Sample records for fat cell beta

  1. High-fat, carbohydrate-free diet markedly aggravates obesity but prevents beta-cell loss and diabetes in the obese, diabetes-susceptible db/db strain.

    PubMed

    Mirhashemi, Farshad; Kluth, Oliver; Scherneck, Stephan; Vogel, Heike; Kluge, Reinhart; Schurmann, Annette; Joost, Hans-Georg; Neschen, Susanne

    2008-01-01

    We have previously reported that a high-fat, carbohydrate-free diet prevents diabetes and beta-cell destruction in the New Zealand Obese (NZO) mouse strain. Here we investigated the effect of diets with and without carbohydrates on obesity and development of beta-cell failure in a second mouse model of type 2 diabetes, the db/db mouse. When kept on a carbohydrate-containing standard (SD; with (w/w) 5.1, 58.3, and 17.6% fat, carbohydrates and protein, respectively) or high-fat diet (HFD; 14.6, 46.7 and 17.1%), db/db mice developed severe diabetes (blood glucose >20 mmol/l, weight loss, polydipsia and polyurea) associated with a selective loss of pancreatic beta-cells, reduced GLUT2 expression in the remaining beta-cells, and reduced plasma insulin levels. In contrast, db/db mice kept on a high-fat, carbohydrate-free diet (CFD; with 30.2 and 26.4% (w/w) fat or protein) did not develop diabetes and exhibited near-normal, hyperplastic islets in spite of a morbid obesity (fat content >60%) associated with hyperinsulinaemia. These data indicate that in genetically different mouse models of obesity-associated diabetes, obesity and dietary fat are not sufficient, and dietary carbohydrates are required, for beta-cell destruction.

  2. Preadipocyte 11beta-hydroxysteroid dehydrogenase type 1 is a keto-reductase and contributes to diet-induced visceral obesity in vivo.

    PubMed

    De Sousa Peixoto, R A; Turban, S; Battle, J H; Chapman, K E; Seckl, J R; Morton, N M

    2008-04-01

    Glucocorticoid excess promotes visceral obesity and cardiovascular disease. Similar features are found in the highly prevalent metabolic syndrome in the absence of high levels of systemic cortisol. Although elevated activity of the glucocorticoid-amplifying enzyme 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1) within adipocytes might explain this paradox, the potential role of 11beta-HSD1 in preadipocytes is less clear; human omental adipose stromal vascular (ASV) cells exhibit 11beta-dehydrogenase activity (inactivation of glucocorticoids) probably due to the absence of cofactor provision by hexose-6-phosphate dehydrogenase. To clarify the depot-specific impact of 11beta-HSD1, we assessed whether preadipocytes in ASV from mesenteric (as a representative of visceral adipose tissue) and sc tissue displayed 11beta-HSD1 activity in mice. 11beta-HSD1 was highly expressed in freshly isolated ASV cells, predominantly in preadipocytes. 11beta-HSD1 mRNA and protein levels were comparable between ASV and adipocyte fractions in both depots. 11beta-HSD1 was an 11beta-reductase, thus reactivating glucocorticoids in ASV cells, consistent with hexose-6-phosphate dehydrogenase mRNA expression. Unexpectedly, glucocorticoid reactivation was higher in intact mesenteric ASV cells despite a lower expression of 11beta-HSD1 mRNA and protein (homogenate activity) levels than sc ASV cells. This suggests a novel depot-specific control over 11beta-HSD1 enzyme activity. In vivo, high-fat diet-induced obesity was accompanied by increased visceral fat preadipocyte differentiation in wild-type but not 11beta-HSD1(-/-) mice. The results suggest that 11beta-HSD1 reductase activity is augmented in mouse mesenteric preadipocytes where it promotes preadipocyte differentiation and contributes to visceral fat accumulation in obesity.

  3. Effects of exendin-4 on glucose tolerance, insulin secretion, and beta-cell proliferation depend on treatment dose, treatment duration and meal contents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arakawa, Masayuki; Ebato, Chie; Mita, Tomoya

    2009-12-18

    Beta-cell proliferation is regulated by various metabolic demands including peripheral insulin resistance, obesity, and hyperglycemia. In addition to enhancement of glucose-induced insulin secretion, agonists for glucagon-like peptide-1 receptor (GLP-1R) stimulate proliferation and inhibit apoptosis of beta-cells, thereby probably preserve beta-cell mass. To evaluate the beta-cell preserving actions of GLP-1R agonists, we assessed the acute and chronic effects of exendin-4 on beta-cell proliferation, mass and glucose tolerance in C57BL/6J mice under various conditions. Short-term administration of high-dose exendin-4 transiently stimulated beta-cell proliferation. Comparative transcriptomic analysis showed upregulation of IGF-1 receptor and its downstream effectors in islets. Treatment of mice with exendin-4more » daily for 4 weeks (long-term administration) and feeding high-fat diet resulted in significant inhibition of weight gain and improvement of glucose tolerance with reduced insulin secretion and beta-cell mass. These findings suggest that long-term GLP-1 treatment results in insulin sensitization of peripheral organs, rather than enhancement of beta-cell proliferation and function, particularly when animals are fed high-fat diet. Thus, the effects of exendin-4 on glucose tolerance, insulin secretion, and beta-cell proliferation largely depend on treatment dose, duration of treatment and meal contents. While GLP-1 enhances proliferation of beta-cells in some diabetic mice models, our results suggest that GLP-1 stimulates beta-cell growth only when expansion of beta-cell mass is required to meet metabolic demands.« less

  4. IKKβ inhibition prevents fat-induced beta cell dysfunction in vitro and in vivo in rodents.

    PubMed

    Ivovic, Aleksandar; Oprescu, Andrei I; Koulajian, Khajag; Mori, Yusaku; Eversley, Judith A; Zhang, Liling; Nino-Fong, Rodolfo; Lewis, Gary F; Donath, Marc Y; Karin, Michael; Wheeler, Michael B; Ehses, Jan; Volchuk, Allen; Chan, Catherine B; Giacca, Adria

    2017-10-01

    We have previously shown that oxidative stress plays a causal role in beta cell dysfunction induced by fat. Here, we address whether the proinflammatory kinase inhibitor of (nuclear factor) κB kinase β (IKKβ), which is activated by oxidative stress, is also implicated. Fat (oleate or olive oil) was infused intravenously in Wistar rats for 48 h with or without the IKKβ inhibitor salicylate. Thereafter, beta cell function was evaluated in vivo using hyperglycaemic clamps or ex vivo in islets isolated from fat-treated rats. We also exposed rat islets to oleate in culture, with or without salicylate and 4(2'-aminoethyl)amino-1,8-dimethylimidazo(1,2-a)quinoxaline; BMS-345541 (BMS, another inhibitor of IKKβ) and evaluated beta cell function in vitro. Furthermore, oleate was infused in mice treated with BMS and in beta cell-specific Ikkb-null mice. 48 h infusion of fat impaired beta-cell function in vivo, assessed using the disposition index (DI), in rats (saline: 1.41 ± 0.13; oleate: 0.95 ± 0.11; olive oil [OLO]: 0.87 ± 0.15; p < 0.01 for both fats vs saline) and in mice (saline: 2.51 ± 0.39; oleate: 1.20 ± 0.19; p < 0.01 vs saline) and ex vivo (i.e., insulin secretion, units are pmol insulin islet -1  h -1 ) in rat islets (saline: 1.51 ± 0.13; oleate: 1.03 ± 0.10; OLO: 0.91 ± 0.13; p < 0.001 for both fats vs saline) and the dysfunction was prevented by co-infusion of salicylate in rats (oleate + salicylate: 1.30 ± 0.09; OLO + salicylate: 1.33 ± 0.23) or BMS in mice (oleate + BMS: 2.25 ± 0.42) in vivo and by salicylate in rat islets ex vivo (oleate + salicylate: 1.74 ± 0.31; OLO + salicylate: 1.54 ± 0.29). In cultured islets, 48 h exposure to oleate impaired beta-cell function ([in pmol insulin islet -1  h -1 ] control: 0.66 ± 0.12; oleate: 0.23 ± 0.03; p < 0.01 vs saline), an effect prevented by both inhibitors (oleate + salicylate: 0.98 ± 0.08; oleate + BMS: 0.50 ± 0.02). Genetic inhibition of IKKβ also prevented fat-induced beta-cell dysfunction ex vivo ([in pmol insulin islet -1  h -1 ] control saline: 0.16 ± 0.02; control oleate: 0.10 ± 0.02; knockout oleate: 0.17 ± 0.04; p < 0.05 control saline vs. control oleate) and in vivo (DI: control saline: 3.86 ± 0.40; control oleate: 1.95 ± 0.29; knockout oleate: 2.96 ± 0.24; p < 0.01 control saline vs control oleate). Our results demonstrate a causal role for IKKβ in fat-induced beta cell dysfunction in vitro, ex vivo and in vivo.

  5. Exercise training decreases pancreatic fat content and improves beta cell function regardless of baseline glucose tolerance: a randomised controlled trial.

    PubMed

    Heiskanen, Marja A; Motiani, Kumail K; Mari, Andrea; Saunavaara, Virva; Eskelinen, Jari-Joonas; Virtanen, Kirsi A; Koivumäki, Mikko; Löyttyniemi, Eliisa; Nuutila, Pirjo; Kalliokoski, Kari K; Hannukainen, Jarna C

    2018-05-02

    Pancreatic fat accumulation may contribute to the development of beta cell dysfunction. Exercise training improves whole-body insulin sensitivity, but its effects on pancreatic fat content and beta cell dysfunction are unclear. The aim of this parallel-group randomised controlled trial was to evaluate the effects of exercise training on pancreatic fat and beta cell function in healthy and prediabetic or type 2 diabetic participants and to test whether the responses were similar regardless of baseline glucose tolerance. Using newspaper announcements, a total of 97 sedentary 40-55-year-old individuals were assessed for eligibility. Prediabetes (impaired fasting glucose and/or impaired glucose tolerance) and type 2 diabetes were defined by ADA criteria. Of the screened candidates, 28 healthy men and 26 prediabetic or type 2 diabetic men and women met the inclusion criteria and were randomised into 2-week-long sprint interval or moderate-intensity continuous training programmes in a 1:1 allocation ratio using random permuted blocks. The primary outcome was pancreatic fat, which was measured by magnetic resonance spectroscopy. As secondary outcomes, beta cell function was studied using variables derived from OGTT, and whole-body insulin sensitivity and pancreatic fatty acid and glucose uptake were measured using positron emission tomography. The measurements were carried out at the Turku PET Centre, Finland. The analyses were based on an intention-to-treat principle. Given the nature of the intervention, blinding was not applicable. At baseline, the group of prediabetic or type 2 diabetic men had a higher pancreatic fat content and impaired beta cell function compared with the healthy men, while glucose and fatty acid uptake into the pancreas was similar. Exercise training decreased pancreatic fat similarly in healthy (from 4.4% [3.0%, 6.1%] to 3.6% [2.4%, 5.2%] [mean, 95% CI]) and prediabetic or type 2 diabetic men (from 8.7% [6.0%, 11.9%] to 6.7% [4.4%, 9.6%]; p = 0.036 for time effect) without any changes in pancreatic substrate uptake (p ≥ 0.31 for time effect in both insulin-stimulated glucose and fasting state fatty acid uptake). In prediabetic or type 2 diabetic men and women, both exercise modes similarly improved variables describing beta cell function. Two weeks of exercise training improves beta cell function in prediabetic or type 2 diabetic individuals and decreases pancreatic fat regardless of baseline glucose tolerance. This study shows that short-term training efficiently reduces ectopic fat within the pancreas, and exercise training may therefore reduce the risk of type 2 diabetes. ClinicalTrials.gov NCT01344928 FUNDING: This study was funded by the Emil Aaltonen Foundation, the European Foundation for the Study of Diabetes, the Finnish Diabetes Foundation, the Orion Research Foundation, the Academy of Finland (grants 251399, 256470, 281440, and 283319), the Ministry of Education of the State of Finland, the Paavo Nurmi Foundation, the Novo Nordisk Foundation, the Finnish Cultural Foundation, the Hospital District of Southwest Finland, the Turku University Foundation, and the Finnish Medical Foundation.

  6. Topologically heterogeneous beta cell adaptation in response to high-fat diet in mice.

    PubMed

    Ellenbroek, Johanne H; Töns, Hendrica A; de Graaf, Natascha; Loomans, Cindy J; Engelse, Marten A; Vrolijk, Hans; Voshol, Peter J; Rabelink, Ton J; Carlotti, Françoise; de Koning, Eelco J

    2013-01-01

    Beta cells adapt to an increased insulin demand by enhancing insulin secretion via increased beta cell function and/or increased beta cell number. While morphological and functional heterogeneity between individual islets exists, it is unknown whether regional differences in beta cell adaptation occur. Therefore we investigated beta cell adaptation throughout the pancreas in a model of high-fat diet (HFD)-induced insulin resistance in mice. C57BL/6J mice were fed a HFD to induce insulin resistance, or control diet for 6 weeks. The pancreas was divided in a duodenal (DR), gastric (GR) and splenic (SR) region and taken for either histology or islet isolation. The capacity of untreated islets from the three regions to adapt in an extrapancreatic location was assessed by transplantation under the kidney capsule of streptozotocin-treated mice. SR islets showed 70% increased beta cell proliferation after HFD, whereas no significant increase was found in DR and GR islets. Furthermore, isolated SR islets showed twofold enhanced glucose-induced insulin secretion after HFD, as compared with DR and GR islets. In contrast, transplantation of islets isolated from the three regions to an extrapancreatic location in diabetic mice led to a similar decrease in hyperglycemia and no difference in beta cell proliferation. HFD-induced insulin resistance leads to topologically heterogeneous beta cell adaptation and is most prominent in the splenic region of the pancreas. This topological heterogeneity in beta cell adaptation appears to result from extrinsic factors present in the islet microenvironment.

  7. Impaired compensatory beta-cell function and growth in response to high-fat diet in LDL receptor knockout mice

    PubMed Central

    Oliveira, Ricardo B d; Carvalho, Carolina P d F; Polo, Carla C; Dorighello, Gabriel d G; Boschero, Antônio C; Oliveira, Helena C F d; Collares-Buzato, Carla B

    2014-01-01

    In this study, we investigated the effect of low density lipoprotein receptor (LDLr) deficiency on gap junctional connexin 36 (Cx36) islet content and on the functional and growth response of pancreatic beta-cells in C57BL/6 mice fed a high-fat (HF) diet. After 60 days on regular or HF diet, the metabolic state and morphometric islet parameters of wild-type (WT) and LDLr−/− mice were assessed. HF diet-fed WT animals became obese and hypercholesterolaemic as well as hyperglycaemic, hyperinsulinaemic, glucose intolerant and insulin resistant, characterizing them as prediabetic. Also they showed a significant decrease in beta-cell secretory response to glucose. Overall, LDLr−/− mice displayed greater susceptibility to HF diet as judged by their marked cholesterolaemia, intolerance to glucose and pronounced decrease in glucose-stimulated insulin secretion. HF diet induced similarly in WT and LDLr−/− mice, a significant decrease in Cx36 beta-cell content as revealed by immunoblotting. Prediabetic WT mice displayed marked increase in beta-cell mass mainly due to beta-cell hypertrophy/replication. Nevertheless, HF diet-fed LDLr−/− mice showed no significant changes in beta-cell mass, but lower islet–duct association (neogenesis) and higher beta-cell apoptosis index were seen as compared to controls. The higher metabolic susceptibility to HF diet of LDLr−/− mice may be explained by a deficiency in insulin secretory response to glucose associated with lack of compensatory beta-cell expansion. PMID:24853046

  8. Distinctive postprandial modulation of beta cell function and insulin sensitivity by dietary fats: monounsaturated compared with saturated fatty acids.

    PubMed

    López, Sergio; Bermúdez, Beatriz; Pacheco, Yolanda M; Villar, José; Abia, Rocío; Muriana, Francisco J G

    2008-09-01

    Exaggerated and prolonged postprandial triglyceride concentrations are associated with numerous conditions related to insulin resistance, including obesity, type 2 diabetes, and the metabolic syndrome. Although dietary fats profoundly affect postprandial hypertriglyceridemia, limited data exist regarding their effects on postprandial glucose homeostasis. We sought to determine whether postprandial glucose homeostasis is modulated distinctly by high-fat meals enriched in saturated fatty acids (SFAs) or monounsaturated fatty acids (MUFAs). Normotriglyceridemic subjects with normal fasting glucose and normal glucose tolerance were studied. Blood samples were collected over the 8 h after ingestion of a glucose and triglyceride tolerance test meal (GTTTM) in which a panel of dietary fats with a gradual change in the ratio of MUFAs to SFAs was included. On 5 separate occasions, basal and postprandial concentrations of glucose, insulin, triglyceride, and free fatty acids (FFAs) were measured. High-fat meals increased the postprandial concentrations of insulin, triglycerides, and FFAs, and they enhanced postprandial beta cell function while decreasing insulin sensitivity (as assessed with different model-based and empirical indexes: insulinogenic index, insulinogenic index/homeostasis model assessment of insulin resistance, area under the curve for insulin/area under the curve for glucose, homeostasis model assessment for beta cell function, and GTTTM-determined insulin sensitivity, oral glucose insulin sensitivity, and the postprandial Belfiore indexes for glycemia and blood FFAs. These effects were significantly ameliorated, in a direct linear relation, when MUFAs were substituted for SFAs. The data presented here suggest that beta cell function and insulin sensitivity progressively improve in the postprandial state as the proportion of MUFAs with respect to SFAs in dietary fats increases.

  9. Influence of somatic cell count and breed on capillary electrophoretic protein profiles of ewes' milk: a chemometric study.

    PubMed

    Rodríguez-Nogales, J M; Vivar-Quintana, A M; Revilla, I

    2007-07-01

    Bulk tank ewe milk from the Assaf, Castellana, and Churra breeds categorized into 3 somatic cell count (SCC) groups (<500,000; 1,000,000 to 1,500,000; and >2,500,000 cells/mL) was used to investigate changes in chemical composition and capillary electrophoresis protein profiles. The results obtained indicated that breed affected fat, protein, and total solids levels, and differences were also observed for the following milk proteins: beta-, beta1-, beta2-, and alpha(s1)-III-casein, alpha-lactalbumin, and beta-lactoglobulin. High SCC affected fat and protein contents and bacterial counts. The level of beta1-, beta2-, and alpha(s1)-I-casein, and alpha-lactalbumin were significantly lower in milk with SCC scores >2,500,000 cells/mL. A preliminary study of the chemical, microbiological, and electrophoretic data was performed by cluster analysis and principal components analysis. Applying discriminant analysis, it was possible to group the milk samples according to breed and level of SCC, obtaining a prediction of 100 and 97% of the samples, respectively.

  10. Shear induced phase transitions induced in edible fats

    NASA Astrophysics Data System (ADS)

    Mazzanti, Gianfranco; Welch, Sarah E.; Marangoni, Alejandro G.; Sirota, Eric B.; Idziak, Stefan H. J.

    2003-03-01

    The food industry crystallizes fats under different conditions of temperature and shear to obtain products with desired crystalline phases. Milk fat, palm oil, cocoa butter and chocolate were crystallized from the melt in a temperature controlled Couette cell. Synchrotron x-ray diffraction studies were conducted to examine the role of shear on the phase transitions seen in edible fats. The shear forces on the crystals induced acceleration of the alpha to beta-prime phase transition with increasing shear rate in milk fat and palm oil. The increase was slow at low shear rates and became very strong above 360 s-1. In cocoa butter the acceleration between beta-prime-III and beta-V phase transition increased until a maximum of at 360 s-1, and then decreased, showing competition between enhanced heat transfer and viscous heat generation.

  11. Pancreas Volume and Fat Deposition in Diabetes and Normal Physiology: Consideration of the Interplay Between Endocrine and Exocrine Pancreas.

    PubMed

    Saisho, Yoshifumi

    2016-01-01

    The pancreas is comprised of exocrine and endocrine components. Despite the fact that they are derived from a common origin in utero, these two compartments are often studied individually because of the different roles and functions of the exocrine and endocrine pancreas. Recent studies have shown that not only type 1 diabetes (T1D), but also type 2 diabetes (T2D), is characterized by a deficit in beta-cell mass, suggesting that pathological changes in the pancreas are critical events in the natural history of diabetes. In both patients with T1D and those with T2D, pancreas mass and exocrine function have been reported to be reduced. On the other hand, pancreas volume and pancreatic fat increase with obesity. Increased beta-cell mass with increasing obesity has also been observed in humans, and ectopic fat deposits in the pancreas have been reported to cause beta-cell dysfunction. Moreover, neogenesis and transdifferentiation from the exocrine to the endocrine compartment in the postnatal period are regarded as a source of newly formed beta-cells. These findings suggest that there is important interplay between the endocrine and exocrine pancreas throughout life. This review summarizes the current knowledge on physiological and pathological changes in the exocrine and endocrine pancreas (i.e., beta-cell mass), and discusses the potential mechanisms of the interplay between the two compartments in humans to understand the pathophysiology of diabetes better.

  12. Pancreas Volume and Fat Deposition in Diabetes and Normal Physiology: Consideration of the Interplay Between Endocrine and Exocrine Pancreas

    PubMed Central

    Saisho, Yoshifumi

    2016-01-01

    The pancreas is comprised of exocrine and endocrine components. Despite the fact that they are derived from a common origin in utero, these two compartments are often studied individually because of the different roles and functions of the exocrine and endocrine pancreas. Recent studies have shown that not only type 1 diabetes (T1D), but also type 2 diabetes (T2D), is characterized by a deficit in beta-cell mass, suggesting that pathological changes in the pancreas are critical events in the natural history of diabetes. In both patients with T1D and those with T2D, pancreas mass and exocrine function have been reported to be reduced. On the other hand, pancreas volume and pancreatic fat increase with obesity. Increased beta-cell mass with increasing obesity has also been observed in humans, and ectopic fat deposits in the pancreas have been reported to cause beta-cell dysfunction. Moreover, neogenesis and transdifferentiation from the exocrine to the endocrine compartment in the postnatal period are regarded as a source of newly formed beta-cells. These findings suggest that there is important interplay between the endocrine and exocrine pancreas throughout life. This review summarizes the current knowledge on physiological and pathological changes in the exocrine and endocrine pancreas (i.e., beta-cell mass), and discusses the potential mechanisms of the interplay between the two compartments in humans to understand the pathophysiology of diabetes better. PMID:28012279

  13. A Plant-Based Dietary Intervention Improves Beta-Cell Function and Insulin Resistance in Overweight Adults: A 16-Week Randomized Clinical Trial.

    PubMed

    Kahleova, Hana; Tura, Andrea; Hill, Martin; Holubkov, Richard; Barnard, Neal D

    2018-02-09

    The aim of this study was to test the effect of a plant-based dietary intervention on beta-cell function in overweight adults with no history of diabetes. Participants ( n = 75) were randomized to follow a low-fat plant-based diet ( n = 38) or to make no diet changes ( n = 37) for 16 weeks. At baseline and 16 weeks, beta-cell function was quantified with a mathematical model. Using a standard meal test, insulin secretory rate was calculated by C-peptide deconvolution. The Homeostasis Model Assessment (HOMA-IR) index was used to assess insulin resistance while fasting. A marked increase in meal-stimulated insulin secretion was observed in the intervention group compared with controls (interaction between group and time, Gxt, p < 0.001). HOMA-IR index fell significantly ( p < 0.001) in the intervention group (treatment effect -1.0 (95% CI, -1.2 to -0.8); Gxt, p = 0.004). Changes in HOMA-IR correlated positively with changes in body mass index (BMI) and visceral fat volume ( r = 0.34; p = 0.009 and r = 0.42; p = 0.001, respectively). The latter remained significant after adjustment for changes in BMI ( r = 0.41; p = 0.002). Changes in glucose-induced insulin secretion correlated negatively with BMI changes ( r = -0.25; p = 0.04), but not with changes in visceral fat. Beta-cell function and insulin sensitivity were significantly improved through a low-fat plant-based diet in overweight adults.

  14. Capillary liquid chromatographic analysis of fat-soluble vitamins and beta-carotene in combination with in-tube solid-phase microextraction.

    PubMed

    Xu, Hui; Jia, Li

    2009-01-01

    A capillary liquid chromatography (CLC) system with UV/vis detection was coupled with an in-tube solid-phase microextraction (SPME) device for the analysis of fat-soluble vitamins and beta-carotene. A monolithic silica-ODS column was used as the extraction medium. An optical-fiber flow cell with a long light path in the UV/vis detector was utilized to further enhance the detection sensitivity. In the in-tube SPME/CLC system, the pre-condition of the extraction column and the effect of the injection volume were investigated. The detection limits (LOD) for the fat-soluble vitamins and beta-carotene were in the range from 1.9 to 173 ng/mL based on the signal-to-noise ratio of 3 (S/N=3). The relative standard deviations of migration time and peak area for each analyte were less than 5.0%. The method was applied to the analysis of fat-soluble vitamins and beta-carotene contents in corns.

  15. High fat programming of beta cell compensation, exhaustion, death and dysfunction.

    PubMed

    Cerf, Marlon E

    2015-03-01

    Programming refers to events during critical developmental windows that shape progeny health outcomes. Fetal programming refers to the effects of intrauterine (in utero) events. Lactational programming refers to the effects of events during suckling (weaning). Developmental programming refers to the effects of events during both fetal and lactational life. Postnatal programming refers to the effects of events either from birth (lactational life) to adolescence or from weaning (end of lactation) to adolescence. Islets are most plastic during the early life course; hence programming during fetal and lactational life is most potent. High fat (HF) programming is the maintenance on a HF diet (HFD) during critical developmental life stages that alters progeny metabolism and physiology. HF programming induces variable diabetogenic phenotypes dependent on the timing and duration of the dietary insult. Maternal obesity reinforces HF programming effects in progeny. HF programming, through acute hyperglycemia, initiates beta cell compensation. However, HF programming eventually leads to chronic hyperglycemia that triggers beta cell exhaustion, death and dysfunction. In HF programming, beta cell dysfunction often co-presents with insulin resistance. Balanced, healthy nutrition during developmental windows is critical for preserving beta cell structure and function. Thus early positive nutritional interventions that coincide with the development of beta cells may reduce the overwhelming burden of diabetes and metabolic disease. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  16. The cardio-protective diet

    PubMed Central

    Sivasankaran, S.

    2010-01-01

    Globalization has made calorie rich, cheap, convenient marketed foods the main menu for the common man. Indians are particularly susceptible to the adverse outcomes of this dietary change because of ethnic, epigenetic reasons and sarcopenic adiposity (less muscle more fat for the same body weight). Children have smaller body frame making them more susceptible to adverse effects of hyperglycaemia leading to stress on beta cells and their damage. This has resulted in escalation of lifestyle diseases by three-fold, that too at our younger age group at lower body mass indices. Preventive measures are necessary in early life to protect the beta cells, to achieve a metabolically healthy society. This will help in sustaining optimal beta cell function throughout a person’s life. Modification in dietary habits by educating the society, proper food labelling and legal regulation, restricting calorie, sugar, saturated fat, trans-fat and salt intake has proved its benefits in the developed world. Changes in the quality of food is as important as restricting calorie intake. This includes facilitation of increased consumption of dietary fiber, complex carbohydrates, nuts, fruits and vegetables. Restrictions are needed to reduce trans-fats, saturated fats and cooking habits such as deep frying which oxidizes cholesterol and lipids. Foods with long shelf-life shorten the life line because of their salt, sugar or trans-fat content. Individual meals need to be targeted in the general dietary guidelines, to minimize the post-prandial metabolic insult. In general, we need healthy start to early life particularly the first twenty years of life so that the habits cultured during childhood are sustained for the rest of productive years. PMID:21150013

  17. Adaptive changes in pancreas post Roux-en-Y gastric bypass induced weight loss.

    PubMed

    Lautenbach, A; Wernecke, M; Riedel, N; Veigel, J; Yamamura, J; Keller, S; Jung, R; Busch, P; Mann, O; Knop, F K; Holst, J J; Meier, J J; Aberle, J

    2018-05-16

    Obesity has been shown to trigger adaptive increases in pancreas parenchymal and fat volume. Consecutively, pancreatic steatosis may lead to beta-cell dysfunction. However, it is not known, whether the pancreatic tissue components decrease with weight loss and pancreatic steatosis is reversible following RYGB. Therefore, the objective of the study was to investigate the effects of RYGB-induced weight loss on pancreatic volume and glucose homeostasis. 11 patients were recruited in the Obesity Centre of the University Medical Centre Hamburg-Eppendorf. Before and 6 months after RYGB, total GLP-1 levels were measured during OGTT. To assess changes in visceral adipose tissue and pancreatic volume, MRI was performed. Measures of glucose homeostasis and insulin indices were assessed. Fractional beta-cell area was estimated by correlation with the C-peptide-to-glucose ratio, beta-cell mass was calculated by the product of beta-cell area and pancreas parenchymal weight. Pancreas volume decreased from 83.8 (75.7-92.0) to 70.5 (58.8-82.3) cm 3 [mean (95% CI), p=0.001]. The decrease in total volume was associated with a significant decrease in fat volume. Fasting insulin and C-peptide were lower post RYGB. HOMA-IR levels decreased, whereas insulin sensitivity increased (p=0.03). This was consistent with a reduction in the estimated beta-cell area and mass. Following RYGB, pancreatic volume and steatosis adaptively decreased to "normal" levels with accompanying improvement in glucose homeostasis. Moreover, obesity-driven beta-cell expansion seems to be reversible, however future studies must define a method to more accurately estimate functional beta-cell mass to increase our understanding of glucose homeostasis after RYGB. This article is protected by copyright. All rights reserved.

  18. Short-term hyperthyroidism modulates adenosine receptors and catalytic activity of adenylate cyclase in adipocytes.

    PubMed Central

    Rapiejko, P J; Malbon, C C

    1987-01-01

    The effects of short-term hyperthyroidism in vivo on the status of the components of the fat-cell hormone-sensitive adenylate cyclase were investigated. The number of beta-adrenergic receptors was elevated by about 25% in membranes of fat-cells isolated from hyperthyroid rats as compared with euthyroid rats, but their affinity for radioligand was unchanged. Membranes of hyperthyroid-rat fat-cells displayed less than 65% of the normal complement of receptors for [3H]cyclohexyladenosine. The affinity of the receptors for this ligand was normal. In contrast with the marked increase in the amounts of the alpha-subunits of the guanine nucleotide-binding proteins Gi (Mr 41,000) and Go (Mr 39,000) observed in the hypothyroid state [Malbon, Rapiejko & Mangano (1985) J. Biol. Chem. 260, 2558-2564], the amounts of alpha-Gi, alpha-Go as well as alpha-Gs subunits [Mr 42,000 (major) and 46,000/48,000 (minor)] were not changed by hyperthyroidism. Adenylate cyclase activity in response to forskolin, guanosine 5'-[gamma-thio]triphosphate or isoprenaline, in contrast, was decreased by 30-50% in fat-cell membranes from hyperthyroid rats. Fat-cells isolated from hyperthyroid rats accumulated cyclic AMP to less than 50% of the extent in their euthyroid counterparts in the presence of adenosine deaminase and either adrenaline or forskolin, suggesting a decrease in the amount or activity of the catalytic subunit of adenylate cyclase. In the absence of exogenous adenosine deaminase, cyclic AMP accumulation in response to adrenaline was elevated rather than decreased in fat-cells from hyperthyroid rats. The inhibitory influence of adenosine is apparently limited in the hyperthyroid state by the decreased complement of inhibitory R-site purinergic receptors in these fat-cells. Short-term hyperthyroidism modulates the fat-cell adenylate cyclase system at the receptor level (beta-receptor number increased, R-site purinergic-receptor number decreased) and the catalytic subunit of adenylate cyclase. Images Fig. 2. PMID:3036073

  19. A beta cell ATGL-lipolysis/adipose tissue axis controls energy homeostasis and body weight via insulin secretion in mice.

    PubMed

    Attané, Camille; Peyot, Marie-Line; Lussier, Roxane; Poursharifi, Pegah; Zhao, Shangang; Zhang, Dongwei; Morin, Johane; Pineda, Marco; Wang, Shupei; Dumortier, Olivier; Ruderman, Neil B; Mitchell, Grant A; Simons, Brigitte; Madiraju, S R Murthy; Joly, Erik; Prentki, Marc

    2016-12-01

    To directly assess the role of beta cell lipolysis in insulin secretion and whole-body energy homeostasis, inducible beta cell-specific adipose triglyceride lipase (ATGL)-deficient (B-Atgl-KO) mice were studied under normal diet (ND) and high-fat diet (HFD) conditions. Atgl flox/flox mice were cross-bred with Mip-Cre-ERT mice to generate Mip-Cre-ERT /+ ;Atgl flox/flox mice. At 8 weeks of age, these mice were injected with tamoxifen to induce deletion of beta cell-specific Atgl (also known as Pnpla2), and the mice were fed an ND or HFD. ND-fed male B-Atgl-KO mice showed decreased insulinaemia and glucose-induced insulin secretion (GSIS) in vivo. Changes in GSIS correlated with the islet content of long-chain saturated monoacylglycerol (MAG) species that have been proposed to be metabolic coupling factors for insulin secretion. Exogenous MAGs restored GSIS in B-Atgl-KO islets. B-Atgl-KO male mice fed an HFD showed reduced insulinaemia, glycaemia in the fasted and fed states and after glucose challenge, as well as enhanced insulin sensitivity. Moreover, decreased insulinaemia in B-Atgl-KO mice was associated with increased energy expenditure, and lipid metabolism in brown (BAT) and white (WAT) adipose tissues, leading to reduced fat mass and body weight. ATGL in beta cells regulates insulin secretion via the production of signalling MAGs. Decreased insulinaemia due to lowered GSIS protects B-Atgl-KO mice from diet-induced obesity, improves insulin sensitivity, increases lipid mobilisation from WAT and causes BAT activation. The results support the concept that fuel excess can drive obesity and diabetes via hyperinsulinaemia, and that an islet beta cell ATGL-lipolysis/adipose tissue axis controls energy homeostasis and body weight via insulin secretion.

  20. High beta-palmitate fat controls the intestinal inflammatory response and limits intestinal damage in mucin Muc2 deficient mice.

    PubMed

    Lu, Peng; Bar-Yoseph, Fabiana; Levi, Liora; Lifshitz, Yael; Witte-Bouma, Janneke; de Bruijn, Adrianus C J M; Korteland-van Male, Anita M; van Goudoever, Johannes B; Renes, Ingrid B

    2013-01-01

    Palmitic-acid esterified to the sn-1,3 positions of the glycerol backbone (alpha, alpha'-palmitate), the predominant palmitate conformation in regular infant formula fat, is poorly absorbed and might cause abdominal discomfort. In contrast, palmitic-acid esterified to the sn-2 position (beta-palmitate), the main palmitate conformation in human milk fat, is well absorbed. The aim of the present study was to examine the influence of high alpha, alpha'-palmitate fat (HAPF) diet and high beta-palmitate fat (HBPF) diet on colitis development in Muc2 deficient (Muc2(-/-)) mice, a well-described animal model for spontaneous enterocolitis due to the lack of a protective mucus layer. Muc2(-/-) mice received AIN-93G reference diet, HAPF diet or HBPF diet for 5 weeks after weaning. Clinical symptoms, intestinal morphology and inflammation in the distal colon were analyzed. Both HBPF diet and AIN-93G diet limited the extent of intestinal erosions and morphological damage in Muc2(-/-) mice compared with HAPF diet. In addition, the immunosuppressive regulatory T (Treg) cell response as demonstrated by the up-regulation of Foxp3, Tgfb1 and Ebi3 gene expression levels was enhanced by HBPF diet compared with AIN-93G and HAPF diets. HBPF diet also increased the gene expression of Pparg and enzymatic antioxidants (Sod1, Sod3 and Gpx1), genes all reported to be involved in promoting an immunosuppressive Treg cell response and to protect against colitis. This study shows for the first time that HBPF diet limits the intestinal mucosal damage and controls the inflammatory response in Muc2(-/-) mice by inducing an immunosuppressive Treg cell response.

  1. Activation of the Wnt/β-catenin pathway in pancreatic beta cells during the compensatory islet hyperplasia in prediabetic mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maschio, D. A.; Oliveira, R. B.; Santos, M. R.

    The Wnt/β-catenin signaling pathway, also known as the canonical Wnt pathway, plays a role in cell proliferation and differentiation in several tissues/organs. It has been recently described in humans a relationship between type 2 diabetes (T2DM) and mutation in the gene encoding the transcription factor TCF7L2 associated to the Wnt/β-catenin pathway. In the present study, we demonstrated that hyperplastic pancreatic islets from prediabetic mice fed a high-fat diet (HFD) for 60 d displayed nuclear translocation of active β-catenin associated with significant increases in protein content and gene expression of β-catenin as well as of cyclins D1, D2 and c-Myc (target genesmore » of the Wnt pathway) but not of Tcf7l2 (the transcription factor). Meanwhile, these alterations were not observed in pancreatic islets from 30 d HFD-fed mice, that do not display significant beta cell hyperplasia. These data suggest that the Wnt/β-catenin pathway is activated in pancreatic islets during prediabetes and may play a role in the induction of the compensatory beta cell hyperplasia observed at early phase of T2DM. - Highlights: • Exposure to high-fat diet for 60 days induced prediabetes and beta cell mass expansion. • Hyperplastic pancreatic islets displayed nuclear translocation of active β-catenin. • Hyperplastic islets showed increased expression of target genes of the Wnt/β-catenin pathway. • Wnt/β-catenin pathway is activated during compensatory beta cell hyperplasia in mice.« less

  2. Pancreatic Fat Is Associated With Metabolic Syndrome and Visceral Fat but Not Beta-Cell Function or Body Mass Index in Pediatric Obesity.

    PubMed

    Staaf, Johan; Labmayr, Viktor; Paulmichl, Katharina; Manell, Hannes; Cen, Jing; Ciba, Iris; Dahlbom, Marie; Roomp, Kirsten; Anderwald, Christian-Heinz; Meissnitzer, Matthias; Schneider, Reinhard; Forslund, Anders; Widhalm, Kurt; Bergquist, Jonas; Ahlström, Håkan; Bergsten, Peter; Weghuber, Daniel; Kullberg, Joel

    2017-03-01

    Adolescents with obesity have increased risk of type 2 diabetes and metabolic syndrome (MetS). Pancreatic fat has been related to these conditions; however, little is known about associations in pediatric obesity. The present study was designed to explore these associations further. We examined 116 subjects, 90 with obesity. Anthropometry, MetS, blood samples, and oral glucose tolerance tests were assessed using standard techniques. Pancreatic fat fraction (PFF) and other fat depots were quantified using magnetic resonance imaging. The PFF was elevated in subjects with obesity. No association between PFF and body mass index-standard deviation score (BMI-SDS) was found in the obesity subcohort. Pancreatic fat fraction correlated to Insulin Secretion Sensitivity Index-2 and Homeostatic Model Assessment of Insulin Resistance in simple regression; however, when using adjusted regression and correcting for BMI-SDS and other fat compartments, PFF correlated only to visceral adipose tissue and fasting glucose. Highest levels of PFF were found in subjects with obesity and MetS. In adolescents with obesity, PFF is elevated and associated to MetS, fasting glucose, and visceral adipose tissue but not to beta-cell function, glucose tolerance, or BMI-SDS. This study demonstrates that conclusions regarding PFF and its associations depend on the body mass features of the cohort.

  3. Intermittent fasting preserves beta-cell mass in obesity-induced diabetes via the autophagy-lysosome pathway.

    PubMed

    Liu, Haiyan; Javaheri, Ali; Godar, Rebecca J; Murphy, John; Ma, Xiucui; Rohatgi, Nidhi; Mahadevan, Jana; Hyrc, Krzysztof; Saftig, Paul; Marshall, Connie; McDaniel, Michael L; Remedi, Maria S; Razani, Babak; Urano, Fumihiko; Diwan, Abhinav

    2017-01-01

    Obesity-induced diabetes is characterized by hyperglycemia, insulin resistance, and progressive beta cell failure. In islets of mice with obesity-induced diabetes, we observe increased beta cell death and impaired autophagic flux. We hypothesized that intermittent fasting, a clinically sustainable therapeutic strategy, stimulates autophagic flux to ameliorate obesity-induced diabetes. Our data show that despite continued high-fat intake, intermittent fasting restores autophagic flux in islets and improves glucose tolerance by enhancing glucose-stimulated insulin secretion, beta cell survival, and nuclear expression of NEUROG3, a marker of pancreatic regeneration. In contrast, intermittent fasting does not rescue beta-cell death or induce NEUROG3 expression in obese mice with lysosomal dysfunction secondary to deficiency of the lysosomal membrane protein, LAMP2 or haplo-insufficiency of BECN1/Beclin 1, a protein critical for autophagosome formation. Moreover, intermittent fasting is sufficient to provoke beta cell death in nonobese lamp2 null mice, attesting to a critical role for lysosome function in beta cell homeostasis under fasting conditions. Beta cells in intermittently-fasted LAMP2- or BECN1-deficient mice exhibit markers of autophagic failure with accumulation of damaged mitochondria and upregulation of oxidative stress. Thus, intermittent fasting preserves organelle quality via the autophagy-lysosome pathway to enhance beta cell survival and stimulates markers of regeneration in obesity-induced diabetes.

  4. Subcutaneous adipose tissue macropage infiltration is associated with hepatic and visceral fat deposition, hyperinsulinemia, and stimulation of NF-kB stress pathway

    USDA-ARS?s Scientific Manuscript database

    The goal was to examine in obese young adults the influence of ethnicity and subcutaneous adipose tissue (SAT) inflammation on hepatic fat fraction (HFF), visceral adipose tissue (VAT) deposition, insulin sensitivity (SI), Beta-cell function, and SAT gene expression. SAT biopsies were obtained from...

  5. Human Beta Cells Produce and Release Serotonin to Inhibit Glucagon Secretion from Alpha Cells.

    PubMed

    Almaça, Joana; Molina, Judith; Menegaz, Danusa; Pronin, Alexey N; Tamayo, Alejandro; Slepak, Vladlen; Berggren, Per-Olof; Caicedo, Alejandro

    2016-12-20

    In the pancreatic islet, serotonin is an autocrine signal increasing beta cell mass during metabolic challenges such as those associated with pregnancy or high-fat diet. It is still unclear whether serotonin is relevant for regular islet physiology and hormone secretion. Here, we show that human beta cells produce and secrete serotonin when stimulated with increases in glucose concentration. Serotonin secretion from beta cells decreases cyclic AMP (cAMP) levels in neighboring alpha cells via 5-HT 1F receptors and inhibits glucagon secretion. Without serotonergic input, alpha cells lose their ability to regulate glucagon secretion in response to changes in glucose concentration, suggesting that diminished serotonergic control of alpha cells can cause glucose blindness and the uncontrolled glucagon secretion associated with diabetes. Supporting this model, pharmacological activation of 5-HT 1F receptors reduces glucagon secretion and has hypoglycemic effects in diabetic mice. Thus, modulation of serotonin signaling in the islet represents a drug intervention opportunity. Published by Elsevier Inc.

  6. Transgenic rescue of adipocyte glucose-dependent insulinotropic polypeptide receptor expression restores high fat diet-induced body weight gain.

    PubMed

    Ugleholdt, Randi; Pedersen, Jens; Bassi, Maria Rosaria; Füchtbauer, Ernst-Martin; Jørgensen, Signe Marie; Kissow, Hanne-Louise; Nytofte, Nikolaj; Poulsen, Steen Seier; Rosenkilde, Mette Marie; Seino, Yutaka; Thams, Peter; Holst, Peter Johannes; Holst, Jens Juul

    2011-12-30

    The glucose-dependent insulinotropic polypeptide receptor (GIPr) has been implicated in high fat diet-induced obesity and is proposed as an anti-obesity target despite an uncertainty regarding the mechanism of action. To independently investigate the contribution of the insulinotropic effects and the direct effects on adipose tissue, we generated transgenic mice with targeted expression of the human GIPr to white adipose tissue or beta-cells, respectively. These mice were then cross-bred with the GIPr knock-out strain. The central findings of the study are that mice with GIPr expression targeted to adipose tissue have a similar high fat diet -induced body weight gain as control mice, significantly greater than the weight gain in mice with a general ablation of the receptor. Surprisingly, this difference was due to an increase in total lean body mass rather than a gain in total fat mass that was similar between the groups. In contrast, glucose-dependent insulinotropic polypeptide-mediated insulin secretion does not seem to be important for regulation of body weight after high fat feeding. The study supports a role of the adipocyte GIPr in nutrient-dependent regulation of body weight and lean mass, but it does not support a direct and independent role for the adipocyte or beta-cell GIPr in promoting adipogenesis.

  7. Genetic models rule out a major role of beta cell glycogen in the control of glucose homeostasis.

    PubMed

    Mir-Coll, Joan; Duran, Jordi; Slebe, Felipe; García-Rocha, Mar; Gomis, Ramon; Gasa, Rosa; Guinovart, Joan J

    2016-05-01

    Glycogen accumulation occurs in beta cells of diabetic patients and has been proposed to partly mediate glucotoxicity-induced beta cell dysfunction. However, the role of glycogen metabolism in beta cell function and its contribution to diabetes pathophysiology remain poorly understood. We investigated the function of beta cell glycogen by studying glucose homeostasis in mice with (1) defective glycogen synthesis in the pancreas; and (2) excessive glycogen accumulation in beta cells. Conditional deletion of the Gys1 gene and overexpression of protein targeting to glycogen (PTG) was accomplished by Cre-lox recombination using pancreas-specific Cre lines. Glucose homeostasis was assessed by determining fasting glycaemia, insulinaemia and glucose tolerance. Beta cell mass was determined by morphometry. Glycogen was detected histologically by periodic acid-Schiff's reagent staining. Isolated islets were used for the determination of glycogen and insulin content, insulin secretion, immunoblots and gene expression assays. Gys1 knockout (Gys1 (KO)) mice did not exhibit differences in glucose tolerance or basal glycaemia and insulinaemia relative to controls. Insulin secretion and gene expression in isolated islets was also indistinguishable between Gys1 (KO) and controls. Conversely, despite effective glycogen overaccumulation in islets, mice with PTG overexpression (PTG(OE)) presented similar glucose tolerance to controls. However, under fasting conditions they exhibited lower glycaemia and higher insulinaemia. Importantly, neither young nor aged PTG(OE) mice showed differences in beta cell mass relative to age-matched controls. Finally, a high-fat diet did not reveal a beta cell-autonomous phenotype in either model. Glycogen metabolism is not required for the maintenance of beta cell function. Glycogen accumulation in beta cells alone is not sufficient to trigger the dysfunction or loss of these cells, or progression to diabetes.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iwasaki, Yuko; Iwasaki, Hitoshi; Yatoh, Shigeru

    Transgenic mice expressing nuclear sterol regulatory element-binding protein-1a under the control of the insulin promoter were generated to determine the role of SREBP-1a in pancreatic {beta}-cells. Only low expressors could be established, which exhibited mild hyperglycemia, impaired glucose tolerance, and reduced plasma insulin levels compared to C57BL/6 controls. The islets isolated from the transgenic mice were fewer and smaller, and had decreased insulin content and unaltered glucagon staining. Both glucose- and potassium-stimulated insulin secretions were decreased. The transgenic islets consistently expressed genes for fatty acids and cholesterol synthesis, resulting in accumulation of triglycerides but not cholesterol. PDX-1, {beta}{epsilon}{tau}{alpha}2, MafA, andmore » IRS-2 were suppressed, partially explaining the loss and dysfunction of {beta}-cell mass. The transgenic mice on a high fat/high sucrose diet still exhibited impaired insulin secretion and continuous {beta}-cell growth defect. Therefore, nuclear SREBP-1a, even at a low level, strongly disrupts {beta}-cell mass and function.« less

  9. Host genetics, steatosis and insulin resistance among African Americans and Caucasian Americans with hepatitis C virus genotype-1 infection.

    PubMed

    Iuliano, A Danielle; Feingold, Eleanor; Wahed, Abdus S; Kleiner, David E; Belle, Steven H; Conjeevaram, Hari S; Zmuda, Joseph; Liang, T Jake; Yee, Leland J

    2009-01-01

    Hepatic steatosis is the accumulation of fat in liver cells. Insulin resistance (IR) occurs when normal amounts of insulin do not stimulate insulin activity in cells. Both conditions have been described in hepatitis C virus (HCV) infection and are thought to be biologically related. This study examined the association of genetic variants with steatosis and IR among 167 African Americans and 184 Caucasian Americans with HCV genotype-1. Steatosis was defined as at least 5% of fat in cells on liver biopsy. IR was quantified as a score greater than 2 from the Homeostasis Model Assessment, version 2.2 (HOMA2-IR). Associations were investigated by estimating odds ratios separately by race. Statistically significant associations (p < 0.05) were observed for variants in interleukin-10 (IL10), leptin receptor (LEPR), interleukin-6 (IL6) and transforming growth factor beta-1 (TGF-beta1) for both outcomes. Some significant interactions were observed between IL10,LEPR and TGF-beta1 polymorphisms and HOMA2-IR scores when examining steatosis. The interaction of HOMA2-IR and IL10 was consistent in both races whereas for LEPR and TGF-beta1 the interactions were statistically significant in only one of the racial groups.These results could imply that some IL10,LEPR and TGF-beta1 polymorphisms may modify an association between steatosis and IR. Copyright 2009 S. Karger AG, Basel.

  10. Abdominal Subcutaneous Fat: A Favorable or Nonfunctional Fat Depot for Glucose Metabolism in Chinese Adults?

    PubMed

    Hou, Xuhong; Chen, Peizhu; Hu, Gang; Wei, Li; Jiao, Lei; Wang, Hongmei; Liang, Yebei; Bao, Yuqian; Jia, Weiping

    2018-06-01

    The objective of this study was to assess the associations of abdominal visceral and subcutaneous adipose tissue with blood glucose and beta-cell function. In this study, 11,223 participants without known diabetes were selected for this cross-sectional analysis. Visceral and subcutaneous fat area (VFA and SFA) were measured by magnetic resonance imaging. An oral glucose tolerance test was conducted, and beta-cell function was evaluated. Men had significantly larger VFA but smaller SFA than women. After controlling for age, linear regression showed that SFA was adversely associated with 0-minute, 30-minute, and 2-hour plasma glucose (PG) and early-, first- and second-phase disposition indices (DIs). After further adjustment for BMI and VFA, some associations of SFA with PG indices and DIs disappeared, while the other associations became significantly weaker in men (2-hour PG: 0.05 and DI 2nd : -0.05) or were reversed in women (0-minute, 30-minute, and 2-hour PG: from -0.07 to -0.04; DI 1st : 0.04, P < 0.05). After adjustment for age, BMI, and SFA, VFA was significantly and adversely associated with PG indices and DIs, with the largest standardized regression coefficients with 2-hour PG. The associations of SFA with blood glucose and beta-cell function were clinically insignificant in Chinese adults. VFA had the strongest association with 2-hour PG. © 2018 The Obesity Society.

  11. β-Arrestin2 plays a key role in the modulation of the pancreatic beta cell mass in mice.

    PubMed

    Ravier, Magalie A; Leduc, Michele; Richard, Joy; Linck, Nathalie; Varrault, Annie; Pirot, Nelly; Roussel, Morgane M; Bockaert, Joël; Dalle, Stéphane; Bertrand, Gyslaine

    2014-03-01

    Beta cell failure due to progressive secretory dysfunction and limited expansion of beta cell mass is a key feature of type 2 diabetes. Beta cell function and mass are controlled by glucose and hormones/neurotransmitters that activate G protein-coupled receptors or receptor tyrosine kinases. We have investigated the role of β-arrestin (ARRB)2, a scaffold protein known to modulate such receptor signalling, in the modulation of beta cell function and mass, with a specific interest in glucagon-like peptide-1 (GLP-1), muscarinic and insulin receptors. β-arrestin2-knockout mice and their wild-type littermates were fed a normal or a high-fat diet (HFD). Glucose tolerance, insulin sensitivity and insulin secretion were assessed in vivo. Beta cell mass was evaluated in pancreatic sections. Free cytosolic [Ca(2+)] and insulin secretion were determined using perifused islets. The insulin signalling pathway was evaluated by western blotting. Arrb2-knockout mice exhibited impaired glucose tolerance and insulin secretion in vivo, but normal insulin sensitivity compared with wild type. Surprisingly, the absence of ARRB2 did not affect glucose-stimulated insulin secretion or GLP-1- and acetylcholine-mediated amplifications from perifused islets, but it decreased the islet insulin content and beta cell mass. Additionally, there was no compensatory beta cell mass expansion through proliferation in response to the HFD. Furthermore, Arrb2 deletion altered the islet insulin signalling pathway. ARRB2 is unlikely to be involved in the regulation of insulin secretion, but it is required for beta cell mass plasticity. Additionally, we provide new insights into the mechanisms involved in insulin signalling in beta cells.

  12. The antifibrotic effects of TGF-{beta}1 siRNA on hepatic fibrosis in rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lang, Qing; Liu, Qi; Xu, Ning

    2011-06-10

    Highlights: {yields} We constructed CCL4 induced liver fibrosis model successfully. {yields} We proofed that the TGF-{beta}1 siRNA had a definite therapy effect to CCL4 induced liver fibrosis. {yields} The therapy effect of TGF-{beta}1 siRNA had dose-dependent. -- Abstract: Background/aims: Hepatic fibrosis results from the excessive secretion of matrix proteins by hepatic stellate cells (HSCs), which proliferate during fibrotic liver injury. Transforming growth factor (TGF)-{beta}1 is the dominant stimulus for extracellular matrix (ECM) production by stellate cells. Our study was designed to investigate the antifibrotic effects of using short interference RNA (siRNA) to target TGF-{beta}1 in hepatic fibrosis and its mechanismmore » in rats exposed to a high-fat diet and carbon tetrachloride (CCL4). Methods: A total of 40 healthy, male SD (Sprague-Dawley) rats were randomly divided into five even groups containing of eight rats each: normal group, model group, TGF-{beta}1 siRNA 0.125 mg/kg treatment group, TGF-{beta}1 siRNA 0.25 mg/kg treatment group and TGF-{beta}1 siRNA negative control group (0.25 mg/kg). CCL4 and a high-fat diet were used for 8 weeks to induce hepatic fibrosis. All the rats were then sacrificed to collect liver tissue samples. A portion of the liver samples were soaked in formalin for Hematoxylin-Eosin staining, classifying the degree of liver fibrosis, and detecting the expression of type I and III collagen and TGF-{beta}1; the remaining liver samples were stored in liquid nitrogen to be used for detecting TGF-{beta}1 by Western blotting and for measuring the mRNA expression of type I and III collagen and TGF-{beta}1 by quantitative real-time polymerase chain reaction. Results: Comparing the TGF-{beta}1 siRNA 0.25 mg/kg treatment group to the model group, the TGF-{beta}1 siRNA negative control group and the TGF-{beta}1 siRNA 0.125 mg/kg treatment group showed significantly reduced levels of pathological changes, protein expression and the mRNA expression of TGF-{beta}1, type I collagen and type III collagen (P < 0.01). Conclusions: Using siRNA to target TGF-{beta}1 can inhibit the expression of TGF-{beta}1 and attenuate rat hepatic fibrosis induced by a high-fat diet and CCL4. A possible mechanism is through the down-regulation of TGF-{beta}1 expression, which could inhibit HSC activation, as well as the proliferation and collagen production of collagen reducing, so that collagen deposition in the liver is reduced.« less

  13. Saturated fat consumption and the Theory of Planned Behaviour: exploring additive and interactive effects of habit strength.

    PubMed

    de Bruijn, Gert-Jan; Kroeze, Willemieke; Oenema, Anke; Brug, Johannes

    2008-09-01

    The additive and interactive effects of habit strength in the explanation of saturated fat intake were explored within the framework of the Theory of Planned Behaviour (TPB). Cross-sectional data were gathered in a Dutch adult sample (n=764) using self-administered questionnaires and analyzed using hierarchical regression analyses and simple slope analyses. Results showed that habit strength was a significant correlate of fat intake (beta=-0.11) and significantly increased the amount of explained variance in fat intake (R(2-change)=0.01). Furthermore, based on a significant interaction effect (beta=0.11), simple slope analyses revealed that intention was a significant correlate of fat intake for low levels (beta=-0.29) and medium levels (beta=-0.19) of habit strength, but a weaker and non-significant correlate for high levels (beta=-0.07) of habit strength. Higher habit strength may thus make limiting fat intake a non-intentional behaviour. Implications for information and motivation-based interventions are discussed.

  14. Association of a beta-2 adrenoceptor (ADRB2) gene variant with a blunted in vivo lipolysis and fat oxidation.

    PubMed

    Jocken, J W E; Blaak, E E; Schiffelers, S; Arner, P; van Baak, M A; Saris, W H M

    2007-05-01

    Obesity is associated with a blunted beta-adrenoceptor-mediated lipolysis and fat oxidation. We investigated whether polymorphisms in codon 16, 27 and 164 of the beta (2)-adrenoceptor gene (ADRB2) and exon 10 of the G protein beta (3)-subunit gene (GNB3) are associated with alterations in in vivo lipolysis and fat oxidation. Sixty-five male and 43 female overweight and obese subjects (body mass index (BMI) range: 26.1-48.4 kg/m(2)) were included. Energy expenditure (EE), respiratory quotient (RQ), circulating free fatty acid (FFA) and glycerol levels were determined after stepwise infusion of increasing doses of the non-selective beta-agonist isoprenaline (ISO). In women, the Arg16 allele of the ADRB2 gene was associated with a blunted increase in circulating FFA, glycerol and a decreased fat oxidation during ISO stimulation. In men, the Arg16 allele was significantly associated with a blunted increase in FFA but not in glycerol or fat oxidation. These results suggest that genetic variation in the ADRB2 gene is associated with disturbances in in vivo beta-adrenoceptor-mediated lipolysis and fat oxidation during beta-adrenergic stimulation in overweight and obese subjects; these effects are influenced by gene-gender interactions.

  15. Impact of small-molecule glucokinase activator on glucose metabolism and beta-cell mass.

    PubMed

    Nakamura, Akinobu; Terauchi, Yasuo; Ohyama, Sumika; Kubota, Junko; Shimazaki, Hiroko; Nambu, Tadahiro; Takamoto, Iseki; Kubota, Naoto; Eiki, Junichi; Yoshioka, Narihito; Kadowaki, Takashi; Koike, Takao

    2009-03-01

    We investigated the effect of glucokinase activator (GKA) on glucose metabolism and beta-cell mass. We analyzed four mouse groups: wild-type mice and beta-cell-specific haploinsufficiency of glucokinase gene (Gck(+/-)) mice on a high-fat (HF) diet. Each genotype was also treated with GKA mixed in the HF diet. Rodent insulinoma cells and isolated islets were used to evaluate beta-cell proliferation by GKA. After 20 wk on the above diets, there were no differences in body weight, lipid profiles, and liver triglyceride content among the four groups. Glucose tolerance was improved shortly after the GKA treatment in both genotypes of mice. beta-Cell mass increased in wild-type mice compared with Gck(+/-) mice, but a further increase was not observed after the administration of GKA in both genotypes. Interestingly, GKA was able to up-regulate insulin receptor substrate-2 (Irs-2) expression in insulinoma cells and isolated islets. The administration of GKA increased 5-bromo-2-deoxyuridine (BrdU) incorporation in insulinoma cells, and 3 d administration of GKA markedly increased BrdU incorporation in mice treated with GKA in both genotypes, compared with those without GKA. In conclusion, GKA was able to chronically improve glucose metabolism for mice on the HF diet. Although chronic GKA administration failed to cause a further increase in beta-cell mass in vivo, GKA was able to increase beta cell proliferation in vitro and with a 3-d administration in vivo. This apparent discrepancy can be explained by a chronic reduction in ambient blood glucose levels by GKA treatment.

  16. Transglutaminase 2 is needed for the formation of an efficient phagocyte portal in macrophages engulfing apoptotic cells.

    PubMed

    Tóth, Beáta; Garabuczi, Eva; Sarang, Zsolt; Vereb, György; Vámosi, György; Aeschlimann, Daniel; Blaskó, Bernadett; Bécsi, Bálint; Erdõdi, Ferenc; Lacy-Hulbert, Adam; Zhang, Ailiang; Falasca, Laura; Birge, Raymond B; Balajthy, Zoltán; Melino, Gerry; Fésüs, László; Szondy, Zsuzsa

    2009-02-15

    Transglutaminase 2 (TG2), a protein cross-linking enzyme with many additional biological functions, acts as coreceptor for integrin beta(3). We have previously shown that TG2(-/-) mice develop an age-dependent autoimmunity due to defective in vivo clearance of apoptotic cells. Here we report that TG2 on the cell surface and in guanine nucleotide-bound form promotes phagocytosis. Besides being a binding partner for integrin beta(3), a receptor known to mediate the uptake of apoptotic cells via activating Rac1, we also show that TG2 binds MFG-E8 (milk fat globulin EGF factor 8), a protein known to bridge integrin beta(3) to apoptotic cells. Finally, we report that in wild-type macrophages one or two engulfing portals are formed during phagocytosis of apoptotic cells that are characterized by accumulation of integrin beta(3) and Rac1. In the absence of TG2, integrin beta(3) cannot properly recognize the apoptotic cells, is not accumulated in the phagocytic cup, and its signaling is impaired. As a result, the formation of the engulfing portals, as well as the portals formed, is much less efficient. We propose that TG2 has a novel function to stabilize efficient phagocytic portals.

  17. The influence of major dietary fatty acids on insulin secretion and action.

    PubMed

    López, Sergio; Bermúdez, Beatriz; Abia, Rocío; Muriana, Francisco J G

    2010-02-01

    To briefly summarize recent advances towards understanding the influence of major dietary fatty acids on beta-cell function and evaluate their implications for insulin resistance. Studies in humans have shown that beta-cell function and insulin sensitivity improve progressively in the postprandial period as the proportion of monounsaturated fatty acids (MUFAs) with respect to saturated fatty acids (SFAs) in dietary fats increases. However, cell-culture experiments have revealed a dichotomy in the ability of fatty acids to moderate hyperactivity of, and induce lipotoxicity in, beta-cells. There are also some novel findings regarding the ability of HDL to protect beta-cells against oxidized LDL-induced apoptosis in vitro and of reconstituted HDL to attenuate insulin resistance in vivo. These findings raise new questions regarding the contribution of dietary fatty acids to insulin secretion and action. These new findings point to a critical role for major dietary fatty acids in the etiology and pathogenesis of diabetes, which appears to be of particular relevance during postprandial periods and mainly depends on the fatty acid type. This underscores the importance of dietary fatty acids in standard diabetes management.

  18. Natural exopolysaccharides enhance survival of lactic acid bacteria in frozen dairy desserts.

    PubMed

    Hong, S H; Marshall, R T

    2001-06-01

    Viable lactic acid-producing bacteria in frozen dairy desserts can be a source of beta-galactosidase for persons who absorb lactose insufficiently. However, freezing kills many of the cells, causing loss of enzymatic activity. Cultures selected for high beta-galactosidase activities and high survival rates in the presence of bile were examined for survivability during freezing in reduced-fat ice cream. Encapsulated S. thermophilus strains survived better than their nonencapsulated mutants in reduced-fat ice cream after freezing and frozen storage at -29 degrees C for 16 d (28 vs. 19%). However, a small nonencapsulated strain of Lactobacillus delbrueckii sp. bulgaricus survived better than the large encapsulated strain in reduced-fat ice cream. Factors that improved survival of encapsulated S. thermophilus 1068 in ice cream were 1) harvest of cells in the late-log phase of growth at 37 degrees C rather than at 40, 42.5, or 45 degrees C; 2) overrun at 50% rather than 100%; and 3) storage at -17 degrees C rather than -23 or -29 degrees C. Survival of strain ST1068 was unaffected by 1) neutralization of acid during growth or 2) substitution of nitrogen for air in building overrun.

  19. Amphiregulin mediates self-renewal in an immortal mammary epithelial cell line with stem cell characteristics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Booth, Brian W., E-mail: brbooth@clemson.edu; Institute for Biological Interfaces of Engineering, Clemson University, Clemson, SC 29634; Boulanger, Corinne A.

    2010-02-01

    Amphiregulin (AREG), a ligand for epidermal growth factor receptor, is required for mammary gland ductal morphogenesis and mediates estrogen actions in vivo, emerging as an essential growth factor during mammary gland growth and differentiation. The COMMA-D {beta}-geo (CD{beta}geo) mouse mammary cell line displays characteristics of normal mammary progenitor cells including the ability to regenerate a mammary gland when transplanted into the cleared fat pad of a juvenile mouse, nuclear label retention, and the capacity to form anchorage-independent mammospheres. We demonstrate that AREG is essential for formation of floating mammospheres by CD{beta}geo cells and that the mitogen activated protein kinase signalingmore » pathway is involved in AREG-mediated mammosphere formation. Addition of exogenous AREG promotes mammosphere formation in cells where AREG expression is knocked down by siRNA and mammosphere formation by AREG{sup -/-} mammary epithelial cells. AREG knockdown inhibits mammosphere formation by duct-limited mammary progenitor cells but not lobule-limited mammary progenitor cells. These data demonstrate AREG mediates the function of a subset of mammary progenitor cells in vitro.« less

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chakravarti, D.; Eisler, R.

    The values for strontium-90 and gross beta activity in the fat and non- fat fractions from the livers of twelve coconut crabs (Birgus latro) collected at Rongelap Atoll during March 1958 are presented. Although fat constituted an average of 47 percent by weight on a wet weight basis (74 percent on a dry weight basis), gross beta activity of the fat fraction amounted to less than 0.5 percent of the total activity on a wet weight basis. Fat content on a wet weight basis had a range of 31 percent to 65 percent. There is a linear relationship between strontium-90more » activity and gross beta activity. Since the fat content of coconut crab liver is variable and the fat fraction contains practically no radioactivity, it is suggested that the radioactivity (and mineral content) of liver samples be compared on the basis of the non-fat solids. (auth)« less

  1. Effect of diet on oxidation of 17 beta-estradiol in vivo.

    PubMed

    Musey, P I; Collins, D C; Bradlow, H L; Gould, K G; Preedy, J R

    1987-10-01

    The effect of a high fat, low carbohydrate, low protein diet on the in vivo oxidation of 17 beta-estradiol was studied using radiometric methods. Five male chimpanzees were fed a normal (13%) fat diet or a high (65%) fat diet for 8 weeks. After a 4-week rest period, the animals were fed the alternative diet. The mean percent oxidation of 16 alpha-[3H]estradiol-17 beta 24 h after injection was 3.8 +/- 1.3% (+/- SD) on the normal diet vs. 18.4 +/- 4.7% on the high fat diet (P less than 0.01). In contrast, the mean percent oxidation of 2-[3H]estradiol 24 h after injection was 31.6 +/- 3.8% (+/- SD) on the normal diet vs. 20.0 +/- 3.5% on the high fat diet (P less than 0.05). These results suggest that the oxidation of 17 beta-estradiol to estriols relative to that to catechol estrogens is increased by a high fat diet.

  2. Preparation of interesterified plastic fats from fats and oils free of trans fatty acid.

    PubMed

    Lee, Jeung Hee; Akoh, Casimir C; Himmelsbach, David S; Lee, Ki-Teak

    2008-06-11

    Interesterified plastic fats were produced with trans-free substrates of fully hydrogenated soybean oil, extra virgin olive oil, and palm stearin in a weight ratio of 10:20:70, 10:40:50, and 10:50:40, respectively, by lipase catalysis. The major fatty acids of the products were palmitic (32.2-47.4%), stearic (12.0-12.4%), and oleic acid (33.6-49.5%). After storage at 5 degrees C (refrigerator temperature) or 24 degrees C (room temperature) for 16 h, the physical properties were evaluated for solid fat content, texture, melting, and crystallization behavior, viscoelastic properties, crystal polymorphism, and crystal microstructure. The interesterified fats contained desirable crystal polymorphs (beta' form) as determined by X-ray diffraction spectroscopy. They exhibited a wide plastic range of solid fat content of 52-58% at 10 degrees C and 15% at 40 degrees C. The physical properties were influenced by the ratio of palm stearin and olive oil. Harder and more brittle texture, crystallization and melting at higher temperature, higher solid fat contents, and more elastic (G') or viscous (G') characteristics were observed in the produced fats containing a higher content of palm stearin and lower content of olive oil. The produced fats stored at 5 degrees C consisted mostly of beta' form crystal together with a small content of beta form, while those at 24 degrees C had only beta' form. The produced fat with a higher amount of palm stearin appeared to have more beta' form crystal and small size crystal clusters. Thus, the physical properties of the produced plastic fats may be desirable for use in a bakery product.

  3. DNA variation in the genes of the Na,K-adenosine triphosphatase and its relation with resting metabolic rate, respiratory quotient, and body fat.

    PubMed

    Dériaz, O; Dionne, F; Pérusse, L; Tremblay, A; Vohl, M C; Côté, G; Bouchard, C

    1994-02-01

    The aim of this study was to investigate in 261 subjects from 58 families the association between DNA variation at the genes coding for the Na,K-ATPase peptides and resting metabolic rate (RMR), respiratory quotient (RQ), and percent body fat (%FAT). Five restriction fragment length polymorphisms (RFLP) at three Na,K-ATPase genes were determined: one at the alpha 1 locus (BglII), and two at the beta locus (beta MspI and beta PvuII). Haplotypes were determined from the two variable sites of the alpha 2 gene (alpha 2 haplotypes) and the beta gene (beta haplotypes). There was a strong trend for %FAT to be related to the RFLP generated by BglII at the alpha 2 exons 21-22 in males (P = 0.06) and females (P = 0.05). RQ was (a) associated with the BglII RFLP at the alpha 2 exon 1 (P = 0.02) and with the alpha 2 8.0 kb/4.3 kb haplotype (P = 0.04) and (b) linked with the beta gene MspI marker (P = 0.04) and with the beta 5.3 kb/5.1 kb haplotype (P = 0.008) based on sib-pair analysis. The present study suggests that the genes encoding Na,K-ATPase may be associated or linked with RQ and perhaps with %FAT but not with RMR.

  4. Overnutrition in spiny mice (Acomys cahirinus): beta-cell expansion leading to rupture and overt diabetes on fat-rich diet and protective energy-wasting elevation in thyroid hormone on sucrose-rich diet.

    PubMed

    Shafrir, E

    2000-01-01

    The investigation of diabetes propensity in spiny mice, performed in Geneva and Jerusalem colonies, is reviewed. Spiny mice live in semi-desert regions of the eastern Mediterranean countries. Those transferred to Geneva in the 1950s were maintained on a rodent diet supplemented by fat-rich seeds. They became obese, exhibited pancreatic islet hyperplasia and hypertrophy. Low insulin secretion response was characteristic of this species, despite ample pancreatic content of insulin. After a few months, diabetes with ketosis occurred, often suddenly, in association with islet cell disintegration. In Jerusalem the spiny mice were collected from their native habitat and placed on diets containing 50% sucrose or fat-rich seed diets. On a sucrose-rich diet, spiny mice developed hepatomegaly, lipogenic enzyme hyperactivity, and elevation in very low density lipoproteins as a result of metabolism of the fructose component mainly in the liver. No overt diabetes or pancreatic islet disintegration were observed, although insulin content and beta-cell hypertrophy and hyperplasia were apparent. On a fat-rich diet, spiny mice exhibited marked weight gain, adipose tissue growth and low hepatic lipogenesis. The obesity was accompanied by mild hyperglycemia and hyperinsulinemia with glucose intolerance leading to an occasional glucosuria after several months on the diet. The sucrose diet induced an extrathyroidal elevation of triiodothyronine (T(3)). Serum T(3) level and hepatic T(4)-T(3) conversion were increased, while serum T(4) levels tended to decrease. The activity of the T(3)-inducible hepatic mitochondrial FAD-glycerophosphate oxidase and K(+)/Na(+)-ATPase, as well as body temperature were increased, indicating that the sucrose diet was associated with enhanced thermogenesis and energy-wasting metabolic cycling. The sucrose-rich diet might exert an adaptive thermogenesis-mediated defense mechanism, protecting against excessive weight gain and disruptive pancreatic islet lesion. After 18 months maintenance on sucrose-rich versus fat-rich diets the number of animals surviving was significantly higher on the sucrose diet whereas on the fat diet a significant number of animals succumbed to expansive islet cell disruption and diabetes.

  5. Central infusion of leptin improves insulin resistance and suppresses beta-cell function, but not beta-cell mass, primarily through the sympathetic nervous system in a type 2 diabetic rat model.

    PubMed

    Park, Sunmin; Ahn, Il Sung; Kim, Da Sol

    2010-06-05

    We investigated whether hypothalamic leptin alters beta-cell function and mass directly via the sympathetic nervous system (SNS) or indirectly as the result of altered insulin resistant states. The 90% pancreatectomized male Sprague Dawley rats had sympathectomy into the pancreas by applying phenol into the descending aorta (SNSX) or its sham operation (Sham). Each group was divided into two sections, receiving either leptin at 300ng/kgbw/h or artificial cerebrospinal fluid (aCSF) via intracerebroventricular (ICV) infusion for 3h as a short-term study. After finishing the infusion study, ICV leptin (3mug/kg bw/day) or ICV aCSF (control) was infused in rats fed 30 energy % fat diets by osmotic pump for 4weeks. At the end of the long-term study, glucose-stimulated insulin secretion and islet morphometry were analyzed. Acute ICV leptin administration in Sham rats, but not in SNSX rats, suppressed the first- and second-phase insulin secretion at hyperglycemic clamp by about 48% compared to the control. Regardless of SNSX, the 4-week administration of ICV leptin improved glucose tolerance during oral glucose tolerance tests and insulin sensitivity at hyperglycemic clamp, compared to the control, while it suppressed second-phase insulin secretion in Sham rats but not in SNSX rats. However, the pancreatic beta-cell area and mass were not affected by leptin and SNSX, though ICV leptin decreased individual beta-cell size and concomitantly increased beta-cell apoptosis in Sham rats. Leptin directly decreases insulin secretion capacity mainly through the activation of SNS without modulating pancreatic beta-cell mass.

  6. The effect of long-term weight-loss intervention strategies on the dynamics of pancreatic-fat and morphology: An MRI RCT study.

    PubMed

    Tene, Lilac; Shelef, Ilan; Schwarzfuchs, Dan; Gepner, Yftach; Yaskolka Meir, Anat; Tsaban, Gal; Zelicha, Hila; Bilitzky, Avital; Komy, Oded; Cohen, Noa; Bril, Nitzan; Rein, Michal; Serfaty, Dana; Kenigsbuch, Shira; Chassidim, Yoash; Sarusy, Benjamin; Ceglarek, Uta; Stumvoll, Michael; Blüher, Matthias; Thiery, Joachim; Stampfer, Meir J; Rudich, Assaf; Shai, Iris

    2018-04-01

    The ability to mobilize pancreatic-fat and the meaning of decreased fat in the pancreas remain controversial. We followed the dynamics of pancreatic-fat and its morphology during various long weight-loss induced lifestyle-interventions. In isolated workplace with monitored/provided lunch, we randomly assigned healthy persons with abdominal obesity or dyslipidemia for one of two 18-month equal-caloric diets: low-fat (LF) or Mediterranean/low-carbohydrate (Med/LC, with provided 1oz walnuts/day), with or without added moderate exercise (supervised gym membership). We used magnetic-resonance-imaging to quantify pancreatic-fat and morphology. At baseline, 277 eligible participants (mean age = 48 years; 88% men; pancreatic-fat = 17.4 ± 5.1%) had higher pancreatic-fat in men (17.7 ± 4.9% vs 14.9 ± 5.5% in women; p = 0.004). Following 18-month intervention (adherence = 86.3%) and moderate weight-loss (mean = -3.0 ± 5.5 kg), pancreatic-fat decreased moderately but significantly (-0.26 ± 2.18% units; p = 0.049). Med/LC diet induced a greater decrease in pancreatic-fat compared to LF (p = 0.043), and the combination of Med/LC diet + exercise exhibited the highest reduction (-0.69% units) as compared to LF diet without exercise (+0.12%units; p = 0.027 between groups). In multivariate regression models, after further adjusted for visceral adipose-tissue (ΔVAT), pancreatic-fat loss associated with both decreases in pancreatic-morphology ratio (perimeter divided by area; beta = 0.361; p < 0.001) and superficial-subcutaneous adipose-tissue loss (beta = 0.242; p = 0.001), but not with changes in intrahepatic-fat (beta = -0.034; p = 0.638). Pancreatic-fat loss associated with increased intake of polyunsaturated-fat (beta = -0.137; p = 0.032), as with improved high-density lipoprotein-cholesterol (HDL; beta = -0.156; p = 0.023) and triglycerides/HDL ratio (beta = 0.162; p = 0.015), independently of ΔVAT, but not with glycemic-control parameters (e.g. HbA1c, HOMA-IR and HOMA-beta; p > 0.2 for all). Pancreatic-fat loss is mainly associated with improved lipid, rather than glycemic profiles. Med/LC diet, mostly with exercise, may benefit pancreatic-fat loss. Pancreatic-morphology could serve as a biomarker of pancreatic-fat state. (ClinicalTrials.gov identifier: NCT01530724). Copyright © 2018 European Society for Clinical Nutrition and Metabolism. Published by Elsevier Ltd. All rights reserved.

  7. Enhanced cortisol production rates, free cortisol, and 11beta-HSD-1 expression correlate with visceral fat and insulin resistance in men: effect of weight loss.

    PubMed

    Purnell, Jonathan Q; Kahn, Steven E; Samuels, Mary H; Brandon, David; Loriaux, D Lynn; Brunzell, John D

    2009-02-01

    Controversy exists as to whether endogenous cortisol production is associated with visceral obesity and insulin resistance in humans. We therefore quantified cortisol production and clearance rates, abdominal fat depots, insulin sensitivity, and adipocyte gene expression in a cohort of 24 men. To test whether the relationships found are a consequence rather than a cause of obesity, eight men from this larger group were studied before and after weight loss. Daily cortisol production rates (CPR), free cortisol levels (FC), and metabolic clearance rates (MCR) were measured by stable isotope methodology and 24-h sampling; intra-abdominal fat (IAF) and subcutaneous fat (SQF) by computed tomography; insulin sensitivity (S(I)) by frequently sampled intravenous glucose tolerance test; and adipocyte 11beta-hydroxysteroid dehydrogenase-1 (11beta-HSD-1) gene expression by quantitative RT-PCR from subcutaneous biopsies. Increased CPR and FC correlated with increased IAF, but not SQF, and with decreased S(I). Increased 11beta-HSD-1 gene expression correlated with both IAF and SQF and with decreased S(I). With weight loss, CPR, FC, and MCR did not change compared with baseline; however, with greater loss in body fat than lean mass during weight loss, both CPR and FC increased proportionally to final fat mass and IAF and 11beta-HSD-1 decreased compared with baseline. These data support a model in which increased hypothalamic-pituitary-adrenal activity in men promotes selective visceral fat accumulation and insulin resistance and may promote weight regain after diet-induced weight loss, whereas 11beta-HSD-1 gene expression in SQF is a consequence rather than cause of adiposity.

  8. DNA variation in the genes of the Na,K-adenosine triphosphatase and its relation with resting metabolic rate, respiratory quotient, and body fat.

    PubMed Central

    Dériaz, O; Dionne, F; Pérusse, L; Tremblay, A; Vohl, M C; Côté, G; Bouchard, C

    1994-01-01

    The aim of this study was to investigate in 261 subjects from 58 families the association between DNA variation at the genes coding for the Na,K-ATPase peptides and resting metabolic rate (RMR), respiratory quotient (RQ), and percent body fat (%FAT). Five restriction fragment length polymorphisms (RFLP) at three Na,K-ATPase genes were determined: one at the alpha 1 locus (BglII), and two at the beta locus (beta MspI and beta PvuII). Haplotypes were determined from the two variable sites of the alpha 2 gene (alpha 2 haplotypes) and the beta gene (beta haplotypes). There was a strong trend for %FAT to be related to the RFLP generated by BglII at the alpha 2 exons 21-22 in males (P = 0.06) and females (P = 0.05). RQ was (a) associated with the BglII RFLP at the alpha 2 exon 1 (P = 0.02) and with the alpha 2 8.0 kb/4.3 kb haplotype (P = 0.04) and (b) linked with the beta gene MspI marker (P = 0.04) and with the beta 5.3 kb/5.1 kb haplotype (P = 0.008) based on sib-pair analysis. The present study suggests that the genes encoding Na,K-ATPase may be associated or linked with RQ and perhaps with %FAT but not with RMR. PMID:7509349

  9. Beta-glucans in the treatment of diabetes and associated cardiovascular risks

    PubMed Central

    Chen, Jiezhong; Raymond, Kenneth

    2008-01-01

    Diabetes mellitus is characterized by high blood glucose level with typical manifestations of thirst, polyuria, polydipsia, and weight loss. It is caused by defects in insulin-mediated signal pathways, resulting in decreased glucose transportation from blood into muscle and fat cells. The major risk is vascular injury leading to heart disease, which is accelerated by increased lipid levels and hypertension. Management of diabetes includes: control of blood glucose level and lipids; and reduction of hypertension. Dietary intake of beta-glucans has been shown to reduce all these risk factors to benefit the treatment of diabetes and associated complications. In addition, beta-glucans also promote wound healing and alleviate ischemic heart injury. However, the mechanisms behind the effect of beta-glucans on diabetes and associated complications need to be further studied using pure beta-glucan. PMID:19337540

  10. Lack of the central nervous system- and neural crest-expressed forkhead gene Foxs1 affects motor function and body weight.

    PubMed

    Heglind, Mikael; Cederberg, Anna; Aquino, Jorge; Lucas, Guilherme; Ernfors, Patrik; Enerbäck, Sven

    2005-07-01

    To gain insight into the expression pattern and functional importance of the forkhead transcription factor Foxs1, we constructed a Foxs1-beta-galactosidase reporter gene "knock-in" (Foxs1beta-gal/beta-gal) mouse, in which the wild-type (wt) Foxs1 allele has been inactivated and replaced by a beta-galactosidase reporter gene. Staining for beta-galactosidase activity reveals an expression pattern encompassing neural crest-derived cells, e.g., cranial and dorsal root ganglia as well as several other cell populations in the central nervous system (CNS), most prominently the internal granule layer of cerebellum. Other sites of expression include the lachrymal gland, outer nuclear layer of retina, enteric ganglion neurons, and a subset of thalamic and hypothalamic nuclei. In the CNS, blood vessel-associated smooth muscle cells and pericytes stain positive for Foxs1. Foxs1beta-gal/beta-gal mice perform significantly better (P < 0.01) on a rotating rod than do wt littermates. We have also noted a lower body weight gain (P < 0.05) in Foxs1beta-gal/lbeta-gal males on a high-fat diet, and we speculate that dorsomedial hypothalamic neurons, expressing Foxs1, could play a role in regulating body weight via regulation of sympathetic outflow. In support of this, we observed increased levels of uncoupling protein 1 mRNA in Foxs1beta-gal/beta-gal mice. This points toward a role for Foxs1 in the integration and processing of neuronal signals of importance for energy turnover and motor function.

  11. Interleukin-1beta may mediate insulin resistance in liver-derived cells in response to adipocyte inflammation.

    PubMed

    Nov, Ori; Kohl, Ayelet; Lewis, Eli C; Bashan, Nava; Dvir, Irit; Ben-Shlomo, Shani; Fishman, Sigal; Wueest, Stephan; Konrad, Daniel; Rudich, Assaf

    2010-09-01

    Central obesity is frequently associated with adipose tissue inflammation and hepatic insulin resistance. To identify potential individual mediators in this process, we used in vitro systems and assessed if insulin resistance in liver cells could be induced by secreted products from adipocytes preexposed to an inflammatory stimulus. Conditioned medium from 3T3-L1 adipocytes pretreated without (CM) or with TNFalpha (CM-TNFalpha) was used to treat Fao hepatoma cells. ELISAs were used to assess the concentration of several inflammatory mediators in CM-TNFalpha. CM-TNFalpha-treated Fao cells exhibited about 45% diminution in insulin-stimulated phosphorylation of insulin receptor, insulin receptor substrate proteins, protein kinase B, and glycogen synthase kinase-3 as compared with CM-treated cells, without changes in the total abundance of these protein. Insulin increased glycogenesis by 2-fold in CM-treated Fao cells but not in cells exposed to CM-TNFalpha. Expression of IL-1beta mRNA was elevated 3-fold in TNFalpha-treated adipocytes, and CM-TNFalpha had 10-fold higher concentrations of IL-1beta but not TNFalpha or IL-1alpha. IL-1beta directly induced insulin resistance in Fao, HepG2, and in primary rat hepatocytes. Moreover, when TNFalpha-induced secretion/production of IL-1beta from adipocytes was inhibited by the IL-1 converting enzyme (ICE-1) inhibitor II (Ac-YVAD-CMK), insulin resistance was prevented. Furthermore, liver-derived cells treated with IL-1 receptor antagonist were protected against insulin resistance induced by CM-TNFalpha. Finally, IL-1beta secretion from human omental fat explants correlated with body mass index (R(2) = 0.639, P < 0.01), and the resulting CM induced insulin resistance in HepG2 cells, inhibitable by IL-1 receptor antagonist. Our results suggest that adipocyte-derived IL-1beta may constitute a mediator in the perturbed cross talk between adipocytes and liver cells in response to adipose tissue inflammation.

  12. Histochemical study of brown-fat cells in the golden hamster (Mesocricetus auratus) in cultures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sokolov, V.E.; Boyadzhieva-Mikhailova, A.; Koncheva, L.

    1985-11-01

    The authors undertake the task of studying the synthesis of certain hormones by brown-fat cells. The authors used brown-fat cells from the golden hamster. The metabolism of brown-fat cells was studied on precultured cells, which made it possible to detect the synthesis of the studied substances rather than their accumulation in the organ. The authors conducted three experiments. First, fragments of brown fat were cultivated in diffusion chambers in vivo. Pieces of brown fat were cultivated in parallel in vitro on agar (organotypic cultures) and on plasma (histotypic cultures). During cultivation in diffusion chambers, the chambers were implanted in themore » abdominal cavity of young white rats. For in vitro cultivation, TCM 199 plus 15-20% calf serum was used. A total of 36 cultures with 12 cultures in each series of experiments were performed. The auto-radiographic studies of brown-fat cells were conducted on 24-hour cultures and on brown-fat fragments taken from the intact animal. The cultures were incubated with isotopes for 1 h. Either (/sup 3/H)lysine (87.3 Ci/mM specific activity), (/sup 3/H)arginine (16.7 Ci/mM), (/sup 3/H)glycerol (43 Ci/mM), or (/sup 3/H)cholesterol (43 Ci/mM) were added to the medium. After incubation, the cultures were washed three times in pure medium, fixed in Sierra fluid, and embedded in paraffin. The paraffin sections were covered with Ilford K/sub 2/ emulsion, and the preparations were exposed for 20 days at 4/sup 0/C temperature. Radio-immunological methods were used to study the accumulation of estradiol-17-beta in the culture medium by the Dobson method and that of testerone. The culture medium was taken on cultivation days 2,4,6,8, and 10. The medium was changed during cultivation every third day, which made it possible to judge the rates of accumulation of material with increase in the cultivation times.« less

  13. The effect of growth hormone treatment on metabolic and cardiovascular risk factors is similar in preterm and term short, small for gestational age children.

    PubMed

    de Kort, Sandra W K; Willemsen, Ruben H; van der Kaay, Danielle C M; Hokken-Koelega, Anita C S

    2009-07-01

    We previously reported that short, small for gestational age (SGA) children who were born preterm have a lower body fat percentage and a higher blood pressure, insulin secretion and disposition index than short SGA children born at term. Whether preterm birth also influences these parameters during GH treatment is unknown. To compare blood pressure, insulin sensitivity, beta-cell function and body composition during 4 years of GH treatment, between preterm and term short SGA children. A total of 404 prepubertal non-GH-deficient short SGA children were divided into 143 preterm (< 36 weeks) and 261 term children. Height, blood pressure (n = 404), body composition measured by dual energy X-ray absorptiometry (DXA) (n = 138) and insulin sensitivity and beta-cell function calculated from a frequent sampling intravenous glucose tolerance test (FSIGT) with tolbutamide (n = 74) or from the homeostasis model assessment of insulin resistance (HOMA-IR) (n = 204). In preterm and term children, GH treatment resulted in a similar decrease in systolic and diastolic blood pressure, body fat percentage, limb fat/total fat ratio and insulin sensitivity, and a similar increase in insulin secretion and disposition index. Lean body mass (LBM) corrected for gender and height increased in term children and did not change in preterm children. Multiple regression analysis revealed that this difference in GH effect on LBM was not associated with gestational age. The effect of GH treatment on metabolic and cardiovascular risk factors is similar in preterm and term short, SGA children.

  14. Insulin Sensitivity and Secretion in Obese Type 2 Diabetic Women after Various Bariatric Operations

    PubMed Central

    Vrbikova, Jana; Kunesova, Marie; Kyrou, Ioannis; Tura, Andrea; Hill, Martin; Grimmichova, Tereza; Dvorakova, Katerina; Sramkova, Petra; Dolezalova, Karin; Lischkova, Olga; Vcelak, Josef; Hainer, Vojtech; Bendlova, Bela; Kumar, Sudhesh; Fried, Martin

    2017-01-01

    Objective To compare the effects of biliopancreatic diversion (BPD) and laparoscopic gastric banding (LAGB) on insulin sensitivity and secretion with the effects of laparoscopic gastric plication (P). Methods A total of 52 obese women (age 30-66 years) suffering from type 2 diabetes mellitus (T2DM) were prospectively recruited into three study groups: 16 BPD; 16 LAGB, and 20 P. Euglycemic clamps and mixed meal tolerance tests were performed before, at 1 month and at 6 months after bariatric surgery. Beta cell function derived from the meal test parameters was evaluated using mathematical modeling. Results Glucose disposal per kilogram of fat free mass (a marker of peripheral insulin sensitivity) increased significantly in all groups, especially after 1 month. Basal insulin secretion decreased significantly after all three types of operations, with the most marked decrease after BPD compared with P and LAGB. Total insulin secretion decreased significantly only following the BPD. Beta cell glucose sensitivity did not change significantly post-surgery in any of the study groups. Conclusion We documented similar improvement in insulin sensitivity in obese T2DM women after all three study operations during the 6-month postoperative follow-up. Notably, only BPD led to decreased demand on beta cells (decreased integrated insulin secretion), but without increasing the beta cell glucose sensitivity. PMID:27951535

  15. Effect of beta-lactoglobulin polymorphism and seasonality on bovine milk composition.

    PubMed

    Botaro, Bruno G; Lima, Ygor V R; Aquino, Adriana A; Fernandes, Raquel H R; Garcia, José F; Santos, Marcos V

    2008-05-01

    The objective was to evaluate the effect of beta-lactoglobulin (beta-lg) polymorphism and seasonality on milk composition (fat, lactose, total solids, milk urea nitrogen, total protein, true protein, casein and somatic cell counts) of Holstein and Girolando cows. Milk and blood samples from 278 Holsteins cows and 156 Girolando cows were taken during two dry seasons and two rainy seasons, for milk composition analysis and to determine beta-lg genotypes, respectively. BB genotype was the most frequent for both breeds, followed by AA genotype for Holstein (BB>AA>AB) and by AB for Girolando cows (BB>AB>AA). No differences were found in milk compositional characteristics among genetic variants of beta-lg (AA, AB and BB) either between Holstein or Girolando cows. No association between milk composition and beta-lg genetic polymorphism was observed. During the dry season, independently of the breed considered, higher contents of lactose, true protein, casein and casein:true protein ratio were found.

  16. Blunted beta-adrenoceptor-mediated fat oxidation in overweight subjects: a role for the hormone-sensitive lipase gene.

    PubMed

    Jocken, Johan W E; Blaak, Ellen E; van der Kallen, Carla J H; van Baak, Marleen A; Saris, Wim H M

    2008-03-01

    Obesity is associated with blunted beta-adrenoceptor-mediated lipolysis and fat oxidation, which persist after weight reduction. We investigated whether dinucleotide (CA)(n) repeat polymorphisms in intron 6 (i6) or 7 (i7) and a C-60G promoter substitution of the hormone-sensitive lipase (HSL) gene are associated with a blunted in vivo beta-adrenoceptor-mediated increase in circulating fatty acids and glycerol (estimation of lipolytic response) and fat oxidation in overweight-obese subjects. A total of 103 overweight (25 kg/m(2) < or = body mass index < 30 kg/m(2)) and obese (body mass index > or =30 kg/m(2)) subjects (62 men, 41 women) were included. Energy expenditure, respiratory quotient (RQ), and circulating fatty acid and glycerol were determined after stepwise infusion of increasing doses of the nonselective beta-agonist isoprenaline. The i6, i7 (CA)(n) repeat polymorphisms were determined by size-resolved capillary electrophoresis; and a C-60G promoter substitution was determined by restriction enzyme digestion assay. Female noncarriers of allele 184 i7 (n = 18) and female carriers of allele 240 i6 (n = 12) showed an overall reduced fat oxidation (as indicated by changes in RQ) after beta-adrenoceptor-mediated stimulation, explaining, respectively, 6.9% and 20.8% of the variance in RQ. These effects were not seen in male subjects. In conclusion, our results suggest that variation in i7 and i6 of the HSL gene might be associated with a physiological effect on in vivo beta-adrenoceptor-mediated fat oxidation, at least in overweight-obese female subjects.

  17. Physical inactivity, but not sedentary behavior or energy intake, is associated with higher fat mass in Latina and African American girls.

    PubMed

    McClain, Arianna D; Hsu, Ya-Wen; Belcher, Britni R; Nguyen-Rodriguez, Selena; Weigensberg, Marc; Spruijt-Metz, Donna

    2011-01-01

    Minority girls are disproportionately affected by overweight and obesity. The independent effects of physical activity (PA), sedentary behavior (SB), and diet are not well understood. This study examined the individual influences of PA, SB and diet on fat mass in Latina and African American (AA) girls, aged 8-11. Baseline data from a longitudinal cohort study in minority girls is presented. Multiple linear regression analysis assessed the effects of PA, SB, and energy intake on fat mass, adjusting for lean mass, age, Tanner stage and ethnicity. Participants were 53 Latina and AA girls (77% Latina; M age=9.8 +/- .9; M(BMI%)=80.8 +/- 23.1). Moderate-to-vigorous physical activity (MVPA) by accelerometry (beta= -.13, P<.01) and lean mass (beta=.69, P<.001) were associated with fat mass (Model R2=.63; P<.0001). MVPA by 3-day-physical-activity-recall (beta=-.04, P=.01) and lean mass (beta=.75, P<.001) were associated with fat mass (Model R2=.61; P<.0001). SB and energy intake were not associated with fat mass in any model. Using both objective and subjective measures of PA, MVPA, but not SB or diet, was associated with higher fat mass in Latina and AA girls, independent of lean mass, age, Tanner stage, and ethnicity. Prospective studies are needed to clarify the differential impact of diet and activity levels on adiposity in this population.

  18. Interferon beta overexpression attenuates adipose tissue inflammation and high-fat diet-induced obesity and maintains glucose homeostasis.

    PubMed

    Alsaggar, M; Mills, M; Liu, D

    2017-01-01

    The worldwide prevalence of obesity is increasing, raising health concerns regarding obesity-related complications. Chronic inflammation has been characterized as a major contributor to the development of obesity and obesity-associated metabolic disorders. The purpose of the current study is to assess whether the overexpression of interferon beta (IFNβ1), an immune-modulating cytokine, will attenuate high-fat diet-induced adipose inflammation and protect animals against obesity development. Using hydrodynamic gene transfer to elevate and sustain blood concentration of IFNβ1 in mice fed a high-fat diet, we showed that the overexpression of Ifnβ1 gene markedly suppressed immune cell infiltration into adipose tissue, and attenuated production of pro-inflammatory cytokines. Systemically, IFNβ1 blocked adipose tissue expansion and body weight gain, independent of food intake. Possible browning of white adipose tissue might also contribute to blockade of weight gain. More importantly, IFNβ1 improved insulin sensitivity and glucose homeostasis. These results suggest that targeting inflammation represents a practical strategy to block the development of obesity and its related pathologies. In addition, IFNβ1-based therapies have promising potential for clinical applications for the prevention and treatment of various inflammation-driven pathologies.

  19. High-fat diet exacerbates inflammation and cell survival signals in the skin of ultraviolet B-irradiated C57BL/6 mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meeran, Syed M.; Singh, Tripti; Nagy, Tim R.

    Inflammation induced by chronic exposure to ultraviolet (UV) radiation has been implicated in various skin diseases. We formulated the hypothesis that a high-fat diet may influence the UV-induced inflammatory responses in the skin. C57BL/6 mice were fed a high-fat diet or control diet and exposed to UVB radiation (120 mJ/cm{sup 2}) three times/week for 10 weeks. The mice were then sacrificed and skin and plasma samples collected for analysis of biomarkers of inflammatory responses using immunohistochemistry, western blotting, ELISA and real-time PCR. We found that the levels of inflammatory biomarkers were increased in the UVB-exposed skin of the mice fedmore » the high-fat diet than the UVB-exposed skin of the mice fed the control diet. The levels of inflammatory biomarkers of early responses to UVB exposure (e.g., myeloperoxidase, cyclooxygenase-2, prostaglandin-E{sub 2}), proinflammatory cytokines (i.e., tumor necrosis factor-alpha, interleukin-1beta, interleukin-6), and proliferating cell nuclear antigen and cell survival signals (phosphatidylinositol-3-kinase and p-Akt-Ser{sup 473}) were higher in high-fat-diet-fed mouse skin than control-diet-fed mouse skin. The plasma levels of insulin growth factor-1 were greater in the UVB-irradiated mice fed the high-fat diet than the UVB-irradiated mice fed the control diet, whereas the levels of plasma adiponectin were significantly lower. This pronounced exacerbation of the UVB-induced inflammatory responses in the skin of mice fed a high-fat diet suggests that high-fat diet may increase susceptibility to inflammation-associated skin diseases, including the risk of skin cancer.« less

  20. Trp64Arg polymorphism in beta3-adrenergic receptor gene is associated with decreased fat oxidation both in resting and aerobic exercise in the Japanese male.

    PubMed

    Morita, Emiko; Taniguchi, Hiroshi; Sakaue, Motoyoshi

    2009-01-01

    The purpose of our study was to investigate whether the Trp64Arg polymorphism in beta3-AR gene and the -3826A/G polymorphism in the UCP1 gene were associated with the reduction in energy expenditure and fat oxidation both in resting and aerobic exercise in Japanese. Eighty-six nonobese young healthy Japanese were recruited. Energy expenditure was measured using indirect calorimetry. The subjects performed an aerobic exercise program at 60% of their maximal heart rate for 30 minutes. The level of fat oxidation at rest and aerobic exercise of the male subjects with Trp/Arg of the beta3-AR gene was significantly lower than that of the Trp/Trp genotype. No difference in FO(0-30) was observed in the female subjects. There was no association between UCP-1 polymorphism and energy expenditure during aerobic exercise. It was revealed that the Trp64Arg polymorphism in beta3-AR gene is associated with reduction of fat oxidation both in resting and aerobic exercise in healthy, young Japanese males.

  1. Effects of low intensity laser acupoint irradiation on inhibiting islet beta-cell apoptosis in rats with type 2 diabetes

    NASA Astrophysics Data System (ADS)

    Xiong, Guoxin; Xiong, Leilei; Li, Xinzhong

    2016-09-01

    To investigate the effects of low intensity semiconductor laser acupoint irradiation on inhibiting islet beta-cell apoptosis in rats with type 2 diabetes, a method using a high-fat diet and low-dose intraperitoneal injections of streptozotocin established a type 2 diabetes mellitus rat model. Model rats were randomly divided into a laser acupoint irradiation group, rosiglitazone control group, and placebo group; each group had 10 rats. In addition, 10 normal male rats were selected for the normal control group. The Housanli, Neiting and Yishu acupoints of the rats in the laser acupoint irradiation group were irradiated with a 10 mW semiconductor laser; each point was irradiated for 15 min, once every 2 d over 28 d, for a total of 14 episodes of irradiation. The rosiglitazone group rats were given rosiglitazone (0.2 mg kg-1) intragastrically; the placebo group rats were given 0.9% brine (0.2 mg kg-1) intragastrically, once daily, for four consecutive weeks. The change of fasting blood glucose was determined before and after each treatment. The islet beta-cell apoptosis was determined. The islet beta-cell apoptosis rates of the laser acupoint irradiation group and the rosiglitazone group were significantly lower than the rate of the placebo group. Even though the rate was lower in the laser acupoint irradiation group than in the rosiglitazone group, there was no significant difference between them. It is shown that acupoint irradiation with a semiconductor laser can effectively inhibit islet beta-cell apoptosis in rats with type 2 diabetes.

  2. Effects of high-fat diets on hepatic fatty acid oxidation in the rat. Isolation of rat liver peroxisomes by vertical-rotor centrifugation by using a self-generated, iso-osmotic, Percoll gradient.

    PubMed Central

    Neat, C E; Thomassen, M S; Osmundsen, H

    1981-01-01

    1. Rat liver peroxisomal fractions were isolated in iso-osmotic Percoll gradients by using vertical-rotor centrifugation. The fractions obtained with rats given various dietary treatments were characterized. 2. The effect on peroxisomal beta-oxidation of feeding 15% by wt. of dietary fat for 3 weeks was investigated. High-fat diets caused induction of peroxisomal beta-oxidation, but diets rich in very-long-chain mono-unsaturated fatty acids produced a more marked induction. 3. Peroxisomal beta-oxidation induced by diets rich in very-long-chain mono-unsaturated fatty acids can oxidize such acids. Trans-isomers of mono-unsaturated fatty acids are oxidized at rates that are faster than, or similar to, those obtained with corresponding cis-isomers. 4. Rates of oxidation of [14-14C]erucic acid by isolated rat hepatocytes isolated from rats fed on high-fat diets increased with the time on those diets in a fashion very similar to that previously reported for peroxisomal beta-oxidation [see Neat, Thomassen & Osmundsen (1980) Biochem, J. 186, 369-371]. 5. Total liver capacities for peroxisomal beta-oxidation (expressed as acetyl groups produced per min) were estimated to range from 10 to 30% of mitochondrial capacities, depending on dietary treatment and fatty acid substrate. A role is proposed for peroxisomal beta-oxidation in relation to the metabolism of fatty acids that are poorly oxidized by mitochondrial beta-oxidation, and, in general, as regards oxidation of fatty acids during periods of sustained high hepatic influx of fatty acids. PMID:6272750

  3. Influence of fat replacers on chemical composition, proteolysis, texture profiles, meltability and sensory properties of low-fat Kashar cheese.

    PubMed

    Sahan, Nuray; Yasar, Kurban; Hayaloglu, Ali A; Karaca, Oya B; Kaya, Ahmet

    2008-02-01

    Changes in chemical composition, proteolysis, lipolysis, texture, melting and sensory properties of low-fat Kashar cheese made with three different fat replacers (Simplesse D-100, Avicel Plus CM 2159 or beta-glucan) were investigated throughout ripening. The low-fat cheeses made with fat replacers were compared with full- and low-fat counterparts as controls. Reduction of fat caused increases in moisture and protein contents and decreases in moisture-in-non fat substance and yield values in low-fat cheeses. The use of fat replacers in the manufacture of low-fat Kashar cheese increased water binding capacity and improved overall quality of the cheeses. Use of fat replacer in low-fat cheese making has enhanced cheese proteolysis. All samples underwent lipolysis during ripening and low-fat cheeses with fat replacers had higher level of total free fatty acid than full- or low-fat control cheeses. Texture attributes and meltability significantly increased with addition of fat replacers. Sensory scores showed that the full-fat cheese was awarded best in all stages of ripening and low-fat variant of Kashar cheeses have inferior quality. However, fat replacers except beta-glucan improved the appearance, texture and flavour attributes of low-fat cheeses. When the fat replacers are compared, the low-fat cheese with Avicel Plus CM 2159 was highly acceptable and had sensory attributes closest to full-fat Kashar cheese.

