daytime levels. Our work shows that Cry1 expression is dependent on the presence of Zugunruhe and not on species-specific or seasonal factors, or on the birds being active versus inactive. These results support the hypothesis that cryptochromes underlie magnetoreceptive mechanisms in birds.
From sphere to polyhedron: a hypothesis on the formation of high-index surfaces in nanocrystals.
Zhou, Yan; Zhang, Junyan; Su, Gang; Li, Jiangong
2014-10-06
The morphology of tetrahexahedral nanocrystals could be understood on the basis of a hypothesis that the atoms or molecules on or near spherical surfaces can migrate till reaching their equilibrium positions. Such migration of atoms/molecules is shown to be closely related to the formation of high-index surfaces in nanopolyhedrons. On account of this hypothesis, a theoretical calculation about the indices of the surfaces in tetrahexahedrons is found in good agreement with the empirical results. A group of high-index surfaces for nanocrystals that can be formed under certain environments are thus predicted. This study may provide a novel idea for preparing the catalysts at nanoscale.
FORECASTING REGIONAL TO GLOBAL PLANT MIGRATION IN RESPONSE TO CLIMATE CHANGE
The rate of future climate change is likely to exceed the migration rates of most plant species. The replacement of dominant species by locally rare species may require decades, and extinctions may occur when plant species cannot migrate fast enough to escape the consequences of...
NASA Astrophysics Data System (ADS)
Park, Won-Kwang
2015-02-01
Multi-frequency subspace migration imaging techniques are usually adopted for the non-iterative imaging of unknown electromagnetic targets, such as cracks in concrete walls or bridges and anti-personnel mines in the ground, in the inverse scattering problems. It is confirmed that this technique is very fast, effective, robust, and can not only be applied to full- but also to limited-view inverse problems if a suitable number of incidents and corresponding scattered fields are applied and collected. However, in many works, the application of such techniques is heuristic. With the motivation of such heuristic application, this study analyzes the structure of the imaging functional employed in the subspace migration imaging technique in two-dimensional full- and limited-view inverse scattering problems when the unknown targets are arbitrary-shaped, arc-like perfectly conducting cracks located in the two-dimensional homogeneous space. In contrast to the statistical approach based on statistical hypothesis testing, our approach is based on the fact that the subspace migration imaging functional can be expressed by a linear combination of the Bessel functions of integer order of the first kind. This is based on the structure of the Multi-Static Response (MSR) matrix collected in the far-field at nonzero frequency in either Transverse Magnetic (TM) mode (Dirichlet boundary condition) or Transverse Electric (TE) mode (Neumann boundary condition). The investigation of the expression of imaging functionals gives us certain properties of subspace migration and explains why multi-frequency enhances imaging resolution. In particular, we carefully analyze the subspace migration and confirm some properties of imaging when a small number of incident fields are applied. Consequently, we introduce a weighted multi-frequency imaging functional and confirm that it is an improved version of subspace migration in TM mode. Various results of numerical simulations performed on the far-field data affected by large amounts of random noise are similar to the analytical results derived in this study, and they provide a direction for future studies.
Boyle, W.A.; Conway, C.J.; Bronstein, Judith L.
2011-01-01
Annual migrations of birds profoundly influence terrestrial communities. However, few empirical studies examine why birds migrate, in part due to the difficulty of testing causal hypotheses in long-distance migration systems. Short-distance altitudinal migrations provide relatively tractable systems in which to test explanations for migration. Many past studies explain tropical altitudinal migration as a response to spatial and temporal variation in fruit availability. Yet this hypothesis fails to explain why some coexisting, closely-related frugivorous birds remain resident year-round. We take a mechanistic approach by proposing and evaluating two hypotheses (one based on competitive exclusion and the other based on differences in dietary specialization) to explain why some, but not all, tropical frugivores migrate. We tested predictions of these hypotheses by comparing diets, fruit preferences, and the relationships between diet and preference in closely-related pairs of migrant and resident species. Fecal samples and experimental choice trials revealed that sympatric migrants and residents differed in both their diets and fruit preferences. Migrants consumed a greater diversity of fruits and fewer arthropods than did their resident counterparts. Migrants also tended to have slightly stronger fruit preferences than residents. Most critically, diets of migrants more closely matched their preferences than did the diets of residents. These results suggest that migrants may be competitively superior foragers for fruit compared to residents (rather than vice versa), implying that current competitive interactions are unlikely to explain variation in migratory behavior among coexisting frugivores. We found some support for the dietary specialization hypothesis, propose refinements to the mechanism underlying this hypothesis, and discuss how dietary specialization might ultimately reflect past interspecific competition. We recommend that future studies quantify variation in nutritional content of tropical fruits, and determine whether frugivory is a consequence or a cause of migratory behaviour. ?? 2010 Springer Science+Business Media B.V.
NASA Astrophysics Data System (ADS)
McNally, Colin P.; Nelson, Richard P.; Paardekooper, Sijme-Jan
2018-04-01
We examine the migration of low mass planets in laminar protoplanetary discs, threaded by large scale magnetic fields in the dead zone that drive radial gas flows. As shown in Paper I, a dynamical corotation torque arises due to the flow-induced asymmetric distortion of the corotation region and the evolving vortensity contrast between the librating horseshoe material and background disc flow. Using simulations of laminar torqued discs containing migrating planets, we demonstrate the existence of the four distinct migration regimes predicted in Paper I. In two regimes, the migration is approximately locked to the inward or outward radial gas flow, and in the other regimes the planet undergoes outward runaway migration that eventually settles to fast steady migration. In addition, we demonstrate torque and migration reversals induced by midplane magnetic stresses, with a bifurcation dependent on the disc surface density. We develop a model for fast migration, and show why the outward runaway saturates to a steady speed, and examine phenomenologically its termination due to changing local disc conditions. We also develop an analytical model for the corotation torque at late times that includes viscosity, for application to discs that sustain modest turbulence. Finally, we use the simulation results to develop torque prescriptions for inclusion in population synthesis models of planet formation.
NASA Astrophysics Data System (ADS)
McNally, Colin P.; Nelson, Richard P.; Paardekooper, Sijme-Jan
2018-07-01
We examine the migration of low-mass planets in laminar protoplanetary discs, threaded by large-scale magnetic fields in the dead zone that drive radial gas flows. As shown in Paper I, a dynamical corotation torque arises due to the flow-induced asymmetric distortion of the corotation region and the evolving vortensity contrast between the librating horseshoe material and background disc flow. Using simulations of laminar torqued discs containing migrating planets, we demonstrate the existence of the four distinct migration regimes predicted in Paper I. In two regimes, the migration is approximately locked to the inward or outward radial gas flow, and in the other regimes the planet undergoes outward runaway migration that eventually settles to fast steady migration. In addition, we demonstrate torque and migration reversals induced by mid-plane magnetic stresses, with a bifurcation dependent on the disc surface density. We develop a model for fast migration, and show why the outward runaway saturates to a steady speed, and examine phenomenologically its termination due to changing local disc conditions. We also develop an analytical model for the corotation torque at late times that includes viscosity, for application to discs that sustain modest turbulence. Finally, we use the simulation results to develop torque prescriptions for inclusion in population synthesis models of planet formation.
MG, Carta; MF, Moro; V, Kovess; MV, Brasesco; KM, Bhat; MC, Angermeyer; HS, Akiskal
2012-01-01
Introduction: A recent survey put forward the hypothesis that the emigration that occurred from Sardinia from the 1960’s to the 1980’s, selected people with a hypomanic temperament. The paper aims to verify if the people who migrated from Sardinia in that period have shown a high risk of mood disorders in the surveys carried out in their host countries, and if the results are consistent with this hypothesis. Methods: This is systematic review. Results: In the 1970’s when examining the attitudes towards migration in Sardinian couples waiting to emigrate, Rudas found that the decision to emigrate was principally taken by males. Female showed lower self-esteem than male emigrants. A study on Sardinian immigrants in Argentina carried out in 2001-02, at the peak of the economic crisis, found a high risk of depressive disorders in women only. These results were opposite to the findings recorded ten years earlier in a survey on Sardinian immigrants in Paris, where the risk of Depressive Episode was higher in young men only. Discussion: Data point to a bipolar disorder risk for young (probably hypomanic) male migrants in competitive, challenging conditions; and a different kind of depressive episodes for women in trying economic conditions. The results of the survey on Sardinian migrants are partially in agreement with the hypothesis of a selective migration of people with a hypomanic temperament. Early motivations and self-esteem seem related to the ways mood disorders are expressed, and to the vulnerability to specific triggering situations in the host country. PMID:23248679
Giovanni, Carta Mauro; Francesca, Moro Maria; Viviane, Kovess; Brasesco, Maria Veronica; Bhat, Krishna M; Matthias, Angermeyer C; Akiskal, Hagop S
2012-01-01
A recent survey put forward the hypothesis that the emigration that occurred from Sardinia from the 1960's to the 1980's, selected people with a hypomanic temperament. The paper aims to verify if the people who migrated from Sardinia in that period have shown a high risk of mood disorders in the surveys carried out in their host countries, and if the results are consistent with this hypothesis. This is systematic review. In the 1970's when examining the attitudes towards migration in Sardinian couples waiting to emigrate, Rudas found that the decision to emigrate was principally taken by males. Female showed lower self-esteem than male emigrants. A study on Sardinian immigrants in Argentina carried out in 2001-02, at the peak of the economic crisis, found a high risk of depressive disorders in women only. These results were opposite to the findings recorded ten years earlier in a survey on Sardinian immigrants in Paris, where the risk of Depressive Episode was higher in young men only. Data point to a bipolar disorder risk for young (probably hypomanic) male migrants in competitive, challenging conditions; and a different kind of depressive episodes for women in trying economic conditions. The results of the survey on Sardinian migrants are partially in agreement with the hypothesis of a selective migration of people with a hypomanic temperament. Early motivations and self-esteem seem related to the ways mood disorders are expressed, and to the vulnerability to specific triggering situations in the host country.
Deep eutectic solvents: similia similibus solvuntur?
Zahn, Stefan
2017-02-01
Deep eutectic solvents, mixtures of an organic compound and a salt with a deep eutectic melting point, are promising cheap and eco-friendly alternatives to ionic liquids. Ab initio molecular dynamics simulations of reline, a mixture consisting of urea and choline chloride, reveal that not solely hydrogen bonds allow similar interactions between both constituents. The chloride anion and the oxygen atom of urea also show a similar spatial distribution close to the cationic core of choline due to a similar charge located on both atoms. As a result of multiple similar interactions, clusters migrating together cannot be observed in reline which supports the hypothesis similia similibus solvuntur. In contrast to previous suggestions, the interaction of the hydroxyl group of choline with a hydrogen bond acceptor is overall rigid. Fast hydrogen bond acceptor dynamics is facilitated by the hydrogen atoms in the trans position to the carbonyl group of urea which contributes to the low melting point of reline.
Bengtson Nash, S; Dawson, A; Burkhard, M; Waugh, C; Huston, W
2014-10-01
The activities of glutathione-s-transferase (GST) and cytochrome P-450 1A1 (CYP1A1) enzymes were measured in freshly extracted epidermis of live-biopsied, migrating, southern hemisphere humpback whales (Megaptera novaeangliae). The two quantified enzyme activities did not correlate strongly with each other. Similarly, neither correlated strongly with any of the organochlorine compound groups previously measured in the superficial blubber of the sample biopsy core, likely reflecting the anticipated low levels of typical aryl-hydrocarbon receptor ligands. GST activity did not differ significantly between genders or between northward (early migration) or southward (late migration) migrating cohorts. Indeed, the inter-individual variability in GST measurements was relatively low. This observation raises the possibility that measured activities were basal activities and that GST function was inherently impacted by the fasting state of the sampled animals, as seen in other species. These results do not support the implementation of CYP1A1 or GST as effective biomarkers of organochlorine contaminant burdens in southern hemisphere populations of humpback whales as advocated for other cetacean species. Further investigation of GST activity in feeding versus fasting cohorts may, however, provide some insight into the fasting metabolism of these behaviourally adapted populations. Copyright © 2014 Elsevier B.V. All rights reserved.
Aspects of Migration in an Advanced Industrial Society.
ERIC Educational Resources Information Center
Wilson, Franklin D.
This paper evaluates the hypothesis that patterns of migration within and between the metropolitan and nonmetropolitan sectors and between regions, and migrant/nonmigrant differentials in education attainment during the 1935-1980 period of United States history reflect historical differences in socioeconomic development and settlement patterns.…
Grez, A A; González, R H
1995-09-01
The resource concentration hypothesis (Root 1973) predicts that specialist herbivorous insects should be more abundant in large patches of host plants, because the insects are more likely to find and stay longer in those patches. Between August 1989 and January 1990 we experimentally tested Root's hypothesis by analyzing the numerical response of four species of herbivorous insects associated with patches of 4, 16, 64 and 225 cabbage plants, Brassica oleracea var. capitata. In addition, we studied the colonization of patches by adults of Plutella xylostella (L.) (Lepidoptera: Plutellidae), and the migration of their larvae in patches of different sizes. No herbivorous insect densities differed significantly with patch size. Adults of P. xylostella colonized all kind of patches equally. Larvae did not migrate between patches, and their disappearance rate did not differ between patches. The resource concentration hypothesis is organism-dependent, being a function of the adult and juvenile herbivore dispersal behavior in relation to the spatial scale of patchiness.
NASA Astrophysics Data System (ADS)
Dickinson, William R.
2011-09-01
Discovery of the Monte Verde archeological site in Chile overturned the previous consensus that the first Americans into the New World from Asia were the makers of Clovis projectile points, and rejuvenated the hypothesis that migration through the Americas occurred largely on portions of the Pacific continental shelf exposed by Pleistocene drawdown in eustatic sea level. The postulate of travel along a paleoshoreline now hidden underwater is an attractive means to posit pre-Clovis human movement southward from Beringia to Chile without leaving traces of migration onshore. Geologic analyses of the Pleistocene paleoenvironment at Monte Verde and of the morphology of the potential migration route along the continental shelf raise questions that have not been fully addressed. The periglacial setting of Monte Verde may call its antiquity into question and the narrowness of the Pacific continental shelf of the Americas makes it unlikely that people could travel the length of the Americas without impacting ground still onshore and no farther inland than Monte Verde itself. Geological perspectives on Monte Verde and coastal migration jointly suggest that the Clovis-first hypothesis for peopling the New World may have been abandoned prematurely.
Optimum swimming pathways of fish spawning migrations in rivers
McElroy, Brandon; DeLonay, Aaron; Jacobson, Robert
2012-01-01
Fishes that swim upstream in rivers to spawn must navigate complex fluvial velocity fields to arrive at their ultimate locations. One hypothesis with substantial implications is that fish traverse pathways that minimize their energy expenditure during migration. Here we present the methodological and theoretical developments necessary to test this and similar hypotheses. First, a cost function is derived for upstream migration that relates work done by a fish to swimming drag. The energetic cost scales with the cube of a fish's relative velocity integrated along its path. By normalizing to the energy requirements of holding a position in the slowest waters at the path's origin, a cost function is derived that depends only on the physical environment and not on specifics of individual fish. Then, as an example, we demonstrate the analysis of a migration pathway of a telemetrically tracked pallid sturgeon (Scaphirhynchus albus) in the Missouri River (USA). The actual pathway cost is lower than 105 random paths through the surveyed reach and is consistent with the optimization hypothesis. The implication—subject to more extensive validation—is that reproductive success in managed rivers could be increased through manipulation of reservoir releases or channel morphology to increase abundance of lower-cost migration pathways.
Nanotopography guides and directs cell migration in amoeboid and epithelial cells
NASA Astrophysics Data System (ADS)
Lee, Rachel; Das, Satarupa; Hourwitz, Matthew; Sun, Xiaoyu; Parent, Carole; Fourkas, John; Losert, Wolfgang
Cell migration plays a critical role in development, angiogenesis, immune response, wound healing, and cancer metastasis. In many cases, cells also move in the context of a matrix of collagen fibers, and the alignment of these fibers can both affect the migration phenotype and guide cells. Here we show that both fast and slow migrating cells - amoeboid HL-60 and epithelial MCF10A - are affected in similar ways by micro/nanostructures with dimensions similar to those of collagen fibers. Cell alignment enhances the efficiency of migration by increasing directional persistence.
Forecasting regional to global plant migration in response to climate change.
Ronald P. Neilson; Louis F. Pitelka; Allen M. Solomon; Ran Nathan; Guy F. Midgley; Jóse M. Fragoso; Heike Lischke; Ken Thompson
2005-01-01
The rate of future climate change is likely to exceed the migration rates of most plant species. The replacement of dominant species by locally rare species may require decades, and extinctions may occur when plant species cannot migrate fast enough to escape the consequences of climate change. Such lags may impair ecosystem services, such as carbon sequestration and...
Björklund, Per; Lönroth, Hans; Fändriks, Lars
2015-10-01
The motility of the upper gut after Roux-en-Y gastric bypass (RYGBP) is underexplored. We aimed to investigate the oesophago-gastro-Roux limb motor activity during fasting and after food intake. Eighteen morbidly obese patients were examined at least 2 years after RYGBP. A high-resolution manometry catheter was positioned to straddle the oesophagogastric junction, the gastric pouch and the proximal Roux limb using transmucosal potential difference measurements. Three patients with vertical banded gastroplasty (VBG) were also studied. During the fasting state, the gastric pouch had low or no activity whereas the Roux limb exhibited regular migrating motility complexes (MMCs) being initiated just distal to gastroenteroanastomosis. Median cycle duration was 72 min, and the median propagating velocity of the phase III MMC phase was 2.7 cm/min (n = 8). When patients were asked to eat until they felt comfortably full, intraluminal pressure increased by 6 to 8 cmH₂O without any significant difference between gastric pouch and the Roux limb (n = 9). The increased intraluminal pressure following food intake correlated neither to weight loss nor to meal size or rate of eating. A successful RYGBP is associated with MMC in the Roux limb during fasting. The gastric pouch and the Roux limb behaved as a common cavity during food ingestion. Data do not support the hypothesis that the alimentary limb pressure in response to food intake influences either meal size or weight loss.
Palacios, Maria G; Cunnick, Joan E; Bronikowski, Anne M
2013-01-01
The immunocompetence "pace-of-life" hypothesis proposes that fast-living organisms should invest more in innate immune defenses and less in adaptive defenses compared to slow-living ones. We found some support for this hypothesis in two life-history ecotypes of the snake Thamnophis elegans; fast-living individuals show higher levels of innate immunity compared to slow-living ones. Here, we optimized a lymphocyte proliferation assay to assess the complementary prediction that slow-living snakes should in turn show stronger adaptive defenses. We also assessed the "environmental" hypothesis that predicts that slow-living snakes should show lower levels of immune defenses (both innate and adaptive) given the harsher environment they live in. Proliferation of B- and T-lymphocytes of free-living individuals was on average higher in fast-living than slow-living snakes, opposing the pace-of-life hypothesis and supporting the environmental hypothesis. Bactericidal capacity of plasma, an index of innate immunity, did not differ between fast-living and slow-living snakes in this study, contrasting the previously documented pattern and highlighting the importance of annual environmental conditions as determinants of immune profiles of free-living animals. Our results do not negate a link between life history and immunity, as indicated by ecotype-specific relationships between lymphocyte proliferation and body condition, but suggest more subtle nuances than those currently proposed.
Simpson, Richard K; Johnson, Michele A; Murphy, Troy G
2015-06-22
The mechanisms underlying evolutionary changes in sexual dimorphism have long been of interest to biologists. A striking gradient in sexual dichromatism exists among songbirds in North America, including the wood-warblers (Parulidae): males are generally more colourful than females at northern latitudes, while the sexes are similarly ornamented at lower latitudes. We use phylogenetically controlled comparative analysis to test three non-mutually exclusive hypotheses for the evolution of sexual dichromatism among wood-warblers. The first two hypotheses focus on the loss of female coloration with the evolution of migration, either owing to the costs imposed by visual predators during migration, or owing to the relaxation of selection for female social signalling at higher latitudes. The third hypothesis focuses on whether sexual dichromatism evolved owing to changes in male ornamentation as the strength of sexual selection increases with breeding latitude. To test these hypotheses, we compared sexual dichromatism to three variables: the presence of migration, migration distance, and breeding latitude. We found that the presence of migration and migration distance were both positively correlated with sexual dichromatism, but models including breeding latitude alone were not strongly supported. Ancestral state reconstruction supports the hypothesis that the ancestral wood-warblers were monochromatic, with both colourful males and females. Combined, these results are consistent with the hypotheses that the evolution of migration is associated with the relaxation of selection for social signalling among females and that there are increased predatory costs along longer migratory routes for colourful females. These results suggest that loss of female ornamentation can be a driver of sexual dichromatism and that social or natural selection may be a stronger contributor to variation in dichromatism than sexual selection. © 2015 The Author(s) Published by the Royal Society. All rights reserved.
Simpson, Richard K.; Johnson, Michele A.; Murphy, Troy G.
2015-01-01
The mechanisms underlying evolutionary changes in sexual dimorphism have long been of interest to biologists. A striking gradient in sexual dichromatism exists among songbirds in North America, including the wood-warblers (Parulidae): males are generally more colourful than females at northern latitudes, while the sexes are similarly ornamented at lower latitudes. We use phylogenetically controlled comparative analysis to test three non-mutually exclusive hypotheses for the evolution of sexual dichromatism among wood-warblers. The first two hypotheses focus on the loss of female coloration with the evolution of migration, either owing to the costs imposed by visual predators during migration, or owing to the relaxation of selection for female social signalling at higher latitudes. The third hypothesis focuses on whether sexual dichromatism evolved owing to changes in male ornamentation as the strength of sexual selection increases with breeding latitude. To test these hypotheses, we compared sexual dichromatism to three variables: the presence of migration, migration distance, and breeding latitude. We found that the presence of migration and migration distance were both positively correlated with sexual dichromatism, but models including breeding latitude alone were not strongly supported. Ancestral state reconstruction supports the hypothesis that the ancestral wood-warblers were monochromatic, with both colourful males and females. Combined, these results are consistent with the hypotheses that the evolution of migration is associated with the relaxation of selection for social signalling among females and that there are increased predatory costs along longer migratory routes for colourful females. These results suggest that loss of female ornamentation can be a driver of sexual dichromatism and that social or natural selection may be a stronger contributor to variation in dichromatism than sexual selection. PMID:26019159
The Geographical Mobility of Women in "Dual Career" Households: Determinants and Consequences.
ERIC Educational Resources Information Center
Brzeskwinski, Janina
This paper investigates occupational characteristics influencing a household's migration propensity. The study was based on the premise that earlier studies have not done justice to the complexity of male/female influences on family migration. The hypothesis was that the geographical mobility of 'dual career' families will be determined by the…
Torques Induced by Scattered Pebble-flow in Protoplanetary Disks
NASA Astrophysics Data System (ADS)
Benítez-Llambay, Pablo; Pessah, Martin E.
2018-03-01
Fast inward migration of planetary cores is a common problem in the current planet formation paradigm. Even though dust is ubiquitous in protoplanetary disks, its dynamical role in the migration history of planetary embryos has not been assessed. In this Letter, we show that the scattered pebble-flow induced by a low-mass planetary embryo leads to an asymmetric dust-density distribution that is able to exert a net torque. By analyzing a large suite of multifluid hydrodynamical simulations addressing the interaction between the disk and a low-mass planet on a fixed circular orbit, and neglecting dust feedback onto the gas, we identify two different regimes, gas- and gravity-dominated, where the scattered pebble-flow results in almost all cases in positive torques. We collect our measurements in a first torque map for dusty disks, which will enable the incorporation of the effect of dust dynamics on migration into population synthesis models. Depending on the dust drift speed, the dust-to-gas mass ratio/distribution, and the embryo mass, the dust-induced torque has the potential to halt inward migration or even induce fast outward migration of planetary cores. We thus anticipate that dust-driven migration could play a dominant role during the formation history of planets. Because dust torques scale with disk metallicity, we propose that dust-driven outward migration may enhance the occurrence of distant giant planets in higher-metallicity systems.
Evolution of mammalian migrations for refuge, breeding, and food.
Gnanadesikan, Gitanjali E; Pearse, William D; Shaw, Allison K
2017-08-01
Many organisms migrate between distinct habitats, exploiting variable resources while profoundly affecting ecosystem services, disease spread, and human welfare. However, the very characteristics that make migration captivating and significant also make it difficult to study, and we lack a comprehensive understanding of which species migrate and why. Here we show that, among mammals, migration is concentrated within Cetacea and Artiodactyla but also diffusely spread throughout the class (found in 12 of 27 orders). We synthesize the many ecological drivers of round-trip migration into three types of movement-between breeding and foraging sites, between breeding and refuge sites, and continuous tracking of forage/prey-each associated with different traits (body mass, diet, locomotion, and conservation status). Our results provide only partial support for the hypothesis that migration occurs without phylogenetic constraint. Furthermore, our findings suggest that categorizing migration into these three types may aid predictions of migrants' responses to environmental changes.
Mascarello, Francesco; Toniolo, Luana; Cancellara, Pasqua; Reggiani, Carlo; Maccatrozzo, Lisa
2016-09-01
In the mammalian genome, among myosin heavy chain (MyHC) isoforms a family can be identified as sarcomeric based on their molecular structure which allows thick filament formation. In this study we aimed to assess the expression of the 10 sarcomeric isoforms in human skeletal muscles, adopting this species as a reference for comparison with all other mammalian species. To this aim, we set up the condition for quantitative Real Time PCR assay to detect and quantify MyHC mRNA expression in a wide variety of human muscles from somitic, presomitic and preotic origin. Specific patterns of expression of the following genes MYH1, MYH2, MYH3, MYH4, MYH6, MYH7, MYH8, MYH13, MYH14/7b and MYH15 were demonstrated in various muscle samples. On the same muscle samples which were analysed for mRNA expression, the corresponding MyHC proteins were studied with SDS PAGE and Western blot. The mRNA-protein comparison allowed the identification of 10 distinct proteins based on the electrophoretic migration rate. Three groups were formed based on the migration rate: fast migrating comprising beta/slow/1, alpha cardiac and fast 2B, slow migrating comprising fast 2X, fast 2A and two developmental isoforms (NEO and EMB), intermediate migrating comprising EO MyHC, slow B (product of MYH15), slow tonic (product of MYH14/7b). Of special interest was the demonstration of a protein band corresponding to 2B-MyHC in laryngeal muscles and the finding that all 10 isoforms are expressed in extraocular muscles. These latter muscles are the unique localization for extraocular, slow B (product of MYH15) and slow tonic (product of MYH14/7b). Copyright © 2016 Elsevier GmbH. All rights reserved.
The accretion of migrating giant planets
NASA Astrophysics Data System (ADS)
Dürmann, Christoph; Kley, Wilhelm
2017-02-01
Aims: Most studies concerning the growth and evolution of massive planets focus either on their accretion or their migration only. In this work we study both processes concurrently to investigate how they might mutually affect one another. Methods: We modeled a two-dimensional disk with a steady accretion flow onto the central star and embedded a Jupiter mass planet at 5.2 au. The disk is locally isothermal and viscosity is modeled using a constant α. The planet is held on a fixed orbit for a few hundred orbits to allow the disk to adapt and carve a gap. After this period, the planet is released and free to move according to the gravitational interaction with the gas disk. The mass accretion onto the planet is modeled by removing a fraction of gas from the inner Hill sphere, and the removed mass and momentum can be added to the planet. Results: Our results show that a fast migrating planet is able to accrete more gas than a slower migrating planet. Utilizing a tracer fluid we analyzed the origin of the accreted gas originating predominantly from the inner disk for a fast migrating planet. In the case of slower migration, the fraction of gas from the outer disk increases. We also found that even for very high accretion rates, in some cases gas crosses the planetary gap from the inner to the outer disk. Our simulations show that the crossing of gas changes during the migration process as the migration rate slows down. Therefore, classical type II migration where the planet migrates with the viscous drift rate and no gas crosses the gap is no general process but may only occur for special parameters and at a certain time during the orbital evolution of the planet.
Space exploration by dendritic cells requires maintenance of myosin II activity by IP3 receptor 1
Solanes, Paola; Heuzé, Mélina L; Maurin, Mathieu; Bretou, Marine; Lautenschlaeger, Franziska; Maiuri, Paolo; Terriac, Emmanuel; Thoulouze, Maria-Isabel; Launay, Pierre; Piel, Matthieu; Vargas, Pablo; Lennon-Duménil, Ana-Maria
2015-01-01
Dendritic cells (DCs) patrol the interstitial space of peripheral tissues. The mechanisms that regulate their migration in such constrained environment remain unknown. We here investigated the role of calcium in immature DCs migrating in confinement. We found that they displayed calcium oscillations that were independent of extracellular calcium and more frequently observed in DCs undergoing strong speed fluctuations. In these cells, calcium spikes were associated with fast motility phases. IP3 receptors (IP3Rs) channels, which allow calcium release from the endoplasmic reticulum, were identified as required for immature DCs to migrate at fast speed. The IP3R1 isoform was further shown to specifically regulate the locomotion persistence of immature DCs, that is, their capacity to maintain directional migration. This function of IP3R1 results from its ability to control the phosphorylation levels of myosin II regulatory light chain (MLC) and the back/front polarization of the motor protein. We propose that by upholding myosin II activity, constitutive calcium release from the ER through IP3R1 maintains DC polarity during migration in confinement, facilitating the exploration of their environment. PMID:25637353
Space exploration by dendritic cells requires maintenance of myosin II activity by IP3 receptor 1.
Solanes, Paola; Heuzé, Mélina L; Maurin, Mathieu; Bretou, Marine; Lautenschlaeger, Franziska; Maiuri, Paolo; Terriac, Emmanuel; Thoulouze, Maria-Isabel; Launay, Pierre; Piel, Matthieu; Vargas, Pablo; Lennon-Duménil, Ana-Maria
2015-03-12
Dendritic cells (DCs) patrol the interstitial space of peripheral tissues. The mechanisms that regulate their migration in such constrained environment remain unknown. We here investigated the role of calcium in immature DCs migrating in confinement. We found that they displayed calcium oscillations that were independent of extracellular calcium and more frequently observed in DCs undergoing strong speed fluctuations. In these cells, calcium spikes were associated with fast motility phases. IP₃ receptors (IP₃Rs) channels, which allow calcium release from the endoplasmic reticulum, were identified as required for immature DCs to migrate at fast speed. The IP₃R1 isoform was further shown to specifically regulate the locomotion persistence of immature DCs, that is, their capacity to maintain directional migration. This function of IP₃R1 results from its ability to control the phosphorylation levels of myosin II regulatory light chain (MLC) and the back/front polarization of the motor protein. We propose that by upholding myosin II activity, constitutive calcium release from the ER through IP₃R1 maintains DC polarity during migration in confinement, facilitating the exploration of their environment. © 2015 Institut Curie/Inserm. Published under the terms of the CC BY NC ND 4.0 license.
Alternative foraging strategies enable a mountain ungulate to persist after migration loss
Courtemanch, Alyson B.; Kauffman, Matthew J.; Kilpatrick, Steve; Dewey, Sarah R.
2017-01-01
The persistence of many migratory ungulate populations worldwide is threatened due to anthropogenic impacts to seasonal ranges and migration routes. While many studies have linked migratory ungulate declines to migration disruption or loss, very few have explored the underlying factors that determine whether a population perishes or persists. In some cases, populations undergo severe declines and extirpation after migration loss; however, others appear able to persist as residents. We predict that to persist, populations must replace the traditional benefits of migration by altering the foraging strategies they employ as residents within one seasonal range. We propose the alternative foraging strategies (AFS) hypothesis as a framework for identifying various behavioral strategies that populations may use to cope with migration loss. We tested the hypothesis using the formerly migratory Teton bighorn sheep population in northwest Wyoming, which ceased migrating over 60 yr ago, but has persisted as a resident population. We used global positioning system data to evaluate winter and summer habitat selection and seasonal elevational movements for 28 adult female bighorn sheep (Ovis canadensis) from 2008 to 2010. Resource selection functions revealed that bighorn sheep employ winter foraging strategies to survive as residents by seeking out rugged, high-elevation, windswept ridgelines. Seasonal movement analyses indicated that bighorn sheep undergo a newly documented “abbreviated migration” strategy that is closely synchronized with vegetation green-up patterns within their one range. Bighorn sheep descend 500 m in elevation and travel up to 10 km in spring, gaining access to newly emergent forage approximately 30 d before it appears on their high-elevation winter and summer ranges. Our findings indicate that the Teton bighorn sheep population has persisted due to its habitat selection, AFS, and unique movement patterns, which allow migration loss to be mediated to some extent. The identification of AFS and the habitats that support them can help reveal the underlying benefits of migration and conserve populations in the face of future migration loss.
Anti-oxidative cellular protection effect of fasting-induced autophagy as a mechanism for hormesis.
Moore, Michael N; Shaw, Jennifer P; Ferrar Adams, Dawn R; Viarengo, Aldo
2015-06-01
The aim of this investigation was to test the hypothesis that fasting-induced augmented lysosomal autophagic turnover of cellular proteins and organelles will reduce potentially harmful lipofuscin (age-pigment) formation in cells by more effectively removing oxidatively damaged proteins. An animal model (marine snail--common periwinkle, Littorina littorea) was used to experimentally test this hypothesis. Snails were deprived of algal food for 7 days to induce an augmented autophagic response in their hepatopancreatic digestive cells (hepatocyte analogues). This treatment resulted in a 25% reduction in the cellular content of lipofuscin in the digestive cells of the fasting animals in comparison with snails fed ad libitum on green alga (Ulva lactuca). Similar findings have previously been observed in the digestive cells of marine mussels subjected to copper-induced oxidative stress. Additional measurements showed that fasting significantly increased cellular health based on lysosomal membrane stability, and reduced lipid peroxidation and lysosomal/cellular triglyceride. These findings support the hypothesis that fasting-induced augmented autophagic turnover of cellular proteins has an anti-oxidative cytoprotective effect by more effectively removing damaged proteins, resulting in a reduction in the formation of potentially harmful proteinaceous aggregates such as lipofuscin. The inference from this study is that autophagy is important in mediating hormesis. An increase was demonstrated in physiological complexity with fasting, using graph theory in a directed cell physiology network (digraph) model to integrate the various biomarkers. This was commensurate with increased health status, and supportive of the hormesis hypothesis. The potential role of enhanced autophagic lysosomal removal of damaged proteins in the evolutionary acquisition of stress tolerance in intertidal molluscs is discussed and parallels are drawn with the growing evidence for the involvement of autophagy in hormesis and anti-ageing processes. Copyright © 2015 Elsevier Ltd. All rights reserved.
Examining Pre-migration Health Among Filipino Nurses
de Castro, A. B.; Gee, Gilbert; Fujishiro, Kaori; Rue, Tessa
2014-01-01
The healthy immigrant hypothesis asserts that immigrants arrive in the receiving country healthier than same race/ethnic counterparts born there. Contemporary research, however, has not evaluated pre-migration health among migrants, nor has explicitly considered comparisons with non-migrants in the country of origin. Pre-migration health was examined among 621 Filipino nurses, including self-reported physical health, mental health, health behaviors, and social stress. Measures were compared by intention to migrate and also tested as predictors of actual migration using time-to-event analysis. Nurses intending to migrate had higher proportion of depression and reported higher general perceived stress compared to those not. Predictors of actual migration included age, mentally unhealthy days, social strain, and social support. Physical health and health behavior measures had no association with migration intention or actual migration. Findings suggest that, relative to those not intending to migrate, nurses intending to migrate have worse mental health status and social stress; and, do not have a physical health advantage. Future research must span the pre- to post-migration continuum to better understand the impact of moving from one country to another on health and well-being. PMID:25385090
Examining Pre-migration Health Among Filipino Nurses.
de Castro, A B; Gee, Gilbert; Fujishiro, Kaori; Rue, Tessa
2015-12-01
The healthy immigrant hypothesis asserts that immigrants arrive in the receiving country healthier than same race/ethnic counterparts born there. Contemporary research, however, has not evaluated pre-migration health among migrants, nor has explicitly considered comparisons with non-migrants in the country of origin. Pre-migration health was examined among 621 Filipino nurses, including self-reported physical health, mental health, health behaviors, and social stress. Measures were compared by intention to migrate and also tested as predictors of actual migration using time-to-event analysis. Nurses intending to migrate had higher proportion of depression and reported higher general perceived stress compared to those not. Predictors of actual migration included age, mentally unhealthy days, social strain, and social support. Physical health and health behavior measures had no association with migration intention or actual migration. Findings suggest that, relative to those not intending to migrate, nurses intending to migrate have worse mental health status and social stress; and, do not have a physical health advantage. Future research must span the pre- to post-migration continuum to better understand the impact of moving from one country to another on health and well-being.
Texture sensing of cytoskeletal dynamics in cell migration
NASA Astrophysics Data System (ADS)
Das, Satarupa; Lee, Rachel; Hourwitz, Matthew J.; Sun, Xiaoyu; Parent, Carole; Fourkas, John T.; Losert, Wolfgang
Migrating cells can be directed towards a target by gradients in properties such as chemical concentration or mechanical properties of the surrounding microenvironment. In previous studies we have shown that micro/nanotopographical features on scales comparable to those of natural collagen fibers can guide fast migrating amoeboid cells by aligning actin polymerization waves to such nanostructures. We find that actin microfilaments and microtubules are aligned along the nanoridge topographies, modulating overall cell polarity and directional migration in epithelial cells. This work shows that topographic features on a biologically relevant length scale can modulate migration outcomes by affecting the texture sensing property of the cytoskeleton.
NASA Astrophysics Data System (ADS)
Tyler, R.
2017-12-01
Resonant tidal excitation of an atmosphere will arrive in predictable situations where there is a match in form and frequency between tidal forces and the atmosphere's eigenmodes of oscillation. The resonant response is typically several orders of magnitude more energetic than in non-resonant configurations involving only slight differences in parameters, and the behavior can be quite different because different oscillation modes are favored in each. The work presented provides first a generic description of these resonant states by demonstrating the behavior of solutions within the very large parameter space of potential scenarios. This generic description of the range of atmospheric tidal response scenarios is further used to create a taxonomy for organizing and understanding various tidally driven dynamic regimes. The resonances are easily identified by associated peaks in the power. But because these peaks may be relatively narrow, millions of solutions can be required to complete the description of the solution's dependence over the range of parameter values. (Construction of these large solution spaces is performed using a fast, semi-analytical method that solves the forced, dissipative, Laplace Tidal Equations subject to the constraint of dynamical consistency (through a separation constant) with solutions describing the vertical structure.) Filling in the solution space in this way is used not only to locate the parameter coordinates of resonant scenarios but also to study allowed migration paths through this space. It is suggested that resonant scenarios do not arrive through happenstance but rather because secular variations in parameters make the configuration move into the resonant scenario, with associated feedbacks either accelerating or halting the configuration migration. These results are then used to show strong support for the hypothesis by R. Lindzen that the regular banding (belts/zones/jets) on Jupiter and Saturn are driven by tides. The results also provide important, though less specific, support for a second hypothesis that inflated atmospheres inferred for a number of giant extra-solar planets are due to thermal or gravitational tides.
MIGRATION OF SMALL MOONS IN SATURN's RINGS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bromley, Benjamin C.; Kenyon, Scott J., E-mail: bromley@physics.utah.edu, E-mail: skenyon@cfa.harvard.edu
2013-02-20
The motions of small moons through Saturn's rings provide excellent tests of radial migration models. In theory, torque exchange between these moons and ring particles leads to radial drift. We predict that moons with Hill radii r {sub H} {approx} 2-24 km should migrate through the A ring in 1000 yr. In this size range, moons orbiting in an empty gap or in a full ring eventually migrate at the same rate. Smaller moons or moonlets-such as the propellers-are trapped by diffusion of disk material into corotating orbits, creating inertial drag. Larger moons-such as Pan or Atlas-do not migrate becausemore » of their own inertia. Fast migration of 2-24 km moons should eliminate intermediate-size bodies from the A ring and may be responsible for the observed large-radius cutoff of r {sub H} {approx} 1-2 km in the size distribution of the A ring's propeller moonlets. Although the presence of Daphnis (r {sub H} Almost-Equal-To 5 km) inside the Keeler gap challenges this scenario, numerical simulations demonstrate that orbital resonances and stirring by distant, larger moons (e.g., Mimas) may be important factors. For Daphnis, stirring by distant moons seems the most promising mechanism to halt fast migration. Alternatively, Daphnis may be a recent addition to the ring that is settling into a low inclination orbit in {approx}10{sup 3} yr prior to a phase of rapid migration. We provide predictions of observational constraints required to discriminate among possible scenarios for Daphnis.« less
Madeleine Eckmann; Jason Dunham; Edward J. Connor; Carmen A. Welch
2016-01-01
Many species living in deeper lentic ecosystems exhibit daily movements that cycle through the water column, generally referred to as diel vertical migration (DVM). In this study, we applied bioenergetics modelling to evaluate growth as a hypothesis to explain DVM by bull trout (Salvelinus confluentus) in a thermally stratified reservoir (Ross Lake...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elmore, Richard D.; Engel, Michael H.
2005-03-10
Studies of diagenesis caused by fluid migration or other events are commonly hindered by a lack of temporal control. Our results to date demonstrate that a paleomagnetic/geochemical approach can be used to date fluid migration as well as burial diagenetic events. Our principal working hypothesis is that burial diagenetic processes (e.g., maturation of organic-rich sediments and clay diagenesis) and the migration of fluids can trigger the authigenesis of magnetic mineral phases. The ages of these events can be constrained by comparing chemical remanent magnetizations (CRMs) to independently established Apparent Polar Wander Paths. While geochemical (e.g. stable isotope and organic analyses)more » and petrographic studies provide important clues for establishing these relationships, the ultimate test of this hypothesis requires the application of independent dating methods to verify the paleomagnetic ages. Towards this end, we have used K-Ar dating of illitization as an alternative method for constraining the ages of magnetic mineral phases in our field areas.« less
Loss of migration and urbanization in birds: a case study of the blackbird (Turdus merula).
Møller, Anders Pape; Jokimäki, Jukka; Skorka, Piotr; Tryjanowski, Piotr
2014-07-01
Many organisms have invaded urban habitats, although the underlying factors initially promoting urbanization remain poorly understood. Partial migration may facilitate urbanization because such populations benefit from surplus food in urban environments during winter, and hence enjoy reduced fitness costs of migratory deaths. We tested this hypothesis in the European blackbird Turdus merula, which has been urbanized since the 19th century, by compiling information on timing of urbanization, migratory status, and population density for 99 cities across the continent. Timing of urbanization was spatially auto-correlated at scales up to 600 km. Analyses of timing of urbanization revealed that urbanization occurred earlier in partially migratory and resident populations than in migratory populations of blackbirds. Independently, this effect was most pronounced in the range of the distribution that currently has the highest population density, suggesting that urbanization facilitated population growth. These findings are consistent with the hypothesis that timing of urbanization is facilitated by partial migration, resulting in subsequent residency and population growth.
Aydinkoc-Tuzcu, Kadriye; Schindler, Karin; Kautzky-Willer, Alexandra; Ludvik, Bernhard; Fasching, Peter
2016-04-01
The article deals with the demographic data of migration in Austria and with therapeutic advice concerning drug therapy and diabetes education for patients with migration background. In this context socio-cultural specifics are discussed. These suggestions are seen complementary to the general treatment guidelines of the Austrian Diabetes Association.Especially for the fast months Ramadan there are a lot of informations. The most important point is that the patient care must be highly individualized and the management plan may differ for each patient.
Bengtson Nash, Susan M; Waugh, Courtney A; Schlabach, Martin
2013-08-20
Southern hemisphere humpback whales undertake the longest migrations and associated periods of fasting of any mammal. Fluctuations in lipid energy stores are known to profoundly affect the toxicokinetics of lipophilic organochlorine compound (OC) burdens. Results from blubber biopsy sampling of adult, male humpback whales at two time points of the annual migration journey revealed dramatic concentration effects for the majority of OC compounds. The observed concentration effect was, however, not linear with measured average blubber lipid loss indicating significant redistribution of OCs and hence the importance of alternate lipid depots for meeting the energetic demands of the migration journey. Applying lipophilic OC burdens as novel tracers of whole-body lipid dynamics, the observed average concentration index suggests an average individual weight loss of 13% over 4 months of the migration journey. This value is based upon lipid derived energy and is in good agreement with previous weight prediction formulas. Notably, however, these estimates may greatly underestimate individual weight loss if significant protein catabolism occurs. Biomagnification factors between migrating southern hemisphere humpback whales and their principal prey item, Antarctic krill, closely resembled those of baleen whales feeding on herbivorous zooplankton in the Arctic. This study emphasizes the importance of considering prolonged periods of food deprivation when assessing chemical risks posed to wildlife. This is of particular importance for Polar biota adapted to extremes in ecosystem productivity.
Georgiou, CS; Evangelou, KG; Theodorou, EG; Provatidis, CG; Megas, PD
2012-01-01
Due to their theoretical advantages, hip systems combining modular necks and large diameter femoral heads have gradually gained popularity. However, among others, concerns regarding changes in the load transfer patterns were raised. Recent stress analyses have indeed shown that the use of modular necks and big femoral heads causes significant changes in the strain distribution along the femur. Our original hypothesis was that these changes may affect early distal migration of a modular stem. We examined the effect of head diameter and neck geometry on migration at two years of follow-up in a case series of 116 patients (125 hips), who have undergone primary Metal-on-Metal total hip arthroplasty with the modular grit-blasted Profemur®E stem combined with large-diameter heads (>36 mm). We found that choice of neck geometry and head diameter has no effect on stem migration. A multivariate regression analysis including the potential confounding variables of the body mass index, bone quality, canal fill and stem positioning revealed only a negative correlation between subsidence and canal fill in midstem area. Statistical analysis, despite its limitations, did not confirm our hypothesis that choice of neck geometry and/or head diameter affects early distal migration of a modular stem. However, the importance of correct stem sizing was revealed. PMID:23284597
Georgiou, Cs; Evangelou, Kg; Theodorou, Eg; Provatidis, Cg; Megas, Pd
2012-01-01
Due to their theoretical advantages, hip systems combining modular necks and large diameter femoral heads have gradually gained popularity. However, among others, concerns regarding changes in the load transfer patterns were raised. Recent stress analyses have indeed shown that the use of modular necks and big femoral heads causes significant changes in the strain distribution along the femur. Our original hypothesis was that these changes may affect early distal migration of a modular stem. We examined the effect of head diameter and neck geometry on migration at two years of follow-up in a case series of 116 patients (125 hips), who have undergone primary Metal-on-Metal total hip arthroplasty with the modular grit-blasted Profemur®E stem combined with large-diameter heads (>36 mm). We found that choice of neck geometry and head diameter has no effect on stem migration. A multivariate regression analysis including the potential confounding variables of the body mass index, bone quality, canal fill and stem positioning revealed only a negative correlation between subsidence and canal fill in midstem area. Statistical analysis, despite its limitations, did not confirm our hypothesis that choice of neck geometry and/or head diameter affects early distal migration of a modular stem. However, the importance of correct stem sizing was revealed.
Changes in the Arctic: Background and Issues for Congress
2014-03-28
within the population more suited to the changed environment) may not be able to occur fast enough, leaving migration and death as the only options...species in an ecosystem (e.g., host plants might not move north (or up) as fast as their moth herbivores, nor as fast as the birds that depend on the...services in the resource-rich region that is opening up fast to shipping, energy and mining companies, Canadian experts said on Monday [May 13].... “It
Runaway gas accretion and gap opening versus type I migration
NASA Astrophysics Data System (ADS)
Crida, A.; Bitsch, B.
2017-03-01
Growing planets interact with their natal protoplanetary disc, which exerts a torque onto them allowing them to migrate in the disc. Small mass planets do not affect the gas profile and migrate in the fast type-I migration. Although type-I migration can be directed outwards for planets smaller than 20 - 30M⊕ in some regions of the disc, planets above this mass should be lost into the central star long before the disc disperses. Massive planets push away material from their orbit and open a gap. They subsequently migrate in the slower, type II migration, which could save them from migrating all the way to the star. Hence, growing giant planets can be saved if and only if they can reach the gap opening mass, because this extends their migration timescale, allowing them to eventually survive at large orbits until the disc itself disperses. However, most of the previous studies only measured the torques on planets with fixed masses and orbits to determine the migration rate. Additionally, the transition between type-I and type-II migration itself is not well studied, especially when taking the growth mechanism of rapid gas accretion from the surrounding disc into account. Here we use isothermal 2D disc simulations with FARGO-2D1D to study the migration behaviour of gas accreting protoplanets in discs. We find that migrating giant planets always open gaps in the disc. We further show analytically and numerically that in the runaway gas accretion regime, the growth time-scale is comparable to the type-I migration time-scale, indicating that growing planets will reach gap opening masses before migrating all the way to the central star in type-I migration if the disc is not extremely viscous and/or thick. An accretion rate limited to the radial gas flow in the disc, in contrast, is not fast enough. When gas accretion by the planet is taken into account, the gap opening process is accelerated because the planet accretes material originating from its horseshoe region. This allows an accreting planet to transition to type-II migration before being lost even if gas fails to be provided for a rapid enough growth and the classical gap opening mass is not reached.
Cryan, Paul M.; Diehl, Robert H.
2009-01-01
T HE MIGRATORY MOVEIvl.ENTS OF BATS have proven ex tremely difficult to determine. Despite extensive efforts during the past century to track the movements of bats across landscapes, efficient methods of following small- to medium-size volant animals <240 gl for extended periods (>8 weeks) over long distances (>100 km) have not been developed. Important questions about bat migration remain unanswered: Which bats migrate? Where do they go? How far do they move? How high and fast do they fly? What are their habitat needs during migration? How do bats orient and navigate during migration? Addressing these apparently simple questions will be a considerable challenge to anyone interested in advancing the study of bat migration. In this chapter, we present direct and indirect methods used to study bat migration as well as techniques that have worked for studying bird migration that could feasibly be adapted to the study of bats.
Wolf predation risk associated with white-tailed deer movements
Nelson, M.E.; Mech, L.D.
1991-01-01
The survival of 159 yearling and adult deer (Odocoileus virginianus) was monitored by telemetry during 282 spring and 219 fall individual migrations to winter deeryards in northeastern Minnesota. A disproportionate number of deer were killed by wolves (Canis lupus) during fall migration relative to the short time they spent migrating, but not during spring migration. Predation was also significantly greater for male and female yearlings and adult females outside deeryards during winter. Survival of 79 yearlings dispersing from natal ranges was high (1.00). It appears that changing climatic conditions combined with unfamiliar terrain and undetermined factors predispose migratory deer to wolf predation during fall. These findings support an earlier hypothesis that winter yarding is an antipredator strategy.
Lange, Nicholas D; Thomas, Rick P; Buttaccio, Daniel R; Illingworth, David A; Davelaar, Eddy J
2013-02-01
Although temporal dynamics are inherent aspects of diagnostic tasks, few studies have investigated how various aspects of time course influence hypothesis generation. An experiment is reported that demonstrates that working memory dynamics operating during serial data acquisition bias hypothesis generation. The presentation rate (and order) of a sequence of serially presented symptoms was manipulated to be either fast (180 ms per symptom) or slow (1,500 ms per symptom) in a simulated medical diagnosis task. When the presentation rate was slow, participants chose the disease hypothesis consistent with the symptoms appearing later in the sequence. When the presentation rate was fast, however, participants chose the disease hypothesis consistent with the symptoms appearing earlier in the sequence, therefore representing a novel primacy effect. We predicted and account for this effect through competitive working memory dynamics governing information acquisition and the contribution of maintained information to the retrieval of hypotheses from long-term memory.
Morash, Andrea J; Yu, Wilson; Le Moine, Christophe M R; Hills, Jayme A; Farrell, Anthony P; Patterson, David A; McClelland, Grant B
2013-01-01
Prolonged endurance exercise and fasting are two major metabolic challenges facing Pacific salmon during spawning migrations that often occur over 1,000 km. Because both prolonged exercise and fasting stimulate the oxidation of lipids, particularly in heavily recruited tissues such as muscle, we sought to investigate the regulatory mechanisms that establish and maintain the capacity for substrate oxidation at four separate locations during the final 750 km of nonfeeding migration in sockeye salmon Oncorhynchus nerka. Transcript levels of multiple genes encoding for important regulators of lipid, carbohydrate, and protein oxidation as well as the activity of several important enzymes involved in lipid and carbohydrate oxidation were examined in red and white muscle. We found in both muscle types that the messenger RNA (mRNA) expression of carnitine palmitoyltransferase I isoforms, peroxisome proliferator-activated receptors α and β, and adenosine monophosphate-activated protein kinase β1 were all significantly higher at the onset compared to later stages of nonfeeding migration. However, the activities of β-hydroxyacyl-CoA dehydrogenase and citrate synthase were higher only early in migration and only in red muscle. Later in the migration and as muscle lipid stores were greatly depleted, the mRNA levels of hexokinase I and aspartate aminotransferase increased in white muscle. Overall, at the onset of migration, high transcript and metabolic enzyme activity levels in skeletal muscle of sockeye salmon may help support the high rates of lipid oxidation needed for endurance swimming. Furthermore, we suggest that the muscle capacity to use carbohydrates and proteins may be adjusted throughout migration on an as-needed basis to fuel burst exercise through very difficult hydraulic passages in the river and perhaps during mating activities.
Comments in reply: new directions in migration research.
Shaw, R P
1986-01-01
The author comments on a review of his recent book NEW DIRECTIONS IN MIGRATION RESEARCH and reflects on theory and model specification, problems of estimation and statistical inference, realities of temporal and spatial heterogeneity, choices of explanatory variables, and the importance of broader political issues in migration studies. A core hypothesis is that market forces have declined as influences on internal migration in Canada over the last 30 years. Theoretical underpinnings include declining relevance of wage considerations in the decision to migrate on the assumption that marginal utility of money diminishes and marginal utility of leisure increases as society becomes wealthier. The author perceives the human capital model to have limitations and is especially troubled by the "as if" clause--that all migrants behave "as if" they calculate benefits and risks with equal rigor. The author has "shadowed" and not quantified the costs involved. He implies that normative frameworks for future migration research and planning should be established.
Effects of dynamic matrix remodelling on en masse migration of fibroblasts on collagen matrices.
Ozcelikkale, Altug; Dutton, J Craig; Grinnell, Frederick; Han, Bumsoo
2017-10-01
Fibroblast migration plays a key role during various physiological and pathological processes. Although migration of individual fibroblasts has been well studied, migration in vivo often involves simultaneous locomotion of fibroblasts sited in close proximity, so-called ' en masse migration', during which intensive cell-cell interactions occur. This study aims to understand the effects of matrix mechanical environments on the cell-matrix and cell-cell interactions during en masse migration of fibroblasts on collagen matrices. Specifically, we hypothesized that a group of migrating cells can significantly deform the matrix, whose mechanical microenvironment dramatically changes compared with the undeformed state, and the alteration of the matrix microenvironment reciprocally affects cell migration. This hypothesis was tested by time-resolved measurements of cell and extracellular matrix movement during en masse migration on collagen hydrogels with varying concentrations. The results illustrated that a group of cells generates significant spatio-temporal deformation of the matrix before and during the migration. Cells on soft collagen hydrogels migrate along tortuous paths, but, as the matrix stiffness increases, cell migration patterns become aligned with each other and show coordinated migration paths. As cells migrate, the matrix is locally compressed, resulting in a locally stiffened and dense matrix across the collagen concentration range studied. © 2017 The Author(s).
Norhazrina, Nik; Vanderpoorten, Alain; Hedenäs, Lars; Patiño, Jairo
2016-12-01
As opposed to angiosperms, moss species richness is similar among tropical regions of the world, in line with the hypothesis that tropical bryophytes are extremely good dispersers. Here, we reconstructed the phylogeny of the pantropical moss genus Pelekium to test the hypothesis that high migration rates erase any difference in species richness among tropical regions. In contrast with this hypothesis, several species considered to have a pantropical range were resolved as a complex of species with a strong geographic structure. Consequently, a significant phylogeographical signal was found in the data, evidencing that cladogenetic diversification within regions takes place at a faster rate than intercontinental migration. The shape of the Pelekium phylogeny, along with the selection of a constant-rate model of diversification among species in the genus, suggests, however, that the cladogenetic speciation patterns observed in Pelekium are not comparable to some of the spectacular examples of tropical radiations reported in angiosperms. Rather, the results presented here point to the constant accumulation of diversity through time in Pelekium. This, combined with evidence for long-distance dispersal limitations in the genus, suggests that the similar patterns of species richness among tropical areas are better explained in terms of comparable rates of diversification across tropical regions than by the homogenization of species richness by recurrent migrations. Copyright © 2016 Elsevier Inc. All rights reserved.
THE VIOLATION OF THE TAYLOR HYPOTHESIS IN MEASUREMENTS OF SOLAR WIND TURBULENCE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klein, K. G.; Howes, G. G.; TenBarge, J. M.
2014-08-01
Motivated by the upcoming Solar Orbiter and Solar Probe Plus missions, qualitative and quantitative predictions are made for the effects of the violation of the Taylor hypothesis on the magnetic energy frequency spectrum measured in the near-Sun environment. The synthetic spacecraft data method is used to predict observational signatures of the violation for critically balanced Alfvénic turbulence or parallel fast/whistler turbulence. The violation of the Taylor hypothesis can occur in the slow flow regime, leading to a shift of the entire spectrum to higher frequencies, or in the dispersive regime, in which the dissipation range spectrum flattens at high frequencies.more » It is found that Alfvénic turbulence will not significantly violate the Taylor hypothesis, but whistler turbulence will. The flattening of the frequency spectrum is therefore a key observational signature for fast/whistler turbulence.« less
Changes in the Arctic: Background and Issues for Congress
2013-07-05
continued) within the population more suited to the changed environment) may not be able to occur fast ...natural migration is unlikely to involve the entire suite of species in an ecosystem (e.g., host plants might not move north (or up) as fast as their moth...herbivores, nor as fast as the birds that depend on the moths). Moreover, the southerners will not find a land of sterile bare dirt—the species that
Changes in the Arctic: Background and Issues for Congress
2014-02-14
continued) within the population more suited to the changed environment) may not be able to occur fast ...migration is unlikely to involve the entire suite of species in an ecosystem (e.g., host plants might not move north (or up) as fast as their moth...herbivores, nor as fast as the birds that depend on the moths). Moreover, the southerners will not find a land of sterile bare dirt—the species that
Migration of a carbon adatom on a charged single-walled carbon nanotube
Han, Longtao; Krstic, Predrag; Kaganovich, Igor; ...
2017-02-02
Here we find that negative charges on an armchair single-walled carbon nanotube (SWCNT) can significantly enhance the migration of a carbon adatom on the external surfaces of SWCNTs, along the direction of the tube axis. Nanotube charging results in stronger binding of adatoms to SWCNTs and consequent longer lifetimes of adatoms before desorption, which in turn increases their migration distance several orders of magnitude. These results support the hypothesis of diffusion enhanced SWCNT growth in the volume of arc plasma. This process could enhance effective carbon flux to the metal catalyst.
Evolutionary origin of the latitudinal diversity gradient in liverworts.
Laenen, Benjamin; Patiño, Jairo; Hagborg, Anders; Désamoré, Aurélie; Wang, Jian; Jonathan Shaw, A; Goffinet, Bernard; Vanderpoorten, Alain
2018-06-08
A latitudinal diversity gradient towards the tropics appears as one most recurrent patterns in ecology, but the mechanisms underlying this pattern remain an area of controversy. In angiosperms, the tropical conservatism hypothesis proposes that most groups originated in the tropics and are adapted to a tropical climatic regime, and that relatively few species have evolved physiological adaptations to cold, dry or unpredictable climates. This mechanism is, however, unlikely to apply across land plants, and in particular, to liverworts, a group of about 7500 species, whose ability to withstand cold much better than their tracheophyte counterparts is at odds with the tropical conservatism hypothesis. Molecular dating, diversification rate analyses and ancestral area reconstructions were employed to explore the evolutionary mechanisms that account for the latitudinal diversity gradient in liverworts. As opposed to angiosperms, tropical liverwort genera are not older than their extra-tropical counterparts (median stem age of tropical and extra-tropical liverwort genera of 24.35±39.65 Ma and 39.57±49.07 Ma, respectively), weakening the 'time for speciation hypothesis'. Models of ancestral area reconstructions with equal migration rates between tropical and extra-tropical regions outperformed models with asymmetrical migration rates in either direction. The symmetry and intensity of migrations between tropical and extra-tropical regions suggested by the lack of resolution in ancestral area reconstructions towards the deepest nodes are at odds with the tropical niche conservatism hypothesis. In turn, tropical genera exhibited significantly higher net diversification rates than extra-tropical ones, suggesting that the observed latitudinal diversity gradient results from either higher extinction rates in extra-tropical lineages or higher speciation rates in the tropics. We discuss a series of experiments to help deciphering the underlying evolutionary mechanisms. Copyright © 2018. Published by Elsevier Inc.
Barriers impede upstream spawning migration of flathead chub
Walters, David M.; Zuellig, Robert E.; Crockett, Harry J.; Bruce, James F.; Lukacs, Paul M.; Fitzpatrick, Ryan M.
2014-01-01
Many native cyprinids are declining throughout the North American Great Plains. Some of these species require long reaches of contiguous, flowing riverine habitat for drifting eggs or larvae to develop, and their declining populations have been attributed to habitat fragmentation or barriers (e.g., dams, dewatered channels, and reservoirs) that restrict fish movement. Upstream dispersal is also needed to maintain populations of species with passively drifting eggs or larvae, and prior researchers have suggested that these fishes migrate upstream to spawn. To test this hypothesis, we conducted a mark–recapture study of Flathead Chub Platygobio gracilis within a 91-km reach of continuous riverine habitat in Fountain Creek, Colorado. We measured CPUE, spawning readiness (percent of Flathead Chub expressing milt), and fish movement relative to a channel-spanning dam. Multiple lines of evidence indicate that Flathead Chub migrate upstream to spawn during summer. The CPUE was much higher at the base of the dam than at downstream sites; the seasonal increases in CPUE at the dam closely tracked seasonal increases in spawning readiness, and marked fish moved upstream as far as 33 km during the spawning run. The upstream migration was effectively blocked by the dam. The CPUE of Flathead Chub was much lower upstream of the OHDD than at downstream sites, and <0.2% of fish marked at the dam were recaptured upstream. This study provides the first direct evidence of spawning migration for Flathead Chub and supports the general hypothesis that barriers limit adult dispersal of these and other plains fishes.
Climatic change and assisted migration: Strategic options for forest and conservation nurseries
Mary I. Williams; R. Kasten Dumroese
2013-01-01
In light of current studies (for example, Gray and Hamann 2012; Zhu and others 2012) that show climate will change faster than plants can adapt or migrate naturally, it begs the question, "What does this mean for forestry, specifically forest and conservation nurseries?" Growing trees that just survive may become more important than promoting fast growth...
Microplastics in sea coastal zone: Lessons learned from the Baltic amber.
Chubarenko, Irina; Stepanova, Natalia
2017-05-01
Baltic amber, adored for its beauty already in Homer's Odyssey (ca. 800 B.C.E), has its material density close to that of wide-spread plastics like polyamide, polystyrene, or acrylic. Migrations of amber stones in the sea and their massive washing ashore have been monitored by Baltic citizens for ages. Based on the collected information, we present the hypothesis on the behaviour of microplastic particles in sea coastal zone. Fresh-to-strong winds generate surface waves, currents and roll-structures, whose joint effect washes ashore from the underwater slope both amber stones and plastics - and carries them back to the sea in a few days. Analysis of underlying hydrophysical processes suggests that sea coastal zone under stormy winds plays a role of a mill for plastics, and negatively buoyant pieces seem to repeatedly migrate between beaches and underwater slopes until they are broken into small enough fragments that can be transported by currents to deeper areas and deposited out of reach of stormy waves. Direct observations on microplastics migrations are urged to prove the hypothesis. Copyright © 2017 Elsevier Ltd. All rights reserved.
The transformation of southern agriculture and the migration of blacks and whites, 1930-1940.
Fligstein, N
1983-01-01
The causes of the migration of both blacks and whites from the U.S. South between 1930 and 1940 are examined. The author challenges the hypothesis that the root cause of this migration was the mechanization of agriculture and suggests that the primary cause was the crisis in cotton farming that occurred during the depression of the 1930s. "Large farm owners secured aid from the federal government in the form of agricultural subsidy payments. In response to this program, they reduced their cotton acreage, bought tractors, and displaced their tenants. This transformation drastically reduced the need for tenant labor and brought about the large-scale migrations. Regression analyses of relevant data confirm this interpretation." excerpt
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mojaverian, P.; Ferguson, R.K.; Vlasses, P.H.
In animal and human studies, the gastric emptying of large (greater than 1 mm) indigestible solids is due to the activity of the interdigestive migrating myoelectric complex. The gastric residence time (GRT) of an orally administered, nondigestible, pH-sensitive, radiotelemetric device (Heidelberg capsule) was evaluated in three studies in healthy volunteers. In 6 subjects, the GRT of the Heidelberg capsule was compared with the half-emptying time (t1/2) of diethylenetriaminepentaacetic acid labeled with technetium 99m after a 4-ml/kg liquid fatty meal. The mean (+/-SD) GRT (4.3 +/- 1.4 h) was significantly (p less than 0.001) longer than the mean t1/2 (1.1 +/-more » 0.3 h); the GRT was prolonged compared with the t1/2 in each subject. In a randomized, crossover trial in 10 subjects, frequent feeding caused a dramatic prolongation in mean GRT of the capsule compared with the fasting state (greater than 14.5 vs. 0.5 h, p less than 0.005). In another crossover study in 6 subjects, the GRT of the capsule was evaluated after an overnight fast, a standard breakfast including solid food, and a liquid meal (i.e., 200 ml of diluted light cream). The mean GRT was 2.6 +/- 0.9 h after the liquid meal vs. 1.2 +/- 0.8 h after fasting (p less than 0.025). The mean GRT after the breakfast was 4.8 +/- 1.5 h, which was significantly greater than that after fasting (p less than 0.001) and after the liquid meal (p less than 0.01). These data suggest that the GRT of the Heidelberg capsule is a marker of the interdigestive migrating myoelectric complex in humans, the interdigestive migrating myoelectric complex can be markedly delayed by frequent feedings with solids, and the interdigestive migrating myoelectric complex is delayed by both liquid and solid meals.« less
Environment determines evolutionary trajectory in a constrained phenotypic space
Fraebel, David T; Mickalide, Harry; Schnitkey, Diane; Merritt, Jason; Kuhlman, Thomas E; Kuehn, Seppe
2017-01-01
Constraints on phenotypic variation limit the capacity of organisms to adapt to the multiple selection pressures encountered in natural environments. To better understand evolutionary dynamics in this context, we select Escherichia coli for faster migration through a porous environment, a process which depends on both motility and growth. We find that a trade-off between swimming speed and growth rate constrains the evolution of faster migration. Evolving faster migration in rich medium results in slow growth and fast swimming, while evolution in minimal medium results in fast growth and slow swimming. In each condition parallel genomic evolution drives adaptation through different mutations. We show that the trade-off is mediated by antagonistic pleiotropy through mutations that affect negative regulation. A model of the evolutionary process shows that the genetic capacity of an organism to vary traits can qualitatively depend on its environment, which in turn alters its evolutionary trajectory. DOI: http://dx.doi.org/10.7554/eLife.24669.001 PMID:28346136
PLANETARY MIGRATION AND ECCENTRICITY AND INCLINATION RESONANCES IN EXTRASOLAR PLANETARY SYSTEMS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Man Hoi; Thommes, Edward W.
2009-09-10
The differential migration of two planets due to planet-disk interaction can result in capture into the 2:1 eccentricity-type mean-motion resonances. Both the sequence of 2:1 eccentricity resonances that the system is driven through by continued migration and the possibility of a subsequent capture into the 4:2 inclination resonances are sensitive to the migration rate within the range expected for type II migration due to planet-disk interaction. If the migration rate is fast, the resonant pair can evolve into a family of 2:1 eccentricity resonances different from those found by Lee. This new family has outer orbital eccentricity e {sub 2}more » {approx}> 0.4-0.5, asymmetric librations of both eccentricity resonance variables, and orbits that intersect if they are exactly coplanar. Although this family exists for an inner-to-outer planet mass ratio m {sub 1}/m {sub 2} {approx}> 0.2, it is possible to evolve into this family by fast migration only for m {sub 1}/m {sub 2} {approx}> 2. Thommes and Lissauer have found that a capture into the 4:2 inclination resonances is possible only for m {sub 1}/m {sub 2} {approx}< 2. We show that this capture is also possible for m {sub 1}/m {sub 2} {approx}> 2 if the migration rate is slightly slower than that adopted by Thommes and Lissauer. There is significant theoretical uncertainty in both the sign and the magnitude of the net effect of planet-disk interaction on the orbital eccentricity of a planet. If the eccentricity is damped on a timescale comparable to or shorter than the migration timescale, e {sub 2} may not be able to reach the values needed to enter either the new 2:1 eccentricity resonances or the 4:2 inclination resonances. Thus, if future observations of extrasolar planetary systems were to reveal certain combinations of mass ratio and resonant configuration, they would place a constraint on the strength of eccentricity damping during migration, as well as on the rate of the migration itself.« less
Changes in the Arctic: Background and Issues for Congress
2012-08-01
selection of individuals within the population more suited to the changed environment) may not be able to occur fast enough, leaving migration and death...species in an ecosystem (e.g., host plants might not move north (or up) as fast as their moth herbivores, nor as fast as the birds that depend on the...Cold Response 2012, Norwegian Armed Forces web page: http://mil.no/ excercises /coldresponse2012/pages/default.aspx 185 “The Arctic: Special Report
On resilience studies of system detection and recovery techniques against stealthy insider attacks
NASA Astrophysics Data System (ADS)
Wei, Sixiao; Zhang, Hanlin; Chen, Genshe; Shen, Dan; Yu, Wei; Pham, Khanh D.; Blasch, Erik P.; Cruz, Jose B.
2016-05-01
With the explosive growth of network technologies, insider attacks have become a major concern to business operations that largely rely on computer networks. To better detect insider attacks that marginally manipulate network traffic over time, and to recover the system from attacks, in this paper we implement a temporal-based detection scheme using the sequential hypothesis testing technique. Two hypothetical states are considered: the null hypothesis that the collected information is from benign historical traffic and the alternative hypothesis that the network is under attack. The objective of such a detection scheme is to recognize the change within the shortest time by comparing the two defined hypotheses. In addition, once the attack is detected, a server migration-based system recovery scheme can be triggered to recover the system to the state prior to the attack. To understand mitigation of insider attacks, a multi-functional web display of the detection analysis was developed for real-time analytic. Experiments using real-world traffic traces evaluate the effectiveness of Detection System and Recovery (DeSyAR) scheme. The evaluation data validates the detection scheme based on sequential hypothesis testing and the server migration-based system recovery scheme can perform well in effectively detecting insider attacks and recovering the system under attack.
Dhruv, Harshil D.; McDonough Winslow, Wendy S.; Armstrong, Brock; Tuncali, Serdar; Eschbacher, Jenny; Kislin, Kerri; Loftus, Joseph C.; Tran, Nhan L.; Berens, Michael E.
2013-01-01
Histology of malignant glioma depicts dense proliferative areas rich in angiogenesis as well as dissemination of neoplastic cells into adjacent brain tissue. Although the mechanisms that trigger transition from proliferative to invasive phenotypes are complex, the dichotomy of cell proliferation and migration, the “Go or Grow” hypothesis, argues for specific and coordinated regulation of these phenotypes. We investigated transcriptional elements that accompany the phenotypes of migration and proliferation, and consider the therapeutic significance of the “Go or Grow” hypothesis. Interrogation of matched core and rim regions from human glioblastoma biopsy specimens in situ (n = 44) revealed higher proliferation (Ki67 labeling index) in cells residing at the core compared to the rim. Profiling activated transcription factors in a panel of migration-activated versus migration-restricted GBM cells portrayed strong NF-κB activity in the migratory cell population. In contrast, increased c-Myc activity was found in migration-restricted proliferative cells. Validation of transcriptional activity by NF-κB- or c-Myc-driven GFP or RFP, respectively, showed an increased NF-κB activity in the active migrating cells, whereas the proliferative, migration restricted cells displayed increased c-Myc activity. Immunohistochemistry on clinical specimens validated a robust phosphorylated c-Myc staining in tumor cells at the core, whereas increased phosphorylated NF-κB staining was detected in the invasive tumor cells at the rim. Functional genomics revealed that depletion of c-Myc expression by siRNA oligonucleotides reduced cell proliferation in vitro, but surprisingly, cell migration was enhanced significantly. Conversely, inhibition of NF-κB by pharmacological inhibitors, SN50 or BAY-11, decreased both cell migration in vitro and invasion ex vivo. Notably, inhibition of NF-κB was found to have no effect on the proliferation rate of glioma cells. These findings suggest that the reciprocal and coordinated suppression/activation of transcription factors, such as c-Myc and NF-κB may underlie the shift of glioma cells from a “growing-to-going” phenotype. PMID:23967279
NASA Astrophysics Data System (ADS)
Liu, Peng; Wang, Yanfei
2018-04-01
We study problems associated with seismic data decomposition and migration imaging. We first represent the seismic data utilizing Gaussian beam basis functions, which have nonzero curvature, and then consider the sparse decomposition technique. The sparse decomposition problem is an l0-norm constrained minimization problem. In solving the l0-norm minimization, a polynomial Radon transform is performed to achieve sparsity, and a fast gradient descent method is used to calculate the waveform functions. The waveform functions can subsequently be used for sparse Gaussian beam migration. Compared with traditional sparse Gaussian beam methods, the seismic data can be properly reconstructed employing fewer Gaussian beams with nonzero initial curvature. The migration approach described in this paper is more efficient than the traditional sparse Gaussian beam migration.
Disruption, not displacement: Environmental variability and temporary migration in Bangladesh
Gray, Clark; Yunus, Mohammad; Emch, Michael
2018-01-01
Mass migration is one of the most concerning potential outcomes of global climate change. Recent research into environmentally induced migration suggests that relationship is much more complicated than originally posited by the ‘environmental refugee’ hypothesis. Climate change is likely to increase migration in some cases and reduce it in others, and these movements will more often be temporary and short term than permanent and long term. However, few large-sample studies have examined the evolution of temporary migration under changing environmental conditions. To address this gap, we measure the extent to which temperature, precipitation, and flooding can predict temporary migration in Matlab, Bangladesh. Our analysis incorporates high-frequency demographic surveillance data, a discrete time event history approach, and a range of sociodemographic and contextual controls. This approach reveals that migration declines immediately after flooding but quickly returns to normal. In contrast, optimal precipitation and high temperatures have sustained positive effects on temporary migration that persist over one to two year periods. Building on previous studies of long-term migration, these results challenge the common assumption that flooding, precipitation extremes and high temperatures will consistently increase temporary migration. Instead, our results are consistent with a livelihoods interpretation of environmental migration in which households draw on a range of strategies to cope with environmental variability. PMID:29375196
Disruption, not displacement: Environmental variability and temporary migration in Bangladesh.
