Sample records for fatigue evaluation methodology

  1. Systematic content evaluation and review of measurement properties of questionnaires for measuring self-reported fatigue among older people.

    PubMed

    Egerton, Thorlene; Riphagen, Ingrid I; Nygård, Arnhild J; Thingstad, Pernille; Helbostad, Jorunn L

    2015-09-01

    The assessment of fatigue in older people requires simple and user-friendly questionnaires that capture the phenomenon, yet are free from items indistinguishable from other disorders and experiences. This study aimed to evaluate the content, and systematically review and rate the measurement properties of self-report questionnaires for measuring fatigue, in order to identify the most suitable questionnaires for older people. This study firstly involved identification of questionnaires that purport to measure self-reported fatigue, and evaluation of the content using a rating scale developed for the purpose from contemporary understanding of the construct. Secondly, for the questionnaires that had acceptable content, we identified studies reporting measurement properties and rated the methodological quality of those studies according to the COSMIN system. Finally, we extracted and synthesised the results of the studies to give an overall rating for each questionnaire for each measurement property. The protocol was registered with PROSPERO (CRD42013005589). Of the 77 identified questionnaires, twelve were selected for review after content evaluation. Methodological quality varied, and there was a lack of information on measurement error and responsiveness. The PROMIS-Fatigue item bank and short forms perform the best. The FACIT-Fatigue scale, Parkinsons Fatigue Scale, Perform Questionnaire, and Uni-dimensional Fatigue Impact Scale also perform well and can be recommended. Minor modifications to improve performance are suggested. Further evaluation of unresolved measurement properties, particularly with samples including older people, is needed for all the recommended questionnaires.

  2. Methodology for Evaluation of Fatigue Crack-Growth Resistance of Aluminum Alloys under Spectrum Loading.

    DTIC Science & Technology

    1982-04-01

    fatigue life , except for the 2024 - T351 alloy which had a significantly longer spectrum fatigue life than the other alloys and 2) for...OF FATIGUE CRACK GROWTH OF ALUMINUM ALLOYS UNDER SPECTRUM LOADING MATERIALS PRESENT EFFORT FUTURE EFFORT 2024 - T351 2020-T651 2024 -T851 TMT2020-T6X51...the same spectrum fatigue life . The 2024 - T351 alloy had a significantly longer spectrum

  3. Fatigue Life Methodology for Bonded Composite Skin/Stringer Configurations

    NASA Technical Reports Server (NTRS)

    Krueger, Ronald; Paris, Isabelle L.; OBrien, T. Kevin; Minguet, Pierre J.

    2001-01-01

    A methodology is presented for determining the fatigue life of composite structures based on fatigue characterization data and geometric nonlinear finite element (FE) analyses. To demonstrate the approach, predicted results were compared to fatigue tests performed on specimens which represented a tapered composite flange bonded onto a composite skin. In a first step, tension tests were performed to evaluate the debonding mechanisms between the flange and the skin. In a second step, a 2D FE model was developed to analyze the tests. To predict matrix cracking onset, the relationship between the tension load and the maximum principal stresses transverse to the fiber direction was determined through FE analysis. Transverse tension fatigue life data were used to -enerate an onset fatigue life P-N curve for matrix cracking. The resulting prediction was in good agreement with data from the fatigue tests. In a third step, a fracture mechanics approach based on FE analysis was used to determine the relationship between the tension load and the critical energy release rate. Mixed mode energy release rate fatigue life data were used to create a fatigue life onset G-N curve for delamination. The resulting prediction was in good agreement with data from the fatigue tests. Further, the prediction curve for cumulative life to failure was generated from the previous onset fatigue life curves. The results showed that the methodology offers a significant potential to Predict cumulative fatigue life of composite structures.

  4. The effect of erosion on the fatigue limit of metallic materials for aerospace applications

    NASA Astrophysics Data System (ADS)

    Kordatos, E. Z.; Exarchos, D. A.; Matikas, T. E.

    2018-03-01

    This work deals with the study of the fatigue behavior of metallic materials for aerospace applications which have undergone erosion. Particularly, an innovative non-destructive methodology based on infrared lock-in thermography was applied on aluminum samples for the rapid determination of their fatigue limit. The effect of erosion on the structural integrity of materials can lead to a catastrophic failure and therefore an efficient assessment of the fatigue behavior is of high importance. Infrared thermography (IRT) as a non-destructive, non-contact, real time and full field method can be employed in order the fatigue limit to be rapidly determined. The basic principle of this method is the detection and monitoring of the intrinsically dissipated energy due to the cyclic fatigue loading. This methodology was successfully applied on both eroded and non-eroded aluminum specimens in order the severity of erosion to be evaluated.

  5. FY16 Status Report on Development of Integrated EPP and SMT Design Methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jetter, R. I.; Sham, T. -L.; Wang, Y.

    2016-08-01

    The goal of the Elastic-Perfectly Plastic (EPP) combined integrated creep-fatigue damage evaluation approach is to incorporate a Simplified Model Test (SMT) data based approach for creep-fatigue damage evaluation into the EPP methodology to avoid the separate evaluation of creep and fatigue damage and eliminate the requirement for stress classification in current methods; thus greatly simplifying evaluation of elevated temperature cyclic service. The EPP methodology is based on the idea that creep damage and strain accumulation can be bounded by a properly chosen “pseudo” yield strength used in an elastic-perfectly plastic analysis, thus avoiding the need for stress classification. The originalmore » SMT approach is based on the use of elastic analysis. The experimental data, cycles to failure, is correlated using the elastically calculated strain range in the test specimen and the corresponding component strain is also calculated elastically. The advantage of this approach is that it is no longer necessary to use the damage interaction, or D-diagram, because the damage due to the combined effects of creep and fatigue are accounted in the test data by means of a specimen that is designed to replicate or bound the stress and strain redistribution that occurs in actual components when loaded in the creep regime. The reference approach to combining the two methodologies and the corresponding uncertainties and validation plans are presented. Results from recent key feature tests are discussed to illustrate the applicability of the EPP methodology and the behavior of materials at elevated temperature when undergoing stress and strain redistribution due to plasticity and creep.« less

  6. A Fatigue Life Prediction Model of Welded Joints under Combined Cyclic Loading

    NASA Astrophysics Data System (ADS)

    Goes, Keurrie C.; Camarao, Arnaldo F.; Pereira, Marcos Venicius S.; Ferreira Batalha, Gilmar

    2011-01-01

    A practical and robust methodology is developed to evaluate the fatigue life in seam welded joints when subjected to combined cyclic loading. The fatigue analysis was conducted in virtual environment. The FE stress results from each loading were imported to fatigue code FE-Fatigue and combined to perform the fatigue life prediction using the S x N (stress x life) method. The measurement or modelling of the residual stresses resulting from the welded process is not part of this work. However, the thermal and metallurgical effects, such as distortions and residual stresses, were considered indirectly through fatigue curves corrections in the samples investigated. A tube-plate specimen was submitted to combined cyclic loading (bending and torsion) with constant amplitude. The virtual durability analysis result was calibrated based on these laboratory tests and design codes such as BS7608 and Eurocode 3. The feasibility and application of the proposed numerical-experimental methodology and contributions for the technical development are discussed. Major challenges associated with this modelling and improvement proposals are finally presented.

  7. Fatigue methodology III; Proceedings of the AHS National Technical Specialists' Meeting on Advanced Rotorcraft Structures, Scottsdale, AZ, Oct. 3-5, 1989

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1989-01-01

    Papers on rotorcraft and fatigue methodology are presented, covering topics such as reliability design for rotorcraft, a comparison between theory and fatigue test data on stress concentration factors, the retirement lives of rolling element bearings, hydrogen embrittlement risk analysis for high hardness steel parts, and rotating system load monitoring with minimum fixed system instrumentation. Additional topics include usage data collection to improve structural integrity of operational helicopters, usage monitory of military helicopters, improvements to the fatigue substantiation of the H-60 composite tail rotor blade, helicopter surviellance programs, and potential application of automotive fatigue technology in rotorcraft design. Also, consideration ismore » given to fatigue evaluation of C/MH-53 E main rotor damper threaded joints, SH-2F airframe fatigue test program, a ply termination concept for improving fracture and fatigue strength of composite laminates, the analysis and testing of composite panels subject to muzzle blast effects, the certification plan for an all-composite main rotor flexbeam, and the effects of stacking sequence on the flexural strength of composite beams.« less

  8. Report on an Assessment of the Application of EPP Results from the Strain Limit Evaluation Procedure to the Prediction of Cyclic Life Based on the SMT Methodology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jetter, R. I.; Messner, M. C.; Sham, T. -L.

    The goal of the proposed integrated Elastic Perfectly-Plastic (EPP) and Simplified Model Test (SMT) methodology is to incorporate an SMT data based approach for creep-fatigue damage evaluation into the EPP methodology to avoid the separate evaluation of creep and fatigue damage and eliminate the requirement for stress classification in current methods; thus greatly simplifying evaluation of elevated temperature cyclic service. This methodology should minimize over-conservatism while properly accounting for localized defects and stress risers. To support the implementation of the proposed methodology and to verify the applicability of the code rules, analytical studies and evaluation of thermomechanical test results continuedmore » in FY17. This report presents the results of those studies. An EPP strain limits methodology assessment was based on recent two-bar thermal ratcheting test results on 316H stainless steel in the temperature range of 405 to 7050C. Strain range predictions from the EPP evaluation of the two-bar tests were also evaluated and compared with the experimental results. The role of sustained primary loading on cyclic life was assessed using the results of pressurized SMT data from tests on Alloy 617 at 9500C. A viscoplastic material model was used in an analytic simulation of two-bar tests to compare with EPP strain limits assessments using isochronous stress strain curves that are consistent with the viscoplastic material model. A finite element model of a prior 304H stainless steel Oak Ridge National Laboratory (ORNL) nozzle-to-sphere test was developed and used for an EPP strain limits and creep-fatigue code case damage evaluations. A theoretical treatment of a recurring issue with convergence criteria for plastic shakedown illustrated the role of computer machine precision in EPP calculations.« less

  9. Report on FY17 testing in support of integrated EPP-SMT design methods development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yanli .; Jetter, Robert I.; Sham, T. -L.

    The goal of the proposed integrated Elastic Perfectly-Plastic (EPP) and Simplified Model Test (SMT) methodology is to incorporate a SMT data-based approach for creep-fatigue damage evaluation into the EPP methodology to avoid the separate evaluation of creep and fatigue damage and eliminate the requirement for stress classification in current methods; thus greatly simplifying evaluation of elevated temperature cyclic service. The purpose of this methodology is to minimize over-conservatism while properly accounting for localized defects and stress risers. To support the implementation of the proposed methodology and to verify the applicability of the code rules, thermomechanical tests continued in FY17. Thismore » report presents the recent test results for Type 1 SMT specimens on Alloy 617 with long hold times, pressurization SMT on Alloy 617, and two-bar thermal ratcheting test results on SS316H at the temperature range of 405 °C to 705 °C. Preliminary EPP strain range analysis on the two-bar tests are critically evaluated and compared with the experimental results.« less

  10. CARES/Life Ceramics Durability Evaluation Software Enhanced for Cyclic Fatigue

    NASA Technical Reports Server (NTRS)

    Nemeth, Noel N.; Powers, Lynn M.; Janosik, Lesley A.

    1999-01-01

    The CARES/Life computer program predicts the probability of a monolithic ceramic component's failure as a function of time in service. The program has many features and options for materials evaluation and component design. It couples commercial finite element programs--which resolve a component's temperature and stress distribution--to reliability evaluation and fracture mechanics routines for modeling strength-limiting defects. The capability, flexibility, and uniqueness of CARES/Life have attracted many users representing a broad range of interests and has resulted in numerous awards for technological achievements and technology transfer. Recent work with CARES/Life was directed at enhancing the program s capabilities with regards to cyclic fatigue. Only in the last few years have ceramics been recognized to be susceptible to enhanced degradation from cyclic loading. To account for cyclic loads, researchers at the NASA Lewis Research Center developed a crack growth model that combines the Power Law (time-dependent) and the Walker Law (cycle-dependent) crack growth models. This combined model has the characteristics of Power Law behavior (decreased damage) at high R ratios (minimum load/maximum load) and of Walker law behavior (increased damage) at low R ratios. In addition, a parameter estimation methodology for constant-amplitude, steady-state cyclic fatigue experiments was developed using nonlinear least squares and a modified Levenberg-Marquardt algorithm. This methodology is used to give best estimates of parameter values from cyclic fatigue specimen rupture data (usually tensile or flexure bar specimens) for a relatively small number of specimens. Methodology to account for runout data (unfailed specimens over the duration of the experiment) was also included.

  11. Fatigue Life Methodology for Bonded Composite Skin/Stringer Configurations

    NASA Technical Reports Server (NTRS)

    Krueger, Ronald; Paris, Isabelle L.; OBrien, T. Kevin

    2000-01-01

    A methodology is presented for determining the fatigue life of bonded composite skin/stringer structures based on delamination fatigue characterization data and geometric nonlinear finite element analyses. Results were compared to fatigue tests on stringer flange/skin specimens to verify the approach.

  12. Effect of polarization fatigue on the Rayleigh coefficients of ferroelectric lead zirconate titanate thin films: Experimental evidence and implications

    NASA Astrophysics Data System (ADS)

    Lou, X. J.; Zhang, H. J.; Luo, Z. D.; Zhang, F. P.; Liu, Y.; Liu, Q. D.; Fang, A. P.; Dkhil, B.; Zhang, M.; Ren, X. B.; He, H. L.

    2014-09-01

    The effect of polarization fatigue on the Rayleigh coefficients of ferroelectric lead zirconate titanate (PZT) thin film was systematically investigated. It was found that electrical fatigue strongly affects the Rayleigh behaviour of the PZT film. Both the reversible and irreversible Rayleigh coefficients decrease with increasing the number of switching cycles. This phenomenon is attributed to the growth of an interfacial degraded layer between the electrode and the film during electrical cycling. The methodology used in this work could serve as an alternative way for evaluating the fatigue endurance and degradation in dielectric properties of ferroelectric thin-film devices during applications.

  13. Monitoring the fracture behavior of metal matrix composites by combined NDE methodologies

    NASA Astrophysics Data System (ADS)

    Kordatos, E. Z.; Exarchos, D. A.; Mpalaskas, A. C.; Matikas, T. E.

    2015-03-01

    Current work deals with the non-destructive evaluation (NDE) of the fatigue behavior of metal matrix composites (MMCs) materials using Infrared Thermography (IRT) and Acoustic Emission (AE). AE monitoring was employed to record a wide spectrum of cracking events enabling the characterization of the severity of fracture in relation to the applied load. IR thermography as a non-destructive, real-time and non-contact technique, allows the detection of heat waves generated by the thermo-mechanical coupling during mechanical loading of the sample. In this study an IR methodology, based on the monitoring of the intrinsically dissipated energy, was applied for the determination of the fatigue limit of A359/SiCp composites. The thermographic monitoring is in agreement with the AE results enabling the reliable monitoring of the MMCs' fatigue behavior.

  14. A pilot study to test psychophonetics methodology for self-care and empathy in compassion fatigue, burnout and secondary traumatic stress

    PubMed Central

    Butler, Nadine

    2013-01-01

    Abstract Background Home-based care is recognised as being a stressful occupation. Practitioners working with patients experiencing high levels of trauma may be susceptible to compassion fatigue, with the sustained need to remain empathic being a contributing factor. Objectives The aim of this research was to evaluate psychophonetics methodology for self-care and empathy skills as an intervention for compassion fatigue. Objectives were to measure levels of compassion fatigue pre-intervention, then to apply the intervention and retest levels one month and six months post-intervention. Method The research applied a pilot test of a developed intervention as a quasi-experiment. The study sample comprised home-based carers working with HIV-positive patients at a hospice in Grabouw, a settlement in the Western Cape facing socioeconomic challenge. Results The result of the pilot study showed a statistically-significant improvement in secondary traumatic stress, a component of compassion fatigue, measured with the ProQOL v5 instrument post-intervention. Conclusion The results gave adequate indication for the implementation of a larger study in order to apply and test the intervention. The study highlights a dire need for further research in this field.

  15. Probabilistic Material Strength Degradation Model for Inconel 718 Components Subjected to High Temperature, Mechanical Fatigue, Creep and Thermal Fatigue Effects

    NASA Technical Reports Server (NTRS)

    Bast, Callie Corinne Scheidt

    1994-01-01

    This thesis presents the on-going development of methodology for a probabilistic material strength degradation model. The probabilistic model, in the form of a postulated randomized multifactor equation, provides for quantification of uncertainty in the lifetime material strength of aerospace propulsion system components subjected to a number of diverse random effects. This model is embodied in the computer program entitled PROMISS, which can include up to eighteen different effects. Presently, the model includes four effects that typically reduce lifetime strength: high temperature, mechanical fatigue, creep, and thermal fatigue. Statistical analysis was conducted on experimental Inconel 718 data obtained from the open literature. This analysis provided regression parameters for use as the model's empirical material constants, thus calibrating the model specifically for Inconel 718. Model calibration was carried out for four variables, namely, high temperature, mechanical fatigue, creep, and thermal fatigue. Methodology to estimate standard deviations of these material constants for input into the probabilistic material strength model was developed. Using the current version of PROMISS, entitled PROMISS93, a sensitivity study for the combined effects of mechanical fatigue, creep, and thermal fatigue was performed. Results, in the form of cumulative distribution functions, illustrated the sensitivity of lifetime strength to any current value of an effect. In addition, verification studies comparing a combination of mechanical fatigue and high temperature effects by model to the combination by experiment were conducted. Thus, for Inconel 718, the basic model assumption of independence between effects was evaluated. Results from this limited verification study strongly supported this assumption.