  4. Weight-dependent changes of immune system in adipose tissue: Importance of leptin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Caspar-Bauguil, S.; Groupe de Recherche et d'Etude en Nutrition; Cousin, B.

    2006-07-15

    Ancestral lymphoid cells reside in adipose tissues, and their numbers are highly altered in obesity. Leptin, production of which is correlated to fat mass, is strongly involved in the relationships between adipose tissues and immune system. We investigated in epididymal (EPI) and inguinal (ING) fat pads to determine whether 1) lymphocyte phenotypes were correlated to the tissue weight and 2) leptin was involved in such relationships. Immunohistological analyses revealed a tight relationship between the T and NK lymphocytes of the stromal vascular fraction and adipocytes. We identified a significant negative and positive correlation between EPI weight and the percentage ofmore » NK and total T cells respectively by cytofluorometric analyses. The NK and ancestral {gamma}{delta} T cell contents were directly dependent of leptin since they increased significantly in high-fat (HF) diet mice but not in leptin-deficient (ob/ob) mice as compared to control. By contrast, the {alpha}{beta} T cell content seemed independent of leptin because their percentages increased significantly with the EPI weight whatever the type of mice (control, HF, ob/ob). The present study suggests that adipose tissues present, according to their localization, different immunological mechanisms that might be involved in the regulation of adipose cells functions and proliferations.« less

  5. Maternal obesity accelerates fetal pancreatic beta-cell but not alpha-cell development in sheep: prenatal consequences.

    PubMed

    Ford, Stephen P; Zhang, Liren; Zhu, Meijun; Miller, Myrna M; Smith, Derek T; Hess, Bret W; Moss, Gary E; Nathanielsz, Peter W; Nijland, Mark J

    2009-09-01

    Maternal obesity affects offspring weight, body composition, and organ function, increasing diabetes and metabolic syndrome risk. We determined effects of maternal obesity and a high-energy diet on fetal pancreatic development. Sixty days prior to breeding, ewes were assigned to control [100% of National Research Council (NRC) recommendations] or obesogenic (OB; 150% NRC) diets. At 75 days gestation, OB ewes exhibited elevated insulin-to-glucose ratios at rest and during a glucose tolerance test, demonstrating insulin resistance compared with control ewes. In fetal studies, ewes ate their respective diets from 60 days before to 75 days after conception when animals were euthanized under general anesthesia. OB and control ewes increased in body weight by approximately 43% and approximately 6%, respectively, from diet initiation until necropsy. Although all organs were heavier in fetuses from OB ewes, only pancreatic weight increased as a percentage of fetal weight. Blood glucose, insulin, and cortisol were elevated in OB ewes and fetuses on day 75. Insulin-positive cells per unit pancreatic area were 50% greater in fetuses from OB ewes as a result of increased beta-cell mitoses rather than decreased programmed cell death. Lambs of OB ewes were born earlier but weighed the same as control lambs; however, their crown-to-rump length was reduced, and their fat mass was increased. We conclude that increased systemic insulin in fetuses from OB ewes results from increased glucose exposure and/or cortisol-induced accelerated fetal beta-cell maturation and may contribute to premature beta-cell function loss and predisposition to obesity and metabolic disease in offspring.

  6. Log (TG)/HDL-C ratio as a predictor of decreased islet beta cell function in patients with type 2 diabetes: 6-year cohort study.

    PubMed

    Zhou, Meicen; Li, Zengyi; Min, Rui; Dong, Yaxiu; Sun, Qi; Li, Yuxiu

    2015-09-01

    The aim of the present study was to explore whether the triglyceride to high density lipoprotein cholesterol ratio [log (TG)/HDL-C] and peripheral blood leukocytes DNA telomere length could predict future islet beta cell function decreased in Chinese type 2 diabetes mellitus (T2DM) during a 6-year cohort. Sixty T2DM patients (without insulin treatment at baseline) were included in the 6-year cohort study. Peripheral blood leukocytes DNA telomere length, HbA1c, blood lipid profile, fatty fat acid, glucose, insulin and C peptide (3 h after a mixed meal) were determined. Delta C peptide area under curve (Delta CP AUC) was used to reflect change in beta cell secretion function (Delta CP AUC = baseline CP AUC - CP AUC after 6 years). Subjects were divided into slow decrease of beta cell function group (Delta CP AUCslow group) and fast decrease group (Delta CP AUCfast group) according to median of Delta CP AUC. Baseline demographic characteristics, clinical variables between two groups were compared. Correlations between baseline data and Delta CP AUC were analyzed. Baseline log (TG)/HDL-C was positively correlated with Delta CP AUC (r = 0.306, P = 0.027); log (TG)/HDL-C in Delta CP AUCfast group was higher than that in Delta CP AUCslow group (0.103 ± 0.033 vs 0.083 ± 0.030, P = 0.027). There was no significant difference in DNA telomere length between the two groups. Change in DNA telomere length over 6 years was not significantly correlated with baseline blood lipid. In Chinese T2DM patients, high baseline log (TG)/HDL-C ratio predicts fast progression of islet beta cell dysfunction. It may be a simple index to predict progression speed of islet beta cell dysfunction. © 2014 Ruijin Hospital, Shanghai Jiaotong University School of Medicine and Wiley Publishing Asia Pty Ltd.

  7. Nutrient intake and hormonal status of premenopausal vegetarian Seventh-day Adventists and premenopausal nonvegetarians.

    PubMed

    Shultz, T D; Leklem, J E

    1983-01-01

    The relationship between dietary nutrients and plasma estrone, estradiol-17 beta, estriol, dehydroepiandrosterone sulfate, and prolactin levels was investigated in 14 premenopausal Seventh-day Adventist vegetarian (SV) women and 9 premenopausal non-Seventh-day Adventist nonvegetarian (NV) women. The SV subjects consumed less fat, especially saturated fat, and used significantly less fried food than the NV subjects. Plasma levels of estrone and estradiol-17 beta in the SV subjects were significantly lower than in the NV subjects. SV estradiol-17 beta and estriol levels were positively correlated with linoleic acid and protein intake, while NV prolactin levels were significantly correlated with intakes of oleic and linoleic acids and total fat. The data suggest that specific dietary nutrients were related to the hormonal milieu of these SV and NV subjects.

  8. Farnesoid X receptor deficiency induces nonalcoholic steatohepatitis in low-density lipoprotein receptor-knockout mice fed a high-fat diet.

    PubMed

    Kong, Bo; Luyendyk, James P; Tawfik, Ossama; Guo, Grace L

    2009-01-01

    Nonalcoholic steatohepatitis (NASH) comprises dysregulation of lipid metabolism and inflammation. Identification of the various genetic and environmental susceptibility factors for NASH may provide novel treatments to limit inflammation and fibrosis in patients. This study utilized a mouse model of hypercholesterolemia, low-density lipoprotein receptor knockout (LDLr(-/-)) mice fed a high-fat diet for 5 months, to test the hypothesis that farnesoid X receptor (FXR) deficiency contributed to NASH development. Either the high-fat diet or FXR deficiency increased serum alanine aminotransferase activity, whereas only FXR deficiency increased bile acid and alkaline phosphatase levels. FXR deficiency and high-fat feeding increased serum cholesterol and triglycerides. Although high fat led to macrosteatosis and hepatocyte ballooning in livers of mice regardless of genotype, no inflammatory infiltrate was observed in the livers of LDLr(-/-) mice. In contrast, in the livers of LDLr(-/-)/FXR(-/-) mice, foci of inflammatory cells were observed occasionally when fed the control diet and were greatly increased when fed the high-fat diet. Consistent with enhanced inflammatory cells, hepatic levels of tumor necrosis factor alpha and intercellular adhesion molecule-1 mRNA were increased by the high-fat diet in LDLr(-/-)/FXR(-/-) mice. In agreement with elevated levels of procollagen 1 alpha 1 and TGF-beta mRNA, type 1 collagen protein levels were increased in livers of LDLr(-/-)/FXR(-/-) mice fed a high-fat diet. In conclusion, FXR deficiency induces pathologic manifestations required for NASH diagnosis in a mouse model of hypercholesterolemia, including macrosteatosis, hepatocyte ballooning, and inflammation, which suggest a combination of FXR deficiency and high-fat diet is a risk factor for NASH development, and activation of FXR may be a therapeutic intervention in the treatment of NASH.

  9. Protective effect of cinnamon polyphenols against STZ-diabetic mice fed high-sugar, high-fat diet and its underlying mechanism.

    PubMed

    Li, Rong; Liang, Tao; Xu, Lingyuan; Li, Yongwen; Zhang, Shijun; Duan, Xiaoqun

    2013-01-01

    This study was designed to investigate the potential effects of 14days' intragastrically given of cinnamon polyphenols (CPS) in treating diabetic mice induced by intraperitoneal injection of streptozotocin (150mgkg(-1)) and fed high-sugar, high-fat diet. The diabetic mice model was successfully established through determining on fasting blood-glucose (FBG) test. As revealed by glucose oxidase (GOD) and radioimmunoassay (RIA), both dimethyldiguanide (DC, 0.6gkg(-1)d(-1)) and CPS (0.3, 0.6, 1.2gkg(-1)d(-1)) treatments significantly resulted in down-regulation of blood glucose and insulin levels in serum, while the levels of oxidative stress markers were markedly lowered through ELISA assay. Meanwhile, the pathological damage in islet with pancreatic beta cells was ameliorated by treatment of CPS at different doses, as shown in HE stain. At the same time, the treatments also caused notable reduction of iNOS, NF-κB expressions showing in Western blot analysis. These findings demonstrate that cinnamon polyphenols can exert the hypoglycemic and hypolipidemic effects through the mechanisms that may be associated with repairing pancreatic beta cells in diabetic mice and improving its anti-oxidative capacity, as well as attenuating cytotoxicity via inhibition of iNOS, NF-κB activation. Published by Elsevier Ltd.

  10. Nature and composition of fat bloom from palm kernel stearin and hydrogenated palm kernel stearin compound chocolates.

    PubMed

    Smith, Kevin W; Cain, Fred W; Talbot, Geoff

    2004-08-25

    Palm kernel stearin and hydrogenated palm kernel stearin can be used to prepare compound chocolate bars or coatings. The objective of this study was to characterize the chemical composition, polymorphism, and melting behavior of the bloom that develops on bars of compound chocolate prepared using these fats. Bars were stored for 1 year at 15, 20, or 25 degrees C. At 15 and 20 degrees C the bloom was enriched in cocoa butter triacylglycerols, with respect to the main fat phase, whereas at 25 degrees C the enrichment was with palm kernel triacylglycerols. The bloom consisted principally of solid fat and was sharper melting than was the fat in the chocolate. Polymorphic transitions from the initial beta' phase to the beta phase accompanied the formation of bloom at all temperatures.

  11. The Herbal Medicine Cordyceps sinensis Protects Pancreatic Beta Cells from Streptozotocin-Induced Endoplasmic Reticulum Stress.

    PubMed

    Liu, Hong; Cao, Diyong; Liu, Hua; Liu, Xinghai; Mai, Wenli; Lan, Haitao; Huo, Wen; Zheng, Qian

    2016-08-01

    Our previous work found that Cordyceps sinensis (CS) improves the activity and secretory function of pancreatic islet beta cells. The objective was to observe a further possible role of CS in the protection of insulin-secreting cells. A rat model of type 2 diabetes mellitus was developed with streptozotocin (STZ) and a high-energy fat diet (HFD). CS was administered in the successful model of rats with type 2 diabetes. After 4 weeks, the biochemistry index of blood samples was measured, and pathologic observation was performed by immunohistochemistry. In the rats with type 2 diabetes induced by a HFD and STZ, the levels of fasting blood glucose and fasting insulin were elevated, and the insulin sensitivity index was decreased. Pathologic examination found an increased number of apoptotic cells, an elevated protein expression of pro-apoptotic C/EBP homologous protein (CHOP) and an increased c-Jun level by means of JNK phosphorylation, responsive to the endoplasmic reticulum stress of islet beta cells. With treatment by CS for 4 weeks, the elevated levels of both fasting blood glucose and fasting insulin in the rats with type 2 diabetes were significantly lower, and the decreased insulin sensitivity index was reversed. Compared to the control rats with type 2 diabetes, CS application significantly reduced the number of apoptotic cells and decreased protein expression of both CHOP and c-Jun. The herbal compound CS could protect pancreatic beta cells from the pro-apoptotic endoplasmic reticulum stress induced by HFD-STZ. This suggests an alternative approach to treating type 2 diabetes. Copyright © 2016 Canadian Diabetes Association. Published by Elsevier Inc. All rights reserved.

  12. Browning of White Fat: Novel Insight Into Factors, Mechanisms, and Therapeutics.

    PubMed

    Jeremic, Nevena; Chaturvedi, Pankaj; Tyagi, Suresh C

    2017-01-01

    What is more interesting about brown adipose tissue (BAT) is its ability to provide thermogenesis, protection against obesity by clearing triglycerides, releasing batokines, and mitigating insulin resistance. White adipose tissue (WAT) on the other hand stores excess energy and secretes some endocrine factors like leptin for regulating satiety. For the last decade there has been an increasing interest in the browning of fat keeping in view its beneficial effects on metabolic disorders and protection in the form of perivascular fat. Obesity is one such metabolic disorder that leads to significant morbidity and mortality from obesity-related disorders such as type 2 diabetes mellitus (T2D) and cardiovascular disease risk. Browning of white fat paves the way to restrict obesity and obesity related disorders. Although exercise has been the most common factor for fat browning; however, there are other factors that involve: (1) beta aminoisobutyric acid (BAIBA); (2) gamma amino butyric acid (GABA); (3) PPARɣ agonists; (4) JAK inhibition; and (5) IRISIN. In this review, we propose two novel factors musclin and TFAM for fat browning. Musclin a myokine released from muscles during exercise activates PPARɣ which induces browning of WAT that has beneficial metabolic and cardiac effects. TFAM is a transcription factor that induces mitochondrial biogenesis. Since BAT is rich in mitochondria, higher expression of TFAM in WAT or TFAM treatment in WAT cells can induce browning of WAT. We propose that fat browning can be used as a therapeutic tool for metabolic disorders and cardiovascular diseases. J. Cell. Physiol. 232: 61-68, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  13. Dynamic, M2-like remodeling phenotypes of CD11c+ adipose tissue macrophages during high-fat diet--induced obesity in mice.

    PubMed

    Shaul, Merav E; Bennett, Grace; Strissel, Katherine J; Greenberg, Andrew S; Obin, Martin S

    2010-05-01

    To identify, localize, and determine M1/M2 polarization of epidydimal adipose tissue (eAT) macrophages (Phis) during high-fat diet (HFD)-induced obesity. Male C57BL/6 mice were fed an HFD (60% fat kcal) or low-fat diet (LFD) (10% fat kcal) for 8 or 12 weeks. eATMPhis (F4/80(+) cells) were characterized by in vivo fluorescent labeling, immunohistochemistry, fluorescence-activated cell sorting, and quantitative PCR. Recruited interstitial macrophage galactose-type C-type lectin (MGL)1(+)/CD11c(-) and crown-like structure-associated MGL1(-)/CD11c(+) and MGL1(med)/CD11c(+) eATMPhis were identified after 8 weeks of HFD. MGL1(med)/CD11c(+) cells comprised approximately 65% of CD11c(+) eATMPhis. CD11c(+) eATMPhis expressed a mixed M1/M2 profile, with some M1 transcripts upregulated (IL-12p40 and IL-1beta), others downregulated (iNOS, caspase-1, MCP-1, and CD86), and multiple M2 and matrix remodeling transcripts upregulated (arginase-1, IL-1Ra, MMP-12, ADAM8, VEGF, and Clec-7a). At HFD week 12, each eATMPhi subtype displayed an enhanced M2 phenotype as compared with HFD week 8. CD11c(+) subtypes downregulated IL-1beta and genes mediating antigen presentation (I-a, CD80) and upregulated the M2 hallmark Ym-1 and genes promoting oxidative metabolism (PGC-1alpha) and adipogenesis (MMP-2). MGL1(med)/CD11c(+) eATMPhis upregulated additional M2 genes (IL-13, SPHK1, CD163, LYVE-1, and PPAR-alpha). MGL1(med)/CD11c(+) ATMPhis expressing elevated PGC-1alpha, PPAR-alpha, and Ym-1 transcripts were selectively enriched in eAT of obese mice fed pioglitazone for 6 days, confirming the M2 features of the MGL1(med)/CD11c(+) eATMPhi transcriptional profile and implicating PPAR activation in its elicitation. These results 1) redefine the phenotypic potential of CD11c(+) eATMPhis and 2) suggest previously unappreciated phenotypic and functional commonality between murine and human ATMPhis in the development of obesity and its complications.

  14. Impact of adopting a vegan diet or an olestra supplementation on plasma organochlorine concentrations: results from two pilot studies.

    PubMed

    Arguin, Hélène; Sánchez, Marina; Bray, George A; Lovejoy, Jennifer C; Peters, John C; Jandacek, Ronald J; Chaput, Jean-Philippe; Tremblay, Angelo

    2010-05-01

    The aim of these studies was to evaluate the potential of some nutritional approaches to prevent or reduce the body load of organochlorines (OC) in humans. Study 1 compared plasma OC concentrations between vegans and omnivores while study 2 verified if the dietary fat substitute olestra could prevent the increase in OC concentrations that is generally observed in response to a weight-reducing programme. In study 1, nine vegans and fifteen omnivores were recruited and the concentrations of twenty-six OC (beta-hexachlorocyclohexane (beta-HCH), p, p'-dichlorodiphenyldichloroethane (p, p'-DDE), p, p'-dichlorodiphenyltrichloroethane (p, p'-DDT), hexachlorobenzene, mirex, aldrin, alpha-chlordane, gamma-chlordane, oxychlordane, cis-nonachlor, trans-nonachlor, polychlorinated biphenyl (PCB) nos. 28, 52, 99, 101, 105, 118, 128, 138, 153, 156, 170, 180, 183 and 187, and aroclor 1260) were determined. In study 2, the concentrations of these twenty-six OC were measured before and after weight loss over 3 months in thirty-seven obese men assigned to one of the following treatments: standard group (33 % fat diet; n 13), fat-reduced group (25 % fat diet; n 14) or fat-substituted group (1/3 of dietary lipids substituted by olestra; n 10). In study 1, plasma concentrations of five OC compounds (aroclor 1260 and PCB 99, PCB 138, PCB 153 and PCB 180) were significantly lower in vegans compared with omnivores. In study 2, beta-HCH was the only OC which decreased in the fat-substituted group while increasing in the other two groups (P = 0.045). In conclusion, there was a trend toward lesser contamination in vegans than in omnivores, and olestra had a favourable influence on beta-HCH but did not prevent plasma hyperconcentration of the other OC during ongoing weight loss.

  15. Calcitriol enhances fat synthesis factors and calpain activity in co-cultured cells.

    PubMed

    Choi, Hyuck; Myung, Kyuho

    2014-08-01

    We have conducted an in vitro experiment to determine whether calcitriol can act as a fat synthesizer and/or meat tenderizer when skeletal muscle cells, adipose tissue, and macrophages are co-cultured. When co-cultured, pro-inflammatory cytokine tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) expression increased, whereas decreased anti-inflammatory cytokine (IL-10 and IL-15) expression decreased in both C2C12 and 3T3-L1 cells. Calcitriol increased reactive oxygen species (ROS) production in the media. While adiponectin gene expression decreased, leptin, resistin, CCAAT-enhancer-binding protein-beta (C/EBP-β), and peroxisome proliferator-activated receptor gamma (PPAR-γ) gene expression was significantly (P < 0.047) increased with calcitriol in 3T3-L1 cells co-cultured with two different cell types. Inducible nitric oxide synthase (iNOS) protein levels were also stimulated in the C2C12 and 3T3-L1 cells, but arginase l was attenuated by calcitriol. Cacitriol highly amplified (P = 0.008) µ-calpain gene expression in co-cultured C2C12 cells. The results showed an overall increase in pro-inflammatory cytokines and a decrease in anti-inflammatory cytokines of C2C12 and 3T3-L1 cells with calcitriol in co-culture systems. µ-Calpain protein was also augmented in differentiated C2C12 cells with calcitriol. These findings suggest that calcitriol can be used as not only fat synthesizer, but meat tenderizer, in meat-producing animals. © 2014 International Federation for Cell Biology.

  16. Polymorphic Transformation in Mixtures of High- and Low-Melting Fractions of Milk Fat

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cisneros,A.; Mazzanti, G.; Campos, R.

    2006-01-01

    The kinetics of crystallization of high-melting fraction (HMF) and a mixture of 40% HMF and 60% low-melting fraction (LMF) of milk fat were studied at 5 C by time-resolved in-situ synchrotron X-ray diffraction. HMF crystallized in the {alpha} polymorph, had a longer lifetime than the ones previously reported in pure milk fat, and was almost completely solid. The HMF/LMF mixture crystallized initially in the {alpha} form and transformed into the {beta}' polymorph, with a solid fat content much lower than that of HMF. The polymorphic change was therefore attributed to a delayed sudden formation of {beta}' mixed crystals from themore » uncrystallized melt. These findings are important for the food industry and as fundamental knowledge to improve our understanding of the origin of the macroscopic physical properties of solid milk fat fractions used in many manufacturing processes.« less

  17. Effects of Aerobic Fitness and Adiposity on Coagulation Biomarkers in Men vs. Women with Elevated Blood Pressure

    PubMed Central

    Wilson, Kathleen L.; Tomfohr, Lianne; Edwards, Kate; Knott, Cindy; Hong, Suzi; Redwine, Laura; Calfas, Karen; Rock, Cheryl L.; von Känel, Roland; Mills, Paul J.

    2012-01-01

    A hypercoagulable state is a potential mechanism linking elevated blood pressure (BP), adiposity and a sedentary lifestyle to development of coronary heart disease (CHD). We examined relationships among aerobic fitness and adiposity in 76 sedentary subjects with elevated BP. Blood levels of plasminogen activator inhibitor-1 (PAI-1), D-dimer, von Willebrand factor (vWF) and thrombomodulin were assessed as biomarkers of coagulation. In individuals with elevated BP, percent body fat and fitness were associated with biomarkers indicative of a hypercoagulable state, even after demographic and metabolic factors were considered. D-dimer was positively associated with percent body fat (beta=0.37, p=0.003). PAI-1 was higher in men than in women (beta=−0.31, p=0.015) and associated with lower VO2peak (beta=−0.35, p=0.024). Thrombomodulin was positively associated with VO2peak (beta=0.56, p< 0.01). vWF was not significantly associated with fitness or adiposity. Our results emphasise that both percent body fat and physical fitness are important in the maintenance of haemostatic balance. PMID:23105963

  18. High-pressure-induced interactions between milk fat globule membrane proteins and skim milk proteins in whole milk.

    PubMed

    Ye, A; Anema, S G; Singh, H

    2004-12-01

    The association of beta-lactoglobulin (beta-LG) and alpha-lactalbumin (alpha-LA) with milk fat globule membrane (MFGM), when whole milk was treated by high pressure in the range 100 to 800 MPa, was investigated using sodium dodecyl sulfate (SDS)-PAGE under reducing and nonreducing conditions. In SDS-PAGE under reducing conditions, beta-LG was observed in the MFGM material isolated from milk treated at 100 to 800 MPa for 30 min, and small amounts of alpha-LA and kappa-casein were also observed at pressures >600 MPa for 30 min. However, these proteins were not observed in SDS-PAGE under nonreducing conditions. These results indicate that beta-LG and alpha-LA associated with MFGM proteins via disulfide bonds during the high-pressure treatment of whole milk. The amount of beta-LG associated with the MFGM increased with an increase in pressure up to 800 MPa and with increasing time of pressure treatment. The maximum value for beta-LG association with the MFGM was approximately 0.75 mg/g of fat. Of the major original MFGM proteins, no change in butyrophilin was observed during the high-pressure treatment of whole milk, whereas xanthine oxidase was reduced to some extent beyond 400 MPa. In contrast to the behavior during heat treatment, PAS 6 and PAS 7 were stable during high-pressure treatment, and they remained associated with the MFGM.

  19. Drosophila Melanogaster as a Model System for Studies of Islet Amyloid Polypeptide Aggregation

    PubMed Central

    Schultz, Sebastian Wolfgang; Nilsson, K. Peter R.; Westermark, Gunilla Torstensdotter

    2011-01-01

    Background Recent research supports that aggregation of islet amyloid polypeptide (IAPP) leads to cell death and this makes islet amyloid a plausible cause for the reduction of beta cell mass, demonstrated in patients with type 2 diabetes. IAPP is produced by the beta cells as a prohormone, and proIAPP is processed into IAPP by the prohormone convertases PC1/3 and PC2 in the secretory granules. Little is known about the pathogenesis for islet amyloid and which intracellular mechanisms are involved in amyloidogenesis and induction of cell death. Methodology/Principal Findings We have established expression of human proIAPP (hproIAPP), human IAPP (hIAPP) and the non-amyloidogenic mouse IAPP (mIAPP) in Drosophila melanogaster, and compared survival of flies with the expression driven to different cell populations. Only flies expressing hproIAPP in neurons driven by the Gal4 driver elavC155,Gal4 showed a reduction in lifespan whereas neither expression of hIAPP or mIAPP influenced survival. Both hIAPP and hproIAPP expression caused formation of aggregates in CNS and fat body region, and these aggregates were both stained by the dyes Congo red and pFTAA, both known to detect amyloid. Also, the morphology of the highly organized protein granules that developed in the fat body of the head in hIAPP and hproIAPP expressing flies was characterized, and determined to consist of 15.8 nm thick pentagonal rod-like structures. Conclusions/Significance These findings point to a potential for Drosophila melanogaster to serve as a model system for studies of hproIAPP and hIAPP expression with subsequent aggregation and developed pathology. PMID:21695120

  20. Inhibition of hepatic gluconeogenesis and enhanced glucose uptake contribute to the development of hypoglycemia in mice bearing interleukin-1beta- secreting tumor.

    PubMed

    Metzger, Shulamit; Nusair, Samir; Planer, David; Barash, Varda; Pappo, Orit; Shilyansky, Joel; Chajek-Shaul, Tova

    2004-11-01

    Mice bearing IL-1beta-secreting tumor were used to study the chronic effect of IL-1beta on glucose metabolism. Mice were injected with syngeneic tumor cells transduced with the human IL-1beta gene. Serum IL-1beta levels increased exponentially with time. Secretion of IL-1beta from the developed tumors was associated with decreased food consumption, reduced body weight, and reduced blood glucose levels. Body composition analysis revealed that IL-1beta caused a significant loss in fat tissue without affecting lean body mass and water content. Hepatic phosphoenolpyruvate carboxykinase and glucose-6-phosphatase activities and mRNA levels of these enzymes were reduced, and 2-deoxy-glucose uptake by peripheral tissues was enhanced. mRNA levels of glucose transporters (Gluts) in the liver were determined by real-time PCR analysis. Glut-3 mRNA levels were up-regulated by IL-1beta. Glut-1 and Glut-4 mRNA levels in IL-1beta mice were similar to mRNA levels in pair-fed mice bearing nonsecreting tumor. mRNA level of Glut-2, the major Glut of the liver, was down-regulated by IL-1beta. We concluded that both decreased glucose production by the liver and enhanced glucose disposal lead to the development of hypoglycemia in mice bearing IL-1beta-secreting tumor. The observed changes in expression of hepatic Gluts that are not dependent on insulin may contribute to the increased glucose uptake.

  1. Liver regeneration after partial hepatectomy in rat is more impaired in a steatotic liver induced by dietary fructose compared to dietary fat

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tanoue, Shirou; Uto, Hirofumi, E-mail: hirouto@m2.kufm.kagoshima-u.ac.jp; Kumamoto, Ryo

    Highlights: {yields} Hepatic steatosis in rats fed a high fructose diet was less severe than that in rats fed a high fat diet. {yields} Liver regeneration was more impaired in rats fed a high fructose diet than in rats fed a high fat diet. {yields} Dysregulation of genes associated with metabolism may contribute to impairment of liver regeneration. {yields} Regulation of the TGF-{beta}1 level after partial hepatectomy may be impaired in rats fed a high fructose diet. -- Abstract: Hepatic steatosis (HS) has a negative effect on liver regeneration, but different pathophysiologies of HS may lead to different outcomes. Malemore » Sprague-Dawley rats were fed a high fructose (66% fructose; H-fruc), high fat (54% fat; H-fat), or control chow diet for 4 weeks. Based on hepatic triglyceride content and oil red O staining, HS developed in the H-fruc group, but was less severe compared to the H-fat group. Hepatic mRNA expression levels of fatty acid synthase and fructokinase were increased and those of carnitine palmitoyltransferase-1 and peroxisome proliferator-activated receptor-{alpha} were decreased in the H-fruc group compared to the H-fat group. Liver regeneration after 70% partial hepatectomy (PHx) was evaluated by measuring the increase in postoperative liver mass and PCNA-positive hepatocytes, and was impaired in the H-fruc group compared to the H-fat and control groups on days 3 and 7. Serum levels of tumor necrosis factor-{alpha}, interleukin-6 and hepatocyte growth factor did not change significantly after PHx. In contrast, serum TGF-{beta}1 levels were slightly but significantly lower in the control group on day 1 and in the H-fat group on day 3 compared to the level in each group on day 0, and then gradually increased. However, the serum TGF-{beta}1 level did not change after PHx in the H-fruc group. These results indicate that impairment of liver regeneration after PHx in HS is related to the cause, rather than the degree, of steatosis. This difference may result from altered metabolic gene expression profiles and potential dysregulation of TGF-{beta}1 expression.« less

  2. Oats

    MedlinePlus

    ... saturated fat. For each gram of soluble fiber (beta-glucan) consumed, total cholesterol decreases by about 1.42 ... total cholesterol than foods containing oat bran plus beta-glucan soluble fiber. The FDA recommends that approximately 3 ...

  3. Mapping a quantitative trait locus for the concentration of beta-lactoglobulin in milk, and the effect of beta-lactoglobulin genetic variants on the composition of milk from Holstein-Friesian x Jersey crossbred cows.

    PubMed

    Berry, S D; Lopez-Villalobos, N; Beattie, E M; Davis, S R; Adams, L F; Thomas, N L; Ankersmit-Udy, A E; Stanfield, A M; Lehnert, K; Ward, H E; Arias, J A; Spelman, R J; Snell, R G

    2010-02-01

    To identify quantitative trait loci (QTL) affecting the concentration of beta-lactoglobulin in milk, and to evaluate the effect of beta-lactoglobulin genetic variants on the concentration of fat, protein and casein in bovine milk. A herd of 850 F2 Holstein-Friesian x Jersey crossbred cows was produced through mating six Holstein-Friesian x Jersey F1 bulls of high genetic merit with F1 cows from the national herd. A total of 1,610 herd-test records from 556 second-parity crossbreds were analysed. The concentration of fat, protein and casein in milk was measured at peak, mid- and late lactation, during the production seasons of 2003-2004 and 2004-2005. Liveweight was measured daily. DNA from the F2 animals, their F1 dams and sires, and selected grandsires was genotyped across the genome, initially with 285 microsatellite markers, and subsequently with 6,634 single nucleotide polymorphisms (SNP). A highly significant QTL for the concentration of beta-lactoglobulin in milk was identified, which coincided with the position of the beta-lactoglobulin gene on bovine Chromosome 11. No other consistently significant QTL for the concentration of beta-lactoglobulin in milk were detected. Cows with the BB beta-lactoglobulin genotype produced milk with a 30% lower concentration of beta-lactoglobulin than cows with the AA genotype. The beta-lactoglobulin polymorphism also explained variation in the proportion of casein in total protein. In addition, the percentage of fat was higher for BB than AA animals, whereas the percentage of total protein, mean daily milk yield and liveweight did not differ between AA and BB animals. A significant QTL determining the concentration of beta-lactoglobulin in milk was identified. Selection of animals for the beta-lactoglobulin B-allele may enable the production of milk naturally enriched for casein, thus allowing a potential increase in the yield of cheese. There may be additional future value in production of bovine milk more like human milk, where decreasing the concentration of beta-lactoglobulin is desirable.

  4. Physiologic and endocrinologic characterization of male sex-biased diabetes in C57BLKS/J mice congenic for the fat mutation at the carboxypeptidease E locus.

    PubMed

    Leiter, E H; Kintner, J; Flurkey, K; Beamer, W G; Naggert, J K

    1999-02-01

    The fat gene in mice represents a recessive mutation at the carboxypeptidase E (Cpe) locus. The mutant allele (Cpe(fat)) encodes a highly unstable enzyme and produces an obesity phenotype characterized by attenuated processing of prohormones such as proinsulin that require this exopeptidase for full maturation. This article presents a preliminary physiologic and endocrinologic characterization of the stock of C57BLKS/LtJ-Cpe(fat)/Cpe(fat) mice at the backcross generation (N10) currently distributed by The Jackson Laboratory. Although previously reported not to be diabetogenic at N5, an additional five backcrosses to the C57BLKS/J background resulted in a male-biased development of both obesity and diabetes. Major differences distinguishing this mutant stock from the phenotypes produced by either the diabetes (Lepr(db)) or obese (Lep(ob)) mutations on the same inbred strain background are lack of hyperphagia and hypercorticism, sensitivity of diabetic males to exogenous insulin, and a milder and male-biased diabetes syndrome that is not associated with widespread beta-cell necrosis and islet atrophy, and that often remits with age.

  5. Macronutrient-specific effect of FTO rs9939609 in response to a 10-week randomized hypo-energetic diet among obese Europeans.

    PubMed

    Grau, K; Hansen, T; Holst, C; Astrup, A; Saris, W H M; Arner, P; Rössner, S; Macdonald, I; Polak, J; Oppert, J-M; Langin, D; Martinez, J A; Pedersen, O; Sørensen, T I A

    2009-11-01

    The A risk allele of rs9939609 of the fat mass- and obesity-associated gene (FTO) increases body fat mass. To examine whether FTO rs9939609 affects obese individuals' response to a high-fat, low-carbohydrate (CHO) (HF) or low-fat, high-CHO (LF), hypo-energetic diet and whether the effect of the FTO variant depends on dietary fat and CHO content. In a 10-week, European, multi-centre dietary intervention study 771 obese women and men were randomized to either LF (20-25% of energy (%E) from fat, 60-65%E from CHO) or HF (40-45%E from fat, 40-45%E from CHO), hypo-energetic diet (measured resting metabolic rate multiplied by 1.3-600 kcal day(-1)). Body weight, fat mass (FM), fat-free mass (FFM), waist circumference (WC), resting energy expenditure (REE), fasting fat oxidation as % of REE (FatOx), insulin release (HOMA-beta) and a surrogate measure of insulin resistance (HOMA-IR) were measured at baseline and after the intervention. In all, 764 individuals were genotyped for FTO rs9939609. For A-allele carriers the drop-out rate was higher on HF than LF diet (in AT, P=0.002; in AT/AA combined, P=0.003). Among those individuals completing the intervention, we found no effect of FTO rs9939609 genotype on Deltaweight, DeltaFM, DeltaFFM, DeltaWC or DeltaFatOx. However, participants with TT had a smaller reduction in REE on LF than on HF diet (75 kcal/24 h; interaction: P=0.0055). These individuals also showed the greatest reduction in HOMA-beta and HOMA-IR (interaction: P=0.0083 and P=0.047). The FTO rs9939609 may interact with the macronutrient composition in weight loss diets in various ways; carriers of the A allele on LF diet appear to have a lower risk for drop out, and TT individuals have a smaller decrease in REE and greater decrease in HOMA-beta and HOMA-IR on LF than on HF diet.

  6. [The effect of high fat feeding and rosiglitazone intervention on pancreatic alpha cell in rats].

    PubMed

    Wang, Xin; Yang, Wen-ying; Xiao, Jian-zhong; Zhao, Wen-hui; Wang, Na; Liu, Xue-li; Pan, Lin

    2005-08-01

    To observe the effect of high-fat diet and rosiglitazone intervention on the function of pancreatic alpha cell of SD rats. 36 normal male SD rats, 8-week old, were randomly divided into 3 groups i.e., a normal chow group (CC, n = 12), an isocaloric high-fat diet group (CF, n = 12), and a rosiglitazone-treated group (Ro, n = 12, rosiglitazone 3 mg.kg(-1).d(-1) and isocaloric high fat diet). Triglyceride (TG) was measured every 4 weeks after feeding for 6 weeks. After 28 weeks, the secretion of insulin and glucagon (Gg) was assessed with intravenous glucose tolerance test (IVGTT) at 0, 3, 5, and 10 minutes. (3)H-2-deoxyglucose ((3)H-2-DG) uptake by tissues was measured to evaluate the insulin sensitivity. The ratio of intra-abdominal fat mass and body weight was higher in the rats of CF and Ro group than that in the rats of CC group. At the first 10 min of IVGTT, the Gg level was higher in the CF group than that in CC group [(119.3 +/- 12.4, 82.3 +/- 6.4, 72.2 +/- 5.8, 68.2 +/- 9.1) ng/L vs (96.8 +/- 9.1, 67.6 +/- 5.9, 57.9 +/- 5.3, 55.3 +/- 6.9) ng/L, P < 0.05] and Ro group [(78.4 +/- 6.0, 59.4 +/- 4.0, 49.9 +/- 6.2, 40.9 +/- 6.0) ng/L, P < 0.01], the level was even lower in the latter group than in CC group (P < 0.01). There was no difference of insulin level among the 3 groups. By using quantitative image analysis, the integrated A (area x A) of alpha cells was significantly higher in the CF group and Ro group as compared with that in the CC group (1661 +/- 130 and 1532 +/- 132 vs 1188 +/- 104, P < 0.05). In contrast, there was no difference among the 3 groups in the integrated A of beta cells. High-fat feeding induces insulin resistance in rats, which is associated with pancreatic alpha cell proliferation and abnormal Gg secretion.

  7. The effects of beta-adrenergic blockade on body composition in free-fed and diet-restricted rats.

    PubMed

    Ji, L L; Doan, T D; Lennon, D L; Nagle, F J; Lardy, H A

    1987-04-01

    The effects of the non-selective beta-adrenergic blocking agent propranolol (known for its anti-lipolytic activity) on body composition were investigated in growing male rats on normal unrestricted diet (N = 7) and on diet restriction (N = 7, 95% of controls). Three animals in each group were injected i.p. with 30 mg propranolol per kg body weight (bw) dissolved in saline, 5 days/week. This dose attenuates exercising heart rate by 25% and exercise training-induced enzyme activity. The remaining animals received saline. Fat, glycogen, moisture and non-ether extractable residue were determined in the homogenized residue of the whole animal. After 9 weeks on the experimental regimen, bw gain was significantly lower in the diet restricted rats, whereas propranolol had no effect on the bw gain. The percentage of fat, moisture and non-ether extractable residue were unchanged by either propranolol or diet restriction. However, glycogen content was significantly lower in the beta-blocked rats either with or without diet restriction. These data indicated that neither beta-adrenergic blockade nor minimal diet restriction influences the percentage body fat, whereas body glycogen content is decreased under both conditions.

  8. Dietary carbohydrates impair the protective effect of protein restriction against diabetes in NZO mice used as a model of type 2 diabetes.

    PubMed

    Laeger, Thomas; Castaño-Martinez, Teresa; Werno, Martin W; Japtok, Lukasz; Baumeier, Christian; Jonas, Wenke; Kleuser, Burkhard; Schürmann, Annette

    2018-06-01

    Low-protein diets are well known to improve glucose tolerance and increase energy expenditure. Increases in circulating fibroblast growth factor 21 (FGF21) have been implicated as a potential underlying mechanism. We aimed to test whether low-protein diets in the context of a high-carbohydrate or high-fat regimen would also protect against type 2 diabetes in New Zealand Obese (NZO) mice used as a model of polygenetic obesity and type 2 diabetes. Mice were placed on high-fat diets that provided protein at control (16 kJ%; CON) or low (4 kJ%; low-protein/high-carbohydrate [LP/HC] or low-protein/high-fat [LP/HF]) levels. Protein restriction prevented the onset of hyperglycaemia and beta cell loss despite increased food intake and fat mass. The effect was seen only under conditions of a lower carbohydrate/fat ratio (LP/HF). When the carbohydrate/fat ratio was high (LP/HC), mice developed type 2 diabetes despite the robustly elevated hepatic FGF21 secretion and increased energy expenditure. Prevention of type 2 diabetes through protein restriction, without lowering food intake and body fat mass, is compromised by high dietary carbohydrates. Increased FGF21 levels and elevated energy expenditure do not protect against hyperglycaemia and type 2 diabetes per se.

  9. Differential effects of dietary fats on sympathetic nervous system activity in the rat.

    PubMed

    Young, J B; Walgren, M C

    1994-01-01

    Fat feeding stimulates sympathetic nervous system (SNS) activity in rats. To determine if fats vary in their potency as stimulants of the SNS, [3H]norepinephrine ([3H]NE) turnover was measured in heart and interscapular brown adipose tissue (IBAT) of animals fed lab chow diets supplemented with safflower oil, coconut oil, or medium-chain triglycerides (MCT). At 5 days, all three fats accelerated [3H]NE turnover in heart and did so equally, but only when the fat supplement represented an increase in energy intake. However, after 14 days, safflower oil and coconut oil but not MCT increased [3H]NE turnover in heart compared with turnover rates obtained in animals fed isoenergetic amounts of chow. Furthermore, the stimulatory effect of safflower oil on [3H]NE turnover was statistically greater than that seen in animals fed equivalent amounts of coconut oil. In vivo synthesis of NE assessed by accumulation of dopamine (DA) in heart following inhibition of dopamine-beta-hydroxylase (D beta H) was likewise highest in safflower oil-fed rats and lowest in those fed MCT. Thus, sympathetic activation by dietary fat varies among different fats, suggesting a role for fatty acid intake in dietary regulation of the SNS.

  10. A bilaminated decellularized scaffold for islet transplantation: Structure, properties and functions in diabetic mice.

    PubMed

    Wang, Xi; Wang, Kai; Zhang, Wei; Qiang, Ming; Luo, Ying

    2017-09-01

    Ectopic transplantation of islets provides a beta cell-replacement approach that may allow the recovery of physiological regulation of the blood sugar level in patients with Type I diabetes (T1D). In development of new extrahepatic islet transplantation protocols in support of the islet engraftment, it is pivotal to develop scaffold materials with multifaceted functions to provide beneficial microenvironment, mediate host response in favor of vascularization/islet integration and maintain long-term islet function at the transplantation site. In this study, a new composite bilaminar decellularized scaffold (CDS) was fabricated with differential structural, degradation and mechanical properties by the combination of a fast-degrading porous collagen matrix and a mechanically supportive porcine pericardium. When investigated in the epididymal fat pad in syngeneic mouse models, it was shown that CDS could serve as superior scaffolds to promote islet adhesion and viability, and islet-CDS constructs also allowed rapid reversal of the hyperglycemic condition in the host. The engraftment and effects of islets were achieved at low islet numbers, accompanied by minimal adverse tissue reactions and optimal islet integration with the surrounding fat tissue. The bioactive surface, mechanical/chemical durability and biocompatibility of the CDS may all have played important roles in facilitating the engraftment of islets. Our study provided new insights into scaffold's function in the interplay of cells, materials and host tissue and the extracellular matrix-based scaffolds have potential for clinical translation in the beta cell-replacement therapy to treat T1D. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Genetic variation in the beta 3-adrenoreceptor gene (Trp64Arg polymorphism) and its influence on anthropometric parameters and insulin resistance under a high monounsaturated versus a high polyunsaturated fat hypocaloric diet.

    PubMed

    de Luis, D A; Aller, R; Izaola, O; Conde, R; Eiros Bouza, J M

    2013-01-01

    The aim of our study was to investigate the role of Trp64Arg polymorphism of the beta 3-adrenergic receptor (beta 3-AR) gene on metabolic changes and weight loss secondary to a high monounsaturated fat versus a high polyunsaturated fat hypocaloric diet in obese subjects. A population of 260 obese subjects was analyzed. In the basal visit, patients were randomly allocated for 3 months to either diet M (high monounsaturated fat hypocaloric diet) or diet P (high polyunsaturated fat hypocaloric diet). There were no significant differences between the positive effects (on weight, body mass index, waist circumference, fat mass) in either genotype group with both diets. With diet P and in genotype Trp64Trp, glucose levels (-6.7 ± 12.1 vs. -1.2 ± 2.2 mg/dl; p < 0.05), total cholesterol (-11.2 ± 8.1 vs. -1.0 ± 7.1 mg/dl; p < 0.05), low-density lipoprotein (LDL) cholesterol (-9.7 ± 10.1 vs. -2.2 ± 8.1 mg/dl; p < 0.05), triglycerides (-11.7 ± 13.1 vs. +1.7 ± 10.3 mg/dl; p < 0.05), homeostasis model assessment for insulin resistance (HOMA-R; -0.7 ± 1.1 vs. -0.3 ± 2.1 units; p < 0.05) and insulin levels (-1.8 ± 4.6 vs. -1.0 ± 9.1 mIU/l; p < 0.05) decreased. The metabolic effect of weight reduction by the two hypocaloric diets is greatest in subjects with the normal homozygous beta 3-AR gene. Improvements in total cholesterol, LDL cholesterol, triglyceride, glucose, insulin and HOMA-R levels were better than in the heterozygous group. Copyright © 2013 S. Karger AG, Basel.

  12. Geographic variation of chlorinated pesticides, toxaphenes and PCBs in human milk from sub-arctic and arctic locations in Russia.

    PubMed

    Polder, A; Odland, J O; Tkachev, A; Føreid, S; Savinova, T N; Skaare, J U

    2003-05-01

    The concentrations of HCB, alpha-, beta- and gamma-HCH, 3 chlordanes (CHLs), p,p'-DDE, p,p'-DDD, p,p'-DDT, and 30 PCBs (polychlorinated biphenyls) were determined in 140 human milk samples from Kargopol (n=19), Severodvinsk (n=50), Arkhangelsk (n=51) and Naryan-Mar (n=20). Pooled samples were used for determination of three toxaphenes (chlorobornanes, CHBs). The concentrations of HCB, beta-HCH and p,p'-DDE in Russian human milk were 2, 10 and 3 times higher than corresponding levels in Norway, respectively, while concentrations of sum-PCBs and sum-TEQs (toxic equivalent quantities) of the mono-ortho substituted PCBs were in the same range as corresponding levels in Norway. The PCB-156 contributed most to the sum-TEQs. Highest mean concentrations of HCB (129 microg/kg milk fat) and sum-PCBs (458 microg/kg milk fat) were detected in Naryan-Mar, while highest mean concentrations of sum-HCHs (408 microg/kg milk fat), sum-CHLs (48 microg/kg milk fat), sum-DDTs (1392 microg/kg milk fat) and sum-toxaphenes (13 microg/kg milk fat) were detected in Arkhangelsk. An eastward geographic trend of increasing ratios of alpha/beta-HCH, gamma/beta-HCH, p,p'-DDT/p,p'-DDE and PCB-180/28 was observed. In all areas the levels of sum-HCHs decreased with parity (number of children born). Considerable variation in levels of the analysed organochlorines (OCs) was found in all the studied areas. Breast milk from mothers nursing their second or third child (multiparas) in Naryan-Mar showed a significant different PCB profile compared to mothers giving birth to their first child (primiparas) from the same area and to primi- and multiparas in the other areas. Both p,p'-DDE and p,p'-DDT showed a significant, but weak, negative correlation with the infants birth weight.

  13. Carotene-rich plant foods ingested with minimal dietary fat enhance the total-body vitamin A pool size in Filipino schoolchildren as assessed by stable-isotope-dilution methodology.

    PubMed

    Ribaya-Mercado, Judy D; Maramag, Cherry C; Tengco, Lorena W; Dolnikowski, Gregory G; Blumberg, Jeffrey B; Solon, Florentino S

    2007-04-01

    Strategies for improving the vitamin A status of vulnerable populations are needed. We studied the influence of the amounts of dietary fat on the effectiveness of carotene-rich plant foods in improving vitamin A status. Schoolchildren aged 9-12 y were fed standardized meals 3 times/d, 5 d/wk, for 9 wk. The meals provided 4.2 mg provitamin A carotenoids/d (mainly beta-carotene) from yellow and green leafy vegetables [carrots, pechay (bok choy), squash, and kangkong (swamp cabbage)] and 7, 15, or 29 g fat/d (2.4, 5, or 10 g fat/meal) in groups A, B, and C (n = 39, 39, and 38, respectively). Other self-selected foods eaten were recorded daily. Before and after the intervention, total-body vitamin A pool sizes and liver vitamin A concentrations were measured with the deuterated-retinol-dilution method; serum retinol and carotenoid concentrations were measured by HPLC. Similar increases in mean serum beta-carotene (5-fold), alpha-carotene (19-fold), and beta-cryptoxanthin (2-fold) concentrations; total-body vitamin A pool size (2-fold); and liver vitamin A (2-fold) concentrations were observed after 9 wk in the 3 study groups; mean serum retinol concentrations did not change significantly. The total daily beta-carotene intake from study meals plus self-selected foods was similar between the 3 groups and was 14 times the usual intake; total fat intake was 0.9, 1.4, or 2.0 times the usual intake in groups A, B, and C, respectively. The overall prevalence of low liver vitamin A (<0.07 mumol/g) decreased from 35% to 7%. Carotene-rich yellow and green leafy vegetables, when ingested with minimal fat, enhance serum carotenoids and the total-body vitamin A pool size and can restore low liver vitamin A concentrations to normal concentrations.

  14. Developing Strategies to Block Beta-Catenin Action in Signaling and Cell Adhesion During Carcinogenesis

    DTIC Science & Technology

    2001-07-01

    denatured digoxigenin-labeled antisense RNA , washed at7;dorsal tcalo. 1997; riesguaorEscof andorsal, closure 70’C once each with lx HYB, 2:1 HYB/PBT and 1...reelin receptors, perhaps as a heteromeric rons and their synaptic contacts7",, although neurexins complex: members of the LDL -receptor-related...Disheveled I Fat I Dachsous I sive mechanisms and cellular responses of different Flamingo/ Starry night I Reelin I LDL -receptor I mDab I I Fyn I DN

  15. Albert Renold Memorial Lecture: Molecular Background of Nutritionally Induced Insulin Resistance Leading to Type 2 Diabetes – From Animal Models to Humans

    PubMed Central

    Shafrir, Eleazar

    2001-01-01

    Albert Renold strived to gain insight into the abnormalities of human diabetes by defining the pathophysiology of the disease peculiar to a given animal. He investigated the Israeli desert-derived spiny mice (Acomys cahirinus), which became obese on fat-rich seed diet. After a few months hyperplasia and hypertrophy of β-cells occurred leading to a sudden rupture, insulin loss and ketosis. Spiny mice were low insulin responders, which is probably a characteristic of certain desert animals, protecting against insulin oversecretion when placed on an abundant diet. We have compared the response to overstimulation of several mutant diabetic species and nutritionally induced nonmutant animals when placed on affluent diet. Some endowed with resilient β-cells sustain long-lasting oversecretion, compensating for the insulin resistance, without lapsing into overt diabetes. Some with labile beta cells exhibit apoptosis and lose their capacity of coping with insulin resistance after a relatively short period. The wide spectrum of response to insulin resistance among different diabetes prone species seems to represent the varying response of human beta cells among the populations. In search for the molecular background of insulin resistance resulting from overnutrition we have studied the Israeli desert gerbil Psammomys obesus (sand rat), which progresses through hyperinsulinemia, followed by hyperglycemia and irreversible beta cell loss. Insulin resistance was found to be the outcome of reduced activation of muscle insulin receptor tyrosine kinase by insulin, in association with diminished GLUT4 protein and DNA content and overexpression of PKC isoenzymes, notably of PKCε. This overexpression and translocation to the membrane was discernible even prior to hyperinsulinemia and may reflect the propensity to diabetes in nondiabetic species and represent a marker for preventive action. By promoting the phosphorylation of serine/threonine residues on certain proteins of the insulin signaling pathway, PKCε exerts a negative feedback on insulin action. PKCε was also found to attenuate the activity of PKB and to promote the degradation of insulin receptor, as determined by co-incubation in HEK 293 cells. PKCε overexpression was related to the rise in muscle diacylglycerol and lipid content, which are prevalent on lascivious nutrition especially if fat-rich. Thus, Psammomys illustrates the probable antecedents of the development of worldwide diabetes epidemic in human populations emerging from food scarcity to nutritional affluence, inappriopriate to their metabolic capacity. PMID:11795838

  16. Hibernoma formation in transgenic mice and isolation of a brown adipocyte cell line expressing the uncoupling protein gene.

    PubMed Central

    Ross, S R; Choy, L; Graves, R A; Fox, N; Solevjeva, V; Klaus, S; Ricquier, D; Spiegelman, B M

    1992-01-01

    Transgenic mice were produced containing the adipocyte-specific regulatory region from the adipocyte P2 (aP2) gene linked to the simian virus 40 transforming genes. Most of the transgenic mice developed brown fat tumors (hibernomas) in their interscapular brown adipose tissue. Hibernoma formation was noticeable in some of the mice as early as 1 day after birth and most of the mice developed very large tumors by 1 month of age. All of the tumor tissue expressed the brown fat-specific uncoupling protein (UCP) gene as well as the aP2 gene. Several of the tumors have been used to establish cultured cell lines and at least one of these lines can be induced to differentiate into brown adipocytes. The cultured adipocytes express mRNA for UCP upon stimulation with N6,O2'-dibutyryladenosine 3',5'-cyclic monophosphate, norepinephrine, isoproterenol or D7114, a beta 3 adrenergic agonist. Thus, regulation of the key thermogenic gene UCP can now be studied in an established cell line. Images PMID:1323843

  17. Anti-inflammatory and chemopreventive effects of triterpene cinnamates and acetates from shea fat.

    PubMed

    Akihisa, Toshihiro; Kojima, Nobuo; Kikuchi, Takashi; Yasukawa, Ken; Tokuda, Harukuni; T Masters, Eliot; Manosroi, Aranya; Manosroi, Jiradej

    2010-01-01

    Four triterpene acetates, alpha-amyrin acetate (1a), beta-amyrin acetate (2a), lupeol acetate (3a), and butyrospermol acetate (4a), and four triterpene cinnamates, alpha-amyrin cinnamate (1c), beta-amyrin cinnamate (2c), lupeol cinnamate (3c), and butyrospermol cinnamate (4c), were isolated from the kernel fat (n-hexane extract) of the shea tree (Vitellaria paradoxa; Sapotaceae). Upon evaluation of these eight triterpene esters for inhibitory activity against 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced inflammation (1 microg/ear) in mice, all of the compounds tested exhibited marked anti-inflammatory activity, with ID50 values in the range of 0.15-0.75 micromol/ear, and among which compound 3c showed the highest activity with ID(50) of 0.15 micromol/ear. Compound 3c (10 mg/kg) further exhibited anti-inflammatory activity on rat hind paw edema induced by carrageenan, with the percentage of inflammation at 1, 3, and 5 h of 35.4, 41.5, and 45.5%, respectively. The eight triterpene esters were then evaluated for their inhibitory effects on Epstein-Barr virus early antigen (EBV-EA) in Raji cells as a primary screening test for inhibitors of tumor promoters. All the compounds showed moderate inhibitory effects. Furthermore, compound 3c exhibited inhibitory effect on skin tumor promotion in an in vivo two-stage carcinogenesis test using 7,12-dimethylbenz [a] anthracene (DMBA) as an initiator and TPA as a promoter. The biological activities of triterpene acetate and cinnamate esters, together with the exceptionally high levels of these triterpenes in shea fat, indicate that shea nuts and shea fat (shea butter) constitute a significant source of anti-inflammatory and anti-tumor promoting compounds.

  18. Metabolic actions of estrogen receptor beta (ERbeta) are mediated by a negative cross-talk with PPARgamma.

    PubMed

    Foryst-Ludwig, Anna; Clemenz, Markus; Hohmann, Stephan; Hartge, Martin; Sprang, Christiane; Frost, Nikolaj; Krikov, Maxim; Bhanot, Sanjay; Barros, Rodrigo; Morani, Andrea; Gustafsson, Jan-Ake; Unger, Thomas; Kintscher, Ulrich

    2008-06-27

    Estrogen receptors (ER) are important regulators of metabolic diseases such as obesity and insulin resistance (IR). While ERalpha seems to have a protective role in such diseases, the function of ERbeta is not clear. To characterize the metabolic function of ERbeta, we investigated its molecular interaction with a master regulator of insulin signaling/glucose metabolism, the PPARgamma, in vitro and in high-fat diet (HFD)-fed ERbeta -/- mice (betaERKO) mice. Our in vitro experiments showed that ERbeta inhibits ligand-mediated PPARgamma-transcriptional activity. That resulted in a blockade of PPARgamma-induced adipocytic gene expression and in decreased adipogenesis. Overexpression of nuclear coactivators such as SRC1 and TIF2 prevented the ERbeta-mediated inhibition of PPARgamma activity. Consistent with the in vitro data, we observed increased PPARgamma activity in gonadal fat from HFD-fed betaERKO mice. In consonance with enhanced PPARgamma activation, HFD-fed betaERKO mice showed increased body weight gain and fat mass in the presence of improved insulin sensitivity. To directly demonstrate the role of PPARgamma in HFD-fed betaERKO mice, PPARgamma signaling was disrupted by PPARgamma antisense oligonucleotide (ASO). Blockade of adipose PPARgamma by ASO reversed the phenotype of betaERKO mice with an impairment of insulin sensitization and glucose tolerance. Finally, binding of SRC1 and TIF2 to the PPARgamma-regulated adiponectin promoter was enhanced in gonadal fat from betaERKO mice indicating that the absence of ERbeta in adipose tissue results in exaggerated coactivator binding to a PPARgamma target promoter. Collectively, our data provide the first evidence that ERbeta-deficiency protects against diet-induced IR and glucose intolerance which involves an augmented PPARgamma signaling in adipose tissue. Moreover, our data suggest that the coactivators SRC1 and TIF2 are involved in this interaction. Impairment of insulin and glucose metabolism by ERbeta may have significant implications for our understanding of hormone receptor-dependent pathophysiology of metabolic diseases, and may be essential for the development of new ERbeta-selective agonists.

  19. [Effect of Yiguan Decoction on differentiation of bone marrow mesenchymal stem cells into hepatocyte-like cells: an experimental research].

    PubMed

    Ping, Jian; Chen, Hong-Yun; Yang, Zhou; Yang, Cheng; Xu, Lie-Ming

    2014-03-01

    To observe the effect of Yiguan Decoction (YGD) on differentiation of bone marrow mesenchymal stem cells (BMSCs) into hepatocyte-like cells in vitro. Rat BMSCs were isolated using whole bone marrow adherent method. The properties of BMSCs were identified by analyzing the expression of surface cytokines by flow cytometry. The third passage cells were differentiated into fat cells to identify their features. BMSCs were incubated with hepatocyte growth factor (HGF) plus fibroblast growth factor 4 (FGF4) or YGD containing serum YGD for 21 days. The mRNA expression of alpha-fetoprotein (alphaAFP), albumin (Alb), and hepatocyte nuclear factor 4alpha (HNF4alpha) were detected by real time PCR. Expression of AFP and cytokeratin 18 (CK18) protein was detected by cell immunofluorescence. Glycogen synthesis was observed using periodic acid-Schiff stain (PAS). CK18, Wnt 3alpha, and alphacatenin protein expressions were detected by Western blot. High expression of CD90, CD29, and CD44, and low expression of CD34 and CD11b were observed in BMSCs isolated by whole bone mar- row adherent method, and numerous lipid droplets were observed in BMSCs using oil red O staining. Both YGD containing serum and growth factor stimulated the expression levels of Alb, AFP, HNF4alpha mRNA and CK18 protein. The down-regulated expression of Wnt 3alpha and beta-catenin could be detected at 21 days after induction. The synthesized glycogen granule could be seen. Down-regulated Wnt 3alpha and beta-catenin expression could also be observed. YGD could induce the differentiation of rat BMSCs into hepatocyte-like cells, which was related to down-regulating Wnt/beta-catenin signal pathway.

  20. Fimasartan Ameliorates Nonalcoholic Fatty Liver Disease through PPARδ Regulation in Hyperlipidemic and Hypertensive Conditions

    PubMed Central

    Jang, Yoo-Na; Han, Yoon-Mi; Kim, Hyun-Min; Jeong, Jong-Min

    2017-01-01

    To investigate the effects of fimasartan on nonalcoholic fatty liver disease in hyperlipidemic and hypertensive conditions, the levels of biomarkers related to fatty acid metabolism were determined in HepG2 and differentiated 3T3-L1 cells treated by high fatty acid and liver and visceral fat tissue samples of spontaneously hypertensive rats (SHRs) given high-fat diet. In HepG2 cells and liver tissues, fimasartan was shown to increase the protein levels of peroxisome proliferator-activated receptor delta (PPARδ), phosphorylated 5′ adenosine monophosphate-activated protein kinase (p-AMPK), phosphorylated acetyl-CoA carboxylase (p-ACC), malonyl-CoA decarboxylase (MCD), medium chain acyl-CoA dehydrogenase (MCAD), and peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α), and it led to a decrease in the protein levels of 11 beta-hydroxysteroid dehydrogenase 1 (11β-HSDH1), fatty acid synthase (FAS), and tumor necrosis factor-alpha (TNF-α). Fimasartan decreased lipid contents in HepG2 and differentiated 3T3-L1 cells and liver tissues. In addition, fimasartan increased the adiponectin level in visceral fat tissues. The antiadipogenic effects of fimasartan were offset by PPARδ antagonist (GSK0660). Consequently, fimasartan ameliorates nonalcoholic fatty liver disease mainly through the activation of oxidative metabolism represented by PPARδ-AMPK-PGC-1α pathway. PMID:28386270

  1. Effect of a beta-3 agonist on food intake in two strains of rats that differ in susceptibility to obesity.

    PubMed

    White, Christy L; Ishihara, Yuri; Dotson, Travis L; Hughes, David A; Bray, George A; York, David A

    2004-09-15

    Beta-3 agonists acutely reduce food intake, but the mechanism is not well understood. To evaluate the effect of a beta3 agonist on food intake in two strains of rats that differ in their sensitivity to becoming obese while eating a high-fat (HF) diet. Male Osborne-Mendel (OM) and S5B/Pl (S5B) rats were treated with a beta3-adrenergic agonist (CL 316,243) at 8 weeks of age, after an adaptation to either an HF (56% fat energy) or a low-fat (LF; 10% fat energy) diet that was equicaloric for protein (24% energy). Ad-lib-fed rats were injected intraperitoneally with CL 316,243, at doses of 0.03, 0.1, 0.3, 1.0 or 3.0 mg/kg, or with vehicle at the beginning of the dark cycle. Food intake was measured at 1, 3, 6 and 24 h after injections. The beta3 agonist CL 316,243 significantly decreased food intake at all timepoints in both strains of rats eating both diets. However, this inhibition of food intake was significantly greater in the S5B rat. CL 316,243 significantly decreased serum leptin and serum glucose in both the OM and the S5B rats, and again, the inhibition was greater in the S5B rat. Whereas CL 316,243 increased serum insulin levels in the OM rat, it decreased them in the S5B rat on an LF diet. In a second experiment, chow-fed rats were implanted with vascular ports into the jugular vein and allowed to recover. When CL 316,243 was injected into the animals that were fasted overnight, rats of both strains significantly increased their serum insulin at 30 min, but the increase was much more pronounced in the S5B rat. Serum glucose was decreased significantly at both the 30- and 60-min timepoints in the OM rat and at 30 min in the S5B rat. These experiments demonstrate that a beta3 agonist (CL 316,243) has a much greater effect in a strain of rats that resist fat-induced obesity.

  2. Rebound weight gain as associated with high plasma norepinephrine levels that are mediated through polymorphisms in the beta2-adrenoceptor.

    PubMed

    Masuo, Kazuko; Katsuya, Tomohiro; Kawaguchi, Hideki; Fu, Yuxiao; Rakugi, Hiromi; Ogihara, Toshio; Tuck, Michael L

    2005-11-01

    A successful weight loss program is essential treatment for obesity-related diseases, but it is well known that the majority of individuals do not succeed in weight loss maintenance. The present study evaluates hormonal mechanisms and the relationship of beta2-adrenoceptor polymorphisms involved in individuals who regain weight after initially successful weight loss. Overweight Japanese men (n = 154) were enrolled in a 24-month weight loss program. Body mass index (BMI), total body fat mass, plasma norepinephrine (NE) and leptin levels, and beta2-adrenoceptor polymorphisms (Arg16Gly, Gln27Glu) were measured every 6 months for the 24-month period. Maintenance of weight loss was defined as significant weight loss (>or=10% reduction) from entry weight at 6 months and maintenance of the weight loss for an additional 18 months. Rebound weight gain was defined as significant weight loss at 6 months but subsequent regain of body weight during the next 18 months. The results showed that 37 subjects maintained weight loss during 24 months, whereas 36 subjects had rebound weight gain. The BMI at entry and calorie intake and physical activity at each period were similar between the two groups. Subjects who maintained weight loss had at entry a significantly lower fat mass and plasma NE levels compared to those with rebound weight gain. Body fat mass, NE, and leptin levels at entry predicted the degree of change in body weight during the 24-month study period. Subjects with rebound weight gain had a significantly higher frequency of the Gly16 allele for the beta2-adrenoceptor polymorphism compared to subjects who had a 24-month maintenance of weight loss. Subjects carrying the Gly16 allele also had significantly higher plasma NE, leptin, and body fat mass levels and a greater waist-to-hip ratio both at entry and throughout the study. A high initial degree of body fat mass and high plasma NE levels as determined by the Gly16 allele for the beta2-adrenoceptor polymorphisms predict those individuals who will have rebound weight gain after their initial successful weight loss.

  3. Inflammatory responses to neutral fat and fatty acids in multiple organs in a rat model of fat embolism syndrome.

    PubMed

    Takada, Meri; Chiba, Shoetsu; Nagai, Tomonori; Takeshita, Hiroshi; Kanno, Sanae; Ikawa, Toru; Sakamoto, Kana; Sagi, Morihisa; Ichiba, Kazue; Mukai, Toshiji

    2015-09-01

    Fat embolism syndrome (FES) is a common complication of long bone fractures. FES is rare but with significant morbidity and occasional fatalities. Studies of animal models of FES are numerous; however, few studies compare inflammatory reactions in multiple organs. The present study investigated the effect of neutral fat and fatty acids, which cause changes in multiple organs and induce FES. Using rats we evaluated the ratio of lung-to-body weight and conducted histological analyses and quantitative analysis of inflammatory cytokine mRNAs in the lungs following intravenous administration of neutral fat or fatty acids. Neutral fat increased the ratio of lung-to-body weight, and neutral fat formed emboli in lung capillaries. The levels of interleukin-1 beta (IL-1β), IL-6 and tumor necrosis factor-alpha (TNF-α) in the lungs increased after injection of neutral fat and oleic acid. Analysis of the histologic changes revealed that the highest numbers of fat droplets, occluding the capillaries of the lungs, kidney, heart, and brain formed 12h after the injection of neutral fat and fat droplets gradually diminished 48h later. Fat droplets were not detected in any organs after the injection of oleic acid. IL-1β and TNF-α levels in the lungs were elevated 9-24h after the injection of neutral fat, although IL-6 levels peaked at 6h. After injection of oleic acid, peak levels of IL-1β, IL-6, and TNF-α were detected at 6h, and IL-6 again increased in all organs and plasma at 15h. Neutral fat, but not fatty acids, formed emboli in the capillaries of multiple organs. These findings suggest that neutral fat increased inflammatory cytokine levels by forming emboli in organ capillaries, particularly in the lungs, while oleic acid augmented inflammatory cytokine levels by stimulating endothelial cells of multiple organs. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  4. 5-Aminoimidazole-4-carboxamide ribonucleotide prevents fat gain following the cessation of voluntary physical activity.

    PubMed

    Ruegsegger, Gregory N; Sevage, Joseph A; Childs, Thomas E; Grigsby, Kolter B; Booth, Frank W

    2017-11-01

    What is the central question of this study? We investigated whether 5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside (AICAR) could prevent acute increases in body fat and changes in omental and subcutaneous adipose tissue following the sudden transition from physical activity to physical inactivity. What is the main finding and its importance? AICAR prevented fat gains following the transition from physical activity to inactivity to levels comparable to rats that remained physically active. AICAR and continuous physical activity produced depot-specific changes in cyclin A1 mRNA and protein that were associated with the prevention of fat gain. These findings suggest that targeting AMP-activated protein kinase signalling could oppose rapid adipose mass growth. The transition from physical activity to inactivity is associated with drastic increases in 'catch-up' fat that in turn foster the development of many obesity-associated maladies. We tested whether 5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside (AICAR) treatment would prevent gains in body fat following the sudden transition from a physically active state to an inactive state by locking a voluntary running wheel. Male Wistar rats were either sedentary (SED) or given wheel access for 4 weeks, at which time rats with wheels continued running (RUN), had their wheel locked (WL) or had WL with daily AICAR injection (WL + AICAR) for 1 week. RUN and WL + AICAR prevented gains in body fat compared with SED and WL (P < 0.001). Cyclin A1 mRNA, a marker of cell proliferation, was decreased in omental, but not subcutaneous adipose tissue, in RUN and WL + AICAR compared with SED and WL groups (P < 0.05). Both cyclin A1 mRNA and protein were positively associated with gains in fat mass (P < 0.05). Cyclin A1 mRNA in omental, but not subcutaneous, adipose tissue was negatively correlated with p-AMPK levels (P < 0.05). Differences in fat gain and omental mRNA and protein levels were independent of changes in food intake and in differences in select hypothalamic mRNAs. These findings suggest that AICAR treatment prevents acute gains in adipose tissue following physical inactivity to levels of rats that continuously run, and that together, continuous physical activity and AICAR could, at least initially in these conditions, exert similar inhibitory effects on adipogenesis in a depot-specific manner. © 2017 The Authors. Experimental Physiology © 2017 The Physiological Society.

  5. Diabetes synergistically exacerbates poststroke dementia and tau abnormality in brain.

    PubMed

    Zhang, Ting; Pan, Bai-Shen; Sun, Guang-Chun; Sun, Xiao; Sun, Feng-Yan

    2010-07-01

    This study investigated whether exacerbation of poststroke dementia by diabetes associated abnormal tau phosphorylation and its mechanism. Streptozotocin (STZ) injection and/or a high fat diet (HFD) were used to treat rats to induce type 1 and 2 diabetes. Animals were randomly divided into STZ, HFD, STZ-HFD, and normal diet (NPD) groups. Focal ischemic stroke was induced by middle cerebral artery occlusion (MCAO). Cognitive function was tested by the Morris water maze. STZ or STZ-HFD treatment exacerbated ischemia-induced cognitive deficits, brain infarction and reduction of synaptophysin expression. Moreover, we found that diabetes further increased AT8, a marker of hyperphosphorylated tau, protein and immunopositive stained cells in the hippocampus of rats following MCAO while reduced the level of phosphorylated glycogen synthase kinase 3-beta at serine-9 residues (p-ser9-GSK-3beta), indicating activation of GSK-3beta. We conclude that diabetes further deteriorates ischemia-induced brain damage and cognitive deficits which may be associated with abnormal phosphorylation of tau as well as activation of GSK-3beta. These findings may be helpful for developing new strategies to prevent/delay formation of poststroke dementia in patients with diabetes. 2010 Elsevier Ltd. All rights reserved.

  6. Veganism and its relationship with insulin resistance and intramyocellular lipid.

    PubMed

    Goff, L M; Bell, J D; So, P-W; Dornhorst, A; Frost, G S

    2005-02-01

    To test the hypothesis that dietary factors in the vegan diet lead to improved insulin sensitivity and lower intramyocellular lipid (IMCL) storage. Case-control study. Imperial College School of Medicine, Hammersmith Hospital Campus, London, UK. A total of 24 vegans and 25 omnivores participated in this study; three vegan subjects could not be matched therefore the matched results are shown for 21 vegans and 25 omnivores. The subjects were matched for gender, age and body mass index (BMI). Full anthropometry, 7-day dietary assessment and physical activity levels were obtained. Insulin sensitivity (%S) and beta-cell function (%B) were determined using the homeostatic model assessment (HOMA). IMCL levels were determined using in vivo proton magnetic resonance spectroscopy; total body fat content was assessed by bioelectrical impedance. There was no difference between the groups in sex, age, BMI, waist measurement, percentage body fat, activity levels and energy intake. Vegans had a significantly lower systolic blood pressure (-11.0 mmHg, CI -20.6 to -1.3, P=0.027) and higher dietary intake of carbohydrate (10.7%, CI 6.8-14.5, P<0.001), nonstarch polysaccharides (20.7 g, CI 15.8-25.6, P<0.001) and polyunsaturated fat (2.8%, CI 1.0-4.6, P=0.003), with a significantly lower glycaemic index (-3.7, CI -6.7 to -0.7, P=0.01). Also, vegans had lower fasting plasma triacylglycerol (-0.7 mmol/l, CI -0.9 to -0.4, P<0.001) and glucose (-0.4 mmol/l, CI -0.7 to -0.09, P=0.05) concentrations. There was no significant difference in HOMA %S but there was with HOMA %B (32.1%, CI 10.3-53.9, P=0.005), while IMCL levels were significantly lower in the soleus muscle (-9.7, CI -16.2 to -3.3, P=0.01). Vegans have a food intake and a biochemical profile that will be expected to be cardioprotective, with lower IMCL accumulation and beta-cell protective.

  7. A ketogenic diet reduces amyloid beta 40 and 42 in a mouse model of Alzheimer's disease.

    PubMed

    Van der Auwera, Ingrid; Wera, Stefaan; Van Leuven, Fred; Henderson, Samuel T

    2005-10-17

    Alzheimer's disease (AD) is a progressive neurodegenerative disorder that primarily strikes the elderly. Studies in both humans and animal models have linked the consumption of cholesterol and saturated fats with amyloid-beta (Abeta) deposition and development of AD. Yet, these studies did not examine high fat diets in combination with reduced carbohydrate intake. Here we tested the effect of a high saturated fat/low carbohydrate diet on a transgenic mouse model of AD. Starting at three months of age, two groups of female transgenic mice carrying the "London" APP mutation (APP/V717I) were fed either, a standard diet (SD) composed of high carbohydrate/low fat chow, or a ketogenic diet (KD) composed of very low carbohydrate/high saturated fat chow for 43 days. Animals fed the KD exhibited greatly elevated serum ketone body levels, as measured by beta-hydroxybutyrate (3.85 +/- 2.6 mM), compared to SD fed animals (0.29 +/- 0.06 mM). In addition, animals fed the KD lost body weight (SD 22.2 +/- 0.6 g vs. KD 17.5 +/- 1.4 g, p = 0.0067). In contrast to earlier studies, the brief KD feeding regime significantly reduced total brain Abeta levels by approximately 25%. Despite changes in ketone levels, body weight, and Abeta levels, the KD diet did not alter behavioral measures. Previous studies have suggested that diets rich in cholesterol and saturated fats increased the deposition of Abeta and the risk of developing AD. Here we demonstrate that a diet rich in saturated fats and low in carbohydrates can actually reduce levels of Abeta. Therefore, dietary strategies aimed at reducing Abeta levels should take into account interactions of dietary components and the metabolic outcomes, in particular, levels of carbohydrates, total calories, and presence of ketone bodies should be considered.

  8. 40 CFR 180.436 - Cyfluthrin and the isomer beta-cyfluthrin; tolerances for residues.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Peanut, hay 6.0 Pepper 0.50 Pistachio 0.01 Poultry, fat 0.01 Poultry, meat 0.01 Poultry, meat byproducts... Peanut, hay 6.0 Pepper 0.50 Pistachio 0.01 Poultry, fat 0.01 Poultry, meat 0.01 Poultry, meat byproducts...

  9. Surfing depth on a behaviour change website: predictors and effects on behaviour.

    PubMed

    Jacobs, Nele; De Bourdeaudhuij, Ilse; Claes, Neree

    2010-03-01

    The primary objectives of the present study were to gain insight into website use and to predict the surfing depth on a behaviour change website and its effect on behaviour. Two hundred eight highly educated adults from the intervention condition of a randomised trial received access to a medical intervention, individual coaching (by e-mail, post, telephone or face-to-face) and a behaviour change website. Website use (e.g. surfing depth, page view duration) was registered. Online questionnaires for physical activity and fat intake were filled out at baseline and after 6 months. Hierarchical linear regression was used to predict surfing depth and its effect on behaviour. Seventy-five per cent of the participants visited the website. Fifty-one and fifty-six per cent consulted the physical activity and fat intake feedback, respectively. The median surfing depth was 2. The total duration of interventions by e-mail predicted deeper surfing (beta=0.36; p<0.001). Surfing depth did not predict changes in fat intake (beta=-0.07; p=0.45) or physical activity (beta=-0.03; p=0.72). Consulting the physical activity feedback led to more physical activity (beta=0.23; p=0.01). The findings from the present study can be used to guide future website development and improve the information architecture of behaviour change websites.

  10. Colonic inflammation and enhanced-beta-catenin signaling accompany an increase of the Lachnospiraceae/Streptococcaceae in the hind gut of high-fat diet-fed mice

    USDA-ARS?s Scientific Manuscript database

    Consumption of an obesigenic / high-fat (HF) diet is associated with a high colon cancer risk, and may alter the gut microbiota. To test the hypothesis that a HF feeding accelerates inflammatory process and changes gut microbiome composition, C57BL/6 mice were fed a HF (45% energy) or low-fat (LF) (...

  11. Sub-chronic administration of the 11beta-HSD1 inhibitor, carbenoxolone, improves glucose tolerance and insulin sensitivity in mice with diet-induced obesity.

    PubMed

    Taylor, Ashley; Irwin, Nigel; McKillop, Aine M; Flatt, Peter R; Gault, Victor A

    2008-04-01

    We have examined the metabolic effects of daily administration of carbenoxolone (CBX), a naturally occurring 11beta-hydroxysteroid dehydrogenase (11beta-HSD1) inhibitor, in mice with high fat diet-induced insulin resistance and obesity. Eight-week-old male Swiss TO mice placed on a synthetic high fat diet received daily intraperitoneal injections of either saline vehicle or CBX over a 16-day period. Daily administration of CBX had no effect on food intake, but significantly lowered body weight (1.1- to 1.2-fold) compared to saline-treated controls. Non-fasting plasma glucose levels were significantly decreased (1.6-fold) by CBX treatment on day 4 and remained lower throughout the treatment period. Circulating plasma corticosterone levels were not significantly altered by CBX treatment. Plasma glucose concentrations of CBX-treated mice were significantly reduced (1.4-fold) following an intraperitoneal glucose load compared with saline controls. Similarly, after 16-day treatment with CBX, exogenous insulin evoked a significantly greater reduction in glucose concentrations (1.4- to 1.8-fold). 11beta-HSD1 gene expression was significantly down-regulated in liver, whereas glucocorticoid receptor gene expression was increased in both liver and adipose tissue following CBX treatment. The reduced body weight and improved metabolic control in mice with high fat diet-induced obesity upon daily CBX administration highlights the potential value of selective 11beta-HSD1 inhibition as a new route for the treatment of type 2 diabetes and obesity.

  12. Embryonic transcriptome and proteome analyses on hepatic lipid metabolism in chickens divergently selected for abdominal fat content.

    PubMed

    Na, Wei; Wu, Yuan-Yuan; Gong, Peng-Fei; Wu, Chun-Yan; Cheng, Bo-Han; Wang, Yu-Xiang; Wang, Ning; Du, Zhi-Qiang; Li, Hui

    2018-05-23

    In avian species, liver is the main site of de novo lipogenesis, and hepatic lipid metabolism relates closely to adipose fat deposition. Using our fat and lean chicken lines of striking differences in abdominal fat content, post-hatch lipid metabolism in both liver and adipose tissues has been studied extensively. However, whether molecular discrepancy for hepatic lipid metabolism exists in chicken embryos remains obscure. We performed transcriptome and proteome profiling on chicken livers at five embryonic stages (E7, E12, E14, E17 and E21) between the fat and lean chicken lines. At each stage, 521, 141, 882, 979 and 169 differentially expressed genes were found by the digital gene expression, respectively, which were significantly enriched in the metabolic, PPAR signaling and fatty acid metabolism pathways. Quantitative proteomics analysis found 20 differentially expressed proteins related to lipid metabolism, PPAR signaling, fat digestion and absorption, and oxidative phosphorylation pathways. Combined analysis showed that genes and proteins related to lipid transport (intestinal fatty acid-binding protein, nucleoside diphosphate kinase, and apolipoprotein A-I), lipid clearance (heat shock protein beta-1) and energy metabolism (NADH dehydrogenase [ubiquinone] 1 beta subcomplex subunit 10 and succinate dehydrogenase flavoprotein subunit) were significantly differentially expressed between the two lines. For hepatic lipid metabolism at embryonic stages, molecular differences related to lipid transport, lipid clearance and energy metabolism exist between the fat and lean chicken lines, which might contribute to the striking differences of abdominal fat deposition at post-hatch stages.

  13. Adipose tissue metabolism and its role in adaptations to undernutrition in ruminants.

    PubMed

    Chilliard, Y; Ferlay, A; Faulconnier, Y; Bonnet, M; Rouel, J; Bocquier, F

    2000-02-01

    Changes in the amount and metabolism of adipose tissue (AT) occur in underfed ruminants, and are amplified during lactation, or in fat animals. The fat depot of the tail of some ovine breeds seems to play a particular role in adaptation to undernutrition; this role could be linked to its smaller adipocytes and high sensitivity to the lipolytic effect of catecholamines. Glucocorticoids and growth hormone probably interact to induce teleophoretic changes in the AT responses to adenosine and catecholamines during lactation. Fat mobilization in dry ewes is related both to body fatness and to energy balance. The in vivo beta-adrenergic lipolytic potential is primarily related to energy balance, whereas basal postprandial plasma non-esterified fatty acids (NEFA) are related to body fatness, and preprandial plasma NEFA is the best predictor of the actual body lipid loss. Several mechanisms seem to be aimed at avoiding excessive fat mobilization and/or insuring a return to the body fatness homeostatic set point. As well as providing the underfed animal with fatty acids as oxidative fuels, AT acts as an endocrine gland. The yield of leptin by ruminant AT is positively related to body fatness, decreased by underfeeding, beta-adrenergic stimulation and short day length, and increased by insulin and glucocorticoids. This finding suggests that the leptin chronic (or acute) decrease in lean (or underfed respectively) ruminants is, as in rodents, a signal for endocrine, metabolic and behavioural adaptations aimed at restoring homeostasis.

  14. Ontogeny and nutritional programming of adiposity in sheep: potential role of glucocorticoid action and uncoupling protein-2.

    PubMed

    Gnanalingham, Muhuntha G; Mostyn, Alison; Symonds, Michael E; Stephenson, Terence

    2005-11-01

    Increased glucocorticoid action and adipose tissue inflammation contribute to excess adiposity. These adaptations may be enhanced in offspring exposed to nutrient restriction (NR) in utero, thereby increasing their susceptibility to later obesity. We therefore determined the developmental ontogeny of glucocorticoid receptor (GR), 11beta-hydroxysteroid dehydrogenase (11betaHSD) types 1 and 2, and uncoupling protein (UCP)-2 mRNA in perirenal adipose tissue between late gestation and 6 mo after birth in the sheep, as well as the effect of maternal NR targeted between early to mid (28-80 days, term approximately 147 days)- or late (110-147 days) gestation. GR and 11betaHSD1 mRNA increased with fat mass and were all maximal within the 6-mo observation period. 11betaHSD2 mRNA abundance demonstrated a converse decline, whereas UCP2 peaked at 30 days. GR and 11betaHSD1 mRNA abundance were strongly correlated with total and relative perirenal adipose tissue weight, and UCP2 was strongly correlated with GR and 11betaHSD1 mRNA. Early- to midgestational NR increased GR, 11betaHSD1, and UCP2 mRNA, but decreased 11betaHSD2 mRNA abundance, an adaptation reversed with late-gestational NR. We conclude that the continual rise in glucocorticoid action and fat mass after birth may underlie the development of later obesity. The magnitude of this adaptation is partly dependent on maternal food intake through pregnancy.

  15. Amyloid precursor protein modulates macrophage phenotype and diet-dependent weight gain

    PubMed Central

    Puig, Kendra L.; Brose, Stephen A.; Zhou, Xudong; Sens, Mary A.; Combs, Gerald F.; Jensen, Michael D.; Golovko, Mikhail Y.; Combs, Colin K.

    2017-01-01

    It is well known that mutations in the gene coding for amyloid precursor protein are responsible for autosomal dominant forms of Alzheimer’s disease. Proteolytic processing of the protein leads to a number of metabolites including the amyloid beta peptide. Although brain amyloid precursor protein expression and amyloid beta production are associated with the pathophysiology of Alzheimer’s disease, it is clear that amyloid precursor protein is expressed in numerous cell types and tissues. Here we demonstrate that amyloid precursor protein is involved in regulating the phenotype of both adipocytes and peripheral macrophages and is required for high fat diet-dependent weight gain in mice. These data suggest that functions of this protein include modulation of the peripheral immune system and lipid metabolism. This biology may have relevance not only to the pathophysiology of Alzheimer’s disease but also diet-associated obesity. PMID:28262782

  16. Chronic stress, combined with a high-fat/high-sugar diet, shifts sympathetic signaling toward neuropeptide Y and leads to obesity and the metabolic syndrome.

    PubMed

    Kuo, Lydia E; Czarnecka, Magdalena; Kitlinska, Joanna B; Tilan, Jason U; Kvetnanský, Richard; Zukowska, Zofia

    2008-12-01

    In response to stress, some people lose while others gain weight. This is believed to be due to either increased beta-adrenergic activation, the body's main fat-burning mechanism, or increased intake of sugar- and fat-rich "comfort foods." A high-fat, high-sugar (HFS) diet alone, however, cannot account for the epidemic of obesity, and chronic stress alone tends to lower adiposity in mice. Here we discuss how chronic stress, when combined with an HFS diet, leads to abdominal obesity by releasing a sympathetic neurotransmitter, neuropeptide Y (NPY), directly into the adipose tissue. In vitro, when "stressed" with dexamethasone, sympathetic neurons shift toward expressing more NPY, which stimulates endothelial cell (angiogenesis) and preadipocyte proliferation, differentiation, and lipid-filling (adipogenesis) by activating the same NPY-Y2 receptors (Y2Rs). In vivo, chronic stress, consisting of cold water or aggression in HFS-fed mice, stimulates the release of NPY and the expression of Y2Rs in visceral fat, increasing its growth by 50% in 2 weeks. After 3 months, this results in metabolic syndrome-like symptoms with abdominal obesity, inflammation, hyperlipidemia, hyperinsulinemia, glucose intolerance, hepatic steatosis, and hypertension. Remarkably, local intra-fat Y2R inhibition pharmacologically or via adenoviral Y2R knock-down reverses or prevents fat accumulation and metabolic complications. These studies demonstrated for the first time that chronic stress, via the NPY-Y2R pathway, amplifies and accelerates diet-induced obesity and the metabolic syndrome. Our findings also suggest the use of local administration of Y2R antagonists for treatment of obesity and NPY-Y2 agonists for fat augmentation in other clinical applications.

  17. Dynamics of beta-cell turnover: evidence for beta-cell turnover and regeneration from sources of beta-cells other than beta-cell replication in the HIP rat.

    PubMed

    Manesso, Erica; Toffolo, Gianna M; Saisho, Yoshifumi; Butler, Alexandra E; Matveyenko, Aleksey V; Cobelli, Claudio; Butler, Peter C

    2009-08-01

    Type 2 diabetes is characterized by hyperglycemia, a deficit in beta-cells, increased beta-cell apoptosis, and islet amyloid derived from islet amyloid polypeptide (IAPP). These characteristics are recapitulated in the human IAPP transgenic (HIP) rat. We developed a mathematical model to quantify beta-cell turnover and applied it to nondiabetic wild type (WT) vs. HIP rats from age 2 days to 10 mo to establish 1) whether beta-cell formation is derived exclusively from beta-cell replication, or whether other sources of beta-cells (OSB) are present, and 2) to what extent, if any, there is attempted beta-cell regeneration in the HIP rat and if this is through beta-cell replication or OSB. We conclude that formation and maintenance of adult beta-cells depends largely ( approximately 80%) on formation of beta-cells independent from beta-cell duplication. Moreover, this source adaptively increases in the HIP rat, implying attempted beta-cell regeneration that substantially slows loss of beta-cell mass.

  18. Hypoxia induces adipogenic differentitation of myoblastic cell lines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Itoigawa, Yoshiaki; Juntendo University School of Medicine, Tokyo; Kishimoto, Koshi N., E-mail: kishimoto@med.tohoku.ac.jp

    2010-09-03

    Research highlights: {yields} C2C12 and G8 myogenic cell lines treated by hypoxia differentiate into adipocytes. {yields} The expression of C/EBP{beta}, {alpha} and PPAR{gamma} were increased under hypoxia. {yields} Myogenic differentiation of C2C12 was inhibited under hypoxia. -- Abstract: Muscle atrophy usually accompanies fat accumulation in the muscle. In such atrophic conditions as back muscles of kyphotic spine and the rotator cuff muscles with torn tendons, blood flow might be diminished. It is known that hypoxia causes trans-differentiation of mesenchymal stem cells derived from bone marrow into adipocytes. However, it has not been elucidated yet if hypoxia turned myoblasts into adipocytes.more » We investigated adipogenesis in C2C12 and G8 murine myogenic cell line treated by hypoxia. Cells were also treated with the cocktail of insulin, dexamethasone and IBMX (MDI), which has been known to inhibit Wnt signaling and promote adipogenesis. Adipogenic differentiation was seen in both hypoxia and MDI. Adipogenic marker gene expression was assessed in C2C12. CCAAT/enhancer-binding protein (C/EBP) {beta}, {alpha} and peroxisome proliferator activating receptor (PPAR) {gamma} were increased by both hypoxia and MDI. The expression profile of Wnt10b was different between hypoxia and MDI. The mechanism for adipogenesis of myoblasts in hypoxia might be regulated by different mechanism than the modification of Wnt signaling.« less

  19. [Fat soluble constituents of the leaves of Vaccinium bracteatum Thunb].

    PubMed

    Tu, P; Liu, J; Li, J

    1997-07-01

    Four compounds were isolated from the fat soluble fraction of the leaves of Vaccinium bracteatum and identified as friedelin (I), epifriedelinol (II), beta-sitosterol(III) and ursolic acid(IV) by IR, NMR and MS. Compound III and IV are isolated from the leaves of this plant for the first time.

  20. GABA dramatically improves glucose tolerance in streptozotocin-induced diabetic rats fed with high-fat diet.

    PubMed

    Sohrabipour, Shahla; Sharifi, Mohammad Reza; Talebi, Ardeshir; Sharifi, Mohammadreza; Soltani, Nepton

    2018-05-05

    Skeletal muscle, hepatic insulin resistance, and beta cell dysfunction are the characteristic pathophysiological features of type 2 diabetes mellitus. GABA has an important role in pancreatic islet cells. The present study attempted to clarify the possible mechanism of GABA to improve glucose tolerance in a model of type 2 diabetes mellitus in rats. Fifty Wistar rats were divided into five groups: NDC that was fed the normal diet, CD which received a high-fat diet with streptozotocin, CD-GABA animals that received GABA via intraperitoneal injection, plus CD-Ins1 and CD-Ins2 groups which were treated with low and high doses of insulin, respectively. Body weight and blood glucose were measured weekly. Intraperitoneal glucose tolerance test (IPGTT), insulin tolerance test (ITT), urine volume, amount of water drinking, and food intake assessments were performed monthly. The hyperinsulinemic euglycemic clamp was done for assessing insulin resistance. Plasma insulin and glucagon were measured. Abdominal fat was measured. Glucagon receptor, Glucose 6 phosphatase, Phosphoenolpyruvate carboxykinase genes expression were evaluated in liver and Glucose transporter 4 (GLUT4) genes expression and protein translocation were evaluated in the muscle. GABA or insulin therapy improved blood glucose, insulin level, IPGTT, ITT, gluconeogenesis pathway, Glucagon receptor, body weight and body fat in diabetic rats. GLUT4 gene and protein expression increased. GABA whose beneficial effect was comparable to that of insulin, also increased glucose infusion rate during an euglycemic clamp. GABA could improve insulin resistance via rising GLUT4 and also decreasing the gluconeogenesis pathway and Glucagon receptor gene expression. Copyright © 2018. Published by Elsevier B.V.

  1. Influence of different functional ingredients on physical properties, rheology, tribology, and oral perceptions of no fat stirred yoghurt.

    PubMed

    Ng, Sophia Bao Xian; Nguyen, Phuong T M; Bhandari, Bhesh; Prakash, Sangeeta

    2018-06-01

    Effects of adding four functional ingredients: inulin, pectin, galacto-oligosaccharides (GOS), and beta glucan on physical, rheology, tribology, and sensory characteristics of skim (0.1% fat) stirred yoghurt were studied. Three levels of each ingredient were chosen: inulin (7, 8, and 9%), pectin (0.2, 0.25, and 0.3%), GOS (9.1, 11.3, and 13.6%), and beta glucan (0.1, 0.2, and 0.3%). Among the investigated ingredients, inulin and GOS appeared to be preferable choices due to their ability to both reduce syneresis and slightly increase sample lubrication while maintaining texture, rheology, and sensory characteristics of skim yoghurt. Pectin and beta glucan, conversely, increased viscosity and gel strength, slightly increased sample lubrication for the skim yoghurt but created large particles (i.e., greater than 100 μm) in the product body. This led to the increase in lumpiness and residual coating while reducing smoothness and creaminess of the sample. The observed tribology behaviors of the stirred yoghurts were similar to the previous study of pot-set yoghurt whose friction curves comprised four friction zones (Nguyen, Kravchuk, Bhandari, and Prakash). The sensory characteristics of six selected samples for various texture and mouthfeel attributes obtained from a trained panel were in agreement with particle size, rheology, and tribology characteristics of the yoghurt samples. With the increasing demand for low fat and functional food, there is a need to understand the impact of adding functional ingredients in low fat yoghurt to satisfy consumers' requirements. This study investigates the effects of these functional ingredients at different dosages on physical, rheology, tribology, and sensory characteristics of skim (0.1% fat) stirred yoghurt. The results from this study may guide use of functional ingredients in yoghurt production. © 2017 Wiley Periodicals, Inc.

  2. High-fat diet reprograms the epigenome of rat spermatozoa and transgenerationally affects metabolism of the offspring

    PubMed Central

    de Castro Barbosa, Thais; Ingerslev, Lars R.; Alm, Petter S.; Versteyhe, Soetkin; Massart, Julie; Rasmussen, Morten; Donkin, Ida; Sjögren, Rasmus; Mudry, Jonathan M.; Vetterli, Laurène; Gupta, Shashank; Krook, Anna; Zierath, Juleen R.; Barrès, Romain

    2015-01-01

    Objectives Chronic and high consumption of fat constitutes an environmental stress that leads to metabolic diseases. We hypothesized that high-fat diet (HFD) transgenerationally remodels the epigenome of spermatozoa and metabolism of the offspring. Methods F0-male rats fed either HFD or chow diet for 12 weeks were mated with chow-fed dams to generate F1 and F2 offspring. Motile spermatozoa were isolated from F0 and F1 breeders to determine DNA methylation and small non-coding RNA (sncRNA) expression pattern by deep sequencing. Results Newborn offspring of HFD-fed fathers had reduced body weight and pancreatic beta-cell mass. Adult female, but not male, offspring of HFD-fed fathers were glucose intolerant and resistant to HFD-induced weight gain. This phenotype was perpetuated in the F2 progeny, indicating transgenerational epigenetic inheritance. The epigenome of spermatozoa from HFD-fed F0 and their F1 male offspring showed common DNA methylation and small non-coding RNA expression signatures. Altered expression of sperm miRNA let-7c was passed down to metabolic tissues of the offspring, inducing a transcriptomic shift of the let-7c predicted targets. Conclusion Our results provide insight into mechanisms by which HFD transgenerationally reprograms the epigenome of sperm cells, thereby affecting metabolic tissues of offspring throughout two generations. PMID:26977389

  3. Momordica charantia ameliorates insulin resistance and dyslipidemia with altered hepatic glucose production and fatty acid synthesis and AMPK phosphorylation in high-fat-fed mice.

    PubMed

    Shih, Chun-Ching; Shlau, Min-Tzong; Lin, Cheng-Hsiu; Wu, Jin-Bin

    2014-03-01

    Momordica charantia Linn. (Cucurbitaceae) fruit is commonly known as bitter melon. C57BL/6J mice were firstly divided randomly into two groups: the control (CON) group was fed with a low-fat diet, whereas the experimental group was fed a 45% high-fat (HF) diet for 8 weeks. Afterwards, the CON group was treated with vehicle, whereas the HF group was subdivided into five groups and still on HF diet and was given orally M. charantia extract (MCE) or rosiglitazone (Rosi) or not for 4 weeks. M. charantia decreased the weights of visceral fat and caused glucose lowering. AMP-activated protein kinase (AMPK) is a major cellular regulator of lipid and glucose metabolism. MCE significantly increases the hepatic protein contents of AMPK phosphorylation by 126.2-297.3% and reduces expression of phosphenolpyruvate carboxykinase (PEPCK) and glucose production. Most importantly, MCE decreased expression of hepatic 11beta hydroxysteroid dehydroxygenase (11beta-HSD1) gene, which contributed in attenuating diabetic state. Furthermore, MCE lowered serum triglycerides (TGs) by inhibition of hepatic fatty acid synthesis by dampening sterol response element binding protein 1c and fatty acid synthase mRNA leading to reduction in TGs synthesis. This study demonstrates M. charantia ameliorates diabetic and hyperlipidemic state in HF-fed mice occurred by regulation of hepatic PEPCK, 11beta-HSD1 and AMPK phosphorylation. Copyright © 2013 John Wiley & Sons, Ltd.

  4. Expression of beta 3-adrenoceptor mRNA in rat tissues.

    PubMed

    Evans, B A; Papaioannou, M; Bonazzi, V R; Summers, R J

    1996-01-01

    1. This study examines the expression of beta 3-adrenoceptor messenger RNA (beta 3-AR mRNA) in rat tissues to allow comparison with atypical beta-adrenoceptors determined by functional and radioligand binding techniques. 2. A reverse transcription/polymerase chain reaction protocol has been developed for determining the relative amounts of beta 3-AR mRNA in rat tissues. 3. Measurement of adipsin and uncoupling protein (UCP) mRNA was used to examine all tissues for the presence of white and brown adipose tissue which may contribute beta 3-AR mRNA. 4. The beta 3-AR mRNA is expressed at high levels in brown and white adipose tissue, stomach fundus, the longitudinal/circular smooth muscle of both colon and ileum, and colon submucosa. There was substantial expression of adipsin in colon submucosa and moderate expression in fundus, suggesting that in these regions at least some of the beta 3-AR signal may be contributed by fat. Pylorus and colon mucosa showed moderate levels of beta 3-AR mRNA with lower levels of adipsin. Ileum mucosa and submucosa showed low but readily detectable levels of beta 3-AR. 5. Expression of adipsin in rat skeletal muscles coupled to very low levels of beta 3-AR mRNA indicates that the observed beta 3-AR may be due to the presence of intrinsic fat. beta 3-AR mRNA was virtually undetectable in heart, lung and liver. These results raise the possibility that the atypical beta-AR demonstrated by functional and/or binding studies in muscle and in heart is not the beta 3-AR. 6. By use of two different sets of primers for amplification of beta 3-AR cDNA, no evidence was found for differential splicing of the mRNA in any of the tissues examined. 7. The detection of beta 3-AR mRNA in the gut mucosa and submucosa suggests that in addition to its established roles in lipolysis, thermogenesis and regulation of gut motility beta 3-AR may subserve other functions in the gastrointestinal tract. The absence of beta 3-AR mRNA in rat heart or its presence with adipsin in skeletal muscle suggests that atypical beta-adrenoceptor responses in heart and skeletal muscle are unlikely to be mediated by beta 3-AR.

  5. The physicochemical stability and in vitro bioaccessibility of beta-carotene in oil-in- water sodium caseinate emulsions

    USDA-ARS?s Scientific Manuscript database

    Beta-carotene (BC), the most important dietary source of provitamin A, is necessary for optimum human health. BC is insoluble or only slightly soluble in most liquids but its bioavailability improves when ingested with fat. Therefore lipid emulsions are ideal matrices for BC delivery. BC (0.1%) in ...

  6. Prenatal Androgen Excess Negatively Impacts Body Fat Distribution in a Nonhuman Primate Model of Polycystic Ovary Syndrome (PCOS)

    PubMed Central

    Bruns, Cristin M; Baum, Scott T; Colman, Ricki J; Dumesic, Daniel A; Eisner, Joel R; Jensen, Michael D; Whigham, Leah D; Abbott, David H

    2008-01-01

    Introduction Prenatally androgenized (PA) female rhesus monkeys share metabolic abnormalities in common with PCOS women. Early gestation exposure (E) results in insulin resistance, impaired pancreatic beta-cell function and type 2 diabetes, while late gestation exposure (L) results in supranormal insulin sensitivity that declines with increasing body mass index (BMI). Objective To determine whether PA females have altered body fat distribution. Design Five EPA, 5 LPA, and 5 control adult female monkeys underwent somatometrics, dual x-ray absorptiometry (DXA) and abdominal computed tomography (CT). Five control and 5 EPA females underwent an intravenous glucose tolerance test to assess the relationship between body composition and glucoregulation. Results There were no differences in age, weight, BMI, or somatometrics. LPA females had ∼20% greater DXA-determined total fat and percent body fat, as well as total and percent abdominal fat than EPA or control females (p≤0.05). LPA females also had ∼40% more CT-determined non-visceral abdominal fat than EPA or control females (p≤0.05). The volume of visceral fat was similar among the 3 groups. EPA (R2=0.94, p≤0.01) and LPA (R2=0.53, p=0.16) females had a positive relationship between visceral fat and BMI, although not significant for LPA females. Conversely, control females had a positive relationship between non-visceral fat and BMI (R2=0.98, p≤0.001). There was a positive relationship between basal insulin and total body (R2=0.95, p≤0.007), total abdominal (R2=0.81, p≤0.04), and visceral (R2=0.82, p≤0.03) fat quantities in EPA, but not control females. Conclusions Prenatal androgenization in female rhesus monkeys induces adiposity-dependent visceral fat accumulation, and late gestation androgenization causes increased total body and non-visceral fat mass. Early gestation androgenization induces visceral fat-dependent hyperinsulinemia. The relationship between the timing of prenatal androgen exposure and body composition phenotypes in this nonhuman primate model for PCOS may provide insight into the heterogeneity of metabolic defects found in PCOS women. PMID:17471299

  7. Prenatal androgen excess negatively impacts body fat distribution in a nonhuman primate model of polycystic ovary syndrome.

    PubMed

    Bruns, C M; Baum, S T; Colman, R J; Dumesic, D A; Eisner, J R; Jensen, M D; Whigham, L D; Abbott, D H

    2007-10-01

    Prenatally androgenized (PA) female rhesus monkeys share metabolic abnormalities in common with polycystic ovary syndrome (PCOS) women. Early gestation exposure (E) results in insulin resistance, impaired pancreatic beta-cell function and type 2 diabetes, while late gestation exposure (L) results in supranormal insulin sensitivity that declines with increasing body mass index (BMI). To determine whether PA females have altered body fat distribution. Five early-treated PA (EPA), five late-treated PA (LPA) and five control adult female monkeys underwent somatometrics, dual-X-ray absorptiometry (DXA) and abdominal computed tomography (CT). Five control and five EPA females underwent an intravenous glucose tolerance test to assess the relationship between body composition and glucoregulation. There were no differences in age, weight, BMI or somatometrics. LPA females had approximately 20% greater DXA-determined total fat and percent body fat, as well as total and percent abdominal fat than EPA or control females (P< or =0.05). LPA females also had approximately 40% more CT-determined non-visceral abdominal fat than EPA or control females (P< or =0.05). The volume of visceral fat was similar among the three groups. EPA (R (2)=0.94, P< or =0.01) and LPA (R (2)=0.53, P=0.16) females had a positive relationship between visceral fat and BMI, although not significant for LPA females. Conversely, control females had a positive relationship between non-visceral fat and BMI (R (2)=0.98, P< or =0.001). There was a positive relationship between basal insulin and total body (R (2)=0.95, P< or =0.007), total abdominal (R (2)=0.81, P< or =0.04) and visceral (R (2)=0.82, P< or =0.03) fat quantities in EPA, but not control females. Prenatal androgenization in female rhesus monkeys induces adiposity-dependent visceral fat accumulation, and late gestation androgenization causes increased total body and non-visceral fat mass. Early gestation androgenization induces visceral fat-dependent hyperinsulinemia. The relationship between the timing of prenatal androgen exposure and body composition phenotypes in this nonhuman primate model for PCOS may provide insight into the heterogeneity of metabolic defects found in PCOS women.