Call, Maia A; Gray, Clark; Yunus, Mohammad; Emch, Michael
2017-09-01
Mass migration is one of the most concerning potential outcomes of global climate change. Recent research into environmentally induced migration suggests that relationship is much more complicated than originally posited by the 'environmental refugee' hypothesis. Climate change is likely to increase migration in some cases and reduce it in others, and these movements will more often be temporary and short term than permanent and long term. However, few large-sample studies have examined the evolution of temporary migration under changing environmental conditions. To address this gap, we measure the extent to which temperature, precipitation, and flooding can predict temporary migration in Matlab, Bangladesh. Our analysis incorporates high-frequency demographic surveillance data, a discrete time event history approach, and a range of sociodemographic and contextual controls. This approach reveals that migration declines immediately after flooding but quickly returns to normal. In contrast, optimal precipitation and high temperatures have sustained positive effects on temporary migration that persist over one to two year periods. Building on previous studies of long-term migration, these results challenge the common assumption that flooding, precipitation extremes and high temperatures will consistently increase temporary migration. Instead, our results are consistent with a livelihoods interpretation of environmental migration in which households draw on a range of strategies to cope with environmental variability.
NASA Astrophysics Data System (ADS)
Peña, Marian; Villanueva, Roger; Escánez, Alejandro; Ariza, Alejandro
2018-03-01
Squids are fast swimmers that are difficult to catch by nets and to record with echosounders in the open ocean. A rare detection of orangeback flying squid Sthenoteuthis pteropus in the Central Eastern Atlantic Ocean off the coast of Senegal was accomplished during the MAFIA oceanographic survey carried out between Brazil and the Canary Islands in April 2015. Although net sampling did not yield any subadult or adult individuals, dozens were visually detected from the vessel jumping out of the water at night and displaying their characteristic dorsal photophore patch. A few squids were caught with fishing lines and identified at the species level. The acoustic echograms revealed distinctive previously unobserved acoustic echotraces that seemed to be caused by those squids, which were the only new species detected at that station (over a bottom depth ranging from 4010 to 5215 m, between 10° 45‧ N 22° 41‧ W and 10° 53‧ N 22° 40‧ W). The acoustic response and swimming behaviour shown by those echotraces reinforced this hypothesis. The (potentially) squid recordings dove rapidly (0.19 m/s to 0.48 m/s) from around 10 m below the mesopelagic fish layer, which had migrated to the subsurface at night (35 m depth), to depths of 70-95 m, and swam upward, apparently attacking fish from below. The morning squid migration to deeper waters (250-300 m) was also recorded acoustically. Downward movements of squid swimming at speeds of 0.22 m/s were calculated from the echogram, while the mesopelagic migrating fish swam at 0.27 m/s reaching 250 m depth. Sv120 - Sv38 averaged 2.7 ± 3.2 dB for the squid echotraces while the mesopelagic layer showed values of -8.8 ± 0.9 dB. These ranges agreed with values in the literature and from theoretical models. This study provides more insight into the migrating behaviour of oceanic squids, a species group that is poorly represented in the acoustic literature due to challenges in studying them.
Space-based Remote Sensing: A Tool for Studying Bird Migration Across Multiple Scales
NASA Technical Reports Server (NTRS)
Smith, James A.
2005-01-01
The study of bird migration on a global scale is one of the compelling and challenging problems of modern biology with major implications for human health and conservation biology. Migration and conservation efforts cross national boundaries and are subject to numerous international agreements and treaties. Space based technology offers new opportunities to shed understanding on the distribution and migration of organisms on the planet and their sensitivity to human disturbances and environmental changes. Our working hypothesis is that individual organism biophysical models of energy and water balance, driven by satellite measurements of spatio-temporal gradients in climate and habitat, will help us to explain the variability in avian species richness and distribution. Further, these models provide an ecological forecasting tool for science and application users to visualize the possible consequences of loss of wetlands, flooding, or other natural disasters such as hurricanes on avian biodiversity and bird migration.
Godbout, Charles; Frenette, Jérôme
2006-01-01
A prevailing paradigm is that electrical fields can promote cell migration and tissue healing. To further validate this paradigm, we tested the hypothesis that periodic direct current (DC) can enhance wound closure using an in vitro dynamic model of cell migration. Layers of primary fibroblasts were wounded and treated with DC under various voltages. Repair area, cell velocity, and directionality as well as lamellipodium area were evaluated at different times. Direct current had no beneficial effect on cell migration. Moreover, prolonged stimulation under the highest voltage led to significant reduction in wound closure and cell velocity. The reduction of membrane protusions in stimulated cells may be associated with the deleterious effect of DC. Contrary to the authors' expectations, they found that periodic DC did not promote wound closure, a finding that emphasizes the need to clarify the complex effects of electrical fields on migrating cells.
The role of aquaporin-5 in cancer cell migration: A potential active participant.
Jensen, Helene H; Login, Frédéric H; Koffman, Jennifer S; Kwon, Tae-Hwan; Nejsum, Lene N
2016-10-01
Emerging data identifies the water channel aquaporin-5 as a major player in multiple cancers. Over-expression of aquaporin-5 has been associated with increased metastasis and poor prognosis, suggesting that aquaporin-5 may enhance cancer cell migration. This review aims to highlight the current knowledge and hypothesis regarding downstream signaling partners of aquaporin-5 in relation to cancer cell migration. The molecular mechanisms that link aquaporin-5 to cell migration are not completely understood. Aquaporin-5 may promote cell movement by increasing water uptake into the front of the cell allowing local swelling. Aquaporin-5 may also activate extracellular-regulated kinases, increasing proliferation and potentially stimulating the migration machinery. Thus, further studies are warranted to identify the underlying mechanisms and signaling pathways. This will reveal whether aquaporin-5 and downstream effectors could be targets for developing new cancer therapeutics. Copyright © 2016 Elsevier Ltd. All rights reserved.
Can variation in risk of nest predation explain altitudinal migration in tropical birds?
Boyle, W Alice
2008-03-01
Migration is among the best studied of animal behaviors, yet few empirical studies have tested hypotheses explaining the ultimate causes of these cyclical annual movements. Fretwell's (1980) hypothesis predicts that if nest predation explains why many tropical birds migrate uphill to breed, then predation risk must be negatively associated with elevation. Data from 385 artificial nests spanning 2,740 m of elevation on the Atlantic slope of Costa Rica show an overall decline in predation with increasing elevation. However, nest predation risk was highest at intermediate elevations (500-650 m), not at lowest elevations. The proportion of nests depredated by different types of predators differed among elevations. These results imply that over half of the altitudinal migrant bird species in this region migrate to safer breeding areas than their non-breeding areas, suggesting that variation in nest predation risk could be an important benefit of uphill migrations of many species.
Changes in the Arctic: Background and Issues for Congress
2013-04-25
the population more suited to the changed environment) may not be able to occur fast enough, leaving migration and death as the only options. The...species in an ecosystem (e.g., host plants might not move north (or up) as fast as their moth herbivores, nor as fast as the birds that depend on the...page: http://mil.no/ excercises /coldresponse2012/pages/default.aspx 225 “The Arctic: Special Report,” The Economist, June 16, 2012. p. 11. 226 “Russia
Coulthard, Tom J.; Ramirez, Jorge A.; Barton, Nick; Rogerson, Mike; Brücher, Tim
2013-01-01
Human migration north through Africa is contentious. This paper uses a novel palaeohydrological and hydraulic modelling approach to test the hypothesis that under wetter climates c.100,000 years ago major river systems ran north across the Sahara to the Mediterranean, creating viable migration routes. We confirm that three of these now buried palaeo river systems could have been active at the key time of human migration across the Sahara. Unexpectedly, it is the most western of these three rivers, the Irharhar river, that represents the most likely route for human migration. The Irharhar river flows directly south to north, uniquely linking the mountain areas experiencing monsoon climates at these times to temperate Mediterranean environments where food and resources would have been abundant. The findings have major implications for our understanding of how humans migrated north through Africa, for the first time providing a quantitative perspective on the probabilities that these routes were viable for human habitation at these times. PMID:24040347
On the occurrence of false positives in tests of migration under an isolation with migration model
Hey, Jody; Chung, Yujin; Sethuraman, Arun
2015-01-01
The population genetic study of divergence is often done using a Bayesian genealogy sampler, like those implemented in IMa2 and related programs, and these analyses frequently include a likelihood-ratio test of the null hypothesis of no migration between populations. Cruickshank and Hahn (2014, Molecular Ecology, 23, 3133–3157) recently reported a high rate of false positive test results with IMa2 for data simulated with small numbers of loci under models with no migration and recent splitting times. We confirm these findings and discover that they are caused by a failure of the assumptions underlying likelihood ratio tests that arises when using marginal likelihoods for a subset of model parameters. We also show that for small data sets, with little divergence between samples from two populations, an excellent fit can often be found by a model with a low migration rate and recent splitting time and a model with a high migration rate and a deep splitting time. PMID:26456794
Constraining the primordial orbits of the terrestrial planets
NASA Astrophysics Data System (ADS)
Brasser, R.; Walsh, K. J.; Nesvorný, D.
2013-08-01
Evidence in the Solar system suggests that the giant planets underwent an epoch of radial migration that was very rapid, with an e-folding time-scale shorter than 1 Myr. It is probable that the cause of this migration was that the giant planets experienced an orbital instability that caused them to encounter each other, resulting in radial migration. A promising and heavily studied way to accomplish such a fast migration is for Jupiter to have scattered one of the ice giants outwards; this event has been called the `jumping Jupiter' scenario. Several works suggest that this dynamical instability occurred `late', long after all the planets had formed and the solar nebula had dissipated. Assuming that the terrestrial planets had already formed, then their orbits would have been affected by the migration of the giant planets as many powerful resonances would sweep through the terrestrial planet region. This raises two questions. First, what is the expected increase in dynamical excitement of the terrestrial planet orbits caused by late and very fast giant planet migration? And secondly, assuming that the migration occurred late, can we use this migration of the giant planets to obtain information on the primordial orbits of the terrestrial planets? In this work, we attempt to answer both of these questions using numerical simulations. We directly model a large number of terrestrial planet systems and their response to the smooth migration of Jupiter and Saturn, and also two jumping Jupiter simulations. We study the total dynamical excitement of the terrestrial planet system with the angular momentum deficit (AMD) value, including the way it is shared among the planets. We conclude that to reproduce the current AMD with a reasonable probability (˜20 per cent) after late rapid giant planet migration and a favourable jumping Jupiter evolution, the primordial AMD should have been lower than ˜70 per cent of the current value, but higher than 10 per cent. We find that a late giant planet migration scenario that initially had five giant planets rather than four had a higher probability of satisfying the orbital constraints of the terrestrial planets. Assuming late migration, we predict that Mars was initially on an eccentric and inclined orbit while the orbits of Mercury, Venus and Earth were more circular and coplanar. The lower primordial dynamical excitement and the peculiar partitioning between planets impose new constraints for terrestrial planet formation simulations.
Advances and Environmental Conditions of Spring Migration Phenology of American White Pelicans
NASA Astrophysics Data System (ADS)
King, D. Tommy; Wang, Guiming; Yang, Zhiqiang; Fischer, Justin W.
2017-01-01
Spring migration phenology of birds has advanced under warming climate. Migration timing of short-distance migrants is believed to be responsive to environmental changes primarily under exogenous control. However, understanding the ecological causes of the advancement in avian spring migration phenology is still a challenge due to the lack of long-term precise location data. We used 11 years of Global Positioning System relocation data to determine four different migration dates of the annual migration cycle of the American white pelican (Pelecanus erythrorhynchos), a short-distance migrant. We also tested the hypothesis that increases in winter temperature and precipitation on the wintering grounds would advance pelican spring migration. Pelican spring departures and arrivals advanced steadily from 2002 to 2011. Spring departure timing exhibited high repeatability at the upper end of migration timing repeatability reported in literature. However, individual spring departure and arrival dates were not related to winter daily temperature, total winter precipitation, and detrended vegetation green-up dates indexed by the normalized difference vegetation index. Despite high repeatability, the observed between-year variation of spring departure dates was still sufficient for the advancement of spring departure timing.
Advances and Environmental Conditions of Spring Migration Phenology of American White Pelicans.
King, D Tommy; Wang, Guiming; Yang, Zhiqiang; Fischer, Justin W
2017-01-16
Spring migration phenology of birds has advanced under warming climate. Migration timing of short-distance migrants is believed to be responsive to environmental changes primarily under exogenous control. However, understanding the ecological causes of the advancement in avian spring migration phenology is still a challenge due to the lack of long-term precise location data. We used 11 years of Global Positioning System relocation data to determine four different migration dates of the annual migration cycle of the American white pelican (Pelecanus erythrorhynchos), a short-distance migrant. We also tested the hypothesis that increases in winter temperature and precipitation on the wintering grounds would advance pelican spring migration. Pelican spring departures and arrivals advanced steadily from 2002 to 2011. Spring departure timing exhibited high repeatability at the upper end of migration timing repeatability reported in literature. However, individual spring departure and arrival dates were not related to winter daily temperature, total winter precipitation, and detrended vegetation green-up dates indexed by the normalized difference vegetation index. Despite high repeatability, the observed between-year variation of spring departure dates was still sufficient for the advancement of spring departure timing.
Viscarra, Jose A.; Champagne, Cory D.; Crocker, Daniel E.; Ortiz, Rudy M.
2011-01-01
Northern elephant seals endure a 2–3 month fast characterized by sustained hyperglycemia, hypoinsulinemia and increased plasma cortisol and free fatty acids, conditions often seen in insulin resistant humans. We previously showed that adipose Glut4 expression and AMP kinase (AMPK) activity increase and plasma glucose decreases in fasting seals suggesting that AMPK activity contributes to glucose regulation during insulin resistant conditions. To address the hypothesis that AMPK activity increases during fasting-induced insulin resistance, we performed glucose tolerance tests (GTT) on early (n=5) and late (n=8) fasted seal pups and compared adipose tissue expression of insulin signaling proteins, PPARγ, and AMPK, in addition to plasma adiponectin, leptin, cortisol, insulin and non-esterified fatty acids (NEFA) levels. Fasting was associated with decreased glucose clearance, plasma insulin and adiponectin, and intracellular insulin signaling, as well as increased plasma cortisol and NEFAs, supporting the suggestion that seals develop insulin resistance late in the fast. Expression of Glut4 and VAMP2 increased (52% and 63%, respectively) with fasting but did not change significantly during the GTT. PPARγ and phosphorylated AMPK did not change in early fasted seals, but increased significantly (73% and 50%, respectively) in late fasted seals during the GTT. Increased AMPK activity along with the reduction in the activity of insulin-signaling proteins supports our hypothesis that AMPK activity is increased following the onset of insulin resistance. The association between increased AMPK activity and Glut4 expression suggests that AMPK plays a greater role in regulating glucose metabolism in mammals adapted to prolonged fasting than in non-fasting mammals. PMID:21429964
DOE Office of Scientific and Technical Information (OSTI.GOV)
Han, Longtao; Krstic, Predrag; Kaganovich, Igor
Here we find that negative charges on an armchair single-walled carbon nanotube (SWCNT) can significantly enhance the migration of a carbon adatom on the external surfaces of SWCNTs, along the direction of the tube axis. Nanotube charging results in stronger binding of adatoms to SWCNTs and consequent longer lifetimes of adatoms before desorption, which in turn increases their migration distance several orders of magnitude. These results support the hypothesis of diffusion enhanced SWCNT growth in the volume of arc plasma. This process could enhance effective carbon flux to the metal catalyst.
The greenscape shapes surfing of resource waves in a large migratory herbivore
Aikens, Ellen O.; Kauffman, Matthew J.; Merkle, Jerod A.; Dwinnell, Samantha P.H.; Fralick, Gary L.; Monteith, Kevin L.
2017-01-01
The Green Wave Hypothesis posits that herbivore migration manifests in response to waves of spring green-up (i.e. green-wave surfing). Nonetheless, empirical support for the Green Wave Hypothesis is mixed, and a framework for understanding variation in surfing is lacking. In a population of migratory mule deer (Odocoileus hemionus), 31% surfed plant phenology in spring as well as a theoretically perfect surfer, and 98% surfed better than random. Green-wave surfing varied among individuals and was unrelated to age or energetic state. Instead, the greenscape, which we define as the order, rate and duration of green-up along migratory routes, was the primary factor influencing surfing. Our results indicate that migratory routes are more than a link between seasonal ranges, and they provide an important, but often overlooked, foraging habitat. In addition, the spatiotemporal configuration of forage resources that propagate along migratory routes shape animal movement and presumably, energy gains during migration.
Stocks and seasonal migrations of the flounder Xystreurys rasile as indicated by its parasites.
Alarcos, A J; Timi, J T
2013-09-01
The aims of this study were (1) to compare the structure and composition of parasite assemblages of the flounder Xystreurys rasile in two regions of the Argentine Sea in order to evaluate the hypothesis for the existence of different stocks, and (2) to test the hypothesis for X. rasile migration from the Argentine-Uruguayan Common Fishing Zone (AUCFZ) towards more southern waters during spring. Parasitological evidence shows that at least two stocks of X. rasile inhabit the coastal and shelf waters of the northern Argentine Sea, one in El Rincón and the other in the AUCFZ. These stocks should be considered as discrete entities in management plans to ensure a sustainable use of these resources. The results also confirm the existence of migratory patterns in the northern stock. © 2013 The Fisheries Society of the British Isles.
Welch, Kenneth C.; Ramenofsky, Marilyn
2016-01-01
Birds undergo numerous changes as they progress through life-history stages, yet relatively few studies have examined how birds adapt to both the dynamic energetic and mechanical demands associated with such transitions. Myosin heavy chain (MyHC) expression, often linked with muscle fibre type, is strongly correlated with a muscle's mechanical power-generating capability, thus we examined several morphological properties, including MyHC expression of the pectoralis, in a long-distance migrant, the white-crowned sparrow (Zonotrichia leucophrys gambelii) throughout the progression from winter, spring departure and arrival on breeding grounds. White-crowned sparrows demonstrated significant phenotypic flexibility throughout the seasonal transition, including changes in prealternate moult status, lipid fuelling, body condition and flight muscle morphology. Pectoral MyHC expression also varied significantly over the course of the study. Wintering birds expressed a single, newly classified adult fast 2 isoform. At spring departure, pectoral isoform expression included two MyHC isoforms: the adult fast 2 isoform along with a smaller proportion of a newly present adult fast 1 isoform. By spring arrival, both adult fast isoforms present at departure remained, yet expression had shifted to a greater relative proportion of the adult fast 1 isoform. Altering pectoral MyHC isoform expression in preparation for and during spring migration may represent an adaptation to modulate muscle mechanical output to support long-distance flight. PMID:28018664
NASA Astrophysics Data System (ADS)
You, Yan; Yoshida, Katsumi; Yano, Toyohiko
2018-05-01
Boron carbide (B4C) is a leading candidate neutron absorber material for sodium-cooled fast nuclear reactors owing to its excellent neutron-capture capability. The formation and migration energies of the neutron-irradiation-induced defects, including vacancies, neutron-capture reaction products, and knocked-out atoms were studied by density functional theory calculations. The vacancy-type defects tend to migrate to the C–B–C chains of B4C, which indicates that the icosahedral cage structures of B4C have strong resistance to neutron irradiation. We found that lithium and helium atoms had significantly lower migration barriers along the rhombohedral (111) plane of B4C than perpendicular to this plane. This implies that the helium and lithium interstitials tended to follow a two-dimensional diffusion regime in B4C at low temperatures which explains the formation of flat disk like helium bubbles experimentally observed in B4C pellets after neutron irradiation. The knocked-out atoms are considered to be annihilated by the recombination of the close pairs of self-interstitials and vacancies.
2010-09-30
planktonic ecosystems. OBJECTIVES Our objectives in this work are to 1) visualize and quantify herbivorous copepod feeding in the laboratory...and 2) to apply these methods in the field to observe the dynamics of copepod feeding in situ. In particular we intend to test the “feeding sorties...hypothesis vs. the “in situ feeding” hypothesis regarding the location and timing of copepod feeding and vertical migration. APPROACH Previous
Rakhimberdiev, Eldar; Winkler, David W; Bridge, Eli; Seavy, Nathaniel E; Sheldon, Daniel; Piersma, Theunis; Saveliev, Anatoly
2015-01-01
Solar archival tags (henceforth called geolocators) are tracking devices deployed on animals to reconstruct their long-distance movements on the basis of locations inferred post hoc with reference to the geographical and seasonal variations in the timing and speeds of sunrise and sunset. The increased use of geolocators has created a need for analytical tools to produce accurate and objective estimates of migration routes that are explicit in their uncertainty about the position estimates. We developed a hidden Markov chain model for the analysis of geolocator data. This model estimates tracks for animals with complex migratory behaviour by combining: (1) a shading-insensitive, template-fit physical model, (2) an uncorrelated random walk movement model that includes migratory and sedentary behavioural states, and (3) spatially explicit behavioural masks. The model is implemented in a specially developed open source R package FLightR. We used the particle filter (PF) algorithm to provide relatively fast model posterior computation. We illustrate our modelling approach with analysis of simulated data for stationary tags and of real tracks of both a tree swallow Tachycineta bicolor migrating along the east and a golden-crowned sparrow Zonotrichia atricapilla migrating along the west coast of North America. We provide a model that increases accuracy in analyses of noisy data and movements of animals with complicated migration behaviour. It provides posterior distributions for the positions of animals, their behavioural states (e.g., migrating or sedentary), and distance and direction of movement. Our approach allows biologists to estimate locations of animals with complex migratory behaviour based on raw light data. This model advances the current methods for estimating migration tracks from solar geolocation, and will benefit a fast-growing number of tracking studies with this technology.
Wang, Feng-Ying; Yang, Fan; Lu, Ming-Hong; Luo, Shan-Yu; Zhai, Bao-Ping; Lim, Ka-Sing; McInerney, Caitríona E.; Hu, Gao
2017-01-01
Many moths finish their long distance migration after consecutive nights, but little is known about migration duration and distance. This information is key to predicting migration pathways and understanding their evolution. Tethered flight experiments have shown that ovarian development of rice leaf folder (Cnaphalocrocis medinalis [Guenée]) moths was accelerated and synchronized by flight in the first three nights, whereby most females were then matured for mating and reproduction. Thus, it was supposed that this moth might fly three nights to complete its migration. To test this hypothesis, 9 year’s field data for C. medinalis was collected from Nanning, Guangxi Autonomous Region in China. Forward trajectories indicated that most moths arrived at suitable breeding areas after three nights’ flight. Thus, for C. medinalis this migration duration and distance was a reasonable adaptation to the geographic distribution of suitable habitat. The development of female moth ovaries after three consecutive night flights appears to be a well-balanced survival strategy for this species to strike between migration and reproduction benefits. Hence, an optimum solution of migration-reproduction trade-offs in energy allocation evolved in response to the natural selection on migration route and physiological traits. PMID:28051132
Detection of Fast Moving and Accelerating Targets Compensating Range and Doppler Migration
2014-06-01
Radon -Fourier transform has been introduced to realize long- term coherent integration of the moving targets with range migration [8, 9]. Radon ...2010) Long-time coherent integration for radar target detection base on Radon -Fourier transform, in Proceedings of the IEEE Radar Conference, pp...432–436. 9. Xu, J., Yu, J., Peng, Y. & Xia, X. (2011) Radon -Fourier transform for radar target detection, I: Generalized Doppler filter bank, IEEE
Robillard, A; Therrien, J F; Gauthier, G; Clark, K M; Bêty, J
2016-06-01
Irruptive migration is mostly observed in species specialized on pulsed resources and is thought to be a response to unpredictable changes in food supply. We assessed two alternative hypotheses to explain the periodic winter irruptions of snowy owls Bubo scandiacus every 3-5 years in temperate North America: (a) the lack-of-food hypothesis, which states that a crash in small mammal abundance on the Arctic breeding grounds forces owls to move out of the tundra massively to search for food in winter; (b) the breeding-success hypothesis, which states that high abundance of tundra small mammals during the summer allows for high production of young, thus increasing the pool of migrants moving south the following winter. We modeled winter irruptions of snowy owls in relation to summer food resources and geographic location. Winter abundance of owls was obtained from citizen-based surveys from 1994 to 2011 and summer abundance of small mammals was collected in summer at two distant sites in Canada: Bylot Island, NU (eastern High Arctic) and Daring Lake, NWT (central Low Arctic). Winter owl abundance was positively related to prey abundance during the previous summer at both sites and tended to decrease from western to eastern temperate North America. Irruptive migration of snowy owls was therefore best explained by the breeding success hypothesis and was apparently caused by large-scale summer variations in food. Our results, combined with previous findings, suggest that the main determinants of irruptive migration may be species specific even in a guild of apparently similar species.
Rural development and urban migration: can we keep them down on the farm?
Rhoda, R
1983-01-01
This study tests the hypothesis that rural development projects and programs reduce rural-urban migration. The author presents various factors in the social theories of migration, including those relating to origin and destination, intervening obstacles such as distance, and personal factors. 3 economic models of migration are the human capital or cost-benefit approach, the expected income model, and the intersectoral linkage model. Empirical studies of migration indicate that: 1) rural areas with high rates of out-migration tend to have high population densities or high ratios of labor to arable land, 2) distance inhibits migration, 3) rural-urban migration is positively correlated with family income level, and 4) selectivity differences in socioeconomic status between migrants and nonmigrants often are grouped into development packages which might include irrigation, new varieties of seed, subsidized credit, increased extension, and improved marketing arrangements. The migration impacts of some of these efforts are described: 1) land reform usually is expected to slow rural out-migration because it normally increases labor utilization in rural areas, but this is a limited effect, 2) migration effects of the Green Revolution technology are mainly in rural-rural migration, and 3) agricultural mechanization may stimulate rural-urban migration in the long run. Development of rural social services migh have various effects on rural-urban migration. Better rural education, which improves the chances of urban employment, will stimulate rural-urban migration, while successful rural family planning programs will have a negative effect in the long run as there will be reduced population pressure on arable land. Better rural health services might reduce the incentive for rural-urban migration as well. It is suggested that governments reconsider policies which rely on rural development to curb rural-urban migration and alleviate problems of urban poverty and underemployment.
Vendelbo, Mikkel H; Christensen, Britt; Grønbæk, Solbritt B; Høgild, Morten; Madsen, Michael; Pedersen, Steen B; Jørgensen, Jens O L; Jessen, Niels; Møller, Niels
2015-09-01
Fasting and exercise stimulates, whereas glucose suppresses GH secretion, but it is uncertain how these conditions impact GH signaling in peripheral tissues. To test the original 'feast and famine hypothesis' by Rabinowitz and Zierler, according to which the metabolic effects of GH are predominant during fasting, we specifically hypothesized that fasting and exercise act in synergy to increase STAT-5b target gene expression. Eight healthy men were studied on two occasions in relation to a 1 h exercise bout: i) with a concomitant i.v. glucose infusion ('feast') and ii) after a 36 h fast ('famine'). Muscle and fat biopsy specimens were obtained before, immediately after, and 30 min after exercise. GH increased during exercise on both examination days and this effect was amplified by fasting, and free fatty acid (FFA) levels increased after fasting. STAT-5b phosphorylation increased similarly following exercise on both occasions. In adipose tissue, suppressors of cytokine signaling 1 (SOCS1) and SOCS2 were increased after exercise on the fasting day and both fasting and exercise increased cytokine inducible SH2-containing protein (CISH). In muscle, SOCS2 and CISH mRNA were persistently increased after fasting. Muscle SOCS1, SOCS3, and CISH mRNA expression increased, whereas SOCS2 decreased after exercise on both examination days. This study demonstrates that fasting and exercise act in tandem to amplify STAT-5b target gene expression (SOCS and CISH) in adipose and muscle tissue in accordance with the 'feast and famine hypothesis'; the adipose tissue signaling responses, which hitherto have not been scrutinized, may play a particular role in promoting FFA mobilization. © 2015 European Society of Endocrinology.
Anteau, M.J.; Afton, A.D.
2009-01-01
The “spring condition” hypothesis (SCH) states that nutrition during spring migration affects survival, reproductive success, and, ultimately, population size of migratory birds. The North American population of Lesser Scaup (Aythya affinis) has experienced a marked decline, apparently because of poor recruitment. An important prediction of the SCH is that female Lesser Scaup have low lipid reserves during spring migration. We previously reported that lipid reserves and body mass of females collected on migratory stopover areas in northwestern Minnesota in springs 2000–2001 were lower than those on the same areas in the 1980s and markedly lower than those collected at Pool 19 of the Mississippi River in 2000–2001, an important preceding stopover area. However, it was unclear whether these findings represented a site-specific result or a landscape-scale phenomenon. Accordingly, we examined lipid and body mass of 641 female Lesser Scaup migrating across seven eco-physiographic regions of Iowa, Minnesota, and North Dakota during springs 2003–2005. We found that lipids and body mass of females throughout the Upper Midwest were similar to or less than the low values documented in northwestern Minnesota in springs 2000–2001 and markedly lower than those of females at Pool 19 in springs 2000–2001. Accordingly, our results are consistent with a prediction of the SCH, because lipid and body mass of females are low throughout this large landscape, lower than at an important preceding stopover area, and lower than all historical values. Finally, our results suggest the potential for cross-seasonal influences of nutrition on recruitment and that a stronger management focus on spring migration habitats may be necessary for conservation and recovery of declining migratory birds, especially Lesser Scaup.
Zheng, Chenguang; Bieri, Kevin Wood; Trettel, Sean Gregory; Colgin, Laura Lee
2015-01-01
In hippocampal area CA1 of rats, the frequency of gamma activity has been shown to increase with running speed (Ahmed and Mehta, 2012). This finding suggests that different gamma frequencies simply allow for different timings of transitions across cell assemblies at varying running speeds, rather than serving unique functions. However, accumulating evidence supports the conclusion that slow (~25–55 Hz) and fast (~60–100 Hz) gamma are distinct network states with different functions. If slow and fast gamma constitute distinct network states, then it is possible that slow and fast gamma frequencies are differentially affected by running speed. In this study, we tested this hypothesis and found that slow and fast gamma frequencies change differently as a function of running speed in hippocampal areas CA1 and CA3, and in the superficial layers of the medial entorhinal cortex (MEC). Fast gamma frequencies increased with increasing running speed in all three areas. Slow gamma frequencies changed significantly less across different speeds. Furthermore, at high running speeds, CA3 firing rates were low, and MEC firing rates were high, suggesting that CA1 transitions from CA3 inputs to MEC inputs as running speed increases. These results support the hypothesis that slow and fast gamma reflect functionally distinct states in the hippocampal network, with fast gamma driven by MEC at high running speeds and slow gamma driven by CA3 at low running speeds. PMID:25601003
DAN (NBL1) promotes collective neural crest migration by restraining uncontrolled invasion.
McLennan, Rebecca; Bailey, Caleb M; Schumacher, Linus J; Teddy, Jessica M; Morrison, Jason A; Kasemeier-Kulesa, Jennifer C; Wolfe, Lauren A; Gogol, Madeline M; Baker, Ruth E; Maini, Philip K; Kulesa, Paul M
2017-10-02
Neural crest cells are both highly migratory and significant to vertebrate organogenesis. However, the signals that regulate neural crest cell migration remain unclear. In this study, we test the function of differential screening-selected gene aberrant in neuroblastoma (DAN), a bone morphogenetic protein (BMP) antagonist we detected by analysis of the chick cranial mesoderm. Our analysis shows that, before neural crest cell exit from the hindbrain, DAN is expressed in the mesoderm, and then it becomes absent along cell migratory pathways. Cranial neural crest and metastatic melanoma cells avoid DAN protein stripes in vitro. Addition of DAN reduces the speed of migrating cells in vivo and in vitro, respectively. In vivo loss of function of DAN results in enhanced neural crest cell migration by increasing speed and directionality. Computer model simulations support the hypothesis that DAN restrains cell migration by regulating cell speed. Collectively, our results identify DAN as a novel factor that inhibits uncontrolled neural crest and metastatic melanoma invasion and promotes collective migration in a manner consistent with the inhibition of BMP signaling. © 2017 McLennan et al.
DAN (NBL1) promotes collective neural crest migration by restraining uncontrolled invasion
McLennan, Rebecca; Bailey, Caleb M.; Schumacher, Linus J.; Teddy, Jessica M.; Morrison, Jason A.; Kasemeier-Kulesa, Jennifer C.; Wolfe, Lauren A.; Gogol, Madeline M.; Baker, Ruth E.; Maini, Philip K.
2017-01-01
Neural crest cells are both highly migratory and significant to vertebrate organogenesis. However, the signals that regulate neural crest cell migration remain unclear. In this study, we test the function of differential screening-selected gene aberrant in neuroblastoma (DAN), a bone morphogenetic protein (BMP) antagonist we detected by analysis of the chick cranial mesoderm. Our analysis shows that, before neural crest cell exit from the hindbrain, DAN is expressed in the mesoderm, and then it becomes absent along cell migratory pathways. Cranial neural crest and metastatic melanoma cells avoid DAN protein stripes in vitro. Addition of DAN reduces the speed of migrating cells in vivo and in vitro, respectively. In vivo loss of function of DAN results in enhanced neural crest cell migration by increasing speed and directionality. Computer model simulations support the hypothesis that DAN restrains cell migration by regulating cell speed. Collectively, our results identify DAN as a novel factor that inhibits uncontrolled neural crest and metastatic melanoma invasion and promotes collective migration in a manner consistent with the inhibition of BMP signaling. PMID:28811280
Todaro migration and primacy models: relevance to the urbanization of the Philippines.
Cuervo, J C; Kim Hin, D H
1998-08-01
"This paper looks into the set of factors that [influence] the urbanization of the Philippines, a fast-growing developing economy in South East Asia. The paper demonstrates that the ¿migration primacy urbanization model' is an appropriate one that is able to explain the urbanization case in the Philippines. The model draws supporting evidence from rank-size distribution analysis of major cities in the Philippines, a detailed examination of historical, geopolitical and economic forces which have evolved in the development of the Philippines as a sovereign state, and the applicability of the Todaro model on rural-urban migration to the Philippines." excerpt
Li conduction pathways in solid-state electrolytes: Insights from dynamics and polarizability
NASA Astrophysics Data System (ADS)
Takahashi, Tsukasa; Nagagiri, Koki; Iwadate, Yasuhiko; Utsuno, Futoshi; Yamaguchi, Hiroshi; Ohkubo, Takahiro
2018-04-01
We investigated the dynamical and polarizable properties of Li7P3S11, which is a fast Li-conducting material, by performing ab initio molecular dynamics simulations. A zone analysis based on Li migration highlighted the effective path along which Li diffuses in the crystal. The effective Li diffusion was analyzed in terms of the dynamics and polarizability of the sulfur surrounding the Li migration path. High flexibility and large anisotropic polarizability were the characteristics identified as necessary for the formation of an effective Li migration path. These findings provide principles for understanding Li conduction in solid-state electrolytes.
Agrarian change and labour migration in the Sierra of Ecuador.
Peek, P
1980-01-01
"Among the effects produced in the Sierra of Ecuador by the programme of land reforms launched in 1964 was a reduction in the incomes from small-scale farming. At the same time, the growth of productive employment in urban areas was insufficient to provide round-the-year work to the fast growing army of jobseekers. Analysis of the agrarian structure and migration patterns before and after 1964 suggests that it was primarily this combination of circumstances that produced a pronounced shift towards short-term rather than permanent migration, thereby providing industry and services with the labour they needed while avoiding the disadvantages of severe urban overpopulation." excerpt
Migration and the evolution of duetting in songbirds.
Logue, David M; Hall, Michelle L
2014-05-07
Many groups of animals defend shared resources with coordinated signals. The best-studied of these signals are the vocal duets produced by mated pairs of birds. Duets are believed to be more common among tropical-breeding species, but a comprehensive test of this hypothesis is lacking, and the mechanisms that generate latitudinal patterns in duetting are not known. We used a stratified sample of 372 songbird species to conduct the first broad-scale, phylogenetically explicit analysis of duet evolution. We found that duetting evolves in association with the absence of migration, but not with sexual monochromatism or tropical breeding. We conclude that the evolution of migration exerts a major influence on the evolution of duetting. The perceived association between tropical breeding and duetting may be a by-product of the migration-duetting relationship. Migration reduces the average duration of partnerships, potentially reducing the benefits of cooperative behaviour, including duetting. Ultimately, the evolution of coordinated resource-defence signals in songbirds may be driven by ecological conditions that favour sedentary lifestyles and social stability.
On the Reality of Illusory Conjunctions.
Botella, Juan; Suero, Manuel; Durán, Juan I
2017-01-01
The reality of illusory conjunctions in perception has been sometimes questioned, arguing that they can be explained by other mechanisms. Most relevant experiments are based on migrations along the space dimension. But the low rate of illusory conjunctions along space can easily hide them among other types of errors. As migrations over time are a more frequent phenomenon, illusory conjunctions can be disentangled from other errors. We report an experiment in which series of colored letters were presented in several spatial locations, allowing for migrations over both space and time. The distribution of frequencies were fit by several multinomial tree models based on alternative hypothesis about illusory conjunctions and the potential sources of free-floating features. The best-fit model acknowledges that most illusory conjunctions are migrations in the time domain. Migrations in space are probably present, but the rate is very low. Other conjunction errors, as those produced by guessing or miscategorizations of the to-be-reported feature, are also present in the experiment. The main conclusion is that illusory conjunctions do exist.
Saeed, I; Roepstorff, A; Rasmussen, T; Høg, M; Jungersen, G
2001-01-01
Experiments on use of an agar-gel method for recovery of migrating Ascaris suum larvae from the liver and lungs of pigs were conducted to obtain fast standardized methods. Subsamples of blended tissues of pig liver and lungs were mixed with agar to a final concentration of 1% agar and the larvae allowed to migrate out of the agar-gel into 0.9% NaCl at 38°C. The results showed that within 3 h more than 88% of the recoverable larvae migrated out of the liver agar-gel and more than 83% of the obtained larvae migrated out of the lung agar-gel. The larvae were subsequently available in a very clean suspension which reduced the sample counting time. Blending the liver for 60 sec in a commercial blender showed significantly higher larvae recovery than blending for 30 sec. Addition of gentamycin to reduce bacterial growth during incubation, glucose to increase larval motility during migration or ice to increase sedimentation of migrated larvae did not influence larvae recovery significantly. PMID:11503373
Behavior of sea urchin primary mesenchyme cells in artificial extracellular matrices.
Katow, H
1986-02-01
The primary mesenchyme cells (PMCs) were separated from the mesenchyme blastulae of Pseudocentrotus depressus using differential adhesiveness of these cells to plastic Petri dishes. These cells were incubated in various artificial extracellular matrices (ECMs) including horse serum plasma fibronectin, mouse EHS sarcoma laminin, mouse EHS sarcoma type IV collagen, and porcine skin dermatan sulfate. The cell behavior was monitored by a time-lapse videomicrograph and analysed with a microcomputer. The ultrastructure of the artificial ECM was examined by transmission electron microscopy (TEM), while the ultrastructure of the PMCs was examined by scanning electron microscopy (SEM). The PMCs did not migrate in type IV collagen gel, laminin or dermatan sulfate matrix either with or without collagen gel, whereas PMCs in the matrix which was composed of fibronectin and collagen gel migrated considerably. However, the most active and extensive PMC migration was seen in the matrix which contained dermatan sulfate in addition to fibronectin and collagen gel. This PMC migration involved an increase not only of migration speed but also of proportion of migration-promoted cells. These results support the hypothesis that the mechanism of PMC migration involves fibronectin, collagen and sulfated proteoglycans which contain dermatan sulfate.
Dehydration rate determines the degree of membrane damage and desiccation tolerance in bryophytes.
Cruz de Carvalho, Ricardo; Catalá, Myriam; Branquinho, Cristina; Marques da Silva, Jorge; Barreno, Eva
2017-03-01
Desiccation tolerant (DT) organisms are able to withstand an extended loss of body water and rapidly resume metabolism upon rehydration. This ability, however, is strongly dependent on a slow dehydration rate. Fast dehydration affects membrane integrity leading to intracellular solute leakage upon rehydration and thereby impairs metabolism recovery. We test the hypothesis that the increased cell membrane damage and membrane permeability observed under fast dehydration, compared with slow dehydration, is related to an increase in lipid peroxidation. Our results reject this hypothesis because following rehydration lipid peroxidation remains unaltered, a fact that could be due to the high increase of NO upon rehydration. However, in fast-dried samples we found a strong signal of red autofluorescence upon rehydration, which correlates with an increase in ROS production and with membrane leakage, particularly the case of phenolics. This could be used as a bioindicator of oxidative stress and membrane damage. © 2016 Scandinavian Plant Physiology Society.
Kasakoff, A B; Adams, J W
1995-09-01
The empirical findings of this study challenge the premise that stayers in a population, historical or otherwise, capture the changes over time that occurred in populations as a whole. Systematic differences between stayers and movers occur and result in differences in ages at vital events. This paper aims to show how two kinds of differences can be distinguished in a set of data. The data used in this analysis was obtained from nine published genealogies on New England families with ancestors who migrated prior to 1650 and settled throughout the northern region of the United States until 1880. The most complete data on births and deaths pertained to 3612 men descended in the male line before 1840. 72% of this sample moved from the native towns during their lifetimes. The findings lend support to Ruggles' hypothesis about migration censorship--that studies based on family reconstructions systematically underestimate ages at vital events because of the exclusion of migrants. The aim was not to support or disprove his hypothesis but to distinguish two sources of differences due to migration censorship and due to different socioeconomic opportunities in which movers and stayers have lived their lives. The data document the differences in marriage age and age at death between movers and stayers. Movers were found to marry and die at later ages than stayers. Some socioeconomic factors might delay the ages at vital events and counteract the increases in age associated with migration censorship and thus reflect similar age patterns as stayers. Socioeconomic opportunities are considered as factors affecting both stayers and movers. The conclusion is reached that a "correction" factor is not possible to extrapolate from stayers to the larger population because of changing migration rates over time. Migration censorship is described as being the product of boundary making that is typical of colonizing populations. Few options are available for eliminating censorship. This study focuses on questioning the analytical units in historical demography and suggests closer study of migrants and the disaggregation of ages at vital events in the study of such complex processes as modernization.
NASA Astrophysics Data System (ADS)
Joshi, Ajit; Appold, Martin S.
2017-01-01
Seismic and hydrologic observations of the Nankai accretionary wedge décollement, Japan, show that overpressures at depths greater than ˜2 km beneath the seafloor could have increased to near lithostatic values due to sediment compaction and diagenesis, clay dehydration, and shearing. The resultant high overpressures are hypothesized then to have migrated in rapid surges or pulses called `porosity waves' up the dip of the décollement. Such high velocities—much higher than expected Darcy fluxes—are possible for porosity waves if the porous media through which the waves travel are deformable enough for porosity and permeability to increase strongly with increasing fluid pressure. The present study aimed to test the hypothesis that porosity waves can travel at rates (kilometers per day) fast enough to cause aseismic slip in the Nankai décollement. The hypothesis was tested using a one-dimensional numerical solution to the fluid mass conservation equation for elastic porous media. Results show that porosity waves generated at depths of ˜2 km from overpressures in excess of lithostatic pressure can propagate at rates sufficient to account for aseismic slip along the décollement over a wide range of hydrogeological conditions. Sensitivity analysis showed porosity wave velocity to be strongly dependent on specific storage, fluid viscosity, and the permeability-depth gradient. Overpressure slightly less than lithostatic pressure could also produce porosity waves capable of traveling at velocities sufficient to cause aseismic slip, provided that hydrogeologic properties of the décollement are near the limits of their geologically reasonable ranges.
Hybrid songbirds employ intermediate routes in a migratory divide.
Delmore, Kira E; Irwin, Darren E
2014-10-01
Migratory divides are contact zones between populations that use different routes to navigate around unsuitable areas on seasonal migration. Hybrids in divides have been predicted to employ intermediate and potentially inferior routes. We provide the first direct test of this hypothesis, using light-level geolocators to track birds breeding in a hybrid zone between Swainson's thrushes in western Canada. Compared to parental forms, hybrids exhibited increased variability in their migratory routes, with some using intermediate routes that crossed arid and mountainous regions, and some using the same routes as one parental group on fall migration and the other on spring migration. Hybrids also tended to use geographically intermediate wintering sites. Analysis of genetic variation across the hybrid zone suggests moderately strong selection against hybrids. These results indicate that seasonal migratory behaviour might be a source of selection against hybrids, supporting a possible role for migration in speciation. © 2014 John Wiley & Sons Ltd/CNRS.
Testing the Glucose Hypothesis among Capuchin Monkeys: Does Glucose Boost Self-Control?
Parrish, Audrey E; Emerson, Ishara D; Rossettie, Mattea S; Beran, Michael J
2016-08-03
The ego-depletion hypothesis states that self-control diminishes over time and with exertion. Accordingly, the glucose hypothesis attributes this depletion of self-control resources to decreases in blood glucose levels. Research has led to mixed findings among humans and nonhuman animals, with limited evidence for such a link between glucose and self-control among closely-related nonhuman primate species, but some evidence from more distantly related species (e.g., honeybees and dogs). We tested this hypothesis in capuchin monkeys by manipulating the sugar content of a calorie-matched breakfast meal following a nocturnal fast, and then presenting each monkey with the accumulation self-control task. Monkeys were presented with food items one-by-one until the subject retrieved and ate the accumulating items, which required continual inhibition of food retrieval in the face of an increasingly desirable reward. Results indicated no relationship between self-control performance on the accumulation task and glucose ingestion levels following a fast. These results do not provide support for the glucose hypothesis of self-control among capuchin monkeys within the presented paradigm. Further research assessing self-control and its physiological correlates among closely- and distantly-related species is warranted to shed light on the mechanisms underlying self-control behavior.
Kishkinev, Dmitry; Heyers, Dominik; Woodworth, Bradley K; Mitchell, Greg W; Hobson, Keith A; Norris, D Ryan
2016-11-23
The ability to navigate implies that animals have the capability to compensate for geographical displacement and return to their initial goal or target. Although some species are capable of adjusting their direction after displacement, the environmental cues used to achieve this remain elusive. Two possible cues are geomagnetic parameters (magnetic map hypothesis) or atmospheric odour-forming gradients (olfactory map hypothesis). In this study, we examined both of these hypotheses by surgically deactivating either the magnetic or olfactory sensory systems in experienced white-throated sparrows (Zonotrichia albicollis) captured in southern Ontario, Canada, during spring migration. Treated, sham-treated, and intact birds were then displaced 2,200 km west to Saskatchewan, Canada. Tracking their initial post-displacement migration using an array of automated VHF receiving towers, we found no evidence in any of the groups for compensatory directional response towards their expected breeding grounds. Our results suggest that white-throated sparrows may fall back to a simple constant-vector orientation strategy instead of performing true navigation after they have been geographically displaced to an unfamiliar area during spring migration. Such a basic strategy may be more common than currently thought in experienced migratory birds and its occurrence could be determined by habitat preferences or range size.
Early hominins in Europe: The Galerian migration hypothesis
NASA Astrophysics Data System (ADS)
Muttoni, G.; Scardia, G.; Kent, D.
2017-12-01
Our updated review of sites bearing hominin remains and/or tools from Europe, including new findings from the Balkans, still indicates that the only compelling evidence of hominin presence in these regions was only since 0.9 Ma (million-years-ago), bracketed by the end of the Jaramillo geomagnetic polarity subchron (0.99 Ma) and the Brunhes-Matuyama polarity boundary (0.78 Ma). This time window straddled the late Early Pleistocene climate transition (EPR) at the onset of enhanced glacial/interglacial activity that reverberated worldwide. Europe may have become initially populated during the EPR when, possibly for the first time in the Pleistocene, vast and exploitable ecosystems were generated along the eustatically emergent Danube-Po migration gateway. These newly formed settings, characterized by lowlands with open grasslands and reduced woody cover during glacial/interglacial transitions, represented the closest analogues to the savanna environment to which several large Galerian immigrant mammals (e.g., African and Asian megaherbivores) linked with hominins in a common food web were adapted and could expand into en route to Europe. The question of when hominins first arrived in Europe thus places the issue in the context of changes in climate, paleogeography and faunal associations as potential environmental drivers and controlling agents in a specific time frame, a key feature of the Galerian migration hypothesis.
Kishkinev, Dmitry; Heyers, Dominik; Woodworth, Bradley K.; Mitchell, Greg W.; Hobson, Keith A.; Norris, D. Ryan
2016-01-01
The ability to navigate implies that animals have the capability to compensate for geographical displacement and return to their initial goal or target. Although some species are capable of adjusting their direction after displacement, the environmental cues used to achieve this remain elusive. Two possible cues are geomagnetic parameters (magnetic map hypothesis) or atmospheric odour-forming gradients (olfactory map hypothesis). In this study, we examined both of these hypotheses by surgically deactivating either the magnetic or olfactory sensory systems in experienced white-throated sparrows (Zonotrichia albicollis) captured in southern Ontario, Canada, during spring migration. Treated, sham-treated, and intact birds were then displaced 2,200 km west to Saskatchewan, Canada. Tracking their initial post-displacement migration using an array of automated VHF receiving towers, we found no evidence in any of the groups for compensatory directional response towards their expected breeding grounds. Our results suggest that white-throated sparrows may fall back to a simple constant-vector orientation strategy instead of performing true navigation after they have been geographically displaced to an unfamiliar area during spring migration. Such a basic strategy may be more common than currently thought in experienced migratory birds and its occurrence could be determined by habitat preferences or range size. PMID:27876843
Anteau, Michael J.; Anteau, Andrea C.E.; Afton, Alan D.
2011-01-01
We examined chronology and intensity of molt and their relationships to nutrient reserves (lipid and protein) of Lesser Scaup (Aythya affinisK/i>) to test predictions of two competing hypotheses. The "staggered cost" hypothesis states that contour-feather molt is nutritionally costly and should not occur during nutritionally costly periods of the annual cycle unless adequate nutrients are available. The "breeding plumage" hypothesis states that prealternate molt must be complete prior to nesting, regardless of nutrient availability. Males and females were completing prebasic molt during winter (Louisiana) and had similar molt intensities. Females underwent prealternate molt during spring migration (Illinois and Minnesota) and prebreeding (Manitoba) periods; 53% and 93% of females were in moderate to heavy molt in Minnesota and Manitoba, respectively, despite experiencing other substantial nutritional costs. Intensity of prealternate molt was not correlated with lipid reserves even though females, on average, were nutritionally stressed. Molt intensity was not negatively correlated with protein reserves at any location. Chronology and intensity of prealternate molt varied little and were not temporally staggered from other nutritionally costly events. Prealternate molt did not influence nutrient reserves, and nutrient reserves likely were not the ultimate factor influencing chronology or intensity of prealternate molt of females. We surmise that nutrients required for prealternate molt come from exogenous sources and that the "staggered cost" hypothesis does not explain chronology of prealternate molt in female Lesser Scaup; rather, it appears that molt must be complete prior to nesting, consistent with the "breeding plumage" hypothesis.
The physiological basis of the migration continuum in brown trout (Salmo trutta).
Boel, Mikkel; Aarestrup, Kim; Baktoft, Henrik; Larsen, Torben; Søndergaard Madsen, Steffen; Malte, Hans; Skov, Christian; Svendsen, Jon C; Koed, Anders
2014-01-01
Partial migration is common in many animal taxa; however, the physiological variation underpinning migration strategies remains poorly understood. Among salmonid fishes, brown trout (Salmo trutta) is one of the species that exhibits the most complex variation in sympatric migration strategies, expressed as a migration continuum, ranging from residency to anadromy. In looking at brown trout, our objective with this study was to test the hypothesis that variation in migration strategies is underpinned by physiological variation. Prior to migration, physiological samples were taken from fish in the stream and then released at the capture site. Using telemetry, we subsequently classified fish as resident, short-distance migrants (potamodromous), or long-distance migrants (potentially anadromous). Our results revealed that fish belonging to the resident strategy differed from those exhibiting any of the two migratory strategies. Gill Na,K-ATPase activity, condition factor, and indicators of nutritional status suggested that trout from the two migratory strategies were smoltified and energetically depleted before leaving the stream, compared to those in the resident strategy. The trout belonging to the two migratory strategies were generally similar; however, lower triacylglycerides levels in the short-distance migrants indicated that they were more lipid depleted prior to migration compared with the long-distance migrants. In the context of migration cost, we suggest that additional lipid depletion makes migrants more inclined to terminate migration at the first given feeding opportunity, whereas individuals that are less lipid depleted will migrate farther. Collectively, our data suggest that the energetic state of individual fish provides a possible mechanism underpinning the migration continuum in brown trout.
On the simultaneous action of two competitive antagonists
Ginsborg, B.L.; Stephenson, R.P.
1974-01-01
1 A hypothesis is outlined predicting the conditions in which the addition of a second competitive antagonist will increase rather than reduce the response to an agonist. 2 Experiments were performed with the guinea-pig ileum as the test tissue, hexyltrimethyl ammonium as the agonist, benzilyltropine methiodide as the `slow' antagonist and pentyltriethyl ammonium as the `fast' antagonist. 3 The results are consistent with the hypothesis, if the affinity constant for hexyltrimethyl ammonium is between 2.7 and 3.7 × 104 M-1, if the dissociation time constant for the slow antagonist is greater than 10 min and if that for the fast antagonist is less than 10 seconds. PMID:4451745
Fasting is a physiological stimulus of vagus-mediated enhancement of nociception in the female rat.
Khasar, S G; Reichling, D B; Green, P G; Isenberg, W M; Levine, J D
2003-01-01
The vagus nerve modulates nociception by a mechanism dependent upon gonadal hormones and the adrenal medulla. In the present study we tested the hypothesis that this modulation is dynamically controlled by physiological stimulation of structures innervated by the subdiaphragmatic vagus. Specifically, food deprivation (fasting) was employed to increase activity in the subdiaphragmatic vagus, and the experiments were performed mainly in female rats because our previous observations suggested that baseline activity in the pathway is lower in females than in males. Consistent with the hypothesis, after a 48-h fast, female rats exhibited increased nociceptive behavior in the formalin test. In contrast, fasting had no effect on formalin-evoked nociceptive behavior in male rats. The fasting-induced effect on nociception appears to be mediated by the vagus nerve since it is prevented by subdiaphragmatic vagotomy. Also similar to the previously characterized vagus-mediated modulation, the effect of fasting in the female is blocked by gonadectomy or adrenal medullectomy, and hormone replacement with 17beta-estradiol in gonadectomized female rats restored the effect of fasting. Decreased glucose metabolism apparently does not play a significant role in the effect of fasting on nociception, since the effect was unchanged when 5% glucose was provided in the drinking water throughout the fasting period. On the other hand, increasing the bulk content of the stomach (without providing nutrients) by infusion of petrolatum significantly attenuated the effect of fasting during the interphase period of the formalin response, suggesting that decreased gut distention, and possibly motility, are important in fasting-induced enhancement of nociception. These results indicate that fasting is a physiological activator of the vagus-mediated pain modulation pathway. This suggests the possibility that, especially in females, natural periodic changes in gut distention and motility may control an ongoing vagus-mediated adjustment in the organism's nociceptive sensitivity.
Iron Mineralogy and Uranium-Binding Environment in the Rhizosphere of a Wetland Soil
Wetlands mitigate the migration of groundwater contaminants through a series of biogeochemical gradients that enhance multiple contaminant-binding processes. The hypothesis of this study was that wetland plant roots contribute organic carbon and release O2 within the ...
Podbielska, Maria; Levery, Steven B; Hogan, Edward L
2011-01-01
A family of neutral glycosphingolipids containing a 3-O-acetyl-sphingosine galactosylceramide (3-SAG) has been characterized. Seven new derivatives of galactosylceramide (GalCer), designated as fast-migrating cerebrosides (FMCs) by TLC retention factor, have been identified. The simplest compounds – FMC-1 and FMC-2 – of this series have been characterized as the 3-SAG containing nonhydroxy and hydroxy fatty acyl, respectively. The next two – FMC-3 and FMC-4 – add 6-O-acetyl-galactose and the most complex glycosphingolipids, FMC-5, -6 and -7, are 2,3,4,6-tetra-O-acetyl-3-SAG. These hydrophobic myelin lipid biomarkers coappear with GalCer during myelinogenesis and disappear along with GalCer in de- or dys-myelinating disorders. Myelin lipid antigens, including FMCs, are keys to myelin biology, opening the possibility of new and novel immune modulatory tools for treatment of autoimmune diseases including multiple sclerosis. PMID:22701512
The greenscape shapes surfing of resource waves in a large migratory herbivore.
Aikens, Ellen O; Kauffman, Matthew J; Merkle, Jerod A; Dwinnell, Samantha P H; Fralick, Gary L; Monteith, Kevin L
2017-06-01
The Green Wave Hypothesis posits that herbivore migration manifests in response to waves of spring green-up (i.e. green-wave surfing). Nonetheless, empirical support for the Green Wave Hypothesis is mixed, and a framework for understanding variation in surfing is lacking. In a population of migratory mule deer (Odocoileus hemionus), 31% surfed plant phenology in spring as well as a theoretically perfect surfer, and 98% surfed better than random. Green-wave surfing varied among individuals and was unrelated to age or energetic state. Instead, the greenscape, which we define as the order, rate and duration of green-up along migratory routes, was the primary factor influencing surfing. Our results indicate that migratory routes are more than a link between seasonal ranges, and they provide an important, but often overlooked, foraging habitat. In addition, the spatiotemporal configuration of forage resources that propagate along migratory routes shape animal movement and presumably, energy gains during migration. © 2017 John Wiley & Sons Ltd/CNRS.
An experimental approach in revisiting the magnetic orientation of cattle.
Weijers, Debby; Hemerik, Lia; Heitkönig, Ignas M A
2018-01-01
In response to the increasing number of observational studies on an apparent south-north orientation in non-homing, non-migrating terrestrial mammals, we experimentally tested the alignment hypothesis using strong neodymium magnets on the resting orientation of individual cattle in Portugal. Contrary to the hypothesis, the 34 cows in the experiment showed no directional preference, neither with, nor without a strong neodymium magnet fixed to their collar. The concurrently performed 2,428 daytime observations-excluding the hottest part of the day-of 659 resting individual cattle did not show a south-north alignment when at rest either. The preferred compass orientation of these cows was on average 130 degrees from the magnetic north (i.e., south east). Cow compass orientation correlated significantly with sun direction, but not with wind direction. In as far as we can determine, this is the first experimental test on magnetic orientation in larger, non-homing, non-migrating mammals. These experimental and observational findings do not support previously published suggestions on the magnetic south-north alignment in these mammals.
Cancer cell: using inflammation to invade the host
Arias, José-Ignacio; Aller, María-Angeles; Arias, Jaime
2007-01-01
Background Inflammation is increasingly recognized as an important component of tumorigenesis, although the mechanisms involved are not fully characterized. The invasive capacity of cancers is reflected in the classic metastatic cascade: tumor (T), node (N) and metastasis (M). However, this staging system for cancer would also have a tumoral biological significance. Presentation of the hypothesis To integrate the mechanisms that control the inflammatory response in the actual staging system of cancer. It is considered that in both processes of inflammation and cancer, three successive phenotypes are presented that represent the expression of trophic functional systems of increasing metabolic complexity for using oxygen. Testing the hypothesis While a malignant tumor develops it express phenotypes that also share the inflammatory response such as: an ischemic phenotype (anoxic-hypoxic), a leukocytic phenotype with anaerobic glycolysis and migration, and an angiogenic phenotype with hyperactivity of glycolytic enzymes, tumor proliferation and metastasis, and cachexia of the host. The increasing metabolic complexity of the tumor cell to use oxygen allows for it to be released, migrate and proliferate, thus creating structures of growing complexity. Implication of the hypothesis One aim of cancer gene therapy could be the induction of oxidative phosphorylation, the last metabolic step required by inflammation in order to differentiate the tissue that it produces. PMID:17437633
Partial diel migration: A facultative migration underpinned by long-term inter-individual variation.
Harrison, Philip M; Gutowsky, Lee F G; Martins, Eduardo G; Patterson, David A; Cooke, Steven J; Power, Michael
2017-09-01
The variations in migration that comprise partial diel migrations, putatively occur entirely as a consequence of behavioural flexibility. However, seasonal partial migrations are increasingly recognised to be mediated by a combination of reversible plasticity in response to environmental variation and individual variation due to genetic and environmental effects. Here, we test the hypothesis that while partial diel migration heterogeneity occurs primarily due to short-term within-individual flexibility in behaviour, long-term individual differences in migratory behaviour also underpin this migration variation. Specifically, we use a hierarchical behavioural reaction norm approach to partition within- and among-individual variation in depth use and diel plasticity in depth use, across short- and long-term time-scales, in a group of 47 burbot (Lota lota) tagged with depth-sensing acoustic telemetry transmitters. We found that within-individual variation at the among-dates-within-seasons and among-seasons scale, explained the dominant proportion of phenotypic variation. However, individuals also repeatedly differed in their expression of migration behaviour over the 2 year study duration. These results reveal that diel migration variation occurs primarily due to short-term within-individual flexibility in depth use and diel migration behaviour. However, repeatable individual differences also played a key role in mediating partial diel migration. These findings represent a significant advancement of our understanding of the mechanisms generating the important, yet poorly understood phenomena of partial diel migration. Moreover, given the pervasive occurrence of diel migrations across aquatic taxa, these findings indicate that individual differences have an important, yet previously unacknowledged role in structuring the temporal and vertical dynamics of aquatic ecosystems. © 2017 The Authors. Journal of Animal Ecology © 2017 British Ecological Society.
ERIC Educational Resources Information Center
Strong, Gemma K.; Torgerson, Carole J.; Torgerson, David; Hulme, Charles
2011-01-01
Background: Fast ForWord is a suite of computer-based language intervention programs designed to improve children's reading and oral language skills. The programs are based on the hypothesis that oral language difficulties often arise from a rapid auditory temporal processing deficit that compromises the development of phonological…
Roles of endothelial A-type lamins in migration of T cells on and under endothelial layers
NASA Astrophysics Data System (ADS)
Song, Kwang Hoon; Lee, Jaehyun; Park, Hyoungjun; Kim, Hye Mi; Park, Jeehun; Kwon, Keon Woo; Doh, Junsang
2016-03-01
Stiff nuclei in cell-dense microenvironments may serve as distinct biomechanical cues for cell migration, but such a possibility has not been tested experimentally. As a first step addressing this question, we altered nuclear stiffness of endothelial cells (ECs) by reducing the expression of A-type lamins using siRNA, and investigated the migration of T cells on and under EC layers. While most T cells crawling on control EC layers avoided crossing over EC nuclei, a significantly higher fraction of T cells on EC layers with reduced expression of A-type lamins crossed over EC nuclei. This result suggests that stiff EC nuclei underlying T cells may serve as “duro-repulsive” cues to direct T cell migration toward less stiff EC cytoplasm. During subendothelial migration under EC layers with reduced expression of A-type lamins, T cells made prolonged contact and substantially deformed EC nuclei, resulting in reduced speed and directional persistence. This result suggests that EC nuclear stiffness promotes fast and directionally persistent subendothelial migration of T cells by allowing minimum interaction between T cells and EC nuclei.
Terrestrial planet formation in the presence of migrating super-Earths
DOE Office of Scientific and Technical Information (OSTI.GOV)
Izidoro, André; Morbidelli, Alessandro; Raymond, Sean N., E-mail: izidoro.costa@gmail.com, E-mail: morbidelli@oca.eu, E-mail: rayray.sean@gmail.com
Super-Earths with orbital periods less than 100 days are extremely abundant around Sun-like stars. It is unlikely that these planets formed at their current locations. Rather, they likely formed at large distances from the star and subsequently migrated inward. Here we use N-body simulations to study the effect of super-Earths on the accretion of rocky planets. In our simulations, one or more super-Earths migrate inward through a disk of planetary embryos and planetesimals embedded in a gaseous disk. We tested a wide range of migration speeds and configurations. Fast-migrating super-Earths (τ{sub mig} ∼ 0.01-0.1 Myr) only have a modest effectmore » on the protoplanetary embryos and planetesimals. Sufficient material survives to form rocky, Earth-like planets on orbits exterior to the super-Earths'. In contrast, slowly migrating super-Earths shepherd rocky material interior to their orbits and strongly deplete the terrestrial planet-forming zone. In this situation any Earth-sized planets in the habitable zone are extremely volatile-rich and are therefore probably not Earth-like.« less
Possible linkage between neuronal recruitment and flight distance in migratory birds
Barkan, Shay; Roll, Uri; Yom-Tov, Yoram; Wassenaar, Leonard I.; Barnea, Anat
2016-01-01
New neuronal recruitment in an adult animal’s brain is presumed to contribute to brain plasticity and increase the animal’s ability to contend with new and changing environments. During long-distance migration, birds migrating greater distances are exposed to more diverse spatial information. Thus, we hypothesized that greater migration distance in birds would correlate with the recruitment of new neurons into the brain regions involved with migratory navigation. We tested this hypothesis on two Palearctic migrants - reed warblers (Acrocephalus scirpaceus) and turtle doves (Streptopelia turtur), caught in Israel while returning from Africa in spring and summer. Birds were injected with a neuronal birth marker and later inspected for new neurons in brain regions known to play a role in navigation - the hippocampus and nidopallium caudolateral. We calculated the migration distance of each individual by matching feather isotopic values (δ2H and δ13C) to winter base-maps of these isotopes in Africa. Our findings suggest a positive correlation between migration distance and new neuronal recruitment in two brain regions - the hippocampus in reed warblers and nidopallium caudolateral in turtle doves. This multidisciplinary approach provides new insights into the ability of the avian brain to adapt to different migration challenges. PMID:26905978
Cell migration is another player of the minute virus of mice infection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garcin, Pierre O.; Panté, Nelly, E-mail: pante@zoology.ubc.ca
2014-11-15
The parvovirus minute virus of mice, prototype strain (MVMp), preferentially infects and kills cancer cells. This intrinsic MVMp oncotropism may depend in part on the early stages of MVMp infection. To test this hypothesis, we investigated the early events of MVMp infection in mouse LA9 fibroblasts and a highly invasive mouse mammary tumor cell line derived from polyomavirus middle T antigen-mediated transformation. Using a combination of fluorescence and electron microscopy, we found that various parameters of the cell migration process affect MVMp infection. We show that, after binding to the plasma membrane, MVMp particles rapidly cluster at the leading edgemore » of migrating cells, which exhibit higher levels of MVMp uptake than non-motile cells. Moreover, promoting cell migration on a fibronectin matrix increased MVMp infection, and induction of epithelial–mesenchymal transition allowed MVMp replication in non-permissive epithelial cells. Hence, we propose that cell migration influences the early stages of MVMp infection. - Highlights: • We document early steps of MVMp infection. • We report that a fibronectin matrix promotes MVMp infection. • We show that cellular migration plays a role in MVMp uptake. • We show that epithelial–mesenchymal transition allows MVMp replication.« less
Does behavioural thermoregulation underlie seasonal movements in Lake Erie walleye?
Raby, Graham D.; Vandergoot, Christopher; Hayden, Todd A.; Faust, Matthew D.; Kraus, Richard T.; Dettmers, John M.; Cooke, Steven J.; Zhao, Yingming; Fisk, Aaron T.; Krueger, Charles C.
2018-01-01
Thermoregulation is presumed to be a widespread determinant of behaviour in fishes, but has not often been investigated as a mechanism shaping long-distance migrations. We used acoustic telemetry and animal-borne thermal loggers to test the hypothesis that seasonal migration in adult walleye (Sander vitreus) in Lake Erie is size- and (or) sex-specific and related to behavioural thermoregulation. Female walleye migrated out of the warm, shallow western basin earlier than did males and were 1.8 times more likely to be detected on acoustic receivers in the deeper and cooler eastern basin. The few fish that remained in the western basin were restricted to a smaller range of higher temperatures (≥20 °C) than those that migrated to the central and eastern basins (∼16–21 °C). However, temperature records from walleye in the central basin were nearly indistinguishable from those in the eastern basin, suggesting thermal preferences alone could not explain migration to the eastern basin. As such, our effort to understand the mechanisms that cause migratory behaviours has generated mixed evidence on the role of temperature and that factors like foraging opportunities may have synergistic roles in the migration.
Thiam, Hawa-Racine; Vargas, Pablo; Carpi, Nicolas; Crespo, Carolina Lage; Raab, Matthew; Terriac, Emmanuel; King, Megan C.; Jacobelli, Jordan; Alberts, Arthur S.; Stradal, Theresia; Lennon-Dumenil, Ana-Maria; Piel, Matthieu
2016-01-01
Cell migration has two opposite faces: although necessary for physiological processes such as immune responses, it can also have detrimental effects by enabling metastatic cells to invade new organs. In vivo, migration occurs in complex environments and often requires a high cellular deformability, a property limited by the cell nucleus. Here we show that dendritic cells, the sentinels of the immune system, possess a mechanism to pass through micrometric constrictions. This mechanism is based on a rapid Arp2/3-dependent actin nucleation around the nucleus that disrupts the nuclear lamina, the main structure limiting nuclear deformability. The cells' requirement for Arp2/3 to pass through constrictions can be relieved when nuclear stiffness is decreased by suppressing lamin A/C expression. We propose a new role for Arp2/3 in three-dimensional cell migration, allowing fast-moving cells such as leukocytes to rapidly and efficiently migrate through narrow gaps, a process probably important for their function. PMID:26975831
1994-05-01
Wilhelm Wundt proposed that there are two types of subjects in sim- ple RT experiments: fast-reacting subjects, who respond before they fully...quickly as possible to auditory stimuli. This result appears to confirm long-standing speculations of Wundt that fast- and slow-reacting subjects...accord with the hypothesis of Wundt and others that slower ("sensorial") responders wait to fully perceive a stimulus and then react to their perception
NASA Astrophysics Data System (ADS)
di Giovambattista, R.; Tyupkin, Yu
The cyclic migration of weak earthquakes (M 2.2) which occurred during the yearprior to the October 15, 1996 (M = 4.9) Reggio Emilia earthquake isdiscussed in this paper. The onset of this migration was associated with theoccurrence of the October 10, 1995 (M = 4.8) Lunigiana earthquakeabout 90 km southwest from the epicenter of the Reggio Emiliaearthquake. At least three series of earthquakes migrating from theepicentral area of the Lunigiana earthquake in the northeast direction wereobserved. The migration of earthquakes of the first series terminated at adistance of about 30 km from the epicenter of the Reggio Emiliaearthquake. The earthquake migration of the other two series halted atabout 10 km from the Reggio Emilia epicenter. The average rate ofearthquake migration was about 200-300 km/year, while the time ofrecurrence of the observed cycles varied from 68 to 178 days. Weakearthquakes migrated along the transversal fault zones and sometimesjumped from one fault to another. A correlation between the migratingearthquakes and tidal variations is analysed. We discuss the hypothesis thatthe analyzed area is in a state of stress approaching the limit of thelong-term durability of crustal rocks and that the observed cyclic migrationis a result of a combination of a more or less regular evolution of tectonicand tidal variations.
Gubernskaya, Zoya
2015-03-01
This research contributes to the "immigrant health paradox" debate by testing the hypothesis that older age at migration is associated with the increased risk of poor health in later life. Using the 1992-2008 Health and Retirement Study, I construct linear random-intercept models to estimate self-rated health (SRH) trajectories after age 50 for the native and foreign born by age at migration. At age 50, both Hispanic and non-Hispanic foreign born report better SRH compared with their native-born counterparts, net of race, gender, and education. Non-Hispanic foreign born who migrated after age 35 and Hispanic foreign born who migrated after age 18, however, experience steeper decline in SRH after age 50, which results in a health disadvantage vis-à-vis the native born in old age. Education has a smaller protective effect on SRH for the foreign born, especially those who migrated as adults. Age at migration is an important factor for understanding health status of older immigrants. Steeper health decline in later life of the foreign born who migrated in advanced ages may be related to longer exposure to unfavorable conditions in home countries and limited opportunities for incorporation in the United States. © The Author 2014. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Kimizuka, Hajime; Ogata, Shigenobu; Shiga, Motoyuki
2018-01-01
Understanding the underlying mechanism of the nanostructure-mediated high diffusivity of H in Pd is of recent scientific interest and also crucial for industrial applications. Here, we present a decisive scenario explaining the emergence of the fast lattice-diffusion mode of interstitial H in face-centered cubic Pd, based on the quantum mechanical natures of both electrons and nuclei under finite strains. Ab initio path-integral molecular dynamics was applied to predict the temperature- and strain-dependent free energy profiles for H migration in Pd over a temperature range of 150-600 K and under hydrostatic tensile strains of 0.0%-2.4%; such strain conditions are likely to occur in real systems, especially around the elastic fields induced by nanostructured defects. The simulated results revealed that, for preferential H location at octahedral sites, as in unstrained Pd, the activation barrier for H migration (Q ) was drastically increased with decreasing temperature owing to nuclear quantum effects. In contrast, as tetrahedral sites increased in stability with lattice expansion, nuclear quantum effects became less prominent and ceased impeding H migration. This implies that the nature of the diffusion mechanism gradually changes from quantum- to classical-like as the strain is increased. For H atoms in Pd at the hydrostatic strain of ˜2.4 % , we determined that the mechanism promoted fast lattice diffusion (Q =0.11 eV) of approximately 20 times the rate of conventional H diffusion (Q =0.23 eV) in unstrained Pd at a room temperature of 300 K.
Metabolic Effects of Intermittent Fasting.
Patterson, Ruth E; Sears, Dorothy D
2017-08-21
The objective of this review is to provide an overview of intermittent fasting regimens, summarize the evidence on the health benefits of intermittent fasting, and discuss physiological mechanisms by which intermittent fasting might lead to improved health outcomes. A MEDLINE search was performed using PubMed and the terms "intermittent fasting," "fasting," "time-restricted feeding," and "food timing." Modified fasting regimens appear to promote weight loss and may improve metabolic health. Several lines of evidence also support the hypothesis that eating patterns that reduce or eliminate nighttime eating and prolong nightly fasting intervals may result in sustained improvements in human health. Intermittent fasting regimens are hypothesized to influence metabolic regulation via effects on (a) circadian biology, (b) the gut microbiome, and (c) modifiable lifestyle behaviors, such as sleep. If proven to be efficacious, these eating regimens offer promising nonpharmacological approaches to improving health at the population level, with multiple public health benefits.
Don't Fence Me In: Free Meanders in a Confined River Valley
NASA Astrophysics Data System (ADS)
Eke, E. C.; Wilcock, P. R.
2015-12-01
The interaction between meandering river channels and inerodible valley walls provides a useful test of our ability to understand meander dynamics. In some cases, river meanders confined between valley walls display distinctive angular bends in a dynamic equilibrium such that their size and shape persist as the meander migrates. In other cases, meander geometry is more varied and changes as the meander migrates. The ratio of channel to valley width has been identified as a useful parameter for defining confined meanders, but is not sufficient to distinguish cases in which sharp angular bends are able to migrate with little change in geometry. Here, we examine the effect of water and sediment supply on the geometry of confined rivers in order to identify conditions under which meander geometry reaches a persistent dynamic equilibrium. Because channel width and meander geometry are closely related, we use a numerical meander model that allows for independent migration of both banks, thereby allowing channel width to vary in space and time. We hypothesize that confined meanders with persistent angular bends have smaller transport rates of bed material and that their migration is driven by erosion of the cutbank (bank-pull migration). When bed material supply is sufficiently large that point bar deposition drives meander migration (bar-push migration), confined meander bends have a larger radius of curvature and a geometry that varies as the meander migrates. We test this hypothesis using historical patterns of confined meander migration for rivers with different rates of sediment supply and bed material transport. Interpretation of the meander migration pattern is provided by the free-width meander migration model.