  16. Risk assessment of turbine rotor failure using probabilistic ultrasonic non-destructive evaluations

    NASA Astrophysics Data System (ADS)

    Guan, Xuefei; Zhang, Jingdan; Zhou, S. Kevin; Rasselkorde, El Mahjoub; Abbasi, Waheed A.

    2014-02-01

    The study presents a method and application of risk assessment methodology for turbine rotor fatigue failure using probabilistic ultrasonic nondestructive evaluations. A rigorous probabilistic modeling for ultrasonic flaw sizing is developed by incorporating the model-assisted probability of detection, and the probability density function (PDF) of the actual flaw size is derived. Two general scenarios, namely the ultrasonic inspection with an identified flaw indication and the ultrasonic inspection without flaw indication, are considered in the derivation. To perform estimations for fatigue reliability and remaining useful life, uncertainties from ultrasonic flaw sizing and fatigue model parameters are systematically included and quantified. The model parameter PDF is estimated using Bayesian parameter estimation and actual fatigue testing data. The overall method is demonstrated using a realistic application of steam turbine rotor, and the risk analysis under given safety criteria is provided to support maintenance planning.

  17. Fracture mechanics methodology: Evaluation of structural components integrity

    NASA Astrophysics Data System (ADS)

    Sih, G. C.; de Oliveira Faria, L.

    1984-09-01

    The application of fracture mechanics to structural-design problems is discussed in lectures presented in the AGARD Fracture Mechanics Methodology course held in Lisbon, Portugal, in June 1981. The emphasis is on aeronautical design, and chapters are included on fatigue-life prediction for metals and composites, the fracture mechanics of engineering structural components, failure mechanics and damage evaluation of structural components, flaw-acceptance methods, and reliability in probabilistic design. Graphs, diagrams, drawings, and photographs are provided.

  18. Effect of Light Water Reactor Water Environments on the Fatigue Life of Reactor Materials

    DOE PAGES

    Chopra, O. K.; Stevens, G. L.; Tregoning, R.; ...

    2017-10-06

    The American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel Code (Code) provides rules for the design of Class 1 components of nuclear power plants. Figures I-9.1 through I-9.6 of Appendix I to Section III of the Code specify fatigue design curves for applicable structural materials. However, the Code design curves do not explicitly address the effects of light water reactor (LWR) water environments. Existing fatigue strain-vs.-life (ε-N) laboratory data illustrate potentially significant effects of LWR water environments on the fatigue resistance of pressure vessel and piping steels. Extensive studies have been conducted at Argonne National Laboratory and elsewheremore » since 1990 to investigate the effects of LWR environments on the fatigue life of piping and pressure vessel steels. This article summarizes the results of these studies. Existing fatigue ε-N data were evaluated to identify the various material, environmental, and loading conditions that influence fatigue crack initiation; a methodology for estimating fatigue lives as a function of these parameters was developed. The effects were incorporated into the ASME Code Section III fatigue evaluations in terms of an environmental correction factor, F en, which is defined as the ratio of fatigue life in air at room temperature to the fatigue life in the LWR water environment at reactor operating temperatures. Available fatigue data were used to develop fatigue design curves for carbon and low-alloy steels, austenitic stainless steels, and nickel-chromium-iron (NiCr-Fe) alloys and their weld metals in air at room temperature. A review of the Code Section III fatigue adjustment factors of 2 on strain and 20 on life is also presented and the possible conservatism inherent in the choice of these adjustment factors is evaluated. A brief description of potential effects of neutron irradiation on fatigue crack initiation for these structural materials is also presented.« less

  19. Effect of Light Water Reactor Water Environments on the Fatigue Life of Reactor Materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chopra, O. K.; Stevens, G. L.; Tregoning, R.

    The American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel Code (Code) provides rules for the design of Class 1 components of nuclear power plants. Figures I-9.1 through I-9.6 of Appendix I to Section III of the Code specify fatigue design curves for applicable structural materials. However, the Code design curves do not explicitly address the effects of light water reactor (LWR) water environments. Existing fatigue strain-vs.-life (ε-N) laboratory data illustrate potentially significant effects of LWR water environments on the fatigue resistance of pressure vessel and piping steels. Extensive studies have been conducted at Argonne National Laboratory and elsewheremore » since 1990 to investigate the effects of LWR environments on the fatigue life of piping and pressure vessel steels. This article summarizes the results of these studies. Existing fatigue ε-N data were evaluated to identify the various material, environmental, and loading conditions that influence fatigue crack initiation; a methodology for estimating fatigue lives as a function of these parameters was developed. The effects were incorporated into the ASME Code Section III fatigue evaluations in terms of an environmental correction factor, F en, which is defined as the ratio of fatigue life in air at room temperature to the fatigue life in the LWR water environment at reactor operating temperatures. Available fatigue data were used to develop fatigue design curves for carbon and low-alloy steels, austenitic stainless steels, and nickel-chromium-iron (NiCr-Fe) alloys and their weld metals in air at room temperature. A review of the Code Section III fatigue adjustment factors of 2 on strain and 20 on life is also presented and the possible conservatism inherent in the choice of these adjustment factors is evaluated. A brief description of potential effects of neutron irradiation on fatigue crack initiation for these structural materials is also presented.« less

  20. Probabilistic evaluation of uncertainties and risks in aerospace components

    NASA Technical Reports Server (NTRS)

    Shah, A. R.; Shiao, M. C.; Nagpal, V. K.; Chamis, C. C.

    1992-01-01

    This paper summarizes a methodology developed at NASA Lewis Research Center which computationally simulates the structural, material, and load uncertainties associated with Space Shuttle Main Engine (SSME) components. The methodology was applied to evaluate the scatter in static, buckling, dynamic, fatigue, and damage behavior of the SSME turbo pump blade. Also calculated are the probability densities of typical critical blade responses, such as effective stress, natural frequency, damage initiation, most probable damage path, etc. Risk assessments were performed for different failure modes, and the effect of material degradation on the fatigue and damage behaviors of a blade were calculated using a multi-factor interaction equation. Failure probabilities for different fatigue cycles were computed and the uncertainties associated with damage initiation and damage propagation due to different load cycle were quantified. Evaluations on the effects of mistuned blades on a rotor were made; uncertainties in the excitation frequency were found to significantly amplify the blade responses of a mistuned rotor. The effects of the number of blades on a rotor were studied. The autocorrelation function of displacements and the probability density function of the first passage time for deterministic and random barriers for structures subjected to random processes also were computed. A brief discussion was included on the future direction of probabilistic structural analysis.

  1. Reduction in alert fatigue in an assisted electronic prescribing system, through the Lean Six Sigma methodology.

    PubMed

    Cuéllar Monreal, Mª Jesús; Reig Aguado, Jorge; Font Noguera, Isabel; Poveda Andrés, José Luis

    2017-01-01

    To reduce the alert fatigue in our Assisted Electronic Prescribing System (AEPS), through the Lean Six Sigma (LSS) methodology. An observational (transversal) and retrospective study, in a general hospital with 850 beds and AEPS. The LSS methodology was followed in order to evaluate the alert fatigue situation in the AEPS system, to implement improvements, and to assess outcomes. The alerts generated during two trimesters studied (before and after the intervention) were analyzed. In order to measure the qualitative indicators, the most frequent alert types were analyzed, as well as the molecules responsible for over 50% of each type of alert. The action by the prescriber was analyzed in a sample of 496 prescriptions that generated such alerts. For each type of alert and molecule, there was a prioritization of the improvements to be implemented according to the alert generated and its quality. A second survey evaluated the pharmacist action for the alerts most highly valued by physicians. The problem, the objective, the work team and the project schedule were defined. A survey was designed in order to understand the opinion of the client about the alert system in the program. Based on the surveys collected (n = 136), the critical characteristics and the quanti/qualitative indicators were defined. Sixty (60) fields in the alert system were modified, corresponding to 32 molecules, and this led to a 28% reduction in the total number of alerts. Regarding quality indicators, false po sitive results were reduced by 25% (p < 0.05), 100% of those alerts ignored with justification were sustained, and there were no significant differences in user adherence to the system. The project improvements and outcomes were reviewed by the work team. LSS methodology has demonstrated being a valid tool for the quantitative and qualitative improvement of the alert system in an Assisted Electronic Prescription Program, thus reducing alert fatigue. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.

  2. Reliability Issues and Solutions in Flexible Electronics Under Mechanical Fatigue

    NASA Astrophysics Data System (ADS)

    Yi, Seol-Min; Choi, In-Suk; Kim, Byoung-Joon; Joo, Young-Chang

    2018-07-01

    Flexible devices are of significant interest due to their potential expansion of the application of smart devices into various fields, such as energy harvesting, biological applications and consumer electronics. Due to the mechanically dynamic operations of flexible electronics, their mechanical reliability must be thoroughly investigated to understand their failure mechanisms and lifetimes. Reliability issue caused by bending fatigue, one of the typical operational limitations of flexible electronics, has been studied using various test methodologies; however, electromechanical evaluations which are essential to assess the reliability of electronic devices for flexible applications had not been investigated because the testing method was not established. By employing the in situ bending fatigue test, we has studied the failure mechanism for various conditions and parameters, such as bending strain, fatigue area, film thickness, and lateral dimensions. Moreover, various methods for improving the bending reliability have been developed based on the failure mechanism. Nanostructures such as holes, pores, wires and composites of nanoparticles and nanotubes have been suggested for better reliability. Flexible devices were also investigated to find the potential failures initiated by complex structures under bending fatigue strain. In this review, the recent advances in test methodology, mechanism studies, and practical applications are introduced. Additionally, perspectives including the future advance to stretchable electronics are discussed based on the current achievements in research.

  3. Reliability Issues and Solutions in Flexible Electronics Under Mechanical Fatigue

    NASA Astrophysics Data System (ADS)

    Yi, Seol-Min; Choi, In-Suk; Kim, Byoung-Joon; Joo, Young-Chang

    2018-03-01

    Flexible devices are of significant interest due to their potential expansion of the application of smart devices into various fields, such as energy harvesting, biological applications and consumer electronics. Due to the mechanically dynamic operations of flexible electronics, their mechanical reliability must be thoroughly investigated to understand their failure mechanisms and lifetimes. Reliability issue caused by bending fatigue, one of the typical operational limitations of flexible electronics, has been studied using various test methodologies; however, electromechanical evaluations which are essential to assess the reliability of electronic devices for flexible applications had not been investigated because the testing method was not established. By employing the in situ bending fatigue test, we has studied the failure mechanism for various conditions and parameters, such as bending strain, fatigue area, film thickness, and lateral dimensions. Moreover, various methods for improving the bending reliability have been developed based on the failure mechanism. Nanostructures such as holes, pores, wires and composites of nanoparticles and nanotubes have been suggested for better reliability. Flexible devices were also investigated to find the potential failures initiated by complex structures under bending fatigue strain. In this review, the recent advances in test methodology, mechanism studies, and practical applications are introduced. Additionally, perspectives including the future advance to stretchable electronics are discussed based on the current achievements in research.

  4. An improved approach for flight readiness certification: Probabilistic models for flaw propagation and turbine blade failure. Volume 1: Methodology and applications

    NASA Technical Reports Server (NTRS)

    Moore, N. R.; Ebbeler, D. H.; Newlin, L. E.; Sutharshana, S.; Creager, M.

    1992-01-01

    An improved methodology for quantitatively evaluating failure risk of spaceflight systems to assess flight readiness and identify risk control measures is presented. This methodology, called Probabilistic Failure Assessment (PFA), combines operating experience from tests and flights with analytical modeling of failure phenomena to estimate failure risk. The PFA methodology is of particular value when information on which to base an assessment of failure risk, including test experience and knowledge of parameters used in analytical modeling, is expensive or difficult to acquire. The PFA methodology is a prescribed statistical structure in which analytical models that characterize failure phenomena are used conjointly with uncertainties about analysis parameters and/or modeling accuracy to estimate failure probability distributions for specific failure modes. These distributions can then be modified, by means of statistical procedures of the PFA methodology, to reflect any test or flight experience. State-of-the-art analytical models currently employed for designs failure prediction, or performance analysis are used in this methodology. The rationale for the statistical approach taken in the PFA methodology is discussed, the PFA methodology is described, and examples of its application to structural failure modes are presented. The engineering models and computer software used in fatigue crack growth and fatigue crack initiation applications are thoroughly documented.

  5. Strategies for Rapid Muscle Fatigue Reduction during FES Exercise in Individuals with Spinal Cord Injury: A Systematic Review.

    PubMed

    Ibitoye, Morufu Olusola; Hamzaid, Nur Azah; Hasnan, Nazirah; Abdul Wahab, Ahmad Khairi; Davis, Glen M

    2016-01-01

    Rapid muscle fatigue during functional electrical stimulation (FES)-evoked muscle contractions in individuals with spinal cord injury (SCI) is a significant limitation to attaining health benefits of FES-exercise. Delaying the onset of muscle fatigue is often cited as an important goal linked to FES clinical efficacy. Although the basic concept of fatigue-resistance has a long history, recent advances in biomedical engineering, physiotherapy and clinical exercise science have achieved improved clinical benefits, especially for reducing muscle fatigue during FES-exercise. This review evaluated the methodological quality of strategies underlying muscle fatigue-resistance that have been used to optimize FES therapeutic approaches. The review also sought to synthesize the effectiveness of these strategies for persons with SCI in order to establish their functional impacts and clinical relevance. Published scientific literature pertaining to the reduction of FES-induced muscle fatigue was identified through searches of the following databases: Science Direct, Medline, IEEE Xplore, SpringerLink, PubMed and Nature, from the earliest returned record until June 2015. Titles and abstracts were screened to obtain 35 studies that met the inclusion criteria for this systematic review. Following the evaluation of methodological quality (mean (SD), 50 (6) %) of the reviewed studies using the Downs and Black scale, the largest treatment effects reported to reduce muscle fatigue mainly investigated isometric contractions of limited functional and clinical relevance (n = 28). Some investigations (n = 13) lacked randomisation, while others were characterised by small sample sizes with low statistical power. Nevertheless, the clinical significance of emerging trends to improve fatigue-resistance during FES included (i) optimizing electrode positioning, (ii) fine-tuning of stimulation patterns and other FES parameters, (iii) adjustments to the mode and frequency of exercise training, and (iv) biofeedback-assisted FES-exercise to promote selective recruitment of fatigue-resistant motor units. Although the need for further in-depth clinical trials (especially RCTs) was clearly warranted to establish external validity of outcomes, current evidence was sufficient to support the validity of certain techniques for rapid fatigue-reduction in order to promote FES therapy as an integral part of SCI rehabilitation. It is anticipated that this information will be valuable to clinicians and other allied health professionals administering FES as a treatment option in rehabilitation and aid the development of effective rehabilitation interventions.

  6. Strategies for Rapid Muscle Fatigue Reduction during FES Exercise in Individuals with Spinal Cord Injury: A Systematic Review

    PubMed Central

    Ibitoye, Morufu Olusola; Hamzaid, Nur Azah; Hasnan, Nazirah; Abdul Wahab, Ahmad Khairi; Davis, Glen M.

    2016-01-01

    Background Rapid muscle fatigue during functional electrical stimulation (FES)-evoked muscle contractions in individuals with spinal cord injury (SCI) is a significant limitation to attaining health benefits of FES-exercise. Delaying the onset of muscle fatigue is often cited as an important goal linked to FES clinical efficacy. Although the basic concept of fatigue-resistance has a long history, recent advances in biomedical engineering, physiotherapy and clinical exercise science have achieved improved clinical benefits, especially for reducing muscle fatigue during FES-exercise. This review evaluated the methodological quality of strategies underlying muscle fatigue-resistance that have been used to optimize FES therapeutic approaches. The review also sought to synthesize the effectiveness of these strategies for persons with SCI in order to establish their functional impacts and clinical relevance. Methods Published scientific literature pertaining to the reduction of FES-induced muscle fatigue was identified through searches of the following databases: Science Direct, Medline, IEEE Xplore, SpringerLink, PubMed and Nature, from the earliest returned record until June 2015. Titles and abstracts were screened to obtain 35 studies that met the inclusion criteria for this systematic review. Results Following the evaluation of methodological quality (mean (SD), 50 (6) %) of the reviewed studies using the Downs and Black scale, the largest treatment effects reported to reduce muscle fatigue mainly investigated isometric contractions of limited functional and clinical relevance (n = 28). Some investigations (n = 13) lacked randomisation, while others were characterised by small sample sizes with low statistical power. Nevertheless, the clinical significance of emerging trends to improve fatigue-resistance during FES included (i) optimizing electrode positioning, (ii) fine-tuning of stimulation patterns and other FES parameters, (iii) adjustments to the mode and frequency of exercise training, and (iv) biofeedback-assisted FES-exercise to promote selective recruitment of fatigue-resistant motor units. Conclusion Although the need for further in-depth clinical trials (especially RCTs) was clearly warranted to establish external validity of outcomes, current evidence was sufficient to support the validity of certain techniques for rapid fatigue-reduction in order to promote FES therapy as an integral part of SCI rehabilitation. It is anticipated that this information will be valuable to clinicians and other allied health professionals administering FES as a treatment option in rehabilitation and aid the development of effective rehabilitation interventions. PMID:26859296

  7. Protocol for a systematic review of psychological interventions for cancer-related fatigue in post-treatment cancer survivors.