  8. Urinary catecholamines, plasma insulin and environmental factors in relation to body fat distribution.

    PubMed

    Leonetti, D L; Bergstrom, R W; Shuman, W P; Wahl, P W; Jenner, D A; Harrison, G A; Fujimoto, W Y

    1991-05-01

    The relationship of body fat distribution to insulin and the catecholamines, hormones that affect lipolysis differentially by fat site, was examined within an environmental context, including factors of medication use, physical activity, dietary intake, educational attainment, and age. Four cross-sectional body fat areas (cm2) were determined by three computed tomography (CT) scans (subcutaneous chest fat at the level of the nipples, subcutaneous and intra-abdominal fat at the level of the umbilicus, and subcutaneous left mid-thigh fat) in 191 second-generation Japanese-American men aged 45-74 years. The site-specific fat measurements were first examined in relation to use of beta-adrenergic antagonists, then to fasting plasma insulin and C-peptide levels and to urinary epinephrine and norepinephrine levels from a 24-h urine collection made during usual daily activities. Greater fat stores in the intra-abdominal area, even after adjustment for body mass index (BMI, weight/height2) and presence of coronary heart disease, were found to be related to use of beta-adrenergic antagonists. In men taking no adrenergic antagonists (n = 157), after adjustment for BMI, truncal fat measurements of the chest (partial r = -0.16, P less than 0.05) and intra-abdominal area (partial r = -0.21, P less than 0.05) were found to be inversely related to epinephrine, and intra-abdominal fat (partial r = 0.25, P less than 0.01) alone was directly related to fasting plasma insulin. With respect to other environmental variables, the significant inverse relationship of intra-abdominal fat (adjusted for BMI) with physical activity (partial r = -0.17, P less than 0.05) and the significant difference in intra-abdominal fat by educational attainment (college 102.3 +/- 5.7 vs no college 115.7 +/- 6.1 cm2, P = 0.03) became non-significant with adjustment, using multiple regression analysis, for insulin in the case of physical activity and epinephrine in the case of educational attainment. Thus, intra-abdominal fat showed a unique set of relationships to metabolic parameters which could be further related to certain environmental variables.

  9. 6-Gingerol Suppresses Adipocyte-Derived Mediators of Inflammation In Vitro and in High-Fat Diet-Induced Obese Zebra Fish.

    PubMed

    Choi, Jia; Kim, Kui-Jin; Kim, Byung-Hak; Koh, Eun-Jeong; Seo, Min-Jung; Lee, Boo-Yong

    2017-02-01

    The present study was performed to investigate the molecular mechanism of 6-gingerol on adipocyte-mediated systemic inflammation in vitro and in high-fat diet-induced obese zebra fish. 6-Gingerol decreased adipogenesis due to the suppression of adipocyte differentiation markers, including peroxisome proliferator-activated receptor gamma, CCAATT enhancer binding protein α , and adipocyte protein 2, and triglyceride synthesis enzymes, including sterol regulatory element-binding protein-1, fatty acid synthase, lysophosphatidic acid acyltransferase, and acyl-coA : diacylglycerol acyltransferase 1, in 3T3-L1. A coculture insert system using 3T3-L1 with RAW 264.7 (coculture insert system using fully differentiated 3T3-L1 cells with RAW 264.7 macrophages) revealed that 6-gingerol increased anti-inflammatory cytokine interleukin-10. The expression of TNF α , monocyte chemotactic protein-1, interleukin-1 β , and interleukin-6 were decreased in the coculture insert system using fully differentiated 3T3-L1 cells with RAW 264.7 macrophages treated with 6-gingerol. Moreover, the coculture insert system using fully differentiated 3T3-L1 cells with RAW 264.7 macrophages treated with 6-gingerol inhibited the protein expression of TNF α and monocyte chemotactic protein-1 in RAW 264.7. 6-Gingerol decreased c-JUN N-terminal kinase and I kappa B kinase beta and its downstream target AP-1 expression in the coculture insert system using fully differentiated 3T3-L1 cells with RAW 264.7 macrophages. Furthermore, 6-gingerol decreased the expression of inducible nitric oxide synthase stimulated by the coculture insert system using fully differentiated 3T3-L1 cells with RAW 264.7 macrophages in RAW 264.7 and attenuated nitric oxide production in diet-induced obese zebra fish. Our results suggest that 6-gingerol suppresses inflammation through the regulation of the c-JUN N-terminal kinase-I kappa B kinase beta and its downstream targets. Georg Thieme Verlag KG Stuttgart · New York.

  10. Chronic sympathetic activation: consequence and cause of age-associated obesity?

    PubMed

    Seals, Douglas R; Bell, Christopher

    2004-02-01

    Primary aging in adult humans is associated with a progressive, tonic activation of the peripheral sympathetic nervous system (SNS). The purpose of this SNS activation and its physiological impact are, however, unknown. We hypothesize that the chronic stimulation of the SNS with aging is driven in part by a progressive accumulation of body fat. This "error" is sensed by the central nervous system via increases in adiposity-sensitive humoral signals (e.g., leptin, insulin) that cross the blood-brain barrier, activate subcortical areas involved in the regulation of energy balance (e.g., ventromedial hypothalamus), and stimulate SNS outflow to peripheral tissues. The SNS activation is intended to increase beta-adrenergic thermogenesis in order to expend excess energy as heat rather than by storage of fat. Recent evidence, however, indicates that these adjustments are not effective in augmenting energy expenditure with aging. Indeed, older sedentary adults demonstrate reduced, not increased, beta-adrenergic stimulation of metabolic rate because of reduced tissue responsiveness, presumably mediated by SNS-induced impairment of beta-adrenergic signaling. As a result, age-associated SNS activation, initiated as a consequence of accumulating adiposity with the intent of preventing further fat storage, ironically, may in time evolve into a potential mechanism contributing to the development of obesity with aging.

  11. Acquired partial lipodystrophy is associated with increased risk for developing metabolic abnormalities.

    PubMed

    Akinci, Baris; Koseoglu, Fatos Dilan; Onay, Huseyin; Yavuz, Sevgi; Altay, Canan; Simsir, Ilgin Yildirim; Ozisik, Secil; Demir, Leyla; Korkut, Meltem; Yilmaz, Nusret; Ozen, Samim; Akinci, Gulcin; Atik, Tahir; Calan, Mehmet; Secil, Mustafa; Comlekci, Abdurrahman; Demir, Tevfik

    2015-09-01

    Acquired partial lipodystrophy (APL) is a rare disorder characterized by progressive selective fat loss. In previous studies, metabolic abnormalities were reported to be relatively rare in APL, whilst they were quite common in other types of lipodystrophy syndromes. In this nationwide cohort study, we evaluated 21 Turkish patients with APL who were enrolled in a prospective follow-up protocol. Subjects were investigated for metabolic abnormalities. Fat distribution was assessed by whole body MRI. Hepatic steatosis was evaluated by ultrasound, MRI and MR spectroscopy. Patients with diabetes underwent a mix meal stimulated C-peptide/insulin test to investigate pancreatic beta cell functions. Leptin and adiponectin levels were measured. Fifteen individuals (71.4%) had at least one metabolic abnormality. Six patients (28.6%) had diabetes, 12 (57.1%) hypertrigylceridemia, 10 (47.6%) low HDL cholesterol, and 11 (52.4%) hepatic steatosis. Steatohepatitis was further confirmed in 2 patients with liver biopsy. Anti-GAD was negative in all APL patients with diabetes. APL patients with diabetes had lower leptin and adiponectin levels compared to patients with type 2 diabetes and healthy controls. However, contrary to what we observed in patients with congenital generalized lipodystrophy (CGL), we did not detect consistently very low leptin levels in APL patients. The mix meal test suggested that APL patients with diabetes had a significant amount of functional pancreatic beta cells, and their diabetes was apparently associated with insulin resistance. Our results show that APL is associated with increased risk for developing metabolic abnormalities. We suggest that close long-term follow-up is required to identify and manage metabolic abnormalities in APL. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Bone-Induced Expression of Tumoral Integrin beta3 Enables Targeted Nanotherapy of Breast Cancer Metastases

    NASA Astrophysics Data System (ADS)

    Ross, Michael H.

    Breast cancer is the most common cancer for women worldwide, representing approximately 25% of all new cancer cases in this population. While early detection and removal of breast cancer still confined to the primary site results in a good prognosis, approximately one- third of patients will develop distant metastases. In these patients, overall survival is markedly reduced. Of the common sites for breast cancer metastasis, the skeletal system is the most frequent. Treating breast cancer bone metastases has proven particularly difficult for several reasons, such as dissemination of metastases throughout the skeleton, poor drug localization to sites of interest, a lack of tumor-specific targets expressed across breast cancer subtypes, and the chemo-protective nature of the bone microenvironment. This dissertation is focused on investigating a potential tumor-target expressed on breast cancer bone metastases, and to improve drug treatment efficacy against tumor cells in the bone microenvironment. Integrins are heterodimeric cell surface receptors, composed of an alpha and beta subunit from a large family of selectively-compatible integrin subunits. As a heterodimeric complex, integrins can bind to components of the extracellular matrix or to other cells. One particular integrin complex, integrin alphavbeta3, is composed of the tightly regulated integrin subunit beta3 and the more widely expressed alphav subunit. I examined the expression of integrin beta3 on primary breast cancer as compared to metastases in murine cancer models, and observed that integrin expression is significantly elevated on bone metastases as compared to the primary tumors or visceral metastases. In addition, I evaluated tumor-associated integrin beta3 expression on a tissue microarray (TMA) composed of primary breast cancer and patient-matched bone metastatic tissue from 42 patients. Across nearly all patients, tumor-associated integrin beta3 expression was significantly elevated on bone metastases as compared to the primary tumor. For the first time, I demonstrate that tumor-associated integrin beta3 is elevated on bone metastases across all breast cancer subtypes, supporting the translational potential of targeting integrin beta3 in breast cancer patients with bone metastases. Integrin beta3 was weakly expressed on tumor cells in vitro and on tumor cells in the primary mammary fat pad (MFP). Additional analysis demonstrated that integrin beta3 on circulating tumor cells is dispensable for strong expression of integrin beta3 on subsequent bone metastases, suggested that integrin beta3 may be induced within the bone microenvironment. I identified transforming growth factor beta (TGF-beta) to be a potent inducer of integrin beta3 in vitro, and further demonstrate canonical TGF-beta signaling through the SMAD2 and SMAD3 (SMAD2/3) pathway is responsible for breast cancer upregulation of integrin beta3 induction on bone metastases, both in vitro and in vivo. Utilizing this information, I sought to evaluate the targeting potential of nanotherapy coated with a targeting ligand specific for integrin alphavbeta3. Nanotherapy has the potential to increase therapeutic efficacy and reduce toxicity versus traditional chemotherapies by enhancing drug delivery to specific targets of interest. I explored the localization potential of two nanoparticles with significantly different sizes: polysorbate (tween) 80 micelle nanoparticles (MPs, 12.5 nm) or perfluorocarbon (PFC) nanoparticles ( 250 nm). The smaller integrin alphavbeta3- targeted micelle nanoparticle (alphavbeta3-MP) could more effectively penetrate breast cancer bone metastases than larger integrin alphavbeta3-targeted PFC nanoparticles (alphavbeta3-PFCs). With these observations, I evaluated whether alphavbeta3-MP-mediated drug delivery could more effectively attenuate bone metastatic tumor burden and bone destruction than free drug delivery. Using the chemotherapeutic agent docetaxel (DTX), a potent microtubule inhibitor that is a first-line therapy for metastatic breast cancer, I observe that DTX is only weakly tumor- suppressive in our mouse model of breast cancer metastases. However, treating mice bearing breast cancer metastases with alphavbeta3-MP-delivery of a docetaxel-prodrug (DTX-PD) significantly reduced bone tumor burden and bone destruction, and with less hepatotoxicity. I observed a significant decrease in bone-residing tumor cell proliferation in mice treated with alphavbeta3-MP- delivery of DTX-PD, without overt osteoclast killing or inhibition of osteoclast formation. Together, these results provide support that nanotherapy-mediated attenuation of bone metastases and bone destruction occurs through enhanced drug efficacy against breast cancer cells within the bone. In this Dissertation, Chapter 1 will provide an overview of breast cancer, bone metastases, integrins, and the therapeutic potential of nanotherapy. In Chapter 2, my work on the expression and physiologic regulation of integrin beta3 on breast cancer during metastases will be explored. In Chapter 3, the role of the cytokine TGF-beta in regulating tumoral expression of integrin beta3 will be discussed. And in Chapter 4, I discuss the use of integrin alphavbeta3-targeted nanotherapy directed against breast cancer metastases. Collectively, I provide evidence that chemotherapeutic efficacy against breast cancer cells within bone can be enhanced by exploiting the expression of tumoral integrin beta3 at that metastatic site.

  13. Impact of taurine depletion on glucose control and insulin secretion in mice.

    PubMed

    Ito, Takashi; Yoshikawa, Natsumi; Ito, Hiromi; Schaffer, Stephen W

    2015-09-01

    Taurine, an endogenous sulfur-containing amino acid, is found in millimolar concentrations in mammalian tissue, and its tissue content is altered by diet, disease and aging. The effectiveness of taurine administration against obesity and its related diseases, including type 2 diabetes, has been well documented. However, the impact of taurine depletion on glucose metabolism and fat deposition has not been elucidated. In this study, we investigated the effect of taurine depletion (in the taurine transporter (TauT) knockout mouse model) on blood glucose control and high fat diet-induced obesity. TauT-knockout (TauTKO) mice exhibited lower body weight and abdominal fat mass when maintained on normal chow than wild-type (WT) mice. Blood glucose disposal after an intraperitoneal glucose injection was faster in TauTKO mice than in WT mice despite lower serum insulin levels. Islet beta-cells (insulin positive area) were also decreased in TauTKO mice compared to WT mice. Meanwhile, overnutrition by high fat (60% fat)-diet could lead to obesity in TauTKO mice despite lower body weight under normal chow diet condition, indicating nutrition in normal diet is not enough for TauTKO mice to maintain body weight comparable to WT mice. In conclusion, taurine depletion causes enhanced glucose disposal despite lowering insulin levels and lower body weight, implying deterioration in tissue energy metabolism. Copyright © 2015 The Authors. Production and hosting by Elsevier B.V. All rights reserved.

  14. EFFECT OF THE LEVEL AND TYPE OF DIETARY FAT ON THE METABOLISM OF CHOLESTEROL AND BETA LIPOPROTEINS IN THE CEBUS MONKEY

    PubMed Central

    Portman, Oscar W.; Hegsted, D. Mark; Stare, Fredrick J.; Bruno, Dorothy; Murphy, Robert; Sinisterra, Leonardo

    1956-01-01

    A study was carried out to determine the effect of the level and type of dietary fat on the concentration of cholesterol and beta lipoproteins in the sera of Cebus monkeys. Three groups of monkeys were fed isocaloric diets containing a fixed ratio of alpha protein and cholesterol to calories but with different amounts of corn oil and sucrose. Corn oil provided 10, 32, and 45 per cent of the calories in the three diets, and the level of sucrose was varied inversely. After 8 weeks the serum cholesterol and Sf 12 to 100 beta lipoprotein concentrations were significantly greater in the medium and high fat groups. When corn oil was decreased from 45 to 10 per cent of dietary calories and sucrose was increased, the serum cholesterol fell in all cases, and when the reverse change was made, the concentration of serum cholesterol increased. Variation in dietary sucrose had no specific effect. Substitution of starch for sucrose with diets otherwise constant did not cause significant change in the concentration of serum cholesterol. When monkeys fed corn oil diets at any of three levels were changed to hydrogenated cottonseed oil diets at the same level, the serum cholesterol and Sf 12 to 100 beta lipoproteins rose. However, hydrogenated cottonseed oil had no greater hypercholesteremic effect than did corn oil in the absence of dietary cholesterol. Diets containing lard with cholesterol also produced strikingly greater serum lipide responses than did diets based on corn oil and cholesterol. Hydrogenated cottonseed oil had a greater hypercholesteremic effect than an unhydrogenated cottonseed oil from the same lot. Preliminary studies indicated that the saturated fats (hydrogenated cottonseed oil) produced the most striking elevation of serum cholesterol values (above controls fed corn oil) when casein was the dietary protein. PMID:13376806

  15. Adverse metabolic effects of a hypercaloric, high-fat diet in rodents precede observable changes in body weight.

    PubMed

    McDonald, Sarah D; Pesarchuk, Eric; Don-Wauchope, Andrew; El Zimaity, Hala; Holloway, Alison C

    2011-09-01

    Although a high-fat diet (HFD) is recognized as an important contributor to obesity, human research is limited by confounders such as income, whereas animal research has typically examined diet during specific developmental periods rather than throughout the lifespan. We hypothesized that the use of an HFD in short-term studies as has been commonly done in animals does not adequately reflect the lifelong dietary patterns seen frequently in humans with consequent metabolic disturbances. We examined the impact of HFD from weaning until 39 weeks (middle age) on the metabolism of male rats. At 7, 26, and 39 weeks, glucose tolerance tests were performed, a subset of animals was euthanized, and serum and tissues were collected. After 4 weeks, preceding increased body weight, HFD animals had increased intra-abdominal fat, triglycerides, and hyperglycemia. Hyperinsulinemia was insufficient to maintain normoglycemia, and beta cell mass and glucagon-like peptide 1 decreased over time in HFD and control animals. Despite lacking significant lipid abnormalities, nonalcoholic fatty liver disease was evident by 39 weeks. Our HFD model demonstrated that significant metabolic abnormalities may go undetected by current standard screening such as weighing and biochemistry. Copyright © 2011 Elsevier Inc. All rights reserved.

  16. Piper sarmentosum is comparable to glycyrrhizic acid in reducing visceral fat deposition in adrenalectomised rats given dexamethasone.

    PubMed

    Fairus, A; Ima Nirwana, S; Elvy Suhana, M R; Tan, M H; Santhana, R; Farihah, H S

    2013-01-01

    Visceral obesity may be due to the dysregulation of cortisol production or metabolism that lead to metabolic disease. In adipose tissue, the enzyme 11beta-hydroxysteroid dehydrogenase type 1 regulates cortisol metabolism (11beta-HSD1). A previous study showed an increase in the visceral fat deposition in adrenalectomised rats given intramuscular dexamethasone. Glycyrrhizic acid (GCA) has been shown to reduce fat deposition because it is a known potent inhibitor of the 11beta-HSD1 enzyme. Piper sarmentosum (PS) is an edible medicinal plant commonly used in Asia as traditional medicine for treating diabetes, hypertension and joint pains. In this study, we determined the effects of PS extract on the disposition and morphology of perirenal adipocytes of adrenalectomised rats given intramuscular dexamethasone. A total of 21 male Spraque Dawley rats were adrenalectomised and given intramuscular dexamethasone, 120 μg/kg/day. These rats were further divided into three groups: adrenalectomised control (ADR+Dexa; n=7), GCA-treated (ADR+Dexa+GCA; dose=240 mg/kg/day; n=7) and PS-treated (ADR+Dexa+PS; dose=125 mg/kg/day; n=7) groups. The various treatments were given via gastric gavage following 2 weeks of adrenalectomy. Treatment with PS extract for 8 weeks showed decreased deposition of perirenal adipocytes which was similar to the GCA-treated group. However, PS-treated rats had thinner adipocyte membrane compared with that of the GCA-treated group. In conclusion, PS extract decreased perirenal fat deposition and reduced the diameter of the adipocyte membrane. However, the mechanisms of action needed further study.

  17. Improved acylated ghrelin suppression at 2 years in obese patients with type 2 diabetes: effects of bariatric surgery vs standard medical therapy

    PubMed Central

    Malin, SK; Samat, A; Wolski, K; Abood, B; Pothier, CE; Bhatt, DL; Nissen, S; Brethauer, SA; Schauer, PR; Kirwan, JP; Kashyap, SR

    2015-01-01

    OBJECTIVE Roux-en-Y gastric bypass (RYGB) produces more durable glycemic control than sleeve gastrectomy (SG) or intensive medical therapy (IMT). However, the contribution of acylated ghrelin (AG), a gluco-regulatory/appetite hormone, to improve glucose metabolism and body composition in patients with type 2 diabetes (T2D) following RYGB is unknown. DESIGN STAMPEDE (Surgical Treatment and Medication Potentially Eradicate Diabetes Efficiently) was a prospective, randomized controlled trial. SUBJECTS Fifty-three (body mass index: 36 ± 3 kg m−2, age: 49 ± 9 years) poorly controlled patients with T2D (HbA1c (glycated hemoglobin): 9.7 ± 2%) were randomized to IMT, IMT + RYGB or IMT + SG and underwent a mixed-meal tolerance test at baseline, 12, and 24 months for evaluation of AG suppression (postprandial minus fasting) and beta-cell function (oral disposition index; glucose-stimulated insulin secretion × Matsuda index). Total/android body fat (dual-energy X-ray absorptiometry) was also assessed. RESULTS RYGB and SG reduced body fat comparably (15–23 kg) at 12 and 24 months, whereas IMT had no effect. Beta-cell function increased 5.8-fold in RYGB and was greater than IMT at 24 months (P < 0.001). However, there was no difference in insulin secretion between SG vs IMT at 24 months (P = 0.32). Fasting AG was reduced fourfold following SG (P < 0.01) and did not change with RYGB or IMT at 24 months. AG suppression improved more following RYGB than SG or IMT at 24 months (P = 0.01 vs SG, P = 0.07 vs IMT). At 24 months, AG suppression was associated with increased postprandial glucagon-like peptide-1 (r = −0.32, P < 0.02) and decreased android fat (r = 0.38; P < 0.006). CONCLUSIONS Enhanced AG suppression persists for up to 2 years after RYGB, and this effect is associated with decreased android obesity and improved insulin secretion. Together, these findings suggest that AG suppression is partly responsible for the improved glucose control after RYGB surgery. PMID:24166065

  18. Amphiregulin mediates self-renewal in an immortal mammary epithelial cell line with stem cell characteristics.

    PubMed

    Booth, Brian W; Boulanger, Corinne A; Anderson, Lisa H; Jimenez-Rojo, Lucia; Brisken, Cathrin; Smith, Gilbert H

    2010-02-01

    Amphiregulin (AREG), a ligand for epidermal growth factor receptor, is required for mammary gland ductal morphogenesis and mediates estrogen actions in vivo, emerging as an essential growth factor during mammary gland growth and differentiation. The COMMA-D beta-geo (CDbetageo) mouse mammary cell line displays characteristics of normal mammary progenitor cells including the ability to regenerate a mammary gland when transplanted into the cleared fat pad of a juvenile mouse, nuclear label retention, and the capacity to form anchorage-independent mammospheres. We demonstrate that AREG is essential for formation of floating mammospheres by CDbetageo cells and that the mitogen activated protein kinase signaling pathway is involved in AREG-mediated mammosphere formation. Addition of exogenous AREG promotes mammosphere formation in cells where AREG expression is knocked down by siRNA and mammosphere formation by AREG(-/-) mammary epithelial cells. AREG knockdown inhibits mammosphere formation by duct-limited mammary progenitor cells but not lobule-limited mammary progenitor cells. These data demonstrate AREG mediates the function of a subset of mammary progenitor cells in vitro. Copyright 2009 Elsevier Inc. All rights reserved.

  19. Hemopressins and other hemoglobin-derived peptides in mouse brain: Comparison between brain, blood, and heart peptidome and regulation in Cpefat/fat mice

    PubMed Central

    Gelman, Julia S.; Sironi, Juan; Castro, Leandro M.; Ferro, Emer S.; Fricker, Lloyd D.

    2010-01-01

    Many hemoglobin-derived peptides are present in mouse brain, and several of these have bioactive properties including the hemopressins, a related series of peptides that bind to cannabinoid CB1 receptors. Although hemoglobin is a major component of red blood cells, it is also present in neurons and glia. To examine whether the hemoglobin-derived peptides in brain are similar to those present in blood and heart, we used a peptidomics approach involving mass spectrometry. Many hemoglobin-derived peptides are found only in brain and not in blood, whereas all hemoglobin-derived peptides found in heart were also seen in blood. Thus, it is likely that the majority of the hemoglobin-derived peptides detected in brain are produced from brain hemoglobin and not erythrocytes. We also examined if the hemopressins and other major hemoglobin-derived peptides were regulated in the Cpefat/fat mouse; previously these mice were reported to have elevated levels of several hemoglobin-derived peptides. Many, but not all of the hemoglobin-derived peptides were elevated in several brain regions of the Cpefat/fat mouse. Taken together, these findings suggest that the post-translational processing of alpha and beta hemoglobin into the hemopressins, as well as other peptides, is upregulated in some but not all Cpefat/fat mouse brain regions. PMID:20202081

  20. Steviol glycosides enhance pancreatic beta-cell function and taste sensation by potentiation of TRPM5 channel activity

    PubMed Central

    Philippaert, Koenraad; Pironet, Andy; Mesuere, Margot; Sones, William; Vermeiren, Laura; Kerselaers, Sara; Pinto, Sílvia; Segal, Andrei; Antoine, Nancy; Gysemans, Conny; Laureys, Jos; Lemaire, Katleen; Gilon, Patrick; Cuypers, Eva; Tytgat, Jan; Mathieu, Chantal; Schuit, Frans; Rorsman, Patrik; Talavera, Karel; Voets, Thomas; Vennekens, Rudi

    2017-01-01

    Steviol glycosides (SGs), such as stevioside and rebaudioside A, are natural, non-caloric sweet-tasting organic molecules, present in extracts of the scrub plant Stevia rebaudiana, which are widely used as sweeteners in consumer foods and beverages. TRPM5 is a Ca2+-activated cation channel expressed in type II taste receptor cells and pancreatic β-cells. Here we show that stevioside, rebaudioside A and their aglycon steviol potentiate the activity of TRPM5. We find that SGs potentiate perception of bitter, sweet and umami taste, and enhance glucose-induced insulin secretion in a Trpm5-dependent manner. Daily consumption of stevioside prevents development of high-fat-diet-induced diabetic hyperglycaemia in wild-type mice, but not in Trpm5−/− mice. These results elucidate a molecular mechanism of action of SGs and identify TRPM5 as a potential target to prevent and treat type 2 diabetes. PMID:28361903

  1. Inferring relationships between clinical mastitis, productivity and fertility: a recursive model application including genetics, farm associated herd management, and cow-specific antibiotic treatments.

    PubMed

    Rehbein, Pia; Brügemann, Kerstin; Yin, Tong; V Borstel, U König; Wu, Xiao-Lin; König, Sven

    2013-10-01

    A dataset of test-day records, fertility traits, and one health trait including 1275 Brown Swiss cows kept in 46 small-scale organic farms was used to infer relationships among these traits based on recursive Gaussian-threshold models. Test-day records included milk yield (MY), protein percentage (PROT-%), fat percentage (FAT-%), somatic cell score (SCS), the ratio of FAT-% to PROT-% (FPR), lactose percentage (LAC-%), and milk urea nitrogen (MUN). Female fertility traits were defined as the interval from calving to first insemination (CTFS) and success of a first insemination (SFI), and the health trait was clinical mastitis (CM). First, a tri-trait model was used which postulated the recursive effect of a test-day observation in the early period of lactation on liability to CM (LCM), and further the recursive effect of LCM on the following test-day observation. For CM and female fertility traits, a bi-trait recursive Gaussian-threshold model was employed to estimate the effects from CM to CTFS and from CM on SFI. The recursive effects from CTFS and SFI onto CM were not relevant, because CM was recorded prior to the measurements for CTFS and SFI. Results show that the posterior heritability for LCM was 0.05, and for all other traits, heritability estimates were in reasonable ranges, each with a small posterior SD. Lowest heritability estimates were obtained for female reproduction traits, i.e. h(2)=0.02 for SFI, and h(2)≈0 for CTFS. Posterior estimates of genetic correlations between LCM and production traits (MY and MUN), and between LCM and somatic cell score (SCS), were large and positive (0.56-0.68). Results confirm the genetic antagonism between MY and LCM, and the suitability of SCS as an indicator trait for CM. Structural equation coefficients describe the impact of one trait on a second trait on the phenotypic pathway. Higher values for FAT-% and FPR were associated with a higher LCM. The rate of change in FAT-% and in FPR in the ongoing lactation with respect to the previous LCM was close to zero. Estimated recursive effects between SCS and CM were positive, implying strong phenotypic impacts between both traits. Structural equation coefficients explained a detrimental impact of CM on female fertility traits CTFS and SFI. The cow-specific CM treatment had no significant impact on performance traits in the ongoing lactation. For most treatments, beta-lactam-antibiotics were used, but test-day SCS and production traits after the beta-lactam-treatment were comparable to those after other antibiotic as well as homeopathic treatments. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Lipodystrophic syndromes due to LMNA mutations: recent developments on biomolecular aspects, pathophysiological hypotheses and therapeutic perspectives

    PubMed Central

    Vigouroux, Corinne; Guénantin, Anne-Claire; Vatier, Camille; Le Dour, Caroline; Afonso, Pauline; Bidault, Guillaume; Béréziat, Véronique; Lascols, Olivier; Capeau, Jacqueline; Briand, Nolwenn; Jéru, Isabelle

    2018-01-01

    Abstract Mutations in LMNA, encoding A-type lamins, are responsible for laminopathies including muscular dystrophies, lipodystrophies, and premature ageing syndromes. LMNA mutations have been shown to alter nuclear structure and stiffness, binding to partners at the nuclear envelope or within the nucleoplasm, gene expression and/or prelamin A maturation. LMNA-associated lipodystrophic features, combining generalized or partial fat atrophy and metabolic alterations associated with insulin resistance, could result from altered adipocyte differentiation or from altered fat structure. Recent studies shed some light on how pathogenic A-type lamin variants could trigger lipodystrophy, metabolic complications, and precocious cardiovascular events. Alterations in adipose tissue extracellular matrix and TGF-beta signaling could initiate metabolic inflexibility. Premature senescence of vascular cells could contribute to cardiovascular complications. In affected families, metabolic alterations occur at an earlier age across generations, which could result from epigenetic deregulation induced by LMNA mutations. Novel cellular models recapitulating adipogenic developmental pathways provide scalable tools for disease modeling and therapeutic screening. PMID:29578370

  3. Regulation of obesity-related insulin resistance with gut anti-inflammatory agents.

    PubMed

    Luck, Helen; Tsai, Sue; Chung, Jason; Clemente-Casares, Xavier; Ghazarian, Magar; Revelo, Xavier S; Lei, Helena; Luk, Cynthia T; Shi, Sally Yu; Surendra, Anuradha; Copeland, Julia K; Ahn, Jennifer; Prescott, David; Rasmussen, Brittany A; Chng, Melissa Hui Yen; Engleman, Edgar G; Girardin, Stephen E; Lam, Tony K T; Croitoru, Kenneth; Dunn, Shannon; Philpott, Dana J; Guttman, David S; Woo, Minna; Winer, Shawn; Winer, Daniel A

    2015-04-07

    Obesity has reached epidemic proportions, but little is known about its influence on the intestinal immune system. Here we show that the gut immune system is altered during high-fat diet (HFD) feeding and is a functional regulator of obesity-related insulin resistance (IR) that can be exploited therapeutically. Obesity induces a chronic phenotypic pro-inflammatory shift in bowel lamina propria immune cell populations. Reduction of the gut immune system, using beta7 integrin-deficient mice (Beta7(null)), decreases HFD-induced IR. Treatment of wild-type HFD C57BL/6 mice with the local gut anti-inflammatory, 5-aminosalicyclic acid (5-ASA), reverses bowel inflammation and improves metabolic parameters. These beneficial effects are dependent on adaptive and gut immunity and are associated with reduced gut permeability and endotoxemia, decreased visceral adipose tissue inflammation, and improved antigen-specific tolerance to luminal antigens. Thus, the mucosal immune system affects multiple pathways associated with systemic IR and represents a novel therapeutic target in this disease. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Colonic inflammation and enhanced-beta-catenin signaling accompany an increase of the Lachnospiraceae/Streptococcaceae in the hind gut of high-fat diet-fed mice

    USDA-ARS?s Scientific Manuscript database

    Consumption of an obesigenic / high-fat (HF) diet is associated with an increase of inflammation-related colon cancer risk and may alter the gut microbiota. To test the hypothesis that a HF feeding accelerates inflammatory processes and changes gut microbiome composition, C57BL/6 mice were fed a HF ...

  5. Estrone and 17beta-estradiol concentrations in pasteurized-homogenized milk and commercial dairy products.

    PubMed

    Pape-Zambito, D A; Roberts, R F; Kensinger, R S

    2010-06-01

    Some individuals fear that estrogens in dairy products may stimulate growth of estrogen-sensitive cancers in humans. The presence of estrone (E(1)) and 17beta-estradiol (E(2)) in raw whole cow's milk has been demonstrated. The objectives of this study were to determine if pasteurization-homogenization affects E(2) concentration in milk and to quantify E(1) and E(2) concentrations in commercially available dairy products. The effects of pasteurization-homogenization were tested by collecting fresh raw milk, followed by pasteurization and homogenization at 1 of 2 homogenization pressures. All treated milks were tested for milk fat globule size, percentages of milk fat and solids, and E(2) concentrations. Estrone and E(2) were quantified from organic or conventional skim, 1%, 2%, and whole milks, as well as half-and-half, cream, and butter samples. Estrone and E(2) were quantified by RIA after organic solvent extractions and chromatography. Pasteurization-homogenization reduced fat globule size, but did not significantly affect E(2), milk fat, or milk solids concentrations. Estrone concentrations averaged 2.9, 4.2, 5.7, 7.9, 20.4, 54.1 pg/mL, and 118.9 pg/g in skim, 1%, 2%, and whole milks, half-and-half, cream, and butter samples, respectively. 17Beta-estradiol concentrations averaged 0.4, 0.6, 0.9, 1.1, 1.9, 6.0 pg/mL, and 15.8 pg/g in skim, 1%, 2%, whole milks, half-and-half, cream, and butter samples, respectively. The amount of fat in milk significantly affected E(1) and E(2) concentrations in milk. Organic and conventional dairy products did not have substantially different concentrations of E(1) and E(2). Compared with information cited in the literature, concentrations of E(1) and E(2) in bovine milk are small relative to endogenous production rates of E(1) and E(2) in humans. 2010 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  6. miR-27a controls triacylglycerol synthesis in bovine mammary epithelial cells by targeting peroxisome proliferator-activated receptor gamma.

    PubMed

    Tang, K Q; Wang, Y N; Zan, L S; Yang, W C

    2017-05-01

    Growing evidence has revealed that microRNA are central elements in milk fat synthesis in mammary epithelial cells. A negative regulator of adipocyte fat synthesis, miR-27a has been reported to be involved in the regulation of milk fat synthesis in goat mammary epithelial cells; however, the regulatory role of miR-27a in bovine milk fat synthesis remains unclear. In the present study, primary bovine mammary epithelial cells (BMEC) were harvested from mid-lactation cows and cultured in Dulbecco's modified Eagle's medium/F-12 medium with 10% fetal bovine serum, 5 μg/mL of insulin, 1 μg/mL of hydrocortisone, 2 μg/mL of prolactin, 1 μg/mL of progesterone, 100 U/mL of penicillin, and 100 μg/mL of streptomycin. We found that the overexpression of miR-27a significantly suppressed lipid droplet formation and decreased the cellular triacylglycerol (TAG) levels, whereas inhibition of miR-27a resulted in a greater lipid droplet formation and TAG accumulation in BMEC. Meanwhile, overexpression of miR-27a inhibited mRNA expression of peroxisome proliferator-activated receptor gamma (PPARG), CCAAT/enhancer-binding protein beta (C/EBPβ), perilipin 2 (PLIN2), and fatty acid binding protein 3 (FABP3), whereas miR-27a downregulation increased PPARG, C/EBPβ, FABP3, and CCAAT enhancer binding protein alpha (C/EBPα) mRNA expression. Furthermore, Western blot analysis revealed the protein level of PPARG in miR-27a mimic and inhibitor transfection groups to be consistent with the mRNA expression response. Moreover, luciferase reporter assays verified that PPARG was the direct target of miR-27a. In summary, these results indicate that miR-27a has the ability to control TAG synthesis in BMEC via targeting PPARG, suggesting that miR-27a could potentially be used to improve beneficial milk components in dairy cows. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  7. Thermal sensitivity of some plantain micronutrients during deep-fat frying.

    PubMed

    Avallone, Sylvie; Rojas-Gonzalez, Juan A; Trystram, Gilles; Bohuon, Philippe

    2009-06-01

    The impact of deep-fat frying on the micronutrient content of plantain (Musa AAB"barraganete") was evaluated during processing of plantain chips called "tostones." Water content, micronutrients (potassium, L-ascorbic acid, alpha-carotene, beta-carotene) content, and the temperature within the food were quantified during the course of frying. A nonisothermal kinetics analysis of the 1st-order reaction (micronutrient degradation) induced by deep-fat frying, particularly in terms of the spatial distribution of temperature, was proposed. The kinetic parameters (pre-exponential factor k(0,) activation energy E(a)) were identified by nonlinear optimization, minimizing the residual variance between the experimental and theoretical micronutrient content. Agreement between model and experimental values was checked. During 1st and 2nd frying, potassium was well retained while carotenoid contents decreased significantly. Moreover, L-ascorbic acid contents decreased significantly, just during 2nd frying. k(0) was identified as well as E(a) observed for L-ascorbic acid, alpha-carotene, and beta-carotene as 68.4 to 71.5, 79.6 to 84.9, and 85.9 to 88.6 kJ/mol, respectively. beta-carotene appeared to be more heat-resistant than alpha-carotene and L-ascorbic acid. The behavior of the nutritional markers appears to be the consequence of the thermal and hydric histories of the crust and of the heart of the plantain disk related to heat transfer during preparation of the "tostones."

  8. Metabolic Stress and Compromised Identity of Pancreatic Beta Cells

    PubMed Central

    Swisa, Avital; Glaser, Benjamin; Dor, Yuval

    2017-01-01

    Beta cell failure is a central feature of type 2 diabetes (T2D), but the molecular underpinnings of the process remain only partly understood. It has been suggested that beta cell failure in T2D involves massive cell death. Other studies ascribe beta cell failure to cell exhaustion, due to chronic oxidative or endoplasmic reticulum stress leading to cellular dysfunction. More recently it was proposed that beta cells in T2D may lose their differentiated identity, possibly even gaining features of other islet cell types. The loss of beta cell identity appears to be driven by glucotoxicity inhibiting the activity of key beta cell transcription factors including Pdx1, Nkx6.1, MafA and Pax6, thereby silencing beta cell genes and derepressing alternative islet cell genes. The loss of beta cell identity is at least partly reversible upon normalization of glycemia, with implications for the reversibility of T2D, although it is not known if beta cell failure reaches eventually a point of no return. In this review we discuss current evidence for metabolism-driven compromised beta cell identity, key knowledge gaps and opportunities for utility in the treatment of T2D. PMID:28270834

  9. Metabolic Stress and Compromised Identity of Pancreatic Beta Cells.

    PubMed

    Swisa, Avital; Glaser, Benjamin; Dor, Yuval

    2017-01-01

    Beta cell failure is a central feature of type 2 diabetes (T2D), but the molecular underpinnings of the process remain only partly understood. It has been suggested that beta cell failure in T2D involves massive cell death. Other studies ascribe beta cell failure to cell exhaustion, due to chronic oxidative or endoplasmic reticulum stress leading to cellular dysfunction. More recently it was proposed that beta cells in T2D may lose their differentiated identity, possibly even gaining features of other islet cell types. The loss of beta cell identity appears to be driven by glucotoxicity inhibiting the activity of key beta cell transcription factors including Pdx1, Nkx6.1, MafA and Pax6, thereby silencing beta cell genes and derepressing alternative islet cell genes. The loss of beta cell identity is at least partly reversible upon normalization of glycemia, with implications for the reversibility of T2D, although it is not known if beta cell failure reaches eventually a point of no return. In this review we discuss current evidence for metabolism-driven compromised beta cell identity, key knowledge gaps and opportunities for utility in the treatment of T2D.

  10. Atypical antipsychotics and glucose homeostasis.

    PubMed

    Bergman, Richard N; Ader, Marilyn

    2005-04-01

    Persistent reports have linked atypical antipsychotics with diabetes, yet causative mechanisms responsible for this linkage are unclear. Goals of this review are to outline the pathogenesis of nonimmune diabetes and to survey the available literature related to why antipsychotics may lead to this disease. We accessed the literature regarding atypical antipsychotics and glucose homeostasis using PubMed. The search included English-language publications from 1990 through October 2004. Keywords used included atypical antipsychotics plus one of the following: glucose, insulin, glucose tolerance, obesity, or diabetes. In addition, we culled information from published abstracts from several national and international scientific meetings for the years 2001 through 2004, including the American Diabetes Association, the International Congress on Schizophrenia Research, and the American College of Neuropsychopharmacology. The latter search was necessary because of the paucity of well-controlled prospective studies. We examined publications with significant new data or publications that contributed to the overall comprehension of the impact of atypical antipsychotics on glucose metabolism. We favored original peer-reviewed articles and were less likely to cite single case studies and/or anecdotal information. Approximately 75% of the fewer than 150 identified articles were examined and included in this review. Validity of data was evaluated using the existence of peer-review status as well as our own experience with methodology described in the specific articles. The metabolic profile caused by atypical antipsychotic treatment resembles type 2 diabetes. These agents cause weight gain in treated subjects and may induce obesity in both visceral and subcutaneous depots, as occurs in diabetes. Insulin resistance, usually associated with obesity, occurs to varying degrees with different antipsychotics, although more comparative studies with direct assessment of resistance are needed. A major problem in assessing drug effects is that psychiatric disease itself can cause many of the manifestations leading to diabetes, including weight gain and sedentary lifestyle. While studies in healthy subjects are limited and inconclusive, studies in animal models are more revealing. In the conscious canine model, some atypical antipsychotics cause adiposity, including visceral obesity, a strong risk factor for the metabolic syndrome. Furthermore, while few studies have examined effects of antipsychotics on pancreatic beta-cell function, canine studies demonstrate that expected beta-cell compensation for insulin resistance may be reduced or even eliminated with these agents. Atypical antipsychotics have been shown to contribute to weight gain, which may well reflect increased body fat deposition. Such increased fat is known to cause resistance to insulin action, although more information regarding effect on insulin action is needed. The effect of these drugs on fat distribution has been clearly shown in animal models. It is known that the normal response to insulin resistance is compensatory hyperinsulinemia, which may prevent diabetes. In animals, there is evidence that the hyperinsulinemic compensation is inadequate in the face of atypical antipsychotic agents. It remains to be examined whether failure of adequate pancreatic beta-cell compensation for insulin resistance plays a central role in the pathogenesis of diabetes associated with this class of drugs.

  11. Endoplasmic Reticulum Stress: Its Role in Disease and Novel Prospects for Therapy

    PubMed Central

    Schönthal, Axel H.

    2012-01-01

    The endoplasmic reticulum (ER) is a multifunctional organelle required for lipid biosynthesis, calcium storage, and protein folding and processing. A number of physiological and pathological conditions, as well as a variety of pharmacological agents, are able to disturb proper ER function and thereby cause ER stress, which severely impairs protein folding and therefore poses the risk of proteotoxicity. Specific triggers for ER stress include, for example, particular intracellular alterations (e.g., calcium or redox imbalances), certain microenvironmental conditions (e.g., hypoglycemia, hypoxia, and acidosis), high-fat and high-sugar diet, a variety of natural compounds (e.g., thapsigargin, tunicamycin, and geldanamycin), and several prescription drugs (e.g., bortezomib/Velcade, celecoxib/Celebrex, and nelfinavir/Viracept). The cell reacts to ER stress by initiating a defensive process, called the unfolded protein response (UPR), which is comprised of cellular mechanisms aimed at adaptation and safeguarding cellular survival or, in cases of excessively severe stress, at initiation of apoptosis and elimination of the faulty cell. In recent years, this dichotomic stress response system has been linked to several human diseases, and efforts are underway to develop approaches to exploit ER stress mechanisms for therapy. For example, obesity and type 2 diabetes have been linked to ER stress-induced failure of insulin-producing pancreatic beta cells, and current research efforts are aimed at developing drugs that ameliorate cellular stress and thereby protect beta cell function. Other studies seek to pharmacologically aggravate chronic ER stress in cancer cells in order to enhance apoptosis and achieve tumor cell death. In the following, these principles will be presented and discussed. PMID:24278747

  12. Unraveling the contribution of pancreatic beta-cell suicide in autoimmune type 1 diabetes✩

    PubMed Central

    Jaberi-Douraki, Majid; Schnell, Santiago; Pietropaolo, Massimo; Khadra, Anmar

    2014-01-01

    In type 1 diabetes, an autoimmune disease mediated by autoreactive T-cells that attack insulin-secreting pancreatic beta-cells, it has been suggested that disease progression may additionally require protective mechanisms in the target tissue to impede such auto-destructive mechanisms. We hypothesize that the autoimmune attack against beta-cells causes endoplasmic reticulum stress by forcing the remaining beta-cells to synthesize and secrete defective insulin. To rescue beta-cell from the endoplasmic reticulum stress, beta-cells activate the unfolded protein response to restore protein homeostasis and normal insulin synthesis. Here we investigate the compensatory role of unfolded protein response by developing a multi-state model of type 1 diabetes that takes into account beta-cell destruction caused by pathogenic autoreactive T-cells and apoptosis triggered by endoplasmic reticulum stress. We discuss the mechanism of unfolded protein response activation and how it counters beta-cell extinction caused by an autoimmune attack and/or irreversible damage by endoplasmic reticulum stress. Our results reveal important insights about the balance between beta-cell destruction by autoimmune attack (beta-cell homicide) and beta-cell apoptosis by endoplasmic reticulum stress (beta-cell suicide). It also provides an explanation as to why the unfolded protein response may not be a successful therapeutic target to treat type 1 diabetes. PMID:24831415

  13. Spontaneously obese dogs exhibit greater postprandial glucose, triglyceride, and insulin concentrations than lean dogs.

    PubMed

    Verkest, K R; Rand, J S; Fleeman, L M; Morton, J M

    2012-02-01

    Dogs do not appear to progress from obesity-induced insulin resistance to type 2 diabetes mellitus. Both postprandial hyperglycemia and postprandial hypertriglyceridemia have been proposed to cause or maintain beta cell failure and progression to type 2 diabetes mellitus in other species. Postprandial glucose, triglyceride, and insulin concentrations have not been compared in lean and obese dogs. We measured serum glucose, triglyceride, and insulin concentrations in nine naturally occurring obese and nine age- and gender-matched lean dogs. After a 24-h fast, dogs were fed half their calculated daily energy requirement of a standardized diet that provided 37% and 40% of metabolizable energy as carbohydrate and fat, respectively. Fasting and postprandial glucose and triglyceride concentrations were greater in the obese dogs (P < 0.001), although the mean insulin concentration for this group was five times greater than that of the lean group (P < 0.001). Most of the 0.6 mM (11 mg/dL) difference in mean postprandial glucose concentrations between lean and obese dogs was attributable to a subset of persistently hyperglycemic obese dogs with mean postprandial glucose concentrations 1.0 mM (18 mg/dL) greater than that in lean dogs. Persistently hyperglycemic obese dogs had lower triglyceride (P = 0.02 to 0.04) and insulin (P < 0.02) concentrations than other obese dogs. None of the dogs developed clinical signs of diabetes mellitus during follow-up for a median of 2.6 yr. We conclude that pancreatic beta cells in dogs are either not sensitive to toxicity because of mild hyperglycemia or lack another component of the pathophysiology of beta cell failure in type 2 diabetes mellitus. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. Adipose-derived stem cell (ASC)-enriched fat grafting: experiments using White rabbits and an automated cell processing apparatus.

    PubMed

    Kakudo, Natsuko; Morimoto, Naoki; Ogawa, Takeshi; Hihara, Masakatsu; Lai, Fangyuan; Kusumoto, Kenji

    2017-09-01

    The grafting of fat mixed with adipose-derived stem cells (ASCs) is being increasingly applied to compensate for the disadvantages of previous fat grafting methods. Devices that automatically isolate fat stem cells also have recently been developed. ASCs were isolated from the inguinal region of White rabbits using Icellator ® , and the number of cells and their viability were measured. The cell count per fat graft (mL) was adjusted to the following concentrations and subcutaneously transplanted into the back: Control group, Fat + PBS; Fat + ASCs (×0.5) group, 1.6 × 10 5 cells/mL; and Fat + ASCs (×1) group, 3.2 × 10 5 cells/mL. Grafted fat weight was measured after 8 weeks, and histological, immunohistological, and specifically stained sections were prepared. Fat absorption was reduced in Fat + ASCs (×0.5) and Fat + ASCs (×1) groups. The number of blood vessels was higher in Fat + ASCs (×1) than in the control group, and blood vessel areas were higher in Fat + ASCs (×0.5) and Fat + ASCs (×1) groups than in the control group. The usefulness of the automated cell processing apparatus, Icellator ® , was confirmed, and the results obtained suggest that grafted ASCs promote the vascularization and engraftment of fat grafts.

  15. Three-Dimensional Bioreactor Technologies for the Cocultivation of Human Mesenchymal Stem/Stromal Cells and Beta Cells

    PubMed Central

    Petry, Florian; Weidner, Tobias; Salzig, Denise

    2018-01-01

    Diabetes is a prominent health problem caused by the failure of pancreatic beta cells. One therapeutic approach is the transplantation of functional beta cells, but it is difficult to generate sufficient beta cells in vitro and to ensure these cells remain viable at the transplantation site. Beta cells suffer from hypoxia, undergo apoptosis, or are attacked by the host immune system. Human mesenchymal stem/stromal cells (hMSCs) can improve the functionality and survival of beta cells in vivo and in vitro due to direct cell contact or the secretion of trophic factors. Current cocultivation concepts with beta cells are simple and cannot exploit the favorable properties of hMSCs. Beta cells need a three-dimensional (3D) environment to function correctly, and the cocultivation setup is therefore more complex. This review discusses 3D cultivation forms (aggregates, capsules, and carriers) for hMSCs and beta cells and strategies for large-scale cultivation. We have determined process parameters that must be balanced and considered for the cocultivation of hMSCs and beta cells, and we present several bioreactor setups that are suitable for such an innovative cocultivation approach. Bioprocess engineering of the cocultivation processes is necessary to achieve successful beta cell therapy. PMID:29731775

  16. TGF-{beta}-stimulated aberrant expression of class III {beta}-tubulin via the ERK signaling pathway in cultured retinal pigment epithelial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chung, Eun Jee; Chun, Ji Na; Jung, Sun-Ah

    2011-11-18

    Highlights: Black-Right-Pointing-Pointer TGF-{beta} induces aberrant expression of {beta}III in RPE cells via the ERK pathway. Black-Right-Pointing-Pointer TGF-{beta} increases O-GlcNAc modification of {beta}III in RPE cells. Black-Right-Pointing-Pointer Mature RPE cells have the capacity to express a neuron-associated gene by TGF-{beta}. -- Abstract: The class III {beta}-tubulin isotype ({beta}{sub III}) is expressed exclusively by neurons within the normal human retina and is not present in normal retinal pigment epithelial (RPE) cells in situ or in the early phase of primary cultures. However, aberrant expression of class III {beta}-tubulin has been observed in passaged RPE cells and RPE cells with dedifferentiated morphology inmore » pathologic epiretinal membranes from idiopathic macular pucker, proliferative vitreoretinopathy (PVR) and proliferative diabetic retinopathy (PDR). Transforming growth factor-{beta} (TGF-{beta}) has been implicated in dedifferentiation of RPE cells and has a critical role in the development of proliferative vitreoretinal diseases. Here, we investigated the potential effects of TGF-{beta} on the aberrant expression of class III {beta}-tubulin and the intracellular signaling pathway mediating these changes. TGF-{beta}-induced aberrant expression and O-linked-{beta}-N-acetylglucosamine (O-GlcNac) modification of class III {beta}-tubulin in cultured RPE cells as determined using Western blotting, RT-PCR and immunocytochemistry. TGF-{beta} also stimulated phosphorylation of ERK. TGF-{beta}-induced aberrant expression of class III {beta}-tubulin was significantly reduced by pretreatment with U0126, an inhibitor of ERK phosphorylation. Our findings indicate that TGF-{beta} stimulated aberrant expression of class III {beta}-tubulin via activation of the ERK signaling pathway. These data demonstrate that mature RPE cells have the capacity to express a neuron-associated gene in response to TGF-{beta} stimulation and provide useful information towards understanding the pathogenesis of proliferative vitreoretinal diseases.« less

  17. Peroxisome proliferator-activated receptors as targets to treat non-alcoholic fatty liver disease

    PubMed Central

    Souza-Mello, Vanessa

    2015-01-01

    Lately, the world has faced tremendous progress in the understanding of non-alcoholic fatty liver disease (NAFLD) pathogenesis due to rising obesity rates. Peroxisome proliferator-activated receptors (PPARs) are transcription factors that modulate the expression of genes involved in lipid metabolism, energy homeostasis and inflammation, being altered in diet-induced obesity. Experimental evidences show that PPAR-alpha is the master regulator of hepatic beta-oxidation (mitochondrial and peroxisomal) and microsomal omega-oxidation, being markedly decreased by high-fat (HF) intake. PPAR-beta/delta is crucial to the regulation of forkhead box-containing protein O subfamily-1 expression and, hence, the modulation of enzymes that trigger hepatic gluconeogenesis. In addition, PPAR-beta/delta can activate hepatic stellate cells aiming to the hepatic recovery from chronic insult. On the contrary, PPAR-gamma upregulation by HF diets maximizes NAFLD through the induction of lipogenic factors, which are implicated in the fatty acid synthesis. Excessive dietary sugars also upregulate PPAR-gamma, triggering de novo lipogenesis and the consequent lipid droplets deposition within hepatocytes. Targeting PPARs to treat NAFLD seems a fruitful approach as PPAR-alpha agonist elicits expressive decrease in hepatic steatosis by increasing mitochondrial beta-oxidation, besides reduced lipogenesis. PPAR-beta/delta ameliorates hepatic insulin resistance by decreasing hepatic gluconeogenesis at postprandial stage. Total PPAR-gamma activation can exert noxious effects by stimulating hepatic lipogenesis. However, partial PPAR-gamma activation leads to benefits, mainly mediated by increased adiponectin expression and decreased insulin resistance. Further studies are necessary aiming at translational approaches useful to treat NAFLD in humans worldwide by targeting PPARs. PMID:26052390

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schürpf, Thomas; Chen, Qiang; Liu, Jin-huan

    Developmental endothelial cell locus-1 (Del-1) glycoprotein is secreted by endothelial cells and a subset of macrophages. Del-1 plays a regulatory role in vascular remodeling and functions in innate immunity through interaction with integrin {alpha}{sub V}{beta}{sub 3}. Del-1 contains 3 epidermal growth factor (EGF)-like repeats and 2 discoidin-like domains. An Arg-Gly-Asp (RGD) motif in the second EGF domain (EGF2) mediates adhesion by endothelial cells and phagocytes. We report the crystal structure of its 3 EGF domains. The RGD motif of EGF2 forms a type II' {beta} turn at the tip of a long protruding loop, dubbed the RGD finger. Whereas EGF2more » and EGF3 constitute a rigid rod via an interdomain calcium ion binding site, the long linker between EGF1 and EGF2 lends considerable flexibility to EGF1. Two unique O-linked glycans and 1 N-linked glycan locate to the opposite side of EGF2 from the RGD motif. These structural features favor integrin binding of the RGD finger. Mutagenesis data confirm the importance of having the RGD motif at the tip of the RGD finger. A database search for EGF domain sequences shows that this RGD finger is likely an evolutionary insertion and unique to the EGF domain of Del-1 and its homologue milk fat globule-EGF 8. The RGD finger of Del-1 is a unique structural feature critical for integrin binding.« less

  19. Whole organism high content screening identifies stimulators of pancreatic beta-cell proliferation.

    PubMed

    Tsuji, Naoki; Ninov, Nikolay; Delawary, Mina; Osman, Sahar; Roh, Alex S; Gut, Philipp; Stainier, Didier Y R

    2014-01-01

    Inducing beta-cell mass expansion in diabetic patients with the aim to restore glucose homeostasis is a promising therapeutic strategy. Although several in vitro studies have been carried out to identify modulators of beta-cell mass expansion, restoring endogenous beta-cell mass in vivo has yet to be achieved. To identify potential stimulators of beta-cell replication in vivo, we established transgenic zebrafish lines that monitor and allow the quantification of cell proliferation by using the fluorescent ubiquitylation-based cell cycle indicator (FUCCI) technology. Using these new reagents, we performed an unbiased chemical screen, and identified 20 small molecules that markedly increased beta-cell proliferation in vivo. Importantly, these structurally distinct molecules, which include clinically-approved drugs, modulate three specific signaling pathways: serotonin, retinoic acid and glucocorticoids, showing the high sensitivity and robustness of our screen. Notably, two drug classes, retinoic acid and glucocorticoids, also promoted beta-cell regeneration after beta-cell ablation. Thus, this study establishes a proof of principle for a high-throughput small molecule-screen for beta-cell proliferation in vivo, and identified compounds that stimulate beta-cell proliferation and regeneration.

  20. Reduced bone mass in obese young rats through PPAR omega suppression of wnt/beta-catenin signaling and direct action of free fatty acids (NEFA)

    USDA-ARS?s Scientific Manuscript database

    The relationship of obesity to skeletal development is unclear. We utilized total enteral nutrition to feed high and low fat diets (HFD and LFD) to rats for 4 wks to produce obesity. Weight gain was matched but fat mass, serum leptin and NEFA were increased by HFD (P < 0.05). HFD lowered total bone ...

  1. TGF-beta3 is expressed in taste buds and inhibits proliferation of primary cultured taste epithelial cells.

    PubMed

    Nakamura, Shin-ichi; Kawai, Takayuki; Kamakura, Takashi; Ookura, Tetsuya

    2010-01-01

    Transforming growth factor-betas (TGF-betas), expressed in various tissues, play important roles in embryonic development and adult tissue homeostasis through their effects on cell proliferation, cell differentiation, cell death, and cell motility. However, expression of TGF-beta signaling components and their biological effect on taste epithelia has not been elucidated. We performed expression analysis of TGF-beta signaling components in taste epithelia and found that the TGF-beta3 mRNA was specifically expressed in taste buds. Type II TGF-betas receptor (TbetaR-II) mRNA was specifically expressed in the tongue epithelia including the taste epithelia. To elucidate the biological function of TGF-beta3 in taste epithelia, we performed proliferation assay with primary cultured taste epithelial cells. In the presence of TGF-beta3, percentage of BrdU-labeled cells decreased significantly, suggesting that the TGF-beta3 inhibited the proliferation of cultured taste epithelial cells through inhibiting cell-cycle entry into S phase. By quantitative reverse transcription-polymerase chain reaction assay, we found that the TGF-beta3 resulted in an increased level of expression of p15Ink4b and p21Cip1, suggesting that the TGF-beta3 inhibited the taste epithelial cell proliferation through inhibiting G1cyclin-Cdk complexes. Taken together, these results suggested that the TGF-beta3 may regulate taste epithelial cell homeostasis through controlling cell proliferation.

  2. Gender differences in physical activity, sedentary behavior, and their relation to body composition in active Brazilian adolescents.

    PubMed

    Nogueira, Julia Aparecida Devide; Macedo da Costa, Teresa Helena

    2009-01-01

    Body weight and composition are determined by genotype, environment, and energy balance. Physical activity or sedentary behavior have different associations with body weight, fat mass, and fat-free mass, a relationship that is not clear in adolescents. The aim of this study was to test the associations between gender, physical activity, sedentary behavior, and body composition in physically active adolescents. Weight, height, and skinfold thickness were measured in 326 physically active boys and girls age 11 to 15 years. All subjects answered a questionnaire assessing their usual daily activities for the last month. Time spent on each activity was used to estimate the physical activity level (PAL). PAL was associated with body composition after adjustment for age and maturation, with differences between genders. For boys, PAL was positively and significantly associated with body mass index (BMI) and fat-free mass index (beta=0.14 and 0.15, respectively). For girls, PAL was negatively and significantly associated with BMI and fat mass index (beta=-0.11 and -0.75, respectively). Sedentary behavior, expressed by hours of TV, videogame, and computer use, was not associated with any body-composition outcome for either gender. The accumulated amount of physical activity, but not of sedentary behavior, was related to body composition in active adolescents.

  3. Mechanisms of Action of GLP-1 in the Pancreas

    PubMed Central

    Doyle, Máire E.; Egan, Josephine M.

    2007-01-01

    Glucagon-like peptide-1 is a hormone that is encoded in the proglucagon gene. It is mainly produced in enteroendocrine L cells of the gut and is secreted into the blood stream when food containing fat, protein hydrolysate and/or glucose enters the duodenum. Its particular effects on insulin and glucagon secretion have generated a flurry of research activity over the past twenty years culminating in a naturally occurring GLP-1 receptor agonist, exendin-4, now being used to treat type 2 diabetes. GLP-1 engages a specific G-protein coupled receptor that is present in tissues other than the pancreas (brain, kidney, lung, heart, major blood vessels). The most widely studied cell activated by GLP-1 is the insulin-secreting beta cell where its defining action is augmentation of glucose-induced insulin secretion. Upon GLP-1 receptor activation, adenylyl cyclase is activated and cAMP generated, leading, in turn, to cAMP-dependent activation of second messenger pathways, such as the PKA and Epac pathways. As well as short-term effects of enhancing glucose-induced insulin secretion, continuous GLP-1 receptor activation also increases insulin synthesis, and beta cell proliferation and neogenesis. Although these latter effects cannot be currently monitored in humans, there are substantial improvements in glucose tolerance and increases in both first phase and plateau phase insulin secretory responses in type 2 diabetic patients treated with exendin-4. This review we will focus on the effects resulting from GLP-1 receptor activation in islets of Langerhans PMID:17306374

  4. Cholesterol crystallization within hepatocyte lipid droplets and its role in murine NASH[S

    PubMed Central

    Ioannou, George N.; Subramanian, Savitha; Chait, Alan; Haigh, W. Geoffrey; Yeh, Matthew M.; Farrell, Geoffrey C.; Lee, Sum P.; Savard, Christopher

    2017-01-01

    We recently reported that cholesterol crystals form in hepatocyte lipid droplets (LDs) in human and experimental nonalcoholic steatohepatitis. Herein, we assigned WT C57BL/6J mice to a high-fat (15%) diet for 6 months, supplemented with 0%, 0.25%, 0.5%, 0.75%, or 1% dietary cholesterol. Increasing dietary cholesterol led to cholesterol loading of the liver, but not of adipose tissue, resulting in fibrosing steatohepatitis at a dietary cholesterol concentration of ≥0.5%, whereas mice on lower-cholesterol diets developed only simple steatosis. Hepatic cholesterol crystals and crown-like structures also developed at a dietary cholesterol concentration ≥0.5%. Crown-like structures consisted of activated Kupffer cells (KCs) staining positive for NLRP3 and activated caspase 1, which surrounded and processed cholesterol crystal-containing remnant LDs of dead hepatocytes. The KCs processed LDs at the center of crown-like structures in the extracellular space by lysosomal enzymes, ultimately transforming into lipid-laden foam cells. When HepG2 cells were exposed to LDL cholesterol, they developed cholesterol crystals in LD membranes, which caused activation of THP1 cells (macrophages) grown in coculture; upregulation of TNF-alpha, NLRP3, and interleukin 1beta (IL1β) mRNA; and secretion of IL-1beta. In conclusion, cholesterol crystals form on the LD membrane of hepatocytes and cause activation and cholesterol loading of KCs that surround and process these LDs by lysosomal enzymes. PMID:28404639

  5. A combination of cytokines EGF and CNTF protects the functional beta cell mass in mice with short-term hyperglycaemia.

    PubMed

    Lemper, Marie; De Groef, Sofie; Stangé, Geert; Baeyens, Luc; Heimberg, Harry

    2016-09-01

    When the beta cell mass or function declines beyond a critical point, hyperglycaemia arises. Little is known about the potential pathways involved in beta cell rescue. As two cytokines, epidermal growth factor (EGF) and ciliary neurotrophic factor (CNTF), restored a functional beta cell mass in mice with long-term hyperglycaemia by reprogramming acinar cells that transiently expressed neurogenin 3 (NGN3), the current study assesses the effect of these cytokines on the functional beta cell mass after an acute chemical toxic insult. Glycaemia and insulin levels, pro-endocrine gene expression and beta cell origin, as well as the role of signal transducer and activator of transcription 3 (STAT3) signalling, were assessed in EGF+CNTF-treated mice following acute hyperglycaemia. The mice were hyperglycaemic 1 day following i.v. injection of the beta cell toxin alloxan, when the two cytokines were applied. One week later, 68.6 ± 4.6% of the mice had responded to the cytokine treatment and increased their insulin(+) cell number to 30% that of normoglycaemic control mice, resulting in restoration of euglycaemia. Although insulin(-) NGN3(+) cells appeared following acute EGF+CNTF treatment, genetic lineage tracing showed that the majority of the insulin(+) cells originated from pre-existing beta cells. Beta cell rescue by EGF+CNTF depends on glycaemia rather than on STAT3-induced NGN3 expression in acinar cells. In adult mice, EGF+CNTF allows the rescue of beta cells in distress when treatment is given shortly after the diabetogenic insult. The rescued beta cells restore a functional beta cell mass able to control normal blood glucose levels. These findings may provide new insights into compensatory pathways activated early after beta cell loss.

  6. Changes in subcutaneous fat cell volume and insulin sensitivity after weight loss.

    PubMed

    Andersson, Daniel P; Eriksson Hogling, Daniel; Thorell, Anders; Toft, Eva; Qvisth, Veronica; Näslund, Erik; Thörne, Anders; Wirén, Mikael; Löfgren, Patrik; Hoffstedt, Johan; Dahlman, Ingrid; Mejhert, Niklas; Rydén, Mikael; Arner, Erik; Arner, Peter

    2014-07-01

    Large subcutaneous fat cells associate with insulin resistance and high risk of developing type 2 diabetes. We investigated if changes in fat cell volume and fat mass correlate with improvements in the metabolic risk profile after bariatric surgery in obese patients. Fat cell volume and number were measured in abdominal subcutaneous adipose tissue in 62 obese women before and 2 years after Roux-en-Y gastric bypass (RYGB). Regional body fat mass by dual-energy X-ray absorptiometry; insulin sensitivity by hyperinsulinemic-euglycemic clamp; and plasma glucose, insulin, and lipid profile were assessed. RYGB decreased body weight by 33%, which was accompanied by decreased adipocyte volume but not number. Fat mass in the measured regions decreased and all metabolic parameters were improved after RYGB (P < 0.0001). Whereas reduced subcutaneous fat cell size correlated strongly with improved insulin sensitivity (P = 0.0057), regional changes in fat mass did not, except for a weak correlation between changes in visceral fat mass and insulin sensitivity and triglycerides. The curve-linear relationship between fat cell size and fat mass was altered after weight loss (P = 0.03). After bariatric surgery in obese women, a reduction in subcutaneous fat cell volume associates more strongly with improvement of insulin sensitivity than fat mass reduction per se. An altered relationship between adipocyte size and fat mass may be important for improving insulin sensitivity after weight loss. Fat cell size reduction could constitute a target to improve insulin sensitivity. © 2014 by the American Diabetes Association.

  7. The relationship of exercise to anovulatory cycles in female athletes: hormonal and physical characteristics.

    PubMed

    Russell, J B; Mitchell, D; Musey, P I; Collins, D C

    1984-04-01

    The objective of this study was to examine the mechanisms by which physical activity affects the menstrual cycle. Women with high, medium, and low levels of physical activity were compared for menstrual function, physical characteristics, and urinary and serum levels of luteinizing hormone, follicle-stimulating hormone, prolactin, estradiol-17 beta, and 2-hydroxyestrone. None of the physical characteristics other than age and muscle area were significantly different in the three groups. The percentage of body fat did not appear to be a factor in the amenorrhea induced by strenuous exercise, as the percent of body fat in all three groups was less than 22%. The group of athletes under strenuous exercise which correlated with oligomenorrhea had decreased serum levels of luteinizing hormone, prolactin, and estradiol-17 beta but elevated levels of 2-hydroxyestrone. These data suggest that anovulatory cycles are correlated with the amount of exercise and increased levels of catechol estrogens. Catecholamines and beta-endorphin elevated by exercise may interact to suppress luteinizing hormone release at the hypothalamic pituitary axis.

  8. Uncovering Suitable Reference Proteins for Expression Studies in Human Adipose Tissue with Relevance to Obesity

    PubMed Central

    Pérez-Pérez, Rafael; López, Juan A.; García-Santos, Eva; Camafeita, Emilio; Gómez-Serrano, María; Ortega-Delgado, Francisco J.; Ricart, Wifredo; Fernández-Real, José M.; Peral, Belén

    2012-01-01

    Background Protein expression studies based on the two major intra-abdominal human fat depots, the subcutaneous and the omental fat, can shed light into the mechanisms involved in obesity and its co-morbidities. Here we address, for the first time, the identification and validation of reference proteins for data standardization, which are essential for accurate comparison of protein levels in expression studies based on fat from obese and non-obese individuals. Methodology and Findings To uncover adipose tissue proteins equally expressed either in omental and subcutaneous fat depots (study 1) or in omental fat from non-obese and obese individuals (study 2), we have reanalyzed our previously published data based on two-dimensional fluorescence difference gel electrophoresis. Twenty-four proteins (12 in study 1 and 12 in study 2) with similar expression levels in all conditions tested were selected and identified by mass spectrometry. Immunoblotting analysis was used to confirm in adipose tissue the expression pattern of the potential reference proteins and three proteins were validated: PARK7, ENOA and FAA. Western Blot analysis was also used to test customary loading control proteins. ENOA, PARK7 and the customary loading control protein Beta-actin showed steady expression profiles in fat from non-obese and obese individuals, whilst FAA maintained steady expression levels across paired omental and subcutaneous fat samples. Conclusions ENOA, PARK7 and Beta-actin are proper reference standards in obesity studies based on omental fat, whilst FAA is the best loading control for the comparative analysis of omental and subcutaneous adipose tissues either in obese and non-obese subjects. Neither customary loading control proteins GAPDH and TBB5 nor CALX are adequate standards in differential expression studies on adipose tissue. The use of the proposed reference proteins will facilitate the adequate analysis of proteins differentially expressed in the context of obesity, an aim difficult to achieve before this study. PMID:22272336

  9. Studies of insulin secretory responses and of arachidonic acid incorporation into phospholipids of stably transfected insulinoma cells that overexpress group VIA phospholipase A2 (iPLA2beta ) indicate a signaling rather than a housekeeping role for iPLA2beta.

    PubMed

    Ma, Z; Ramanadham, S; Wohltmann, M; Bohrer, A; Hsu, F F; Turk, J

    2001-04-20

    A cytosolic 84-kDa group VIA phospholipase A(2) (iPLA(2)beta) that does not require Ca(2+) for catalysis has been cloned from several sources, including rat and human pancreatic islet beta-cells and murine P388D1 cells. Many potential iPLA(2)beta functions have been proposed, including a signaling role in beta-cell insulin secretion and a role in generating lysophosphatidylcholine acceptors for arachidonic acid incorporation into P388D1 cell phosphatidylcholine (PC). Proposals for iPLA(2)beta function rest in part on effects of inhibiting iPLA(2)beta activity with a bromoenol lactone (BEL) suicide substrate, but BEL also inhibits phosphatidate phosphohydrolase-1 and a group VIB phospholipase A(2). Manipulation of iPLA(2)beta expression by molecular biologic means is an alternative approach to study iPLA(2)beta functions, and we have used a retroviral construct containing iPLA(2)beta cDNA to prepare two INS-1 insulinoma cell clonal lines that stably overexpress iPLA(2)beta. Compared with parental INS-1 cells or cells transfected with empty vector, both iPLA(2)beta-overexpressing lines exhibit amplified insulin secretory responses to glucose and cAMP-elevating agents, and BEL substantially attenuates stimulated secretion. Electrospray ionization mass spectrometric analyses of arachidonic acid incorporation into INS-1 cell PC indicate that neither overexpression nor inhibition of iPLA(2)beta affects the rate or extent of this process in INS-1 cells. Immunocytofluorescence studies with antibodies directed against iPLA(2)beta indicate that cAMP-elevating agents increase perinuclear fluorescence in INS-1 cells, suggesting that iPLA(2)beta associates with nuclei. These studies are more consistent with a signaling than with a housekeeping role for iPLA(2)beta in insulin-secreting beta-cells.

  10. Different susceptibility of rat pancreatic alpha and beta cells to hypoxia.

    PubMed

    Bloch, Konstantin; Vennäng, Julia; Lazard, Daniel; Vardi, Pnina

    2012-06-01

    Insulin-producing beta cells are known to be highly susceptible to hypoxia, which is a major factor in their destruction after pancreatic islet transplantation. However, whether the glucagon-producing pancreatic islet alpha cells are sensitive to hypoxia is not known. Our objective was to compare the sensitivity of alpha and beta cells to hypoxia. Isolated rat pancreatic islets were exposed to hypoxia (1% oxygen, 94% N(2), 5% CO(2)) for 3 days. The viability of the alpha and beta cells, as well as the stimulus-specific secretion of glucagon and insulin, was evaluated. A quantitative analysis of the proportion of beta to alpha cells indicated that, under normoxic conditions, islet cells were composed mainly of beta cells (87 ± 3%) with only 13 ± 3% alpha cells. Instead, hypoxia treatment significantly increased the proportion of alpha cells (40 ± 13%) and decreased the proportion of beta cells to 60 ± 13%. Using the fluorescent TUNEL assay we found that only a few percent of beta cells and alpha cells were apoptotic in normoxia. In contrast, hypoxia induced an abundance of apoptotic beta cells (61 ± 22%) and had no effect on the level of apoptosis in alpha cells. In conclusion, this study demonstrates that hypoxia results in severe functional abnormality in both beta and alpha cells while alpha cells display significantly decreased rate of apoptosis compared to intensive apoptotic injury of beta cells. These findings have implications for the understanding of the possible role of hypoxia in the pathophysiology of diabetes.

  11. HES6 reverses nuclear reprogramming of insulin-producing cells following cell fusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ball, Andrew J.; Abrahamsson, Annelie E.; Tyrberg, Bjoern

    2007-04-06

    To examine the mechanism by which growth-stimulated pancreatic {beta}-cells dedifferentiate, somatic cell fusions were performed between MIN6, a highly differentiated mouse insulinoma, and {beta}lox5, a cell line derived from human {beta}-cells which progressively dedifferentiated in culture. MIN6/{beta}lox5 somatic cells hybrids underwent silencing of insulin expression and a marked decline in PDX1, NeuroD, and MafA, indicating that {beta}lox5 expresses a dominant transacting factor(s) that represses {beta}-cell differentiation. Expression of Hes1, which inhibits endocrine differentiation was higher in hybrid cells than in parental MIN6 cells. Hes6, a repressor of Hes1, was highly expressed in primary {beta}-cells as well as MIN6, but wasmore » repressed in hybrids. Hes6 overexpression using a retroviral vector led to a decrease in Hes1 levels, an increase in {beta}-cell transcription factors and partial restoration of insulin expression. We conclude that the balance of Notch activators and inhibitors may play an important role in maintaining the {beta}-cell differentiated state.« less

  12. Purple sweet potato color ameliorates kidney damage via inhibiting oxidative stress mediated NLRP3 inflammasome activation in high fat diet mice.

    PubMed

    Shan, Qun; Zheng, Yuanlin; Lu, Jun; Zhang, Zifeng; Wu, Dongmei; Fan, Shaohua; Hu, Bin; Cai, Xiangjun; Cai, Hao; Liu, Peilong; Liu, Fan

    2014-07-01

    Inflammation plays a crucial role in the pathogenesis of obesity. Purple sweet potato color (PSPC) has potential anti-inflammation efficacy. We evaluated the effect of PSPC on kidney injury induced by high fat diet (HFD) and explored the mechanism underlying these effects. The results showed that PSPC (700 mg/kg per day) reduced body weight, ratio of urine albumin to creatinine, inflammatory cell infiltration, and Collagen IV accumulation in mice fed an HFD (60% fat food) for 20 weeks. PSPC significantly reduced the expression level of kidney NLRP3 inflammasome including NLRP3 and ASC and Caspase-1, and resulted in decline of IL-1β. Moreover, PSPC inhibited the activation of I kappa B kinase β (IKKβ) and the nuclear translocation of nuclear factor kappa beta (NF-κB). Additionally, PSPC decreased the expression level of oxidative stress-associated AGE receptor (RAGE) and thioredoxin interacting protein (TXNIP) in the upstream of NLRP3 inflammasome. These data imply that the beneficial effects of PSPC on HFD-induced kidney dysfunction and damage are mediated through NLRP3 signaling pathways, suggesting a potential target for the prevention of obesity. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. FGF21 improves glucose homeostasis in an obese diabetes-prone mouse model independent of body fat changes.

    PubMed

    Laeger, Thomas; Baumeier, Christian; Wilhelmi, Ilka; Würfel, Josefine; Kamitz, Anne; Schürmann, Annette

    2017-11-01

    Fibroblast growth factor 21 (FGF21) is considered to be a promising therapeutic candidate for the treatment of type 2 diabetes. However, as FGF21 levels are elevated in obese and diabetic conditions we aimed to test if exogenous FGF21 is sufficient to prevent diabetes and beta cell loss in New Zealand obese (NZO) mice, a model for polygenetic obesity and type 2 diabetes. Male NZO mice were treated with a specific dietary regimen that leads to the onset of diabetes within 1 week. Mice were treated subcutaneously with PBS or FGF21 to assess changes in glucose homeostasis, energy expenditure, food intake and other metabolic endpoints. FGF21 treatment prevented islet destruction and the onset of hyperglycaemia, and improved glucose clearance. FGF21 increased energy expenditure by inducing browning in subcutaneous white adipose tissue. However, as a result of a compensatory increased food intake, body fat did not decrease in response to FGF21 treatment, but exhibited elevated Glut4 expression. FGF21 prevents the onset of diet-induced diabetes, without changing body fat mass. Beneficial effects are mediated via white adipose tissue browning and elevated thermogenesis. Furthermore, these data indicate that obesity does not induce FGF21 resistance in NZO mice.

  14. Fibronectin regulates the activation of THP-1 cells by TGF-beta1.

    PubMed

    Wang, A C; Fu, L

    2001-03-01

    To determine how fibronectin regulates the immunomodulatory effects of transforming growth factor (TGF)-beta on THP-1 cells. THP-1 monocytic cell line. THP-1 cells were primed for 48 h in the presence or absence of 250 pM TGF-beta1. Assays or assessments carried out, together with statistical test applied. We found that adherence to fibronectin dramatically modulates the effects of TGF-beta1 on the human monocytic cell line THP-1. TGF-beta did not significantly affect constitutive interleukin (IL)-8 secretion or IL-1beta-induced IL-8 secretion from suspended cells. In contrast, TGF-beta stimulated IL-8 secretion as well as augmented IL-1beta-induced IL-8 secretion from adherent cells. The differential effects of TGF-beta1 on IL-8 secretion from suspended and adherent cells could not be explained by differences in IL-1 receptor antagonist production. The effects of fibronectin on TGF-beta1 induced IL-8 secretion from THP-1 cells were mimicked by adhesion to immobilized anti-a4beta1 integrin antibody and to a fibronectin fragment containing the CS-1 domain. These results indicate that alpha4beta1-mediated adhesion to fibronectin may play a key role during inflammation by profoundly influencing the effects of TGF-beta1 on monocytes.

  15. Urocortin 3 Marks Mature Human Primary and Embryonic Stem Cell-Derived Pancreatic Alpha and Beta Cells

    PubMed Central

    van der Meulen, Talitha; Xie, Ruiyu; Kelly, Olivia G.; Vale, Wylie W.; Sander, Maike; Huising, Mark O.

    2012-01-01

    The peptide hormone Urocortin 3 (Ucn 3) is abundantly and exclusively expressed in mouse pancreatic beta cells where it regulates insulin secretion. Here we demonstrate that Ucn 3 first appears at embryonic day (E) 17.5 and, from approximately postnatal day (p) 7 and onwards throughout adult life, becomes a unifying and exclusive feature of mouse beta cells. These observations identify Ucn 3 as a potential beta cell maturation marker. To determine whether Ucn 3 is similarly restricted to beta cells in humans, we conducted comprehensive immunohistochemistry and gene expression experiments on macaque and human pancreas and sorted primary human islet cells. This revealed that Ucn 3 is not restricted to the beta cell lineage in primates, but is also expressed in alpha cells. To substantiate these findings, we analyzed human embryonic stem cell (hESC)-derived pancreatic endoderm that differentiates into mature endocrine cells upon engraftment in mice. Ucn 3 expression in hESC-derived grafts increased robustly upon differentiation into mature endocrine cells and localized to both alpha and beta cells. Collectively, these observations confirm that Ucn 3 is expressed in adult beta cells in both mouse and human and appears late in beta cell differentiation. Expression of Pdx1, Nkx6.1 and PC1/3 in hESC-derived Ucn 3+ beta cells supports this. However, the expression of Ucn 3 in primary and hESC-derived alpha cells demonstrates that human Ucn 3 is not exclusive to the beta cell lineage but is a general marker for both the alpha and beta cell lineages. Ucn 3+ hESC-derived alpha cells do not express Nkx6.1, Pdx1 or PC1/3 in agreement with the presence of a separate population of Ucn 3+ alpha cells. Our study highlights important species differences in Ucn 3 expression, which have implications for its utility as a marker to identify mature beta cells in (re)programming strategies. PMID:23251699

  16. Dietary fats do not contribute to hyperlipidemia in children and adolescents with type 1 diabetes.

    PubMed

    Wiltshire, Esko J; Hirte, Craig; Couper, Jennifer J

    2003-05-01

    To determine the relative influence of diet, metabolic control, and familial factors on lipids in children with type 1 diabetes and control subjects. We assessed fasting serum cholesterol, LDL cholesterol, HDL cholesterol, triglycerides, lipoprotein(a), apolipoprotein (apo)-A1, and apoB in 79 children and adolescents with type 1 diabetes and 61 age- and sex-matched control subjects, together with dietary intakes using a quantitative food frequency questionnaire. Total cholesterol, LDL cholesterol, apoB, HDL cholesterol, and apoA1 were significantly higher in children with diabetes. Children with diabetes had higher percentage energy intake from complex carbohydrates (P = 0.001) and fiber intake (P = 0.02), and they had lower intake of refined sugar (P < 0.001) and percentage energy from saturated fat (P = 0.045) than control subjects. Total cholesterol (beta = 0.43, P < 0.001), LDL cholesterol (beta = 0.4, P < 0.001), and apoB (beta = 0.32, P = 0.006) correlated independently with HbA(1c) but not dietary intake. HDL cholesterol (beta = 0.24, P = 0.05) and apoA1 (beta = 0.32, P = 0.004) correlated independently with HbA(1c), and HDL cholesterol (beta = -0.34, P = 0.009) correlated with percentage energy intake from complex carbohydrates. Triglycerides correlated independently with percentage energy intake from complex carbohydrates (beta = 0.33, P = 0.01) and insulin dose (beta = 0.26, P = 0.04). Subjects with diabetes and elevated LDL (>3.35 mmol/l, >130 mg/dl), for whom dietary therapy would be recommended, had significantly higher HbA(1c) (P = 0.007), but they had higher intake of complex carbohydrates than subjects with LDL cholesterol <3.35 mmol/l. Lipid abnormalities remain common in children and adolescents with type 1 diabetes who adhere to current dietary recommendations, and they relate to metabolic control but not dietary intake.

  17. Effect of beta-adrenergic stimulation on whole-body and abdominal subcutaneous adipose tissue lipolysis in lean and obese men.

    PubMed

    Jocken, J W E; Goossens, G H; van Hees, A M J; Frayn, K N; van Baak, M; Stegen, J; Pakbiers, M T W; Saris, W H M; Blaak, E E

    2008-02-01

    Obesity is characterised by increased triacylglycerol storage in adipose tissue. There is in vitro evidence for a blunted beta-adrenergically mediated lipolytic response in abdominal subcutaneous adipose tissue (SAT) of obese individuals and evidence for this at the whole-body level in vivo. We hypothesised that the beta-adrenergically mediated effect on lipolysis in abdominal SAT is also impaired in vivo in obese humans. We investigated whole-body and abdominal SAT glycerol metabolism in vivo during 3 h and 6 h [2H5]glycerol infusions. Arterio-venous concentration differences were measured in 13 lean and ten obese men after an overnight fast and during intravenous infusion of the non-selective beta-adrenergic agonist isoprenaline [20 ng (kg fat free mass)(-1) min(-1)]. Lean and obese participants showed comparable fasting glycerol uptake by SAT (9.7+/-3.4 vs 9.3+/-2.5% of total release, p=0.92). Furthermore, obese participants showed an increased whole-body beta-adrenergically mediated lipolytic response versus lean participants. However, their fasting lipolysis was blunted [glycerol rate of appearance: 7.3+/-0.6 vs 13.1+/-0.9 micromol (kg fat mass)(-1) min(-1), p<0.01], as was the beta-adrenergically mediated lipolytic response per unit SAT [Delta total glycerol release: 140+/-71 vs 394+/-112 nmol (100 g tissue)(-1) min(-1), p<0.05] compared with lean participants. Net triacylglycerol flux tended to increase in obese compared with lean participants during beta-adrenergic stimulation [Delta net triacylglycerol flux: 75+/-32 vs 16+/-11 nmol (100 g tissue)(-1) min(-1), p=0.06]. We demonstrated in vivo that beta-adrenergically mediated lipolytic response is impaired systematically and in abdominal SAT of obese versus lean men. This may be important in the development or maintenance of increased triacylglycerol stores and obesity.

  18. Mycophenolate mofetil modulates adhesion receptors of the beta1 integrin family on tumor cells: impact on tumor recurrence and malignancy

    PubMed Central

    Engl, Tobias; Makarević, Jasmina; Relja, Borna; Natsheh, Iyad; Müller, Iris; Beecken, Wolf-Dietrich; Jonas, Dietger; Blaheta, Roman A

    2005-01-01

    Background Tumor development remains one of the major obstacles following organ transplantation. Immunosuppressive drugs such as cyclosporine and tacrolimus directly contribute to enhanced malignancy, whereas the influence of the novel compound mycophenolate mofetil (MMF) on tumor cell dissemination has not been explored. We therefore investigated the adhesion capacity of colon, pancreas, prostate and kidney carcinoma cell lines to endothelium, as well as their beta1 integrin expression profile before and after MMF treatment. Methods Tumor cell adhesion to endothelial cell monolayers was evaluated in the presence of 0.1 and 1 μM MMF and compared to unstimulated controls. beta1 integrin analysis included alpha1beta1 (CD49a), alpha2beta1 (CD49b), alpha3beta1 (CD49c), alpha4beta1 (CD49d), alpha5beta1 (CD49e), and alpha6beta1 (CD49f) receptors, and was carried out by reverse transcriptase-polymerase chain reaction, confocal microscopy and flow cytometry. Results Adhesion of the colon carcinoma cell line HT-29 was strongly reduced in the presence of 0.1 μM MMF. This effect was accompanied by down-regulation of alpha3beta1 and alpha6beta1 surface expression and of alpha3beta1 and alpha6beta1 coding mRNA. Adhesion of the prostate tumor cell line DU-145 was blocked dose-dependently by MMF. In contrast to MMF's effects on HT-29 cells, MMF dose-dependently up-regulated alpha1beta1, alpha2beta1, alpha3beta1, and alpha5beta1 on DU-145 tumor cell membranes. Conclusion We conclude that MMF possesses distinct anti-tumoral properties, particularly in colon and prostate carcinoma cells. Adhesion blockage of HT-29 cells was due to the loss of alpha3beta1 and alpha6beta1 surface expression, which might contribute to a reduced invasive behaviour of this tumor entity. The enhancement of integrin beta1 subtypes observed in DU-145 cells possibly causes re-differentiation towards a low-invasive phenotype. PMID:15644133

  19. Inhibin/activin-betaC and -betaE subunits in the Ishikawa human endometrial adenocarcinoma cell line.

    PubMed

    Kimmich, Tanja; Brüning, Ansgar; Käufl, Stephanie D; Makovitzky, Josef; Kuhn, Christina; Jeschke, Udo; Friese, Klaus; Mylonas, Ioannis

    2010-08-01

    Inhibins and activins are important regulators of the female reproductive system. Recently, two novel inhibin subunits, named betaC and betaE, have been identified and shown to be expressed in several human tissues. However, only limited data on the expression of these novel inhibin subunits in normal human endometrial tissue and endometrial adenocarcinoma cell lines exist. Samples of proliferative and secretory human endometrium were obtained from five premenopausal, non-pregnant patients undergoing gynecological surgery for benign diseases. Normal endometrial tissue and Ishikawa endometrial adenocarcinoma cell lines were analyzed by immunohistochemistry, immunofluorescence and RT-PCR. Expression of the inhibin betaC and betaE subunits could be demonstrated at the protein level by means of immunohistochemical evaluation and at the transcriptional level by establishing a betaC- and betaE-specific RT-PCR analysis in normal human endometrial tissue and the parental Ishikawa cell line. Interestingly, in a highly de-differentiated subclone of the Ishikawa cell line lacking estrogen receptor expression, the expression of the inhibin-betaC subunit appeared strongly reduced. Here, we show for the first time that the novel inhibin/activin-betaC and -betaE subunits are expressed in normal human endometrium and the estrogen receptor positive human endometrial carcinoma cell line Ishikawa using RT-PCR and immunohistochemical detection methods. Interestingly, the Ishikawa minus cell line (lacking estrogen receptor expression) demonstrated no to minimal expression of the betaC subunit as observed with immunofluorescence and RT-PCR, suggesting a possible hormone- dependency of this subunit in human endometrial cancer cells. Moreover, because the Ishikawa cell line minus is thought to be a more malignant endometrial cell line than its estrogen receptor positive counterpart, inhibin-betaC subunit might be substantially involved in the pathogenesis and malignant transformation in human endometrium.

  20. Characterization and inhibition of beta-adrenergic receptor kinase in intact myocytes.

    PubMed

    Laugwitz, K L; Kronsbein, K; Schmitt, M; Hoffmann, K; Seyfarth, M; Schömig, A; Ungerer, M

    1997-08-01

    beta-Adrenergic receptor kinase (beta ARK) phosphorylates and thereby inactivates agonist-occupied beta-adrenergic receptors (beta AR). beta ARK is thought to play an important role in the regulation of cardiac function. Therefore, we studied beta ARK activation and its inhibition in intact smooth muscle cells and in cardiomyoblasts. beta AR agonist-stimulated translocation of beta ARK was monitored by immunofluorescence labelling with specific antibodies and confocal laser scanning microscopy in DDT-MF 2 hamster smooth muscle cells and in H9c2 rat cardiomyoblasts. In unstimulated cells. beta ARK was mainly located in the cytosol. After beta AR agonist stimulation, the beta ARK signal was partially translocated to the membranes. Liposomal gene transfer of the COOH-terminus of beta ARK ('beta ARKmini') as a beta ARK inhibitor led to functional expression of this protein in both cell lines with high efficiency. Western blots with beta ARK antibodies showed a gene concentration-dependent immunoreactivity of the 'beta ARKmini' protein. 'beta ARKmini'-transfected myocytes demonstrated reduced membrane targeting of the beta ARK immuno-fluorescence signal. Additionally, the effect of 'beta ARKmini' on beta AR-induced desensitization of myocytic cAMP accumulation was investigated. In control cells, desensitization with isoproterenol led to a subsequent reduction of beta AR-induced cAMP accumulation. In 'beta ARKmini'-transfected myocytes, this beta AR-induced desensitization was significantly diminished, whereas normal beta AR-induced cAMP accumulation was unaffected. A gene concentration of 2 micrograms 'beta ARKmini' DNA/100,000 cardiomyoblasts, and of 0.7 microgram 'beta ARKmini' DNA/100,000 DDT-MF2 smooth muscle cells led to approximately 5.9- and approximately 5.6-fold overexpressions of 'beta ARKmini' vs. native beta ARK, respectively. These gene doses proved sufficient to attenuate beta-adrenergic desensitization significantly. (1) beta ARK translocation was evidenced in DDT-MF2 smooth muscle cells and in cardiomyoblasts by confocal laser scanning microscopy. (2) Feasibility of 'beta ARKmini' gene transfer to myocytes was demonstrated, and necessary gene doses for beta ARK inhibition were titered. (3) Overexpression of 'beta ARKmini' functionally interacted with endogenous beta-adrenergic signal transduction, leading to sustained cAMP accumulation after prolonged beta-adrenergic stimulation.

  1. Purified blueberry anthocyanins and blueberry juice alter development of obesity in mice fed an obesogenic high-fat diet.

    PubMed

    Prior, Ronald L; E Wilkes, Samuel; R Rogers, Theodore; Khanal, Ramesh C; Wu, Xianli; Howard, Luke R

    2010-04-14

    Male C57BL/6J mice (25 days of age) were fed either a low-fat diet (10% kcal from fat) (LF) or a high-fat diet (45% kcal from fat) (HF45) for a period of 72 days. Blueberry juice or purified blueberry anthocyanins (0.2 or 1.0 mg/mL) in the drinking water were included in LF or HF45 treatments. Sucrose was added to the drinking water of one treatment to test if the sugars in blueberry juice would affect development of obesity. Total body weights (g) and body fat (%) were higher and body lean tissue (%) was lower in the HF45 fed mice compared to the LF fed mice after 72 days, but in mice fed HF45 diet plus blueberry juice or blueberry anthocyanins (0.2 mg/mL), body fat (%) was not different from those mice fed the LF diet. Anthocyanins (ACNs) decreased retroperitoneal and epididymal adipose tissue weights. Fasting serum glucose concentrations were higher in mice fed the HF45 diet. However, it was reduced to LF levels in mice fed the HF45 diet plus 0.2 mg of ACNs/mL in the drinking water, but not with blueberry juice. beta cell function (HOMA-BCF) score was lowered with HF45 feeding but returned to normal levels in mice fed the HF45 diet plus purified ACNs (0.2 mg/mL). Serum leptin was elevated in mice fed HF45 diet, and feeding either blueberry juice or purified ACNs (0.2 mg/mL) decreased serum leptin levels relative to HF45 control. Sucrose in drinking water, when consumption was restricted to the volume of juice consumed, produced lower serum leptin and insulin levels, leptin/fat, and retroperitoneal and total fat (% BW). Blueberry juice was not as effective as the low dose of anthocyanins in the drinking water in preventing obesity. Additional studies are needed to determine factors responsible for the differing responses of blueberry juice and whole blueberry in preventing the development of obesity.

  2. Characterization of T cell repertoire changes in acute Kawasaki disease

    PubMed Central

    1993-01-01

    Kawasaki disease (KD) is an acute multisystem vasculitis of unknown etiology that is associated with marked activation of T cells and monocyte/macrophages. Using a quantitative polymerase chain reaction (PCR) technique, we recently found that the acute phase of KD is associated with the expansion of T cells expressing the V beta 2 and V beta 8.1 gene segments. In the present work, we used a newly developed anti-V beta 2 monoclonal antibody (mAb) and studied a new group of KD patients to extend our previous PCR results. Immunofluorescence analysis confirmed that V beta 2-bearing T cells are selectively increased in patients with acute KD. The increase occurred primarily in the CD4 T cell subset. The percentages of V beta 2+ T cells as determined by mAb reactivity and flow cytometry correlated linearly with V beta expression as quantitated by PCR. However, T cells from acute KD patients appeared to express proportionately higher levels of V beta 2 transcripts per cell as compared with healthy controls or convalescent KD patients. Sequence analysis of T cell receptor beta chain genes of V beta 2 and V beta 8.1 expressing T cells from acute KD patients showed extensive junctional region diversity. These data showing polyclonal expansion of V beta 2+ and V beta 8+ T cells in acute KD provide additional insight into the immunopathogenesis of this disease. PMID:8094737

  3. Effects of Obesity and Metabolic Syndrome on Steroidogenesis and Folliculogenesis in the Female Ossabaw Mini-Pig

    PubMed Central

    Newell-Fugate, Annie E.; Taibl, Jessica N.; Alloosh, Mouhamad; Sturek, Michael; Bahr, Janice M.; Nowak, Romana A.; Krisher, Rebecca L.

    2015-01-01

    The discrete effects of obesity on infertility in females remain undefined to date. To investigate obesity-induced ovarian dysfunction, we characterized metabolic parameters, steroidogenesis, and folliculogenesis in obese and lean female Ossabaw mini-pigs. Nineteen nulliparous, sexually mature female Ossabaw pigs were fed a high fat/cholesterol/fructose diet (n=10) or a control diet (n=9) for eight months. After a three-month diet-induction period, pigs remained on their respective diets and had ovarian ultrasound and blood collection conducted during a five-month study period after which ovaries were collected for histology, cell culture, and gene transcript level analysis. Blood was assayed for steroid and protein hormones. Obese pigs developed abdominal obesity and metabolic syndrome, including hyperglycemia, hypertension, insulin resistance and dyslipidemia. Obese pigs had elongated estrous cycles and hyperandrogenemia with decreased LH, increased FSH and luteal phase progesterone, and increased numbers of medium, ovulatory, and cystic follicles. Theca cells of obese, compared to control, pigs displayed androstenedione hypersecretion in response to in vitro treatment with LH, and up-regulated 3-beta-hydroxysteroid dehydrogenase 1 and 17-beta-hydroxysteroid dehydrogenase 4 transcript levels in response to in vitro treatment with LH or LH + insulin. Granulosa cells of obese pigs had increased 3-beta-hydroxysteroid dehydrogenase 1 transcript levels. In summary, obese Ossabaw pigs have increased transcript levels and function of ovarian enzymes in the delta 4 steroidogenic pathway. Alterations in LH, FSH, and progesterone, coupled with theca cell dysfunction, contribute to the hyperandrogenemia and disrupted folliculogenesis patterns observed in obese pigs. The obese Ossabaw mini-pig is a useful animal model in which to study the effects of obesity and metabolic syndrome on ovarian function and steroidogenesis. Ultimately, this animal model may be useful toward the development of therapies to improve fertility in obese and/or hyperandrogenemic females or in which to examine the effects of obesity on the maternal-fetal environment and offspring health. PMID:26046837

  4. [Influence of diets with qualitatively different carbohydrates on lipid metabolism].

    PubMed

    Markelova, V F; Zalesskaia, Iu M

    1977-01-01

    Tests conducted with rats demonstrated that rations carrying saccharose cause a rise in the pre-beta-lipoproteids, blood triglycerides, total lipids and triglycerides in the aorta, as well as an accelerated biosynthesis of the latter in the liver and the fatty tissue. The effect of the saccharose making part of an isocaloric ration depends upon the quality of the diet as a whole. In rats receiving saccharose in a ration with a reduced amount of fat (11% bythe calorific value) there takes place an accelerated biosynthesis of phospholipids with no evidence of fatty degeneration of the liver. Animals receiving saccharose in a ration with a physiological level of fat (26% by caloricity) demonstrated a higher content of beta-lipoproteids in the blood, of total lipids and tryglycerides in the liver with lacking acceleration of the phospholipids biosynthesis in the latter.

  5. [Exploration of relationship between the expression level of DNA polymerase beta and 60Co gamma-ray radiosensitivity].

    PubMed

    Cui, Jie; Xu, Xin; Yang, Mo; Chen, Chen; Zhao, Wei; Wu, Mei; Zhang, Zun-zhen

    2011-11-01

    To explore the relationship between the expression level of DNA polymerase beta (pol beta) and 60Co gamma-ray radiosensitivity and provide a basis on improving the efficiency of radiotherapy theoretically. pol beta wild-type cells (pol beta +/+), pol beta null cells (pol beta -/-) and pol beta overexpressed cells (polp beta oe) were applied as a model system. The radiosensitivity of 60Co gamma-ray on the cell was detected by MTT assay and clone formation assay. The DCFH-DA fluorescent probe was used to examine the cellular ROS after 60Co gamma-rays radiation. MTT assay showed that after radiation by 60Co gamma-rays followed with 72 h incubation, the cell viabilities in the three kinds of cells decreased significantly with a dose-response relationship (r-/+ = -0.976, r-/- = -0.977, r(oe) = -0.982, P<0.05). In addition, the viability of pol beta -/- cell was lower than those of other two kinds of cells at the same dose (P<0.05). Likewise, the colony number and colony formation rate in all tested cells also decreased after exposure to 60Co gamma-rays. The ROS level in the three kinds of cells was enhanced after treatment with 60Co gamma-ray, and the ROS level in pol beta -/- cells was much higher than that in the other two kinds of cells (P<0.05). Cell death caused by 60Co gamma-ray may associated with the DNA oxidative damage mediated by ROS; Overexpression of pol beta could protect against oxidative DNA damage, thus the cell apoptosis/death, thereby leading to reducing the radiosensitivity of 60Co gamma-rays, while null of DNA pol beta could increase radiosensitivity of 60Co gamma-rays by compromising the DNA repair.

  6. Toward a core nutraceutical program for cancer management.

    PubMed

    McCarty, Mark F; Block, Keith I

    2006-06-01

    As previously suggested, it may be feasible to impede tumorevoked angiogenesis with a nutraceutical program composed of glycine, fish oil, epigallocatechin-3-gallate, selenium, and silymarin, complemented by a low-fat vegan diet, exercise training, and, if feasible, a salicylate and the drug tetrathiomolybdate. It is now proposed that the scope of this program be expanded to address additional common needs of cancer patients: blocking the process of metastasis; boosting the cytotoxic capacity of innate immune defenses (natural killer [NK] cells); preventing cachexia, thromboembolism, and tumor-induced osteolysis; and maintaining optimal micronutrient status. Modified citrus pectin, a galectin-3 antagonist, has impressive antimetastatic potential. Mushroombeta-glucans and probiotic lactobacilli can amplify NK activity via stimulatory effects on macrophages. Selenium, beta-carotene, and glutamine can also increase the number and/or cytotoxic activity of NK cells. Cachectic loss of muscle mass can be opposed by fish oil, glutamine, and beta-hydroxy-beta-methylbutyrate. Fish oil, policosanol, and vitamin D may have potential for control of osteolysis. High-dose aspirin or salicylates, by preventing NF-B activation, can be expected to aid prevention of metastasis and cachexia while down-regulating osteolysis, but their impacts on innate immune defenses will not be entirely favorable. A nutritional insurance formula crafted for the special needs of cancer patients can be included in this regimen. To minimize patient inconvenience, this complex core nutraceutical program could be configured as an oil product, a powder, and a capsule product, with the nutritional insurance formula provided in tablets. It would be of interest to test this program in nude mouse xenograft models.

  7. Density-dependent induction of apoptosis by transforming growth factor-beta 1 in a human ovarian carcinoma cell line.

    PubMed

    Mathieu, C; Jozan, S; Mazars, P; Côme, M G; Moisand, A; Valette, A

    1995-01-01

    Transforming growth factor-beta 1 inhibited proliferation of a human ovarian carcinoma cell line (NIH-OVCAR-3). The inhibition of NIH-OVCAR-3 cell proliferation was accompanied by a decrease in clonogenic potential, evidenced by the reduced ability of TGF-beta 1-treated NIH-OVCAR-3 cells to form colonies on a plastic substratum. This rapid decrease of clonogenic potential, which was detected 6 h after addition of TGF-beta 1 was dose-dependent (IC50 = 4 pM). Fluorescence microscopy of DAPI-stained cells supported by electron-microscopic examination showed that TGF-beta 1 induced chromatin condensation and nuclear fragmentation. In addition, oligonucleosomal-sized fragments were detected in the TGF-beta 1-treated cells. These features indicated that TGF-beta 1 induced NIH-OVCAR-3 cell death by an apoptosis-like mechanism. This TGF-beta 1 apoptotic effect was subject to modulation by cell density. It was observed that an increase in cell density (up to 20 x 10(3) cells/cm2) protected NIH-OVCAR-3 cells against apoptosis induced by TGF-beta 1. Conditioned medium from high-density cultures of NIH-OVCAR-3 cells did not inhibit apoptosis induced by TGF-beta 1 on NIH-OVCAR-3 cells cultured at low density, suggesting that the protective effect of cell density was not related to the cell secretion of a soluble survival factor.