NASA Astrophysics Data System (ADS)
Wynn, Michelle L.; Rupp, Paul; Trainor, Paul A.; Schnell, Santiago; Kulesa, Paul M.
2013-06-01
Directed cell migration often involves at least two types of cell motility that include multicellular streaming and chain migration. However, what is unclear is how cell contact dynamics and the distinct microenvironments through which cells travel influence the selection of one migratory mode or the other. The embryonic and highly invasive neural crest (NC) are an excellent model system to study this question since NC cells have been observed in vivo to display both of these types of cell motility. Here, we present data from tissue transplantation experiments in chick and in silico modeling that test our hypothesis that cell contact dynamics with each other and the microenvironment promote and sustain either multicellular stream or chain migration. We show that when premigratory cranial NC cells (at the pre-otic level) are transplanted into a more caudal region in the head (at the post-otic level), cells alter their characteristic stream behavior and migrate in chains. Similarly, post-otic NC cells migrate in streams after transplantation into the pre-otic hindbrain, suggesting that local microenvironmental signals dictate the mode of NC cell migration. Simulations of an agent-based model (ABM) that integrates the NC cell behavioral data predict that chain migration critically depends on the interplay of biased cell-cell contact and local microenvironment signals. Together, this integrated modeling and experimental approach suggests new experiments and offers a powerful tool to examine mechanisms that underlie complex cell migration patterns.
Effect of indium addition in U-Zr metallic fuel on lanthanide migration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Yeon Soo; Wiencek, T.; O'Hare, E.
Advanced fast reactor concepts to achieve ultra-high burnup (~50%) require prevention of fuel-cladding chemical interaction (FCCI). Fission product lanthanide accumulation at high burnup is substantial and significantly contributes to FCCI upon migration to the cladding interface. Diffusion barriers are typically used to prevent interaction of the lanthanides with the cladding. A more active method has been proposed which immobilizes the lanthanides through formation of stable compounds with an additive. Theoretical analysis showed that indium, thallium, and antimony are good candidates. Indium was the strongest candidate because of its low reactivity with iron-based cladding alloys. Characterization of the as-fabricated alloys wasmore » performed to determine the effectiveness of the indium addition in forming compounds with lanthanides, represented by cerium. Tests to examine how effectively the dopant prevents lanthanide migration under a thermal gradient were also performed. The results showed that indium effectively prevented cerium migration.« less
Emergent patterns of collective cell migration under tubular confinement.
Xi, Wang; Sonam, Surabhi; Beng Saw, Thuan; Ladoux, Benoit; Teck Lim, Chwee
2017-11-15
Collective epithelial behaviors are essential for the development of lumens in organs. However, conventional assays of planar systems fail to replicate cell cohorts of tubular structures that advance in concerted ways on out-of-plane curved and confined surfaces, such as ductal elongation in vivo. Here, we mimic such coordinated tissue migration by forming lumens of epithelial cell sheets inside microtubes of 1-10 cell lengths in diameter. We show that these cell tubes reproduce the physiological apical-basal polarity, and have actin alignment, cell orientation, tissue organization, and migration modes that depend on the extent of tubular confinement and/or curvature. In contrast to flat constraint, the cell sheets in a highly constricted smaller microtube demonstrate slow motion with periodic relaxation, but fast overall movement in large microtubes. Altogether, our findings provide insights into the emerging migratory modes for epithelial migration and growth under tubular confinement, which are reminiscent of the in vivo scenario.
McCloskey, Sarah E.; Uher-Koch, Brian D.; Schmutz, Joel A.; Fondell, Thomas F.
2018-01-01
Identifying post-breeding migration and wintering distributions of migratory birds is important for understanding factors that may drive population dynamics. Red-throated Loons (Gavia stellata) are widely distributed across Alaska and currently have varying population trends, including some populations with recent periods of decline. To investigate population differentiation and the location of migration pathways and wintering areas, which may inform population trend patterns, we used satellite transmitters (n = 32) to describe migration patterns of four geographically separate breeding populations of Red-throated Loons in Alaska. On average (± SD) Red-throated Loons underwent long (6,288 ± 1,825 km) fall and spring migrations predominantly along coastlines. The most northern population (Arctic Coastal Plain) migrated westward to East Asia and traveled approximately 2,000 km farther to wintering sites than the three more southerly populations (Seward Peninsula, Yukon-Kuskokwim Delta, and Copper River Delta) which migrated south along the Pacific coast of North America. These migration paths are consistent with the hypothesis that Red-throated Loons from the Arctic Coastal Plain are exposed to contaminants in East Asia. The three more southerly breeding populations demonstrated a chain migration pattern in which the more northerly breeding populations generally wintered in more northerly latitudes. Collectively, the migration paths observed in this study demonstrate that some geographically distinct breeding populations overlap in wintering distribution while others use highly different wintering areas. Red-throated Loon population trends in Alaska may therefore be driven by a wide range of effects throughout the annual cycle.
Diet-consumer nitrogen isotope fractionation for prolonged fasting arthropods.
Mizota, Chitoshi; Yamanaka, Toshiro
2011-12-01
Nitrogen acquisition for cellular metabolism during diapause is a primary concern for herbivorous arthropods. Analyses of naturally occurring stable isotopes of nitrogen help elucidate the mechanism. Relevant articles have cited (58 times up to mid-June 2011) anomalously elevated δ(15)N (per mil deviation of (15)N/(14)N, relative to atmospheric nitrogen=0 ‰) values (diet-consumer nitrogen isotope fractionation; up to 12 ‰) for a prolonged fasting raspberry beetle (Byturus tomentosus Degeer (Coleoptera: Byturidae)), which feeds on red raspberries (Rubus idaeus: δ(15)N= ~ +2 ‰). Biologists have hypothesised that extensive recycling of amino acid nitrogen is responsible for the prolonged fasting. Since this hypothesis was proposed in 1995, scientists have integrated biochemical and molecular knowledge to support the mechanism of prolonged diapausing of animals. To test the validity of the recycling hypothesis, we analysed tissue nitrogen isotope ratios for four Japanese arthropods: the shield bug Parastrachia japonensis Scott (Hemiptera: Cydnidae), the burrower bug Canthophorus niveimarginatus Scott (Hemiptera: Cydnidae), leaf beetle Gastrophysa atrocyanea Motschulsky (Coleoptera: Chrysomelidae) and the Japanese oak silkworm Antheraea yamamai (Lepidoptera: Saturniidae), all of which fast for more than 6 months as part of their life-history strategy. Resulting diet-consumer nitrogen isotope discrimination during fasting ranged from 0 to 7‰, as in many commonly known terrestrial arthropods. We conclude that prolonged fasting of arthropods does not always result in anomalous diet-consumer nitrogen isotope fractionation, since the recycling process is closed or nearly closed with respect to nitrogen isotopes.
Anteau, M.J.; Anteau, A.C.E.; Afton, A.D.
2011-01-01
We examined chronology and intensity of molt and their relationships to nutrient reserves (lipid and protein) of Lesser Scaup (Aythya affinis) to test predictions of two competing hypotheses. The "staggered cost" hypothesis states that contour-feather molt is nutritionally costly and should not occur during nutritionally costly periods of the annual cycle unless adequate nutrients are available. The "breeding plumage" hypothesis states that prealternate molt must be complete prior to nesting, regardless of nutrient availability. Males and females were completing prebasic molt during winter (Louisiana) and had similar molt intensities. Females underwent prealternate molt during spring migration (Illinois and Minnesota) and prebreeding (Manitoba) periods; 53% and 93% of females were in moderate to heavy molt in Minnesota and Manitoba, respectively, despite experiencing other substantial nutritional costs. Intensity of prealternate molt was not correlated with lipid reserves even though females, on average, were nutritionally stressed. Molt intensity was not negatively correlated with protein reserves at any location. Chronology and intensity of prealternate molt varied little and were not temporally staggered from other nutritionally costly events. Prealternate molt did not influence nutrient reserves, and nutrient reserves likely were not the ultimate factor influencing chronology or intensity of prealternate molt of females. We surmise that nutrients required for prealternate molt come from exogenous sources and that the "staggered cost" hypothesis does not explain chronology of prealternate molt in female Lesser Scaup; rather, it appears that molt must be complete prior to nesting, consistent with the "breeding plumage" hypothesis. ?? The Cooper Ornithological Society 2011.
van der Ven, E; Dalman, C; Wicks, S; Allebeck, P; Magnusson, C; van Os, J; Selten, J P
2015-03-01
The selection hypothesis posits that the increased rates of psychosis observed among migrants are due to selective migration of people who are predisposed to develop the disorder. To test this hypothesis, we examined whether risk factors for psychosis are more prevalent among future emigrants. A cohort of 49,321 Swedish military conscripts was assessed at age 18 years on cannabis use, IQ, psychiatric diagnosis, social adjustment, history of trauma and urbanicity of place of upbringing. Through data linkage we examined whether these exposures predicted emigration out of Sweden. We also calculated the emigrants' hypothetical relative risk compared with non-emigrants for developing a non-affective psychotic disorder. Low IQ [odds ratio (OR) 0.5, 95% confidence interval (95% CI) 0.3-0.9] and 'poor social adjustment' (OR 0.4, 95% CI 0.2-0.8) were significantly less prevalent among prospective emigrants, whereas a history of urban upbringing (OR 2.3, 95% CI 1.4-3.7) was significantly more common. Apart from a non-significant increase in cannabis use among emigrants (OR 1.6, 95% CI 0.8-3.1), there were no major group differences in any other risk factors. Compared to non-emigrants, hypothetical relative risks for developing non-affective psychotic disorder were 0.7 (95% CI 0.4-1.2) and 0.8 (95% CI 0.7-1.0), respectively, for emigrants narrowly and broadly defined. This study adds to an increasing body of evidence opposing the selection hypothesis.
Nonmetropolitan Population Increase, the Attractiveness of Rural Living, and Race.
ERIC Educational Resources Information Center
Fliegel, Frederick C.; Sofranko, Andrew J.
1984-01-01
Examines racial composition of population growth in 75 Midwestern counties experiencing substantial immigration; concludes that the inmigrant stream is predominantly White. Examines reasons given by 500 urban-to-rural migrants to those counties. Suggests exploration of the hypothesis that racial aversion is implicated in migration to rural areas.…
ERIC Educational Resources Information Center
Bryjak, George J.
1984-01-01
Indian cities are growing rapidly due to natural increase and migration from rural areas. This has caused huge pollution problems and has resulted in overcrowded schools and hospitals. Conflict between religious groups has increased; so has crime. India is modernizing, but not fast enough. (CS)
Migration and the evolution of duetting in songbirds
Logue, David M.; Hall, Michelle L.
2014-01-01
Many groups of animals defend shared resources with coordinated signals. The best-studied of these signals are the vocal duets produced by mated pairs of birds. Duets are believed to be more common among tropical-breeding species, but a comprehensive test of this hypothesis is lacking, and the mechanisms that generate latitudinal patterns in duetting are not known. We used a stratified sample of 372 songbird species to conduct the first broad-scale, phylogenetically explicit analysis of duet evolution. We found that duetting evolves in association with the absence of migration, but not with sexual monochromatism or tropical breeding. We conclude that the evolution of migration exerts a major influence on the evolution of duetting. The perceived association between tropical breeding and duetting may be a by-product of the migration–duetting relationship. Migration reduces the average duration of partnerships, potentially reducing the benefits of cooperative behaviour, including duetting. Ultimately, the evolution of coordinated resource-defence signals in songbirds may be driven by ecological conditions that favour sedentary lifestyles and social stability. PMID:24619447
Dcdc2 knockout mice display exacerbated developmental disruptions following knockdown of Dcx
Wang, Yu; Yin, Xiuyin; Rosen, Glenn; Gabel, Lisa; Guadiana, Sarah M.; Sarkisian, Matthew R; Galaburda, Albert M.; LoTurco, Joseph J.
2011-01-01
The dyslexia-associated gene DCDC2 is a member of the DCX family of genes known to play roles in neurogenesis, neuronal migration and differentiation. Here we report the first phenotypic analysis of a Dcdc2 knockout mouse. Comparisons between Dcdc2 knockout mice and wild type littermates revealed no significant differences in neuronal migration, neocortical lamination, neuronal cilliogenesis or dendritic differentiation. Considering previous studies showing genetic interactions and potential functional redundancy among members of the DCX family, we tested whether decreasing Dcx expression by RNAi would differentially impair neurodevelopment in Dcdc2 knockouts and wild type mice. Consistent with this hypothesis, we found that deficits in neuronal migration, and dendritic growth caused by RNAi of Dcx were more severe in Dcdc2 knockouts than in wild type mice with the same transfection. These results indicate that Dcdc2 is not required for neurogenesis, neuronal migration or differentiation in mice, but may have partial functional redundancy with Dcx. PMID:21689730
Rechisky, Erin L.; Welch, David W.; Porter, Aswea D.; Jacobs-Scott, Melinda C.; Winchell, Paul M.
2013-01-01
Multiple dam passage during seaward migration is thought to reduce the subsequent survival of Snake River Chinook salmon. This hypothesis developed because juvenile Chinook salmon from the Snake River, the Columbia River’s largest tributary, migrate >700 km through eight hydropower dams and have lower adult return rates than downstream populations that migrate through only 3 or 4 dams. Using a large-scale telemetry array, we tested whether survival of hatchery-reared juvenile Snake River spring Chinook salmon is reduced in the estuary and coastal ocean relative to a downstream, hatchery-reared population from the Yakima River. During the initial 750-km, 1-mo-long migration through the estuary and coastal ocean, we found no evidence of differential survival; therefore, poorer adult returns of Snake River Chinook may develop far from the Columbia River. Thus, hydrosystem mitigation efforts may be ineffective if differential mortality rates develop in the North Pacific Ocean for reasons unrelated to dam passage. PMID:23576733
Prospect theory and the decision to move or stay.
Clark, William A V; Lisowski, William
2017-09-05
Migration has always involved stress and risk. More risk-averse households are less likely to move, while less risk-averse households will seek out opportunities and migrate. We investigate how the theoretical contributions of prospect theory, and specifically the endowment effect, can provide new understanding about decisions whether to migrate or not. We test the hypothesis that risk aversion extends the length of stay in the dwelling and, by extension, in the local labor and housing markets. How long people remain in place is a function, we hypothesize, of their independently self-assessed propensity to take risks, after controlling for a range of demographic and socioeconomic characteristics. We use the theoretical insights of prospect theory and the endowment effect (the notion of the "use value" differing from the "exchange value") to explain the likelihood of staying after controlling for life-course events. The results confirm the explanatory power of self-assessed risk in the decision to migrate or stay and, equally important, confirm the role of the endowment effect.
Prospect theory and the decision to move or stay
Clark, William A. V.
2017-01-01
Migration has always involved stress and risk. More risk-averse households are less likely to move, while less risk-averse households will seek out opportunities and migrate. We investigate how the theoretical contributions of prospect theory, and specifically the endowment effect, can provide new understanding about decisions whether to migrate or not. We test the hypothesis that risk aversion extends the length of stay in the dwelling and, by extension, in the local labor and housing markets. How long people remain in place is a function, we hypothesize, of their independently self-assessed propensity to take risks, after controlling for a range of demographic and socioeconomic characteristics. We use the theoretical insights of prospect theory and the endowment effect (the notion of the “use value” differing from the “exchange value”) to explain the likelihood of staying after controlling for life-course events. The results confirm the explanatory power of self-assessed risk in the decision to migrate or stay and, equally important, confirm the role of the endowment effect. PMID:28827341
Evidence for ion migration in hybrid perovskite solar cells with minimal hysteresis
Calado, Philip; Telford, Andrew M.; Bryant, Daniel; Li, Xiaoe; Nelson, Jenny; O'Regan, Brian C.; Barnes, Piers R.F.
2016-01-01
Ion migration has been proposed as a possible cause of photovoltaic current–voltage hysteresis in hybrid perovskite solar cells. A major objection to this hypothesis is that hysteresis can be reduced by changing the interfacial contact materials; however, this is unlikely to significantly influence the behaviour of mobile ionic charge within the perovskite phase. Here, we show that the primary effects of ion migration can be observed regardless of whether the contacts were changed to give devices with or without significant hysteresis. Transient optoelectronic measurements combined with device simulations indicate that electric-field screening, consistent with ion migration, is similar in both high and low hysteresis CH3NH3PbI3 cells. Simulation of the photovoltage and photocurrent transients shows that hysteresis requires the combination of both mobile ionic charge and recombination near the perovskite-contact interfaces. Passivating contact recombination results in higher photogenerated charge concentrations at forward bias which screen the ionic charge, reducing hysteresis. PMID:28004653
High migration rates shape the postglacial history of amphi-Atlantic bryophytes.
Désamoré, Aurélie; Patiño, Jairo; Mardulyn, Patrick; Mcdaniel, Stuart F; Zanatta, Florian; Laenen, Benjamin; Vanderpoorten, Alain
2016-11-01
Paleontological evidence and current patterns of angiosperm species richness suggest that European biota experienced more severe bottlenecks than North American ones during the last glacial maximum. How well this pattern fits other plant species is less clear. Bryophytes offer a unique opportunity to contrast the impact of the last glacial maximum in North America and Europe because about 60% of the European bryoflora is shared with North America. Here, we use population genetic analyses based on approximate Bayesian computation on eight amphi-Atlantic species to test the hypothesis that North American populations were less impacted by the last glacial maximum, exhibiting higher levels of genetic diversity than European ones and ultimately serving as a refugium for the postglacial recolonization of Europe. In contrast with this hypothesis, the best-fit demographic model involved similar patterns of population size contractions, comparable levels of genetic diversity and balanced migration rates between European and North American populations. Our results thus suggest that bryophytes have experienced comparable demographic glacial histories on both sides of the Atlantic. Although a weak, but significant genetic structure was systematically recovered between European and North American populations, evidence for migration from and towards both continents suggests that amphi-Atlantic bryophyte population may function as a metapopulation network. Reconstructing the biogeographic history of either North American or European bryophyte populations therefore requires a large, trans-Atlantic geographic framework. © 2016 John Wiley & Sons Ltd.
Helsen, Kenny; Acharya, Kamal P; Brunet, Jörg; Cousins, Sara A O; Decocq, Guillaume; Hermy, Martin; Kolb, Annette; Lemke, Isgard H; Lenoir, Jonathan; Plue, Jan; Verheyen, Kris; De Frenne, Pieter; Graae, Bente J
2017-12-12
The importance of intraspecific trait variation (ITV) is increasingly acknowledged among plant ecologists. However, our understanding of what drives ITV between individual plants (ITV BI ) at the population level is still limited. Contrasting theoretical hypotheses state that ITV BI can be either suppressed (stress-reduced plasticity hypothesis) or enhanced (stress-induced variability hypothesis) under high abiotic stress. Similarly, other hypotheses predict either suppressed (niche packing hypothesis) or enhanced ITV BI (individual variation hypothesis) under high niche packing in species rich communities. In this study we assess the relative effects of both abiotic and biotic niche effects on ITV BI of four functional traits (leaf area, specific leaf area, plant height and seed mass), for three herbaceous plant species across a 2300 km long gradient in Europe. The study species were the slow colonizing Anemone nemorosa, a species with intermediate colonization rates, Milium effusum, and the fast colonizing, non-native Impatiens glandulifera. Climatic stress consistently increased ITV BI across species and traits. Soil nutrient stress, on the other hand, reduced ITV BI for A. nemorosa and I. glandulifera, but had a reversed effect for M. effusum. We furthermore observed a reversed effect of high niche packing on ITV BI for the fast colonizing non-native I. glandulifera (increased ITV BI ), as compared to the slow colonizing native A. nemorosa and M. effusum (reduced ITV BI ). Additionally, ITV BI in the fast colonizing species tended to be highest for the vegetative traits plant height and leaf area, but lowest for the measured generative trait seed mass. This study shows that stress can both reduce and increase ITV BI , seemingly supporting both the stress-reduced plasticity and stress-induced variability hypotheses. Similarly, niche packing effects on ITV BI supported both the niche packing hypothesis and the individual variation hypothesis. These results clearly illustrates the importance of simultaneously evaluating both abiotic and biotic factors on ITV BI . This study adds to the growing realization that within-population trait variation should not be ignored and can provide valuable ecological insights.
NASA Astrophysics Data System (ADS)
Phillips, R.; Craig, M.; Turner, B. L.; Liang, C.
2017-12-01
Climate predicts soil organic matter (SOM) stocks at the global scale, yet controls on SOM stocks at finer spatial scales are still debated. A current hypothesis predicts that carbon (C) and nitrogen (N) storage in soils should be greater when decomposition is slow owing to microbial competition for nutrients or the recalcitrance of organic substrates (hereafter the `slow decay' hypothesis). An alternative hypothesis predicts that soil C and N storage should be greater in soils with rapid decomposition, owing to the accelerated production of microbial residues and their stabilization on soil minerals (hereafter the `stabilization hypothesis'). To test these alternative hypotheses, we quantified soil C and N to 1-m depth in temperate forests across the Eastern and Midwestern US that varied in their biotic, climatic, and edaphic properties. At each site, we sampled (1) soils dominated by arbuscular mycorrhizal (AM) tree species, which typically have fast decay rates and accelerated N cycling, (2) soils dominated by ectomycorrhizal (ECM) tree species, which generally have slow decay rates and slow N cycling, and (3) soils supporting both AM and ECM trees. To the extent that trees and theor associated microbes reflect and reinforce soil conditions, support for the slow decay hypothesis would be greater SOM storage in ECM soils, whereas support for the stabilization hypothesis would be greater SOM storage in AM soils. We found support for both hypotheses, as slow decomposition in ECM soils increased C and N storage in topsoil, whereas fast decomposition in AM soils increased C and N storage in subsoil. However, at all sites we found 57% greater total C and N storage in the entire profile in AM- soils (P < 0.0001), supporting the stabilization hypothesis. Amino sugar biomarkers (an indicator of microbial necromass) and particle size fractionation revealed that the greater SOM storage in AM soils was driven by an accumulation of microbial residues on clay minerals and metal oxides. Taken together, our results indicate that tree species influence soil C and N storage owing to how differences in decay rates affect mineral stabilization of organic matter. Further, our findings indicate that slow decay promotes soil C and N stocks at the soil surface, whereas fast decay promotes greater soil C and N stocks at depth.
Corticosterone and pace of life in two life-history ecotypes of the garter snake Thamnophis elegans.
Palacios, Maria G; Sparkman, Amanda M; Bronikowski, Anne M
2012-02-01
Glucocorticoids are main candidates for mediating life-history trade-offs by regulating the balance between current reproduction and survival. It has been proposed that slow-living organisms should show higher stress-induced glucocorticoid levels that favor self-maintenance rather than current reproduction when compared to fast-living organisms. We tested this hypothesis in replicate populations of two ecotypes of the garter snake (Thamnophis elegans) that exhibit slow and fast pace of life strategies. We subjected free-ranging snakes to a capture-restraint protocol and compared the stress-induced corticosterone levels between slow- and fast-living snakes. We also used a five-year dataset to assess whether baseline corticosterone levels followed the same pattern as stress-induced levels in relation to pace of life. In accordance with the hypothesis, slow-living snakes showed higher stress-induced corticosterone levels than fast-living snakes. Baseline corticosterone levels showed a similar pattern with ecotype, although differences depended on the year of study. Overall, however, levels of glucocorticoids are higher in slow-living than fast-living snakes, which should favor self-maintenance and survival at the expense of current reproduction. The results of the present study are the first to relate glucocorticoid levels and pace of life in a reptilian system and contribute to our understanding of the physiological mechanisms involved in life-history evolution. Copyright © 2011 Elsevier Inc. All rights reserved.
Serrano, X; Baums, I B; O'Reilly, K; Smith, T B; Jones, R J; Shearer, T L; Nunes, F L D; Baker, A C
2014-09-01
The deep reef refugia hypothesis proposes that deep reefs can act as local recruitment sources for shallow reefs following disturbance. To test this hypothesis, nine polymorphic DNA microsatellite loci were developed and used to assess vertical connectivity in 583 coral colonies of the Caribbean depth-generalist coral Montastraea cavernosa. Samples were collected from three depth zones (≤10, 15-20 and ≥25 m) at sites in Florida (within the Upper Keys, Lower Keys and Dry Tortugas), Bermuda, and the U.S. Virgin Islands. Migration rates were estimated to determine the probability of coral larval migration from shallow to deep and from deep to shallow. Finally, algal symbiont (Symbiodinium spp.) diversity and distribution were assessed in a subset of corals to test whether symbiont depth zonation might indicate limited vertical connectivity. Overall, analyses revealed significant genetic differentiation by depth in Florida, but not in Bermuda or the U.S. Virgin Islands, despite high levels of horizontal connectivity between these geographic locations at shallow depths. Within Florida, greater vertical connectivity was observed in the Dry Tortugas compared to the Lower or Upper Keys. However, at all sites, and regardless of the extent of vertical connectivity, migration occurred asymmetrically, with greater likelihood of migration from shallow to intermediate/deep habitats. Finally, most colonies hosted a single Symbiodinium type (C3), ruling out symbiont depth zonation of the dominant symbiont type as a structuring factor. Together, these findings suggest that the potential for shallow reefs to recover from deep-water refugia in M. cavernosa is location-specific, varying among and within geographic locations likely as a consequence of local hydrology. © 2014 John Wiley & Sons Ltd.
Emmenegger, Tamara; Hahn, Steffen; Bauer, Silke
2014-03-21
The timing of migration substantially influences individual fitness. To match peak requirements with peak resource availability, we hypothesized that individual migrants schedule spring migration in close relation to seasonal changes in environmental conditions along the route and particularly, at the breeding destination.To test this hypothesis, we investigated the timing of spring migration in male common nightingales Luscinia megarhynchos, a small Palearctic-African long-distance migrant, by linking spring migration timing to the phenology of local environmental conditions at non-breeding migratory stopover and breeding sites. In particular, we related individual migration decisions (i.e. departure and arrival) of nine males to site-specific vegetation phenology (based on remotely sensed vegetation index) and a proxy of food availability (based on insects' thermal requirements). We found weak relation of departures from non-breeding and no relation of stopover timing with local phenology. However, our results showed that individuals, which departed early from their non-breeding sites and arrived early at the breeding site closely matched spring green-up there. Early arrival at the breeding site meant also a close match with peak food availability for adults and in a time-lagged manner, for offspring. Our findings suggest that male nightingale used cues other than local phenology for their departure decisions from non-breeding grounds and that there is some evidence for equalizing late departures during the course of migration.
miR-155 promotes cutaneous wound healing through enhanced keratinocytes migration by MMP-2.
Yang, Longlong; Zheng, Zhao; Zhou, Qin; Bai, Xiaozhi; Fan, Lei; Yang, Chen; Su, Linlin; Hu, Dahai
2017-04-01
Inflammation, re-epithelization and tissue remodeling are three essential steps during wound healing. The re-epithelization process plays the most important role which mainly involves keratinocyte proliferation and migration. miR-155 has been reported to participate in cell migration and transformation, however, its function in skin wound healing is largely unknown. Here we hypothesize that overexpression of miR-155 at wound edges could accelerate wound healing mediated by enhanced keratinocyte migration. To test this hypothesis, direct local injection of miR-155 expression plasmid to wound edges was conducted to overexpress miR-155 in vivo. Results shown that miR-155 significantly promoted wound healing and re-epithelization compared to control, while did not affect wound contraction. Also, miR-155 overexpression accelerated primarily cultured keratinocyte migration in vitro, but had no effect on cell proliferation. Importantly, western blot analysis shown that MMP-2 was significantly upregulated whiles its inhibitor TIMP-1 downregulated after miR-155 treatment. Moreover, the use of ARP-101, an MMP-2 inhibitor, effectively attenuated the accelerative effects on cell migration induced by miR-155. Taken together, our results suggest that miR-155 has the promote effect on wound healing that is probably mediated by accelerating keratinocyte migration via upregulated MMP-2 level. This study provides a rationale for the therapeutic effect of miR-155 on wound healing.
Migration of Carbon Adatoms on the Surface of Charged SWCNT
NASA Astrophysics Data System (ADS)
Han, Longtao; Krstic, Predrag; Kaganovich, Igor
2016-10-01
In volume plasma, the growth of SWCNT from a transition metal catalyst could be enhanced by incoming carbon flux on SWCNT surface, which is generated by the adsorption and migration of carbon adatoms on SWCNT surface. In addition, the nanotube can be charged by the irradiation of plasma particles. How this charging effect will influence the adsorption and migration behavior of carbon atom has not been revealed. Using Density Functional Theory, Nudged Elastic Band and Kinetic Monte Carlo method, we found equilibrium sites, vibrational frequency, adsorption energy, most probable pathways for migration of adatoms, and the barrier sizes along these pathways. The metallic (5,5) SWCNT can support a fast migration of the carbon adatom along a straight path with low barriers, which is further enhanced by the presence of negative charge on SWCNT. The enhancement is contributed by the higher adsorption energy and thence longer lifetime of adatom on the charged SWCNT surface. The lifetime and migration distance of adatom increase by three and two orders of magnitude, respectively, as shown by Kinetic Monte Carlo simulation. These results support the surface migration mechanism of SWCNT growth in plasma environment. This work was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Material Sciences and Engineering Division.
Vertical migration and nighttime distribution of adult bloaters in Lake Michigan
TeWinkel, Leslie M.; Fleischer, Guy W.
1999-01-01
The vertical migration and nighttime vertical distribution of adult bloaters Coregonus hoyi were investigated during late summer in Lake Michigan using acoustics simultaneously with either midwater or bottom trawling. Bloaters remained on or near bottom during the day. At night, bloaters were distributed throughout 30-65 m of water, depending on bottom depth. Shallowest depths of migration were not related to water temperature or incident light. Maximum distances of migration increased with increasing bottom depth. Nighttime midwater densities ranged from 0.00 to 6.61 fish/1,000 mA? and decreased with increasing bottom depth. Comparisons of length distributions showed that migrating and nonmigrating bloaters did not differ in size. However, at most sites, daytime bottom catches collected a greater proportion of larger individuals compared with nighttime midwater or bottom catches. Mean target strengths by 5-m strata indicated that migrating bloaters did not stratify by size in the water column at night. Overall, patterns in frequency of empty stomachs and mean digestive state of prey indicated that a portion of the bloater population fed in the water column at night. Bloater diet composition indicated both midwater feeding and bottom feeding. In sum, although a portion of the bloater population fed in the water column at night, bloaters were not limited to feeding at this time. This research confirmed that bloaters are opportunistic feeders and did not fully support the previously proposed hypothesis that bloater vertical migration is driven by the vertically migrating macroinvertebrate the opossom shrimp Mysis relicta.
Controlled levels of canonical Wnt signaling are required for neural crest migration.
Maj, Ewa; Künneke, Lutz; Loresch, Elisabeth; Grund, Anita; Melchert, Juliane; Pieler, Tomas; Aspelmeier, Timo; Borchers, Annette
2016-09-01
Canonical Wnt signaling plays a dominant role in the development of the neural crest (NC), a highly migratory cell population that generates a vast array of cell types. Canonical Wnt signaling is required for NC induction as well as differentiation, however its role in NC migration remains largely unknown. Analyzing nuclear localization of β-catenin as readout for canonical Wnt activity, we detect nuclear β-catenin in premigratory but not migratory Xenopus NC cells suggesting that canonical Wnt activity has to decrease to basal levels to enable NC migration. To define a possible function of canonical Wnt signaling in Xenopus NC migration, canonical Wnt signaling was modulated at different time points after NC induction. This was accomplished using either chemical modulators affecting β-catenin stability or inducible glucocorticoid fusion constructs of Lef/Tcf transcription factors. In vivo analysis of NC migration by whole mount in situ hybridization demonstrates that ectopic activation of canonical Wnt signaling inhibits cranial NC migration. Further, NC transplantation experiments confirm that this effect is tissue-autonomous. In addition, live-cell imaging in combination with biophysical data analysis of explanted NC cells confirms the in vivo findings and demonstrates that modulation of canonical Wnt signaling affects the ability of NC cells to perform single cell migration. Thus, our data support the hypothesis that canonical Wnt signaling needs to be tightly controlled to enable migration of NC cells. Copyright © 2016 Elsevier Inc. All rights reserved.
Silver, Kristopher; Littlejohn, A.; Thomas, Laurel; Bawa, Bhupinder; Lillich, James D.
2017-01-01
Non-steroidal anti-inflammatory drugs (NSAIDs) are widely used for the alleviation of pain and inflammation, but these drugs are also associated with a suite of negative side effects. Gastrointestinal (GI) toxicity is particularly concerning since it affects an estimated 70% of individuals taking NSAIDs routinely, and evidence suggests the majority of toxicity is occurring in the small intestine. Traditionally, NSAID-induced GI toxicity has been associated with indiscriminate inhibition of cyclooxygenase isoforms, but other mechanisms, including inhibition of cell migration, intestinal restitution, and wound healing, are likely to contribute to toxicity. Previous efforts demonstrated that treatment of cultured intestinal epithelial cells (IEC) with NSAIDs inhibits expression and activity of calpain proteases, but the effects of specific inhibition of calpain expression in vitro or the effects of NSAIDs on intestinal cell migration in vivo remain to be determined. Accordingly, we examined the effect of suppression of calpain protease expression with siRNA on cell migration in cultured IECs and evaluated the effects of NSAID treatment on epithelial cell migration and calpain protease expression in rat duodenum. Our results show that calpain siRNA inhibits protease expression and slows migration in cultured IECs. Additionally, NSAID treatment of rats slowed migration up the villus axis and suppressed calpain expression in duodenal epithelial cells. Our results are supportive of the hypothesis that suppression of calpain expression leading to slowing of cell migration is a potential mechanism through which NSAIDs cause GI toxicity. PMID:28342779
Chen, Jing; Zhong, Jian; Yu, Hao; Xu, Xingsen; He, Hongbo; Yan, Zhencheng; Scholze, Alexandra; Liu, Daoyan; Zhu, Zhiming; Tepel, Martin
2012-01-01
Increased transient receptor potential canonical type 3 (TRPC3) channels have been observed in patients with essential hypertension. In the present study we tested the hypothesis that increased monocyte migration is associated with increased TRPC3 expression. Monocyte migration assay was performed in a microchemotaxis chamber using chemoattractants formylated peptide Met-Leu-Phe (fMLP) and tumor necrosis factor-α (TNF-α). Proteins were identified by immunoblotting and quantitative in-cell Western assay. The effects of TRP channel-inhibitor 2–aminoethoxydiphenylborane (2-APB) and small interfering RNA knockdown of TRPC3 were investigated. We observed an increased fMLP-induced migration of monocytes from hypertensive patients compared with normotensive control subjects (246±14% vs 151±10%). The TNF-α-induced migration of monocytes in patients with essential hypertension was also significantly increased compared to normotensive control subjects (221±20% vs 138±18%). In the presence of 2-APB or after siRNA knockdown of TRPC3 the fMLP-induced monocyte migration was significantly blocked. The fMLP-induced changes of cytosolic calcium were significantly increased in monocytes from hypertensive patients compared to normotensive control subjects. The fMLP-induced monocyte migration was significantly reduced in the presence of inhibitors of tyrosine kinase and phosphoinositide 3-kinase. We conclude that increased monocyte migration in patients with essential hypertension is associated with increased TRPC3 channels. PMID:22438881
Fascin1-Dependent Filopodia are Required for Directional Migration of a Subset of Neural Crest Cells
Boer, Elena F.; Howell, Elizabeth D.; Schilling, Thomas F.; Jette, Cicely A.; Stewart, Rodney A.
2015-01-01
Directional migration of neural crest (NC) cells is essential for patterning the vertebrate embryo, including the craniofacial skeleton. Extensive filopodial protrusions in NC cells are thought to sense chemo-attractive/repulsive signals that provide directionality. To test this hypothesis, we generated null mutations in zebrafish fascin1a (fscn1a), which encodes an actin-bundling protein required for filopodia formation. Homozygous fscn1a zygotic null mutants have normal NC filopodia due to unexpected stability of maternal Fscn1a protein throughout NC development and into juvenile stages. In contrast, maternal/zygotic fscn1a null mutant embryos (fscn1a MZ) have severe loss of NC filopodia. However, only a subset of NC streams display migration defects, associated with selective loss of craniofacial elements and peripheral neurons. We also show that fscn1a-dependent NC migration functions through cxcr4a/cxcl12b chemokine signaling to ensure the fidelity of directional cell migration. These data show that fscn1a-dependent filopodia are required in a subset of NC cells to promote cell migration and NC derivative formation, and that perdurance of long-lived maternal proteins can mask essential zygotic gene functions during NC development. PMID:25607881
Transient Liquid Water as a Mechanism for Induration of Soil Crusts on Mars
NASA Technical Reports Server (NTRS)
Landis, G. A.; Blaney, D.; Cabrol, N.; Clark, B. C.; Farmer, J.; Grotzinger, J.; Greeley, R.; McLennan, S. M.; Richter, L.; Yen, A.
2004-01-01
The Viking and the Mars Exploration Rover missions observed that the surface of Mars is encrusted by a thinly cemented layer tagged as "duricrust". A hypothesis to explain the formation of duricrust on Mars should address not only the potential mechanisms by which these materials become cemented, but also the textural and compositional components of cemented Martian soils. Elemental analyzes at five sites on Mars show that these soils have sulfur content of up to 4%, and chlorine content of up to 1%. This is consistent with the presence of sulfates and halides as mineral cements. . For comparison, the rock "Adirondack" at the MER site, after the exterior layer was removed, had nearly five times lower sulfur and chlorine content , and the Martian meteorites have ten times lower sulfur and chlorine content, showing that the soil is highly enriched in the saltforming elements compared with rock.Here we propose two alternative models to account for the origin of these crusts, each requiring the action of transient liquid water films to mediate adhesion and cementation of grains. Two alternative versions of the transient water hypothesis are offered, a top down hypothesis that emphasizes the surface deposition of frost, melting and downward migration of liquid water and a bottom up alternative that proposes the presence of interstitial ice/brine, with the upward capillary migration of liquid water.
Li, Xuesong; Markandeya, Nagula; Jonusauskas, Gediminas; McClenaghan, Nathan D; Maurizot, Victor; Denisov, Sergey A; Huc, Ivan
2016-10-07
A series of photoactive triads have been synthesized and investigated in order to elucidate photoinduced electron transfer and hole migration mechanism across nanosized, rigid helical foldamers. The triads are comprised of a central helical oligoamide foldamer bridge with 9, 14, 18, 19, or 34 8-amino-2-quinolinecarboxylic acid repeat units, and of two chromophores, an N-terminal oligo(para-phenylenevinylene) electron donor and a C-terminal perylene bis-imide electron acceptor. Time-resolved fluorescence and transient absorption spectroscopic studies showed that, following photoexcitation of the electron acceptor, fast electron transfer occurs initially from the oligoquinoline bridge to the acceptor chromophore on the picosecond time scale. The oligo(para-phenylenevinylene) electron donor is oxidized after a time delay during which the hole migrates across the foldamer from the acceptor to the donor. The charge separated state that is finally generated was found to be remarkably long-lived (>80 μs). While the initial charge injection rate is largely invariant for all foldamer lengths (ca. 60 ps), the subsequent hole transfer to the donor varies from 1 × 10 9 s -1 for the longest sequence to 17 × 10 9 s -1 for the shortest. In all cases, charge transfer is very fast considering the foldamer length. Detailed analysis of the process in different media and at varying temperatures is consistent with a hopping mechanism of hole transport through the foldamer helix, with individual hops occurring on the subpicosecond time scale (k ET = 2.5 × 10 12 s -1 in CH 2 Cl 2 ). This work demonstrates the possibility of fast long-range hole transfer over 300 Å (through bonds) across a synthetic modular bridge, an achievement that had been previously observed principally with DNA structures.
Dhillon, Preet K; Bowen, Liza; Kinra, Sanjay; Bharathi, Ankalmadugu Venkatsubbareddy; Agrawal, Sutapa; Prabhakaran, Dorairaj; Reddy, Kolli Srinath; Ebrahim, Shah
2016-11-01
Legume consumption is associated with lower fasting glucose (FG) and insulin levels in nutrition trials and lower CVD mortality in large-scale epidemiological studies. In India, legumes are widely consumed in various preparations, yet no epidemiological study has evaluated the association of legumes with FG levels, insulin resistance and diabetes risk. The present study aimed to fill this gap. Fasting blood samples, in-person interviews to obtain information on demographic/socio-economic factors, physical activity, alcohol and tobacco use, and anthropometric measurements were collected. Dietary intakes were assessed by an interviewer-administered, validated, semi-quantitative FFQ. Lucknow, Nagpur, Hyderabad and Bangalore, India. Men and women (n 6367) aged 15-76 years - urban residents, urban migrants and their rural siblings. In multivariate random-effects models adjusted for age, BMI, total energy intake, macronutrients, physical activity and rural/migration status, daily legume consumption was not associated with FG (P-for-trend=0·78), insulin resistance (homeostasis model assessment score; P-for-trend=0·73) or the prevalence of type 2 diabetes mellitus (P-for-trend=0·41). Stratified analyses by vegetarian diet and migration status did not change the findings. Inverse associations between legumes and FG emerged for participants with lower BMI and higher carbohydrate, protein, fat and sugar intakes. Although legumes are essential in traditional Indian diets, as well as in prudent and Mediterranean diets in the West, we did not find an association between legumes and markers of glycaemic control, insulin resistance or diabetes, except for subgroups based on BMI and macronutrient intake. The ubiquitous presence and complexity of legume preparations in Indian diets may contribute to these findings.
NASA Astrophysics Data System (ADS)
Hu, Jiangtao; Cao, Junxing; Wang, Huazhong; Wang, Xingjian; Jiang, Xudong
2017-12-01
First-arrival traveltime computation for quasi-P waves in transversely isotropic (TI) media is the key component of tomography and depth migration. It is appealing to use the fast marching method in isotropic media as it efficiently computes traveltime along an expanding wavefront. It uses the finite difference method to solve the eikonal equation. However, applying the fast marching method in anisotropic media faces challenges because the anisotropy introduces additional nonlinearity in the eikonal equation and solving this nonlinear eikonal equation with the finite difference method is challenging. To address this problem, we present a Fermat’s principle-based fast marching method to compute traveltime in two-dimensional TI media. This method is applicable in both vertical and tilted TI (VTI and TTI) media. It computes traveltime along an expanding wavefront using Fermat’s principle instead of the eikonal equation. Thus, it does not suffer from the nonlinearity of the eikonal equation in TI media. To compute traveltime using Fermat’s principle, the explicit expression of group velocity in TI media is required to describe the ray propagation. The moveout approximation is adopted to obtain the explicit expression of group velocity. Numerical examples on both VTI and TTI models show that the traveltime contour obtained by the proposed method matches well with the wavefront from the wave equation. This shows that the proposed method could be used in depth migration and tomography.
NASA Astrophysics Data System (ADS)
Steinarsdóttir, M. B.; Ingólfsson, A.; Ólafsson, E.
2009-04-01
Rocky shores in the North Atlantic are known for their zonation patterns of both algae and animals, which can be expected to greatly affect food availability to consumers at different height levels on the shore. We tested the hypothesis that consumers would feed on the most abundant suitable food source in their surroundings. In total 36 species/taxa of common primary producers and consumers were sampled for stable isotope analyses from a sheltered fucoid shore at Hvassahraun in south-western Iceland. A selection of these species was also collected seasonally and from different height levels. Feeding experiments, field observations and gut analyses were also conducted. Our results were in good overall agreement with pre-existing knowledge of trophic relationships in the rocky intertidal. Consumers often appeared to be assimilating carbon and nitrogen from the most common diet in their immediate surroundings. The predator Nucella lapillus was thus feeding on different prey at different height levels in accordance with different densities of prey species. When tested in the laboratory, individuals taken from low on the shore would ignore the gastropod Littorina obtusata, uncommon at that height level, even when starved, while individuals from mid-shore readily ate the gastropod. This indicated that some kind of learned behaviour was involved. There were, however, important exceptions, most noteworthy the relatively small contribution to herbivores, both slow moving (the gastropod L. obtusata) and fast moving (the isopod Idotea granulosa and the amphipod Gammarus obtusatus) of the dominant alga at this site, Ascophyllum nodosum. The recent colonizer Fucus serratus seemed to be favoured. Selective feeding was indicated both by isotope signatures as well as by results of feeding experiments. Seasonal migrations of both slow and fast moving species could partly explain patterns observed.
A space oddity: geographic and specific modulation of migration in Eudyptes penguins.
Thiebot, Jean-Baptiste; Cherel, Yves; Crawford, Robert J M; Makhado, Azwianewi B; Trathan, Philip N; Pinaud, David; Bost, Charles-André
2013-01-01
Post-breeding migration in land-based marine animals is thought to offset seasonal deterioration in foraging or other important environmental conditions at the breeding site. However the inter-breeding distribution of such animals may reflect not only their optimal habitat, but more subtle influences on an individual's migration path, including such factors as the intrinsic influence of each locality's paleoenvironment, thereby influencing animals' wintering distribution. In this study we investigated the influence of the regional marine environment on the migration patterns of a poorly known, but important seabird group. We studied the inter-breeding migration patterns in three species of Eudyptes penguins (E. chrysolophus, E. filholi and E. moseleyi), the main marine prey consumers amongst the World's seabirds. Using ultra-miniaturized logging devices (light-based geolocators) and satellite tags, we tracked 87 migrating individuals originating from 4 sites in the southern Indian Ocean (Marion, Crozet, Kerguelen and Amsterdam Islands) and modelled their wintering habitat using the MADIFA niche modelling technique. For each site, sympatric species followed a similar compass bearing during migration with consistent species-specific latitudinal shifts. Within each species, individuals breeding on different islands showed contrasting migration patterns but similar winter habitat preferences driven by sea-surface temperatures. Our results show that inter-breeding migration patterns in sibling penguin species depend primarily on the site of origin and secondly on the species. Such site-specific migration bearings, together with similar wintering habitat used by parapatrics, support the hypothesis that migration behaviour is affected by the intrinsic characteristics of each site. The paleo-oceanographic conditions (primarily, sea-surface temperatures) when the populations first colonized each of these sites may have been an important determinant of subsequent migration patterns. Based on previous chronological schemes of taxonomic radiation and geographical expansion of the genus Eudyptes, we propose a simple scenario to depict the chronological onset of contrasting migration patterns within this penguin group.
Braaten, P. J.; Elliott, Caroline M.; Rhoten, Jason C.; Fuller, D. B.; McElroy, Brandon J.
2015-01-01
Fragmentation of the Yellowstone River is hypothesized to preclude recruitment of endangered Scaphirhynchus albus (pallid sturgeon) by impeding upstream spawning migrations and access to upstream spawning areas, thereby limiting the length of free-flowing river required for survival of early life stages. Building on this hypothesis, the reach of the Yellowstone River affected by Intake Diversion Dam (IDD) is targeted for modification. Structures including a rock ramp and by-pass channel have been proposed as restoration alternatives to facilitate passage. Limited information on migrations and swimming capabilities of pallid sturgeon is available to guide engineering design specifications for the proposed structures. Migration behavior, pathways (channel routes used during migrations), and swimming capabilities of free-ranging wild adult pallid sturgeon were examined using radiotelemetry, and complemented with hydraulic data obtained along the migration pathways. Migrations of 12–26% of the telemetered pallid sturgeon population persisted to IDD, but upstream passage over the dam was not detected. Observed migration pathways occurred primarily through main channel habitats; however, migrations through side channels up to 3.9 km in length were documented. The majority of pallid sturgeon used depths of 2.2–3.4 m and mean water velocities of 0.89–1.83 m/s while migrating. Results provide inferences on depths, velocities, and habitat heterogeneity of reaches successfully negotiated by pallid sturgeon that may be used to guide designs for structures facilitating passage at IDD. Passage will provide connectivity to potential upstream spawning areas on the Yellowstone River, thereby increasing the likelihood of recruitment for this endangered species.
USDA-ARS?s Scientific Manuscript database
Juvenile hormone (JH) influences many aspects of insect biology, including oogenesis-flight syndrome tradeoffs between migration and reproduction. Drawing on studies of many migratory insects, we posed the hypothesis that JH influences migratory capacity and oogenesis in the rice leaf roller, Cnapha...
ERIC Educational Resources Information Center
Asarta, Carlos J.; Butters, Roger B.
2012-01-01
The term "Discouraged-Business-Major" (DBM) describes students who become discouraged with the rigorous standards of colleges of business and migrate to colleges of arts and sciences to complete a degree in economics under relaxed requirements (Salemi and Eubanks 1996). Following Salemi and Eubanks, the present authors examine a decade…
An experimental approach in revisiting the magnetic orientation of cattle
Weijers, Debby; Hemerik, Lia; Heitkönig, Ignas M. A.
2018-01-01
In response to the increasing number of observational studies on an apparent south-north orientation in non-homing, non-migrating terrestrial mammals, we experimentally tested the alignment hypothesis using strong neodymium magnets on the resting orientation of individual cattle in Portugal. Contrary to the hypothesis, the 34 cows in the experiment showed no directional preference, neither with, nor without a strong neodymium magnet fixed to their collar. The concurrently performed 2,428 daytime observations—excluding the hottest part of the day—of 659 resting individual cattle did not show a south-north alignment when at rest either. The preferred compass orientation of these cows was on average 130 degrees from the magnetic north (i.e., south east). Cow compass orientation correlated significantly with sun direction, but not with wind direction. In as far as we can determine, this is the first experimental test on magnetic orientation in larger, non-homing, non-migrating mammals. These experimental and observational findings do not support previously published suggestions on the magnetic south-north alignment in these mammals. PMID:29641517
Logue, Jeremy S; Cartagena-Rivera, Alexander X; Baird, Michelle A; Davidson, Michael W; Chadwick, Richard S; Waterman, Clare M
2015-01-01
Within the confines of tissues, cancer cells can use blebs to migrate. Eps8 is an actin bundling and capping protein whose capping activity is inhibited by Erk, a key MAP kinase that is activated by oncogenic signaling. We tested the hypothesis that Eps8 acts as an Erk effector to modulate actin cortex mechanics and thereby mediate bleb-based migration of cancer cells. Cells confined in a non-adhesive environment migrate in the direction of a very large ‘leader bleb.’ Eps8 bundling activity promotes cortex tension and intracellular pressure to drive leader bleb formation. Eps8 capping and bundling activities act antagonistically to organize actin within leader blebs, and Erk mediates this effect. An Erk biosensor reveals concentrated kinase activity within leader blebs. Bleb contents are trapped by the narrow neck that separates the leader bleb from the cell body. Thus, Erk activity promotes actin bundling by Eps8 to enhance cortex tension and drive the bleb-based migration of cancer cells under non-adhesive confinement. DOI: http://dx.doi.org/10.7554/eLife.08314.001 PMID:26163656
Swelling and gas release in oxide fuels during fast temperature transients
NASA Astrophysics Data System (ADS)
Dollins, C. C.; Jursich, M.
1982-05-01
A previously reported intergranular swelling and gas release model for oxide fuels has been modified to predict fission gas behavior during fast temperature transients. Under steady state or slowly varying conditions it has been assumed in the previous model that the pressure caused by the fission gas within the gas bubbles is in equilibrium with the surface tension of the bubbles. During a fast transient, however, net vacancy migration to the bubbles may be insufficient to maintain this equilibrium. In order to ascertain the net vacancy flow, it is necessary to model the point defect behavior in the fuel. Knowing the net flow of vacancies to the bubble and the bubble size, the bubble diffusivity can be determined and the long range migration of the gas out of the fuel can be calculated. The model has also been modified to allow release of all the gas on the grain boundaries during a fast temperature transient. The gas release predicted by the revised model shows good agreement to fast transient gas release data from an EBR-II TREAT H-3 (Transient Reactor Test Facility) test. Agreement has also been obtained between predictions using the model and gas release data obtained by Argonne National Laboratory from out-of-reactor transient heating experiments on irradiated UO 2. It was found necessary to increase the gas bubble diffusivity used in the model by a factor of thirty during the transient to provide agreement between calculations and measurements. Other workers have also found that such an increase is necessary for agreement and attribute the increased diffusivity to yielding at the bubble surface due to the increased pressure.
Acquisition of the novel name--nameless category (N3C) principle.
Mervis, C B; Bertrand, J
1994-12-01
Toddlers' acquisition of the Novel Name-Nameless Category (N3C) principle was examined to investigate the developmental lexical principles framework and the applicability of the specificity hypothesis to relations involving lexical principles. In Study 1, we assessed the ability of 32 children between the ages of 16 and 20 months to use the N3C principle (operationally defined as the ability to fast map). As predicted, only some of the children could fast map. This finding provided evidence for a crucial tenet of the developmental lexical principles framework: Some lexical principles are not available at the start of language acquisition. Children who had acquired the N3C principle also had significantly larger vocabularies and were significantly more likely to demonstrate 2-category exhaustive sorting abilities than children who had not acquired the principle. The 2 groups of children did not differ in either age or object permanence abilities. The 16 children who could not fast map were followed longitudinally until they attained a vocabulary spurt; at that time, their ability to fast map was retested (Study 2). Results provided a longitudinal replication of the findings of Study 1. Implications of these findings for both the developmental lexical principles framework and the specificity hypothesis are discussed.
Zhao, Meijuan; Christie, Maureen; Coleman, Jonathan; Hassell, Chris; Gosbell, Ken; Lisovski, Simeon; Minton, Clive; Klaassen, Marcel
2017-01-01
Migrants have been hypothesised to use different migration strategies between seasons: a time-minimization strategy during their pre-breeding migration towards the breeding grounds and an energy-minimization strategy during their post-breeding migration towards the wintering grounds. Besides season, we propose body size as a key factor in shaping migratory behaviour. Specifically, given that body size is expected to correlate negatively with maximum migration speed and that large birds tend to use more time to complete their annual life-history events (such as moult, breeding and migration), we hypothesise that large-sized species are time stressed all year round. Consequently, large birds are not only likely to adopt a time-minimization strategy during pre-breeding migration, but also during post-breeding migration, to guarantee a timely arrival at both the non-breeding (i.e. wintering) and breeding grounds. We tested this idea using individual tracks across six long-distance migratory shorebird species (family Scolopacidae) along the East Asian-Australasian Flyway varying in size from 50 g to 750 g lean body mass. Migration performance was compared between pre- and post-breeding migration using four quantifiable migratory behaviours that serve to distinguish between a time- and energy-minimization strategy, including migration speed, number of staging sites, total migration distance and step length from one site to the next. During pre- and post-breeding migration, the shorebirds generally covered similar distances, but they tended to migrate faster, used fewer staging sites, and tended to use longer step lengths during pre-breeding migration. These seasonal differences are consistent with the prediction that a time-minimization strategy is used during pre-breeding migration, whereas an energy-minimization strategy is used during post-breeding migration. However, there was also a tendency for the seasonal difference in migration speed to progressively disappear with an increase in body size, supporting our hypothesis that larger species tend to use time-minimization strategies during both pre- and post-breeding migration. Our study highlights that body size plays an important role in shaping migratory behaviour. Larger migratory bird species are potentially time constrained during not only the pre- but also the post-breeding migration. Conservation of their habitats during both seasons may thus be crucial for averting further population declines.
Cheng, Philip; Goldschmied, Jennifer; Deldin, Patricia; Hoffmann, Robert; Armitage, Roseanne
2015-01-01
Sleep difficulties are highly prevalent in depression, and appears to be a contributing factor in the development and maintenance of symptoms. However, despite the generally acknowledged relationship between sleep and depression, the neurophysiological substrates underlying this relationship still remain unclear. Two main hypotheses were tested in this study. The first hypothesis states that sleep in depression is characterized by inadequate generation of restorative sleep, as indexed by reduced amounts of slow-wave activity. Conversely, the second hypothesis states that poor sleep in depression is due to intrusions of fast-frequency activity that may be reflective of a hyperaroused central nervous system. This study aimed to test both hypotheses in a large sample of individuals with clinically validated depression, as well as examine sex as a moderator. Results suggest that depression is better characterized by an overall decrease in slow-wave activity, which is related to elevated anxious and depressed mood the following morning. Results also suggest that females may be more likely to experience fast frequency activity related to depression symptom severity. PMID:26175101
Dimension-Factorized Range Migration Algorithm for Regularly Distributed Array Imaging
Guo, Qijia; Wang, Jie; Chang, Tianying
2017-01-01
The two-dimensional planar MIMO array is a popular approach for millimeter wave imaging applications. As a promising practical alternative, sparse MIMO arrays have been devised to reduce the number of antenna elements and transmitting/receiving channels with predictable and acceptable loss in image quality. In this paper, a high precision three-dimensional imaging algorithm is proposed for MIMO arrays of the regularly distributed type, especially the sparse varieties. Termed the Dimension-Factorized Range Migration Algorithm, the new imaging approach factorizes the conventional MIMO Range Migration Algorithm into multiple operations across the sparse dimensions. The thinner the sparse dimensions of the array, the more efficient the new algorithm will be. Advantages of the proposed approach are demonstrated by comparison with the conventional MIMO Range Migration Algorithm and its non-uniform fast Fourier transform based variant in terms of all the important characteristics of the approaches, especially the anti-noise capability. The computation cost is analyzed as well to evaluate the efficiency quantitatively. PMID:29113083
Yuan, Fenglin; Zhang, Yanwen; Weber, William J.
2015-05-19
In this paper, molecular dynamics simulations and molecular static calculations have been used to systematically study oxygen vacancy transport in undoped nonstoichiometric ceria. A strong oxygen diffusivity enhancement appears in the vacancy concentration range of 2–4% over the temperature range from 1000 to 2000 K. An Arrhenius ion diffusion mechanism by vacancy hopping along the (100) direction is unambiguously identified, and an increasing trend of both the oxygen migration barrier and the prefactor with increasing vacancy concentration is observed. Within the framework of classical diffusion theory, a weak concentration dependence of the prefactor in oxygen vacancy migration is shown tomore » be crucial for explaining the unusual fast oxygen ion migration in the low concentration range and consequently the appearance of a maximum in oxygen diffusivity. Finally, a representative (100) direction interaction model is constructed to identify long-range vacancy–vacancy interaction as the structural origin of the positive correlation between oxygen migration barrier and vacancy concentration.« less
NASA Astrophysics Data System (ADS)
Kishi, Ryohei; Minami, Takuya; Fukui, Hitoshi; Takahashi, Hideaki; Nakano, Masayoshi
2008-06-01
The core molecule dependence of energy (exciton) migration in phenylacetylene nanostar dendrimers is investigated using the ab initio molecular orbital (MO)-configuration interaction based quantum master equation approach. We examine three kinds of core molecular species, i.e., benzene, anthracene, and pentacene, with different highest occupied MO-lowest unoccupied MO (HOMO-LUMO) gaps, which lead to different orbital interactions between the dendron parts and the core molecule. The nanostars bearing anthracene and pentacene cores are characterized by multistep exciton states with spatially well-segmented distributions: The exciton distributions of high-lying exciton states are spatially localized well in the periphery region, whereas those of low-lying exciton states are done in the core region. On the other hand, for the nanostar bearing benzene core, which also has multistep exciton states, the spatial exciton distributions of low-lying exciton states are delocalized over the dendron and the core regions. It is found that the former nanostars exhibit nearly complete exciton migration from the periphery to the core molecule in contrast to the latter one, in which significant exciton distribution remains in the dendron parts attached to the core after the exciton relaxation, although all these dendrimers exhibit fast exciton relaxation from the initially populated states. It is predicted from the analysis based on the MO correlation diagrams and the relative relaxation factor that the complete exciton migration to the core occurs not only when the HOMO-LUMO gap of the core molecule is nearly equal to that of the dendron parts attached to the core (anthracene case) but also when fairly smaller than that (pentacene case), whereas the complete migration is not achieved when the HOMO-LUMO gap of the core is larger than that of the dendron parts (benzene case). These results suggest that the fast and complete exciton migration of real dendrimers could be realized by adjusting the HOMO-LUMO gap of the core molecule to be smaller than that of dendron parts, although there exist more complicated relaxation processes as compared to simple dendritic aggregate models studied so far.
NASA Astrophysics Data System (ADS)
Filuk, A. B.; Bailey, J. E.; Cuneo, M. E.; Lake, P. W.; Nash, T. J.; Noack, D. D.; Maron, Y.
2000-12-01
The maximum power achieved in a wide variety of high-power devices, including electron and ion diodes, z pinches, and microwave generators, is presently limited by anode-cathode gap breakdown. A frequently discussed hypothesis for this effect is ionization of fast neutral atoms injected throughout the anode-cathode gap during the power pulse. We describe a newly developed diagnostic tool that provides a direct test of this hypothesis. Time-resolved vacuum-ultraviolet absorption spectroscopy is used to directly probe fast neutral atoms with 1-mm spatial resolution in the 10-mm anode-cathode gap of the SABRE 5 MV, 1 TW applied-B ion diode. Absorption spectra collected during Ar RF glow discharges and with CO2 gas fills confirm the reliability of the diagnostic technique. Throughout the 50-100 ns ion diode pulses no measurable neutral absorption was seen, setting upper limits of (0.12-1.5)×1014 cm-3 for ground-state fast neutral atom densities of H, C, N, O, and F. The absence of molecular absorption bands also sets upper limits of (0.16-1.2)×1015 cm-3 for common simple molecules. These limits are low enough to rule out ionization of fast neutral atoms as a breakdown mechanism. Breakdown due to ionization of molecules is also found to be unlikely. This technique can now be applied to quantify the role of neutral atoms in other high-power devices.
Silver, Kristopher; Littlejohn, A; Thomas, Laurel; Bawa, Bhupinder; Lillich, James D
2017-05-15
Non-steroidal anti-inflammatory drugs (NSAIDs) are widely used for the alleviation of pain and inflammation, but these drugs are also associated with a suite of negative side effects. Gastrointestinal (GI) toxicity is particularly concerning since it affects an estimated 70% of individuals taking NSAIDs routinely, and evidence suggests the majority of toxicity is occurring in the small intestine. Traditionally, NSAID-induced GI toxicity has been associated with indiscriminate inhibition of cyclooxygenase isoforms, but other mechanisms, including inhibition of cell migration, intestinal restitution, and wound healing, are likely to contribute to toxicity. Previous efforts demonstrated that treatment of cultured intestinal epithelial cells (IEC) with NSAIDs inhibits expression and activity of calpain proteases, but the effects of specific inhibition of calpain expression in vitro or the effects of NSAIDs on intestinal cell migration in vivo remain to be determined. Accordingly, we examined the effect of suppression of calpain protease expression with siRNA on cell migration in cultured IECs and evaluated the effects of NSAID treatment on epithelial cell migration and calpain protease expression in rat duodenum. Our results show that calpain siRNA inhibits protease expression and slows migration in cultured IECs. Additionally, NSAID treatment of rats slowed migration up the villus axis and suppressed calpain expression in duodenal epithelial cells. Our results are supportive of the hypothesis that suppression of calpain expression leading to slowing of cell migration is a potential mechanism through which NSAIDs cause GI toxicity. Copyright © 2017 Elsevier B.V. All rights reserved.
Interstitial flow influences direction of tumor cell migration through competing mechanisms
Polacheck, William J.; Charest, Joseph L.; Kamm, Roger D.
2011-01-01
Interstitial flow is the convective transport of fluid through tissue extracellular matrix. This creeping fluid flow has been shown to affect the morphology and migration of cells such as fibroblasts, cancer cells, endothelial cells, and mesenchymal stem cells. A microfluidic cell culture system was designed to apply stable pressure gradients and fluid flow and allow direct visualization of transient responses of cells seeded in a 3D collagen type I scaffold. We used this system to examine the effects of interstitial flow on cancer cell morphology and migration and to extend previous studies showing that interstitial flow increases the metastatic potential of MDA-MB-435S melanoma cells [Shields J, et al. (2007) Cancer Cell 11:526–538]. Using a breast carcinoma line (MDA-MB-231) we also observed cell migration along streamlines in the presence of flow; however, we further demonstrated that the strength of the flow as well as the cell density determined directional bias of migration along the streamline. In particular, we found that cells either at high seeding density or with the CCR-7 receptor inhibited migration against, rather than with the flow. We provide further evidence that CCR7-dependent autologous chemotaxis is the mechanism that leads to migration with the flow, but also demonstrate a competing CCR7-independent mechanism that causes migration against the flow. Data from experiments investigating the effects of cell concentration, interstitial flow rate, receptor activity, and focal adhesion kinase phosphorylation support our hypothesis that the competing stimulus is integrin mediated. This mechanism may play an important role in development of metastatic disease. PMID:21690404
Migratory life histories explain the extreme egg-size dimorphism of Eudyptes penguins.
Crossin, Glenn T; Williams, Tony D
2016-10-12
When successive stages in the life history of an animal directly overlap, physiological conflicts can arise resulting in carryover effects from one stage to another. The extreme egg-size dimorphism (ESD) of Eudyptes penguins, where the first-laid A-egg is approximately 18-57% smaller than the second-laid B-egg, has interested researchers for decades. Recent studies have linked variation in this trait to a carryover effect of migration that limits the physiology of yolk production and egg sizes. We assembled data on ESD and estimates of migration-reproduction overlap in penguin species and use phylogenetic methods to test the idea that migration-reproduction overlap explains variation in ESD. We show that migration overlap is generally restricted to Eudyptes relative to non-Eudyptes penguins, and that this overlap (defined as the amount of time that egg production occurs on land versus at sea during homeward migration) is significantly and positively correlated with the degree of ESD in Eudyptes In the non-Eudyptes species, however, ESD was unrelated to migration overlap as these species mostly produce their clutches on land. Our results support the recent hypothesis that extreme ESD of Eudyptes penguins evolved, in part, as a response to selection for a pelagic overwinter migration behaviour. This resulted in a temporal overlap with, and thus a constraint on, the physiology of follicle development, leading to smaller A-egg size and greater ESD. © 2016 The Author(s).
Rennie, Michael D.; Ebener, Mark P.; Wagner, Tyler
2012-01-01
Migration can be a behavioural response to poor or declining home range habitat quality and can occur when the costs of migration are overcome by the benefi ts of encountering higher-quality resources elsewhere. Despite dramatic ecosystem-level changes in the benthic food web of the Laurentian Great Lakes since the colonization of dreissenid mussels, coincident changes in condition and growth rates among benthivorous lake whitefi sh populations have been variable. We hypothesized that this variation could be in part mitigated by differences in migratory habits among populations, where increased migration distance can result in an increased probability of encountering high-quality habitat (relative to the home range). Results from four Great Lakes populations support this hypothesis; relative growth rates increased regularly with migration distance. The population with the largest average migration distance also had the least reduction in size-at-age during a period of signifi cant ecosystem change and among the highest estimated consumption and activity rates. In comparison, the population with the greatest declines in size-at-age was among the least mobile, demonstrating only moderate rates of consumption and activity. The least mobile population of lake whitefi sh was supported by a remnant Diporeia population and has experienced only moderate temporal growth declines. Our study provides evidence for the potential role of migration in mitigating the effects of ecosystem change on lake whitefi sh populations.
Wooding, Stephen; Ostler, Christopher; Prasad, B V Ravi; Watkins, W Scott; Sung, Sandy; Bamshad, Mike; Jorde, Lynn B
2004-08-01
Genetic, ethnographic, and historical evidence suggests that the Hindu castes have been highly endogamous for several thousand years and that, when movement between castes does occur, it typically consists of females joining castes of higher social status. However, little is known about migration rates in these populations or the extent to which migration occurs between caste groups of low, middle, and high social status. To investigate these aspects of migration, we analyzed the largest collection of genetic markers collected to date in Hindu caste populations. These data included 45 newly typed autosomal short tandem repeat polymorphisms (STRPs), 411 bp of mitochondrial DNA sequence, and 43 Y-chromosomal single-nucleotide polymorphisms that were assayed in more than 200 individuals of known caste status sampled in Andrah Pradesh, in South India. Application of recently developed likelihood-based analyses to this dataset enabled us to obtain genetically derived estimates of intercaste migration rates. STRPs indicated migration rates of 1-2% per generation between high-, middle-, and low-status caste groups. We also found support for the hypothesis that rates of gene flow differ between maternally and paternally inherited genes. Migration rates were substantially higher in maternally than in paternally inherited markers. In addition, while prevailing patterns of migration involved movement between castes of similar rank, paternally inherited markers in the low-status castes were most likely to move into high-status castes. Our findings support earlier evidence that the caste system has been a significant, long-term source of population structuring in South Indian Hindu populations, and that patterns of migration differ between males and females. Copyright 2004 Springer-Verlag
Strongyloides stercoralis-infected dogs as a model for human disseminated strongyloidiasis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aikens, L.M.
1989-01-01
The route of migration of Strongyloides stercoralis third-stage infective larvae was explored in primary and autogenous infections in the dog. Larvae was radiolabeled by one of two means: (1) by culture of the free-living L3 stage in a nutrient medium, deficient in methionine, supplemented with ({sup 75}Se)Selenomethionine, and (2) by feeding of ({sup 75}Se)Selenomethionine-labeled bacteria to microbiverous L1 and L2 stages. Third-stage labeled larvae were then injected into 10-day-old pups either subcutaneously, to study primary migration, or into the distal ileum, to study autogenous migration. At intervals after infection pups were killed and whole body compressed organ autoradiography done onmore » individual tissues to determine organ-specific larval transit sites. Autoradiographic recoveries were analyzed in the context of a series of mathematical models designed to test migratory route hypotheses. Postulated routes of migration for primary infections included (1) the Null Hypothesis or Scramble Route in which larvae migrate to the intestines by any available route, (2) the Classical Pulmonary Route in which larvae migrate sequentially from skin, to blood, to lungs, to the trachea, esophagus and intestines, and (3) the Head Migration Route in which larvae move from caudal to cranial sites within the skin and muscle before entering the intestines. Postulated routes for autoinfective migration reiterated 1 and 2 above. Least squares comparisons, of calculated models to observed autoradiographic distributions, led us to conclude that there was no reason to reject the simplest assumption that larvae move by any available route to the definitive site in both forms of migration. Sampling through tracheostomy sites in 14 pups for larval migrants confirmed this conclusion.« less
Space Based Ornithology: On the Wings of Migration and Biophysics
NASA Technical Reports Server (NTRS)
Smith, James A.
2005-01-01
The study of bird migration on a global scale is one of the compelling and challenging problems of modern biology with major implications for human health and conservation biology. Migration and conservation efforts cross national boundaries and are subject to numerous international agreements and treaties. Space based technology offers new opportunities to shed understanding on the distribution and migration of organisms on the planet and their sensitivity to human disturbances and environmental changes. Migration is an incredibly diverse and complex behavior. A broad outline of space based research must address three fundamental questions: (1) where could birds be, i.e. what is their fundamental niche constrained by their biophysical limits? (2) where do we actually find birds, i.e. what is their realizable niche as modified by local or regional abiotic and biotic factors, and (3) how do they get there (and how do we know?), that is what are their migration patterns and associated mechanisms? Our working hypothesis is that individual organism biophysical models of energy and water balance, driven by satellite measurements of spatio-temporal gradients in climate and habitat, will help us to explain the variability in avian species richness and distribution. Dynamic state variable modeling provides one tool for studying bird migration across multiple scales and can be linked to mechanistic models describing the time and energy budget states of migrating birds. Such models yield an understanding of how a migratory flyway and its component habitats function as a whole and link stop-over ecology with biological conservation and management. Further these models provide an ecological forecasting tool for science and application users to address what are the possible consequences of loss of wetlands, flooding, drought or other natural disasters such as hurricanes on avian biodiversity and bird migration.
Collins, James W; Rankin, Kristin M; Janowiak, Christine M
2013-11-01
The healthy migrant theory posits that women who migrate before pregnancy are intrinsically healthier and therefore have better birth outcomes than those who don't move. Objective. To determine whether migration to the suburbs is associated with lower rates of preterm (<37 weeks) birth among Chicago-born White and African-American mothers. We performed stratified and multilevel logistic regression analyses on an Illinois transgenerational dataset of non-Latino White and African-American infants (1989-1991) and their mothers (1956-1976) with appended US census income information. Forty percent of Chicago-born White mothers (N = 45,135) migrated to Suburban Cook County and 30 % migrated to the more geographically distant collar counties. In contrast, 10 % of Chicago-born African-American mothers (N = 41,221) migrated to Suburban Cook and only two percent migrated to the collar counties. Chicago-born White and African-American migrant mothers to Suburban Cook County had lower preterm birth rates than their non-migrant counterparts; RR = 0.8 (0.8-0.9) and 0.8 (0.7-0.8), respectively. When neighborhood income was singularly taken into account, the protective association of suburban migration and preterm birth disappeared among Chicago-born Whites. In race-specific multilevel multivariate regression models which included neighborhood income, the adjusted odds ratio of preterm birth, low birth weight, and small for gestational-age for Chicago-born White and African-American migrant (compared to non-migrant) mothers approximated unity. Neighborhood income underlies the protective association of suburban migration and birth outcome among Chicago-born White and African-American mothers. These findings do not support the healthy migrant hypothesis of reproductive outcome.
Murray, Robin M; Bhavsar, Vishal; Tripoli, Giada; Howes, Oliver
2017-10-21
At its re-birth 30 years ago, the neurodevelopment hypothesis of schizophrenia focussed on aberrant genes and early neural hazards, but then it grew to include ideas concerning aberrant synaptic pruning in adolescence. The hypothesis had its own stormy development and it endured some difficult teenage years when a resurgence of interest in neurodegeneration threatened its survival. In early adult life, it over-reached itself with some reductionists claiming that schizophrenia was simply a neurodevelopmental disease. However, by age 30, the hypothesis has matured sufficiently to incorporated childhood and adult adversity, urban living and migration, as well as heavy cannabis use, as important risk factors. Thus, it morphed into the developmental risk factor model of psychosis and integrated new evidence concerning dysregulated striatal dopamine as the final step on the pathway linking risk factors to psychotic symptoms. © The Author 2017. Published by Oxford University Press on behalf of the Maryland Psychiatric Research Center. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Pressure and temperature interactions on aerobic metabolism of migrating European silver eel.
Scaion, D; Belhomme, M; Sébert, P
2008-12-31
During their migration for reproduction, European eels have to cope with many environmental factors changes. The main changes concern hydrostatic pressure and temperature that are important environmental and physiological factors when considering life in the deep sea. We focus on the consequences of pressure (from 0.1 to 12.1MPa by 1MPa steps) and temperature (9, 15, 22 degrees C) shifts on the oxygen consumption (MO(2)) at the whole animal level. Because of their morphological differences, we are also interested in males and females to evaluate the best conditions for migration. Firstly, whatever temperature, males present higher aerobic capacities than females at atmospheric pressure. Secondly, an increase in temperature increases the pressure effects in males (synergy) but decreases them in females (opposite effects). We raise the hypothesis that two different migration strategies could be used in the water column in order to reach the breeding area: males could tend to privilege pressure and cold waters (deep water) and females, on the other hand, could opt for warmer temperature surface waters.