    PubMed

    Corbett, Teresa; Devane, Declan; Walsh, Jane C; Groarke, AnnMarie; McGuire, Brian E

    2015-12-04

    Fatigue is a common symptom in cancer patients that can persist beyond the curative treatment phase. Some evidence has been reported for interventions for fatigue during active treatment. However, to date, there is no systematic review on psychological interventions for fatigue after the completion of curative treatment for cancer. This is a protocol for a systematic review that aims to evaluate the effectiveness of psychological interventions for cancer-related fatigue in post-treatment cancer survivors. This systematic review protocol was registered with the International Prospective Register of Systematic Reviews (PROSPERO) database. We will search the Cochrane Central Register of Controlled Trials (CENTRAL; The Cochrane Library), PubMed, MEDLINE, EMBASE, CINAHL, PsycINFO, and relevant sources of grey literature. Randomised controlled trials (RCTs) which have evaluated psychological interventions in adult cancer patients after the completion of treatment, with fatigue as an outcome measure, will be included. Two review authors will independently extract data from the selected studies and assess the methodological quality using the Cochrane Collaboration Risk of Bias Tool. Most existing evidence on cancer-related fatigue is from those in active cancer treatment. This systematic review and meta-analysis will build upon previous evaluations of psychological interventions in people during and after cancer treatment. With the growing need for stage-specific research in cancer, this review seeks to highlight a gap in current practice and to strengthen the evidence base of randomised controlled trials in the area. PROSPERO CRD42014015219.

  8. An improved approach for flight readiness certification: Probabilistic models for flaw propagation and turbine blade failure. Volume 2: Software documentation

    NASA Technical Reports Server (NTRS)

    Moore, N. R.; Ebbeler, D. H.; Newlin, L. E.; Sutharshana, S.; Creager, M.

    1992-01-01

    An improved methodology for quantitatively evaluating failure risk of spaceflights systems to assess flight readiness and identify risk control measures is presented. This methodology, called Probabilistic Failure Assessment (PFA), combines operating experience from tests and flights with analytical modeling of failure phenomena to estimate failure risk. The PFA methodology is of particular value when information on which to base an assessment of failure risk, including test experience and knowledge of parameters used in analytical modeling, is expensive or difficult to acquire. The PFA methodology is a prescribed statistical structure in which analytical models that characterize failure phenomena are used conjointly with uncertainties about analysis parameters and/or modeling accuracy to estimate failure probability distributions for specific failure modes. These distributions can then be modified, by means of statistical procedures of the PFA methodology, to reflect any test or flight experience. State-of-the-art analytical models currently employed for design, failure prediction, or performance analysis are used in this methodology. The rationale for the statistical approach taken in the PFA methodology is discussed, the PFA methodology is described, and examples of its application to structural failure modes are presented. The engineering models and computer software used in fatigue crack growth and fatigue crack initiation applications are thoroughly documented.

  9. Nondestructive damage evaluation in ceramic matrix composites for aerospace applications.

    PubMed

    Dassios, Konstantinos G; Kordatos, Evangelos Z; Aggelis, Dimitrios G; Matikas, Theodore E

    2013-01-01

    Infrared thermography (IRT) and acoustic emission (AE) are the two major nondestructive methodologies for evaluating damage in ceramic matrix composites (CMCs) for aerospace applications. The two techniques are applied herein to assess and monitor damage formation and evolution in a SiC-fiber reinforced CMC loaded under cyclic and fatigue loading. The paper explains how IRT and AE can be used for the assessment of the material's performance under fatigue. IRT and AE parameters are specifically used for the characterization of the complex damage mechanisms that occur during CMC fracture, and they enable the identification of the micromechanical processes that control material failure, mainly crack formation and propagation. Additionally, these nondestructive parameters help in early prediction of the residual life of the material and in establishing the fatigue limit of materials rapidly and accurately.

  10. Development of Innovative Nondestructive Evaluation Technologies for the Inspection of Cracking and Corrosion Under Coatings

    NASA Astrophysics Data System (ADS)

    Lipetzky, Kirsten G.; Novack, Michele R.; Perez, Ignacio; Davis, William R.

    2001-11-01

    Three different innovative nondestructive evaluation technologies were developed and evaluated for the ability to detect fatigue cracks and corrosion hidden under painted aluminum panels. The three technologies included real-time ultrasound imaging, thermal imaging, and near-field microwave imaging. With each of these nondestructive inspection methods, subtasks were performed in order to optimize each methodology.

  11. A Cyclic-Plasticity-Based Mechanistic Approach for Fatigue Evaluation of 316 Stainless Steel Under Arbitrary Loading

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barua, Bipul; Mohanty, Subhasish; Listwan, Joseph T.

    In this paper, a cyclic-plasticity based fully mechanistic fatigue modeling approach is presented. This is based on time-dependent stress-strain evolution of the material over the entire fatigue life rather than just based on the end of live information typically used for empirical S~N curve based fatigue evaluation approaches. Previously we presented constant amplitude fatigue test based related material models for 316 SS base, 508 LAS base and 316 SS- 316 SS weld which are used in nuclear reactor components such as pressure vessels, nozzles, and surge line pipes. However, we found that constant amplitude fatigue data based models have limitationmore » in capturing the stress-strain evolution under arbitrary fatigue loading. To address the above mentioned limitation, in this paper, we present a more advanced approach that can be used for modeling the cyclic stress-strain evolution and fatigue life not only under constant amplitude but also under any arbitrary (random/variable) fatigue loading. The related material model and analytical model results are presented for 316 SS base metal. Two methodologies (either based on time/cycle or based on accumulated plastic strain energy) to track the material parameters at a given time/cycle are discussed and associated analytical model results are presented. From the material model and analytical cyclic plasticity model results, it is found that the proposed cyclic plasticity model can predict all the important stages of material behavior during the entire fatigue life of the specimens with more than 90% accuracy« less

  12. A Cyclic-Plasticity-Based Mechanistic Approach for Fatigue Evaluation of 316 Stainless Steel Under Arbitrary Loading

    DOE PAGES

    Barua, Bipul; Mohanty, Subhasish; Listwan, Joseph T.; ...

    2017-12-05

    In this paper, a cyclic-plasticity based fully mechanistic fatigue modeling approach is presented. This is based on time-dependent stress-strain evolution of the material over the entire fatigue life rather than just based on the end of live information typically used for empirical S~N curve based fatigue evaluation approaches. Previously we presented constant amplitude fatigue test based related material models for 316 SS base, 508 LAS base and 316 SS- 316 SS weld which are used in nuclear reactor components such as pressure vessels, nozzles, and surge line pipes. However, we found that constant amplitude fatigue data based models have limitationmore » in capturing the stress-strain evolution under arbitrary fatigue loading. To address the above mentioned limitation, in this paper, we present a more advanced approach that can be used for modeling the cyclic stress-strain evolution and fatigue life not only under constant amplitude but also under any arbitrary (random/variable) fatigue loading. The related material model and analytical model results are presented for 316 SS base metal. Two methodologies (either based on time/cycle or based on accumulated plastic strain energy) to track the material parameters at a given time/cycle are discussed and associated analytical model results are presented. From the material model and analytical cyclic plasticity model results, it is found that the proposed cyclic plasticity model can predict all the important stages of material behavior during the entire fatigue life of the specimens with more than 90% accuracy« less

  13. Test Methodology Development for Experimental Structural Assessment of ASC Planar Spring Material for Long-Term Durability

    NASA Technical Reports Server (NTRS)

    Yun, Gunjin; Abdullah, A. B. M.; Binienda, Wieslaw; Krause, David L.; Kalluri, Sreeramesh

    2014-01-01

    A vibration-based testing methodology has been developed that will assess fatigue behavior of the metallic material of construction for the Advanced Stirling Convertor displacer (planar) spring component. To minimize the testing duration, the test setup is designed for base-excitation of a multiplespecimen arrangement, driven in a high-frequency resonant mode; this allows completion of fatigue testing in an accelerated period. A high performance electro-dynamic exciter (shaker) is used to generate harmonic oscillation of cantilever beam specimens, which are clasped on the shaker armature with specially-designed clamp fixtures. The shaker operates in closed-loop control with dynamic specimen response feedback provided by a scanning laser vibrometer. A test coordinator function synchronizes the shaker controller and the laser vibrometer to complete the closed-loop scheme. The test coordinator also monitors structural health of the test specimens throughout the test period, recognizing any change in specimen dynamic behavior. As this may be due to fatigue crack initiation, the test coordinator terminates test progression and then acquires test data in an orderly manner. Design of the specimen and fixture geometry was completed by finite element analysis such that peak stress does not occur at the clamping fixture attachment points. Experimental stress evaluation was conducted to verify the specimen stress predictions. A successful application of the experimental methodology was demonstrated by validation tests with carbon steel specimens subjected to fully-reversed bending stress; high-cycle fatigue failures were induced in such specimens using higher-than-prototypical stresses

  14. Does Tai Chi relieve fatigue? A systematic review and meta-analysis of randomized controlled trials

    PubMed Central

    Xiang, Yu; Lu, Liming; Chen, Xiankun

    2017-01-01

    Background Fatigue is not only a familiar symptom in our daily lives, but also a common ailment that affects all of our bodily systems. Several randomized controlled trials (RCTs) have proven Tai Chi to be beneficial for patients suffering from fatigue, however conclusive evidence is still lacking. A systematic review and meta-analysis was performed on all RCTs reporting the effects of Tai Chi for fatigue. Methods In the end of April 2016, seven electronic databases were searched for RCTs involving Tai Chi for fatigue. The search terms mainly included Tai Chi, Tai-ji, Taiji, fatigue, tiredness, weary, weak, and the search was conducted without language restrictions. Methodological quality was assessed using the Cochrane Risk of Bias tool. RevMan 5.3 software was used for meta-analysis. Publication bias was estimated with a funnel plot and Egger’s test. We also assessed the quality of evidence with the GRADE system. Results Ten trials (n = 689) were included, and there was a high risk of bias in the blinding. Two trials were determined to have had low methodological quality. Tai Chi was found to have improved fatigue more than conventional therapy (standardized mean difference (SMD): -0.45, 95% confidence interval (CI): -0.70, -0.20) overall, and have positive effects in cancer-related fatigue (SMD:-0.38, 95% CI: -0.65, -0.11). Tai Chi was also more effective on vitality (SMD: 0.63, 95% CI: 0.20, 1.07), sleep (SMD: -0.32, 95% CI: -0.61, -0.04) and depression (SMD: -0.58, 95% CI: -1.04, -0.11). However, no significant difference was found in multiple sclerosis-related fatigue (SMD: -0.77, 95% CI: -1.76, 0.22) and age-related fatigue (SMD: -0.77, 95% CI: -1.78, 0.24). No adverse events were reported among the included studies. The quality of evidence was moderate in the GRADE system. Conclusions The results suggest that Tai Chi could be an effective alternative and /or complementary approach to existing therapies for people with fatigue. However, the quality of the evidence was only moderate and may have the potential for bias. There is still absence of adverse events data to evaluate the safety of Tai Chi. Further multi-center RCTs with large sample sizes and high methodological quality, especially carefully blinded design, should be conducted in future research. Registration number PROSPERO CRD42016033066 PMID:28380067

  15. FY16 Progress Report on Test Results In Support Of Integrated EPP and SMT Design Methods Development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yanli; Jetter, Robert I.; Sham, T. -L.

    2016-08-08

    The proposed integrated Elastic Perfectly-Plastic (EPP) and Simplified Model Test (SMT) methodology consists of incorporating an SMT data-based approach for creep-fatigue damage evaluation into the EPP methodology to avoid using the creep-fatigue interaction diagram (the D diagram) and to minimize over-conservatism while properly accounting for localized defects and stress risers. To support the implementation of the proposed code rules and to verify their applicability, a series of thermomechanical tests have been initiated. This report presents the recent test results for Type 2 SMT specimens on Alloy 617, Pressurization SMT on Alloy 617, Type 1 SMT on Gr. 91, and two-barmore » thermal ratcheting test results on Alloy 617 with a new thermal loading profile.« less

  16. Maca polysaccharides: Extraction optimization, structural features and anti-fatigue activities.

    PubMed

    Li, Yujuan; Xin, Yizhou; Xu, Fangxue; Zheng, Mengmeng; Xi, Xiaozhi; Cui, Xiaowei; Cao, Hui; Guo, Hong; Han, Chunchao

    2018-08-01

    The maca polysaccharides optimal extraction conditions were obtained by using response surface methodology (RSM) method and the anti-fatigue activity of maca polysaccharides (MCP) was explored. The maca polysaccharides extract yield of RSM could reach 9.97 mg/g by using the model predicts, and the total sugar and protein purity were 61.00% and 4.46% with the further isolation process, respectively. And the monosaccharide compositions obtained by gas chromatograph (GC) were composed of rhamnose (rha), glucose (glc), galactose (gal) with the ratio of 2.34:10.21:1.00. Furthermore, the anti-fatigue activity was evaluated by the swimming parameter, biochemistry parameters (liver glycogen (LG), blood urea nitrogen (BUN), and lactic acid (LD)), the result indicated that the low-dose maca polysaccharides group had the significant anti-fatigue activity. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Corrosion Effects on the Fatigue Crack Propagation of Giga-Grade Steel and its Heat Affected Zone in pH Buffer Solutions for Automotive Application

    NASA Astrophysics Data System (ADS)

    Lee, H. S.

    2018-03-01

    Corrosion fatigue crack propagation test was conducted of giga-grade steel and its heat affected zone in pH buffer solutions, and the results were compared with model predictions. Pure corrosion effect on fatigue crack propagation, particularly, in corrosive environment was evaluated by means of the modified Forman equation. As shown in results, the average corrosion rate determined from the ratio of pure corrosion induced crack length to entire crack length under a cycle load were 0.11 and 0.37 for base metal and heat affected zone, respectively, with load ratio of 0.5, frequency of 0.5 and pH 10.0 environment. These results demonstrate new interpretation methodology for corrosion fatigue crack propagation enabling the pure corrosion effects on the behavior to be determined.

  18. Weapons and Tactics Instructor Course 2-16 Sleep and Performance Study

    DTIC Science & Technology

    2017-03-01

    assessments showed a significant increase in self-reported fatigue as the course progressed. This thesis outlines a detailed methodology and lessons...increase in self-reported fatigue as the course progressed. This thesis outlines a detailed methodology and lessons learned for follow-on studies of...Performance as a Result of Insufficient Sleep .........23  III.  METHODOLOGY

  19. Risk of fatigue in cancer patients receiving anti-EGFR monoclonal antibodies: results from a systematic review and meta-analysis of randomized controlled trial.

    PubMed

    Zhu, Jianhong; Zhao, Wenxia; Liang, Dan; Li, Guocheng; Qiu, Kaifeng; Wu, Junyan; Li, Jianfang

    2018-04-01

    To evaluate the association between fatigue and anti-epidermal growth factor receptor monoclonal antibodies (anti-EGFR MAbs), we conducted the first meta-analysis to access the incidence and risk of fatigue associated with anti-EGFR MAbs. Electronic databases were searched for randomized controlled trials (RCTs) published up to February 2017. Eligible studies were selected according to PRISMA statement. Incidence rates, risk ratio (RRs), and 95% confidence intervals (CIs) were calculated using fixed-effects or random-effects models. Outcomes of quality were summarized in accordance with the GRADE (Grading of Recommendations Assessment, Development, and Evaluation) methodology. Thirty-five RCTs (including 15,622 patients) were included; median follow-up ranged from 8.1 to 71.4 months, and the fatigue events were recorded and graded according to the Common Toxicity Criteria for Adverse Events version 2.0 or 3.0 in most of the included trials. For patients receiving anti-EGFR MAbs, the overall incidence of all-grade and high-grade fatigue was 54.1% and 10.5%, respectively. Compared with control, anti-EGFR MAbs significantly increased the risk of all-grade fatigue (RR 1.10, 95% CI, 1.05-1.14, moderate-quality evidence) and high-grade fatigue (RR 1.31, 95% CI, 1.19-1.45, moderate-quality evidence). No significant differences among subgroup analyses (anti-EGFR MAbs, tumor type, and median follow-up) on high-grade fatigue were observed. No evidence of publication bias was observed. The present study suggested that anti-EGFR MAbs may increase the risk of fatigue in cancer patients.

  20. Profiled Roller Stress/Fatigue Life Analysis Methodology and Establishment of an Appropriate Stress/Life Exponent

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The objective of this work was to determine the three dimensional volumetric stress field, surface pressure distribution and actual contact area between a 0.50" square roller with different crown profiles and a flat raceway surface using Finite Element Analysis. The 3-dimensional stress field data was used in conjunction with several bearing fatigue life theories to extract appropriate values for stress-life exponents. Also, results of the FEA runs were used to evaluate the laminated roller model presently used for stress and life prediction.