  8. Evaluation of the transforming growth factor-beta activity in normal and dry eye human tears by CCL-185 cell bioassay.

    PubMed

    Zheng, Xiaofen; De Paiva, Cintia S; Rao, Kavita; Li, De-Quan; Farley, William J; Stern, Michael; Pflugfelder, Stephen C

    2010-09-01

    To develop a new bioassay method using human lung epithelial cells (CCL-185) to assess activity of transforming growth factor beta (TGF-beta) in human tear fluid from normal subjects and patients with dry eye. Two epithelial cell lines, mink lung cells (CCL-64) and human lung cells (CCL-185), were compared to detect the active form of TGF-beta by BrdU incorporation (quantitation of cell DNA synthesis) and WST assay (metabolic activity of viable cells). The effect of TGF-beta on the growth of CCL-185 cells was observed microscopically. Human tears from normal control subjects and patients with dry eye (DE) with and without Sjögren syndrome were evaluated for TGF-beta concentration by Luminex microbead assay, and TGF-beta activity by the CCL-185 cell growth inhibition bioassay. The metabolic activity of viable CCL-185 cells, measured by WST, was shown to be proportional to the TGF-beta1 concentration (R = 0.919) and confirmed by BrdU assay (R = 0.969). Compared with CCL-185, metabolic activity of viable cells and DNA synthesis, measured by WST and BrdU incorporation assays, were shown to be less proportional to the TGF-beta1 concentration in the CCL-64 line (R = 0.42 and 0.17, respectively). Coincubation with human anti-TGF-beta1 antibody (MAB-240) yielded a dose-dependent inhibition of TGF-beta1 (0.3 ng/mL) activity. CCL-185 cell growth observed microscopically was noted to decrease in response to increasing TGF-beta1 concentrations. Levels of immuodetectable TGF-beta1 and TGF-beta2 were similar in normal and DE tears. TGF-beta bioactivity in DE human tears measured by the CCL-185 cells assay was found to be higher (9777.5 +/- 10481.9 pg/mL) than those in normal controls (4129.3 +/- 1342.9 pg/mL) (P < 0.05). Among patients with DE, TGF-beta bioactivity was highest in those with Sjögren syndrome. Approximately, 79.1% of TGF-beta in DE tears and 37.6% TGF-beta in normal tears were found to be biologically active. The CCL-185 cell assay was found to be a suitable tool for assessing TGF-beta activity in human tears. Tear TGF-beta bioactivity increases in DE, particularly in Sjögren syndrome, where elevated levels of TGF-beta1 transcripts in the conjunctival epithelium have been previously detected.

  9. A Synopsis of Factors Regulating Beta Cell Development and Beta Cell Mass

    PubMed Central

    Prasadan, Krishna; Shiota, Chiyo; Xiangwei, Xiao; Ricks, David; Fusco, Joseph; Gittes, George

    2016-01-01

    The insulin-secreting beta cells in the endocrine pancreas regulate blood glucose levels, and loss of functional beta cells leads to insulin deficiency, hyperglycemia (high blood glucose) and diabetes mellitus. Current treatment strategies for type-1 (autoimmune) diabetes are islet transplantation, which has significant risks and limitations, or normalization of blood glucose with insulin injections, which is clearly not ideal. The type-1 patients can lack insulin counter-regulatory mechanism; therefore, hypoglycemia is a potential risk. Hence, a cell-based therapy offers a better alternative for the treatment of diabetes. Past research was focused on attempting to generate replacement beta cells from stem cells, however, recently there has been an increasing interest in identifying mechanisms that will lead to the conversion of pre-existing differentiated endocrine cells into beta cells. The goal of this review is to provide an overview of several of the key factors that regulate new beta cell formation (neogenesis) and beta cell proliferation. PMID:27105622

  10. Studies on the bioavailability of the provitamin A carotenoid, beta-carotene, using human exfoliated colonic epithelial cells.

    PubMed

    Gireesh, T; Nair, P P; Sudhakaran, P R

    2004-08-01

    The possibility of using exfoliated colonic epithelial cells for assessing the bioavailability of beta-carotene was examined. Analysis of exfoliated colonic epithelial cells showed the presence of beta-carotene and vitamin A. The beta-carotene content was significantly lower in cells from stool samples of subjects on a beta-carotene-poor diet than those receiving a single dose of a beta-carotene supplement. Colonic epithelial cells isolated from stool samples collected daily during a wash-out period while the subjects were on a beta-carotene-poor diet showed a steady decrease in beta-carotene content, reaching the lowest value on day 7. Kinetic analysis showed that a single dose of a beta-carotene supplement in the form of spirulina (Spirulina platensis) or agathi (Sesbania grandiflora) after the wash-out period caused an increase in the beta-carotene content after a lag period of 5-7 d, but the vitamin A levels during these periods were not significantly affected. Analysis of plasma beta-carotene concentration also showed similar changes, which correlated with those of exfoliated colonic cells. A relationship between the beta-carotene content of the diet and that of the colonic epithelial cells suggests that analysis of the beta-carotene content in exfoliated human colonic epithelial cells is a useful non-invasive method to assess the bioavailability of provitamin A beta-carotene.

  11. [The influence of age and sex on fat- and water-soluble vitamins sufficiency of adulthood].

    PubMed

    Beketova, N A; Spiricheva, T V; Pereverzeva, O G; Kosheleva, O V; Brzhesinskaia, O A; Kharitonchik, L A; Kodentsova, V M; Spirichev, V B

    2009-01-01

    Serum concentrations of vitamins A, B2, B6, C, E and beta-carotene were determined in 174 healthy individuals ages 22-59 years. It was been shown that only 11% of examined men and 24% of women were well provided with all vitamins-antioxidants and beta-carotene. 38% cent of women and 67% cent of men had the combined insufficiency of 2-3 antioxidants (more often of vitamin C, B2 and beta-carotene). Men presented significantly higher serum retinol concentrations and lower concentrations of vitamin C and beta-carotene--than women. Serum concentrations of retinol for women and tocopherols for both men and women increased by 0.3% and 0.4% per year, respectively.

  12. SIRT1 inhibits proliferation of pancreatic cancer cells expressing pancreatic adenocarcinoma up-regulated factor (PAUF), a novel oncogene, by suppression of {beta}-catenin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cho, Il-Rae; Koh, Sang Seok; Department of Functional Genomics, University of Science and Technology, Daejeon 305-333

    2012-06-29

    Highlights: Black-Right-Pointing-Pointer SIRT1 inhibits protein levels of {beta}-catenin and its transcriptional activity. Black-Right-Pointing-Pointer Nuclear localization of SIRT1 is not required for the decrease of {beta}-catenin expression. Black-Right-Pointing-Pointer SIRT1-mediated degradation of {beta}-catenin is not required for GSK-3{beta} and Siah-1 but for proteosome. Black-Right-Pointing-Pointer SIRT1 activation inhibits proliferation of pancreatic cancer cells expressing PAUF. -- Abstract: Because we found in a recent study that pancreatic adenocarcinoma up-regulated factor (PAUF), a novel oncogene, induces a rapid proliferation of pancreatic cells by up-regulation of {beta}-catenin, we postulated that {beta}-catenin might be a target molecule for pancreatic cancer treatment. We thus speculated whether SIRT1, knownmore » to target {beta}-catenin in a colon cancer model, suppresses {beta}-catenin in those pancreatic cancer cells that express PAUF (Panc-PAUF). We further evaluated whether such suppression would lead to inhibition of the proliferation of these cells. The ectopic expression of either SIRT1 or resveratrol (an activator of SIRT1) suppressed levels of {beta}-catenin protein and its transcriptional activity in Panc-PAUF cells. Conversely, suppression of SIRT1 expression by siRNA enhanced {beta}-catenin expression and transcriptional activity. SIRT1 mutant analysis showed that nuclear localization of SIRT1 is not required for reduction of {beta}-catenin. Treatment with MG132, a proteasomal inhibitor, restored {beta}-catenin protein levels, suggesting that SIRT1-mediated degradation of {beta}-catenin requires proteasomal activity. It was reported that inhibition of GSK-3{beta} or Siah-1 stabilizes {beta}-catenin in colon cancer cells, but suppression of GSK-3{beta} or Siah-1 using siRNA in the presence of resveratrol instead diminished {beta}-catenin protein levels in Panc-PAUF cells. This suggests that GSK-3{beta} and Siah-1 are not involved in SIRT1-mediated degradation of {beta}-catenin in the cells. Finally, activation of SIRT1 inhibited the proliferation of Panc-PAUF cells by down-regulation of cyclin-D1, a target molecule of {beta}-catenin. These results suggest that SIRT1 activation may be a therapeutic strategy for treatment of pancreatic cancer cells that express PAUF via the down-regulation of {beta}-catenin.« less

  13. MST1 is a key regulator of beta cell apoptosis and dysfunction in diabetes.

    PubMed

    Ardestani, Amin; Paroni, Federico; Azizi, Zahra; Kaur, Supreet; Khobragade, Vrushali; Yuan, Ting; Frogne, Thomas; Tao, Wufan; Oberholzer, Jose; Pattou, Francois; Conte, Julie Kerr; Maedler, Kathrin

    2014-04-01

    Apoptotic cell death is a hallmark of the loss of insulin-producing beta cells in all forms of diabetes mellitus. Current treatments fail to halt the decline in functional beta cell mass, and strategies to prevent beta cell apoptosis and dysfunction are urgently needed. Here, we identified mammalian sterile 20-like kinase-1 (MST1) as a critical regulator of apoptotic beta cell death and function. Under diabetogenic conditions, MST1 was strongly activated in beta cells in human and mouse islets and specifically induced the mitochondrial-dependent pathway of apoptosis through upregulation of the BCL-2 homology-3 (BH3)-only protein BIM. MST1 directly phosphorylated the beta cell transcription factor PDX1 at T11, resulting in the latter's ubiquitination and degradation and thus in impaired insulin secretion. MST1 deficiency completely restored normoglycemia, beta cell function and survival in vitro and in vivo. We show MST1 as a proapoptotic kinase and key mediator of apoptotic signaling and beta cell dysfunction and suggest that it may serve as target for the development of new therapies for diabetes.

  14. Both conditional ablation and overexpression of E2 SUMO-conjugating enzyme (UBC9) in mouse pancreatic beta cells result in impaired beta cell function.

    PubMed

    He, Xiaoyu; Lai, Qiaohong; Chen, Cai; Li, Na; Sun, Fei; Huang, Wenting; Zhang, Shu; Yu, Qilin; Yang, Ping; Xiong, Fei; Chen, Zhishui; Gong, Quan; Ren, Boxu; Weng, Jianping; Eizirik, Décio L; Zhou, Zhiguang; Wang, Cong-Yi

    2018-04-01

    Post-translational attachment of a small ubiquitin-like modifier (SUMO) to the lysine (K) residue(s) of target proteins (SUMOylation) is an evolutionary conserved regulatory mechanism. This modification has previously been demonstrated to be implicated in the control of a remarkably versatile regulatory mechanism of cellular processes. However, the exact regulatory role and biological actions of the E2 SUMO-conjugating enzyme (UBC9)-mediated SUMOylation function in pancreatic beta cells has remained elusive. Inducible beta cell-specific Ubc9 (also known as Ube2i) knockout (KO; Ubc9 Δbeta ) and transgenic (Ubc9 Tg ) mice were employed to address the impact of SUMOylation on beta cell viability and functionality. Ubc9 deficiency or overexpression was induced at 8 weeks of age using tamoxifen. To study the mechanism involved, we closely examined the regulation of the transcription factor nuclear factor erythroid 2-related factor 2 (NRF2) through SUMOylation in beta cells. Upon induction of Ubc9 deficiency, Ubc9 Δbeta islets exhibited a 3.5-fold higher accumulation of reactive oxygen species (ROS) than Ubc9 f/f control islets. Islets from Ubc9 Δbeta mice also had decreased insulin content and loss of beta cell mass after tamoxifen treatment. Specifically, at day 45 after Ubc9 deletion only 40% of beta cell mass remained in Ubc9 Δbeta mice, while 90% of beta cell mass was lost by day 75. Diabetes onset was noted in some Ubc9 Δbeta mice 8 weeks after induction of Ubc9 deficiency and all mice developed diabetes by 10 weeks following tamoxifen treatment. In contrast, Ubc9 Tg beta cells displayed an increased antioxidant ability but impaired insulin secretion. Unlike Ubc9 Δbeta mice, which spontaneously developed diabetes, Ubc9 Tg mice preserved normal non-fasting blood glucose levels without developing diabetes. It was noted that SUMOylation of NRF2 promoted its nuclear expression along with enhanced transcriptional activity, thereby preventing ROS accumulation in beta cells. SUMOylation function is required to protect against oxidative stress in beta cells; this mechanism is, at least in part, carried out by the regulation of NRF2 activity to enhance ROS detoxification. Homeostatic SUMOylation is also likely to be essential for maintaining beta cell functionality.

  15. Transforming growth factor-beta inhibits human antigen-specific CD4+ T cell proliferation without modulating the cytokine response.

    PubMed

    Tiemessen, Machteld M; Kunzmann, Steffen; Schmidt-Weber, Carsten B; Garssen, Johan; Bruijnzeel-Koomen, Carla A F M; Knol, Edward F; van Hoffen, Els

    2003-12-01

    Transforming growth factor (TGF)-beta has been demonstrated to play a key role in the regulation of the immune response, mainly by its suppressive function towards cells of the immune system. In humans, the effect of TGF-beta on antigen-specific established memory T cells has not been investigated yet. In this study antigen-specific CD4(+) T cell clones (TCC) were used to determine the effect of TGF-beta on antigen-specific proliferation, the activation status of the T cells and their cytokine production. This study demonstrates that TGF-beta is an adequate suppressor of antigen-specific T cell proliferation, by reducing the cell-cycle rate rather than induction of apoptosis. Addition of TGF-beta resulted in increased CD69 expression and decreased CD25 expression on T cells, indicating that TGF-beta is able to modulate the activation status of in vivo differentiated T cells. On the contrary, the antigen-specific cytokine production was not affected by TGF-beta. Although TGF-beta was suppressive towards the majority of the T cells, insensitivity of a few TCC towards TGF-beta was also observed. This could not be correlated to differential expression of TGF-beta signaling molecules such as Smad3, Smad7, SARA (Smad anchor for receptor activation) and Hgs (hepatocyte growth factor-regulated tyrosine kinase substrate). In summary, TGF-beta has a pronounced inhibitory effect on antigen-specific T cell proliferation without modulating their cytokine production.

  16. MicroRNA-29a is up-regulated in beta-cells by glucose and decreases glucose-stimulated insulin secretion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bagge, Annika; Clausen, Trine R.; Larsen, Sylvester

    Highlights: Black-Right-Pointing-Pointer MicroRNA-29a (miR-29a) levels are increased by glucose in human and rat islets and INS-1E cells. Black-Right-Pointing-Pointer miR-29a increases proliferation of INS-1E beta-cells. Black-Right-Pointing-Pointer Forced expression of miR-29a decreases glucose-stimulated insulin secretion (GSIS). Black-Right-Pointing-Pointer Depletion of beta-cell miR-29a improves GSIS. Black-Right-Pointing-Pointer miR-29a may be a mediator of glucose toxicity in beta-cells. -- Abstract: Chronically elevated levels of glucose impair pancreatic beta-cell function while inducing beta-cell proliferation. MicroRNA-29a (miR-29a) levels are increased in several tissues in diabetic animals and mediate decreased insulin-stimulated glucose-transport of adipocytes. The aim was to investigate the impact of glucose on miR-29a levels in INS-1E beta-cellsmore » and in human islets of Langerhans and furthermore to evaluate the impact of miR-29a on beta-cell function and proliferation. Increased glucose levels up-regulated miR-29a in beta-cells and human and rat islets of Langerhans. Glucose-stimulated insulin-secretion (GSIS) of INS-1E beta-cells was decreased by forced expression of miR-29a, while depletion of endogenous miR-29a improved GSIS. Over-expression of miR-29a increased INS-1E proliferation. Thus, miR-29a up-regulation is involved in glucose-induced proliferation of beta-cells. Furthermore, as depletion of miR-29a improves beta-cell function, miR-29a is a mediator of glucose-induced beta-cell dysfunction. Glucose-induced up-regulation of miR-29a in beta-cells could be implicated in progression from impaired glucose tolerance to type 2 diabetes.« less

  17. A Cuphea beta-ketoacyl-ACP synthase shifts the synthesis of fatty acids towards shorter chains in Arabidopsis seeds expressing Cuphea FatB thioesterases.

    PubMed

    Leonard, J M; Knapp, S J; Slabaugh, M B

    1998-03-01

    Acyl-acyl carrier protein (ACP) thioesterases with specificities on medium chain substrates (C8-C14) are requisite enzymes in plants that produce 8:0, 10:0, 12:0 and 14:0 seed oils, but they may not be the sole enzymatic determinants of chain length. The contribution to chain length regulation of a beta-ketoacyl-ACP synthase, Cw KAS A1, derived from Cuphea wrightii, a species that accumulates 30% 10:0 and 54% 12:0 in seed oils, was investigated. Expression of Cw KAS A1 in Arabidopsis seeds reduced 16:0 from 8.2 to 6.2 mol%, suggesting a KAS II-type activity. In the presence of the KAS I inhibitor cerulenin, however, transgenic seed extracts extended 6:0- and 8:0-ACP at a rate four- to fivefold greater than extracts from untransformed plants, whereas no difference was observed in extension of 14:0- and 16:0-ACP. The effect of KAS A1 on seed oils was tested by combining it with the C. wrightii medium chain-specific thioesterases, Cw FatB1 and Cw FatB2, in crosses of transformed plants. Fatty acid synthesis thesis shifted towards shorter chains in progeny expressing both classes of enzymes. KasA1/FatB1 homozygotes produced threefold more 12:0 than the FatB1 parent while 14:0 and 16:0 were reduced by one-third and one-half, respectively. F2 progeny expressing KasA1 and FatB2 produced twofold more 10:0 and 1.4-fold more 12:0 than the FatB2 parent, and the double-transgenic progeny produced one-quarter less 14:0 and one-half less 16:0 than the FatB2 parent. It is hypothesized that the shift towards production of shorter chains resulted from increased pools of medium chain acyl-ACP resulting from KAS A1 activity. The combined activities of KAS A1 and FatB thioesterases appear to determine the C. wrightii phenotype.

  18. Elliptical-P cells in the avian perilymphatic interface of the Tegmentum vasculosum

    NASA Technical Reports Server (NTRS)

    Fermin, C. D.; Lee, D. H.; Martin, D. S.

    1995-01-01

    Elliptical cells (E-P) are present at the perilymphatic interface lumen (PIL) of the lagena. The E-P cells often separate from the tegmentum vasculosum (TV) and have touching processes that form a monolayer between the K+ rich perilymph and the Na+ rich endolymph, similar to the mammalian Reissner's membrane. We examined the TV of chicks (Gallus domesticus) and quantitated the expression of anti-S100 alphaalphabetabeta and S100 beta. There was a 30% increase of S100 beta saturation in the light cells facing the PIL when compared to other TV light cells. We show that: (1) the dimer anti- S100 alphaalphabetabeta and the monomer anti-S100 beta are expressed preferentially in the light cells and the E-P cells of TV; (2) expression of S100 beta is higher in light cells facing the PIL than in adjacent cells; (3) the expression of the dimer S100 alphaalphabetabeta and monomer S100 beta overlaps in most inner ear cell types, including the cells of the TV, most S100 alphaalphabetabeta positive cells express S 100 beta, but S100 beta positive cells do not always express S100 alphaalphabetabeta; and (4) the S100 beta expression in light cells, the abundant Na+-K+ ATPase on dark cells of the TV, and previously demonstrated co-localization of S100 beta/GABA in sensory cells suggest that S100 beta could have, in the inner ear, a dual neurotrophic-ionic modulating function.

  19. From the rat to the beta cell: a fast and effective technique of separation of Langerhans islets and direct purification of pancreatic beta cells.

    PubMed

    Tamagno, Gianluca; Vigolo, Simonetta; Olivieri, Massimiliano; Martini, Chiara; De Carlo, Eugenio

    2014-01-01

    Isolated Langerhans islets represent a useful model for the study of the endocrine pancreas. The possibility to purify pancreatic beta cells from a mixed Langerhans islet cell population may lead towards a dedicated focus on beta cell research. We describe an effective and rapid immunomagnetic technique for the direct purification of beta cells from isolated Langerhans islets of rat. After the sacrifice of the rat, the Langerhans islets were separated by ductal injection of the pancreas with collagenase, altered to a mixed Langerhans islet cell population and incubated with conditioned immunomagnetic beads targeted to the beta cell surface. The beads were previously coated with a specific antibody against the surface of the beta cell, namely K14D10. The suspension of mixed Langerhans islet cells and immunomagnetic K14D10-conditioned beads was pelleted by a magnetic particle concentrator to isolate the bead-bound cells, which were finally suspended in a culture medium. The purified cells were immunoreactive for insulin and no glucagon-positive cells were detected at immunocytochemistry. Real Time PCR confirmed the purification of the pancreatic beta cells. This immunomagnetic technique allows a rapid, effective and consistent purification of beta cells from isolated Langerhans islets in a direct manner by conditioning the immunomagnetic beads only. This technique is easy, fast and reproducible. It promises to be a reliable method for providing purified beta cells for in vitro research.

  20. Expression of S100 beta in sensory and secretory cells of the vertebrate inner ear

    NASA Technical Reports Server (NTRS)

    Fermin, C. D.; Martin, D. S.

    1995-01-01

    We evaluated anti-S100 beta expression in the chick (Gallus domesticus) inner ear and determined that: 1) the monomer anti-S100 beta is expressed differentially in the vestibular and auditory perikarya; 2) expression of S100 beta in the afferent nerve terminals is time-related to synapse and myelin formation; 3) the expression of the dimer anti-S100 alpha alpha beta beta and monomer anti-S100 beta overlaps in most inner ear cell types. Most S100 alpha alpha beta beta positive cells express S100 beta, but S100 beta positive cells do not always express S100 alpha alpha beta beta. 4) the expression of S100 beta is diffused over the perikaryal cytoplasm and nuclei of the acoustic ganglia but is concentrated over the nuclei of the vestibular perikarya. 6) S100 beta is expressed in secretory cells, and it is co-localized with GABA in sensory cells. 7) Color thresholding objective quantitation indicates that the amount of S100 beta was higher (mean 22, SD +/- 4) at E19 than at E9 (mean 34, SD +/- 3) in afferent axons. 8) Moreover, S100 beta was unchanged between E11-E19 in the perikaryal cytoplasm, but did change over the nuclei. At E9, 74%, and at E21, 5% of vestibular perikarya were positive. The data suggest that S100 beta may be physically associated with neuronal and ionic controlling cells of the vertebrate inner ear, where it could provide a dual ionic and neurotrophic modulatory function.

  1. Cell surface expression of beta 2-microglobulin (beta 2m) correlates with stages of differentiation in B cell tumours.

    PubMed Central

    Jones, R A; Scott, C S; Norfolk, D R; Stark, A N; Child, J A

    1987-01-01

    Cell surface beta 2-microglobulin (beta 2m) densities of malignant B cells were determined by enzyme immunoassay in 97 cases of immunologically defined lymphoproliferative disease. Absolute beta 2m densities were found to depend on disease category with the lowest levels found on cells from chronic lymphocytic leukaemia (mean = 5.6 ng/10(6) cells, n = 27); atypical chronic lymphocytic leukaemia (mean = 5.9 ng/10(6) cells, n = 8); and prolymphocytoid chronic lymphocytic leukaemia variant (mean = 6.0 ng/10(6) cells, n = 16). beta 2m densities for B non-Hodgkin's lymphoma (n = 14) and B prolymphocytic leukaemia (n = 17) cases were 8.1 and 10.0 ng/10(6) cells, respectively, and the highest densities were found on cells from "late-B cell" tumours (mean = 14.3 ng/10(6) cells). Plasma cells from cases of Ig secreting tumours expressed unexpectedly low beta 2m densities (mean = 9.3 ng/10(6) cells; n = 6). PMID:3108331

  2. Expression and structural features of endoglin (CD105), a transforming growth factor beta1 and beta3 binding protein, in human melanoma.

    PubMed Central

    Altomonte, M.; Montagner, R.; Fonsatti, E.; Colizzi, F.; Cattarossi, I.; Brasoveanu, L. I.; Nicotra, M. R.; Cattelan, A.; Natali, P. G.; Maio, M.

    1996-01-01

    Human endoglin (CD105) is a member of the transforming growth factor beta (TGF-beta) receptor family that binds TGF-beta1 and -beta3, but not TGF-beta2, on human endothelial cells. Immunohistochemical analyses demonstrated that CD105 is expressed on normal and neoplastic cells of the melanocytic lineage. The anti-CD105 MAb, MAEND3, stained 50, 25 and 34% of intradermal naevi, primary and metastatic melanomas investigated, respectively, and nine out of 12 melanoma cell lines. Sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis revealed that CD105 expressed by melanoma cells consists of a homodimeric protein with an apparent molecular weight of 180 and 95 kDa under non-reducing and reducing conditions. Cross-linking of 125I-labelled TGF-beta1 to melanoma cells, Mel 97, by disuccinimidyl suberate (DSS) demonstrated that CD105 expressed on pigmented cells binds TGF-beta1; the pattern of binding of TGF-beta1 to melanoma cells was found to be similar to that of human umbilical vein endothelial cells. The addition of exogenous, bioactive TGF-beta1 significantly (P<0.05) inhibited the growth of CD105-positive melanoma cells, Mel 97, but did not affect that of CD105-negative melanoma cells, F0-1. These data, altogether, demonstrate that CD105 is expressed on pigmented cells and might play a functionally relevant role in the biology of human melanoma cells by regulating their sensitivity to TGF-betas. Images Figure 1 Figure 3 Figure 4 PMID:8932339

  3. Micro-fabricated scaffolds lead to efficient remission of diabetes in mice.

    PubMed

    Buitinga, Mijke; Assen, Frank; Hanegraaf, Maaike; Wieringa, Paul; Hilderink, Janneke; Moroni, Lorenzo; Truckenmüller, Roman; van Blitterswijk, Clemens; Römer, Gert-Willem; Carlotti, Françoise; de Koning, Eelco; Karperien, Marcel; van Apeldoorn, Aart

    2017-08-01

    Despite the clinical success of intrahepatic islet transplantation in treating type 1 diabetes, factors specific to this transplantation site hinder long-term insulin independence. The adoption of alternative, extravascular sites likely improve islet survival and function, but few locations are able to sufficiently confine islets in order to facilitate engraftment. This work describes a porous microwell scaffold with a well-defined pore size and spacing designed to guarantee islet retention at an extrahepatic transplantation site and facilitate islet revascularization. Three techniques to introduce pores were characterized: particulate leaching; solvent casting on pillared wafers; and laser drilling. Our criteria of a maximum pore diameter of 40 μm were best achieved via laser drilling. Transplantation studies in the epididymal fat of diabetic mice elucidated the potential of this porous scaffold platform to restore blood glucose levels and facilitate islet engraftment. Six out of eight mice reverted to stable normoglycemia with a mean time to remission of 6.2 ± 3.2 days, which was comparable to that of the gold standard of renal subcapsular islet grafts. In contrast, when islets were transplanted in the epididymal fat pad without a microwell scaffold, only two out of seven mice reverted to stable normoglycemia. Detailed histological evaluation four weeks after transplantation found a comparable vascular density in scaffold-seeded islets, renal subcapsular islets and native pancreatic islets. However, the vascularization pattern in scaffold-seeded islets was more inhomogeneous compared to native pancreatic islets with a higher vascular density in the outer shell of the islets compared to the inner core. We also observed a corresponding decrease in the beta-cell density in the islet core. Despite this, our data indicated that islets transplanted in the microwell scaffold platform were able to maintain a viable beta-cell population and restore glycemic control. Furthermore, we demonstrated that the microwell scaffold platform facilitated detailed analysis at a subcellular level to correlate design parameters with functional physiological observations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Candidate gene association analysis for milk yield, composition, urea nitrogen and somatic cell scores in Brown Swiss cows.

    PubMed

    Cecchinato, A; Ribeca, C; Chessa, S; Cipolat-Gotet, C; Maretto, F; Casellas, J; Bittante, G

    2014-07-01

    The aim of this study was to investigate 96 single-nucleotide polymorphisms (SNPs) from 54 candidate genes, and test the associations of the polymorphic SNPs with milk yield, composition, milk urea nitrogen (MUN) content and somatic cell score (SCS) in individual milk samples from Italian Brown Swiss cows. Milk and blood samples were collected from 1271 cows sampled once from 85 herds. Milk production, quality traits (i.e. protein, casein, fat and lactose percentages), MUN and SCS were measured for each milk sample. Genotyping was performed using a custom Illumina VeraCode GoldenGate approach. A Bayesian linear animal model that considered the effects of herd, days in milk, parity, SNP genotype and additive polygenic effect was used for the association analysis. Our results showed that 14 of the 51 polymorphic SNPs had relevant additive effects on at least one of the aforementioned traits. Polymorphisms in the glucocorticoid receptor DNA-binding factor 1 (GRLF1), prolactin receptor (PRLR) and chemokine ligand 2 (CCL2) were associated with milk yield; an SNP in the stearoyl-CoA desaturase (SCD-1) was related to fat content; SNPs in the caspase recruitment domain 15 protein (CARD15) and lipin 1 (LPIN1) affected the protein and casein contents; SNPs in growth hormone 1 (GH1), lactotransferrin (LTF) and SCD-1 were relevant for casein number; variants in beta casein (CSN2), GH1, GRLF1 and LTF affected lactose content; SNPs in beta-2 adrenergic receptor (ADRB2), serpin peptidase inhibitor (PI) and SCD-1 were associated with MUN; and SNPs in acetyl-CoA carboxylase alpha (ACACA) and signal transducer and activator of transcription 5A (STAT5A) were relevant in explaining the variation of SCS. Although further research is needed to validate these SNPs in other populations and breeds, the association between these markers and milk yield, composition, MUN and SCS could be exploited in gene-assisted selection programs for genetic improvement purposes.

  5. Demonstration of interleukin-1 beta transcripts in acute myeloblastic leukemic cells by in situ hybridization.

    PubMed

    Nakamura, M; Kanakura, Y; Furukawa, Y; Ernst, T J; Griffin, J D

    1990-07-01

    The cells from some patients with acute myeloblastic leukemia will secrete autostimulatory cytokines in tissue culture without the addition of stimulators such as phorbol 12-myristate 13-acetate. Production of interleukin-1 beta (IL-1 beta), for example, has been observed in up to 50% of cases. In order to investigate the nature of the cell secreting IL-1 beta in AML, we used an antisense RNA probe to detect specific IL-1 beta transcripts in individual leukemic cells by in situ hybridization. In fresh, uncultured cells, IL-1 beta transcripts were observed in 1-40% of undifferentiated leukemic blast cells in 17 of 19 cases. In situ hybridization was at least as sensitive as Northern blot analysis in detecting IL-1 beta transcripts. No correlation of IL-1 beta transcript expression with FAB classification was observed. Normal blood and bone marrow mononuclear cells did not contain cells expressing IL-1 beta transcripts. These results support the concept that the regulation of cytokine genes in AML cells is aberrant.

  6. Modulation of fat-soluble vitamin concentrations and blood mononuclear leukocyte populations in milk replacer-fed calves by dietary vitamin A and beta-carotene.

    PubMed

    Nonnecke, B J; Horst, R L; Waters, W R; Dubeski, P; Harp, J A

    1999-12-01

    Dairy calves (n = 18), separated from dams at birth, were fed 1 L of pooled-colostrum. For the remaining 7 wk of the study, they were fed one of three diets consisting of either a custom-formulated milk replacer without vitamin A (controls), or supplemented with retinyl palmitate (equivalent to 32,000 IU of vitamin A/d) or with beta-carotene (equivalent to 20,000 IU of vitamin A/d). Plasma retinol, beta-carotene, and RRR-alpha-tocopherol concentrations were lowest at birth, and increased substantially from birth to 1 wk postpartum in all groups, a probable consequence of ingestion of colostrum. From 1 to 7 wk of age, retinol concentrations were greatest in retinyl palmitate-supplemented calves, intermediate in beta-carotene-supplemented calves and lowest in control calves. At 2, 3, 5, 6, and 7 wk, RRR-alpha-tocopherol concentrations were lower in retinyl palmitate-supplemented calves than in control calves. A negative correlation between plasma retinol and vitamin E concentrations existed from wk 2 to 7, suggesting vitamin A influences the absorption and distribution of RRR-alpha-tocopherol. Supplemental retinyl palmitate, but not beta-carotene, was associated with a reduction in the percentage of blood mononuclear leukocytes expressing CD2, CD4, and CD8-T cell antigens and interleukin-2 receptors. By wk 7, leukocyte populations from retinyl palmitate-supplemented calves were more similar to those from adult cattle than those from control calves, suggesting that supplemental vitamin A, as retinyl palmitate, affects the maturation of the neonatal immune system. Differences in the composition of blood mononuclear leukocyte populations may represent changes in immune competency.

  7. The Central Clock Neurons Regulate Lipid Storage in Drosophila

    PubMed Central

    DiAngelo, Justin R.; Erion, Renske; Crocker, Amanda; Sehgal, Amita

    2011-01-01

    A proper balance of lipid breakdown and synthesis is essential for achieving energy homeostasis as alterations in either of these processes can lead to pathological states such as obesity. The regulation of lipid metabolism is quite complex with multiple signals integrated to control overall triglyceride levels in metabolic tissues. Based upon studies demonstrating effects of the circadian clock on metabolism, we sought to determine if the central clock cells in the Drosophila brain contribute to lipid levels in the fat body, the main nutrient storage organ of the fly. Here, we show that altering the function of the Drosophila central clock neurons leads to an increase in fat body triglycerides. We also show that although triglyceride levels are not affected by age, they are increased by expression of the amyloid-beta protein in central clock neurons. The effect on lipid storage seems to be independent of circadian clock output as changes in triglycerides are not always observed in genetic manipulations that result in altered locomotor rhythms. These data demonstrate that the activity of the central clock neurons is necessary for proper lipid storage. PMID:21625640

  8. Molecular Characterization and Transcriptional Regulation Analysis of the Bovine PDHB Gene.

    PubMed

    Li, Anning; Zhang, Yaran; Zhao, Zhidong; Wang, Mingming; Zan, Linsen

    2016-01-01

    The pyruvate dehydrogenase beta subunit (PDHB) is a subunit of pyruvate dehydrogenase (E1), which catalyzes pyruvate into acetyl-CoA and provides a linkage between the tricarboxylic acid cycle (TCA) and the glycolysis pathway. Previous studies demonstrated PDHB to be positively related to the intramuscular fat (IMF) content. However, the transcriptional regulation of PDHB remains unclear. In our present study, the cDNA of bovine PDHB was cloned and the genomic structure was analyzed. The phylogenetic tree showed bovine PDHB to be closely related to goat and sheep, and least related to chicken. Spatial expression pattern analysis revealed the products of bovine PDHB to be widely expressed with the highest level in the fat of testis. To understand the transcriptional regulation of bovine PDHB, 1899 base pairs (bp) of the 5'-regulatory region was cloned. Sequence analysis neither found consensus TATA-box nor CCAAT-box in the 5'-flanking region of bovine PDHB. However, a CpG island was predicted from nucleotides -284 to +117. Serial deletion constructs of the 5'-flanking region, evaluated in dual-luciferase reporter assay, revealed the core promoter to be located 490bp upstream from the transcription initiation site (+1). Electrophoretic mobility shift assay (EMSA) and chromatin immunoprecipitation assay (ChIP) in combination with asite-directed mutation experiment indicated both myogenin (MYOG) and the CCAAT/enhancer-binding protein beta (C/EBPß) to be important transcription factors for bovine PDHB in skeletal muscle cells and adipocytes. Our results provide an important basis for further investigation of the bovine PDHB function and regulation in cattle.

  9. Molecular Characterization and Transcriptional Regulation Analysis of the Bovine PDHB Gene

    PubMed Central

    Li, Anning; Zhang, Yaran; Zhao, Zhidong; Wang, Mingming; Zan, Linsen

    2016-01-01

    The pyruvate dehydrogenase beta subunit (PDHB) is a subunit of pyruvate dehydrogenase (E1), which catalyzes pyruvate into acetyl-CoA and provides a linkage between the tricarboxylic acid cycle (TCA) and the glycolysis pathway. Previous studies demonstrated PDHB to be positively related to the intramuscular fat (IMF) content. However, the transcriptional regulation of PDHB remains unclear. In our present study, the cDNA of bovine PDHB was cloned and the genomic structure was analyzed. The phylogenetic tree showed bovine PDHB to be closely related to goat and sheep, and least related to chicken. Spatial expression pattern analysis revealed the products of bovine PDHB to be widely expressed with the highest level in the fat of testis. To understand the transcriptional regulation of bovine PDHB, 1899 base pairs (bp) of the 5’-regulatory region was cloned. Sequence analysis neither found consensus TATA-box nor CCAAT-box in the 5’-flanking region of bovine PDHB. However, a CpG island was predicted from nucleotides -284 to +117. Serial deletion constructs of the 5’-flanking region, evaluated in dual-luciferase reporter assay, revealed the core promoter to be located 490bp upstream from the transcription initiation site (+1). Electrophoretic mobility shift assay (EMSA) and chromatin immunoprecipitation assay (ChIP) in combination with asite-directed mutation experiment indicated both myogenin (MYOG) and the CCAAT/enhancer-binding protein beta (C/EBPß) to be important transcription factors for bovine PDHB in skeletal muscle cells and adipocytes. Our results provide an important basis for further investigation of the bovine PDHB function and regulation in cattle. PMID:27379520

  10. The Effect of a 12-Week Beta-hydroxy-beta-methylbutyrate (HMB) Supplementation on Highly-Trained Combat Sports Athletes: A Randomised, Double-Blind, Placebo-Controlled Crossover Study

    PubMed Central

    Jeszka, Jan; Podgórski, Tomasz

    2017-01-01

    The aim of this study was to verify the effect of beta-hydroxy-beta-methylbutyrate (HMB) supplementation on physical capacity, body composition and the value of biochemical parameters in highly-trained combat sports athletes. Forty-two males highly-trained in combat sports were subjected to 12 weeks of supplementation with HMB and a placebo in a randomized, placebo controlled, double-blind crossover manner. Over the course of the experiment, aerobic and anaerobic capacity was determined, while analyses were conducted on body composition and levels of creatine kinase, lactate dehydrogenase, testosterone, cortisol and lactate. Following HMB supplementation, fat-free mass increased (p = 0.049) with a simultaneous reduction of fat mass (p = 0.016) in comparison to placebo. In turn, after HMB supplementation, the following indicators increased significantly in comparison to the placebo: the time to reach ventilatory threshold (p < 0.0001), threshold load (p = 0.017) and the threshold HR (p < 0.0001), as well as anaerobic peak power (p = 0.005), average power (p = 0.029), maximum speed (p < 0.001) and post-exercise lactate concentrations (p < 0.0001). However, when compared to the placebo, no differences were observed in blood marker levels. The results indicate that supplying HMB promotes advantageous changes in body composition and stimulates an increase in aerobic and anaerobic capacity in combat sports athletes. PMID:28708126

  11. The Effect of a 12-Week Beta-hydroxy-beta-methylbutyrate (HMB) Supplementation on Highly-Trained Combat Sports Athletes: A Randomised, Double-Blind, Placebo-Controlled Crossover Study.

    PubMed

    Durkalec-Michalski, Krzysztof; Jeszka, Jan; Podgórski, Tomasz

    2017-07-14

    The aim of this study was to verify the effect of beta-hydroxy-beta-methylbutyrate (HMB) supplementation on physical capacity, body composition and the value of biochemical parameters in highly-trained combat sports athletes. Forty-two males highly-trained in combat sports were subjected to 12 weeks of supplementation with HMB and a placebo in a randomized, placebo controlled, double-blind crossover manner. Over the course of the experiment, aerobic and anaerobic capacity was determined, while analyses were conducted on body composition and levels of creatine kinase, lactate dehydrogenase, testosterone, cortisol and lactate. Following HMB supplementation, fat-free mass increased ( p = 0.049) with a simultaneous reduction of fat mass ( p = 0.016) in comparison to placebo. In turn, after HMB supplementation, the following indicators increased significantly in comparison to the placebo: the time to reach ventilatory threshold ( p < 0.0001), threshold load ( p = 0.017) and the threshold HR ( p < 0.0001), as well as anaerobic peak power ( p = 0.005), average power ( p = 0.029), maximum speed ( p < 0.001) and post-exercise lactate concentrations ( p < 0.0001). However, when compared to the placebo, no differences were observed in blood marker levels. The results indicate that supplying HMB promotes advantageous changes in body composition and stimulates an increase in aerobic and anaerobic capacity in combat sports athletes.

  12. Id-1 promotes TGF-{beta}1-induced cell motility through HSP27 activation and disassembly of adherens junction in prostate epithelial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Di Kaijun; Wong, Y.C.; Wang Xianghong

    Id-1 (inhibitor of differentiation or DNA binding-1) has been positively associated with cell proliferation, cell cycle progression, and invasiveness during tumorigenesis. In addition, Id-1 has been shown to modulate cellular sensitivity to TGF-{beta}1 (transforming growth factor {beta}1). Here we demonstrate a novel role of Id-1 in promoting TGF-{beta}1-induced cell motility in a non-malignant prostate epithelial cell line, NPTX. We found that Id-1 promoted F-actin stress fiber formation in response to TGF-{beta}1, which was associated with increased cell-substrate adhesion and cell migration in NPTX cells. In addition, this positive effect of Id-1 on TGF-{beta}1-induced cell motility was mediated through activation ofmore » MEK-ERK signaling pathway and subsequent phosphorylation of HSP27 (heat shock protein 27). Furthermore, Id-1 disrupted the adherens junction complex in TGF-{beta}1-treated cells through down-regulation of E-cadherin, redistribution of {beta}-catenin, along with up-regulation of N-cadherin. These lines of evidence reveal a novel tumorigenic role of Id-1 through reorganization of actin cytoskeleton and disassembly of cell-cell adhesion in response to TGF-{beta}1 in human prostate epithelial cells, and suggest that intracellular Id-1 levels might be a determining factor for switching TGF-{beta}1 from a growth inhibitor to a tumor promoter during prostate carcinogenesis.« less

  13. Antidiabetic and Beta Cell-Protection Activities of Purple Corn Anthocyanins

    PubMed Central

    Hong, Su Hee; Heo, Jee-In; Kim, Jeong-Hyeon; Kwon, Sang-Oh; Yeo, Kyung-Mok; Bakowska-Barczak, Anna M.; Kolodziejczyk, Paul; Ryu, Ok-Hyun; Choi, Moon-Ki; Kang, Young-Hee; Lim, Soon Sung; Suh, Hong-Won; Huh, Sung-Oh; Lee, Jae-Yong

    2013-01-01

    Antidiabetic and beta cell-protection activities of purple corn anthocyanins (PCA) were examined in pancreatic beta cell culture and db/db mice. Only PCA among several plant anthocyanins and polyphenols showed insulin secretion activity in culture of HIT-T15 cells. PCA had excellent antihyperglycemic activity (in terms of blood glucose level and OGTT) and HbA1c-decreasing activity when compared with glimepiride, a sulfonylurea in db/db mice. In addition, PCA showed efficient protection activity of pancreatic beta cell from cell death in HIT-T15 cell culture and db/db mice. The result showed that PCA had antidiabetic and beta cell-protection activities in pancreatic beta cell culture and db/db mice. PMID:24244813

  14. Extracellular heat shock protein HSP90{beta} secreted by MG63 osteosarcoma cells inhibits activation of latent TGF-{beta}1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suzuki, Shigeki; Kulkarni, Ashok B., E-mail: ak40m@nih.gov

    2010-07-30

    Transforming growth factor-beta 1 (TGF-{beta}1) is secreted as a latent complex, which consists of latency-associated peptide (LAP) and the mature ligand. The release of the mature ligand from LAP usually occurs through conformational change of the latent complex and is therefore considered to be the first step in the activation of the TGF-{beta} signaling pathway. So far, factors such as heat, pH changes, and proteolytic cleavage are reportedly involved in this activation process, but the precise molecular mechanism is still far from clear. Identification and characterization of the cell surface proteins that bind to LAP are important to our understandingmore » of the latent TGF-{beta} activation process. In this study, we have identified heat shock protein 90 {beta} (HSP90{beta}) from the cell surface of the MG63 osteosarcoma cell line as a LAP binding protein. We have also found that MG63 cells secrete HSP90{beta} into extracellular space which inhibits the activation of latent TGF-{beta}1, and that there is a subsequent decrease in cell proliferation. TGF-{beta}1-mediated stimulation of MG63 cells resulted in the increased cell surface expression of HSP90{beta}. Thus, extracellular HSP90{beta} is a negative regulator for the activation of latent TGF-{beta}1 modulating TGF-{beta} signaling in the extracellular domain. -- Research highlights: {yields} Transforming growth factor-beta 1 (TGF-{beta}1) is secreted as a latent complex. {yields} This complex consists of latency-associated peptide (LAP) and the mature ligand. {yields} The release of the mature ligand from LAP is the first step in TGF-{beta} activation. {yields} We identified for the first time a novel mechanism for this activation process. {yields} Heat shock protein 90 {beta} is discovered as a negative regulator for this process.« less

  15. Trafficking of cell surface beta-amyloid precursor protein: retrograde and transcytotic transport in cultured neurons

    PubMed Central

    1995-01-01

    Amyloid beta-protein (A beta), the principal constituent of senile plaques seen in Alzheimer's disease (AD), is derived by proteolysis from the beta-amyloid precursor protein (beta PP). The mechanism of A beta production in neurons, which are hypothesized to be a rich source of A beta in brain, remains to be defined. In this study, we describe a detailed localization of cell surface beta PP and its subsequent trafficking in primary cultured neurons. Full-length cell surface beta PP was present primarily on perikarya and axons, the latter with a characteristic discontinuous pattern. At growth cones, cell surface beta PP was inconsistently detected. By visualizing the distribution of beta PP monoclonal antibodies added to intact cultures, beta PP was shown to be internalized from distal axons or terminals and retrogradely transported back to perikarya in organelles which colocalized with fluid-phase endocytic markers. Retrograde transport of beta PP was shown in both hippocampal and peripheral sympathetic neurons, the latter using a compartment culture system that isolated cell bodies from distal axons and terminals. In addition, we demonstrated that beta PP from distal axons was transcytotically transported to the surface of perikarya from distal axons in sympathetic neurons. Indirect evidence of this transcytotic pathway was obtained in hippocampal neurons using antisense oligonucleotide to the kinesin heavy chain to inhibit anterograde beta PP transport. Taken together, these results demonstrate novel aspects of beta PP trafficking in neurons, including retrograde axonal transport and transcytosis. Moreover, the axonal predominance of cell surface beta PP is unexpected in view of the recent report of polarized sorting of beta PP to the basolateral domain of MDCK cells. PMID:7721945

  16. A method of preserving and testing the acceptability of gac fruit oil, a good source of beta-carotene and essential fatty acids.

    PubMed

    Vuong, L T; King, J C

    2003-06-01

    Gac fruit (Momordica cochinchinensis Spreng) is indigenous to Vietnam and other countries in Southeast Asia. Its seed pulp contains high concentrations of carotenoids, especially the provitamin A, beta-carotene. In northern Vietnam, gac fruits are seasonal and are mainly used in making a rice dish called xoi gac. The purpose of this study was to develop a method to collect and preserve gac fruit oil, to evaluate the nutritional composition of the oil, and to assess the acceptability of the gac oil by typical Vietnamese homemakers. One hundred women participated in training to learn how to prepare the fruits and operate the oil press. The women also participated in a survey of gac fruit use and their habitual use of animal fat and vegetable oil. Among all the participants in the training and surveys, 35 women actually produced oil from gac fruits grown in the village, using manual oil presses and locally available materials. The total carotene concentration in gac fruit oil was 5,700 micrograms/ml. The concentration of beta-carotene was 2,710 micrograms/ml. Sixty-nine percent of total fat was unsaturated, and 35% of that was polyunsaturated. The average daily consumption of gac fruit oil was estimated at 2 ml per person. The daily beta-carotene intake (from gac fruit oil) averaged approximately 5 mg per person. It was found that gac oil can be produced locally by village women using manual presses and locally available materials. The oil is a rich source of beta-carotene, vitamin E, and essential fatty acids. Although the beta-carotene concentration declines with time without a preservative or proper storage, it was still high after three months. The oil was readily accepted by the women and their children, and consumption of the oil increased the intake of beta-carotene and reduced the intake of lard.

  17. Enhanced expressions of mRNA for neuropeptide Y and interleukin 1 beta in hypothalamic arcuate nuclei during adjuvant arthritis-induced anorexia in Lewis rats.

    PubMed

    Stofkova, Andrea; Haluzik, Martin; Zelezna, Blanka; Kiss, Alexander; Skurlova, Martina; Lacinova, Zdenka; Jurcovicova, Jana

    2009-01-01

    Food intake is activated by hypothalamic orexigenic neuropeptide Y (NPY), which is mainly under the dual control of leptin and ghrelin. Rat adjuvant arthritis (AA), similarly as human rheumatoid arthritis, is associated with cachexia caused by yet unknown mechanisms. The aim of our study was to evaluate NPY expression in hypothalamic arcuate nuclei (nARC) under the conditions of AA-induced changes in leptin, ghrelin and adiponectin. Since IL-1beta is involved in the central induction of anorexia, we studied its expression in the nARC as well. AA was induced to Lewis rats using complete Freund's adjuvant. On days 12, 15 and 18 after complete Freund's adjuvant injection, the levels of leptin, adiponectin, ghrelin and IL-1beta were determined by RIA or ELISA. The mRNA expressions for NPY, leptin receptor (OB-R), ghrelin receptor (Ghsr) and IL-1beta were determined by TaqMan RT-PCR from isolated nARC. In AA rats, decreased appetite, body mass and epididymal fat stores positively correlated with reduced circulating and epididymal fat leptin and adiponectin. Ghrelin plasma levels were increased. In nARC, mRNA for OB-R, Ghsr and NPY were overexpressed in AA rats. AA rats showed overexpression of mRNA for IL-1beta in nARC while circulating, and spleen IL-1beta was unaltered. During AA, overexpression of orexigenic NPY mRNA in nARC along with enhanced plasma ghrelin and lowered leptin levels occur. Decreased food intake indicates a predominant effect of the anorexigenic pathway. Activated expression of IL-1beta in nARC suggests its role in keeping AA-induced anorexia in progress. The reduction in adiponectin may also contribute to AA-induced anorexia. Copyright 2009 S. Karger AG, Basel.

  18. A Novel Porcine Model for Future Studies of Cell-enriched Fat Grafting

    PubMed Central

    Sørensen, Celine L.; Vester-Glowinski, Peter V.; Herly, Mikkel; Kurbegovic, Sorel; Ørholt, Mathias; Svalgaard, Jesper D.; Kølle, Stig-Frederik T.; Kristensen, Annemarie T.; Talman, Maj-Lis M.; Drzewiecki, Krzysztof T.; Fischer-Nielsen, Anne

    2018-01-01

    Background: Cell-enriched fat grafting has shown promising results for improving graft survival, although many questions remain unanswered. A large animal model is crucial for bridging the gap between rodent studies and human trials. We present a step-by-step approach in using the Göttingen minipig as a model for future studies of cell-enriched large volume fat grafting. Methods: Fat grafting was performed as bolus injections and structural fat grafting. Graft retention was assessed by magnetic resonance imaging after 120 days. The stromal vascular fraction (SVF) was isolated from excised fat and liposuctioned fat from different anatomical sites and analyzed. Porcine adipose-derived stem/stromal cells (ASCs) were cultured in different growth supplements, and population doubling time, maximum cell yield, expression of surface markers, and differentiation potential were investigated. Results: Structural fat grafting in the breast and subcutaneous bolus grafting in the abdomen revealed average graft retention of 53.55% and 15.28%, respectively, which are similar to human reports. Liposuction yielded fewer SVF cells than fat excision, and abdominal fat had the most SVF cells/g fat with SVF yields similar to humans. Additionally, we demonstrated that porcine ASCs can be readily isolated and expanded in culture in allogeneic porcine platelet lysate and fetal bovine serum and that the use of 10% porcine platelet lysate or 20% fetal bovine serum resulted in population doubling time, maximum cell yield, surface marker profile, and trilineage differentiation that were comparable with humans. Conclusions: The Göttingen minipig is a feasible and cost-effective, large animal model for future translational studies of cell-enriched fat grafting. PMID:29876178

  19. Anorexia-cachexia and obesity treatment may be two sides of the same coin: role of the TGF-b superfamily cytokine MIC-1/GDF15.

    PubMed

    Tsai, V W W; Lin, S; Brown, D A; Salis, A; Breit, S N

    2016-02-01

    Anorexia-cachexia associated with cancer and other diseases is a common and often fatal condition representing a large area of unmet medical need. It occurs most commonly in advanced cancer and is probably a consequence of molecules released by tumour cells, or tumour-associated interstitial or immune cells. These may then act directly on muscle to cause atrophy and/or may cause anorexia, which then leads to loss of both fat and lean mass. Although the aetiological triggers for this syndrome are not well characterized, recent data suggest that MIC-1/GDF15, a transforming growth factor-beta superfamily cytokine produced in large amounts by cancer cells and as a part of other disease processes, may be an important trigger. This cytokine acts on feeding centres in the hypothalamus and brainstem to cause anorexia leading to loss of lean and fat mass and eventually cachexia. In animal studies, the circulating concentrations of MIC-1/GDF15 required to cause this syndrome are similar to those seen in patients with advanced cancer, and at least some epidemiological studies support an association between MIC-1/GDF15 serum levels and measures of nutrition. This article will discuss its mechanisms of central appetite regulation, and the available data linking this action to anorexia-cachexia syndromes that suggest it is a potential target for therapy of cancer anorexia-cachexia and conversely may also be useful for the treatment of severe obesity.

  20. Genetics Home Reference: peroxisomal acyl-CoA oxidase deficiency

    MedlinePlus

    ... of certain fat molecules called very long-chain fatty acids (VLCFAs). Specifically, it is involved in the first step of a process called the peroxisomal fatty acid beta-oxidation pathway. This process shortens the VLCFA ...

  1. Induction of experimental bone metastasis in mice by transfection of integrin alpha 4 beta 1 into tumor cells.

    PubMed Central

    Matsuura, N.; Puzon-McLaughlin, W.; Irie, A.; Morikawa, Y.; Kakudo, K.; Takada, Y.

    1996-01-01

    Cell adhesion receptors (eg, integrins and CD44) play an important role in invasion and metastasis during tumor progression. The increase in integrin alpha 4 beta 1 expression on primary melanomas has been reported to significantly correlate with the development of metastases. alpha 4 beta 1 is a cell surface heterodimer that mediates cell-cell and cell-extracellular matrix interactions through adhesion to vascular cell adhesion molecule (VCAM)-1 and to the IIICS region of fibronectin. To test the effects of alpha 4 beta 1 expression on tumor cell metastasis, Chinese hamster ovary cells were transfected with human alpha 4 cDNA. Whereas alpha 4-negative Chinese hamster ovary cells developed only pulmonary metastasis, alpha 4-positive Chinese hamster ovary cells developed bone and pulmonary metastasis in 3 to 4 weeks when injected intravenously into nude mice. Bone metastasis was inhibited by antibody against alpha 4 or VCAM-1. Expression of alpha 3 beta 1, alpha 6 beta 1, or alpha V beta 1 did not induce bone metastasis. Expression of alpha 4 beta 1 also induced bone metastasis in K562 human erythroleukemia cells injected into SCID mice. These results demonstrate that alpha 4 beta 1 can induce tumor cell trafficking to bone, probably via interaction with VCAM-1 that is constitutively expressed on bone marrow stromal cells. Images Figure 1 Figure 3 PMID:8546226

  2. Age-related islet inflammation marks the proliferative decline of pancreatic beta-cells in zebrafish

    PubMed Central

    Tsakmaki, Anastasia; Mousavy Gharavy, S Neda; Murawala, Priyanka; Konantz, Judith; Birke, Sarah; Hodson, David J; Rutter, Guy A; Bewick, Gavin A

    2018-01-01

    The pancreatic islet, a cellular community harboring the insulin-producing beta-cells, is known to undergo age-related alterations. However, only a handful of signals associated with aging have been identified. By comparing beta-cells from younger and older zebrafish, here we show that the aging islets exhibit signs of chronic inflammation. These include recruitment of tnfα-expressing macrophages and the activation of NF-kB signaling in beta-cells. Using a transgenic reporter, we show that NF-kB activity is undetectable in juvenile beta-cells, whereas cells from older fish exhibit heterogeneous NF-kB activity. We link this heterogeneity to differences in gene expression and proliferation. Beta-cells with high NF-kB signaling proliferate significantly less compared to their neighbors with low activity. The NF-kB signalinghi cells also exhibit premature upregulation of socs2, an age-related gene that inhibits beta-cell proliferation. Together, our results show that NF-kB activity marks the asynchronous decline in beta-cell proliferation with advancing age. PMID:29624168

  3. Reduced Expression of the Liver/Beta-Cell Glucose Transporter Isoform in Glucose-Insensitive Pancreatic Beta Cells of Diabetic Rats

    NASA Astrophysics Data System (ADS)

    Thorens, Bernard; Weir, Gordon C.; Leahy, John L.; Lodish, Harvey F.; Bonner-Weir, Susan

    1990-09-01

    Rats injected with a single dose of streptozocin at 2 days of age develop non-insulin-dependent diabetes 6 weeks later. The pancreatic beta islet cells of these diabetic rats display a loss of glucose-induced insulin secretion while maintaining sensitivity to other secretagogues such as arginine. We analyzed the level of expression of the liver/beta-cell glucose transporter isoform in diabetic islets by immunofluorescence staining of pancreas sections and by Western blotting of islet lysates. Islets from diabetic animals have a reduced expression of this beta-cell-specific glucose transporter isoform and the extent of reduction is correlated with the severity of hyperglycemia. In contrast, expression of this transporter isoform in liver is minimally modified by the diabetes. Thus a decreased expression of the liver/beta-cell glucose transporter isoform in beta cells is associated with the impaired glucose sensing characteristic of diabetic islets; our data suggest that this glucose transporter may be part of the beta-cell glucose sensor.

  4. The role of peroxisome proliferator-activated receptor-{beta}/{delta} in epidermal growth factor-induced HaCaT cell proliferation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liang Pengfei; Jiang Bimei; Yang Xinghua

    2008-10-15

    Epidermal growth factor (EGF) has been shown to be a potent mitogen for epidermal cells both in vitro and in vivo, thus contributing to the development of an organism. It has recently become clear that peroxisome proliferator-activated receptor-{beta}/{delta} (PPAR{beta}/{delta}) expression and activation is involved in the cell proliferation. However, little is known about the role of PPAR{beta}/{delta} in EGF-induced proliferation of HaCaT keratinocytes. In this study, HaCaT cells were cultured in the presence and absence of EGF and we identified that EGF induced an increase of PPAR{beta}/{delta} mRNA and protein level expression in time-dependent and dose-dependent manner, and AG1487, anmore » EGF receptor (EGFR) special inhibitor, caused attenuation of PPAR{beta}/{delta} protein expression. Electrophoretic mobility shift assay (EMSA) revealed that EGF significantly increased PPAR{beta}/{delta} binding activity in HaCaT keratinocytes. Antisense phosphorothioate oligonucleotides (asODNs) against PPAR{beta}/{delta} caused selectively inhibition of PPAR{beta}/{delta} protein content induced by EGF and significantly attenuated EGF-mediated cell proliferation. Treatment of the cells with L165041, a specific synthetic ligand for PPAR{beta}/{delta}, significantly enhanced EGF-mediated cell proliferation. Finally, c-Jun ablation inhibited PPAR{beta}/{delta} up-regulation induced by EGF, and chromatin immunoprecipitation (ChIP) showed that c-Jun bound to the PPAR{beta}/{delta} promoter and the binding increased in EGF-stimulated cells. These results demonstrate that EGF induces PPAR{beta}/{delta} expression in a c-Jun-dependent manner and PPAR{beta}/{delta} plays a vital role in EGF-stimulated proliferation of HaCaT cells.« less

  5. Relationships of pancreatic beta-cell function with microalbuminuria and glomerular filtration rate in middle-aged and elderly population without type 2 diabetes mellitus: a Chinese community-based analysis.

    PubMed

    Fu, Shihui; Zhou, Shanjing; Luo, Leiming; Ye, Ping

    2017-01-01

    Relationships of pancreatic beta-cell function abnormality with microalbuminuria (MA) and glomerular filtration rate (GFR) may differ by age, ethnicity and accompanied diseases. Previous studies were generally conducted in Western adult patients with type 2 diabetes mellitus (T2DM), and it is uncertain whether pancreatic beta-cell function is associated with MA and GFR in Chinese community-dwelling middle-aged and elderly population without T2DM. We therefore examined the relationships of pancreatic beta-cell function with two indices of renal damage, MA and GFR, in Chinese community-dwelling middle-aged and elderly population without T2DM. This analysis focused on 380 Beijing residents older than 45 years who were free of T2DM and completed the evaluation of pancreatic beta-cell function. Median age was 67 (49-80) years. Levels of triglyceride, diastolic blood pressure and homeostasis model assessment-beta (HOMA-beta) index were positively related to urine microalbumin ( P <0.05 for all). Age, low-density lipoprotein cholesterol levels and HOMA-beta index were inversely correlated with GFR, while high-density lipoprotein cholesterol levels were positively correlated with GFR ( P <0.05 for all). In all three adjustment models, there was a significant positive association between HOMA-beta index and MA; subjects with higher beta-cell function had higher odds of MA ( P <0.05 for all). There was no association between HOMA-beta index and GFR <60 mL/min/1.73 m 2 in any model ( P >0.05 for all). Modeling the pancreatic beta-cell function with different adjusted variables provided the same conclusion of association with MA; beta-cell function was positively associated with MA. Additionally, there was a specific difference in the adjusted associations of pancreatic beta-cell function with MA and GFR <60 mL/min/1.73 m 2 ; beta-cell function was not independently associated with GFR <60 mL/min/1.73 m 2 . This result indicated that abnormal pancreatic beta-cell function plays an important role in the development of MA.

  6. Insulin promotes proliferation and fibrosing responses in activated pancreatic stellate cells

    PubMed Central

    Yang, Jiayue; Waldron, Richard T.; Su, Hsin-Yuan; Moro, Aune; Chang, Hui-Hua; Eibl, Guido; Ferreri, Kevin; Kandeel, Fouad R.; Lugea, Aurelia; Li, Ling

    2016-01-01

    Epidemiological studies support strong links between obesity, diabetes, and pancreatic disorders including pancreatitis and pancreatic adenocarcinoma (PDAC). Type 2 diabetes (T2DM) is associated with insulin resistance, hyperglycemia, and hyperinsulinemia, the latter due to increased insulin secretion by pancreatic beta-cells. We reported that high-fat diet-induced PDAC progression in mice is associated with hyperglycemia, hyperinsulinemia, and activation of pancreatic stellate cells (PaSC). We investigated here the effects of high concentrations of insulin and glucose on mouse and human PaSC growth and fibrosing responses. We found that compared with normal, pancreata from T2DM patients displayed extensive collagen deposition and activated PaSC in islet and peri-islet exocrine pancreas. Mice fed a high-fat diet for up to 12 mo similarly displayed increasing peri-islet fibrosis compared with mice fed control diet. Both quiescent and activated PaSC coexpress insulin (IR; mainly A type) and IGF (IGF-1R) receptors, and both insulin and glucose modulate receptor expression. In cultured PaSC, insulin induced rapid tyrosine autophosphorylation of IR/IGF-1R at specific kinase domain activation loop sites, activated Akt/mTOR/p70S6K signaling, and inactivated FoxO1, a transcription factor that restrains cell growth. Insulin did not promote activation of quiescent PaSC in either 5 mM or 25 mM glucose containing media. However, in activated PaSC, insulin enhanced cell proliferation and augmented production of extracellular matrix proteins, and these effects were abolished by specific inhibition of mTORC1 and mTORC2. In conclusion, our data support the concept that increased local glucose and insulin concentrations associated with obesity and T2DM promote PaSC growth and fibrosing responses. PMID:27609771

  7. Effects of nine weeks of beta-hydroxy-beta- methylbutyrate supplementation on strength and body composition in resistance trained men.

    PubMed

    Thomson, Jasmine S; Watson, Patricia E; Rowlands, David S

    2009-05-01

    The dietary supplement beta-hydroxy-beta-methylbutyrate (HMB) is claimed to increase strength, lean body mass, and decrease fat mass when used in conjunction with resistance training. Although there is some support for these claims, the evidence is not conclusive, and it is even less so for resistance trained individuals. Therefore, we aimed to further elucidate the effects of HMB supplementation in trained men. A randomized, double-blind, controlled study design was used to investigate the effects of supplementing 22 resistance trained men with 3 g.d of HMB or corn starch placebo for 9 weeks with resistance training. The effect of HMB on strength was determined using the 1-repetition maximum (1RM) method for the lower body (leg extension) and upper body (bench press, bicep preacher curl) at baseline and after the supplementation period. Body composition was assessed by skinfolds and bioelectrical impedance analysis (BIA). Overall, 9 weeks' HMB supplementation resulted in a clear-cut, trivial increase in combined averaged strength measures of 1.6% (90% confidence limits: +/-4.3%). When considered in isolation, however, leg extension 1RM increased by a substantial 9.1% (90% confidence limits: +/-7.5%), but the effect on upper-body strength was inconclusive (bench press: -1.9 +/- 9.3%; bicep curl: -1.7 +/- 4.7%). Based on BIA estimates, HMB had a decreasing (although inconclusive) influence on fat mass of -9 +/- 14%, but it had a clear, trivial effect on fat-free mass of 0.2 +/- 2.2%. The magnitude of change in body mass was trivial, but the probability of substantial reductions in skinfold thicknesses ranged from negligible to likely. In previously trained men, supplementation of HMB in conjunction with resistance training provides a substantial benefit to lower-body strength, but it has negligible effects on body composition.

  8. TGF{beta} induces proHB-EGF shedding and EGFR transactivation through ADAM activation in gastric cancer cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ebi, Masahide; Kataoka, Hiromi, E-mail: hkataoka@med.nagoya-cu.ac.jp; Shimura, Takaya

    2010-11-19

    Research highlights: {yields} TGF{beta} induces EGFR transactivation through proHB-EGF shedding by activated ADAM members in gastric cancer cells. {yields} TGF{beta} induces nuclear translocation of HB-EGF-CTF cleaved by ADAM members. {yields} TGF{beta} enhances cell growth by EGFR transactivation and HB-EGF-CTF nuclear translocation and ADAM inhibitors block these effects. {yields} Silencing of ADAM17 also blocks EGFR transactivation, HB-EGF-CTF nuclear translocation and cancer cell growth by TGF{beta}. {yields} ADAM17 may play a crucial role in this TGF{beta}-HB-EGF signal transduction. -- Abstract: Background and aims: Transforming growth factor-beta (TGF{beta}) is known to potently inhibit cell growth. Loss of responsiveness to TGF{beta} inhibition on cellmore » growth is a hallmark of many types of cancer, yet its mechanism is not fully understood. Membrane-anchored heparin-binding EGF-like growth factor (proHB-EGF) ectodomain is cleaved by a disintegrin and metalloproteinase (ADAM) members and is implicated in epidermal growth factor receptor (EGFR) transactivation. Recently, nuclear translocation of the C-terminal fragment (CTF) of pro-HB-EGF was found to induce cell growth. We investigated the association between TGF{beta} and HB-EGF signal transduction via ADAM activation. Materials and methods: The CCK-8 assay in two gastric cancer cell lines was used to determine the effect for cell growth by TGF{beta}. The effect of two ADAM inhibitors was also evaluated. Induction of EGFR phosphorylation by TGF{beta} was analyzed and the effect of the ADAM inhibitors was also examined. Nuclear translocation of HB-EGF-CTF by shedding through ADAM activated by TGF{beta} was also analyzed. EGFR transactivation, HB-EGF-CTF nuclear translocation, and cell growth were examined under the condition of ADAM17 knockdown. Result: TGF{beta}-induced EGFR phosphorylation of which ADAM inhibitors were able to inhibit. TGF{beta} induced shedding of proHB-EGF allowing HB-EGF-CTF to translocate to the nucleus. ADAM inhibitors blocked this nuclear translocation. TGF{beta} enhanced gastric cancer cell growth and ADAM inhibitors suppressed this effect. EGFR phosphorylation, HB-EGF-CTF nuclear translocation, and cell growth were suppressed in ADAM17 knockdown cells. Conclusion: HB-EGF-CTF nuclear translocation and EGFR transactivation from proHB-EGF shedding mediated by ADAM17 activated by TGF{beta} might be an important pathway of gastric cancer cell proliferation by TGF{beta}.« less

  9. Neurotensin protects pancreatic beta cells from apoptosis.

    PubMed

    Coppola, Thierry; Béraud-Dufour, Sophie; Antoine, Aurélie; Vincent, Jean-Pierre; Mazella, Jean

    2008-01-01

    The survival of pancreatic beta cells depends on the balance between external cytotoxic and protective molecular systems. The neuropeptide neurotensin (NT) has been shown to regulate certain functions of the endocrine pancreas including insulin and glucagon release. However, the mechanism of action of NT as well as the identification of receptors involved in the pancreatic functions of the peptide remained to be studied. We demonstrate here that NT is an efficient protective agent of pancreatic beta cells against cytotoxic agents. Both beta-TC3 and INS-1E cell lines and the mouse pancreatic islet cells express the three known NT receptors. The incubation of beta cells with NT protects cells from apoptosis induced either by staurosporine or by IL-1beta. In beta-TC3 cells, NT activates both MAP and PI-3 kinases pathways and strongly reduces the staurosporine or the Il-1beta-induced caspase-3 activity by a mechanism involving Akt activation. The NTSR2 agonist levocabastine displays the same protective effect than NT whereas the NTSR1 antagonist is unable to block the effect of NT suggesting the predominant involvement of the NTSR2 in the action of NT on beta cells. These results clearly indicate for the first time that NT is able to protect endocrine beta cells from external cytotoxic agents, a role well correlated with its release in the circulation after a meal.

  10. Concentrations of 17beta-estradiol in Holstein whole milk.

    PubMed

    Pape-Zambito, D A; Magliaro, A L; Kensinger, R S

    2007-07-01

    Some individuals have expressed concern about estrogens in food because of their potential to promote growth of estrogen-sensitive human cancer cells. Researchers have reported concentrations of estrogen in milk but few whole milk samples have been analyzed. Because estrogen associates with the fat phase of milk, the analysis of whole milk is an important consideration. The objectives of this study, therefore, were to quantify 17beta-estradiol (E2) in whole milk from dairy cows and to determine whether E2 concentrations in milk from cows in the second half of pregnancy were greater than that in milk from cows in the first half of pregnancy or in nonpregnant cows. Milk samples and weights were collected during a single morning milking from 206 Holstein cows. Triplicate samples were collected and 2 samples were analyzed for fat, protein, lactose, and somatic cell counts (SCC); 1 sample was homogenized and analyzed for E2. The homogenized whole milk (3 mL) was extracted twice with ethyl acetate and once with methanol. The extract was reconstituted in benzene:methanol (9:1, vol/vol) and run over a Sephadex LH-20 column to separate E2 from cholesterol and estrone before quantification using radioimmunoassay. Cows were classified as not pregnant (NP, n = 138), early pregnant (EP, 1 to 140 d pregnant, n = 47), or midpregnant (MP, 141 to 210 d pregnant, n = 21) at the time of milk sampling based on herd health records. Mean E2 concentration in whole milk was 1.4 +/- 0.2 pg/mL and ranged from nondetectable to 22.9 pg/mL. Milk E2 concentrations averaged 1.3, 0.9, and 3.0 pg/mL for NP, EP, and MP cows, respectively. Milk E2 concentrations for MP cows were greater and differed from those of NP and EP cows. Milk composition was normal for a Holstein herd in that log SCC values and percentages of fat, protein, and lactose averaged 4.9, 3.5, 3.1, and 4.8, respectively. Estradiol concentration was significantly correlated (r = 0.20) with percentage fat in milk. Mean milk yield was 18.9 +/- 0.6 kg for the morning milking. The mean E2 mass accumulated in the morning milk was 23.2 +/- 3.4 ng/cow. Likewise, using the overall mean concentration for E2 in milk, the mean E2 mass in 237 mL (8 fluid ounces) of raw whole milk was 330 pg. The quantity of E2 in whole milk, therefore, is low and is unlikely to pose a health risk for humans.

  11. Berberine treatment prevents cardiac dysfunction and remodeling through activation of 5'-adenosine monophosphate-activated protein kinase in type 2 diabetic rats and in palmitate-induced hypertrophic H9c2 cells.

    PubMed

    Chang, Wenguang; Zhang, Ming; Meng, Zhaojie; Yu, Yang; Yao, Fan; Hatch, Grant M; Chen, Li

    2015-12-15

    Diabetic cardiomyopathy is the major cause of death in type 2 diabetic patients. Berberine is an isoquinoline alkaloid extract from traditional chinese herbs and its hypoglycemic and hypolipidemic effects make it a promising drug for treatment of type 2 diabetes. We examined if berberine improved cardiac function and attenuated cardiac hypertrophy and fibrosis in high fat diet and streptozotocin induced-type 2 diabetic rats in vivo and reduced expression of hypertrophy markers in palmitate-induced hypertrophic H9c2 cells in vitro. Treatment of diabetic animals with berberine partially improved cardiac function and restored fasting blood insulin, fasting blood glucose, total cholesterol, and triglyceride levels to that of control. In addition, berberine treatment of diabetic animals increased cardiac 5'-adenosine monophosphate-activated protein kinase (AMPK) and protein kinase B (AKT) activation and reduced glycogen synthase kinase 3 beta (GSK3β) activation compared to control. Palmitate incubation of H9c2 cells resulted in cellular hypertrophy and decreased expression of alpha-myosin heavy chain (α-MHC) and increased expression of beta-myosin heavy chain (β-MHC) compared to controls. Berberine treatment of palmitate-incubated H9c2 cells reduced hypertrophy, increased α-MHC expression and decreased β-MHC expression. In addition, berberine treatment of palmitate-incubated H9c2 cells increased AMPK and AKT activation and reduced GSK3β activation. The presence of the AMPK inhibitor Compound C attenuated the effects of berberine. The results strongly indicate that berberine treatment may be protective against the development of diabetic cardiomyopathy. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Pancreatic islets and insulinoma cells express a novel isoform of group VIA phospholipase A2 (iPLA2 beta) that participates in glucose-stimulated insulin secretion and is not produced by alternate splicing of the iPLA2 beta transcript.

    PubMed

    Ramanadham, Sasanka; Song, Haowei; Hsu, Fong-Fu; Zhang, Sheng; Crankshaw, Mark; Grant, Gregory A; Newgard, Christopher B; Bao, Shunzhong; Ma, Zhongmin; Turk, John

    2003-12-02

    Many cells express a group VIA 84 kDa phospholipase A(2) (iPLA(2)beta) that is sensitive to inhibition by a bromoenol lactone (BEL) suicide substrate. Inhibition of iPLA(2)beta in pancreatic islets and insulinoma cells suppresses, and overexpression of iPLA(2)beta in INS-1 insulinoma cells amplifies, glucose-stimulated insulin secretion, suggesting that iPLA(2)beta participates in secretion. Western blotting analyses reveal that glucose-responsive 832/13 INS-1 cells express essentially no 84 kDa iPLA(2)beta-immunoreactive protein but predominantly express a previously unrecognized immunoreactive iPLA(2)beta protein in the 70 kDa region that is not generated by a mechanism of alternate splicing of the iPLA(2)beta transcript. To determine if the 70 kDa-immunoreactive protein is a short isoform of iPLA(2)beta, protein from the 70 kDa region was digested with trypsin and analyzed by mass spectrometry. Such analyses reveal several peptides with masses and amino acid sequences that exactly match iPLA(2)beta tryptic peptides. Peptide sequences identified in the 70 kDa tryptic digest include iPLA(2)beta residues 7-53, suggesting that the N-terminus is preserved. We also report here that the 832/13 INS-1 cells express iPLA(2)beta catalytic activity and that BEL inhibits secretagogue-stimulated insulin secretion from these cells but not the incorporation of arachidonic acid into membrane PC pools of these cells. These observations suggest that the catalytic iPLA(2)beta activity expressed in 832/13 INS-1 cells is attributable to a short isoform of iPLA(2)beta and that this isoform participates in insulin secretory but not in membrane phospholipid remodeling pathways. Further, the finding that pancreatic islets also express predominantly a 70 kDa iPLA(2)beta-immunoreactive protein suggests that a signal transduction role of iPLA(2)beta in the native beta-cell might be attributable to a 70 kDa isoform of iPLA(2)beta.

  13. (beta)-catenin mediates the specification of endoderm cells in ascidian embryos.

    PubMed

    Imai, K; Takada, N; Satoh, N; Satou, Y

    2000-07-01

    In the present study, we addressed the role of (beta)-catenin in the specification of embryonic cells of the ascidians Ciona intestinalis and C. savignyi and obtained the following results: (1) During cleavages, (beta)-catenin accumulated in the nuclei of vegetal blastomeres, suggesting that it plays a role in the specification of endoderm. (2) Mis- and/or overexpression of (beta)-catenin induced the development of an endoderm-specific alkaline phosphatase (AP) in presumptive notochord cells and epidermis cells without affecting differentiation of primary lineage muscle cells. (3) Downregulation of (beta)-catenin induced by the overexpression of cadherin resulted in the suppression of endoderm cell differentiation. This suppression was compensated for by the differentiation of extra epidermis cells. (4) Specification of notochord cells did not take place in the absence of endoderm differentiation. Both the overexpression of (beta)-catenin in presumptive notochord cells and the downregulation of (beta)-catenin in presumptive endoderm cells led to the suppression of Brachyury gene expression, resulting in the failure of notochord specification. These results suggest that the accumulation of (beta)-catenin in the nuclei of endoderm progenitor cells is the first step in the process of ascidian endoderm specification.

  14. Tumor-associated antigen human chorionic gonadotropin beta contains numerous antigenic determinants recognized by in vitro-induced CD8+ and CD4+ T lymphocytes.

    PubMed

    Dangles, Virginie; Halberstam, Ilan; Scardino, Antonio; Choppin, Jeannine; Wertheimer, Mireille; Richon, Sophie; Quelvennec, Erwann; Moirand, Romain; Guillet, Jean-Gérard; Kosmatopoulos, Kostas; Bellet, Dominique; Zeliszewski, Dominique

    2002-02-01

    The beta subunit of human chorionic gonadotropin (hCG beta) is markedly overexpressed by neoplastic cells of differing histological origin including those present in colon, breast, prostate and bladder tumors. We have previously shown that some patients with hCG beta-producing urothelial tumors have circulating T cells that proliferate in response to hCG beta. To make a comprehensive study of hCG beta as a potential target for cancer immunotherapy, we investigated whether hCG beta peptides could induce CD4+ or CD8+ T-cell responses in vitro. By stimulating peripheral blood mononuclear cells (PBMCs) from three donors with mixtures of overlapping 16-mer synthetic peptides analogous to portions of either the hCG beta 20-71 or the hCG beta 102-129 region, we established six CD4+ T-cell lines that proliferated specifically in response to five distinct determinants located within these two hCG beta regions. Three antigenic determinants (hCG beta 52-67, 106-121 and 114-125) were presented by HLA-DR molecules, while the two other antigenic determinants (hCG beta 48-63 and 56-67) were presented by HLA-DQ molecules. Interestingly, one T-cell line specific for peptide hCG beta 106-121 recognized hCG beta peptides comprising, at position 117, either an alanine or an aspartic acid residue, with the latter residue being present within the protein expressed by some tumor cells. In addition, three other hCG beta-derived peptides that exhibited HLA-A*0201 binding ability were able to stimulate CD8+ cytotoxic T cells from two HLA-A*0201 donors. These three immunogenic peptides corresponded to regions hCG beta 40-48, hCG beta 44-52 and hCG beta 75-84. Our results indicate that the tumor-associated antigen hCG beta possesses numerous antigenic determinants liable to stimulate CD4+ and CD8+ T lymphocytes, and might thus be an effective target antigen for the immunotherapy of hCG beta-producing tumors.

  15. Immunological characterization of eristostatin and echistatin binding sites on alpha IIb beta 3 and alpha V beta 3 integrins.

    PubMed Central

    Marcinkiewicz, C; Rosenthal, L A; Mosser, D M; Kunicki, T J; Niewiarowski, S

    1996-01-01

    Two disintegrins with a high degree of amino acid sequence similarity, echistatin and eristostatin, showed a low level of interaction with Chinese hamster ovary (CHO) cells, but they bound to CHO cells transfected with alpha IIb beta 3 genes (A5 cells) and to CHO cells transfected with alpha v beta 3 genes (VNRC3 cells) in a reversible and saturable manner. Scatchard analysis revealed that eristostatin bound to 816000 sites per A5 cell (Kd 28 nM) and to 200000 sites (Kd 14 nM) per VNRC3 cell respectively. However, VNRC3 cells did not bind to immobilized eristostatin. Echistatin bound to 495000 sites (Kd 53 nM) per A5 cell and to 443000 sites (Kd 20 nM) per VNRC3 cell. As determined by flow cytometry, radiobinding assay and adhesion studies, binding of both disintegrins to A5 cells and resting platelets and binding of echistatin to VNRC3 cells resulted in the expression of ligand-induced binding sites (LIBS) on the beta 3 subunit. Eristostatin inhibited, more strongly than echistatin, the binding of three monoclonal antibodies: OPG2 (RGD motif dependent), A2A9 (alpha IIb beta 3 complex dependent) and 7E3 (alpha IIb beta 3 and alpha v beta 3 complex dependent) to A5 cells, to resting and to activated platelets and to purified alpha IIb beta 3. Experiments in which echistatin and eristostatin were used alone or in combination to inhibit the binding of 7E3 and OPG2 antibodies to resting platelets suggested that these two disintegrins bind to different but overlapping sites on alpha IIb beta 3 integrin. Monoclonal antibody LM 609 and echistatin seemed to bind to different sites on alpha v beta 3 integrin. However, echistatin inhibited binding of 7E3 antibody to VNRC3 cells and to purified alpha v beta 3 suggesting that alpha v beta 3 and alpha IIb beta 3 might share the same epitope to which both echistatin and 7E3 bind. Eristostatin had no effect in these systems, providing further evidence that it binds to a different epitope on alpha v beta 3. PMID:8760368

  16. Melipona quadrifasciata (Hymenoptera: Apidae) fat body persists through metamorphosis with a few apoptotic cells and an increased autophagy.

    PubMed

    Santos, Douglas Elias; Azevedo, Dihego Oliveira; Campos, Lúcio Antônio Oliveira; Zanuncio, José Cola; Serrão, José Eduardo

    2015-03-01

    Fat body, typically comprising trophocytes, provides energy during metamorphosis. The fat body can be renewed once the larval phase is complete or recycled and relocated to form the fat body of the adult insect. This study aims to identify the class of programmed cell death that occurs within the fat body cells during the metamorphosis of the stingless bee Melipona quadrifasciata. Using immunodetection techniques, the fat body of the post-defecating larvae and the white-, pink-, brown-, and black-eyed pupae were tested for cleaved caspase-3 and DNA integrity, followed by ultrastructural analysis and identification of autophagy using RT-PCR for the Atg1 gene. The fat body of M. quadrifasciata showed some apoptotic cells positive for cleaved caspase-3, although without DNA fragmentation. During development, the fat body cells revealed an increased number of mitochondria and free ribosomes, in addition to higher amounts of autophagy Atg1 mRNA, than that of the pupae. The fat body of M. quadrifasciata showed few cells which underwent apoptosis, but there was evidence of increased autophagy at the completion of the larval stage. All together, these data show that some fat body cells persist during metamorphosis in the stingless bee M. quadrifasciata.

  17. TGF-beta1 expression in EL4 lymphoma cells overexpressing growth hormone.

    PubMed

    Farmer, John T; Weigent, Douglas A

    2006-03-01

    Our previous studies show that growth hormone overexpression (GHo) upregulates the expression of the IGF-1R and IGF-2R resulting in the protection of the EL4 lymphoma cell line from apoptosis. In this study, we report that GHo also increases TGF-beta1 protein expression measured by luciferase promoter assay, Western analysis, and ELISA. Further, the data show that antibody to TGF-betaR2 decreases TGF-beta1 promoter activity to the level of vector alone control cells. GHo cells treated with (125)I-rh-latent TGF-beta1 showed increased activation of latent TGF-beta1 as measured by an increase in the active 24kDa, TGF-beta1 compared to vector alone control cells. The ability of endogenous GH to increase TGF-beta1 expression is blocked in EL4 cells by antisense but not sense oligodeoxynucleotides or in cells cultured with antibody to growth hormone (GH). The data suggest that endogenous GH may protect from apoptosis through the IGF-1R receptor while limiting cellular growth through increased expression and activation of TGF-beta1.

  18. Activation of Beta-Catenin Signaling in Androgen Receptor–Negative Prostate Cancer Cells

    PubMed Central

    Wan, Xinhai; Liu, Jie; Lu, Jing-Fang; Tzelepi, Vassiliki; Yang, Jun; Starbuck, Michael W.; Diao, Lixia; Wang, Jing; Efstathiou, Eleni; Vazquez, Elba S.; Troncoso, Patricia; Maity, Sankar N.; Navone, Nora M.

    2012-01-01

    Purpose To study Wnt/beta-catenin in castrate-resistant prostate cancer (CRPC) and understand its function independently of the beta-catenin–androgen receptor (AR) interaction. Experimental Design We performed beta-catenin immunocytochemical analysis, evaluated TOP-flash reporter activity (a reporter of beta-catenin–mediated transcription), and sequenced the beta-catenin gene in MDA PCa 118a, MDA PCa 118b, MDA PCa 2b, and PC-3 prostate cancer (PCa) cells. We knocked down beta-catenin in AR-negative MDA PCa 118b cells and performed comparative gene-array analysis. We also immunohistochemically analyzed beta-catenin and AR in 27 bone metastases of human CRPCs. Results Beta-catenin nuclear accumulation and TOP-flash reporter activity were high in MDA PCa 118b but not in MDA PCa 2b or PC-3 cells. MDA PCa 118a and 118b cells carry a mutated beta-catenin at codon 32 (D32G). Ten genes were expressed differently (false discovery rate, 0.05) in MDA PCa 118b cells with downregulated beta-catenin. One such gene, hyaluronan synthase 2 (HAS2), synthesizes hyaluronan, a core component of the extracellular matrix. We confirmed HAS2 upregulation in PC-3 cells transfected with D32G-mutant beta-catenin. Finally, we found nuclear localization of beta-catenin in 10 of 27 human tissue specimens; this localization was inversely associated with AR expression (P = 0.056, Fisher’s exact test), suggesting that reduced AR expression enables Wnt/beta-catenin signaling. Conclusion We identified a previously unknown downstream target of beta-catenin, HAS2, in PCa, and found that high beta-catenin nuclear localization and low or no AR expression may define a subpopulation of men with bone-metastatic PCa. These findings may guide physicians in managing these patients. PMID:22298898

  19. Dissection of the insulin-sensitizing effect of liver X receptor ligands.

    PubMed

    Commerford, S Renee; Vargas, Leo; Dorfman, Suzanne E; Mitro, Nico; Rocheford, Erik C; Mak, Puiying A; Li, Xue; Kennedy, Patrick; Mullarkey, Tara L; Saez, Enrique

    2007-12-01

    The liver X receptors (LXRalpha and beta) are nuclear receptors that coordinate carbohydrate and lipid metabolism. Treatment of insulin-resistant mice with synthetic LXR ligands enhances glucose tolerance, inducing changes in gene expression expected to decrease hepatic gluconeogenesis (via indirect suppression of gluconeogenic enzymes) and increase peripheral glucose disposal (via direct up-regulation of glut4 in fat). To evaluate the relative contribution of each of these effects on whole-body insulin sensitivity, we performed hyperinsulinemic-euglycemic clamps in high-fat-fed insulin-resistant rats treated with an LXR agonist or a peroxisome proliferator-activated receptor gamma ligand. Both groups showed significant improvement in insulin action. Interestingly, rats treated with LXR ligand had lower body weight and smaller fat cells than controls. Insulin-stimulated suppression of the rate of glucose appearance (Ra) was pronounced in LXR-treated rats, but treatment failed to enhance peripheral glucose uptake (R'g), despite increased expression of glut4 in epididymal fat. To ascertain whether LXR ligands suppress hepatic gluconeogenesis directly, mice lacking LXRalpha (the primary isotype in liver) were treated with LXR ligand, and gluconeogenic gene expression was assessed. LXR activation decreased expression of gluconeogenic genes in wild-type and LXRbeta null mice, but failed to do so in animals lacking LXRalpha. Our observations indicate that despite inducing suggestive gene expression changes in adipose tissue in this model of diet-induced insulin resistance, the antidiabetic effect of LXR ligands is primarily due to effects in the liver that appear to require LXRalpha. These findings have important implications for clinical development of LXR agonists as insulin sensitizers.

  20. Association of fat to lean mass ratio with metabolic dysfunction in women with polycystic ovary syndrome.

    PubMed

    Ezeh, Uche; Pall, Marita; Mathur, Ruchi; Azziz, Ricardo

    2014-07-01

    Are differences in metabolic dysfunction between polycystic ovary syndrome (PCOS) and control women related to differences in their fat to lean mass (F/L) ratio? Compared with controls of similar body mass index (BMI), women with PCOS demonstrate adverse body composition characterized by increased whole body fat relative to lean mass (i.e. a higher F/L ratio), which is associated with differences in metabolic dysfunction between the two groups. Previous studies examining body composition and insulin resistance (IR) in PCOS have yielded conflicting results. Excess total fat mass (i.e. fat mass index [fat BMI]) correlates with IR, whereas increased total lean mass (i.e. lean BMI) has been associated with higher insulin sensitivity. However, the role of the F/L ratio, which integrates the antagonistic effects of both fat and lean mass depots, on IR in PCOS, has not been investigated. We conducted a prospective cross-sectional study of 120 women between the ages of 22-44 years to study the relation of the F/L ratio with measures of insulin action and secretion in both steady and dynamic states. Sixty PCOS (by NIH, 1990 criteria) and 60 control (age, race and BMI-matched) women were prospectively studied for body composition (by bioelectrical impedance analysis [BIA]) and basal IR and insulin secretion by the homeostasis model assessment (HOMA-IR and HOMA-%β-cell function, respectively) in a tertiary care academic referral center. A subset of 12 PCOS and 12 matched control women also underwent a modified frequently sampled intravenous glucose tolerance test (FSIVGTT) to determine glucose uptake and insulin secretion in dynamic state. Our results indicate that women with PCOS demonstrated greater degrees of hyperandrogenism, and higher waist-to-hip ratio (WHR), %body fat, fat BMI, F/L, fasting insulin levels, and HOMA-IR and HOMA-%β-cell values, than controls. In models adjusted for WHR and free testosterone and diagnostic groups, fasting insulin levels, HOMA-IR, and HOMA-%beta cell function were positively related to the F/L ratio. A positive relationship was also found in both study groups between F/L and the FSIVGTT measures insulin sensitivity (Si) and acute insulin response to glucose (AIRg). The F/L tended to negatively correlate with glucose effectiveness or non-insulin-mediated glucose transport (Sg) only in PCOS women. Regional tissue sub-compartments, which have been shown to have potential independent associations with metabolic variables, cannot be determined by bioelectrical impedance analysis (BIA). The current results suggest that BIA could be used to assess F/L in place of dual energy X-ray absorptiometry (DXA) in research protocols, and that F/L could possibly be used as an alternative to WHR as a surrogate marker of metabolic dysfunction in clinical practice. This work was supported by grants R01-DK073632 and R01-HD29364 from the NIH and an endowment of the Helping Hand of Los Angeles, Inc. (to R.A.). The authors have no competing interests to declare. Not applicable.

  1. Beta-type transforming growth factor specifies organizational behavior in vascular smooth muscle cell cultures

    PubMed Central

    1987-01-01

    In culture, vascular smooth muscle cells (SMC) grow in a "hill-and- valley" (multilayered) pattern of organization. We have studied the growth, behavioral organization, and biosynthetic phenotype of rat aortic SMC exposed to purified platelet-derived growth regulatory molecules. We show that multilayered growth is not a constitutive feature of cultured SMC, and that beta-type transforming growth factor (TGF-beta) is the primary determinant of multilayered growth and the hill-and-valley pattern of organization diagnostic for SMC in culture. TGF-beta inhibited, in a dose-dependent manner, the serum- or platelet- derived growth factor-mediated proliferation of these cells in two- dimensional culture, but only when cells were plated at subconfluent densities. The ability of TGF-beta to inhibit SMC growth was inversely correlated to plating cell density. When SMC were plated at monolayer density (5 X 10(4) cells/cm2) to allow maximal cell-to-cell contact, TGF-beta potentiated cell growth. This differential response of SMC to TGF-beta may contribute to the hill-and-valley pattern of organization. Unlike its effect on other cell types, TGF-beta did not enhance the synthesis of fibronectin or its incorporation into the extracellular matrix. However, the synthesis of a number of other secreted proteins was altered by TGF-beta treatment. SMC treated with TGF-beta for 4 or 8 h secreted markedly enhanced amounts of an Mr 38,000-D protein doublet whose synthesis is known to be increased by heparin (another inhibitor of SMC growth), suggesting metabolic similarities between heparin- and TGF-beta-mediated SMC growth inhibition. The data suggest that TGF-beta may play an important and complex regulatory role in SMC proliferation and organization during development and after vascular injury. PMID:3475277

  2. Effects of glucose availability on expression of the key genes involved in synthesis of milk fat, lactose and glucose metabolism in bovine mammary epithelial cells.

    PubMed

    Liu, Hongyun; Zhao, Ke; Liu, Jianxin

    2013-01-01

    As the main precursor for lactose synthesis, large amounts of glucose are required by lactating dairy cows. Milk yield greatly depends on mammary lactose synthesis due to its osmoregulatory property for mammary uptake of water. Thus, glucose availability to the mammary gland could be a potential regulator of milk production. In the present study, the effect of glucose availability on expression of the key genes involved in synthesis of milk fat, lactose and glucose metabolism in vitro was investigated. Bovine mammary epithelial cells (BMEC) were treated for 12 h with various concentrations of glucose (2.5, 5, 10 or 20 mmol/L). The higher concentrations of glucose (10-20 mmol/L) did not affect the mRNA expression of acetyl-CoA carboxylase, diacyl glycerol acyl transferase, glycerol-3 phosphate acyl transferase and α-lactalbumin, whereas fatty acid synthase, sterol regulatory element binding protein-1 and beta-1, 4-galactosyl transferase mRNA expression increased at 10 mmol/L and then decreased at 20 mmol/L. The content of lactose synthase increased with increasing concentration of glucose, with addition of highest value at 20 mmol/L of glucose. Moreover, the increased glucose concentration stimulated the activities of pyruvate kinase and glucose-6-phosphate dehydrogenase, and elevated the energy status of the BMEC. Therefore, it was deduced that after increasing glucose availability, the extra absorbed glucose was partitioned to entering the synthesis of milk fat and lactose by the regulation of the mRNA expression of key genes, promoting glucose metabolism by glycolysis and pentose phosphate pathway as well as energy status. These results indicated that the sufficient availability of glucose in BMEC may promote glucose metabolism, and affect the synthesis of milk composition.

  3. Mechanistic studies of cancer cell mitochondria- and NQO1-mediated redox activation of beta-lapachone, a potentially novel anticancer agent

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Jason Z.; Ke, Yuebin; Misra, Hara P.

    Beta-lapachone (beta-Lp) derived from the Lapacho tree is a potentially novel anticancer agent currently under clinical trials. Previous studies suggested that redox activation of beta-Lp catalyzed by NAD(P)H:quinone oxidoreductase 1 (NQO1) accounted for its killing of cancer cells. However, the exact mechanisms of this effect remain largely unknown. Using chemiluminescence and electron paramagnetic resonance (EPR) spin-trapping techniques, this study for the first time demonstrated the real-time formation of ROS in the redox activation of beta-lapachone from cancer cells mediated by mitochondria and NQO1 in melanoma B16–F10 and hepatocellular carcinoma HepG2 cancer cells. ES936, a highly selective NQO1 inhibitor, and rotenone,more » a selective inhibitor of mitochondrial electron transport chain (METC) complex I were found to significantly block beta-Lp meditated redox activation in B16–F10 cells. In HepG2 cells ES936 inhibited beta-Lp-mediated oxygen radical formation by ∼ 80% while rotenone exerted no significant effect. These results revealed the differential contribution of METC and NQO1 to beta-lapachone-induced ROS formation and cancer cell killing. In melanoma B16–F10 cells that do not express high NQO1 activity, both NOQ1 and METC play a critical role in beta-Lp redox activation. In contrast, in hepatocellular carcinoma HepG2 cells expressing extremely high NQO1 activity, redox activation of beta-Lp is primarily mediated by NQO1 (METC plays a minor role). These findings will contribute to our understanding of how cancer cells are selectively killed by beta-lapachone and increase our ability to devise strategies to enhance the anticancer efficacy of this potentially novel drug while minimizing its possible adverse effects on normal cells. - Highlights: • Both isolated mitochondria and purified NQO1 are able to generate ROS by beta-Lp. • The differential roles of mitochondria and NQO1 in mediating redox activation of beta-Lp • In cancer cells with low NQO1 expression, mitochondria play a critical role in beta-Lp redox activation. • In cancer cells with high NQO1 activity, redox activation of beta-Lp is primarily mediated by NQO1.« less

  4. Chronology of endocrine differentiation and beta-cell neogenesis.

    PubMed

    Miyatsuka, Takeshi

    2016-01-01

    Diabetes is a chronic and incurable disease, which results from absolute or relative insulin insufficiency. Therefore, pancreatic beta cells, which are the only type of cell that expresses insulin, is considered to be a potential target for the cure of diabetes. Although the findings regarding beta-cell neogenesis during pancreas development have been exploited to induce insulin-producing cells from non-beta cells, there are still many hurdles towards generating fully functional beta cells that can produce high levels of insulin and respond to physiological signals. To overcome these problems, a solid understanding of pancreas development and beta-cell formation is required, and several mouse models have been developed to reveal the unique features of each endocrine cell type at distinct developmental time points. Here I review our understanding of pancreas development and endocrine differentiation focusing on recent progresses in improving temporal cell labeling in vivo.

  5. Transforming growth factor-beta controls T helper type 1 cell development through regulation of natural killer cell interferon-gamma.

    PubMed

    Laouar, Yasmina; Sutterwala, Fayyaz S; Gorelik, Leonid; Flavell, Richard A

    2005-06-01

    Interferon-gamma and interleukin 12 produced by the innate arm of the immune system are important regulators of T helper type 1 (T(H)1) cell development, but signals that negatively regulate their expression remain controversial. Here we show that transforming growth factor-beta (TGF-beta) controlled T(H)1 differentiation through the regulation of interferon-gamma produced by natural killer (NK) cells. Blockade of TGF-beta signaling in NK cells caused the accumulation of a large pool of NK cells secreting copious interferon-gamma, responsible for T(H)1 differentiation and protection from leishmania infection. In contrast, blockade of TGF-beta signaling in dendritic cells did not affect dendritic cell homeostasis or interleukin 12 production, thus indicating a previously undescribed demarcation of the function of TGF-beta in NK cells versus dendritic cells.

  6. The quest to make fully functional human pancreatic beta cells from embryonic stem cells: climbing a mountain in the clouds.

    PubMed

    Johnson, James D

    2016-10-01

    The production of fully functional insulin-secreting cells to treat diabetes is a major goal of regenerative medicine. In this article, I review progress towards this goal over the last 15 years from the perspective of a beta cell biologist. I describe the current state-of-the-art, and speculate on the general approaches that will be required to identify and achieve our ultimate goal of producing functional beta cells. The need for deeper phenotyping of heterogeneous cultures of stem cell derived islet-like cells in parallel with a better understanding of the heterogeneity of the target cell type(s) is emphasised. This deep phenotyping should include high-throughput single-cell analysis, as well as comprehensive 'omics technologies to provide unbiased characterisation of cell products and human beta cells. There are justified calls for more detailed and well-powered studies of primary human pancreatic beta cell physiology, and I propose online databases of standardised human beta cell responses to physiological stimuli, including both functional and metabolomic/proteomic/transcriptomic profiles. With a concerted, community-wide effort, including both basic and applied scientists, beta cell replacement will become a clinical reality for patients with diabetes.

  7. Oxygen tension differentially regulates the functional properties of cartilaginous tissues engineered from infrapatellar fat pad derived MSCs and articular chondrocytes.

    PubMed

    Buckley, C T; Vinardell, T; Kelly, D J

    2010-10-01

    For current tissue engineering or regenerative medicine strategies, chondrocyte (CC)- or mesenchymal stem cell (MSC)-seeded constructs are typically cultured in normoxic conditions (20% oxygen). However, within the knee joint capsule a lower oxygen tension exists. The objective of this study was to investigate how CCs and infrapatellar fad pad derived MSCs will respond to a low oxygen (5%) environment in 3D agarose culture. Our hypothesis was that culture in a low oxygen environment (5%) will enhance the functional properties of cartilaginous tissues engineered using both cell sources. Cell-encapsulated agarose hydrogel constructs (seeded with CCs or infrapatellar fat pad (IFP) derived MSCs) were prepared and cultured in a chemically defined serum-free medium in the presence (CCs and MSCs) or absence (CCs only) of transforming growth factor-beta3 (TGF-β3) in normoxic (20%) or low oxygen (5%) conditions for 42 days. Constructs were assessed at days 0, 21 and 42 in terms of mechanical properties, biochemical content and histologically. Low oxygen tension (5%) was observed to promote extracellular matrix (ECM) production by CCs cultured in the absence of TGF-β3, but was inhibitory in the presence of TGF-β3. In contrast, a low oxygen tension enhanced chondrogenesis of IFP constructs in the presence of TGF-β3, leading to superior mechanical functionality compared to CCs cultured in identical conditions. Extrapolating the results of this study to the in vivo setting, it would appear that joint fat pad derived MSCs may possess a superior potential to generate a functional repair tissue in low oxygen tensions. However, in the context of in vitro cartilage tissue engineering, CCs maintained in normoxic conditions in the presence of TGF-β3 generate the most mechanically functional tissue. Copyright © 2010 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  8. Variation in PPARG is associated with longitudinal change in insulin resistance in Mexican Americans at risk for type 2 diabetes.