FOXO1 promotes wound healing through the up-regulation of TGF-β1 and prevention of oxidative stress
Ponugoti, Bhaskar; Xu, Fanxing; Zhang, Chenying; Tian, Chen; Pacios, Sandra
2013-01-01
Keratinocyte mobilization is a critical aspect of wound re-epithelialization, but the mechanisms that control its precise regulation remain poorly understood. We set out to test the hypothesis that forkhead box O1 (FOXO1) has a negative effect on healing because of its capacity to inhibit proliferation and promote apoptosis. Contrary to expectations, FOXO1 is required for keratinocyte transition to a wound-healing phenotype that involves increased migration and up-regulation of transforming growth factor β1 (TGF-β1) and its downstream targets, integrin-α3 and -β6 and MMP-3 and -9. Furthermore, we show that FOXO1 functions in keratinocytes to reduce oxidative stress, which is necessary to maintain cell migration and prevent cell death in a TGF-β1–independent manner. Thus, our studies identify a novel function for FOXO1 in coordinating the response of keratinocytes to wounding through up-regulation of TGF-β1 and other factors needed for keratinocyte migration and protection against oxidative stress, which together promote migration and decrease apoptosis. PMID:24145170
Villa-Verde, D M; Calado, T C; Ocampo, J S; Silva-Monteiro, E; Savino, W
1999-05-01
Thymocyte differentiation is the process by which bone marrow-derived precursors enter the thymus, proliferate, rearrange the genes and express the corresponding T cell receptors, and undergo positive and/or negative selection, ultimately yielding mature T cells that will represent the so-called T cell repertoire. This process occurs in the context of cell migration, whose cellular and molecular basis is still poorly understood. Kinetic studies favor the idea that these cells leave the organ in an ordered pattern, as if they were moving on a conveyor belt. We have recently proposed that extracellular matrix glycoproteins, such as fibronectin, laminin and type IV collagen, among others, produced by non-lymphoid cells both in the cortex and in the medulla, would constitute a macromolecular arrangement allowing differentiating thymocytes to migrate. Here we discuss the participation of both molecules with adhesive and de-adhesive properties in the intrathymic T cell migration. Functional experiments demonstrated that galectin-3, a soluble beta-galactoside-binding lectin secreted by thymic microenvironmental cells, is a likely candidate for de-adhesion proteins by decreasing thymocyte interaction with the thymic microenvironment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goodman, A.B.
1995-08-14
Vitamin A (retinoid), an essential nutrient for fetal and subsequent mammalian development, is involved in gene expression, cell differentiation, proliferation, migration, and death. Retinoic acid (RA) the morphogenic derivative of vitamin A is highly teratogenic. In humans retinoid excess or deficit can result in brain anomalies and psychosis. This review discusses chromosomal loci of genes that control the retinoid cascade in relation to some candidate genes in schizophrenia. The paper relates the knowledge about the transport, delivery, and action of retinoids to what is presently known about the pathology of schizophrenia, with particular reference to the dopamine hypothesis, neurotransmitters, themore » glutamate hypothesis, neurotransmitters, the glutamate hypothesis, retinitis pigmentosa, dermatologic disorders, and craniofacial anomalies. 201 refs., 1 tab.« less
NASA Astrophysics Data System (ADS)
Millet, F.; Bodin, T.; Rondenay, S.
2017-12-01
The teleseismic scattered seismic wavefield contains valuable information about heterogeneities and discontinuities inside the Earth. By using fast Receiver Function (RF) migration techniques such as classic Common Conversion Point (CCP) stacks, one can easily interpret structural features down to a few hundred kilometers in the mantle. However, strong simplifying 1D assumptions limit the scope of these methods to structures that are relatively planar and sub-horizontal at local-to-regional scales, such as the Lithosphere-Asthenosphere Boundary and the Mantle Transition Zone discontinuities. Other more robust 2D and 2.5D methods rely on fewer assumptions but require considerable, sometime prohibitive, computation time. Following the ideas of Cheng (2017), we have implemented a simple fully 3D Prestack Kirchhoff RF migration scheme which uses the FM3D fast Eikonal solver to compute travel times and scattering angles. The method accounts for 3D elastic point scattering and includes free surface multiples, resulting in enhanced images of laterally varying dipping structures, such as subducted slabs. The method is tested for subduction structures using 2.5D synthetics generated with Raysum and 3D synthetics generated with specfem3D. Results show that dip angles, depths and lateral variations can be recovered almost perfectly. The approach is ideally suited for applications to dense regional datasets, including those collected across the Cascadia and Alaska subduction zones by USArray.
Chi, Donald L; Dinh, Mai A; da Fonseca, Marcio A; Scott, JoAnna M; Carle, Adam C
2015-10-01
Tooth decay is the most common childhood disease and it disproportionately affects low-income children. The dietary risk factors associated with socioeconomic status (SES), such as food insecurity and fast-food consumption, are poorly understood. To better understand how upstream social factors are related to dietary behaviors by testing the hypothesis that food insecurity mediates the SES-fast-food consumption relationship. A 36-item survey was administered to caregivers of children younger than age 18 years (n=212). The predictor variable was SES, measured by whether the child was insured by Medicaid (no/yes). Food insecurity, the potential dietary mediator, was measured using the six-item US Department of Agriculture Household Food Security Survey (food secure/food insecure without hunger/food insecure with hunger). The outcome variable was whether the household reported eating at a fast-food restaurant ≥2 times a week (no/yes). We used logistic structural equation and mediation models to test our hypothesis. About 63% of children were classified as low SES. Thirty percent of caregivers reported food insecurity (with or without hunger) and 18.6% of households consumed fast food ≥2 times per week. Lower SES was significantly associated with food insecurity (odds ratio [OR] 3.03, 95% CI 1.51 to 6.04; P=0.002), but SES was not related to fast-food consumption (OR 1.94, 95% CI 0.86 to 4.36; P=0.11). Food insecurity was not associated with fast-food consumption (OR 1.76, 95% CI 0.86 to 3.62; P=0.12). The mediation analyses suggest food insecurity does not mediate the relationship between SES and fast-food consumption. However, there are important potential differences in fast-food consumption by SES and food insecurity status. Future dietary research focusing on tooth decay prevention in vulnerable children may need to account for the differential effects of SES on food insecurity and dietary behaviors like fast-food consumption. Studies are needed to further elucidate the mechanisms linking SES, dietary behaviors, and tooth decay in children. Copyright © 2015 Academy of Nutrition and Dietetics. Published by Elsevier Inc. All rights reserved.
ERIC Educational Resources Information Center
Hignite, Karla
2003-01-01
Describes the first phase of a master plan to expand the University of Alaska-Anchorage by purchasing a shopping mall and reconfiguring campus services to take advantage of the additional space. The master plan calls for eventually moving administration to the periphery of the campus and migrating academic programs to the campus center. (SLD)
The role of wages in the migration of health care professionals from developing countries
Vujicic, Marko; Zurn, Pascal; Diallo, Khassoum; Adams, Orvill; Dal Poz, Mario R
2004-01-01
Several countries are increasingly relying on immigration as a means of coping with domestic shortages of health care professionals. This trend has led to concerns that in many of the source countries – especially within Africa – the outflow of health care professionals is adversely affecting the health care system. This paper examines the role of wages in the migration decision and discusses the likely effect of wage increases in source countries in slowing migration flows. This paper uses data on wage differentials in the health care sector between source country and receiving country (adjusted for purchasing power parity) to test the hypothesis that larger wage differentials lead to a larger supply of health care migrants. Differences in other important factors affecting migration are discussed and, where available, data are presented. There is little correlation between the supply of health care migrants and the size of the wage differential between source and destination country. In cases where data are available on other factors affecting migration, controlling for these factors does not affect the result. At current levels, wage differentials between source and destination country are so large that small increases in health care wages in source countries are unlikely to affect significantly the supply of health care migrants. The results suggest that non-wage instruments might be more effective in altering migration flows. PMID:15115549
Three-dimensional near-field MIMO array imaging using range migration techniques.
Zhuge, Xiaodong; Yarovoy, Alexander G
2012-06-01
This paper presents a 3-D near-field imaging algorithm that is formulated for 2-D wideband multiple-input-multiple-output (MIMO) imaging array topology. The proposed MIMO range migration technique performs the image reconstruction procedure in the frequency-wavenumber domain. The algorithm is able to completely compensate the curvature of the wavefront in the near-field through a specifically defined interpolation process and provides extremely high computational efficiency by the application of the fast Fourier transform. The implementation aspects of the algorithm and the sampling criteria of a MIMO aperture are discussed. The image reconstruction performance and computational efficiency of the algorithm are demonstrated both with numerical simulations and measurements using 2-D MIMO arrays. Real-time 3-D near-field imaging can be achieved with a real-aperture array by applying the proposed MIMO range migration techniques.
Method and apparatus for offloading compute resources to a flash co-processing appliance
Tzelnic, Percy; Faibish, Sorin; Gupta, Uday K.; Bent, John; Grider, Gary Alan; Chen, Hsing -bung
2015-10-13
Solid-State Drive (SSD) burst buffer nodes are interposed into a parallel supercomputing cluster to enable fast burst checkpoint of cluster memory to or from nearby interconnected solid-state storage with asynchronous migration between the burst buffer nodes and slower more distant disk storage. The SSD nodes also perform tasks offloaded from the compute nodes or associated with the checkpoint data. For example, the data for the next job is preloaded in the SSD node and very fast uploaded to the respective compute node just before the next job starts. During a job, the SSD nodes perform fast visualization and statistical analysis upon the checkpoint data. The SSD nodes can also perform data reduction and encryption of the checkpoint data.
The nucleation of "fast" and "slow" stick slip instabilities in sheared granular aggregates
NASA Astrophysics Data System (ADS)
Korkolis, Evangelos; Ampuero, Jean-Paul; Niemeijer, André
2017-04-01
Seismological observations in the past few decades have revealed a diversity of slip behaviors of faults, involving interactions and transition between slow to fast slip phenomena. Field studies show that exhumed fault zones comprise mixtures of materials with variable frictional strength and stability. Emergent models of slip diversity emphasize the role of heterogeneities of fault zone properties and the potential interactions between seismic and aseismic deformation. Here, we develop analog laboratory experiments to study the mechanics of heterogeneous faults with the goal to identify factors controlling their slip stability and rupture style. We report on results from room temperature sliding experiments using a rotary shear apparatus. We simulated gouge heterogeneity by using materials with different frictional strength and stability. At room temperature conditions, dry glass beads typically stick slip, whereas dry granular calcite exhibits stable sliding. The peak strength of glass beads aggregates is typically lower than that of granular calcite aggregates. Our samples consisted of a layer of glass beads sandwiched between two layers of granular calcite. The initial particle size was between 100 and 200 μm for both materials and the initial thickness of each layer was about 1.5 mm. We tested our layered aggregates under 1 to 7 MPa normal stress and at sliding velocities between 1 and 100 μm/s. Within that range of conditions, high normal stress and slow sliding velocities promoted fast, regular stick slip. For normal stress values of less than about 4 MPa, the recurrence time and stress drop of stick slips became irregular, particularly at sliding rates above 20 μm/s. As the accumulated shear displacement increased, slip events became slower and the magnitudes of their stress drop, compaction and slip distance decreased. We recorded acoustic emissions (AEs) associated with each slip event (fast and slow) and estimated their source azimuth. AE activity was distributed in several clusters, some of which remained stationary, whereas others appeared to migrate with increasing shear displacement. We performed post-mortem microstructural analysis (tabletop SEM) of select AE nucleation sites and found significant mixing of glass beads with the calcite layer abutting the rotating piston ring. No mixing was observed between the glass beads and the calcite layer on the opposite side, nor any features that would indicate strain localization along the interface of the calcite and the adjacent stationary piston. These results show that the frictional behavior of our aggregates changed from fast to slow slip as the amount of glass beads mixed with granular calcite increased. Migrating AE clusters imply that nucleation occurred within the mixed calcite-glass beads layer, where most of the shear strain appears to have been accommodated, whereas stationary clusters probably originated within the adjacent, more slowly deforming layer of glass beads. This suggests that AEs belonging to migrating clusters were perhaps triggered by stress changes due to the gradual mixing of the two sample constituents. This process may explain migrating seismicity in natural fault zones.
Evolution of behavior and neural control of the fast-start escape response.
Hale, Melina E; Long, John H; McHenry, Matthew J; Westneat, Mark W
2002-05-01
The fast-start startle behavior is the primary mechanism of rapid escape in fishes and is a model system for examining neural circuit design and musculoskeletal function. To develop a dataset for evolutionary analysis of the startle response, the kinematics and muscle activity patterns of the fast-start were analyzed for four fish species at key branches in the phylogeny of vertebrates. Three of these species (Polypterus palmas, Lepisosteus osseus, and Amia calva) represent the base of the actinopterygian radiation. A fourth species (Oncorhynchus mykiss) provided data for a species in the central region of the teleost phylogeny. Using these data, we explored the evolution of this behavior within the phylogeny of vertebrates. To test the hypothesis that startle features are evolutionarily conservative, the variability of motor patterns and kinematics in fast-starts was described. Results show that the evolution of the startle behavior in fishes, and more broadly among vertebrates, is not conservative. The fast-start has undergone substantial change in suites of kinematics and electromyogram features, including the presence of either a one- or a two-stage kinematic response and change in the extent of bilateral muscle activity. Comparative methods were used to test the evolutionary hypothesis that changes in motor control are correlated with key differences in the kinematics and behavior of the fast-start. Significant evolutionary correlations were found between several motor pattern and behavioral characters. These results suggest that the startle neural circuit itself is not conservative. By tracing the evolution of motor pattern and kinematics on a phylogeny, it is shown that major changes in the neural circuit of the startle behavior occur at several levels in the phylogeny of vertebrates.
Müller, Hans-Peter; Agosta, Federica; Riva, Nilo; Spinelli, Edoardo G; Comi, Giancarlo; Ludolph, Albert C; Filippi, Massimo; Kassubek, Jan
2018-01-01
The criteria for assessing upper motor neuron pathology in pure lower motor neuron disease (LMND) still remain a major issue of debate with respect to the clinical classification as an amyotrophic lateral sclerosis (ALS) variant. The study was designed to investigate white matter damage by a hypothesis-guided tract-of-interest-based approach in patients with LMND compared with healthy controls and ´classical´ ALS patients in order to identify in vivo brain structural changes according to the neuropathologically defined ALS affectation pattern. Data were pooled from two previous studies at two different study sites (Ulm, Germany and Milano, Italy). DTI-based white matter integrity mapping was performed by voxelwise statistical comparison and by a tractwise analysis of fractional anisotropy (FA) maps according to the ALS-staging pattern for 65 LMND patients (clinically differentiated in fast and slow progressors) vs. 92 matched controls and 101 ALS patients with a 'classical' phenotype to identify white matter structural alterations. The analysis of white matter structural connectivity by regional FA reductions demonstrated the characteristic alteration patterns along the CST and also in frontal and prefrontal brain areas in LMND patients compared to controls and ALS. Fast progressing LMND showed substantial involvement, like in ALS, while slow progressors showed less severe alterations. In the tract-specific analysis according to the ALS-staging pattern, fast progressing LMND showed significant alterations of ALS-related tract systems as compared to slow progressors and controls. This study showed an affectation pattern for corticoefferent fibers in LMND with fast disease progression as defined for ALS, that way confirming the hypothesis that fast progressing LMND is a phenotypical variant of ALS.
NASA Astrophysics Data System (ADS)
Liu, L.; Wang, J.; Gong, S. K.; Mao, S. X.
2011-04-01
We have observed a new deformation-twinning mechanism using the high resolution transmission electron microscope in polycrystalline Ag films, zero-strain twinning via nucleation, and the migration of a Σ3{112} incoherent twin boundary (ITB). This twinning mechanism produces a near zero macroscopic strain because the net Burgers vectors either equal zero or are equivalent to a Shockley partial dislocation. This observation provides new insight into the understanding of deformation twinning and confirms a previous hypothesis: detwinning could be accomplished via the nucleation and migration of Σ3{112} ITBs. The zero-strain twinning mechanism may be unique to low staking fault energy metals with implications for their deformation behavior.
Xenon migration behaviour in titanium nitride
NASA Astrophysics Data System (ADS)
Gavarini, S.; Toulhoat, N.; Peaucelle, C.; Martin, P.; Mende, J.; Pipon, Y.; Jaffrezic, H.
2007-05-01
Titanium nitride is one of the inert matrixes proposed to surround the fuel in gas cooled fast reactor (GFR) systems. These reactors operate at high temperature and necessitate refractory materials presenting a high chemical stability and good mechanical properties. A total retention of the most volatile fission products, such as Xe, I or Cs, by the inert matrix is needed during the in pile process. The thermal migration of xenon in TiN was studied by implanting 800 keV Xe++ ions in sintered samples at an ion fluence of 5 × 1015 cm-2. Annealing was performed at temperatures ranging from 1673 to 1923 K for 1 and 3 h. Xenon concentration profiles were studied by Rutherford backscattering spectrometry (RBS) using 2.5 MeV α-particles. The migration behaviour of xenon corresponds to a gas migration model. It is dominated by a surface directed transport with a slight diffusion component. The mean activation energy corresponding to the diffusion component was found to be 2.2 ± 0.3 eV and corresponds to the Brownian motion of xenon bubbles. The directed Xe migration can be interpreted in term of bubble transport using Evans model. This last process is mostly responsible for xenon release from TiN.
Factors in the drop in the migration of Spanish-trained nurses: 1999-2007.
Galbany-Estragués, Paola; Nelson, Sioban
2018-05-01
To reveal correlates of the decrease of Spanish nurse migration (1999-2007). Nursing outmigration is a concern for countries. Nurse migration from Spain began in the 1990s. From 1999 to 2007, the yearly number of migrations dropped significantly. We ask what social, economic and policy factors could be related to this drop. We used publicly available statistics to confirm hypothesis (1) The drop in nursing migration coincided with a drop in nursing unemployment. Then we hypothesized that this coincided with (1a) a decrease in the number of graduates, (1b) an increase in the number of hospitals and/or beds functioning, and/or (1c) an increase in the ratio of part-time contracts. Our analysis confirms hypotheses (1) and (1c) and disconfirms (1a) and (1b). The greater availability of part-time contracts seems to have encouraged nurses to remain in Spain. The strategy to reduce nursing unemployment with more part-time contracts, while temporarily successful in Spain, brings with it major challenges for patient care and the working life of nurses. We suggest that nurse leaders and health policymakers consider proactive policies to adjust the balance between supply and demand without decreasing the quality of available positions. © 2017 The Authors. Journal of Nursing Management Published by John Wiley & Sons Ltd.
Jinam, Timothy A; Hong, Lih-Chun; Phipps, Maude E; Stoneking, Mark; Ameen, Mahmood; Edo, Juli; Saitou, Naruya
2012-11-01
The population history of the indigenous populations in island Southeast Asia is generally accepted to have been shaped by two major migrations: the ancient "Out of Africa" migration ∼50,000 years before present (YBP) and the relatively recent "Out of Taiwan" expansion of Austronesian agriculturalists approximately 5,000 YBP. The Negritos are believed to have originated from the ancient migration, whereas the majority of island Southeast Asians are associated with the Austronesian expansion. We determined 86 mitochondrial DNA (mtDNA) complete genome sequences in four indigenous Malaysian populations, together with a reanalysis of published autosomal single-nucleotide polymorphism (SNP) data of Southeast Asians to test the plausibility and impact of those migration models. The three Austronesian groups (Bidayuh, Selatar, and Temuan) showed high frequencies of mtDNA haplogroups, which originated from the Asian mainland ∼30,000-10,000 YBP, but low frequencies of "Out of Taiwan" markers. Principal component analysis and phylogenetic analysis using autosomal SNP data indicate a dichotomy between continental and island Austronesian groups. We argue that both the mtDNA and autosomal data suggest an "Early Train" migration originating from Indochina or South China around the late-Pleistocene to early-Holocene period, which predates, but may not necessarily exclude, the Austronesian expansion.
Tracking from the tropics reveals behaviour of juvenile songbirds on their first spring migration.
McKinnon, Emily A; Fraser, Kevin C; Stanley, Calandra Q; Stutchbury, Bridget J M
2014-01-01
Juvenile songbirds on spring migration travel from tropical wintering sites to temperate breeding destinations thousands of kilometres away with no prior experience to guide them. We provide a first glimpse at the migration timing, routes, and stopover behaviour of juvenile wood thrushes (Hylocichla mustelina) on their inaugural spring migration by using miniaturized archival geolocators to track them from Central America to the U.S. and Canada. We found significant differences between the timing of juvenile migration and that of more experienced adults: juveniles not only departed later from tropical wintering sites relative to adults, they also became progressively later as they moved northward. The increasing delay was driven by more frequent short stops by juveniles along their migration route, particularly in the U.S. as they got closer to breeding sites. Surprisingly, juveniles were just as likely as adults to cross the Gulf of Mexico, an open-water crossing of 800-1000 km, and migration route at the Gulf was not significantly different for juveniles relative to adults. To determine if the later departure of juveniles was related to poor body condition in winter relative to adults, we examined percent lean body mass, fat scores, and pectoral muscle scores of juvenile versus adult birds at a wintering site in Belize. We found no age-related differences in body condition. Later migration timing of juveniles relative to adults could be an adaptive strategy (as opposed to condition-dependent) to avoid the high costs of fast migration and competition for breeding territories with experienced and larger adults. We did find significant differences in wing size between adults and juveniles, which could contribute to lower flight efficiency of juveniles and thus slower overall migration speed. We provide the first step toward understanding the "black box" of juvenile songbird migration by documenting their migration timing and en route performance.
Tracking from the Tropics Reveals Behaviour of Juvenile Songbirds on Their First Spring Migration
McKinnon, Emily A.; Fraser, Kevin C.; Stanley, Calandra Q.; Stutchbury, Bridget J. M.
2014-01-01
Juvenile songbirds on spring migration travel from tropical wintering sites to temperate breeding destinations thousands of kilometres away with no prior experience to guide them. We provide a first glimpse at the migration timing, routes, and stopover behaviour of juvenile wood thrushes (Hylocichla mustelina) on their inaugural spring migration by using miniaturized archival geolocators to track them from Central America to the U.S. and Canada. We found significant differences between the timing of juvenile migration and that of more experienced adults: juveniles not only departed later from tropical wintering sites relative to adults, they also became progressively later as they moved northward. The increasing delay was driven by more frequent short stops by juveniles along their migration route, particularly in the U.S. as they got closer to breeding sites. Surprisingly, juveniles were just as likely as adults to cross the Gulf of Mexico, an open-water crossing of 800–1000 km, and migration route at the Gulf was not significantly different for juveniles relative to adults. To determine if the later departure of juveniles was related to poor body condition in winter relative to adults, we examined percent lean body mass, fat scores, and pectoral muscle scores of juvenile versus adult birds at a wintering site in Belize. We found no age-related differences in body condition. Later migration timing of juveniles relative to adults could be an adaptive strategy (as opposed to condition-dependent) to avoid the high costs of fast migration and competition for breeding territories with experienced and larger adults. We did find significant differences in wing size between adults and juveniles, which could contribute to lower flight efficiency of juveniles and thus slower overall migration speed. We provide the first step toward understanding the “black box” of juvenile songbird migration by documenting their migration timing and en route performance. PMID:25141193
NASA Astrophysics Data System (ADS)
Lee, Dong Jin; Kim, Youn Soo; Shin, Yong Taek; Jeon, Eon Chan; Lee, Sang Hwa; Lee, Hyo-Jong; Lee, Sung Keun; Lee, Jun Hee; Lee, Hae Woo
2010-10-01
We investigated the crack properties in Alloy 625 weld metals and their characteristics using experimentally designed filler wires fabricated by varying the niobium and manganese contents in the flux with the shield metal arc welding (SMAW) process. The fast diffusivity of niobium on the migrated grain boundary (MGB) under strong restraint tensile stress, which was induced by the hardened matrix in weld metal containing high niobium and manganese, accelerated the growth of niobium carbide (NbC) in multipass deposits. Coalescence of microvoids along with incoherent NbC and further propagation induced ductility-dip cracking (DDC) on MGB.
Latash, M L; Gottlieb, G L
1991-09-01
We describe a model for the regulation of fast, single-joint movements, based on the equilibrium-point hypothesis. Limb movement follows constant rate shifts of independently regulated neuromuscular variables. The independently regulated variables are tentatively identified as thresholds of a length sensitive reflex for each of the participating muscles. We use the model to predict EMG patterns associated with changes in the conditions of movement execution, specifically, changes in movement times, velocities, amplitudes, and moments of limb inertia. The approach provides a theoretical neural framework for the dual-strategy hypothesis, which considers certain movements to be results of one of two basic, speed-sensitive or speed-insensitive strategies. This model is advanced as an alternative to pattern-imposing models based on explicit regulation of timing and amplitudes of signals that are explicitly manifest in the EMG patterns.
Do Arctic breeding geese track or overtake a green wave during spring migration?
Si, Yali; Xin, Qinchuan; de Boer, Willem F; Gong, Peng; Ydenberg, Ronald C; Prins, Herbert H T
2015-03-04
Geese breeding in the Arctic have to do so in a short time-window while having sufficient body reserves. Hence, arrival time and body condition upon arrival largely influence breeding success. The green wave hypothesis posits that geese track a successively delayed spring flush of plant development on the way to their breeding sites. The green wave has been interpreted as representing either the onset of spring or the peak in nutrient biomass. However, geese tend to adopt a partial capital breeding strategy and might overtake the green wave to accomplish a timely arrival on the breeding site. To test the green wave hypothesis, we link the satellite-derived onset of spring and peak in nutrient biomass with the stopover schedule of individual Barnacle Geese. We find that geese track neither the onset of spring nor the peak in nutrient biomass. Rather, they arrive at the southernmost stopover site around the peak in nutrient biomass, and gradually overtake the green wave to match their arrival at the breeding site with the local onset of spring, thereby ensuring gosling benefit from the peak in nutrient biomass. Our approach for estimating plant development stages is critical in testing the migration strategies of migratory herbivores.
Eckmann, Madeleine; Dunham, Jason B.; Connor, Edward J.; Welch, Carmen A.
2018-01-01
Many species living in deeper lentic ecosystems exhibit daily movements that cycle through the water column, generally referred to as diel vertical migration (DVM). In this study, we applied bioenergetics modelling to evaluate growth as a hypothesis to explain DVM by bull trout (Salvelinus confluentus) in a thermally stratified reservoir (Ross Lake, WA, USA) during the peak of thermal stratification in July and August. Bioenergetics model parameters were derived from observed vertical distributions of temperature, prey and bull trout. Field sampling confirmed that bull trout prey almost exclusively on recently introduced redside shiner (Richardsonius balteatus). Model predictions revealed that deeper (>25 m) DVMs commonly exhibited by bull trout during peak thermal stratification cannot be explained by maximising growth. Survival, another common explanation for DVM, may have influenced bull trout depth use, but observations suggest there may be additional drivers of DVM. We propose these deeper summertime excursions may be partly explained by an alternative hypothesis: the importance of colder water for gametogenesis. In Ross Lake, reliance of bull trout on warm water prey (redside shiner) for consumption and growth poses a potential trade-off with the need for colder water for gametogenesis.
Lok, E.K.; Esler, Daniel N.; Takekawa, John Y.; De La Cruz, S.W.; Boyd, W.S.; Nysewander, D.R.; Evenson, J.R.; Ward, D.H.
2012-01-01
Surf scoters Melanitta perspicillata are sea ducks that aggregate at spawning events of Pacific herring Clupea pallasi and forage on the eggs, which are deposited in abundance during spring at discrete sites. We evaluated whether migrating scoters followed a ‘silver wave’ of resource availability, analogous to the ‘green wave’ of high-quality foraging conditions that herbivorous waterfowl follow during spring migration. We confirmed that herring spawning activity began later in the year at higher latitudes, creating a northward-progressing wave of short-term localized food availability. Using satellite telemetry and aerial surveys, we documented the chronology of scoter spring migration and the use of stopover locations in relation to herring spawn timing and locations. We found that the migration chronology paralleled the northward progression of herring spawning events. Although there was considerable variability in the timing of both scoter migration and the initiation of herring spawning, the processes were related beyond a coincidental northward progression. During migration, 60% of the tracked scoters visited at least 1 spawn site, and those that used spawn sites were located on spawn sites for approximately one-third of their migration locations. Surf scoters showed close spatiotemporal associations with herring spawning events, confirming that the presence of herring spawn was a factor determining habitat use for many individuals. Surf scoters showed close spatiotemporal associations with herring spawning events, confirming that the presence of herring spawn was a factor determining habitat use for many individuals, a conclusion that is consistent with previous studies which used physiologically based metrics to evaluate the importance of herring spawn.
ERIC Educational Resources Information Center
Kim, Younghan
2013-01-01
Today, globalization has increased cross-border migration in many countries. The public school classroom in the United States has been getting more diverse, linguistically, culturally, racially, and ethnically. Classrooms in South Korea are also becoming linguistically, culturally, racially, and ethnically diverse because of the fast growth of…
Why Trees Migrate So Fast: Confronting Theory with Dispersal Biology and the Paleorecord
James S. Clark
1998-01-01
Reid's paradox describes the fact that classical models cannot account for the rapid (102-103 yr-1) spread of trees at the end of the Pleistocene. I use field estimates of seed dispersal with an integrodifference equation and simulation models of population growth to show that dispersal data are...
ERIC Educational Resources Information Center
Sales, Eric S.; Silveira, Gustavo P.
2015-01-01
Lactone-size identification of [subscript D]-ribonolactone derivatives has been debated for four decades due to complex lactone-ring rearrangements and acetal migration. This laboratory experiment for an upper-division undergraduate organic chemistry laboratory course describes a fast and reliable assignment of lactone-size derivatives from…
Jalem, Randy; Kanamori, Kenta; Takeuchi, Ichiro; Nakayama, Masanobu; Yamasaki, Hisatsugu; Saito, Toshiya
2018-04-11
Safe and robust batteries are urgently requested today for power sources of electric vehicles. Thus, a growing interest has been noted for fabricating those with solid electrolytes. Materials search by density functional theory (DFT) methods offers great promise for finding new solid electrolytes but the evaluation is known to be computationally expensive, particularly on ion migration property. In this work, we proposed a Bayesian-optimization-driven DFT-based approach to efficiently screen for compounds with low ion migration energies ([Formula: see text]. We demonstrated this on 318 tavorite-type Li- and Na-containing compounds. We found that the scheme only requires ~30% of the total DFT-[Formula: see text] evaluations on the average to recover the optimal compound ~90% of the time. Its recovery performance for desired compounds in the tavorite search space is ~2× more than random search (i.e., for [Formula: see text] < 0.3 eV). Our approach offers a promising way for addressing computational bottlenecks in large-scale material screening for fast ionic conductors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Filuk, A. B.; Bailey, J. E.; Cuneo, M. E.
The maximum power achieved in a wide variety of high-power devices, including electron and ion diodes, z pinches, and microwave generators, is presently limited by anode-cathode gap breakdown. A frequently discussed hypothesis for this effect is ionization of fast neutral atoms injected throughout the anode-cathode gap during the power pulse. We describe a newly developed diagnostic tool that provides a direct test of this hypothesis. Time-resolved vacuum-ultraviolet absorption spectroscopy is used to directly probe fast neutral atoms with 1-mm spatial resolution in the 10-mm anode-cathode gap of the SABRE 5 MV, 1 TW applied-B ion diode. Absorption spectra collected duringmore » Ar RF glow discharges and with CO{sub 2} gas fills confirm the reliability of the diagnostic technique. Throughout the 50--100 ns ion diode pulses no measurable neutral absorption was seen, setting upper limits of (0.12--1.5)x10{sup 14}cm{sup -3} for ground-state fast neutral atom densities of H, C, N, O, and F. The absence of molecular absorption bands also sets upper limits of (0.16--1.2)x10{sup 15}cm{sup -3} for common simple molecules. These limits are low enough to rule out ionization of fast neutral atoms as a breakdown mechanism. Breakdown due to ionization of molecules is also found to be unlikely. This technique can now be applied to quantify the role of neutral atoms in other high-power devices.« less
Árnason, Úlfur
2017-09-05
The substantiality of the Out of Africa hypothesis was addressed in the light of recent genomic analysis of extant humans (Homo sapiens sapiens, Hss) and progress in Neanderthal palaeontology. The examination lent no support to the commonly assumed Out of Africa scenario but favoured instead a Eurasian divergence between Neanderthals and Hss (the Askur/Embla hypothesis) and an Out of Asia/Eurasia hypothesis according to which all other parts of the world were colonized by Hss migrations from Asia. The examination suggested furthermore that the ancestors of extant KhoeSan and Mbuti composed the first Hss dispersal(s) into Africa and that the ancestors of Yoruba made up a later wave into the same continent. The conclusions constitute a change in paradigm for the study of human evolution. Copyright © 2017. Published by Elsevier B.V.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Fenxi, E-mail: fxzhang0824@gmail.com; Hong, Yan; Liang, Wenmei
Highlights: Black-Right-Pointing-Pointer Co-culture of Sertoli cells (SCs) with human umbilical cord mesenchymal stem cells (UCMSCs). Black-Right-Pointing-Pointer Presence of SCs dramatically increased proliferation and migration of UCMSCs. Black-Right-Pointing-Pointer Presence of SCs stimulated expression of Mdm2, Akt, CDC2, Cyclin D, CXCR4, MAPKs. -- Abstract: Human umbilical cord mesenchymal stem cells (hUCMSCs) have been recently used in transplant therapy. The proliferation and migration of MSCs are the determinants of the efficiency of MSC transplant therapy. Sertoli cells are a kind of 'nurse' cells that support the development of sperm cells. Recent studies show that Sertoli cells promote proliferation of endothelial cells and neuralmore » stem cells in co-culture. We hypothesized that co-culture of UCMSCs with Sertoli cells may also promote proliferation and migration of UCMSCs. To examine this hypothesis, we isolated UCMSCs from human cords and Sertoli cells from mouse testes, and co-cultured them using a Transwell system. We found that UCMSCs exhibited strong proliferation ability and potential to differentiate to other cell lineages such as osteocytes and adipocytes. The presence of Sertoli cells in co-culture significantly enhanced the proliferation and migration potential of UCMSCs (P < 0.01). Moreover, these phenotypic changes were accompanied with upregulation of multiple genes involved in cell proliferation and migration including phospho-Akt, Mdm2, phospho-CDC2, Cyclin D1, Cyclin D3 as well as CXCR4, phospho-p44 MAPK and phospho-p38 MAPK. These findings indicate that Sertoli cells boost UCMSC proliferation and migration potential.« less
Zhang, Qing; Dong, Hua; Li, Yuli; Zhu, Ye; Zeng, Lei; Gao, Huichang; Yuan, Bo; Chen, Xiaofeng; Mao, Chuanbin
2015-10-21
Surface topography can affect cell adhesion, morphology, polarity, cytoskeleton organization, and osteogenesis. However, little is known about the effect of topography on the fracture healing in repairing nonunion and large bone defects. Microgrooved topography on the surface of bone implants may promote cell migration into the fracture gap to accelerate fracture healing. To prove this hypothesis, we used an in vitro fracture (wound) healing assay on the microgrooved polycaprolactone substrates to study the effect of microgroove widths and depths on the osteoblast-like cell (MG-63) migration and the subsequent healing. We found that the microgrooved substrates promoted MG-63 cells to migrate collectively into the wound gap, which serves as a fracture model, along the grooves and ridges as compared with the flat substrates. Moreover, the groove widths did not show obvious influence on the wound healing whereas the smaller groove depths tended to favor the collective cell migration and thus subsequent healing. The microgrooved substrates accelerated the wound healing by facilitating the collective cell migration into the wound gaps but not by promoting the cell proliferation. Furthermore, microgrooves were also found to promote the migration of human mesenchymal stem cells (hMSCs) to heal the fracture model. Though osteogenic differentiation of hMSCs was not improved on the microgrooved substrate, collagen I and minerals deposited by hMSCs were organized in a way similar to those in the extracellular matrix of natural bone. These findings suggest the necessity in using microgrooved implants in enhancing fracture healing in bone repair.
2011-01-01
Background Of the eight human herpes viruses, varicella-zoster virus, which causes chickenpox and zoster, has a unique epidemiology. Primary infection is much less common in children in the tropics compared with temperate areas. This results in increased adult susceptibility causing outbreaks, for example in health-care workers migrating from tropical to temperate countries. The recent demonstration that there are different genotypes of varicella-zoster virus and their geographic segregation into tropical and temperate areas suggests a distinct, yet previously unconsidered climatic factor may be responsible for both the clinical and molecular epidemiological features of this virus infection. Presentation of the hypothesis Unlike other human herpes viruses, varicella-zoster virus does not require intimate contact for infection to occur indicating that transmission may be interrupted by a geographically restricted climatic factor. The factor with the largest difference between tropical and temperate zones is ultra-violet radiation. This could reduce the infectiousness of chickenpox cases by inactivating virus in vesicles, before or after rupture. This would explain decreased transmissibility in the tropics and why the peak chickenpox incidence in temperate zones occurs during winter and spring, when ultra-violet radiation is at its lowest. The evolution of geographically restricted genotypes is also explained by ultra-violet radiation driving natural selection of different virus genotypes with varying degrees of resistance to inactivation, tropical genotypes being the most resistant. Consequently, temperate viruses should be more sensitive to its effects. This is supported by the observation that temperate genotypes are found in the tropics only in specific circumstances, namely where ultra-violet radiation has either been excluded or significantly reduced in intensity. Testing the Hypothesis The hypothesis is testable by exposing different virus genotypes to ultra-violet radiation and quantifying virus survival by plaque forming units or quantitative mRNA RT-PCR. Implications of the hypothesis The ancestral varicella-zoster virus, most probably a tropical genotype, co-migrated with man as he left Africa approximately 200,000 years ago. For this virus to have lost the selective advantage of resistance to ultra-violet radiation, the hypothesis would predict that the temperate, ultra-violet sensitive virus should have acquired another selective advantage as an evolutionary trade-off. One obvious advantage could be an increased reactivation rate as zoster to set up more rounds of chickenpox transmission. If this were so, the mechanism responsible for resistance to ultra-violet radiation might also be involved in reactivation and latency. This could then provide the first insight into a genetic correlate of the survival strategy of this virus. PMID:21513563
Ouwehand, Janne; Both, Christiaan
2017-01-01
Properly timed spring migration enhances reproduction and survival. Climate change requires organisms to respond to changes such as advanced spring phenology. Pied flycatchers Ficedula hypoleuca have become a model species to study such phenological adaptations of long-distance migratory songbirds to climate change, but data on individuals' time schedules outside the breeding season are still lacking. Using light-level geolocators, we studied variation in migration schedules across the year in a pied flycatcher population in the Netherlands, which sheds light on the ability for individual adjustments in spring arrival timing to track environmental changes at their breeding grounds. We show that variation in arrival dates to breeding sites in 2014 was caused by variation in departure date from sub-Saharan Africa and not by environmental conditions encountered en route. Spring migration duration was short for all individuals, on average 2 weeks. Males migrated ahead of females in spring, while migration schedules in autumn were flexibly adjusted according to breeding duties. Individuals were therefore not consistently early or late throughout the year. In fast migrants like our Dutch pied flycatchers, advancement of arrival to climate change likely requires changes in spring departure dates. Adaptation for earlier arrival may be slowed down by harsh circumstances in winter, or years with high costs associated with early migration. © 2016 The Authors. Journal of Animal Ecology published by John Wiley & Sons Ltd on behalf of British Ecological Society.
Synchrony in Metapopulations with Sporadic Dispersal
NASA Astrophysics Data System (ADS)
Jeter, Russell; Belykh, Igor
2015-06-01
We study synchronization in ecological networks under the realistic assumption that the coupling among the patches is sporadic/stochastic and due to rare and short-term meteorological conditions. Each patch is described by a tritrophic food chain model, representing the producer, consumer, and predator. If all three species can migrate, we rigorously prove that the network can synchronize as long as the migration occurs frequently, i.e. fast compared to the period of the ecological cycle, even though the network is disconnected most of the time. In the case where only the top trophic level (i.e. the predator) can migrate, we reveal an unexpected range of intermediate switching frequencies where synchronization becomes stable in a network which switches between two nonsynchronous dynamics. As spatial synchrony increases the danger of extinction, this counterintuitive effect of synchrony emerging from slower switching dispersal can be destructive for overall metapopulation persistence, presumably expected from switching between two dynamics which are unfavorable to extinction.
Hyslop, N S
1976-06-01
Extracts of 3 soya bean preparations, used commercially in certain countries to replace part of the meat in popular meat products, were made by treatment with (i) sodium dodecyl sulphate, (ii) Triton-X100 or (iii) n-Butanol. Similar extracts were made from beef and pork. All extracts were examined by electrophoretic and immunological techniques. Stained polyacrylamide gels revealed distinctive protein bands after electrophoresis. The migration rates of corresponding bands differed between beef and pork extracts. However, the migration rates of vegetable bands revealed certain similarities, but differed very greatly from those of animal origin. Characteristic fast-migrating S-bands were distinguishable only in extracts of vegetable protein. Immunodiffusion tests, using antisera produced in rabbits against each extract, revealed varying degrees of similarity between extracts of vegetable origin, but the antisera were specific for either vegetable or animal protein.
Hyslop, N. S.
1976-01-01
Extracts of 3 soya bean preparations, used commercially in certain countries to replace part of the meat in popular meat products, were made by treatment with (i) sodium dodecyl sulphate, (ii) Triton-X100 or (iii) n-Butanol. Similar extracts were made from beef and pork. All extracts were examined by electrophoretic and immunological techniques. Stained polyacrylamide gels revealed distinctive protein bands after electrophoresis. The migration rates of corresponding bands differed between beef and pork extracts. However, the migration rates of vegetable bands revealed certain similarities, but differed very greatly from those of animal origin. Characteristic fast-migrating S-bands were distinguishable only in extracts of vegetable protein. Immunodiffusion tests, using antisera produced in rabbits against each extract, revealed varying degrees of similarity between extracts of vegetable origin, but the antisera were specific for either vegetable or animal protein. Images Plate 1 Plate 2 PMID:819572
NASA Astrophysics Data System (ADS)
Håkansson, Pär; Westlund, Per-Olof
2005-01-01
This paper discusses the process of energy migration transfer within reorientating chromophores using the stochastic master equation (SME) and the stochastic Liouville equation (SLE) of motion. We have found that the SME over-estimates the rate of the energy migration compared to the SLE solution for a case of weakly interacting chromophores. This discrepancy between SME and SLE is caused by a memory effect occurring when fluctuations in the dipole-dipole Hamiltonian ( H( t)) are on the same timescale as the intrinsic fast transverse relaxation rate characterized by (1/ T2). Thus the timescale critical for energy-transfer experiments is T2≈10 -13 s. An extended SME is constructed, accounting for the memory effect of the dipole-dipole Hamiltonian dynamics. The influence of memory on the interpretation of experiments is discussed.
Indigenous Arabs are descendants of the earliest split from ancient Eurasian populations
Rodriguez-Flores, Juan L.; Fakhro, Khalid; Agosto-Perez, Francisco; Ramstetter, Monica D.; Arbiza, Leonardo; Vincent, Thomas L.; Robay, Amal; Malek, Joel A.; Suhre, Karsten; Chouchane, Lotfi; Badii, Ramin; Al-Nabet Al-Marri, Ajayeb; Abi Khalil, Charbel; Zirie, Mahmoud; Jayyousi, Amin; Salit, Jacqueline; Keinan, Alon; Clark, Andrew G.; Crystal, Ronald G.; Mezey, Jason G.
2016-01-01
An open question in the history of human migration is the identity of the earliest Eurasian populations that have left contemporary descendants. The Arabian Peninsula was the initial site of the out-of-Africa migrations that occurred between 125,000 and 60,000 yr ago, leading to the hypothesis that the first Eurasian populations were established on the Peninsula and that contemporary indigenous Arabs are direct descendants of these ancient peoples. To assess this hypothesis, we sequenced the entire genomes of 104 unrelated natives of the Arabian Peninsula at high coverage, including 56 of indigenous Arab ancestry. The indigenous Arab genomes defined a cluster distinct from other ancestral groups, and these genomes showed clear hallmarks of an ancient out-of-Africa bottleneck. Similar to other Middle Eastern populations, the indigenous Arabs had higher levels of Neanderthal admixture compared to Africans but had lower levels than Europeans and Asians. These levels of Neanderthal admixture are consistent with an early divergence of Arab ancestors after the out-of-Africa bottleneck but before the major Neanderthal admixture events in Europe and other regions of Eurasia. When compared to worldwide populations sampled in the 1000 Genomes Project, although the indigenous Arabs had a signal of admixture with Europeans, they clustered in a basal, outgroup position to all 1000 Genomes non-Africans when considering pairwise similarity across the entire genome. These results place indigenous Arabs as the most distant relatives of all other contemporary non-Africans and identify these people as direct descendants of the first Eurasian populations established by the out-of-Africa migrations. PMID:26728717
The Hispanic Paradox and Older Adults’ Disabilities: Is There a Healthy Migrant Effect?
Thomson, Esme Fuller; Nuru-Jeter, Amani; Richardson, Dawn; Raza, Ferrah; Minkler, Meredith
2013-01-01
The “Hispanic Paradox” suggests that despite rates of poverty similar to African Americans, Hispanics have far better health and mortality outcomes, more comparable to non-Hispanic White Americans. Three prominent possible explanations for the Hispanic Paradox have emerged. The “Healthy Migrant Effect” suggests a health selection effect due to the demands of migration. The Hispanic lifestyle hypothesis focuses on Hispanics’ strong social ties and better health behaviors. The reverse migration argument suggests that the morbidity profile in the USA is affected when many Hispanic immigrants return to their native countries after developing a serious illness. We analyzed data from respondents aged 55 and over from the nationally representative 2006 American Community Survey including Mexican Americans (13,167 U.S. born; 11,378 immigrants), Cuban Americans (314 U.S. born; 3,730 immigrants), and non-Hispanic White Americans (629,341 U.S. born; 31,164 immigrants). The healthy migrant effect was supported with SES-adjusted disability comparable between Mexican, Cuban and non-Hispanic Whites born in the USA and all immigrants having lower adjusted odds of functional limitations than U.S. born non-Hispanic Whites. The reverse migration hypothesis was partially supported, with citizenship and longer duration in the USA associated with higher rates of SES-adjusted disability for Mexican Americans. The Hispanic healthy life-style explanation had little support in this study. Our findings underline the importance of considering nativity when planning for health interventions to address the needs of the growing Hispanic American older adult population. PMID:23644828
Boessenkool, Sanne; Star, Bastiaan; Waters, Jonathan M; Seddon, Philip J
2009-06-01
The identification of demographically independent populations and the recognition of management units have been greatly facilitated by the continuing advances in genetic tools. Managements units now play a key role in short-term conservation management programmes of declining species, but their importance in expanding populations receives comparatively little attention. The endangered yellow-eyed penguin (Megadyptes antipodes) expanded its range from the subantarctic to New Zealand's South Island a few hundred years ago and this new population now represents almost half of the species' total census size. This dramatic expansion attests to M. antipodes' high dispersal abilities and suggests the species is likely to constitute a single demographic population. Here we test this hypothesis of panmixia by investigating genetic differentiation and levels of gene flow among penguin breeding areas using 12 autosomal microsatellite loci along with mitochondrial control region sequence analyses for 350 individuals. Contrary to our hypothesis, however, the analyses reveal two genetically and geographically distinct assemblages: South Island vs. subantarctic populations. Using assignment tests, we recognize just two first-generation migrants between these populations (corresponding to a migration rate of < 2%), indicating that ongoing levels of long-distance migration are low. Furthermore, the South Island population has low genetic variability compared to the subantarctic population. These results suggest that the South Island population was founded by only a small number of individuals, and that subsequent levels of gene flow have remained low. The demographic independence of the two populations warrants their designation as distinct management units and conservation efforts should be adjusted accordingly to protect both populations.
Yi, Kexi; Rubinstein, Boris; Unruh, Jay R; Guo, Fengli; Slaughter, Brian D; Li, Rong
2013-03-04
Polar body extrusion during oocyte maturation is critically dependent on asymmetric positioning of the meiotic spindle, which is established through migration of the meiosis I (MI) spindle/chromosomes from the oocyte interior to a subcortical location. In this study, we show that MI chromosome migration is biphasic and driven by consecutive actin-based pushing forces regulated by two actin nucleators, Fmn2, a formin family protein, and the Arp2/3 complex. Fmn2 was recruited to endoplasmic reticulum structures surrounding the MI spindle, where it nucleated actin filaments to initiate an initially slow and poorly directed motion of the spindle away from the cell center. A fast and highly directed second migration phase was driven by actin-mediated cytoplasmic streaming and occurred as the chromosomes reach a sufficient proximity to the cortex to activate the Arp2/3 complex. We propose that decisive symmetry breaking in mouse oocytes results from Fmn2-mediated perturbation of spindle position and the positive feedback loop between chromosome signal-induced Arp2/3 activation and Arp2/3-orchestrated cytoplasmic streaming that transports the chromosomes.
Yi, Kexi; Rubinstein, Boris; Unruh, Jay R.; Guo, Fengli; Slaughter, Brian D.
2013-01-01
Polar body extrusion during oocyte maturation is critically dependent on asymmetric positioning of the meiotic spindle, which is established through migration of the meiosis I (MI) spindle/chromosomes from the oocyte interior to a subcortical location. In this study, we show that MI chromosome migration is biphasic and driven by consecutive actin-based pushing forces regulated by two actin nucleators, Fmn2, a formin family protein, and the Arp2/3 complex. Fmn2 was recruited to endoplasmic reticulum structures surrounding the MI spindle, where it nucleated actin filaments to initiate an initially slow and poorly directed motion of the spindle away from the cell center. A fast and highly directed second migration phase was driven by actin-mediated cytoplasmic streaming and occurred as the chromosomes reach a sufficient proximity to the cortex to activate the Arp2/3 complex. We propose that decisive symmetry breaking in mouse oocytes results from Fmn2-mediated perturbation of spindle position and the positive feedback loop between chromosome signal-induced Arp2/3 activation and Arp2/3-orchestrated cytoplasmic streaming that transports the chromosomes. PMID:23439682
Migration of moth species in a network of small islands.
Nieminen, Marko
1996-12-01
Rapidly increasing fragmentation of natural landscapes decreases the ability of many species to reach the smaller and more isolated patches of habitat in a metapopulation. The densities of local populations of several moth species and the butterfly Hipparchia semele in a network of small islands, and the rates of inter-island movement and movement patterns, were investigated, to determine the factors affecting the rate and pattern of movements. The estimated population densities ranged from 0.001 to 0.2 individuals/m 2 . The observed emigration and immigration rates depended on island isolation and various traits of the species, with great variability in migration rates among species. Thin-bodied, slow-flying species did not move among the islands, whereas many robust, fast-flying species moved among the islands relatively frequently. Migration rate increased significantly with body size and was significantly higher in oligophagous than in polyphagous species, suggesting that these factors are important determinants of the migration rate of the species. Migration rate was low when the surface temperature of the sea was low, and a greater proportion of individuals emigrated from small than large patches of habitat. The migration distances of female noctuids were shorter than those of males and those of both sexes of the butterfly H. semele. The observed movement patterns are consistent with a metapopulation structure in most of the moth species.
Negotiating an ecological barrier: crossing the Sahara in relation to winds by common swifts
2016-01-01
The Sahara Desert is one of the largest land-based barriers on the Earth, crossed twice each year by billions of birds on migration. Here we investigate how common swifts migrating between breeding sites in Sweden and wintering areas in sub-Saharan Africa perform the desert crossing with respect to route choice, winds, timing and speed of migration by analysing 72 geolocator tracks recording migration. The swifts cross western Sahara on a broad front in autumn, while in spring they seem to use three alternative routes across the Sahara, a western, a central and an eastern route across the Arabian Peninsula, with most birds using the western route. The swifts show slower migration and travel speeds, and make longer detours with more stops in autumn compared with spring. In spring, the stopover period in West Africa coincided with mostly favourable winds, but birds remained in the area, suggesting fuelling. The western route provided more tailwind assistance compared with the central route for our tracked swifts in spring, but not in autumn. The ultimate explanation for the evolution of a preferred western route is presumably a combination of matching rich foraging conditions (swarming insects) and favourable winds enabling fast spring migration. This article is part of the themed issue ‘Moving in a moving medium: new perspectives on flight’. PMID:27528783
Migrating the STARLINK Network from VMS to Unix
NASA Astrophysics Data System (ADS)
Clayton, C.
The Starlink Project is a UK-wide astronomical computing service consisting of a network of computers used by UK astronomers at over 25 sites, a collection of software to calibrate and analyze astronomical data, and a team of people to give hardware, software, and administrative support. In order to exploit the most cost-effective hardware and to maintain compatibility with the international community, Starlink is migrating from an entirely VAX/VMS based service to UNIX-based systems. This migration is almost complete, and this paper describes some of the solutions adopted for the wide variety of problems which were encountered. Migration of the hardware platform is discussed first. Equipment which can be re-used under Unix is identified. System software and non-astronomical applications which are required to allow a smooth transition from VMS to Unix are considered next. While many VMS functions can be replaced with Unix equivalents, it has become apparent that there is a small number of key VMS applications which must be provided on the replacement Unix platform to avoid considerable disruption to users. Various strategies for moving the users themselves from VMS to UNIX are considered and their relative merits compared. Fast migration routes are considered to be more effective as long as certain key applications and user aids are already in place. The porting of the Starlink Software Collection is discussed, as is the problem of migrating large quantities of private user code.
Src promotes cutaneous wound healing by regulating MMP-2 through the ERK pathway.
Wu, Xue; Yang, Longlong; Zheng, Zhao; Li, Zhenzhen; Shi, Jihong; Li, Yan; Han, Shichao; Gao, Jianxin; Tang, Chaowu; Su, Linlin; Hu, Dahai
2016-03-01
Wound healing is a highly orchestrated, multistep process, and delayed wound healing is a significant symptomatic clinical problem. Keratinocyte migration and re-epithelialization play the most important roles in wound healing, as they determine the rate of wound healing. In our previous study, we found that Src, one of the oldest proto‑oncogenes encoding a membrane-associated, non-receptor protein tyrosine kinase, promotes keratinocyte migration. We therefore hypothesized that Src promotes wound healing through enhanced keratinocyte migration. In order to test this hypothesis, vectors for overexpressing Src and small interfering RNAs (siRNAs) for silencing of Src were used in the present study. We found that the overexpression of Src accelerated keratinocyte migration in vitro and promoted wound healing in vivo without exerting a marked effect on cell proliferation. The extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK) signaling pathways play important roles in Src-accelerated keratinocyte migration. Further experiments demonstrated that Src induced the protein expression of matrix metalloproteinase-2 (MMP-2) and decreased the protein expression of E-cadherin. We suggest that ERK signaling is involved in the Src-mediated regulation of MMP-2 expression. The present study provided evidence that Src promotes keratinocyte migration and cutaneous wound healing, in which the regulation of MMP-2 through the ERK pathway plays an important role, and thus we also demonstrated a potential therapeutic role for Src in cutaneous wound healing.
Liu, L Y; Wang, H; Xenakis, J J; Spencer, L A
2015-07-01
Priming with cytokines such as granulocyte-macrophage colony-stimulating factor (GM-CSF) enhances eosinophil migration and exacerbates the excessive accumulation of eosinophils within the bronchial mucosa of asthmatics. However, mechanisms that drive GM-CSF priming are incompletely understood. Notch signaling is an evolutionarily conserved pathway that regulates cellular processes, including migration, by integrating exogenous and cell-intrinsic cues. This study investigates the hypothesis that the priming-induced enhanced migration of human eosinophils requires the Notch signaling pathway. Using pan Notch inhibitors and newly developed human antibodies that specifically neutralize Notch receptor 1 activation, we investigated a role for Notch signaling in GM-CSF-primed transmigration of human blood eosinophils in vitro and in the airway accumulation of mouse eosinophils in vivo. Notch receptor 1 was constitutively active in freshly isolated human blood eosinophils, and inhibition of Notch signaling or specific blockade of Notch receptor 1 activation during GM-CSF priming impaired priming-enhanced eosinophil transendothelial migration in vitro. Inclusion of Notch signaling inhibitors during priming was associated with diminished ERK phosphorylation, and ERK-MAPK activation was required for GM-CSF priming-induced transmigration. In vivo in mice, eosinophil accumulation within allergic airways was impaired following systemic treatment with Notch inhibitor, or adoptive transfer of eosinophils treated ex vivo with Notch inhibitor. These data identify Notch signaling as an intrinsic pathway central to GM-CSF priming-induced eosinophil tissue migration. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Chacón-Salinas, Rommel; Chen, Limo; Chávez-Blanco, Alma D.; Limón-Flores, Alberto Y.; Ma, Ying; Ullrich, Stephen E.
2014-01-01
The UVB (290–320 nm) radiation in sunlight is responsible for inducing skin cancer. Exposure to UV radiation is also immunosuppressive, and the systemic immune suppression induced by UV is a well-recognized risk factor for cancer induction. As UVB radiation is absorbed within the upper layers of the skin, indirect mechanisms must play a role in activating systemic immune suppression. One prominent example is mast cell migration, which from the skin to the draining LN is an essential step in the cascade of events leading to immune suppression. What triggers mast cell migration is not entirely clear. Here, we tested the hypothesis that PAF, a lipid mediator of inflammation produced by the skin in response to UV exposure, is involved. Mast cell-deficient mice (KitW-sh/W-sh) are resistant to the suppressive effect of UV radiation, and reconstituting mast cell-deficient mice with normal bone marrow-derived mast cells restores susceptibility to immunosuppression. However, when mast cells from PAFR−/− mice were used, the reconstituted mice were not susceptible to the suppressive effects of UV. Furthermore, PAFR−/− mice showed impaired UV-induced mast cell migration when compared with WT mice. Finally, injecting PAF into WT mice mimicked the effect of UV irradiation and induced mast cell migration but not in PAFR−/− mice. Our findings indicate that PAFR binding induces mast cells to migrate from the skin to the LNs, where they mediate immune suppression. PMID:24009177
Fleischer, Guy W.; TeWinkel, Leslie M.
1998-01-01
Acoustic studies in Lake Michigan found that bloaters (Coregonus hoyi) were less reflective per size than the other major pelagic species. This difference in in situ acoustic backscattering could indicate that the deep-water bloaters have compressed swimbladders for much of their vertical range with related implications on buoyancy. To test this hypothesis, the buoyancy characteristics of bloaters were determined with fish placed in a cage that was lowered to bottom and monitored with an underwater camera. We found bloaters were positively buoyant near surface, neutrally buoyant at intermediate strata, and negatively buoyant near bottom. This pattern was consistent for the range of depths bloaters occur. The depth of neutral buoyancy (near the 50-n strata) corresponds with the maximum extent of vertical migration for bloaters observed in acoustic surveys. Fish below this depth would be negatively buoyant which supports our contention that bloaters deeper in the water column have compressed swimbladders. Understanding the buoyancy characteristics of pelagic fishes will help to predict the effects of vertical migration on target strength measurement and confirms the use of acoustics as a tool to identify and quantify the ecological phenomenon of vertical migration.
Escobar-Morreale, Héctor F; Martínez-García, M Ángeles; Montes-Nieto, Rafael; Fernández-Durán, Elena; Temprano-Carazo, Sara; Luque-Ramírez, Manuel
2017-04-01
Low-grade chronic inflammation is involved in the pathophysiology of obesity. However, little is known about the influence of sex and sex hormones on surrogate inflammatory markers and mediators, particularly after glucose ingestion. Observational study. We measured the circulating concentrations of interleukin-6, interleukin-18, macrophage migration inhibitory factor, matrix metallopeptidase-9, monocyte chemotactic protein-1 and pentraxin-3, in the fasting state and during a 75 g oral glucose tolerance test, in 24 women and 25 men. Eleven men and 11 women were lean whereas 14 men and 13 women had weight excess. Anti-inflammatory cytokines (interleukin-6 and interleukin-18) were increased in the fasting state and/or decreased in some women during the oral glucose tolerance test, as opposed to inflammatory mediators such as macrophage migration inhibitory factor and matrix metallopeptidase-9 that increased during the oral glucose tolerance test especially in subjects with weight excess. Body mass index and waist circumference were the main determinants of these changes. Fasting pentraxin-3 levels were especially increased in lean women in parallel to a decrease in free testosterone levels, and decreased during the oral glucose tolerance test as opposed to the increase in insulin concentrations. The circulating concentrations of markers of low-grade chronic inflammation in young healthy adults are not only influenced by obesity but also by abdominal adiposity, fasting and glucose ingestion and, in some cases, by sex and sex hormones. These influences should be considered when these markers are used as surrogate markers of the inflammatory milieu associated with obesity. Copyright © 2016 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.
Boll, Erik J.; Struve, Carsten; Sander, Anja; Demma, Zachary; Krogfelt, Karen A.; McCormick, Beth A.
2014-01-01
Summary Enteroaggregative Escherichia coli (EAEC) induces release of pro-inflammatory markers and disruption of intestinal epithelial barriers in vitro suggesting an inflammatory aspect to EAEC infection. However, the mechanisms underlying EAEC-induced mucosal inflammatory responses and the extent to which these events contribute to pathogenesis is not well characterized. Employing an established in vitro model we demonstrated that EAEC prototype strain 042 induces migration of polymorphonuclear neutrophils (PMNs) across polarized T84 cell monolayers. This event was mediated through a conserved host cell signaling cascade involving the 12/15-LOX pathway and led to apical secretion of an arachidonic acid-derived lipid PMN chemoattractant, guiding PMNs across the epithelia to the site of infection. Moreover, supporting the hypothesis that inflammatory responses may contribute to EAEC pathogenesis, we found that PMN transepithelial migration promoted enhanced attachment of EAEC 042 to T84 cells. These findings suggest that EAEC-induced PMN infiltration may favor colonization and thus pathogenesis of EAEC. PMID:21951973
Lin, Wenzhi; Frère, Céline H; Karczmarski, Leszek; Xia, Jia; Gui, Duan; Wu, Yuping
2014-10-10
We used 344 mitochondrial control region (717 bp) sequences from the finless porpoise (genus Neophocaena) from the northwestern Pacific to investigate the extent and manner in which past climatic oscillations may have shaped patterns of genetic diversity for this marine mammal. Both SplitsTree and Analysis of Molecular Variance (AMOVA) revealed the presence of a deep divergence among N. phocaenoides in subtropical waters compared with N. asiaeorientalis in temperate waters. Results from Migrate-n indicated that migration increased along the continent during the early Pleistocene period. Migration increased, although to a lesser extent than that during the Pleistocene, along the marginal shelf in the Yellow/Bohai Sea during the Last Glacial Maximum (LGM) due to a shortening coastline. Our results suggest that the current patterns of genetic diversity of Neophocaena vary at a hierarchy on a temporal and spatial scale, and phylogeographic history should be taken into account when examining species population structure and taxonomy.
Goymann, Wolfgang; Spina, Fernando; Ferri, Andrea; Fusani, Leonida
2010-01-01
Migration remains one of the great mysteries of animal life. Small migratory birds rely on refuelling stopovers after crossing ecological barriers such as deserts or seas. Previous studies have suggested that fuel reserves may determine stopover duration but this hypothesis could not be tested because of methodological limitations. Here, we provide evidence that subcutaneous fat stores determine stopover duration by measuring the permanence of migratory garden warblers (Sylvia borin) on a small Mediterranean island during spring migration with telemetry methods. Garden warblers with large amounts of fat stores departed the island significantly sooner than lean birds. All except one fat bird left the island on the same evening after capture, with a mean total stopover estimate of 8.8 hours. In contrast, the mean estimated total stopover duration of lean birds was 41.3 hours. To our knowledge, this is the first study that measures the true minimum stopover duration of a songbird during migration. PMID:20164077
Wang, Mengmeng; Ong, Lee-Ling Sharon; Dauwels, Justin; Asada, H Harry
2018-04-01
Cell migration is a key feature for living organisms. Image analysis tools are useful in studying cell migration in three-dimensional (3-D) in vitro environments. We consider angiogenic vessels formed in 3-D microfluidic devices (MFDs) and develop an image analysis system to extract cell behaviors from experimental phase-contrast microscopy image sequences. The proposed system initializes tracks with the end-point confocal nuclei coordinates. We apply convolutional neural networks to detect cell candidates and combine backward Kalman filtering with multiple hypothesis tracking to link the cell candidates at each time step. These hypotheses incorporate prior knowledge on vessel formation and cell proliferation rates. The association accuracy reaches 86.4% for the proposed algorithm, indicating that the proposed system is able to associate cells more accurately than existing approaches. Cell culture experiments in 3-D MFDs have shown considerable promise for improving biology research. The proposed system is expected to be a useful quantitative tool for potential microscopy problems of MFDs.
Involvement of hormones in olfactory imprinting and homing in chum salmon.
Ueda, Hiroshi; Nakamura, Shingo; Nakamura, Taro; Inada, Kaoru; Okubo, Takashi; Furukawa, Naohiro; Murakami, Reiichi; Tsuchida, Shigeo; Zohar, Yonathan; Konno, Kotaro; Watanabe, Masahiko
2016-02-16
The olfactory hypothesis for salmon imprinting and homing to their natal stream is well known, but the endocrine hormonal control mechanisms of olfactory memory formation in juveniles and retrieval in adults remain unclear. In brains of hatchery-reared underyearling juvenile chum salmon (Oncorhynchus keta), thyrotropin-releasing hormone gene expression increased immediately after release from a hatchery into the natal stream, and the expression of the essential NR1 subunit of the N-methyl-D-aspartate receptor increased during downstream migration. Gene expression of salmon gonadotropin-releasing hormone (sGnRH) and NR1 increased in the adult chum salmon brain during homing from the Bering Sea to the natal hatchery. Thyroid hormone treatment in juveniles enhanced NR1 gene activation, and GnRHa treatment in adults improved stream odour discrimination. Olfactory memory formation during juvenile downstream migration and retrieval during adult homing migration of chum salmon might be controlled by endocrine hormones and could be clarified using NR1 as a molecular marker.
ERIC Educational Resources Information Center
LAMANNA, RICHARD A.; SAMORA, JULIAN
MEXICAN AMERICANS WHO HAVE MIGRATED TO THE INDUSTRIAL COMPLEX OF EAST CHICAGO ARE ANALYZED TO DETERMINE THE VALIDITY OF A HYPOTHESIS THAT THIS GROUP WAS PROVIDED OPPORTUNITIES NOT AVAILABLE TO THEIR COUNTERPARTS IN THE SOUTHWEST FOR ASSIMILATION INTO THE COMMUNITY. A CONCISE REPORT ON THE HISTORY OF THE MEXICAN-AMERICAN COLONY IN EAST CHICAGO, ITS…
Effects of alluvial knickpoint migration on floodplain ecology and geomorphology
NASA Astrophysics Data System (ADS)
Larsen, Annegret; May, Jan-Hendrick
2016-04-01
Alluvial knickpoints are well described as erosional mechanism within discontinuous ephemeral streams in the semi-arid SW USA. However, alluvial knickpoints occur globally in a wide range of settings and of climate zones, including temperate SE Australia, subtropical Africa, and tropical Australia. Much attention has been given in the scientific literature to the trigger mechanisms of alluvial knickpoints, which can be summarized as: i) threshold phenomena, ii) climate variability and iii) land-use change, or to a combination of these factors. Recently, studies have focused on the timescale of alluvial knickpoint retreat, and the processes, mechanisms and feedbacks with ecology, geomorphology and hydrology. In this study, we compile data from a global literature review with a case study on a tropical river system in Australia affected by re-occurring, fast migrating (140 myr-1) alluvial knickpoint. We highlight the importance of potential water table declines due to channel incision following knickpoint migration, which in turn leads to the destabilization of river banks, and a shift in floodplain vegetation and fire incursion. We hypothesize that the observed feedbacks might also help to understand the broader impacts of alluvial knickpoint migration in other regions, and might explain the drastic effects of knickpoint migration on land cover and land-use in semi-arid areas.
Cui, Xu; Chen, Jieli; Zacharek, Alex; Roberts, Cynthia; Yang, Yuping; Chopp, Michael
2009-01-01
We tested the hypothesis that a nitric oxide donor, DETA-NONOate, up-regulates stromal cell-derived factor-1 (SDF1) and angiopoietin 1 (Ang1) in the ischemic brain and their respective receptors chemokine CXC motif receptor 4 (CXCR4) and Tie2 in the subventricular zone (SVZ) and thereby promote SVZ neuroblast cell migration after stroke. C57BL/6J mice were subjected to middle cerebral artery occlusion (MCAo), and 24 hr later DETA-NONOate (0.4 mg/kg) or phosphate-buffered solution was intravenously administered. Mice were sacrificed at 14 days for histological assessment or sacrificed at 3 days for analysis by real-time polymerase chain reaction and migration after MCAo. To elucidate whether SDF1/CXCR4 and Ang1/Tie2 pathways mediate DETA-NONOate-induced SVZ migration after stroke, SDF1alpha, Ang1 peptide, a specific antagonist of CXCR4 (AMD3100), and a neutralizing antibody of Tie2 (anti-Tie2) were used in vitro. DETA-NONOate significantly increased the percentage area of doublecortin (DCX, a marker of migrating neuroblasts)-immunoreactive cells in the SVZ and ischemic boundary zone. DETA-NONOate significantly increased the expression of SDF1 and Ang1 in the ischemic border and up-regulated CXCR4 and Tie2 in the SVZ compared with MCAo control. DCX-positive cell migration from SVZ explants was significantly increased in the DETA-NONOate treatment group compared with MCAo-alone animals. In vitro, SDF1alpha and Ang1 significantly increased SVZ explants cell migration. In addition, inhibition of CXCR4 or Tie2 significantly attenuated DETA-NONOate-induced SVZ cell migration. Our data indicate that treatment of stroke with a nitric oxide donor up-regulates SDF1/CXCR4 and Ang1/Tie2 pathways and thereby likely increases SVZ neuroblast cell migration. 2008 Wiley-Liss, Inc.
Cui, Xu; Chen, Jieli; Zacharek, Alex; Roberts, Cynthia; Yang, Yuping; Chopp, Michael
2008-01-01
We tested the hypothesis that a nitric oxide donor, DETA-NONOate upregulates Stromal cell-Derived Factor-1 (SDF1) and Angiopoietin 1 (Ang1) in the ischemic brain and their, respective, receptors chemokine CXC motif receptor 4 (CXCR4) and Tie2 in the subventricular zone (SVZ) and thereby promote SVZ neuroblast cell migration after stroke. C57BL/6J mice were subjected to middle cerebral artery occlusion (MCAo) and 24 hours later DETA-NONOate (0.4 mg/kg) or phosphate buffered solution were intravenously administered. Mice were sacrificed at 14 days for histological assessment or sacrificed at 3 days for analysis real-time polymerase chain reaction and migration after MCAo. To elucidate whether SDF1/CXCR4 and Ang1/Tie2 pathways mediate DETA-NONOate induced SVZ migration after stroke, SDF1α, Ang1 peptide and a specific antagonist of CXCR4 (AMD3100) and a neutralizing antibody of Tie2 (anti-Tie2) were used in vitro. DETA-NONOate significantly increased the percent area of doublecortin (a marker of migrating neuroblasts) immunoreactive-cells in the SVZ and ischemic boundary zone. DETA-NONOate significantly increased the expression of SDF1 and Ang1 in the ischemic border and upregulated CXCR4 and Tie2 in the SVZ compared with MCAo control. DCX-positive cell migration from SVZ explants was significantly increased in the DETA-NONOate treatment group compared with MCAo alone animals. In vitro, SDF1α and Ang1 significantly increased SVZ explants cell migration. In addition, inhibition of CXCR4 or Tie2 significantly attenuated DETA-NONOate induced SVZ cell migration. Our data indicated that treatment of stroke with a nitric oxide donor upregulates SDF1/CXCR4 and Ang1/Tie2 pathways and thereby likely increases SVZ neuroblast cell migration. PMID:18711749
Forbes, W M; Ashton, F T; Boston, R; Zhu, X; Schad, G A
2004-03-25
Depending on its concentration, sodium chloride acts as either an attractant or a repellant to the infective larvae (L3i) of Strongyloides stercoralis. On a concentration gradient, L3i are attracted to 0.05 M NaCl, but repelled by 2.8M. To test the hypothesis that amphidial neurons ASE and ASH might mediate attraction and repulsion, respectively, these neurons, and control neurons as well, were ablated in hatchling larvae with a laser microbeam. After the larvae attained infectivity (L3i), they were tested on a NaCl gradient. When placed at low salinity, 73.5% of normal controls migrated "up" the gradient, while 26.4% crawled randomly. In contrast, only 20.6% of ASE-ablated L3i migrated "up" the gradient, while 79.4% migrated randomly. Ablation-control ASK-ablated L3i (58.8%) migrated "up" the gradient while 41.1% crawled randomly. When placed at a region of high salinity, 100% of normal control L3i migrated "down" the gradient, whereas 62.5% of ASH-ablated L3i migrated randomly, the remaining 37.5% migrating "down" the gradient. In sharp contrast with ASH-ablated L3i, 94.1% of ablation-control larvae, i.e. ASK-ablated L3i, migrated "down" the gradient. Migration behavior of ASE- and ASH-ablated L3i was significantly different (P < 0.001) from that of ASK-ablated L3i and normal controls. It is noteworthy that 87.5% of ASE-ablated L3i that failed to exhibit chemoattractive behavior were actively chemorepelled from high salinity. Also, 70.0% of ASH-ablated L3i that failed to be chemorepelled from high salinity were capable of chemoattractive behavior, indicating that the worms had retained their behavioral responses except for those associated with the targeted neurons.
Mueser, P R; White, M J; Tierney, J P
1988-01-01
This paper examines age patterns of net migration for US counties, arguing that the shift in the character of population redistribution will be reflected in the age structure of net migration across counties. The authors hypothesize that the increased specialization of counties with respect to activities characteristic of particular states of the life cycle would be evident in the greater dispersion of net migration rates at selected ages. For the 1950s and the 1960s, the authors used net migration estimates for US counties calculated by age, race, and sex by Gladys Bowles and colleagues. For 1970-1980, the authors constructed estimates. The study analyzed over 3000 counties or county equivalents. The results of the analysis confirm the importance of changes in age- specific patterns and provide support for the hypothesis. The increasing importance of localized amenities and an associated growth of age-specialized institutional structures across location, serves to increase concentration of net migration in certain age groups. Specifically, 1) nonmetropolitan counties become particularly attractive to migrants in their late 20s and early 30s; 2) since 1970, the dispersion of net migration rates for those over 30 have increased appreciably; 3) the degree of dispersion differs greatly across regions and is especially large among counties in the West; 4) metropolitan counties exhibit declines in the dispersion of net migration rate from the 1950s to the 1960s, which may indicate the exhaustion of the most attractive urban opportunities; and 5) since 1970, dispersion has increased, especially for rates applying to those over age 55, suggesting increased age specialization among metropolitan counties. Thus, changes in both the median rates of net migration and the dispersion of those rates are consistent with increased specialization in the age-related opportunities and services those counties provide. New patterns of net migration by age suggest that change in both the causes and effects of migration go far beyond a simple shift in the balance of population flows.
Migratory life histories explain the extreme egg-size dimorphism of Eudyptes penguins
Williams, Tony D.