  1. Probabilistic material strength degradation model for Inconel 718 components subjected to high temperature, high-cycle and low-cycle mechanical fatigue, creep and thermal fatigue effects

    NASA Technical Reports Server (NTRS)

    Bast, Callie C.; Boyce, Lola

    1995-01-01

    This report presents the results of both the fifth and sixth year effort of a research program conducted for NASA-LeRC by The University of Texas at San Antonio (UTSA). The research included on-going development of methodology for a probabilistic material strength degradation model. The probabilistic model, in the form of a postulated randomized multifactor equation, provides for quantification of uncertainty in the lifetime material strength of aerospace propulsion system components subjected to a number of diverse random effects. This model is embodied in the computer program entitled PROMISS, which can include up to eighteen different effects. Presently, the model includes five effects that typically reduce lifetime strength: high temperature, high-cycle mechanical fatigue, low-cycle mechanical fatigue, creep and thermal fatigue. Statistical analysis was conducted on experimental Inconel 718 data obtained from the open literature. This analysis provided regression parameters for use as the model's empirical material constants, thus calibrating the model specifically for Inconel 718. Model calibration was carried out for five variables, namely, high temperature, high-cycle and low-cycle mechanical fatigue, creep and thermal fatigue. Methodology to estimate standard deviations of these material constants for input into the probabilistic material strength model was developed. Using an updated version of PROMISS, entitled PROMISS93, a sensitivity study for the combined effects of high-cycle mechanical fatigue, creep and thermal fatigue was performed. Then using the current version of PROMISS, entitled PROMISS94, a second sensitivity study including the effect of low-cycle mechanical fatigue, as well as, the three previous effects was performed. Results, in the form of cumulative distribution functions, illustrated the sensitivity of lifetime strength to any current value of an effect. In addition, verification studies comparing a combination of high-cycle mechanical fatigue and high temperature effects by model to the combination by experiment were conducted. Thus, for Inconel 718, the basic model assumption of independence between effects was evaluated. Results from this limited verification study strongly supported this assumption.

  2. A comparison of fatigue life prediction methodologies for rotorcraft

    NASA Technical Reports Server (NTRS)

    Everett, R. A., Jr.

    1990-01-01

    Because of the current U.S. Army requirement that all new rotorcraft be designed to a 'six nines' reliability on fatigue life, this study was undertaken to assess the accuracy of the current safe life philosophy using the nominal stress Palmgrem-Miner linear cumulative damage rule to predict the fatigue life of rotorcraft dynamic components. It has been shown that this methodology can predict fatigue lives that differ from test lives by more than two orders of magnitude. A further objective of this work was to compare the accuracy of this methodology to another safe life method called the local strain approach as well as to a method which predicts fatigue life based solely on crack growth data. Spectrum fatigue tests were run on notched (k(sub t) = 3.2) specimens made of 4340 steel using the Felix/28 tests fairly well, being slightly on the unconservative side of the test data. The crack growth method, which is based on 'small crack' crack growth data and a crack-closure model, also predicted the fatigue lives very well with the predicted lives being slightly longer that the mean test lives but within the experimental scatter band. The crack growth model was also able to predict the change in test lives produced by the rainflow reconstructed spectra.

  3. Nanosecond pulsed laser micromachining for experimental fatigue life study of Ti-3Al-2.5V tubes

    NASA Astrophysics Data System (ADS)

    Lin, Yaomin; Gupta, Mool C.; Taylor, Robert E.; Lei, Charles; Stone, William; Spidel, Tom; Yu, Michael; Williams, Reanne

    2009-01-01

    Defects on external surface of in-service hydraulic tubes can reduce total life cycles for operation. Evaluation of fatigue life of the tubes with damage is thus critical for safety reasons. A methodology of generating defects in the Ti-3Al-2.5V tube—a widely used pipeline in hydraulic systems of aircrafts—using nanosecond pulsed laser for experimental fatigue life study is described in this paper. Straight tubes of five different sizes were laser micromachined to generate notches of given length and depths on the outside surface. Approaches were developed to precisely control the notch dimensions. The laser-notched tubes were tested with cyclic internal impulse pressure and fatigue life was measured. The laser notches and fatigue cracks were characterized after the test. It is concluded that laser micromachining generated consistent notches, and the influence of notch depth on fatigue life of the tube is significant. Based on the experimental test results, the relationship between the fatigue life of the Ti-3Al-2.5V tube and the notch depth was revealed. The research demonstrated that laser micromachining is applicable for experimental fatigue life study of titanium tubes. The presented test data are useful for estimating the damage limits of the titanium tubes in service environment and for further theoretical studies.

  4. Development of a Practical Methodology for Elastic-Plastic and Fully Plastic Fatigue Crack Growth

    NASA Technical Reports Server (NTRS)

    McClung, R. C.; Chell, G. G.; Lee, Y. -D.; Russell, D. A.; Orient, G. E.

    1999-01-01

    A practical engineering methodology has been developed to analyze and predict fatigue crack growth rates under elastic-plastic and fully plastic conditions. The methodology employs the closure-corrected effective range of the J-integral, delta J(sub eff) as the governing parameter. The methodology contains original and literature J and delta J solutions for specific geometries, along with general methods for estimating J for other geometries and other loading conditions, including combined mechanical loading and combined primary and secondary loading. The methodology also contains specific practical algorithms that translate a J solution into a prediction of fatigue crack growth rate or life, including methods for determining crack opening levels, crack instability conditions, and material properties. A critical core subset of the J solutions and the practical algorithms has been implemented into independent elastic-plastic NASGRO modules. All components of the entire methodology, including the NASGRO modules, have been verified through analysis and experiment, and limits of applicability have been identified.

  5. Development of a Practical Methodology for Elastic-Plastic and Fully Plastic Fatigue Crack Growth

    NASA Technical Reports Server (NTRS)

    McClung, R. C.; Chell, G. G.; Lee, Y.-D.; Russell, D. A.; Orient, G. E.

    1999-01-01

    A practical engineering methodology has been developed to analyze and predict fatigue crack growth rates under elastic-plastic and fully plastic conditions. The methodology employs the closure-corrected effective range of the J-integral, (Delta)J(sub eff), as the governing parameter. The methodology contains original and literature J and (Delta)J solutions for specific geometries, along with general methods for estimating J for other geometries and other loading conditions, including combined mechanical loading and combined primary and secondary loading. The methodology also contains specific practical algorithms that translate a J solution into a prediction of fatigue crack growth rate or life, including methods for determining crack opening levels, crack instability conditions, and material properties. A critical core subset of the J solutions and the practical algorithms has been implemented into independent elastic-plastic NASGRO modules. All components of the entire methodology, including the NASGRO modules, have been verified through analysis and experiment, and limits of applicability have been identified.

  6. Fatigue criterion to system design, life and reliability

    NASA Technical Reports Server (NTRS)

    Zaretsky, E. V.

    1985-01-01

    A generalized methodology to structural life prediction, design, and reliability based upon a fatigue criterion is advanced. The life prediction methodology is based in part on work of W. Weibull and G. Lundberg and A. Palmgren. The approach incorporates the computed life of elemental stress volumes of a complex machine element to predict system life. The results of coupon fatigue testing can be incorporated into the analysis allowing for life prediction and component or structural renewal rates with reasonable statistical certainty.

  7. Strength, Fracture Toughness, Fatigue, and Standardization Issues of Free-standing Thermal Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Choi, Sung R.; Zhu, Dong-Ming; Miller, Robert A.

    2003-01-01

    Strength, fracture toughness and fatigue behavior of free-standing thick thermal barrier coatings of plasma-sprayed ZrO2-8wt % Y2O3 were determined at ambient and elevated temperatures in an attempt to establish a database for design. Strength, in conjunction with deformation (stress-strain behavior), was evaluated in tension (uniaxial and trans-thickness), compression, and uniaxial and biaxial flexure; fracture toughness was determined in various load conditions including mode I, mode II, and mixed modes I and II; fatigue or slow crack growth behavior was estimated in cyclic tension and dynamic flexure loading. Effect of sintering was quantified through approaches using strength, fracture toughness, and modulus (constitutive relations) measurements. Standardization issues on test methodology also was presented with a special regard to material's unique constitutive relations.

  8. Corrosion and corrosion fatigue of airframe aluminum alloys

    NASA Technical Reports Server (NTRS)

    Chen, G. S.; Gao, M.; Harlow, D. G.; Wei, R. P.

    1994-01-01

    Localized corrosion and corrosion fatigue crack nucleation and growth are recognized as degradation mechanisms that effect the durability and integrity of commercial transport aircraft. Mechanically based understanding is needed to aid the development of effective methodologies for assessing durability and integrity of airframe components. As a part of the methodology development, experiments on pitting corrosion, and on corrosion fatigue crack nucleation and early growth from these pits were conducted. Pitting was found to be associated with constituent particles in the alloys and pit growth often involved coalescence of individual particle-nucleated pits, both laterally and in depth. Fatigue cracks typically nucleated from one of the larger pits that formed by a cluster of particles. The size of pit at which fatigue crack nucleates is a function of stress level and fatigue loading frequency. The experimental results are summarized, and their implications on service performance and life prediction are discussed.

  9. Analytical Methodology for Predicting the Onset of Widespread Fatigue Damage in Fuselage Structure

    NASA Technical Reports Server (NTRS)

    Harris, Charles E.; Newman, James C., Jr.; Piascik, Robert S.; Starnes, James H., Jr.

    1996-01-01

    NASA has developed a comprehensive analytical methodology for predicting the onset of widespread fatigue damage in fuselage structure. The determination of the number of flights and operational hours of aircraft service life that are related to the onset of widespread fatigue damage includes analyses for crack initiation, fatigue crack growth, and residual strength. Therefore, the computational capability required to predict analytically the onset of widespread fatigue damage must be able to represent a wide range of crack sizes from the material (microscale) level to the global structural-scale level. NASA studies indicate that the fatigue crack behavior in aircraft structure can be represented conveniently by the following three analysis scales: small three-dimensional cracks at the microscale level, through-the-thickness two-dimensional cracks at the local structural level, and long cracks at the global structural level. The computational requirements for each of these three analysis scales are described in this paper.

  10. Systematic Review Methodology for the Fatigue in Emergency Medical Services Project.

    PubMed

    Patterson, P Daniel; Higgins, J Stephen; Weiss, Patricia M; Lang, Eddy; Martin-Gill, Christian

    2018-02-15

    Guidance for managing fatigue in the Emergency Medical Services (EMS) setting is limited. The Fatigue in EMS Project sought to complete multiple systematic reviews guided by seven explicit research questions, assemble the best available evidence, and rate the quality of that evidence for purposes of producing an Evidence Based Guideline (EBG) for fatigue risk management in EMS operations. We completed seven systematic reviews that involved searches of six databases for literature relevant to seven research questions. These questions were developed a priori by an expert panel and framed in the Population, Intervention, Comparison, and Outcome (PICO) format and pre-registered with PROSPERO. Our target population was defined as persons 18 years of age and older classified as EMS personnel or similar shift worker groups. A panel of experts selected outcomes for each PICO question as prescribed by the Grading of Recommendations, Assessment, Development, and Evaluation (GRADE) methodology. We pooled findings, stratified by study design (experimental vs. observational) and presented results of each systematic review in narrative and quantitative form. We used meta-analyses of select outcomes to generate pooled effects. We used the GRADE methodology and the GRADEpro software to designate a quality of evidence rating for each outcome. We present the results for each systematic review in accordance with the Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA). More than 38,000 records were screened across seven systematic reviews. The median, minimum, and maximum inter-rater agreements (Kappa) between screeners for our seven systematic reviews were 0.66, 0.49, and 0.88, respectively. The median, minimum, and maximum number of records retained for the seven systematic reviews was 13, 1, and 100, respectively. We present key findings in GRADE Evidence Profile Tables in separate publications for each systematic review. We describe a protocol for conducting multiple, simultaneous systematic reviews connected to fatigue with the goal of creating an EBG for fatigue risk management in the EMS setting. Our approach may be informative to others challenged with the creation of EBGs that address multiple, inter-related systematic reviews with overlapping outcomes.

  11. Development and Application of a Clinical Microsystem Simulation Methodology for Human Factors-Based Research of Alarm Fatigue.

    PubMed

    Kobayashi, Leo; Gosbee, John W; Merck, Derek L

    2017-07-01

    (1) To develop a clinical microsystem simulation methodology for alarm fatigue research with a human factors engineering (HFE) assessment framework and (2) to explore its application to the comparative examination of different approaches to patient monitoring and provider notification. Problems with the design, implementation, and real-world use of patient monitoring systems result in alarm fatigue. A multidisciplinary team is developing an open-source tool kit to promote bedside informatics research and mitigate alarm fatigue. Simulation, HFE, and computer science experts created a novel simulation methodology to study alarm fatigue. Featuring multiple interconnected simulated patient scenarios with scripted timeline, "distractor" patient care tasks, and triggered true and false alarms, the methodology incorporated objective metrics to assess provider and system performance. Developed materials were implemented during institutional review board-approved study sessions that assessed and compared an experimental multiparametric alerting system with a standard monitor telemetry system for subject response, use characteristics, and end-user feedback. A four-patient simulation setup featuring objective metrics for participant task-related performance and response to alarms was developed along with accompanying structured HFE assessment (questionnaire and interview) for monitor systems use testing. Two pilot and four study sessions with individual nurse subjects elicited true alarm and false alarm responses (including diversion from assigned tasks) as well as nonresponses to true alarms. In-simulation observation and subject questionnaires were used to test the experimental system's approach to suppressing false alarms and alerting providers. A novel investigative methodology applied simulation and HFE techniques to replicate and study alarm fatigue in controlled settings for systems assessment and experimental research purposes.

  12. Delamination onset in polymeric composite laminates under thermal and mechanical loads

    NASA Technical Reports Server (NTRS)

    Martin, Roderick H.

    1991-01-01

    A fracture mechanics damage methodology to predict edge delamination is described. The methodology accounts for residual thermal stresses, cyclic thermal stresses, and cyclic mechanical stresses. The modeling is based on the classical lamination theory and a sublaminate theory. The prediction methodology determines the strain energy release rate, G, at the edge of a laminate and compares it with the fatigue and fracture toughness of the composite. To verify the methodology, isothermal static tests at 23, 125, and 175 C and tension-tension fatigue tests at 23 and 175 C were conducted on laminates. The material system used was a carbon/bismaleimide, IM7/5260. Two quasi-isotropic layups were used. Also, 24 ply unidirectional double cantilever beam specimens were tested to determine the fatigue and fracture toughness of the composite at different temperatures. Raising the temperature had the effect of increasing the value of G at the edge for these layups and also to lower the fatigue and fracture toughness of the composite. The static stress to edge delamination was not affected by temperature but the number of cycles to edge delamination decreased.

  13. Systematic Review Methodology for the Fatigue in Emergency Medical Services Project

    DOT National Transportation Integrated Search

    2018-01-11

    Background: Guidance for managing fatigue in the Emergency Medical Services (EMS) setting is limited. The Fatigue in EMS Project sought to complete multiple systematic reviews guided by seven explicit research questions, assemble the best available e...

  14. A New Perspective on Fatigue Performance of Advanced High- Strength Steels (AHSS) GMAW Joints

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, Zhili; Chiang, Dr. John; Kuo, Dr. Min

    2008-01-01

    Weld fatigue performance is a critical aspect for application of advanced high-strength steels (AHSS) in automotive body structures. A comparative study has been conducted to evaluate the fatigue life of AHSS welds. The material studied included seven AHSS of various strength levels - DP 600, DP 780, DP 980, M130, M220, solution annealed boron and fully hardened boron steels. Two conventional steels, HSLA 590 and DR 210, were also included for baseline comparison. Lap fillet welds were made on 2-mm nominal thick sheets by the gas metal arc welding process (GMAW). Fatigue test was conducted under a number of stressmore » levels to obtain the S/N curves of the weld joints. It was found that, unlike in the static and impact loading conditions, the fatigue performance of AHSS is not influenced by the HAZ softening in AHSS. There are appreciable differences in the fatigue lives among different AHSS. Changes in weld parameters can influence the fatigue life of the weld joints, particularly of these of higher strength AHSS. A model is developed to predict the fatigue performance of AHSS welds. The validity of the model is benchmarked with the experimental results. This model is capable to capture the effects of weld geometry and weld microstructure and strength on the fatigue performance experimentally observed. The theoretical basis and application of the newly developed fatigue modeling methodology will be discussed.« less

  15. Stochastic model for fatigue crack size and cost effective design decisions. [for aerospace structures

    NASA Technical Reports Server (NTRS)

    Hanagud, S.; Uppaluri, B.

    1975-01-01

    This paper describes a methodology for making cost effective fatigue design decisions. The methodology is based on a probabilistic model for the stochastic process of fatigue crack growth with time. The development of a particular model for the stochastic process is also discussed in the paper. The model is based on the assumption of continuous time and discrete space of crack lengths. Statistical decision theory and the developed probabilistic model are used to develop the procedure for making fatigue design decisions on the basis of minimum expected cost or risk function and reliability bounds. Selections of initial flaw size distribution, NDT, repair threshold crack lengths, and inspection intervals are discussed.

  16. A methodology to predict damage initiation, damage growth and residual strength in titanium matrix composites

    NASA Technical Reports Server (NTRS)

    Bakuckas, J. G., Jr.; Johnson, W. S.