    PubMed

    Black, Mary Helen; Wu, Jun; Takayanagi, Miwa; Wang, Nan; Taylor, Kent D; Haritunians, Talin; Trigo, Enrique; Lawrence, Jean M; Watanabe, Richard M; Buchanan, Thomas A; Xiang, Anny H

    2015-03-01

    Peroxisome proliferator-activated receptor gamma (PPARG) is a susceptibility locus for type 2 diabetes mellitus (T2DM). Although cross-sectional associations have been reported, primarily for Pro12Ala, few longitudinal studies in nondiabetic populations have been conducted. This study aimed to examine whether and to what extent variation in PPARG is associated with longitudinal changes in anthropometric and metabolic traits in Mexican Americans at risk for T2DM. Subjects were participants of BetaGene, a family-based study of obesity, insulin resistance, and β-cell function, who completed a baseline and follow-up study visit (n = 378; mean followup, 4.6 ± 1.5 y). Phenotypes included body fat assessed by dual-energy x-ray absorptiometry; insulin sensitivity (SI), acute insulin response, and β-cell function (disposition index; DI) were estimated from iv glucose tolerance tests with Minimal Model analysis. Eighteen tag single nucleotide polymorphisms (SNPs) capturing variation in a 156-kb region surrounding PPARG were tested for association with changes in longitudinal traits. P-values were Bonferroni-corrected for multiple testing. Six SNPs (rs2972164, rs11128598, rs17793951, rs1151996, rs1175541, rs3856806) were significantly associated with rate of change in SI after adjustment for age, sex, and body fat percentage, but not with changes in adiposity. rs17793951 also had a significant effect on change in DI over time. Association between rs1175541 and change in SI varied by changes in adiposity such that only carriers of the minor allele who reduced body fat over followup improved SI. rs1306470 (captured Pro12Ala, r(2) = 0.9) was not associated with rates of change in any traits and its effects were not modified by changes in adiposity. Variation in PPARG, but not Pro12Ala, contributes to declining SI and concomitant deterioration in β-cell function in Mexican Americans at risk for T2DM.

  9. Identification of Differentially Expressed Genes in Breast Muscle and Skin Fat of Postnatal Pekin Duck

    PubMed Central

    Schachtschneider, Kyle Michael; Liu, Xiaolin; Huang, Wei; Xie, Ming; Hou, Shuisheng

    2014-01-01

    Lean-type Pekin duck is a commercial breed that has been obtained through long-term selection. Investigation of the differentially expressed genes in breast muscle and skin fat at different developmental stages will contribute to a comprehensive understanding of the potential mechanisms underlying the lean-type Pekin duck phenotype. In the present study, RNA-seq was performed on breast muscle and skin fat at 2-, 4- and 6-weeks of age. More than 89% of the annotated duck genes were covered by our RNA-seq dataset. Thousands of differentially expressed genes, including many important genes involved in the regulation of muscle development and fat deposition, were detected through comparison of the expression levels in the muscle and skin fat of the same time point, or the same tissue at different time points. KEGG pathway analysis showed that the differentially expressed genes clustered significantly in many muscle development and fat deposition related pathways such as MAPK signaling pathway, PPAR signaling pathway, Calcium signaling pathway, Fat digestion and absorption, and TGF-beta signaling pathway. The results presented here could provide a basis for further investigation of the mechanisms involved in muscle development and fat deposition in Pekin duck. PMID:25264787

  10. Regulation of pancreatic islet beta-cell mass by growth factor and hormone signaling.

    PubMed

    Huang, Yao; Chang, Yongchang

    2014-01-01

    Dysfunction and destruction of pancreatic islet beta cells is a hallmark of diabetes. Better understanding of cellular signals in beta cells will allow development of therapeutic strategies for diabetes, such as preservation and expansion of beta-cell mass and improvement of beta-cell function. During the past several decades, the number of studies analyzing the molecular mechanisms, including growth factor/hormone signaling pathways that impact islet beta-cell mass and function, has increased exponentially. Notably, somatolactogenic hormones including growth hormone (GH), prolactin (PRL), and insulin-like growth factor-1 (IGF-1) and their receptors (GHR, PRLR, and IGF-1R) are critically involved in beta-cell growth, survival, differentiation, and insulin secretion. In this chapter, we focus more narrowly on GH, PRL, and IGF-1 signaling, and GH-IGF-1 cross talk. We also discuss how these signaling aspects contribute to the regulation of beta-cell proliferation and apoptosis. In particular, our novel findings of GH-induced formation of GHR-JAK2-IGF-1R protein complex and synergistic effects of GH and IGF-1 on beta-cell signaling, proliferation, and antiapoptosis lead to a new concept that IGF-1R may serve as a proximal component of GH/GHR signaling. © 2014 Elsevier Inc. All rights reserved.

  11. Specific signals involved in the long-term maintenance of radiation-induced fibrogenic differentiation: a role for CCN2 and low concentration of TGF-beta1.

    PubMed

    Haydont, Valérie; Riser, Bruce L; Aigueperse, Jocelyne; Vozenin-Brotons, Marie-Catherine

    2008-06-01

    The fibrogenic differentiation of resident mesenchymal cells is a key parameter in the pathogenesis of radiation fibrosis and is triggered by the profibrotic growth factors transforming growth factor (TGF)-beta1 and CCN2. TGF-beta1 is considered the primary inducer of fibrogenic differentiation and is thought to control its long-term maintenance, whereas CCN2 is considered secondary effector of TGF-beta1. Yet, in long-term established fibrosis like that associated with delayed radiation enteropathy, in situ TGF-beta1 deposition is low, whereas CCN2 expression is high. To explore this apparent paradox, cell response to increasing doses of TGF-beta1 was investigated in cells modeling initiation and maintenance of fibrosis, i.e., normal and fibrosis-derived smooth muscle cells, respectively. Activation of cell-specific signaling pathways by low TGF-beta1 doses was demonstrated with a main activation of the Rho/ROCK pathway in fibrosis-derived cells, whereas the Smad pathway was mainly activated in normal cells. This leads to subsequent and cell-specific regulation of the CCN2 gene. These results suggested a specific profibrotic role of CCN2 in fibrosis-initiated cells. Furthermore, the modulation of CCN2 expression by itself and the combination of TGF-beta1 and CCN2 was investigated in fibrosis-derived cells. In fibrosis-initiated cells CCN2 triggered its autoinduction; furthermore, low concentration of TGF-beta1-potentiated CCN2 autoinduction. Our findings showed a differential requirement and action of TGF-beta1 in the fibrogenic response of normal vs. fibrosis-derived cells. This study defines a novel Rho/ROCK but Smad3-independent mode of TGF-beta signaling that may operate during the chronic stages of fibrosis and provides evidence of both specific and combinatorial roles of low TGF-beta1 dose and CCN2.

  12. Treating fat grafts with human endothelial progenitor cells promotes their vascularization and improves their survival in diabetes mellitus.

    PubMed

    Hamed, Saher; Ben-Nun, Ohad; Egozi, Dana; Keren, Aviad; Malyarova, Nastya; Kruchevsky, Danny; Gilhar, Amos; Ullmann, Yehuda

    2012-10-01

    Bone marrow-derived endothelial progenitor cells are required for vascularization of a fat graft to form a functional microvasculature within the graft and to facilitate its integration into the surrounding tissues. Organ transplantation carries a high risk of graft loss and rejection in patients with diabetes mellitus because endothelial progenitor cell function is impaired. The authors investigated the influence of endothelial progenitor cell treatment on the phenotype and survival of human fat grafts in immunocompromised mice with experimentally induced diabetes mellitus. The authors injected 1 ml of human fat tissue into the scalps of 14 nondiabetic and 28 diabetic immunocompromised mice, and then treated some of the grafts with endothelial progenitor cells that was isolated from the blood of a human donor. The phenotype of the endothelial progenitor cell-treated fat grafts from the 14 diabetic mice was compared with that of the untreated fat grafts from 14 nondiabetic and 14 diabetic mice, 18 days and 15 weeks after fat transplantation. Determination of graft phenotype included measurements of weight and volume, vascular endothelial growth factor levels, vascular endothelial growth factor receptor-2, endothelial nitric oxide synthase, and caspase 3 expression levels, and histologic analysis of the extent of vascularization. The untreated grafts from the diabetic mice were fully resorbed 15 weeks after fat transplantation. The phenotype of endothelial progenitor cell-treated fat grafts from the diabetic mice was similar to that of the untreated fat grafts from the nondiabetic mice. Endothelial progenitor cell treatment of transplanted fat can increase the survival of a fat graft by inducing its vascularization and decreasing the extent of apoptosis.

  13. Unprotected daily sun exposure is differently associated with central adiposity and beta-cell dysfunction by gender: The Korean national health and nutrition examination survey (KNHANES) V

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ohn, Jung Hun; Kwon, In Ho; Park, Juri

    Background: Ultraviolet irradiation by sun exposure has been associated with both harms and benefits to metabolic health. Objective: The objective of this study was to determine whether unprotected daily sun exposure is associated with the prevalence of diabetes and explore the underlying mechanism. Methods: We analyzed the Korean National Health and Nutrition Survey V from 2010 to 2011. Participants 19–60 years of age were asked about the average amount of time they had been exposed to direct sunlight per day since the age of 19. We categorized participants into three groups with different levels of lifetime daily sun exposure andmore » explored the association of sun exposure with the prevalence of diabetes. Results: The risk of diabetes was higher in subjects with more than 5 h of unprotected sun exposure per day, with an odds ratio of 2.39 (95% CI 1.75–3.25), compared to those with less than 2 h of sun exposure, and the association remained significant after adjusting for diabetes risk factors. Long-term sun exposure was associated with increased central obesity and the possibility of an increase in visceral adiposity, especially among women, and with decrease in beta cell function and peripheral adiposity or percent body fat in men. Conclusions: Our study provides a cutoff for upper limit of sun exposure and suggests unprotected daily sun exposure for more than 5 h should be avoided to prevent diabetes. Increased central adiposity and decreased beta cell function were observed in women and men, respectively, who had long-term unprotected daily sun exposure. - Highlights: • Sun exposure for more than 5 h per day is associated with diabetes risk. • Insulin resistance associated with visceral adiposity may play a role in women. • Insulin secretory defect may explain diabetes risk in men.« less

  14. [Isolation, purification and primary culture of rat pancreatic beta-cells].

    PubMed

    Liu, Yu-Pu; Lü, Qing-Guo; Tong, Nan-Wei

    2009-01-01

    To isolate and purify rat pancreatic beta-cells and to explore the best conditions for the primary culture of the pancreatic beta-cells in vitro. The pancreas of Norman Wistar rats were digested by collagenase V. The islets were purified by mesh sieve. The activity of the islets was stimulated by different concentrations of glucose and detected by dithizone dye. The purified islets were put into RPMI-1640 nutritive medium for culture overnight. The cultured islets were digested again with trypsin and DNAase to obtain the suspension containing single pancreatic cells. The beta-cells were separated and purified in a fluorescence-activated cell sorter (FACS) in the medium containing 2.8 mmol/L glucose. The purified beta-cells were identified by immunohistochemistry and glucose stimulating test. Ham's F-10 with different concentrations of glucose and 3-Isobutyl-1-methylxanthine (IBMX) were used as nutritive medium for the primary cell culture for 24 hours. The best conditions for the culture were identified. An average of 550 +/- 90 islets with fine activities were obtained per rat. The purification with FACS obtained about 5688 beta-cells per rat, with a recovery rate of (93.69 +/- 1.26)% and a purity of (85.5 +/- 1.24)%. A concentration of 10.0 mmol/L and 16.0 mmol/L glucose in primary culture for 24 hours produced the highest survival rates of beta-cells, but IBMX did not increase the survival rates of beta-cells. FACS is effective in purifying pancreatic beta-cells from the suspension with a medium containing 2.8 mmol/L glucose. Pancreatic beta-cells maintain relatively high activities in Ham's F-10 medium containing 10.0-16.0 mmol/L glucose in primary culture.

  15. Normal T lymphocytes can express two different T cell receptor beta chains: implications for the mechanism of allelic exclusion

    PubMed Central

    1995-01-01

    We have examined the extent of allelic exclusion at the T cell receptor (TCR) beta locus using monoclonal antibodies specific for V beta products. A small proportion (approximately 1%) of human peripheral blood T cells express two V beta as determined by flow cytometric analysis, isolation of representative clones, and sequencing of the corresponding V beta chains. Dual beta T cells are present in both the CD45R0+ and CD45R0- subset. These results indicate that dual beta expression is compatible with both central and peripheral selection. They also suggest that the substantial degree of TCR beta allelic exclusion is dependent only on asynchronous rearrangements at the beta locus, whereas the role of the pre-TCR is limited to signaling the presence of at least one functional beta protein. PMID:7699339

  16. Activation of the canonical beta-catenin pathway by histamine.

    PubMed

    Diks, Sander H; Hardwick, James C; Diab, Remco M; van Santen, Marije M; Versteeg, Henri H; van Deventer, Sander J H; Richel, Dick J; Peppelenbosch, Maikel P

    2003-12-26

    Histamine signaling is a principal regulator in a variety of pathophysiological processes including inflammation, gastric acid secretion, neurotransmission, and tumor growth. We report that histamine stimulation causes transactivation of a T cell factor/beta-catenin-responsive construct in HeLa cells and in the SW-480 colon cell line, whereas histamine did not effect transactivation of a construct containing the mutated response construct FOP. On the protein level, histamine treatment increases phosphorylation of glycogen synthase kinase 3-beta in HeLa cells, murine macrophages, and DLD-1, HT-29, and SW-480 colon cell lines. Furthermore, histamine also decreases the phosphorylated beta-catenin content in HeLa cells and murine macrophages. Finally, pharmacological inhibitors of the histamine H1 receptor counteracted histamine-induced T cell factor/beta-catenin-responsive construct transactivation and the dephosphorylation of beta-catenin in HeLa cells and in macrophages. We conclude that the canonical beta-catenin pathway acts downstream of the histamine receptor H1 in a variety of cell types. The observation that inflammatory molecules, like histamine, activate the beta-catenin pathway may provide a molecular explanation for a possible link between inflammation and cancer.

  17. Expression and in vitro regulation of integrins by normal human urothelial cells.

    PubMed

    Southgate, J; Kennedy, W; Hutton, K A; Trejdosiewicz, L K

    1995-08-01

    Integrins are thought to be essential adhesion receptors for the maintenance of tissue histioarchitecture. The purpose of this study was to determine integrin expression patterns in the human stratified transitional epithelium of the urinary tract (urothelium). In situ expression patterns were compared with in vitro expression, using a normal cell culture model system in which the effects of cell stratification can be studied independently of differentiation. By immunohistological criteria, the urothelia of bladder, ureter and renal pelvis expressed alpha 2 beta 1 and alpha 3 beta 1 integrins in all layers at intercellular junctions, and cytoplasmically in the lower strata. By contrast, alpha 6 beta 4 and occasionally alpha v beta 4 were expressed only by basal cells and localised to the basal lamina. These expression patterns were unaltered in specimens where an inflammatory cell infiltrate was present. In long-term cultures of normal urothelial cells maintained in a low-Ca++ serum-free medium, the monolayer cultures expressed alpha 2 beta 1, alpha 3 beta 1 and alpha 5 beta 1 integrins at intercellular junctions and in cytoplasmic inclusions, whereas alpha 6 beta 4 was distributed in a random pattern over the substratum. Increasing exogenous Ca++ concentrations induced cell stratification and desmosome formation, but not cytodifferentiation. Under these conditions, alpha 6 beta 4 became cell-, rather than substratum-associated, localising particularly to filopodia and lamellipodia. Quantitation of integrin expression by flow cytometry confirmed increased surface expression of alpha 6 beta 4 in high Ca++ media, and also of alpha 3 and alpha 5, but not alpha 2, subunits. These results suggest that alpha 2 beta 1 and alpha 3 beta 1 integrins, although differentially regulated, are mainly involved in homotypic cell-cell interactions and the maintenance of a stratified morphology, whereas alpha 6 beta 4 is the principal integrin involved in substratum adhesion.

  18. A diet high in fat stimulates adipocyte proliferation in older (22 month) rats.

    PubMed

    Ellis, J R; McDonald, R B; Stern, J S

    1990-01-01

    The effect of a high fat diet in stimulating adipocyte proliferation, as measured by the incorporation of [3H]-thymidine into fat cell DNA, was studied in 22-month-old female Sprague-Dawley rats. Rats were fed a low fat (n = 10) or a high fat diet (n = 9) for a total of six days. On days 4 and 5 of dietary manipulation, rats were injected with 80 microCi/100 g body weight of [3H]-thymidine. Rats were continued on their respective diets for one more day, starved for 72 h and then refed a stock diet for three weeks in order to increase turnover of stroma cells, thus diluting the specific activity of stromal DNA with minimal effect on specific activity of fat cell DNA. The diet groups did not differ significantly with respect to body masses, food intake, parametrial (PARA) and retroperitoneal (RP) depot masses, cell number or cell size. The specific activity of DNA in both PARA and RP depots was greater in the adipocyte than in the stromavascular fraction. Specific activity of fat cells was significantly greater from rats fed the high fat than the low fat diet in both PARA and RP depots. Radioautography of adipose tissue confirmed that there was a greater percentage of adipocyte nuclei labeled in the rats fed the high fat diet. Also, there were few labeled nuclei found in stroma cells. In conclusion, older female rats increased adipocyte proliferation when fed a high fat diet.

  19. Executive functions and consumption of fruits/ vegetables and high saturated fat foods in young adults.

    PubMed

    Limbers, Christine A; Young, Danielle

    2015-05-01

    Executive functions play a critical role in regulating eating behaviors and have been shown to be associated with overeating which over time can result in overweight and obesity. There has been a paucity of research examining the associations among healthy dietary behaviors and executive functions utilizing behavioral rating scales of executive functioning. The objective of the present cross-sectional study was to evaluate the associations among fruit and vegetable consumption, intake of foods high in saturated fat, and executive functions using the Behavioral Rating Inventory of Executive Functioning-Adult Version. A total of 240 university students completed the Behavioral Rating Inventory of Executive Functioning-Adult Version, the 26-Item Eating Attitudes Test, and the Diet subscale of the Summary of Diabetes Self-Care Activities Questionnaire. Multiple linear regression analysis was conducted with two separate models in which fruit and vegetable consumption and saturated fat intake were the outcomes. Demographic variables, body mass index, and eating styles were controlled for in the analysis. Better initiation skills were associated with greater intake of fruits and vegetables in the last 7 days (standardized beta = -0.17; p < 0.05). Stronger inhibitory control was associated with less consumption of high fat foods in the last 7 days (standardized beta = 0.20; p < 0.05) in the multiple linear regression analysis. Executive functions that predict fruit and vegetable consumption are distinct from those that predict avoidance of foods high in saturated fat. Future research should investigate whether continued skill enhancement in initiation and inhibition following standard behavioral interventions improves long-term maintenance of weight loss. © The Author(s) 2015.

  20. The islet beta-cell: fuel responsive and vulnerable.

    PubMed

    Nolan, Christopher J; Prentki, Marc

    2008-10-01

    The pancreatic beta-cell senses blood nutrient levels and is modulated by neurohormonal signals so that it secretes insulin according to the need of the organism. Nutrient sensing involves marked metabolic activation, resulting in the production of coupling signals that promote insulin biosynthesis and secretion. The beta-cell's high capacity for nutrient sensing, however, necessitates reduced protection to nutrient toxicity. This potentially explains why in susceptible individuals, chronic fuel surfeit results in beta-cell failure and type 2 diabetes. Here we discuss recent insights into first, the biochemical basis of beta-cell signaling in response to glucose, amino acids and fatty acids, and second, beta-cell nutrient detoxification. We emphasize the emerging role of glycerolipid/fatty acid cycling in these processes.

  1. Attenuating type 2 diabetes with postpartum interventions following gestational diabetes mellitus.

    PubMed

    Wasalathanthri, Sudharshani

    2015-05-15

    Women with a history of gestational diabetes should be screened during and after the postpartum period because of a high risk for developing type 2 diabetes mellitus. Although differences exist between guidelines practiced throughout various parts of the world, all recommend the use of cutoffs for fasting and/or post-load plasma glucose to diagnose diabetes or pre-diabetes. The use of these glycemic parameters could be optimized when a trend is observed, rather than considering them as isolated values at various time points. As the presence of insulin resistance and beta-cell dysfunction start before glycemic changes are evident, the estimation of insulin sensitivity and beta-cell function by Homeostatic Model Assessment is suggested for women who have additional risk factors for diabetes, such as obesity. Disease-modifying lifestyle intervention should be the first-line strategy to prevent or delay the onset of diabetes in women with a history of gestational diabetes mellitus. Intensive lifestyle interventions are designed to decrease caloric intake and increase physical activity in order to reduce body weight and fat, which will in turn reduce insulin resistance. This article also reviews unique problems of postpartum women, which should be considered when designing and implementing an intervention. Innovative "out of the box" thinking is appreciated, as continued adherence to a program is a challenge to both the women and the health care personnel who deal with them.

  2. Ethnic differences in beta-cell function, dietary intake and expression of the metabolic syndrome among UK adults of South Asian, black African-Caribbean and white-European origin at high risk of metabolic syndrome.

    PubMed

    Goff, Louise M; Griffin, Bruce A; Lovegrove, Julie A; Sanders, Tom A; Jebb, Susan A; Bluck, Les J; Frost, Gary S

    2013-07-01

    A cross-sectional analysis of ethnic differences in dietary intake, insulin sensitivity and beta-cell function, using the intravenous glucose tolerance test (IVGTT), was conducted on 497 healthy adult participants of the 'Reading, Imperial, Surrey, Cambridge, and Kings' (RISCK) study. Insulin sensitivity (Si) was significantly lower in African-Caribbean (AC) and South Asian (SA) participants [IVGTT-Si; AC: 2.13 vs SA: 2.25 vs white-European (WE): 2.84 (×10(-4) mL µU min)(2), p < 0.001]. AC participants had a higher prevalence of anti-hypertensive therapy (AC: 19.7% vs SA: 7.5%), the most cardioprotective lipid profile [total:high-density lipoprotein (HDL); AC: 3.52 vs SA: 4.08 vs WE: 3.83, p = 0.03] and more pronounced hyperinsulinaemia [IVGTT-acute insulin response (AIR)] [AC: 575 vs SA: 428 vs WE: 344 mL/µU/min)(2), p = 0.002], specifically in female participants. Intake of saturated fat and carbohydrate was lower and higher in AC (10.9% and 50.4%) and SA (11.1% and 52.3%), respectively, compared to WE (13.6% and 43.8%, p < 0.001). Insulin resistance in ACs is characterised by 'normal' lipid profiles but high rates of hypertension and pronounced hyperinsulinaemia.

  3. Apparent inhibition of. beta. -fructosidase secretion by tunicamycin may be explained by breakdown of the unglycosylated protein during secretion. [Daucus carota

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Faye, L.; Chrispeels, M.J.

    1989-03-01

    Suspension-cultured carrot (Daucus carota) cells synthesize and secrete {beta}-fructosidase, a glycoprotein with asparagine-linked glycans. Treatment of the cells with tunicamycin completely inhibits the apparent secretion of {beta}-fructosidase as measured by the accumulation of the {sup 35}S-labelled protein in the cell wall or the culture medium. In the past, such a result has been interpreted as an inhibition of secretion by tunicamycin, but we suggest another explanation based on the following results. In the presence of tunicamycin, unglycosylated {beta}-fructosidase is synthesized and is associated with an endoplasmic-reticulum-rich microsomal fraction. Pulse-chase experiments show that the unglycosylated {beta}-fructosidase does not remain in themore » cells and appears to be secreted in the same way as glycosylated {beta}-fructosidase; however, no radioactive, unglycosylated {beta}-fructosidase accumulates extracellularly (cell wall or medium). Protoplasts obtained from carrot cells secrete {beta}-fructosidase protein and activity, and treatment of the protoplasts with tunicamycin results in the synthesis of unglycosylated {beta}-fructosidase. In the presence of tunicamycin, there is no accumulation of {beta}-fructosidase activity or unglycosylated {beta}-fructosidase polypeptide in the protoplast incubation medium. These results are consistent with the interpretation that the glycans of {beta}-fructosidase are necessary for its stability, and that in these suspension-cultured cells, the unglycosylated enzyme is degraded during the last stage(s) of secretion, or immediately after its arrival in the wall.« less

  4. Comparison of osteoblast-like cell responses to calcium silicate and tricalcium phosphate ceramics in vitro.

    PubMed

    Ni, Siyu; Chang, Jiang; Chou, Lee; Zhai, Wanyin

    2007-01-01

    Calcium silicate ceramics have been proposed as new bone repair biomaterials, since they have proved to be bioactive, degradable, and biocompatible. Beta-tricalcium phosphate ceramic is a well-known degradable material for bone repair. This study compared the effects of CaSiO3 (alpha-, and beta-CaSiO3) and beta-Ca3(PO4)2 (beta-TCP) ceramics on the early stages of rat osteoblast-like cell attachment, proliferation, and differentiation. Osteoblast-like cells were cultured directly on CaSiO3 (alpha-, and beta-CaSiO3) and beta-TCP ceramics. Attachment of a greater number of cells was observed on CaSiO3 (alpha-, and beta-CaSiO3) ceramics compared with beta-TCP ceramics after incubation for 6 h. SEM observations showed an intimate contact between cells and the substrates, significant cells adhesion, and that the cells spread and grew on the surfaces of all the materials. In addition, the proliferation rate and alkaline phosphatase (ALP) activity of the cells on the CaSiO3 (alpha-, and beta-CaSiO3) ceramics were improved when compared with the beta-TCP ceramics. In the presence of CaSiO3, elevated levels of calcium and silicon in the culture medium were observed throughout the 7-day culture period. In conclusion, the results of the present study revealed that CaSiO3 ceramics showed greater ability to support cell attachment, proliferation, and differentiation than beta-TCP ceramic. 2006 Wiley Periodicals, Inc.

  5. Alternate-Day High-Fat Diet Induces an Increase in Mitochondrial Enzyme Activities and Protein Content in Rat Skeletal Muscle.

    PubMed

    Li, Xi; Higashida, Kazuhiko; Kawamura, Takuji; Higuchi, Mitsuru

    2016-04-06

    Long-term high-fat diet increases muscle mitochondrial enzyme activity and endurance performance. However, excessive calorie intake causes intra-abdominal fat accumulation and metabolic syndrome. The purpose of this study was to investigate the effect of an alternating day high-fat diet on muscle mitochondrial enzyme activities, protein content, and intra-abdominal fat mass in rats. Male Wistar rats were given a standard chow diet (CON), high-fat diet (HFD), or alternate-day high-fat diet (ALT) for 4 weeks. Rats in the ALT group were fed a high-fat diet and standard chow every other day for 4 weeks. After the dietary intervention, mitochondrial enzyme activities and protein content in skeletal muscle were measured. Although body weight did not differ among groups, the epididymal fat mass in the HFD group was higher than those of the CON and ALT groups. Citrate synthase and beta-hydroxyacyl CoA dehydrogenase activities in the plantaris muscle of rats in HFD and ALT were significantly higher than that in CON rats, whereas there was no difference between HFD and ALT groups. No significant difference was observed in muscle glycogen concentration or glucose transporter-4 protein content among the three groups. These results suggest that an alternate-day high-fat diet induces increases in mitochondrial enzyme activities and protein content in rat skeletal muscle without intra-abdominal fat accumulation.

  6. Activation of antigen-specific cytotoxic T lymphocytes by beta 2-microglobulin or TAP1 gene disruption and the introduction of recipient-matched MHC class I gene in allogeneic embryonic stem cell-derived dendritic cells.

    PubMed

    Matsunaga, Yusuke; Fukuma, Daiki; Hirata, Shinya; Fukushima, Satoshi; Haruta, Miwa; Ikeda, Tokunori; Negishi, Izumi; Nishimura, Yasuharu; Senju, Satoru

    2008-11-01

    A method for the genetic modification of dendritic cells (DC) was previously established based on the in vitro differentiation of embryonic stem (ES) cells to DC (ES-DC). The unavailability of human ES cells genetically identical to the patients will be a problem in the future clinical application of this technology. This study attempted to establish a strategy to overcome this issue. The TAP1 or beta(2)-microglobulin (beta(2)m) gene was disrupted in 129 (H-2(b))-derived ES cells and then expression vectors for the H-2K(d) or beta(2)m-linked form of K(d) (beta2m-K(d)) were introduced, thus resulting in two types of genetically engineered ES-DC, TAP1(-/-)/K(d) ES-DC and beta(2)m(-/-)/beta(2)m-K(d) ES-DC. As intended, both of the transfectant ES-DC expressed K(d) but not the intrinsic H-2(b) haplotype-derived MHC class I. Beta(2)m(-/-)/beta(2)m-K(d) and TAP1(-/-)/K(d) ES-DC were not recognized by pre-activated H-2(b)-reactive CTL and did not prime H-2(b) reactive CTL in vitro or in vivo. Beta(2)m(-/-)/beta(2)m-K(d) ES-DC and TAP1(-/-)/K(d) ES-DC had a survival advantage in comparison to beta(2)m(+/-)/beta(2)m-K(d) ES-DC and TAP1(+/+)/K(d) ES-DC, when transferred into BALB/c mice. K(d)-restricted RSV-M2-derived peptide-loaded ES-DC could prime the epitope-specific CTL upon injection into the BALB/c mice, irrespective of the cell surface expression of intrinsic H-2(b) haplotype-encoded MHC class I. Beta(2)m(-/-)/beta(2)m-K(d) ES-DC were significantly more efficient in eliciting immunity against RSV M2 protein-expressing tumor cells than beta(2)m(+/-)/beta(2)m-K(d) ES-DC. The modification of the beta(2)m or TAP gene may therefore be an effective strategy to resolve the problem of HLA class I allele mismatch between human ES or induced pluripotent stem cells and the recipients to be treated.

  7. Pancreatic Beta Cells Synthesize Neuropeptide Y and Can Rapidly Release Peptide Co-Transmitters

    PubMed Central

    Whim, Matthew D.

    2011-01-01

    Background In addition to polypeptide hormones, pancreatic endocrine cells synthesize a variety of bioactive molecules including classical transmitters and neuropeptides. While these co-transmitters are thought to play a role in regulating hormone release little is known about how their secretion is regulated. Here I investigate the synthesis and release of neuropeptide Y from pancreatic beta cells. Methodology/Principal Findings NPY appears to be an authentic co-transmitter in neonatal, but not adult, beta cells because (1) early in mouse post-natal development, many beta cells are NPY-immunoreactive whereas no staining is observed in beta cells from NPY knockout mice; (2) GFP-expressing islet cells from an NPY(GFP) transgenic mouse are insulin-ir; (3) single cell RT-PCR experiments confirm that the NPY(GFP) cells contain insulin mRNA, a marker of beta cells. The NPY-immunoreactivity previously reported in alpha and delta cells is therefore likely to be due to the presence of NPY-related peptides. INS-1 cells, a beta cell line, are also NPY-ir and contain NPY mRNA. Using the FMRFamide tagging technique, NPY secretion was monitored from INS-1 beta cells with high temporal resolution. Peptide release was evoked by brief depolarizations and was potentiated by activators of adenylate cyclase and protein kinase A. Following a transient depolarization, NPY-containing dense core granules fused with the cell membrane and discharged their contents within a few milliseconds. Conclusions These results indicate that after birth, NPY expression in pancreatic islets is restricted to neonatal beta cells. The presence of NPY suggests that peptide co-transmitters could mediate rapid paracrine or autocrine signaling within the endocrine pancreas. The FMRFamide tagging technique may be useful in studying the release of other putative islet co-transmitters in real time. PMID:21559341

  8. Calbindin-D(28k) controls [Ca(2+)](i) and insulin release. Evidence obtained from calbindin-d(28k) knockout mice and beta cell lines

    NASA Technical Reports Server (NTRS)

    Sooy, K.; Schermerhorn, T.; Noda, M.; Surana, M.; Rhoten, W. B.; Meyer, M.; Fleischer, N.; Sharp, G. W.; Christakos, S.

    1999-01-01

    The role of the calcium-binding protein, calbindin-D(28k) in potassium/depolarization-stimulated increases in the cytosolic free Ca(2+) concentration ([Ca(2+)](i)) and insulin release was investigated in pancreatic islets from calbindin-D(28k) nullmutant mice (knockouts; KO) or wild type mice and beta cell lines stably transfected and overexpressing calbindin. Using single islets from KO mice and stimulation with 45 mM KCl, the peak of [Ca(2+)](i) was 3.5-fold greater in islets from KO mice compared with wild type islets (p < 0.01) and [Ca(2+)](i) remained higher during the plateau phase. In addition to the increase in [Ca(2+)](i) in response to KCl there was also a significant increase in insulin release in islets isolated from KO mice. Evidence for modulation by calbindin of [Ca(2+)](i) and insulin release was also noted using beta cell lines. Rat calbindin was stably expressed in betaTC-3 and betaHC-13 cells. In response to depolarizing concentrations of K(+), insulin release was decreased by 45-47% in calbindin expressing betaTC cells and was decreased by 70-80% in calbindin expressing betaHC cells compared with insulin release from vector transfected betaTC or betaHC cells (p < 0.01). In addition, the K(+)-stimulated intracellular calcium peak was markedly inhibited in calbindin expressing betaHC cells compared with vector transfected cells (225 nM versus 1,100 nM, respectively). Buffering of the depolarization-induced rise in [Ca(2+)](i) was also observed in calbindin expressing betaTC cells. In summary, our findings, using both isolated islets from calbindin-D(28k) KO mice and beta cell lines, establish a role for calbindin in the modulation of depolarization-stimulated insulin release and suggest that calbindin can control the rate of insulin release via regulation of [Ca(2+)](i).

  9. SIRT6-mediated transcriptional suppression of Txnip is critical for pancreatic beta cell function and survival in mice.

    PubMed

    Qin, Kunhua; Zhang, Ning; Zhang, Zhao; Nipper, Michael; Zhu, Zhenxin; Leighton, Jake; Xu, Kexin; Musi, Nicolas; Wang, Pei

    2018-04-01

    Better understanding of how genetic and epigenetic components control beta cell differentiation and function is key to the discovery of novel therapeutic approaches to prevent beta cell dysfunction and failure in the progression of type 2 diabetes. Our goal was to elucidate the role of histone deacetylase sirtuin 6 (SIRT6) in beta cell development and homeostasis. Sirt6 endocrine progenitor cell conditional knockout and beta cell-specific knockout mice were generated using the Cre-loxP system. Mice were assayed for islet morphology, glucose tolerance, glucose-stimulated insulin secretion and susceptibility to streptozotocin. Transcriptional regulatory functions of SIRT6 in primary islets were evaluated by RNA-Seq analysis. Reverse transcription-quantitative (RT-q)PCR and immunoblot were used to verify and investigate the gene expression changes. Chromatin occupancies of SIRT6, H3K9Ac, H3K56Ac and active RNA polymerase II were evaluated by chromatin immunoprecipitation. Deletion of Sirt6 in pancreatic endocrine progenitor cells did not affect endocrine morphology, beta cell mass or insulin production but did result in glucose intolerance and defective glucose-stimulated insulin secretion in mice. Conditional deletion of Sirt6 in adult beta cells reproduced the insulin secretion defect. Loss of Sirt6 resulted in aberrant upregulation of thioredoxin-interacting protein (TXNIP) in beta cells. SIRT6 deficiency led to increased acetylation of histone H3 lysine residue at 9 (H3K9Ac), acetylation of histone H3 lysine residue at 56 (H3K56Ac) and active RNA polymerase II at the promoter region of Txnip. SIRT6-deficient beta cells exhibited a time-dependent increase in H3K9Ac, H3K56Ac and TXNIP levels. Finally, beta cell-specific SIRT6-deficient mice showed increased sensitivity to streptozotocin. Our results reveal that SIRT6 suppresses Txnip expression in beta cells via deacetylation of histone H3 and plays a critical role in maintaining beta cell function and viability. Sequence data have been deposited in the National Institutes of Health (NIH) Gene Expression Omnibus (GEO) with the accession code GSE104161.

  10. On the role of transforming growth factor-beta in the growth inhibitory effects of retinoic acid in human pancreatic cancer cells.

    PubMed

    Singh, Brahmchetna; Murphy, Richard F; Ding, Xian-Zhong; Roginsky, Alexandra B; Bell, Richard H; Adrian, Thomas E

    2007-12-24

    Retinoids are potent growth inhibitory and differentiating agents in a variety of cancer cell types. We have shown that retinoids induce growth arrest in all pancreatic cancer cell lines studied, regardless of their p53 and differentiation status. However, the mechanism of growth inhibition is not known. Since TGF-beta2 is markedly induced by retinoids in other cancers and mediates MUC4 expression in pancreatic cancer cells, we investigated the role of TGF-beta in retinoic acid-mediated growth inhibition in pancreatic cancer cells. Retinoic acid markedly inhibited proliferation of two cell lines (Capan-2 and Hs766T) in a concentration and time-dependent manner. Retinoic acid increased TGF-beta2 mRNA content and secretion of the active and latent forms of TGF-beta2 (measured by ELISA and bioassay). The concentrations of active and TGF-beta2 secreted in response to 0.1 - 10 muM retinoic acid were between 1-5 pM. TGF-beta2 concentrations within this range also inhibited proliferation. A TGF-beta neutralizing antibody blocked the growth inhibitory effects of retinoic acid in Capan-2 cells and partially inhibitory the effects in Hs766T cells. These findings indicate that TGF-beta can cause growth inhibition of pancreatic cancer cells, in a p53-independent manner. Furthermore, it demonstrates the fundamental role of TGF-beta in growth inhibition in response to retinoic acid treatment is preserved in vitro.

  11. Differential usage of T-cell receptor V beta gene families by CD4+ and CD8+ T cells in patients with CD8hi common variable immunodeficiency: evidence of a post-thymic effect.

    PubMed Central

    Duchmann, R; Jaffe, J; Ehrhardt, R; Alling, D W; Strober, W

    1996-01-01

    In this study, we report that differences between T-cell receptor (TCR) V beta gene family usage in CD4+ and CD8+ T cells are significantly greater in a subgroup of patients with common variable immunodeficiency (CVI) and high levels of activated CD8+ T cells (CD8hi CVI) than in controls (P < 0.001). In CD8hi CVI patients, such differences were also significantly greater for V beta 12 than for other V beta families. As the causes of the differential usage of V beta gene families by CD4+ and CD8+ T cells are under investigation, it was interesting that the combined differences between V beta gene family usage in the CD4+ and CD8+ T-cell subpopulations as a whole were significantly lower than the combined differences between individual V beta gene family usage in either CD4+ or CD8+ T-cell subpopulations (P < 0.001 in both control and CD8hi CVI patients). Further, the pattern of V beta gene family usage in CD4+ T cells was remarkably similar to that in CD8+ T cells in both groups. These data strongly suggest that differences in V beta gene family usage arising from coselection by major histocompatibility complex (MHC) class I versus MHC class II restriction elements do not fundamentally distort 'basic' V beta gene family usage patterns. They also support the concept that differences in CD4+ and CD8+ T-cell V beta gene family usage, which were increased in CD8hi CVI, can arise from high-affinity interactions between disease-associated antigens or superantigens and T cells in the post-thymic T-cell compartment. Images Figure 6 PMID:8666443

  12. A recombinant tail-less integrin beta 4 subunit disrupts hemidesmosomes, but does not suppress alpha 6 beta 4-mediated cell adhesion to laminins

    PubMed Central

    1995-01-01

    To examine the function of the alpha 6 beta 4 integrin we have determined its ligand-binding ability and overexpressed two potentially dominant negative mutant beta 4 subunits, lacking either the cytoplasmic or extracellular domain, in bladder epithelial 804G cells. The results of cell adhesion and radioligand-binding assays showed that alpha 6 beta 4 is a receptor for several laminin isoforms, including laminin 1, 2, 4, and 5. Overexpression of the tail-less or head-less mutant beta 4 subunit did not suppress alpha 6 beta 4-mediated adhesion to laminins, as both types of transfectants adhered to these ligands in the presence of blocking anti-beta 1 antibodies as well as the controls. However, immunofluorescence experiments indicated that the endogenous alpha 6 beta 4 integrin and other hemidesmosomal markers were not concentrated in hemidesmosomes in cells overexpressing tail- less beta 4, while the distribution of these molecules was not altered in cells overexpressing the head-less subunit. Electron microscopic studies confirmed that cells overexpressing tail-less beta 4 had a drastically reduced number of hemidesmosomes, while cells expressing the head-less subunit had a normal number of these structures. Thus, expression of a tail-less, but not a head-less mutant beta 4 subunit leads to a dominant negative effect on hemidesmosome assembly without suppressing initial adhesion to laminins. We conclude that the alpha 6 beta 4 integrin binds to several laminins and plays an essential role in the assembly and/or stability of hemidesmosomes, that alpha 6 beta 4- mediated adhesion and hemidesmosome assembly have distinct requirements, and that it is possible to use a dominant negative approach to selectively interfere with a specific function of an integrin. PMID:7721947

  13. Bardoxolone Methyl Prevents Mesenteric Fat Deposition and Inflammation in High-Fat Diet Mice.

    PubMed

    Dinh, Chi H L; Szabo, Alexander; Yu, Yinghua; Camer, Danielle; Wang, Hongqin; Huang, Xu-Feng

    2015-01-01

    Mesenteric fat belongs to visceral fat. An increased deposition of mesenteric fat contributes to obesity associated complications such as type 2 diabetes and cardiovascular diseases. We have investigated the therapeutic effects of bardoxolone methyl (BARD) on mesenteric adipose tissue of mice fed a high-fat diet (HFD). Male C57BL/6J mice were administered oral BARD during HFD feeding (HFD/BARD), only fed a high-fat diet (HFD), or fed low-fat diet (LFD) for 21 weeks. Histology and immunohistochemistry were used to analyse mesenteric morphology and macrophages, while Western blot was used to assess the expression of inflammatory, oxidative stress, and energy expenditure proteins. Supplementation of drinking water with BARD prevented mesenteric fat deposition, as determined by a reduction in large adipocytes. BARD prevented inflammation as there were fewer inflammatory macrophages and reduced proinflammatory cytokines (interleukin-1 beta and tumour necrosis factor alpha). BARD reduced the activation of extracellular signal-regulated kinase (ERK) and Akt, suggesting an antioxidative stress effect. BARD upregulates energy expenditure proteins, judged by the increased activity of tyrosine hydroxylase (TH) and AMP-activated protein kinase (AMPK) and increased peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α), and uncoupling protein 2 (UCP2) proteins. Overall, BARD induces preventive effect in HFD mice through regulation of mesenteric adipose tissue.

  14. Gene Editing and Human Pluripotent Stem Cells: Tools for Advancing Diabetes Disease Modeling and Beta-Cell Development.

    PubMed

    Millette, Katelyn; Georgia, Senta

    2017-10-05

    This review will focus on the multiple approaches to gene editing and address the potential use of genetically modified human pluripotent stem cell-derived beta cells (SC-β) as a tool to study human beta-cell development and model their function in diabetes. We will explore how new variations of CRISPR/Cas9 gene editing may accelerate our understanding of beta-cell developmental biology, elucidate novel mechanisms that establish and regulate beta-cell function, and assist in pioneering new therapeutic modalities for treating diabetes. Improvements in CRISPR/Cas9 target specificity and homology-directed recombination continue to advance its use in engineering stem cells to model and potentially treat disease. We will review how CRISPR/Cas9 gene editing is informing our understanding of beta-cell development and expanding the therapeutic possibilities for treating diabetes and other diseases. Here we focus on the emerging use of gene editing technology, specifically CRISPR/Cas9, as a means of manipulating human gene expression to gain novel insights into the roles of key factors in beta-cell development and function. Taken together, the combined use of SC-β cells and CRISPR/Cas9 gene editing will shed new light on human beta-cell development and function and accelerate our progress towards developing new therapies for patients with diabetes.

  15. Expression of an insulin-regulatable glucose carrier in muscle and fat endothelial cells

    NASA Astrophysics Data System (ADS)

    Vilaró, Senen; Palacín, Manuel; Pilch, Paul F.; Testar, Xavier; Zorzano, Antonio

    1989-12-01

    INSULIN rapidly stimulates glucose use in the major target tissues, muscle and fat, by modulating a tissue-specific glucose transporter isoform1-6. Access of glucose to the target tissue is restricted by endothelial cells which line the walls of nonfenestrated capillaries of fat and muscle7. Thus, we examined whether the capillary endothelial cells are actively involved in the modulation of glucose availability by these tissues. We report here the abundant expression of the muscle/fat glucose transporter isoform in endothelial cells, using an immunocytochemical analysis with a monoclonal antibody specific for this isoform1. This expression is restricted to endothelial cells from the major insulin target tissues, and it is not detected in brain and liver where insulin does not activate glucose transport. The expression of the muscle/fat transporter isoform in endothelial cells is significantly greater than in the neighbouring muscle and fat cells. Following administration of insulin to animals in vivo, there occurs a rapid increase in the number of muscle/fat transporters present in the lumenal plasma membrane of the capillary endothelial cells. These results document that insulin promotes the translocation of the muscle/fat glucose transporter in endothelial cells. It is therefore likely that endothelial cells play an important role in the regulation of glucose use by the major insulin target tissues in normal and diseased states.

  16. [Controlling effect of bushen huatan compound on the insulin signal conducting molecule inside ovaries in polycystic ovary syndrome model rats].

    PubMed

    Liang, Chen; Cong, Jing; Chang, Hui

    2011-12-01

    To study the effects of Bushen Huatan Compound (BHC) on the glycolipid metabolism and the expressions of the insulin signal conducting molecules inside ovaries in polycystic ovary syndrome (PCOS) model rats. Female Wistar rats were subcutaneously injected with 2.5 mg/kg testosterone propionate (Their female offspring were randomly divided into the medication group and the model group, 10 in each.) or neutral tea oil of the same dose (Ten female offspring was taken as the control group.) on the 16th day of pregnancy, once daily, for 3 successive days. BHC was given to rats in the medication group by gastrogavage, while equal volume of distilled water was given to rats in the model group and the control group by gastrogavage, both once daily for 20 successive days. The body weight and ovary weight were weighed to calculate the ratio of wet fat weight/body weight. The blood glucose levels were detected at 0, 0.5, 1, and 2 h using oral glucose tolerance test (OGTT). The serum concentrations of high-density lipoprotein cholesterol (HDL-C), triglyceride (TG), fasting blood glucose (FBG), and insulin were detected to calculate homeostasis model assessment of insulin resistance (HOMA-IR). The expressions of protein kinase B (AKT2), glycogen synthase kinase-3beta (GSK3beta), glucose transporter-4 (GLUT4), extracellular signal regulated kinase-1 (ERK1) protein, P-AKT2, P-GSK3beta, and P-ERK1 in ovaries were detected using Western blot. Compared with the control group, the ratio of wet fat weight/ body weight, the blood glucose levels at 0.5 and 2 h in OGTT, and HOMA-IR all obviously increased, and the HDL-C level obviously decreased in the model group (P < 0.05). Compared with the model group, the ratio of wet fat weight/body weight and the blood glucose levels at 2 h in OGTT obviously decreased, and the HDL-C level obviously increased in the medication group (P < 0.05). The expressions of AKT2, P-AKT2, GSK3beta, P-GSK3beta, GLUT4, and ERK1 in the ovary tissue were obviously lower in the model group than in the control group (P < 0.05). The expressions of GSK3beta, P-GSK3beta, and GLUT4 were more obviously enhanced in the medication group than in the model group (P < 0.05). Insulin resistance and glucolipid metabolism dysfunction existed in female PCOS rats. Besides, abnormal insulin signaling pathway existed in the ovary tissue. BHC could remarkably ameliorate the IR degree and glucolipid metabolism functions, and might be correlated with regulating the protein expressions of insulin signal conducting molecules.

  17. Cell-to-cell contact dependence and junctional protein content are correlated with in vivo maturation of pancreatic beta cells.

    PubMed

    Santos-Silva, Junia Carolina; Carvalho, Carolina Prado de França; de Oliveira, Ricardo Beltrame; Boschero, Antonio Carlos; Collares-Buzato, Carla Beatriz

    2012-07-01

    In this study, we investigated the cellular distribution of junctional proteins and the dependence on cell-cell contacts of pancreatic beta cells during animal development. Fetus and newborn rat islets, which display a relatively poor insulin secretory response to glucose, present an immature morphology and cytoarchitecture when compared with young and adult islets that are responsive to glucose. At the perinatal stage, beta cells display a low junctional content of neural cell adhesion molecule (N-CAM), α- and β-catenins, ZO-1, and F-actin, while a differential distribution of N-CAM and Pan-cadherin was seen in beta cells and nonbeta cells only from young and adult islets. In the absence of intercellular contacts, the glucose-stimulated insulin secretion was completely blocked in adult beta cells, but after reaggregation they partially reestablished the secretory response to glucose. By contrast, neonatal beta cells were poorly responsive to sugar, regardless of whether they were arranged as intact islets or as isolated cells. Interestingly, after 10 days of culturing, neonatal beta cells, known to display increased junctional protein content in vitro, became responsive to glucose and concomitantly dependent on cell-cell contacts. Therefore, our data suggest that the developmental acquisition of an adult-like insulin secretory pattern is paralleled by a dependence on direct cell-cell interactions.

  18. Islet immunity and beta cell reserve of indigenous Black South Africans with ketoacidosis at initial diagnosis of diabetes.

    PubMed

    Ekpebegh, Chukwuma; Longo-Mbenza, Benjamin; Blanco-Blanco, Ernesto

    2013-01-01

    Islet immunity and beta cell reserve status were utilized to classify persons with ketoacidosis as the initial manifestation of diabetes. The clinical features of the various diabetes classes were also characterized. Prospective cross sectional study. Nelson Mandela Academic Hospital, Mthatha, Eastern Cape Province, South Africa. Indigenous Black South Africans with ketoacidosis as the initial manifestation of diabetes. Islet immunity and beta cell reserve were respectively assessed using serum anti-glutamic acid decarboxylase 65 (GAD) antibody and serum C-peptide after 1 mg of intravenous glucagon. Serum anti-GAD 65 antibody > or = 5 units/L and < 5 units/L, respectively defined anti-GAD 65 positive (A+) and negative (A-). Replete (beta+) and deplete (beta-) beta cell reserve were serum C-peptide after glucagon injection of > or = 0.5 ng/mL and < 0.5 ng/mL, respectively. The proportions of patients with A+beta-, A+beta+, A-beta- and A-beta+ and their clinical characteristics were determined. Of the 38 males and 33 females who participated in the study, patients were categorized in various classes: A-beta+, 46.5% (n=33/ 71); A-beta-, 26.8% (n=19/71); A+beta-, 22.5% (n=16/71); and A+beta+, 4.2% (n=3/71). The ages of the various classes were: 41.8 +/- 13.8 years for A-beta+ (n=33); 36.5 +/- 14.6 years for A-beta- (n=19); and 20.6 +/- 7.1 years for the combination of A+beta- with A+beta+ (n=19) (P<.0001, P<.0001 for the combination of A+beta- and A+beta+ vs A-beta+, P=.001 for the combination of A+beta- and A+beta+ vs A-beta-and P=.2 for A-beta- vs A-beta+. The clinical features of type 2 diabetes were most prevalent in A-beta+ class while the A+beta- and A+beta+ groups had the clinical profile of type 1A diabetes. Most of the indigenous Black South African patients with ketoacidosis as the initial manifestation of diabetes had islet immunity, beta cell reserve status and clinical profiles of type 2 diabetes.

  19. Molecular role of TGF-beta, secreted from a new type of CD4+ suppressor T cell, NY4.2, in the prevention of autoimmune IDDM in NOD mice.

    PubMed

    Han, H S; Jun, H S; Utsugi, T; Yoon, J W

    1997-06-01

    A new type of CD4+ T cell clone (NY4.2) isolated from pancreatic islet-infiltrated lymphocytes of acutely diabetic non-obese diabetic (NOD) mice prevents the development of insulin-dependent diabetes mellitus (IDDM) in NOD mice, as well as the recurrence of autoimmune diabetes in syngeneic islet-transplanted NOD mice. It has been demonstrated that the cytokine TGF-beta, secreted from the cells of this clone, is the substance which prevents autoimmune IDDM. This investigation was initiated to determine the molecular role TGF-beta plays in the prevention of autoimmune IDDM by determining its effect on IL-2-induced signal transduction in Con A-activated NOD mouse splenocytes and HT-2 cells. First, we determined whether TGF-beta, secreted from NY4.2 T cells, inhibits IL-2-dependent T cell proliferation in HT-2 cells (IL-2-dependent T cell line) and NOD splenocytes. We found that TGF-beta suppresses IL-2-dependent T cell proliferation. Second, we determined whether TGF-beta inhibits the activation of Janus kinases (JAKs), as well as signal transducers and activators of transcription (STAT) proteins, involved in an IL-2-induced signalling pathway that normally leads to the proliferation of T cells. We found that TGF-beta inhibited tyrosine phosphorylation of JAK1, JAK3, STAT3 and STAT5 in Con A blasts from NOD splenocytes and HT-2 cells. Third, we examined whether TGF-beta inhibits the cooperation between STAT proteins and mitogen-activated protein kinase (MAPK), especially extracellular signal-regulated kinase 2 (ERK2). We found that TGF-beta inhibited the association of STAT3 and STAT5 with ERK2 in Con A blasts from NOD splenocytes and HT-2 cells. On the basis of these observations, we conclude that TGF-beta may interfere with signal transduction via inhibition of the IL-2-induced JAK/STAT pathway and inhibition of the association of STAT proteins with ERK2 in T cells from NOD splenocytes, resulting in the inhibition of IL-2-dependent T cell proliferation. TGF-beta-mediated suppression of T cell activation may be responsible for the prevention of effector T cell-mediated autoimmune IDDM in NOD mice by TGF-beta-producing CD4+ suppressor T cells.

  20. Hypothyroidism in utero stimulates pancreatic beta cell proliferation and hyperinsulinaemia in the ovine fetus during late gestation.

    PubMed

    Harris, Shelley E; De Blasio, Miles J; Davis, Melissa A; Kelly, Amy C; Davenport, Hailey M; Wooding, F B Peter; Blache, Dominique; Meredith, David; Anderson, Miranda; Fowden, Abigail L; Limesand, Sean W; Forhead, Alison J

    2017-06-01

    Thyroid hormones are important regulators of growth and maturation before birth, although the extent to which their actions are mediated by insulin and the development of pancreatic beta cell mass is unknown. Hypothyroidism in fetal sheep induced by removal of the thyroid gland caused asymmetric organ growth, increased pancreatic beta cell mass and proliferation, and was associated with increased circulating concentrations of insulin and leptin. In isolated fetal sheep islets studied in vitro, thyroid hormones inhibited beta cell proliferation in a dose-dependent manner, while high concentrations of insulin and leptin stimulated proliferation. The developing pancreatic beta cell is therefore sensitive to thyroid hormone, insulin and leptin before birth, with possible consequences for pancreatic function in fetal and later life. The findings of this study highlight the importance of thyroid hormones during pregnancy for normal development of the fetal pancreas. Development of pancreatic beta cell mass before birth is essential for normal growth of the fetus and for long-term control of carbohydrate metabolism in postnatal life. Thyroid hormones are also important regulators of fetal growth, and the present study tested the hypotheses that thyroid hormones promote beta cell proliferation in the fetal ovine pancreatic islets, and that growth retardation in hypothyroid fetal sheep is associated with reductions in pancreatic beta cell mass and circulating insulin concentration in utero. Organ growth and pancreatic islet cell proliferation and mass were examined in sheep fetuses following removal of the thyroid gland in utero. The effects of triiodothyronine (T 3 ), insulin and leptin on beta cell proliferation rates were determined in isolated fetal ovine pancreatic islets in vitro. Hypothyroidism in the sheep fetus resulted in an asymmetric pattern of organ growth, pancreatic beta cell hyperplasia, and elevated plasma insulin and leptin concentrations. In pancreatic islets isolated from intact fetal sheep, beta cell proliferation in vitro was reduced by T 3 in a dose-dependent manner and increased by insulin at high concentrations only. Leptin induced a bimodal response whereby beta cell proliferation was suppressed at the lowest, and increased at the highest, concentrations. Therefore, proliferation of beta cells isolated from the ovine fetal pancreas is sensitive to physiological concentrations of T 3 , insulin and leptin. Alterations in these hormones may be responsible for the increased beta cell proliferation and mass observed in the hypothyroid sheep fetus and may have consequences for pancreatic function in later life. © 2017 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.

  1. Role of estrogen receptors alpha, beta and GPER1/GPR30 in pancreatic beta-cells.

    PubMed

    Nadal, Angel; Alonso-Magdalena, Paloma; Soriano, Sergi; Ripoll, Cristina; Fuentes, Esther; Quesada, Ivan; Ropero, Ana Belen

    2011-01-01

    Estrogen receptors (ER) are emerging as important molecules involved in the adaptation of beta-cells to insulin resistance. The onset of type 2 diabetes is marked by insulin secretory dysfunction and decreased beta-cell mass. During pregnancy, puberty and obesity there is increased metabolic demand and insulin resistance is developed. This metabolic state increases the demand on beta-cells to augment insulin biosynthesis and release. In this respect, ERalpha is directly implicated in the E2-regulation of insulin content and secretion, while ERbeta is in the E2-potentiation of glucose-induced insulin release. Both receptors develop their actions within the physiological range of E2. In addition, the G protein-coupled estrogen receptor (GPER1/GPR30) seems to be implicated in the E2-regulation of stimulus-secretion coupling in the three cell types of the islet. The increased demand of insulin production for long time may lead to beta-cell stress and apoptosis. ERalpha, ERbeta and GPER1/GPR30 are involved in preventing beta-cell apoptosis, impeding the loss of critical beta-cell mass. Therefore, estrogen receptors may play an essential role in the adaptation of the pancreas to insulin resistant periods.

  2. 10 New NIH Research Highlights | NIH MedlinePlus the Magazine

    MedlinePlus

    ... Translational Sciences, and other NIH components. Researchers Identify Energy-Burning Fat Cells Humans have both white and brown fat cells. Brown fat burns energy and helps maintain body temperature, while white fat ...

  3. Interleukin-1{beta} regulates cell proliferation and activity of extracellular matrix remodelling enzymes in cultured primary pig heart cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zitta, Karina; Brandt, Berenice; Wuensch, Annegret

    Research highlights: {yields} Levels of IL-1{beta} are increased in the pig myocardium after infarction. {yields} Cultured pig heart cells possess IL-1 receptors. {yields} IL-1{beta} increases cell proliferation of pig heart cells in-vitro. {yields} IL-1{beta} increases MMP-2 and MMP-9 activity in pig heart cells in-vitro. {yields} IL-1{beta} may be important for tissue remodelling events after myocardial infarction. -- Abstract: After myocardial infarction, elevated levels of interleukins (ILs) are found within the myocardial tissue and IL-1{beta} is considered to play a major role in tissue remodelling events throughout the body. In the study presented, we have established a cell culture model ofmore » primary pig heart cells to evaluate the effects of different concentrations of IL-1{beta} on cell proliferation as well as expression and activity of enzymes typically involved in tissue remodelling. Primary pig heart cell cultures were derived from three different animals and stimulated with recombinant pig IL-1{beta}. RNA expression was detected by RT-PCR, protein levels were evaluated by Western blotting, activity of matrix metalloproteinases (MMPs) was quantified by gelatine zymography and cell proliferation was measured using colorimetric MTS assays. Pig heart cells express receptors for IL-1 and application of IL-1{beta} resulted in a dose-dependent increase of cell proliferation (P < 0.05 vs. control; 100 ng/ml; 24 h). Gene expression of caspase-3 was increased by IL-1{beta} (P < 0.05 vs. control; 100 ng/ml; 3 h), and pro-caspase-3 but not active caspase was detected in lysates of pig heart cells by Western blotting. MMP-2 gene expression as well as enzymatic activities of MMP-2 and MMP-9 were increased by IL-1{beta} (P < 0.05 vs. control; 100 ng/ml; 3 h for gene expression, 48 and 72 h for enzymatic activities of MMP-2 and MMP-9, respectively). Our in vitro data suggest that IL-1{beta} plays a major role in the events of tissue remodelling in the heart. Combined with our recently published in vivo data (Meybohm et al., PLoS One, 2009), the results presented here strongly suggest IL-1{beta} as a key molecule guiding tissue remodelling events after myocardial infarction.« less

  4. Identification of beta-2 as a key cell adhesion molecule in PCa cell neurotropic behavior: a novel ex vivo and biophysical approach.

    PubMed

    Jansson, Keith H; Castillo, Deborah G; Morris, Joseph W; Boggs, Mary E; Czymmek, Kirk J; Adams, Elizabeth L; Schramm, Lawrence P; Sikes, Robert A

    2014-01-01

    Prostate cancer (PCa) is believed to metastasize through the blood/lymphatics systems; however, PCa may utilize the extensive innervation of the prostate for glandular egress. The interaction of PCa and its nerve fibers is observed in 80% of PCa and is termed perineural invasion (PNI). PCa cells have been observed traveling through the endoneurium of nerves, although the underlying mechanisms have not been elucidated. Voltage sensitive sodium channels (VSSC) are multimeric transmembrane protein complexes comprised of a pore-forming α subunit and one or two auxiliary beta (β) subunits with inherent cell adhesion molecule (CAM) functions. The beta-2 isoform (gene SCN2B) interacts with several neural CAMs, while interacting putatively with other prominent neural CAMs. Furthermore, beta-2 exhibits elevated mRNA and protein levels in highly metastatic and castrate-resistant PCa. When overexpressed in weakly aggressive LNCaP cells (2BECFP), beta-2 alters LNCaP cell morphology and enhances LNCaP cell metastasis associated behavior in vitro. We hypothesize that PCa cells use beta-2 as a CAM during PNI and subsequent PCa metastasis. The objective of this study was to determine the effect of beta-2 expression on PCa cell neurotropic metastasis associated behavior. We overexpressed beta-2 as a fusion protein with enhanced cyan fluorescence protein (ECFP) in weakly aggressive LNCaP cells and observed neurotropic effects utilizing our novel ex vivo organotypic spinal cord co-culture model, and performed functional assays with neural matrices and atomic force microscopy. With increased beta-2 expression, PCa cells display a trend of enhanced association with nerve axons. On laminin, a neural CAM, overexpression of beta-2 enhances PCa cell migration, invasion, and growth. 2BECFP cells exhibit marked binding affinity to laminin relative to LNECFP controls, and recombinant beta-2 ectodomain elicits more binding events to laminin than BSA control. Functional overexpression of VSSC beta subunits in PCa may mediate PCa metastatic behavior through association with neural matrices.

  5. Transforming growth factor-{beta} inhibits CCAAT/enhancer-binding protein expression and PPAR{gamma} activity in unloaded bone marrow stromal cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahdjoudj, S.; Kaabeche, K.; Holy, X.

    2005-02-01

    The molecular mechanisms regulating the adipogenic differentiation of bone marrow stromal cells in vivo remain largely unknown. In this study, we investigated the regulatory effects of transforming growth factor beta-2 (TGF-{beta}2) on transcription factors involved in adipogenic differentiation induced by hind limb suspension in rat bone marrow stromal cells in vivo. Time course real-time quantitative reverse-transcription polymerase chain reaction (RT-PCR) analysis of gene expression showed that skeletal unloading progressively increases the expression of CCAAT/enhancer-binding protein (C/EBP){alpha} and C/EBP{beta} {alpha} at 5 days in bone marrow stromal cells resulting in increased peroxisome proliferator-activated receptor {gamma} (PPAR{gamma}2) transcripts at 7 days. TGF-{beta}2more » administration in unloaded rats corrected the rise in C/EBP{alpha} and C/EBP{beta} transcripts induced by unloading in bone marrow stromal cells. This resulted in inhibition of PPAR{gamma}2 expression that was associated with increased Runx2 expression. Additionally, the inhibition of C/EBP{alpha} and C/EBP{beta} expression by TGF-{beta}2 was associated with increased PPAR{gamma} serine phosphorylation in bone marrow stromal cells, a mechanism that inhibits PPAR{gamma} transactivating activity. The sequential inhibitory effect of TGF-{beta}2 on C/EBP{alpha}, C/EBP{beta}, and PPAR{gamma}2 resulted in reduced LPL expression and abolition of bone marrow stromal cell adipogenic differentiation, which contributed to prevent bone loss induced by skeletal unloading. We conclude that TGF-{beta}2 inhibits the excessive adipogenic differentiation of bone marrow stromal cells induced by skeletal unloading by inhibiting C/EBP{alpha}, C/EBP{beta}, and PPAR{gamma} expression and activity, which provides a sequential mechanism by which TGF-{beta}2 regulates adipogenic differentiation of bone marrow stromal cells in vivo.« less

  6. Transforming growth factor-beta1 transcriptionally activates CD34 and prevents induced differentiation of TF-1 cells in the absence of any cell-cycle effects.

    PubMed

    Marone, M; Scambia, G; Bonanno, G; Rutella, S; de Ritis, D; Guidi, F; Leone, G; Pierelli, L

    2002-01-01

    A number of cytokines modulate self-renewal and differentiation of hematopoietic elements. Among these is transforming growth factor beta1 (TGF-beta1), which regulates cell cycle and differentiation of hematopoietic cells, but has pleiotropic activities depending on the state of responsiveness of the target cells. It has been previously shown by us and other authors that TGF-beta1 maintains human CD34(+) hematopoietic progenitors in an undifferentiated state, independently of any cell cycle effects, and that depletion of TGF-beta1 triggers differentiation accompanied by a decrease in CD34 antigen expression. In the present work, we show that exogenous TGF-beta1 upregulates the human CD34 antigen in the CD34(+) cell lines TF-1 and KG-1a, but not in the more differentiated CD34(-) cell lines HL-60 and K-562. We further studied this effect in the pluripotent erythroleukemia cell line TF-1. Here, TGF-beta1 did not effect cell growth, but induced transcriptional activation of full-length CD34 and prevented differentiation induced by differentiating agents. This effect was associated with nuclear translocation of Smad-2, activation of TAK-1, and with a dramatic decrease in p38 phosphorylation. In other systems TGF-beta1 has been shown to activate a TGF-beta-activated kinase 1 (TAK1), which in turn, activates p38. The specific inhibitor of p38 phosphorylation, SB202190, also increased CD34 RNA expression, indicating the existence of a link between p-38 inhibition by TGF-beta1 and CD34 overexpression. Our data demonstrate that TGF-beta1 transcriptionally activates CD34 and prevents differentiation of TF-1 cells by acting independently through the Smad, TAK1 and p38 pathways, and thus provide important clues for the understanding of hematopoietic development and a potential tool to modify response of hematopoietic cells to mitogens or differentiating agents.

  7. Orphan nuclear receptor TLX activates Wnt/beta-catenin signalling to stimulate neural stem cell proliferation and self-renewal.

    PubMed

    Qu, Qiuhao; Sun, Guoqiang; Li, Wenwu; Yang, Su; Ye, Peng; Zhao, Chunnian; Yu, Ruth T; Gage, Fred H; Evans, Ronald M; Shi, Yanhong

    2010-01-01

    The nuclear receptor TLX (also known as NR2E1) is essential for adult neural stem cell self-renewal; however, the molecular mechanisms involved remain elusive. Here we show that TLX activates the canonical Wnt/beta-catenin pathway in adult mouse neural stem cells. Furthermore, we demonstrate that Wnt/beta-catenin signalling is important in the proliferation and self-renewal of adult neural stem cells in the presence of epidermal growth factor and fibroblast growth factor. Wnt7a and active beta-catenin promote neural stem cell self-renewal, whereas the deletion of Wnt7a or the lentiviral transduction of axin, a beta-catenin inhibitor, led to decreased cell proliferation in adult neurogenic areas. Lentiviral transduction of active beta-catenin led to increased numbers of type B neural stem cells in the subventricular zone of adult brains, whereas deletion of Wnt7a or TLX resulted in decreased numbers of neural stem cells retaining bromodeoxyuridine label in the adult brain. Both Wnt7a and active beta-catenin significantly rescued a TLX (also known as Nr2e1) short interfering RNA-induced deficiency in neural stem cell proliferation. Lentiviral transduction of an active beta-catenin increased cell proliferation in neurogenic areas of TLX-null adult brains markedly. These results strongly support the hypothesis that TLX acts through the Wnt/beta-catenin pathway to regulate neural stem cell proliferation and self-renewal. Moreover, this study suggests that neural stem cells can promote their own self-renewal by secreting signalling molecules that act in an autocrine/paracrine mode.

  8. Neural cell adhesion molecule-deficient beta-cell tumorigenesis results in diminished extracellular matrix molecule expression and tumour cell-matrix adhesion.

    PubMed

    Håkansson, Joakim; Xian, Xiaojie; He, Liqun; Ståhlberg, Anders; Nelander, Sven; Samuelsson, Tore; Kubista, Mikael; Semb, Henrik

    2005-01-01

    To understand by which mechanism neural cell adhesion molecule (N-CAM) limits beta tumour cell disaggregation and dissemination, we searched for potential downstream genes of N-CAM during beta tumour cell progression by gene expression profiling. Here, we show that N-CAM-deficient beta-cell tumorigenesis is associated with changes in the expression of genes involved in cell-matrix adhesion and cytoskeletal dynamics, biological processes known to affect the invasive and metastatic behaviour of tumour cells. The extracellular matrix (ECM) molecules emerged as the primary target, i.e. N-CAM deficiency resulted in down-regulated mRNA expression of a broad range of ECM molecules. Consistent with this result, deficient deposition of major ECM stromal components, such as fibronectin, laminin 1 and collagen IV, was observed. Moreover, N-CAM-deficient tumour cells displayed defective matrix adhesion. These results offer a potential mechanism for tumour cell disaggregation during N-CAM-deficient beta tumour cell progression. Prospective consequences of these findings for the role of N-CAM in beta tumour cell dissemination are discussed.

  9. The involvement of AMPK/GSK3-beta signals in the control of metastasis and proliferation in hepato-carcinoma cells treated with anthocyanins extracted from Korea wild berry Meoru

    PubMed Central

    2014-01-01

    Background Activation of the Wnt pathway is known to promote tumorigenesis and tumor metastasis, and targeting Wnt pathway inhibition has emerged as an attractive approach for controlling tumor invasion and metastasis. The major pathway for inhibiting Wnt is through the degradation of β-catenin by the GSK3-beta/CK1/Axin/APC complex. It was found that Hep3B hepato-carcinoma cells respond to anthocyanins through GSK3-beta-induced suppression of beta-catenin; however, they cannot dephosphorylate GSK3-beta without AMPK activation. Methods We tested the effects of anthocyanins on proliferation and apoptosis by MTT and Annexin V-PI staining in vitro. Mouse xenograft models of hepato-carcinomas were established by inoculation with Hep3B cells, and mice were injected with 50 mg/kg/ml of anthocyanins. In addition, protein levels of p-GSK3-beta, beta-catenin, p-AMPK, MMP-9, VEGF, and Ang-1 were also analyzed using western blot. Results Anthocyanins decrease phospho-GSK3-beta and beta-catenin expression in an in vivo tumor xenograft model, increase AMPK activity in this model, and inhibit cell migration and invasion, possibly by inhibiting MMP-2 (in vitro) and the panendothelial marker, CD31 (in vivo). To elucidate the role of the GSK3-beta/beta-catenin pathway in cancer control, we conditionally inactivated this pathway, using activated AMPK for inhibition. Further, we showed that AMPK siRNA treatment abrogated the ability of anthocyanins to control cell proliferation and metastatic potential, and Compound C, an AMPK inhibitor, could not restore GSK3-beta regulation, as exhibited by anthocyanins in Hep3B cells. Conclusion These observations imply that the AMPK-mediated GSK3-beta/beta-catenin circuit plays crucial roles in inhibiting cancer cell proliferation and metastasis in anthocyanin-treated hepato-carcinoma cells of Meoru origin. PMID:24666969

  10. The J beta segment of the T cell receptor contributes to the V beta-specific T cell expansion caused by staphylococcal enterotoxin B and Urtica dioica superantigens.

    PubMed

    Musette, P; Galelli, A; Truffa-Bachi, P; Peumans, W; Kourilsky, P; Gachelin, G

    1996-03-01

    We have used a new polymerase chain reaction-based technique to analyze at the clonal level the CDR3 diversity and the J beta usage associated with the V beta-dependent T cell receptor (TCR) recognition of two superantigens: the staphylococcal enterotoxin B and the Urtica dioica agglutinin. Our results show that subset of J beta elements is preferentially expanded in a given V beta family, independently of the nature of the superantigen. By contrast, the CDR3 loop does not contribute significantly to the T cell expansion induced by the superantigens. We conclude that the J beta segment of the TCR beta chain, but not the CDR3 region, participates in superantigen binding, presumably by influencing the quaternary structure of the TCR beta chain.

  11. The mechanism of cell death in human cultured colon adenocarcinoma cell line COLO 201 induced by beta-D-N-acetylglucosaminyl-p-nitrophenol.

    PubMed

    Kukidome, J; Kakizaki, I; Takagaki, K; Matsuki, A; Munakata, A; Endo, M

    2001-05-01

    COLO 201, human colon adenocarcinoma cells were incubated with artificial primers, p-nitrophenyl-glycoside derivatives at 1.0 mmol (mM) in the medium containing 10% fetal bovine serum to detect sugar chain elongation. However, when p-nitrophenyl-beta-N-acetylglucosamine (beta-GlcNAc-PNP) was added, the medium changed color to yellow and the cells were dead. To explain this finding, the cells were incubated with 1.0 mM each of beta-GlcNAc-PNP and 4-methylumbelliferyl-beta-N-acetylglucosamine, then the number of living cells was measured in a time course. In beta-GlcNAc-PNP, the living cells were decreased at 24 hours. The cells were survived with N-acetylglucosamine, whereas in the presence of p-nitrophenol (PNP) the living cells were decreased. It was suggested that PNP released from beta-GlcNAc-PNP induced the cell death. Activity of beta-D-N-acetylglucosaminidase was detected in fetal bovine serum. It was shown that PNP induced the cell death in time-and-dose dependent manner. Genomic DNA from COLO 201 analyzed by agarose gel electrophoresis was fragmentated. PNP analogues were tested for toxicity, and the results suggested that the phenolic OH-group linked to benzene ring and nitro-group linked to the structure in para-form (PNP) was the most effective.

  12. Synthesis and cytotoxic analysis of some disodium 3beta,6beta-dihydroxysterol disulfates.

    PubMed

    Cui, Jianguo; Wang, Hui; Huang, Yanmin; Xin, Yi; Zhou, Aimin

    2009-01-01

    Disodium 3beta,6beta-dihydroxy-5alpha-cholestane disulfate (1) was synthesized in 4 steps with a high overall yield from cholesterol. First, cholesterol (4a) was converted to cholest-4-en-3,6-dione (5a) via oxidation with pyridinium chlorochromate (PCC) and then 5a was reduced by NaBH(4) in the presence of NiCl(2) to produce cholest-3beta,6beta-diol (6a). The reaction of 6a with the triethylamine-sulfur trioxide complex generated diammonium 3beta,6beta-dihydroxy-5alpha-cholestane disulfate (7a) and the treatment of 7a by cation exchange resin 732 (sodium form)(Na(+)) yielded the target steroid 1. Disodium 24-ethyl-3beta,6beta-dihydroxycholest-22-ene disulfate (2) and disodium 24-ethyl-3beta,6beta-dihydroxycholestane disulfate (3) were synthesized using a similar method. The cytotoxicity of these compounds against Sk-Hep-1 (human liver carcinoma cell line), H-292 (human lung carcinoma cell line), PC-3 (human prostate carcinoma cell line) and Hey-1B (human ovarian carcinoma cell line) cells was investigated. Our results indicate that presence of a cholesterol-type side chain at position 17 is necessary for their biological activity.

  13. AMP-activated protein kinase (AMPK) cross-talks with canonical Wnt signaling via phosphorylation of {beta}-catenin at Ser 552

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Junxing; Yue, Wanfu; Zhu, Mei J.

    AMP-activated protein kinase (AMPK) is a key regulator of energy metabolism; its activity is regulated by a plethora of physiological conditions, exercises and many anti-diabetic drugs. Recent studies show that AMPK involves in cell differentiation but the underlying mechanism remains undefined. Wingless Int-1 (Wnt)/{beta}-catenin signaling pathway regulates the differentiation of mesenchymal stem cells through enhancing {beta}-catenin/T-cell transcription factor 1 (TCF) mediated transcription. The objective of this study was to determine whether AMPK cross-talks with Wnt/{beta}-catenin signaling through phosphorylation of {beta}-catenin. C3H10T1/2 mesenchymal cells were used. Chemical inhibition of AMPK and the expression of a dominant negative AMPK decreased phosphorylation ofmore » {beta}-catenin at Ser 552. The {beta}-catenin/TCF mediated transcription was correlated with AMPK activity. In vitro, pure AMPK phosphorylated {beta}-catenin at Ser 552 and the mutation of Ser 552 to Ala prevented such phosphorylation, which was further confirmed using [{gamma}-{sup 32}P]ATP autoradiography. In conclusion, AMPK phosphorylates {beta}-catenin at Ser 552, which stabilizes {beta}-catenin, enhances {beta}-catenin/TCF mediated transcription, expanding AMPK from regulation of energy metabolism to cell differentiation and development via cross-talking with the Wnt/{beta}-catenin signaling pathway.« less

  14. Expression of {beta}{sub 1} integrins in human endometrial stromal and decidual cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shiokawa, Shigetatsu; Yoshimura, Yasunori; Nakamura, Yukio

    The present study was undertaken to investigate the expression of {beta}{sub 1} integrins in human endometrium and decidua using flow cytometry, immunohistochemistry, and immunoprecipitation. Fluorescence-activated flow cytometry demonstrated the greater expression of the {beta}{sub 1}, {alpha}{sub 1}, {alpha}{sub 2}, and {alpha}{sub 5} subunits of the {beta}{sub 1} integrin family in cultured stromal cells from the midsecretory phase, than in those of the early proliferative phase. The addition of estradiol (E{sub 2}) and progesterone (P) to cultured stromal cells in the early proliferative phase increased the expression of {beta}{sub 1} integrins in vitro. Flow cytometry also demonstrated the expression of themore » {beta}{sub 1}, {alpha}{sub 1}, {alpha}{sub 2}, {alpha}{sub 3}, {alpha}{sub 5}, and {alpha}{sub 6} subunits of {beta}{sub 1} integrin family in cultured decidual cells, and the enriched-fraction of prolactin (PRL)-producing decidual cells isolated by Percoll gradients showed high levels of {beta}{sub 1} integrins expression. Immunohistochemistry confirmed the {beta}{sub 1} integrin cell surface phenotypes in cultured decidual cells observed by flow cytometry. In summary, the present study demonstrated that endometrial stromal and decidual cells expressed {beta}{sub 1} integrin subunits at their surfaces. The expression exhibited a variability throughout the menstrual cycles, being predominantly detected in the secretory phase, and was maintained highly in the decidua. Thus, {beta}{sub 1} integrins in human endometrium and decidua may be important in mediating the organization of extracellular matrix proteins derived from embryos during the early stage of implantation. 43 refs., 7 figs., 2 tabs.« less

  15. beta-catenin mediates insulin-like growth factor-I actions to promote cyclin D1 mRNA expression, cell proliferation and survival in oligodendroglial cultures.

    PubMed

    Ye, Ping; Hu, Qichen; Liu, Hedi; Yan, Yun; D'ercole, A Joseph

    2010-07-01

    By promoting cell proliferation, survival and maturation insulin-like growth factor (IGF)-I is essential to the normal growth and development of the central nervous system. It is clear that IGF-I actions are primarily mediated by the type I IGF receptor (IGF1R), and that phosphoinositide 3 (PI3)-Akt kinases and MAP kinases signal many of IGF-I-IGF1R actions in neural cells, including oligodendrocyte lineage cells. The precise downstream targets of these signaling pathways, however, remain to be defined. We studied oligodendroglial cells to determine whether beta-catenin, a molecule that is a downstream target of glycogen synthase kinase-3beta (GSK3beta) and plays a key role in the Wnt canonical signaling pathway, mediates IGF-I actions. We found that IGF-I increases beta-catenin protein abundance within an hour after IGF-I-induced phosphorylation of Akt and GSK3beta. Inhibiting the PI3-Akt pathway suppressed IGF-I-induced increases in beta-catenin and cyclin D1 mRNA, while suppression of GSK3beta activity simulated IGF-I actions. Knocking-down beta-catenin mRNA by RNA interference suppressed IGF-I-stimulated increases in the abundance of cyclin D1 mRNA, cell proliferation, and cell survival. Our data suggest that beta-catenin is an important downstream molecule in the PI3-Akt-GSK3beta pathway, and as such it mediates IGF-I upregulation of cyclin D1 mRNA and promotion of cell proliferation and survival in oligodendroglial cells. Copyright 2010 Wiley-Liss, Inc.

  16. Inhibitory effect of dimeric beta peptide on the recurrence and metastasis of hepatocellular carcinoma in vitro and in mice.

    PubMed

    Wang, Song-Mei; Zhu, Jun; Pan, Luan-Feng; Liu, Yin-Kun

    2008-05-21

    To block the adhesion of tumor cells to the extracellular matrix, and prevent tumor metastasis and recurrence, the dimer of the beta peptide (DLYYLMDLSYSMKGGDLYYLMDLSYSMK, beta2) was designed and synthesized and its anti-adhesion and anti-invasion effects on hepatocellular carcinoma cells were assessed. Additionally, its influence on the metastasis and recurrence of mouse hepatocellular carcinoma was measured. The anti-adhesion effect of beta2 on the highly metastatic hepatocellular carcinoma cell line HCCLM6 cells and fibronectin (FN) was assayed by the MTT assay. The inhibition of invasion of HCCLM6 cells by beta2 was observed using a Transwell (modified Boyden chamber) and matrigel. Using the hepatocellular carcinoma metastasis model and LCI-D20 nude mice, the influence of beta2 on the metastasis and recurrence of hepatocellular carcinoma after early resection was investigated. HCCLM6 cells co-incubated with 100 mumol/L, 50 micromol/L, 20 micromol/L or 10 micromol/L beta2 for 3 h showed an obvious decrease in adhesion to FN. The adhesion inhibition ratios were 11.8%, 21.7%, 29.6% and 48.7%, respectively. Additionally, HCCLM6 cells cultured with 100 mumol/L beta2 had a dramatic decrease in cell invasion. beta2 was also observed to inhibit the incisal edge recurrence and the distant metastasis of nude mice hepatocellular carcinoma after early resection (P < 0.05). The beta2 peptide can specifically block the adhesion and invasion of HCCLM6 cells, and can inhibit HCC recurrence and metastasis of LCI-D20 model posthepatectomy in vivo. Thus, beta2 should be further studied as a new anti-tumor drug.

  17. Inhibition of beta-adrenergic receptor trafficking in adult cardiocytes by MAP4 decoration of microtubules.

    PubMed

    Cheng, Guangmao; Qiao, Fei; Gallien, Thomas N; Kuppuswamy, Dhandapani; Cooper, George

    2005-03-01

    Decreased beta-adrenergic receptor (beta-AR) number occurs both in animal models of cardiac hypertrophy and failure and in patients. beta-AR recycling is an important mechanism for the beta-AR resensitization that maintains a normal complement of cell surface beta-ARs. We have shown that 1) in severe pressure overload cardiac hypertrophy, there is extensive microtubule-associated protein 4 (MAP4) decoration of a dense microtubule network; and 2) MAP4 microtubule decoration inhibits muscarinic acetylcholine receptor recycling in neuroblastoma cells. We asked here whether MAP4 microtubule decoration inhibits beta-AR recycling in adult cardiocytes. [(3)H]CGP-12177 was used as a beta-AR ligand, and feline cardiocytes were isolated and infected with adenovirus containing MAP4 (AdMAP4) or beta-galactosidase (Adbeta-gal) cDNA. MAP4 decorated the microtubules extensively only in AdMAP4 cardiocytes. beta-AR agonist exposure reduced cell surface beta-AR number comparably in AdMAP4 and Adbeta-gal cardiocytes; however, after agonist withdrawal, the cell surface beta-AR number recovered to 78.4 +/- 2.9% of the pretreatment value in Adbeta-gal cardiocytes but only to 56.8 +/- 1.4% in AdMAP4 cardiocytes (P < 0.01). This result was confirmed in cardiocytes isolated from transgenic mice having cardiac-restricted MAP4 overexpression. In functional terms of cAMP generation, beta-AR agonist responsiveness of AdMAP4 cells was 47% less than that of Adbeta-gal cells. We conclude that MAP4 microtubule decoration interferes with beta-AR recycling and that this may be one mechanism for beta-AR downregulation in heart failure.

  18. Proteomic profiling of bone marrow mesenchymal stem cells upon TGF-beta stimulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Daojing; Park, Jennifer S.; Chu, Julia S.F.

    Bone marrow mesenchymal stem cells (MSCs) can differentiate into different types of cells, and have tremendous potential for cell therapy and tissue engineering. Transforming growth factor {beta}1 (TGF-{beta}) plays an important role in cell differentiation and vascular remodeling. We showed that TGF-{beta} induced cell morphology change and an increase in actin fibers in MSCs. To determine the global effects of TGF-{beta} on MSCs, we employed a proteomic strategy to analyze the effect of TGF-{beta} on the human MSC proteome. By using two-dimensional gel electrophoresis and electrospray ionization coupled to Quadrupole/time-of-flight tandem mass spectrometers, we have generated a proteome reference mapmore » of MSCs, and identified {approx}30 proteins with an increase or decrease in expression or phosphorylation in response to TGF-{beta}. The proteins regulated by TGF-{beta} included cytoskeletal proteins, matrix synthesis proteins, membrane proteins, metabolic enzymes, etc. TGF-{beta} increased the expression of smooth muscle (SM) {alpha}-actin and decreased the expression of gelsolin. Over-expression of gelsolin inhibited TGF-{beta}-induced assembly of SM {alpha}-actin; on the other hand, knocking down gelsolin expression enhanced the assembly of {alpha}-actin and actin filaments without significantly affecting {alpha}-actin expression. These results suggest that TGF-{beta} coordinates the increase of {alpha}-actin and the decrease of gelsolin to promote MSC differentiation. This study demonstrates that proteomic tools are valuable in studying stem cell differentiation and elucidating the underlying molecular mechanisms.« less

  19. Genetic modification of human mesenchymal stem cells helps to reduce adiposity and improve glucose tolerance in an obese diabetic mouse model.

    PubMed

    Sen, Sabyasachi; Domingues, Cleyton C; Rouphael, Carol; Chou, Cyril; Kim, Chul; Yadava, Nagendra

    2015-12-09

    Human mesenchymal stem cells (MSCs) are multipotent cells that can differentiate into fat, muscle, bone and cartilage cells. Exposure of subcutaneous abdominal adipose tissue derived AD-MSCs to high glucose (HG) leads to superoxide accumulation and up-regulation of inflammatory molecules. Our aim was to inquire how HG exposure affects MSCs differentiation and whether the mechanism is reversible. We exposed human adipose tissue derived MSCs to HG (25 mM) and compared it to normal glucose (NG, 5.5 mM) exposed cells at 7, 10 and 14 days. We examined mitochondrial superoxide accumulation (Mitosox-Red), cellular oxygen consumption rate (OCR, Seahorse) and gene expression. HG increased reactive superoxide (ROS) accumulation noted by day 7 both in cytosol and mitochondria. The OCR between the NG and HG exposed groups however did not change until 10 days at which point OCR of HG exposed cells were reduced significantly. We noted that HG exposure upregulated mRNA expression of adipogenic (PPARG, FABP-4, CREBP alpha and beta), inflammatory (IL-6 and TNF alpha) and antioxidant (SOD2 and Catalase) genes. Next, we used AdSOD2 to upregulate SOD2 prior to HG exposure and thereby noted reduction in superoxide generation. SOD2 upregulation helped reduce mRNA over-expression of PPARG, FABP-4, IL-6 and TNFα. In a series of separate experiments, we delivered the eGFP and SOD2 upregulated MSCs (5 days post ex-vivo transduction) and saline intra-peritoneally (IP) to obese diabetic (db/db) mice. We confirmed homing-in of eGFP labeled MSCs, delivered IP, to different inflamed fat pockets, particularly omental fat. Mice receiving SOD2-MSCs showed progressive reduction in body weight and improved glucose tolerance (GTT) at 4 weeks, post MSCs transplantation compared to the GFP-MSC group (control). High glucose evokes superoxide generation, OCR reduction and adipogenic differentiation. Mitochondrial superoxide dismutase upregulation quenches excess superoxide and reduces adipocyte inflammation. Delivery of superoxide dismutase (SOD2) using MSCs as a gene delivery vehicle reduces inflammation and improves glucose tolerance in vivo. Suppression of superoxide production and adipocyte inflammation using mitochondrial superoxide dismutase may be a novel and safe therapeutic tool to combat hyperglycemia mediated effects.

  20. Reduction of high-affinity beta2-adrenergic receptor binding by hyperforin and hyperoside on rat C6 glioblastoma cells measured by fluorescence correlation spectroscopy.

    PubMed

    Prenner, Lars; Sieben, Anne; Zeller, Karin; Weiser, Dieter; Häberlein, Hanns

    2007-05-01

    Beta-adrenergic receptors (beta-AR) are potential targets for antidepressants. Desensitization and downregulation of beta-AR are discussed as possible modes of action for antidepressants. We have investigated the effects of hyperforin and hyperoside, compounds with potentially antidepressant activity from St. John's Wort, on the binding behavior and dynamics of beta2-AR in living rat C6 glioblastoma cells, compared to desipramine (desmethylimipramine; DMI) by means of fluorescence correlation spectroscopy (FCS) and fluorescence microscopy. FCS-binding studies with the fluorescently labeled ligand Alexa532-noradrenaline (Alexa532-NA) binding to beta2-AR of C6 cells showed a significant reduction in total beta2-AR binding after preincubation with hyperforin and hyperoside for 3 days, respectively, which was also found for DMI. This was mainly observed in high-affinity receptor-ligand complexes with hindered lateral mobility (D2 = 1.1 (+/-0.4) microm2/s) in the biomembrane. However, internalization of beta2-AR was found neither in z-scans of these C6 cells nor in HEK 293 cells stably transfected with GFP-tagged beta2-adrenergic receptors (beta2AR-GFP) after incubation up to 6 days with either DMI, hyperforin, or hyperoside. Thus, under these conditions reduction of beta2-AR binding was not mediated by receptor internalization. Additionally, preincubation of C6 cells with DMI, hyperforin, and hyperoside led to a loss of second messenger cAMP after beta2-adrenergic stimulating conditions with terbutaline. Our current results indicate that hyperforin and hyperoside from St. John's Wort, as well as DMI, reduce beta2-adrenergic sensitivity in C6 cells, emphasizing the potential usefulness of St. John's Wort dry extracts in clinical treatment of depressive symptoms.

  1. Transforming growth factor-beta regulates mammary carcinoma cell survival and interaction with the adjacent microenvironment.

    PubMed

    Bierie, Brian; Stover, Daniel G; Abel, Ty W; Chytil, Anna; Gorska, Agnieszka E; Aakre, Mary; Forrester, Elizabeth; Yang, Li; Wagner, Kay-Uwe; Moses, Harold L

    2008-03-15

    Transforming growth factor (TGF)-beta signaling has been associated with early tumor suppression and late tumor progression; however, many of the mechanisms that mediate these processes are not known. Using Cre/LoxP technology, with the whey acidic protein promoter driving transgenic expression of Cre recombinase (WAP-Cre), we have now ablated the type II TGF-beta receptor (T beta RII) expression specifically within mouse mammary alveolar progenitors. Transgenic expression of the polyoma virus middle T antigen, under control of the mouse mammary tumor virus enhancer/promoter, was used to produce mammary tumors in the absence or presence of Cre (T beta RII((fl/fl);PY) and T beta RII((fl/fl);PY;WC), respectively). The loss of TGF-beta signaling significantly decreased tumor latency and increased the rate of pulmonary metastasis. The loss of TGF-beta signaling was significantly correlated with increased tumor size and enhanced carcinoma cell survival. In addition, we observed significant differences in stromal fibrovascular abundance and composition accompanied by increased recruitment of F4/80(+) cell populations in T beta RII((fl/fl);PY;WC) mice when compared with T beta RII((fl/fl);PY) controls. The recruitment of F4/80(+) cells correlated with increased expression of known inflammatory genes including Cxcl1, Cxcl5, and Ptgs2 (cyclooxygenase-2). Notably, we also identified an enriched K5(+) dNp63(+) cell population in primary T beta RII((fl/fl);PY;WC) tumors and corresponding pulmonary metastases, suggesting that loss of TGF-beta signaling in this subset of carcinoma cells can contribute to metastasis. Together, our current results indicate that loss of TGF-beta signaling in mammary alveolar progenitors may affect tumor initiation, progression, and metastasis through regulation of both intrinsic cell signaling and adjacent stromal-epithelial interactions in vivo.

  2. Renal cell carcinoma containing abundant non-calcified fat.

    PubMed

    Wasser, Elliot J; Shyn, Paul B; Riveros-Angel, Marcela; Sadow, Cheryl A; Steele, Graeme S; Silverman, Stuart G

    2013-06-01

    Renal masses found to contain macroscopic fatty elements on CT or MRI imaging can generally be classified as benign angiomyolipomas. Rarely, renal cell carcinomas may also contain evidence of macroscopic fat. When true adipocytic elements are present, this is generally due to a process of osseous metaplasia in which both fat cells and calcification are co-localized within the mass. We present a patient with a large papillary renal cell carcinoma containing abundant fat with sparse, punctate calcification remote from the fatty elements on imaging. This report highlights the need for radiologists to maintain caution when diagnosing renal angiomyolipomas on the basis of macroscopic fat and reviews the current literature on fat-containing renal masses.

  3. Differential expression of E-cadherin at the surface of rat beta-cells as a marker of functional heterogeneity.

    PubMed

    Bosco, Domenico; Rouiller, Dominique G; Halban, Philippe A

    2007-07-01

    The aim of this study was to assess whether the expression of E-cadherin at the surface of rat beta-cells is regulated by insulin secretagogues and correlates with insulin secretion. When cultured under standard conditions, virtually all beta-cells expressed E-cadherin observed by immunofluorescence, but heterogeneous staining was observed. Using fluorescence-activated cell sorting (FACS), two beta-cell sub-populations were sorted: one that was poorly labeled ('ECad-low') and another that was highly labeled ('ECad-high'). After 1-h stimulation with 16.7 mM glucose, insulin secretion (reverse hemolytic plaque assay) from individual ECad-high beta-cells was higher than that from ECad-low beta-cells. Ca2+-dependent beta-cell aggregation was increased at 16.7 mM glucose when compared with 2.8 mM glucose. E-cadherin at the surface of beta-cells was increased after 18 h at 11.1 and 22.2 mM glucose when compared with 2.8 mM glucose, with the greatest increase at 22.2 mM glucose + 0.5 mM isobutylmethylxanthine (IBMX). While no labeling was detected on freshly trypsinized cells, the proportion of stained cells increased in a time-dependent manner during culture for 1, 3, and 24 h. This recovery was faster when cells were incubated at 16.7 vs 2.8 mM glucose. Cycloheximide inhibited expression of E-cadherin at 2.8 mM glucose, but not at 16.7 mM, while depolymerization of actin by either cytochalasin B or latrunculin B increased surface E-cadherin at low glucose. In conclusion, these results show that expression of E-cadherin at the surface of islet beta-cells is controlled by secretagogues including glucose, correlates with insulin secretion, and can serve as a surface marker of beta-cell function.

  4. Influence and timing of arrival of murine neural crest on pancreatic beta cell development and maturation.

    PubMed

    Plank, Jennifer L; Mundell, Nathan A; Frist, Audrey Y; LeGrone, Alison W; Kim, Thomas; Musser, Melissa A; Walter, Teagan J; Labosky, Patricia A

    2011-01-15

    Interactions between cells from the ectoderm and mesoderm influence development of the endodermally-derived pancreas. While much is known about how mesoderm regulates pancreatic development, relatively little is understood about how and when the ectodermally-derived neural crest regulates pancreatic development and specifically, beta cell maturation. A previous study demonstrated that signals from the neural crest regulate beta cell proliferation and ultimately, beta cell mass. Here, we expand on that work to describe timing of neural crest arrival at the developing pancreatic bud and extend our knowledge of the non-cell autonomous role for neural crest derivatives in the process of beta cell maturation. We demonstrated that murine neural crest entered the pancreatic mesenchyme between the 26 and 27 somite stages (approximately 10.0 dpc) and became intermingled with pancreatic progenitors as the epithelium branched into the surrounding mesenchyme. Using a neural crest-specific deletion of the Forkhead transcription factor Foxd3, we ablated neural crest cells that migrate to the pancreatic primordium. Consistent with previous data, in the absence of Foxd3, and therefore the absence of neural crest cells, proliferation of insulin-expressing cells and insulin-positive area are increased. Analysis of endocrine cell gene expression in the absence of neural crest demonstrated that, although the number of insulin-expressing cells was increased, beta cell maturation was significantly impaired. Decreased MafA and Pdx1 expression illustrated the defect in beta cell maturation; we discovered that without neural crest, there was a reduction in the percentage of insulin-positive cells that co-expressed Glut2 and Pdx1 compared to controls. In addition, transmission electron microscopy analyses revealed decreased numbers of characteristic insulin granules and the presence of abnormal granules in insulin-expressing cells from mutant embryos. Together, these data demonstrate that the neural crest is a critical regulator of beta cell development on two levels: by negatively regulating beta cell proliferation and by promoting beta cell maturation. Copyright © 2010 Elsevier Inc. All rights reserved.

  5. Preliminary in vivo efficacy studies of a recombinant rhesus anti-alpha(4)beta(7) monoclonal antibody.

    PubMed

    Pereira, L E; Onlamoon, N; Wang, X; Wang, R; Li, J; Reimann, K A; Villinger, F; Pattanapanyasat, K; Mori, K; Ansari, A A

    2009-01-01

    Recent findings established that primary targets of HIV/SIV are lymphoid cells within the gastrointestinal (GI) tract. Focus has therefore shifted to T-cells expressing alpha(4)beta(7) integrin which facilitates trafficking to the GI tract via binding to MAdCAM-1. Approaches to better understand the role of alpha(4)beta(7)+ T-cells in HIV/SIV pathogenesis include their depletion or blockade of their synthesis, binding and/or homing capabilities in vivo. Such studies can ideally be conducted in rhesus macaques (RM), the non-human primate model of AIDS. Characterization of alpha(4)beta(7) expression on cell lineages in RM blood and GI tissues reveal low densities of expression by NK cells, B-cells, naïve and TEM (effector memory) T-cells. High densities were observed on TCM (central memory) T-cells. Intravenous administration of a single 50mg/kg dose of recombinant rhesus alpha(4)beta(7) antibody resulted in significant initial decline of alpha(4)beta(7)+ lymphocytes and sustained coating of the alpha(4)beta(7) receptor in both the periphery and GI tissues.

  6. Tumor-produced, active Interleukin-1 {beta} regulates gene expression in carcinoma-associated fibroblasts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dudas, Jozsef, E-mail: Jozsef.Dudas@i-med.ac.at; Fullar, Alexandra, E-mail: fullarsz@gmail.com; 1st Institute of Pathology and Experimental Cancer Research, Semmelweis University, Ulloei ut 26, H-1085 Budapest

    2011-09-10

    Recently we described a co-culture model of periodontal ligament (PDL) fibroblasts and SCC-25 lingual squamous carcinoma cells, which resulted in conversion of normal fibroblasts into carcinoma-associated fibroblasts (CAFs), and in epithelial-mesenchymal transition (EMT) of SCC-25 cells. We have found a constitutive high interleukin-1{beta} (IL1-{beta}) expression in SCC-25 cells in normal and in co-cultured conditions. In our hypothesis a constitutive IL1-{beta} expression in SCC-25 regulates gene expression in fibroblasts during co-culture. Co-cultures were performed between PDL fibroblasts and SCC-25 cells with and without dexamethasone (DEX) treatment; IL1-{beta} processing was investigated in SCC-25 cells, tumor cells and PDL fibroblasts were treated withmore » IL1-{beta}. IL1-{beta} signaling was investigated by western blot and immunocytochemistry. IL1-{beta}-regulated genes were analyzed by real-time qPCR. SCC-25 cells produced 16 kD active IL1-{beta}, its receptor was upregulated in PDL fibroblasts during co-culture, which induced phosphorylation of interleukin-1 receptor-associated kinase-1 (IRAK-1), and nuclear translocalization of NF{kappa}B{alpha}. Several genes, including interferon regulatory factor 1 (IRF1) interleukin-6 (IL-6) and prostaglandin-endoperoxide synthase 2 (COX-2) were induced in CAFs during co-culture. The most enhanced induction was found for IL-6 and COX-2. Treatment of PDL fibroblasts with IL1-{beta} reproduced a time- and dose-dependent upregulation of IL1-receptor, IL-6 and COX-2. A further proof was achieved by DEX inhibition for IL1-{beta}-stimulated IL-6 and COX-2 gene expression. Constitutive expression of IL1-{beta} in the tumor cells leads to IL1-{beta}-stimulated gene expression changes in tumor-associated fibroblasts, which are involved in tumor progression. -- Graphical abstract: SCC-25 cells produce active, processed IL1-{beta}. PDL fibroblasts possess receptor for IL1-{beta}, and its expression is increased 4.56-times in the presence of SCC-25 tumor cells. IL1-{beta} receptor expression in fibroblasts, especially in CAFs represents a major option in coordination of fibroblast and tumor behavior. A key event in IL1-{beta} signaling, the phosphorylation of IRAK1, occurred in co-cultured fibroblasts, which has lead to nuclear translocation of NF{kappa}B{alpha}, and finally to induction of several genes, including BDNF, IRF1, IL-6 and COX-2. The most enhanced induction was found for IL-6 and COX-2.« less

  7. Beta-lactamase induction and cell wall metabolism in Gram-negative bacteria

    PubMed Central

    Zeng, Ximin; Lin, Jun

    2013-01-01

    Production of beta-lactamases, the enzymes that degrade beta-lactam antibiotics, is the most widespread and threatening mechanism of antibiotic resistance. In the past, extensive research has focused on the structure, function, and ecology of beta-lactamases while limited efforts were placed on the regulatory mechanisms of beta-lactamases. Recently, increasing evidence demonstrate a direct link between beta-lactamase induction and cell wall metabolism in Gram-negative bacteria. Specifically, expression of beta-lactamase could be induced by the liberated murein fragments, such as muropeptides. This article summarizes current knowledge on cell wall metabolism, beta-lactam antibiotics, and beta-lactamases. In particular, we comprehensively reviewed recent studies on the beta-lactamase induction by muropeptides via two major molecular mechanisms (the AmpG–AmpR–AmpC pathway and BlrAB-like two-component regulatory system) in Gram-negative bacteria. The signaling pathways for beta-lactamase induction offer a broad array of promising targets for the discovery of new antibacterial drugs used for combination therapies. Therefore, to develop effective mitigation strategies against the widespread beta-lactam resistance, examination of the molecular basis of beta-lactamase induction by cell wall fragment is highly warranted. PMID:23734147

  8. Inhibition of Transforming Growth Factor-Beta1 SignalingAttenuates Ataxia Telangiectasia Mutated Activity in Response toGenotoxic Stress

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kirshner, Julia; Jobling, Michael F.; Pajares, Maria Jose

    2006-01-01

    Ionizing radiation causes DNA damage that elicits a cellular program of damage control coordinated by the kinase activity of ataxia telangiectasia mutated protein (ATM). Transforming growth factor {beta} (TGF{beta})-1, which is activated by radiation, is a potent and pleiotropic mediator of physiologic and pathologic processes. Here we show that TGF{beta} inhibition impedes the canonical cellular DNA damage stress response. Irradiated Tgf{beta}I null murine epithelial cells or human epithelial cells treated with a small-molecule inhibitor of TGF{beta} type I receptor kinase exhibit decreased phosphorylation of Chk2, Rad17, and p53; reduced H2AX radiation-induced foci; and increased radiosensitivity compared with TGF{beta} competent cells.more » We determined that loss of TGF{beta} signaling in epithelial cells truncated ATM autophosphorylation and significantly reduced its kinase activity, without affecting protein abundance. Addition of TGF{beta} restored functional ATM and downstream DNA damage responses. These data reveal a heretofore undetected critical link between the microenvironment and ATM, which directs epithelial cell stress responses, cell fate, and tissue integrity. Thus, Tgf{beta}I, in addition to its role in homoeostatic growth control, plays a complex role in regulating responses to genotoxic stress, the failure of which would contribute to the development of cancer; conversely, inhibiting TGF{beta} may be used to advantage in cancer therapy.« less

  9. Regulation and function of the atypical cadherin FAT1 in hepatocellular carcinoma.

    PubMed

    Valletta, Daniela; Czech, Barbara; Spruss, Thilo; Ikenberg, Kristian; Wild, Peter; Hartmann, Arndt; Weiss, Thomas S; Oefner, Peter J; Müller, Martina; Bosserhoff, Anja-Katrin; Hellerbrand, Claus

    2014-06-01

    In human cancers, giant cadherin FAT1 may function both, as an oncogene and a tumor suppressor. Here, we investigated the expression and function of FAT1 in hepatocellular carcinoma (HCC). FAT1 expression was increased in human HCC cell lines and tissues compared with primary human hepatocytes and non-tumorous liver tissue as assessed by quantitative PCR and western blot analysis. Combined immunohistochemical and tissue microarray analysis showed a significant correlation of FAT1 expression with tumor stage and proliferation. Suppression of FAT1 expression by short hairpin RNA impaired proliferation and migration as well as apoptosis resistance of HCC cells in vitro. In nude mice, tumors formed by FAT1-suppressed HCC cells showed a delayed onset and more apoptosis compared with tumors of control cells. Both hepatocyte growth factor and hypoxia-mediated hypoxia-inducible factor 1 alpha activation were identified as strong inducers of FAT1 in HCC. Moreover, demethylating agents induced FAT1 expression in HCC cells. Hypoxia lead to reduced levels of the methyl group donor S-adenosyl-L-methionine (SAM) and hypoxia-induced FAT1 expression was inhibited by SAM supplementation in HCC cells. Together, these findings indicate that FAT1 expression in HCC is regulated via promotor methylation. FAT1 appears as relevant mediator of hypoxia and growth receptor signaling to critical tumorigenic pathways in HCC. This knowledge may facilitate the rational design of novel therapeutics against this highly aggressive malignancy. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  10. Decursin suppresses human androgen-independent PC3 prostate cancer cell proliferation by promoting the degradation of beta-catenin.