2016-01-01
When successive stages in the life history of an animal directly overlap, physiological conflicts can arise resulting in carryover effects from one stage to another. The extreme egg-size dimorphism (ESD) of Eudyptes penguins, where the first-laid A-egg is approximately 18–57% smaller than the second-laid B-egg, has interested researchers for decades. Recent studies have linked variation in this trait to a carryover effect of migration that limits the physiology of yolk production and egg sizes. We assembled data on ESD and estimates of migration–reproduction overlap in penguin species and use phylogenetic methods to test the idea that migration–reproduction overlap explains variation in ESD. We show that migration overlap is generally restricted to Eudyptes relative to non-Eudyptes penguins, and that this overlap (defined as the amount of time that egg production occurs on land versus at sea during homeward migration) is significantly and positively correlated with the degree of ESD in Eudyptes. In the non-Eudyptes species, however, ESD was unrelated to migration overlap as these species mostly produce their clutches on land. Our results support the recent hypothesis that extreme ESD of Eudyptes penguins evolved, in part, as a response to selection for a pelagic overwinter migration behaviour. This resulted in a temporal overlap with, and thus a constraint on, the physiology of follicle development, leading to smaller A-egg size and greater ESD. PMID:27708146
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Xiting; Shu, Rong, E-mail: shurong123@hotmail.com; Liu, Dali
Previous studies have assumed that amelogenin is responsible for the therapeutic effect of the enamel matrix derivative (EMD) in periodontal tissue healing and regeneration. However, it is difficult to confirm this hypothesis because both the EMD and the amelogenins are complex mixtures of multiple proteins. Further adding to the difficulties is the fact that periodontal tissue regeneration involves various types of cells and a sequence of associated cellular events including the attachment, migration and proliferation of various cells. In this study, we investigated the potential effect of a 25-kDa recombinant porcine amelogenin (rPAm) on primarily cultured periodontal ligament fibroblasts (PDLF),more » gingival fibroblasts (GF) and gingival epithelial cells (GEC). The cells were treated with 25-kDa recombinant porcine amelogenin at a concentration of 10 {mu}g/mL. We found that rPAm significantly promoted the proliferation and migration of PDLF, but not their adhesion. Similarly, the proliferation and adhesion of GF were significantly enhanced by treatment with rPAm, while migration was greatly inhibited. Interestingly, this recombinant protein inhibited the growth rate, cell adhesion and migration of GEC. These data suggest that rPAm may play an essential role in periodontal regeneration through the activation of periodontal fibroblasts and inhibition of the cellular behaviors of gingival epithelial cells.« less
Zhao, Jianfang; Klausen, Christian; Qiu, Xin; Cheng, Jung-Chien; Chang, Hsun-Ming; Leung, Peter C.K.
2016-01-01
Epithelial ovarian cancer is the leading cause of death among gynaecological cancers. Previous studies have demonstrated that epidermal growth factor receptor (EGFR) ligands can induce ovarian cancer cell invasion by down-regulating E-cadherin. Betacellulin is a unique member of the EGF family. It is overexpressed in a variety of cancers and is associated with reduced survival. However, the biological functions and clinical significance of betacellulin in ovarian cancer remain unknown. In the current study, we tested the hypothesis that betacellulin induces ovarian cancer cell migration by suppressing E-cadherin expression. Treatment of SKOV3 and OVCAR5 ovarian cancer cell lines with betacellulin down-regulated E-cadherin, but not N-cadherin. In addition, betacellulin treatment increased the expression of Snail and Slug, and these effects were completely blocked by pre-treatment with EGFR inhibitor AG1478. Interestingly, only knockdown of Slug reversed the down-regulation of E-cadherin by betacellulin. Betacellulin treatment induced the activation of both the MEK-ERK and PI3K-Akt signaling pathways, and it also significantly increased ovarian cancer cell migration. Importantly, the effects of betacellulin on E-cadherin, Slug and cell migration were attenuated by pre-treatment with either U0126 or LY294002. Our results suggest that betacellulin induces ovarian cancer migration and Slug-dependent E-cadherin down-regulation via EGFR-mediated MEK-ERK and PI3K-Akt signaling. PMID:27129169
Reconstruction of shifting elbow joint compliant characteristics during fast and slow movements.
Latash, M L; Gottlieb, G L
1991-01-01
The purpose of this study was to experimentally investigate the applicability of the equilibrium-point hypothesis to the dynamics of single-joint movements. Subjects were trained to perform relatively slow (movement time 600-1000 ms) or fast (movement time 200-300 ms) single-joint elbow flexion movements against a constant extending torque bias. They were instructed to reproduce the same time pattern of central motor command for a series of movements when the external torque could slowly and unpredictably increase, decrease, or remain constant. For fast movements, the total muscle torque was calculated as a sum of external and inertial components. Analysis of the data allowed reconstruction of the elbow joint compliant characteristics at different times during execution of the learned motor command. "Virtual" trajectories of the movements, representing time-varying changes in a central control parameter, were reconstructed and compared with the "actual" trajectories. For slow movements, the actual trajectories lagged behind the virtual ones. There were no consistent changes in the joint stiffness during slow movements. Similar analysis of experiments without voluntary movements demonstrated a lack of changes in the central parameters, supporting the assumption that the subjects were able to keep the same central motor command in spite of externally imposed unexpected torque perturbations. For the fast movements, the virtual trajectories were N-shaped, and the joint stiffness demonstrated a considerable increase near the middle of the movement. These findings contradict an hypothesis of monotonic joint compliant characteristic translation at a nearly constant rate during such movements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
FILUK,A.B.; BAILEY,JAMES E.; CUNEO,MICHAEL E.
The maximum power achieved in a wide variety of high-power devices, including electron and ion diodes, z pinches, and microwave generators, is presently limited by anode-cathode gap breakdown. A frequently-discussed hypothesis for this effect is ionization of fast neutral atoms injected throughout the anode-cathode gap during the power pulse. The authors describe a newly-developed diagnostic tool that provides the first direct test of this hypothesis. Time-resolved vacuum-ultraviolet absorption spectroscopy is used to directly probe fast neutral atoms with 1 mm spatial resolution in the 10 mm anode-cathode gap of the SABRE 5 MV, 1 TW applied-B ion diode. Absorption spectramore » collected during Ar RF glow discharges and with CO{sub 2} gas fills confirm the reliability of the diagnostic technique. Throughout the 50--100 ns ion diode pulses no measurable neutral absorption is seen, setting upper limits of 0.12--1.5 x 10{sup 14} cm{sup {minus}3} for ground state fast neutral atom densities of H, C, N, O, F. The absence of molecular absorption bands also sets upper limits of 0.16--1.2 x 10{sup 15} cm{sup {minus}3} for common simple molecules. These limits are low enough to rule out ionization throughout the gap as a breakdown mechanism. This technique can now be applied to quantify the role of neutral atoms in other high-power devices.« less
Relationship between insulin resistance and tissue blood flow in preeclampsia.
Anim-Nyame, Nick; Gamble, John; Sooranna, Suren R; Johnson, Mark R; Steer, Philip J
2015-05-01
Preeclampsia is characterized by generalized endothelial dysfunction and impaired maternal tissue perfusion, and insulin resistance is a prominent feature of this disease. The aim of this study was to test the hypothesis that insulin resistance in preeclampsia is related to the reduced resting tissue blood flow. We used venous occlusion plethysmography to compare the resting calf muscle blood flow (measured as QaU) in 20 nulliparous women with preeclampsia and 20 normal pregnant controls matched for maternal age, gestational age, parity and BMI during the third trimester. Fasting blood samples were obtained to measure the plasma concentrations of insulin and glucose, and to calculate the fasting insulin resistance index (FIRI), a measure of insulin resistance in both groups of women. Calf blood flow was significantly reduced in the preeclampsia group (1.93 ± 0.86 QaU), compared with normal pregnant controls (3.94 ± 1.1 QaU, P < 0.001). Fasting insulin concentrations and Insulin Resistance Index were significantly higher in preeclampsia compared with normal pregnancy (P < 0.001 for both variables). There were significant inverse correlations between resting calf blood flow and fasting insulin concentrations (r = -0.57, P = 0.008) and FIRI (r = -0.59, P = 0.006) in preeclampsia, but not in normal pregnancy. These findings support our hypothesis and raise the possibility that reduced tissue blood flow may a play a role in the increased insulin resistance seen in preeclampsia.
Barboza, P.S.; Jorde, Dennis G.
2001-01-01
Birds fast intermittently during weather disturbances and migration. We tested responses of black duck to lost feeding days during autumn mass gain. Nine adult males were fed a pelleted diet (1.5% fat, 15.8% protein, and 18.3% neutral detergent fiber) and caged indoors during September and October (12 h light; 17? -24? C) to measure balances over 14 d when fed ad lib. each day and fasted intermittently for 2 d wk-1 (short fast) or 4 d wk-1 (long fast). Body mass (1,081 g), body water content, and metabolizable intakes of energy and protein were maintained as daily intakes of dry matter increased to 1.65 (short fast) and 2.35 (long fast) times the unfasted level. Intermittent feeding reduced metabolizability of dry matter, energy, protein, and acid detergent fiber. Concentrations of Mn provided similar estimates of metabolizability to direct measures in unfasted birds but underestimated measures of birds on long fasts. Fasting regimes continued outdoors for 9 wk when temperatures declined to -9? C. Birds on short fasts were heavier (1,373 vs. 1,241 g) and fatter (159 vs. 58 g) than those on long fasts, while body water (894 g) and protein (316 g) were similar between groups after 5 wk. Birds on long fasts subsequently gained mass when fed daily, but those on short fasts lost mass when fed each day. Omnivorous waterfowl combine ingestive and digestive flexibility with plasticity of body lipid to contend with uncertain food availability.
Partial migration and transient coexistence of migrants and residents in animal populations.
Singh, Navinder J; Leonardsson, Kjell
2014-01-01
Partial migration, whereby a proportion of the population migrates, is common across the animal kingdom. Much of the focus in the literature has been on trying to explain the underlying mechanisms for the coexistence of migrants and residents. In addition, there has been an increasing number of reports on the prevalence and frequency of partially migratory populations. One possible explanation for the occurrence of partial migration, which has received no attention in the literature, is that of 'transient coexistence' during the invasion phase of a superior behaviour. In this study we develop a theoretical basis for explaining partial migration as a transient coexistence and derive a method to predict the frequency of residents and migrants in partially migrating populations. This method is useful to predict the frequencies of migrants and residents in a small set of populations as a complementing hypothesis to 'an Evolutionary Stable Strategy (ESS)'. We use the logistic growth equation to derive a formula for predicting the frequencies of residents and migrants. We also use simulations and empirical data from white perch (Morone americana), moose (Alces alces) and red deer (Cervus elaphus) to demonstrate our approach. We show that the probability of detecting partial migration due to transient coexistence depends upon a minimum number of tracked or marked individuals for a given number of populations. Our approach provides a starting point in searching for explanations to the observed frequencies, by contrasting the observed pattern with both the predicted transient and the uniform random pattern. Aggregating such information on observed patterns (proportions of migrants and residents) may eventually lead to the development of a quantitative theory for the equilibrium (ESS) populations as well.
Petropolis, Debora B; Rodrigues, Juliany C F; Viana, Nathan B; Pontes, Bruno; Pereira, Camila F A; Silva-Filho, Fernando C
2014-01-01
Leishmania amazonensis is the causative agent of American cutaneous leishmaniasis, an important neglected tropical disease. Once Leishmania amazonensis is inoculated into the human host, promastigotes are exposed to the extracellular matrix (ECM) of the dermis. However, little is known about the interaction between the ECM and Leishmania promastigotes. In this study we established L. amazonensis promastigote culture in a three-dimensional (3D) environment mainly composed of Collagen I (COL I). This 3D culture recreates in vitro some aspects of the human host infection site, enabling the study of the interaction mechanisms of L. amazonensis with the host ECM. Promastigotes exhibited "freeze and run" migration in the 3D COL I matrix, which is completely different from the conventional in vitro swimming mode of migration. Moreover, L. amazonensis promastigotes were able to invade, migrate inside, and remodel the 3D COL I matrix. Promastigote trans-matrix invasion and the freeze and run migration mode were also observed when macrophages were present in the matrix. At least two classes of proteases, metallo- and cysteine proteases, are involved in the 3D COL I matrix degradation caused by Leishmania. Treatment with a mixture of protease inhibitors significantly reduced promastigote invasion and migration through this matrix. Together our results demonstrate that L. amazonensis promastigotes release proteases and actively remodel their 3D environment, facilitating their migration. This raises the possibility that promastigotes actively interact with their 3D environment during the search for their cellular "home"-macrophages. Supporting this hypothesis, promastigotes migrated faster than macrophages in a novel 3D co-culture model.
Rodrigues, Juliany C.F.; Viana, Nathan B.; Pontes, Bruno; Pereira, Camila F.A.; Silva-Filho, Fernando C.
2014-01-01
Leishmania amazonensis is the causative agent of American cutaneous leishmaniasis, an important neglected tropical disease. Once Leishmania amazonensis is inoculated into the human host, promastigotes are exposed to the extracellular matrix (ECM) of the dermis. However, little is known about the interaction between the ECM and Leishmania promastigotes. In this study we established L. amazonensis promastigote culture in a three-dimensional (3D) environment mainly composed of Collagen I (COL I). This 3D culture recreates in vitro some aspects of the human host infection site, enabling the study of the interaction mechanisms of L. amazonensis with the host ECM. Promastigotes exhibited “freeze and run” migration in the 3D COL I matrix, which is completely different from the conventional in vitro swimming mode of migration. Moreover, L. amazonensis promastigotes were able to invade, migrate inside, and remodel the 3D COL I matrix. Promastigote trans-matrix invasion and the freeze and run migration mode were also observed when macrophages were present in the matrix. At least two classes of proteases, metallo- and cysteine proteases, are involved in the 3D COL I matrix degradation caused by Leishmania. Treatment with a mixture of protease inhibitors significantly reduced promastigote invasion and migration through this matrix. Together our results demonstrate that L. amazonensis promastigotes release proteases and actively remodel their 3D environment, facilitating their migration. This raises the possibility that promastigotes actively interact with their 3D environment during the search for their cellular “home”—macrophages. Supporting this hypothesis, promastigotes migrated faster than macrophages in a novel 3D co-culture model. PMID:24765565
Migrating slow slip detected by slow and repeating earthquakes along the Nankai trough, Japan
NASA Astrophysics Data System (ADS)
Uchida, N.; Obara, K.; Takagi, R.; Asano, Y.
2017-12-01
In the western part of the Nankai trough region, successive occurrences of deep non-volcanic tremors and shallow very low frequency earthquakes (VLFEs) associated with long-term slow slip events (SSEs) are reported in 2003 and 2010. To understand the link between the two seismic slow earthquakes, we identify small repeating earthquake in and around the region from the waveform similarity of earthquakes observed by NIED Hi-net. The result shows the repeaters are located in 15-30 km depth that is in between the depth range of the shallow VLFEs (depth <=15 km) and deep SSEs (depth>= 25km). They are also located outside of the source area of the 1946 Mw8.3 Nankai earthquake, consistent with the hypothesis that repeaters occur due to stress concentration to a locked patch by aseismic slip (creep) in the surrounding area. The long-term trend of aseismic slip estimated from the repeaters shows that the slip rate were faster during 2-3 years period before the 2003 and 2010 episodes. We also found short-term (days to month) accelerations of aseismic slip during the episode of 2010 that migrated toward north. The migration detected from repeaters follows shallow migration of VLFEs and precedes the deep migration of tremors. Therefore we consider that during the period of the long-term SSE of 3 years period, short-term slow slip migrated about 300 km length in 1 month from shallower and south part to deeper and north part of the plate boundary near the edge of the slip area of the Nankai earthquake. Such long-distance migration probably related to large-scale locking of plate boundary that is responsible to the Nankai earthquake and the interseismic stress concentration to the locked area.
Is the idea of a fast block to polyspermy based on artifact?
Dale, Brian
2014-08-01
This purpose of this review is to look at the experimental evidence, both kinetic and electrophysiological, that led to the hypothesis of a fast electrical block to polyspermy in sea urchin eggs. The idea of a fast partial block, forwarded in the 1950's, that would reduce the receptivity of the egg surface by 1/20th following its interaction with the fertilizing spermatozoon, was based on experiments that treated fertilization as a first order chemical reaction. Here, I outline the criticisms of the Rothschild theory and demonstrate that the hypothesis of a fast partial block to polyspermy is unfounded. Notwithstanding, it was suggested in the 1970's that the membrane depolarization, induced by the fertilizing spermatozoon, prevented the interaction of supernumerary spermatozoa, the fast electrical block to polyspermy. While trans-membrane voltage recording has permitted a better understanding of the sequence of events occurring at fertilization, there is no evidence that depolarization prevents the interaction of supernumerary spermatozoa. Sperm entry is prevented at positive and negative potentials, in the voltage clamp configuration, however this is an artifact caused by the currents injected into the egg employed to hold the voltage constant in a non-physiological range. At permissive voltages, around -20 mV, where the current required to hold the voltage is minimal, only one spermatozoon normally enters the egg. Thus, irrespective of the egg voltage, the fertilizing spermatozoon is, in any case, attached to a privileged interaction site that permits entry and distinguishes it from supernumerary spermatozoa. Competence for monospermy is acquired during oocyte maturation and data on cortical organization in echinoderm eggs points to the actin filament system for regulating sperm entry. Copyright © 2014 Elsevier Inc. All rights reserved.
FAST TRACK COMMUNICATION: Uniqueness of static black holes without analyticity
NASA Astrophysics Data System (ADS)
Chruściel, Piotr T.; Galloway, Gregory J.
2010-08-01
We show that the hypothesis of analyticity in the uniqueness theory of vacuum, or electrovacuum, static black holes is not needed. More generally, we show that prehorizons covering a closed set cannot occur in well-behaved domains of outer communications.
Fasting suppresses T cell-mediated immunity in female Mongolian gerbils (Meriones unguiculatus).
Xu, De-Li; Wang, De-Hua
2010-01-01
Immune defense is important for organisms' survival and fitness. Small mammals in temperate zone often face seasonal food shortages. Generally fasting can suppress immune function in laboratory rodents and little information is available for wild rodents. The present study tested the hypothesis that Mongolian gerbils (Meriones unguiculatus) could inhibit T cell-mediated immunity to adapt to acute fasting. Forty-two females were divided into the fed and fasted groups, in which the latter was deprived of food for 3days. After 66h fasting, half of the gerbils in each group were injected with phosphate buffered saline or phytohaemagglutinin (PHA) solution. T cell-mediated immunity assessed by PHA response was suppressed in the fasted gerbils compared with the fed gerbils. The fasted gerbils had lower body fat mass, wet and dry thymus mass, dry spleen mass, white blood cells, serum leptin and blood glucose concentrations, but higher corticosterone concentrations than those of the controls. Moreover, PHA response was positively correlated with body fat mass and serum leptin levels in the immunochallenged groups. Taken together, acute fasting leads to immunosuppression, which might be caused by low body fat mass and low serum leptin concentrations in female Mongolian gerbils.
Xu, De-Li; Wang, De-Hua
2011-10-01
Glucose plays an important role in immunity. Three day fasting will decrease cellular immunity and blood glucose levels in Mongolian gerbils (Meriones unguiculatus). In the present study, we tested the hypothesis that glucose supplement can reverse the fasting-induced suppression in cellular immunity in gerbils. Twenty-eight male gerbils were selected and randomly divided into fed and fasting groups. Half of the gerbils in each group were then provided with either 10% glucose water or pure water. After 66 h, each gerbil was injected with phytohaemagglutinin (PHA) solution to challenge cellular immunity. Results showed that glucose supplement restored blood glucose levels in fasted gerbils to those of the fed controls. It also recovered cellular immunity, body fat mass and serum leptin levels in fasted gerbils to the values of the fed controls. Blood glucose levels were positively correlated with body fat mass, leptin levels and cellular immune responses. Thymus and spleen masses, and white blood cells in fasted gerbils were not affected by glucose supplement. In general, our data demonstrate that glucose supplement could reverse fasting-induced suppression of cellular immunity in Mongolian gerbils. Copyright © 2011 Elsevier GmbH. All rights reserved.
Gomes, S; Civetta, A
2014-09-01
Hybrid male sterility is a common outcome of crosses between different species. Gene expression studies have found that a number of spermatogenesis genes are differentially expressed in sterile hybrid males, compared with parental species. Late-stage sperm development genes are particularly likely to be misexpressed, with fewer early-stage genes affected. Thus, a link has been posited between misexpression and sterility. A more recent alternative explanation for hybrid gene misexpression has been that it is independent of sterility and driven by divergent evolution of male-specific regulatory elements between species (faster male hypothesis). The faster male hypothesis predicts that misregulation of spermatogenesis genes should be independent of sterility and approximately the same in both hybrids, whereas sterility should only affect gene expression in sterile hybrids. To test the faster male hypothesis vs. the effect of sterility on gene misexpression, we analyse spermatogenesis gene expression in different species pairs of the Drosophila phylogeny, where hybrid male sterility occurs in only one direction of the interspecies cross (i.e. unidirectional sterility). We find significant differences among genes in misexpression with effects that are lineage-specific and caused by sterility or fast male regulatory divergence. © 2014 The Authors. Journal of Evolutionary Biology © 2014 European Society For Evolutionary Biology.
Sun, Hao; Zhou, Chi; Huang, Xiaoqin; Lin, Keqin; Shi, Lei; Yu, Liang; Liu, Shuyuan; Chu, Jiayou; Yang, Zhaoqing
2013-01-01
Tai people are widely distributed in Thailand, Laos and southwestern China and are a large population of Southeast Asia. Although most anthropologists and historians agree that modern Tai people are from southwestern China and northern Thailand, the place from which they historically migrated remains controversial. Three popular hypotheses have been proposed: northern origin hypothesis, southern origin hypothesis or an indigenous origin. We compared the genetic relationships between the Tai in China and their "siblings" to test different hypotheses by analyzing 10 autosomal microsatellites. The genetic data of 916 samples from 19 populations were analyzed in this survey. The autosomal STR data from 15 of the 19 populations came from our previous study (Lin et al., 2010). 194 samples from four additional populations were genotyped in this study: Han (Yunnan), Dai (Dehong), Dai (Yuxi) and Mongolian. The results of genetic distance comparisons, genetic structure analyses and admixture analyses all indicate that populations from northern origin hypothesis have large genetic distances and are clearly differentiated from the Tai. The simulation-based ABC analysis also indicates this. The posterior probability of the northern origin hypothesis is just 0.04 [95%CI: (0.01-0.06)]. Conversely, genetic relationships were very close between the Tai and populations from southern origin or an indigenous origin hypothesis. Simulation-based ABC analyses were also used to distinguish the southern origin hypothesis from the indigenous origin hypothesis. The results indicate that the posterior probability of the southern origin hypothesis [0.640, 95%CI: (0.524-0.757)] is greater than that of the indigenous origin hypothesis [0.324, 95%CI: (0.211-0.438)]. Therefore, we propose that the genetic evidence does not support the hypothesis of northern origin. Our genetic data indicate that the southern origin hypothesis has higher probability than the other two hypotheses statistically, suggesting that the Tai people most likely originated from southern China.
Archaeological skeletons support a northwest European origin for Paget's disease of bone.
Mays, Simon
2010-08-01
The strong genetic component in the etiology of Paget's disease of bone (PDB), together with marked geographic variation in its prevalence, with high frequencies in British populations, has led some to suggest that the disease originated in Britain and spread around the world in recent times by the migration and admixture of British populations. This study aims to investigate this hypothesis by studying the world geographic distribution of PDB cases identified in ancient skeletons excavated from archaeological sites. The methodology is a review of PDB cases described in the literature. There were 109 cases that met modern diagnostic criteria. All came from Western Europe, 94% from England. These data support the hypothesis that PDB originated in this geographic region.
Amo, Taku; Brand, Martin D
2007-06-01
We introduce a general test of the bioenergetic importance of mtDNA (mitochondrial DNA) variants: modular kinetic analysis of oxidative phosphorylation in mitochondria from cybrid cells with constant nuclear DNA but different mtDNA. We have applied this test to the hypothesis [Ruiz-Pesini, Mishmar, Brandon, Procaccio and Wallace (2004) Science 303, 223-226] that particular mtDNA haplogroups (specific combinations of polymorphisms) that cause lowered coupling efficiency, leading to generation of less ATP and more heat, were positively selected during radiations of modern humans into colder climates. Contrary to the predictions of this hypothesis, mitochondria from Arctic haplogroups had similar or even greater coupling efficiency than mitochondria from tropical haplogroups.
Indigenous Arabs are descendants of the earliest split from ancient Eurasian populations.
Rodriguez-Flores, Juan L; Fakhro, Khalid; Agosto-Perez, Francisco; Ramstetter, Monica D; Arbiza, Leonardo; Vincent, Thomas L; Robay, Amal; Malek, Joel A; Suhre, Karsten; Chouchane, Lotfi; Badii, Ramin; Al-Nabet Al-Marri, Ajayeb; Abi Khalil, Charbel; Zirie, Mahmoud; Jayyousi, Amin; Salit, Jacqueline; Keinan, Alon; Clark, Andrew G; Crystal, Ronald G; Mezey, Jason G
2016-02-01
An open question in the history of human migration is the identity of the earliest Eurasian populations that have left contemporary descendants. The Arabian Peninsula was the initial site of the out-of-Africa migrations that occurred between 125,000 and 60,000 yr ago, leading to the hypothesis that the first Eurasian populations were established on the Peninsula and that contemporary indigenous Arabs are direct descendants of these ancient peoples. To assess this hypothesis, we sequenced the entire genomes of 104 unrelated natives of the Arabian Peninsula at high coverage, including 56 of indigenous Arab ancestry. The indigenous Arab genomes defined a cluster distinct from other ancestral groups, and these genomes showed clear hallmarks of an ancient out-of-Africa bottleneck. Similar to other Middle Eastern populations, the indigenous Arabs had higher levels of Neanderthal admixture compared to Africans but had lower levels than Europeans and Asians. These levels of Neanderthal admixture are consistent with an early divergence of Arab ancestors after the out-of-Africa bottleneck but before the major Neanderthal admixture events in Europe and other regions of Eurasia. When compared to worldwide populations sampled in the 1000 Genomes Project, although the indigenous Arabs had a signal of admixture with Europeans, they clustered in a basal, outgroup position to all 1000 Genomes non-Africans when considering pairwise similarity across the entire genome. These results place indigenous Arabs as the most distant relatives of all other contemporary non-Africans and identify these people as direct descendants of the first Eurasian populations established by the out-of-Africa migrations. © 2016 Rodriguez-Flores et al.; Published by Cold Spring Harbor Laboratory Press.
Vansteelant, W M G; Kekkonen, J; Byholm, P
2017-05-31
Contemporary tracking studies reveal that low migratory connectivity between breeding and non-breeding ranges is common in migrant landbirds. It is unclear, however, how internal factors and early-life experiences of individual migrants shape the development of their migration routes and concomitant population-level non-breeding distributions. Stochastic wind conditions and geography may determine whether and where migrants end up by the end of their journey. We tested this hypothesis by satellite-tagging 31 fledgling honey buzzards Pernis apivorus from southern Finland and used a global atmospheric reanalysis model to estimate the wind conditions they encountered on their first outbound migration. Migration routes diverged rapidly upon departure and the birds eventually spread out across 3340 km of longitude. Using linear regression models, we show that the birds' longitudinal speeds were strongly affected by zonal wind speed, and negatively affected by latitudinal wind, with significant but minor differences between individuals. Eventually, 49% of variability in the birds' total longitudinal displacements was accounted for by wind conditions on migration. Some birds circumvented the Baltic Sea via Scandinavia or engaged in unusual downwind movements over the Mediterranean, which also affected the longitude at which these individuals arrived in sub-Saharan Africa. To understand why adult migrants use the migration routes and non-breeding sites they use, we must take into account the way in which wind conditions moulded their very first journeys. Our results present some of the first evidence into the mechanisms through which low migratory connectivity emerges. © 2017 The Authors.
Kekkonen, J.; Byholm, P.
2017-01-01
Contemporary tracking studies reveal that low migratory connectivity between breeding and non-breeding ranges is common in migrant landbirds. It is unclear, however, how internal factors and early-life experiences of individual migrants shape the development of their migration routes and concomitant population-level non-breeding distributions. Stochastic wind conditions and geography may determine whether and where migrants end up by the end of their journey. We tested this hypothesis by satellite-tagging 31 fledgling honey buzzards Pernis apivorus from southern Finland and used a global atmospheric reanalysis model to estimate the wind conditions they encountered on their first outbound migration. Migration routes diverged rapidly upon departure and the birds eventually spread out across 3340 km of longitude. Using linear regression models, we show that the birds' longitudinal speeds were strongly affected by zonal wind speed, and negatively affected by latitudinal wind, with significant but minor differences between individuals. Eventually, 49% of variability in the birds' total longitudinal displacements was accounted for by wind conditions on migration. Some birds circumvented the Baltic Sea via Scandinavia or engaged in unusual downwind movements over the Mediterranean, which also affected the longitude at which these individuals arrived in sub-Saharan Africa. To understand why adult migrants use the migration routes and non-breeding sites they use, we must take into account the way in which wind conditions moulded their very first journeys. Our results present some of the first evidence into the mechanisms through which low migratory connectivity emerges. PMID:28539514
Loon, A. Van; Ray, J. D.; Savage, A.; ...
2017-02-06
The timing of migration can have important survival impacts, as birds must synchronize their movements with favourable environmental conditions to reach their destination. The timing of arrival at and duration of migratory stopover may be largely governed by environmental conditions experienced en route as well as by endogenous factors, but our understanding of these processes is limited. We used light-level geolocators to collect start-to-finish spatio-temporal migration data for a declining aerial insectivore, the Purple Martin ( Progne subis), that travels seasonally between North and South America. Using data obtained for birds originating from range-wide breeding populations, our objectives were tomore » test intrinsic and extrinsic hypotheses for migration stopover duration as well as to identify important stopover regions during fall migration. We examined whether breeding latitude, fall migration timing, age, sex or habitat quality at stopover sites (measured using Normalized Difference Vegetation Index) influenced the duration of stopovers. We found that most individuals rely on the eastern coast of the Yucatan Peninsula, Honduras, and Nicaragua for stopovers during fall migration, where duration ranged from 1 to 36 days (average 6.8 ± 8.2). Stopovers in these regions were later and of longer duration for more northern breeding populations. Only breeding latitude predicted stopover duration, and not habitat quality at stopovers, lending support to the hypothesis that duration is prescribed by endogenous factors. Lastly, the important core stopover regions we documented could be targeted for conservation efforts, particularly for steeply-declining, more northern breeding populations that have greater stopover duration in these areas.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Loon, A. Van; Ray, J. D.; Savage, A.
The timing of migration can have important survival impacts, as birds must synchronize their movements with favourable environmental conditions to reach their destination. The timing of arrival at and duration of migratory stopover may be largely governed by environmental conditions experienced en route as well as by endogenous factors, but our understanding of these processes is limited. We used light-level geolocators to collect start-to-finish spatio-temporal migration data for a declining aerial insectivore, the Purple Martin ( Progne subis), that travels seasonally between North and South America. Using data obtained for birds originating from range-wide breeding populations, our objectives were tomore » test intrinsic and extrinsic hypotheses for migration stopover duration as well as to identify important stopover regions during fall migration. We examined whether breeding latitude, fall migration timing, age, sex or habitat quality at stopover sites (measured using Normalized Difference Vegetation Index) influenced the duration of stopovers. We found that most individuals rely on the eastern coast of the Yucatan Peninsula, Honduras, and Nicaragua for stopovers during fall migration, where duration ranged from 1 to 36 days (average 6.8 ± 8.2). Stopovers in these regions were later and of longer duration for more northern breeding populations. Only breeding latitude predicted stopover duration, and not habitat quality at stopovers, lending support to the hypothesis that duration is prescribed by endogenous factors. Lastly, the important core stopover regions we documented could be targeted for conservation efforts, particularly for steeply-declining, more northern breeding populations that have greater stopover duration in these areas.« less
Substance-specific importance of EGFR for vascular smooth muscle cells motility in primary culture.
Schreier, Barbara; Schwerdt, Gerald; Heise, Christian; Bethmann, Daniel; Rabe, Sindy; Mildenberger, Sigrid; Gekle, Michael
2016-07-01
Besides their importance for the vascular tone, vascular smooth muscle cells (VSMC) also contribute to pathophysiological vessel alterations. Various G-protein coupled receptor ligands involved in vascular dysfunction and remodeling can transactivate the epidermal growth factor receptor (EGFR) of VSMC, yet the importance of EGFR transactivation for the VSMC phenotype is incompletely understood. The aims of this study were (i) to characterize further the importance of the VSMC-EGFR for proliferation, migration and marker gene expression for inflammation, fibrosis and reactive oxygen species (ROS) homeostasis and (ii) to test the hypothesis that vasoactive substances (endothelin-1, phenylephrine, thrombin, vasopressin and ATP) rely differentially on the EGFR with respect to the abovementioned phenotypic alterations. In primary, aortic VSMC from mice without conditional deletion of the EGFR, proliferation, migration, marker gene expression (inflammation, fibrosis and ROS homeostasis) and cell signaling (ERK 1/2, intracellular calcium) were analyzed. VSMC-EGFR loss reduced collective cell migration and single cell migration probability, while no difference between the genotypes in single cell velocity, chemotaxis or marker gene expression could be observed under control conditions. EGF promoted proliferation, collective cell migration, chemokinesis and chemotaxis and leads to a proinflammatory gene expression profile in wildtype but not in knockout VSMC. Comparing the impact of five vasoactive substances (all reported to transactivate EGFR and all leading to an EGFR dependent increase in ERK1/2 phosphorylation), we demonstrate that the importance of EGFR for their action is substance-dependent and most apparent for crowd migration but plays a minor role for gene expression regulation. Copyright © 2016 Elsevier B.V. All rights reserved.
Caffeine, Adenosine Receptors and Estrogen in Toxin Models of Parkinson’s Disease
2006-10-01
coffee (but not decaffeinated coffee). The mechanisms that underlie this epidemiological correla- tion remain unclear. One hypothesis that caffeine might...finding was substantiated by a similar inverse relationship between the consumption of caffeinated (but not decaffeinated ) coffee and the risk of... processes from endocytosis and organelle physiology to cell migration and cytokinesis. This special issue highlights some of the current topics and future
Shnitko, Tatiana A; Mace, Kyla D; Sullivan, Kaitlin M; Martin, W Kyle; Andersen, Elizabeth H; Williams Avram, Sarah K; Johns, Josephine M; Robinson, Donita L
2017-12-01
Maternal behavior (MB) is a complex response to infant cues, orchestrated by postpartum neurophysiology. Although mesolimbic dopamine contributes toward MB, little is known about real-time dopamine fluctuations during the postpartum period. Thus, we used fast-scan cyclic voltammetry to measure individual dopamine transients in the nucleus accumbens of early postpartum rats and compared them with dopamine transients in virgins and in postpartum females exposed to cocaine during pregnancy, which is known to disrupt MB. We hypothesized that dopamine transients are normally enhanced postpartum and support MB. In anesthetized rats, electrically evoked dopamine release was larger and clearance was faster in postpartum females than in virgins and gestational cocaine exposure blocked the change in clearance. In awake rats, control mothers showed more dopamine transients than cocaine-exposed mothers during MB. Salient pup-produced stimuli may contribute toward differences in maternal phasic dopamine by evoking dopamine transients; supporting the feasibility of this hypothesis, urine composition (glucose, ketones, and leukocytes) differed between unexposed and cocaine-exposed infants. These data, resulting from the novel application of fast-scan cyclic voltammetry to models of MB, support the hypothesis that phasic dopamine signaling is enhanced postpartum. Future studies with additional controls can delineate which aspects of gestational cocaine reduce dopamine clearance and transient frequency.
Friedland, K.D.; Manning, J.P.; Link, Jason S.; Gilbert, J.R.; Gilbert, A.T.; O'Connell, A.F.
2012-01-01
Observations relevant to the North American stock complex of Atlantic salmon, Salmo salar L., suggest that marine mortality is influenced by variation in predation pressure affecting post-smolts during the first months at sea. This hypothesis was tested for Gulf of Maine (GOM) stocks by examining wind pseudostress and the distribution of piscivorous predator fields potentially affecting post-smolts. Marine survival has declined over recent decades with a change in the direction of spring winds, which is likely extending the migration of post-smolts by favouring routes using the western GOM. In addition to changes in spring wind patterns, higher spring sea surface temperatures have been associated with shifting distributions of a range of fish species. The abundance of several pelagic piscivores, which based on their feeding habits may predate on salmon post-smolts, has increased in the areas that serve as migration corridors for post-smolts. In particular, populations of silver hake, Merluccius bilinearis (Mitchell), red hake, Urophycis chuss (Walbaum), and spiny dogfish, Squalus acanthias L., increased in size in the portion of the GOM used by post-smolts. Climate variation and shifting predator distributions in the GOM are consistent with the predator hypothesis of recruitment control suggested for the stock complex.
Early hominins in Europe: The Galerian migration hypothesis
NASA Astrophysics Data System (ADS)
Muttoni, Giovanni; Scardia, Giancarlo; Kent, Dennis V.
2018-01-01
Our updated review of sites bearing hominin remains and/or tools from Europe, including new findings from the Balkans, still indicates that the only compelling evidence of main hominin presence in these regions was only since ∼0.9 million years ago (Ma), bracketed by the end of the Jaramillo geomagnetic polarity subchron (0.99 Ma) and the Brunhes-Matuyama polarity chron boundary (0.78 Ma). This time window straddled the late Early Pleistocene climate transition (EPT) at the onset of enhanced glacial/interglacial activity that reverberated worldwide. Europe may have become initially populated during the EPT when, possibly for the first time in the Pleistocene, vast and exploitable ecosystems were generated along the eustatically emergent Po-Danube terrestrial conduit. These newly formed settings, characterized by stable terrestrial lowlands with open grasslands and reduced woody cover especially during glacial/interglacial transitions, are regarded as optimal ecosystems for several large Galerian immigrant mammals such as African and Asian megaherbivores, possibly linked with hominins in a common food web, to expand into en route to Europe. The question of when hominins first arrived in Europe thus places the issue in the context of changes in climate, paleogeography and faunal associations as potential environmental drivers and controlling agents in a specific time frame, a key feature of the Galerian migration hypothesis.
Gottscho, Andrew D; Marks, Sharyn B; Jennings, W Bryan
2014-01-01
The North American deserts were impacted by both Neogene plate tectonics and Quaternary climatic fluctuations, yet it remains unclear how these events influenced speciation in this region. We tested published hypotheses regarding the timing and mode of speciation, population structure, and demographic history of the Mojave Fringe-toed Lizard (Uma scoparia), a sand dune specialist endemic to the Mojave Desert of California and Arizona. We sampled 109 individual lizards representing 22 insular dune localities, obtained DNA sequences for 14 nuclear loci, and found that U. scoparia has low genetic diversity relative to the U. notata species complex, comparable to that of chimpanzees and southern elephant seals. Analyses of genotypes using Bayesian clustering algorithms did not identify discrete populations within U. scoparia. Using isolation-with-migration (IM) models and a novel coalescent-based hypothesis testing approach, we estimated that U. scoparia diverged from U. notata in the Pleistocene epoch. The likelihood ratio test and the Akaike Information Criterion consistently rejected nested speciation models that included parameters for migration and population growth of U. scoparia. We reject the Neogene vicariance hypothesis for the speciation of U. scoparia and define this species as a single evolutionarily significant unit for conservation purposes. PMID:25360285
Nelson, Abigail A.; Kauffman, Matthew J.; Middleton, A.D.; Jimenez, M.D.; McWhirter, D. E.; Gerow, K.
2016-01-01
Little research has evaluated how the migration and distribution of native prey influence patterns of livestock depredation by large carnivores. Previous research suggests that the presence of native prey can increase depredation rates by attracting predators (prey tracking hypothesis). Alternatively, the absence of native prey may facilitate predation on livestock (prey scarcity hypothesis). In this study, we evaluated support for these competing hypotheses through analysis of 4 years of cattle (Bos taurus L., 1758) depredation data (n = 39 kills), 2 years of summer and fall wolf (Canis lupus L., 1758) predation and tracking data (n = 4 wolves), and 3 years of elk (Cervus elaphus L., 1758) movement data (n = 70 elk). We used logistic regression to compare the relative influence of landscape features and elk distribution on the risk of livestock depredation in areas with migratory and resident elk. Cattle depredations occurred in habitats with increased encounter rates between wolves and livestock. In resident elk areas, depredation sites were associated with elk distribution and open roads. In migratory elk areas, depredation sites were associated with wolf dens, streams, and open habitat. Patterns of carnivore–livestock conflicts are complex, and using ungulate distribution data can predict and minimize such instances.
Control of Diapause by Acidic pH and Ammonium Accumulation in the Hemolymph of Antarctic Copepods
Schründer, Sabine; Schnack-Schiel, Sigrid B.; Auel, Holger; Sartoris, Franz Josef
2013-01-01
Life-cycles of polar herbivorous copepods are characterised by seasonal/ontogenetic vertical migrations and diapause to survive periods of food shortage during the long winter season. However, the triggers of vertical migration and diapause are still far from being understood. In this study, we test the hypothesis that acidic pH and the accumulation of ammonium (NH4 +) in the hemolymph contribute to the control of diapause in certain Antarctic copepod species. In a recent study, it was already hypothesized that the replacement of heavy ions by ammonium is necessary for diapausing copepods to achieve neutral buoyancy at overwintering depth. The current article extends the hypothesis of ammonium-aided buoyancy by highlighting recent findings of low pH values in the hemolymph of diapausing copepods with elevated ammonium concentrations. Since ammonia (NH3) is toxic to most organisms, a low hemolymph pH is required to maintain ammonium in the less toxic ionized form (NH4 +). Recognizing that low pH values are a relevant factor reducing metabolic rate in other marine invertebrates, the low pH values found in overwintering copepods might not only be a precondition for ammonium accumulation, but in addition, it may insure metabolic depression throughout diapause. PMID:24143238
Oxygen drives skeletal muscle remodeling in an amphibious fish out of water.
Rossi, Giulia S; Turko, Andy J; Wright, Patricia A
2018-04-24
Skeletal muscle remodeling in response to terrestrial acclimation improves the locomotor performance of some amphibious fishes on land, but the cue for this remodeling is unknown. We tested the hypothesis that muscle remodeling in the amphibious Kryptolebias marmoratus on land is driven by higher O 2 availability in atmospheric air, and the alternative hypothesis that remodeling is induced by a different environmental or physiological condition fish experience on land. Fish were acclimated to 28 days of air, aquatic hyperoxia, hypercapnia, hypoxia, elevated temperature, or fasting conditions. Air, fasting, and hyperoxic conditions increased (>25%) the size of oxidative fibers in K. marmoratus while hypoxia had the reverse effect (23% decrease). Surprisingly, hyperoxia-acclimation also resulted in a transformation of the musculature to include large bands of oxidative-like muscle. Our results show that K. marmoratus is highly responsive to environmental O 2 levels and capitalize on O 2 -rich opportunities to enhance O 2 utilization by skeletal muscle. © 2018. Published by The Company of Biologists Ltd.
The "Generous Heart": Teachers and Immigrants in the 21st Century
ERIC Educational Resources Information Center
Singh, Sukhmani; Suarez-Orozco, Marcelo M.
2012-01-01
Immigrants are a fast-growing segment of the United States population. Presently, some 39.9 million immigrants call America home (Passel & Cohn, 2012; U.S. Census Bureau, 2011b). Today, immigrants come from all over the world, but most new Americans originate in Latin America, the Caribbean, and Asia. It is because of the mass migration of the…
Size-selective sorting in bubble streaming flows: Particle migration on fast time scales
NASA Astrophysics Data System (ADS)
Thameem, Raqeeb; Rallabandi, Bhargav; Hilgenfeldt, Sascha
2015-11-01
Steady streaming from ultrasonically driven microbubbles is an increasingly popular technique in microfluidics because such devices are easily manufactured and generate powerful and highly controllable flows. Combining streaming and Poiseuille transport flows allows for passive size-sensitive sorting at particle sizes and selectivities much smaller than the bubble radius. The crucial particle deflection and separation takes place over very small times (milliseconds) and length scales (20-30 microns) and can be rationalized using a simplified geometric mechanism. A quantitative theoretical description is achieved through the application of recent results on three-dimensional streaming flow field contributions. To develop a more fundamental understanding of the particle dynamics, we use high-speed photography of trajectories in polydisperse particle suspensions, recording the particle motion on the time scale of the bubble oscillation. Our data reveal the dependence of particle displacement on driving phase, particle size, oscillatory flow speed, and streaming speed. With this information, the effective repulsive force exerted by the bubble on the particle can be quantified, showing for the first time how fast, selective particle migration is effected in a streaming flow. We acknowledge support by the National Science Foundation under grant number CBET-1236141.
The migrating myoelectric complex of the small intestine
NASA Astrophysics Data System (ADS)
Telford, Gordon L.; Sarna, Sushil K.
1991-10-01
Gastric and small intestinal myoelectric and motor activity is divided into two main patterns, fed and fasted. During fasting, the predominant pattern of activity is the migrating myoelectric complex (MMC), a cyclically occurring pattern of electric and mechanical activity that is initiated in the stomach and duodenum almost simultaneously and, from there, propagates the length of the small intestine. Cyclic motor activity also occurs in the lower esophageal sphincter, the gallbladder, and the sphincter of Oddi with a duration that is related to the MMC in the small intestine. Of the possible mechanisms for initiation of the MMC in the small intestine (extrinsic neural control, intrinsic neural control, and hormonal control), intrinsic neural control via a series of coupled is the most likely. The keep this sentence in! hormone motilin also plays a role in the initiation of MMCs. After a meal, in man the MMC is disrupted and replaced by irregular contractions. The physiologic role of the MMC is to clear the stomach and small intestine of residual food, secretions, and desquamated cells and propel them to the colon. Disruption of the MMC cycle is associated with bacterial overgrowth in some patients, an observation that supports the proposed cleansing function of the MMC cycle.
Fast radio bursts and the stochastic lifetime of black holes in quantum gravity
NASA Astrophysics Data System (ADS)
Barrau, Aurélien; Moulin, Flora; Martineau, Killian
2018-03-01
Nonperturbative quantum gravity effects might allow a black-to-white hole transition. We revisit this increasingly popular hypothesis by taking into account the fundamentally random nature of the bouncing time. We show that if the primordial mass spectrum of black holes is highly peaked, the expected signal can in fact match the wavelength of the observed fast radio bursts. On the other hand, if the primordial mass spectrum is wide and smooth, clear predictions are suggested and the sensitivity to the shape of the spectrum is studied.
Ufer, Friederike; Vargas, Pablo; Engler, Jan Broder; Tintelnot, Joseph; Schattling, Benjamin; Winkler, Hana; Bauer, Simone; Kursawe, Nina; Willing, Anne; Keminer, Oliver; Ohana, Ora; Salinas-Riester, Gabriela; Pless, Ole; Kuhl, Dietmar; Friese, Manuel A
2016-09-23
Skin-migratory dendritic cells (migDCs) are pivotal antigen-presenting cells that continuously transport antigens to draining lymph nodes and regulate immune responses. However, identification of migDCs is complicated by the lack of distinguishing markers, and it remains unclear which molecules determine their migratory capacity during inflammation. We show that, in the skin, the neuronal plasticity molecule activity-regulated cytoskeleton-associated protein/activity-regulated gene 3.1 (Arc/Arg3.1) was strictly confined to migDCs. Mechanistically, Arc/Arg3.1 was required for accelerated DC migration during inflammation because it regulated actin dynamics through nonmuscle myosin II. Accordingly, Arc/Arg3.1-dependent DC migration was critical for mounting T cell responses in experimental autoimmune encephalomyelitis and allergic contact dermatitis. Thus, Arc/Arg3.1 was restricted to migDCs in the skin and drove fast DC migration by exclusively coordinating cytoskeletal changes in response to inflammatory challenges. These findings commend Arc/Arg3.1 as a universal switch in migDCs that may be exploited to selectively modify immune responses. Copyright © 2016, American Association for the Advancement of Science.
Time evolution of shear-induced particle margination and migration in a cellular suspension
NASA Astrophysics Data System (ADS)
Qi, Qin M.; Shaqfeh, Eric S. G.
2016-11-01
The inhomogeneous center-of-mass distributions of red blood cells and platelets normal to the flow direction in small vessels play a significant role in hemostasis and drug delivery. Under pressure-driven flow in channels, the migration of deformable red blood cells at steady state is characterized by a cell-free or Fahraeus-Lindqvist layer near the vessel wall. Rigid particles such as platelets, however, "marginate" and thus develop a near-wall excess concentration. In order to evaluate the role of branching and design suitable microfluidic devices, it is important to investigate the time evolution of particle margination and migration from a non-equilibrium state and determine the corresponding entrance lengths. From a mechanistic point of view, deformability-induced hydrodynamic lift and shear-induced diffusion are essential mechanisms for the cross-flow migration and margination. In this talk, we determine the concentration distribution of red blood cells and platelets by solving coupled Boltzmann advection-diffusion equations for both species and explore their time evolution. We verify our model by comparing with large-scale, multi-cell simulations and experiments. Our Boltzmann collision theory serves as a fast alternative to large-scale simulations.
Genetics of alkaline phosphatase of the small intestine of the house mouser (Mus musculus).
Wilcox, F H
1983-08-01
Four inbred strains of mice exhibited either slow (PL/J), intermediate (DBA/2J, LP/J), or fast (SWR/J) rates of migration of duodenal alkaline phosphatase on cellulose acetate electrophoresis. Hybrids of these strains also had intermediate rates of migration regardless of the combination of strains used as parents. Strain differences were present in all regions of the small but not the large intestine. Crosses of the PL/J strain to hybrids between this strain and the other three strains gave a 1:1 segregation of the slow and intermediate patterns. The symbol Akp-3 is proposed for the locus responsible for the slower migration of the enzyme in this strain. Data from the LP/J X PL/J hybrid crossed with the PL/J strain showed linkage with two loci on chromosome 1 as follows: centromere--Idh-1--13.8 cM--Akp-3--8.9 +/- 2.6 cM--Pep-3. The available data do not reveal the genetic basis for the faster migration rate of the enzyme from the SWR/J strain, but a different response to neuraminidase and apparent nonlinkage to the Pep-3 locus suggest that a locus other than Akp-3 is responsible.
Molina-Hernández, Miguel; Téllez-Alcántara, N Patricia
2004-07-01
During the learning of instrumental tasks, rats are usually fasted to increase reinforced learning. However, fasting produces several undesirable side effects. The aim of this study was to test the hypothesis that control rats, i.e. full-fed and group-reared rats, will learn an autoshaping task to the same level as fasted or singly-reared rats. The interaction between fasting and single-rearing of rats was also tested. Results showed that control rats and fasted rats acquired the autoshaping task similarly, independently of rearing condition or gender. However, fasted or singly-reared rats produced fear-like behaviour, since male rats group-reared and fasted (85% body/wt, P <0.05), male rats singly-reared (full fed, P <0.05; 12 h fasted, P <0.05; 85% body/wt, P <0.05), female rats group-reared (12 h fasted, P <0.05; 85% body/wt, P <0.05) and female rats singly reared (full fed, P <0.05; 12 h fasted, P <0.05; 85% body/wt, P <0.05) displayed reduced amounts of time exploring the open arms of the elevated plus-maze. In conclusion, control rats learned the autoshaping task to the same level as fasted or singly-reared rats. However, fasting or single-rearing produced fear-like behaviour. Thus, the training of control rats in autoshaping tasks may be an option that improves animal welfare.
Personality and innate immune defenses in a wild bird: Evidence for the pace-of-life hypothesis.
Jacques-Hamilton, Rowan; Hall, Michelle L; Buttemer, William A; Matson, Kevin D; Gonҫalves da Silva, Anders; Mulder, Raoul A; Peters, Anne
2017-02-01
We tested the two main evolutionary hypotheses for an association between immunity and personality. The risk-of-parasitism hypothesis predicts that more proactive (bold, exploratory, risk-taking) individuals have more vigorous immune defenses because of increased risk of parasite exposure. In contrast, the pace-of-life hypothesis argues that proactive behavioral styles are associated with shorter lifespans and reduced investment in immune function. Mechanistically, associations between immunity and personality can arise because personality differences are often associated with differences in condition and stress responsiveness, both of which are intricately linked with immunity. Here we investigate the association between personality (measured as proactive exploration of a novel environment) and three indices of innate immune function (the non-specific first line of defense against parasites) in wild superb fairy-wrens Malurus cyaneus. We also quantified body condition, hemoparasites (none detected), chronic stress (heterophil:lymphocyte ratio) and circulating corticosterone levels at the end of the behavioral test (CORT, in a subset of birds). We found that fast explorers had lower titers of natural antibodies. This result is consistent with the pace-of-life hypothesis, and with the previously documented higher mortality of fast explorers in this species. There was no interactive effect of exploration score and duration in captivity on immune indices. This suggests that personality-related differences in stress responsiveness did not underlie differences in immunity, even though behavioral style did modulate the effect of captivity on CORT. Taken together these results suggest reduced constitutive investment in innate immune function in more proactive individuals. Copyright © 2016 Elsevier Inc. All rights reserved.
Ceccarelli, Manuela; Micheli, Laura; Tirone, Felice
2016-01-01
Medulloblastoma (MB), tumor of the cerebellum, remains a leading cause of cancer-related mortality in childhood. We previously showed, in a mouse model of spontaneous MB ( Ptch1 +/- / Tis21 -/- ), that a defect of the migration of cerebellar granule neuron precursor cells (GCPs) correlates with an increased frequency of MB. This occurs because GCPs, rather than migrating internally and differentiating, remain longer in the proliferative area at the cerebellar surface, becoming targets of transforming insults. Furthermore, we identified the chemokine Cxcl3 as responsible for the inward migration of GCPs. As it is known that preneoplastic GCPs (pGCPs) can still migrate and differentiate like normal GCPs, thus exiting the neoplastic program, in this study we tested the hypothesis that pGCPs within a MB lesion could be induced by Cxcl3 to migrate and differentiate. We observed that the administration of Cxcl3 for 28 days within the cerebellum of 1-month-old Ptch1 +/- / Tis21 -/- mice, i.e., when MB lesions are already formed, leads to complete disappearance of the lesions. However, a shorter treatment with Cxcl3 (2 weeks) was ineffective, suggesting that the suppression of MB lesions is dependent on the duration of Cxcl3 application. We verified that the treatment with Cxcl3 causes a massive migration of pGCPs from the lesion to the internal granular layer, where they differentiate. Thus, the induction of migration of pGCPs in MB lesions may open new ways to treat MB that exploit the plasticity of the pGCPs, forcing their differentiation. It remains to be tested whether this plasticity continues at advanced stages of MB. If so, these findings would set a potential use of the chemokine Cxcl3 as therapeutic agent against MB development in human preclinical studies.
Compositional shifts in Costa Rican forests due to climate-driven species migrations.
Feeley, Kenneth J; Hurtado, Johanna; Saatchi, Sassan; Silman, Miles R; Clark, David B
2013-11-01
Species are predicted to shift their distributions upslope or poleward in response to global warming. This prediction is supported by a growing number of studies documenting species migrations in temperate systems but remains poorly tested for tropical species, and especially for tropical plant species. We analyzed changes in tree species composition in a network of 10 annually censused 1-ha plots spanning an altitudinal gradient of 70-2800 m elevation in Costa Rica. Specifically, we combined plot data with herbarium records (accessed through GBIF) to test if the plots' community temperature scores (CTS, average thermal mean of constituent species weighted by basal area) have increased over the past decade as is predicted by climate-driven species migrations. In addition, we quantified the contributions of stem growth, recruitment, and mortality to the observed patterns. Supporting our a priori hypothesis of upward species migrations, we found that there have been consistent directional shifts in the composition of the plots, such that the relative abundance of lowland species, and hence CTS, increased in 90% of plots. The rate of the observed compositional shifts corresponds to a mean thermal migration rate (TMR) of 0.0065 °C yr(-1) (95% CI = 0.0005-0.0132 °C yr(-1) ). While the overall TMR is slower than predicted based on concurrent regional warming of 0.0167 °C yr(-1) , migrations were on pace with warming in 4 of the 10 plots. The observed shifts in composition were driven primarily by mortality events (i.e., the disproportionate death of highland vs. lowland species), suggesting that individuals of many tropical tree species will not be able to tolerate future warming and thus their persistence in the face of climate change will depend on successful migrations. Unfortunately, in Costa Rica and elsewhere, land area inevitably decreases at higher elevations; hence, even species that are able to migrate successfully will face heightened risks of extinction. © 2013 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Glaser, Rüdiger; Himmelsbach, Iso; Bösmeier, Annette
2017-11-01
This paper contributes to the ongoing debate on the extent to which climate and climatic change can have a negative impact on societies by triggering migration, or even contribute to conflict. It summarizes results from the transdisciplinary project Climate of migration
(funded 2010-2014), whose innovative title was created by Franz Mauelshagen and Uwe Lübken. The overall goal of this project was to analyze the relation between climatic and socioeconomic parameters and major migration waves from southwest Germany to North America during the 19th century. The article assesses the extent to which climatic conditions triggered these migration waves. The century investigated was in general characterized by the Little Ice Age with three distinct cooling periods, causing major glacier advances in the alpine regions and numerous climatic extremes such as major floods, droughts and severe winter. Societal changes were tremendous, marked by the warfare during the Napoleonic era (until 1815), the abolition of serfdom (1817), the bourgeois revolution (1847/48), economic freedom (1862), the beginning of industrialization accompanied by large-scale rural-urban migration resulting in urban poverty, and finally by the foundation of the German Empire in 1871.
The presented study is based on quantitative data and a qualitative, information-based discourse analysis. It considers climatic conditions as well as socioeconomic and political issues, leading to the hypothesis of a chain of effects ranging from unfavorable climatic conditions to a decrease in crop yields to rising cereal prices and finally to emigration. These circumstances were investigated extensively for the peak emigration years identified with each migration wave. Furthermore, the long-term relations between emigration and the prevailing climatic conditions, crop yields and cereal prices were statistically evaluated with a sequence of linear models which were significant with explanatory power between 22 and 38 %.
Risely, Alice; Waite, David W; Ujvari, Beata; Hoye, Bethany J; Klaassen, Marcel
2018-03-01
Gut microbes are increasingly recognised for their role in regulating an animal's metabolism and immunity. However, identifying repeatable associations between host physiological processes and their gut microbiota has proved challenging, in part because microbial communities often respond stochastically to host physiological stress (e.g. fasting, forced exercise or infection). Migratory birds provide a valuable system in which to test host-microbe interactions under physiological extremes because these hosts are adapted to predictable metabolic and immunological challenges as they undergo seasonal migrations, including temporary gut atrophy during long-distance flights. These physiological challenges may either temporarily disrupt gut microbial ecosystems, or, alternatively, promote predictable host-microbe associations during migration. To determine the relationship between migration and gut microbiota, we compared gut microbiota composition between migrating and non-migrating ("resident") conspecific shorebirds sharing a flock. We performed this across two sandpiper species, Calidris ferruginea and Calidris ruficollis, in north-western Australia, and an additional C. ruficollis population 3,000 km away in southern Australia. We found that migrants consistently had higher abundances of the bacterial genus Corynebacterium (average 28% abundance) compared to conspecific residents (average <1% abundance), with this effect holding across both species and sites. However, other than this specific association, community structure and diversity was almost identical between migrants and residents, with migration status accounting for only 1% of gut community variation when excluding Corynebacterium. Our findings suggest a consistent relationship between Corynebacterium and Calidris shorebirds during migration, with further research required to identify causal mechanisms behind the association, and to elucidate functionality to the host. However, outside this specific association, migrating shorebirds broadly maintained gut community structure, which may allow them to quickly recover gut function after a migratory flight. This study provides a rare example of a repeatable and specific response of the gut microbiota to a major physiological challenge across two species and two distant populations. © 2017 The Authors. Journal of Animal Ecology © 2017 British Ecological Society.
Do Mexican immigrants "import" social gradients in health to the US?
Buttenheim, Alison; Goldman, Noreen; Pebley, Anne R; Wong, Rebeca; Chung, Chang
2010-10-01
Greater educational attainment is consistently associated with lower mortality and better health, a pattern known as the social gradient. However, recent research suggests that Mexican-origin adults in the US have weak or flat gradients, in contrast to steep gradients for non-Hispanic whites. In this study we evaluate one hypothesis for this finding: Is the relative weakness of education gradients in health behaviors observed among Mexican-origin adults in the US due to weak gradients in the sending population? We test this "imported gradients" hypothesis with data from two nationally-representative datasets: the US National Health Interview Survey (NHIS) and the Mexican National Health Survey (ENSA 2000). We compare education gradients in smoking and obesity for recently-arrived Mexican immigrants in the US to the corresponding gradients in high-migration regions of Mexico. Results partially support the imported gradients hypothesis and have implications for health education and promotion programs targeted to immigrant populations to reduce racial and ethnic disparities in health in the US.
Do Mexican immigrants “import” social gradients in health to the US?
Buttenheim, Alison; Goldman, Noreen; Pebley, Anne R; Wong, Rebeca; Chung, Chang
2011-01-01
Greater educational attainment is consistently associated with lower mortality and better health, a pattern known as the social gradient. However, recent research suggests that Mexican-origin adults in the US have weak or flat gradients, in contrast to steep gradients for non-Hispanic whites. In this study we evaluate one hypothesis for this finding: Is the relative weakness of education gradients in health behaviors observed among Mexican-origin adults in the US due to weak gradients in the sending population? We test this “imported gradients” hypothesis with data from two nationally-representative datasets: the US National Health Interview Survey (NHIS) and the Mexican National Health Survey (ENSA 2000). We compare education gradients in smoking and obesity for recently-arrived Mexican immigrants in the US to the corresponding gradients in high-migration regions of Mexico. Results partially support the imported gradients hypothesis and have implications for health education and promotion programs targeted to immigrant populations to reduce racial and ethnic disparities in health in the US. PMID:20692753
NASA Astrophysics Data System (ADS)
Hodille, E. A.; Bernard, E.; Markelj, S.; Mougenot, J.; Becquart, C. S.; Bisson, R.; Grisolia, C.
2017-12-01
Based on macroscopic rate equation simulations of tritium migration in an actively cooled tungsten (W) plasma facing component (PFC) using the code MHIMS (migration of hydrogen isotopes in metals), an estimation has been made of the tritium retention in ITER W divertor target during a non-uniform exponential distribution of particle fluxes. Two grades of materials are considered to be exposed to tritium ions: an undamaged W and a damaged W exposed to fast fusion neutrons. Due to strong temperature gradient in the PFC, Soret effect’s impacts on tritium retention is also evaluated for both cases. Thanks to the simulation, the evolutions of the tritium retention and the tritium migration depth are obtained as a function of the implanted flux and the number of cycles. From these evolutions, extrapolation laws are built to estimate the number of cycles needed for tritium to permeate from the implantation zone to the cooled surface and to quantify the corresponding retention of tritium throughout the W PFC.
Analysis of Peristaltic Waves & their Role in Migrating Physarum Plasmodia
NASA Astrophysics Data System (ADS)
Lewis, Owen; Guy, Robert
2017-11-01
The true slime mold Physarum polycephalum exhibits a vast array of sophisticated manipulations of its intracellular cytoplasm. Growing microplasmodia of physarum have been observed to adopt an elongated tadpole shape, then contract in a rhythmic, traveling wave pattern that resembles peristaltic pumping. This contraction drives a fast flow of non-gelated cytoplasm along the cell longitudinal axis. It has been hypothesized that this flow of cytoplasm is a driving factor in generating motility of the plasmodium. In this work, we use two different mathematical models to investigate how peristaltic pumping within physarum may be used to drive cellular motility. We compare the relative phase of flow and deformation waves predicted by both models to similar phase data collected from in vivo experiments using physarum plasmodia. Both models suggest that a mechanical asymmetry in the cell is required to reproduce the experimental observations. Such a mechanical asymmetry is also shown to increase the potential for cellular migration, as measured by both stress generation and migration velocity.
Rasmussen, Kristin; Palacios, Daniel M; Calambokidis, John; Saborío, Marco T; Dalla Rosa, Luciano; Secchi, Eduardo R; Steiger, Gretchen H; Allen, Judith M; Stone, Gregory S
2007-06-22
We report on a wintering area off the Pacific coast of Central America for humpback whales (Megaptera novaeangliae) migrating from feeding areas off Antarctica. We document seven individuals, including a mother/calf pair, that made this migration (approx. 8300km), the longest movement undertaken by any mammal. Whales were observed as far north as 11 degrees N off Costa Rica, in an area also used by a boreal population during the opposite winter season, resulting in unique spatial overlap between Northern and Southern Hemisphere populations. The occurrence of such a northerly wintering area is coincident with the development of an equatorial tongue of cold water in the eastern South Pacific, a pattern that is repeated in the eastern South Atlantic. A survey of location and water temperature at the wintering areas worldwide indicates that they are found in warm waters (21.1-28.3 degrees C), irrespective of latitude. We contend that while availability of suitable reproductive habitat in the wintering areas is important at the fine scale, water temperature influences whale distribution at the basin scale. Calf development in warm water may lead to larger adult size and increased reproductive success, a strategy that supports the energy conservation hypothesis as a reason for migration.
Tin, Lamtin; Wu, Yiqi; Jin, Yinji; Jin, Xiaoming; Zhang, Fengmin
2016-01-01
Diphenyl difluoroketone (EF24), a curcumin analog, is a promising anticancer compound that exerts its effects by inhibiting cell proliferation and inducing apoptosis. However, the efficacy of EF24 against cancer metastasis, particularly in hepatocellular carcinoma (HCC), remains elusive. In this study, the effect of EF24 on HCCLM-3 and HepG2 cell migration and invasion was detected by wound healing and transwell assay, respectively. The results revealed that EF24 suppressed the migration and invasion of both HCCLM-3 and HepG2 cells. Furthermore, EF24 treatment decreased the formation of filopodia on the cell surface and inhibited the phosphorylation of Src in both cell lines, which may help contribute towards understanding the mechanism underlying the suppressive effect of EF24 on HCC migration and invasion. Additionally, the expression of total- and phosphorylated-Src in primary HCC tissues and their paired lymph node metastatic tissues was detected, and phosphorylated-Src was found to be associated with HCC lymph node metastasis. The results of this study suggest that Src is a novel and promising therapeutic target in HCC and provide evidence to support the hypothesis that EF24 may be a useful therapeutic agent for the treatment of HCC. PMID:27999817
Zhao, Ran; Tin, Lamtin; Zhang, Yuhua; Wu, Yiqi; Jin, Yinji; Jin, Xiaoming; Zhang, Fengmin; Li, Xiaobo
2016-01-01
Diphenyl difluoroketone (EF24), a curcumin analog, is a promising anticancer compound that exerts its effects by inhibiting cell proliferation and inducing apoptosis. However, the efficacy of EF24 against cancer metastasis, particularly in hepatocellular carcinoma (HCC), remains elusive. In this study, the effect of EF24 on HCCLM-3 and HepG2 cell migration and invasion was detected by wound healing and transwell assay, respectively. The results revealed that EF24 suppressed the migration and invasion of both HCCLM-3 and HepG2 cells. Furthermore, EF24 treatment decreased the formation of filopodia on the cell surface and inhibited the phosphorylation of Src in both cell lines, which may help contribute towards understanding the mechanism underlying the suppressive effect of EF24 on HCC migration and invasion. Additionally, the expression of total- and phosphorylated-Src in primary HCC tissues and their paired lymph node metastatic tissues was detected, and phosphorylated-Src was found to be associated with HCC lymph node metastasis. The results of this study suggest that Src is a novel and promising therapeutic target in HCC and provide evidence to support the hypothesis that EF24 may be a useful therapeutic agent for the treatment of HCC.
Comparing models of Red Knot population dynamics
McGowan, Conor P.
2015-01-01
Predictive population modeling contributes to our basic scientific understanding of population dynamics, but can also inform management decisions by evaluating alternative actions in virtual environments. Quantitative models mathematically reflect scientific hypotheses about how a system functions. In Delaware Bay, mid-Atlantic Coast, USA, to more effectively manage horseshoe crab (Limulus polyphemus) harvests and protect Red Knot (Calidris canutus rufa) populations, models are used to compare harvest actions and predict the impacts on crab and knot populations. Management has been chiefly driven by the core hypothesis that horseshoe crab egg abundance governs the survival and reproduction of migrating Red Knots that stopover in the Bay during spring migration. However, recently, hypotheses proposing that knot dynamics are governed by cyclical lemming dynamics garnered some support in data analyses. In this paper, I present alternative models of Red Knot population dynamics to reflect alternative hypotheses. Using 2 models with different lemming population cycle lengths and 2 models with different horseshoe crab effects, I project the knot population into the future under environmental stochasticity and parametric uncertainty with each model. I then compare each model's predictions to 10 yr of population monitoring from Delaware Bay. Using Bayes' theorem and model weight updating, models can accrue weight or support for one or another hypothesis of population dynamics. With 4 models of Red Knot population dynamics and only 10 yr of data, no hypothesis clearly predicted population count data better than another. The collapsed lemming cycle model performed best, accruing ~35% of the model weight, followed closely by the horseshoe crab egg abundance model, which accrued ~30% of the weight. The models that predicted no decline or stable populations (i.e. the 4-yr lemming cycle model and the weak horseshoe crab effect model) were the most weakly supported.
Migration of Point Defects in the Field of a Temperature Gradient
NASA Astrophysics Data System (ADS)
Kozlov, A. V.; Portnykh, I. A.; Pastukhov, V. I.
2018-04-01
The influence of the temperature gradient over the thickness of the cladding of a fuel element of a fast-neutron reactor on the migration of point defects formed in the cladding material due to neutron irradiation has been studied. It has been shown that, under the action of the temperature gradient, the flux of vacancies onto the inner surface of the cladding is higher than the flux of interstitial atoms, which leads to the formation of a specific concentration profile in the cladding with a vacancy-depleted zone near the inner surface. The experimental results on the spatial distribution of pores over the cladding thickness have been presented with which the data on the concentration profiles and vacancy fluxes have been compared.
Describing Directional Cell Migration with a Characteristic Directionality Time
Loosley, Alex J.; O’Brien, Xian M.; Reichner, Jonathan S.; Tang, Jay X.
2015-01-01
Many cell types can bias their direction of locomotion by coupling to external cues. Characteristics such as how fast a cell migrates and the directedness of its migration path can be quantified to provide metrics that determine which biochemical and biomechanical factors affect directional cell migration, and by how much. To be useful, these metrics must be reproducible from one experimental setting to another. However, most are not reproducible because their numerical values depend on technical parameters like sampling interval and measurement error. To address the need for a reproducible metric, we analytically derive a metric called directionality time, the minimum observation time required to identify motion as directionally biased. We show that the corresponding fit function is applicable to a variety of ergodic, directionally biased motions. A motion is ergodic when the underlying dynamical properties such as speed or directional bias do not change over time. Measuring the directionality of nonergodic motion is less straightforward but we also show how this class of motion can be analyzed. Simulations are used to show the robustness of directionality time measurements and its decoupling from measurement errors. As a practical example, we demonstrate the measurement of directionality time, step-by-step, on noisy, nonergodic trajectories of chemotactic neutrophils. Because of its inherent generality, directionality time ought to be useful for characterizing a broad range of motions including intracellular transport, cell motility, and animal migration. PMID:25992908
Flying with the winds: differential migration strategies in relation to winds in moth and songbirds.
Åkesson, Susanne
2016-01-01
The gamma Y moth selects to migrate in stronger winds compared to songbirds, enabling fast transport to distant breeding sites, but a lower precision in orientation as the moth allows itself to be drifted by the winds. Photo: Ian Woiwod. In Focus: Chapman, J.R., Nilsson, C., Lim, K.S., Bäckman, J., Reynolds, D.R. & Alerstam, T. (2015) Adaptive strategies in nocturnally migrating insects and songbirds: contrasting responses to winds. Journal of Animal Ecology, In press Insects and songbirds regularly migrate long distances across continents and seas. During these nocturnal migrations, they are exposed to a fluid medium, the air, in which they transport themselves by flight at similar speeds as the winds may carry them. It is crucial for an animal to select the most favourable flight conditions relative to winds to minimize the distance flown on a given amount of fuel and to avoid hazardous situations. Chapman et al. (2015a) showed contrasting strategies in how moths initiate migration predominantly under tailwind conditions, allowing themselves to drift to a larger extent and gain ground speed as compared to nocturnal songbird migrants. The songbirds use more variable flight strategies in relation to winds, where they sometimes allow themselves to drift, and at other occasions compensate for wind drift. This study shows how insects and birds have differentially adapted to migration in relation to winds, which is strongly dependent on their own flight capability, with higher flexibility enabling fine-tuned responses to keep a time programme and reach a goal in songbirds compared to in insects. © 2015 The Author. Journal of Animal Ecology © 2015 British Ecological Society.
Storms drive altitudinal migration in a tropical bird
Boyle, W. Alice; Norris, D. Ryan; Guglielmo, Christopher G.
2010-01-01
Although migration is a widespread and taxonomically diverse behaviour, the ecological factors shaping migratory behaviour are poorly understood. Like other montane taxa, many birds migrate along elevational gradients in the tropics. Forty years ago, Alexander Skutch postulated that severe storms could drive birds to migrate downhill. Here, we articulate a novel mechanism that could link storms to mortality risks via reductions in foraging time and provide, to our knowledge, the first tests of this hypothesis in the White-ruffed Manakin (Corapipo altera), a small partially migratory frugivore breeding on the Atlantic slope of Costa Rica. As predicted, variation in rainfall was associated with plasma corticosterone levels, fat stores, plasma metabolites and haematocrit. By collecting data at high and low elevation sites simultaneously, we also found that high-elevation residents were more adversely affected by storms than low elevation migrants. These results, together with striking temporal capture patterns of altitudinal migrants relative to storms, provide, to our knowledge, the first evidence that weather-related risks incurred by species requiring high food intake rates can explain altitudinal migrations of tropical animals. These findings resolve conflicting evidence for and against food limitation being important in the evolution of this behaviour, and highlight how endogenous and exogenous processes influence life-history trade-offs made by individuals in the wild. Because seasonal storms are a defining characteristic of most tropical ecosystems and rainfall patterns will probably change in ensuing decades, these results have important implications for understanding the ecology, evolution and conservation of tropical animals. PMID:20375047
Storms drive altitudinal migration in a tropical bird.
Boyle, W Alice; Norris, D Ryan; Guglielmo, Christopher G
2010-08-22
Although migration is a widespread and taxonomically diverse behaviour, the ecological factors shaping migratory behaviour are poorly understood. Like other montane taxa, many birds migrate along elevational gradients in the tropics. Forty years ago, Alexander Skutch postulated that severe storms could drive birds to migrate downhill. Here, we articulate a novel mechanism that could link storms to mortality risks via reductions in foraging time and provide, to our knowledge, the first tests of this hypothesis in the White-ruffed Manakin (Corapipo altera), a small partially migratory frugivore breeding on the Atlantic slope of Costa Rica. As predicted, variation in rainfall was associated with plasma corticosterone levels, fat stores, plasma metabolites and haematocrit. By collecting data at high and low elevation sites simultaneously, we also found that high-elevation residents were more adversely affected by storms than low elevation migrants. These results, together with striking temporal capture patterns of altitudinal migrants relative to storms, provide, to our knowledge, the first evidence that weather-related risks incurred by species requiring high food intake rates can explain altitudinal migrations of tropical animals. These findings resolve conflicting evidence for and against food limitation being important in the evolution of this behaviour, and highlight how endogenous and exogenous processes influence life-history trade-offs made by individuals in the wild. Because seasonal storms are a defining characteristic of most tropical ecosystems and rainfall patterns will probably change in ensuing decades, these results have important implications for understanding the ecology, evolution and conservation of tropical animals.