    1994-01-01

    In this research, a methodology to predict damage initiation, damage growth, fatigue life, and residual strength in titanium matrix composites (TMC) is outlined. Emphasis was placed on micromechanics-based engineering approaches. Damage initiation was predicted using a local effective strain approach. A finite element analysis verified the prevailing assumptions made in the formulation of this model. Damage growth, namely, fiber-bridged matrix crack growth, was evaluated using a fiber bridging (FB) model which accounts for thermal residual stresses. This model combines continuum fracture mechanics and micromechanics analyses yielding stress-intensity factor solutions for fiber-bridged matrix cracks. It is assumed in the FB model that fibers in the wake of the matrix crack are idealized as a closure pressure, and an unknown constant frictional shear stress is assumed to act along the debond length of the bridging fibers. This frictional shear stress was used as a curve fitting parameter to the available experimental data. Fatigue life and post-fatigue residual strength were predicted based on the axial stress in the first intact 0 degree fiber calculated using the FB model and a three-dimensional finite element analysis.

  17. Advanced High Cycle Fatigue (HCF) Life Assurance Methodologies

    DTIC Science & Technology

    2004-07-01

    Fatigue in 2024 - T351 Aluminum Alloy , Wear, 221(1), pp 24-36 (1998) 27. Doner, M., Bain, K.R., and Adams, J.H... alloy , PWA 1484, where temperature and orientation effects both have to be taken into account. Both fracture mechanics and fatigue life methods... effect on predicted fatigue life . On average, the fatigue life is several orders of magnitude less when residual stresses are included. The

  18. Application of Steinberg vibration fatigue model for structural verification of space instruments

    NASA Astrophysics Data System (ADS)

    García, Andrés; Sorribes-Palmer, Félix; Alonso, Gustavo

    2018-01-01

    Electronic components in spaceships are subjected to vibration loads during the ascent phase of the launcher. It is important to verify by tests and analysis that all parts can survive in the most severe load cases. The purpose of this paper is to present the methodology and results of the application of the Steinberg's fatigue model to estimate the life of electronic components of the EPT-HET instrument for the Solar Orbiter space mission. A Nastran finite element model (FEM) of the EPT-HET instrument was created and used for the structural analysis. The methodology is based on the use of the FEM of the entire instrument to calculate the relative displacement RDSD and RMS values of the PCBs from random vibration analysis. These values are used to estimate the fatigue life of the most susceptible electronic components with the Steinberg's fatigue damage equation and the Miner's cumulative fatigue index. The estimations are calculated for two different configurations of the instrument and three different inputs in order to support the redesign process. Finally, these analytical results are contrasted with the inspections and the functional tests made after the vibration tests, concluding that this methodology can adequately predict the fatigue damage or survival of the electronic components.

  19. DETERMINATION OF THE CREEP–FATIGUE INTERACTION DIAGRAM FOR ALLOY 617

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wright, J. K.; Carroll, L. J.; Sham, T. -L.

    Alloy 617 is the leading candidate material for an intermediate heat exchanger for the very high temperature reactor. To evaluate the behavior of this material in the expected service conditions, creep-fatigue testing was performed. Testing has been performed primarily on a single heat of material at 850 and 950°C for total strain ranges of 0.3 to 1% and tensile hold times as long as 240 minutes. At 850°C, increases in the tensile hold duration degraded the creep fatigue resistance, at least to the investigated strain-controlled hold time of up to 60 minutes at the 0.3% strain range and 240 minutesmore » at the 1.0% strain range. At 950°C, the creep-fatigue cycles to failure becomes constant with increasing hold times, indicating saturation occurs at relatively short hold times. The creep and fatigue damage fractions have been calculated and plotted on a creep-fatigue interaction D-diagram. Results from earlier creep-fatigue tests at 800 and 1000°C on an additional heat of Alloy 617 are also plotted on the D-diagram. The methodology for calculating the damage fractions will be presented, and the effects of strain rate, strain range, temperature, hold time, and strain profile (i.e. holds in tension, compression or both) on the creep-fatigue damage will be explored.« less

  20. Exercise therapy for fatigue in multiple sclerosis.

    PubMed

    Heine, Martin; van de Port, Ingrid; Rietberg, Marc B; van Wegen, Erwin E H; Kwakkel, Gert

    2015-09-11

    Multiple sclerosis (MS) is an immune-mediated disease of the central nervous system affecting an estimated 1.3 million people worldwide. It is characterised by a variety of disabling symptoms of which excessive fatigue is the most frequent. Fatigue is often reported as the most invalidating symptom in people with MS. Various mechanisms directly and indirectly related to the disease and physical inactivity have been proposed to contribute to the degree of fatigue. Exercise therapy can induce physiological and psychological changes that may counter these mechanisms and reduce fatigue in MS. To determine the effectiveness and safety of exercise therapy compared to a no-exercise control condition or another intervention on fatigue, measured with self-reported questionnaires, of people with MS. We searched the Cochrane Multiple Sclerosis and Rare Diseases of the Central Nervous System Group Trials Specialised Register, which, among other sources, contains trials from: the Cochrane Central Register of Controlled Trials (CENTRAL) (2014, Issue 10), MEDLINE (from 1966 to October 2014), EMBASE (from 1974 to October 2014), CINAHL (from 1981 to October 2014), LILACS (from 1982 to October 2014), PEDro (from 1999 to October 2014), and Clinical trials registries (October 2014). Two review authors independently screened the reference lists of identified trials and related reviews. We included randomized controlled trials (RCTs) evaluating the efficacy of exercise therapy compared to no exercise therapy or other interventions for adults with MS that included subjective fatigue as an outcome. In these trials, fatigue should have been measured using questionnaires that primarily assessed fatigue or sub-scales of questionnaires that measured fatigue or sub-scales of questionnaires not primarily designed for the assessment of fatigue but explicitly used as such. Two review authors independently selected the articles, extracted data, and determined methodological quality of the included trials. Methodological quality was determined by means of the Cochrane 'risk of bias' tool and the PEDro scale. The combined body of evidence was summarised using the GRADE approach. The results were aggregated using meta-analysis for those trials that provided sufficient data to do so. Forty-five trials, studying 69 exercise interventions, were eligible for this review, including 2250 people with MS. The prescribed exercise interventions were categorised as endurance training (23 interventions), muscle power training (nine interventions), task-oriented training (five interventions), mixed training (15 interventions), or 'other' (e.g. yoga; 17 interventions). Thirty-six included trials (1603 participants) provided sufficient data on the outcome of fatigue for meta-analysis. In general, exercise interventions were studied in mostly participants with the relapsing-remitting MS phenotype, and with an Expanded Disability Status Scale less than 6.0. Based on 26 trials that used a non-exercise control, we found a significant effect on fatigue in favour of exercise therapy (standardized mean difference (SMD) -0.53, 95% confidence interval (CI) -0.73 to -0.33; P value < 0.01). However, there was significant heterogeneity between trials (I(2) > 58%). The mean methodological quality, as well as the combined body of evidence, was moderate. When considering the different types of exercise therapy, we found a significant effect on fatigue in favour of exercise therapy compared to no exercise for endurance training (SMDfixed effect -0.43, 95% CI -0.69 to -0.17; P value < 0.01), mixed training (SMDrandom effect -0.73, 95% CI -1.23 to -0.23; P value < 0.01), and 'other' training (SMDfixed effect -0.54, 95% CI -0.79 to -0.29; P value < 0.01). Across all studies, one fall was reported. Given the number of MS relapses reported for the exercise condition (N = 25) and non-exercise control condition (N = 26), exercise does not seem to be associated with a significant risk of a MS relapse. However, in general, MS relapses were defined and reported poorly. Exercise therapy can be prescribed in people with MS without harm. Exercise therapy, and particularly endurance, mixed, or 'other' training, may reduce self reported fatigue. However, there are still some important methodological issues to overcome. Unfortunately, most trials did not explicitly include people who experienced fatigue, did not target the therapy on fatigue specifically, and did not use a validated measure of fatigue as the primary measurement of outcome.

  1. Probabilistic fatigue methodology for six nines reliability

    NASA Technical Reports Server (NTRS)

    Everett, R. A., Jr.; Bartlett, F. D., Jr.; Elber, Wolf

    1990-01-01

    Fleet readiness and flight safety strongly depend on the degree of reliability that can be designed into rotorcraft flight critical components. The current U.S. Army fatigue life specification for new rotorcraft is the so-called six nines reliability, or a probability of failure of one in a million. The progress of a round robin which was established by the American Helicopter Society (AHS) Subcommittee for Fatigue and Damage Tolerance is reviewed to investigate reliability-based fatigue methodology. The participants in this cooperative effort are in the U.S. Army Aviation Systems Command (AVSCOM) and the rotorcraft industry. One phase of the joint activity examined fatigue reliability under uniquely defined conditions for which only one answer was correct. The other phases were set up to learn how the different industry methods in defining fatigue strength affected the mean fatigue life and reliability calculations. Hence, constant amplitude and spectrum fatigue test data were provided so that each participant could perform their standard fatigue life analysis. As a result of this round robin, the probabilistic logic which includes both fatigue strength and spectrum loading variability in developing a consistant reliability analysis was established. In this first study, the reliability analysis was limited to the linear cumulative damage approach. However, it is expected that superior fatigue life prediction methods will ultimately be developed through this open AHS forum. To that end, these preliminary results were useful in identifying some topics for additional study.

  2. Does Implementation of Biomathematical Models Mitigate Fatigue and Fatigue-related Risks in Emergency Medical Services Operations? A Systematic Review.

    PubMed

    James, Francine O; Waggoner, Lauren B; Weiss, Patricia M; Patterson, P Daniel; Higgins, J Stephen; Lang, Eddy S; Van Dongen, Hans P A

    2018-02-15

    Work schedules like those of Emergency Medical Services (EMS) personnel have been associated with increased risk of fatigue-related impairment. Biomathematical modeling is a means of objectively estimating the potential impacts of fatigue on performance, which may be used in the mitigation of fatigue-related safety risks. In the context of EMS operations, our objective was to assess the evidence in the literature regarding the effectiveness of using biomathematical models to help mitigate fatigue and fatigue-related risks. A systematic review of the evidence evaluating the use of biomathematical models to manage fatigue in EMS personnel or similar shift workers was performed. Procedures proposed by the Grading of Recommendations, Assessment, Development, and Evaluation (GRADE) methodology were used to summarize and rate the certainty in the evidence. Potential bias attached to retained studies was documented using the Cochrane Collaboration's Risk of Bias tool for experimental studies. The literature search strategy, which focused on both EMS personnel and non-EMS shift workers, yielded n = 2,777 unique records. One paper, which investigated non-EMS shift workers, met inclusion criteria. As part of a larger effort, managers and dispatchers of a trucking operation were provided with monthly biomathematical model analyses of predicted fatigue in the driver workforce, and educated on how they could reduce predicted fatigue by means of schedule adjustments. The intervention showed a significant reduction in the number and cost of vehicular accidents during the period in which biomathematical modeling was used. The overall GRADE assessment of evidence quality was very low due to risk of bias, indirectness, imprecision, and publication bias. This systematic review identified no studies that investigated the impact of biomathematical models in EMS operations. Findings from one study of non-EMS shift workers were favorable toward use of biomathematical models as a fatigue mitigation scheduling aid, albeit with very low quality of evidence pertaining to EMS operations. We propose three focus areas of research priorities that, if addressed, could help better elucidate the utility and impact of biomathematical models as a fatigue-mitigation tool in the EMS environment.

  3. Reliability and Validity of Survey Instruments to Measure Work-Related Fatigue in the Emergency Medical Services Setting: A Systematic Review.

    PubMed

    Patterson, P Daniel; Weaver, Matthew D; Fabio, Anthony; Teasley, Ellen M; Renn, Megan L; Curtis, Brett R; Matthews, Margaret E; Kroemer, Andrew J; Xun, Xiaoshuang; Bizhanova, Zhadyra; Weiss, Patricia M; Sequeira, Denisse J; Coppler, Patrick J; Lang, Eddy S; Higgins, J Stephen

    2018-02-15

    This study sought to systematically search the literature to identify reliable and valid survey instruments for fatigue measurement in the Emergency Medical Services (EMS) occupational setting. A systematic review study design was used and searched six databases, including one website. The research question guiding the search was developed a priori and registered with the PROSPERO database of systematic reviews: "Are there reliable and valid instruments for measuring fatigue among EMS personnel?" (2016:CRD42016040097). The primary outcome of interest was criterion-related validity. Important outcomes of interest included reliability (e.g., internal consistency), and indicators of sensitivity and specificity. Members of the research team independently screened records from the databases. Full-text articles were evaluated by adapting the Bolster and Rourke system for categorizing findings of systematic reviews, and the rated data abstracted from the body of literature as favorable, unfavorable, mixed/inconclusive, or no impact. The Grading of Recommendations, Assessment, Development and Evaluation (GRADE) methodology was used to evaluate the quality of evidence. The search strategy yielded 1,257 unique records. Thirty-four unique experimental and non-experimental studies were determined relevant following full-text review. Nineteen studies reported on the reliability and/or validity of ten different fatigue survey instruments. Eighteen different studies evaluated the reliability and/or validity of four different sleepiness survey instruments. None of the retained studies reported sensitivity or specificity. Evidence quality was rated as very low across all outcomes. In this systematic review, limited evidence of the reliability and validity of 14 different survey instruments to assess the fatigue and/or sleepiness status of EMS personnel and related shift worker groups was identified.

  4. Real-time Fatigue and Free-Living Physical Activity in Hematopoietic Stem Cell Transplantation Cancer Survivors and Healthy Controls: A Preliminary Examination of the Temporal, Dynamic Relationship.

    PubMed

    Hacker, Eileen Danaher; Kim, Inah; Park, Chang; Peters, Tara

    Fatigue and physical inactivity, critical problems facing cancer survivors, impact overall health and functioning. Our group designed a novel methodology to evaluate the temporal, dynamic patterns in real-world settings. Using real-time technology, the temporal, dynamic relationship between real-time fatigue and free-living is described and compared in cancer survivors who were treated with hematopoietic stem cell transplantation (n = 25) and age- and gender-matched healthy controls (n = 25). Subjects wore wrist actigraphs on their nondominant hand to assess free-living physical activity, measured in 1-minute epochs, over 7 days. Subjects entered real-time fatigue assessments directly into the subjective event marker of the actigraph 5 times per day. Running averages of mean 1-minute activity counts 30, 60, and 120 minutes before and after each real-time fatigue score were correlated with real-time fatigue using generalized estimating equations, RESULTS:: A strong inverse relationship exists between real-time fatigue and subsequent free-living physical activity. This inverse relationship suggests that increasing real-time fatigue limits subsequent physical activity (B range= -0.002 to -0.004; P < .001). No significant differences in the dynamic patterns of real-time fatigue and free-living physical activity were found between groups. To our knowledge, this is the first study to document the temporal and potentially causal relationship between real-time fatigue and free-living physical activity in real-world setting. These findings suggest that fatigue drives the subsequent physical activity and the relationship may not be bidirectional. Understanding the temporal, dynamic relationship may have important health implications for developing interventions to address fatigue in cancer survivors.

  5. Cancer-related fatigue management: evaluation of a patient education program with a large-scale randomised controlled trial, the PEPs fatigue study.

    PubMed

    Bourmaud, A; Anota, A; Moncharmont, C; Tinquaut, F; Oriol, M; Trillet-Lenoir, V; Bajard, A; Parnalland, S; Rotonda, C; Bonnetain, F; Pérol, D; Chauvin, F

    2017-03-28

    To assess the efficacy of a patient educational program built according to guidelines that aims at reducing cancer-related fatigue (CRF). Randomised controlled trial, multicentre, comparing a patient education program, vs the standard of care. Patients were adult cancer outpatients with any tumour site. The primary outcome was fatigue severity assessed with a visual analogical scale (VAS), between the day of randomisation and week 7. Secondary outcomes were fatigue assessed with other scales, health-related quality of life, anxiety and depression. The time to fatigue severity deterioration was assessed. Analyses were performed in a modified intent-to-treat way, that is, including all patients with at least one baseline and 1 week 7 score. A total of 212 patients were included. Fatigue severity assessment was made on 79 patients in the experimental group and 65 in the control group. Between randomisation and week 7, the fatigue (VAS) improved by 0.96 (2.85) points in the experimental group vs 1.63 (2.63) points in the control group (P=0.15). No differences with the secondary outcomes were highlighted between two groups. No other factors were found to be associated with fatigue severity deterioration. Despite rigorous methodology, this study failed to highlight the program efficacy in fatigue reduction for cancer patients. Other assessment tools should be developed to measure the effect of the program on CRF and behaviour. The implementation of the program should also be explored in order to identify its mechanisms and longer-term impact.