    PubMed

    Song, Gyu-Yong; Lee, Jee-Hyun; Cho, Munju; Park, Byeoung-Soo; Kim, Dong-Eun; Oh, Sangtaek

    2007-12-01

    Alterations in the Wnt/beta-catenin pathway are associated with the development and progression of human prostate cancer. Decursin, a pyranocoumarin isolated from the Korean Angelica gigas root, inhibits the growth of androgen-independent human prostate cancer cells, but little is known about its mechanism of action. Using a cell-based screen, we found that decursin attenuates the Wnt/beta-catenin pathway. Decursin antagonized beta-catenin response transcription (CRT), which was induced with Wnt3a-conditioned medium and LiCl, by promoting the degradation of beta-catenin. Furthermore, decursin suppressed the expression of cyclin D1 and c-myc, which are downstream target genes of beta-catenin and thus inhibited the growth of PC3 prostate cancer cells. In contrast, decursinol, in which the (CH3)2-C=CH-COO- side chain of decursin is replaced with -OH, had no effect on CRT, the level of intracellular beta-catenin, or PC3 cell proliferation. Our findings suggest that decursin exerts its anticancer activity in prostate cancer cells via inhibition of the Wnt/beta-catenin pathway.

  11. Mutant HNF-1{alpha} and mutant HNF-1{beta} identified in MODY3 and MODY5 downregulate DPP-IV gene expression in Caco-2 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gu Ning; Laboratory of Neurochemistry, Graduate School of Human and Environmental Studies, Kyoto University, Kyoto; Adachi, Tetsuya

    2006-08-04

    Dipeptidylpeptidase IV (DPP-IV) is a well-documented drug target for the treatment of type 2 diabetes. Hepatocyte nuclear factors (HNF)-1{alpha} and HNF-1{beta}, known as the causal genes of MODY3 and MODY5, respectively, have been reported to be involved in regulation of DPP-IV gene expression. But, it is not completely clear (i) that they play roles in regulation of DPP-IV gene expression, and (ii) whether DPP-IV gene activity is changed by mutant HNF-1{alpha} and mutant HNF-1{beta} in MODY3 and MODY5. To explore these questions, we investigated transactivation effects of wild HNF-1{alpha} and 13 mutant HNF-1{alpha}, as well as wild HNF-1{beta} and 2more » mutant HNF-1{beta}, on DPP-IV promoter luciferase gene in Caco-2 cells by means of a transient experiment. Both wild HNF-1{alpha} and wild HNF-1{beta} significantly transactivated DPP-IV promoter, but mutant HNF-1{alpha} and mutant HNF-1{beta} exhibited low transactivation activity. Moreover, to study whether mutant HNF-1{alpha} and mutant HNF-1{beta} change endogenous DPP-IV enzyme activity, we produced four stable cell lines from Caco-2 cells, in which wild HNF-1{alpha} or wild HNF-1{beta}, or else respective dominant-negative mutant HNF-1{alpha}T539fsdelC or dominant-negative mutant HNF-1{beta}R177X, was stably expressed. We found that DPP-IV gene expression and enzyme activity were significantly increased in wild HNF-1{alpha} cells and wild HNF-1{beta} cells, whereas they decreased in HNF-1{alpha}T539fsdelC cells and HNF-1{beta}R177X cells, compared with DPP-IV gene expression and enzyme activity in Caco-2 cells. These results suggest that both wild HNF-1{alpha} and wild HNF-1{beta} have a stimulatory effect on DPP-IV gene expression, but that mutant HNF-1{alpha} and mutant HNF-1{beta} attenuate the stimulatory effect.« less

  12. Surgical Injury to the Mouse Pancreas through Ligation of the Pancreatic Duct as a Model for Endocrine and Exocrine Reprogramming and Proliferation

    PubMed Central

    De Groef, Sofie; Leuckx, Gunter; Van Gassen, Naomi; Staels, Willem; Cai, Ying; Yuchi, Yixing; Coppens, Violette; De Leu, Nico; Heremans, Yves; Baeyens, Luc; Van de Casteele, Mark; Heimberg, Harry

    2015-01-01

    Expansion of pancreatic beta cells in vivo or ex vivo, or generation of beta cells by differentiation from an embryonic or adult stem cell, can provide new expandable sources of beta cells to alleviate the donor scarcity in human islet transplantation as therapy for diabetes. Although recent advances have been made towards this aim, mechanisms that regulate beta cell expansion and differentiation from a stem/progenitor cell remain to be characterized. Here, we describe a protocol for an injury model in the adult mouse pancreas that can function as a tool to study mechanisms of tissue remodeling and beta cell proliferation and differentiation. Partial duct ligation (PDL) is an experimentally induced injury of the rodent pancreas involving surgical ligation of the main pancreatic duct resulting in an obstruction of drainage of exocrine products out of the tail region of the pancreas. The inflicted damage induces acinar atrophy, immune cell infiltration and severe tissue remodeling. We have previously reported the activation of Neurogenin (Ngn) 3 expressing endogenous progenitor-like cells and an increase in beta cell proliferation after PDL. Therefore, PDL provides a basis to study signals involved in beta cell dynamics and the properties of an endocrine progenitor in adult pancreas. Since, it still remains largely unclear, which factors and pathways contribute to beta cell neogenesis and proliferation in PDL, a standardized protocol for PDL will allow for comparison across laboratories. PMID:26273954

  13. Effect of interlukin-1beta on proliferation of gastric epithelial cells in culture.

    PubMed

    Beales, Ian L P

    2002-04-05

    Helicobacter pylori is the main risk factor for the development of non-cardia gastric cancer. Increased proliferation of the gastric mucosa is a feature of H. pylori infection. Mucosal interkeukin-1beta production is increased in H. pylori infection and IL-1beta genotypes associated with increased pro-inflammatory activity are risk factors for the development of gastric cancer. The effect of IL-1beta on gastric epithelial cell proliferation has been examined in this study. AGS cells were cultured with IL-1beta. DNA synthesis was assed by [3H]thymidine incorporation and total viable cell numbers by MTT assay. IL-1beta dose dependently increased DNA synthesis and cell numbers. The enhanced proliferation was blocked by interleukin-1 receptor antagonist. Addition of neutralising antibody to GM-CSF reduced IL-1beta-stimulated proliferation by 31 +/- 4 %. GM-CSF alone significantly stimulated proliferation. Addition or neutralisation of IL-8 had no effect on basal or IL-1beta-stimulated proliferation. The tyrosine kinase inhibitor genistein completely blocked IL-1beta-stimulated proliferation and inhibition of the extracellular signal related kinase pathway with PD 98059 inhibited IL-1beta stimulated proliferation by 58 +/- 5 %. IL-1beta stimulates proliferation in gastric epithelial cells. Autocrine stimulation by GM-CSF contributes to this proliferative response. Signalling via tyrosine kinase activity is essential to the mitogenic response to IL-1beta. The extracellular signal related kinase pathway is involved in, but not essential to downstream signalling. IL-1beta may contribute to the hyperproliferation seen in H. pylori- infected gastric mucosa, and be involved in the carcinogenic process.

  14. Islets of Langerhans in the parakeet, Psittacula krameri.

    PubMed

    Gupta, Y K; Kumar, S

    1980-01-01

    The pancreatic gland of Psittacula krameri is divisible into 4 lobes i.e. dorsal, ventral, third and splenic. The endocrine part is composed of alpha 1-, alpha 2- and beta-cells. The islets are of 4 kinds viz., alpha islets (having alpha 1- and alpha 2-cells), beta islets (having beta- and alpha 1-cells), pure beta islets (consisting of beta-cells exclusively) and mixed islets (with beta-, alpha 1- and alpha 2-cells). The distribution of alpha islets is mostly restricted to the splenic and third lobes whereas the beta islets are found in all 4 lobes. Though the alpha islets are only few in the dorsal lobe, their size is best developed in the third and dorsal lobes. Sometimes beta and alpha islets are present in very close proximity but their cells never mingle. An interesting feature was the complete absence of alpha islets from the ventral lobe.A relative abundance of alpha 2- cells in this bird seems to be associated with its comparatively higher blood glucose level and frugivorous habit. Tinctorial reactions suggest that the insulin content of the endocrine pancreas is low. There were no seasonal changes in the islet tissue of P. krameri.

  15. Deficiency of bone marrow beta3-integrin enhances non-functional neovascularization.

    PubMed

    Watson, Alan R; Pitchford, Simon C; Reynolds, Louise E; Direkze, Natalie; Brittan, Mairi; Alison, Malcolm R; Rankin, Sara; Wright, Nicholas A; Hodivala-Dilke, Kairbaan M

    2010-03-01

    beta3-Integrin is a cell surface adhesion and signalling molecule important in the regulation of tumour angiogenesis. Mice with a global deficiency in beta3-integrin show increased pathological angiogenesis, most likely due to increased vascular endothelial growth factor receptor 2 expression on beta3-null endothelial cells. Here we transplanted beta3-null bone marrow (BM) into wild-type (WT) mice to dissect the role of BM beta3-integrin deficiency in pathological angiogenesis. Mice transplanted with beta3-null bone marrow show significantly enhanced angiogenesis in subcutaneous B16F0 melanoma and Lewis lung carcinoma (LLC) cell models and in B16F0 melanoma lung metastasis when compared with tumours grown in mice transplanted with WT bone marrow. The effect of bone marrow beta3-integrin deficiency was also assessed in the RIPTAg mouse model of pancreatic tumour growth. Again, angiogenesis in mice lacking BM beta3-integrin was enhanced. However, tumour weight between the groups was not significantly altered, suggesting that the enhanced blood vessel density in the mice transplanted with beta3-null bone marrow was not functional. Indeed, we demonstrate that in mice transplanted with beta3-null bone marrow a significant proportion of tumour blood vessels are non-functional when compared with tumour blood vessels in WT-transplanted controls. Furthermore, beta3-null-transplanted mice showed an increased angiogenic response to VEGF in vivo when compared with WT-transplanted animals. BM beta3-integrin deficiency affects the mobilization of progenitor cells to the peripheral circulation. We show that VEGF-induced mobilization of endothelial progenitor cells is enhanced in mice transplanted with beta3-null bone marrow when compared with WT-transplanted controls, suggesting a possible mechanism underlying the increased blood vessel density seen in beta3-null-transplanted mice. In conclusion, although BM beta3-integrin is not required for pathological angiogenesis, our studies demonstrate a role for BM beta3-integrin in VEGF-induced mobilization of bone marrow-derived cells to the peripheral circulation and for the functionality of those vessels in which BM-derived cells become incorporated.

  16. Stimulation of interleukin-1 beta production of human dental pulp cells by Porphyromonas endodontalis lipopolysaccharide.

    PubMed

    Hosoya, S; Matsushima, K

    1997-01-01

    IL-1 beta is synthesized as an inactive precursor, which is subsequently processed by IL-1 beta converting enzyme (ICE) and found extracellularly as a mature biologically active polypeptide. Also, IL-1 beta has been detected in necrotic and inflamed dental pulp. We examined the IL-1 beta production in human dental pulp (HDP) cells treated with lipopolysaccharide (LPS) from Porphyromonas endodontalis (P. e.) isolated from root canals and radicular cyst fluids. We demonstrated that P. e. LPS stimulated IL-1 beta release from HDP cells in a time- and dose-dependent manner. However, ICE activity was not increased by P. e. LPS. Northern blot hybridization analysis revealed that the IL-1 beta mRNA level in HDP cells was increased by P. e. LPS. These results suggest that stimulation of IL-1 beta release from HDP cells by P. e. LPS may have an important role in the progression of inflammation in pulpal and periapical disease.

  17. Type 2 diabetes and the metabolic syndrome in Japanese Americans.

    PubMed

    Fujimoto, W Y; Bergstrom, R W; Boyko, E J; Chen, K; Kahn, S E; Leonetti, D L; McNeely, M J; Newell, L L; Shofer, J B; Wahl, P W

    2000-10-01

    Japanese Americans have experienced a higher prevalence of type 2 diabetes than in Japan. Research conducted in Seattle suggests that lifestyle factors associated with 'westernization' play a role in bringing out this susceptibility to diabetes. These lifestyle factors include consumption of a diet higher in saturated fat and reduced physical activity. A consequence of this is the development of central (visceral) adiposity, insulin resistance, and other features associated with this insulin resistance metabolic syndrome, such as dyslipidemia (high triglycerides, low HDL-cholesterol, and small and dense LDL particles), hypertension, and coronary heart disease. We have postulated that the superimposition of insulin resistance upon a genetic background of reduced beta-cell reserve results in hyperglycemia and diabetes among Japanese Americans. This article reviews evidence that support this view.

  18. Interaction between statin use and saturated fat intake in relation to cognitive test performance

    USDA-ARS?s Scientific Manuscript database

    Strokes, microvascular disease, and Alzheimer’s disease adversely affect cognitive function in older people. High circulating cholesterol levels and amyloid-beta peptide deposition contribute to these conditions. Statins lower serum cholesterol by interfering with cholesterol biosynthesis, and they ...

  19. Mitochondrial overload and incomplete fatty acid oxidation contribute to skeletal muscle insulin resistance.

    PubMed

    Koves, Timothy R; Ussher, John R; Noland, Robert C; Slentz, Dorothy; Mosedale, Merrie; Ilkayeva, Olga; Bain, James; Stevens, Robert; Dyck, Jason R B; Newgard, Christopher B; Lopaschuk, Gary D; Muoio, Deborah M

    2008-01-01

    Previous studies have suggested that insulin resistance develops secondary to diminished fat oxidation and resultant accumulation of cytosolic lipid molecules that impair insulin signaling. Contrary to this model, the present study used targeted metabolomics to find that obesity-related insulin resistance in skeletal muscle is characterized by excessive beta-oxidation, impaired switching to carbohydrate substrate during the fasted-to-fed transition, and coincident depletion of organic acid intermediates of the tricarboxylic acid cycle. In cultured myotubes, lipid-induced insulin resistance was prevented by manipulations that restrict fatty acid uptake into mitochondria. These results were recapitulated in mice lacking malonyl-CoA decarboxylase (MCD), an enzyme that promotes mitochondrial beta-oxidation by relieving malonyl-CoA-mediated inhibition of carnitine palmitoyltransferase 1. Thus, mcd(-/-) mice exhibit reduced rates of fat catabolism and resist diet-induced glucose intolerance despite high intramuscular levels of long-chain acyl-CoAs. These findings reveal a strong connection between skeletal muscle insulin resistance and lipid-induced mitochondrial stress.

  20. High LET Radiation Can Enhance TGF(Beta) Induced EMT and Cross-Talk with ATM Pathways

    NASA Technical Reports Server (NTRS)

    Wang, Minli; Hada, Megumi; Huff, Janice; Pluth, Janice M.; Anderson, Janniffer; ONeill, Peter; Cucinotta, Francis A.

    2010-01-01

    The TGF(Beta) pathway has been shown to regulate or directly interact with the ATM pathway in the response to radiation in mammary epithelial cells. We investigated possible interactions between the TGF(Beta) and ATM pathways following simulated space radiation using hTERT immortalized human esophageal epithelial cells (EPC-hTERT), mink lung epithelial cells (Mv1lu), and several human fibroblast cell lines. TGF(Beta) is a key modulator of the Epithelial-Mesenchymal Transition (EMT), important in cancer progression and metastasis. The implication of EMT by radiation also has several lines of developing evidence, however is poorly understood. The identification of TGF(Beta) induced EMT can be shown in changes to morphology, related gene over expression or down regulation, which can be detected by RT-PCR, and immunostaining and western blotting. In this study, we have observed morphologic and molecular alternations consistent with EMT after Mv1lu cells were treated with TGF(Beta) High LET radiation enhanced TGF(Beta) mediated EMT with a dose as low as 0.1Gy. In order to consider the TGF(Beta) interaction with ATM we used a potent ATM inhibitor Ku55933 and investigated gene expression changes and Smad signaling kinetics. Ku559933 was observed to reverse TGF(Beta) induced EMT, while this was not observed in dual treated cells (radiation+TGF(Beta)). In EPC-hTERT cells, TGF(Beta) alone was not able to induce EMT after 3 days of application. A combined treatment with high LET, however, significantly caused the alteration of EMT markers. To study the function of p53 in the process of EMT, we knocked down P53 through RNA interference. Morphology changes associated with EMT were observed in epithelial cells with silenced p53. Our study indicates: high LET radiation can enhance TGF(Beta) induced EMT; while ATM is triggering the process of TGF(Beta)-induced EMT, p53 might be an essential repressor for EMT phenotypes.

  1. Expression of the leukemia-associated CBF{beta}/SMMHC chimeric gene causes transformation of 3T3 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hajra, A.; Liu, P.; Collins, E.S.

    1994-09-01

    A pericentric inversion of chromosome 16 (inv(16)(p13;q22)) is consistently seen in acute myeloid leukemia of the M4Eo subtype. This inversion fuses almost the entire coding region of the gene encoding of the {beta} subunit of the heterodimeric transcription factor CBF/PEBP2 to the region of the MYH11 gene encoding the rod domain for the smooth muscle myosin heavy chain (SMMHC). To investigate the biological properties of the CBF{beta}/SMMHC fusion protein, we have generated 3T3 cell lines that stably express the CBF{beta}/SMMHC chimeric cDNA or the normal, nonchimeric CBF{beta} and SMMHC cDNAs. 3T3 cells expressing CBF{beta}/SMMHC acquire a transformed phenotype, as indicatedmore » by altered cell morphology, formation of foci, and growth in soft agar. Cells constitutively overexpressing the normal CBF{beta} cDNA or the rod region of SMMHC remain nontransformed. Western blot analysis using antibodies to CBF{beta} and the SMMHC rod demonstrates that stably transfected cells express the appropriate chimeric or normal protein. Electrophoretic mobility shift assays reveal that cells transformed by the chimeric cDNA do not have a CBF-DNA complex of the expected mobility, but instead contain a large complex with CBF DNA-binding activity that fails to migrate out of the gel wells. In order to define the regions of CBF{beta}/SMMHC necessary for 3T3 transformation, we have stably transfected cells with mutant CBF{beta}/SMMHC cDNAs containing various deletions of the coding region. Analysis of these cell lines indicates that the transformation property of CBF{beta}/SMMHC requires regions of CBF{beta} known to be necessary for association with the DNA-binding CBF{alpha} subunit, and also requires an intact SMMHC carboxyl terminus, which is necessary for formation of the coiled coil domain of the myosin rod.« less

  2. Expression of transforming growth factor-beta1, -beta2 and -beta3 in normal and diseased canine mitral valves.

    PubMed

    Aupperle, H; März, I; Thielebein, J; Schoon, H-A

    2008-01-01

    The pathogenesis of chronic valvular disease (CVD) in dogs remains unclear, but activation and proliferation of valvular stromal cells (VSC) and their transdifferentiation into myofibroblast-like cells has been described. These alterations may be influenced by transforming growth factor-beta (TGF-beta), a cytokine involved in extracellular matrix (ECM) regulation and mesenchymal cell differentiation. The present study investigates immunohistochemically the expression of TGF-beta1, -beta2, -beta3 and smooth muscle alpha actin (alpha-SMA) in normal canine mitral valves (MVs) (n=10) and in the valves of dogs with mild (n=7), moderate (n=14) and severe (n=9) CVD. In normal mitral valves there was no expression of alpha-SMA but VSC displayed variable expression of TGF-beta1 (10% of VSC labelled), TGF-beta2 (1-5% labelled) and TGF-beta3 (50% labelled). In mild CVD the affected atrialis contain activated and proliferating alpha-SMA-positive VSC, which strongly expressed TGF-beta1 and -beta3, but only 10% of these cells expressed TGF-beta2. In unaffected areas of the leaflet there was selective increase in expression of TGF-beta1 and -beta3. In advanced CVD the activated subendothelial VSC strongly expressed alpha-SMA, TGF-beta1 and -beta3. Inactive VSC within the centre of the nodules had much less labelling for TGF-beta1 and -beta3. TGF-beta1 labelling was strong within the ECM. These data suggest that TGF-beta plays a role in the pathogenesis of CVD by inducing myofibroblast-like differentiation of VSC and ECM secretion. Changed haemodynamic forces and expression of matrix metalloproteinases (MMPs) may in turn regulate TGF-beta expression.

  3. Resveratrol supplementation confers neuroprotection in cortical brain tissue of nonhuman primates fed a high-fat/sucrose diet

    PubMed Central

    Bernier, Michel; Wahl, Devin; Ali, Ahmed; Allard, Joanne; Faulkner, Shakeela; Wnorowski, Artur; Sanghvi, Mitesh; Moaddel, Ruin; Alfaras, Irene; Mattison, Julie A.; Tarantini, Stefano; Tucsek, Zsuzsanna; Ungvari, Zoltan; Csiszar, Anna; Pearson, Kevin J.; de Cabo, Rafael

    2016-01-01

    Previous studies have shown positive effects of long-term resveratrol (RSV) supplementation in preventing pancreatic beta cell dysfunction, arterial stiffening and metabolic decline induced by high-fat/high-sugar (HFS) diet in nonhuman primates. Here, the analysis was extended to examine whether RSV may reduce dietary stress toxicity in the cerebral cortex of the same cohort of treated animals. Middle-aged male rhesus monkeys were fed for 2 years with HFS alone or combined with RSV, after which whole-genome microarray analysis of cerebral cortex tissue was carried out along with ELISA, immunofluorescence, and biochemical analyses to examine markers of vascular health and inflammation in the cerebral cortices. A number of genes and pathways that were differentially modulated in these dietary interventions indicated an exacerbation of neuroinflammation (e.g., oxidative stress markers, apoptosis, NF-κB activation) in HFS-fed animals and protection by RSV treatment. The decreased expression of mitochondrial aldehyde dehydrogenase 2, dysregulation in endothelial nitric oxide synthase, and reduced capillary density induced by HFS stress were rescued by RSV supplementation. Our results suggest that long-term RSV treatment confers neuroprotection against cerebral vascular dysfunction during nutrient stress. PMID:27070252

  4. Resveratrol supplementation confers neuroprotection in cortical brain tissue of nonhuman primates fed a high-fat/sucrose diet.

    PubMed

    Bernier, Michel; Wahl, Devin; Ali, Ahmed; Allard, Joanne; Faulkner, Shakeela; Wnorowski, Artur; Sanghvi, Mitesh; Moaddel, Ruin; Alfaras, Irene; Mattison, Julie A; Tarantini, Stefano; Tucsek, Zsuzsanna; Ungvari, Zoltan; Csiszar, Anna; Pearson, Kevin J; de Cabo, Rafael

    2016-05-01

    Previous studies have shown positive effects of long-term resveratrol (RSV) supplementation in preventing pancreatic beta cell dysfunction, arterial stiffening and metabolic decline induced by high-fat/high-sugar (HFS) diet in nonhuman primates. Here, the analysis was extended to examine whether RSV may reduce dietary stress toxicity in the cerebral cortex of the same cohort of treated animals. Middle-aged male rhesus monkeys were fed for 2 years with HFS alone or combined with RSV, after which whole-genome microarray analysis of cerebral cortex tissue was carried out along with ELISA, immunofluorescence, and biochemical analyses to examine markers of vascular health and inflammation in the cerebral cortices. A number of genes and pathways that were differentially modulated in these dietary interventions indicated an exacerbation of neuroinflammation (e.g., oxidative stress markers, apoptosis, NF-κB activation) in HFS-fed animals and protection by RSV treatment. The decreased expression of mitochondrial aldehyde dehydrogenase 2, dysregulation in endothelial nitric oxide synthase, and reduced capillary density induced by HFS stress were rescued by RSV supplementation. Our results suggest that long-term RSV treatment confers neuroprotection against cerebral vascular dysfunction during nutrient stress.

  5. Brown adipogenesis of mouse embryonic stem cells in alginate microstrands

    NASA Astrophysics Data System (ADS)

    Unser, Andrea Mannarino

    The ability of brown adipocytes (fat cells) to dissipate energy as heat shows great promise for the treatment of obesity and other metabolic disorders. Employing pluripotent stem cells, with an emphasis on directed differentiation, may overcome many issues currently associated with primary fat cell cultures. However, brown adipocytes are difficult to transplant in vivo due to the instability of fat, in terms of necrosis and neovascularization, once injected. Thus, 3D cell culture systems that have the potential to mimic adipogenic microenvironments are needed, not only to advance brown fat implantation, but also to better understand the role of brown adipocytes in treating obesity. To address this need, we created 3D "Brown-Fat-in-Microstrands" by microfluidic synthesis of alginate hydrogel microstrands that encapsulated cells and directly induced cell differentiation into brown adipocytes, using mouse embryonic stem cells (ESCs) as a model of pluripotent stem cells and brown preadipocytes as a positive control. The effect of hydrogel formation parameters on brown adipogenesis was studied, leading to the establishment of "Brown-Fat-in-Microstrands". Brown adipocyte differentiation within microstrands was confirmed by lipid droplet accumulation, immunocytochemistry and qPCR analysis of gene expression of brown adipocyte marker uncoupling protein 1 (UCP1) in addition to adipocyte marker expression. Compared to a 2D approach, 3D differentiated "Brown-Fat-in-Microstrands" exhibited higher level of brown adipocyte marker expression. The functional analysis of "Brown-Fat-in-Microstrands" was attempted by measuring the mitochondrial activity of ESC-differentiated brown adipocytes in 3D using Seahorse XF24 3 Extracellular Flux Analyzer. The ability to create "Brown-Fat-in-Microstrands" from pluripotent stem cells opens up a new arena to understanding brown adipogenesis and its implications in obesity and metabolic disorders.

  6. {beta}-Catenin regulates airway smooth muscle contraction.

    PubMed

    Jansen, Sepp R; Van Ziel, Anna M; Baarsma, Hoeke A; Gosens, Reinoud

    2010-08-01

    beta-Catenin is an 88-kDa member of the armadillo family of proteins that is associated with the cadherin-catenin complex in the plasma membrane. This complex interacts dynamically with the actin cytoskeleton to stabilize adherens junctions, which play a central role in force transmission by smooth muscle cells. Therefore, in the present study, we hypothesized a role for beta-catenin in the regulation of smooth muscle force production. beta-Catenin colocalized with smooth muscle alpha-actin (sm-alpha-actin) and N-cadherin in plasma membrane fractions and coimmunoprecipitated with sm-alpha-actin and N-cadherin in lysates of bovine tracheal smooth muscle (BTSM) strips. Moreover, immunocytochemistry of cultured BTSM cells revealed clear and specific colocalization of sm-alpha-actin and beta-catenin at the sites of cell-cell contact. Treatment of BTSM strips with the pharmacological beta-catenin/T cell factor-4 (TCF4) inhibitor PKF115-584 (100 nM) reduced beta-catenin expression in BTSM whole tissue lysates and in plasma membrane fractions and reduced maximal KCl- and methacholine-induced force production. These changes in force production were not accompanied by changes in the expression of sm-alpha-actin or sm-myosin heavy chain (MHC). Likewise, small interfering RNA (siRNA) knockdown of beta-catenin in BTSM strips reduced beta-catenin expression and attenuated maximal KCl- and methacholine-induced contractions without affecting sm-alpha-actin or sm-MHC expression. Conversely, pharmacological (SB-216763, LiCl) or insulin-induced inhibition of glycogen synthase kinase-3 (GSK-3) enhanced the expression of beta-catenin and augmented maximal KCl- and methacholine-induced contractions. We conclude that beta-catenin is a plasma membrane-associated protein in airway smooth muscle that regulates active tension development, presumably by stabilizing cell-cell contacts and thereby supporting force transmission between neighboring cells.

  7. TGF-beta1 stimulates expression of the aromatase (CYP19) gene in human osteoblast-like cells and THP-1 cells.

    PubMed

    Shozu, M; Zhao, Y; Simpson, E R

    2000-02-25

    Recent evidence has shown that bone is not only a target of estrogen action but also a source of local estrogen production. Bone cells such as osteoblasts express aromatase (P450arom) and the expression of P450arom in osteoblasts is positively regulated in a tissue specific fashion, as in the case of other tissues which express P450arom. To clarify the physiological factors regulating expression of P450arom in bone, we tested TGF-beta1 using osteoblast-like cells obtained from human fetuses as well as THP-1 cells. TGF-beta1 increased IL-1beta+DEX- induced aromatase activity in osteoblast-like cells, while it inhibited activity in skin fibroblasts. Similar enhancement of aromatase activity by TGF-beta1 was found in DEX-stimulated THP-1 cells and this cell line was used for further experiments. In THP-1 cells, TGF-beta1 enhanced DEX-induced aromatase activity almost linearly by 12 h and thereafter. Increased levels of P450arom transcripts were also demonstrated by RT-PCR at 3 h of TGF-beta1 treatment and thereafter. Cyclohexamide abolished enhancement of activity but did not inhibit the accumulation of P450arom transcripts induced by TGF-beta1. Increase in P450arom expression by TGF-beta1 was attributable to expression driven by promoter I.4. TGF-beta1 did not change the half life of P450arom transcripts. To identify the cis-acting elements responsible for TGF-beta1 action on aromatase expression, transient transfection assays were performed using a series of deletion constructs for promoter I.4 (P450-I.4/Luc). Two constructs (-410/+14 and-340/+14) that contain a functional glucocorticoid response element (GRE) and downstream sequence showed significant increase of luciferase activity in response to TGF-beta1. Deletion and mutation of the GRE in P450-I.4/Luc (-340/+14) abolished the TGF-beta1. The luciferase activity of a (GRE)(1)-SV40/Luc construct was also stimulated by TGF-beta1. These results indicate that TGF-beta1 increases the expression of P450arom at the level of transcription through promoter I.4, at least in part via an enhancement of transactivation activity of the GR in THP-1 cells. TGF-beta1 is suggested to be one of the physiological up-regulatory factors of bone aromatase.

  8. Beta-lactam antibiotics modulate T-cell functions and gene expression via covalent binding to cellular albumin.

    PubMed

    Mor, Felix; Cohen, Irun R

    2013-02-19

    Recent work has suggested that beta-lactam antibiotics might directly affect eukaryotic cellular functions. Here, we studied the effects of commonly used beta-lactam antibiotics on rodent and human T cells in vitro and in vivo on T-cell-mediated experimental autoimmune diseases. We now report that experimental autoimmune encephalomyelitis and adjuvant arthritis were significantly more severe in rats treated with cefuroxime and other beta-lactams. T cells appeared to mediate the effect: an anti-myelin basic protein T-cell line treated with cefuroxime or penicillin was more encephalitogenic in adoptive transfer experiments. The beta-lactam ampicillin, in contrast to cefuroxime and penicillin, did not enhance encephalomyelitis, but did inhibit the autoimmune diabetes developing spontaneously in nonobese diabetic mice. Gene expression analysis of human peripheral blood T cells showed that numerous genes associated with T helper 2 (Th2) and T regulatory (Treg) differentiation were down-regulated in T cells stimulated in the presence of cefuroxime; these genes were up-regulated in the presence of ampicillin. The T-cell protein that covalently bound beta-lactam antibiotics was found to be albumin. Human and rodent T cells expressed albumin mRNA and protein, and penicillin-modified albumin was taken up by rat T cells, leading to enhanced encephalitogenicity. Thus, beta-lactam antibiotics in wide clinical use have marked effects on T-cell behavior; beta-lactam antibiotics can function as immunomodulators, apparently through covalent binding to albumin.

  9. Effect of beta-carotene-rich tomato lycopene beta-cyclase ( tlcy-b) on cell growth inhibition in HT-29 colon adenocarcinoma cells.

    PubMed

    Palozza, Paola; Bellovino, Diana; Simone, Rossella; Boninsegna, Alma; Cellini, Francesco; Monastra, Giovanni; Gaetani, Sancia

    2009-07-01

    Lycopene beta-cyclase (tlcy-b) tomatoes, obtained by modulating carotenogenesis via genetic engineering, contain a large amount of beta-carotene, as clearly visible by their intense orange colour. In the present study we have subjected tlcy-b tomatoes to an in vitro simulated digestion and analysed the effects of digestate on cell proliferation. To this aim we used HT-29 human colon adenocarcinoma cells, grown in monolayers, as a model. Digested tomatoes were diluted (20 ml, 50 ml and 100 ml/l) in culture medium and added to the cells for different incubation times (24 h, 48 h and 72 h). Inhibition of cell growth by tomato digestate was dose-dependent and resulted from an arrest of cell cycle progression at the G0/G1 and G2/M phase and by apoptosis induction. A down-regulation of cyclin D1, Bcl-2 and Bcl-xl expression was observed. We also found that heat treatment of samples before digestion enhanced beta-carotene release and therefore cell growth inhibition. To induce with purified beta-carotene solubilised in tetrahydrofuran the same cell growth inhibition obtained with the tomato digestate, a higher amount of the carotenoid was necessary, suggesting that beta-carotene micellarised during digestion is utilised more efficiently by the cells, but also that other tomato molecules, reasonably made available during digestion, may be present and cooperate with beta-carotene in promoting cell growth arrest.

  10. Insulin-producing cells could not mimic the physiological regulation of insulin secretion performed by pancreatic beta cells

    PubMed Central

    2013-01-01

    Objective The aim of this study was to compare the difference between insulin-producing cells (IPCs) and normal human pancreatic beta cells both in physiological function and morphological features in cellular level. Methods The levels of insulin secretion were measured by enzyme-linked immunosorbent assay. The insulin gene expression was determined by real-time quantitative polymerase chain reaction. The morphological features were detected by atomic force microscopy (AFM) and laser confocal scanning microscopy. Results IPCs and normal human pancreatic beta cells were similar to each other under the observation in AFM with the porous structure features in the cytoplasm. Both number of membrane particle size and average roughness of normal human beta cells were higher than those of IPCs. Conclusions Our results firstly revealed that the cellular ultrastructure of IPCs was closer to that of normal human pancreatic beta cells, but they still could not mimic the physiological regulation of insulin secretion performed by pancreatic beta cells. PMID:23421382

  11. Toward beta cell replacement for diabetes

    PubMed Central

    Johannesson, Bjarki; Sui, Lina; Freytes, Donald O; Creusot, Remi J; Egli, Dieter

    2015-01-01

    The discovery of insulin more than 90 years ago introduced a life-saving treatment for patients with type 1 diabetes, and since then, significant progress has been made in clinical care for all forms of diabetes. However, no method of insulin delivery matches the ability of the human pancreas to reliably and automatically maintain glucose levels within a tight range. Transplantation of human islets or of an intact pancreas can in principle cure diabetes, but this approach is generally reserved for cases with simultaneous transplantation of a kidney, where immunosuppression is already a requirement. Recent advances in cell reprogramming and beta cell differentiation now allow the generation of personalized stem cells, providing an unlimited source of beta cells for research and for developing autologous cell therapies. In this review, we will discuss the utility of stem cell-derived beta cells to investigate the mechanisms of beta cell failure in diabetes, and the challenges to develop beta cell replacement therapies. These challenges include appropriate quality controls of the cells being used, the ability to generate beta cell grafts of stable cellular composition, and in the case of type 1 diabetes, protecting implanted cells from autoimmune destruction without compromising other aspects of the immune system or the functionality of the graft. Such novel treatments will need to match or exceed the relative safety and efficacy of available care for diabetes. PMID:25733347

  12. Beta3 subunits promote expression and nicotine-induced up-regulation of human nicotinic alpha6* nicotinic acetylcholine receptors expressed in transfected cell lines.

    PubMed

    Tumkosit, Prem; Kuryatov, Alexander; Luo, Jie; Lindstrom, Jon

    2006-10-01

    Nicotinic acetylcholine receptors (AChRs) containing alpha6 subunits are typically found at aminergic nerve endings where they play important roles in nicotine addiction and Parkinson's disease. alpha6* AChRs usually contain beta3 subunits. beta3 subunits are presumed to assemble only in the accessory subunit position within AChRs where they do not participate in forming acetylcholine binding sites. Assembly of subunits in the accessory position may be a critical final step in assembly of mature AChRs. Human alpha6 AChRs subtypes were permanently transfected into human tsA201 human embryonic kidney (HEK) cell lines. alpha6beta2beta3 and alpha6beta4beta3 cell lines were found to express much larger amounts of AChRs and were more sensitive to nicotine-induced increase in the amount of AChRs than were alpha6beta2 or alpha6beta4 cell lines. The increased sensitivity to nicotine-induced up-regulation was due not to a beta3-induced increase in affinity for nicotine but probably to a direct effect on assembly of AChR subunits. HEK cells express only a small amount of mature alpha6beta2 AChRs, but many of these subunits are on the cell surface. This contrasts with Xenopus laevis oocytes, which express a large amount of incorrectly assembled alpha6beta2 subunits that bind cholinergic ligands but form large amorphous intracellular aggregates. Monoclonal antibodies (mAbs) were made to the alpha6 and beta3 subunits to aid in the characterization of these AChRs. The alpha6 mAbs bind to epitopes C-terminal of the extracellular domain. These data demonstrate that both cell type and the accessory subunit beta3 can play important roles in alpha6* AChR expression, stability, and up-regulation by nicotine.

  13. The ectopic expression of Pax4 in the mouse pancreas converts progenitor cells into alpha and subsequently beta cells.

    PubMed

    Collombat, Patrick; Xu, Xiaobo; Ravassard, Philippe; Sosa-Pineda, Beatriz; Dussaud, Sébastien; Billestrup, Nils; Madsen, Ole D; Serup, Palle; Heimberg, Harry; Mansouri, Ahmed

    2009-08-07

    We have previously reported that the loss of Arx and/or Pax4 gene activity leads to a shift in the fate of the different endocrine cell subtypes in the mouse pancreas, without affecting the total endocrine cell numbers. Here, we conditionally and ectopically express Pax4 using different cell-specific promoters and demonstrate that Pax4 forces endocrine precursor cells, as well as mature alpha cells, to adopt a beta cell destiny. This results in a glucagon deficiency that provokes a compensatory and continuous glucagon+ cell neogenesis requiring the re-expression of the proendocrine gene Ngn3. However, the newly formed alpha cells fail to correct the hypoglucagonemia since they subsequently acquire a beta cell phenotype upon Pax4 ectopic expression. Notably, this cycle of neogenesis and redifferentiation caused by ectopic expression of Pax4 in alpha cells is capable of restoring a functional beta cell mass and curing diabetes in animals that have been chemically depleted of beta cells.

  14. Genome-wide analysis of DNA methylation variations caused by chronic glucolipotoxicity in beta-cells.

    PubMed

    Hu, Y; Xu, X-H; He, K; Zhang, L-L; Wang, S-K; Pan, Y-Q; He, B-S; Feng, T-T; Mao, X-M

    2014-02-01

    There is a growing body of literature suggesting the role of interactions between genes and the environment in development of type 2 diabetes mellitus (T2DM). However, the interplay between environment and genetic in developing and progressing T2MD is not fully understood. To determine the effects of high-glucose-lipid on the status of DNA methylation in beta cells, and clarify the mechanism of glucolipotoxicity on beta-cell deterioration, the DNA methylation profile was detected in beta-cells cultured with high-glucose-lipid medium.We utilized a high throughput NimbleGen RN34 CpG Island & Promoter Microarray to investigate the DNA methylation profile in beta-cells cultured with high-glucose-lipid medium. To validate the results of microarray, the immunoprecipitation (MeDIP) PCR was used to test the methylation status of some selected genes. The mRNA and protein expression of insulin and Tcf7l2 in these cells were quantified by RT-PCR and western blot, respectively.We have identified a lot of loci which experienced aberrant DNA methylation in beta-cells cultured with high-glucose-lipid medium. The results of MeDIP PCR were consistency to the microarray. An opposite regulation in transcription and translation of Tcf7l2 gene was found. Furthermore, the insulin mRNA and protein expression in beta-cells also decreased after cultured with high-glucose-lipid medium compared with the control cells.We conclude that chronic glucolipotoxicity could induce aberrant DNA methylation of some genes and may affect these genes expression in beta-cells, which might contribute to beta-cell function failure in T2DM and be helpful to explain, at least partially, the mechanism of glucolipotoxicity on beta-cells deterioration. © J. A. Barth Verlag in Georg Thieme Verlag KG Stuttgart · New York.

  15. Novel function of STAT1beta in B cells: induction of cell death by a mechanism different from that of STAT1alpha.

    PubMed

    Najjar, Imen; Schischmanoff, Pierre Olivier; Baran-Marszak, Fanny; Deglesne, Pierre-Antoine; Youlyouz-Marfak, Ibtissam; Pampin, Mathieu; Feuillard, Jean; Bornkamm, Georg W; Chelbi-Alix, Mounira K; Fagard, Remi

    2008-12-01

    Alternate splicing of STAT1 produces two isoforms: alpha, known as the active form, and beta, previously shown to act as a dominant-negative factor. Most studies have dealt with STAT1alpha, showing its involvement in cell growth control and cell death. To examine the specific function of either isoform in cell death, a naturally STAT1-deficient human B cell line was transfected to express STAT1alpha or STAT1beta. STAT1alpha, expressed alone, enhanced cell death, potentiated the fludarabine-induced apoptosis, and enhanced the nuclear location, the phosphorylation, and the transcriptional activity of p53. Unexpectedly, STAT1beta, expressed alone, induced cell death through a mechanism that was independent of the nuclear function of p53. Indeed, in STAT1beta-expressing B cells, p53 was strictly cytoplasmic where it formed clusters, and there was no induction of the transcriptional activity of p53. These data reveal a novel role of STAT1beta in programmed cell death, which is independent of p53.

  16. Genetics Home Reference: sickle cell disease

    MedlinePlus

    ... of beta-globin; this abnormality is called beta thalassemia . In people with sickle cell disease , at least ... globin. If mutations that produce hemoglobin S and beta thalassemia occur together, individuals have hemoglobin S- beta thalassemia (HbSBetaThal) ...

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Jiying; Ohno-Matsui, Kyoko, E-mail: k.ohno.oph@tmd.ac.jp; Morita, Ikuo

    Highlights: Black-Right-Pointing-Pointer Cholesterol-treated RPE produces more A{beta} than non-treated RPE. Black-Right-Pointing-Pointer Neprilysin expression and activity decreased in cholesterol-treated RPE. Black-Right-Pointing-Pointer {alpha}-Secretase expression and activity decreased in cholesterol-treated RPE. Black-Right-Pointing-Pointer Cholesterol-enriched diet induced subRPE deposits in aged mice. Black-Right-Pointing-Pointer A{beta} were present in cholesterol-enriched-diet-induced subRPE deposits in aged mice. -- Abstract: Subretinally-deposited amyloid {beta} (A{beta}) is a main contributor of developing age-related macular degeneration (AMD). However, the mechanism causing A{beta} deposition in AMD eyes is unknown. Hypercholesterolemia is a significant risk for developing AMD. Thus, we investigated the effects of cholesterol on A{beta} production in retinal pigment epithelial (RPE) cells inmore » vitro and in the mouse retina in vivo. RPE cells isolated from senescent (12-month-old) C57BL/6 mice were treated with 10 {mu}g/ml cholesterol for 48 h. A{beta} amounts in culture supernatants were measured by ELISA. Activity and expression of enzymes and proteins that regulate A{beta} production were examined by activity assay and real time PCR. The retina of mice fed cholesterol-enriched diet was examined by transmission electron microscopy. Cholesterol significantly increased A{beta} production in cultured RPE cells. Activities of A{beta} degradation enzyme; neprilysin (NEP) and anti-amyloidogenic secretase; {alpha}-secretase were significantly decreased in cell lysates of cholesterol-treated RPE cells compared to non-treated cells, but there was no change in the activities of {beta}- or {gamma}-secretase. mRNA levels of NEP and {alpha}-secretase (ADAM10 and ADAM17) were significantly lower in cholesterol-treated RPE cells than non-treated cells. Senescent (12-month-old) mice fed cholesterol-enriched chow developed subRPE deposits containing A{beta}, whereas age-matched mice fed standard rodent chow diet did not. Activities and mRNA levels of NEP and {alpha}-secretase were significantly lower in native RPE cells freshly isolated from cholesterol-enriched chow fed mice compared to standard rodent chow fed mice. These findings suggest that cholesterol enhances subretinal A{beta} accumulation by modulating the activities of enzymes degrading and processing A{beta} in RPE cells in senescent subjects.« less

  18. Beta2 toxin is not involved in in vitro cell cytotoxicity caused by human and porcine cpb2-harbouring Clostridium perfringens.

    PubMed

    Allaart, Janneke G; van Asten, Alphons J A M; Vernooij, Johannes C M; Gröne, Andrea

    2014-06-25

    Clostridium perfringens is a common cause of intestinal disease in animals and humans. Its pathogenicity is attributed to the toxins it can produce, including the beta2 toxin. The presence of cpb2, the gene encoding the beta2 toxin, has been associated with diarrhoea in neonatal piglets and humans. However, the exact role of the beta2 toxin in the development of diarrhoea is still unknown. In this study we investigated the level of cytotoxicity to porcine IPI-21 and human Caco-2 cell-lines caused by porcine and human cpb2-harbouring C. perfringens and the significance of the beta2 toxin for the induction of cell cytotoxicity. Supernatants of porcine cpb2-harbouring C. perfringens strains were cytotoxic to both cell lines. Cell cytotoxicity caused by supernatant of human cpb2-harbouring C. perfringens strains was variable among strains. However, removal of the beta2 toxin by anti-beta2 toxin antibodies or degradation of the beta2 toxin by trypsin did not reduce the cytotoxic effect of any of the supernatants. These data suggest that beta2 toxin does not play a role in the development of cell cytotoxicity in in vitro experiments. In vivo studies are necessary to definitely define the role of beta2 toxin in the development of cell cytotoxicity and subsequent diarrhoea. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Epidermal differentiation during ontogeny and after hatching in the snake Liasis fuscus (Pythonidae, Serpentes, Reptilia), with emphasis on the formation of the shedding complex.

    PubMed

    Alibardi, L; Thompson, M B

    2003-04-01

    Differentiation and localization of keratin in the epidermis during embryonic development and up to 3 months posthatching in the Australian water python, Liasis fuscus, was studied by ultrastructural and immunocytochemical methods. Scales arise from dome-like folds in the skin that produce tightly imbricating scales. The dermis of these scales is completely differentiated before any epidermal differentiation begins, with a loose dermis made of mesenchymal cells beneath the differentiating outer scale surface. At this stage (33) the embryo is still unpigmented and two layers of suprabasal cells contain abundant glycogen. At Stage 34 (beginning of pigmentation) the first layers of cells beneath the bilayered periderm (presumptive clear and oberhautchen layers) have not yet formed a shedding complex, within which prehatching shedding takes place. At Stage 35 the shedding complex, consisting of the clear and oberhautchen layers, is discernible. The clear layer contains a fine fibrous network that faces the underlying oberhautchen, where the spinulae initially contain a core of fibrous material and small beta-keratin packets. Differentiation continues at Stage 36 when the beta-layer forms and beta-keratin packets are deposited both on the fibrous core of the oberhautchen and within beta-cells. Mesos cells are produced from the germinal layer but remain undifferentiated. At Stage 37, before hatching, the beta-layer is compact, the mesos layer contains mesos granules, and cells of the alpha-layer are present but are not yet keratinized. They are still only partially differentiated a few hours after hatching, when a new shedding complex is forming underneath. Using antibodies against chick scale beta-keratin resolved at high magnification with immunofluorescent or immunogold conjugates, we offer the first molecular confirmation that in snakes only the oberhautchen component of the shedding complex and the underlying beta cells contain beta-keratin. Initially, there is little immunoreactivity in the small beta-packets of the oberhautchen, but it increases after fusion with the underlying cells to produce the syncytial beta layer. The beta-keratin packets coalesce with the tonofilaments, including those attached to desmosomes, which rapidly disappear in both oberhautchen and beta-cells as differentiation progresses. The labeling is low to absent in forming mesos-cells beneath the beta-layer. This study further supports the hypothesis that the shedding complex in lepidosaurian reptiles evolved after there was a segregation between alpha-keratogenic cells from beta-keratogenic cells during epidermal renewal. Copyright 2003 Wiley-Liss, Inc.

  20. Association of fat to lean mass ratio with metabolic dysfunction in women with polycystic ovary syndrome

    PubMed Central

    Ezeh, Uche; Pall, Marita; Mathur, Ruchi; Azziz, Ricardo

    2014-01-01

    STUDY QUESTION Are differences in metabolic dysfunction between polycystic ovary syndrome (PCOS) and control women related to differences in their fat to lean mass (F/L) ratio? SUMMARY ANSWER Compared with controls of similar body mass index (BMI), women with PCOS demonstrate adverse body composition characterized by increased whole body fat relative to lean mass (i.e. a higher F/L ratio), which is associated with differences in metabolic dysfunction between the two groups. WHAT IS KNOWN ALREADY Previous studies examining body composition and insulin resistance (IR) in PCOS have yielded conflicting results. Excess total fat mass (i.e. fat mass index [fat BMI]) correlates with IR, whereas increased total lean mass (i.e. lean BMI) has been associated with higher insulin sensitivity. However, the role of the F/L ratio, which integrates the antagonistic effects of both fat and lean mass depots, on IR in PCOS, has not been investigated. STUDY DESIGN, SIZE, DURATION We conducted a prospective cross-sectional study of 120 women between the ages of 22–44 years to study the relation of the F/L ratio with measures of insulin action and secretion in both steady and dynamic states. PARTICIPANTS/MATERIALS, SETTING, METHODS Sixty PCOS (by NIH, 1990 criteria) and 60 control (age, race and BMI-matched) women were prospectively studied for body composition (by bioelectrical impedance analysis [BIA]) and basal IR and insulin secretion by the homeostasis model assessment (HOMA-IR and HOMA-%β-cell function, respectively) in a tertiary care academic referral center. A subset of 12 PCOS and 12 matched control women also underwent a modified frequently sampled intravenous glucose tolerance test (FSIVGTT) to determine glucose uptake and insulin secretion in dynamic state. MAIN RESULTS AND THE ROLE OF CHANCE Our results indicate that women with PCOS demonstrated greater degrees of hyperandrogenism, and higher waist-to-hip ratio (WHR), %body fat, fat BMI, F/L, fasting insulin levels, and HOMA-IR and HOMA-%β-cell values, than controls. In models adjusted for WHR and free testosterone and diagnostic groups, fasting insulin levels, HOMA-IR, and HOMA-%beta cell function were positively related to the F/L ratio. A positive relationship was also found in both study groups between F/L and the FSIVGTT measures insulin sensitivity (Si) and acute insulin response to glucose (AIRg). The F/L tended to negatively correlate with glucose effectiveness or non-insulin-mediated glucose transport (Sg) only in PCOS women. LIMITATIONS, REASONS FOR CAUTION Regional tissue sub-compartments, which have been shown to have potential independent associations with metabolic variables, cannot be determined by bioelectrical impedance analysis (BIA). WIDER IMPLICATIONS OF THE FINDINGS The current results suggest that BIA could be used to assess F/L in place of dual energy X-ray absorptiometry (DXA) in research protocols, and that F/L could possibly be used as an alternative to WHR as a surrogate marker of metabolic dysfunction in clinical practice. STUDY FUNDING/COMPETING INTEREST(S) This work was supported by grants R01-DK073632 and R01-HD29364 from the NIH and an endowment of the Helping Hand of Los Angeles, Inc. (to R.A.). The authors have no competing interests to declare. TRIAL REGISTRATION NUMBER Not applicable. PMID:24813197

  1. Cell cycle-related metabolism and mitochondrial dynamics in a replication-competent pancreatic beta-cell line.

    PubMed

    Montemurro, Chiara; Vadrevu, Suryakiran; Gurlo, Tatyana; Butler, Alexandra E; Vongbunyong, Kenny E; Petcherski, Anton; Shirihai, Orian S; Satin, Leslie S; Braas, Daniel; Butler, Peter C; Tudzarova, Slavica

    2017-01-01

    Cell replication is a fundamental attribute of growth and repair in multicellular organisms. Pancreatic beta-cells in adults rarely enter cell cycle, hindering the capacity for regeneration in diabetes. Efforts to drive beta-cells into cell cycle have so far largely focused on regulatory molecules such as cyclins and cyclin-dependent kinases (CDKs). Investigations in cancer biology have uncovered that adaptive changes in metabolism, the mitochondrial network, and cellular Ca 2+ are critical for permitting cells to progress through the cell cycle. Here, we investigated these parameters in the replication-competent beta-cell line INS 832/13. Cell cycle synchronization of this line permitted evaluation of cell metabolism, mitochondrial network, and cellular Ca 2+ compartmentalization at key cell cycle stages. The mitochondrial network is interconnected and filamentous at G1/S but fragments during the S and G2/M phases, presumably to permit sorting to daughter cells. Pyruvate anaplerosis peaks at G1/S, consistent with generation of biomass for daughter cells, whereas mitochondrial Ca 2+ and respiration increase during S and G2/M, consistent with increased energy requirements for DNA and lipid synthesis. This synchronization approach may be of value to investigators performing live cell imaging of Ca 2+ or mitochondrial dynamics commonly undertaken in INS cell lines because without synchrony widely disparate data from cell to cell would be expected depending on position within cell cycle. Our findings also offer insight into why replicating beta-cells are relatively nonfunctional secreting insulin in response to glucose. They also provide guidance on metabolic requirements of beta-cells for the transition through the cell cycle that may complement the efforts currently restricted to manipulating cell cycle to drive beta-cells through cell cycle.

  2. Targeting Cellular Calcium Homeostasis to Prevent Cytokine-Mediated Beta Cell Death.

    PubMed

    Clark, Amy L; Kanekura, Kohsuke; Lavagnino, Zeno; Spears, Larry D; Abreu, Damien; Mahadevan, Jana; Yagi, Takuya; Semenkovich, Clay F; Piston, David W; Urano, Fumihiko

    2017-07-17

    Pro-inflammatory cytokines are important mediators of islet inflammation, leading to beta cell death in type 1 diabetes. Although alterations in both endoplasmic reticulum (ER) and cytosolic free calcium levels are known to play a role in cytokine-mediated beta cell death, there are currently no treatments targeting cellular calcium homeostasis to combat type 1 diabetes. Here we show that modulation of cellular calcium homeostasis can mitigate cytokine- and ER stress-mediated beta cell death. The calcium modulating compounds, dantrolene and sitagliptin, both prevent cytokine and ER stress-induced activation of the pro-apoptotic calcium-dependent enzyme, calpain, and partly suppress beta cell death in INS1E cells and human primary islets. These agents are also able to restore cytokine-mediated suppression of functional ER calcium release. In addition, sitagliptin preserves function of the ER calcium pump, sarco-endoplasmic reticulum Ca 2+ -ATPase (SERCA), and decreases levels of the pro-apoptotic protein thioredoxin-interacting protein (TXNIP). Supporting the role of TXNIP in cytokine-mediated cell death, knock down of TXNIP in INS1-E cells prevents cytokine-mediated beta cell death. Our findings demonstrate that modulation of dynamic cellular calcium homeostasis and TXNIP suppression present viable pharmacologic targets to prevent cytokine-mediated beta cell loss in diabetes.

  3. Molecular basis for the regulation of islet beta cell mass in mice: the role of E-cadherin

    PubMed Central

    Wakae-Takada, N.; Xuan, S.; Watanabe, K.; Meda, P.; Leibel, R. L.

    2014-01-01

    Aims/hypothesis In rodents and humans, the rate of beta cell proliferation declines rapidly after birth; formation of the islets of Langerhans begins perinatally and continues after birth. Here, we tested the hypothesis that increasing levels of E-cadherin during islet formation mediate the decline in beta cell proliferation rate by contributing to a reduction of nuclear β-catenin and D-cyclins. Methods We examined E-cadherin, nuclear β-catenin, and D-cyclin levels, as well as cell proliferation during in vitro and in vivo formation of islet cell aggregates, using β-TC6 cells and transgenic mice with green fluorescent protein (GFP)-labelled beta cells, respectively. We tested the role of E-cadherin using antisense-mediated reductions of E-cadherin in β-TC6 cells, and mice segregating for a beta cell-specific E-cadherin knockout (Ecad [also known as Cdh1] βKO). Results In vitro, pseudo-islets of β-TC6 cells displayed increased E-cadherin but decreased nuclear β-catenin and cyclin D2, and reduced rates of cell proliferation, compared with monolayers. Antisense knockdown of E-cadherin increased cell proliferation and levels of cyclins D1 and D2. After birth, beta cells showed increased levels of E-cadherin, but decreased levels of D-cyclin, whereas islets of Ecad βKO mice showed increased levels of D-cyclins and nuclear β-catenin, as well as increased beta cell proliferation. These islets were significantly larger than those of control mice and displayed reduced levels of connexin 36. These changes correlated with reduced insulin response to ambient glucose, both in vitro and in vivo. Conclusions/interpretation The findings support our hypothesis by indicating an important role of E-cadherin in the control of beta cell mass and function. PMID:23354125

  4. Molecular basis for the regulation of islet beta cell mass in mice: the role of E-cadherin.

    PubMed

    Wakae-Takada, N; Xuan, S; Watanabe, K; Meda, P; Leibel, R L

    2013-04-01

    In rodents and humans, the rate of beta cell proliferation declines rapidly after birth; formation of the islets of Langerhans begins perinatally and continues after birth. Here, we tested the hypothesis that increasing levels of E-cadherin during islet formation mediate the decline in beta cell proliferation rate by contributing to a reduction of nuclear β-catenin and D-cyclins. We examined E-cadherin, nuclear β-catenin, and D-cyclin levels, as well as cell proliferation during in vitro and in vivo formation of islet cell aggregates, using β-TC6 cells and transgenic mice with green fluorescent protein (GFP)-labelled beta cells, respectively. We tested the role of E-cadherin using antisense-mediated reductions of E-cadherin in β-TC6 cells, and mice segregating for a beta cell-specific E-cadherin knockout (Ecad [also known as Cdh1] βKO). In vitro, pseudo-islets of β-TC6 cells displayed increased E-cadherin but decreased nuclear β-catenin and cyclin D2, and reduced rates of cell proliferation, compared with monolayers. Antisense knockdown of E-cadherin increased cell proliferation and levels of cyclins D1 and D2. After birth, beta cells showed increased levels of E-cadherin, but decreased levels of D-cyclin, whereas islets of Ecad βKO mice showed increased levels of D-cyclins and nuclear β-catenin, as well as increased beta cell proliferation. These islets were significantly larger than those of control mice and displayed reduced levels of connexin 36. These changes correlated with reduced insulin response to ambient glucose, both in vitro and in vivo. The findings support our hypothesis by indicating an important role of E-cadherin in the control of beta cell mass and function.

  5. Beta-catenin interacts with low-molecular-weight protein tyrosine phosphatase leading to cadherin-mediated cell-cell adhesion increase.

    PubMed

    Taddei, Maria Letizia; Chiarugi, Paola; Cirri, Paolo; Buricchi, Francesca; Fiaschi, Tania; Giannoni, Elisa; Talini, Doriana; Cozzi, Giacomo; Formigli, Lucia; Raugei, Giovanni; Ramponi, Giampietro

    2002-11-15

    Beta-catenin plays a dual role as a major constituent of cadherin-based adherens junctions and also as a transcriptional coactivator. In normal ephitelial cells, at adherens junction level, beta-catenin links cadherins to the actin cytoskeleton. The structure of adherens junctions is dynamically regulated by tyrosine phosphorylation. In particular, cell-cell adhesion can be negatively regulated through the tyrosine phosphorylation of beta-catenin. Furthermore, the loss of beta-catenin-cadherin association has been correlated with the transition from a benign tumor to an invasive, metastatic cancer. Low-molecular-weight protein tyrosine phosphatase (LMW-PTP) is a ubiquitous PTP implicated in the regulation of mitosis and cytoskeleton rearrangement. Here we demonstrate that the amount of free cytoplasmic beta-catenin is decreased in NIH3T3, which overexpresses active LMW-PTP, and this results in a stronger association between cadherin complexes and the actin-based cytoskeleton with respect to control cells. Confocal microscopy analysis shows that beta-catenin colocalizes with LMW-PTP at the plasma membrane. Furthermore, we provide evidence that beta-catenin is able to associate with LMW-PTP both in vitro and in vivo. Moreover, overexpression of active LMW-PTP strongly potentiates cadherin-mediated cell-cell adhesion, whereas a dominant-negative form of LMW-PTP induces the opposite phenotype, both in NIH3T3 and in MCF-7 carcinoma cells. On the basis of these results, we propose that the stability of cell-cell contacts at the adherens junction level is positively influenced by LMW-PTP expression, mainly because of the beta-catenin and LMW-PTP interaction at the plasma membrane level with consequent dephosphorylation.

  6. [The effect of 18beta-glycyrrhetinic acid on gap junction among cerebral arteriolar smooth muscle cells in Wistar rat and spontaneously hypertensive rat].

    PubMed

    Chen, Xin-Yan; Si, Jun-Qiang; Li, Li; Zhao, Lei; Wei, Li-Li; Jiang, Xue-Wei; Ma, Ke-Tao

    2013-05-01

    This study compared Wistar rat with spontaneously hypertensive rat (SHR) on the electrophysiology and coupling force of the smooth muscle cells in the cerebral arteriolar segments and observe the influence of 18beta-glycyrrhetinic acid(18beta-GA) on the gap junctions between the arterial smooth muscle cells. The outer layer's connective tissue of the cerebral arteriolar segments was removed. Whole-cell patch clamp recordings were used to observe the 18beta-GA's impaction on the arteriolar segment membrane's input capacitance (C(input)), input conductance (G(input)) and input resistance (R(input)) of the smooth muscle cells. (1) The C(input) and G(input) of the SHR arteriolar segment smooth muscle cells was much higher than the Wistar rats, there was significant difference (P < 0.05). (2) 18beta-GA concentration-dependently reduced C(input) and G(input) (or increase R(input)) on smooth muscle cells in arteriolar segment. IC50 of 18beta-GA suppression's G(input) of the Wistar rat and SHR were 1.7 and 2.0 micromol/L respectively, there was not significant difference (P > 0.05). After application of 18beta-GA concentration > or = 100 micrmol/L, the C(input), G(input) and R(input) of the single smooth muscle cells was very close. Gap junctional coupling is enhanced in the SHR cerebral arterial smooth muscle cells. 18beta-GA concentration-dependent inhibits Wistar rat's and SHR cerebral arteriolar gap junctions between arterial smooth muscle cells. The inhibitory potency is similar between the two different rats. When 18beta-GA concentration is > or = 100 micromol/L, it can completely block gap junctions between arteriolar smooth muscle cells.

  7. Gene silencing of beta-catenin in melanoma cells retards their growth but promotes the formation of pulmonary metastasis in mice.

    PubMed

    Takahashi, Yuki; Nishikawa, Makiya; Suehara, Tetsuya; Takiguchi, Naomi; Takakura, Yoshinobu

    2008-11-15

    Altered expression of beta-catenin, a key component of the Wnt signaling pathway, is involved in a variety of cancers because increased levels of beta-catenin protein are frequently associated with enhanced cellular proliferation. Although our previous study demonstrated that gene silencing of beta-catenin in melanoma B16-BL6 cells by plasmid DNA (pDNA) expressing short-hairpin RNA targeting the gene (pshbeta-catenin) markedly suppressed their growth in vivo, gene silencing of beta-catenin could promote tumor metastasis by the rearranging cell adhesion complex. In this study, we investigated how silencing of beta-catenin affects metastatic aspects of melanoma cells. Transfection of B16-BL6 cells with pshbeta-catenin significantly reduced the amount of cadherin protein, a cell adhesion molecule binding to beta-catenin, with little change in its mRNA level. Cadherin-derived fragments were detected in culture media of B16-BL6 cells transfected with pshbeta-catenin, suggesting that cadherin is shed from the cell surface when the expression of beta-catenin is reduced. The mobility of B16-BL6 cells transfected with pshbeta-catenin was greater than that of cells transfected with any of the control pDNAs. B16-BL6 cells stably transfected with pshbeta-catenin (B16/pshbeta-catenin) formed less or an equal number of tumor nodules in the lung than cells stably transfected with other plasmids when injected into mice via the tail vein. However, when subcutaneously inoculated, B16/pshbeta-catenin cells formed more nodules in the lung than the other stably transfected cells. These results raise concerns about the gene silencing of beta-catenin for inhibiting tumor growth, because it promotes tumor metastasis by reducing the amount of cadherin in tumor cells. (c) 2008 Wiley-Liss, Inc.

  8. Proliferation of Estrogen Receptor alpha Positive Mammary Epithelial Cells is Restrained by TGFbeta1 in Adult Mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ewan, Kenneth B.R.; Oketch-Rabah, Hellen A.; Ravani, Shraddha A.

    2005-03-03

    Transforming growth factor {beta}1 (TGF{beta}1) is a potent inhibitor of mammary epithelial proliferation. In human breast, estrogen receptor {alpha} (ER{alpha}) cells rarely co-localize with markers of proliferation, but their increased frequency correlates with breast cancer risk. To determine whether TGF{beta}1 is necessary for the quiescence of ER{alpha}-positive population, we examined mouse mammary epithelial gland at estrus. Approximately 35% of cells showed TGF{beta}1 activation, which co-localized with nuclear receptor-phosphorylated Smad 2/3, indicating that TGF{beta} signaling is autocrine. Furthermore, nuclear Smad co-localized with nuclear ER{alpha}. To test whether TGF{beta} was functional, we examined genetically engineered mice with different levels of TGF{beta}1. ER{alpha}more » co-localization with markers of proliferation (i.e. Ki-67 or BrdU) at estrus was significantly increased in the mammary glands of Tgf{beta}1 C57/bl/129SV heterozygote mice. This relationship was maintained following pregnancy, but was absent at puberty. Conversely, mammary epithelial expression of constitutively active TGF{beta}1 via the MMTV promoter suppressed proliferation of ER{alpha} positive cells. Thus, TGF{beta}1 activation functionally restrains ER{alpha} positive cells from proliferating in adult mammary gland. Accordingly, we propose that TGF{beta}1 dysregulation may promote proliferation of ER{alpha} positive cells associated with breast cancer risk in humans.« less

  9. Co-culture of clonal beta cells with GLP-1 and glucagon-secreting cell line impacts on beta cell insulin secretion, proliferation and susceptibility to cytotoxins.

    PubMed

    Green, Alastair D; Vasu, Srividya; Moffett, R Charlotte; Flatt, Peter R

    2016-06-01

    We investigated the direct effects on insulin releasing MIN6 cells of chronic exposure to GLP-1, glucagon or a combination of both peptides secreted from GLUTag L-cell and αTC1.9 alpha-cell lines in co-culture. MIN6, GLUTag and αTC1.9 cell lines exhibited high cellular hormone content and release of insulin, GLP-1 and glucagon, respectively. Co-culture of MIN6 cells with GLUTag cells significantly increased cellular insulin content, beta-cell proliferation, insulin secretory responses to a range of established secretogogues and afforded protection against exposure cytotoxic concentrations of glucose, lipid, streptozotocin or cytokines. Benefits of co-culture of MIN6 cells with αTC1.9 alphacells were limited to enhanced beta-cell proliferation with marginal positive actions on both insulin secretion and cellular protection. In contrast, co-culture of MIN6 with GLUTag cells plus αTC1.9 cells, markedly enhanced both insulin secretory responses and protection against beta-cell toxins compared with co-culture with GLUTag cells alone. These data indicate important long-term effects of conjoint GLP-1 and glucagon exposure on beta-cell function. This illustrates the possible functional significance of alpha-cell GLP-1 production as well as direct beneficial effects of dual agonism at beta-cell GLP-1 and glucagon receptors. Copyright © 2016 Elsevier B.V. and Société française de biochimie et biologie Moléculaire (SFBBM). All rights reserved.

  10. Visualization of astaxanthin localization in HT29 human colon adenocarcinoma cells by combined confocal resonance Raman and fluorescence microspectroscopy.

    PubMed

    Briviba, Karlis; Bornemann, Rainer; Lemmer, Ulrich

    2006-11-01

    Astaxanthin, a carotenoid found in plants and seafood, exhibits antiproliferative, antioxidant and anticarcinogenic properties. We show that astaxanthin delivered with tetrahydrofuran is effectively taken up by cultured colon adenocarcinoma cells and is localized mostly in the cytoplasm as detected by confocal resonance Raman and broad-band fluorescence microspectroscopy image analysis. Cells incubated with beta-carotene at the same concentration as astaxanthin (10 microM) showed about a 50-fold lower cellular amount of beta-carotene, as detected by HPLC. No detectable Raman signal of beta-carotene was found in cells, but a weak broad-band fluorescence signal of beta-carotene was observed. beta-Carotene, like astaxanthin, was localized mostly in the cytoplasm. The heterogeneity of astaxanthin and beta-carotene cellular distribution in cells of intestinal origin suggests that the possible defense against reactive molecules by carotenoids in these cells may also be heterogeneous.

  11. Expression profile of senescence-associated beta-galactosidase and activation of telomerase in human ovarian surface epithelial cells undergoing immortalization.

    PubMed

    Litaker, J R; Pan, J; Cheung, Y; Zhang, D K; Liu, Y; Wong, S C; Wan, T S; Tsao, S W

    1998-11-01

    Senescence is a specific physiological stage of cells characterized by long population doubling time. It accounts for the inability of normal somatic cells to undergo indefinite cell division. As the number of population doublings increase, cell cycle regulatory mechanisms come into play and signal cells to exit the cell cycle and become senescent. Senescence has been implicated in the aging process and may function as a tumor suppressor mechanism in human cells. The ability to measure the degree of cellular senescence is important in understanding the biological processes regulating cell aging and immortalization. Senescent cells exhibit an enzyme termed senescence-associated histochemical staining. Cells immortalized by viral oncogenes often enter a stage of crisis at the early phase of immortalization. The cells at crisis have a long population doubling time. Cells at the crisis stage resemble senescent cells and the expression of SA- beta-Gal may be used to monitor the process of immortalization. In this study the expression profile of SA-beta-Gal was examined in human ovarian surface epithelial cells (HOSE 6-3) undergoing immortalization by the human papilloma viral oncogene E6 and E7 (HPV E6 and E7). Our results showed a low percentage (12.0%) of HOSE 6-3 cells expressing SA-beta-Gal activity at the pre-crisis stage. The percentage of HOSE 6-3 cells expressing SA-beta-Gal activity was highest (39.2%) at the crisis stage. When HOSE 6-3 cells achieved immortalized status there was a sharp decrease in cells (1. 3%) expressing SA-beta-Gal activity. In addition, an inverse relationship between the expression of SA-beta-Gal activity and telomerase activity was noted in cells undergoing immortalization. The results confirm that the SA-beta-Gal enzyme is a good marker for monitoring the population of cells undergoing senescence at different stages of immortalization and that telomerase activation is a characteristic feature of post-crisis cells.

  12. Akt interacts directly with Smad3 to regulate the sensitivity to TGF-beta induced apoptosis.

    PubMed

    Conery, Andrew R; Cao, Yanna; Thompson, E Aubrey; Townsend, Courtney M; Ko, Tien C; Luo, Kunxin

    2004-04-01

    Transforming growth factor beta (TGF-beta) induces both apoptosis and cell-cycle arrest in some cell lines, but only growth arrest in others. It is not clear how this differential response to TGF-beta is specified. Smad proteins are critical mediators of TGF-beta signalling. After stimulation by TGF-beta, Smad2 and Smad3 become phosphorylated by the activated TGF-beta receptor kinases, oligomerize with Smad4, translocate to the nucleus and regulate the expression of TGF-beta target genes. Here we report that the sensitivity to TGF-beta induced apoptosis is regulated by crosstalk between the Akt/PKB serine/threonine kinase and Smad3 through a mechanism that is independent of Akt kinase activity. Akt interacts directly with unphosphorylated Smad3 to sequester it outside the nucleus, preventing its phosphorylation and nuclear translocation. This results in inhibition of Smad3-mediated transcription and apoptosis. Furthermore, the ratio of Smad3 to Akt correlates with the sensitivity of cells to TGF-beta induced apoptosis. Alteration of this ratio changes the apoptotic, but not the growth-inhibitory, responses of cells to TGF-beta. These findings identify an important determinant of sensitivity to TGF-beta-induced apoptosis that involves crosstalk between the TGF-beta and phosphatidylinositol-3-OH kinase (PI(3)K) pathways.

  13. An evaluation of beta-hydroxybutyrate in milk and blood for prediction of subclinical ketosis in dairy cows.

    PubMed

    Samiei, A; Liang, J B; Ghorbani, G R; Hirooka, H; Yaakub, H; Tabatabaei, M

    2010-01-01

    The first objective of this study was to investigate the relationship between concentrations of beta-hydroxybutyrate (BHBA) in milk and blood to assess the reliability of the BHBA concentrations in milk measured by a semi quantitative keto-test paper to detect subclinical ketosis (SCK) in 50 fresh high-producing Iranian Holstein cows in Golestan Province, Iran. The second objective was the effects of SCK on milk yield and components. Concentrations of nonesterified fatty acids (NEFA) and BHBA were analyzed quantitatively in blood plasma and commercial keto-test paper was used for semi quantitative determination of BHBA concentration in milk. Milk yield was measured until 60 d after calving but milk compositions were measured until 30 d after calving. The mean plasma BHBA, milk BHBA, plasma NEFA, milk yield, milk fat percentage and milk fat: protein ratio were 1,234 micromol/L, 145 micromol/L, 0.482 mEq/L, 29.5 kg, 3.9% and 1.4, respectively. Fifty eight percent of the cows had SCK during the first month of lactation. High correlation coefficients were observed between blood BHBA and blood NEFA, and between blood and milk BHBA. The milk yield of cattle with SCK decreased (P < 0.01) but the fat percentage and milk fat: protein ratio increased (P < 0.01). The commercial keto-test paper used had a low false positive result at a cut-off point of 200 fmol of BHBA/L of milk. The results showed that the best time to assess SCK using the commercial keto-test paper was d 10, 14 and 17 after calving.

  14. Fish consumption is inversely associated with male lung cancer mortality in countries with high levels of cigarette smoking or animal fat consumption.

    PubMed

    Zhang, J; Temme, E H; Kesteloot, H

    2000-08-01

    A striking difference in fish consumption and lung cancer mortality (LCM) exists among populations worldwide. This study investigated the relation between fish consumption and LCM at the population level. Sex-specific LCM data, mostly around 1993 and fish consumption data for 10 periods 1961-1994 in 36 countries were obtained from WHO and FAO, respectively. A significant inverse correlation exists between log fish consumption and LCM rate in 9 out of the 10 time periods (r = -0.34 to r = -0.46, P = 0.044 to P = 0.005). After adjusting for smoking and other confounders, log fish consumption (% of total energy [% E]) was inversely and significantly associated with LCM rate (per 100 000 per year) in all 10 time periods (beta = -26.3 to beta = -36.7; P = 0.0039 to P < 0.0001). The stratified analysis showed that this inverse relation was significant only in countries with above median level of smoking (>2437 cigarettes/adult/year) or animal fat minus fish fat consumption (22.4% E). An increase in fish consumption by 1% E was calculated to reduce mean male LCM rate of the populations examined in the age class of 45-74 years by 8.4%. In women, no significant relation between fish consumption and LCM could be established. Fish consumption is associated with a reduced risk from LCM, but this possible protective effect is clear-cut only in men and in countries with high levels of cigarette smoking or animal fat consumption.

  15. Regulation of GM-CSF-induced dendritic cell development by TGF-beta1 and co-developing macrophages.

    PubMed

    Yamaguchi, Y

    1998-01-01

    Using a culture system of bone marrow progenitor cells with GM-CSF and TGF-beta1, a study was performed to analyze the effect of TGF-beta1 on the development of dendritic cells (DC) and to elucidate the regulatory role of macrophages co-developing with dendritic cells. The results demonstrate that DC generated in the presence of TGF-beta1 were immature with respect to the expression of CD86, nonspecific esterase activity and cell shape. Such inhibitory effects of TGF-beta1 were dependent on FcR+ macrophages, which were depleted by panning. TGF-beta1 did not appear to inhibit the commitment of progenitor cells to the DC lineage. In addition, TGF-beta1 also acted directly on the intermediate stage of DC to prevent their over-maturation, which results in a preferential decrease in MHC class II, but not in CD86, in the presence of TNF-alpha. FcR+ suppressive macrophages were also shown to facilitate DC maturation when stimulated via FcR-mediated signals even in the presence of TGF-beta1. These results indicate that TGF-beta1 indirectly and directly regulate the development of DC and that co-developing macrophages have a regulatory role in DC maturation.

  16. Bardoxolone Methyl Prevents Mesenteric Fat Deposition and Inflammation in High-Fat Diet Mice

    PubMed Central

    Dinh, Chi H. L.; Szabo, Alexander; Yu, Yinghua; Wang, Hongqin; Huang, Xu-Feng

    2015-01-01

    Mesenteric fat belongs to visceral fat. An increased deposition of mesenteric fat contributes to obesity associated complications such as type 2 diabetes and cardiovascular diseases. We have investigated the therapeutic effects of bardoxolone methyl (BARD) on mesenteric adipose tissue of mice fed a high-fat diet (HFD). Male C57BL/6J mice were administered oral BARD during HFD feeding (HFD/BARD), only fed a high-fat diet (HFD), or fed low-fat diet (LFD) for 21 weeks. Histology and immunohistochemistry were used to analyse mesenteric morphology and macrophages, while Western blot was used to assess the expression of inflammatory, oxidative stress, and energy expenditure proteins. Supplementation of drinking water with BARD prevented mesenteric fat deposition, as determined by a reduction in large adipocytes. BARD prevented inflammation as there were fewer inflammatory macrophages and reduced proinflammatory cytokines (interleukin-1 beta and tumour necrosis factor alpha). BARD reduced the activation of extracellular signal-regulated kinase (ERK) and Akt, suggesting an antioxidative stress effect. BARD upregulates energy expenditure proteins, judged by the increased activity of tyrosine hydroxylase (TH) and AMP-activated protein kinase (AMPK) and increased peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α), and uncoupling protein 2 (UCP2) proteins. Overall, BARD induces preventive effect in HFD mice through regulation of mesenteric adipose tissue. PMID:26618193

  17. Integrins beta 5, beta 3 and alpha v are apically distributed in endometrial epithelium.

    PubMed

    Aplin, J D; Spanswick, C; Behzad, F; Kimber, S J; Vićovac, L

    1996-07-01

    Several adhesion molecules have been shown to occur at the surface of endometrial cells. One of these is the integrin alpha v subunit which associates with various beta chains including beta 5. We demonstrate the presence of integrin beta 5 polypeptide in human endometrial epithelial cells throughout the menstrual cycle using immunocytochemistry with monospecific antibodies, and at the mRNA level by thermal amplification from endometrial cDNA. Integrin beta 5 is also found in a population of bone marrow-derived cells. A notable feature of the distribution of the beta 5 subunit in the glandular and luminal epithelium is its apical localization, which may suggest an involvement in implantation. However, no evidence was found for regulated expression of epithelial beta 5. In mouse, the beta 5 subunit is found at both the apical and basal surface of epithelial cells and expression is essentially oestrous cycle-independent. Comparisons are made in both species with the distribution of the alpha v and beta 3 subunits which also localize to the apical epithelium.

  18. Can transforming growth factor-beta1 and retinoids modify the activity of estradiol and antiestrogens in MCF-7 breast cancer cells?.

    PubMed

    Czeczuga-Semeniuk, Ewa; Anchim, Tomasz; Dziecioł, Janusz; Dabrowska, Milena; Wołczyński, Sławomir

    2004-01-01

    Retinoic acid and transforming growth factor-beta (TGF-beta) affect differentiation, proliferation and carcinogenesis of epithelial cells. The effect of both compounds on the proliferation of cells of the hormone sensitive human breast cancer cell line (ER+) MCF-7 was assessed in the presence of estradiol and tamoxifen. The assay was based on [3H]thymidine incorporation and the proliferative activity of PCNA- and Ki 67-positive cells. The apoptotic index and expression of the Bcl-2 and p53 antigens in MCF-7 cells were also determined. Exogenous TGF-beta1 added to the cell culture showed antiproliferative activity within the concentration range of 0.003-30 ng/ml. Irrespective of TGF-beta1 concentrations, a marked reduction in the stimulatory action of estradiol (10(-9) and 10(-8) M) was observed whereas in combination with tamoxifen (10(-7) and 10(-6) M) only 30 ng/ml TGF-beta1 caused a statistically significant reduction to approximately 30% of the proliferative cells. In further experiments we examined the effect of exposure of breast cancer cells to retinoids in combination with TGF-beta1. The incorporation of [3H]thymidine into MCF-7 cells was inhibited to 52 +/- 19% (control =100%) by 3 ng/ml TGF-beta1, and this dose was used throughout. It was found that addition of TGF-beta1 and isotretinoin to the culture did not decrease proliferation, while TGF-beta1 and tretinoin at low concentrations (3 x 10(-8) and 3 x 10(-7) M) reduced the percentage of proliferating cells by approximately 30% (67+/-8% and 67+/-5%, P<0.05 compared to values in the tretinoin group). Both retinoids also led to a statistically significant decrease in the stimulatory effect of 10(-9) M estradiol, attenuated by TGF-beta1. In addition, the retinoids in combination with TGF-beta1 and tamoxifen (10(-6) M) caused a further reduction in the percentage of proliferating cells. Immunocytochemical analysis showed that all the examined compounds gave a statistically significant reduction in the percentage of cells with a positive reaction to PCNA and Ki 67 antigen. TGF-beta1, isotretinoin and tretinoin added to the culture resulted in the lowest percentage of PCNA positive cells. However, the lowest fraction of Ki 67 positive cells was observed after addition of isotretinoin. The obtained results also confirm the fact that the well-known regulatory proteins Bcl-2 and p53 play an important role in the regulation of apoptosis in the MCF-7 cell line, with lowered Bcl-2 expression accompanying easier apoptotic induction. The majority of the examined compounds act via the p53 pathway although some bypass this important proapoptotic factor.

  19. Basics and applications of stem cells in the pancreas.

    PubMed

    Sekine, Keisuke; Taniguchi, Hideki

    2012-11-01

    Enormous efforts have been made to establish pancreatic stem/progenitor cells as a source for regenerative medicine for the treatment of diabetes mellitus. In recent years, it has been recognized that the self-renewal of beta cells is the dominant process involved in postnatal beta-cell regeneration and expansion. Nevertheless, several in-vitro studies have suggested that ductal or as yet unidentified cells are candidates for pancreatic stem/progenitor cells that can differentiate into multilineage cells, including insulin(+) cells. The question remains as to whether beta cells are generated postnatally from stem/progenitor cells other than pre-existing beta cells. Furthermore, mutated pancreatic stem cells are considered to be prospective candidates for cancer stem cells or tumor-initiating cells. This review highlights recent progress in pancreatic stem/progenitor cell research.

  20. Beta cells transfer vesicles containing insulin to phagocytes for presentation to T cells.

    PubMed

    Vomund, Anthony N; Zinselmeyer, Bernd H; Hughes, Jing; Calderon, Boris; Valderrama, Carolina; Ferris, Stephen T; Wan, Xiaoxiao; Kanekura, Kohsuke; Carrero, Javier A; Urano, Fumihiko; Unanue, Emil R

    2015-10-06

    Beta cells from nondiabetic mice transfer secretory vesicles to phagocytic cells. The passage was shown in culture studies where the transfer was probed with CD4 T cells reactive to insulin peptides. Two sets of vesicles were transferred, one containing insulin and another containing catabolites of insulin. The passage required live beta cells in a close cell contact interaction with the phagocytes. It was increased by high glucose concentration and required mobilization of intracellular Ca2+. Live images of beta cell-phagocyte interactions documented the intimacy of the membrane contact and the passage of the granules. The passage was found in beta cells isolated from islets of young nonobese diabetic (NOD) mice and nondiabetic mice as well as from nondiabetic humans. Ultrastructural analysis showed intraislet phagocytes containing vesicles having the distinct morphology of dense-core granules. These findings document a process whereby the contents of secretory granules become available to the immune system.

  1. Does endogenous GLP-1 affect resting energy expenditure and fuel selection in overweight and obese adults?

    PubMed

    Poggiogalle, E; Donini, L M; Chiesa, C; Pacifico, L; Lenzi, A; Perna, S; Faliva, M; Naso, M; Rondanelli, M

    2018-04-01

    To investigate the association between fasting glucagon-like peptide 1 (GLP-1) levels and resting energy expenditure (REE), and respiratory quotient (RQ) in overweight and obese adults. Study participants were enrolled at the Dietetic and Metabolic Unit, University of Pavia, Italy. Inclusion criteria were age ≥ 25 and ≤ 45 years, and body mass index (BMI) ≥ 25 and ≤ 35 kg/m 2 . Diabetic subjects were excluded. Body composition was measured by dual-energy X-ray absorptiometry. REE was evaluated using indirect calorimetry, and RQ was calculated from respiratory gas exchanges. Fasting GLP-1, glucose, insulin and free fatty acid (FFA) levels, and 24-h norepinephrine urinary excretion were measured. Homeostasis model assessments of insulin resistance (HOMA-IR) and beta-cell function (HOMA-β) were calculated. Thirty-seven participants were included (age 43.4 ± 1.6 years; BMI 30.6 ± 0.5 kg/m 2 ). REE was not associated with fasting GLP-1 levels (p = 0.98) after adjustment for age, sex, fat-free mass (FFM), and fat mass (FM). Similarly, no association was observed between RQ and GLP-1 levels (p = 0.95), after adjustment for age, sex, and body fat. In adults subjects with increased adiposity fasting, GLP-1 levels do not seem to play a role in the regulation of energy metabolism and in fuel selection.

  2. Mechanism of action of hypoglycemic effects of an intestine-specific inhibitor of microsomal triglyceride transfer protein (MTP) in obese rats.

    PubMed

    Sakata, Shohei; Katsumi, Sohei; Mera, Yasuko; Kuroki, Yukiharu; Nashida, Reiko; Kakutani, Makoto; Ohta, Takeshi

    2015-01-01

    Diminished insulin sensitivity in the peripheral tissues and failure of pancreatic beta cells to secrete insulin are known major determinants of type 2 diabetes mellitus. JTT-130, an intestine-specific microsomal transfer protein inhibitor, has been shown to suppress high fat-induced obesity and ameliorate impaired glucose tolerance while enhancing glucagon-like peptide-1 (GLP-1) secretion. We investigated the effects of JTT-130 on glucose metabolism and elucidated the mechanism of action, direct effects on insulin sensitivity and glucose-stimulated insulin secretion in a high fat diet-induced obesity rat model. Male Sprague Dawley rats fed a high-fat diet were treated with a single administration of JTT-130. Glucose tolerance, hyperglycemic clamp and hyperinsulinemic-euglycemic testing were performed to assess effects on insulin sensitivity and glucose-stimulated insulin secretion, respectively. Plasma GLP-1 and tissue triglyceride content were also determined under the same conditions. A single administration of JTT-130 suppressed plasma glucose elevations after oral glucose loading and increased the disposition index while elevating GLP-1. JTT-130 also enhanced glucose-stimulated insulin secretion in hyperglycemic clamp tests, whereas increased insulin sensitivity was observed in hyperinsulinemic-euglycemic clamp tests. Single-dose administration of JTT-130 decreased lipid content in the liver and skeletal muscle. JTT-130 demonstrated acute and direct hypoglycemic effects by enhancing insulin secretion and/or insulin sensitivity. Copyright © 2014 Japanese Pharmacological Society. Production and hosting by Elsevier B.V. All rights reserved.

  3. Osteocalcin protects pancreatic beta cell function and survival under high glucose conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kover, Karen, E-mail: kkover@cmh.edu; University of Missouri-Kansas City School of Medicine, Kansas City, MO 64108; Yan, Yun

    Diabetes is characterized by progressive beta cell dysfunction and loss due in part to oxidative stress that occurs from gluco/lipotoxicity. Treatments that directly protect beta cell function and survival in the diabetic milieu are of particular interest. A growing body of evidence suggests that osteocalcin, an abundant non-collagenous protein of bone, supports beta cell function and proliferation. Based on previous gene expression data by microarray, we hypothesized that osteocalcin protects beta cells from glucose-induced oxidative stress. To test our hypothesis we cultured isolated rat islets and INS-1E cells in the presence of normal, high, or high glucose ± osteocalcin for up tomore » 72 h. Oxidative stress and viability/mitochondrial function were measured by H{sub 2}O{sub 2} assay and Alamar Blue assay, respectively. Caspase 3/7 activity was also measured as a marker of apoptosis. A functional test, glucose stimulated insulin release, was conducted and expression of genes/protein was measured by qRT-PCR/western blot/ELISA. Osteocalcin treatment significantly reduced high glucose-induced H{sub 2}O{sub 2} levels while maintaining viability/mitochondrial function. Osteocalcin also significantly improved glucose stimulated insulin secretion and insulin content in rat islets after 48 h of high glucose exposure compared to untreated islets. As expected sustained high glucose down-regulated gene/protein expression of INS1 and BCL2 while increasing TXNIP expression. Interestingly, osteocalcin treatment reversed the effects of high glucose on gene/protein expression. We conclude that osteocalcin can protect beta cells from the negative effects of glucose-induced oxidative stress, in part, by reducing TXNIP expression, thereby preserving beta cell function and survival. - Highlights: • Osteocalcin reduces glucose-induced oxidative stress in beta cells. • Osteocalcin preserves beta cell function and survival under stress conditions. • Osteocalcin reduces glucose-induced TXNIP expression in beta cells.« less

  4. Activation of Wnt signaling pathway by human papillomavirus E6 and E7 oncogenes in HPV16-positive oropharyngeal squamous carcinoma cells.

    PubMed

    Rampias, Theodore; Boutati, Eleni; Pectasides, Eirini; Sasaki, Clarence; Kountourakis, Panteleimon; Weinberger, Paul; Psyrri, Amanda

    2010-03-01

    We sought to determine the role of human papillomavirus (HPV) E6 and E7 oncogenes in nuclear beta-catenin accumulation, a hallmark of activated canonical Wnt signaling pathway. We used HPV16-positive oropharyngeal cancer cell lines 147T and 090, HPV-negative cell line 040T, and cervical cell lines SiHa (bearing integrated HPV16) and HeLa (bearing integrated HPV18) to measure the cytoplasmic and nuclear beta-catenin levels and the beta-catenin/Tcf transcriptional activity before and after E6/E7 gene silencing. Repression of HPV E6 and E7 genes induced a substantial reduction in nuclear beta-catenin levels. Luciferase assay showed that transcriptional activation of Tcf promoter by beta-catenin was lower after silencing. The protein levels of beta-catenin are tightly regulated by the ubiquitin/proteasome system. We therefore performed expression analysis of regulators of beta-catenin degradation and nuclear transport and showed that seven in absentia homologue (Siah-1) mRNA and protein levels were substantially upregulated after E6/E7 repression. Siah-1 protein promotes the degradation of beta-catenin through the ubiquitin/proteasome system. To determine whether Siah-1 is important for the proteasomal degradation of beta-catenin in HPV16-positive oropharyngeal cancer cells, we introduced a Siah-1 expression vector into 147T and 090 cells and found substantial reduction of endogenous beta-catenin in these cells. Thus, E6 and E7 are involved in beta-catenin nuclear accumulation and activation of Wnt signaling in HPV-induced cancers. In addition, we show the significance of the endogenous Siah-1-dependent ubiquitin/proteasome pathway for beta-catenin degradation and its regulation by E6/E7 viral oncoproteins in HPV16-positive oropharyngeal cancer cells.

  5. Pleiotrophin regulates lung epithelial cell proliferation and differentiation during fetal lung development via beta-catenin and Dlk1.

    PubMed

    Weng, Tingting; Gao, Li; Bhaskaran, Manoj; Guo, Yujie; Gou, Deming; Narayanaperumal, Jeyaparthasarathy; Chintagari, Narendranath Reddy; Zhang, Kexiong; Liu, Lin

    2009-10-09

    The role of pleiotrophin in fetal lung development was investigated. We found that pleiotrophin and its receptor, protein-tyrosine phosphatase receptor beta/zeta, were highly expressed in mesenchymal and epithelial cells of the fetal lungs, respectively. Using isolated fetal alveolar epithelial type II cells, we demonstrated that pleiotrophin promoted fetal type II cell proliferation and arrested type II cell trans-differentiation into alveolar epithelial type I cells. Pleiotrophin also increased wound healing of injured type II cell monolayer. Knockdown of pleiotrophin influenced lung branching morphogenesis in a fetal lung organ culture model. Pleiotrophin increased the tyrosine phosphorylation of beta-catenin, promoted beta-catenin translocation into the nucleus, and activated T cell factor/lymphoid enhancer factor transcription factors. Dlk1, a membrane ligand that initiates the Notch signaling pathway, was identified as a downstream target of the pleiotrophin/beta-catenin pathway by endogenous dlk1 expression, promoter assay, and chromatin immunoprecipitation. These results provide evidence that pleiotrophin regulates fetal type II cell proliferation and differentiation via integration of multiple signaling pathways including pleiotrophin, beta-catenin, and Notch pathways.

  6. Expression and function of the atypical cadherin FAT1 in chronic liver disease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Valletta, Daniela; Czech, Barbara; Thasler, Wolfgang E.

    Highlights: Black-Right-Pointing-Pointer The expression of the atypical cadherin FAT1 is increased in chronic liver disease. Black-Right-Pointing-Pointer FAT1 expression goes up during the activation of hepatic stellate cells (HSCs). Black-Right-Pointing-Pointer Activated HSCs are the cellular source of enhanced FAT1 expression in diseased livers. Black-Right-Pointing-Pointer FAT1 enhanced NFkB activity and resistance to apoptosis in activated HSCs. Black-Right-Pointing-Pointer FAT1 is a new therapeutic target for prevention and treatment of hepatic fibrosis. -- Abstract: Hepatic fibrosis can be considered as wound healing process in response to hepatocellular injury. Activation of hepatic stellate cells (HSCs) is a key event of hepatic fibrosis since activated HSCsmore » are the cellular source of enhanced extracellular matrix deposition, and reversion of liver fibrosis is accompanied by clearance of activated HSCs by apoptosis. The atypical cadherin FAT1 has been shown to regulate diverse biological functions as cell proliferation and planar cell polarity, and also to affect wound healing. Here, we found increased FAT1 expression in different murine models of chronic liver injury and in cirrhotic livers of patients with different liver disease. Also in hepatic tissue of patients with non-alcoholic steatohepatitis FAT1 expression was significantly enhanced and correlated with collagen alpha I(1) expression. Immunohistochemistry revealed no significant differences in staining intensity between hepatocytes in normal and cirrhotic liver tissue but myofibroblast like cells in fibrotic septa of cirrhotic livers showed a prominent immunosignal. Furthermore, FAT1 mRNA and protein expression markedly increased during in vitro activation of primary human and murine HSCs. Together, these data indicated activated HSCs as cellular source of enhanced FAT1 expression in diseased livers. To gain insight into the functional role of FAT1 in activated HSCs we suppressed FAT1 in these cells by siRNA. We newly found that FAT1 suppression in activated HSCs caused a downregulation of NF{kappa}B activity. This transcription factor is critical for apoptosis resistance of HSCs, and consequently, we detected a higher apoptosis rate in FAT1 suppressed HSCs compared to control cells. Our findings suggest FAT1 as new therapeutic target for the prevention and treatment of hepatic fibrosis in chronic liver disease.« less

  7. Release of IL-1beta via IL-1beta-converting enzyme in a skin dendritic cell line exposed to 2,4-dinitrofluorobenzene.

    PubMed

    Matos, Teresa J; Jaleco, Sara P; Gonçalo, Margarida; Duarte, Carlos B; Lopes, M Celeste

    2005-08-14

    We used a mouse fetal skin dendritic cell line (FSDC) to study the effect of the strong allergen 2,4-dinitrofluorobenzene (DNFB) on interleukin (IL)-1beta release and IL-1beta receptor immunoreactivity. Stimulation with DNFB (30 minutes) increased IL-1 release without changing the mRNA levels of the protein. Furthermore, DNFB increased transiently the interleukin-1beta-converting enzyme (ICE) activity, as measured with its fluorogenic substrate Z-Tyr-Val-Ala-Asp-AFC. The ICE inhibitor Z-YVAD-FMK prevented the release of IL-1beta evoked by DNFB. Incubation of the cells with DNFB (30 minutes) strongly increased IL-1beta receptor immunoreactivity. The rapid effect of DNFB on the release of mature IL-1beta, without inducing an increase of IL-1beta mRNA in FSDC, suggests a posttranslational modification of pro-IL-1beta by ICE activity.

  8. The insulin and islet amyloid polypeptide genes contain similar cell-specific promoter elements that bind identical beta-cell nuclear complexes.

    PubMed Central

    German, M S; Moss, L G; Wang, J; Rutter, W J

    1992-01-01

    The pancreatic beta cell makes several unique gene products, including insulin, islet amyloid polypeptide (IAPP), and beta-cell-specific glucokinase (beta GK). The functions of isolated portions of the insulin, IAPP, and beta GK promoters were studied by using transient expression and DNA binding assays. A short portion (-247 to -197 bp) of the rat insulin I gene, the FF minienhancer, contains three interacting transcriptional regulatory elements. The FF minienhancer binds at least two nuclear complexes with limited tissue distribution. Sequences similar to that of the FF minienhancer are present in the 5' flanking DNA of the human IAPP and rat beta GK genes and also the rat insulin II and mouse insulin I and II genes. Similar minienhancer constructs from the insulin and IAPP genes function as cell-specific transcriptional regulatory elements and compete for binding of the same nuclear factors, while the beta GK construct competes for protein binding but functions poorly as a minienhancer. These observations suggest that the patterns of expression of the beta-cell-specific genes result in part from sharing the same transcriptional regulators. Images PMID:1549125

  9. Proteolytic processing of endogenous and recombinant beta 4 integrin subunit

    PubMed Central

    1992-01-01

    The alpha 6 beta 4 integrin is a receptor involved in the interaction of epithelial cells with basement membranes. This integrin is unique among the known integrins in that its beta 4 subunit has a large cytoplasmic domain. The function of this cytoplasmic domain is not known. In this paper we show that the beta 4 subunit undergoes proteolytic processing in cultured cells and provide evidence that this also happens in tissues. Immunoprecipitation experiments indicated that the cytoplasmic domain of beta 4 is susceptible to a calcium-dependent protease present in cellular extracts. In vitro assays with purified calpain showed that this enzyme can cleave beta 4 at two distinct sites in the cytoplasmic domain, generating truncated molecules of 165 and 130 kD. Immunoblotting experiments performed on cultured epithelial cells using an antibody to a peptide modeled after the COOH-terminus of the beta 4 subunit showed 70-kD fragments and several fragments of molecular masses between 185 and 115 kD. Similar fragments were detected in CHO cells transfected with the full-length beta 4 cDNA, but not in control transfected cells or in cells transfected with a mutant cDNA lacking the epitope of the cytoplasmic peptide antibody. The sizes of the fragments indicated that both the intracellular and extracellular domains of beta 4 are proteolytically processed. To examine the processing of the beta 4 subunit in epithelial tissues in vivo, human skin frozen sections were stained with antibodies to the ectodomain or the cytoplasmic domain of beta 4. The distinct staining patterns obtained with the two types of antibodies provided evidence that beta 4 is proteolytically processed in vivo in skin. Analogous experiments performed on sections of the cornea suggested that beta 4 is not proteolytically processed at a detectable level in this tissue. Thus, cleavage of the beta 4 subunit occurs in a tissue-specific fashion. These results suggest a potential mechanism of modulating the activities of the alpha 6 beta 4 integrin. PMID:1500432

  10. Difficulty in losing weight by behavioral intervention for women with Trp64Arg polymorphism of the beta3-adrenergic receptor gene.

    PubMed

    Shiwaku, K; Nogi, A; Anuurad, E; Kitajima, K; Enkhmaa, B; Shimono, K; Yamane, Y

    2003-09-01

    Trp64Arg mutation in the beta(3)-adrenergic receptor (beta(3)AR) gene is relatively common in Japanese people. However, it has not been clear whether persons with Trp64Arg mutation in the beta(3)AR gene tend to have obesity and difficulty in losing weight even with a restricted diet and exercise. We investigated the response of body weight and metabolic factors to behavioral intervention in Japanese women with Trp64Arg mutation in the beta(3)AR gene. A 3-month behavioral intervention study using a combination of diet and exercise programs. A total of 76 perimenopausal women with no clinical symptoms (age: 54.7+/-7.7 y, body mass index (BMI): 21.0-33.0 kg/m(2)). Anthropometric measurements (weight, height, body fat, waist circumference, hip circumference, skin fold, resting energy expenditure and blood pressure) and metabolic measurements (serum levels of cholesterol, triglyceride, phospholipid, nonesterified fatty acid, glucose, insulin and leptin) and determination of the beta(3)AR genotype by polymerase chain reaction followed by BstNI digestion. At the baseline of BMI, body weight, body fat, waist circumference, hip circumference, the arm skin fold, resting energy expenditure, or blood lipid and glucose profiles, there was no significant difference in participants with/without mutation of the beta(3)AR gene. The intervention yielded a body weight reduction in 69 and 48%, and induced a significant difference in weight loss (-0.74 and -0.01 kg) for women with wild-type and Trp64Arg mutation, respectively. Significant differences of anthropometric parameters were found in body weight, BMI, waist and hip circumferences and blood pressure of wild type by the intervention. However, women with Trp64Arg mutation did not show significant changes in these anthropometric parameters, except for hip circumference. A significant difference was found in high-density lipoprotein cholesterol (HDL-C) and in the low-density lipoprotein cholesterol/HDL-C ratio in both genotypes. The results of the present study suggest that the Trp64Arg mutation of the beta(3)AR gene is associated with difficulty in losing weight through behavioral intervention, although it is not related to obesity-related phenotypes and resting energy expenditure before the intervention.

  11. Programmed disorders of beta-cell development and function as one cause for type 2 diabetes? The GK rat paradigm.

    PubMed

    Portha, Bernard

    2005-01-01

    Now that the reduction in beta-mass has been clearly established in humans with type 2 diabetes mellitus (T2DM) 1-4, the debate focuses on the possible mechanisms responsible for decreased beta-cell number and impaired beta-cell function and their multifactorial etiology. Appropriate inbred rodent models are essential tools for identification of genes and environmental factors that increase the risk of abnormal beta-cell function and of T2DM. The information available in the Goto-Kakizaki (GK) rat, one of the best characterized animal models of spontaneous T2DM, are reviewed in such a perspective. We propose that the defective beta-cell mass and function in the GK model reflect the complex interactions of three pathogenic players: (1) several independent loci containing genes causing impaired insulin secretion; (2) gestational metabolic impairment inducing a programming of endocrine pancreas (decreased beta-cell neogenesis) which is transmitted to the next generation; and (3) secondary (acquired) loss of beta-cell differentiation due to chronic exposure to hyperglycemia (glucotoxicity). An important message is that the 'heritable' determinants of T2DM are not simply dependant on genetic factors, but probably involve transgenerational epigenetic responses. Copyright (c) 2005 John Wiley & Sons, Ltd.