Chapuis, Élodie; Pagès, Sylvie; Emelianoff, Vanya; Givaudan, Alain; Ferdy, Jean-Baptiste
2011-01-31
The trade-off hypothesis proposes that the evolution of pathogens' virulence is shaped by a link between virulence and contagiousness. This link is often assumed to come from the fact that pathogens are contagious only if they can reach high parasitic load in the infected host. In this paper we present an experimental test of the hypothesis that selection on fast replication can affect virulence. In a serial passage experiment, we selected 80 lines of the bacterial insect-pathogen Xenorhabdus nematophila to multiply fast in an artificial culture medium. This selection resulted in shortened lag phase in our selected bacteria. We then injected these bacteria into insects and observed an increase in virulence. This could be taken as a sign that virulence in Xenorhabdus is linked to fast multiplication. But we found, among the selected lineages, either no link or a positive correlation between lag duration and virulence: the most virulent bacteria were the last to start multiplying. We then surveyed phenotypes that are under the control of the flhDC super regulon, which has been shown to be involved in Xenorhabdus virulence. We found that, in one treatment, the flhDC regulon has evolved rapidly, but that the changes we observed were not connected to virulence. All together, these results indicate that virulence is, in Xenorhabdus as in many other pathogens, a multifactorial trait. Being able to grow fast is one way to be virulent. But other ways exist which renders the evolution of virulence hard to predict.
Pulsed remineralisation in the northwestern Mediterranean Sea: a hypothesis
NASA Astrophysics Data System (ADS)
Denis, Michel; Martin, Valérie; Momzikoff, André; Gondry, Geneviève; Stemmann, Lars; Demers, Serge; Gorsky, Gaby; Andersen, Valérie
2003-02-01
A general study of biogeochemical processes (DYNAPROC cruise) was conducted in May 1995 at a time-series station in the open northwestern Mediterranean Sea where horizontal advection was weak. Short-term variations of the vertical distributions of pico- and nanophytoplankton were investigated over four 36-h cycles, along with parallel determinations of metabolic CO 2 production rates and amino acid-containing colloid (AACC) concentrations at the chlorophyll maximum depth. The vertical (0-1000-m depth) distributions of (i) AACC, (ii) suspended particles and (iii) metabolic CO 2 production rate were documented during the initial and final stages of these 36-h cycles. This study was concerned with diel vertical migration (DVM) of zooplankton, which provided periodic perturbations. Accordingly, the time scale of the experimental work varied from a few hours to a few days. Although all distributions exhibited a periodic behaviour, AACC distributions were generally not linked to diel vertical migrations. In the subsurface layer, Synechococcus made the most abundant population and large variations in concentration were observed both at day and at night. The corresponding integrated (over the upper 90 m) losses of Synechococcus during one night pointed to a potential source of exported organic matter amounting to 534 mg C m -2. This study stresses the potential importance of organic matter export from the euphotic zone through the daily grazing activity of vertically migrating organisms, which would not be accounted for by measurements at longer time scales. The metabolic CO 2 production exhibited a peak of activity below 500 m that was shifted downward, apparently in a recurrent way and independently of the vertical distributions of AACC or of suspended particulate material. To account for this phenomenon, a «sustained wave train» hypothesis is proposed that combines the effect of the diel superficial faecal pellet production by swarming migrators and the repackaging activity of the nonmigrating midwater populations. Our results confirm the recent finding that the particulate compartment is not the major source of the observed instantaneous remineralisation rate and shed a new light on the fate of organic matter in the aphotic zone.
Bojorquez, Ietza; Salgado de Snyder, Nelly; Casique, Irene
2009-07-01
The emigration of Mexicans to the USA has increased in the last decades, and little is known about the effect of this on the mental health of those who stay behind. To evaluate the association of emigration of husband and depressive symptoms (DS) among women who stay in Mexico. We also tested the hypothesis that the husband's migration would increase the woman's autonomy, which in turn would decrease DS. A survey was conducted in a rural area in Mexico. Participants (n = 418) were selected through probabilistic sampling in three stages: localities, households and individuals. DS were evaluated using the Centre for Epidemiological Studies-Depression (CES-D) scale. Having a partner in the USA was associated with higher odds of scoring above the cut-off point in CES-D (OR 3.77, 95% CI 1.92-7.43). Economic autonomy was also associated with DS (OR 1.45, 95% CI 1.04-2.02). Migration of husband was associated with DS among women. The construct of autonomy and its operational definition should be further explored.
The CXC-chemokine CXCL4 interacts with integrins implicated in angiogenesis.
Aidoudi, Sallouha; Bujakowska, Kinga; Kieffer, Nelly; Bikfalvi, Andreas
2008-07-16
The human CXC-chemokine CXCL4 is a potent inhibitor of tumor-induced angiogenesis. Considering that CXCL4 is sequestered in platelet alpha-granules and released following platelet activation in the vicinity of vessel wall injury, we tested the hypothesis that CXCL4 might function as a ligand for integrins. Integrins are a family of adhesion receptors that play a crucial role in angiogenesis by regulating early angiogenic processes, such as endothelial cell adhesion and migration. Here, we show that CXCL4 interacts with alphavbeta3 on the surface of alphavbeta3-CHO. More importantly, human umbilical vein endothelial cells adhere to immobilized CXCL4 through alphavbeta3 integrin, and also through other integrins, such as alphavbeta5 and alpha5beta1. We further demonstrate that CXCL4-integrin interaction is of functional significance in vitro, since immobilized CXCL4 supported endothelial cell spreading and migration in an integrin-dependent manner. Soluble CXCL4, in turn, inhibits integrin-dependent endothelial cell adhesion and migration. As a whole, our study identifies integrins as novel receptors for CXCL4 that may contribute to its antiangiogenic effect.
Yao, Zong-Feng; Wang, Ying; Lin, Yu-Hong; Wu, Yan; Zhu, An-You; Wang, Rui; Shen, Lin; Xi, Jin; Qi, Qi; Jiang, Zhi-Quan; Lü, He-Zuo; Hu, Jian-Guo
2017-01-01
Our previous study showed that Schwann cells (SCs) promote survival, proliferation and migration of co-transplanted oligodendrocyte progenitor cells (OPCs) and neurological recovery in rats with spinal cord injury (SCI). A subsequent in vitro study confirmed that SCs modulated OPC proliferation and migration by secreting platelet-derived growth factor (PDGF)-AA and fibroblast growth factor-2 (FGF)-2. We also found that PDGF-AA stimulated OPC proliferation and their differentiation into oligodendrocytes (OLs) at later stages. We therefore speculated that PDGF-AA administration can exert the same effect as SC co-transplantation in SCI repair. To test this hypothesis, in this study we investigated the effect of transplanting PDGF-AA-overexpressing OPCs in a rat model of SCI. We found that PDGF-AA overexpression in OPCs promoted their survival, proliferation, and migration and differentiation into OLs in vivo . OPCs overexpressing PDGF-AA were also associated with increased myelination and tissue repair after SCI, leading to the recovery of neurological function. These results indicate that PDGF-AA-overexpressing OPCs may be an effective treatment for SCI.
Fast isotopic separation of 10 B and 11 B boric acid by capillary zone electrophoresis.
Kamencev, Mikhail; Yakimova, Nina; Moskvin, Leonid; Kuchumova, Irina; Tkach, Kirill; Malinina, Yulia
2016-11-01
Fast isotopic separation of 10 B and 11 B boric acid by CZE was demonstrated. The BGE contained 25 mM phenylalanine and 5 mM putrescine (рН 8.95). The running conditions were +25 kV at 20°C with indirect photometric detection at 210 nm. Baseline separation was achieved in less than 9 min. RSD of migration times and corrected peak areas were less than 0.5 and 3%, respectively (n = 5). Linearity was demonstrated in the range 0.2-2 mM for 11 B and 0.2-0.5 mM for 10 B. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Motion streaks in fast motion rivalry cause orientation-selective suppression.
Apthorp, Deborah; Wenderoth, Peter; Alais, David
2009-05-14
We studied binocular rivalry between orthogonally translating arrays of random Gaussian blobs and measured the strength of rivalry suppression for static oriented probes. Suppression depth was quantified by expressing monocular probe thresholds during dominance relative to thresholds during suppression. Rivalry between two fast motions or two slow motions was compared in order to test the suggestion that fast-moving objects leave oriented "motion streaks" due to temporal integration (W. S. Geisler, 1999). If fast motions do produce motion streaks, then fast motion rivalry might also entail rivalry between the orthogonal streak orientations. We tested this using a static oriented probe that was aligned either parallel to the motion trajectory (hence collinear with the "streaks") or was orthogonal to the trajectory, predicting that rivalry suppression would be greater for parallel probes, and only for rivalry between fast motions. Results confirmed that suppression depth did depend on probe orientation for fast motion but not for slow motion. Further experiments showed that threshold elevations for the oriented probe during suppression exhibited clear orientation tuning. However, orientation-tuned elevations were also present during dominance, suggesting within-channel masking as the basis of the extra-deep suppression. In sum, the presence of orientation-dependent suppression in fast motion rivalry is consistent with the "motion streaks" hypothesis.
NASA Technical Reports Server (NTRS)
Sahai, R.; Contreras, C.
2003-01-01
In this paper, we briefly describe the results from imaging surveys of young PNe and PPNe with HST, and then present new results from detailed kinematic studies of several prominent objects which support our hypothesis for shaping PNe.
Marciani, L; Wright, J; Foley, S; Hoad, C L; Totman, J J; Bush, D; Hartley, C; Armstrong, A; Manby, P; Blackshaw, E; Perkins, A C; Gowland, P A; Spiller, R C
2010-09-01
5-HT(3) antagonists have been shown to be effective in relieving the symptoms of irritable bowel syndrome with diarrhoea (IBS-D). Using a recently validated magnetic resonance imaging (MRI) method, we have demonstrated reduced fasting small bowel water content (SBWC) in IBS-D associated with accelerated small bowel transit. We hypothesized that slowing of transit with ondansetron would lead to an increase in SBWC by inhibiting fasting motility. To assess the effects of ondansetron compared with placebo in healthy volunteers on SBWC and motility in two different groups of subjects, one studied using MRI and another using manometry. Healthy volunteers were given either a placebo or ondansetron on the day prior to and on the study day. Sixteen volunteers underwent baseline fasting and postprandial MRI scans for 270 min. In a second study, a separate group of n = 18 volunteers were intubated and overnight migrating motor complex (MMC) recorded. Baseline MRI scans were carried out after the tube was removed. Fasting SBWC was markedly increased by ondansetron (P < 0.0007). Ondansetron reduced the overall antroduodenal Motility Index (P < 0.04). The subjects who were intubated had significantly lower fasting SBWC (P < 0.0002) compared with the group of subjects who were not intubated. The 5-HT(3) receptor antagonism increased fasting small bowel water. This was associated with reduced fasting antroduodenal Motility Index which may explain the clinical benefit of such drugs. 2010 Blackwell Publishing Ltd.
NASA Astrophysics Data System (ADS)
Horton, T. W.; Holdaway, R. N.; Zerbini, A.; Andriolo, A.; Clapham, P. J.
2010-12-01
Determining how animals perform long-distance animal migration remains one of the most enduring and fundamental mysteries of behavioural ecology. It is widely accepted that navigation relative to a reference datum is a fundamental requirement of long-distance return migration between seasonal habitats, and significant experimental research has documented a variety of viable orientation and navigation cues. However, relatively few investigations have attempted to reconcile experimentally determined orientation and navigation capacities of animals with empirical remotely sensed animal track data, leaving most theories of navigation and orientation untested. Here we show, using basic hypothesis testing, that leatherback turtle (Dermochelys coriacea), great white shark (Carcharodon carcharias), arctic tern (Sterna paradisaea), and humpback whale (Megaptera novaeangliae) migration paths are non-randomly distributed in magnetic coordinate space, with local peaks in magnetic coordinate distributions equal to fractional multiples of the angular obliquity of Earth’s axis of rotation. Time series analysis of humpback whale migratory behaviours, including migration initiation, changes in course, and migratory stop-overs, further demonstrate coupling of magnetic and celestial orientation cues during long-distance migration. These unexpected and highly novel results indicate that diverse taxa integrate magnetic and celestial orientation cues during long-distance migration. These results are compatible with a 'map and compass' orientation and navigation system. Humpback whale migration track geometries further indicate a map and compass orientation system is used. Several humpback whale tracks include highly directional segments (Mercator latitude vs. longitude r2>0.99) exceeding 2000 km in length, despite exposure to variable strength (c. 0-1 km/hr) surface cross-currents. Humpback whales appear to be able to compensate for surface current drift. The remarkable directional precision of these humpback whale track segments is far better than the ±25°-40° precision of the avian magnetic compass. The positional and directional orientation data presented suggests signal transduction provides spatial information to migrating animals with better than 1° precision.
Amo, Taku; Brand, Martin D.
2007-01-01
We introduce a general test of the bioenergetic importance of mtDNA (mitochondrial DNA) variants: modular kinetic analysis of oxidative phosphorylation in mitochondria from cybrid cells with constant nuclear DNA but different mtDNA. We have applied this test to the hypothesis [Ruiz-Pesini, Mishmar, Brandon, Procaccio and Wallace (2004) Science 303, 223–226] that particular mtDNA haplogroups (specific combinations of polymorphisms) that cause lowered coupling efficiency, leading to generation of less ATP and more heat, were positively selected during radiations of modern humans into colder climates. Contrary to the predictions of this hypothesis, mitochondria from Arctic haplogroups had similar or even greater coupling efficiency than mitochondria from tropical haplogroups. PMID:17355224
Bellio, Michael A; Rodrigues, Claudia O; Landin, Ana Marie; Hatzistergos, Konstantinos E; Kuznetsov, Jeffim; Florea, Victoria; Valasaki, Krystalenia; Khan, Aisha; Hare, Joshua M; Schulman, Ivonne Hernandez
2016-12-01
Cardiac stem cells (CSCs) are being evaluated for their efficacy in the treatment of heart failure. However, numerous factors impair the exogenously delivered cells' regenerative capabilities. Hypoxia is one stress that contributes to inadequate tissue repair. Here, we tested the hypothesis that hypoxia impairs cell proliferation, survival, and migration of human CSCs relative to physiological and room air oxygen concentrations. Human endomyocardial biopsy-derived CSCs were isolated, selected for c-Kit expression, and expanded in vitro at room air (21% O 2 ). To assess the effect on proliferation, survival, and migration, CSCs were transferred to physiological (5%) or hypoxic (0.5%) O 2 concentrations. Physiological O 2 levels increased proliferation (P < 0.05) but did not affect survival of CSCs. Although similar growth rates were observed in room air and hypoxia, a significant reduction of β-galactosidase activity (-4,203 fluorescent units, P < 0.05), p16 protein expression (0.58-fold, P < 0.001), and mitochondrial content (0.18-fold, P < 0.001) in hypoxia suggests that transition from high (21%) to low (0.5%) O 2 reduces senescence and promotes quiescence. Furthermore, physiological O 2 levels increased migration (P < 0.05) compared with room air and hypoxia, and treatment with mesenchymal stem cell-conditioned media rescued CSC migration under hypoxia to levels comparable to physiological O 2 migration (2-fold, P < 0.05 relative to CSC media control). Our finding that physiological O 2 concentration is optimal for in vitro parameters of CSC biology suggests that standard room air may diminish cell regenerative potential. This study provides novel insights into the modulatory effects of O 2 concentration on CSC biology and has important implications for refining stem cell therapies. Copyright © 2016 the American Physiological Society.
Examining speed versus selection in connectivity models using elk migration as an example
Brennan, Angela; Hanks, Ephraim M.; Merkle, Jerod A.; Cole, Eric K.; Dewey, Sarah R.; Courtemanch, Alyson B.; Cross, Paul C.
2018-01-01
ContextLandscape resistance is vital to connectivity modeling and frequently derived from resource selection functions (RSFs). RSFs estimate relative probability of use and tend to focus on understanding habitat preferences during slow, routine animal movements (e.g., foraging). Dispersal and migration, however, can produce rarer, faster movements, in which case models of movement speed rather than resource selection may be more realistic for identifying habitats that facilitate connectivity.ObjectiveTo compare two connectivity modeling approaches applied to resistance estimated from models of movement rate and resource selection.MethodsUsing movement data from migrating elk, we evaluated continuous time Markov chain (CTMC) and movement-based RSF models (i.e., step selection functions [SSFs]). We applied circuit theory and shortest random path (SRP) algorithms to CTMC, SSF and null (i.e., flat) resistance surfaces to predict corridors between elk seasonal ranges. We evaluated prediction accuracy by comparing model predictions to empirical elk movements.ResultsAll connectivity models predicted elk movements well, but models applied to CTMC resistance were more accurate than models applied to SSF and null resistance. Circuit theory models were more accurate on average than SRP models.ConclusionsCTMC can be more realistic than SSFs for estimating resistance for fast movements, though SSFs may demonstrate some predictive ability when animals also move slowly through corridors (e.g., stopover use during migration). High null model accuracy suggests seasonal range data may also be critical for predicting direct migration routes. For animals that migrate or disperse across large landscapes, we recommend incorporating CTMC into the connectivity modeling toolkit.
Examining speed versus selection in connectivity models using elk migration as an example
Brennan, Angela; Hanks, EM; Merkle, JA; Cole, EK; Dewey, SR; Courtemanch, AB; Cross, Paul C.
2018-01-01
Context: Landscape resistance is vital to connectivity modeling and frequently derived from resource selection functions (RSFs). RSFs estimate relative probability of use and tend to focus on understanding habitat preferences during slow, routine animal movements (e.g., foraging). Dispersal and migration, however, can produce rarer, faster movements, in which case models of movement speed rather than resource selection may be more realistic for identifying habitats that facilitate connectivity. Objective: To compare two connectivity modeling approaches applied to resistance estimated from models of movement rate and resource selection. Methods: Using movement data from migrating elk, we evaluated continuous time Markov chain (CTMC) and movement-based RSF models (i.e., step selection functions [SSFs]). We applied circuit theory and shortest random path (SRP) algorithms to CTMC, SSF and null (i.e., flat) resistance surfaces to predict corridors between elk seasonal ranges. We evaluated prediction accuracy by comparing model predictions to empirical elk movements. Results: All models predicted elk movements well, but models applied to CTMC resistance were more accurate than models applied to SSF and null resistance. Circuit theory models were more accurate on average than SRP algorithms. Conclusions: CTMC can be more realistic than SSFs for estimating resistance for fast movements, though SSFs may demonstrate some predictive ability when animals also move slowly through corridors (e.g., stopover use during migration). High null model accuracy suggests seasonal range data may also be critical for predicting direct migration routes. For animals that migrate or disperse across large landscapes, we recommend incorporating CTMC into the connectivity modeling toolkit.
Independent control of joint stiffness in the framework of the equilibrium-point hypothesis.
Latash, M L
1992-01-01
In the framework of the equilibrium-point hypothesis, virtual trajectories and joint stiffness patterns have been reconstructed during two motor tasks practiced against a constant bias torque. One task required a voluntary increase in joint stiffness while preserving the original joint position. The other task involved fast elbow flexions over 36 degrees. Joint stiffness gradually subsided after the termination of fast movements. In both tasks, the external torque could slowly and unexpectedly change. The subjects were required not to change their motor commands if the torque changed, i.e. "to do the same no matter what the motor did". In both tasks, changes in joint stiffness were accompanied by unchanged virtual trajectories that were also independent of the absolute value of the bias torque. By contrast, the intercept of the joint compliant characteristic with the angle axis, r(t)-function, has demonstrated a clear dependence upon both the level of coactivation and external load. We assume that a template virtual trajectory is generated at a certain level of the motor hierarchy and is later scaled taking into account some commonly changing dynamic factors of the movement execution, for example, external load. The scaling leads to the generation of commands to the segmental structures that can be expressed, according to the equilibrium-point hypothesis, as changes in the thresholds of the tonic stretch reflex for corresponding muscles.
Chow, Brian A; Hamilton, Jason; Cattet, Marc R L; Stenhouse, Gordon; Obbard, Martyn E; Vijayan, Mathilakath M
2011-01-01
Polar bears (Ursus maritimus) from several subpopulations undergo extended fasting during the ice-free season. However, the animals appear to conserve protein despite the prolonged fasting, though the mechanisms involved are poorly understood. We hypothesized that elevated concentrations of corticosteroid binding globulin (CBG), the primary cortisol binding protein in circulation, lead to cortisol resistance and provide a mechanism for protein conservation during extended fasting. The metabolic state (feeding vs. fasting) of 16 field sampled male polar bears was determined based on their serum urea to creatinine ratio (>25 for feeding vs. <5 for fasting). There were no significant differences in serum cortisol levels between all male and female polar bears sampled. Serum CBG expression was greater in lactating females relative to non-lactating females and males. CBG expression was significantly higher in fasting males when compared to non-fasting males. This leads us to suggest that CBG expression may serve as a mechanism to conserve protein during extended fasting in polar bears by reducing systemic free cortisol concentrations. This was further supported by a lower serum glucose concentration in the fasting bears. As well, a lack of an enhanced adrenocortical response to acute capture stress supports our hypothesis that chronic hunger is not a stressor in this species. Overall, our results suggest that elevated serum CBG expression may be an important adaptation to spare proteins by limiting cortisol bioavailability during extended fasting in polar bears. Copyright © 2010 Elsevier Inc. All rights reserved.
Nearshore bars and the break-point hypothesis
Sallenger, A.H.; Howd, P.A.
1989-01-01
The set of hypotheses calling for bar formation at the break point was tested with field data. During two different experiments, waves were measured across the surf zone coincident with the development of a nearshore bar. We use a criterion, based on the wave height to depth ratio, to determine the offshore limit of the inner surf zone. During the first experiment, the bar became better developed and migrated offshore while remaining well within the inner surf zone. During the second experiment, the surf zone was narrower and we cannot rule out the possibility of break point processes contributing to bar development. We conclude that bars are not necessarily coupled with the break point and can become better developed and migrate offshore while being in the inner surf zone landward from initial wave breaking in the outer surf zone. ?? 1989.
Chemokines and their receptors: insights from molecular modeling and crystallography.
Kufareva, Irina
2016-10-01
Chemokines are small secreted proteins that direct cell migration in development, immunity, inflammation, and cancer. They do so by binding and activating specific G protein coupled receptors on the surface of migrating cells. Despite the importance of receptor:chemokine interactions, their structural basis remained unclear for a long time. In 2015, the first atomic resolution insights were obtained with the publication of X-ray structures for two distantly related receptors bound to chemokines. In conjunction with experiment-guided molecular modeling, the structures suggest a conserved receptor:chemokine complex architecture, while highlighting the diverse details and functional roles of individual interaction epitopes. Novel findings promote the development and detailed structural interpretation of the canonical two-site hypothesis of receptor:chemokine recognition, and suggest new avenues for pharmacological modulation of chemokine receptors. Copyright © 2016 Elsevier Ltd. All rights reserved.
Zhaoping, Li
2016-10-01
Recent data have supported the hypothesis that, in primates, the primary visual cortex (V1) creates a saliency map from visual input. The exogenous guidance of attention is then realized by means of monosynaptic projections to the superior colliculus, which can select the most salient location as the target of a gaze shift. V1 is less prominent, or is even absent in lower vertebrates such as fish; whereas the superior colliculus, called optic tectum in lower vertebrates, also receives retinal input. I review the literature and propose that the saliency map has migrated from the tectum to V1 over evolution. In addition, attentional benefits manifested as cueing effects in humans should also be present in lower vertebrates. Copyright © 2016 Elsevier Ltd. All rights reserved.
Microstructure design for fast oxygen conduction
Aidhy, Dilpuneet S.; Weber, William J.
2015-11-11
Research from the last decade has shown that in designing fast oxygen conducting materials for electrochemical applications has largely shifted to microstructural features, in contrast to material-bulk. In particular, understanding oxygen energetics in heterointerface materials is currently at the forefront, where interfacial tensile strain is being considered as the key parameter in lowering oxygen migration barriers. Nanocrystalline materials with high densities of grain boundaries have also gathered interest that could possibly allow leverage over excess volume at grain boundaries, providing fast oxygen diffusion channels similar to those previously observed in metals. In addition, near-interface phase transformations and misfit dislocations aremore » other microstructural phenomenon/features that are being explored to provide faster diffusion. In this review, the current understanding on oxygen energetics, i.e., thermodynamics and kinetics, originating from these microstructural features is discussed. Moreover, our experimental observations, theoretical predictions and novel atomistic mechanisms relevant to oxygen transport are highlighted. In addition, the interaction of dopants with oxygen vacancies in the presence of these new microstructural features, and their future role in the design of future fast-ion conductors, is outlined.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, Wenpei; Wu, Jianbo; Yoon, Aram
Atomic motion at grain boundaries is essential to microstructure development, growth and stability of catalysts and other nanostructured materials. However, boundary atomic motion is often too fast to observe in a conventional transmission electron microscope (TEM) and too slow for ultrafast electron microscopy. We report on the entire transformation process of strained Pt icosahedral nanoparticles (ICNPs) into larger FCC crystals, captured at 2.5 ms time resolution using a fast electron camera. Results show slow diffusive dislocation motion at nm/s inside ICNPs and fast surface transformation at μm/s. By characterizing nanoparticle strain, we show that the fast transformation is driven bymore » inhomogeneous surface stress. And interaction with pre-existing defects led to the slowdown of the transformation front inside the nanoparticles. Particle coalescence, assisted by oxygen-induced surface migration at T ≥ 300°C, also played a critical role. Thus by studying transformation in the Pt ICNPs at high time and spatial resolution, we obtain critical insights into the transformation mechanisms in strained Pt nanoparticles.« less
Endicott, Phillip
2013-01-01
The "negrito" hypothesis predicts that a shared phenotype among various contemporary groups of hunter-gatherers in Southeast Asia--dark skin, short stature, tight curly hair--is due to common descent from a region-wide, pre-Neolithic substrate of humanity. The alternative is that their distinctive phenotype results from convergent evolution. The core issues of the negrito hypothesis are today more relevant than ever to studies of human evolution, including the out-of-Africa migration, admixture with Denisovans, and the effects of environment and ecology on life-history traits. Understanding the current distribution of the negrito phenotype dictates a wide-ranging remit for study, including the articulation of the relationship between foragers and farmers in the present, the development of settled agriculture in the mid-Holocene, and terminal Pleistocene population expansions. The consensus reached by the contributors to this special double issue of Human Biology is that there is not yet conclusive evidence either for or against the negrito hypothesis. Nevertheless, the process of revisiting the problem will benefit the knowledge of the human prehistory of Southeast Asia. Whether the term negrito accurately reflects the all-encompassing nature of the resulting inquiry is in itself questionable, but the publication of this double issue is testament to the enduring ability of this hypothesis to unite disparate academic disciplines in a common purpose. Copyright © 2013 Wayne State University Press, Detroit, Michigan 48201-1309.
Abdulhadi, Mike A; Perno, Joseph R; Melhem, Elias R; Nucifora, Paolo G P
2014-01-01
In patients with spinal stenosis, magnetic resonance imaging of the cervical spine can be improved by using 3D driven-equilibrium fast spin echo sequences to provide a high-resolution assessment of osseous and ligamentous structures. However, it is not yet clear whether 3D driven-equilibrium fast spin echo sequences adequately evaluate the spinal cord itself. As a result, they are generally supplemented by additional 2D fast spin echo sequences, adding time to the examination and potential discomfort to the patient. Here we investigate the hypothesis that in patients with spinal stenosis and spondylotic myelopathy, 3D driven-equilibrium fast spin echo sequences can characterize cord lesions equally well as 2D fast spin echo sequences. We performed a retrospective analysis of 30 adult patients with spondylotic myelopathy who had been examined with both 3D driven-equilibrium fast spin echo sequences and 2D fast spin echo sequences at the same scanning session. The two sequences were inspected separately for each patient, and visible cord lesions were manually traced. We found no significant differences between 3D driven-equilibrium fast spin echo and 2D fast spin echo sequences in the mean number, mean area, or mean transverse dimensions of spondylotic cord lesions. Nevertheless, the mean contrast-to-noise ratio of cord lesions was decreased on 3D driven-equilibrium fast spin echo sequences compared to 2D fast spin echo sequences. These findings suggest that 3D driven-equilibrium fast spin echo sequences do not need supplemental 2D fast spin echo sequences for the diagnosis of spondylotic myelopathy, but they may be less well suited for quantitative signal measurements in the spinal cord.
Strain effects on oxygen migration in perovskites.
Mayeshiba, Tam; Morgan, Dane
2015-01-28
Fast oxygen transport materials are necessary for a range of technologies, including efficient and cost-effective solid oxide fuel cells, gas separation membranes, oxygen sensors, chemical looping devices, and memristors. Strain is often proposed as a method to enhance the performance of oxygen transport materials, but the magnitude of its effect and its underlying mechanisms are not well-understood, particularly in the widely-used perovskite-structured oxygen conductors. This work reports on an ab initio prediction of strain effects on migration energetics for nine perovskite systems of the form LaBO3, where B = [Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Ga]. Biaxial strain, as might be easily produced in epitaxial systems, is predicted to lead to approximately linear changes in migration energy. We find that tensile biaxial strain reduces the oxygen vacancy migration barrier across the systems studied by an average of 66 meV per percent strain for a single selected hop, with a low of 36 and a high of 89 meV decrease in migration barrier per percent strain across all systems. The estimated range for the change in migration barrier within each system is ±25 meV per percent strain when considering all hops. These results suggest that strain can significantly impact transport in these materials, e.g., a 2% tensile strain can increase the diffusion coefficient by about three orders of magnitude at 300 K (one order of magnitude at 500 °C or 773 K) for one of the most strain-responsive materials calculated here (LaCrO3). We show that a simple elasticity model, which assumes only dilative or compressive strain in a cubic environment and a fixed migration volume, can qualitatively but not quantitatively model the strain dependence of the migration energy, suggesting that factors not captured by continuum elasticity play a significant role in the strain response.
Baum, Larry; Ng, Maggie C Y; So, Wing-Yee; Poon, Emily; Wang, Ying; Lam, Vincent K L; Tomlinson, Brian; Chan, Juliana C N
2007-01-01
Patients with diabetic nephropathy (DN) have increased plasma fasting triglyceride (TG) levels, and most prospective studies report that elevated TG precedes DN. TG-rich lipoprotein particles might promote progression of DN. To test the hypothesis that elevated TG levels contribute to the development of DN, one may examine whether a polymorphism strongly associated with TG levels affects DN risk. The apolipoprotein A5 (apoA5) -1131T-->C polymorphism has a large effect on the TG level, and all three genotypes are relatively common in East Asians. Therefore, we sought to examine the association of this polymorphism with DN. We genotyped the apoA5 -1131T-->C polymorphism in a case-control study involving 367 Chinese Type 2 diabetes patients with DN and 382 without DN, as well as 198 subjects without diabetes. Mean fasting TG levels were higher in CC than in TT carriers by 41%, 54%, and 62% in each of the three subject groups, respectively. However, the genotype distributions did not differ between patients with and without nephropathy (P=.69). Therefore, these results weigh against the hypothesis that high fasting TG per se causes DN. The strong association between TG level and DN may be due to a factor that is usually closely linked to TG level but that is not affected by the apoA5 polymorphism.
Fast mapping rapidly integrates information into existing memory networks.
Coutanche, Marc N; Thompson-Schill, Sharon L
2014-12-01
Successful learning involves integrating new material into existing memory networks. A learning procedure known as fast mapping (FM), thought to simulate the word-learning environment of children, has recently been linked to distinct neuroanatomical substrates in adults. This idea has suggested the (never-before tested) hypothesis that FM may promote rapid incorporation into cortical memory networks. We test this hypothesis here in 2 experiments. In our 1st experiment, we introduced 50 participants to 16 unfamiliar animals and names through FM or explicit encoding (EE) and tested participants on the training day, and again after sleep. Learning through EE produced strong declarative memories, without immediate lexical competition, as expected from slow-consolidation models. Learning through FM, however, led to almost immediate lexical competition, which continued to the next day. Additionally, the learned words began to prime related concepts on the day following FM (but not EE) training. In a 2nd experiment, we replicated the lexical integration results and determined that presenting an already-known item during learning was crucial for rapid integration through FM. The findings presented here indicate that learned items can be integrated into cortical memory networks at an accelerated rate through fast mapping. The retrieval of a related known concept, in order to infer the target of the FM question, is critical for this effect. PsycINFO Database Record (c) 2014 APA, all rights reserved.
Blurring emotional memories using eye movements: individual differences and speed of eye movements.
van Schie, Kevin; van Veen, Suzanne C; Engelhard, Iris M; Klugkist, Irene; van den Hout, Marcel A
2016-01-01
In eye movement desensitization and reprocessing (EMDR), patients make eye movements (EM) while recalling traumatic memories. Making EM taxes working memory (WM), which leaves less resources available for imagery of the memory. This reduces memory vividness and emotionality during future recalls. WM theory predicts that individuals with small working memory capacities (WMCs) benefit more from low levels of taxing (i.e., slow EM) whereas individuals with large WMC benefit more from high levels of taxing (i.e., fast EM). We experimentally examined and tested four prespecified hypotheses regarding the role of WMC and EM speed in reducing emotionality and vividness ratings: 1) EM-regardless of WMC and EM speed-are more effective compared to no dual task, 2) increasing EM speed only affects the decrease in memory ratings irrespective of WMC, 3) low-WMC individuals-compared to high-WMC individuals-benefit more from making either type of EM, 4) the EM intervention is most effective when-as predicted by WM theory-EM are adjusted to WMC. Undergraduates with low (n=31) or high (n=35) WMC recalled three emotional memories and rated vividness and emotionality before and after each condition (recall only, recall + slow EM, and recall + fast EM). Contrary to the theory, the data do not support the hypothesis that EM speed should be adjusted to WMC (hypothesis 4). However, the data show that a dual task in general is more effective in reducing memory ratings than no dual task (hypothesis 1), and that a more cognitively demanding dual task increases the intervention's effectiveness (hypothesis 2). Although adjusting EM speed to an individual's WMC seems a straightforward clinical implication, the data do not show any indication that such a titration is helpful.
Blurring emotional memories using eye movements: individual differences and speed of eye movements
van Schie, Kevin; van Veen, Suzanne C.; Engelhard, Iris M.; Klugkist, Irene; van den Hout, Marcel A.
2016-01-01
Background In eye movement desensitization and reprocessing (EMDR), patients make eye movements (EM) while recalling traumatic memories. Making EM taxes working memory (WM), which leaves less resources available for imagery of the memory. This reduces memory vividness and emotionality during future recalls. WM theory predicts that individuals with small working memory capacities (WMCs) benefit more from low levels of taxing (i.e., slow EM) whereas individuals with large WMC benefit more from high levels of taxing (i.e., fast EM). Objective We experimentally examined and tested four prespecified hypotheses regarding the role of WMC and EM speed in reducing emotionality and vividness ratings: 1) EM—regardless of WMC and EM speed—are more effective compared to no dual task, 2) increasing EM speed only affects the decrease in memory ratings irrespective of WMC, 3) low-WMC individuals—compared to high-WMC individuals—benefit more from making either type of EM, 4) the EM intervention is most effective when—as predicted by WM theory—EM are adjusted to WMC. Method Undergraduates with low (n=31) or high (n=35) WMC recalled three emotional memories and rated vividness and emotionality before and after each condition (recall only, recall + slow EM, and recall + fast EM). Results Contrary to the theory, the data do not support the hypothesis that EM speed should be adjusted to WMC (hypothesis 4). However, the data show that a dual task in general is more effective in reducing memory ratings than no dual task (hypothesis 1), and that a more cognitively demanding dual task increases the intervention's effectiveness (hypothesis 2). Conclusions Although adjusting EM speed to an individual's WMC seems a straightforward clinical implication, the data do not show any indication that such a titration is helpful. PMID:27387843
Wertheimer, Christian; Eibl-Lindner, Kirsten H; Compera, Denise; Kueres, Alexander; Wolf, Armin; Docheva, Denitsa; Priglinger, Siegfried G; Priglinger, Claudia; Schumann, Ricarda G
2017-11-01
To introduce a human cell culture technique for investigating in-vitro behavior of primary epiretinal cells and membrane contraction of fibrocellular tissue surgically removed from eyes with idiopathic macular pucker. Human epiretinal membranes were harvested from ten eyes with idiopathic macular pucker during standard vitrectomy. Specimens were fixed on cell culture plastic using small entomological pins to apply horizontal stress to the tissue, and then transferred to standard cell culture conditions. Cell behavior of 400 epiretinal cells from 10 epiretinal membranes was observed in time-lapse microscopy and analyzed in terms of cell migration, cell velocity, and membrane contraction. Immunocytochemistry was performed for cell type-specific antigens. Cell specific differences in migration behavior were observed comprising two phenotypes: (PT1) epiretinal cells moving fast, less directly, with small round phenotype and (PT2) epiretinal cells moving slowly, directly, with elongated large phenotype. No mitosis, no outgrowth and no migration onto the plastic were seen. Horizontal contraction measurements showed variation between specimens. Masses of epiretinal cells with a myofibroblast-like phenotype expressed cytoplasmatic α-SMA stress fibers and correlated with cell behavior characteristics (PT2). Fast moving epiretinal cells (PT1) were identified as microglia by immunostaining. This in-vitro technique using traction application allows for culturing surgically removed epiretinal membranes from eyes with idiopathic macular pucker, demonstrating cell behavior and membrane contraction of primary human epiretinal cells. Our findings emphasize the abundance of myofibroblasts, the presence of microglia and specific differences of cell behavior in these membranes. This technique has the potential to improve the understanding of pathologies at the vitreomacular interface and might be helpful in establishing anti-fibrotic treatment strategies.
Torres-Pérez, Maximiliano; Rosillo, Juan Carlos; Berrosteguieta, Ines; Olivera-Bravo, Silvia; Casanova, Gabriela; García-Verdugo, José Manuel; Fernández, Anabel Sonia
2017-10-15
Our previous studies demonstrated that Austrolebias charrua annual fish is an excellent model to study adult brain cell proliferation and neurogenesis due to the presence of active and fast neurogenesis in several regions during its short lifespan. Our main goal was to identify and localize the cells that compose the neurogenic areas throughout the Austrolebias brain. To do this, we used two thymidine halogenated analogs to detect cell proliferation at different survival times: 5-chloro-2'-deoxyuridine (CldU) at 1day and 5-iodo-2'-deoxyuridine (IdU) at 30days. Three types of proliferating cells were identified: I - transient amplifying or fast cycling cells that uptake CldU; II - stem cells or slow cycling cells, that were labeled with both CldU and IdU and did not migrate; and III - migrant cells that uptake IdU. Mapping and 3D-reconstruction of labeled nuclei showed that type I and type II cells were preferentially found close to ventricle walls. Type III cells appeared widespread and migrating in tangential and radial routes. Use of proliferation markers together with Vimentin or Nestin evidenced that type II cells are the putative stem cells that are located at the ventricular lumen. Double label cells with IdU+ and NeuN or HuC/D allowed us identify migrant neurons. Quantitation of labeled nuclei indicates that the proportion of putative stem cells is around 10% in all regions of the brain. This percentage of stem cells suggests the existence of a constant brain cell population in Austrolebias charrua that seems functional to the maintainance of adult neurogenesis. Copyright © 2017 Elsevier B.V. All rights reserved.
Transition zone structure beneath Ethiopia from 3-D fast marching pseudo-migration stacking
NASA Astrophysics Data System (ADS)
Benoit, M. H.; Lopez, A.; Levin, V.
2008-12-01
Several models for the origin of the Afar hotspot have been put forth over the last decade, but much ambiguity remains as to whether the hotspot tectonism found there is due to a shallow or deeply seated feature. Additionally, there has been much debate as to whether the hotspot owes its existence to a 'classic' mantle plume feature or if it is part of the African Superplume complex. To further understand the origin of the hotspot, we employ a new receiver function stacking method that incorporates a fast-marching three- dimensional ray tracing algorithm to improve upon existing studies of the mantle transition zone structure. Using teleseismic data from the Ethiopia Broadband Seismic Experiment and the EAGLE (Ethiopia Afar Grand Lithospheric Experiment) experiment, we stack receiver functions using a three-dimensional pseudo- migration technique to examine topography on the 410 and 660 km discontinuities. Previous methods of receiver function pseudo-migration incorporated ray tracing methods that were not able to ray trace through highly complicated 3-D structure, or the ray tracing techniques only produced 3-D time perturbations associated 1-D rays in a 3-D velocity medium. These previous techniques yielded confusing and incomplete results for when applied to the exceedingly complicated mantle structure beneath Ethiopia. Indeed, comparisons of the 1-D versus 3-D ray tracing techniques show that the 1-D technique mislocated structure laterally in the mantle by over 100 km. Preliminary results using our new technique show a shallower then average 410 km discontinuity and a deeper than average 660 km discontinuity over much of the region, suggested that the hotspot has a deep seated origin.
Modeling of thermo-mechanical and irradiation behavior of mixed oxide fuel for sodium fast reactors
NASA Astrophysics Data System (ADS)
Karahan, Aydın; Buongiorno, Jacopo
2010-01-01
An engineering code to model the irradiation behavior of UO2-PuO2 mixed oxide fuel pins in sodium-cooled fast reactors was developed. The code was named fuel engineering and structural analysis tool (FEAST-OXIDE). FEAST-OXIDE has several modules working in coupled form with an explicit numerical algorithm. These modules describe: (1) fission gas release and swelling, (2) fuel chemistry and restructuring, (3) temperature distribution, (4) fuel-clad chemical interaction and (5) fuel-clad mechanical analysis. Given the fuel pin geometry, composition and irradiation history, FEAST-OXIDE can analyze fuel and cladding thermo-mechanical behavior at both steady-state and design-basis transient scenarios. The code was written in FORTRAN-90 program language. The mechanical analysis module implements the LIFE algorithm. Fission gas release and swelling behavior is described by the OGRES and NEFIG models. However, the original OGRES model has been extended to include the effects of joint oxide gain (JOG) formation on fission gas release and swelling. A detailed fuel chemistry model has been included to describe the cesium radial migration and JOG formation, oxygen and plutonium radial distribution and the axial migration of cesium. The fuel restructuring model includes the effects of as-fabricated porosity migration, irradiation-induced fuel densification, grain growth, hot pressing and fuel cracking and relocation. Finally, a kinetics model is included to predict the clad wastage formation. FEAST-OXIDE predictions have been compared to the available FFTF, EBR-II and JOYO databases, as well as the LIFE-4 code predictions. The agreement was found to be satisfactory for steady-state and slow-ramp over-power accidents.
2013-09-01
entering the circulation, and traveling throughout the body may be a new behavior of epidermal stem cells. We proposed that sunburn following...response to sunburn . We address the following question: Do hair follicle stem cells migrate from the skin following sunburn as a consequence of ultraviolet...light induced inflammation? Our hypothesis is that sunburn makes the hair follicles stem cells leave the skin and enter the blood circulation, and
Water on Mars: Evidence from MER Mission Results
NASA Technical Reports Server (NTRS)
Landis, Geoffrey A.
2004-01-01
The Viking and the Mars Exploration Rover missions observed that the surface of Mars is encrusted by a thinly cemented layer, or "duricrust". Elemental analyzes at five sites on Mars show that these soils have sulfur content and chlorine content consistent with the presence of sulfates and halides as mineral cements. The soil is highly enriched in the salt-forming elements compared with rock. Analysis of the soil cementation indicates some features which may be evidence of liquid water. At both MER sites, duricrust textures revealed by the Microscopic Imager show features including the presence of fine sand-sized grains, some of which may be aggregates of fine silt and clay, surrounded by a pervasive light colored material that is associated with microtubular structures and networks of microfractures. Stereo views of undisturbed duricrust surfaces reveal rugged microrelief between 2-3 mm and minimal loose material. Comparisons of microscopic images of duricrust soils obtain before and after placement of the Mossbauer spectrometer indicate differing degrees of compaction and cementation. Two models of a transient water hypothesis are offered, a "top down" hypothesis that emphasizes the surface deposition of frost, melting and downward migration of liquid water and a "bottom up" alternative that proposes the presence of interstitial ice/brine, with the upward capillary migration of liquid water. The viability of both of these models ultimately hinges on the availability of seasonally transient liquid water for brief periods.
Introgressive hybridization and latitudinal admixture clines in North Atlantic eels
2014-01-01
Background Hybridization, the interbreeding of diagnosably divergent species, is a major focus in evolutionary studies. Eels, both from North America and Europe migrate through the Atlantic to mate in a vast, overlapping area in the Sargasso Sea. Due to the lack of direct observation, it is unknown how these species remain reproductively isolated. The detection of inter-species hybrids in Iceland suggests on-going gene flow, but few studies to date have addressed the influence of introgression on genetic differentiation in North Atlantic eels. Results Here, we show that while mitochondrial lineages remain completely distinct on both sides of the Atlantic, limited hybridization is detectable with nuclear DNA markers. The nuclear hybridization signal peaks in the northern areas and decreases towards the southern range limits on both continents according to Bayesian assignment analyses. By simulating increasing proportions of both F1 hybrids and admixed individuals from the southern to the northern-most locations, we were able to generate highly significant isolation-by-distance patterns in both cases, reminiscent of previously published data for the European eel. Finally, fitting an isolation-with-migration model to our data supports the hypothesis of recent asymmetric introgression and refutes the alternative hypothesis of ancient polymorphism. Conclusions Fluctuating degrees of introgressive hybridization between Atlantic eel species are sufficient to explain temporally varying correlations of geographic and genetic distances reported for populations of the European eel. PMID:24674242
Attributes of seasonal home range influence choice of migratory strategy in white-tailed deer
Henderson, Charles R.; Mitchell, Michael S.; Myers, Woodrow L.; Lukacs, Paul M.; Nelson, Gerald P.
2018-01-01
Partial migration is a common life-history strategy among ungulates living in seasonal environments. The decision to migrate or remain on a seasonal range may be influenced strongly by access to high-quality habitat. We evaluated the influence of access to winter habitat of high quality on the probability of a female white-tailed deer (Odocoileus virginianus) migrating to a separate summer range and the effects of this decision on survival. We hypothesized that deer with home ranges of low quality in winter would have a high probability of migrating, and that survival of an individual in winter would be influenced by the quality of their home range in winter. We radiocollared 67 female white-tailed deer in 2012 and 2013 in eastern Washington, United States. We estimated home range size in winter using a kernel density estimator; we assumed the size of the home range was inversely proportional to its quality and the proportion of crop land within the home range was proportional to its quality. Odds of migrating from winter ranges increased by 3.1 per unit increase in home range size and decreased by 0.29 per unit increase in the proportion of crop land within a home range. Annual survival rate for migrants was 0.85 (SD = 0.05) and 0.84 (SD = 0.09) for residents. Our finding that an individual with a low-quality home range in winter is likely to migrate to a separate summer range accords with the hypothesis that competition for a limited amount of home ranges of high quality should result in residents having home ranges of higher quality than migrants in populations experiencing density dependence. We hypothesize that density-dependent competition for high-quality home ranges in winter may play a leading role in the selection of migration strategy by female white-tailed deer.
Boedtkjer, Ebbe; Bentzon, Jacob F; Dam, Vibeke S; Aalkjaer, Christian
2016-08-01
Arterial remodelling can cause luminal narrowing and obstruct blood flow. We tested the hypothesis that cellular acid-base transport facilitates proliferation and migration of vascular smooth muscle cells (VSMCs) and enhances remodelling of conduit arteries. [Formula: see text]-cotransport via NBCn1 (Slc4a7) mediates net acid extrusion and controls steady-state intracellular pH (pHi) in VSMCs of mouse carotid arteries and primary aortic explants. Carotid arteries undergo hypertrophic inward remodelling in response to partial or complete ligation in vivo, but the increase in media area and thickness and reduction in lumen diameter are attenuated in arteries from NBCn1 knock-out compared with wild-type mice. With [Formula: see text] present, gradients for pHi (∼0.2 units magnitude) exist along the axis of VSMC migration in primary explants from wild-type but not NBCn1 knock-out mice. Knock-out or pharmacological inhibition of NBCn1 also reduces filopodia and lowers initial rates of VSMC migration after scratch-wound infliction. Interventions to reduce H(+)-buffer mobility (omission of [Formula: see text] or inhibition of carbonic anhydrases) re-establish axial pHi gradients, filopodia, and migration rates in explants from NBCn1 knock-out mice. The omission of [Formula: see text] also lowers global pHi and inhibits proliferation in primary explants. Under physiological conditions (i.e. with [Formula: see text] present), NBCn1-mediated [Formula: see text] uptake raises VSMC pHi and promotes filopodia, VSMC migration, and hypertrophic inward remodelling. We propose that axial pHi gradients enhance VSMC migration whereas global acidification inhibits VSMC proliferation and media hypertrophy after carotid artery ligation. These findings support a key role of acid-base transport, particularly via NBCn1, for development of occlusive artery disease. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2016. For permissions please email: journals.permissions@oup.com.
Forced migration in childhood: are there long-term health effects?
Saarela, Jan M; Elo, Irma T
2016-12-01
Studies on the health of migrants have increased considerably in number in recent years, but little is still known about the long-term health effects associated with forced migration, and particularly for people who were forced to migrate as children. Data shortcomings together with the methodological challenges of studying migrant populations limit the ability to disentangle the roles of various factors that influence migrant health outcomes. Finland provides an unusual opportunity to study long-term health consequences associated with forced migration. During World War II, twelve per cent of the Finnish population was forced to leave the region nowadays referred to as Ceded Karelia. After the war, these Karelians could not return home because the area was relinquished to the Soviet Union. Using high quality, linked register-based data for the period 1988-2012, we investigate whether this forced migration had long-term health consequences for those who were forced to migrate as children. Comparison groups are non-displaced persons born on the adjacent side of the new border, and people born elsewhere in Finland. Health at ages 43-65 years is measured by receipt of sickness benefit, which is an indicator of short-term illness, and receipt of disability pension, which reflects long-term illness or permanent disability. All-cause and cause-specific mortality is analysed at ages 43-84 years. We find no support for the hypothesis that the traumatic event of being forced to migrate during childhood has long-term negative health consequences. The forced child migrants have lower odds for receipt of sickness benefit, and women also have lower odds for receipt of disability pension. The mortality results are largely driven by patterns specific for eastern-born populations of Finland. A likely reason behind the absence of negative health consequences is that these migrants seem to have integrated well into post-war Finnish society.
Gene-culture coevolution in whales and dolphins.
Whitehead, Hal
2017-07-24
Whales and dolphins (Cetacea) have excellent social learning skills as well as a long and strong mother-calf bond. These features produce stable cultures, and, in some species, sympatric groups with different cultures. There is evidence and speculation that this cultural transmission of behavior has affected gene distributions. Culture seems to have driven killer whales into distinct ecotypes, which may be incipient species or subspecies. There are ecotype-specific signals of selection in functional genes that correspond to cultural foraging behavior and habitat use by the different ecotypes. The five species of whale with matrilineal social systems have remarkably low diversity of mtDNA. Cultural hitchhiking, the transmission of functionally neutral genes in parallel with selective cultural traits, is a plausible hypothesis for this low diversity, especially in sperm whales. In killer whales the ecotype divisions, together with founding bottlenecks, selection, and cultural hitchhiking, likely explain the low mtDNA diversity. Several cetacean species show habitat-specific distributions of mtDNA haplotypes, probably the result of mother-offspring cultural transmission of migration routes or destinations. In bottlenose dolphins, remarkable small-scale differences in haplotype distribution result from maternal cultural transmission of foraging methods, and large-scale redistributions of sperm whale cultural clans in the Pacific have likely changed mitochondrial genetic geography. With the acceleration of genomics new results should come fast, but understanding gene-culture coevolution will be hampered by the measured pace of research on the socio-cultural side of cetacean biology.
Gene–culture coevolution in whales and dolphins
Whitehead, Hal
2017-01-01
Whales and dolphins (Cetacea) have excellent social learning skills as well as a long and strong mother–calf bond. These features produce stable cultures, and, in some species, sympatric groups with different cultures. There is evidence and speculation that this cultural transmission of behavior has affected gene distributions. Culture seems to have driven killer whales into distinct ecotypes, which may be incipient species or subspecies. There are ecotype-specific signals of selection in functional genes that correspond to cultural foraging behavior and habitat use by the different ecotypes. The five species of whale with matrilineal social systems have remarkably low diversity of mtDNA. Cultural hitchhiking, the transmission of functionally neutral genes in parallel with selective cultural traits, is a plausible hypothesis for this low diversity, especially in sperm whales. In killer whales the ecotype divisions, together with founding bottlenecks, selection, and cultural hitchhiking, likely explain the low mtDNA diversity. Several cetacean species show habitat-specific distributions of mtDNA haplotypes, probably the result of mother–offspring cultural transmission of migration routes or destinations. In bottlenose dolphins, remarkable small-scale differences in haplotype distribution result from maternal cultural transmission of foraging methods, and large-scale redistributions of sperm whale cultural clans in the Pacific have likely changed mitochondrial genetic geography. With the acceleration of genomics new results should come fast, but understanding gene–culture coevolution will be hampered by the measured pace of research on the socio-cultural side of cetacean biology. PMID:28739936
Wind selection and drift compensation optimize migratory pathways in a high-flying moth.
Chapman, Jason W; Reynolds, Don R; Mouritsen, Henrik; Hill, Jane K; Riley, Joe R; Sivell, Duncan; Smith, Alan D; Woiwod, Ian P
2008-04-08
Numerous insect species undertake regular seasonal migrations in order to exploit temporary breeding habitats [1]. These migrations are often achieved by high-altitude windborne movement at night [2-6], facilitating rapid long-distance transport, but seemingly at the cost of frequent displacement in highly disadvantageous directions (the so-called "pied piper" phenomenon [7]). This has lead to uncertainty about the mechanisms migrant insects use to control their migratory directions [8, 9]. Here we show that, far from being at the mercy of the wind, nocturnal moths have unexpectedly complex behavioral mechanisms that guide their migratory flight paths in seasonally-favorable directions. Using entomological radar, we demonstrate that free-flying individuals of the migratory noctuid moth Autographa gamma actively select fast, high-altitude airstreams moving in a direction that is highly beneficial for their autumn migration. They also exhibit common orientation close to the downwind direction, thus maximizing the rectilinear distance traveled. Most unexpectedly, we find that when winds are not closely aligned with the moth's preferred heading (toward the SSW), they compensate for cross-wind drift, thus increasing the probability of reaching their overwintering range. We conclude that nocturnally migrating moths use a compass and an inherited preferred direction to optimize their migratory track.
Vogl, Claus; Das, Aparup; Beaumont, Mark; Mohanty, Sujata; Stephan, Wolfgang
2003-11-01
Population subdivision complicates analysis of molecular variation. Even if neutrality is assumed, three evolutionary forces need to be considered: migration, mutation, and drift. Simplification can be achieved by assuming that the process of migration among and drift within subpopulations is occurring fast compared to mutation and drift in the entire population. This allows a two-step approach in the analysis: (i) analysis of population subdivision and (ii) analysis of molecular variation in the migrant pool. We model population subdivision using an infinite island model, where we allow the migration/drift parameter Theta to vary among populations. Thus, central and peripheral populations can be differentiated. For inference of Theta, we use a coalescence approach, implemented via a Markov chain Monte Carlo (MCMC) integration method that allows estimation of allele frequencies in the migrant pool. The second step of this approach (analysis of molecular variation in the migrant pool) uses the estimated allele frequencies in the migrant pool for the study of molecular variation. We apply this method to a Drosophila ananassae sequence data set. We find little indication of isolation by distance, but large differences in the migration parameter among populations. The population as a whole seems to be expanding. A population from Bogor (Java, Indonesia) shows the highest variation and seems closest to the species center.
MiR-32 promotes gastric carcinoma tumorigenesis by targeting Kruppel-like factor 4
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yan, Chao; Yu, Jianchun, E-mail: yu_jchpumch@163.com; Liu, Yuqin
Gastric cancer (GC) is a prevalent malignant cancer worldwide and is highly lethal because of its fast growth. Currently, the clinical therapy options for GC remain limited. MiR-32 has been reported as an oncogenic microRNA in many cancers, but its role in GC is unclear. Here, we found that miR-32 was overexpressed in GC tissues compared with adjacent normal tissue, and miR-32 was higher in GC patients' plasma compared with healthy individuals. Furthermore, we have identified miR-32 to be oncogenic, by promoting gastric cell proliferation, migration and invasion. We also identified Kruppel-like factor 4 (KLF4) as a direct target ofmore » miR-32. Knockdown of KLF4 promoted proliferation, migration and invasion of GC cells. We conclude that miR-32 promotes GC cell proliferation, migration and invasion by targeting KLF4, suggesting that the miR-32-KLF4 pathway may be useful in clinical diagnosis and therapeutics. - Highlights: • miR-32 was overexpression in GC tissues than adjacent normal tissue. • miR-32 was higher in GC patients' plasma compared with healthy people. • miR-32 promotes GC cell proliferation, migration and invasion by targeting KLF4.« less
NASA Astrophysics Data System (ADS)
Xiang, Yuren; Zhang, Fan; He, Junjie; Lian, Jiarong; Zeng, Pengju; Song, Jun; Qu, Junle
2018-04-01
The photo-conversion efficiency of perovskite solar cells (PSCs) has been improved considerably in recent years, but the poor stability of PSCs still prevents their commercialization. In this report, we use the rate of the integrated short-circuit current change (Drate) to investigate the performance degradation kinetics and identify the degradation of PSCs that is accelerated by the light current. The value of Drate increases by an order of magnitude from about 0.02 to 0.35 mA cm-2·min-1 after light-IV testing. The accelerated degradation progress is proven to be dominated by the hydration process and the migration of the iodine ions of the light current. The migration of the iodine ions enhances the hydration process through a chain reaction, enabling the formation of fast diffusion channels for both H2O and O2, which induce the rapid decomposition of the perovskite film and increase the density of the trap state. The X-ray photoelectron spectroscopy measurement data also indicate that the super oxygen may be formed due to the PCBM damage caused by the migration iodine ions. An understanding of the degradation acceleration mechanism would provide an insight into the effect of ion migration on the stability of PSCs.
Inherent interfacial mechanical gradients in 3D hydrogels influence tumor cell behaviors.
Rao, Shreyas S; Bentil, Sarah; DeJesus, Jessica; Larison, John; Hissong, Alex; Dupaix, Rebecca; Sarkar, Atom; Winter, Jessica O
2012-01-01
Cells sense and respond to the rigidity of their microenvironment by altering their morphology and migration behavior. To examine this response, hydrogels with a range of moduli or mechanical gradients have been developed. Here, we show that edge effects inherent in hydrogels supported on rigid substrates also influence cell behavior. A Matrigel hydrogel was supported on a rigid glass substrate, an interface which computational techniques revealed to yield relative stiffening close to the rigid substrate support. To explore the influence of these gradients in 3D, hydrogels of varying Matrigel content were synthesized and the morphology, spreading, actin organization, and migration of glioblastoma multiforme (GBM) tumor cells were examined at the lowest (<50 µm) and highest (>500 µm) gel positions. GBMs adopted bipolar morphologies, displayed actin stress fiber formation, and evidenced fast, mesenchymal migration close to the substrate, whereas away from the interface, they adopted more rounded or ellipsoid morphologies, displayed poor actin architecture, and evidenced slow migration with some amoeboid characteristics. Mechanical gradients produced via edge effects could be observed with other hydrogels and substrates and permit observation of responses to multiple mechanical environments in a single hydrogel. Thus, hydrogel-support edge effects could be used to explore mechanosensitivity in a single 3D hydrogel system and should be considered in 3D hydrogel cell culture systems.
Ismail, Mahmoud; Philbin, James
2015-04-01
The digital imaging and communications in medicine (DICOM) information model combines pixel data and its metadata in a single object. There are user scenarios that only need metadata manipulation, such as deidentification and study migration. Most picture archiving and communication system use a database to store and update the metadata rather than updating the raw DICOM files themselves. The multiseries DICOM (MSD) format separates metadata from pixel data and eliminates duplicate attributes. This work promotes storing DICOM studies in MSD format to reduce the metadata processing time. A set of experiments are performed that update the metadata of a set of DICOM studies for deidentification and migration. The studies are stored in both the traditional single frame DICOM (SFD) format and the MSD format. The results show that it is faster to update studies' metadata in MSD format than in SFD format because the bulk data is separated in MSD and is not retrieved from the storage system. In addition, it is space efficient to store the deidentified studies in MSD format as it shares the same bulk data object with the original study. In summary, separation of metadata from pixel data using the MSD format provides fast metadata access and speeds up applications that process only the metadata.
Ismail, Mahmoud; Philbin, James
2015-01-01
Abstract. The digital imaging and communications in medicine (DICOM) information model combines pixel data and its metadata in a single object. There are user scenarios that only need metadata manipulation, such as deidentification and study migration. Most picture archiving and communication system use a database to store and update the metadata rather than updating the raw DICOM files themselves. The multiseries DICOM (MSD) format separates metadata from pixel data and eliminates duplicate attributes. This work promotes storing DICOM studies in MSD format to reduce the metadata processing time. A set of experiments are performed that update the metadata of a set of DICOM studies for deidentification and migration. The studies are stored in both the traditional single frame DICOM (SFD) format and the MSD format. The results show that it is faster to update studies’ metadata in MSD format than in SFD format because the bulk data is separated in MSD and is not retrieved from the storage system. In addition, it is space efficient to store the deidentified studies in MSD format as it shares the same bulk data object with the original study. In summary, separation of metadata from pixel data using the MSD format provides fast metadata access and speeds up applications that process only the metadata. PMID:26158117
Initial Progress Rates as Related to Performance in a Personalized System of Instruction
ERIC Educational Resources Information Center
Henneberry, John K.
1976-01-01
Discusses research which explored the hypothesis that students who are fast starters in a personalized system of instruction psychology course would perform better and maintain faster course progress rates than slow starters. Findings indicate that students' starting pace is predictive of course performance and subsequent progress rates.…
Interspeaker Variation in Habitual Speaking Rate: Additional Evidence
ERIC Educational Resources Information Center
Tsao, Ying-Chiao; Weismer, Gary; Iqbal, Kamran
2006-01-01
Purpose: The purpose of the present study was to test the hypothesis that talkers previously classified by Y.-C. Tsao and G. Weismer (1997) as habitually fast versus habitually slow would show differences in the way they manipulated articulation rate across the rate continuum. Method: Thirty talkers previously classified by Tsao and Weismer (1997)…
Time profile of type 3 bursts in decameter and hectometer range
NASA Technical Reports Server (NTRS)
Takakura, T.; Naito, Y.; Ohki, K.
1973-01-01
The following new hypothesis is proposed. The decay time of plasma waves is much shorter than the time scale of type 3 bursts especially at low frequencies. Accordingly, the time variation of radio flux at a given frequency merely corresponds to the flux of fast electrons passing through the corresponding plasma layer.
Short infrared laser pulses increase cell membrane fluidity
NASA Astrophysics Data System (ADS)
Walsh, Alex J.; Cantu, Jody C.; Ibey, Bennett L.; Beier, Hope T.
2017-02-01
Short infrared laser pulses induce a variety of effects in cells and tissues, including neural stimulation and inhibition. However, the mechanism behind these physiological effects is poorly understood. It is known that the fast thermal gradient induced by the infrared light is necessary for these biological effects. Therefore, this study tests the hypothesis that the fast thermal gradient induced in a cell by infrared light exposure causes a change in the membrane fluidity. To test this hypothesis, we used the membrane fluidity dye, di-4-ANEPPDHQ, to investigate membrane fluidity changes following infrared light exposure. Di-4-ANEPPDHQ fluorescence was imaged on a wide-field fluorescence imaging system with dual channel emission detection. The dual channel imaging allowed imaging of emitted fluorescence at wavelengths longer and shorter than 647 nm for ratiometric assessment and computation of a membrane generalized polarization (GP) value. Results in CHO cells show increased membrane fluidity with infrared light pulse exposure and this increased fluidity scales with infrared irradiance. Full recovery of pre-infrared exposure membrane fluidity was observed. Altogether, these results demonstrate that infrared light induces a thermal gradient in cells that changes membrane fluidity.
Nanoparticles migration in fractured rocks and affects on contaminant migration
NASA Astrophysics Data System (ADS)
Missana, Tiziana; Garcia-Gutierrez, Miguel; Alonso, Ursula
2014-05-01
In previous studies, the transport behavior of artificial (gold and latex) and natural (smectite clay) colloids, within a planar fracture in crystalline rock, was analyzed. In order to better understand the effects of colloid size, shape and surface charge on nanoparticle migration and especially on filtration processes on natural rock surfaces, different clay colloids and oxide nanoparticles were selected and their transport studied as a function of the residence time. In all the cases, (a fraction of) the nanoparticles travelled in the fracture as fast as or faster than water (with a retardation factor, Rf ≤ 1) and the observed Rf, was related to the Taylor dispersion coefficient, accounting for colloid size, water velocity and fracture width. However, under most of the cases, in contrast to the behavior of a conservative tracer, colloids recovery was much lower than 100 %. Differences in recovery between different nanoparticles, under similar residence times, were analyzed. In order to evaluate the possible consequences, on contaminant migration, of the presence of nanoparticles in the system, transport tests were carried out with both colloids and sorbing radionuclides. The overall capacity for colloids of enhancing radionuclide migration in crystalline rock fractures is discussed. Acknowledgments: The research leading to these results received funding from EU FP7/2007-2011 grant agreement Nº 295487 (BELBAR, Bentonite Erosion: effects on the Long term performance of the engineered Barrier and Radionuclide Transport) and by the Spanish Government under the project NANOBAG (CTM2011-2797).
Super-Earths as Failed Cores in Orbital Migration Traps
NASA Astrophysics Data System (ADS)
Hasegawa, Yasuhiro
2016-11-01
I explore whether close-in super-Earths were formed as rocky bodies that failed to grow fast enough to become the cores of gas giants before the natal protostellar disk dispersed. I model the failed cores’ inward orbital migration in the low-mass or type I regime to stopping points at distances where the tidal interaction with the protostellar disk applies zero net torque. The three kinds of migration traps considered are those due to the dead zone's outer edge, the ice line, and the transition from accretion to starlight as the disk's main heat source. As the disk disperses, the traps move toward final positions near or just outside 1 au. Planets at this location exceeding about 3 M ⊕ open a gap, decouple from their host traps, and migrate inward in the high-mass or type II regime to reach the vicinity of the star. I synthesize the population of planets that formed in this scenario, finding that a fraction of the observed super-Earths could have been failed cores. Most super-Earths that formed this way have more than 4 M ⊕, so their orbits when the disks dispersed were governed by type II migration. These planets have solid cores surrounded by gaseous envelopes. Their subsequent photoevaporative mass loss is most effective for masses originally below about 6 M ⊕. The failed core scenario suggests a division of the observed super-Earth mass-radius diagram into five zones according to the inferred formation history.
Intracellular pH gradients in migrating cells.
Martin, Christine; Pedersen, Stine F; Schwab, Albrecht; Stock, Christian
2011-03-01
Cell polarization along the axis of movement is required for migration. The localization of proteins and regulators of the migratory machinery to either the cell front or its rear results in a spatial asymmetry enabling cells to simultaneously coordinate cell protrusion and retraction. Protons might function as such unevenly distributed regulators as they modulate the interaction of focal adhesion proteins and components of the cytoskeleton in vitro. However, an intracellular pH (pH(i)) gradient reflecting a spatial asymmetry of protons has not been shown so far. One major regulator of pH(i), the Na(+)/H(+) exchanger NHE1, is essential for cell migration and accumulates at the cell front. Here, we test the hypothesis that the uneven distribution of NHE1 activity creates a pH(i) gradient in migrating cells. Using the pH-sensitive fluorescent dye BCECF, pH(i) was measured in five cell lines (MV3, B16V, NIH3T3, MDCK-F1, EA.hy926) along the axis of movement. Differences in pH(i) between the front and the rear end (ΔpH(i) front-rear) were present in all cell lines, and inhibition of NHE1 either with HOE642 or by absence of extracellular Na(+) caused the pH(i) gradient to flatten or disappear. In conclusion, pH(i) gradients established by NHE1 activity exist along the axis of movement.
Isotope signatures in winter moulted feathers predict malaria prevalence in a breeding avian host.
Yohannes, Elizabeth; Hansson, Bengt; Lee, Raymond W; Waldenström, Jonas; Westerdahl, Helena; Akesson, Mikael; Hasselquist, Dennis; Bensch, Staffan
2008-11-01
It is widely accepted that animal distribution and migration strategy might have co-evolved in relation to selection pressures exerted by parasites. Here, we first determined the prevalence and types of malaria blood parasites in a breeding population of great reed warblers Acrocephalus arundinaceus using PCR. Secondly, we tested for differences in individual feather stable isotope signatures (delta (13)C, delta (15)N, deltaD and delta (34)S) to investigate whether malaria infected and non-infected birds had occupied different areas in winter. We show that birds moulting in Afro-tropical habitats with significantly higher delta (13)C and delta (15)N but lower deltaD and delta(34)S values were more frequently infected with malaria parasites. Based on established patterns of isotopic distributions, our results indicate that moulting sites with higher incidence of malaria are generally drier and situated further to the north in West Africa than sites with lower incidence of malaria. Our findings are pertinent to the general hypothesis that animal distribution and particularly avian migration strategy might evolve in response to selection pressures exerted by parasites at different geographic scales. Tradeoffs between investment in energy demanding life history traits (e.g. migration and winter moult) and immune function are suggested to contribute to the particular choice of habitat during migration and at wintering sites.
Influence of weather conditions on the flight of migrating black storks
Chevallier, D.; Handrich, Y.; Georges, J.-Y.; Baillon, F.; Brossault, P.; Aurouet, A.; Le Maho, Y.; Massemin, S.
2010-01-01
This study tested the potential influence of meteorological parameters (temperature, humidity, wind direction, thermal convection) on different migration characteristics (namely flight speed, altitude and direction and daily distance) in 16 black storks (Ciconia nigra). The birds were tracked by satellite during their entire autumnal and spring migration, from 1998 to 2006. Our data reveal that during their 27-day-long migration between Europe and Africa (mean distance of 4100 km), the periods of maximum flight activity corresponded to periods of maximum thermal energy, underlining the importance of atmospheric thermal convection in the migratory flight of the black stork. In some cases, tailwind was recorded at the same altitude and position as the birds, and was associated with a significant rise in flight speed, but wind often produced a side azimuth along the birds' migratory route. Whatever the season, the distance travelled daily was on average shorter in Europe than in Africa, with values of 200 and 270 km d−1, respectively. The fastest instantaneous flight speeds of up to 112 km h−1 were also observed above Africa. This observation confirms the hypothesis of thermal-dependant flight behaviour, and also reveals differences in flight costs between Europe and Africa. Furthermore, differences in food availability, a crucial factor for black storks during their flight between Europe and Africa, may also contribute to the above-mentioned shift in daily flight speeds. PMID:20427337
NASA Astrophysics Data System (ADS)
Burwicz, Ewa; Zander, Timo; Rottke, Wolf; Bialas, Joerg; Hensen, Christian; Atgin, Orhan; Haeckel, Matthias
2017-04-01
Gas hydrate deposits are abundant in the Black Sea region and confirmed by direct observations as well as geophysical evidence, such as continuous bottom simulating reflectors (BSRs). Although those gas hydrate accumulations have been well-studied for almost two decades, the migration pathways of methane that charge the gas hydrate stability zone (GHSZ) in the region are unknown. The aim of this study is to explore the most probable gas migration scenarios within a three-dimensional finite element grid based on seismic surveys and available basin cross-sections. We have used the commercial software PetroMod(TM) (Schlumberger) to perform a set of sensitivity studies that narrow the gap between the wide range of sediment properties affecting the multi-phase flow in porous media. The high-resolution model domain focuses on the Danube deep-sea fan and associated buried sandy channel-levee systems whereas the total extension of the model domain covers a larger area of the western Black Sea basin. Such a large model domain allows for investigating biogenic as well as thermogenic methane generation and a permeability driven migration of the free phase of methane on a basin scale to confirm the hypothesis of efficient methane migration into the gas hydrate reservoir layers by horizontal flow along the carrier beds.
Wu, Jui-Chung; Chen, Yu-Chen; Kuo, Chih-Ting; Wenshin Yu, Helen; Chen, Yin-Quan; Chiou, Arthur; Kuo, Jean-Cheng
2015-01-01
Directed cell migration requires dynamical control of the protein complex within focal adhesions (FAs) and this control is regulated by signaling events involving tyrosine phosphorylation. We screened the SH2 domains present in tyrosine-specific kinases and phosphatases found within FAs, including SRC, SHP1 and SHP2, and examined whether these enzymes transiently target FAs via their SH2 domains. We found that the SRC_SH2 domain and the SHP2_N-SH2 domain are associated with FAs, but only the SRC_SH2 domain is able to be regulated by focal adhesion kinase (FAK). The FAK-dependent association of the SRC_SH2 domain is necessary and sufficient for SRC FA targeting. When the targeting of SRC into FAs is inhibited, there is significant suppression of SRC-mediated phosphorylation of paxillin and FAK; this results in an inhibition of FA formation and maturation and a reduction in cell migration. This study reveals an association between FAs and the SRC_SH2 domain as well as between FAs and the SHP2_N-SH2 domains. This supports the hypothesis that the FAK-regulated SRC_SH2 domain plays an important role in directing SRC into FAs and that this SRC-mediated FA signaling drives cell migration. PMID:26681405
Wu, Jui-Chung; Chen, Yu-Chen; Kuo, Chih-Ting; Wenshin Yu, Helen; Chen, Yin-Quan; Chiou, Arthur; Kuo, Jean-Cheng
2015-12-18
Directed cell migration requires dynamical control of the protein complex within focal adhesions (FAs) and this control is regulated by signaling events involving tyrosine phosphorylation. We screened the SH2 domains present in tyrosine-specific kinases and phosphatases found within FAs, including SRC, SHP1 and SHP2, and examined whether these enzymes transiently target FAs via their SH2 domains. We found that the SRC_SH2 domain and the SHP2_N-SH2 domain are associated with FAs, but only the SRC_SH2 domain is able to be regulated by focal adhesion kinase (FAK). The FAK-dependent association of the SRC_SH2 domain is necessary and sufficient for SRC FA targeting. When the targeting of SRC into FAs is inhibited, there is significant suppression of SRC-mediated phosphorylation of paxillin and FAK; this results in an inhibition of FA formation and maturation and a reduction in cell migration. This study reveals an association between FAs and the SRC_SH2 domain as well as between FAs and the SHP2_N-SH2 domains. This supports the hypothesis that the FAK-regulated SRC_SH2 domain plays an important role in directing SRC into FAs and that this SRC-mediated FA signaling drives cell migration.
Wagh, Ajay A.; Roan, Esra; Chapman, Kenneth E.; Desai, Leena P.; Rendon, David A.; Eckstein, Eugene C.; Waters, Christopher M.