  6. Cancer-related fatigue management: evaluation of a patient education program with a large-scale randomised controlled trial, the PEPs fatigue study

    PubMed Central

    Bourmaud, A; Anota, A; Moncharmont, C; Tinquaut, F; Oriol, M; Trillet-Lenoir, V; Bajard, A; Parnalland, S; Rotonda, C; Bonnetain, F; Pérol, D; Chauvin, F

    2017-01-01

    Background: To assess the efficacy of a patient educational program built according to guidelines that aims at reducing cancer-related fatigue (CRF). Methods: Randomised controlled trial, multicentre, comparing a patient education program, vs the standard of care. Patients were adult cancer outpatients with any tumour site. The primary outcome was fatigue severity assessed with a visual analogical scale (VAS), between the day of randomisation and week 7. Secondary outcomes were fatigue assessed with other scales, health-related quality of life, anxiety and depression. The time to fatigue severity deterioration was assessed. Analyses were performed in a modified intent-to-treat way, that is, including all patients with at least one baseline and 1 week 7 score. Results: A total of 212 patients were included. Fatigue severity assessment was made on 79 patients in the experimental group and 65 in the control group. Between randomisation and week 7, the fatigue (VAS) improved by 0.96 (2.85) points in the experimental group vs 1.63 (2.63) points in the control group (P=0.15). No differences with the secondary outcomes were highlighted between two groups. No other factors were found to be associated with fatigue severity deterioration. Conclusions: Despite rigorous methodology, this study failed to highlight the program efficacy in fatigue reduction for cancer patients. Other assessment tools should be developed to measure the effect of the program on CRF and behaviour. The implementation of the program should also be explored in order to identify its mechanisms and longer-term impact. PMID:28196066

  7. A recursive Bayesian approach for fatigue damage prognosis: An experimental validation at the reliability component level

    NASA Astrophysics Data System (ADS)

    Gobbato, Maurizio; Kosmatka, John B.; Conte, Joel P.

    2014-04-01

    Fatigue-induced damage is one of the most uncertain and highly unpredictable failure mechanisms for a large variety of mechanical and structural systems subjected to cyclic and random loads during their service life. A health monitoring system capable of (i) monitoring the critical components of these systems through non-destructive evaluation (NDE) techniques, (ii) assessing their structural integrity, (iii) recursively predicting their remaining fatigue life (RFL), and (iv) providing a cost-efficient reliability-based inspection and maintenance plan (RBIM) is therefore ultimately needed. In contribution to these objectives, the first part of the paper provides an overview and extension of a comprehensive reliability-based fatigue damage prognosis methodology — previously developed by the authors — for recursively predicting and updating the RFL of critical structural components and/or sub-components in aerospace structures. In the second part of the paper, a set of experimental fatigue test data, available in the literature, is used to provide a numerical verification and an experimental validation of the proposed framework at the reliability component level (i.e., single damage mechanism evolving at a single damage location). The results obtained from this study demonstrate (i) the importance and the benefits of a nearly continuous NDE monitoring system, (ii) the efficiency of the recursive Bayesian updating scheme, and (iii) the robustness of the proposed framework in recursively updating and improving the RFL estimations. This study also demonstrates that the proposed methodology can lead to either an extent of the RFL (with a consequent economical gain without compromising the minimum safety requirements) or an increase of safety by detecting a premature fault and therefore avoiding a very costly catastrophic failure.

  8. Numerical fatigue 3D-FE modeling of indirect composite-restored posterior teeth.

    PubMed

    Ausiello, Pietro; Franciosa, Pasquale; Martorelli, Massimo; Watts, David C

    2011-05-01

    In restored teeth, stresses at the tooth-restoration interface during masticatory processes may fracture the teeth or the restoration and cracks may grow and propagate. The aim was to apply numerical methodologies to simulate the behavior of a restored tooth and to evaluate fatigue lifetimes before crack failure. Using a CAD-FEM procedure and fatigue mechanic laws, the fatigue damage of a restored molar was numerically estimated. Tessellated surfaces of enamel and dentin were extracted by applying segmentation and classification algorithms, to sets of 2D image data. A user-friendly GUI, which enables selection and visualization of 3D tessellated surfaces, was developed in a MatLab(®) environment. The tooth-boundary surfaces of enamel and dentin were then created by sweeping operations through cross-sections. A class II MOD cavity preparation was then added into the 3D model and tetrahedral mesh elements were generated. Fatigue simulation was performed by combining a preliminary static FEA simulation with classical fatigue mechanical laws. Regions with the shortest fatigue-life were located around the fillets of the class II MOD cavity, where the static stress was highest. The described method can be successfully adopted to generate detailed 3D-FE models of molar teeth, with different cavities and restorative materials. This method could be quickly implemented for other dental or biomechanical applications. Copyright © 2010 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  9. Parkinson's disease-related fatigue: A case definition and recommendations for clinical research.

    PubMed

    Kluger, Benzi M; Herlofson, Karen; Chou, Kelvin L; Lou, Jau-Shin; Goetz, Christopher G; Lang, Anthony E; Weintraub, Daniel; Friedman, Joseph

    2016-05-01

    Fatigue is one of the most common and disabling symptoms in Parkinson's disease (PD). Since fatigue was first described as a common feature of PD 20 years ago, little progress has been made in understanding its causes or treatment. Importantly, PD patients attending the 2013 World Parkinson Congress voted fatigue as the leading symptom in need of further research. In response, the Parkinson Disease Foundation and ProjectSpark assembled an international team of experts to create recommendations for clinical research to advance this field. The working group identified several areas in which shared standards would improve research quality and foster progress including terminology, diagnostic criteria, and measurement. Terminology needs to (1) clearly distinguish fatigue from related phenomena (eg, sleepiness, apathy, depression); (2) differentiate subjective fatigue complaints from objective performance fatigability; and (3) specify domains affected by fatigue and causal factors. We propose diagnostic criteria for PD-related fatigue to guide participant selection for clinical trials and add rigor to mechanistic studies. Recommendations are made for measurement of subjective fatigue complaints, performance fatigability, and neurophysiologic changes. We also suggest areas in which future research is needed to address methodological issues and validate or optimize current practices. Many limitations in current PD-related fatigue research may be addressed by improving methodological standards, many of which are already being successfully applied in clinical fatigue research in other medical conditions (eg, cancer, multiple sclerosis). © 2016 International Parkinson and Movement Disorder Society. © 2016 International Parkinson and Movement Disorder Society.

  10. Determinants of seafarers' fatigue: a systematic review and quality assessment.

    PubMed

    Dohrmann, Solveig Boeggild; Leppin, Anja

    2017-01-01

    Fatigue jeopardizes seafarer's health and safety. Thus, knowledge on determinants of fatigue is of great importance to facilitate its prevention. However, a systematic analysis and quality assessment of all empirical evidence specifically for fatigue are still lacking. The aim of the present article was therefore to systematically detect, analyze and assess the quality of this evidence. Systematic searches in ten databases were performed. Searches considered articles published in scholarly journals from 1980 to April 15, 2016. Nineteen out of 98 eligible studies were included in the review. The main reason for exclusion was fatigue not being the outcome variable. Most evidence was available for work time-related factors suggesting that working nights was most fatiguing, that fatigue levels were higher toward the end of watch or shift, and that the 6-h on-6-h off watch system was the most fatiguing. Specific work demands and particularly the psychosocial work environment have received little attention, but preliminary evidence suggests that stress may be an important factor. A majority of 12 studies were evaluated as potentially having a high risk of bias. Realistic countermeasures ought to be established, e.g., in terms of shared or split night shifts. As internal as well as external validity of many study findings was limited, the range of factors investigated was insufficient and few studies investigated more complex interactions between different factors, knowledge derived from studies of high methodological quality investigating different factors, including psychosocial work environments, are needed to support future preventive programs.

  11. Hybrid test on building structures using electrodynamic fatigue test machine

    NASA Astrophysics Data System (ADS)

    Xu, Zhao-Dong; Wang, Kai-Yang; Guo, Ying-Qing; Wu, Min-Dong; Xu, Meng

    2017-01-01

    Hybrid simulation is an advanced structural dynamic experimental method that combines experimental physical models with analytical numerical models. It has increasingly been recognised as a powerful methodology to evaluate structural nonlinear components and systems under realistic operating conditions. One of the barriers for this advanced testing is the lack of flexible software for hybrid simulation using heterogeneous experimental equipment. In this study, an electrodynamic fatigue test machine is made and a MATLAB program is developed for hybrid simulation. Compared with the servo-hydraulic system, electrodynamic fatigue test machine has the advantages of small volume, easy operation and fast response. A hybrid simulation is conducted to verify the flexibility and capability of the whole system whose experimental substructure is one spring brace and numerical substructure is a two-storey steel frame structure. Experimental and numerical results show the feasibility and applicability of the whole system.

  12. Multiaxial Creep-Fatigue and Creep-Ratcheting Failures of Grade 91 and Haynes 230 Alloys Toward Addressing Design Issues of Gen IV Nuclear Power Plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hassan, Tasnim; Lissenden, Cliff; Carroll, Laura

    The proposed research will develop systematic sets of uniaxial and multiaxial experimental data at a very high temperature (850-950°C) for Alloy 617. The loading histories to be prescribed in the experiments will induce creep-fatigue and creep-ratcheting failure mechanisms. These experimental responses will be scrutinized in order to quantify the influences of temperature and creep on fatigue and ratcheting failures. A unified constitutive model (UCM) will be developed and validated against these experimental responses. The improved UCM will be incorporated into the widely used finite element commercial software packages ANSYS. The modified ANSYS will be validated so that it can bemore » used for evaluating the very high temperature ASME-NH design-by-analysis methodology for Alloy 617 and thereby addressing the ASME-NH design code issues.« less

  13. Development of Fatigue and Crack Propagation Design and Analysis Methodology in a Corrosive Environment for Typical Mechanically-Fastened Joints. Volume 2. State-of-the-Art Assessment.

    DTIC Science & Technology

    1983-03-01

    120] hypothesized a linear summation model to predict the corrosion -fatigue behavior above Kjscc for a high-strength steel . The model considers the...120] could satisfactorily predict the rates of corrosion -fatigue-crack growth for 18-Ni Maraging steels tested in several gaseous and aqueous...NADC-83126-60 Vol. II 6. The corrosion fatigue behavior of titanium alloys is very complex. Therefore, a better understanding of corrosion fatigue

  14. Predicting the Reliability of Ceramics Under Transient Loads and Temperatures With CARES/Life

    NASA Technical Reports Server (NTRS)

    Nemeth, Noel N.; Jadaan, Osama M.; Palfi, Tamas; Baker, Eric H.

    2003-01-01

    A methodology is shown for predicting the time-dependent reliability of ceramic components against catastrophic rupture when subjected to transient thermomechanical loads (including cyclic loads). The methodology takes into account the changes in material response that can occur with temperature or time (i.e., changing fatigue and Weibull parameters with temperature or time). This capability has been added to the NASA CARES/Life (Ceramic Analysis and Reliability Evaluation of Structures/Life) code. The code has been modified to have the ability to interface with commercially available finite element analysis (FEA) codes executed for transient load histories. Examples are provided to demonstrate the features of the methodology as implemented in the CARES/Life program.

  15. Application of person-centered analytic methodology in longitudinal research: exemplars from the Women's Health Initiative Clinical Trial data.

    PubMed

    Zaslavsky, Oleg; Cochrane, Barbara B; Herting, Jerald R; Thompson, Hilaire J; Woods, Nancy F; Lacroix, Andrea

    2014-02-01

    Despite the variety of available analytic methods, longitudinal research in nursing has been dominated by use of a variable-centered analytic approach. The purpose of this article is to present the utility of person-centered methodology using a large cohort of American women 65 and older enrolled in the Women's Health Initiative Clinical Trial (N = 19,891). Four distinct trajectories of energy/fatigue scores were identified. Levels of fatigue were closely linked to age, socio-demographic factors, comorbidities, health behaviors, and poor sleep quality. These findings were consistent regardless of the methodological framework. Finally, we demonstrated that energy/fatigue levels predicted future hospitalization in non-disabled elderly. Person-centered methods provide unique opportunities to explore and statistically model the effects of longitudinal heterogeneity within a population. © 2013 Wiley Periodicals, Inc.

  16. Evaluating the Impact of Whole-Body Vibration (WBV) on Fatigue and the Implications for Driver Safety.

    PubMed

    Troxel, Wendy M; Helmus, Todd C; Tsang, Flavia; Price, Carter C

    2016-05-09

    Driver fatigue is a significant contributor to motor vehicle accidents and fatalities, although the exact share of those events attributable to fatigue is still uncertain. In 2013, accidents involving heavy trucks killed more than 3,944 people in the United States, with over 80 percent of those killed not in the truck. Numerous factors contribute to driver fatigue among commercial drivers, including shiftwork schedules; high prevalence of alcohol and substance use; extended hours; comorbid medical conditions, such as pain; and high prevalence of sleep disorders. Many of these factors have been studied extensively in the trucking industry. Whole-body vibration (WBV) is another potential factor that may contribute to driver fatigue, but it has received little attention. Beginning in January 2015, Bose Corporation and AIG commissioned the RAND Corporation to study the link between WBV and driver fatigue. This article summarizes the findings from RAND's systematic review of the literature on WBV and fatigue as well as considers appropriate study designs and methodology that will inform new areas of research focused on improving the safety of truckers and those who share the road with them. The literature review identified 24 studies examining the impact of WBV on fatigue or sleepiness. The majority of studies (n = 18) found a significant association between WBV and fatigue or sleepiness; however, there are several limitations of the existing literature that preclude definitive conclusions regarding the impact of WBV on these outcomes. This research concludes with recommendations for future studies to strengthen the evidence base.

  17. Multidimensional daily diary of fatigue-fibromyalgia-17 items (MDF-fibro-17). part 1: development and content validity.

    PubMed

    Morris, S; Li, Y; Smith, J A M; Dube', S; Burbridge, C; Symonds, T

    2017-05-16

    Fibromyalgia (FM), a disorder characterized by chronic widespread pain and tenderness, affects greater than five million individuals in the United States alone. Patients experience multiple symptoms in addition to pain, and among them, fatigue is one of the most bothersome and disabling. There is a growing body of literature suggesting that fatigue is a multidimensional concept. Currently, to our knowledge, no multidimensional Patient Reported Outcome (PRO) measure of FM-related fatigue meets Food and Drug Administration (FDA) requirements to support a product label claim. Therefore, the objective of this research was to evaluate qualitative and quantitative data previously gathered to inform the development of a comprehensive, multidimensional, PRO measure to assess FM-related fatigue in FM clinical trials. Existing qualitative and quantitative data from three previously conducted studies in patients with FM were reviewed to inform the initial development of a multidimensional PRO measure of FM-related fatigue: 1) a concept elicitation study involving in-depth, open-ended interviews with patients with FM in the United States (US) (N = 20), Germany (N = 10), and France (N = 10); 2) a cognitive debriefing and pilot study of a preliminary pool of 23 items (N = 20 US patients with FM); and 3) a methodology study that explored initial psychometrics of the item pool (N = 145 US patients with FM). Five domains were identified that intend to capture the broad experience of FM-related fatigue reported in the qualitative research: the Global Fatigue Experience, Cognitive Fatigue, Physical Fatigue, Motivation, and Impact on Function. Seventeen of the original pool of 23 items were selected to best capture these five dimensions. These 17 items formed the basis of a newly developed multidimensional PRO measure to assess FM-related fatigue in clinical trials: the Multidimensional Daily Diary of Fatigue-Fibromyalgia-17 (MDF-Fibro-17). Qualitative analysis, and preliminary quantitative item level data, confirmed that FM-related fatigue is multidimensional and provided strong support for the content validity of the MDF-Fibro-17. The next stage was to quantitatively evaluate the measure to confirm the factor structure, psychometric properties, sensitivity to change, and meaningful change. This has been conducted and is being reported separately.

  18. Supervised exercise reduces cancer-related fatigue: a systematic review.

    PubMed

    Meneses-Echávez, José F; González-Jiménez, Emilio; Ramírez-Vélez, Robinson

    2015-01-01

    Does supervised physical activity reduce cancer-related fatigue? Systematic review with meta-analysis of randomised trials. People diagnosed with any type of cancer, without restriction to a particular stage of diagnosis or treatment. Supervised physical activity interventions (eg, aerobic, resistance and stretching exercise), defined as any planned or structured body movement causing an increase in energy expenditure, designed to maintain or enhance health-related outcomes, and performed with systematic frequency, intensity and duration. The primary outcome measure was fatigue. Secondary outcomes were physical and functional wellbeing assessed using the Functional Assessment of Cancer Therapy Fatigue Scale, European Organisation for Research and Treatment of Cancer Quality of Life QUESTIONnaire, Piper Fatigue Scale, Schwartz Cancer Fatigue Scale and the Multidimensional Fatigue Inventory. Methodological quality, including risk of bias of the studies, was evaluated using the PEDro Scale. Eleven studies involving 1530 participants were included in the review. The assessment of quality showed a mean score of 6.5 (SD 1.1), indicating a low overall risk of bias. The pooled effect on fatigue, calculated as a standardised mean difference (SMD) using a random-effects model, was -1.69 (95% CI -2.99 to -0.39). Beneficial reductions in fatigue were also found with combined aerobic and resistance training with supervision (SMD=-0.41, 95% CI -0.70 to -0.13) and with combined aerobic, resistance and stretching training with supervision (SMD=-0.67, 95% CI -1.17 to -0.17). Supervised physical activity interventions reduce cancer-related fatigue. These findings suggest that combined aerobic and resistance exercise regimens with or without stretching should be included as part of rehabilitation programs for people who have been diagnosed with cancer. PROSPERO CRD42013005803. Copyright © 2014 Australian Physiotherapy Association. Published by Elsevier B.V. All rights reserved.

  19. A Practical Engineering Approach to Predicting Fatigue Crack Growth in Riveted Lap Joints

    NASA Technical Reports Server (NTRS)

    Harris, Charles E.; Piascik, Robert S.; Newman, James C., Jr.