  12. Thiazolidinedione, a peroxisome proliferator-activated receptor-gamma ligand, modulates the E-cadherin/beta-catenin system in a human pancreatic cancer cell line, BxPC-3.

    PubMed

    Ohta, Tetsuo; Elnemr, Ayman; Yamamoto, Miyuki; Ninomiya, Itasu; Fushida, Sachio; Nishimura, Gen-Ichi; Fujimura, Takashi; Kitagawa, Hirohisa; Kayahara, Masato; Shimizu, Koichi; Yi, Shuangqin; Miwa, Koichi

    2002-07-01

    Activation of peroxisome proliferator-activated receptor (PPAR)-gamma induces terminal differentiation and growth inhibition associated with G1 cell cycle arrest in some cancer cells. The multifunctional molecule beta-catenin performs important roles in intercellular adhesion and signal transduction. However, no report has focused on actions of PPAR-gamma in regulating the E-cadherin/beta-catenin system. We examined whether thiazolidinedione (TZD), a potent PPAR-gamma ligand, could modulate the E-cadherin/beta-catenin system in a human pancreatic cancer cell line, BxPC-3, that has been found to express PPAR-gamma. According to Western blotting, TZD markedly increased differentiation markers including E-cadherin and carcinoembryonic antigen, while beta-catenin did not change significantly. In untreated cells, fluorescence immunostaining demonstrated beta-catenin predominantly in the cytoplasm and/or nucleus; in TZD-treated cells, beta-catenin localization had dramatically shifted to the plasma membrane, in association with increased E-cadherin at this site. Thus, a PPAR-gamma ligand appears to participate not only in induction of differentiation in pancreatic cancer cells, but also in the regulation of the E-cadherin/beta-catenin system. Such ligands may prove clinically useful as cytostatic anticancer agents.

  13. Mono-(2-ethylhexyl) phthalate (MEHP) regulates glucocorticoid metabolism through 11{beta}-hydroxysteroid dehydrogenase 2 in murine gonadotrope cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hong, Dun; Department of Orthopedics, Taizhou Hospital, Wenzhou Medical College, Lin Hai, ZJ 317000; Li, Xing-Wang

    2009-11-13

    Di-(2-ethylhexyl) phthalate (DEHP) and its metabolite mono-(2-ethylhexyl) phthalate (MEHP) have been classified as toxicants to the reproductive system at the testis level and DEHP may also impair reproductive axis function at the pituitary levels. However, MEHP is 10-fold more potent than DEHP in toxicity and little is known about the toxicological effect of MEHP on pituitary. In this study, we demonstrated that 11{beta}-hydroxysteroid dehydrogenase type 2 (11{beta}-HSD2), not 11{beta}-HSD1, is strongly expressed in murine gonadotrope L{beta}T2 cells. Interestingly, MEHP inhibited Hsd11b2 mRNA level and 11{beta}-HSD2 enzyme activity in L{beta}T2 cells at as low as 10{sup -7} M. Corticosterone (CORT) atmore » a concentration of 10{sup -6} M significantly inhibited L{beta}T2 cell proliferation after 2-day culture, and 10{sup -6} M RU486, an antagonist of glucocorticoid receptor (GR), reversed this inhibition. However, in the presence of 10{sup -5} or 10{sup -4} M MEHP, the minimal concentration of CORT to inhibit the proliferation of L{beta}T2 cells was lowered to 10{sup -7} M, and 10{sup -6} M RU486 was not able to completely reverse the CORT effect. In conclusion, along with the regulation of GR, 11{beta}-HSD2 may have a key role in glucocorticoid metabolism in L{beta}T2 cells. MEHP may participate in the glucocorticoid metabolism in L{beta}T2 cells through inhibition of 11{beta}-HSD2 enzyme activity. Such perturbation may be of pathological significance as MEHP may interfere with the reproductive system at pituitary level through regulation of glucocorticoid metabolism, especially in neonates with higher risk of phthalates exposure.« less

  14. Isolation of Precursor Cells from Waste Solid Fat Tissue

    NASA Technical Reports Server (NTRS)

    Byerly, Diane; Sognier, Marguerite A.

    2009-01-01

    A process for isolating tissue-specific progenitor cells exploits solid fat tissue obtained as waste from such elective surgical procedures as abdominoplasties (tummy tucks) and breast reductions. Until now, a painful and risky process of aspiration of bone marrow has been used to obtain a limited number of tissue- specific progenitor cells. The present process yields more tissue-specific progenitor cells and involves much less pain and risk for the patient. This process includes separation of fat from skin, mincing of the fat into small pieces, and forcing a fat saline mixture through a sieve. The mixture is then digested with collagenase type I in an incubator. After centrifugation tissue-specific progenitor cells are recovered and placed in a tissue-culture medium in flasks or Petri dishes. The tissue-specific progenitor cells can be used for such purposes as (1) generating three-dimensional tissue equivalent models for studying bone loss and muscle atrophy (among other deficiencies) and, ultimately, (2) generating replacements for tissues lost by the fat donor because of injury or disease.

  15. The Golgi localization of phosphatidylinositol transfer protein beta requires the protein kinase C-dependent phosphorylation of serine 262 and is essential for maintaining plasma membrane sphingomyelin levels.

    PubMed

    van Tiel, Claudia M; Westerman, Jan; Paasman, Marten A; Hoebens, Martha M; Wirtz, Karel W A; Snoek, Gerry T

    2002-06-21

    Recombinant mouse phosphatidylinositol transfer protein (PI-TP)beta is a substrate for protein kinase C (PKC)-dependent phosphorylation in vitro. Based on site-directed mutagenesis and two-dimensional tryptic peptide mapping, Ser(262) was identified as the major site of phosphorylation and Ser(165) as a minor phosphorylation site. The phospholipid transfer activities of wild-type PI-TP beta and PI-TP beta(S262A) were identical, whereas PI-TP beta(S165A) was completely inactive. PKC-dependent phosphorylation of Ser(262) also had no effect on the transfer activity of PI-TP beta. To investigate the role of Ser(262) in the functioning of PI-TP beta, wtPI-TP beta and PI-TP beta(S262A) were overexpressed in NIH3T3 fibroblast cells. Two-dimensional PAGE analysis of cell lysates was used to separate PI-TP beta from its phosphorylated form. After Western blotting, wtPI-TP beta was found to be 85% phosphorylated, whereas PI-TP beta(S262A) was not phosphorylated. In the presence of the PKC inhibitor GF 109203X, the phosphorylated form of wtPI-TP beta was strongly reduced. Immunolocalization showed that wtPI-TP beta was predominantly associated with the Golgi membranes. In the presence of the PKC inhibitor, wtPI-TP beta was distributed throughout the cell similar to what was observed for PI-TP beta(S262A). In contrast to wtPI-TP beta overexpressors, cells overexpressing PI-TP beta(S262A) were unable to rapidly replenish sphingomyelin in the plasma membrane upon degradation by sphingomyelinase. This implies that PKC-dependent association with the Golgi complex is a prerequisite for PI-TP beta to express its effect on sphingomyelin metabolism.

  16. An evaluation of the levels of 25-hydroxyvitamin D3 and bone turnover markers in professional football players and in physically inactive men.

    PubMed

    Solarz, K; Kopeć, A; Pietraszewska, J; Majda, F; Słowińska-Lisowska, M; Mędraś, M

    2014-01-01

    Vitamin D is synthesised in the skin during exposure to sunlight and its fundamental roles are the regulation of calcium and phosphate metabolism and bone mineralisation. The aim of our study was to evaluate serum levels of 25-hydroxyvitamin D3, PTH and bone turnover markers (P1NP, OC, beta-CTx, OC/beta-CTx) and the intake of calcium and vitamin D in Polish Professional Football League (Ekstraklasa) players and in young men with a low level of physical activity. Fifty healthy men aged 19 to 34 years were included in the study. We showed that 25(OH)D3 and P1NP levels and OC/beta-CTx were higher in the group of professional football players than in the group of physically inactive men. The daily vitamin D and calcium intake in the group of professional football players was also higher. We showed a significant relationship between 25(OH)D3 levels and body mass, body cell mass, total body water, fat-free mass, muscle mass, vitamin D and calcium intake. Optimum 25(OH)D3 levels were observed in a mere 16.7% of the football players and vitamin D deficiency was observed in the physically inactive men. The level of physical activity, body composition, calcium and vitamin D intake and the duration of exposure to sunlight may significantly affect serum levels of 25(OH)D3.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu Jiawei; Division of Molecular Medicine, Harbor-UCLA Medical Center, David Geffen School of Medicine, University of California Los Angeles, Torrance, CA 90502; Lu Zhenyu

    The corneal endothelial cells form a boundary layer between anterior chamber and cornea. This single cell layer is important to maintain cornea transparency by eliciting net fluid transport into the anterior chamber. Injuries of the corneal endothelial layer in humans lead to corneal swelling and translucence. This hindrance is thought to be due to limited proliferative capacity of the endothelial layer. Fibroblast growth factor 2 (FGF-2) and transforming growth factor-beta 2 (TGF-{beta}2) are both found in aqueous humor, and these two cytokines promote and inhibit cell growth, respectively. The intracellular signaling mechanisms by which TGF-{beta}2 suppresses the mitogenic response tomore » FGF-2, however, remain unclear. We have addressed this question by investigating potential crosstalk between FGF-2-induced and TGF-{beta}2-regulated intracellular signaling events in cultured bovine corneal endothelial (BCE) cells. We found that TGF-{beta}2 and FGF-2 oppositely affect BCE cell proliferation and TGF-{beta}2 can override the stimulating effects of FGF-2 by increasing COX-2 expression in these cells. Consistent with these findings, overexpression of COX-2 significantly reduced FGF-2-induced cell proliferation whereas a COX-2 specific inhibitor NS398 reversed the effect of TGF-{beta}2 on FGF-2-induced cell proliferation. The COX-2 product prostaglandin E2 (PGE-2) blocks FGF-2-induced cell proliferation. Whereas FGF-2 stimulates cell proliferation by activating the AKT pathway, TGF-{beta}2 and PGE-2 both inhibit this pathway. In accordance with the effect of PGE-2, cAMP also inhibits FGF-2-induced AKT activation. These findings suggest that the mitogenic response to FGF-2 in vivo in the corneal endothelial layer may be inhibited by TGF-{beta}2-induced suppression of the PI3-kinase/AKT signaling pathway.« less

  18. Involvement of DNA polymerase beta in repairing oxidative damages induced by antitumor drug adriamycin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu Shukun; Wu Mei; Zhang Zunzhen, E-mail: zhangzunzhen@163.co

    2010-08-01

    Adriamycin (ADM) is a widely used antineoplastic drug. However, the increasing cellular resistance has become a serious limitation to ADM clinical application. The most important mechanism related to ADM-induced cell death is oxidative DNA damage mediated by reactive oxygen species (ROS). Base excision repair (BER) is a major pathway in the repair of DNA single strand break (SSB) and oxidized base. In this study, we firstly applied the murine embryo fibroblasts wild-type (pol {beta} +/+) and homozygous pol {beta} null cell (pol {beta} -/-) as a model to investigate ADM DNA-damaging effects and the molecular basis underlying these effects. Here,more » cellular sensitivity to ADM was examined using colorimetric assay and colony forming assay. ADM-induced cellular ROS level and the alteration of superoxide dismutase (SOD) activity were measured by commercial kits. Further, DNA strand break, chromosomal damage and gene mutation were assessed by comet assay, micronucleus test and hprt gene mutation assay, respectively. The results showed that pol {beta} -/- cells were more sensitive to ADM compared with pol {beta} +/+ cells and more severe SSB and chromosomal damage as well as higher hprt gene mutation frequency were observed in pol {beta} -/- cells. ROS level in pol {beta} -/- cells increased along with decreased activity of SOD. These results demonstrated that pol {beta} deficiency could enable ROS accumulation with SOD activity decrease, further elevate oxidative DNA damage, and subsequently result in SSB, chromosome cleavage as well as gene mutation, which may be partly responsible for the cytotoxicity of ADM and the hypersensitivity of pol {beta} -/- cells to ADM. These findings suggested that pol {beta} is vital for repairing oxidative damage induced by ADM.« less

  19. The effect of smoking cessation pharmacotherapies on pancreatic beta cell function

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woynillowicz, Amanda K.; Raha, Sandeep; Nicholson, Catherine J.

    The goal of our study was to evaluate whether drugs currently used for smoking cessation (i.e., nicotine replacement therapy, varenicline [a partial agonist at nicotinic acetylcholine receptors (nAChR)] and bupropion [which acts in part as a nAChR antagonist]) can affect beta cell function and determine the mechanism(s) of this effect. INS-1E cells, a rat beta cell line, were treated with nicotine, varenicline and bupropion to determine their effects on beta cell function, mitochondrial electron transport chain enzyme activity and cellular/oxidative stress. Treatment of INS-1E cells with equimolar concentrations (1 μM) of three test compounds resulted in an ablation of normalmore » glucose-stimulated insulin secretion by the cells. This disruption of normal beta cell function was associated with mitochondrial dysfunction since all three compounds tested significantly decreased the activity of mitochondrial electron transport chain enzyme activity. These results raise the possibility that the currently available smoking cessation pharmacotherapies may also have adverse effects on beta cell function and thus glycemic control in vivo. Therefore whether or not the use of nicotine replacement therapy, varenicline and bupropion can cause endocrine changes which are consistent with impaired pancreatic function warrants further investigation. -- Highlights: ► Smoking cessation drugs have the potential to disrupt beta cell function in vitro. ► The effects of nicotine, varenicline and bupropion are similar. ► The impaired beta cell function is mediated by mitochondrial dysfunction. ► If similar effects are seen in vivo, these drugs may increase the risk of diabetes.« less

  20. Transforming growth factor beta induced FoxP3+ regulatory T cells suppress Th1 mediated experimental colitis.

    PubMed

    Fantini, M C; Becker, C; Tubbe, I; Nikolaev, A; Lehr, H A; Galle, P; Neurath, M F

    2006-05-01

    The imbalance between effector and regulatory T cells plays a central role in the pathogenesis of inflammatory bowel diseases. In addition to the thymus, CD4+CD25+ regulatory T cells can be induced in the periphery from a population of CD25- T cells by treatment with transforming growth factor beta (TGF-beta). Here, we analysed the in vivo function of TGF-beta induced regulatory T (Ti-Treg) cells in experimental colitis. Ti-Treg cells were generated in cell culture in the presence or absence of TGF-beta and tested for their regulatory potential in experimental colitis using the CD4+CD62L+ T cell transfer model. Ti-Treg cells significantly suppressed Th1 mediated colitis on CD4+CD62L+ T cell transfer in vivo, as shown by high resolution endoscopy, histology, immunohistochemistry, and cytokine analysis. Further analysis of in vivo and in vitro expanded Ti-Treg cells showed that exogenous interleukin 2 (IL-2) was crucial for survival and expansion of these cells. Our data suggest that regulatory Ti-Treg cells expand by TGF-beta and exogenous IL-2 derived from effector T cells at the site of inflammation. In addition to Tr1 and thymic CD4+CD25+ T cells, peripheral Ti-Treg cells emerge as a class of regulatory T cells with therapeutic potential in T cell mediated chronic intestinal inflammation.

  1. Selective destruction of mouse islet beta cells by human T lymphocytes in a newly-established humanized type 1 diabetic model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Yong, E-mail: yongzhao@uic.edu; Guo, Chengshan; Hwang, David

    2010-09-03

    Research highlights: {yields} Establish a human immune-mediated type 1 diabetic model in NOD-scid IL2r{gamma}{sup null} mice. {yields} Using the irradiated diabetic NOD mouse spleen mononuclear cells as trigger. {yields} The islet {beta} cells were selectively destroyed by infiltrated human T cells. {yields} The model can facilitate translational research to find a cure for type 1 diabetes. -- Abstract: Type 1 diabetes (T1D) is caused by a T cell-mediated autoimmune response that leads to the loss of insulin-producing {beta} cells. The optimal preclinical testing of promising therapies would be aided by a humanized immune-mediated T1D model. We develop this model inmore » NOD-scid IL2r{gamma}{sup null} mice. The selective destruction of pancreatic islet {beta} cells was mediated by human T lymphocytes after an initial trigger was supplied by the injection of irradiated spleen mononuclear cells (SMC) from diabetic nonobese diabetic (NOD) mice. This resulted in severe insulitis, a marked loss of total {beta}-cell mass, and other related phenotypes of T1D. The migration of human T cells to pancreatic islets was controlled by the {beta} cell-produced highly conserved chemokine stromal cell-derived factor 1 (SDF-1) and its receptor C-X-C chemokine receptor (CXCR) 4, as demonstrated by in vivo blocking experiments using antibody to CXCR4. The specificity of humanized T cell-mediated immune responses against islet {beta} cells was generated by the local inflammatory microenvironment in pancreatic islets including human CD4{sup +} T cell infiltration and clonal expansion, and the mouse islet {beta}-cell-derived CD1d-mediated human iNKT activation. The selective destruction of mouse islet {beta} cells by a human T cell-mediated immune response in this humanized T1D model can mimic those observed in T1D patients. This model can provide a valuable tool for translational research into T1D.« less

  2. Requirement for Pdx1 in specification of latent endocrine progenitors in zebrafish

    PubMed Central

    2011-01-01

    Background Insulin-producing beta cells emerge during pancreas development in two sequential waves. Recently described later-forming beta cells in zebrafish show high similarity to second wave mammalian beta cells in developmental capacity. Loss-of-function studies in mouse and zebrafish demonstrated that the homeobox transcription factors Pdx1 and Hb9 are both critical for pancreas and beta cell development and discrete stage-specific requirements for these genes have been uncovered. Previously, exocrine and endocrine cell recovery was shown to follow loss of pdx1 in zebrafish, but the progenitor cells and molecular mechanisms responsible have not been clearly defined. In addition, interactions of pdx1 and hb9 in beta cell formation have not been addressed. Results To learn more about endocrine progenitor specification, we examined beta cell formation following morpholino-mediated depletion of pdx1 and hb9. We find that after early beta cell reduction, recovery occurs following loss of either pdx1 or hb9 function. Unexpectedly, simultaneous knockdown of both hb9 and pdx1 leads to virtually complete and persistent beta cell deficiency. We used a NeuroD:EGFP transgenic line to examine endocrine cell behavior in vivo and developed a novel live-imaging technique to document emergence and migration of late-forming endocrine precursors in real time. Our data show that Notch-responsive progenitors for late-arising endocrine cells are predominantly post mitotic and depend on pdx1. By contrast, early-arising endocrine cells are specified and differentiate independent of pdx1. Conclusions The nearly complete beta cell deficiency after combined loss of hb9 and pdx1 suggests functional cooperation, which we clarify as distinct roles in early and late endocrine cell formation. A novel imaging approach permitted visualization of the emergence of late endocrine cells within developing embryos for the first time. We demonstrate a pdx1-dependent progenitor population essential for the formation of duct-associated, second wave endocrine cells. We further reveal an unexpectedly low mitotic activity in these progenitor cells, indicating that they are set aside early in development. PMID:22034951

  3. Human beta-cell precursors mature into functional insulin-producing cells in an immunoisolation device: implications for diabetes cell therapies.

    PubMed

    Lee, Seung-Hee; Hao, Ergeng; Savinov, Alexei Y; Geron, Ifat; Strongin, Alex Y; Itkin-Ansari, Pamela

    2009-04-15

    Islet transplantation is limited by the need for chronic immunosuppression and the paucity of donor tissue. As new sources of human beta-cells are developed (e.g., stem cell-derived tissue), transplanting them in a durable device could obviate the need for immunosuppression, while also protecting the patient from any risk of tumorigenicity. Here, we studied (1) the survival and function of encapsulated human beta-cells and their progenitors and (2) the engraftment of encapsulated murine beta-cells in allo- and autoimmune settings. Human islets and human fetal pancreatic islet-like cell clusters were encapsulated in polytetrafluorethylene devices (TheraCyte) and transplanted into immunodeficient mice. Graft survival and function was measured by immunohistochemistry, circulating human C-peptide levels, and blood glucose levels. Bioluminescent imaging was used to monitor encapsulated neonatal murine islets. Encapsulated human islet-like cell clusters survived, replicated, and acquired a level of glucose responsive insulin secretion sufficient to ameliorate hyperglycemia in diabetic mice. Bioluminescent imaging of encapsulated murine neonatal islets revealed a dynamic process of cell death followed by regrowth, resulting in robust long-term allograft survival. Further, in the non-obese diabetic (NOD) mouse model of type I diabetes, encapsulated primary beta-cells ameliorated diabetes without stimulating a detectable T-cell response. We demonstrate for the first time that human beta-cells function is compatible with encapsulation in a durable, immunoprotective device. Moreover, our study suggests that encapsulation of beta-cells before terminal differentiation will be a successful approach for new cell-based therapies for diabetes, such as those derived from stem cells.

  4. C/EBPβ Promotes STAT3 Expression and Affects Cell Apoptosis and Proliferation in Porcine Ovarian Granulosa Cells.

    PubMed

    Yuan, Xiaolong; Zhou, Xiaofeng; He, Yingting; Zhong, Yuyi; Zhang, Ailing; Zhang, Zhe; Zhang, Hao; Li, Jiaqi

    2018-06-13

    Previous studies suggest that signal transducer and activator of transcription 3 (STAT3) and CCAAT/enhancer binding protein beta (C/EBPβ) play an essential role in ovarian granulosa cells (GCs) for mammalian follicular development. Several C/EBPβ putative binding sites were previously predicted on the STAT3 promoter in mammals. However, the molecular regulation of C/EBPβ on STAT3 and their effects on cell proliferation and apoptosis remain virtually unexplored in GCs. Using porcine GCs as a model, the 5′-deletion, luciferase report assay, mutation, chromatin immunoprecipitation, Annexin-V/PI staining and EdU assays were applied to investigate the molecular mechanism for C/EBPβ regulating the expression of STAT3 and their effects on the cell proliferation and apoptosis ability. We found that over and interfering with the expression of C/EBPβ significantly increased and decreased the messenger RNA (mRNA) and protein levels of STAT3 , respectively. The dual luciferase reporter assay showed that C/EBPβ directly bound at −1397/−1387 of STAT3 to positively regulate the mRNA and protein expressions of STAT3 . Both C/EBPβ and STAT3 were observed to inhibit cell apoptosis and promote cell proliferation. Furthermore, C/EBPβ might enhance the antiapoptotic and pro-proliferative effects of STAT3 . These results would be of great insight in further exploring the molecular mechanism of C/EBPβ and STAT3 on the function of GCs and the development of ovarian follicles in mammals.

  5. Buttock augmentation: case studies of fat injection monitored by magnetic resonance imaging.

    PubMed

    Murillo, William L

    2004-11-01

    This article examines the injection of megavolumes of autologous fat cells as a means of buttock augmentation in 162 patients over a 7-year period. The author documents the use of magnetic resonance imaging in six patients to visualize the intramuscular location, integration, and duration of the injected fat. With the patient under epidural or general anesthesia, fat cells were harvested with a 5-mm blunt cannula and then stored in an empty sterile intravenous bag or bottle trap. Decantation was the only process used to separate the fat cells from the saline and serosanguineous components. Up to 1260 cc of fat cells were been injected into each buttock, the largest amount of fat grafting ever reported. Clinical assessment estimated a 20 percent loss of augmentation effect during the first 4 months. Patients were generally pleased with the final shape and volume of the buttock contour. In follow-up evaluation, magnetic resonance imaging supported the clinical indicators that the injection of large quantities of fat cells appears to be a safe and effective method for buttock enhancement. This process has inherent advantages; nevertheless, further research is required to clarify our understanding of the predictability and longevity of this technique.

  6. Transforming growth factor-beta in the chicken fundal layers: an immunohistochemical study.

    PubMed

    Mathis, Ute; Schaeffel, Frank

    2010-06-01

    In the chicken model of myopia, it has first been shown that imposing defocus to the retina results in active remodelling of the sclera which, in turn, results in axial length changes of the eye. Transforming growth factor-beta (TGF-beta) is one of the scleral growth modulators but its cellular localization in the fundal layers, colocalization and function are not well known. The aim of the current study was to investigate the cellular distribution of the three isoforms TGF-beta1, 2 and 3 by immunohistochemical labelling. Furthermore, the effects of visual experience that induces refractive errors on TGF-beta2 labelling were examined. Transversal cryostat sections of the fundal layers were analyzed by indirect immunofluorescent labelling and cell counts. Visual experience was changed by having the chicks wear either diffusers, or positive or negative lenses of 7D power in front of the right eyes for various periods of time. Left eyes served as uncovered controls. All TGF-beta isoforms were localized in both scleral layers. In choroid, diffuse labelling of all isoforms was found. In retina, TGF-beta1 and 3 were detected in bipolar, amacrine and ganglion cells and TGF-beta2 in amacrine and ganglion cells. To further characterize these cells, double-labelling with known amacrine and bipolar cell markers was performed (calbindin, cellular retinoic acid binding protein (CRABP), Islet1, Lim3 and protein kinase C (PKC)). TGF-beta1, 2 and 3 could be colocalized with calbindin and CRABP in single amacrine cells. TGF-beta1-positive bipolar cells were immunoreactive to Lim3. TGF-beta1 and 3 were never colocalized with PKC in bipolar cells. Also, colocalization with peptides known to be involved in myopia development in chicks, such as glucagon, or vasointestinal polypeptide and the key enzyme for dopamine synthesis, tyrosine hydroxylase, was not observed. Lenses or diffusers, worn by the chicks for various periods of time, had no effect on TGF-beta2 immunoreactivity in choroid or sclera, or on the number of TGF-beta2 (active and latent form) expressing amacrine cells. This result did not change when the two identified populations of TGF-beta2 expressing amacrine cells (one calbindin-positive and the other CRABP-positive) were separately considered. Also no modulation was seen in choroid, although an earlier study had found changes in TGF-beta2 mRNA after lens treatment. The lack of any visually-induced changes in retina or choroid suggests that TGF-beta may not represent a key molecule in the retino-choroidal signalling cascade although it has previously been shown to have a primary role in scleral remodelling. Copyright 2010 Elsevier Ltd. All rights reserved.

  7. Expression and function of the atypical cadherin FAT1 in chronic liver disease.

    PubMed

    Valletta, Daniela; Czech, Barbara; Thasler, Wolfgang E; Müller, Martina; Bosserhoff, Anja-Katrin; Hellerbrand, Claus

    2012-09-28

    Hepatic fibrosis can be considered as wound healing process in response to hepatocellular injury. Activation of hepatic stellate cells (HSCs) is a key event of hepatic fibrosis since activated HSCs are the cellular source of enhanced extracellular matrix deposition, and reversion of liver fibrosis is accompanied by clearance of activated HSCs by apoptosis. The atypical cadherin FAT1 has been shown to regulate diverse biological functions as cell proliferation and planar cell polarity, and also to affect wound healing. Here, we found increased FAT1 expression in different murine models of chronic liver injury and in cirrhotic livers of patients with different liver disease. Also in hepatic tissue of patients with non-alcoholic steatohepatitis FAT1 expression was significantly enhanced and correlated with collagen alpha I(1) expression. Immunohistochemistry revealed no significant differences in staining intensity between hepatocytes in normal and cirrhotic liver tissue but myofibroblast like cells in fibrotic septa of cirrhotic livers showed a prominent immunosignal. Furthermore, FAT1 mRNA and protein expression markedly increased during in vitro activation of primary human and murine HSCs. Together, these data indicated activated HSCs as cellular source of enhanced FAT1 expression in diseased livers. To gain insight into the functional role of FAT1 in activated HSCs we suppressed FAT1 in these cells by siRNA. We newly found that FAT1 suppression in activated HSCs caused a downregulation of NFκB activity. This transcription factor is critical for apoptosis resistance of HSCs, and consequently, we detected a higher apoptosis rate in FAT1 suppressed HSCs compared to control cells. Our findings suggest FAT1 as new therapeutic target for the prevention and treatment of hepatic fibrosis in chronic liver disease. Copyright © 2012 Elsevier Inc. All rights reserved.

  8. Pin1 promotes transforming growth factor-beta-induced migration and invasion.

    PubMed

    Matsuura, Isao; Chiang, Keng-Nan; Lai, Chen-Yu; He, Dongming; Wang, Guannan; Ramkumar, Romila; Uchida, Takafumi; Ryo, Akihide; Lu, Kunping; Liu, Fang

    2010-01-15

    Transforming growth factor-beta (TGF-beta) regulates a wide variety of biological activities. It induces potent growth-inhibitory responses in normal cells but promotes migration and invasion of cancer cells. Smads mediate the TGF-beta responses. TGF-beta binding to the cell surface receptors leads to the phosphorylation of Smad2/3 in their C terminus as well as in the proline-rich linker region. The serine/threonine phosphorylation sites in the linker region are followed by the proline residue. Pin1, a peptidyl-prolyl cis/trans isomerase, recognizes phosphorylated serine/threonine-proline motifs. Here we show that Smad2/3 interacts with Pin1 in a TGF-beta-dependent manner. We further show that the phosphorylated threonine 179-proline motif in the Smad3 linker region is the major binding site for Pin1. Although epidermal growth factor also induces phosphorylation of threonine 179 and other residues in the Smad3 linker region the same as TGF-beta, Pin1 is unable to bind to the epidermal growth factor-stimulated Smad3. Further analysis suggests that phosphorylation of Smad3 in the C terminus is necessary for the interaction with Pin1. Depletion of Pin1 by small hairpin RNA does not significantly affect TGF-beta-induced growth-inhibitory responses and a number of TGF-beta/Smad target genes analyzed. In contrast, knockdown of Pin1 in human PC3 prostate cancer cells strongly inhibited TGF-beta-mediated migration and invasion. Accordingly, TGF-beta induction of N-cadherin, which plays an important role in migration and invasion, is markedly reduced when Pin1 is depleted in PC3 cells. Because Pin1 is overexpressed in many cancers, our findings highlight the importance of Pin1 in TGF-beta-induced migration and invasion of cancer cells.

  9. Functional characterization of the beta-adrenergic receptor subtypes expressed by CA1 pyramidal cells in the rat hippocampus.

    PubMed

    Hillman, Kristin L; Doze, Van A; Porter, James E

    2005-08-01

    Recent studies have demonstrated that activation of the beta-adrenergic receptor (AR) using the selective beta-AR agonist isoproterenol (ISO) facilitates pyramidal cell long-term potentiation in the cornu ammonis 1 (CA1) region of the rat hippocampus. We have previously analyzed beta-AR genomic expression patterns of 17 CA1 pyramidal cells using single cell reverse transcription-polymerase chain reaction, demonstrating that all samples expressed the beta2-AR transcript, with four of the 17 cells additionally expressing mRNA for the beta1-AR subtype. However, it has not been determined which beta-AR subtypes are functionally expressed in CA1 for these same pyramidal neurons. Using cell-attached recordings, we tested the ability of ISO to increase pyramidal cell action potential (AP) frequency in the presence of subtype-selective beta-AR antagonists. ICI-118,551 [(+/-)-1-[2,3-(dihydro-7-methyl-1H-inden-4-yl)oxy]-3-[(1-methylethyl)amino]-2-butanol] and butoxamine [alpha-[1-(t-butylamino)ethyl]-2,5-dimethoxybenzyl alcohol) hydrochloride], agents that selectively block the beta2-AR, produced significant parallel rightward shifts in the concentration-response curves for ISO. From these curves, apparent equilibrium dissociation constant (K(b)) values of 0.3 nM for ICI-118,551 and 355 nM for butoxamine were calculated using Schild regression analysis. Conversely, effective concentrations of the selective beta1-AR antagonists CGP 20712A [(+/-)-2-hydroxy-5-[2-([2-hydroxy-3-(4-[1-methyl-4-(trifluoromethyl)-1H-imidazol-2-yl]phenoxy)propyl]amino)ethoxy]-benzamide methanesulfonate] and atenolol [4-[2'-hydroxy-3'-(isopropyl-amino)propoxy]phenylacetamide] did not significantly affect the pyramidal cell response to ISO. However, at higher concentrations, atenolol significantly decreased the potency for ISO-mediated AP frequencies. From these curves, an apparent atenolol K(b) value of 3162 nM was calculated. This pharmacological profile for subtype-selective beta-AR antagonists indicates that beta2-AR activation is mediating the increased AP frequency. Knowledge of functional AR expression in CA1 pyramidal neurons will aid future long-term potentiation studies by allowing selective manipulation of specific beta-AR subtypes.

  10. Radiation leukemia virus-induced thymic lymphomas express a restricted repertoire of T-cell receptor V beta gene products.

    PubMed Central

    Sen-Majumdar, A; Weissman, I L; Hansteen, G; Marian, J; Waller, E K; Lieberman, M

    1994-01-01

    We have investigated the phenotypic changes that take place during the process of neoplastic transformation in the thymocytes of C57BL/Ka mice infected by the radiation leukemia virus (RadLV). By the combined use of antibodies against the envelope glycoprotein gp70 of RadLV, the transformation-associated cell surface marker 1C11, and the CD3-T-cell receptor (TCR) complex, we found that in the RadLV-infected thymus, the earliest expression of viral gp70 is in 1C11hi cells; a small but significant percentage of these cells also express CD3. A first wave of viral replication, manifested by the expression of high levels of gp70 in thymocytes (over 70% positive), reaches a peak at 2 weeks; during this period, no significant changes are observed in the expression of 1C11 or CD3. The population of gp70+ cells is drastically reduced at 3 to 4 weeks after infection. However, a second cohort of gp70+ cells appears after 4 weeks, and these cells express high levels of 1C11 and TCR determinants as well. RadLV-induced lymphomas differ from normal thymocytes in their CD4 CD8 phenotype, with domination by one or more subsets. Characterization of TCR gene rearrangements in RadLV-induced lymphomas shows that most of these tumors are clonal or oligoclonal with respect to the J beta 2 TCR gene, while the J beta 1 TCR gene is rearranged in a minority (4 of 11) of lymphomas. TCR V beta repertoire analysis of 12 tumors reveals that 6 (50%) express exclusively the V beta 6 gene product, 2 (17%) are V beta 5+, and 1 (8%) each are V beta 8+ and V beta 9+. In normal C57BL/Ka mice, V beta 6 is expressed on 12%, V beta 5 is expressed on 9%, V beta 8 is expressed on 22%, and V beta 9 is expressed on 4% of TCRhi thymocytes. Thus, it appears that RadLV-induced thymic lymphomas are not randomly selected with respect to expressed TCR V beta type. Images PMID:8289345

  11. beta 2-glycoprotein I (apolipoprotein H) modulates uptake and endocytosis associated chemiluminescence in rat Kupffer cells.

    PubMed

    Gomes, L F; Gonçalves, L M; Fonseca, F L A; Celli, C M; Videla, L A; Chaimovich, H; Junqueira, V B C

    2002-07-01

    beta 2-Glycoprotein I (beta 2 GPI) is known to influence macrophage uptake of particles with phosphatidylserine containing surfaces, as apoptotic thymocytes and unilamellar vesicles in vitro. Nevertheless, effects upon macrophage activation induced by this interaction are still unknown. beta 2 GPI influence upon the reactive species production by Kupffer cells was evaluated in order to investigate whether beta 2 GPI modulates the macrophage response to negatively charged surfaces. Chemiluminescence of isolated non-parenchymal rat liver cells was measured after phagocytosis of opsonized zymosan or phorbolymristate acetate (PMA) stimulation, in the presence and absence of large unilamellar vesicles (LUVs) containing 25 mol% phosphatidylserine (PS) or 50 mol% cardiolipin (CL) and complementary molar ratio of phosphatidylcholine (PC). beta 2 GPI decreased by 50% the chemiluminescence response induced by opsonized zymosan, with a 66% reduction of the initial light emission rate. PMA stimulated Kupffer cell chemiluminescence was insensitive to human or rat beta 2 GPI. Albumin (500 micrograms/ml) showed no effect upon chemiluminescence. beta 2 GPI increased PS/PC LUV uptake and degradation by Kupffer cells in a concentration-dependent manner, without leakage of the internal contents of the LUVs, as shown by fluorescence intensity enhancement. LUVs opsonized with antiphospholipid antibodies (aPL) from syphilitic patients increased light emission by Kupffer cells. Addition of beta 2 GPI to the assay reduced chemiluminescence due to opsonization with purified IgG antibodies from systemic lupus erythematosus (SLE or syphilis (Sy) patient sera. A marked net increase in chemiluminescence is observed in the presence of Sy aPL antibodies, whereas a decrease was found when SLE aPL were added to the assay, in the presence or absence of beta 2 GPI. At a concentration of 125 micrograms/ml, beta 2 GPI significantly reduced Kupffer cell Candida albicans phagocytosis index and killing score by 50 and 10%, respectively. The present data strongly suggest that particle uptake in the presence of beta 2 GPI is coupled to an inhibition of reactive species production by liver macrophages during the respiratory burst, supporting the role of beta 2 GPI as a mediator of senescent cell removal.

  12. Asymptomatic myelolipoma of the adrenal.

    PubMed

    Hadjigeorgi, C; Lafoyianni, S; Pontikis, Y; Van Vliet-Constantinidou, C

    1992-01-01

    Myelolipoma of the adrenal gland is a rare benign tumour which seldom produces symptoms unless it attains considerable size or hemorrhages into itself. Histologically the tumor is composed of varying proportions of fat and bone marrow elements. We present a case of a male child, with homozygous beta thalassemia and asymptomatic myelolipoma.

  13. Curcumin and piperine supplementation of obese mice under caloric restriction modulates body fat and interleukin-1beta

    USDA-ARS?s Scientific Manuscript database

    Background: Dietary bioactive compounds capable of improving metabolic profiles would be of great value, especially for overweight individuals undergoing a caloric restriction (CR) regimen. Curcumin (Cur), a possible anti-obesity compound, and piperine (Pip), a plausible enhancer of Cur's bioavailab...

  14. Spruce Budworm and Energy Metabolism?

    Treesearch

    Thakor R.  Patel

    1983-01-01

    The utilization of stored lipids (fat) for energy metabolism appears to be a fundamental process for many biological systems especially during the early stages of their development. The participation of the glyoxylate cycle (GOG) together with other metabolic sequences like gluconeogenesis and beta oxidation are necessary for the conversion of lipids to carbohydrates....

  15. Functional Connectivity in Islets of Langerhans from Mouse Pancreas Tissue Slices

    PubMed Central

    Stožer, Andraž; Gosak, Marko; Dolenšek, Jurij; Perc, Matjaž; Marhl, Marko; Rupnik, Marjan Slak; Korošak, Dean

    2013-01-01

    We propose a network representation of electrically coupled beta cells in islets of Langerhans. Beta cells are functionally connected on the basis of correlations between calcium dynamics of individual cells, obtained by means of confocal laser-scanning calcium imaging in islets from acute mouse pancreas tissue slices. Obtained functional networks are analyzed in the light of known structural and physiological properties of islets. Focusing on the temporal evolution of the network under stimulation with glucose, we show that the dynamics are more correlated under stimulation than under non-stimulated conditions and that the highest overall correlation, largely independent of Euclidean distances between cells, is observed in the activation and deactivation phases when cells are driven by the external stimulus. Moreover, we find that the range of interactions in networks during activity shows a clear dependence on the Euclidean distance, lending support to previous observations that beta cells are synchronized via calcium waves spreading throughout islets. Most interestingly, the functional connectivity patterns between beta cells exhibit small-world properties, suggesting that beta cells do not form a homogeneous geometric network but are connected in a functionally more efficient way. Presented results provide support for the existing knowledge of beta cell physiology from a network perspective and shed important new light on the functional organization of beta cell syncitia whose structural topology is probably not as trivial as believed so far. PMID:23468610

  16. The environmental chemical tributyltin chloride (TBT) shows both estrogenic and adipogenic activities in mice which might depend on the exposure dose

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Penza, M.; Jeremic, M.; Marrazzo, E.

    2011-08-15

    Exposure during early development to chemicals with hormonal action may be associated with weight gain during adulthood because of altered body homeostasis. It is known that organotins affect adipose mass when exposure occurs during fetal development, although no knowledge of effects are available for exposures after birth. Here we show that the environmental organotin tributyltin chloride (TBT) exerts adipogenic action when peripubertal and sexually mature mice are exposed to the chemical. The duration and extent of these effects depend on the sex and on the dose of the compound, and the effects are relevant at doses close to the estimatedmore » human intake (0.5 {mu}g/kg). At higher doses (50-500 {mu}g/kg), TBT also activated estrogen receptors (ERs) in adipose cells in vitro and in vivo, based on results from acute and longitudinal studies in ERE/luciferase reporter mice. In 3T3-L1 cells (which have no ERs), transiently transfected with the ERE-dependent reporter plus or minus ER{alpha} or ER{beta}, TBT (in a dose range of 1-100 nM) directly targets each ER subtype in a receptor-specific manner through a direct mechanism mediated by ER{alpha} in undifferentiated preadipocytic cells and by ER{beta} in differentiating adipocytes. The ER antagonist ICI-182,780 inhibits this effect. In summary, the results of this work suggest that TBT is adipogenic at all ages and in both sexes and that it might be an ER activator in fat cells. These findings might help to resolve the apparent paradox of an adipogenic chemical being also an estrogen receptor activator by showing that the two apparently opposite actions are separated by the different doses to which the organism is exposed. - Research Highlights: > The environmental organotin tributyltin chloride shows dose-dependent estrogenic and adipogenic activities in mice. > The duration and extent of these effects depend on the sex and the dose of the compound. > The estrogenic and adipogenic effects of TBT occur at doses closed to the estimated human intake. > TBT activates the estrogen receptors (ER{alpha} and ER{beta}) in 3T3-L1 cells at nM concentrations.« less

  17. GLP-1 mediates antiapoptotic effect by phosphorylating Bad through a beta-arrestin 1-mediated ERK1/2 activation in pancreatic beta-cells.

    PubMed

    Quoyer, Julie; Longuet, Christine; Broca, Christophe; Linck, Nathalie; Costes, Safia; Varin, Elodie; Bockaert, Joël; Bertrand, Gyslaine; Dalle, Stéphane

    2010-01-15

    Strategies based on activating GLP-1 receptor (GLP-1R) are intensively developed for the treatment of type 2 diabetes. The exhaustive knowledge of the signaling pathways linked to activated GLP-1R within the beta-cells is of major importance. In beta-cells, GLP-1 activates the ERK1/2 cascade by diverse pathways dependent on either Galpha(s)/cAMP/cAMP-dependent protein kinase (PKA) or beta-arrestin 1, a scaffold protein. Using pharmacological inhibitors, beta-arrestin 1 small interfering RNA, and islets isolated from beta-arrestin 1 knock-out mice, we demonstrate that GLP-1 stimulates ERK1/2 by two temporally distinct pathways. The PKA-dependent pathway mediates rapid and transient ERK1/2 phosphorylation that leads to nuclear translocation of the activated kinases. In contrast, the beta-arrestin 1-dependent pathway produces a late ERK1/2 activity that is restricted to the beta-cell cytoplasm. We further observe that GLP-1 phosphorylates the cytoplasmic proapoptotic protein Bad at Ser-112 but not at Ser-155. We find that the beta-arrestin 1-dependent ERK1/2 activation engaged by GLP-1 mediates the Ser-112 phosphorylation of Bad, through p90RSK activation, allowing the association of Bad with the scaffold protein 14-3-3, leading to its inactivation. beta-Arrestin 1 is further found to mediate the antiapoptotic effect of GLP-1 in beta-cells through the ERK1/2-p90RSK-phosphorylation of Bad. This new regulatory mechanism engaged by activated GLP-1R involving a beta-arrestin 1-dependent spatiotemporal regulation of the ERK1/2-p90RSK activity is now suspected to participate in the protection of beta-cells against apoptosis. Such signaling mechanism may serve as a prototype to generate new therapeutic GLP-1R ligands.

  18. Biotin uptake by mouse and human pancreatic beta cells/islets: a regulated, lipopolysaccharide-sensitive carrier-mediated process

    PubMed Central

    Ghosal, Abhisek; Sekar, Thillai V.

    2014-01-01

    Biotin is essential for the normal function of pancreatic beta cells. These cells obtain biotin from their surroundings via transport across their cell membrane. Little is known about the uptake mechanism involved, how it is regulated, and how it is affected by internal and external factors. We addressed these issues using the mouse-derived pancreatic beta-TC-6 cells and freshly isolated mouse and human primary pancreatic beta cells as models. The results showed biotin uptake by pancreatic beta-TC-6 cells occurs via a Na+-dependent, carrier-mediated process, that is sensitive to desthiobiotin, as well as to pantothenic acid and lipoate; the process is also saturable as a function of concentration (apparent Km = 22.24 ± 5.5 μM). These cells express the sodium-dependent multivitamin transporter (SMVT), whose knockdown (with doxycycline-inducible shRNA) led to a sever inhibition in biotin uptake. Similarly, uptake of biotin by mouse and human primary pancreatic islets is Na+-dependent and carrier-mediated, and both cell types express SMVT. Biotin uptake by pancreatic beta-TC-6 cells is also adaptively regulated (via transcriptional mechanism) by extracellular substrate level. Chronic treatment of pancreatic beta-TC-6 cells with bacterial lipopolysaccharides (LPS) leads to inhibition in biotin uptake. This inhibition is mediated via a Toll-Like receptor 4-mediated process and involves a decrease in membrane expression of SMVT. These findings show, for the first time, that pancreatic beta cells/islets take up biotin via a specific and regulated carrier-mediated process, and that the process is sensitive to the effect of LPS. PMID:24904078

  19. Effects of alpha/beta-androstenediol immune regulating hormones on bone remodeling and apoptosis in osteoblasts.

    PubMed

    Urban, Nicole H; Chamberlin, Brett; Ramage, Samuel; Roberts, Zachary; Loria, Roger M; Beckman, Matthew J

    2008-06-01

    A large body of evidence suggests that the immune system directly impacts bone physiology. We tested whether immune regulating hormones (IRH), 17beta-androstenediol (beta-AED), 7beta,17beta-androstenetriol (beta-AET) or the 17alpha-androstenediol (alpha-AED), and 7alpha,17beta-androstenetriol (alpha-AET) metabolites could directly influence bone remodeling in vitro using human fetal osteoblasts (FOB-9). The impact on bone remodeling was examined by comparing the ratio of RANKL/OPG gene expression in response to AED and AET compounds. The alpha-AED was found to significantly increase in the ratio of RANKL/OPG gene expression and altering the morphology of RANKL stained FOB-9 cells. Cell viability was assessed using a Live/Dead assay. Again alpha-AED was unique in its ability to reduce the proportion of viable cells, and to induce mild apoptosis of FOB-9 cells. Treatment of FOB-9 cells with WY14643, an activator of PPAR-alpha and -gamma, also significantly elevated the percentage of dead cells. This increase was abolished by co-treatment with GW9962, a specific inhibitor of PPAR-gamma. Analysis of PPAR-gamma mRNA by Quantitative RT-PCR and its activation by DNA binding demonstrated that alpha-AED increased PPAR-gamma activation by 19%, while beta-AED conferred a 37% decrease in PPAR-gamma activation. In conclusion, alpha-AED opposed beta-AED by elevating a bone resorption scenario in osteoblast cells. The increase in RANKL/OPG is modulated by an activation of PPAR-gamma that in turn caused mild apoptosis of FOB-9 cells.

  20. Microbiota-induced obesity requires farnesoid X receptor

    PubMed Central

    Parséus, Ava; Sommer, Nina; Sommer, Felix; Caesar, Robert; Molinaro, Antonio; Ståhlman, Marcus; Greiner, Thomas U; Perkins, Rosie; Bäckhed, Fredrik

    2017-01-01

    Objective The gut microbiota has been implicated as an environmental factor that modulates obesity, and recent evidence suggests that microbiota-mediated changes in bile acid profiles and signalling through the bile acid nuclear receptor farnesoid X receptor (FXR) contribute to impaired host metabolism. Here we investigated if the gut microbiota modulates obesity and associated phenotypes through FXR. Design We fed germ-free (GF) and conventionally raised (CONV-R) wild-type and Fxr−/− mice a high-fat diet (HFD) for 10 weeks. We monitored weight gain and glucose metabolism and analysed the gut microbiota and bile acid composition, beta-cell mass, accumulation of macrophages in adipose tissue, liver steatosis, and expression of target genes in adipose tissue and liver. We also transferred the microbiota of wild-type and Fxr-deficient mice to GF wild-type mice. Results The gut microbiota promoted weight gain and hepatic steatosis in an FXR-dependent manner, and the bile acid profiles and composition of faecal microbiota differed between Fxr−/− and wild-type mice. The obese phenotype in colonised wild-type mice was associated with increased beta-cell mass, increased adipose inflammation, increased steatosis and expression of genes involved in lipid uptake. By transferring the caecal microbiota from HFD-fed Fxr−/− and wild-type mice into GF mice, we showed that the obesity phenotype was transferable. Conclusions Our results indicate that the gut microbiota promotes diet-induced obesity and associated phenotypes through FXR, and that FXR may contribute to increased adiposity by altering the microbiota composition. PMID:26740296

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liang, Wenqing, E-mail: liangwenqing_1234@126.com; Yang, Chengwei; Qian, Yu

    Highlights: Black-Right-Pointing-Pointer {beta}-Catenin expression were markedly down-regulated by CTNNB1 shRNA. Black-Right-Pointing-Pointer CTNNB1 shRNA could inhibit the proliferation of RPMI8226 cells. Black-Right-Pointing-Pointer Significantly profound apoptotic cell death in CTNNB1 shRNA cells. Black-Right-Pointing-Pointer In vivo, CTNNB1 silence led to a growth inhibition of myeloma growth. Black-Right-Pointing-Pointer c-myc and {beta}-catenin in the expression cells of cleaved caspase-3 were increased. -- Abstract: Multiple myeloma (MM) is thrombogenic as a consequence of multiple hemostatic effects. Overexpression of {beta}-catenin has been observed in several types of malignant tumors, including MM. However, the relationship between {beta}-catenin expression and MM remains unclear. In the present study, RNA interferencemore » was used to inhibit {beta}-catenin expression in RPMI8226 cells. RT-PCR and Western blotting analyses showed that {beta}-catenin mRNA and protein expression were markedly down-regulated by CTNNB1 shRNA. Western blotting showed that the protein levels of cyclin D1 and glutamine synthetase were downregulated and supported the transcriptional regulatory function of {beta}-catenin. The MTT assay showed that CTNNB1 shRNA could have significant inhibitory effects on the proliferation of RPMI8226 cells. The TOPflash reporter assay demonstrated significant downregulation after CTNNB1 shRNA transfection in RPMI8226 cells. Flow cytometric analyses also showed significantly profound apoptosis in CTNNB1 shRNA cells. We found CTNNB1 silence led to growth inhibition of MM growth in vivo. Immunohistochemical analyses showed that c-myc and {beta}-catenin were reduced in CTNNB1 shRNA tumor tissues, but that expression of cleaved caspase-3 was increased. These results show that {beta}-catenin could be a new therapeutic agent that targets the biology of MM cells.« less

  2. A chitosan/beta-glycerophosphate thermo-sensitive gel for the delivery of ellagic acid for the treatment of brain cancer.

    PubMed

    Kim, Sungwoo; Nishimoto, Satoru K; Bumgardner, Joel D; Haggard, Warren O; Gaber, M Waleed; Yang, Yunzhi

    2010-05-01

    We report here the development of a chitosan/beta-glycerophosphate(Ch/beta-GP) thermo-sensitive gel to deliver ellagic acid (EA) for cancer treatment. The properties of the Ch/beta-GP gels were characterized regarding chemical structure, surface morphology, and viscoelasticity. In vitro EA release rate from the EA loaded Ch/beta-GP gel and chitosan degradation rate were investigated. The anti-tumor effect of the EA loaded Ch/beta-GP gel on brain cancer cells (human U87 glioblastomas and rat C6 glioma cells) was evaluated by examining cell viability. Cell number and activity were monitored by the MTS assay. The Ch/beta-GP solution formed a heat-induced gel at body temperature, and the gelation temperature and time were affected by the final pH of the Ch/beta-GP solution. The lysozyme increased the EA release rate by 2.5 times higher than that in the absence of lysozyme. Dialyzed chitosan solution with final pH 6.3 greatly reduced the beta-GP needed for gelation, thereby significantly improving the biocompatibility of gel (p < 0.001). The chitosan gels containing 1% (w/v) of ellagic acid significantly reduced viability of U87 cells and C6 cells compared with the chitosan gels at 3 days incubation (p < 0.01, and p < 0.001, respectively). Copyright 2010 Elsevier Ltd. All rights reserved.

  3. Overexpression of {alpha}-catenin increases osteoblastic differentiation in mouse mesenchymal C3H10T1/2 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Dohee; Yang, Jae-Yeon; Shin, Chan Soo, E-mail: csshin@snu.ac.kr

    2009-05-15

    {alpha}- and {beta}-Catenin link cadherins to the actin-based cytoskeleton at adherens junctions and regulate cell-cell adhesion. Although roles of cadherins and canonical Wnt-/{beta}-catenin-signaling in osteoblastic differentiation have been extensively studied, the role of {alpha}-catenin is not known. Murine embryonic mesenchymal stem cells, C3H10T1/2 cells, were transduced with retrovirus encoding {alpha}-catenin (MSCV-{alpha}-catenin-HA-GFP). In the presence of Wnt-3A conditioned medium or osteogenic medium ({beta}-glycerol phosphate and ascorbic acid), cells overexpressing {alpha}-catenin showed enhanced osteoblastic differentiation as measured by alkaline phosphatase (ALP) staining and ALP activity assay compared to cells transduced with empty virus (MSCV-GFP). In addition, mRNA expression of osteocalcin and Runx2more » was significantly increased compared to control. Cell aggregation assay revealed that {alpha}-catenin overexpression has significantly increased cell-cell aggregation. However, cellular {beta}-catenin levels (total, cytoplasmic-nuclear ratio) and {beta}-catenin-TCF/LEF transcriptional activity did not change by overexpression of {alpha}-catenin. Knock-down of {alpha}-catenin using siRNA decreased osteoblastic differentiation as measured by ALP assay. These results suggest that {alpha}-catenin overexpression increases osteoblastic differentiation by increasing cell-cell adhesion rather than Wnt-/{beta}-catenin-signaling.« less

  4. GARP (LRRC32) is essential for the surface expression of latent TGF-beta on platelets and activated FOXP3+ regulatory T cells.

    PubMed

    Tran, Dat Q; Andersson, John; Wang, Rui; Ramsey, Heather; Unutmaz, Derya; Shevach, Ethan M

    2009-08-11

    TGF-beta family members are highly pleiotropic cytokines with diverse regulatory functions. TGF-beta is normally found in the latent form associated with latency-associated peptide (LAP). This latent complex can associate with latent TGFbeta-binding protein (LTBP) to produce a large latent form. Latent TGF-beta is also found on the surface of activated FOXP3(+) regulatory T cells (Tregs), but it is unclear how it is anchored to the cell membrane. We show that GARP or LRRC32, a leucine-rich repeat molecule of unknown function, is critical for tethering TGF-beta to the cell surface. We demonstrate that platelets and activated Tregs co-express latent TGF-beta and GARP on their membranes. The knockdown of GARP mRNA with siRNA prevented surface latent TGF-beta expression on activated Tregs and recombinant latent TGF-beta1 is able to bind directly with GARP. Confocal microscopy and immunoprecipitation strongly support their interactions. The role of TGF-beta on Tregs appears to have dual functions, both for Treg-mediated suppression and infectious tolerance mechanism.

  5. N-terminal tyrosine phosphorylation of caveolin-2 negates anti-proliferative effect of transforming growth factor beta in endothelial cells

    PubMed Central

    Abel, Britain; Willoughby, Cara; Jang, Sungchan; Cooper, Laura; Xie, Leike; Vo-Ransdell, Chi; Sowa, Grzegorz

    2012-01-01

    Here we show that tyrosine phosphorylation of caveolin-2 (Cav-2) negatively regulates the anti-proliferative function of transforming growth factor beta (TGF-beta) in endothelial cells. In contrast to wild-type-Cav-2, retroviral re-expression of Y19/27F-Cav-2 in Cav-2 knockout endothelial cells did not affect anti-proliferative effect of TGF-beta compared to empty vector. Conversely, although less effective than wild-type, re-expression of S23/36A-Cav-2 reduced the effect of TGF-beta compared to empty vector. This differential effect of tyrosine and serine phosphorylation mutants of Cav-2 correlated with TGF-beta-induced Smad3 phosphorylation and transcriptional activation of plasminogen activator inhibitor-1. Thus tyrosine-phosphorylated Cav-2 counteracts anti-proliferative effect of TGF-beta in endothelial cells. PMID:22819829

  6. Adenomatous polyposis coli protein (APC)-independent regulation of beta-catenin/Tcf-4 mediated transcription in intestinal cells.

    PubMed Central

    Baulida, J; Batlle, E; García De Herreros, A

    1999-01-01

    Alterations in the transcriptional activity of the beta-catenin-Tcf complex have been associated with the earlier stages of colonic transformation. We show here that the activation of protein kinase C by the phorbol ester PMA in several intestinal cell lines increases the levels of beta-catenin detected in the nucleus and augments the transcriptional activity mediated by beta-catenin. The response to PMA was not related to modifications in the cytosolic levels of beta-catenin and was observed not only in cells with wild-type adenomatous polyposis coli protein (APC) but also in APC-deficient cells. Binding assays in vitro revealed that PMA facilitates the interaction of the beta-catenin with the nuclear structure. Our results therefore show that beta-catenin-mediated transcription can be regulated independently of the presence of APC. PMID:10567241

  7. Clostridium perfringens enterotoxin is a superantigen reactive with human T cell receptors V beta 6.9 and V beta 22

    PubMed Central

    1992-01-01

    Candidate superantigens were screened for their ability to induce lysis of human histocompatibility leukocyte antigen class II-positive targets by human CD8+ influenza-specific cytotoxic T cell (CTL) lines. Clostridium perfringens enterotoxin (CPET) induced major histocompatibility complex unrestricted killing by some but not all CTL lines. Using "anchored" polymerase chain reactions, CPET was shown to selectively stimulate peripheral blood lymphocytes bearing T cell receptor V beta 6.9 and V beta 22 in five healthy donors. V beta 24, V beta 21, V beta 18, V beta 5, and V beta 6.1-5 appeared to be weakly stimulated. Antigen processing was not required for CPET to induce proliferation. Like the staphylococcal enterotoxins, CPET is a major cause of food poisoning. These data suggest that superantigenic and enterotoxigenic properties may be closely linked. PMID:1512551

  8. Digestion of Yeasts and Beta-1,3-Glucanases in Mosquito Larvae: Physiological and Biochemical Considerations.

    PubMed

    Souza, Raquel Santos; Diaz-Albiter, Hector Manuel; Dillon, Vivian Maureen; Dillon, Rod J; Genta, Fernando Ariel

    2016-01-01

    Aedes aegypti larvae ingest several kinds of microorganisms. In spite of studies regarding mosquito digestion, little is known about the nutritional utilization of ingested cells by larvae. We investigated the effects of using yeasts as the sole nutrient source for A. aegypti larvae. We also assessed the role of beta-1,3-glucanases in digestion of live yeast cells. Beta-1,3-glucanases are enzymes which hydrolyze the cell wall beta-1,3-glucan polyssacharide. Larvae were fed with cat food (controls), live or autoclaved Saccharomyces cerevisiae cells and larval weight, time for pupation and adult emergence, larval and pupal mortality were measured. The presence of S. cerevisiae cells inside the larval gut was demonstrated by light microscopy. Beta-1,3-glucanase was measured in dissected larval samples. Viability assays were performed with live yeast cells and larval gut homogenates, with or without addition of competing beta-1,3-glucan. A. aegypti larvae fed with yeast cells were heavier at the 4th instar and showed complete development with normal mortality rates. Yeast cells were efficiently ingested by larvae and quickly killed (10% death in 2 h, 100% in 48 h). Larvae showed beta-1,3-glucanase in head, gut and rest of body. Gut beta-1,3-glucanase was not derived from ingested yeast cells. Gut and rest of body activity was not affected by the yeast diet, but head homogenates showed a lower activity in animals fed with autoclaved S. cerevisiae cells. The enzymatic lysis of live S. cerevisiae cells was demonstrated using gut homogenates, and this activity was abolished when excess beta-1,3-glucan was added to assays. These results show that live yeast cells are efficiently ingested and hydrolyzed by A. aegypti larvae, which are able to fully-develop on a diet based exclusively on these organisms. Beta-1,3-glucanase seems to be essential for yeast lytic activity of A. aegypti larvae, which possess significant amounts of these enzyme in all parts investigated.

  9. Immunocytochemical localization of latent transforming growth factor-beta1 activation by stimulated macrophages

    NASA Technical Reports Server (NTRS)

    Chong, H.; Vodovotz, Y.; Cox, G. W.; Barcellos-Hoff, M. H.; Chatterjee, A. (Principal Investigator)

    1999-01-01

    Transforming growth factor-beta1 (TGF-beta) is secreted in a latent form consisting of mature TGF-beta noncovalently associated with its amino-terminal propeptide, which is called latency associated peptide (LAP). Biological activity depends upon the release of TGF-beta from the latent complex following extracellular activation, which appears to be the key regulatory mechanism controlling TGF-beta action. We have identified two events associated with latent TGF-beta (LTGF-beta) activation in vivo: increased immunoreactivity of certain antibodies that specifically detect TGF-beta concomitant with decreased immunoreactivity of antibodies to LAP. Macrophages stimulated in vitro with interferon-gamma and lipopolysaccharide reportedly activate LTGF-beta via cell membrane-bound protease activity. We show through dual immunostaining of paraformaldehyde-fixed macrophages that such physiological TGF-beta activation is accompanied by a loss of LAP immunoreactivity with concomitant revelation of TGF-beta epitopes. The induction of TGF-beta immunoreactivity colocalized with immunoreactive betaglycan/RIII in activated macrophages, suggesting that LTGF-beta activation occurs on the cell surface. Confocal microscopy of metabolically active macrophages incubated with antibodies to TGF-beta and betaglycan/RIII prior to fixation supported the localization of activation to the cell surface. The ability to specifically detect and localize LTGF-beta activation provides an important tool for studies of its regulation.

  10. A critical role for beta cell M3 muscarinic acetylcholine receptors in regulating insulin release and blood glucose homeostasis in vivo.

    PubMed

    Gautam, Dinesh; Han, Sung-Jun; Hamdan, Fadi F; Jeon, Jongrye; Li, Bo; Li, Jian Hua; Cui, Yinghong; Mears, David; Lu, Huiyan; Deng, Chuxia; Heard, Thomas; Wess, Jürgen

    2006-06-01

    One of the hallmarks of type 2 diabetes is that pancreatic beta cells fail to release sufficient amounts of insulin in the presence of elevated blood glucose levels. Insulin secretion is modulated by many hormones and neurotransmitters including acetylcholine, the major neurotransmitter of the peripheral parasympathetic nervous system. The physiological role of muscarinic acetylcholine receptors expressed by pancreatic beta cells remains unclear at present. Here, we demonstrate that mutant mice selectively lacking the M3 muscarinic acetylcholine receptor subtype in pancreatic beta cells display impaired glucose tolerance and greatly reduced insulin release. In contrast, transgenic mice selectively overexpressing M3 receptors in pancreatic beta cells show a profound increase in glucose tolerance and insulin release. Moreover, these mutant mice are resistant to diet-induced glucose intolerance and hyperglycemia. These findings indicate that beta cell M3 muscarinic receptors play a key role in maintaining proper insulin release and glucose homeostasis.

  11. Establishment and characterization of an immortalized human hepatic stellate cell line for applications in co-culturing with immortalized human hepatocytes.

    PubMed

    Pan, XiaoPing; Wang, Yini; Yu, XiaoPeng; Li, JianZhou; Zhou, Ning; Du, WeiBo; Zhang, YanHong; Cao, HongCui; Zhu, DanHua; Chen, Yu; Li, LanJuan

    2015-01-01

    The liver-specific functions of hepatocytes are improved by co-culturing hepatocytes with primary hepatic stellate cells (HSC). However, primary HSC have a short lifespan in vitro, which is considered a major limitation for their use in various applications. This study aimed to establish immortalized human HSC using the simian virus 40 large T antigen (SV40LT) for applications in co-culturing with hepatocytes and HSC in vitro. Primary human HSC were transfected with a recombinant retrovirus containing SV40LT. The immortalized human HSC were characterized by analyzing their gene expression and functional characteristics. The liver-specific functions of hepatocytes were evaluated in a co-culture system incorporating immortalized human hepatocytes with HSC-Li cells. The immortalized HSC line, HSC-Li, was obtained after infection with a recombinant retrovirus containing SV40LT. The HSC-Li cells were longitudinally spindle-like and had numerous fat droplets in their cytoplasm as shown using electron microscopy. Hepatocyte growth factor (HGF), VEGF Receptor 1(Flt-1), collagen type Iα1 and Iα2 mRNA expression levels were observed in the HSC-Li cells by RT-PCR. Immunofluorescence staining showed that the HSC-Li cells were positive for α-smooth muscle actin (α-SMA), platelet-derived growth factor receptor-beta (PDGFR-β), vimentin, and SV40LT protein expression. The HSC-Li cells produced both HGF and transforming growth factor-beta1 (TGF-β1) in a time-dependent manner. Real-time PCR showed that albumin, CYP3A5, CYP2E1, and UGT2B7 mRNA expression generally increased in the co-culture system. The enzymatic activity of CYP1A2 under the co-culture conditions also generally increased as compared to the monoculture of immortalized human hepatocytes. We successfully established the immortalized human HSC cell line HSC-Li. It has the specific phenotypic and functional characteristics of primary human HSC, which would be a useful tool to develop anti-fibrotic therapies. Co-culturing with the HSC-Li cells improved the liver-specific functions of hepatocytes, which may be valuable and applicable for bioartificial liver systems.

  12. Expression and function of glycogen synthase kinase-3 in human hair follicles.

    PubMed

    Yamauchi, Koichi; Kurosaka, Akira

    2010-05-01

    Beta-catenin is involved in the hair follicle morphogenesis and stem cell differentiation, and inhibition of glycogen synthase kinase-3 (GSK-3) increases beta-catenin concentration in the cytoplasm. To examine the effects of GSK-3 inhibition on the hair follicle epithelium, we first examined the expression of GSK-3 in plucked human hair follicles by RT-PCR and found GSK-3 expression in hair follicles. Western blotting with a GSK-3beta-specific antibody, Y174, also demonstrated GSK-3beta expression in the follicles. Moreover, GSK-3beta immunostaining with Y174 showed that GSK-3beta colocalized with hair follicle bulge markers. Contrary to GSK-3beta, GSK-3 alpha was widely expressed throughout the follicles when immunostained with a specific antibody, EP793Y. We then investigated the influence of GSK-3 inhibition. A GSK-3 inhibitor, BIO, promoted the growth of human outer root sheath cells, which could be cultured for up to four passages. The BIO-treated cells exhibited smaller and more undifferentiated morphology than control cells. Moreover, in organ culture of plucked human hair, outer root sheath cells in the middle of a hair follicle proliferated when cultured with BIO. These results indicate that GSK-3beta is expressed in hair bulge stem cells and BIO promotes the growth of ORS cells, possibly by regulating the GSK-3 signaling pathway.

  13. The effect of milk fat globules on adherence and internalization of Salmonella Enteritidis to HT-29 cells.

    PubMed

    Guri, A; Griffiths, M; Khursigara, C M; Corredig, M

    2012-12-01

    Milk fat globules were extracted from bovine and goat milk and incubated with HT-29 human adenocarcinoma cells to assess the attachment and internalization of Salmonella Enteritidis. Because the expression of bacterial adhesins is highly affected by the presence of antibiotic, the attachment was studied with and without antibiotic in the cell growth medium. Although no inhibitory effect of the fat globules was observed in the presence of the antibiotic, milk fat globules significantly inhibited the binding and internalization of Salmonella in medium free of antibiotic. The fat globules from both bovine and goat milk markedly reduced bacterial binding and invasion compared with controls, and the cells treated with goat milk-derived fat globules demonstrated greater protective properties than those derived from bovine milk. The effect of heat treatment on bovine fat globules was also investigated, and it was shown that the fat globules from heated milk had a higher degree of inhibition than those from unheated milk. Copyright © 2012 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  14. Fat-cell mass, serum leptin and adiponectin changes during weight gain and loss in yellow-bellied marmots (Marmota flaviventris).

    PubMed

    Florant, Gregory L; Porst, Heather; Peiffer, Aubrey; Hudachek, Susan F; Pittman, Chris; Summers, Scott A; Rajala, Michael W; Scherer, Philipp E

    2004-11-01

    Leptin and adiponectin are proteins produced and secreted from white adipose tissue and are important regulators of energy balance and insulin sensitivity. Seasonal changes in leptin and adiponectin have not been investigated in mammalian hibernators in relationship to changes in fat cell and fat mass. We sought to determine the relationship between serum leptin and adiponectin levels with seasonal changes in lipid mass. We collected serum and tissue samples from marmots (Marmota flaviventris) in different seasons while measuring changes in fat mass, including fat-cell size. We found that leptin is positively associated with increasing fat mass and fat-cell size, while adiponectin is negatively associated with increasing lipid mass. These findings are consistent with the putative roles of these adipokines: leptin increases with fat mass and is involved in enhancing lipid oxidation while adiponectin appears to be higher in summer when hepatic insulin sensitivity should be maintained since the animals are eating. Our data suggest that during autumn/winter animals have switched from a lipogenic condition to a lipolytic state, which may include leptin resistance.

  15. Influence of lifestyle on vitamin bioavailability.

    PubMed

    van den Berg, Henk; van der Gaag, Martijn; Hendriks, Henk

    2002-01-01

    In this review the effects of lifestyle factors, especially alcohol consumption, on vitamin bioavailability are summarized and discussed. Alcohol effects are clearly dose-dependent. Excessive chronic alcohol intake is generally associated with vitamin deficiency (especially folate, thiamine, and vitamin B6) due to malnutrition, malabsorption, and ethanol toxicity. Effects of moderate alcohol use are mainly explained by a lower vitamin intake. In the case of vitamin A and beta-carotene, effects on post-absorptive (lipoprotein) metabolism have been demonstrated. In one diet-controlled crossover study, alcohol consumption resulted in an increase in the plasma vitamin B6 (PLP) content, especially after beer consumption (containing vitamin B6), but also after wine and spirit consumption (not containing vitamin B6). Smoking is also associated with a lower dietary vitamin intake. In the case of vitamin C, B12, folate, and beta-carotene, evidence has been presented for effects on postabsorptive metabolism, due to smoke-induced oxidative stress and/or vitamin inactivation. For vitamin E a direct effect of smoking on absorption has been demonstrated. There is no convincing evidence that low-fat diets negatively affect fat-soluble vitamin absorption, but cholesterol-lowering compounds (diets), or unabsorbable fat substitutes, may do so. Vitamin bioavailability may be compromised from certain vegetables (particularly raw), and/or from high-fiber foods, because of limited digestion and inefficient release of vitamins from the food matrix.

  16. Modern trends in lipomodeling

    PubMed Central

    El-Sabbagh, Ahmed Hassan

    2017-01-01

    Lipomodeling is the process of relocating autologous fat to change the shape, volume, consistency, and profile of tissues, with the aim of reconstructing, rejuvenating, and regenerating body features. There have been several important advancements in lipomodeling procedures during the last thirty years. Four clinical steps are important for the success of engraftment: fat harvesting, fat processing, fat reinjection, and preconditioning of the recipient site. With the discovery of adipose derived stem cells and dedifferentiated cells, fat cells become a major tool of regenerative medicine. This article reviews recent trends in lipomodeling trying to understand most of the issues in this field. PMID:28401032

  17. Calcium Channels in Postnatal Development of Rat Pancreatic Beta Cells and Their Role in Insulin Secretion

    PubMed Central

    García-Delgado, Neivys; Velasco, Myrian; Sánchez-Soto, Carmen; Díaz-García, Carlos Manlio; Hiriart, Marcia

    2018-01-01

    Pancreatic beta cells during the first month of development acquire functional maturity, allowing them to respond to variations in extracellular glucose concentration by secreting insulin. Changes in ionic channel activity are important for this maturation. Within the voltage-gated calcium channels (VGCC), the most studied channels are high-voltage-activated (HVA), principally L-type; while low-voltage-activated (LVA) channels have been poorly studied in native beta cells. We analyzed the changes in the expression and activity of VGCC during the postnatal development in rat beta cells. We observed that the percentage of detection of T-type current increased with the stage of development. T-type calcium current density in adult cells was higher than in neonatal and P20 beta cells. Mean HVA current density also increased with age. Calcium current behavior in P20 beta cells was heterogeneous; almost half of the cells had HVA current densities higher than the adult cells, and this was independent of the presence of T-type current. We detected the presence of α1G, α1H, and α1I subunits of LVA channels at all ages. The Cav 3.1 subunit (α1G) was the most expressed. T-type channel blockers mibefradil and TTA-A2 significantly inhibited insulin secretion at 5.6 mM glucose, which suggests a physiological role for T-type channels at basal glucose conditions. Both, nifedipine and TTA-A2, drastically decreased the beta-cell subpopulation that secretes more insulin, in both basal and stimulating glucose conditions. We conclude that changes in expression and activity of VGCC during the development play an important role in physiological maturation of beta cells. PMID:29556214

  18. Regulation of calcium-permeable TRPV2 channel by insulin in pancreatic beta-cells.

    PubMed

    Hisanaga, Etsuko; Nagasawa, Masahiro; Ueki, Kohjiro; Kulkarni, Rohit N; Mori, Masatomo; Kojima, Itaru

    2009-01-01

    Calcium-permeable cation channel TRPV2 is expressed in pancreatic beta-cells. We investigated regulation and function of TRPV2 in beta-cells. Translocation of TRPV2 was assessed in MIN6 cells and cultured mouse beta-cells by transfecting TRPV2 fused to green fluorescent protein or TRPV2 containing c-Myc tag in the extracellular domain. Calcium entry was assessed by monitoring fura-2 fluorescence. In MIN6 cells, TRPV2 was observed mainly in cytoplasm in an unstimulated condition. Addition of exogenous insulin induced translocation and insertion of TRPV2 to the plasma membrane. Consistent with these observations, insulin increased calcium entry, which was inhibited by tranilast, an inhibitor of TRPV2, or by knockdown of TRPV2 using shRNA. A high concentration of glucose also induced translocation of TRPV2, which was blocked by nefedipine, diazoxide, and somatostatin, agents blocking glucose-induced insulin secretion. Knockdown of the insulin receptor attenuated insulin-induced translocation of TRPV2. Similarly, the effect of insulin on TRPV2 translocation was not observed in a beta-cell line derived from islets obtained from a beta-cell-specific insulin receptor knockout mouse. Knockdown of TRPV2 or addition of tranilast significantly inhibited insulin secretion induced by a high concentration of glucose. Likewise, cell growth induced by serum and glucose was inhibited by tranilast or by knockdown of TRPV2. Finally, insulin-induced translocation of TRPV2 was observed in cultured mouse beta-cells, and knockdown of TRPV2 reduced insulin secretion induced by glucose. TRPV2 is regulated by insulin and is involved in the autocrine action of this hormone on beta-cells.

  19. Neutrophil chemotaxis in response to TGF-beta isoforms (TGF-beta 1, TGF-beta 2, TGF-beta 3) is mediated by fibronectin.

    PubMed

    Parekh, T; Saxena, B; Reibman, J; Cronstein, B N; Gold, L I

    1994-03-01

    TGF-beta isoforms regulate numerous cellular functions including cell growth and differentiation, the cellular synthesis and secretion of extracellular matrix proteins, such as fibronectin (Fn), and the immune response. We have previously shown that TGF-beta 1 is the most potent chemoattractant described for human peripheral blood neutrophils (PMNs), suggesting that TGF-beta s may play a role in the recruitment of PMNs during the initial phase of the inflammatory response. In our current studies, we demonstrate that the maximal chemotactic response was attained near 40 fM for all mammalian TGF-beta isoforms. However, there was a statistically significant difference in migratory distance of the PMNs: TGF-beta 2 (556 microM) > TGF-beta 3 (463 microM) > TGF-beta 1 (380 microM) (beta 2: beta 3, p < or = 0.010; beta 3: beta 1, p < or = 0.04; beta 2: beta 1, p < or = 0.0012). A mAb to the cell binding domain (CBD) of Fn inhibited the chemotactic response to TGF-beta 1 and TGF-beta 3 by 63% and to TGF-beta 2 by 70%, whereas the response to FMLP, a classic chemoattractant, was only inhibited by 18%. In contrast, a mAb to a C-terminal epitope of Fn did not retard migration (< 1.5%). The Arg-gly-Asp-ser tetrapeptide inhibited chemotaxis by approximately the same extent as the anti-CBD (52 to 83%). Furthermore, a mAb against the VLA-5 integrin (VLA-5; Fn receptor) also inhibited TGF-beta-induced chemotaxis. These results indicate that chemotaxis of PMNs in response to TGF-beta isoforms is mediated by the interaction of the Arg-gly-Asp-ser sequence in the CBD of Fn with an integrin on the PMN cell surface, primarily the VLA-5 integrin. TGF-beta isoforms also elicited the release of cellular Fn from PMNs; we observed a 2.3-fold increase in Fn (389 to 401 ng/ml) in the supernatants of TGF-beta-stimulated PMNs compared with unstimulated cells (173.6 ng/ml). The concentration of TGF-beta required to cause maximal release of Fn from PMNs (4000 fM) is a concentration at which TGF-beta is no longer chemotactic, suggesting that PMNs only use Fn that is constitutively expressed for migration. At higher concentrations of TGF-beta, the Fn released may accumulate basal to the cell, ultimately retarding cellular migration and modulating the chemotactic response.

  20. Interleukin-1 beta induced synthesis of protein kinase C-delta and protein kinase C-epsilon in EL4 thymoma cells: possible involvement of phosphatidylinositol 3-kinase.

    PubMed

    Varley, C L; Royds, J A; Brown, B L; Dobson, P R

    2001-01-01

    We present evidence here that the proinflammatory cytokine, interleukin-1 beta (IL-1 beta) stimulates a significant increase in protein kinase C (PKC)-epsilon and PKC-delta protein levels and increases PKC-epsilon, but not PKC-delta, transcripts in EL4 thymoma cells. Incubation of EL4 cells with IL-1 beta induced protein synthesis of PKC-epsilon (6-fold increase) by 7 h and had a biphasic effect on PKC-delta levels with peaks at 4 h (2-fold increase) and 24 h (4-fold increase). At the level of mRNA, PKC-epsilon, but not PKC-delta levels, were induced after incubation of EL4 cells with IL-1 beta. The signalling mechanisms utilized by IL-1 beta to induce the synthesis of these PKC isoforms were investigated. Two phosphatidylinositol (PI) 3-kinase-specific inhibitors, wortmannin and LY294002, inhibited IL-1 beta-induced synthesis of PKC-epsilon. However, the PI 3-kinase inhibitors had little effect on the IL-1 beta-induced synthesis of PKC-delta in these cells. Our results indicate that IL-1 beta induced both PKC-delta and PKC-epsilon expression over different time periods. Furthermore, our evidence suggests that IL-1 beta induction of PKC-epsilon, but not PKC-delta, may occur via the PI 3-kinase pathway. Copyright 2001 S. Karger AG, Basel

  1. Nicotine promotes cell proliferation via {alpha}7-nicotinic acetylcholine receptor and catecholamine-synthesizing enzymes-mediated pathway in human colon adenocarcinoma HT-29 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wong, Helen Pui Shan; Yu Le; Lam, Emily Kai Yee

    Cigarette smoking has been implicated in colon cancer. Nicotine is a major alkaloid in cigarette smoke. In the present study, we showed that nicotine stimulated HT-29 cell proliferation and adrenaline production in a dose-dependent manner. The stimulatory action of nicotine was reversed by atenolol and ICI 118,551, a {beta}{sub 1}- and {beta}{sub 2}-selective antagonist, respectively, suggesting the role of {beta}-adrenoceptors in mediating the action. Nicotine also significantly upregulated the expression of the catecholamine-synthesizing enzymes [tyrosine hydroxylase (TH), dopamine-{beta}-hydroxylase (D{beta}H) and phenylethanolamine N-methyltransferase]. Inhibitor of TH, a rate-limiting enzyme in the catecholamine-biosynthesis pathway, reduced the actions of nicotine on cell proliferationmore » and adrenaline production. Expression of {alpha}7-nicotinic acetylcholine receptor ({alpha}7-nAChR) was demonstrated in HT-29 cells. Methyllycaconitine, an {alpha}7-nAChR antagonist, reversed the stimulatory actions of nicotine on cell proliferation, TH and D{beta}H expression as well as adrenaline production. Taken together, through the action on {alpha}7-nAChR nicotine stimulates HT-29 cell proliferation via the upregulation of the catecholamine-synthesis pathway and ultimately adrenaline production and {beta}-adrenergic activation. These data reveal the contributory role {alpha}7-nAChR and {beta}-adrenoceptors in the tumorigenesis of colon cancer cells and partly elucidate the carcinogenic action of cigarette smoke on colon cancer.« less

  2. Physico-chemical properties and performance of high oleic and palm-based shortenings.

    PubMed

    Ramli, Muhamad Roddy; Lin, Siew Wai; Yoo, Cheah Kien; Idris, Nor Aini; Sahri, Miskandar Mat

    2008-01-01

    Solid fat from fractionation of palm-based products was converted into cake shortening at different processing conditions. High oleic palm stearin with an oleic content of 48.2 % was obtained from fractionation of high oleic palm oil which was produced locally. Palm product was blended with different soft oils at pre-determined ratio and further fractionated to obtain the solid fractions. These fractions were then converted into cake shortenings named as high oleic, N1 and N2 blends. The physico-chemical properties of the experimental shortenings were compared with those of control shortenings in terms of fatty acid composition (FAC), iodine value (IV), slip melting point (SMP), solid fat content (SFC) and polymorphic forms. Unlike the imported commercial shortenings as reported by other studies and the control, experimental shortenings were trans-free. The SMP and SFC of experimental samples, except for the N2 sample, fell within the ranges of commercial and control shortenings. The IV was higher than those of domestic shortenings but lower when compared to imported and control shortenings. They were also observed to be beta tending even though a mixture of beta and beta' was observed in the samples after 3 months of storage. The shortenings were also used in the making of pound cake and sensory evaluation showed the good performance of high oleic sample as compared to the other shortenings.

  3. Designer milk.

    PubMed

    Sabikhi, Latha

    2007-01-01

    Dairy biotechnology is fast gaining ground in the area of altering milk composition for processing and/or animal and human health by employing nutritional and genetic approaches. Modification of the primary structure of casein, alteration in the lipid profile, increased protein recovery, milk containing nutraceuticals, and replacement for infant formula offer several advantages in the area of processing. Less fat in milk, altered fatty acid profiles to include more healthy fatty acids such as CLA and omega-fats, improved amino acid profiles, more protein, less lactose, and absence of beta-lactoglobulin (beta-LG) are some opportunities of "designing" milk for human health benefits. Transgenic technology has also produced farm animals that secrete in their milk, human lactoferrin, lysozyme, and lipase so as to simulate human milk in terms of quality and quantity of these elements that are protective to infants. Cow milk allergenicity in children could be reduced by eliminating the beta-LG gene from bovines. Animals that produce milk containing therapeutic agents such as insulin, plasma proteins, drugs, and vaccines for human health have been genetically engineered. In order to cater to animal health, transgenic animals that express in their mammary glands, various components that work against mastitis have been generated. The ultimate acceptability of the "designer" products will depend on ethical issues such as animal welfare and safety, besides better health benefits and increased profitability of products manufactured by the novel techniques.

  4. Bardoxolone Methyl Prevents Fat Deposition and Inflammation in Brown Adipose Tissue and Enhances Sympathetic Activity in Mice Fed a High-Fat Diet

    PubMed Central

    Dinh, Chi H. L.; Szabo, Alexander; Yu, Yinghua; Camer, Danielle; Zhang, Qingsheng; Wang, Hongqin; Huang, Xu-Feng

    2015-01-01

    Obesity results in changes in brown adipose tissue (BAT) morphology, leading to fat deposition, inflammation, and alterations in sympathetic nerve activity. Bardoxolone methyl (BARD) has been extensively studied for the treatment of chronic diseases. We present for the first time the effects of oral BARD treatment on BAT morphology and associated changes in the brainstem. Three groups (n = 7) of C57BL/6J mice were fed either a high-fat diet (HFD), a high-fat diet supplemented with BARD (HFD/BARD), or a low-fat diet (LFD) for 21 weeks. BARD was administered daily in drinking water. Interscapular BAT, and ventrolateral medulla (VLM) and dorsal vagal complex (DVC) in the brainstem, were collected for analysis by histology, immunohistochemistry and Western blot. BARD prevented fat deposition in BAT, demonstrated by the decreased accumulation of lipid droplets. When administered BARD, HFD mice had lower numbers of F4/80 and CD11c macrophages in the BAT with an increased proportion of CD206 macrophages, suggesting an anti-inflammatory effect. BARD increased phosphorylation of tyrosine hydroxylase in BAT and VLM. In the VLM, BARD increased energy expenditure proteins, including beta 3-adrenergic receptor (β3-AR) and peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α). Overall, oral BARD prevented fat deposition and inflammation in BAT, and stimulated sympathetic nerve activity. PMID:26066016

  5. Bardoxolone Methyl Prevents Fat Deposition and Inflammation in Brown Adipose Tissue and Enhances Sympathetic Activity in Mice Fed a High-Fat Diet.

    PubMed

    Dinh, Chi H L; Szabo, Alexander; Yu, Yinghua; Camer, Danielle; Zhang, Qingsheng; Wang, Hongqin; Huang, Xu-Feng

    2015-06-09

    Obesity results in changes in brown adipose tissue (BAT) morphology, leading to fat deposition, inflammation, and alterations in sympathetic nerve activity. Bardoxolone methyl (BARD) has been extensively studied for the treatment of chronic diseases. We present for the first time the effects of oral BARD treatment on BAT morphology and associated changes in the brainstem. Three groups (n = 7) of C57BL/6J mice were fed either a high-fat diet (HFD), a high-fat diet supplemented with BARD (HFD/BARD), or a low-fat diet (LFD) for 21 weeks. BARD was administered daily in drinking water. Interscapular BAT, and ventrolateral medulla (VLM) and dorsal vagal complex (DVC) in the brainstem, were collected for analysis by histology, immunohistochemistry and Western blot. BARD prevented fat deposition in BAT, demonstrated by the decreased accumulation of lipid droplets. When administered BARD, HFD mice had lower numbers of F4/80 and CD11c macrophages in the BAT with an increased proportion of CD206 macrophages, suggesting an anti-inflammatory effect. BARD increased phosphorylation of tyrosine hydroxylase in BAT and VLM. In the VLM, BARD increased energy expenditure proteins, including beta 3-adrenergic receptor (β3-AR) and peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α). Overall, oral BARD prevented fat deposition and inflammation in BAT, and stimulated sympathetic nerve activity.

  6. Caffeine prevents weight gain and cognitive impairment caused by a high-fat diet while elevating hippocampal BDNF.

    PubMed

    Moy, Gregory A; McNay, Ewan C

    2013-01-17

    Obesity, high-fat diets, and subsequent type 2 diabetes (T2DM) are associated with cognitive impairment. Moreover, T2DM increases the risk of Alzheimer's disease (AD) and leads to abnormal elevation of brain beta-amyloid levels, one of the hallmarks of AD. The psychoactive alkaloid caffeine has been shown to have therapeutic potential in AD but the central impact of caffeine has not been well-studied in the context of a high-fat diet. Here we investigated the impact of caffeine administration on metabolism and cognitive performance, both in control rats and in rats placed on a high-fat diet. The effects of caffeine were significant: caffeine both (i) prevented the weight-gain associated with the high-fat diet and (ii) prevented cognitive impairment. Caffeine did not alter hippocampal metabolism or insulin signaling, likely because the high-fat-fed animals did not develop full-blown diabetes; however, caffeine did prevent or reverse a decrease in hippocampal brain-derived neurotrophic factor (BDNF) seen in high-fat-fed animals. These data confirm that caffeine may serve as a neuroprotective agent against cognitive impairment caused by obesity and/or a high-fat diet. Increased hippocampal BDNF following caffeine administration could explain, at least in part, the effects of caffeine on cognition and metabolism. Copyright © 2012 Elsevier Inc. All rights reserved.

  7. Alpha cells secrete acetylcholine as a non-neuronal paracrine signal priming human beta cell function

    PubMed Central

    Rodriguez-Diaz, Rayner; Dando, Robin; Jacques-Silva, M. Caroline; Fachado, Alberto; Molina, Judith; Abdulreda, Midhat; Ricordi, Camillo; Roper, Stephen D.; Berggren, Per-Olof; Caicedo, Alejandro

    2011-01-01

    Acetylcholine is a neurotransmitter that plays a major role in the function of the insulin secreting pancreatic beta cell1,2. Parasympathetic innervation of the endocrine pancreas, the islets of Langerhans, has been shown to provide cholinergic input to the beta cell in several species1,3,4, but the role of autonomic innervation in human beta cell function is at present unclear. Here we show that, in contrast to mouse islets, cholinergic innervation of human islets is sparse. Instead, we find that the alpha cells of the human islet provide paracrine cholinergic input to surrounding endocrine cells. Human alpha cells express the vesicular acetylcholine transporter and release acetylcholine when stimulated with kainate or a lowering in glucose concentration. Acetylcholine secretion by alpha cells in turn sensitizes the beta cell response to increases in glucose concentration. Our results demonstrate that in human islets acetylcholine is a paracrine signal that primes the beta cell to respond optimally to subsequent increases in glucose concentration. We anticipate these results to revise models about neural input and cholinergic signaling in the endocrine pancreas. Cholinergic signaling within the islet represents a potential therapeutic target in diabetes5, highlighting the relevance of this advance to future drug development. PMID:21685896

  8. Early stages in the development of human T, natural killer and thymic dendritic cells.

    PubMed

    Spits, H; Blom, B; Jaleco, A C; Weijer, K; Verschuren, M C; van Dongen, J J; Heemskerk, M H; Res, P C

    1998-10-01

    T-cell development is initiated when CD34+ pluripotent stem cells or their immediate progeny leave the bone marrow to migrate to the thymus. Upon arrival in the thymus the stem cell progeny is not yet committed to the T-cell lineage as it has the capability to develop into T, natural killer (NK) and dendritic cells (DC). Primitive hematopoietic progenitor cells in the human thymus express CD34 and lack CD1a. When these progenitor cells develop into T cells they traverse a number of checkpoints. One early checkpoint is the induction of T-cell commitment, which correlates with appearance of CD1a and involves the loss of capacity to develop into NK cells and DC and the initiation of T-cell receptor (TCR) gene rearrangements. Basic helix-loop-helix transcription factors play a role in induction of T-cell commitment. CD1a+CD34+ cells develop into CD4+CD8 alpha+ beta+ cells by upregulating first CD4, followed by CD8 alpha and then CD8 beta. Selection for productive TCR beta gene rearrangements (beta selection) likely occurs in the CD4+CD8 alpha+ beta- and CD4+CD8 alpha+ beta+ populations. Although the T and NK-cell lineages are closely related to each other, NK cells can develop independently of the thymus. The fetal thymus is most likely one site of NK-cell development.

  9. Beta-catenin-mediated transactivation and cell-cell adhesion pathways are important in curcumin (diferuylmethane)-induced growth arrest and apoptosis in colon cancer cells.

    PubMed

    Jaiswal, Aruna S; Marlow, Benjamin P; Gupta, Nirupama; Narayan, Satya

    2002-12-05

    The development of nontoxic natural agents with chemopreventive activity against colon cancer is the focus of investigation in many laboratories. Curcumin (feruylmethane), a natural plant product, possesses such chemopreventive activity, but the mechanisms by which it prevents cancer growth are not well understood. In the present study, we examined the mechanisms by which curcumin treatment affects the growth of colon cancer cells in vitro. Results showed that curcumin treatment causes p53- and p21-independent G(2)/M phase arrest and apoptosis in HCT-116(p53(+/+)), HCT-116(p53(-/-)) and HCT-116(p21(-/-)) cell lines. We further investigated the association of the beta-catenin-mediated c-Myc expression and the cell-cell adhesion pathways in curcumin-induced G(2)/M arrest and apoptosis in HCT-116 cells. Results described a caspase-3-mediated cleavage of beta-catenin, decreased transactivation of beta-catenin/Tcf-Lef, decreased promoter DNA binding activity of the beta-catenin/Tcf-Lef complex, and decreased levels of c-Myc protein. These activities were linked with decreased Cdc2/cyclin B1 kinase activity, a function of the G(2)/M phase arrest. The decreased transactivation of beta-catenin in curcumin-treated HCT-116 cells was unpreventable by caspase-3 inhibitor Z-DEVD-fmk, even though the curcumin-induced cleavage of beta-catenin was blocked in Z-DEVD-fmk pretreated cells. The curcumin treatment also induced caspase-3-mediated degradation of cell-cell adhesion proteins beta-catenin, E-cadherin and APC, which were linked with apoptosis, and this degradation was prevented with the caspase-3 inhibitor. Our results suggest that curcumin treatment impairs both Wnt signaling and cell-cell adhesion pathways, resulting in G(2)/M phase arrest and apoptosis in HCT-116 cells.

  10. Granulocyte-macrophage colony-stimulating factor amplification of interleukin-1beta and tumor necrosis factor alpha production in THP-1 human monocytic cells stimulated with lipopolysaccharide of oral microorganisms.

    PubMed

    Baqui, A A; Meiller, T F; Chon, J J; Turng, B F; Falkler, W A

    1998-05-01

    Cytokines, including granulocyte-macrophage colony-stimulating factor (GM-CSF), are used to assist in bone marrow recovery during cancer chemotherapy. Interleukin-1beta (IL-1beta) and tumor necrosis factor alpha (TNF-alpha) play important roles in inflammatory processes, including exacerbation of periodontal diseases, one of the most common complications in patients who undergo this therapy. A human monocyte cell line (THP-1) was utilized to investigate IL-1beta and TNF-alpha production following GM-CSF supplementation with lipopolysaccharide (LPS) from two oral microorganisms, Porphyromonas gingivalis and Fusobacterium nucleatum. LPS of P. gingivalis or F. nucleatum was prepared by a phenol-water extraction method and characterized by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and determination of total protein and endotoxin contents. Resting THP-1 cells were treated with LPS of P. gingivalis or F. nucleatum and/or GM-CSF (50 IU/ml) by using different concentrations for various time periods. Production of IL-1beta and TNF-alpha in THP-1 cells was measured by solid-phase enzyme-linked immunosorbent assay. Reverse transcription (RT)-PCR was used to evaluate the gene expression of resting and treated THP-1 cells. IL-1beta was not detected in untreated THP-1 cells. IL-1beta production was, however, stimulated sharply at 4 h. GM-CSF amplified IL-1beta production in THP-1 cells treated with LPS from both oral anaerobes. No IL-1beta-specific mRNA transcript was detected in untreated THP-1 cells. However, IL-1beta mRNA was detected by RT-PCR 2 h after stimulation of THP-1 cells with LPS from both organisms. GM-CSF did not shorten the IL-1beta transcriptional activation time. GM-CSF plus F. nucleatum or P. gingivalis LPS activated THP-1 cells to produce a 1.6-fold increase in TNF-alpha production at 4 h over LPS stimulation alone. These investigations with the in vitro THP-1 model indicate that there may be an increase in the cellular immune response to oral endotoxin following GM-CSF therapy, as evidenced by production of the tissue-reactive cytokines IL-1beta and TNF-alpha.

  11. [The mechanism of vasculogenesis: the critical role of transforming growth factor-beta 1 in the formation of vessel-like structures during the differentiation in vitro of murine embryonic stem cells].

    PubMed

    Tsung, H C; Yao, Z

    1996-09-01

    When ES-5 cells were transfected with an exogenous porcine TGF-beta 1 gene, one can obtain clones of genetically modified ES cells with over-expression of the transfected gene. We called the genetically modified ES-5 cells as ES-T cells. When ES-T cells were used to study their differentiation in vitro by all trans-retinoic acid (RA), it was soon noticed that embryoid bodies of ES-T cells can exclusively differentiate into endothelial cells and vessel-like structures, but not in their parent ES-5 cells. The above result is the first indication that the differentiation of tubular structures in embryoid bodies of ES-T cells may somehow be related to TGF-beta 1. To demonstrate further the role of TGF-beta 1 in the formation of vessel-like structures, the cultured ES-5 cells in the presence of added rhTGF-beta 1 were closely followed in the course of their differentiation. We have, thus, demonstrated the promoting effects of exogenous rhTGF-beta 1 in the formation of vessel-like structures, morphologically similar to those structures derived from ES-T6 cells, during the differentiation of ES-5 cells, both in monolayer culture, in three dimensional collagen gel and in embryoid bodies cultured on gelatin-coated tissue culture wells. Addition of suitable amount of anti-TGF-beta 1 monoclonal antibody IgG (TB21) to the culture medium of embryoid bodies of ES-T6 cells could effectively abolish the formation of vessel-like structures induced by retinoic acid. The percentage of the inhibition was very high, giving a figure comparable to that of atypical vessel-like structures formed in the control embryoid bodies from their parent ES-5 cells. The flat epithelial-like cells and round cells differentiated from embryoid bodies of ES-T6 cells were stained rather strongly for laminin and type IV collagen by immunofluorescent procedure. The above results indicate clearly that TGF-beta 1 is a crucial factor in organizing the differentiated derivatives (endothelial-like cells and their immediate progenitor cells) from ES-T6 cells to form vessel-like structures, and that the role of TGF-beta 1 in vasculogenesis might be performed, in part, through the modulation of the composition and organization of the extracellular matrix. In addition, the enhanced expression of bFGF mRNA in derivatives differentiated from both ES-5 cells treated with rhTGF-beta 1 and ES-T6 cells were detected by Northern blot analysis. Thus, aside from its effects on extracellular matrix, TGF-beta 1 might also modulate the bioactivity of bFGF in relation to the growth of vascular endothelial cells in the present system.

  12. Ultrasound-mediated interferon {beta} gene transfection inhibits growth of malignant melanoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamaguchi, Kazuki; Department of Anatomy, Fukuoka University School of Medicine, 7-45-1 Nanakuma, Jonan-ku, Fukuoka City 814-0180; Feril, Loreto B., E-mail: ferilism@yahoo.com

    2011-07-22

    Highlights: {yields} Successful ultrasound-mediated transfection of melanoma (C32) cells with IFN-{beta} genes both in vitro and in vivo. {yields} Ultrasound-mediated IFN-{beta} transfection inhibited proliferation of melanoma cells in vitro. {yields} Ultrasound-mediated IFN-{beta} transfection inhibited melanoma tumor growth in vivo. -- Abstract: We investigated the effects of ultrasound-mediated transfection (sonotransfection) of interferon {beta} (IFN-{beta}) gene on melanoma (C32) both in vitro and in vivo. C32 cells were sonotransfected with IFN-{beta} in vitro. Subcutaneous C32 tumors in mice were sonicated weekly immediately after intra-tumor injection with IFN-{beta} genes mixed with microbubbles. Successful sonotransfection with IFN-{beta} gene in vitro was confirmed by ELISA,more » which resulted in C32 growth inhibition. In vivo, the growth ratio of tumors transfected with IFN-{beta} gene was significantly lower than the other experimental groups. These results may lead to a new method of treatment against melanoma and other hard-to-treat cancers.« less

  13. Antiproliferative properties of toremifene on AIDS-related Kaposi's sarcoma cells.

    PubMed

    Hong, Angela; Leigh, Bryan R

    2002-12-01

    Kaposi's sarcoma (KS) is the most common neoplastic apoptosis manifestation of acquired immunodeficiency syndrome. Toremifene is known to upregulate transforming growth factor beta-1 (TGF-beta1), which is a growth-inhibitory factor for KS. We investigated the in vitro effect of toremifene on KS cells. MTT assay was used to measure the growth of four KS cell lines and a human umbilical vein endothelial (HUVE) cell line after incubation with toremifene. Reverse transcription polymerase chain reaction and ELISA were used to measure the level of TGF-beta1. The IC(50) for the KS cells ranged from 2.2 to 3.2 microM, and 80% of the growth inhibition occurred within 24 h. Toremifene enhanced TGF-beta1 mRNA expression, and the level of TGF-beta1 increased from 103 to 473 pg/ml after 48 h of incubation. Toremifene had no effect on the growth of HUVE cells. Toremifene has a specific antiproliferative effect on KS cells. The stimulation of TGF-beta1 production may play a role in the antiproliferative process. Copyright 2002 S. Karger AG, Basel

  14. Inhibition of estrogen-responsive gene activation by the retinoid X receptor beta: evidence for multiple inhibitory pathways.

    PubMed

    Segars, J H; Marks, M S; Hirschfeld, S; Driggers, P H; Martinez, E; Grippo, J F; Brown, M; Wahli, W; Ozato, K

    1993-04-01

    The retinoid X receptor beta (RXR beta; H-2RIIBP) forms heterodimers with various nuclear hormone receptors and binds multiple hormone response elements, including the estrogen response element (ERE). In this report, we show that endogenous RXR beta contributes to ERE binding activity in nuclear extracts of the human breast cancer cell line MCF-7. To define a possible regulatory role of RXR beta regarding estrogen-responsive transcription in breast cancer cells, RXR beta and a reporter gene driven by the vitellogenin A2 ERE were transfected into estrogen-treated MCF-7 cells. RXR beta inhibited ERE-driven reporter activity in a dose-dependent and element-specific fashion. This inhibition occurred in the absence of the RXR ligand 9-cis retinoic acid. The RXR beta-induced inhibition was specific for estrogen receptor (ER)-mediated ERE activation because inhibition was observed in ER-negative MDA-MB-231 cells only following transfection of the estrogen-activated ER. No inhibition of the basal reporter activity was observed. The inhibition was not caused by simple competition of RXR beta with the ER for ERE binding, since deletion mutants retaining DNA binding activity but lacking the N-terminal or C-terminal domain failed to inhibit reporter activity. In addition, cross-linking studies indicated the presence of an auxiliary nuclear factor present in MCF-7 cells that contributed to RXR beta binding of the ERE. Studies using known heterodimerization partners of RXR beta confirmed that RXR beta/triiodothyronine receptor alpha heterodimers avidly bind the ERE but revealed the existence of another triiodothyronine-independent pathway of ERE inhibition. These results indicate that estrogen-responsive genes may be negatively regulated by RXR beta through two distinct pathways.