2008-01-01
Restoration of lung homeostasis following injury requires efficient wound healing by the epithelium. The mechanisms of lung epithelial wound healing include cell spreading and migration into the wounded area and later cell proliferation. We hypothesized that mechanical properties of cells vary near the wound edge, and this may provide cues to direct cell migration. To investigate this hypothesis, we measured variations in the stiffness of migrating human bronchial epithelial cells (16HBE cells) ∼2 h after applying a scratch wound. We used atomic force microscopy (AFM) in contact mode to measure the cell stiffness in 1.5-μm square regions at different locations relative to the wound edge. In regions far from the wound edge (>2.75 mm), there was substantial variation in the elastic modulus in specific cellular regions, but the median values measured from multiple fields were consistently lower than 5 kPa. At the wound edge, cell stiffness was significantly lower within the first 5 μm but increased significantly between 10 and 15 μm before decreasing again below the median values away from the wound edge. When cells were infected with an adenovirus expressing a dominant negative form of RhoA, cell stiffness was significantly decreased compared with cells infected with a control adenovirus. In addition, expression of dominant negative RhoA abrogated the peak increase in stiffness near the wound edge. These results suggest that cells near the wound edge undergo localized changes in cellular stiffness that may provide signals for cell spreading and migration. PMID:18487359
Raptor abundance and northern bobwhite survival and habitat use
Turner, J.; Hernandez, F.; Boal, Clint W.; Ballard, Bart M.; Bryant, Fred C.; Wester, D.B.
2014-01-01
Predation risk has a profound influence on prey behavior and habitat use. The Rio Grande Plains ecoregion of Texas, USA, provides a unique opportunity to investigate changes in prey behavior because the ecoregion experiences a high influx of raptors every year during autumn migration. We used an 8-year data set (2000–2008) of radiocollared northern bobwhites (Colinus virginianus) and raptor abundance to test the hypothesis that bobwhites responded to increased raptor abundance via changes in woody-cover use at the home-range scale. Bobwhite survival was negatively correlated with raptor abundance, with red-tailed hawks (Buteo jamaicensis), and northern harriers (Circus cyaneus) accounting for 51% of the variability in bobwhite survival (P < 0.010). However, we documented no change in the amount of woody cover used by bobwhites in their home range between the raptor migration (6.6% ± 0.5%; n = 73 bobwhites) and non-migration periods (7.1% ± 0.4%; n = 105 bobwhites; P = 0.490). In addition, bobwhites that survived the raptor migration period used similar amounts of woody cover within their home range (6.3% ± 0.6%, n = 58 bobwhites) compared with those dying during the migration period (6.8% ± 0.4%, n = 100 bobwhites; P = 0.530). Our data suggest that bobwhites do not alter their use of woody cover at the home-range scale in response to increasing raptor abundance, but this does not preclude increased use of woody cover at the point-of-use scale.
Le, Hoa H.; Carlson, Emily M.; Chua, Jason P.; Belcher, Scott M.
2008-01-01
The impact of endocrine disrupting chemical (EDC) exposure on human health is receiving increasingly focused attention. The prototypical EDC bisphenol A (BPA) is an estrogenic high-production chemical used primarily as a monomer for production of polycarbonate and epoxy resins. It is now well established that there is ubiquitous human exposure to BPA. In the general population exposure to BPA occurs mainly by consumption of contaminated foods and beverages that have contacted epoxy resins or polycarbonate plastics. To test the hypothesis that bioactive BPA was released from polycarbonate bottles used for consumption of water and other beverages, we evaluated whether BPA migrated into water stored in new or used high-quality polycarbonate bottles used by consumers. Using a sensitive and quantitative competitive enzyme-linked immunosorbent assay, BPA was found to migrate from polycarbonate water bottles at rates ranging from 0.20 to 0.79 ng per hour. At room temperature the migration of BPA was independent of whether or not the bottle had been previously used. Exposure to boiling water (100°C) increased the rate of BPA migration by up to 55-fold. The estrogenic bioactivity of the BPA-like immunoreactivity released into the water samples was confirmed using an in vitro assay of rapid estrogen-signaling and neurotoxicity in developing cerebellar neurons. The amounts of BPA found to migrate from polycarbonate drinking bottles should be considered as a contributing source to the total “EDC-burden” to which some individuals are exposed. PMID:18155859
Gabunia, Khatuna; Jain, Surbhi; England, Ross N.
2011-01-01
Vascular smooth muscle cell (VSMC) migration is an important cellular event in multiple vascular diseases, including atherosclerosis, restenosis, and transplant vasculopathy. Little is known regarding the effects of anti-inflammatory interleukins on VSMC migration. This study tested the hypothesis that an anti-inflammatory Th2 interleukin, interleukin-19 (IL-19), could decrease VSMC motility. IL-19 significantly decreased platelet-derived growth factor (PDGF)-stimulated VSMC chemotaxis in Boyden chambers and migration in scratch wound assays. IL-19 significantly decreased VSMC spreading in response to PDGF. To determine the molecular mechanism(s) for these cellular effects, we examined the effect of IL-19 on activation of proteins that regulate VSMC cytoskeletal dynamics and locomotion. IL-19 decreased PDGF-driven activation of several cytoskeletal regulatory proteins that play an important role in smooth muscle cell motility, including heat shock protein-27 (HSP27), myosin light chain (MLC), and cofilin. IL-19 decreased PDGF activation of the Rac1 and RhoA GTPases, important integrators of migratory signals. IL-19 was unable to inhibit VSMC migration nor was able to inhibit activation of cytoskeletal regulatory proteins in VSMC transduced with a constitutively active Rac1 mutant (RacV14), suggesting that IL-19 inhibits events proximal to Rac1 activation. Together, these data are the first to indicate that IL-19 can have important inhibitory effects on VSMC motility and activation of cytoskeletal regulatory proteins. This has important implications for the use of anti-inflammatory cytokines in the treatment of vascular occlusive disease. PMID:21209363
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Xiaotang; He, Yang; Mao, Scott X.
Germanium (Ge) nanowires coated with an amorphous silicon (Si) shell undergoing lithiation and delithiation were studied using in situ transmission electron microscopy (TEM). Delithiation creates pores in nanowires with diameters larger than ~25 nm, but not in smaller diameter nanowires. The formation of pores in Ge nanowires undergoing delithiation has been observed before in in situ TEM experiments, but there has been no indication that a critical diameter exists below which pores do not form. Pore formation occurs as a result of fast lithium diffusion compared to vacancy migration. We propose that a short diffusion path for vacancies to themore » nanowire surface plays a role in limiting pore formation even when lithium diffusion is fast.« less
Thorstad, E B; Whoriskey, F; Uglem, I; Moore, A; Rikardsen, A H; Finstad, B
2012-07-01
The anadromous life cycle of Atlantic salmon Salmo salar involves long migrations to novel environments and challenging physiological transformations when moving between salt-free and salt-rich waters. In this article, (1) environmental factors affecting the migration behaviour and survival of smolts and post-smolts during the river, estuarine and early marine phases, (2) how behavioural patterns are linked to survival and (3) how anthropogenic factors affect migration and survival are synthesized and reviewed based on published literature. The timing of the smolt migration is important in determining marine survival. The timing varies among rivers, most likely as a consequence of local adaptations, to ensure sea entry during optimal periods. Smolts and post-smolts swim actively and fast during migration, but in areas with strong currents, their own movements may be overridden by current-induced transport. Progression rates during the early marine migration vary between 0.4 and 3.0 body lengths s(-1) relative to the ground. Reported mortality is 0.3-7.0% (median 2.3) km(-1) during downriver migration, 0.6-36% (median 6.0) km(-1) in estuaries and 0.3-3.4% (median 1.4) km(-1) in coastal areas. Estuaries and river mouths are the sites of the highest mortalities, with predation being a common cause. The mortality rates varied more among studies in estuaries than in rivers and marine areas, which probably reflects the huge variation among estuaries in their characteristics. Behaviour and survival during migration may also be affected by pollution, fish farming, sea lice Lepeophtheirus salmonis, hydropower development and other anthropogenic activities that may be directly lethal, delay migration or have indirect effects by inhibiting migration. Total mortality reported during early marine migration (up to 5-230 km from the river mouths) in the studies available to date varies between 8 and 71%. Hence, the early marine migration is a life stage with high mortalities, due to both natural and human influences. Factors affecting mortality during the smolt and post-smolt stages contribute to determine the abundance of spawner returns. With many S. salar populations in decline, increased mortality at these stages may considerably contribute to limit S. salar production, and the consequences of human-induced mortality at this stage may be severe. Development of management actions to increase survival and fitness at the smolt and post-smolt stages is crucial to re-establish or conserve wild populations. © 2012 The Authors. Journal of Fish Biology © 2012 The Fisheries Society of the British Isles.
Gregorevic, Paul; Plant, David R; Stupka, Nicole; Lynch, Gordon S
2004-07-15
Damaged skeletal muscle fibres are replaced with new contractile units via muscle regeneration. Regenerating muscle fibres synthesize functionally distinct isoforms of contractile and regulatory proteins but little is known of their functional properties during the regeneration process. An advantage of utilizing single muscle fibre preparations is that assessment of their function is based on the overall characteristics of the contractile apparatus and regulatory system and as such, these preparations are sensitive in revealing not only coarse, but also subtle functional differences between muscle fibres. We examined the Ca(2+)- and Sr(2+)-activated contractile characteristics of permeabilized fibres from rat fast-twitch (extensor digitorum longus) and slow-twitch (soleus) muscles at 7, 14 and 21 days following myotoxic injury, to test the hypothesis that fibres from regenerating fast and slow muscles have different functional characteristics to fibres from uninjured muscles. Regenerating muscle fibres had approximately 10% of the maximal force producing capacity (P(o)) of control (uninjured) fibres, and an altered sensitivity to Ca(2+) and Sr(2+) at 7 days post-injury. Increased force production and a shift in Ca(2+) sensitivity consistent with fibre maturation were observed during regeneration such that P(o) was restored to 36-45% of that in control fibres by 21 days, and sensitivity to Ca(2+) and Sr(2+) was similar to that of control (uninjured) fibres. The findings support the hypothesis that regenerating muscle fibres have different contractile activation characteristics compared with mature fibres, and that they adopt properties of mature fast- or slow-twitch muscle fibres in a progressive manner as the regeneration process is completed.
Selgrade, Brian P; Toney, Megan E; Chang, Young-Hui
2017-02-28
Locomotor adaptation is commonly studied using split-belt treadmill walking, in which each foot is placed on a belt moving at a different speed. As subjects adapt to split-belt walking, they reduce metabolic power, but the biomechanical mechanism behind this improved efficiency is unknown. Analyzing mechanical work performed by the legs and joints during split-belt adaptation could reveal this mechanism. Because ankle work in the step-to-step transition is more efficient than hip work, we hypothesized that control subjects would reduce hip work on the fast belt and increase ankle work during the step-to-step transition as they adapted. We further hypothesized that subjects with unilateral, trans-tibial amputation would instead increase propulsive work from their intact leg on the slow belt. Control subjects reduced hip work and shifted more ankle work to the step-to-step transition, supporting our hypothesis. Contrary to our second hypothesis, intact leg work, ankle work and hip work in amputees were unchanged during adaptation. Furthermore, all subjects increased collisional energy loss on the fast belt, but did not increase propulsive work. This was possible because subjects moved further backward during fast leg single support in late adaptation than in early adaptation, compensating by reducing backward movement in slow leg single support. In summary, subjects used two strategies to improve mechanical efficiency in split-belt walking adaptation: a CoM displacement strategy that allows for less forward propulsion on the fast belt; and, an ankle timing strategy that allows efficient ankle work in the step-to-step transition to increase while reducing inefficient hip work. Copyright © 2017 Elsevier Ltd. All rights reserved.
Migration of accreting planets in radiative discs from dynamical torques
NASA Astrophysics Data System (ADS)
Pierens, A.; Raymond, S. N.
2016-11-01
We present the results of hydrodynamical simulations of the orbital evolution of planets undergoing runaway gas accretion in radiative discs. We consider accreting disc models with constant mass flux through the disc, and where radiative cooling balances the effect of viscous heating and stellar irradiation. We assume that 20-30 M⊕ giant planet cores are formed in the region where viscous heating dominates and migrate outward under the action of a strong entropy-related corotation torque. In the case where gas accretion is neglected and for an α viscous stress parameter α = 2 × 10-3, we find evidence for strong dynamical torques in accreting discs with accretion rates {dot{M}}≳ 7× 10^{-8} M_{⊙} yr{}^{-1}. Their main effect is to increase outward migration rates by a factor of ˜2 typically. In the presence of gas accretion, however, runaway outward migration is observed with the planet passing through the zero-torque radius and the transition between the viscous heating and stellar heating dominated regimes. The ability for an accreting planet to enter a fast migration regime is found to depend strongly on the planet growth rate, but can occur for values of the mass flux through the disc of {dot{M}}≳ 5× 10^{-8} M_{⊙} yr{}^{-1}. We find that an episode of runaway outward migration can cause an accreting planet formed in the 5-10 au region to temporarily orbit at star-planet separations as large as ˜60-70 au. However, increase in the amplitude of the Lindblad torque associated with planet growth plus change in the streamline topology near the planet systematically cause the direction of migration to be reversed. Subsequent evolution corresponds to the planet migrating inward rapidly until it becomes massive enough to open a gap in the disc and migrate in the type II regime. Our results indicate that a planet can reach large orbital distances under the combined effect of dynamical torques and gas accretion, but an alternative mechanism is required to explain the presence of massive planets on wide orbits.
A Spiking Working Memory Model Based on Hebbian Short-Term Potentiation.
Fiebig, Florian; Lansner, Anders
2017-01-04
A dominant theory of working memory (WM), referred to as the persistent activity hypothesis, holds that recurrently connected neural networks, presumably located in the prefrontal cortex, encode and maintain WM memory items through sustained elevated activity. Reexamination of experimental data has shown that prefrontal cortex activity in single units during delay periods is much more variable than predicted by such a theory and associated computational models. Alternative models of WM maintenance based on synaptic plasticity, such as short-term nonassociative (non-Hebbian) synaptic facilitation, have been suggested but cannot account for encoding of novel associations. Here we test the hypothesis that a recently identified fast-expressing form of Hebbian synaptic plasticity (associative short-term potentiation) is a possible mechanism for WM encoding and maintenance. Our simulations using a spiking neural network model of cortex reproduce a range of cognitive memory effects in the classical multi-item WM task of encoding and immediate free recall of word lists. Memory reactivation in the model occurs in discrete oscillatory bursts rather than as sustained activity. We relate dynamic network activity as well as key synaptic characteristics to electrophysiological measurements. Our findings support the hypothesis that fast Hebbian short-term potentiation is a key WM mechanism. Working memory (WM) is a key component of cognition. Hypotheses about the neural mechanism behind WM are currently under revision. Reflecting recent findings of fast Hebbian synaptic plasticity in cortex, we test whether a cortical spiking neural network model with such a mechanism can learn a multi-item WM task (word list learning). We show that our model can reproduce human cognitive phenomena and achieve comparable memory performance in both free and cued recall while being simultaneously compatible with experimental data on structure, connectivity, and neurophysiology of the underlying cortical tissue. These findings are directly relevant to the ongoing paradigm shift in the WM field. Copyright © 2017 Fiebig and Lansner.
A Spiking Working Memory Model Based on Hebbian Short-Term Potentiation
Fiebig, Florian
2017-01-01
A dominant theory of working memory (WM), referred to as the persistent activity hypothesis, holds that recurrently connected neural networks, presumably located in the prefrontal cortex, encode and maintain WM memory items through sustained elevated activity. Reexamination of experimental data has shown that prefrontal cortex activity in single units during delay periods is much more variable than predicted by such a theory and associated computational models. Alternative models of WM maintenance based on synaptic plasticity, such as short-term nonassociative (non-Hebbian) synaptic facilitation, have been suggested but cannot account for encoding of novel associations. Here we test the hypothesis that a recently identified fast-expressing form of Hebbian synaptic plasticity (associative short-term potentiation) is a possible mechanism for WM encoding and maintenance. Our simulations using a spiking neural network model of cortex reproduce a range of cognitive memory effects in the classical multi-item WM task of encoding and immediate free recall of word lists. Memory reactivation in the model occurs in discrete oscillatory bursts rather than as sustained activity. We relate dynamic network activity as well as key synaptic characteristics to electrophysiological measurements. Our findings support the hypothesis that fast Hebbian short-term potentiation is a key WM mechanism. SIGNIFICANCE STATEMENT Working memory (WM) is a key component of cognition. Hypotheses about the neural mechanism behind WM are currently under revision. Reflecting recent findings of fast Hebbian synaptic plasticity in cortex, we test whether a cortical spiking neural network model with such a mechanism can learn a multi-item WM task (word list learning). We show that our model can reproduce human cognitive phenomena and achieve comparable memory performance in both free and cued recall while being simultaneously compatible with experimental data on structure, connectivity, and neurophysiology of the underlying cortical tissue. These findings are directly relevant to the ongoing paradigm shift in the WM field. PMID:28053032
Elhaik, Eran
2013-01-01
The question of Jewish ancestry has been the subject of controversy for over two centuries and has yet to be resolved. The "Rhineland hypothesis" depicts Eastern European Jews as a "population isolate" that emerged from a small group of German Jews who migrated eastward and expanded rapidly. Alternatively, the "Khazarian hypothesis" suggests that Eastern European Jews descended from the Khazars, an amalgam of Turkic clans that settled the Caucasus in the early centuries CE and converted to Judaism in the 8th century. Mesopotamian and Greco-Roman Jews continuously reinforced the Judaized empire until the 13th century. Following the collapse of their empire, the Judeo-Khazars fled to Eastern Europe. The rise of European Jewry is therefore explained by the contribution of the Judeo-Khazars. Thus far, however, the Khazars' contribution has been estimated only empirically, as the absence of genome-wide data from Caucasus populations precluded testing the Khazarian hypothesis. Recent sequencing of modern Caucasus populations prompted us to revisit the Khazarian hypothesis and compare it with the Rhineland hypothesis. We applied a wide range of population genetic analyses to compare these two hypotheses. Our findings support the Khazarian hypothesis and portray the European Jewish genome as a mosaic of Near Eastern-Caucasus, European, and Semitic ancestries, thereby consolidating previous contradictory reports of Jewish ancestry. We further describe a major difference among Caucasus populations explained by the early presence of Judeans in the Southern and Central Caucasus. Our results have important implications for the demographic forces that shaped the genetic diversity in the Caucasus and for medical studies.
A Psychological Exploration of Engagement in Geek Culture
McCain, Jessica; Gentile, Brittany; Campbell, W. Keith
2015-01-01
Geek culture is a subculture of enthusiasts that is traditionally associated with obscure media (Japanese animation, science fiction, video games, etc.). However, geek culture is becoming increasingly mainstream; for example, in the past year alone, Dragon*Con, a major Geek convention in Atlanta, Georgia, attracted an attendance of over 57,000 members. The present article uses an individual differences approach to examine three theoretical accounts of geek culture. Seven studies (N = 2354) develop the Geek Culture Engagement Scale (GCES) to quantify geek engagement and assess its relationships to theoretically relevant personality and individual differences variables. These studies present evidence that individuals may engage in geek culture in order to maintain narcissistic self-views (the great fantasy migration hypothesis), to fulfill belongingness needs (the belongingness hypothesis), and to satisfy needs for creative expression (the need for engagement hypothesis). Geek engagement is found to be associated with elevated grandiose narcissism, extraversion, openness to experience, depression, and subjective well-being across multiple samples. These data lay the groundwork for further exploration of geek culture as well as provide a foundation for examining other forms of subculture participation. PMID:26580564
A Psychological Exploration of Engagement in Geek Culture.
McCain, Jessica; Gentile, Brittany; Campbell, W Keith
2015-01-01
Geek culture is a subculture of enthusiasts that is traditionally associated with obscure media (Japanese animation, science fiction, video games, etc.). However, geek culture is becoming increasingly mainstream; for example, in the past year alone, Dragon*Con, a major Geek convention in Atlanta, Georgia, attracted an attendance of over 57,000 members. The present article uses an individual differences approach to examine three theoretical accounts of geek culture. Seven studies (N = 2354) develop the Geek Culture Engagement Scale (GCES) to quantify geek engagement and assess its relationships to theoretically relevant personality and individual differences variables. These studies present evidence that individuals may engage in geek culture in order to maintain narcissistic self-views (the great fantasy migration hypothesis), to fulfill belongingness needs (the belongingness hypothesis), and to satisfy needs for creative expression (the need for engagement hypothesis). Geek engagement is found to be associated with elevated grandiose narcissism, extraversion, openness to experience, depression, and subjective well-being across multiple samples. These data lay the groundwork for further exploration of geek culture as well as provide a foundation for examining other forms of subculture participation.
1975-01-01
Intercellular invasion is the active migration of cells on one type into the interiors of tissues composed of cells of dissimilar cell types. Contact paralysis of locomotion is the cessation of forward extension of the pseudopods of a cell as a result of its collision with another cell. One hypothesis to account for intercellular invasion proposes that a necessary condition for a cell type to be invasive to a given host tissue is that it lack contact paralysis of locomotion during collision with cells of that host tissue. The hypothesis has been tested using rabbit peritoneal neutrophil granulocytes (PMNs) as the invasive cell type and chick embryo fibroblasts as the host tissue. In organ culture, PMNs rapidly invade aggregates of fibroblasts. The behavior of the pseudopods of PMNs during collision with fibroblasts was analyzed for contact paralysis by a study of time-lapse films of cells in mixed monolayer culture. In monolayer culture, PMNs show little sign of paralysis of the pseudopods upon collision with fibroblasts and thus conform in their behavior to that predicted by the hypothesis. PMID:1092702
Optimum Pathways of Fish Spawning Migrations in Rivers
NASA Astrophysics Data System (ADS)
McElroy, B. J.; Jacobson, R. B.; Delonay, A.
2010-12-01
Many fish species migrate large distances upstream in rivers to spawn. These migrations require energetic expenditures that are inversely related to fecundity of spawners. Here we present the theory necessary to quantify relative energetic requirements of upstream migration pathways and then test the hypothesis that least-cost paths are taken by the federally endangered pallid sturgeon (Scaphyrhyncus Albus), a benthic rheophile, in the lower Missouri River, USA. Total work done by a fish through a migratory path is proportional to the size of the fish, the total drag on the fish, and the distance traversed. Normalizing by the work required to remain stationary at the beginning of a path, relative work expenditure at each point of the path is found to be the cube of the ratio of the velocity along the path to the velocity at the start of the path. This is the velocity of the fish relative to the river flow. A least-cost migratory pathway can be determined from the velocity field in a reach as the path that minimizes a fish's relative work expenditure. We combine location data from pallid sturgeon implanted with telemetric tags and pressure-sensitive data storage tags with depth and velocity data collected with an acoustic Doppler profiler. During spring 2010 individual sturgeon were closely followed as they migrated up the Missouri River to spawn. These show that, within a small margin, pallid sturgeon in the lower Missouri River select least-cost paths as they swim upstream (typical velocities near 1.0 - 1.2 m/s). Within the range of collected data, it is also seen that many alternative paths not selected for migration are two orders of magnitude more energetically expensive (typical velocities near 2.0 - 2.5 m/s). In general these sturgeon migrated along the inner banks of bends avoiding high velocities in the thalweg, crossing the channel where the thalweg crosses in the opposite direction in order to proceed up the inner bank of subsequent bends. Overall, these results suggest a management strategy for increasing fecundity and reproductive success could be to manage flows to lower levels during prespawn migrations thereby decreasing expenditure necessary to reach spawning sites.
Lucock, Mark; Veysey, Martin; Beckett, Emma
2018-01-01
Vitamin D is unique in being generated in our skin following ultraviolet radiation (UVR) exposure. Ongoing research into vitamin D must therefore always consider the influence of UVR on vitamin D processes. The close relationship between vitamin D and UVR forms the basis of the “vitamin D–folate hypothesis”, a popular theory for why human skin colour has evolved as an apparent adaption to UVR environments. Vitamin D and folate have disparate sensitivities to UVR; whilst vitamin D may be synthesised following UVR exposure, folate may be degraded. The vitamin D–folate hypothesis proposes that skin pigmentation has evolved as a balancing mechanism, maintaining levels of these vitamins. There are several alternative theories that counter the vitamin D–folate hypothesis. However, there is significant overlap between these theories and the now known actions of vitamin D and folate in the skin. The focus of this review is to present an update on the vitamin D–folate hypothesis by integrating these current theories and discussing new evidence that supports associations between vitamin D and folate genetics, UVR, and skin pigmentation. In light of recent human migrations and seasonality in disease, the need for ongoing research into potential UVR-responsive processes within the body is also discussed. PMID:29710859
Congleton, J.L.; Biga, P.R.; Peterson, B.C.
2003-01-01
During the parr-to-smolt transformation (smoltification) of juvenile salmonids, preadaptive changes in osmoregulatory and ionoregulatory ability are regulated in part by the growth hormone (GH)/insulin-like growth factor-I (IGF-I) axis. If food intake is sufficient, plasma IGF-I increases during smoltification. On the other hand, plasma IGF-I typically decreases in fasting fish and other vertebrate animals. Because food availability is limited for juvenile salmonids undertaking an extended 6- to 12-week spring migration to and through the Snake-Columbia River hydropower system (northwestern USA), IGF-I concentrations might be expected to decrease, potentially compromising seawater tolerance. To address this possibility, yearling chinook salmon Oncorhynchus tshawytscha reared in three Snake River Basin hatcheries were sampled before release and at two downstream dams. Dry masses of migrating fish either did not increase during the migration (in 2000, an average-flow year), or decreased significantly (in 2001, a low-flow year). In both years, plasma IGF-I levels were significantly higher (1.6-fold in 2000, 3.7-fold in 2001) for fish sampled at the last dam on the lower Columbia River than for fish sampled prior to release. Plasma IGF-I concentrations in migrating fish may, nonetheless, have been nutritionally down-regulated to some degree, because plasma IGF-I concentrations in juvenile chinook salmon captured at a Snake River dam and transported to the laboratory increased in fed groups, but decreased in unfed groups. The ability of migrating smolts to maintain relatively elevated IGF-I levels despite restricted food intake and loss of body mass is likely related to smoltification-associated changes in hormonal balance. ?? 2004 Kluwer Academic Publishers.
Carbon-hydrogen activation of cycloalkanes by cyclopentadienylcarbonylrhodium--a lifetime enigma.
Pitts, Amanda L; Wriglesworth, Alisdair; Sun, Xue-Zhong; Calladine, James A; Zarić, Snežana D; George, Michael W; Hall, Michael B
2014-06-18
Carbon-hydrogen bond activation reactions of four cycloalkanes (C5H10, C6H12, C7H14, and C8H16) by the Cp'Rh(CO) fragments (Cp' = η(5)-C5H5 (Cp) or η(5)-C5Me5 (Cp*)) were modeled theoretically by combining density functional and coupled cluster theories, and their reaction rates were measured by fast time-resolved infrared spectroscopy. The reaction has two steps, starting with the formation of a σ-complex intermediate, followed by oxidative addition of the C-H bond by the rhodium. A range of σ-complex stabilities among the electronically unique C-H bonds in a cycloalkane were calculated and are related to the individual strengths of the C-H bond's interactions with the Rh fragment and the steric repulsion that is incurred upon forming the specific σ-complex. The unexpectedly large increase in the lifetimes of the σ-complexes from cyclohexane to cycloheptane was predicted to be due to the large range of stabilities of the different σ-complexes found for cycloheptane. The reaction lifetimes were simulated with two mechanisms, with and without migrations among the different σ-complexes, to determine if ring migrations prior to C-H activation were influencing the rate. Both mechanisms predicted similar lifetimes for cyclopentane, cyclohexane, and, to a lesser extent, cycloheptane, suggesting ring migrations do not have a large impact on the rate of C-H activation for these cycloalkanes. For cyclooctane, the inclusion of ring migrations in the reaction mechanism led to a more accurate prediction of the lifetime, indicating that ring migrations did have an effect on the rate of C-H activation for this alkane, and that migration among the σ-complexes is faster than the C-H activation for this larger cycloalkane.
Population Genetic Analysis Infers Migration Pathways of Phytophthora ramorum in US Nurseries
Goss, Erica M.; Larsen, Meg; Chastagner, Gary A.; Givens, Donald R.; Grünwald, Niklaus J.
2009-01-01
Recently introduced, exotic plant pathogens may exhibit low genetic diversity and be limited to clonal reproduction. However, rapidly mutating molecular markers such as microsatellites can reveal genetic variation within these populations and be used to model putative migration patterns. Phytophthora ramorum is the exotic pathogen, discovered in the late 1990s, that is responsible for sudden oak death in California forests and ramorum blight of common ornamentals. The nursery trade has moved this pathogen from source populations on the West Coast to locations across the United States, thus risking introduction to other native forests. We examined the genetic diversity of P. ramorum in United States nurseries by microsatellite genotyping 279 isolates collected from 19 states between 2004 and 2007. Of the three known P. ramorum clonal lineages, the most common and genetically diverse lineage in the sample was NA1. Two eastward migration pathways were revealed in the clustering of NA1 isolates into two groups, one containing isolates from Connecticut, Oregon, and Washington and the other isolates from California and the remaining states. This finding is consistent with trace forward analyses conducted by the US Department of Agriculture's Animal and Plant Health Inspection Service. At the same time, genetic diversities in several states equaled those observed in California, Oregon, and Washington and two-thirds of multilocus genotypes exhibited limited geographic distributions, indicating that mutation was common during or subsequent to migration. Together, these data suggest that migration, rapid mutation, and genetic drift all play a role in structuring the genetic diversity of P. ramorum in US nurseries. This work demonstrates that fast-evolving genetic markers can be used to examine the evolutionary processes acting on recently introduced pathogens and to infer their putative migration patterns, thus showing promise for the application of forensics to plant pathogens. PMID:19774068
Racsa, Lori D; Luu, Hung S; Park, Jason Y; Mitui, Midori; Timmons, Charles F
2014-06-01
Hemoglobin (Hb) Austin was defined in 1977, using amino acid sequencing of samples from 3 unrelated Mexican-Americans, as a substitution of serine for arginine at position 40 of the β-globin chain (Arg40Ser). Its electrophoretic migration on both cellulose acetate (pH 8.4) and citrate agar (pH 6.2) was reported between Hb F and Hb A, and this description persists in reference literature. OBJECTIVES.-To review the clinical features and redefine the diagnostic characteristics of Hb Austin. Eight samples from 6 unrelated individuals and 2 siblings, all with Hispanic surnames, were submitted for abnormal Hb identification between June 2010 and September 2011. High-performance liquid chromatography, isoelectric focusing (IEF), citrate agar electrophoresis, and bidirectional DNA sequencing of the entire β-globin gene were performed. DNA sequencing confirmed all 8 individuals to be heterozygous for Hb Austin (Arg40Ser). Retention time on high-performance liquid chromatography and migration on citrate agar electrophoresis were consistent with that identification. Migration on IEF, however, was not between Hb F and Hb A, as predicted from the report of cellulose acetate electrophoresis. By IEF, Hb Austin migrated anodal to ("faster than") Hb A. Hemoglobin Austin (Arg40Ser) appears on IEF as a "fast," anodally migrating, Hb variant, just as would be expected from its amino acid substitution. The cited historic report is, at best, not applicable to IEF and is probably erroneous. Our observation of 8 cases in 16 months suggests that this variant may be relatively common in some Hispanic populations, making its recognition important. Furthermore, gene sequencing is proving itself a powerful and reliable tool for definitive identification of Hb variants.
The Effect of Rural-to-Urban Migration on Obesity and Diabetes in India: A Cross-Sectional Study
Ebrahim, Shah; Kinra, Sanjay; Bowen, Liza; Andersen, Elizabeth; Ben-Shlomo, Yoav; Lyngdoh, Tanica; Ramakrishnan, Lakshmy; Ahuja, R. C.; Joshi, Prashant; Das, S. Mohan; Mohan, Murali; Davey Smith, George; Prabhakaran, Dorairaj; Reddy, K. Srinath
2010-01-01
Background Migration from rural areas of India contributes to urbanisation and may increase the risk of obesity and diabetes. We tested the hypotheses that rural-to-urban migrants have a higher prevalence of obesity and diabetes than rural nonmigrants, that migrants would have an intermediate prevalence of obesity and diabetes compared with life-long urban and rural dwellers, and that longer time since migration would be associated with a higher prevalence of obesity and of diabetes. Methods and Findings The place of origin of people working in factories in north, central, and south India was identified. Migrants of rural origin, their rural dwelling sibs, and those of urban origin together with their urban dwelling sibs were assessed by interview, examination, and fasting blood samples. Obesity, diabetes, and other cardiovascular risk factors were compared. A total of 6,510 participants (42% women) were recruited. Among urban, migrant, and rural men the age- and factory-adjusted percentages classified as obese (body mass index [BMI] >25 kg/m2) were 41.9% (95% confidence interval [CI] 39.1–44.7), 37.8% (95% CI 35.0–40.6), and 19.0% (95% CI 17.0–21.0), respectively, and as diabetic were 13.5% (95% CI 11.6–15.4), 14.3% (95% CI 12.2–16.4), and 6.2% (95% CI 5.0–7.4), respectively. Findings for women showed similar patterns. Rural men had lower blood pressure, lipids, and fasting blood glucose than urban and migrant men, whereas no differences were seen in women. Among migrant men, but not women, there was weak evidence for a lower prevalence of both diabetes and obesity among more recent (≤10 y) migrants. Conclusions Migration into urban areas is associated with increases in obesity, which drive other risk factor changes. Migrants have adopted modes of life that put them at similar risk to the urban population. Gender differences in some risk factors by place of origin are unexpected and require further exploration. Please see later in the article for the Editors' Summary PMID:20436961
The effect of rural-to-urban migration on obesity and diabetes in India: a cross-sectional study.
Ebrahim, Shah; Kinra, Sanjay; Bowen, Liza; Andersen, Elizabeth; Ben-Shlomo, Yoav; Lyngdoh, Tanica; Ramakrishnan, Lakshmy; Ahuja, R C; Joshi, Prashant; Das, S Mohan; Mohan, Murali; Davey Smith, George; Prabhakaran, Dorairaj; Reddy, K Srinath
2010-04-27
Migration from rural areas of India contributes to urbanisation and may increase the risk of obesity and diabetes. We tested the hypotheses that rural-to-urban migrants have a higher prevalence of obesity and diabetes than rural nonmigrants, that migrants would have an intermediate prevalence of obesity and diabetes compared with life-long urban and rural dwellers, and that longer time since migration would be associated with a higher prevalence of obesity and of diabetes. The place of origin of people working in factories in north, central, and south India was identified. Migrants of rural origin, their rural dwelling sibs, and those of urban origin together with their urban dwelling sibs were assessed by interview, examination, and fasting blood samples. Obesity, diabetes, and other cardiovascular risk factors were compared. A total of 6,510 participants (42% women) were recruited. Among urban, migrant, and rural men the age- and factory-adjusted percentages classified as obese (body mass index [BMI] >25 kg/m(2)) were 41.9% (95% confidence interval [CI] 39.1-44.7), 37.8% (95% CI 35.0-40.6), and 19.0% (95% CI 17.0-21.0), respectively, and as diabetic were 13.5% (95% CI 11.6-15.4), 14.3% (95% CI 12.2-16.4), and 6.2% (95% CI 5.0-7.4), respectively. Findings for women showed similar patterns. Rural men had lower blood pressure, lipids, and fasting blood glucose than urban and migrant men, whereas no differences were seen in women. Among migrant men, but not women, there was weak evidence for a lower prevalence of both diabetes and obesity among more recent (=10 y) migrants. Migration into urban areas is associated with increases in obesity, which drive other risk factor changes. Migrants have adopted modes of life that put them at similar risk to the urban population. Gender differences in some risk factors by place of origin are unexpected and require further exploration. Please see later in the article for the Editors' Summary.
Breves, Jason P.; Phipps-Costin, Silas K.; Fujimoto, Chelsea K.; Einarsdottir, Ingibjörg E.; Regish, Amy M.; Björnsson, Björn Thrandur; McCormick, Stephen
2016-01-01
The growth hormone (Gh)/insulin-like growth-factor (Igf) system plays a central role in the regulation of growth in fishes. However, the roles of Igf binding proteins (Igfbps) in coordinating responses to food availability are unresolved, especially in anadromous fishes preparing for seaward migration. We assayed plasma Gh, Igf1, thyroid hormones and cortisol along with igfbp mRNA levels in fasted and fed Atlantic salmon ( Salmo salar ). Fish were fasted for 3 or 10 days near the peak of smoltification (late April to early May). Fasting reduced plasma glucose by 3 days and condition factor by 10 days. Plasma Gh, cortisol, and thyroxine (T 4 ) were not altered in response to fasting, whereas Igf1 and 3,5,3′-triiodo- l -thyronine (T 3 ) were slightly higher and lower than controls, respectively. Hepatic igfbp1b1 , - 1b2 , - 2a , - 2b1 and - 2b2 mRNA levels were not responsive to fasting, but there were marked increases in igfbp1a1 following 3 and 10 days of fasting. Fasting did not alter hepatic igf1or igf2 ; however, muscle igf1 was diminished by 10 days of fasting. There were no signs that fasting compromised branchial ionoregulatory functions, as indicated by unchanged Na + /K + -ATPase activity and ion pump/transporter mRNA levels. We conclude that dynamic hepatic igfbp1a1 and muscle igf1 expression participate in the modulation of Gh/Igf signaling in smolts undergoing catabolism.
Economic opportunity in Mexico and return migration from the United States.
Lindstrom, D P
1996-08-01
I analyze the influence of the economic characteristics of origin area on trip duration for Mexican migrants in the United States. I argue that migrants from economically dynamic areas in Mexico with favorable opportunities for employment and small capital investment have a larger incentive to stay in the United States longer and to withstand the psychic costs of separation from family and friends than do migrants from economically stagnant areas in Mexico, where the productive uses of savings are severely limited. In line with this argument we should expect investment opportunities in migrants' origin areas to be associated positively with migrants' trip duration in the United States. To test this hypothesis I use individual- and household-level data on U.S. migration experience collected in 13 Mexican communities. Evidence from parametric hazards models supports the idea that economic characteristics of origin areas influence the motivations and strategies of Mexican migrants in the United States.
The El Niño–Southern Oscillation (ENSO)–pandemic Influenza connection: Coincident or causal?
Shaman, Jeffrey; Lipsitch, Marc
2013-01-01
We find that the four most recent human influenza pandemics (1918, 1957, 1968, and 2009), all of which were first identified in boreal spring or summer, were preceded by La Niña conditions in the equatorial Pacific. Changes in the phase of the El Niño–Southern Oscillation have been shown to alter the migration, stopover time, fitness, and interspecies mixing of migratory birds, and consequently, likely affect their mixing with domestic animals. We hypothesize that La Niña conditions bring divergent influenza subtypes together in some parts of the world and favor the reassortment of influenza through simultaneous multiple infection of individual hosts and the generation of novel pandemic strains. We propose approaches to test this hypothesis using influenza population genetics, virus prevalence in various host species, and avian migration patterns. PMID:22308322
Ecological determinants of divorce: a structural approach to the explanation of Japanese divorce.
Fukurai, H; Alston, J P
1992-01-01
This paper examines the ecological determinants of contemporary Japanese divorce rates on the prefectural level. LISREL and computer-generated graphics are the analytic methods used. The aggregate level of analysis demands the use of the ecological model which posits that demographic changes, economic activities, migration patterns, and the level of urbanization are significant predictors of divorce rate. Our analysis demonstrates that sex ratio, female labor force participation, female in-migration patterns, population increase, and net household income all play a significant role in affecting the divorce rate. Our findings also confirm the well-supported hypothesis that both population density and modernization positively influence modern Japan's divorce rates. The residual analysis also points out that in order to account for the large proportion of the unexplained variance of Japanese divorce, behavioral-related variables and island- or prefecture-specific dimensions need to be included in the ecological model of divorce.
Abdelhay, Eliana
2017-01-01
Despite numerous advances in cell biology, genetics, and developmental biology, cancer origin has been attributed to genetic mechanisms primarily involving mutations. Embryologists have expressed timidly cancer embryological origin with little success in leveraging the discussion that cancer could involve a set of conventional cellular processes used to build the embryo during morphogenesis. Thus, this “cancer process” allows the harmonious and coherent construction of the embryo structural base, and its implementation as the embryonic process involves joint regulation of differentiation, proliferation, cell invasion, and migration, enabling the human being recreation of every generation. On the other hand, “cancer disease” is the representation of an abnormal state of the cell that might happen in the stem cells of an adult person, in which the mechanism for joint gene regulating of differentiation, proliferation, cell invasion, and migration could be reactivated in an entirely inappropriate context. PMID:28553657
NASA Astrophysics Data System (ADS)
Zgonnik, Viacheslav; Beaumont, Valérie; Deville, Eric; Larin, Nikolay; Pillot, Daniel; Farrell, Kathleen M.
2015-12-01
A study of soil gases was made in North Carolina (USA) in and around morphological depressions called "Carolina bays." This type of depression is observed over the Atlantic coastal plains of the USA, but their origin remains debated. Significant concentrations of molecular hydrogen (H2) were detected, notably around the bays. These measurements suggest that Carolina bays are the surficial expression of fluid flow pathways for hydrogen gas moving from depth to the surface. The potential mechanisms of H2 production and transport and the geological controls on the fluid migration pathways are discussed, with reference to the hypothesis that Carolina bays are the result of local collapses caused by the alteration of rock along the deep pathways of H2 migrating towards the surface. The present H2 seepages are comparable to those in similar structures previously observed in the East European craton.
Bradford, M J; Lovy, J; Patterson, D A
2010-09-01
Adult sockeye salmon, Oncorhynchus nerka (Walbaum), migrating upstream in the Fraser River, British Columbia, are exposed to the myxozoan parasite Parvicapsula minibicornis when they enter the river from the ocean. Infections are initially localized in the kidney but have recently been associated with branchitis in one population. Adult fish from five locations in the watershed were sampled to determine whether branchitis was widespread. P. minibicornis infections in kidney glomeruli were prevalent in all samples except for a sample of fish that had just entered the Fraser River from the ocean. For fish captured in spawning streams, parasites were observed in the renal tubules and gill, and branchitis was observed in 70% of fish. Plasma osmolality was negatively correlated with the number of parasites in the kidney tubules, which we hypothesize to be caused by the breach of glomerular membranes as the parasite leaves the fish. Plasma lactate values increased with increasing levels of pathology in gills. These findings support the hypothesis that P. minibicornis impacts the physiology of migrating fish, which may in turn affect the likelihood that adults will be able to migrate and spawn successfully.
Ceballos, Miguel; Palloni, Alberto
2010-08-01
A significant body of research on minority health shows that while Hispanic immigrants experience unexpectedly favorable outcomes in maternal and infant health, their advantage deteriorates with increased time of residence in the USA. This is referred to as the 'acculturation paradox.' We assess the 'acculturation paradox' hypothesis that attributes this deterioration in birth and child health outcomes to negative effects of acculturation and behavioral adjustments made by immigrants while living in the USA, and investigate the potential for the existence of a selective return migration. We use a sample of Mexican immigrant women living in two Midwestern communities in the USA to analyze the effects of immigrant duration and acculturation on birth outcomes once controlling for social, behavioral, and environmental determinants of health status. These results are verified by conducting a similar analysis with a nationally representative sample of Mexican immigrants. We find duration of residence to have a significant and nonlinear relationship with birth outcomes and acculturation to not be statistically significant. The effect of mediators is minimal. The analyses of birth outcomes of Mexican immigrant women shows little evidence of an acculturation effect and indirectly suggest the existence of a selective return migration mechanism.
The CXC-Chemokine CXCL4 Interacts with Integrins Implicated in Angiogenesis
Aidoudi, Sallouha; Bujakowska, Kinga; Kieffer, Nelly; Bikfalvi, Andreas
2008-01-01
The human CXC-chemokine CXCL4 is a potent inhibitor of tumor-induced angiogenesis. Considering that CXCL4 is sequestered in platelet α-granules and released following platelet activation in the vicinity of vessel wall injury, we tested the hypothesis that CXCL4 might function as a ligand for integrins. Integrins are a family of adhesion receptors that play a crucial role in angiogenesis by regulating early angiogenic processes, such as endothelial cell adhesion and migration. Here, we show that CXCL4 interacts with αvβ3 on the surface of αvβ3-CHO. More importantly, human umbilical vein endothelial cells adhere to immobilized CXCL4 through αvβ3 integrin, and also through other integrins, such as αvβ5 and α5β1. We further demonstrate that CXCL4-integrin interaction is of functional significance in vitro, since immobilized CXCL4 supported endothelial cell spreading and migration in an integrin-dependent manner. Soluble CXCL4, in turn, inhibits integrin-dependent endothelial cell adhesion and migration. As a whole, our study identifies integrins as novel receptors for CXCL4 that may contribute to its antiangiogenic effect. PMID:18648521
Liquid-like cationic sub-lattice in copper selenide clusters
NASA Astrophysics Data System (ADS)
White, Sarah L.; Banerjee, Progna; Jain, Prashant K.
2017-02-01
Super-ionic solids, which exhibit ion mobilities as high as those in liquids or molten salts, have been employed as solid-state electrolytes in batteries, improved thermoelectrics and fast-ion conductors in super-capacitors and fuel cells. Fast-ion transport in many of these solids is supported by a disordered, `liquid-like' sub-lattice of cations mobile within a rigid anionic sub-lattice, often achieved at high temperatures or pressures via a phase transition. Here we show that ultrasmall clusters of copper selenide exhibit a disordered cationic sub-lattice under ambient conditions unlike larger nanocrystals, where Cu+ ions and vacancies form an ordered super-structure similar to the bulk solid. The clusters exhibit an unusual cationic sub-lattice arrangement wherein octahedral sites, which serve as bridges for cation migration, are stabilized by compressive strain. The room-temperature liquid-like nature of the Cu+ sub-lattice combined with the actively tunable plasmonic properties of the Cu2Se clusters make them suitable as fast electro-optic switches.
A new procedure for fast soft staining of BN-PAGEs on photosynthetic complexes.
Farci, Domenica; Kirkpatrick, Joanna; Piano, Dario
2017-02-01
We report a fast and sensitive procedure for blue native PAGE staining, in which the conventional staining step with CBB is avoided. After running, a short exposure to a mix of polar protic solvents (ethanol and acetic acid) leads to a fast and selective removal of the dye from the migration front and a specific binding to the protein bands, while the rest undergo a selective and complete background removal, leading to an intense contrast. This single-step staining-destaining technique is useful in protein samples that bind colored cofactors such as photosystems, which can be selectively discerned by their characteristic green color. After the staining of such samples, the green color persists, while the other unpigmented protein complexes and the molecular standard remain CBB stained, creating a useful reference system for the assignment of the bands. The advantages and chemical basis of this staining procedure are discussed. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Copeland, Sandi R.; Cawthra, Hayley C.; Fisher, Erich C.; Lee-Thorp, Julia A.; Cowling, Richard M.; le Roux, Petrus J.; Hodgkins, Jamie; Marean, Curtis W.
2016-06-01
Middle Stone Age sites located within the Greater Cape Floristic Region on the South African southern coast have material culture with early evidence for key modern human behaviors such as projectile weaponry, large animal hunting, and symbolic behavior. In order to interpret how and why these changes evolved, it is necessary to understand their ecological context as it has direct relevance to foraging behavior. During periods of lowered sea level, a largely flat and vast expanse of land existed south of the modern coastline, but it is now submerged by higher sea levels. This exposed area, the Paleo-Agulhas Plain, likely created an ecological context unlike anything in the region today, as evidenced by fossil assemblages dominated by migratory ungulates. One hypothesis is that the Paleo-Agulhas Plain supported a migration ecosystem of large grazers driven by summer rainfall, producing palatable forage during summer in the east, and winter rainfall, producing palatable forage during winter in the west. Alternatively, ungulates may have been moving from the coastal plain in the south to the interior north of the Cape Fold Mountains, as observed for elephants in historic times. In this study, we assess ungulate movement patterns with inter- and intra-tooth enamel samples for strontium isotopes in fossil fauna from Pinnacle Point sites PP13B and PP30. To accomplish our goals we created a bioavailable 87Sr/86Sr isoscape for the region by collecting plants at 171 sampling sites and developing a geospatial model. The strontium isotope results indicate that ungulates spent most of their time on the Paleo-Agulhas Plain and avoided dissected plain, foothill, and mountain habitats located more than about 15 km north of the modern coastline. The results clearly exclude a north-south (coastal-interior) movement or migration pattern, and cannot falsify the east-west movements hypothesized in the south coast migration ecosystem hypothesis.
NASA Astrophysics Data System (ADS)
Kominami, Junko; Tanaka, Hidekazu; Ida, Shigeru
2005-11-01
We have performed N-body simulations on the stage of protoplanet formation from planetesimals, taking into account so-called "type-I migration," and damping of orbital eccentricities and inclinations, as a result of tidal interaction with a gas disk without gap formation. One of the most serious problems in formation of terrestrial planets and jovian planet cores is that the migration time scale predicted by the linear theory is shorter than the disk lifetime (10 6-10 7 years). In this paper, we investigate retardation of type-I migration of a protoplanet due to a torque from a planetesimal disk in which a gap is opened up by the protoplanet, and torques from other protoplanets which are formed in inner and outer regions. In the first series of runs, we carried out N-body simulations of the planetesimal disk, which ranges from 0.9 to 1.1 AU, with a protoplanet seed in order to clarify how much retardation can be induced by the planetesimal disk and how long such retardation can last. We simulated six cases with different migration speeds. We found that in all of our simulations, a clear gap is not maintained for more than 10 5 years in the planetesimal disk. For very fast migration, a gap cannot be created in the planetesimal disk. For migration slower than some critical speed, a gap does form. However, because of the growth of the surrounding planetesimals, gravitational perturbation of the planetesimals eventually becomes so strong that the planetesimals diffuse into the vicinity of the protoplanets, resulting in destruction of the gap. After the gap is destroyed, close encounters with the planetesimals rather accelerate the protoplanet migration. In this way, the migration cannot be retarded by the torque from the planetesimal disk, regardless of the migration speed. In the second series of runs, we simulated accretion of planetesimals in wide range of semimajor axis, 0.5 to 2-5 AU, starting with equal mass planetesimals without a protoplanet seed. Since formation of comparable-mass multiple protoplanets ("oligarchic growth") is expected, the interactions with other protoplanets have a potential to alter the migration speed. However, inner protoplanets migrate before outer ones are formed, so that the migration and the accretion process of a runaway protoplanet are not affected by the other protoplanets placed inner and outer regions of its orbit. From the results of these two series of simulations, we conclude that the existence of planetesimals and multiple protoplanets do not affect type-I migration and therefore the migration shall proceed as the linear theory has suggested.
The p14 FAST Protein of Reptilian Reovirus Increases Vesicular Stomatitis Virus Neuropathogenesis▿
Brown, Christopher W.; Stephenson, Kyle B.; Hanson, Stephen; Kucharczyk, Michael; Duncan, Roy; Bell, John C.; Lichty, Brian D.
2009-01-01
The fusogenic orthoreoviruses express nonstructural fusion-associated small transmembrane (FAST) proteins that induce cell-cell fusion and syncytium formation. It has been speculated that the FAST proteins may serve as virulence factors by promoting virus dissemination and increased or altered cytopathology. To directly test this hypothesis, the gene encoding the p14 FAST protein of reptilian reovirus was inserted into the genome of a heterologous virus that does not naturally form syncytia, vesicular stomatitis virus (VSV). Expression of the p14 FAST protein by the VSV/FAST recombinant gave the virus a highly fusogenic phenotype in cell culture. The growth of this recombinant fusogenic VSV strain was unaltered in vitro but was significantly enhanced in vivo. The VSV/FAST recombinant consistently generated higher titers of virus in the brains of BALB/c mice after intranasal or intravenous infection compared to the parental VSV/green fluorescent protein (GFP) strain that expresses GFP in place of p14. The VSV/FAST recombinant also resulted in an increased incidence of hind-limb paralysis, it infected a larger volume of brain tissue, and it induced more extensive neuropathology, thus leading to a lower maximum tolerable dose than that for the VSV/GFP parental virus. In contrast, an interferon-inducing mutant of VSV expressing p14 was still attenuated, indicating that this interferon-inducing phenotype is dominant to the fusogenic properties conveyed by the FAST protein. Based on this evidence, we conclude that the reovirus p14 FAST protein can function as a bona fide virulence factor. PMID:18971262
Spatial pattern analysis of nuclear migration in remodelled muscles during Drosophila metamorphosis.
Kuleesha; Feng, Lin; Wasser, Martin
2017-07-10
Many human muscle wasting diseases are associated with abnormal nuclear localization. During metamorphosis in Drosophila melanogaster, multi-nucleated larval dorsal abdominal muscles either undergo cell death or are remodeled to temporary adult muscles. Muscle remodeling is associated with anti-polar nuclear migration and atrophy during early pupation followed by polar migration and muscle growth during late pupation. Muscle remodeling is a useful model to study genes involved in myonuclear migration. Previously, we showed that loss of Cathepsin-L inhibited anti-polar movements, while knockdown of autophagy-related genes affected nuclear positioning along the medial axis in late metamorphosis. To compare the phenotypic effects of gene perturbations on nuclear migration more objectively, we developed new descriptors of myonuclear distribution. To obtain nuclear pattern features, we designed an algorithm to detect and track nuclear regions inside live muscles. Nuclear tracks were used to distinguish between fast moving nuclei associated with fragments of dead muscles (sarcolytes) and slow-moving nuclei inside remodelled muscles. Nuclear spatial pattern features, such as longitudinal (lonNS) and lateral nuclear spread (latNS), allowed us to compare nuclear migration during muscle remodelling in different genetic backgrounds. Anti-polar migration leads to a lonNS decrease. As expected, lack of myonuclear migration caused by the loss of Cp1 was correlated with a significantly lower lonNS decrease. Unexpectedly, the decrease in lonNS was significantly enhanced by Atg9, Atg5 and Atg18 silencing, indicating that the loss of autophagy promotes the migration and clustering of nuclei. Loss of autophagy also caused a scattering of nuclei along the lateral axis, leading to a two-row as opposed to single row distribution in control muscles. Increased latNS resulting from knockdown of Atg9 and Atg18 was correlated with increased muscle diameter, suggesting that the wider muscle fibre promotes lateral displacement of nuclei from the medial axis during polar migration. We developed new nuclear features to characterize the dynamics of nuclear distribution in time-lapse images of Drosophila metamorphosis. Image quantification improved our understanding of phenotypic abnormalities in nuclear distribution resulting from gene perturbations. Therefore, in vivo imaging and quantitative image analysis of Drosophila metamorphosis promise to provide novel insights into the relationship between muscle wasting and myonuclear positioning.
Deformation-related recrystallization processes
NASA Astrophysics Data System (ADS)
Drury, Martyn R.; Urai, Janos L.
1990-02-01
Recrystallization is a common microstructural transformation that occurs during deformation, metamorphism and diagenesis of rocks. Studies on minerals and rock analogues have demonstrated that a wide range of recrystallization mechanisms can occur. The range of mechanisms is related to the various ways in which two basic processes, grain boundary migration and new grain boundary formation combine to transform the microstructure. Two recent papers (Drury et al., 1985; Urai et al., 1986) have proposed different schemes for the description of recrystallization mechanisms. The purpose of this paper is to provide a unified framework for the description of mechanisms. Recrystallization mechanisms are divided into three main types; rotation mechanisms which principally involve the formation of new grain boundaries; migration mechanisms which principally involve grain boundary migration; and general mechanisms which involve both basic processes. A further distinction is made on the basis of the continuity of the microstructural transformation with respect to time. Each of the three main types of mechanism can be divided into a number of sub-types depending on whether the processes of grain boundary migration, new grain boundary formation and new grain formation occur in a discontinuous or continuous manner with respect to time. As the terms continuous and discontinuous have been used in the metallurgical literature to signify the spatial continuity of the microstructural transformation, the terms discontinuai and continual are used to refer to the temporal continuity of the transformation. It is recommended that the following aspects should be specified, if possible, in a general description of recrystallization mechanisms: (1) How do the basic processes combine to transform the microstructure. (2) If new grain development occurs, what is the development mechanism, and does new grain formation occur in a continual or discontinuai manner. (3) If grain boundary migration is involved in the transformation, what is the migration mechanism (i.e. fast solute escape migration, slow solute loaded migration, fluid assisted migration, etc.), and is migration a continual or discontinuai process. The application of the unified scheme is illustrated by reviewing studies that have provided detailed information on the recrystallization mechanisms involved. The complicating effects of solid solution impurities, dispersed second phase particles and grain boundary fluid films are also considered and it is demonstrated that variations in content of these types of impurity can significantly effect the types of recrystallization that occur in a given material.
Stickleback increase in the Baltic Sea - A thorny issue for coastal predatory fish
NASA Astrophysics Data System (ADS)
Bergström, Ulf; Olsson, Jens; Casini, Michele; Eriksson, Britas Klemens; Fredriksson, Ronny; Wennhage, Håkan; Appelberg, Magnus
2015-09-01
In the Baltic Sea, the mesopredator three-spined stickleback (Gasterosteus aculeatus) spends a large part of its life cycle in the open sea, but reproduces in shallow coastal habitats. In coastal waters, it may occur in high abundances, is a potent predator on eggs and larvae of fish, and has been shown to induce trophic cascades with resulting eutrophication symptoms through regulation of invertebrate grazers. Despite its potential significance for the coastal food web, little is known about its life history and population ecology. This paper provides a description of life history traits, migration patterns and spatiotemporal development of the species in the Baltic Sea during the past decades, and tests the hypothesis that stickleback may have a negative impact on populations of coastal predatory fish. Offshore and coastal data during the last 30 years show that stickleback has increased fourfold in the Bothnian Sea, 45-fold in the Central Baltic Sea and sevenfold in the Southern Baltic Sea. The abundances are similar in the two northern basins, and two orders of magnitude lower in the Southern Baltic Sea. The coastward spawning migration of sticklebacks from offshore areas peaks in early May, with most spawners being two years of age at a mean length of 65 mm. The early juvenile stage is spent at the coast, whereafter sticklebacks perform a seaward feeding migration in early autumn at a size of around 35 mm. A negative spatial relation between the abundance of stickleback and early life stages of perch and pike at coastal spawning areas was observed in spatial survey data, indicating strong interactions between the species. A negative temporal relationship was observed also between adult perch and stickleback in coastal fish monitoring programmes supporting the hypothesis that stickleback may have negative population level effects on coastal fish predators. The recent increase in stickleback populations in different basins of the Baltic Sea in combination with negative spatiotemporal patterns and previously observed interactions between stickleback and coastal predatory fish suggests that this species may have gained a key role in the coastal food webs of the Baltic Sea. Through its migrations, stickleback may also constitute an important vector linking coastal and open sea ecosystem dynamics.
Fishing, fast growth and climate variability increase the risk of collapse
Pinsky, Malin L.; Byler, David
2015-01-01
Species around the world have suffered collapses, and a key question is why some populations are more vulnerable than others. Traditional conservation biology and evidence from terrestrial species suggest that slow-growing populations are most at risk, but interactions between climate variability and harvest dynamics may alter or even reverse this pattern. Here, we test this hypothesis globally. We use boosted regression trees to analyse the influences of harvesting, species traits and climate variability on the risk of collapse (decline below a fixed threshold) across 154 marine fish populations around the world. The most important factor explaining collapses was the magnitude of overfishing, while the duration of overfishing best explained long-term depletion. However, fast growth was the next most important risk factor. Fast-growing populations and those in variable environments were especially sensitive to overfishing, and the risk of collapse was more than tripled for fast-growing when compared with slow-growing species that experienced overfishing. We found little evidence that, in the absence of overfishing, climate variability or fast growth rates alone drove population collapse over the last six decades. Expanding efforts to rapidly adjust harvest pressure to account for climate-driven lows in productivity could help to avoid future collapses, particularly among fast-growing species. PMID:26246548
Fishing, fast growth and climate variability increase the risk of collapse.
Pinsky, Malin L; Byler, David
2015-08-22
Species around the world have suffered collapses, and a key question is why some populations are more vulnerable than others. Traditional conservation biology and evidence from terrestrial species suggest that slow-growing populations are most at risk, but interactions between climate variability and harvest dynamics may alter or even reverse this pattern. Here, we test this hypothesis globally. We use boosted regression trees to analyse the influences of harvesting, species traits and climate variability on the risk of collapse (decline below a fixed threshold) across 154 marine fish populations around the world. The most important factor explaining collapses was the magnitude of overfishing, while the duration of overfishing best explained long-term depletion. However, fast growth was the next most important risk factor. Fast-growing populations and those in variable environments were especially sensitive to overfishing, and the risk of collapse was more than tripled for fast-growing when compared with slow-growing species that experienced overfishing. We found little evidence that, in the absence of overfishing, climate variability or fast growth rates alone drove population collapse over the last six decades. Expanding efforts to rapidly adjust harvest pressure to account for climate-driven lows in productivity could help to avoid future collapses, particularly among fast-growing species. © 2015 The Author(s).
The Fast-Casual Conundrum: Fast-Casual Restaurant Entrées Are Higher in Calories than Fast Food.
Schoffman, Danielle E; Davidson, Charis R; Hales, Sarah B; Crimarco, Anthony E; Dahl, Alicia A; Turner-McGrievy, Gabrielle M
2016-10-01
Frequently eating fast food has been associated with consuming a diet high in calories, and there is a public perception that fast-casual restaurants (eg, Chipotle) are healthier than traditional fast food (eg, McDonald's). However, research has not examined whether fast-food entrées and fast-casual entrées differ in calorie content. The purpose of this study was to determine whether the caloric content of entrées at fast-food restaurants differed from that found at fast-casual restaurants. This study was a cross-sectional analysis of secondary data. Calorie information from 2014 for lunch and dinner entrées for fast-food and fast-casual restaurants was downloaded from the MenuStat database. Mean calories per entrée between fast-food restaurants and fast-casual restaurants and the proportion of restaurant entrées that fell into different calorie ranges were assessed. A t test was conducted to test the hypothesis that there was no difference between the average calories per entrée at fast-food and fast-casual restaurants. To examine the difference in distribution of entrées in different calorie ranges between fast-food and fast-casual restaurants, χ(2) tests were used. There were 34 fast-food and 28 fast-casual restaurants included in the analysis (n=3,193 entrées). Fast-casual entrées had significantly more calories per entrée (760±301 kcal) than fast-food entrées (561±268; P<0.0001). A greater proportion of fast-casual entrées compared with fast-food entrées exceeded the median of 640 kcal per entrée (P<0.0001). Although fast-casual entrées contained more calories than fast-food entrées in the study sample, future studies should compare actual purchasing patterns from these restaurants to determine whether the energy content or nutrient density of full meals (ie, entrées with sides and drinks) differs between fast-casual restaurants and fast-food restaurants. Calorie-conscious consumers should consider the calorie content of entrée items before purchase, regardless of restaurant type. Copyright © 2016 Academy of Nutrition and Dietetics. Published by Elsevier Inc. All rights reserved.
Processing techniques for software based SAR processors
NASA Technical Reports Server (NTRS)
Leung, K.; Wu, C.
1983-01-01
Software SAR processing techniques defined to treat Shuttle Imaging Radar-B (SIR-B) data are reviewed. The algorithms are devised for the data processing procedure selection, SAR correlation function implementation, multiple array processors utilization, cornerturning, variable reference length azimuth processing, and range migration handling. The Interim Digital Processor (IDP) originally implemented for handling Seasat SAR data has been adapted for the SIR-B, and offers a resolution of 100 km using a processing procedure based on the Fast Fourier Transformation fast correlation approach. Peculiarities of the Seasat SAR data processing requirements are reviewed, along with modifications introduced for the SIR-B. An Advanced Digital SAR Processor (ADSP) is under development for use with the SIR-B in the 1986 time frame as an upgrade for the IDP, which will be in service in 1984-5.
Biggers, C J; Bancroft, H R
1977-04-01
The esterases of the cotton boll weevil were separated by polyacrylamide gel electrophoresis into four major regions. These were named Est I-IV in order of migration from anode to origin. Polymorphism was observed in all regions. The Est II region was shown to consist of no more than two bands (fast and slow). The inheritance of the fast and slow bands of Est II was demonstrated to be controlled by codominant autosomal alleles. Analysis of the gene frequency of the Est II region showed that one field population was consistent with the Hardy-Weinberg law (P = 0.995), while a second field population was not at equilibrium (P less than 0.001).
Novel polymeric LIT and divalent cation fast ion conducting materials
NASA Astrophysics Data System (ADS)
Angell, C. A.
Solid state energy devices require a component which conducts electricity by ionic migration. The conductivity of this element of the system must be very high. Four types of materials show the promise to provide the necessary conductivity characteristics, while offering other desirable features such as the ability to distort in shape under mechanical stresses: (1) crystalline; (2) plastic crystal; (3) inorganic glassy; and (4) polymer salt solutions. This document reports on the following materials: lead halide-containing fast ion conducting glasses (LiF-PbF2-Al(PO3)3), mixed ionic electronic conduction (Na2O-V2O5-TeO2), alpha relaxation in ionic glasses, glass transition in P2O2, and conductivity transition between all-halide and all-oxide glasses.
Fast Mg2+ diffusion in Mo3(PO4)3O for Mg batteries.
Rong, Ziqin; Xiao, Penghao; Liu, Miao; Huang, Wenxuan; Hannah, Daniel C; Scullin, William; Persson, Kristin A; Ceder, Gerbrand
2017-07-13
In this work, we identify a new potential Mg battery cathode structure Mo 3 (PO 4 ) 3 O, which is predicted to exhibit ultra-fast Mg 2+ diffusion and relatively high voltage based on first-principles density functional theory calculations. Nudged elastic band calculations reveal that the migration barrier of the percolation channel is only ∼80 meV, which is remarkably low, and comparable to the best Li-ion conductors. This low barrier is verified by ab initio molecular dynamics and kinetic Monte Carlo simulations. The voltage and specific energy are predicted to be ∼1.98 V and ∼173 W h kg -1 , respectively. If confirmed by experiments, this material would have the highest known Mg mobility among inorganic compounds.
Temporal partitioning of adaptive responses of the murine heart to fasting.
Brewer, Rachel A; Collins, Helen E; Berry, Ryan D; Brahma, Manoja K; Tirado, Brian A; Peliciari-Garcia, Rodrigo A; Stanley, Haley L; Wende, Adam R; Taegtmeyer, Heinrich; Rajasekaran, Namakkal Soorappan; Darley-Usmar, Victor; Zhang, Jianhua; Frank, Stuart J; Chatham, John C; Young, Martin E
2018-03-15
Recent studies suggest that the time of day at which food is consumed dramatically influences clinically-relevant cardiometabolic parameters (e.g., adiposity, insulin sensitivity, and cardiac function). Meal feeding benefits may be the result of daily periods of feeding and/or fasting, highlighting the need for improved understanding of the temporal adaptation of cardiometabolic tissues (e.g., heart) to fasting. Such studies may provide mechanistic insight regarding how time-of-day-dependent feeding/fasting cycles influence cardiac function. We hypothesized that fasting during the sleep period elicits beneficial adaptation of the heart at transcriptional, translational, and metabolic levels. To test this hypothesis, temporal adaptation was investigated in wild-type mice fasted for 24-h, or for either the 12-h light/sleep phase or the 12-h dark/awake phase. Fasting maximally induced fatty acid responsive genes (e.g., Pdk4) during the dark/active phase; transcriptional changes were mirrored at translational (e.g., PDK4) and metabolic flux (e.g., glucose/oleate oxidation) levels. Similarly, maximal repression of myocardial p-mTOR and protein synthesis rates occurred during the dark phase; both parameters remained elevated in the heart of fasted mice during the light phase. In contrast, markers of autophagy (e.g., LC3II) exhibited peak responses to fasting during the light phase. Collectively, these data show that responsiveness of the heart to fasting is temporally partitioned. Autophagy peaks during the light/sleep phase, while repression of glucose utilization and protein synthesis is maximized during the dark/active phase. We speculate that sleep phase fasting may benefit cardiac function through augmentation of protein/cellular constituent turnover. Copyright © 2018 Elsevier Inc. All rights reserved.
Azzarà, A; Chimenti, M
2004-01-01
One of the main techniques used to explore neutrophil motility, employs micropore filters in chemotactic chambers. Many new models have been proposed, in order to perform multiple microassays in a rapid, inexpensive and reproducible way. In this work, LEGO bricks have been used as chemotactic chambers in the evaluation of neutrophil random motility and chemotaxis and compared with conventional Boyden chambers in a "time-response" experiment. Neutrophil motility throughout the filters was evaluated by means of an image-processing workstation, in which a dedicated algorithm recognizes and counts the cells in several fields and focal planes throughout the whole filter; correlates counts and depth values; performs a statistical analysis of data; calculates the true value of neutrophil migration; determines the distribution of cells; and displays the migration pattern. By this method, we found that the distances travelled by the cells in conventional chambers and in LEGO bricks were perfectly identical, both in random migration and under chemotactic conditions. Moreover, no interference with the physiological behaviour of neutrophils was detectable. In fact, the kinetics of migration was identical both in random migration (characterized by a gaussian pattern) and in chemotaxis (characterized by a typical stimulation peak, previously identified by our workstation). In conclusion, LEGO bricks are extremely precise devices. They are simple to use and allow the use of small amounts of chemoattractant solution and cell suspension, supplying by itself a triplicate test. LEGO bricks are inexpensive, fast and suitable for current diagnostic activity or for research investigations in every laboratory.
Bucheli-Witschel, Margarete; Kötzsch, Stefan; Darr, Stephan; Widler, Roland; Egli, Thomas
2012-09-01
After having produced drinking water of high quality it is of vital interest to distribute the water without compromising its quality neither by recontamination nor by microbial regrowth. To minimize regrowth, the strategy of distributing biostable water is followed in several European countries. This implies on one hand the production of water that has a low level of growth-supporting nutrients, in particular organic carbon compounds, and, on the other hand, using materials for storage/distribution that have a low biofilm formation potential and from which only low amounts of total organic carbon (TOC) leach into the water phase. Currently, the approval of materials in contact with drinking water relies on two tests, a migration test and a biofilm formation test. Here we describe an extended migration testing procedure that allows to obtain information not only on the amount of chemical compounds but also on the amount of growth-supporting compounds leaching into the water. In short, the test developed combines several migration cycles and subsequent measurement of the TOC with a novel, fast and reliable test method for determining the assimilable organic carbon (AOC) in the migration waters. AOC gives an indication on the growth-supporting properties of the material. Thus, an initial characterisation of a material with respect to its suitability for usage in contact with drinking water can be performed in a single assay. Results obtained with the new assay for a number of materials typically used in drinking water and sanitary installations are reported. Copyright © 2012 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
POLYCARPE, William; Lainey, Valery; Vienne, Alain; Noyelles, Benoît; Saillenfest, Melaine; Rambaux, Nicolas
2018-04-01
Iapetus orbits Saturn with an orbtial eccentricity of 3% and possesses an constant tilt to its local Laplace plane of around 7°, both elements are today poorly explained. The objective of the this work is to investigate if these orbtial characteristics may be explained in the frame of rapid tidal migration in the saturnian system [Lainey et al., 2012, 2017] [Fuller et al. 2016]. We present several sets of numerical simulations of a past 5:1 mean motion resonance crossing between Titan and Iapetus. Iapetus was placed initially on its local Laplace plane with a circular orbit. Simulations show that the outcomes of this resonance are very dependent on the migration speed of Titan, and therefore on the effective quality factor Q of Saturn. Iapetus will generally be ejected of the system due to this resonance when the migration is too slow, typically Q higher than 1500. Lower values allow Iapetus to survive with an eccentricity of a few percent, consistent with today's value. This resonance would also act on the inclination and can bring the tilt up to several degrees, and even reach 7° and more on rare occasions. It seems, in general, that the current value of the eccentricity can be easily explained by this resonance. On the other hand the tilt is more difficult to obtain for fast tidal migration (Q lower than 20), but high values are possible for medium migration rate (typically Q between 200 and 1500).
Bohrer, Gil; Beck, Pieter Sa; Ngene, Shadrack M; Skidmore, Andrew K; Douglas-Hamilton, Ian
2014-01-01
This study investigates the ranging behavior of elephants in relation to precipitation-driven dynamics of vegetation. Movement data were acquired for five bachelors and five female family herds during three years in the Marsabit protected area in Kenya and changes in vegetation were mapped using MODIS normalized difference vegetation index time series (NDVI). In the study area, elevations of 650 to 1100 m.a.s.l experience two growth periods per year, while above 1100 m.a.s.l. growth periods last a year or longer. We find that elephants respond quickly to changes in forage and water availability, making migrations in response to both large and small rainfall events. The elevational migration of individual elephants closely matched the patterns of greening and senescing of vegetation in their home range. Elephants occupied lower elevations when vegetation activity was high, whereas they retreated to the evergreen forest at higher elevations while vegetation senesced. Elephant home ranges decreased in size, and overlapped less with increasing elevation. A recent hypothesis that ungulate migrations in savannas result from countervailing seasonally driven rainfall and fertility gradients is demonstrated, and extended to shorter-distance migrations. In other words, the trade-off between the poor forage quality and accessibility in the forest with its year-round water sources on the one hand and the higher quality forage in the low-elevation scrubland with its seasonal availability of water on the other hand, drives the relatively short migrations (the two main corridors are 20 and 90 km) of the elephants. In addition, increased intra-specific competition appears to influence the animals' habitat use during the dry season indicating that the human encroachment on the forest is affecting the elephant population.
Al-Maqtari, Tareq; Cao, Pengxiao; Keith, Matthew C. L.; Wysoczynski, Marcin; Zhao, John; Moore IV, Joseph B.; Bolli, Roberto
2015-01-01
A recent phase I clinical trial (SCIPIO) has shown that autologous c-kit+ cardiac progenitor cells (CPCs) improve cardiac function and quality of life when transplanted into patients with ischemic heart disease. Although c-kit is widely used as a marker of resident CPCs, its role in the regulation of the cellular characteristics of CPCs remains unknown. We hypothesized that c-kit plays a role in the survival, growth, and migration of CPCs. To test this hypothesis, human CPCs were grown under stress conditions in the presence or absence of SCF, and the effects of SCF-mediated activation of c-kit on CPC survival/growth and migration were measured. SCF treatment led to a significant increase in cell survival and a reduction in cell death under serum depletion conditions. In addition, SCF significantly promoted CPC migration in vitro. Furthermore, the pro-survival and pro-migratory effects of SCF were augmented by c-kit overexpression and abrogated by c-kit inhibition with imatinib. Mechanistically, c-kit activation in CPCs led to activation of the PI3K and the MAPK pathways. With the use of specific inhibitors, we confirmed that the SCF/c-kit-dependent survival and chemotaxis of CPCs are dependent on both pathways. Taken together, our findings suggest that c-kit promotes the survival/growth and migration of human CPCs cultured ex vivo via the activation of PI3K and MAPK pathways. These results imply that the efficiency of CPC homing to the injury site as well as their survival after transplantation may be improved by modulating the activity of c-kit. PMID:26474484
Hippocampal Astrocytes in Migrating and Wintering Semipalmated Sandpiper Calidris pusilla.