    1999-01-01

    An extensive experimental database has been assembled from very detailed teardown examinations of fatigue cracks found in rivet holes of fuselage structural components. Based on this experimental database, a comprehensive analysis methodology was developed to predict the onset of widespread fatigue damage in lap joints of fuselage structure. Several computer codes were developed with specialized capabilities to conduct the various analyses that make up the comprehensive methodology. Over the past several years, the authors have interrogated various aspects of the analysis methods to determine the degree of computational rigor required to produce numerical predictions with acceptable engineering accuracy. This study led to the formulation of a practical engineering approach to predicting fatigue crack growth in riveted lap joints. This paper describes the practical engineering approach and compares predictions with the results from several experimental studies.

  20. A Practical Engineering Approach to Predicting Fatigue Crack Growth in Riveted Lap Joints

    NASA Technical Reports Server (NTRS)

    Harris, C. E.; Piascik, R. S.; Newman, J. C., Jr.

    2000-01-01

    An extensive experimental database has been assembled from very detailed teardown examinations of fatigue cracks found in rivet holes of fuselage structural components. Based on this experimental database, a comprehensive analysis methodology was developed to predict the onset of widespread fatigue damage in lap joints of fuselage structure. Several computer codes were developed with specialized capabilities to conduct the various analyses that make up the comprehensive methodology. Over the past several years, the authors have interrogated various aspects of the analysis methods to determine the degree of computational rigor required to produce numerical predictions with acceptable engineering accuracy. This study led to the formulation of a practical engineering approach to predicting fatigue crack growth in riveted lap joints. This paper describes the practical engineering approach and compares predictions with the results from several experimental studies.

  1. Chinese herbal medicine for cancer-related fatigue: a systematic review of randomized clinical trials.

    PubMed

    Su, Chun-Xiang; Wang, Li-Qiong; Grant, Suzanne J; Liu, Jian-Ping

    2014-06-01

    To assess the effectiveness and safety of Chinese herbal medicine for the treatment of cancer-related fatigue. We systematically searched seven electronic databases and two trial registries for randomized clinical trials of Chinese herbal medicine for cancer-related fatigue. Two authors independently extracted data and assessed the methodological quality of the included trials using the Cochrane risk of bias tool. Data were synthesized using RevMan 5.2 software. A total of 10 trials involving 751 participants with cancer-related fatigue were identified and the methodological quality of the included trials was generally poor. Chinese herbal medicine used alone or in combination with chemotherapy or supportive care showed significant relief in cancer-related fatigue compared to placebo, chemotherapy or supportive care based on single trials. Chinese herbal medicine plus chemotherapy or supportive care was superior to chemotherapy or supportive care in improving quality of life. Data from one trial demonstrated Chinese herbal medicine exerted a greater beneficial effect on relieving anxiety but no difference in alleviating depression. Seven trials reported adverse events and no severe adverse effects were found in Chinese herbal medicine groups. The findings from limited number of trials suggest that Chinese herbal medicine seems to be effective and safe in the treatment of cancer-related fatigue. However, the current evidence is insufficient to draw a confirmative conclusion due to the poor methodological quality of included trials. Thus, conducting rigorously designed trials on potential Chinese herbal medicine is warranted. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Probabilistic fatigue life prediction of metallic and composite materials

    NASA Astrophysics Data System (ADS)

    Xiang, Yibing

    Fatigue is one of the most common failure modes for engineering structures, such as aircrafts, rotorcrafts and aviation transports. Both metallic materials and composite materials are widely used and affected by fatigue damage. Huge uncertainties arise from material properties, measurement noise, imperfect models, future anticipated loads and environmental conditions. These uncertainties are critical issues for accurate remaining useful life (RUL) prediction for engineering structures in service. Probabilistic fatigue prognosis considering various uncertainties is of great importance for structural safety. The objective of this study is to develop probabilistic fatigue life prediction models for metallic materials and composite materials. A fatigue model based on crack growth analysis and equivalent initial flaw size concept is proposed for metallic materials. Following this, the developed model is extended to include structural geometry effects (notch effect), environmental effects (corroded specimens) and manufacturing effects (shot peening effects). Due to the inhomogeneity and anisotropy, the fatigue model suitable for metallic materials cannot be directly applied to composite materials. A composite fatigue model life prediction is proposed based on a mixed-mode delamination growth model and a stiffness degradation law. After the development of deterministic fatigue models of metallic and composite materials, a general probabilistic life prediction methodology is developed. The proposed methodology combines an efficient Inverse First-Order Reliability Method (IFORM) for the uncertainty propogation in fatigue life prediction. An equivalent stresstransformation has been developed to enhance the computational efficiency under realistic random amplitude loading. A systematical reliability-based maintenance optimization framework is proposed for fatigue risk management and mitigation of engineering structures.

  3. Integrated technology rotor/flight research rotor hub concept definition

    NASA Technical Reports Server (NTRS)

    Dixon, P. G. C.

    1983-01-01

    Two variations of the helicopter bearingless main rotor hub concept are proposed as bases for further development in the preliminary design phase of the Integrated Technology Rotor/Flight Research Rotor (ITR/FRR) program. This selection was the result of an evaluation of three bearingless hub concepts and two articulated hub concepts with elastomeric bearings. The characteristics of each concept were evaluated by means of simplified methodology. These characteristics included the assessment of stability, vulnerability, weight, drag, cost, stiffness, fatigue life, maintainability, and reliability.

  4. The development of a test methodology for the evaluation of EVA gloves

    NASA Technical Reports Server (NTRS)

    O'Hara, John M.; Cleland, John; Winfield, Dan

    1988-01-01

    This paper describes the development of a standardized set of tests designed to assess EVA-gloved hand capabilities in six measurement domains: range of motion, strength, tactile perception, dexterity, fatigue, and comfort. Based upon an assessment of general human-hand functioning and EVA task requirements, several tests within each measurement domain were developed to provide a comprehensive evaluation. All tests were designed to be conducted in a glove box with the bare hand as a baseline and the EVA glove at operating pressure.

  5. An improved approach for flight readiness certification: Methodology for failure risk assessment and application examples. Volume 2: Software documentation

    NASA Technical Reports Server (NTRS)

    Moore, N. R.; Ebbeler, D. H.; Newlin, L. E.; Sutharshana, S.; Creager, M.

    1992-01-01

    An improved methodology for quantitatively evaluating failure risk of spaceflight systems to assess flight readiness and identify risk control measures is presented. This methodology, called Probabilistic Failure Assessment (PFA), combines operating experience from tests and flights with engineering analysis to estimate failure risk. The PFA methodology is of particular value when information on which to base an assessment of failure risk, including test experience and knowledge of parameters used in engineering analyses of failure phenomena, is expensive or difficult to acquire. The PFA methodology is a prescribed statistical structure in which engineering analysis models that characterize failure phenomena are used conjointly with uncertainties about analysis parameters and/or modeling accuracy to estimate failure probability distributions for specific failure modes, These distributions can then be modified, by means of statistical procedures of the PFA methodology, to reflect any test or flight experience. Conventional engineering analysis models currently employed for design of failure prediction are used in this methodology. The PFA methodology is described and examples of its application are presented. Conventional approaches to failure risk evaluation for spaceflight systems are discussed, and the rationale for the approach taken in the PFA methodology is presented. The statistical methods, engineering models, and computer software used in fatigue failure mode applications are thoroughly documented.

  6. An improved approach for flight readiness certification: Methodology for failure risk assessment and application examples, volume 1

    NASA Technical Reports Server (NTRS)

    Moore, N. R.; Ebbeler, D. H.; Newlin, L. E.; Sutharshana, S.; Creager, M.

    1992-01-01

    An improved methodology for quantitatively evaluating failure risk of spaceflight systems to assess flight readiness and identify risk control measures is presented. This methodology, called Probabilistic Failure Assessment (PFA), combines operating experience from tests and flights with engineering analysis to estimate failure risk. The PFA methodology is of particular value when information on which to base an assessment of failure risk, including test experience and knowledge of parameters used in engineering analyses of failure phenomena, is expensive or difficult to acquire. The PFA methodology is a prescribed statistical structure in which engineering analysis models that characterize failure phenomena are used conjointly with uncertainties about analysis parameters and/or modeling accuracy to estimate failure probability distributions for specific failure modes. These distributions can then be modified, by means of statistical procedures of the PFA methodology, to reflect any test or flight experience. Conventional engineering analysis models currently employed for design of failure prediction are used in this methodology. The PFA methodology is described and examples of its application are presented. Conventional approaches to failure risk evaluation for spaceflight systems are discussed, and the rationale for the approach taken in the PFA methodology is presented. The statistical methods, engineering models, and computer software used in fatigue failure mode applications are thoroughly documented.

  7. Towards a Delamination Fatigue Methodology for Composite Materials

    NASA Technical Reports Server (NTRS)

    OBrien, Thomas K.

    2007-01-01

    A methodology that accounts for both delaminaton onset and growth in composite structural components is proposed for improved fatigue life prediction to reduce life cycle costs and improve accept/reject criteria for manufacturing flaws. The benefits of using a Delamination Onset Threshold (DOT) approach in combination with a Modified Damage Tolerance (MDT) approach is highlighted. The use of this combined approach to establish accept/reject criteria, requiring less conservative initial manufacturing flaw sizes, is illustrated.

  8. Traditional Chinese medicinal herbs for the treatment of idiopathic chronic fatigue and chronic fatigue syndrome.

    PubMed

    Adams, Denise; Wu, Taixiang; Yang, Xunzhe; Tai, Shusheng; Vohra, Sunita

    2009-10-07

    Chronic fatigue is increasingly common. Conventional medical care is limited in treating chronic fatigue, leading some patients to use traditional Chinese medicine therapies, including herbal medicine. To assess the effectiveness of traditional Chinese medicine herbal products in treating idiopathic chronic fatigue and chronic fatigue syndrome. The following databases were searched for terms related to traditional Chinese medicine, chronic fatigue, and clinical trials: CCDAN Controlled Trials Register (July 2009), MEDLINE (1966-2008), EMBASE (1980-2008), AMED (1985-2008), CINAHL (1982-2008), PSYCHINFO (1985-2008), CENTRAL (Issue 2 2008), the Chalmers Research Group PedCAM Database (2004), VIP Information (1989-2008), CNKI (1976-2008), OCLC Proceedings First (1992-2008), Conference Papers Index (1982-2008), and Dissertation Abstracts (1980-2008). Reference lists of included studies and review articles were examined and experts in the field were contacted for knowledge of additional studies. Selection criteria included published or unpublished randomized controlled trials (RCTs) of participants diagnosed with idiopathic chronic fatigue or chronic fatigue syndrome comparing traditional Chinese medicinal herbs with placebo, conventional standard of care (SOC), or no treatment/wait lists. The outcome of interest was fatigue. 13 databases were searched for RCTs investigating TCM herbal products for the treatment of chronic fatigue. Over 2400 references were located. Studies were screened and assessed for inclusion criteria by two authors. No studies that met all inclusion criteria were identified. Although studies examining the use of TCM herbal products for chronic fatigue were located, methodologic limitations resulted in the exclusion of all studies. Of note, many of the studies labelled as RCTs and conducted in China did not utilize rigorous randomization procedures. Improvements in methodology in future studies is required for meaningful synthesis of data.

  9. Fatigue resistance of bovine teeth restored with resin-bonded fiber posts: effect of post surface conditioning.

    PubMed

    Zamboni, Sandra C; Baldissara, Paolo; Pelogia, Fernanda; Bottino, Marco Antonio; Scotti, Roberto; Valandro, Luiz Felipe

    2008-01-01

    This study evaluated the effect of post surface conditioning on the fatigue resistance of bovine teeth restored with resin-bonded fiber-reinforced composite (FRC). Root canals of 20 single-rooted bovine teeth (16 mm long) were prepared to 12 mm using a preparation drill of a double-tapered fiber post system. Using acrylic resin, each specimen was embedded (up to 3.0 mm from the cervical part of the specimen) in a PVC cylinder and allocated into one of two groups (n = 10) based on the post surface conditioning method: acid etching plus silanization or tribochemical silica coating (30 pm SiO(x) + silanization). The root canal dentin was etched (H2PO3 for 30 seconds), rinsed, and dried. A multi-step adhesive system was applied to the root dentin and the fiber posts were cemented with resin cement. The specimens were submitted to one million fatigue cycles. After fatigue testing, a score was given based on the number of fatigue cycles until fracture. All of the specimens were resistant to fatigue. No fracture of the root or the post and no loss of retention of the post were observed. The methodology and the results of this study indicate that tribochemical silica coating and acid etching performed equally well when dynamic mechanical loading was used.

  10. Development of an improved method of consolidating fatigue life data

    NASA Technical Reports Server (NTRS)

    Leis, B. N.; Sampath, S. G.

    1978-01-01

    A fatigue data consolidation model that incorporates recent advances in life prediction methodology was developed. A combined analytic and experimental study of fatigue of notched 2024-T3 aluminum alloy under constant amplitude loading was carried out. Because few systematic and complete data sets for 2024-T3 were available in the program generated data for fatigue crack initiation and separation failure for both zero and nonzero mean stresses. Consolidations of these data are presented.

  11. Fatigue-Related Gene Networks Identified in CD14+ Cells Isolated From HIV-Infected Patients—Part I: Research Findings

    PubMed Central

    Voss, Joachim G.; Dobra, Adrian; Morse, Caryn; Kovacs, Joseph A.; Danner, Robert L.; Munson, Peter J.; Logan, Carolea; Rangel, Zoila; Adelsberger, Joseph W.; McLaughlin, Mary; Adams, Larry D.; Raju, Raghavan; Dalakas, Marinos C.

    2016-01-01

    Purpose Human immunodeficiency virus (HIV)–related fatigue (HRF) is multicausal and potentially related to mitochondrial dysfunction caused by antiretroviral therapy with nucleoside reverse transcriptase inhibitors (NRTIs). Methodology The authors compared gene expression profiles of CD14+ cells of low versus high fatigued, NRTI-treated HIV patients to healthy controls (n = 5/group). The authors identified 32 genes predictive of low versus high fatigue and 33 genes predictive of healthy versus HIV infection. The authors constructed genetic networks to further elucidate the possible biological pathways in which these genes are involved. Relevance for nursing practice Genes including the actin cytoskeletal regulatory proteins Prokineticin 2 and Cofilin 2 along with mitochondrial inner membrane proteins are involved in multiple pathways and were predictors of fatigue status. Previously identified inflammatory and signaling genes were predictive of HIV status, clearly confirming our results and suggesting a possible further connection between mitochondrial function and HIV. Isolated CD14+ cells are easily accessible cells that could be used for further study of the connection between fatigue and mitochondrial function of HIV patients. Implication for Practice The findings from this pilot study take us one step closer to identifying biomarker targets for fatigue status and mitochondrial dysfunction. Specific biomarkers will be pertinent to the development of methodologies to diagnosis, monitor, and treat fatigue and mitochondrial dysfunction. PMID:23324479

  12. Comparison of measured and calculated dynamic loads for the Mod-2 2.5 mW wind turbine system

    NASA Technical Reports Server (NTRS)

    Zimmerman, D. K.; Shipley, S. A.; Miller, R. D.

    1995-01-01

    The Boeing Company, under contract to the Electric Power Research Institute (EPRI), has completed a test program on the Mod-2 wind turbines at Goodnoe Hills, Washington. The objectives were to update fatigue load spectra, discern site and machine differences, measure vortex generator effects, and to evaluate rotational sampling techniques. This paper shows the test setup and loads instrumentation, loads data comparisons and test/analysis correlations. Test data are correlated with DYLOSAT predictions using both the NASA interim turbulence model and rotationally sampled winds as inputs. The latter is demonstrated to have the potential to improve the test/analysis correlations. The paper concludes with an assessment of the importance of vortex generators, site dependence, and machine differences on fatigue loads. The adequacy of prediction techniques used are evaluated and recommendations are made for improvements to the methodology.

  13. Durability evaluation of ceramic components using CARES/LIFE

    NASA Technical Reports Server (NTRS)

    Nemeth, Noel N.; Powers, Lynn M.; Janosik, Lesley A.; Gyekenyesi, John P.

    1994-01-01

    The computer program CARES/LIFE calculates the time-dependent reliability of monolithic ceramic components subjected to thermomechanical and/or proof test loading. This program is an extension of the CARES (Ceramics Analysis and Reliability Evaluation of Structures) computer program. CARES/LIFE accounts for the phenomenon of subcritical crack growth (SCG) by utilizing the power law, Paris law, or Walker equation. The two-parameter Weibull cumulative distribution function is used to characterize the variation in component strength. The effects of multiaxial stresses are modeled using either the principle of independent action (PIA), the Weibull normal stress averaging method (NSA), or the Batdorf theory. Inert strength and fatigue parameters are estimated from rupture strength data of naturally flawed specimens loaded in static, dynamic, or cyclic fatigue. Application of this design methodology is demonstrated using experimental data from alumina bar and disk flexure specimens which exhibit SCG when exposed to water.

  14. Durability evaluation of ceramic components using CARES/LIFE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nemeth, N.N.; Janosik, L.A.; Gyekenyesi, J.P.