  15. Vesicle-associated membrane protein 2 mediates trafficking of {alpha}5{beta}1 integrin to the plasma membrane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hasan, Nazarul; Hu, Chuan, E-mail: chuan.hu@louisville.edu

    2010-01-01

    Integrins are major receptors for cell adhesion to the extracellular matrix (ECM). As transmembrane proteins, the levels of integrins at the plasma membrane or the cell surface are ultimately determined by the balance between two vesicle trafficking events: endocytosis of integrins at the plasma membrane and exocytosis of the vesicles that transport integrins. Here, we report that vesicle-associated membrane protein 2 (VAMP2), a SNARE protein that mediates vesicle fusion with the plasma membrane, is involved in the trafficking of {alpha}5{beta}1 integrin. VAMP2 was present on vesicles containing endocytosed {beta}1 integrin. Small interfering RNA (siRNA) silencing of VAMP2 markedly reduced cellmore » surface {alpha}5{beta}1 and inhibited cell adhesion and chemotactic migration to fibronectin, the ECM ligand of {alpha}5{beta}1, without altering cell surface expression of {alpha}2{beta}1 integrin or {alpha}3{beta}1 integrin. By contrast, silencing of VAMP8, another SNARE protein, had no effect on cell surface expression of the integrins or cell adhesion to fibronectin. In addition, VAMP2-mediated trafficking is involved in cell adhesion to collagen but not to laminin. Consistent with disruption of integrin functions in cell proliferation and survival, VAMP2 silencing diminished proliferation and triggered apoptosis. Collectively, these data indicate that VAMP2 mediates the trafficking of {alpha}5{beta}1 integrin to the plasma membrane and VAMP2-dependent integrin trafficking is critical in cell adhesion, migration and survival.« less

  16. Nanoscale organization of {beta}{sub 2}-adrenergic receptor-Venus fusion protein domains on the surface of mammalian cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vobornik, Dusan; Rouleau, Yanouchka; Haley, Jennifer

    2009-04-24

    Adrenergic receptors are a key component of nanoscale multiprotein complexes that are responsible for controlling the beat rate in a mammalian heart. We demonstrate the ability of near-field scanning optical microscopy (NSOM) to visualize {beta}{sub 2}-adrenergic receptors ({beta}{sub 2}AR) fused to the GFP analogue Venus at the nanoscale on HEK293 cells. The expression of the {beta}{sub 2}AR-Venus fusion protein was tightly controlled using a tetracycline-induced promoter. Both the size and density of the observed nanoscale domains are dependent on the level of induction and thus the level of protein expression. At concentrations between 100 and 700 ng/ml of inducer doxycycline,more » the size of domains containing the {beta}{sub 2}AR-Venus fusion protein appears to remain roughly constant, but the number of domains per cell increase. At 700 ng/ml doxycycline the functional receptors are organized into domains with an average diameter of 150 nm with a density similar to that observed for the native protein on primary murine cells. By contrast, larger micron-sized domains of {beta}{sub 2}AR are observed in the membrane of the HEK293 cells that stably overexpress {beta}{sub 2}AR-GFP and {beta}{sub 2}AR-eYFP. We conclude that precise chemical control of gene expression is highly advantageous for the use {beta}{sub 2}AR-Venus fusion proteins as models for {beta}{sub 2}AR function. These observations are critical for designing future cell models and assays based on {beta}{sub 2}AR, since the receptor biology is consistent with a relatively low density of nanoscale receptor domains.« less

  17. Calcineurin A beta deficiency ameliorates HFD-induced hypothalamic astrocytosis in mice.

    PubMed

    Pfuhlmann, Katrin; Schriever, Sonja C; Legutko, Beata; Baumann, Peter; Harrison, Luke; Kabra, Dhiraj G; Baumgart, Emily Violette; Tschöp, Matthias H; Garcia-Caceres, Cristina; Pfluger, Paul T

    2018-02-08

    ᅟ: Astrocytosis is a reactive process involving cellular, molecular, and functional changes to facilitate neuronal survival, myelin preservation, blood brain barrier function and protective glial scar formation upon brain insult. The overall pro- or anti-inflammatory impact of reactive astrocytes appears to be driven in a context- and disease-driven manner by modulation of astrocytic Ca 2+ homeostasis and activation of Ca 2+ /calmodulin-activated serine/threonine phosphatase calcineurin. Here, we aimed to assess whether calcineurin is dispensable for astrocytosis in the hypothalamus driven by prolonged high fat diet (HFD) feeding. Global deletion of calcineurin A beta (gene name: Ppp3cb) led to a decrease of glial fibrillary acidic protein (GFAP)-positive cells in the ventromedial hypothalamus (VMH), dorsomedial hypothalamus (DMH), and arcuate nucleus (ARC) of mice exposed chronically to HFD. The concomitant decrease in Iba1-positive microglia in the VMH further suggests a modest impact of Ppp3cb deletion on microgliosis. Pharmacological inhibition of calcineurin activity by Fk506 had no impact on IBA1-positive microglia in hypothalami of mice acutely exposed to HFD for 1 week. However, Fk506-treated mice displayed a decrease in GFAP levels in the ARC. In vivo effects could not be replicated in cell culture, where calcineurin inhibition by Fk506 had no effect on astrocytic morphology, astrocytic cell death, GFAP, and vimentin protein levels or microglia numbers in primary hypothalamic astrocytes and microglia co-cultures. Further, adenoviral overexpression of calcineurin subunit Ppp3r1 in primary glia culture did not lead to an increase in GFAP fluorescence intensity. Overall, our results point to a prominent role of calcineurin in mediating hypothalamic astrocytosis as response to acute and chronic HFD exposure. Moreover, discrepant findings in vivo and in cell culture indicate the necessity of studying astrocytes in their "natural" environment, i.e., preserving an intact hypothalamic microenvironment with neurons and non-neuronal cells in close proximity.

  18. Tumor evasion of the immune system by converting CD4+CD25- T cells into CD4+CD25+ T regulatory cells: role of tumor-derived TGF-beta.

    PubMed

    Liu, Victoria C; Wong, Larry Y; Jang, Thomas; Shah, Ali H; Park, Irwin; Yang, Ximing; Zhang, Qiang; Lonning, Scott; Teicher, Beverly A; Lee, Chung

    2007-03-01

    CD4+CD25+ T regulatory (T(reg)) cells were initially described for their ability to suppress autoimmune diseases in animal models. An emerging interest is the potential role of T(reg) cells in cancer development and progression because they have been shown to suppress antitumor immunity. In this study, CD4+CD25- T cells cultured in conditioned medium (CM) derived from tumor cells, RENCA or TRAMP-C2, possess similar characteristics as those of naturally occurring T(reg) cells, including expression of Foxp3, a crucial transcription factor of T(reg) cells, production of low levels of IL-2, high levels of IL-10 and TGF-beta, and the ability to suppress CD4+CD25- T cell proliferation. Further investigation revealed a critical role of tumor-derived TGF-beta in converting CD4+CD25- T cells into T(reg) cells because a neutralizing Ab against TGF-beta, 1D11, completely abrogated the induction of T(reg) cells. CM from a nontumorigenic cell line, NRP-152, or irradiated tumor cells did not convert CD4+CD25- T cells to T(reg) cells because they produce low levels of TGF-beta in CM. Finally, we observed a reduced tumor burden in animals receiving 1D11. The reduction in tumor burden correlated with a decrease in tumor-derived TGF-beta. Treatment of 1D11 also reduced the conversion of CD4+ T cells into T(reg) cells and subsequent T(reg) cell-mediated suppression of antitumor immunity. In summary, we have demonstrated that tumor cells directly convert CD4+CD25- T cells to T(reg) cells through production of high levels of TGF-beta, suggesting a possible mechanism through which tumor cells evade the immune system.

  19. Gravity separation of fat, somatic cells, and bacteria in raw and pasteurized milks.

    PubMed

    Caplan, Z; Melilli, C; Barbano, D M

    2013-04-01

    The objective of experiment 1 was to determine if the extent of gravity separation of milk fat, bacteria, and somatic cells is influenced by the time and temperature of gravity separation or the level of contaminating bacteria present in the raw milk. The objective of experiment 2 was to determine if different temperatures of milk heat treatment affected the gravity separation of milk fat, bacteria, and somatic cells. In raw milk, fat, bacteria, and somatic cells rose to the top of columns during gravity separation. About 50 to 80% of the fat and bacteria were present in the top 8% of the milk after gravity separation of raw milk. Gravity separation for 7h at 12°C or for 22h at 4°C produced equivalent separation of fat, bacteria, and somatic cells. The completeness of gravity separation of fat was influenced by the level of bacteria in the milk before separation. Milk with a high bacterial count had less (about 50 to 55%) gravity separation of fat than milk with low bacteria count (about 80%) in 22h at 4°C. Gravity separation caused fat, bacteria, and somatic cells to rise to the top of columns for raw whole milk and high temperature, short-time pasteurized (72.6°C, 25s) whole milk. Pasteurization at ≥76.9°C for 25s prevented all 3 components from rising, possibly due to denaturation of native bovine immunoglobulins that normally associate with fat, bacteria, and somatic cells during gravity separation. Gravity separation can be used to produce reduced-fat milk with decreased bacterial and somatic cell counts, and may be a critical factor in the history of safe and unique traditional Italian hard cheeses produced from gravity-separated raw milk. A better understanding of the mechanism of this natural process could lead to the development of new nonthermal thermal technology (that does not involve heating the milk to high temperatures) to remove bacteria and spores from milk or other liquids. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  20. Stimulation of interleukin-1beta-independent interleukin-6 production in human dental pulp cells by lipopolysaccharide.

    PubMed

    Hosoya, S; Matsushima, K; Ohbayashi, E; Yamazaki, M; Shibata, Y; Abiko, Y

    1996-12-01

    Dental pulpal infection is most commonly caused by extensive dental caries. A principal driving force behind pulpal disease response appears to lie in the immune system's response to bacteria. However, the production of interleukin (IL)-1beta and IL-6 in human dental pulp (HDP) cells in response to lipopolysaccharide (LPS) has not been well characterized. We examined IL-1beta and IL-6 production in HDP cells by challenging with LPS from Porphyromonas endodontalis, which is a Gram-negative bacteria found in root canals. Our results presented here showed that when HDP cells were stimulated by LPS, the production of IL-6 always preceded that of IL-1beta. Since the IL-6 production was observed even in the presence of the IL-1beta receptor antagonist, we concluded IL-6 production was independent of the IL-1beta molecule in LPS-stimulated HDP cells. This idea was further supported by the results obtained from RT-PCR experiments, in which IL-6 mRNA, but not IL-1beta mRNA, was present in the RNA preparation isolated from the early stage of cells.

  1. 17betaE2 promotes cell proliferation in endometriosis by decreasing PTEN via NFkappaB-dependent pathway.

    PubMed

    Zhang, Hui; Zhao, Xingbo; Liu, Shu; Li, Jijun; Wen, Zeqing; Li, Mingjiang

    2010-04-12

    The objective of this study was to explore the mechanism of phosphatase and tensin homolog (PTEN) loss in endometriosis. We found that aberrant PTEN expression and mitogen-activated protein kinases (MAPK)/ERK, phosphoinositide 3-kinase (PI3K)/AKt, and nuclear factor-kappaB (NFkappaB) signaling overactivities coexisted in endometriosis. In vitro, 17beta-estradiol rapidly activated the 3 pathways in endometriotic cells and specific inhibitions on the 3 pathways respectively blocked 17beta-estradiol-induced cell proliferation. 17beta-estradiol suppressed PTEN transcription and expression in endometriotic cells which was abolished by specific NFkappaB inhibition. Total/nuclear PTEN-loss and MAPK/ERK, PI3K/AKt, and NFkappaB signal overactivities coexist in endometriosis. In vitro, 17beta-estradiol can promotes cell proliferation in endometriosis by activating PI3K/AKt pathway via an NFkappaB/PTEN-dependent pathway. For the first time we propose the possibility of the presence of a positive feedback-loop: 17beta-estradiol-->high NFkappaB-->low PTEN-->high PI3K-->high NFkappaB, in endometriosis, which may finally promote the proliferation of ectopic endometrial epithelial cells and in turn contributes to the progression of the disease.

  2. Beta-Adrenergic Receptor Population is Up-Regulated in Chicken Skeletal Muscle Cells Treated with Forskolin

    NASA Technical Reports Server (NTRS)

    Bridge, K. Y.; Young, R. B.; Vaughn, J. R.

    1998-01-01

    Skeletal muscle hypertrophy is promoted by in vivo administration of beta-adrenergic receptor (betaAR) agonists. These compounds presumably exert their physiological action through the betaAR, and alterations in the population of betaAR could potentially change the ability of the cell to respond to the betaAR agonists. Since the intracellular chemical signal generated by the betaAR is cyclic AMP (cAMP), experiments were initiated in primary chicken muscle cell cultures to determine if artificial elevation of intracellular cAMP by treatment with forskolin would alter the population of functional betaAR expressed on the surface of muscle cells. Chicken skeletal muscle cells after 7 days in culture were employed for the experiments because muscle cells have attained a steady state with respect to muscle protein metabolism at this stage. Cells were treated with 0-10 microM forskolin for a total of three days. At the end of the 1, 2, and 3 day treatment intervals, the concentration of cAMP and the betaAR population were measured. Receptor population was measured in intact muscle cell cultures as the difference between total binding of [H-3]CGP-12177 and non-specific binding of [H-3]CGP-12177 in the presence of 1 microM propranolol. Intracellular cAMP concentration was measured by radioimmunoassay. The concentration of cAMP in forskolin-treated cells increased up to 10-fold in a dose dependent manner. Increasing concentrations of forskolin also led to an increase in betaAR population, with a maximum increase of approximately 50% at 10 microM. This increase in PAR population was apparent after only 1 day of treatment, and the pattern of increase was maintained for all 3 days of the treatment period. Thus, increasing the intracellular concentration of cAMP leads to up-regulation of betaAR population. The effect of forskolin on the quantity and apparent synthesis rate of the heavy chain of myosin (mhc) were also investigated. A maximum increase of 50% in the quantity of mhc was observed at 0.2 microM forskolin, but higher concentrations of forskolin reduced the quantity of mhc back to control levels.

  3. A human beta cell line with drug inducible excision of immortalizing transgenes

    PubMed Central

    Benazra, Marion; Lecomte, Marie-José; Colace, Claire; Müller, Andreas; Machado, Cécile; Pechberty, Severine; Bricout-Neveu, Emilie; Grenier-Godard, Maud; Solimena, Michele; Scharfmann, Raphaël; Czernichow, Paul; Ravassard, Philippe

    2015-01-01

    Objectives Access to immortalized human pancreatic beta cell lines that are phenotypically close to genuine adult beta cells, represent a major tool to better understand human beta cell physiology and develop new therapeutics for Diabetes. Here we derived a new conditionally immortalized human beta cell line, EndoC-βH3 in which immortalizing transgene can be efficiently removed by simple addition of tamoxifen. Methods We used lentiviral mediated gene transfer to stably integrate a tamoxifen inducible form of CRE (CRE-ERT2) into the recently developed conditionally immortalized EndoC βH2 line. The resulting EndoC-βH3 line was characterized before and after tamoxifen treatment for cell proliferation, insulin content and insulin secretion. Results We showed that EndoC-βH3 expressing CRE-ERT2 can be massively amplified in culture. We established an optimized tamoxifen treatment to efficiently excise the immortalizing transgenes resulting in proliferation arrest. In addition, insulin expression raised by 12 fold and insulin content increased by 23 fold reaching 2 μg of insulin per million cells. Such massive increase was accompanied by enhanced insulin secretion upon glucose stimulation. We further observed that tamoxifen treated cells maintained a stable function for 5 weeks in culture. Conclusions EndoC βH3 cell line represents a powerful tool that allows, using a simple and efficient procedure, the massive production of functional non-proliferative human beta cells. Such cells are close to genuine human beta cells and maintain a stable phenotype for 5 weeks in culture. PMID:26909308

  4. Bone sialoprotein mediates the tumor cell-targeted prometastatic activity of transforming growth factor beta in a mouse model of breast cancer.

    PubMed

    Nam, Jeong-Seok; Suchar, Adam M; Kang, Mi-Jin; Stuelten, Christina H; Tang, Binwu; Michalowska, Aleksandra M; Fisher, Larry W; Fedarko, Neal S; Jain, Alka; Pinkas, Jan; Lonning, Scott; Wakefield, Lalage M

    2006-06-15

    Transforming growth factor betas (TGF-beta) play a dual role in carcinogenesis, functioning as tumor suppressors early in the process, and then switching to act as prometastatic factors in late-stage disease. We have previously shown that high molecular weight TGF-beta antagonists can suppress metastasis without the predicted toxicities. To address the underlying mechanisms, we have used the 4T1 syngeneic mouse model of metastatic breast cancer. Treatment of mice with a monoclonal anti-TGF-beta antibody (1D11) significantly suppressed metastasis of 4T1 cells to the lungs. When metastatic 4T1 cells were recovered from lungs of 1D11-treated and control mice, the most differentially expressed gene was found to be bone sialoprotein (Bsp). Immunostaining confirmed the loss of Bsp protein in 1D11-treated lung metastases, and TGF-beta was shown to regulate and correlate with Bsp expression in vitro. Functionally, knockdown of Bsp in 4T1 cells reduced the ability of TGF-beta to induce local collagen degradation and invasion in vitro, and treatment with recombinant Bsp protected 4T1 cells from complement-mediated lysis. Finally, suppression of Bsp in 4T1 cells reduced metastasis in vivo. We conclude that Bsp is a plausible mediator of at least some of the tumor cell-targeted prometastatic activity of TGF-beta in this model and that Bsp expression in metastases can be successfully suppressed by systemic treatment with anti-TGF-beta antibodies.

  5. Effect of electrical stimulation on beta-adrenergic receptor population and cyclic amp production in chicken and rat skeletal muscle cell cultures

    NASA Technical Reports Server (NTRS)

    Young, R. B.; Bridge, K. Y.; Strietzel, C. J.

    2000-01-01

    Expression of the beta-adrenergic receptor (betaAR) and its coupling to cyclic AMP (cAMP) synthesis are important components of the signaling system that controls muscle atrophy and hypertrophy, and the goal of this study was to determine if electrical stimulation in a pattern simulating slow muscle contraction would alter the betaAR response in primary cultures of avian and mammalian skeletal muscle cells. Specifically, chicken skeletal muscle cells and rat skeletal muscle cells that had been grown for 7 d in culture were subjected to electrical stimulation for an additional 2 d at a pulse frequency of 0.5 pulses/sec and a pulse duration of 200 msec. In chicken skeletal muscle cells, the betaAR population was not significantly affected by electrical stimulation; however, the ability of these cells to synthesize cyclic AMP was reduced by approximately one-half. In contrast, the betaAR population in rat muscle cells was increased slightly but not significantly by electrical stimulation, and the ability of these cells to synthesize cyclic AMP was increased by almost twofold. The basal levels of intracellular cyclic AMP in neither rat muscle cells nor chicken muscle cells were affected by electrical stimulation.

  6. SU-E-J-03: A Comprehensive Comparison Between Alpha and Beta Emitters for Cancer Radioimmunotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, C.Y.; Guatelli, S; Oborn, B

    2014-06-01

    Purpose: The purpose of this study is to perform a comprehensive comparison of the therapeutic efficacy and cytotoxicity of alpha and beta emitters for Radioimmunotherapy (RIT). For each stage of cancer development, specific models were built for the separate objectives of RIT to be addressed:a) kill isolated cancer cells in transit in the lymphatic and vascular circulation,b) regress avascular cell clusters,c) regress tumor vasculature and tumors. Methods: Because of the nature of short range, high LET alpha and long energy beta radiation and heterogeneous antigen expression among cancer cells, the microdosimetric approach is essential for the RIT assessment. Geant4 basedmore » microdosimetric models are developed for the three different stages of cancer progression: cancer cells, cell clusters and tumors. The energy deposition, specific energy resulted from different source distribution in the three models was calculated separately for 4 alpha emitting radioisotopes ({sup 211}At, {sup 213}Bi, {sup 223}Ra and {sup 225}Ac) and 6 beta emitters ({sup 32}P, {sup 33}P, {sup 67}Cu, {sup 90}Y, {sup 131}I and {sup 177}Lu). The cell survival, therapeutic efficacy and cytotoxicity are determined and compared between alpha and beta emitters. Results: We show that internal targeted alpha radiation has advantages over beta radiation for killing isolated cancer cells, regressing small cell clusters and also solid tumors. Alpha particles have much higher dose specificity and potency than beta particles. They can deposit 3 logs more dose than beta emitters to single cells and solid tumor. Tumor control probability relies on deep penetration of radioisotopes to cancer cell clusters and solid tumors. Conclusion: The results of this study provide a quantitative understanding of the efficacy and cytotoxicity of RIT for each stage of cancer development.« less

  7. GLP-1-oestrogen attenuates hyperphagia and protects from beta cell failure in diabetes-prone New Zealand obese (NZO) mice.

    PubMed

    Schwenk, Robert W; Baumeier, Christian; Finan, Brian; Kluth, Oliver; Brauer, Christine; Joost, Hans-Georg; DiMarchi, Richard D; Tschöp, Matthias H; Schürmann, Annette

    2015-03-01

    Oestrogens have previously been shown to exert beta cell protective, glucose-lowering effects in mouse models. Therefore, the recent development of a glucagon-like peptide-1 (GLP-1)-oestrogen conjugate, which targets oestrogen into cells expressing GLP-1 receptors, offers an opportunity for a cell-specific and enhanced beta cell protection by oestrogen. The purpose of this study was to compare the effects of GLP-1 and GLP-1-oestrogen during beta cell failure under glucolipotoxic conditions. Male New Zealand obese (NZO) mice were treated with daily s.c. injections of GLP-1 and GLP-1-oestrogen, respectively. Subsequently, the effects on energy homeostasis and beta cell integrity were measured. In order to clarify the targeting of GLP-1-oestrogen, transcription analyses of oestrogen-responsive genes in distinct tissues as well as microarray analyses in pancreatic islets were performed. In contrast to GLP-1, GLP-1-oestrogen significantly decreased food intake resulting in a substantial weight reduction, preserved normoglycaemia, increased glucose tolerance and enhanced beta cell protection. Analysis of hypothalamic mRNA profiles revealed elevated expression of Pomc and Leprb. In livers from GLP-1-oestrogen-treated mice, expression of lipogenic genes was attenuated and hepatic triacylglycerol levels were decreased. In pancreatic islets, GLP-1-oestrogen altered the mRNA expression to a pattern that was similar to that of diabetes-resistant NZO females. However, conventional oestrogen-responsive genes were not different, indicating rather indirect protection of pancreatic beta cells. GLP-1-oestrogen efficiently protects NZO mice against carbohydrate-induced beta cell failure by attenuation of hyperphagia. In this regard, targeted delivery of oestrogen to the hypothalamus by far exceeds the anorexigenic capacity of GLP-1 alone.

  8. Membrane protein GARP is a receptor for latent TGF-beta on the surface of activated human Treg.

    PubMed

    Stockis, Julie; Colau, Didier; Coulie, Pierre G; Lucas, Sophie

    2009-12-01

    Human Treg and Th clones secrete the latent form of TGF-beta, in which the mature TGF-beta protein is bound to the latency-associated peptide (LAP), and is thereby prevented from binding to the TGF-beta receptor. We previously showed that upon TCR stimulation, human Treg clones but not Th clones produce active TGF-beta and bear LAP on their surface. Here, we show that latent TGF-beta, i.e. both LAP and mature TGF-beta, binds to glycoprotein A repetitions predominant (GARP), a transmembrane protein containing leucine rich repeats, which is present on the surface of stimulated Treg clones but not on Th clones. Membrane localization of latent TGF-beta mediated by binding to GARP may be necessary for the ability of Treg to activate TGF-beta upon TCR stimulation. However, it is not sufficient as lentiviral-mediated expression of GARP in human Th cells induces binding of latent TGF-beta to the cell surface, but does not result in the production of active TGF-beta upon stimulation of these Th cells.

  9. Caveolae are negative regulators of transforming growth factor-beta1 signaling in ureteral smooth muscle cells.

    PubMed

    Stehr, Maximilian; Estrada, Carlos R; Khoury, Joseph; Danciu, Theodora E; Sullivan, Maryrose P; Peters, Craig A; Solomon, Keith R; Freeman, Michael R; Adam, Rosalyn M

    2004-12-01

    The mechanisms underlying ureteral cell regulation are largely unknown. Previous studies have identified lipid rafts/caveolae as regulators of growth stimulatory signals in ureteral smooth muscle cells (USMCs). In this study we determined whether growth inhibitory signaling by transforming growth factor-beta1 (TGF-beta1) is also regulated by caveolae in USMC. Expression of components of the TGF-beta1 signaling axis in USMCs was determined by immunoblot and mRNA analyses. Growth regulatory activity of TGF-beta1 was assessed by H-thymidine incorporation. In select experiments caveolae were disrupted reversibly by cholesterol depletion and replenishment prior to TGF-beta1 treatment. TGF-beta1-responsive gene expression was evaluated using the TGF-beta1 responsive promoter-reporter construct 3TP-Lux. USMCs expressed TGF-beta1, types I and II TGF-beta1 receptors, and the effector Smad-2. TGF-beta1 potently inhibited DNA synthesis in USMCs (IC50 60 pM). TGF-beta1 mediated DNA synthesis inhibition was potentiated following the disruption of caveolae by cholesterol depletion. This effect was reversible with membrane cholesterol restoration. TGF-beta1 stimulated gene activity was augmented by caveolae disruption, while caveolae reformation returned promoter activity to baseline levels. TGF-beta1 is a potent growth inhibitor of USMCs and its activity can be enhanced by caveolae ablation. These findings suggest a role for TGF-beta1 in the growth regulation of normal ureteral cells and implicate caveolar membrane domains in the negative regulation of TGF-beta1 signaling. These studies may be relevant to ureteral pathologies that are characterized by smooth muscle dysplasia.

  10. Smad7 induces tumorigenicity by blocking TGF-beta-induced growth inhibition and apoptosis.

    PubMed

    Halder, Sunil K; Beauchamp, R Daniel; Datta, Pran K

    2005-07-01

    Smad proteins play a key role in the intracellular signaling of the transforming growth factor beta (TGF-beta) superfamily of extracellular polypeptides that initiate signaling to regulate a wide variety of biological processes. The inhibitory Smad, Smad7, has been shown to function as intracellular antagonists of TGF-beta family signaling and is upregulated in several cancers. To determine the effect of Smad7-mediated blockade of TGF-beta signaling, we have stably expressed Smad7 in a TGF-beta-sensitive, well-differentiated, and non-tumorigenic cell line, FET, that was derived from human colon adenocarcinoma. Smad7 inhibits TGF-beta-induced transcriptional responses by blocking complex formation between Smad 2/3 and Smad4. While Smad7 has no effect on TGF-beta-induced activation of p38 MAPK and ERK, it blocks the phosphorylation of Akt by TGF-beta and enhances TGF-beta-induced phosphorylation of c-Jun. FET cells expressing Smad7 show anchorage-independent growth and enhance tumorigenicity in athymic nude mice. Smad7 blocks TGF-beta-induced growth inhibition by preventing TGF-beta-induced G1 arrest. Smad7 inhibits TGF-beta-mediated downregulation of c-Myc, CDK4, and Cyclin D1, and suppresses the expression of p21(Cip1). As a result, Smad7 inhibits TGF-beta-mediated downregulation of Rb phosphorylation. Furthermore, Smad7 inhibits the apoptosis of these cells. Together, Smad7 may increase the tumorigenicity of FET cells by blocking TGF-beta-induced growth inhibition and by inhibiting apoptosis. Thus, this study provides a mechanism by which a portion of human colorectal tumors may become refractory to tumor-suppressive actions of TGF-beta that might result in increased tumorigenicity.

  11. The cell size and distribution of adipocytes from subcutaneous and visceral fat is associated with type 2 diabetes mellitus in humans.

    PubMed

    Fang, Lingling; Guo, Fangjian; Zhou, Lihua; Stahl, Richard; Grams, Jayleen

    2015-01-01

    Regional deposition of adipose tissue and adipocyte morphology may contribute to increased risk for insulin resistance. The aim of this study was to compare adipocyte cell size and size distribution from multiple fat depots and to determine the association with type 2 diabetes mellitus, anthropomorphic data, and subjects' metabolic profile. Clinical data and adipose tissue from subcutaneous fat, omentum, and mesentery were collected from 30 subjects with morbid obesity. Adipocytes were isolated by collagenase digestion and sized by microscopic measurement of cell diameter. Overall, adipocytes from subcutaneous fat were larger than those from omentum or mesentery. For the subcutaneous and omental fat depots, there was a significant increase in % small cells (14.9% vs 31.4%, p = 0 .006 and 14.0% vs 30.5%, p = 0 .015, respectively) and corresponding decrease in % large cells for nondiabetic vs diabetic patients. There was a similar trend for mesentery but it did not reach statistical significance (p = 0 .090). For omentum and mesentery, there was also a significant decrease in the diameter of the small cells. Fasting glucose was positively correlated with fraction of small cells in omentum and mesentery, and HbA1C was positively correlated with fraction of small cells in the omental fat depot. There was no correlation between large cell diameter with clinical parameters in any of the fat depots. These results indicate size distribution of adipocytes, specifically an increase in the fraction of small cells, is associated with the presence of type 2 diabetes mellitus.

  12. The cell size and distribution of adipocytes from subcutaneous and visceral fat is associated with type 2 diabetes mellitus in humans

    PubMed Central

    Fang, Lingling; Guo, Fangjian; Zhou, Lihua; Stahl, Richard; Grams, Jayleen

    2015-01-01

    Aims/hypothesis: Regional deposition of adipose tissue and adipocyte morphology may contribute to increased risk for insulin resistance. The aim of this study was to compare adipocyte cell size and size distribution from multiple fat depots and to determine the association with type 2 diabetes mellitus, anthropomorphic data, and subjects' metabolic profile. Methods: Clinical data and adipose tissue from subcutaneous fat, omentum, and mesentery were collected from 30 subjects with morbid obesity. Adipocytes were isolated by collagenase digestion and sized by microscopic measurement of cell diameter. Results: Overall, adipocytes from subcutaneous fat were larger than those from omentum or mesentery. For the subcutaneous and omental fat depots, there was a significant increase in % small cells (14.9% vs 31.4%, p = 0 .006 and 14.0% vs 30.5%, p = 0 .015, respectively) and corresponding decrease in % large cells for nondiabetic vs diabetic patients. There was a similar trend for mesentery but it did not reach statistical significance (p = 0 .090). For omentum and mesentery, there was also a significant decrease in the diameter of the small cells. Fasting glucose was positively correlated with fraction of small cells in omentum and mesentery, and HbA1C was positively correlated with fraction of small cells in the omental fat depot. There was no correlation between large cell diameter with clinical parameters in any of the fat depots. Conclusions/interpretation: These results indicate size distribution of adipocytes, specifically an increase in the fraction of small cells, is associated with the presence of type 2 diabetes mellitus. PMID:26451283

  13. Unprotected daily sun exposure is differently associated with central adiposity and β-cell dysfunction by gender: the Korean National Health and Nutrition Examination Survey (KNHANES) V.

    PubMed

    Ohn, Jung Hun; Kwon, In Ho; Park, Juri; Ryu, Ohk Hyun; Lee, Seong Jin; Kim, Doo-Man; Ihm, Sung-Hee; Choi, Moon-Gi; Yoo, Hyung Joon; Hong, Eun-Gyoung

    2014-08-01

    Ultraviolet irradiation by sun exposure has been associated with both harms and benefits to metabolic health. The objective of this study was to determine whether unprotected daily sun exposure is associated with the prevalence of diabetes and explore the underlying mechanism. We analyzed the Korean National Health and Nutrition Survey V from 2010 to 2011. Participants 19-60 years of age were asked about the average amount of time they had been exposed to direct sunlight per day since the age of 19. We categorized participants into three groups with different levels of lifetime daily sun exposure and explored the association of sun exposure with the prevalence of diabetes. The risk of diabetes was higher in subjects with more than 5h of unprotected sun exposure per day, with an odds ratio of 2.39 (95% CI 1.75-3.25), compared to those with less than 2h of sun exposure, and the association remained significant after adjusting for diabetes risk factors. Long-term sun exposure was associated with increased central obesity and the possibility of an increase in visceral adiposity, especially among women, and with decrease in beta cell function and peripheral adiposity or percent body fat in men. Our study provides a cutoff for upper limit of sun exposure and suggests unprotected daily sun exposure for more than 5h should be avoided to prevent diabetes. Increased central adiposity and decreased beta cell function were observed in women and men, respectively, who had long-term unprotected daily sun exposure. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Cell type-specific regulation of beta2-adrenoceptor mRNA by agonists.

    PubMed

    Danner, S; Lohse, M J

    1997-07-16

    Prolonged agonist stimulation of beta2-adrenoceptors results in receptor down-regulation which is often paralleled by a reduction of the corresponding mRNA. In this study, we investigated the agonist-dependent regulation of beta2-adrenoceptor mRNA in DDT1-MF2 smooth muscle cells and C6 glioma cells. In DDT1-MF2 cells the half-life of the mRNA was 12 h in monolayer compared to 2 h in suspension cultures. Under both conditions, the agonist isoproterenol reduced this half-life by a factor of 2. In contrast, in C6 glioma cells isoproterenol had no effect on the mRNA stability, even though it reduced mRNA levels by approximately 50%. Isoproterenol-induced downregulation of beta2-adrenoceptor mRNA was completely blocked in C6 cells by the presence of a protein synthesis inhibitor, while this was not so in DDT1-MF2-cells. These data show that beta2-adrenoceptor downregulation occurs via cell-type specific mechanisms.

  15. Engineering brown fat into skeletal muscle using ultrasound-targeted microbubble destruction gene delivery in obese Zucker rats: Proof of concept design.

    PubMed

    Bastarrachea, Raul A; Chen, Jiaxi; Kent, Jack W; Nava-Gonzalez, Edna J; Rodriguez-Ayala, Ernesto; Daadi, Marcel M; Jorge, Barbara; Laviada-Molina, Hugo; Comuzzie, Anthony G; Chen, Shuyuan; Grayburn, Paul A

    2017-09-01

    Ultrasound-targeted microbubble destruction (UTMD) is a novel means of tissue-specific gene delivery. This approach systemically infuses transgenes precoupled to gas-filled lipid microbubbles that are burst within the microvasculature of target tissues via an ultrasound signal resulting in release of DNA and transfection of neighboring cells within the tissue. Previous work has shown that adenovirus containing cDNA of UCP-1, injected into the epididymal fat pads in mice, induced localized fat depletion, improving glucose tolerance, and decreasing food intake in obese diabetic mice. Our group recently demonstrated that gene therapy by UTMD achieved beta cell regeneration in streptozotocin (STZ)-treated mice and baboons. We hypothesized that gene therapy with BMP7/PRDM16/PPARGC1A in skeletal muscle (SKM) of obese Zucker diabetic fatty (fa/fa) rats using UTMD technology would produce a brown adipose tissue (BAT) phenotype with UCP-1 overexpression. This study was designed as a proof of concept (POC) project. Obese Zucker rats were administered plasmid cDNA contructs encoding a gene cocktail with BMP7/PRDM16/PPARGC1A incorporated within microbubbles and intravenously delivered into their left thigh. Controls received UTMD with plasmids driving a DsRed reporter gene. An ultrasound transducer was directed to the thigh to disrupt the microbubbles within the microcirculation. Blood samples were drawn at baseline, and after treatment to measure glucose, insulin, and free fatty acids levels. SKM was harvested for immunohistochemistry (IHC). Our IHC results showed a reliable pattern of effective UTMD-based gene delivery in enhancing SKM overexpression of the UCP-1 gene. This clearly indicates that our plasmid DNA construct encoding the gene combination of PRDM16, PPARGC1A, and BMP7 reprogrammed adult SKM tissue into brown adipose cells in vivo. Our pilot established POC showing that the administration of the gene cocktail to SKM in this rat model of genetic obesity using UTMD gene therapy, engineered a BAT phenotype with UCP-1 over-expression. © 2017 IUBMB Life, 69(9):745-755, 2017. © 2017 International Union of Biochemistry and Molecular Biology.

  16. Association of T-cell reactivity with beta-cell function in recent onset type 1 diabetes patients.

    PubMed

    Pfleger, Christian; Meierhoff, Guido; Kolb, Hubert; Schloot, Nanette C

    2010-03-01

    The aim of the current study was to investigate whether autoantigen directed T-cell reactivity relates to beta-cell function during the first 78 weeks after diagnosis of type 1 diabetes. 50 adults and 49 children (mean age 27.3 and 10.9 years respectively) with recent onset type 1 diabetes who participated in a placebo-controlled trial of immune intervention with DiaPep277 were analyzed. Secretion of interferon (IFN)-gamma, interleukin (IL)-5, IL-13 and IL-10 by single peripheral mononuclear cells (PBMC) upon stimulation with islet antigens GAD65, heat shock protein 60 (Hsp60) protein-tyrosine-phosphatase-like-antigen (pIA2) or tetanus toxoid (TT) was determined applying ELISPOT; beta-cell function was evaluated by glucagon stimulated C-peptide. Multivariate regression analysis was applied. In general, number of islet antigen-reactive cells decreased over 78 weeks in both adults and children, whereas reactivity to TT was not reduced. In addition, there was an association between the quality of immune cell responses and beta-cell function. Overall, increased responses by IFN-gamma secreting cells were associated with lower beta-cell function whereas IL-5, IL-13 and IL-10 cytokine responses were positively associated with beta-cell function in adults and children. Essentially, the same results were obtained with three different models of regression analysis. The number of detectable islet-reactive immune cells decreases within 1-2 years after diagnosis of type 1 diabetes. Cytokine production by antigen-specific PBMC reactivity is related to beta-cell function as measured by stimulated C-peptide. Cellular immunity appears to regress soon after disease diagnosis and begin of insulin therapy. Copyright 2009 Elsevier Ltd. All rights reserved.

  17. A kinetic comparison of the processing and secretion of the alpha beta dimer and the uncombined alpha and beta subunits of chorionic gonadotropin synthesized by human choriocarcinoma cells.

    PubMed

    Peters, B P; Krzesicki, R F; Hartle, R J; Perini, F; Ruddon, R W

    1984-12-25

    Human choriocarcinoma cells (JAR) synthesize the alpha and beta subunits of the glycoprotein hormone chorionic gonadotropin (hCG) (R.W. Ruddon, C.A. Hanson, A. H. Bryan, G.J. Putterman, E.L. White, F. Perini, K. S. Meade, and P.H. Aldenderfer (1980) J. Biol. Chem. 255, 1000-1007). In addition to the hCG dimer (alpha beta), JAR cells secrete uncombined alpha and beta subunits into the culture medium (L.A. Cole, R.J. Hartle, J.A. Laferla, and R.W. Ruddon (1983) Endocrinology 113, 1176-1178). Pulse-chase studies with [35S]methionine or [3H]mannose were carried out in order to compare free alpha, free beta, and the alpha beta dimer with regard to the kinetics of synthesis, N-linked oligosaccharide processing, and secretion and to determine the kinetics of alpha-beta subunit combination. A panel of three antisera was used to immunoprecipitate directly the free subunits and the alpha beta dimer sequentially from the same cell lysates and culture media. The alpha subunit of hCG was synthesized in a slight molar excess (1.2-1.5-fold) over the beta subunit, and alpha beta dimer was rapidly formed by combination of the intracellular alpha and beta precursors. Dimer formation was already apparent in JAR cells following a 10-min biosynthetic labeling incubation with [35S]methionine. The combination of subunits ceased by 30 min of chase even though 51% of alpha and 44% of beta remained free within the cells. Combination of the alpha and beta precursors had occurred before their N-linked oligosaccharides were processed beyond the Man8GlcNAc2 structure. The initial trimming of glucosyl and mannosyl units from the high-mannose oligosaccharides of the hCG precursors occurred more rapidly for free alpha and CG-alpha than for free beta and CG-beta. JAR cells accumulated alpha precursors bearing mostly Man8GlcNAc2 units and beta precursors bearing Man8GlcNAc2 units that represent the substrates of the rate-limiting step in the secretory pathway. In spite of the fact that their N-linked oligosaccharides were trimmed at different rates, free alpha, free beta, and alpha beta dimer were all secreted into the medium at the same rate, with a half-time of 35 min. The secreted hCG forms were stable in the chase medium between 4 and 8h, indicating that extracellular degradation, combination of free subunits to form dimer, or dissociation of dimer to form free subunits did not occur.(ABSTRACT TRUNCATED AT 400 WORDS)

  18. Phospholipase C-mediated hydrolysis of phosphatidylcholine is a target of transforming growth factor beta 1 inhibitory signals.

    PubMed Central

    Diaz-Meco, M T; Dominguez, I; Sanz, L; Municio, M M; Berra, E; Cornet, M E; Garcia de Herreros, A; Johansen, T; Moscat, J

    1992-01-01

    Cell growth and tumor transformation can be restrained in certain cell systems by the action of transforming growth factor beta (TGF-beta). It has been established that the mechanism whereby TGF-beta 1 inhibits cell growth does not interfere with the triggering of early mitogenic signal transduction mechanisms. Phospholipase C-catalyzed hydrolysis of phosphatidylcholine (PC) is a relatively late step in the cascade activated by growth factors. Therefore, conceivably activation of phospholipase C-catalyzed hydrolysis of PC could be the target of TGF-beta 1 action. In the study reported here, we demonstrate that TGF-beta 1 inhibits the coupling of ras p21 to the activation of PC hydrolysis, which appears to be critical for the antiproliferative effects of TGF-beta 1. Images PMID:1309592

  19. Anabolic effects of clenbuterol after long-term treatment and withdrawal in t the rat.

    PubMed

    Cartañà, J; Segués, T; Yebras, M; Rothwell, N J; Stock, M J

    1994-09-01

    Injection of rats with the beta 2-adrenoceptor agonist clenbuterol (1 mg/kg/d for 15 days) stimulated an increase in body weight (9%) and protein (8%) and water (7%) content, but reduced food intake (4%) and epididymal fat pad mass (39%). Nine days after termination of treatment, ex-clenbuterol rats were heavier (5%) and had a greater protein (7%) and water (6%) content and lower fat pad mass (32%) than controls. Clenbuterol-fed rats (2 mg/kg diet for 10 days, providing an average of 0.04 mg clenbuterol/kg/d) increased body weight (7%), muscle mass (15% to 21%), and muscle protein content (9% to 26%), whereas epididymal fat pad weight and muscle glycogen content were reduced. During the withdrawal period, the greater body weight of ex-clenbuterol rats was sustained overall (ANOVA, P < .00005), but by day 10 this difference was no longer significant. At this point, gastrocnemius muscle mass was still higher (11%) when compared with that of control animals, but soleus muscle mass, muscle glycogen concentration, and epididymal fat pad weight had reverted to control values. These results were corroborated in a subsequent experiment using older rats. It was concluded that, unlike other beta-adrenoceptor-mediated effects, muscle protein accumulated during clenbuterol treatment can be maintained in certain muscles after removal of the drug for a period of time that is at least equivalent to the duration of treatment. This could have implications for the potential therapeutic use of this class of compound, and differences in the response observed between muscle types may help to elucidate the mechanisms responsible for the muscle protein deposition induced by clenbuterol.

  20. Electrical Stimulation Decreases Coupling Efficiency Between Beta-Adrenergic Receptors and Cyclic AMP Production in Cultured Muscle Cells

    NASA Technical Reports Server (NTRS)

    Young, R. B.; Bridge, K. Y.

    1999-01-01

    Electrical stimulation of skeletal muscle cells in culture is an effective way to simulate the effects of muscle contraction and its effects on gene expression in muscle cells. Expression of the beta-adrenergic receptor and its coupling to cyclic AMP synthesis are important components of the signaling system that controls muscle atrophy and hypertrophy, and the goal of this project was to determine if electrical stimulation altered the beta-adrenergic response in muscle cells. Chicken skeletal muscle cells that had been grown for seven days in culture were subjected to electrical stimulation for an additional two days at a pulse frequency of 0.5 pulses/sec and a pulse duration of 200 msec. At the end of this two-day stimulation period, beta-adrenergic receptor population was measured by the binding of tritium-labeled CGP-12177 to muscle cells, and coupling to cAMP synthesis was measured by Radioimmunoassay (RIA) after treating the cells for 10 min with the potent (beta)AR agonist, isoproterenol. The number of beta adrenergic receptors and the basal levels of intracellular cyclic AMP were not affected by electrical stimulation. However, the ability of these cells to synthesize cyclic AMP was reduced by approximately 50%. Thus, an enhanced level of contraction reduces the coupling efficiency of beta-adrenergic receptors for cyclic AMP production.

  1. Increased expression of c-Ski as a co-repressor in transforming growth factor-beta signaling correlates with progression of esophageal squamous cell carcinoma.

    PubMed

    Fukuchi, Minoru; Nakajima, Masanobu; Fukai, Yasuyuki; Miyazaki, Tatsuya; Masuda, Norihiro; Sohda, Makoto; Manda, Ryokuhei; Tsukada, Katsuhiko; Kato, Hiroyuki; Kuwano, Hiroyuki

    2004-03-01

    Transforming growth factor-beta (TGF-beta) regulates cell growth inhibition, and inactivation of the TGF-beta signaling pathway contributes to tumor development. In our previous study, altered expression of TGF-beta, TGF-beta-specific receptors and Smad4 was shown to correlate with tumor progression in esophageal squamous cell carcinoma (SCC). These components, however, were maintained normally in some patients with esophageal SCC. In our study, the mechanism by which aggressive esophageal SCC maintains these components was investigated, with particular emphasis on the participation of c-Ski and SnoN as transcriptional co-repressors in TGF-beta signaling. Immunohistochemistry for c-Ski and SnoN was carried out on surgical specimens obtained from 80 patients with esophageal SCC. The expression of c-Ski and SnoN was also studied in 6 established cell lines derived from esophageal SCC and compared to an immortalized human esophageal cell line by Western blotting. High levels of expression of c-Ski, detected immunohistologically, were found to correlate with depth of invasion (p = 0.0080) and pathologic stage (p = 0.0447). There was, however, no significant correlation between expression of SnoN and clinicopathologic characteristics. A significant correlation between c-Ski and TGF-beta expression was observed. Moreover, in patients with TGF-beta negative expression, the survival rates of patients with c-Ski positive expression were significantly lower than those of patients with c-Ski negative expression (p = 0.0486). c-Ski was expressed at a high level in 5 of 6 cell lines derived from esophageal SCC compared to immortalized esophageal keratinocytes. Furthermore, the cyclin-dependent kinase (CDK) inhibitor, p21 that was up-regulated by TGF-beta signaling was expressed at a low level in the 5 cell lines. The expression of c-Ski protein as a transcriptional co-repressor in TGF-beta signaling seems to be correlated with tumor progression of esophageal SCC. Copyright 2003 Wiley-Liss, Inc.

  2. Control of brown and beige fat development

    PubMed Central

    Wang, Wenshan; Seale, Patrick

    2017-01-01

    Brown and beige adipocytes expend chemical energy to produce heat and are therefore important in regulating body temperature and body weight. Brown adipocytes develop in discrete and relatively homogenous depots of brown adipose tissue, whereas beige adipocytes are induced to develop in white adipose tissue in response to certain stimuli — notably, exposure to cold. Fate-mapping analyses have identified progenitor populations that give rise to brown and beige fat cells and revealed unanticipated cell-lineage relationships between vascular smooth muscle and beige adipocytes, and between brown fat and skeletal muscle cells. Additionally, non-adipocyte cells in adipose tissue, including neurons, blood vessel-associated cells and immune cells play crucial roles in regulating the differentiation and function of brown and beige fat. PMID:27552974

  3. Glucocorticoid Signaling Enhances Expression of Glucose-Sensing Molecules in Immature Pancreatic Beta-Like Cells Derived from Murine Embryonic Stem Cells In Vitro.

    PubMed

    Ghazalli, Nadiah; Wu, Xiaoxing; Walker, Stephanie; Trieu, Nancy; Hsin, Li-Yu; Choe, Justin; Chen, Chialin; Hsu, Jasper; LeBon, Jeanne; Kozlowski, Mark T; Rawson, Jeffrey; Tirrell, David A; Yip, M L Richard; Ku, Hsun Teresa

    2018-06-06

    Pluripotent stem cells may serve as an alternative source of beta-like cells for replacement therapy of type 1 diabetes; however, the beta-like cells generated in many differentiation protocols are immature. The maturation of endogenous beta cells involves an increase in insulin expression starting in late gestation and a gradual acquisition of the abilities to sense glucose and secrete insulin by week 2 after birth in mice; however, what molecules regulate these maturation processes are incompletely known. In this study, we aim to identify small molecules that affect immature beta cells. A cell-based assay, using pancreatic beta-like cells derived from murine embryonic stem (ES) cells harboring a transgene containing an insulin 1-promoter driven enhanced green fluorescent protein reporter, was used to screen a compound library (NIH Clinical Collection-003). Cortisone, a glucocorticoid, was among five positive hit compounds. Quantitative reverse transcription-polymerase chain reaction analysis revealed that glucocorticoids enhance the gene expression of not only insulin 1 but also glucose transporter-2 (Glut2; Slc2a2) and glucokinase (Gck), two molecules important for glucose sensing. Mifepristone, a pharmacological inhibitor of glucocorticoid receptor (GR) signaling, reduced the effects of glucocorticoids on Glut2 and Gck expression. The effects of glucocorticoids on ES-derived cells were further validated in immature primary islets. Isolated islets from 1-week-old mice had an increased Glut2 and Gck expression in response to a 4-day treatment of exogenous hydrocortisone in vitro. Gene deletion of GR in beta cells using rat insulin 2 promoter-driven Cre crossed with GR flox/flox mice resulted in a reduced gene expression of Glut2, but not Gck, and an abrogation of insulin secretion when islets were incubated in 0.5 mM d-glucose and stimulated by 17 mM d-glucose in vitro. These results demonstrate that glucocorticoids positively regulate glucose sensors in immature murine beta-like cells.

  4. Isolation of mouse pancreatic alpha, beta, duct and acinar populations with cell surface markers.

    PubMed

    Dorrell, Craig; Grompe, Maria T; Pan, Fong Cheng; Zhong, Yongping; Canaday, Pamela S; Shultz, Leonard D; Greiner, Dale L; Wright, Chris V; Streeter, Philip R; Grompe, Markus

    2011-06-06

    Tools permitting the isolation of live pancreatic cell subsets for culture and/or molecular analysis are limited. To address this, we developed a collection of monoclonal antibodies with selective surface labeling of endocrine and exocrine pancreatic cell types. Cell type labeling specificity and cell surface reactivity were validated on mouse pancreatic sections and by gene expression analysis of cells isolated using FACS. Five antibodies which marked populations of particular interest were used to isolate and study viable populations of purified pancreatic ducts, acinar cells, and subsets of acinar cells from whole pancreatic tissue or of alpha or beta cells from isolated mouse islets. Gene expression analysis showed the presence of known endocrine markers in alpha and beta cell populations and revealed that TTR and DPPIV are primarily expressed in alpha cells whereas DGKB and GPM6A have a beta cell specific expression profile. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Campbell, K.S.

    Norepinephrine has previously been demonstrated by this laboratory to potentiate the in vitro T-dependent antibody response through the stimulation of {beta}-adrenergic receptors. The role of {beta}-adrenergic receptor subtypes in norepinephrine-induced potentiation of the antibody responses was examined with selective {beta}-adrenergic antagonists. The antagonists were metoprolol ({beta}{sub 1}-selective), ICI 118-551 ({beta}{sub 2}-selective), and propranolol ({beta}-non-selective). Both propranolol and ICI 118-551 blocked norepinephrine-induced potentiation of the antibody response, but metoprolol was ineffective. Receptor binding competition of antagonists with the radioligant, ({sup 3}H)CGP-12177 was examined and results were analyzed with the computer program, LIGAND. Competition by ICI 118-551 identified 75% {beta}{sub 2}- andmore » 25% {beta}{sub 1}-adrenergic receptors on splenic mononuclear cells. Enriched T lymphocytes exhibited 75% {beta}{sub 2}-adrenergic receptors, while enriched B lymphocytes contained 90% {beta}{sub 2}-adrenergic receptors as identified by ICI 118-551. Greater than twice as many total receptors were identified on B lymphocytes than T lymphocytes. A T cell lymphoma contained about 60% {beta}{sub 2}-receptors, while 100% were {beta}{sub 2} receptors on a B cell lymphoma, as assessed by ICI 118-551. Results support a heterogeneous {beta}-adrenergic receptor population on T lymphocytes and a more homogeneous {beta}{sub 2}-population on B lymphocytes.« less

  6. IL-1beta suppresses the formation of osteoclasts by increasing OPG production via an autocrine mechanism involving celecoxib-related prostaglandins in chondrocytes.

    PubMed

    Watanabe, Yusuke; Namba, Aki; Aida, Yukiko; Honda, Kazuhiro; Tanaka, Hideki; Suzuki, Naoto; Matsumura, Hideo; Maeno, Masao

    2009-01-01

    Elevated interleukin (IL)-1 concentrations in synovial fluid have been implicated in joint bone and cartilage destruction. Previously, we showed that IL-1beta stimulated the expression of prostaglandin (PG) receptor EP4 via increased PGE(2) production. However, the effect of IL-1beta on osteoclast formation via chondrocytes is unclear. Therefore, we examined the effect of IL-1beta and/or celecoxib on the expression of macrophage colony-stimulating factor (M-CSF), receptor activator of NF-kappaB ligand (RANKL), and osteoprotegerin (OPG) in human chondrocytes, and the indirect effect of IL-1beta on osteoclast-like cell formation using RAW264.7 cells. OPG and RANKL expression increased with IL-1beta; whereas M-CSF expression decreased. Celecoxib blocked the stimulatory effect of IL-1beta. Conditioned medium from IL-1beta-treated chondrocytes decreased TRAP staining in RAW264.7 cells. These results suggest that IL-1beta suppresses the formation of osteoclast-like cells via increased OPG production and decreased M-CSF production in chondrocytes, and OPG production may increase through an autocrine mechanism involving celecoxib-related PGs.

  7. Beta-hydroxy-beta-methyl-butyrate blunts negative age-related changes in body composition, functionality and myofiber dimensions in rats

    PubMed Central

    2012-01-01

    Purpose To determine the effects of 16 wk. of beta-hydroxy-beta-methylbutyrate (HMB) administration on age-related changes in functionality and diffusion tensor imaging (DTI) determined myofiber dimensions. Methods Twelve young (44 wk.), 6 middle-aged (60 wk.), 10 old (86 wk.), and 5 very old (102 wk.) male Fisher-344 rat's body composition and grip strength were assessed at baseline. Following, 6 young, 6 middle-aged, 5 old and 5 very old rats were sacrificed for baseline myofiber dimensions and gene transcript factor expression in the soleus (SOL) and gastrocnemius (GAS). The remaining 6 young and 5 old rats were given HMB for 16 wk. and then sacrificed. Results Fat mass increased in the middle-aged control condition (+49%) but not the middle-aged HMB condition. In addition, fat mass declined (-56%) in the old HMB condition but not the old control condition. Normalized strength declined and maintained respectively in the control and HMB conditions from 44 to 60 wk. and increased (+23%) (p < 0.05) from 86 to 102 wk. in only the HMB condition. Declines occurred in myofiber size in all muscles from 44 to 102 wk. in the control condition(-10 to -15%), but not HMB condition. Atrogin-1 mRNA expression in the SOL and GAS muscles was greater in the 102-wk control condition than all other conditions: SOL (+45%) and GAS (+100%). This elevation was blunted by HMB in the 102 wk. old SOL. There was a condition effect in the SOL for myogenin, which significantly increased (+40%) only in the 102-wk. HMB group relative to the 44-wk. group. Conclusions HMB may blunt age-related losses of strength and myofiber dimensions, possibly through attenuating the rise in protein breakdown. PMID:22512917

  8. Isoreserpine promotes {beta}-catenin degradation via Siah-1 up-regulation in HCT116 colon cancer cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gwak, Jungsug; Song, Taeyun; Song, Jie-Young

    2009-09-25

    Aberrant accumulation of intracellular {beta}-catenin in intestinal epithelial cells is a frequent early event during the development of colon cancer. To identify small molecules that decrease the level of intracellular {beta}-catenin, we performed cell-based chemical screening using genetically engineered HEK293 reporter cells to detect compounds that inhibit TOPFlash reporter activity, which was stimulated by Wnt3a-conditioned medium. We found that isoreserpine promoted the degradation of intracellular {beta}-catenin by up-regulation of Siah-1 in HEK293 and HCT116 colon cancer cells. Moreover, isoreserpine repressed the expression of {beta}-catenin/T-cell factor (TCF)-dependent genes, such as cyclin D1 and c-myc, resulting in the suppression of HCT116 cellmore » proliferation. Our findings suggest that isoreserpine can potentially be used as a chemotherapeutic agent against colon cancer.« less

  9. Application of microalgal fucoxanthin for the reduction of colon cancer risk: inhibitory activity of fucoxanthin against beta-glucuronidase and DLD-1 cancer cells.

    PubMed

    Kawee-Ai, Arthitaya; Kim, Sang Moo

    2014-07-01

    Intestinal bacterial beta-glucuronidases are capable of retoxifying compounds that have been detoxified by liver glucuronidation and are also known to accelerate colon cancer invasion and metastasis. In this study, fucoxanthin extracted from the microalga Phaeodactylum tricornutum was investigated for its inhibitory activity against Escherichia coli beta-glucuronidase and DLD-1 cancer cells. Fucoxanthin inhibited beta-glucuronidase in a concentration-dependent manner with an IC50 value of 2.32 mM and a mixed inhibition type. Fucoxanthin had more potent inhibitory activity on beta-glucuronidase at 37 degrees C and in alkaline conditions. Fucoxanthin also inhibited the beta-glucuronidase activity of DLD-1 cancer cells at a concentration of 20-50 microM. The presence of beta-glucuronidase and substrate in the medium decreased the inhibitory activity of fucoxanthin against DLD-1 cancer cells. Therefore, microalgal fucoxanthin might prevent colon cancer because of its strong beta-glucuronidase inhibitory activity and could be utilized as a novel functional ingredient of food and pharmaceutical supplements.

  10. High levels of avenanthramides in oat-based diet further suppress high fat diet-induced atherosclerosis in Ldlr-/- mice

    USDA-ARS?s Scientific Manuscript database

    Background: The consumption of oats reduces plasma cholesterol, a major risk factor for heart disease. Oats, in addition to cholesterol lowering properties through its beta-glucan content, are a good source of several antioxidants including Avenanthramides (Avns), a unique group of polyphenols prese...

  11. Chronic administration of DSP-7238, a novel, potent, specific and substrate-selective DPP IV inhibitor, improves glycaemic control and beta-cell damage in diabetic mice.

    PubMed

    Furuta, Y; Horiguchi, M; Sugaru, E; Ono-Kishino, M; Otani, M; Sakai, M; Masui, Y; Tsuchida, A; Sato, Y; Takubo, K; Hochigai, H; Kimura, H; Nakahira, H; Nakagawa, T; Taiji, M

    2010-05-01

    The purpose of this study is to assess the in vitro enzyme inhibition profile of DSP-7238, a novel non-cyanopyrrolidine dipeptidyl peptidase (DPP) IV inhibitor and to evaluate the acute and chronic effects of this compound on glucose metabolism in two different mouse models of type 2 diabetes. The in vitro enzyme inhibition profile of DSP-7238 was assessed using plasma and recombinant enzymes including DPP IV, DPP II, DPP8, DPP9 and fibroblast activation protein alpha (FAPalpha) with fluorogenic substrates. The inhibition type was evaluated based on the Lineweaver-Burk plot. Substrate selectivity of DSP-7238 and comparator DPP IV inhibitors (vildagliptin, sitagliptin, saxagliptin and linagliptin) was evaluated by mass spectrometry based on the changes in molecular weight of peptide substrates caused by release of N-terminal dipeptides. In the in vivo experiments, high-fat diet-induced obese (DIO) mice were subjected to oral glucose tolerance test (OGTT) following a single oral administration of DSP-7238. To assess the chronic effects of DSP-7238 on glycaemic control and pancreatic beta-cell damage, DSP-7238 was administered for 11 weeks to mice made diabetic by a combination of high-fat diet (HFD) and a low-dose of streptozotocin (STZ). After the dosing period, HbA1c was measured and pancreatic damage was evaluated by biological and histological analyses. DSP-7238 and sitagliptin both competitively inhibited recombinant human DPP IV (rhDPP IV) with K(i) values of 0.60 and 2.1 nM respectively. Neither vildagliptin nor saxagliptin exhibited competitive inhibition of rhDPP IV. DSP-7238 did not inhibit DPP IV-related enzymes including DPP8, DPP9, DPP II and FAPalpha, whereas vildagliptin and saxagliptin showed inhibition of DPP8 and DPP9. Inhibition of glucagon-like peptide-1 (GLP-1) degradation by DSP-7238 was apparently more potent than its inhibition of chemokine (C-X-C motif) ligand 10 (IP-10) or chemokine (C-X-C motif) ligand 12 (SDF-1alpha) degradation. In contrast, vildagliptin and saxagliptin showed similar degree of inhibition of degradation for all the substrates tested. Compared to treatment with the vehicle, single oral administration of DSP-7238 dose-dependently decreased plasma DPP IV activity and improved glucose tolerance in DIO mice. In addition, DSP-7238 significantly decreased HbA1c and ameliorated pancreatic damage following 11 weeks of chronic treatment in HFD/STZ mice. We have shown in this study that DSP-7238 is a potent DPP IV inhibitor that has high specificity for DPP IV and substrate selectivity against GLP-1. We have also found that chronic treatment with DSP-7238 improves glycaemic control and ameliorates beta-cell damage in a mouse model with impaired insulin sensitivity and secretion. These findings indicate that DSP-7238 may be a new therapeutic agent for the treatment of type 2 diabetes.

  12. A synthetic lethal screen identifies FAT1 as an antagonist of caspase-8 in extrinsic apoptosis

    PubMed Central

    Kranz, Dominique; Boutros, Michael

    2014-01-01

    The extrinsic apoptosis pathway is initiated by binding of death ligands to death receptors resulting in the formation of the death-inducing signaling complex (DISC). Activation of procaspase-8 within the DISC and its release from the signaling complex is required for processing executor caspases and commiting cell death. Here, we report that the atypical cadherin FAT1 interacts with caspase-8 preventing the association of caspase-8 with the DISC. We identified FAT1 in a genome-wide siRNA screen for synthetic lethal interactions with death receptor-mediated apoptosis. Knockdown of FAT1 sensitized established and patient-derived glioblastoma cell lines for apoptosis transduced by cell death ligands. Depletion of FAT1 resulted in enhanced procaspase-8 recruitment to the DISC and increased formation of caspase-8 containing secondary signaling complexes. In addition, FAT1 knockout cell lines generated by CRISPR/Cas9-mediated genome engineering were more susceptible for death receptor-mediated apoptosis. Our findings provide evidence for a mechanism to control caspase-8-dependent cell death by the atypical cadherin FAT1. These results contribute towards the understanding of effector caspase regulation in physiological conditions. PMID:24442637

  13. A synthetic lethal screen identifies FAT1 as an antagonist of caspase-8 in extrinsic apoptosis.

    PubMed

    Kranz, Dominique; Boutros, Michael

    2014-02-03

    The extrinsic apoptosis pathway is initiated by binding of death ligands to death receptors resulting in the formation of the death-inducing signaling complex (DISC). Activation of procaspase-8 within the DISC and its release from the signaling complex is required for processing executor caspases and commiting cell death. Here, we report that the atypical cadherin FAT1 interacts with caspase-8 preventing the association of caspase-8 with the DISC. We identified FAT1 in a genome-wide siRNA screen for synthetic lethal interactions with death receptor-mediated apoptosis. Knockdown of FAT1 sensitized established and patient-derived glioblastoma cell lines for apoptosis transduced by cell death ligands. Depletion of FAT1 resulted in enhanced procaspase-8 recruitment to the DISC and increased formation of caspase-8 containing secondary signaling complexes. In addition, FAT1 knockout cell lines generated by CRISPR/Cas9-mediated genome engineering were more susceptible for death receptor-mediated apoptosis. Our findings provide evidence for a mechanism to control caspase-8-dependent cell death by the atypical cadherin FAT1. These results contribute towards the understanding of effector caspase regulation in physiological conditions.

  14. Design of retrovirus vectors for transfer and expression of the human. beta. -globin gene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, A.D.; Bender, M.A.; Harris, E.A.S.

    1988-11-01

    Regulated expression of the human ..beta..-globin gene has been demonstrated in cultured murine erythroleukemia cells and in mice after retrovirus-mediated gene transfer. However, the low titer of recombinant viruses described to date results in relatively inefficient gene transfer, which limits their usefulness for animal studies and for potential gene therapy in humans for diseases involving defective ..beta..-globin genes. The authors found regions that interfered with virus production within intron 2 of the ..beta..-globin gene and on both sides of the gene. The flanking regions could be removed, but intron 2 was required for ..beta..-globin expression. Inclusion of ..beta..-globin introns necessitatesmore » an antisense orientation of the gene within the retrovirus vector. However, they found no effect of the antisense ..beta..-globin transcription on virus production. A region downstream of the ..beta..-globin gene that stimulates expression of the gene in transgenic mice was included in the viruses without detrimental effects on virus titer. Virus titers of over 10/sup 6/ CFU/ml were obtained with the final vector design, which retained the ability to direct regulated expression of human ..beta..-globin in murine erythroleukemia cells. The vector also allowed transfer and expression of the human ..beta..-globin gene in hematopoietic cells (CFU-S cells) in mice.« less

  15. Mechanical scale and load cell underwater weighing: a comparison of simultaneous measurements and the reliability of methods.

    PubMed

    Moon, Jordan R; Stout, Jeffrey R; Walter, Ashley A; Smith, Abbie E; Stock, Matt S; Herda, Trent J; Sherk, Vanessa D; Young, Kaelin C; Lockwood, Christopher M; Kendall, Kristina L; Fukuda, David H; Graef, Jennifer L; Cramer, Joel T; Beck, Travis W; Esposito, Enrico N

    2011-03-01

    Both load cell and mechanical scale-based hydrostatic weighing (HW) systems are used for the measurement of underwater weight. However, there has been no direct comparison of the 2 methods. The purpose of the current investigation was to simultaneously compare a load cell and mechanical scale for use in HW. Twenty-seven men and women (mean ± SD, age: 22 ± 2 years) participated in the 2-day investigation. Each subject completed 2 HW assessments 24 hours apart. Single-day comparisons of all trials for both days revealed no significant difference between the mechanical scale and the load cell (mean difference < 0.016 kg, p > 0.05). True underwater weight values were not significantly different between methods for either days (mean difference < 0.014 kg, p > 0.05) and accounted for a mean difference in percent fat (%FAT) of <0.108%. The 95% limits of agreement indicated a maximum difference between methods of 0.53% FAT. Both methods produced similar reliability SEM values (mechanical SEM < 0.72%FAT, load cell SEM < 0.75%FAT). In conclusion, there was no difference between mechanical scale and load cell measurements of underwater weights and the added precision of the load cell only marginally (<0.16%FAT) improved day-to-day reliability. Either a mechanical scale or load cell can be used for HW with similar accuracy and reliability in young adults with a body mass index of 18.7-34.4 (5-25%FAT).

  16. Biomaterials Transforming growth factor-beta 1 delivery from microporous scaffolds decreases inflammation post-implant and enhances function of transplanted islets

    PubMed Central

    Liu, JMH; Zhang, J; Zhang, X; Hlavaty, KA; Ricci, CF; Leonard, JN; Shea, LD; Gower, RM

    2015-01-01

    Biomaterial scaffolds are central to many regenerative strategies as they create a space for infiltration of host tissue and provide a platform to deliver growth factors and progenitor cells. However, biomaterial implantation results in an unavoidable inflammatory response, which can impair tissue regeneration and promote loss or dysfunction of transplanted cells. We investigated localized TGF-β1 delivery to modulate this immunological environment around scaffolds and transplanted cells. TGF-β1 was delivered from layered scaffolds, with protein entrapped within an inner layer and outer layers designed for cell seeding and host tissue integration. Scaffolds were implanted into the epididymal fat pad, a site frequently used for cell transplantation. Expression of cytokines TNF-a, IL-12, and MCP-1 were decreased by at least 40% for scaffolds releasing TGF-β1 relative to control scaffolds. This decrease in inflammatory cytokine production corresponded to a 60% decrease in leukocyte infiltration. Transplantation of islets into diabetic mice on TGF-β1 scaffolds significantly improved the ability of syngeneic islets to control blood glucose levels within the first week of transplant and delayed rejection of allogeneic islets. Together, these studies emphasize the ability of localized TGF-β1 delivery to modulate the immune response to biomaterial implants and enhance cell function in cell-based therapies. PMID:26701143

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burgess, Antony W., E-mail: burgess@ludwig.edu.au; Faux, Maree C.; Layton, Meredith J.

    In this brief overview we discuss the association between Wnt signaling and colon cell biology and tumorigenesis. Our current understanding of the role of Apc in the {beta}-catenin destruction complex is compared with potential roles for Apc in cell adhesion and migration. The requirement for phosphorylation in the proteasomal-mediated degradation of {beta}-catenin is contrasted with roles for phospho-{beta}-catenin in the activation of transcription, cell adhesion and migration. The synergy between Myb and {beta}-catenin regulation of transcription in crypt stem cells during Wnt signaling is discussed. Finally, potential effects of growth factor regulatory systems, Apc or truncated-Apc on crypt morphogenesis, stemmore » cell localization and crypt fission are considered.« less

  18. Streptococcal modulation of cellular invasion via TGF-beta1 signaling.

    PubMed

    Wang, Beinan; Li, Shaoying; Southern, Peter J; Cleary, Patrick P

    2006-02-14

    Group A Streptococcus (GAS) and other bacterial pathogens are known to interact with integrins as an initial step in a complex pathway of bacterial ingestion by host cells. Efficient GAS invasion depends on the interaction of bound fibronectin (Fn) with integrins and activation of integrin signaling. TGF-beta1 regulates expression of integrins, Fn, and other extracellular matrix proteins, and positively controls the integrin signaling pathway. Therefore, we postulated that TGF-beta1 levels could influence streptococcal invasion of mammalian cells. Pretreatment of HEp-2 cells with TGF-beta1 increased their capacity to ingest GAS when the bacteria expressed fibronectin-binding proteins (M1 or PrtF1). Western blots revealed significant induction of alpha5 integrin and Fn expression by HEp-2 cells in response to TGF-beta1. Increased ingestion of streptococci by these cells was blocked by a specific inhibitor of the TGF-beta1 receptor I and antibodies directed against alpha5 integrin and Fn, indicating that increased invasion depends on TGF-beta1 up-regulation of both the alpha5 integrin and Fn. The capacity of TGF-beta1 to up-regulate integrin expression and intracellular invasion by GAS was reproduced in primary human tonsil fibroblasts, which could be a source of TGF-beta1 in chronically infected tonsils. The relationship between TGF-beta1 and GAS invasion was strengthened by the observation that TGF-beta1 production was stimulated in GAS-infected primary human tonsil fibroblasts. These findings suggest a mechanism by which GAS induce a cascade of changes in mammalian tissue leading to elevated expression of the alpha5beta1 receptor, enhanced invasion, and increased opportunity for survival and persistence in their human host.

  19. The emergence of non-cytolytic NK1.1+ T cells in the long-term culture of murine tumour-infiltrating lymphocytes: a possible role of transforming growth factor-beta.

    PubMed

    Tamada, K; Harada, M; Ito, O; Takenoyama, M; Mori, T; Matsuzaki, G; Nomoto, K

    1996-12-01

    The mechanism by which murine tumour-infiltrating lymphocytes (TIL) decreased their anti-tumour activity during an in vitro culture with interleukin-2 (IL-2) was investigated. A phenotype analysis revealed that the TIL cultured for 7 days (TIL-d7) were exclusively NKI.1- CD4- CD8+ CD3+ cells and that this population was replaced by natural killer (NK)1.1+ CD4- CD8 CD3+ cells by day 27 (TIL-d27) during the culture of TIL. The TIL-d7 cells showed a cytolytic activity against B16 melanoma, whereas the TIL-d27 cells had lost this activity, suggesting that the decrease in the anti tumour effect of TIL during the culture with IL-2 was due to their populational change. Analysis on the characteristics of the TIL-d27 cells revealed that they expressed skewed T-cell receptor (TCR) V beta 5 and increased mRNA expression of V alpha 14. In addition, they expressed transforming growth factor beta (TGF-beta) mRNA. Interestingly, TGF-beta augmented the proliferation of TIL-d27 cells under the presence of IL-2, but suppressed that of TIL-d7 cells. Moreover, the proliferation of TIL-d27 cells was suppressed by anti-TGF-beta monoclonal antibody. Collectively, these results suggest that, in contrast to its suppressive effect on anti-tumour effector T cells. TGF-beta could be an autocrine growth factor for NKL1.1+ T cells and thereby induce non-cytolytic NK1.1+ T cells in the long-term culture of TIL.

  20. The emergence of non-cytolytic NK1.1+ T cells in the long-term culture of murine tumour-infiltrating lymphocytes: a possible role of transforming growth factor-beta.

    PubMed Central

    Tamada, K; Harada, M; Ito, O; Takenoyama, M; Mori, T; Matsuzaki, G; Nomoto, K

    1996-01-01

    The mechanism by which murine tumour-infiltrating lymphocytes (TIL) decreased their anti-tumour activity during an in vitro culture with interleukin-2 (IL-2) was investigated. A phenotype analysis revealed that the TIL cultured for 7 days (TIL-d7) were exclusively NKI.1- CD4- CD8+ CD3+ cells and that this population was replaced by natural killer (NK)1.1+ CD4- CD8 CD3+ cells by day 27 (TIL-d27) during the culture of TIL. The TIL-d7 cells showed a cytolytic activity against B16 melanoma, whereas the TIL-d27 cells had lost this activity, suggesting that the decrease in the anti tumour effect of TIL during the culture with IL-2 was due to their populational change. Analysis on the characteristics of the TIL-d27 cells revealed that they expressed skewed T-cell receptor (TCR) V beta 5 and increased mRNA expression of V alpha 14. In addition, they expressed transforming growth factor beta (TGF-beta) mRNA. Interestingly, TGF-beta augmented the proliferation of TIL-d27 cells under the presence of IL-2, but suppressed that of TIL-d7 cells. Moreover, the proliferation of TIL-d27 cells was suppressed by anti-TGF-beta monoclonal antibody. Collectively, these results suggest that, in contrast to its suppressive effect on anti-tumour effector T cells. TGF-beta could be an autocrine growth factor for NKL1.1+ T cells and thereby induce non-cytolytic NK1.1+ T cells in the long-term culture of TIL. Images Figure 4 Figure 6 PMID:9014832

  1. Induction of TGF-beta1 and TGF-beta1-dependent predominant Th17 differentiation by group A streptococcal infection.

    PubMed

    Wang, Beinan; Dileepan, Thamotharampillai; Briscoe, Sarah; Hyland, Kendra A; Kang, Johnthomas; Khoruts, Alexander; Cleary, P Patrick

    2010-03-30

    Recurrent group A Streptococcus (GAS) tonsillitis and associated autoimmune diseases indicate that the immune response to this organism can be ineffective and pathological. TGF-beta1 is recognized as an essential signal for generation of regulatory T cells (Tregs) and T helper (Th) 17 cells. Here, the impact of TGF-beta1 induction on the T-cell response in mouse nasal-associated lymphoid tissue (NALT) following intranasal (i.n.) infections is investigated. ELISA and TGF-beta1-luciferase reporter assays indicated that persistent infection of mouse NALT with GAS sets the stage for TGF-beta1 and IL-6 production, signals required for promotion of a Th17 immune response. As predicted, IL-17, the Th17 signature cytokine, was induced in a TGF-beta1 signaling-dependent manner in single-cell suspensions of both human tonsils and NALT. Intracellular cytokine staining and flow cytometry demonstrated that CD4(+) IL-17(+) T cells are the dominant T cells induced in NALT by i.n. infections. Moreover, naive mice acquired the potential to clear GAS by adoptive transfer of CD4(+) T cells from immunized IL-17A(+)/(+) mice but not cells from IL-17A(-)/(-) mice. These experiments link specific induction of TGF-beta1 by a bacterial infection to an in vivo Th17 immune response and show that this cellular response is sufficient for protection against GAS. The association of a Th17 response with GAS infection reveals a potential mechanism for destructive autoimmune responses in humans.

  2. The Role of Oxidative Stress and Hypoxia in Pancreatic Beta-Cell Dysfunction in Diabetes Mellitus.

    PubMed

    Gerber, Philipp A; Rutter, Guy A

    2017-04-01

    Metabolic syndrome is a frequent precursor of type 2 diabetes mellitus (T2D), a disease that currently affects ∼8% of the adult population worldwide. Pancreatic beta-cell dysfunction and loss are central to the disease process, although understanding of the underlying molecular mechanisms is still fragmentary. Recent Advances: Oversupply of nutrients, including glucose and fatty acids, and the subsequent overstimulation of beta cells, are believed to be an important contributor to insulin secretory failure in T2D. Hypoxia has also recently been implicated in beta-cell damage. Accumulating evidence points to a role for oxidative stress in both processes. Although the production of reactive oxygen species (ROS) results from enhanced mitochondrial respiration during stimulation with glucose and other fuels, the expression of antioxidant defense genes is unusually low (or disallowed) in beta cells. Not all subjects with metabolic syndrome and hyperglycemia go on to develop full-blown diabetes, implying an important role in disease risk for gene-environment interactions. Possession of common risk alleles at the SLC30A8 locus, encoding the beta-cell granule zinc transporter ZnT8, may affect cytosolic Zn 2+ concentrations and thus susceptibility to hypoxia and oxidative stress. Loss of normal beta-cell function, rather than total mass, is increasingly considered to be the major driver for impaired insulin secretion in diabetes. Better understanding of the role of oxidative changes, its modulation by genes involved in disease risk, and effects on beta-cell identity may facilitate the development of new therapeutic strategies to this disease. Antioxid. Redox Signal. 26, 501-518.

  3. Ectopic production of beta-HCG by a maxillary squamous cell carcinoma.

    PubMed

    Scholl, P D; Jurco, S; Austin, J R

    1997-12-01

    Paraneoplastic syndromes of the head and neck are rare. Hypercalcemia and leukocytosis have been described. The literature was reviewed, and a case of a squamous cell carcinoma of the maxilla producing beta human chorionic gonadotropin (beta-HCG) is presented. A 47-year-old white man with a T4N1M0 squamous cell carcinoma of the left maxilla was treated with a maxillectomy and neck dissection for an N1 positive neck. After completing his planned radiotherapy, he developed distant metastases, which included an axillary node that stained positive for human beta-HCG. Retrospective review of the primary specimen showed beta-HCG positivity in an anaplastic component of the tumor along with vascular invasion. The first case in the literature of a paraneoplastic syndrome with beta-HCG production in association with squamous cell carcinoma of the maxilla is presented. This case history fits the aggressive nature of beta HCG producing tumors elsewhere in the body.

  4. Heat shock protein 90{beta}: A novel mediator of vitamin D action

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Angelo, Giana; Mineral Bioavailability Laboratory, 711 Washington Street, Boston, MA 02111; Lamon-Fava, Stefania

    2008-03-14

    We investigated the role of Heat shock protein 90 (Hsp90) in vitamin D action in Caco-2 cells using geldanamycin (GA) to block Hsp90 function and RNA interference to reduce Hsp90{beta} expression. When cells were exposed to GA, vitamin D-mediated gene expression and transcriptional activity were inhibited by 69% and 54%, respectively. Gel shift analysis indicated that GA reduced vitamin D-mediated DNA binding activity of the vitamin D receptor (VDR). We tested the specific role of Hsp90{beta} by knocking down its expression with stably expressed short hairpin RNA. Vitamin D-induced gene expression and transcriptional activity were reduced by 90% and 80%,more » respectively, in Hsp90{beta}-deficient cells. Nuclear protein for VDR and RXR{alpha}, its heterodimer partner, were not reduced in Hsp90{beta}-deficient cells. These findings indicate that Hsp90{beta} is needed for optimal vitamin D responsiveness in the enterocyte and demonstrate a specific role for Hsp90{beta} in VDR signaling.« less

  5. Mechanisms of integrin-vascular endothelial growth factor receptor cross-activation in angiogenesis.

    PubMed

    Mahabeleshwar, Ganapati H; Feng, Weiyi; Reddy, Kumar; Plow, Edward F; Byzova, Tatiana V

    2007-09-14

    The functional responses of endothelial cells are dependent on signaling from peptide growth factors and the cellular adhesion receptors, integrins. These include cell adhesion, migration, and proliferation, which, in turn, are essential for more complex processes such as formation of the endothelial tube network during angiogenesis. This study identifies the molecular requirements for the cross-activation between beta3 integrin and tyrosine kinase receptor 2 for vascular endothelial growth factor (VEGF) receptor (VEGFR-2) on endothelium. The relationship between VEGFR-2 and beta3 integrin appears to be synergistic, because VEGFR-2 activation induces beta3 integrin tyrosine phosphorylation, which, in turn, is crucial for VEGF-induced tyrosine phosphorylation of VEGFR-2. We demonstrate here that adhesion- and growth factor-induced beta3 integrin tyrosine phosphorylation are directly mediated by c-Src. VEGF-stimulated recruitment and activation of c-Src and subsequent beta3 integrin tyrosine phosphorylation are critical for interaction between VEGFR-2 and beta3 integrin. Moreover, c-Src mediates growth factor-induced beta3 integrin activation, ligand binding, beta3 integrin-dependent cell adhesion, directional migration of endothelial cells, and initiation of angiogenic programming in endothelial cells. Thus, the present study determines the molecular mechanisms and consequences of the synergism between 2 cell surface receptor systems, growth factor receptor and integrins, and opens new avenues for the development of pro- and antiangiogenic strategies.

  6. Variable clinical spectrum of the most common inborn error of bile acid metabolism--3beta-hydroxy-Delta 5-C27-steroid dehydrogenase deficiency.

    PubMed

    Subramaniam, Pushpa; Clayton, Peter T; Portmann, Bernard C; Mieli-Vergani, Giorgina; Hadzić, Nedim

    2010-01-01

    We studied the clinical features of children with 3beta-hydroxy-Delta 5-C27-steroid dehydrogenase (3beta-HSDH) deficiency presenting to King's College and Great Ormond Street hospitals between 1989 and 2005. The diagnosis was made biochemically by detection of sulphated dihydroxycholenoic acids and trihydroxycholenoic acids in urine by fast atom bombardment mass spectrometry or electrospray ionisation tandem mass spectrophotometry and a plasma bile acid profile showing absent or low cholic and chenodeoxycholic acid levels and high concentrations of 3beta-7 alpha-dihydroxy-5-cholenoic acid and 3beta-7 alpha-12 alpha-trihydroxy-5-cholenoic acid. Eighteen children (12 male) with 3beta-HSDH deficiency were identified and diagnosed at a median age of 1.35 years (range 8 weeks-11 years). The presenting features included neonatal cholestasis (n = 11), rickets (n = 8, 1 of whom also had hypocalcaemic tetany, seizures, and normal liver biochemical markers), hepatomegaly (n = 7), pruritus (n = 3), and steatorrhoea and failure to thrive (n = 3). Ten children had low serum 25-OH vitamin D levels, of whom 8 also had low vitamin E and 6 had low vitamin A serum levels. Liver histology showed giant cell change and hepatocyte disarray in all with added features of cholestasis in 11, bridging fibrosis in 6, micronodular cirrhosis in 1, fatty change in 1, and active lobular and portal inflammation in 1. Five patients were treated with cholic acid and chenodeoxycholic acid (7 mg x kg(-1) x day(-1) of each), 7 with chenodeoxycholic acid only (7-18 mg x kg(-1) x day(-1)), and 1 with cholic acid (8 mg x kg(-1) x day(-1)) only. Repeated liver biopsies performed in 4 patients 6 months after starting replacement therapy showed improved histological changes. Three children died untreated before 5 years of age. After a median follow-up of 5.5 years (range 1-17 years) 12 out of 13 treated children have no clinical signs of liver disease or of fat-soluble vitamin deficiency. 3beta-HSDH deficiency is a rare inborn error of metabolism with diverse clinical features. Early replacement treatment leads to clinical and biochemical control and prevents chronic liver and bone disease, at least in the medium term.

  7. Label-free imaging of Drosophila in vivo by coherent anti-Stokes Raman scattering and two-photon excitation autofluorescence microscopy

    NASA Astrophysics Data System (ADS)

    Chien, Cheng-Hao; Chen, Wei-Wen; Wu, June-Tai; Chang, Ta-Chau

    2011-01-01

    Drosophila is one of the most valuable model organisms for studying genetics and developmental biology. The fat body in Drosophila, which is analogous to the liver and adipose tissue in human, stores lipids that act as an energy source during its development. At the early stages of metamorphosis, the fat body remodeling occurs involving the dissociation of the fat body into individual fat cells. Here we introduce a combination of coherent anti-Stokes Raman scattering (CARS) and two-photon excitation autofluorescence (TPE-F) microscopy to achieve label-free imaging of Drosophila in vivo at larval and pupal stages. The strong CARS signal from lipids allows direct imaging of the larval fat body and pupal fat cells. In addition, the use of TPE-F microscopy allows the observation of other internal organs in the larva and autofluorescent globules in fat cells. During the dissociation of the fat body, the findings of the degradation of lipid droplets and an increase in autofluorescent globules indicate the consumption of lipids and the recruitment of proteins in fat cells. Through in vivo imaging and direct monitoring, CARS microscopy may help elucidate how metamorphosis is regulated and study the lipid metabolism in Drosophila.

  8. Effect, Feasibility, and Clinical Relevance of Cell Enrichment in Large Volume Fat Grafting: A Systematic Review.

    PubMed

    Rasmussen, Bo Sonnich; Lykke Sørensen, Celine; Vester-Glowinski, Peter Viktor; Herly, Mikkel; Trojahn Kølle, Stig-Frederik; Fischer-Nielsen, Anne; Drzewiecki, Krzysztof Tadeusz

    2017-07-01

    Large volume fat grafting is limited by unpredictable volume loss; therefore, methods of improving graft retention have been developed. Fat graft enrichment with either stromal vascular fraction (SVF) cells or adipose tissue-derived stem/stromal cells (ASCs) has been investigated in several animal and human studies, and significantly improved graft retention has been reported. Improvement of graft retention and the feasibility of these techniques are equally important in evaluating the clinical relevance of cell enrichment. We conducted a systematic search of PubMed to identify studies on fat graft enrichment that used either SVF cells or ASCs, and only studies reporting volume assessment were included. A total of 38 articles (15 human and 23 animal) were included to investigate the effects of cell enrichment on graft retention as well as the feasibility and clinical relevance of cell-enriched fat grafting. Improvements in graft retention, the SVF to fat (SVF:fat) ratio, and the ASC concentration used for enrichment were emphasized. We proposed an increased retention rate greater than 1.5-fold relative to nonenriched grafts and a maximum SVF:fat ratio of 1:1 as the thresholds for clinical relevance and feasibility, respectively. Nine studies fulfilled these criteria, whereof 6 used ASCs for enrichment. We found no convincing evidence of a clinically relevant effect of SVF enrichment in humans. ASC enrichment has shown promising results in enhancing graft retention, but additional clinical trials are needed to substantiate this claim and also determine the optimal concentration of SVF cells/ASCs for enrichment. 4. © 2017 The American Society for Aesthetic Plastic Surgery, Inc. Reprints and permission: journals.permissions@oup.com.

  9. Functional integrins from normal and glycosylation-deficient baby hamster kidney cells. Terminal processing of asparagine-linked oligosaccharides is not correlated with fibronectin-binding activity.

    PubMed

    Koyama, T; Hughes, R C

    1992-12-25

    We have examined the properties of the alpha 5 beta 1 integrin of baby hamster kidney (BHK) cells, a ricin-resistant variant Ric14 lacking N-acetylglucosaminyl transferase I, and hence unable to complete assembly of hybrid- or complex-type N-glycans, and BHK cells treated with 1-deoxymannojirimycin (dMM), an inhibitor of Golgi mannosidases involved in the initial processing of N-glycan precursors. Comparable amounts of alpha 5 beta 1 integrin were isolated from these cells by chromatography of detergent extracts on a fibronectin cell-binding fragment affinity column and elution with EDTA. The alpha 5 beta 1 integrin obtained from normal BHK cells by fibronectin affinity chromatography contained mainly endoglycosidase H-resistant oligosaccharides, whereas in RicR14 cells or dMM-treated BHK cells these were entirely endoglycosidase H-sensitive. Analysis of lactoperoxidase labeled or long term biosynthetically 35S-labeled proteins from cultures of normal or glycosylation deficient cells showed similar steady state levels of alpha 5 beta 1 integrin and expression at the cell surface. Pulse-chase experiments in normal BHK cells showed rapid conversion of the alpha 5 subunit into a mature form containing oligosaccharides resistant to endoglycosidase H and slower maturation of a precursor beta 1 subunit, as in other cell types. In Ric14 cells the precursor beta 1 subunit was found to carry glycans larger than the fully processed Man5GlcNAc2 glycan of the mature subunit, indicating that the bulk precursor pool had not been translocated into the cis-Golgi compartment containing mannosidase I. We conclude that in BHK cells terminal oligosaccharide processing of alpha 5 beta 1 integrin subunits is not required for dimer formation, surface expression, and fibronectin binding, and that expression of the glycosylation defect of Ric14 cells on the alpha 5 beta 1 integrin does not account for the reduced adhesiveness of these cells on fibronectin compared with normal and dMM-treated BHK cells.

  10. Interferon beta 2/B-cell stimulatory factor type 2 shares identity with monocyte-derived hepatocyte-stimulating factor and regulates the major acute phase protein response in liver cells.

    PubMed Central

    Gauldie, J; Richards, C; Harnish, D; Lansdorp, P; Baumann, H

    1987-01-01

    One of the oldest and most preserved of the homeostatic responses of the body to injury is the acute phase protein response associated with inflammation. The liver responds to hormone-like mediators by the increased synthesis of a series of plasma proteins called acute phase reactants. In these studies, we examined the relationship of hepatocyte-stimulating factor derived from peripheral blood monocytes to interferon beta 2 (IFN-beta 2), which has been cloned. Antibodies raised against fibroblast-derived IFN-beta having neutralizing activity against both IFN-beta 1 and -beta 2 inhibited the major hepatocyte-stimulating activity derived from monocytes. Fibroblast-derived mediator elicited the identical stimulated response in human HepG2 cells and primary rat hepatocytes as the monocyte cytokine. Finally, recombinant-derived human B-cell stimulatory factor type 2 (IFN-beta 2) from Escherichia coli induced the synthesis of all major acute phase proteins studied in human hepatoma HepG2 and primary rat hepatocyte cultures. These data demonstrate that monocyte-derived hepatocyte-stimulating factor and IFN-beta 2 share immunological and functional identity and that IFN-beta 2, also known as B-cell stimulatory factor and hybridoma plasmacytoma growth factor, has the hepatocyte as a major physiologic target and thereby is essential in controlling the hepatic acute phase response. Images PMID:2444978

  11. Human dendritic cells produce TGF-beta 1 under the influence of lung carcinoma cells and prime the differentiation of CD4+CD25+Foxp3+ regulatory T cells.

    PubMed

    Dumitriu, Ingrid E; Dunbar, Donald R; Howie, Sarah E; Sethi, Tariq; Gregory, Christopher D

    2009-03-01

    Dendritic cells (DCs) have a central role in the development of adaptive immune responses, including antitumor immunity. Factors present in the tumor milieu can alter the maturation of DCs and inhibit their capacity to activate T cells. Using gene expression analysis, we found that human DCs increased the expression of TGF-beta1 transcripts following culture with human lung carcinoma cells (LCCs). These DCs produced increased amounts of TGF-beta1 protein compared with DCs not exposed to tumor cells. LCCs also decreased the expression of CD86 and HLA-DR by immature DCs. Furthermore, LCCs decreased CD86 expression and the production of TNF-alpha and IL-12 p70 by mature DCs. Moreover, LCCs also converted mature DCs into cells producing TGF-beta1. These TGF-beta1-producing DCs were poor at eliciting the activation of naive CD4(+) T cells and sustaining their proliferation and differentiation into Th1 (IFN-gamma(+)) effectors. Instead, TGF-beta1-producing DCs demonstrated an increased ability to generate CD4(+)CD25(+)Foxp3(+) regulatory T cells that suppress the proliferation of T lymphocytes. These results identify a novel mechanism by which the function of human DCs is altered by tumor cells and contributes to the evasion of the immune response.

  12. Grape seed procyanidin extract modulates proliferation and apoptosis of pancreatic beta-cells.

    PubMed

    Cedó, Lídia; Castell-Auví, Anna; Pallarès, Victor; Blay, Mayte; Ardévol, Anna; Arola, Lluís; Pinent, Montserrat

    2013-05-01

    Grape seed procyanidin extract (GSPE) modulates glucose homeostasis and insulinemia in several animal models. Under pathological conditions, insulin levels are dependent on pancreatic beta-cell functionality, as well as on the beta-cell mass expansion or apoptosis in the pancreas. In this study, we analysed the effects of GSPE on modulating apoptosis and proliferation in beta-cells. We tested the effects of GSPE in the INS-1E pancreatic beta-cell line, either under basal or altered conditions with high glucose, insulin or palmitate levels. GSPE enhanced the pro-apoptotic effect of high glucose and showed clear antiproliferative effects under high glucose, insulin and palmitate conditions. These antiproliferative effects are likely due to high molecular weight compounds contained in the extract. GSPE also modulated pro- and anti-apoptotic markers in the pancreas of rats fed a cafeteria diet, with the effect depending on the dose of GSPE and duration of treatment. Thus, GSPE is able to modulate apoptosis and proliferation of beta-cells under altered, but not basal, conditions. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Langerhans cells beta 2-adrenoceptors: role in migration, cytokine production, Th priming and contact hypersensitivity.

    PubMed

    Maestroni, Georges J M; Mazzola, Paola

    2003-11-01

    We showed that norepinephrine (NE) hampers IL-12 and stimulates IL-10 production via adrenoceptors (ARs) in bone marrow-derived dendritic cells (BMDC) influencing their Th priming ability. Others have shown that Langerhans cells (LC) express mRNA for beta1-, beta2- and alpha1(A)-(ARs) and that catecholamines may inhibit the antigen-presenting capability via beta2-ARs. Here, we show that also BMDC express mRNA for beta1-, beta2-, alpha2(A)- and alpha2(C)-ARs. Inhibition of IL-12 is mediated by both beta2- and alpha2(A)-ARs, while stimulation of IL-10 by beta2-ARs only. In addition, LC migration, the contact hypersensitivity response (CHS) and production of IFN-gamma and IL-2 in draining lymph node cells is increased in mice treated topically with the beta2-AR antagonist ICI 118,551 during FITC sensitization. Activation of beta2-ARs in BMDC before adoptive transfer could reduce both migration and CHS response to FITC. Finally, preincubation of BMDC with LPS in presence of the specific beta2-AR agonist salbutamol impaired their chemotactic response to CCL19 and CCL21 and this effect was neutralized by anti-IL-10 mAb. We suggest that the physiological activation of beta2-ARs in DC (LC) results in stimulation of IL-10 which in turn restrains DC (LC) migration influencing antigen presentation and the consequent CHS response.

  14. Wnt/beta-Catenin, Foxa2, and CXCR4 Axis Controls Prostate Cancer Progression

    DTIC Science & Technology

    2014-07-01

    NT1 cells that over-expressing Foxa2. The reason we used NT1 cells for the Foxa2 over-expressing experiments is that NT1 is an AR-expressing... cells . We have also established NT1 cells over-expressing a dominant active beta-catenin. We have characterized these cells . Our research found: 1...expression profiles of control NT1 , NT1 /Foxa2, and NT1 /beta-catenin cells Figure 1. We did RT-PCR to examine the expression of key

  15. Do immunotherapy and beta cell replacement play a synergistic role in the treatment of type 1 diabetes?

    PubMed

    Li, Dong-Sheng; Warnock, Garth L; Tu, Han-Jun; Ao, Ziliang; He, Zehua; Lu, Hong; Dai, Long-Jun

    2009-10-07

    Type 1 diabetes (T1D) is the result of the autoimmune response against pancreatic insulin-producing ss-cells. Its ultimate consequence is beta-cell insufficiency-mediated dysregulation of blood glucose control. In terms of T1D treatment, immunotherapy addresses the cause of T1D, mainly through re-setting the balance between autoimmunity and regulatory mechanisms. Regulatory T cells play an important role in this immune intervention. An alternative T1D treatment is beta-cell replacement, which can reverse the consequence of the disease by replacing destroyed beta-cells in the diabetic pancreas. The applicable insulin-producing cells can be directly obtained from islet transplantation or generated from other cell sources such as autologous adult stem cells, embryonic stem cells, and induced pluripotent stem cells. In this review, we summarize the recent research progress and analyze the possible advantages and disadvantages of these two therapeutic options especially focusing on the potential synergistic effect on T1D treatment. Exploring the optimal combination of immunotherapy and beta-cell replacement will pave the way to the most effective cure for this devastating disease.

  16. Mice Lacking the Giant Protocadherin mFAT1 Exhibit Renal Slit Junction Abnormalities and a Partially Penetrant Cyclopia and Anophthalmia Phenotype

    PubMed Central

    Ciani, Lorenza; Patel, Anjla; Allen, Nicholas D.; ffrench-Constant, Charles

    2003-01-01

    While roles in adhesion and morphogenesis have been documented for classical cadherins, the nonclassical cadherins are much less well understood. Here we have examined the functions of the giant protocadherin FAT by generating a transgenic mouse lacking mFAT1. These mice exhibit perinatal lethality, most probably caused by loss of the renal glomerular slit junctions and fusion of glomerular epithelial cell processes (podocytes). In addition, some mFAT1−/− mice show defects in forebrain development (holoprosencephaly) and failure of eye development (anophthalmia). In contrast to Drosophila, where FAT acts as a tumor suppressor gene, we found no evidence for abnormalities of proliferation in two tissues (skin and central nervous system [CNS]) containing stem and precursor cell populations and in which FAT is expressed strongly. Our results confirm a necessary role for FAT1 in the modified adhesion junctions of the renal glomerular epithelial cell and reveal hitherto unsuspected roles for FAT1 in CNS development. PMID:12724416

  17. The effect of TRAIL molecule on cell viability in in vitro beta cell culture.

    PubMed

    Tekmen, I; Ozyurt, D; Pekçetin, C; Buldan, Z

    2007-06-01

    Insulin-dependent diabetes mellitus (IDDM) is an organ-specific autoimmune disorder triggered by autoreactive T cells directed to pancreas beta-cell antigens. In this disorder, more than 90% of beta cells are destroyed. Cell death may be mediated via soluble or membrane-bound cell death ligands. One of these ligands may be tumour necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL), a member of the TNF-alpha superfamily. In the present study, we examined whether TRAIL had cytotoxic effects on adult rat pancreas beta cell cultures and INS1-E rat insulinoma cell line cultures or not. In this study, cell destruction models were built with TRAIL concentrations of 10, 100 and 1000 ng. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) test was used for evaluating cell viability. It was detected that cell cultures with TRAIL added showed no differences statistically when compared with control cultures containing no toxic additions. These results showed that TRAIL did not have significant cytotoxic effects on pancreas beta cell culture and INS-1E rat insulinoma cell line cultures. Detection of the expression of TRAIL receptors and natural apoptosis inhibitor proteins will be favourable to investigate the resistance mechanisms to TRAIL-induced cell death in this cell culture system.

  18. Intensity ratio curve analysis of small renal masses on T2-weighted magnetic resonance imaging: Differentiation of fat-poor angiomyolipoma from renal cell carcinoma.

    PubMed

    Moriyama, Shingo; Yoshida, Soichiro; Tanaka, Hajime; Tanaka, Hiroshi; Yokoyama, Minato; Ishioka, Junichiro; Matsuoka, Yoh; Saito, Kazutaka; Kihara, Kazunori; Fujii, Yasuhisa

    2018-03-25

    To assess the diagnostic ability of a pixel intensity-based analysis in evaluating the magnetic resonance imaging characteristics of small renal masses, especially in differentiating fat-poor angiomyolipoma from renal cell carcinoma. T2-weighted images from 121 solid small renal masses (<4 cm) without visible fat (14 fat-poor angiomyolipomas, 92 clear cell renal cell carcinomas, six chromophobe renal cell carcinomas and nine papillary renal cell carcinomas) were retrospectively evaluated. An intensity ratio curve was plotted using intensity ratios, which were ratios of signal intensities of tumor pixels (each pixel along a linear region of interest drawn across the renal tumor on T2-weighted image) to the signal intensity of a normal renal cortex. The diagnostic ability of the intensity ratio curve analysis was evaluated. The tumors were classified into three types: intensity ratio fat-poor angiomyolipoma (n = 19) with no pseudocapsule, iso-low intensity and no heterogeneity; intensity ratio clear cell renal cell carcinoma (n = 76) with a pseudocapsule, iso-high intensity and heterogeneity; and other type of intensity ratio (n = 26), including tumors that did not fall into the above two categories. The sensitivity/specificity/accuracy of the intensity ratio curve analysis in diagnosing fat-poor angiomyolipoma was 93%/94%/94%, respectively. When the intensity ratio curve analysis was applied only to the tumor with undetermined radiological diagnosis, the sensitivity for diagnosing fat-poor angiomyolipoma compared with subjective reading alone significantly improved (93% vs 50%; P = 0.014). Our novel semiquantitative model for combined assessment of key features of fat-poor angiomyolipoma, including low intensity, homogeneity and absence of a pseudocapsule on T2-weighted image, might make diagnosis of fat-poor angiomyolipoma more accurate. © 2018 The Japanese Urological Association.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kang, Kyungsu; Lee, Kyung-Mi; Yoo, Ji-Hye

    Graphical abstract: Schematic diagram of the possible molecular mechanism underlying the inhibition of the Wnt/{beta}-catenin signaling pathway and the induction of G0/G1-phase arrest by gomisins J and N, derived from the fruits of S. chinensis, in HCT116 human colon cancer cells. Highlights: Black-Right-Pointing-Pointer Gomisins J and N inhibited Wnt/{beta}-catenin signaling pathway in HCT116 cells. Black-Right-Pointing-Pointer Gomisins J and N disrupted the binding of {beta}-catenin to specific DNA sequences, TBE. Black-Right-Pointing-Pointer Gomisins J and N inhibited the HCT116 cell proliferation through G0/G1 phase arrest. Black-Right-Pointing-Pointer Gomisins J and N inhibited the expression of Cyc D1, a Wnt/{beta}-catenin target gene. -- Abstract:more » Here, we report that gomisin J and gomisin N, dibenzocyclooctadiene type lignans isolated from Schisandra chinensis, inhibit Wnt/{beta}-catenin signaling in HCT116 cells. Gomisins J and N appear to inhibit Wnt/{beta}-catenin signaling by disrupting the interaction between {beta}-catenin and its specific target DNA sequences (TCF binding elements, TBE) rather than by altering the expression of the {beta}-catenin protein. Gomisins J and N inhibit HCT116 cell proliferation by arresting the cell cycle at the G0/G1 phase. The G0/G1 phase arrest induced by gomisins J and N appears to be caused by a decrease in the expression of Cyclin D1, a representative target gene of the Wnt/{beta}-catenin signaling pathway, as well as Cdk2, Cdk4, and E2F-1. Therefore, gomisins J and N, the novel Wnt/{beta}-catenin inhibitors discovered in this study, may serve as potential agents for the prevention and treatment of human colorectal cancers.« less

  20. Transforming growth factor-beta 1 (TGF-beta1) promotes IL-2 mRNA expression through the up-regulation of NF-kappaB, AP-1 and NF-AT in EL4 cells.

    PubMed

    Han, S H; Yea, S S; Jeon, Y J; Yang, K H; Kaminski, N E

    1998-12-01

    Transforming growth factor beta1 (TGF-beta1) has been previously shown to modulate interleukin 2 (IL-2) secretion by activated T-cells. In the present studies, we determined that TGF-beta1 induced IL-2 mRNA expression in the murine T-cell line EL4, in the absence of other stimuli. IL-2 mRNA expression was significantly induced by TGF-beta1 (0.1-1 ng/ml) over a relatively narrow concentration range, which led to the induction of IL-2 secretion. Under identical condition, we examined the effect of TGF-beta1 on the activity of nuclear factor AT (NF-AT), nuclear factor kappaB (NF-kappaB), activator protein-1 (AP-1) and octamer, all of which contribute to the regulation of IL-2 gene expression. Electrophoretic mobility shift assays showed that TGF-beta1 markedly increased NF-AT, NF-kappaB and AP-1 binding to their respective cognate DNA binding sites, whereas octamer binding remained constant, as compared with untreated cells. Employing a reporter gene expression system with p(NF-kappaB)3-CAT, p(NF-AT)3-CAT and p(AP-1)3-CAT, TGF-beta1 treatment of transfected EL4 cells induced a dose-related increase in chloramphenicol acetyltransferase activity that correlated well with the DNA binding profile found in the electrophoretic mobility shift assay studies. These results show that TGF-beta1, in the absence of any additional stimuli, up-regulates the activity of key transcription factors involved in IL-2 gene expression, including NF-AT, NF-kappaB and AP-1, to help promote IL-2 mRNA expression by EL4 cells.

Top