Carvalho-Paulo, Dario; de Morais Magalhães, Nara G; de Almeida Miranda, Diego; Diniz, Daniel G; Henrique, Ediely P; Moraes, Isis A M; Pereira, Patrick D C; de Melo, Mauro A D; de Lima, Camila M; de Oliveira, Marcus A; Guerreiro-Diniz, Cristovam; Sherry, David F; Diniz, Cristovam W P
2017-01-01
Seasonal migratory birds return to the same breeding and wintering grounds year after year, and migratory long-distance shorebirds are good examples of this. These tasks require learning and long-term spatial memory abilities that are integrated into a navigational system for repeatedly locating breeding, wintering, and stopover sites. Previous investigations focused on the neurobiological basis of hippocampal plasticity and numerical estimates of hippocampal neurogenesis in birds but only a few studies investigated potential contributions of glial cells to hippocampal-dependent tasks related to migration. Here we hypothesized that the astrocytes of migrating and wintering birds may exhibit significant morphological and numerical differences connected to the long-distance flight. We used as a model the semipalmated sandpiper Calidris pusilla , that migrates from northern Canada and Alaska to South America. Before the transatlantic non-stop long-distance component of their flight, the birds make a stopover at the Bay of Fundy in Canada. To test our hypothesis, we estimated total numbers and compared the three-dimensional (3-D) morphological features of adult C. pusilla astrocytes captured in the Bay of Fundy ( n = 249 cells) with those from birds captured in the coastal region of Bragança, Brazil, during the wintering period ( n = 250 cells). Optical fractionator was used to estimate the number of astrocytes and for 3-D reconstructions we used hierarchical cluster analysis. Both morphological phenotypes showed reduced morphological complexity after the long-distance non-stop flight, but the reduction in complexity was much greater in Type I than in Type II astrocytes. Coherently, we also found a significant reduction in the total number of astrocytes after the transatlantic flight. Taken together these findings suggest that the long-distance non-stop flight altered significantly the astrocytes population and that morphologically distinct astrocytes may play different physiological roles during migration.
An, Shaofeng; Gong, Qimei; Huang, Yihua
2017-01-01
Zinc is an essential trace element for proper cellular function and bone formation. However, its exact role in the osteogenic differentiation of human dental pulp cells (hDPCs) has not been fully clarified before. Here, we speculated that zinc may be effective to regulate their growth and osteogenic differentiation properties. To test this hypothesis, different concentrations (1 × 10 -5 , 4 × 10 -5 , and 8 × 10 -5 M) of zinc ions (Zn 2+ ) were added to the basic growth culture medium and osteogenic inductive medium. Cell viability and migration were measured by cell counting kit-8 (CCK-8) and transwell migration assay in the basic growth culture medium, respectively. The reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was used to detect the gene expression levels of selective osteogenic differentiation markers and zinc transporters. Alkaline phosphatase (ALP) activity analysis and alizarin red S staining were used to investigate the mineralization of hDPCs. Exposure of hDPCs to Zn 2+ stimulated their viability and migration capacity in a dose- and time-dependent manner. RT-qPCR assay revealed elevated expression levels of osteogenic differentiation-related genes and zinc transporters genes in various degrees. ALP activity was also increased with elevated Zn 2+ concentrations and extended culture periods, but enhanced matrix nodules formation were observed only in 4 × 10 -5 and 8 × 10 -5 M Zn 2+ groups. These findings suggest that specific concentrations of Zn 2+ could potentiate the vitality, migration, and osteogenic differentiation of hDPCs. We may combine optimum zinc element into pulp capping materials to improve their biological performance.
Feng, Yancong; Tan, Rui; Zhao, Yan; Gao, Rongtan; Yang, Luyi; Yang, Jinlong; Li, Hao; Zhou, Guofu; Chen, Haibiao; Pan, Feng
2018-03-29
A novel hybrid single Li-ion conductor (SLIC) for a Li-ion solid electrolyte was prepared by mixing aluminate complexes-polyethylene glycol (LiAl-PEG) and polyethylene oxide (PEO) for solid-state Li-ion batteries. The LiAl-PEG/PEO blend possesses high thermal stability and electrochemical stability with an oxidation decomposition voltage up to 4.8 V. Notably, this hybrid SLIC exhibits not only excellent Li-ion migration kinetics, but also good ionic conductivity as high as 4.0 × 10-5 and 2.6 × 10-4 S cm-1 at 30 and 100 °C, respectively, which is much higher than previously reported SLICs. Importantly, by the combination of molecular dynamics simulations and experiment measurements, the mechanisms of Li-ion migration across the SLIC (LiAl-PEG), the salt-in-polymer (LiClO4/PEO) and the optimized SLIC (LiAl-PEG/PEO) were systematically investigated for the first time. The new hopping transport mechanism was verified for the SLIC system at the nanoscale. As for the hybrid SLIC, PEO chains enhance the segmental mobility of the ether-chains bonded with Al atoms, improve the ionicity, and provide extra ionic paths for Li transfer, resulting in the optimized Li-ion migration kinetics of LiAl-PEG/PEO.
Pim-3 enhances melanoma cell migration and invasion by promoting STAT3 phosphorylation.
Liu, Jing; Qu, Xinyu; Shao, Liwei; Hu, Yuan; Yu, Xin; Lan, Peixiang; Guo, Qie; Han, Qiuju; Zhang, Jian; Zhang, Cai
2018-03-04
Melanoma is the deadliest form of commonly encountered skin cancer, and has fast propagating and highly invasive characteristics. Pim-3, a highly expressed oncogene in melanoma, is a highly conserved serine/threonine kinase with various biological activities, such as proliferation-accelerating and anti-apoptosis effects on cancer progression. However, whether Pim-3 regulates melanoma metastasis has not been determined. Here, we constructed a Pim-3-silencing short hairpin RNA (sh-Pim-3), a TLR7-stimulating ssRNA and a dual-function vector containing a sh-Pim-3 and a ssRNA, and transfected them into the B16F10 melanoma cell line to investigate the effects of Pim-3 on migration and invasion in melanoma. We found that sh-Pim-3 inhibited B16F10 cell migration and invasion in vitro. In a tumor-bearing mouse model, sh-Pim-3 significantly downregulated pulmonary metastasis of B16F10 melanoma cell in vivo. Mechanistically, sh-Pim-3 inhibited metastasis by regulating the expression of genes related to epithelial-mesenchymal transition (EMT). Further study revealed that by promoting the phosphorylation of STAT3 (signal transducer and activator of transcription 3), Pim-3 induced the expression of Slug, Snail, and ZEB1, which enhanced EMT-related changes and induced melanoma migration and invasion. Our study suggests that Pim-3 is a potential effective target for melanoma therapy.
Russell, Thembi; Silva, Fabio; Steele, James
2014-01-01
We use archaeological data and spatial methods to reconstruct the dispersal of farming into areas of sub-Saharan Africa now occupied by Bantu language speakers, and introduce a new large-scale radiocarbon database and a new suite of spatial modelling techniques. We also introduce a method of estimating phylogeographic relationships from archaeologically-modelled dispersal maps, with results produced in a format that enables comparison with linguistic and genetic phylogenies. Several hypotheses are explored. The ‘deep split’ hypothesis suggests that an early-branching eastern Bantu stream spread around the northern boundary of the equatorial rainforest, but recent linguistic and genetic work tends not to support this. An alternative riverine/littoral hypothesis suggests that rivers and coastlines facilitated the migration of the first farmers/horticulturalists, with some extending this to include rivers through the rainforest as conduits to East Africa. More recently, research has shown that a grassland corridor opened through the rainforest at around 3000–2500 BP, and the possible effect of this on migrating populations is also explored. Our results indicate that rivers and coasts were important dispersal corridors, but do not resolve the debate about a ‘Deep Split’. Future work should focus on improving the size, quality and geographical coverage of the archaeological 14C database; on augmenting the information base to establish descent relationships between archaeological sites and regions based on shared material cultural traits; and on refining the associated physical geographical reconstructions of changing land cover. PMID:24498213
Zhang, Xiaoming; Liao, Shiyu; Qi, Xuebin; Liu, Jiewei; Kampuansai, Jatupol; Zhang, Hui; Yang, Zhaohui; Serey, Bun; Sovannary, Tuot; Bunnath, Long; Seang Aun, Hong; Samnom, Ham; Kangwanpong, Daoroong; Shi, Hong; Su, Bing
2015-10-20
Analyses of an Asian-specific Y-chromosome lineage (O2a1-M95)--the dominant paternal lineage in Austro-Asiatic (AA) speaking populations, who are found on both sides of the Bay of Bengal--led to two competing hypothesis of this group's geographic origin and migratory routes. One hypothesis posits the origin of the AA speakers in India and an eastward dispersal to Southeast Asia, while the other places an origin in Southeast Asia with westward dispersal to India. Here, we collected samples of AA-speaking populations from mainland Southeast Asia (MSEA) and southern China, and genotyped 16 Y-STRs of 343 males who belong to the O2a1-M95 lineage. Combining our samples with previous data, we analyzed both the Y-chromosome and mtDNA diversities. We generated a comprehensive picture of the O2a1-M95 lineage in Asia. We demonstrated that the O2a1-M95 lineage originated in the southern East Asia among the Daic-speaking populations ~20-40 thousand years ago and then dispersed southward to Southeast Asia after the Last Glacial Maximum before moving westward to the Indian subcontinent. This migration resulted in the current distribution of this Y-chromosome lineage in the AA-speaking populations. Further analysis of mtDNA diversity showed a different pattern, supporting a previously proposed sex-biased admixture of the AA-speaking populations in India.
Extensive Local Gene Duplication and Functional Divergence among Paralogs in Atlantic Salmon
Warren, Ian A.; Ciborowski, Kate L.; Casadei, Elisa; Hazlerigg, David G.; Martin, Sam; Jordan, William C.; Sumner, Seirian
2014-01-01
Many organisms can generate alternative phenotypes from the same genome, enabling individuals to exploit diverse and variable environments. A prevailing hypothesis is that such adaptation has been favored by gene duplication events, which generate redundant genomic material that may evolve divergent functions. Vertebrate examples of recent whole-genome duplications are sparse although one example is the salmonids, which have undergone a whole-genome duplication event within the last 100 Myr. The life-cycle of the Atlantic salmon, Salmo salar, depends on the ability to produce alternating phenotypes from the same genome, to facilitate migration and maintain its anadromous life history. Here, we investigate the hypothesis that genome-wide and local gene duplication events have contributed to the salmonid adaptation. We used high-throughput sequencing to characterize the transcriptomes of three key organs involved in regulating migration in S. salar: Brain, pituitary, and olfactory epithelium. We identified over 10,000 undescribed S. salar sequences and designed an analytic workflow to distinguish between paralogs originating from local gene duplication events or from whole-genome duplication events. These data reveal that substantial local gene duplications took place shortly after the whole-genome duplication event. Many of the identified paralog pairs have either diverged in function or become noncoding. Future functional genomics studies will reveal to what extent this rich source of divergence in genetic sequence is likely to have facilitated the evolution of extreme phenotypic plasticity required for an anadromous life-cycle. PMID:24951567
NASA Astrophysics Data System (ADS)
Kaplinski, M. A.; Buscmobe, D.; Ashley, T.; Tusso, R.; Grams, P. E.; McElroy, B. J.; Mueller, E. R.; Hamill, D.
2015-12-01
Repeat, high-resolution multibeam bathymetric surveys were conducted in March and July 2015 along a reach of the Colorado River in Grand Canyon near the Diamond Creek gage (362 km downstream of Lees Ferry, AZ) to characterize the migration of sand dunes. The surveys were collected as part of a study designed to quantify the relative importance of bedload and suspended sediment transport and develop a predictive relationship for bedload transport. Concurrent measurements of suspended-sediment concentrations, bed-sediment grain size, and water velocity were also collected. The study site is approximately 350 m long and 50 m wide; water depths are 7 to 10 m during normal flows; and a field of sand dunes form along its entire length with negligible coarse material at the bed surface. Full swath coverage of the site required about 6 to 10 minutes to complete with two passes of the survey vessel. Mapping occurred continuously during several survey periods. For each survey period, time-series of bathymetric maps were constructed from each pair of survey lines. In March, surveys were collected over durations of 2, 3, 9, and 11 hours, at discharges of 339 to 382 m3/s. In July, surveys were collected over durations of 4, 4, and 13 hours, at discharges ranging from 481 to 595 ft3/s. These surveys capture the migration of sand dunes over a wide range of discharge with an unprecedented temporal resolution. The dunes in March were between 30 and 50 cm in height, 5 m in length, and migrating downstream at about 1 m per hour. In July, dunes were between 75 and 130 cm in height and 10-15 m in length, and were migrating downstream at rates of 5 to 2 m per hour. The surveys also reveal that the dune migration is spatially and temporally variable, with fast-migrating small dunes variably superimposed on slower-moving larger dunes. The dunes also refract around shoreline talus piles and other flow constrictions collectively causing a large degree of dune deformation as they migrate.
Imaging the Juan de Fuca subduction plate using 3D Kirchoff Prestack Depth Migration
NASA Astrophysics Data System (ADS)
Cheng, C.; Bodin, T.; Allen, R. M.; Tauzin, B.
2014-12-01
We propose a new Receiver Function migration method to image the subducting plate in the western US that utilizes the US array and regional network data. While the well-developed CCP (common conversion point) poststack migration is commonly used for such imaging; our method applies a 3D prestack depth migration approach. The traditional CCP and post-stack depth mapping approaches implement the ray tracing and moveout correction for the incoming teleseismic plane wave based on a 1D earth reference model and the assumption of horizontal discontinuities. Although this works well in mapping the reflection position of relatively flat discontinuities (such as the Moho or the LAB), CCP is known to give poor results in the presence of lateral volumetric velocity variations and dipping layers. Instead of making the flat layer assumption and 1D moveout correction, seismic rays are traced in a 3D tomographic model with the Fast Marching Method. With travel time information stored, our Kirchoff migration is done where the amplitude of the receiver function at a given time is distributed over all possible conversion points (i.e. along a semi-elipse) on the output migrated depth section. The migrated reflectors will appear where the semicircles constructively interfere, whereas destructive interference will cancel out noise. Synthetic tests show that in the case of a horizontal discontinuity, the prestack Kirchoff migration gives similar results to CCP, but without spurious multiples as this energy is stacked destructively and cancels out. For 45 degree and 60 degree dipping discontinuities, it also performs better in terms of imaging at the right boundary and dip angle. This is especially useful in the Western US case, beneath which the Juan de Fuca plate subducted to ~450km with a dipping angle that may exceed 50 degree. While the traditional CCP method will underestimate the dipping angle, our proposed imaging method will provide an accurate 3D subducting plate image without heavy computation. This will provide further thoughts for geodynamic research on the evolution of western US.
The monsoon system: Land-sea breeze or the ITCZ?
NASA Astrophysics Data System (ADS)
Gadgil, Sulochana
2018-02-01
For well over 300 years, the monsoon has been considered to be a gigantic land-sea breeze driven by the land-ocean contrast in surface temperature. In this paper, this hypothesis and its implications for the variability of the monsoon are discussed and it is shown that the observations of monsoon variability do not support this popular theory of the monsoon. An alternative hypothesis (whose origins can be traced to Blanford's (1886) remarkably perceptive analysis) in which the basic system responsible for the Indian summer monsoon is considered to be the Intertropical Convergence Zone (ITCZ) or the equatorial trough, is then examined and shown to be consistent with the observations. The implications of considering the monsoon as a manifestation of the seasonal migration of the ITCZ for the variability of the Indian summer monsoon and for identification of the monsoonal regions of the world are briefly discussed.
The diffusion of maize to the southwestern United States and its impact
Merrill, William L.; Hard, Robert J.; Mabry, Jonathan B.; Fritz, Gayle J.; Adams, Karen R.; Roney, John R.; MacWilliams, A. C.
2009-01-01
Our understanding of the initial period of agriculture in the southwestern United States has been transformed by recent discoveries that establish the presence of maize there by 2100 cal. B.C. (calibrated calendrical years before the Christian era) and document the processes by which it was integrated into local foraging economies. Here we review archaeological, paleoecological, linguistic, and genetic data to evaluate the hypothesis that Proto-Uto-Aztecan (PUA) farmers migrating from a homeland in Mesoamerica introduced maize agriculture to the region. We conclude that this hypothesis is untenable and that the available data indicate instead a Great Basin homeland for the PUA, the breakup of this speech community into northern and southern divisions ≈6900 cal. B.C. and the dispersal of maize agriculture from Mesoamerica to the US Southwest via group-to-group diffusion across a Southern Uto-Aztecan linguistic continuum. PMID:19995985
1986-01-01
It is generally proposed that embryonic mesenchymal cells use sulfated macromolecules during in situ migration. Attempts to resolve the molecular mechanisms for this hypothesis using planar substrates have been met with limited success. In the present study, we provide evidence that the functional significance of certain sulfated macromolecules during mesenchyme migration required the presence of the endogenous migratory template; i.e., native collagen fibrils. Using three-dimensional collagen gel lattices and whole embryo culture procedures to produce metabolically labeled sulfated macromolecules in embryonic chick cardiac tissue, we show that these molecules were primarily proteoglycan (PG) in nature and that their distribution was class specific; i.e., heparan sulfate PG, the minor labeled component (15%), remained pericellular while chondroitin sulfate (CS) PG, the predominately labeled PG (85%), was associated with collagen fibrils as "trails" of 50-60-nm particles when viewed by scanning electron microscopy. Progressive "conditioning" of collagen with CS-PG inhibited the capacity of the template to support subsequent cell migration. Lastly, metabolically labeled, PG-derived CS chains were compared with respect to degree of sulfation in either the C-6 or C-4 position by chromatographic separation of chondroitinase AC digestion products. Results from temporal and regional comparisons of in situ-labeled PGs indicated a positive correlation between the presence of mesenchyme and an enrichment of disaccharide-4S relative to that from regions lacking mesenchyme (i.e., principally myocardial tissue). The suggestion of a mesenchyme-specific CS-PG was substantiated by similarly examining the PGs synthesized solely by cardiac mesenchymal cells migrating within hydrated collagen lattice in culture. These data were incorporated into a model of "substratum conditioning" which provides a molecular mechanism by which secretion of mesenchyme-specific CS-PGs not only provides for directed and sustained cell movement, but ultimately inhibits migration of the cell population as a whole. PMID:3782305
Fung, Samantha J.; Joshi, Dipesh; Allen, Katherine M.; Sivagnanasundaram, Sinthuja; Rothmond, Debora A.; Saunders, Richard; Noble, Pamela L.; Webster, Maree J.; Shannon Weickert, Cynthia
2011-01-01
Postnatal neurogenesis occurs in the subventricular zone and dentate gyrus, and evidence suggests that new neurons may be present in additional regions of the mature primate brain, including the prefrontal cortex (PFC). Addition of new neurons to the PFC implies local generation of neurons or migration from areas such as the subventricular zone. We examined the putative contribution of new, migrating neurons to postnatal cortical development by determining the density of neurons in white matter subjacent to the cortex and measuring expression of doublecortin (DCX), a microtubule-associated protein involved in neuronal migration, in humans and rhesus macaques. We found a striking decline in DCX expression (human and macaque) and density of white matter neurons (humans) during infancy, consistent with the arrival of new neurons in the early postnatal cortex. Considering the expansion of the brain during this time, the decline in white matter neuron density does not necessarily indicate reduced total numbers of white matter neurons in early postnatal life. Furthermore, numerous cells in the white matter and deep grey matter were positive for the migration-associated glycoprotein polysialiated-neuronal cell adhesion molecule and GAD65/67, suggesting that immature migrating neurons in the adult may be GABAergic. We also examined DCX mRNA in the PFC of adult schizophrenia patients (n = 37) and matched controls (n = 37) and did not find any difference in DCX mRNA expression. However, we report a negative correlation between DCX mRNA expression and white matter neuron density in adult schizophrenia patients, in contrast to a positive correlation in human development where DCX mRNA and white matter neuron density are higher earlier in life. Accumulation of neurons in the white matter in schizophrenia would be congruent with a negative correlation between DCX mRNA and white matter neuron density and support the hypothesis of a migration deficit in schizophrenia. PMID:21966452
Intercontinental migratory connectivity and population structuring of Dunlins from western Alaska
Gill, Robert E.; Handel, Colleen M.; Ruthrauff, Daniel R.
2013-01-01
The Dunlin (Calidris alpina) is a polytypic shorebird with complex patterns of distribution and migration throughout its holarctic range. We analyzed mark-re sighting data obtained between 1977 and 2010 from birds captured at two major staging areas in western Alaska to test the hypothesis that the migration patterns of Alaskan populations are a mixture of parallel and chain, similar to those of Dunlin populations in the western Palearctic. Birds marked on the Yukon—Kuskokwim Delta were found wintering in both Asia and North America, which documented the unexpected mixing of C. a. arcticola from northern Alaska and C. a. pacifica from western Alaska and contradicted our initial prediction of parallel migration pathways for these two subspecies. In its North American winter range C. a. pacifica segregated according to location of marking, confirming our prediction of a chain migration pattern within this population. Individuals of C. a. pacifica marked on the delta were resighted significantly farther north, mostly in southern British Columbia and Washington, than birds marked on the second, more southerly staging area on the Alaska Peninsula, which were resighted primarily in the San Francisco Bay area of northern California. We recommend additional studies use a combination of intrinsic and extrinsic markers to quantify the strength of migratory connectivity between breeding, staging, and wintering areas. Such information is needed to guide conservation efforts because the Dunlin and other waterbirds are losing intertidal habitats at an unprecedented rate and scale, particularly in the Yellow Sea and other parts of Asia.
A resonant chain of four transiting, sub-Neptune planets.
Mills, Sean M; Fabrycky, Daniel C; Migaszewski, Cezary; Ford, Eric B; Petigura, Erik; Isaacson, Howard
2016-05-26
Surveys have revealed many multi-planet systems containing super-Earths and Neptunes in orbits of a few days to a few months. There is debate whether in situ assembly or inward migration is the dominant mechanism of the formation of such planetary systems. Simulations suggest that migration creates tightly packed systems with planets whose orbital periods may be expressed as ratios of small integers (resonances), often in a many-planet series (chain). In the hundreds of multi-planet systems of sub-Neptunes, more planet pairs are observed near resonances than would generally be expected, but no individual system has hitherto been identified that must have been formed by migration. Proximity to resonance enables the detection of planets perturbing each other. Here we report transit timing variations of the four planets in the Kepler-223 system, model these variations as resonant-angle librations, and compute the long-term stability of the resonant chain. The architecture of Kepler-223 is too finely tuned to have been formed by scattering, and our numerical simulations demonstrate that its properties are natural outcomes of the migration hypothesis. Similar systems could be destabilized by any of several mechanisms, contributing to the observed orbital-period distribution, where many planets are not in resonances. Planetesimal interactions in particular are thought to be responsible for establishing the current orbits of the four giant planets in the Solar System by disrupting a theoretical initial resonant chain similar to that observed in Kepler-223.
Fast diffusion of silver in TiO2 nanotube arrays
Zhang, Wanggang; Liu, Yiming; Zhou, Diaoyu; Wang, Hui
2016-01-01
Summary Using magnetron sputtering and heat treatment, Ag@TiO2 nanotubes are prepared. The effects of heat-treatment temperature and heating time on the evolution of Ag nanofilms on the surface of TiO2 nanotubes and microstructure of Ag nanofilms are investigated by X-ray diffraction, field emission scanning electron microscopy, and transmission electron microscopy. Ag atoms migrate mainly on the outmost surface of the TiO2 nanotubes, and fast diffusion of Ag atoms is observed. The diffusivity for the diffusion of Ag atoms on the outmost surface of the TiO2 nanotubes at 400 °C is 6.87 × 10−18 m2/s, which is three orders of magnitude larger than the diffusivities for the diffusion of Ag through amorphous TiO2 films. The activation energy for the diffusion of Ag atoms on the outmost surface of the TiO2 nanotubes in the temperature range of 300 to 500 °C is 157 kJ/mol, which is less than that for the lattice diffusion of Ag and larger than that for the grain boundary diffusion. The diffusion of Ag atoms leads to the formation of Ag nanocrystals on the outmost surface of TiO2 nanotubes. Probably there are hardly any Ag nanocrystals formed inside the TiO2 nanotubes through the migration of Ag. PMID:27547630
Zhang, Chao; Knyazev, Denis G.; Vereshaga, Yana A.; Ippoliti, Emiliano; Nguyen, Trung Hai; Carloni, Paolo; Pohl, Peter
2012-01-01
Fast lateral proton migration along membranes is of vital importance for cellular energy homeostasis and various proton-coupled transport processes. It can only occur if attractive forces keep the proton at the interface. How to reconcile this high affinity to the membrane surface with high proton mobility is unclear. Here, we tested whether a minimalistic model interface between an apolar hydrophobic phase (n-decane) and an aqueous phase mimics the biological pathway for lateral proton migration. The observed diffusion span, on the order of tens of micrometers, and the high proton mobility were both similar to the values previously reported for lipid bilayers. Extensive ab initio simulations on the same water/n-decane interface reproduced the experimentally derived free energy barrier for the excess proton. The free energy profile GH+ adopts the shape of a well at the interface, having a width of two water molecules and a depth of 6 ± 2RT. The hydroniums in direct contact with n-decane have a reduced mobility. However, the hydroniums in the second layer of water molecules are mobile. Their in silico diffusion coefficient matches that derived from our in vitro experiments, (5.7 ± 0.7) × 10-5 cm2 s-1. Conceivably, these are the protons that allow for fast diffusion along biological membranes. PMID:22675120
Frozen Gaussian approximation for 3D seismic tomography
NASA Astrophysics Data System (ADS)
Chai, Lihui; Tong, Ping; Yang, Xu
2018-05-01
Three-dimensional (3D) wave-equation-based seismic tomography is computationally challenging in large scales and high-frequency regime. In this paper, we apply the frozen Gaussian approximation (FGA) method to compute 3D sensitivity kernels and seismic tomography of high-frequency. Rather than standard ray theory used in seismic inversion (e.g. Kirchhoff migration and Gaussian beam migration), FGA is used to compute the 3D high-frequency sensitivity kernels for travel-time or full waveform inversions. Specifically, we reformulate the equations of the forward and adjoint wavefields for the purpose of convenience to apply FGA, and with this reformulation, one can efficiently compute the Green’s functions whose convolutions with source time function produce wavefields needed for the construction of 3D kernels. Moreover, a fast summation method is proposed based on local fast Fourier transform which greatly improves the speed of reconstruction as the last step of FGA algorithm. We apply FGA to both the travel-time adjoint tomography and full waveform inversion (FWI) on synthetic crosswell seismic data with dominant frequencies as high as those of real crosswell data, and confirm again that FWI requires a more sophisticated initial velocity model for the convergence than travel-time adjoint tomography. We also numerically test the accuracy of applying FGA to local earthquake tomography. This study paves the way to directly apply wave-equation-based seismic tomography methods into real data around their dominant frequencies.
Faust, Thomas W.; Assous, Maxime; Shah, Fulva; Tepper, James M.; Koós, Tibor
2015-01-01
Previous work suggests that neostriatal cholinergic interneurons control the activity of several classes of GABAergic interneurons through fast nicotinic receptor mediated synaptic inputs. Although indirect evidence has suggested the existence of several classes of interneurons controlled by this mechanism only one such cell type, the neuropeptide-Y expressing neurogliaform neuron, has been identified to date. Here we tested the hypothesis that in addition to the neurogliaform neurons that elicit slow GABAergic inhibitory responses, another interneuron type exists in the striatum that receives strong nicotinic cholinergic input and elicits conventional fast GABAergic synaptic responses in projection neurons. We obtained in vitro slice recordings from double transgenic mice in which Channelrhodopsin-2 was natively expressed in cholinergic neurons and a population of serotonin receptor-3a-Cre expressing GABAergic interneurons were visualized with tdTomato. We show that among the targeted GABAergic interneurons a novel type of interneuron, termed the fast-adapting interneuron, can be identified that is distinct from previously known interneurons based on immunocytochemical and electrophysiological criteria. We show using optogenetic activation of cholinergic inputs that fast-adapting interneurons receive a powerful supra-threshold nicotinic cholinergic input in vitro. Moreover, fast adapting neurons are densely connected to projection neurons and elicit fast, GABAA receptor mediated inhibitory postsynaptic responses. The nicotinic receptor mediated activation of fast-adapting interneurons may constitute an important mechanism through which cholinergic interneurons control the activity of projection neurons and perhaps the plasticity of their synaptic inputs when animals encounter reinforcing or otherwise salient stimuli. PMID:25865337
USDA-ARS?s Scientific Manuscript database
Aims & Hypothesis: Sugar sweetened beverages are a major dietary contributor to fructose intake. A molecular pathway involving the carbohydrate responsive-element binding protein (ChREBP) and the metabolic hormone fibroblast growth factor 21 (FGF21) may influence sugar metabolism and thereby contrib...
Latash, M L; Gottlieb, G L
1991-09-01
The model for isotonic movements introduced in the preceding article in this issue is used to account for isometric contractions. Isotonic movements and isometric contractions are analyzed as consequences of one motor program acting under different peripheral conditions. Differences in isotonic and isometric EMG patterns are analyzed theoretically. Computer simulation of the EMG patterns was performed both with and without the inclusion of possible effects of reciprocal inhibition. A series of experiments was performed to test the model. The subjects made fast isotonic movements that were unexpectedly blocked at the very beginning in some of the trials. The observed differences in the EMG patterns between blocked and unblocked trials corresponded to the model's predictions. The results suggest that these differences are due to the action of a tonic stretch reflex rather than to preprogrammed reactions. The experimental and simulation findings, and also the data from the literature, are discussed in the framework of the model and the dual-strategy hypothesis. They support the hypothesis that the motor control system uses one of a few standardized subprograms, specifying a small number of parameters to match a specific task.
Why Do Fast-Growing Bacteria Enter Overflow Metabolism? Testing the Membrane Real Estate Hypothesis.
Szenk, Mariola; Dill, Ken A; de Graff, Adam M R
2017-08-23
Bacteria and other cells show a puzzling behavior. At high growth rates, E. coli switch from respiration (which is ATP-efficient) to using fermentation for additional ATP (which is inefficient). This overflow metabolism results in a several-fold decrease in ATP produced per glucose molecule provided as food. By integrating diverse types of experimental data into a simple biophysical model, we give evidence that this onset is the result of the membrane real estate hypothesis: Fast growth drives cells to be bigger, reducing their surface-to-volume ratios. This decreases the membrane area available for respiratory proteins despite growing demand, causing increased crowding. Only when respiratory proteins reach their crowding limit does the cell activate fermentation, since fermentation allows faster ATP production per unit membrane area. Surface limitation thus creates a Pareto trade-off between membrane efficiency and ATP yield that links metabolic choice to the size and shape of a bacterial cell. By exploring the predictions that emerge from this trade-off, we show how consideration of molecular structures, energetics, rates, and equilibria can provide important insight into cellular behavior. Copyright © 2017 Elsevier Inc. All rights reserved.
Urban sparrows respond to a sexually selected trait with increased aggression in noise.
Phillips, Jennifer N; Derryberry, Elizabeth P
2018-05-14
Animals modify acoustic communication signals in response to noise pollution, but consequences of these modifications are unknown. Vocalizations that transmit best in noise may not be those that best signal male quality, leading to potential conflict between selection pressures. For example, slow paced, narrow bandwidth songs transmit better in noise but are less effective in mate choice and competition than fast paced, wide bandwidth songs. We test the hypothesis that noise affects response to song pace and bandwidth in the context of competition using white-crowned sparrows (Zonotrichia leucophrys). We measure male response to song variation along a gradient of ambient noise levels in San Francisco, CA. We find that males discriminate between wide and narrow bandwidth songs but not between slow and fast paced songs. These findings are biologically relevant because songs in noisy areas tend to have narrow bandwidths. Therefore, this song phenotype potentially increases transmission distance in noise, but elicits weaker responses from competitors. Further, we find that males respond more strongly to stimuli in noisier conditions, supporting the 'urban anger' hypothesis. We suggest that noise affects male responsiveness to song, possibly leading to more territorial conflict in urban areas.
Perry, M.C.; Nichols, J.D.; Conroy, M.J.; Obrecht, H.H.; Williams, B.K.; Weller, Milton W.
1988-01-01
Hand-reared canvasbacks (Aythya valisineria) of varying sex ratios were maintained in pens during winter 1980-81 (3M-3F, 6M-0F, 0M-6F) and winter 1981-82 (4M-2F, 2M-4F) and fed two diets (control and stress). They were observed during feeding trials to determine intrasexual and intersexual aggressive activity. There was little evidence that either diet or sex ratio affected the total number of aggressive encounters. Females fed both control and stress diets were more aggressive and spent more time in the small feeding areas than males in pens with 3M-3F, 4M-2F, and 2M-4F sex ratios. Stressed ducks tended to weigh less than controls throughout the study. Females in the 3M-3F and 4M-2F pens weighed less than those in the 0M-6F and 2M-4F pens, respectively. However, relative weight changes throughout the winter were similar for males and females. Thus, results of these experiments do not lead to conclusive rejection of either the behavioral dominance hypothesis or the fasting endurance hypothesis.
Metin, Baris; Wiersema, Jan R; Verguts, Tom; Gasthuys, Roos; van Der Meere, Jacob J; Roeyers, Herbert; Sonuga-Barke, Edmund
2016-01-01
According to the state regulation deficit (SRD) account, ADHD is associated with a problem using effort to maintain an optimal activation state under demanding task settings such as very fast or very slow event rates. This leads to a prediction of disrupted performance at event rate extremes reflected in higher Gaussian response variability that is a putative marker of activation during motor preparation. In the current study, we tested this hypothesis using ex-Gaussian modeling, which distinguishes Gaussian from non-Gaussian variability. Twenty-five children with ADHD and 29 typically developing controls performed a simple Go/No-Go task under four different event-rate conditions. There was an accentuated quadratic relationship between event rate and Gaussian variability in the ADHD group compared to the controls. The children with ADHD had greater Gaussian variability at very fast and very slow event rates but not at moderate event rates. The results provide evidence for the SRD account of ADHD. However, given that this effect did not explain all group differences (some of which were independent of event rate) other cognitive and/or motivational processes are also likely implicated in ADHD performance deficits.
δ15N value does not reflect fasting in mysticetes.
Aguilar, Alex; Giménez, Joan; Gómez-Campos, Encarna; Cardona, Luís; Borrell, Asunción
2014-01-01
The finding that tissue δ(15)N values increase with protein catabolism has led researchers to apply this value to gauge nutritive condition in vertebrates. However, its application to marine mammals has in most occasions failed. We investigated the relationship between δ(15)N values and the fattening/fasting cycle in a model species, the fin whale, a migratory capital breeder that experiences severe seasonal variation in body condition. We analyzed two tissues providing complementary insights: one with isotopic turnover (muscle) and one that keeps a permanent record of variations in isotopic values (baleen plates). In both tissues δ(15)N values increased with intensive feeding but decreased with fasting, thus contradicting the pattern previously anticipated. The apparent inconsistency during fasting is explained by the fact that a) individuals migrate between different isotopic isoscapes, b) starvation may not trigger significant negative nitrogen balance, and c) excretion drops and elimination of 15N-depleted urine is minimized. Conversely, when intensive feeding is resumed in the northern grounds, protein anabolism and excretion start again, triggering 15N enrichment. It can be concluded that in whales and other mammals that accrue massive depots of lipids as energetic reserves and which have limited access to drinking water, the δ15N value is not affected by fasting and therefore cannot be used as an indication of nutritive condition.
Fickert, T.; Friend, D.; Gruninger, F.; Molnia, B.; Richter, M.
2007-01-01
This study proposes a new hypothesis: Debris-covered glaciers served as Pleistocene biological refugia. This is based on detailed studies of vascular plant growth on six debris-mantled glaciers, literally around the world, as well as many casual observations also across the globe. We find that such glaciers are quite common and are distributed globally. Using Carbon Glacier, Mount Rainier, U.S.A., as a type locality and case study, we show aspects of the floristic and structural diversity as well as spatial patterns of plant growth on the glacier surface. Migration strategies, root characteristics, and origin and dispersal strategies for vascular plant species are documented. Also reported are special microclimatic conditions in these areas allowing for this remarkable plant ecology. We find that alpine taxa can grow considerably below their usual altitudinal niche due to the cooler subsurface soil temperatures found on glacial debris with ice underneath, and that may have significantly altered the spatial distribution of such flora during full glacial conditions. This in turn creates previously undocumented areas from which alpine, and perhaps arctic, plant species reestablished in post-glacial time. This hypothesis is complementary to both the nunatak hypothesis and tabula rasa theory and possibly helps solve the ongoing controversy between them. ?? 2007 Regents of the University of Colorado.
Godar, Rebecca J; Ma, Xiucui; Liu, Haiyan; Murphy, John T; Weinheimer, Carla J; Kovacs, Attila; Crosby, Seth D; Saftig, Paul; Diwan, Abhinav
2015-01-01
Autophagy, a lysosomal degradative pathway, is potently stimulated in the myocardium by fasting and is essential for maintaining cardiac function during prolonged starvation. We tested the hypothesis that intermittent fasting protects against myocardial ischemia-reperfusion injury via transcriptional stimulation of the autophagy-lysosome machinery. Adult C57BL/6 mice subjected to 24-h periods of fasting, every other day, for 6 wk were protected from in-vivo ischemia-reperfusion injury on a fed day, with marked reduction in infarct size in both sexes as compared with nonfasted controls. This protection was lost in mice heterozygous null for Lamp2 (coding for lysosomal-associated membrane protein 2), which demonstrate impaired autophagy in response to fasting with accumulation of autophagosomes and SQSTM1, an autophagy substrate, in the heart. In lamp2 null mice, intermittent fasting provoked progressive left ventricular dilation, systolic dysfunction and hypertrophy; worsening cardiomyocyte autophagosome accumulation and lack of protection to ischemia-reperfusion injury, suggesting that intact autophagy-lysosome machinery is essential for myocardial homeostasis during intermittent fasting and consequent ischemic cardioprotection. Fasting and refeeding cycles resulted in transcriptional induction followed by downregulation of autophagy-lysosome genes in the myocardium. This was coupled with fasting-induced nuclear translocation of TFEB (transcription factor EB), a master regulator of autophagy-lysosome machinery; followed by rapid decline in nuclear TFEB levels with refeeding. Endogenous TFEB was essential for attenuation of hypoxia-reoxygenation-induced cell death by repetitive starvation, in neonatal rat cardiomyocytes, in-vitro. Taken together, these data suggest that TFEB-mediated transcriptional priming of the autophagy-lysosome machinery mediates the beneficial effects of fasting-induced autophagy in myocardial ischemia-reperfusion injury.
Godar, Rebecca J; Ma, Xiucui; Liu, Haiyan; Murphy, John T; Weinheimer, Carla J; Kovacs, Attila; Crosby, Seth D; Saftig, Paul; Diwan, Abhinav
2015-01-01
Autophagy, a lysosomal degradative pathway, is potently stimulated in the myocardium by fasting and is essential for maintaining cardiac function during prolonged starvation. We tested the hypothesis that intermittent fasting protects against myocardial ischemia-reperfusion injury via transcriptional stimulation of the autophagy-lysosome machinery. Adult C57BL/6 mice subjected to 24-h periods of fasting, every other day, for 6 wk were protected from in-vivo ischemia-reperfusion injury on a fed day, with marked reduction in infarct size in both sexes as compared with nonfasted controls. This protection was lost in mice heterozygous null for Lamp2 (coding for lysosomal-associated membrane protein 2), which demonstrate impaired autophagy in response to fasting with accumulation of autophagosomes and SQSTM1, an autophagy substrate, in the heart. In lamp2 null mice, intermittent fasting provoked progressive left ventricular dilation, systolic dysfunction and hypertrophy; worsening cardiomyocyte autophagosome accumulation and lack of protection to ischemia-reperfusion injury, suggesting that intact autophagy-lysosome machinery is essential for myocardial homeostasis during intermittent fasting and consequent ischemic cardioprotection. Fasting and refeeding cycles resulted in transcriptional induction followed by downregulation of autophagy-lysosome genes in the myocardium. This was coupled with fasting-induced nuclear translocation of TFEB (transcription factor EB), a master regulator of autophagy-lysosome machinery; followed by rapid decline in nuclear TFEB levels with refeeding. Endogenous TFEB was essential for attenuation of hypoxia-reoxygenation-induced cell death by repetitive starvation, in neonatal rat cardiomyocytes, in-vitro. Taken together, these data suggest that TFEB-mediated transcriptional priming of the autophagy-lysosome machinery mediates the beneficial effects of fasting-induced autophagy in myocardial ischemia-reperfusion injury. PMID:26103523
McCue, Marshall D; Passement, Celeste A; Meyerholz, David K
2017-12-01
It was recently shown that fasting alters the composition of microbial communities residing in the distal intestinal tract of animals representing five classes of vertebrates [i.e., fishes (tilapia), amphibians (toads), reptiles (leopard geckos), birds (quail), and mammals (mice)]. In this study, we tested the hypothesis that the extent of tissue reorganization in the fasted distal intestine was correlated with the observed changes in enteric microbial diversity. Segments of intestine adjacent to those used for the microbiota study were examined histologically to quantify cross-sectional and mucosal surface areas and thicknesses of mucosa, submucosa, and tunica muscularis. We found no fasting-induced differences in the morphology of distal intestines of the mice (3 days), quail (7 days), or geckos (28 days). The toads, which exhibited a general increase in phylogenetic diversity of their enteric microbiota with fasting, also exhibited reduced mucosal circumference at 14 and 21 days of fasting. Tilapia showed increased phylogenetic diversity of their enteric microbiota, and showed a thickened tunica muscularis at 21 days of fasting; but this morphological change was not related to microbial diversity or absorptive surface area, and thus, is unlikely to functionally match the changes in their microbiome. Given that fasting caused significant increases and reductions in the enteric microbial diversity of mice and quail, respectively, but no detectable changes in distal intestine morphology, we conclude that reorganization is not the primary factor shaping changes in microbial diversity within the fasted colon, and the observed modest structural changes are more related to the fasted state. Anat Rec, 300:2208-2219, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Swarms of repeating stick-slip icequakes triggered by snow loading at Mount Rainier volcano
NASA Astrophysics Data System (ADS)
Allstadt, Kate; Malone, Stephen D.
2014-05-01
We have detected over 150,000 small (M < 1) low-frequency ( 1-5 Hz) repeating earthquakes over the past decade at Mount Rainier volcano, most of which were previously undetected. They are located high (>3000 m) on the glacier-covered edifice and occur primarily in weeklong to monthlong swarms composed of simultaneous distinct families of events. Each family contains up to thousands of earthquakes repeating at regular intervals as often as every few minutes. Mixed polarity first motions, a linear relationship between recurrence interval and event size, and strong correlation between swarm activity and snowfall suggest the source is stick-slip basal sliding of glaciers. The sudden added weight of snow during winter storms triggers a temporary change from smooth aseismic sliding to seismic stick-slip sliding in locations where basal conditions are favorable to frictional instability. Coda wave interferometry shows that source locations migrate over time at glacial speeds, starting out fast and slowing down over time, indicating a sudden increase in sliding velocity triggers the transition to stick-slip sliding. We propose a hypothesis that this increase is caused by the redistribution of basal fluids rather than direct loading because of a 1-2 day lag between snow loading and earthquake activity. This behavior is specific to winter months because it requires the inefficient drainage of a distributed subglacial drainage system. Identification of the source of these frequent signals offers a view of basal glacier processes, discriminates against alarming volcanic noises, documents short-term effects of weather on the cryosphere, and has implications for repeating earthquakes, in general.
Acoustic reflectors are visible in the right heart during radiofrequency ablation of varicose veins.
Sounderajah, V; Moore, H M; Thapar, A; Lane, T R A; Fox, K; Franklin, I J; Davies, A H
2015-09-01
Cerebrovascular events have been noted after foam sclerotherapy for varicose veins. One hypothesis is migration of microemboli to the brain through a cardiac septal defect. The aim of this study was to identify whether acoustic reflectors are found in the right side of the heart during radiofrequency ablation of varicose veins, as neurological events are not reported during these procedures. Transthoracic echocardiography was performed during local anaesthetic radiofrequency ablation (VNUS ClosureFast) of the great saphenous vein in 14 patients. An apical view was captured at the start of the procedure, during each cycle of heating and at 1 min post-treatment. Patients were monitored for 1 h. Video loops were read by an independent cardiologist. The presence of acoustic reflectors was classified as: 0 = absent, 1 = occasional, 2 = stream, 3 = complete opacification. Loops were of diagnostic quality in 11/14 (79%) patients. After the second cycle of heating, acoustic reflectors moving through the right heart were seen in 5/11 (45%) patients. These were classified as grade 1 in four patients and grade 2 in one patient. No acoustic reflectors were seen in the left heart. No neurological symptoms were reported. Acoustic reflectors in the right heart are a common finding during radiofrequency ablation of varicose veins. Considering the prevalence of cardiac septal defects (17%), more neurological events would be expected if these particles were indeed responsible for these events. Further work is required to elicit the mechanisms underlying neurological complications following sclerotherapy. © The Author(s) 2014.
Curtice, Corrie; Johnston, David W; Ducklow, Hugh; Gales, Nick; Halpin, Patrick N; Friedlaender, Ari S
2015-01-01
A population of humpback whales (Megaptera novaeangliae) spends the austral summer feeding on Antarctic krill (Euphausia superba) along the Western Antarctic Peninsula (WAP). These whales acquire their annual energetic needs during an episodic feeding season in high latitude waters that must sustain long-distance migration and fasting on low-latitude breeding grounds. Antarctic krill are broadly distributed along the continental shelf and nearshore waters during the spring and early summer, and move closer to land during late summer and fall, where they overwinter under the protective and nutritional cover of sea ice. We apply a novel space-time utilization distribution method to test the hypothesis that humpback whale distribution reflects that of krill: spread broadly during summer with increasing proximity to shore and associated embayments during fall. Humpback whales instrumented with satellite-linked positional telemetry tags (n = 5), show decreased home range size, amount of area used, and increased proximity to shore over the foraging season. This study applies a new method to model the movements of humpback whales in the WAP region throughout the feeding season, and presents a baseline for future observations of the seasonal changes in the movement patterns and foraging behavior of humpback whales (one of several krill-predators affected by climate-driven changes) in the WAP marine ecosystem. As the WAP continues to warm, it is prudent to understand the ecological relationships between sea-ice dependent krill and krill predators, as well as the interactions among recovering populations of krill predators that may be forced into competition for a shared food resource.
Prestack depth migration for complex 2D structure using phase-screen propagators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roberts, P.; Huang, Lian-Jie; Burch, C.
1997-11-01
We present results for the phase-screen propagator method applied to prestack depth migration of the Marmousi synthetic data set. The data were migrated as individual common-shot records and the resulting partial images were superposed to obtain the final complete Image. Tests were performed to determine the minimum number of frequency components required to achieve the best quality image and this in turn provided estimates of the minimum computing time. Running on a single processor SUN SPARC Ultra I, high quality images were obtained in as little as 8.7 CPU hours and adequate images were obtained in as little as 4.4more » CPU hours. Different methods were tested for choosing the reference velocity used for the background phase-shift operation and for defining the slowness perturbation screens. Although the depths of some of the steeply dipping, high-contrast features were shifted slightly the overall image quality was fairly insensitive to the choice of the reference velocity. Our jests show the phase-screen method to be a reliable and fast algorithm for imaging complex geologic structures, at least for complex 2D synthetic data where the velocity model is known.« less
Penney, Zachary L.; Moffitt, Christine M.
2015-01-01
The profiles of specific fatty acids (FA) in white muscle and liver of fasting steelhead troutOncorhynchus mykiss were evaluated at three periods during their prespawning migration and at kelt emigration in the Snake–Columbia River of Washington, Oregon and Idaho, to improve the understanding of energy change. Twenty-seven FAs were identified; depletion of 10 of these was positively correlated in liver and white muscle of prespawning O. mykiss. To observe relative changes in FA content more accurately over sampling intervals, the lipid fraction of tissues was used to normalize the quantity of individual FA to an equivalent tissue wet mass. Saturated and monounsaturated FAs were depleted between upstream migration in September and kelt emigration in June, whereas polyunsaturated FAs were more conserved. Liver was depleted of FAs more rapidly than muscle. Three FAs were detected across all sampling intervals: 16:0, 18:1 and 22:6n3, which are probably structurally important to membranes. When structurally important FAs of O. mykiss are depleted to provide energy, physiological performance and survival may be affected.
Xiao, Xianjin; Wu, Tongbo; Xu, Lei; Chen, Wei
2017-01-01
Abstract Genetic mutations are important biomarkers for cancer diagnostics and surveillance. Preferably, the methods for mutation detection should be straightforward, highly specific and sensitive to low-level mutations within various sequence contexts, fast and applicable at room-temperature. Though some of the currently available methods have shown very encouraging results, their discrimination efficiency is still very low. Herein, we demonstrate a branch-migration based fluorescent probe (BM probe) which is able to identify the presence of known or unknown single-base variations at abundances down to 0.3%-1% within 5 min, even in highly GC-rich sequence regions. The discrimination factors between the perfect-match target and single-base mismatched target are determined to be 89–311 by measurement of their respective branch-migration products via polymerase elongation reactions. The BM probe not only enabled sensitive detection of two types of EGFR-associated point mutations located in GC-rich regions, but also successfully identified the BRAF V600E mutation in the serum from a thyroid cancer patient which could not be detected by the conventional sequencing method. The new method would be an ideal choice for high-throughput in vitro diagnostics and precise clinical treatment. PMID:28201758
Characterization of Intracellular Streaming and Traction Forces in Migrating Physarum Plasmodia
NASA Astrophysics Data System (ADS)
Zhang, Shun; Del Alamo, Juan C.; Guy, Robert D.; Lasheras, Juan C.
2012-11-01
Physarum plasmodium is a model organism for cell migration that exhibits fast intracellular streaming. Motile amoeboid physarum plasmodia were obtained from dish cultures of Physarum Polycephalum, a slime mold that inhabits shady cool moist areas in the wild, such as decaying vegetable material. The migrating amoebae were obtained by cutting successively smaller pieces from the growing tips of the cultured parent mold, and their size ranged 0.2 to 0.5 mm. Single amoebae were seeded and let adhere on flexible polyacrilamide gels that were functionalized with collagen, contained 0.2-micron fluorescent beads, and were embedded in an aqueous medium. Soon after adhering to the gel, the amoeabe began crawling at about 1mm/hr. Joint time-lapse sequences of intracellular streaming and gel deformation were acquired respectively in the bright and fluorescent fields of a confocal microscope at 20X magnification. These images were analyzed using particle-tracking algorithms, and the traction stresses applied by the amoebae on the surface were computed by solving the elastostatic equation for the gel using the measured bead displacements as boundary conditions. These measurements provide, for the first time, a joint characterization of intracellular mass transport and the forces driving this transport in motile amoeboid cells.
Modeling the interface of platinum and α-quartz(001): Implications for sintering
Plessow, Philipp N.; Sánchez-Carrera, Roel S.; Li, Lin; ...
2016-05-04
We present a first-principles study which aims to understand the metal–support interaction of platinum nanoparticles on α-quartz(001) and, more generally, silica. The thermodynamic stability of the α-quartz(001) surface and its interface with Pt(111) are investigated as a function of temperature and partial pressure of H 2O and O 2. Potential defects in the α-quartz(001) surface as well as the adsorption energies of the Pt atom are also studied. This allows us to draw conclusions concerning nanoparticle shape and the resistance toward particle migration based on the interface free energies. We find that, as for the clean α-quartz(001) surface, a dry,more » reconstructed interface is expected at temperatures that are high but within experimentally relevant ranges. On an ideal, dry, reconstructed surface, particle migration is predicted to be a fast sintering mechanism. On real surfaces, defects may locally prevent reconstruction and act as anchoring points. Finally, the energetics of the adsorption of platinum atoms on α-quartz(001) do not support surface-mediated single-atom migration as a viable path for sintering on the investigated surfaces.« less
Muscle interleukin-6 and fasting-induced PDH regulation in mouse skeletal muscle.
Gudiksen, Anders; Bertholdt, Laerke; Vingborg, Mikkel Birkkjaer; Hansen, Henriette Watson; Ringholm, Stine; Pilegaard, Henriette
2017-03-01
Fasting prompts a metabolic shift in substrate utilization from carbohydrate to predominant fat oxidation in skeletal muscle, and pyruvate dehydrogenase (PDH) is seen as a controlling link between the competitive oxidation of carbohydrate and fat during metabolic challenges like fasting. Interleukin (IL)-6 has been proposed to be released from muscle with concomitant effects on both glucose and fat utilization. The aim was to test the hypothesis that muscle IL-6 has a regulatory impact on fasting-induced suppression of skeletal muscle PDH. Skeletal muscle-specific IL-6 knockout (IL-6 MKO) mice and floxed littermate controls (control) were either fed or fasted for 6 or 18 h. Lack of muscle IL-6 elevated the respiratory exchange ratio in the fed and early fasting state, but not with prolonged fasting. Activity of PDH in the active form (PDHa) was higher in fed and fasted IL-6 MKO than in control mice at 18 h, but not at 6 h, whereas lack of muscle IL-6 did not prevent downregulation of PDHa activity in skeletal muscle or changes in plasma and muscle substrate levels in response to 18 h of fasting. Phosphorylation of three of four sites on PDH-E1α increased with 18 h of fasting, but was lower in IL-6 MKO mice than in control. In addition, both PDK4 mRNA and protein increased with 6 and 18 h of fasting in both genotypes, but PDK4 protein was lower in IL-6 MKO than in control. In conclusion, skeletal muscle IL-6 seems to regulate whole body substrate utilization in the fed, but not fasted, state and influence skeletal muscle PDHa activity in a circadian manner. However, skeletal muscle IL-6 is not required for maintaining metabolic flexibility in response to fasting. Copyright © 2017 the American Physiological Society.
Alternative stable qP wave equations in TTI media with their applications for reverse time migration
NASA Astrophysics Data System (ADS)
Zhou, Yang; Wang, Huazhong; Liu, Wenqing
2015-10-01
Numerical instabilities may arise if the spatial variation of symmetry axis is handled improperly when implementing P-wave modeling and reverse time migration in heterogeneous tilted transversely isotropic (TTI) media, especially in the cases where fast changes exist in TTI symmetry axis’ directions. Based on the pseudo-acoustic approximation to anisotropic elastic wave equations in Cartesian coordinates, alternative second order qP (quasi-P) wave equations in TTI media are derived in this paper. Compared with conventional stable qP wave equations, the proposed equations written in stress components contain only spatial derivatives of wavefield variables (stress components) and are free from spatial derivatives involving media parameters. These lead to an easy and efficient implementation for stable P-wave modeling and imaging. Numerical experiments demonstrate the stability and computational efficiency of the presented equations in complex TTI media.
[On the effect of partial flooding on 137Cs and 90Sr in forest biogeocenosis].
Perevolotskaia, T V; Bulavik, I M; Perevolotskiĭ, A N
2009-01-01
The analysis was made on 137Cs and 90Sr distribution oak, pine and hornbeam plantations depending on different under soil water levels. Intensity of 137Cs and of 90Sr migration along the vertical layers of soils is determined by under soil water level at a specific sampling site. The closer under soil water to the surface of the soil, the lowest radionuclide contamination is in the upper soil levels and the highest radionuclide contamination is in the deeper layers. The "fast" and "slow" quasi diffusion coefficients for 137Cs and for 90Sr and their contribution to the total migration of radionuclide through vertical soil levels were determined. A decrease in 137Cs and increase in 90Sr transfer factors to the elements of overground phytomass as a result of under soil water level lowering was established.
Bloom, Devin D; Lovejoy, Nathan R
2014-03-07
One of the most remarkable types of migration found in animals is diadromy, a life-history behaviour in which individuals move between oceans and freshwater habitats for feeding and reproduction. Diadromous fishes include iconic species such as salmon, eels and shad, and have long fascinated biologists because they undergo extraordinary physiological and behavioural modifications to survive in very different habitats. However, the evolutionary origins of diadromy remain poorly understood. Here, we examine the widely accepted productivity hypothesis, which states that differences in productivity between marine and freshwater biomes determine the origins of the different modes of diadromy. Specifically, the productivity hypothesis predicts that anadromous lineages should evolve in temperate areas from freshwater ancestors and catadromous lineages should evolve in tropical areas from marine ancestors. To test this, we generated a time-calibrated phylogeny for Clupeiformes (herrings, anchovies, sardines and allies), an ecologically and economically important group that includes high diversity of diadromous species. Our results do not support the productivity hypothesis. Instead we find that the different modes of diadromy do not have predictable ancestry based on latitude, and that predation, competition and geological history may be at least as important as productivity in determining the origins of diadromy.
Tzeng, Wann-Nian; Tseng, Yu-Heng; Han, Yu-San; Hsu, Chih-Chieh; Chang, Chih-Wei; Di Lorenzo, Emanuele; Hsieh, Chih-hao
2012-01-01
Long-term (1967–2008) glass eel catches were used to investigate climatic effects on the annual recruitment of Japanese eel to Taiwan. Specifically, three prevailing hypotheses that potentially explain the annual recruitment were evaluated. Hypothesis 1: high precipitation shifts the salinity front northward, resulting in favorable spawning locations. Hypothesis 2: a southward shift of the position of the North Equatorial Current (NEC) bifurcation provides a favorable larval transport route. Hypothesis 3: ocean conditions (eddy activities and productivity) along the larval migration route influence larval survival. Results of time series regression and wavelet analyses suggest that Hypothesis 1 is not supported, as the glass eel catches exhibited a negative relationship with precipitation. Hypothesis 2 is plausible. However, the catches are correlated with the NEC bifurcation with a one-year lag. Considering the time needed for larval transport (only four to six months), the one-year lag correlation does not support the direct transport hypothesis. Hypothesis 3 is supported indirectly by the results. Significant correlations were found between catches and climate indices that affect ocean productivity and eddy activities, such as the Quasi Biennial Oscillation (QBO), North Pacific Gyre Oscillation (NPGO), Pacific Decadal Oscillation (PDO), and Western Pacific Oscillation (WPO). Wavelet analysis reveals three periodicities of eel catches: 2.7, 5.4, and 10.3 years. The interannual coherence with QBO and the Niño 3.4 region suggests that the shorter-term climate variability is modulated zonally by equatorial dynamics. The low-frequency coherence with WPO, PDO, and NPGO demonstrates the decadal modulation of meridional teleconnection via ocean–atmosphere interactions. Furthermore, WPO and QBO are linked to solar activities. These results imply that the Japanese eel recruitment may be influenced by multi-timescale climate variability. Our findings call for investigation of extra-tropical ocean dynamics that affect survival of eels during transport, in addition to the existing efforts to study the equatorial system. PMID:22383976
Tzeng, Wann-Nian; Tseng, Yu-Heng; Han, Yu-San; Hsu, Chih-Chieh; Chang, Chih-Wei; Di Lorenzo, Emanuele; Hsieh, Chih-Hao
2012-01-01
Long-term (1967-2008) glass eel catches were used to investigate climatic effects on the annual recruitment of Japanese eel to Taiwan. Specifically, three prevailing hypotheses that potentially explain the annual recruitment were evaluated. Hypothesis 1: high precipitation shifts the salinity front northward, resulting in favorable spawning locations. Hypothesis 2: a southward shift of the position of the North Equatorial Current (NEC) bifurcation provides a favorable larval transport route. Hypothesis 3: ocean conditions (eddy activities and productivity) along the larval migration route influence larval survival. Results of time series regression and wavelet analyses suggest that Hypothesis 1 is not supported, as the glass eel catches exhibited a negative relationship with precipitation. Hypothesis 2 is plausible. However, the catches are correlated with the NEC bifurcation with a one-year lag. Considering the time needed for larval transport (only four to six months), the one-year lag correlation does not support the direct transport hypothesis. Hypothesis 3 is supported indirectly by the results. Significant correlations were found between catches and climate indices that affect ocean productivity and eddy activities, such as the Quasi Biennial Oscillation (QBO), North Pacific Gyre Oscillation (NPGO), Pacific Decadal Oscillation (PDO), and Western Pacific Oscillation (WPO). Wavelet analysis reveals three periodicities of eel catches: 2.7, 5.4, and 10.3 years. The interannual coherence with QBO and the Niño 3.4 region suggests that the shorter-term climate variability is modulated zonally by equatorial dynamics. The low-frequency coherence with WPO, PDO, and NPGO demonstrates the decadal modulation of meridional teleconnection via ocean-atmosphere interactions. Furthermore, WPO and QBO are linked to solar activities. These results imply that the Japanese eel recruitment may be influenced by multi-timescale climate variability. Our findings call for investigation of extra-tropical ocean dynamics that affect survival of eels during transport, in addition to the existing efforts to study the equatorial system.
Vollset, K W; Mahlum, S; Davidsen, J G; Skoglund, H; Barlaup, B T
2016-10-01
Migration behaviour and estuarine mortality of cultivated Atlantic salmon Salmo salar smolts in a 16 km long estuary were studied using two methods: (1) acoustic telemetry and (2) group tagging in combination with trap nets. Progression rates of surviving individuals through the estuary were relatively slow using both methods [0·38 L T (total length) s -1 v. 0·25 L T s -1 ]. In 2012, the progression rate was slow from the river to the estuary (0·55 L T s -1 ) and the first part of the estuary (0·31 L T s -1 ), but increased thereafter (1·45-2·21 L T s -1 ). In 2013, the progression rate was fast from the river to the estuary (4·31 L T s -1 ) but was slower thereafter (0·18-0·91 L T s -1 ). Survival to the fjord was higher in 2012 (47%) compared to 2013 (6%). Fast moving individuals were more likely to migrate successfully through the estuary compared to slower moving individuals. Adult recapture of coded-wire-tagged S. salar was generally low (0·00-0·04%). Mortality hot spots were related to topographically distinct areas such as the river outlet (in 2012) or the sill separating the estuary and the fjord (in 2013). At the sill, an aggregation of cod Gadus morhua predating on cultivated smolts was identified. The results indicate that slow progression rates through the estuary decreases the likelihood of smolts being detected outside the estuary. The highly stochastic and site-specific mortality patterns observed in this study highlight the complexity in extrapolating mortality patterns of single release groups to the entire smolt run of wild S. salar. © 2016 The Fisheries Society of the British Isles.
Chemical signature of a migrating grain boundaries in polycrystalline olivine
NASA Astrophysics Data System (ADS)
Boneh, Y.; Marquardt, K.; Skemer, P. A.
2017-12-01
Olivine is the most abundant phase and influences strongly the physical and chemical properties of the upper mantle. The structure and chemistry of olivine grain-boundaries is important to understand, as these interfaces provide a reservoir for incompatible elements and partial melt, and serve as a fast pathway for chemical diffusion. This project investigates the chemical characteristics of grain boundaries in an olivine-rich aggregate. The sample is composed of Fo50 olivine crystals with minor amounts of enstatite. It was previously deformed (Hansen et al., 2016) and then annealed (Boneh et al., 2017) to investigate the microstructural changes during recrystallization. This transient microstructure has a bimodal grain size distribution and includes grains that experienced abnormal grain-growth, (porphyroblasts) and highly strained grains with no significant recrystallization or growth (matrix). Using high-resolution transmission electron microscopy (HR-TEM) with energy dispersive X-ray (EDX) at the Bayerisches Geoinstitut (BGI), we characterized boundaries between pairs of porphyroblasts, pairs of matrix grains, and mixed boundaries between porphyroblast and matrix grains. It was found that the boundary between porphyroblasts is enriched in Al and Ca and depleted in Mg, in comparison to grain interiors. However, matrix-matrix boundaries show less chemical segregation of these elements. The relatively high level of chemical segregation to porphyroblast grain boundaries offers different possible interpretations: 1) During grain boundary migration incompatible elements are swept up by the migrating grain boundary. 2) Large angle grain boundaries provide a large density of energetically favorable storage sites for incompatible elements. 3) Diffusion along low angle grain boundaries is too slow to allow for fast chemical equilibration between the different grain boundaries. 4) Dislocations cores serve as an important transport media for impurities (i.e., Cottrell atmosphere). We will further discuss these different interpretations, their feasibility, and implications for the geochemistry of the mantle.
Nakatsuji, N; Johnson, K E
1984-06-01
Using time-lapse cinemicrography and scanning electron microscopy, we have shown that normal Rana embryos and gastrulating hybrid embryos have extracellular fibrils on the inner surface of the ectodermal layer. These fibrils are absent prior to gastrulation and appear in increasing numbers during gastrulation. They can also be deposited in vitro where they condition substrata in such a way that normal presumptive mesodermal cells placed on them show extensive attachment and unoriented cell movement. These fibrils are also present in some arrested hybrid embryos, but in reduced numbers, or are lacking in other arrested hybrid embryos. Explanted ectodermal fragments from arrested hybrid embryos fail both to condition culture substrata by the deposition of fibrils and to promote cell attachment and translocation. In contrast, ectodermal fragments from normal embryos can condition culture substrata so as to promote moderate cell attachment and, for one particular gamete combination, even cell translocation of presumptive mesodermal cells taken from arrested hybrid embryos. These results provide new evidence to support the hypothesis that extracellular fibrils represent a system that promotes mesodermal cell migration in amphibian embryos. Differences in the fibrillar system in urodele and anuran embryos are discussed in relation to fundamental differences in the mode of mesodermal cell migration in these two classes of Amphibia.
Kramer, Merlijn A; Cornelissen, Marion; Paraskevis, Dimitrios; Prins, Maria; Coutinho, Roel A; van Sighem, Ard I; Sabajo, Lesley; Duits, Ashley J; Winkel, Cai N; Prins, Jan M; van der Ende, Marchina E; Kauffmann, Robert H; Op de Coul, Eline L
2011-02-01
We aimed to study patterns of HIV transmission among Suriname, The Netherlands Antilles, and The Netherlands. Fragments of env, gag, and pol genes of 55 HIV-infected Surinamese, Antillean, and Dutch heterosexuals living in The Netherlands and 72 HIV-infected heterosexuals living in Suriname and the Antilles were amplified and sequenced. We included 145 pol sequences of HIV-infected Surinamese, Antillean, and Dutch heterosexuals living in The Netherlands from an observational cohort. All sequences were phylogenetically analyzed by neighbor-joining. Additionally, HIV-1 mobility among ethnic groups was estimated. A phylogenetic tree of all pol sequences showed two Surinamese and three Antillean clusters of related strains, but no clustering between ethnic groups. Clusters included sequences of individuals living in Suriname and the Antilles as well as those who have migrated to The Netherlands. Similar clustering patterns were observed in env and gag. Analysis of HIV mobility among ethnic groups showed significantly lower migration between groups than expected under the hypothesis of panmixis, apart from higher HIV migration between Antilleans in The Netherlands and all other groups. Our study shows that HIV transmission mainly occurs within the ethnic group. This suggests that cultural factors could have a larger impact on HIV mobility than geographic distance.
Dalmarco, Eduardo Monguilhott; Medeiros, Yara Santos
2008-01-01
The mouse model of pleurisy induced by carrageenan is characterized by a significant enhancement of cell migration due to neutrophils 4 h after pleurisy induction. Forty-eight hours after pleurisy induction, a significant increase in cell migration due to mononuclear cells occurs. Recently, studies in our laboratory have demonstrated that cyclosporine A (CsA) inhibits leukocyte migration in the pleural cavity and lungs in the mouse model of pleurisy induced by carrageenan. In the present work we evaluated whether CsA was able to downregulate CD11a/CD18 adhesion molecule in the lungs, as well as TNFα and IL-1β levels in the fluid leakage of the pleural cavity in this model. Our results showed that CsA significantly decreased CD11a/CD18 in the lungs, as well as TNFα and IL-1β levels in the fluid leakage of the pleural cavity 4 h and 48 h after pleurisy induction. It is our hypothesis that the inhibitory effect elicited by CsA upon these adhesion molecules may be also be attributed to the downregulation of TNFα and IL-1β cytokines. PMID:19262158
MtDNA and Y-chromosome variation in Kurdish groups.
Nasidze, Ivan; Quinque, Dominique; Ozturk, Murat; Bendukidze, Nina; Stoneking, Mark
2005-07-01
In order to investigate the origins and relationships of Kurdish-speaking groups, mtDNA HV1 sequences, eleven Y chromosome bi-allelic markers, and 9 Y-STR loci were analyzed among three Kurdish groups: Zazaki and Kurmanji speakers from Turkey, and Kurmanji speakers from Georgia. When compared with published data from other Kurdish groups and from European, Caucasian, and West and Central Asian groups, Kurdish groups are most similar genetically to other West Asian groups, and most distant from Central Asian groups, for both mtDNA and the Y-chromosome. However, Kurdish groups show a closer relationship with European groups than with Caucasian groups based on mtDNA, but the opposite based on the Y-chromosome, indicating some differences in their maternal and paternal histories. The genetic data indicate that the Georgian Kurdish group experienced a bottleneck effect during their migration to the Caucasus, and that they have not had detectable admixture with their geographic neighbours in Georgia. Our results also do not support the hypothesis of the origin of the Zazaki-speaking group being in northern Iran; genetically they are more similar to other Kurdish groups. Genetic analyses of recent events, such as the origins and migrations of Kurdish-speaking groups, can therefore lead to new insights into such migrations.
Non-Brownian dynamics and strategy of amoeboid cell locomotion.
Nishimura, Shin I; Ueda, Masahiro; Sasai, Masaki
2012-04-01
Amoeboid cells such as Dictyostelium discoideum and Madin-Darby canine kidney cells show the non-Brownian dynamics of migration characterized by the superdiffusive increase of mean-squared displacement. In order to elucidate the physical mechanism of this non-Brownian dynamics, a computational model is developed which highlights a group of inhibitory molecules for actin polymerization. Based on this model, we propose a hypothesis that inhibitory molecules are sent backward in the moving cell to accumulate at the rear of cell. The accumulated inhibitory molecules at the rear further promote cell locomotion to form a slow positive feedback loop of the whole-cell scale. The persistent straightforward migration is stabilized with this feedback mechanism, but the fluctuation in the distribution of inhibitory molecules and the cell shape deformation concurrently interrupt the persistent motion to turn the cell into a new direction. A sequence of switching behaviors between persistent motions and random turns gives rise to the superdiffusive migration in the absence of the external guidance signal. In the complex environment with obstacles, this combined process of persistent motions and random turns drives the simulated amoebae to solve the maze problem in a highly efficient way, which suggests the biological advantage for cells to bear the non-Brownian dynamics.
Nam, Seo Hee; Kang, Minkyung; Ryu, Jihye; Kim, Hye-Jin; Kim, Doyeun; Kim, Dae Gyu; Kwon, Nam Hoon; Kim, Sunghoon; Lee, Jung Weon
2016-04-01
The cell-adhesion properties of cancer cells can be targeted to block cancer metastasis. Although cytosolic lysyl-tRNA synthetase (KRS) functions in protein synthesis, KRS on the plasma membrane is involved in cancer metastasis. We hypothesized that KRS is involved in cell adhesion-related signal transduction for cellular migration. To test this hypothesis, colon cancer cells with modulated KRS protein levels were analyzed for cell-cell contact and cell-substrate adhesion properties and cellular behavior. Although KRS suppression decreased expression of cell-cell adhesion molecules, cells still formed colonies without being scattered, supporting an incomplete epithelial mesenchymal transition. Noteworthy, KRS-suppressed cells still exhibited focal adhesions on laminin, with Tyr397-phopshorylated focal adhesion kinase (FAK), but they lacked laminin-adhesion-mediated extracellular signal-regulated kinase (ERK) and paxillin activation. KRS, p67LR and integrin α6β1 were found to interact, presumably to activate ERK for paxillin expression and Tyr118 phosphorylation even without involvement of FAK, so that specific inhibition of ERK or KRS in parental HCT116 cells blocked cell-cell adhesion and cell-substrate properties for focal adhesion formation and signaling activity. Together, these results indicate that KRS can promote cell-cell and cell-ECM adhesion for migration.
Theodorakis, Christopher W.; Bickham, John W.; Lamb, Trip; Medica, Philip A.; Lyne, T. Barrett
2001-01-01
We examined effects of radionuclide exposure at two atomic blast sites on kangaroo rats (Dipodomys merriami) at the Nevada Test Site, Nevada, USA, using genotoxicity and population genetic analyses. We assessed chromosome damage by micronucleus and flow cytometric assays and genetic variation by randomly amplified polymorphic DNA (RAPD) and mitochondrial DNA (mtDNA) analyses. The RAPD analysis showed no population structure, but mtDNA exhibited differentiation among and within populations. Genotoxicity effects were not observed when all individuals were analyzed. However, individuals with mtDNA haplotypes unique to the contaminated sites had greater chromosomal damage than contaminated-site individuals with haplotypes shared with reference sites. When interpopulation comparisons used individuals with unique haplotypes, one contaminated site had greater levels of chromosome damage than one or both of the reference sites. We hypothesize that shared-haplotype individuals are potential migrants and that unique-haplotype individuals are potential long-term residents. A parsimony approach was used to estimate the minimum number of migration events necessary to explain the haplotype distributions on a phylogenetic tree. The observed predominance of migration events into the contaminated sites supported our migration hypothesis. We conclude the atomic blast sites are ecological sinks and that immigration masks the genotoxic effects of radiation on the resident populations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Feng; Jordan, Ashley; Kluz, Thomas
The special AT-rich sequence-binding protein 2 (SATB2) is a protein that binds to the nuclear matrix attachment region of the cell and regulates gene expression by altering chromatin structure. In our previous study, we reported that SATB2 gene expression was induced in human bronchial epithelial BEAS-2B cells transformed by arsenic, chromium, nickel and vanadium. In this study, we show that ectopic expression of SATB2 in the normal human bronchial epithelial cell-line BEAS-2B increased anchorage-independent growth and cell migration, meanwhile, shRNA-mediated knockdown of SATB2 significantly decreased anchorage-independent growth in Ni transformed BEAS-2B cells. RNA sequencing analyses of SATB2 regulated genes revealedmore » the enrichment of those involved in cytoskeleton, cell adhesion and cell-movement pathways. Our evidence supports the hypothesis that SATB2 plays an important role in BEAS-2B cell transformation. - Highlights: • We performed SATB2 overexpression in the BEAS-2B cell line. • We performed SATB2 knockdown in a Ni transformed BEAS-2B cell line. • SATB2 induced anchorage-independent growth and increased cell migration. • SATB2 knockdown significantly decreased anchorage-independent growth. • We identified alterations in gene involved in cytoskeleton, cell adhesion.« less
Archer fish fast hunting maneuver may be guided by directionally selective retinal ganglion cells.
Tsvilling, Vadim; Donchin, Opher; Shamir, Maoz; Segev, Ronen
2012-02-01
Archer fish are known for their unique hunting method, where one fish in a group shoots down an insect with a jet of water while all the other fish are observing the prey's motion. To reap its reward, the archer fish must reach the prey before its competitors. This requires fast computation of the direction of motion of the prey, which enables the fish to initiate a turn towards the prey with an accuracy of 99%, at about 100 ms after the prey is shot. We explored the hypothesis that direction-selective retinal ganglion cells may underlie this rapid processing. We quantified the degree of directional selectivity of ganglion cells in the archer fish retina. The cells could be categorized into three groups: sharply (5%), broadly (37%) and non-tuned (58%) directionally selective cells. To relate the electrophysiological data to the behavioral results we studied a computational model and estimated the time required to accumulate sufficient directional information to match the decision accuracy of the fish. The computational model is based on two direction-selective populations that race against each other until one reaches the threshold and drives the decision. We found that this competition model can account for the observed response time at the required accuracy. Thus, our results are consistent with the hypothesis that the fast response behavior of the archer fish relies on retinal identification of movement direction. © 2012 The Authors. European Journal of Neuroscience © 2012 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.