    1996-01-01

    The computer program CARES/LIFE calculates the time-dependent reliability of monolithic ceramic components subjected to thermomechanical and/or proof test loading. This program is an extension of the CARES (Ceramics Analysis and Reliability Evaluation of Structures) computer program. CARES/LIFE accounts for the phenomenon of subcritical crack growth (SCG) by utilizing the power law, Paris law, or Walker equation. The two-parameter Weibull cumulative distribution function is used to characterize the variation in component strength. The effects of multiaxial stresses are modeled using either the principle of independent action (PIA), the Weibull normal stress averaging method (NSA), or the Batdorf theory. Inert strength andmore » fatigue parameters are estimated from rupture strength data of naturally flawed specimens loaded in static, dynamic, or cyclic fatigue. Application of this design methodology is demonstrated using experimental data from alumina bar and disk flexure specimens, which exhibit SCG when exposed to water.« less

  15. Modeling and life prediction methodology for Titanium Matrix Composites subjected to mission profiles

    NASA Technical Reports Server (NTRS)

    Mirdamadi, M.; Johnson, W. S.

    1994-01-01

    Titanium matrix composites (TMC) are being evaluated as structural materials for elevated temperature applications in future generation hypersonic vehicles. In such applications, TMC components are subjected to complex thermomechanical loading profiles at various elevated temperatures. Therefore, thermomechanical fatigue (TMF) testing, using a simulated mission profile, is essential for evaluation and development of life prediction methodologies. The objective of the research presented in this paper was to evaluate the TMF response of the (0/90)2s SCS-6/Timetal-21S subjected to a generic hypersonic flight profile and its portions with a temperature ranging from -130 C to 816 C. It was found that the composite modulus, prior to rapid degradation, had consistent values for all the profiles tested. A micromechanics based analysis was used to predict the stress-strain response of the laminate and of the constituents in each ply during thermomechanical loading conditions by using only constituent properties as input. The fiber was modeled as elastic with transverse orthotropic and temperature dependent properties. The matrix was modeled using a thermoviscoplastic constitutive relation. In the analysis, the composite modulus degradation was assumed to result from matrix cracking and was modeled by reducing the matrix modulus. Fatigue lives of the composite subjected to the complex generic hypersonic flight profile were well correlated using the predicted stress in 0 degree fibers.

  16. Attention, effort, and fatigue: Neuropsychological perspectives

    NASA Technical Reports Server (NTRS)

    Cohen, Ronald A.; Odonnell, Brian F.

    1988-01-01

    Models of attention, effort, and fatigue are reviewed. Methods are discussed for measuring these phenomena from a neuropsychological and psychophysiological perspective. The following methodologies are included: (1) the autonomic measurement of cognitive effort and quality of encoding; (2) serial assessment approaches to neurophysiological assessment; and (3) the assessment of subjective reports of fatigue using multidimensional ratings and their relationship to neurobehavioral measures.

  17. A multi-feature integration method for fatigue crack detection and crack length estimation in riveted lap joints using Lamb waves

    NASA Astrophysics Data System (ADS)

    He, Jingjing; Guan, Xuefei; Peng, Tishun; Liu, Yongming; Saxena, Abhinav; Celaya, Jose; Goebel, Kai

    2013-10-01

    This paper presents an experimental study of damage detection and quantification in riveted lap joints. Embedded lead zirconate titanate piezoelectric (PZT) ceramic wafer-type sensors are employed to perform in situ non-destructive evaluation (NDE) during fatigue cyclical loading. PZT wafers are used to monitor the wave reflection from the boundaries of the fatigue crack at the edge of bolt joints. The group velocity of the guided wave is calculated to select a proper time window in which the received signal contains the damage information. It is found that the fatigue crack lengths are correlated with three main features of the signal, i.e., correlation coefficient, amplitude change, and phase change. It was also observed that a single feature cannot be used to quantify the damage among different specimens since a considerable variability was observed in the response from different specimens. A multi-feature integration method based on a second-order multivariate regression analysis is proposed for the prediction of fatigue crack lengths using sensor measurements. The model parameters are obtained using training datasets from five specimens. The effectiveness of the proposed methodology is demonstrated using several lap joint specimens from different manufactures and under different loading conditions.

  18. Fatigue status of the U.S. railroad industry.

    DOT National Transportation Integrated Search

    2013-02-01

    This report draws on the results of several prior studies, all conducted with similar methodology, to characterize the prevalence of employee fatigue in the U.S. railroad industry. Data from logbook surveys of signalmen, maintenance of way workers, d...

  19. Probabilistic evaluation of uncertainties and risks in aerospace components

    NASA Technical Reports Server (NTRS)

    Shah, A. R.; Shiao, M. C.; Nagpal, V. K.; Chamis, C. C.

    1992-01-01

    A methodology is presented for the computational simulation of primitive variable uncertainties, and attention is given to the simulation of specific aerospace components. Specific examples treated encompass a probabilistic material behavior model, as well as static, dynamic, and fatigue/damage analyses of a turbine blade in a mistuned bladed rotor in the SSME turbopumps. An account is given of the use of the NESSES probabilistic FEM analysis CFD code.

  20. Micromechanics Fatigue Damage Analysis Modeling for Fabric Reinforced Ceramic Matrix Composites

    NASA Technical Reports Server (NTRS)

    Min, J. B.; Xue, D.; Shi, Y.

    2013-01-01

    A micromechanics analysis modeling method was developed to analyze the damage progression and fatigue failure of fabric reinforced composite structures, especially for the brittle ceramic matrix material composites. A repeating unit cell concept of fabric reinforced composites was used to represent the global composite structure. The thermal and mechanical properties of the repeating unit cell were considered as the same as those of the global composite structure. The three-phase micromechanics, the shear-lag, and the continuum fracture mechanics models were integrated with a statistical model in the repeating unit cell to predict the progressive damages and fatigue life of the composite structures. The global structure failure was defined as the loss of loading capability of the repeating unit cell, which depends on the stiffness reduction due to material slice failures and nonlinear material properties in the repeating unit cell. The present methodology is demonstrated with the analysis results evaluated through the experimental test performed with carbon fiber reinforced silicon carbide matrix plain weave composite specimens.

  1. Interference fits and stress-corrosion failure. [aircraft parts fatigue life analysis

    NASA Technical Reports Server (NTRS)

    Hanagud, S.; Carter, A. E.

    1976-01-01

    It is pointed out that any proper design of interference fit fastener, interference fit bushings, or stress coining processes should consider both the stress-corrosion susceptibility and fatigue-life improvement together. Investigations leading to such a methodology are discussed. A service failure analysis of actual aircraft parts is considered along with the stress-corrosion susceptibility of cold-working interference fit bushings. The optimum design of the amount of interference is considered, giving attention to stress formulas and aspects of design methodology.

  2. Damage prognosis of adhesively-bonded joints in laminated composite structural components of unmanned aerial vehicles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farrar, Charles R; Gobbato, Maurizio; Conte, Joel

    2009-01-01

    The extensive use of lightweight advanced composite materials in unmanned aerial vehicles (UAVs) drastically increases the sensitivity to both fatigue- and impact-induced damage of their critical structural components (e.g., wings and tail stabilizers) during service life. The spar-to-skin adhesive joints are considered one of the most fatigue sensitive subcomponents of a lightweight UAV composite wing with damage progressively evolving from the wing root. This paper presents a comprehensive probabilistic methodology for predicting the remaining service life of adhesively-bonded joints in laminated composite structural components of UAVs. Non-destructive evaluation techniques and Bayesian inference are used to (i) assess the current statemore » of damage of the system and, (ii) update the probability distribution of the damage extent at various locations. A probabilistic model for future loads and a mechanics-based damage model are then used to stochastically propagate damage through the joint. Combined local (e.g., exceedance of a critical damage size) and global (e.g.. flutter instability) failure criteria are finally used to compute the probability of component failure at future times. The applicability and the partial validation of the proposed methodology are then briefly discussed by analyzing the debonding propagation, along a pre-defined adhesive interface, in a simply supported laminated composite beam with solid rectangular cross section, subjected to a concentrated load applied at mid-span. A specially developed Eliler-Bernoulli beam finite element with interlaminar slip along the damageable interface is used in combination with a cohesive zone model to study the fatigue-induced degradation in the adhesive material. The preliminary numerical results presented are promising for the future validation of the methodology.« less

  3. Lifetime Reliability Prediction of Ceramic Structures Under Transient Thermomechanical Loads

    NASA Technical Reports Server (NTRS)

    Nemeth, Noel N.; Jadaan, Osama J.; Gyekenyesi, John P.

    2005-01-01

    An analytical methodology is developed to predict the probability of survival (reliability) of ceramic components subjected to harsh thermomechanical loads that can vary with time (transient reliability analysis). This capability enables more accurate prediction of ceramic component integrity against fracture in situations such as turbine startup and shutdown, operational vibrations, atmospheric reentry, or other rapid heating or cooling situations (thermal shock). The transient reliability analysis methodology developed herein incorporates the following features: fast-fracture transient analysis (reliability analysis without slow crack growth, SCG); transient analysis with SCG (reliability analysis with time-dependent damage due to SCG); a computationally efficient algorithm to compute the reliability for components subjected to repeated transient loading (block loading); cyclic fatigue modeling using a combined SCG and Walker fatigue law; proof testing for transient loads; and Weibull and fatigue parameters that are allowed to vary with temperature or time. Component-to-component variation in strength (stochastic strength response) is accounted for with the Weibull distribution, and either the principle of independent action or the Batdorf theory is used to predict the effect of multiaxial stresses on reliability. The reliability analysis can be performed either as a function of the component surface (for surface-distributed flaws) or component volume (for volume-distributed flaws). The transient reliability analysis capability has been added to the NASA CARES/ Life (Ceramic Analysis and Reliability Evaluation of Structures/Life) code. CARES/Life was also updated to interface with commercially available finite element analysis software, such as ANSYS, when used to model the effects of transient load histories. Examples are provided to demonstrate the features of the methodology as implemented in the CARES/Life program.

  4. Slow Crack Growth and Fatigue Life Prediction of Ceramic Components Subjected to Variable Load History

    NASA Technical Reports Server (NTRS)

    Jadaan, Osama

    2001-01-01

    Present capabilities of the NASA CARES/Life (Ceramic Analysis and Reliability Evaluation of Structures/Life) code include probabilistic life prediction of ceramic components subjected to fast fracture, slow crack growth (stress corrosion), and cyclic fatigue failure modes. Currently, this code has the capability to compute the time-dependent reliability of ceramic structures subjected to simple time-dependent loading. For example, in slow crack growth (SCG) type failure conditions CARES/Life can handle the cases of sustained and linearly increasing time-dependent loads, while for cyclic fatigue applications various types of repetitive constant amplitude loads can be accounted for. In real applications applied loads are rarely that simple, but rather vary with time in more complex ways such as, for example, engine start up, shut down, and dynamic and vibrational loads. In addition, when a given component is subjected to transient environmental and or thermal conditions, the material properties also vary with time. The objective of this paper is to demonstrate a methodology capable of predicting the time-dependent reliability of components subjected to transient thermomechanical loads that takes into account the change in material response with time. In this paper, the dominant delayed failure mechanism is assumed to be SCG. This capability has been added to the NASA CARES/Life (Ceramic Analysis and Reliability Evaluation of Structures/Life) code, which has also been modified to have the ability of interfacing with commercially available FEA codes executed for transient load histories. An example involving a ceramic exhaust valve subjected to combustion cycle loads is presented to demonstrate the viability of this methodology and the CARES/Life program.

  5. An investigation of gear mesh failure prediction techniques. M.S. Thesis - Cleveland State Univ.

    NASA Technical Reports Server (NTRS)

    Zakrajsek, James J.

    1989-01-01

    A study was performed in which several gear failure prediction methods were investigated and applied to experimental data from a gear fatigue test apparatus. The primary objective was to provide a baseline understanding of the prediction methods and to evaluate their diagnostic capabilities. The methods investigated use the signal average in both the time and frequency domain to detect gear failure. Data from eleven gear fatigue tests were recorded at periodic time intervals as the gears were run from initiation to failure. Four major failure modes, consisting of heavy wear, tooth breakage, single pits, and distributed pitting were observed among the failed gears. Results show that the prediction methods were able to detect only those gear failures which involved heavy wear or distributed pitting. None of the methods could predict fatigue cracks, which resulted in tooth breakage, or single pits. It is suspected that the fatigue cracks were not detected because of limitations in data acquisition rather than in methodology. Additionally, the frequency response between the gear shaft and the transducer was found to significantly affect the vibration signal. The specific frequencies affected were filtered out of the signal average prior to application of the methods.

  6. An improved approach for flight readiness certification: Methodology for failure risk assessment and application examples. Volume 3: Structure and listing of programs

    NASA Technical Reports Server (NTRS)

    Moore, N. R.; Ebbeler, D. H.; Newlin, L. E.; Sutharshana, S.; Creager, M.

    1992-01-01

    An improved methodology for quantitatively evaluating failure risk of spaceflight systems to assess flight readiness and identify risk control measures is presented. This methodology, called Probabilistic Failure Assessment (PFA), combines operating experience from tests and flights with engineering analysis to estimate failure risk. The PFA methodology is of particular value when information on which to base an assessment of failure risk, including test experience and knowledge of parameters used in engineering analyses of failure phenomena, is expensive or difficult to acquire. The PFA methodology is a prescribed statistical structure in which engineering analysis models that characterize failure phenomena are used conjointly with uncertainties about analysis parameters and/or modeling accuracy to estimate failure probability distributions for specific failure modes. These distributions can then be modified, by means of statistical procedures of the PFA methodology, to reflect any test or flight experience. Conventional engineering analysis models currently employed for design of failure prediction are used in this methodology. The PFA methodology is described and examples of its application are presented. Conventional approaches to failure risk evaluation for spaceflight systems are discussed, and the rationale for the approach taken in the PFA methodology is presented. The statistical methods, engineering models, and computer software used in fatigue failure mode applications are thoroughly documented.

  7. The Effect of Nutrition Therapy and Exercise on Cancer-Related Fatigue and Quality of Life in Men with Prostate Cancer: A Systematic Review

    PubMed Central

    Baguley, Brenton J.; Bolam, Kate A.; Wright, Olivia R. L.

    2017-01-01

    Background: Improvements in diet and/or exercise are often advocated during prostate cancer treatment, yet the efficacy of, and optimal nutrition and exercise prescription for managing cancer-related fatigue and quality of life remains elusive. The aim of this study is to systematically review the effects of nutrition and/or exercise on cancer-related fatigue and/or quality of life. Methods: A literature search was conducted in six electronic databases. The Delphi quality assessment list was used to evaluate the methodological quality of the literature. The study characteristics and results were summarized in accordance with the review’s Population, Intervention, Control, Outcome (PICO) criteria. Results: A total of 20 articles (one diet only, two combined diet and exercise, and seventeen exercise only studies) were included in the review. Soy supplementation improved quality of life, but resulted in several adverse effects. Prescribing healthy eating guidelines with combined resistance training and aerobic exercise improved cancer-related fatigue, yet its effect on quality of life was inconclusive. Combined resistance training with aerobic exercise showed improvements in cancer-related fatigue and quality of life. In isolation, resistance training appears to be more effective in improving cancer-related fatigue and quality of life than aerobic exercise. Studies that utilised an exercise professional to supervise the exercise sessions were more likely to report improvements in both cancer-related fatigue and quality of life than those prescribing unsupervised or partially supervised sessions. Neither exercise frequency nor duration appeared to influence cancer-related fatigue or quality of life, with further research required to explore the potential dose-response effect of exercise intensity. Conclusion: Supervised moderate-hard resistance training with or without moderate-vigorous aerobic exercise appears to improve cancer-related fatigue and quality of life. Targeted physiological pathways suggest dietary intervention may alleviate cancer-related fatigue and improve quality of life, however the efficacy of nutrition management with or without exercise prescription requires further exploration. PMID:28895922

  8. The Effect of Nutrition Therapy and Exercise on Cancer-Related Fatigue and Quality of Life in Men with Prostate Cancer: A Systematic Review.

    PubMed

    Baguley, Brenton J; Bolam, Kate A; Wright, Olivia R L; Skinner, Tina L

    2017-09-12

    Improvements in diet and/or exercise are often advocated during prostate cancer treatment, yet the efficacy of, and optimal nutrition and exercise prescription for managing cancer-related fatigue and quality of life remains elusive. The aim of this study is to systematically review the effects of nutrition and/or exercise on cancer-related fatigue and/or quality of life. A literature search was conducted in six electronic databases. The Delphi quality assessment list was used to evaluate the methodological quality of the literature. The study characteristics and results were summarized in accordance with the review's Population, Intervention, Control, Outcome (PICO) criteria. A total of 20 articles (one diet only, two combined diet and exercise, and seventeen exercise only studies) were included in the review. Soy supplementation improved quality of life, but resulted in several adverse effects. Prescribing healthy eating guidelines with combined resistance training and aerobic exercise improved cancer-related fatigue, yet its effect on quality of life was inconclusive. Combined resistance training with aerobic exercise showed improvements in cancer-related fatigue and quality of life. In isolation, resistance training appears to be more effective in improving cancer-related fatigue and quality of life than aerobic exercise. Studies that utilised an exercise professional to supervise the exercise sessions were more likely to report improvements in both cancer-related fatigue and quality of life than those prescribing unsupervised or partially supervised sessions. Neither exercise frequency nor duration appeared to influence cancer-related fatigue or quality of life, with further research required to explore the potential dose-response effect of exercise intensity. Supervised moderate-hard resistance training with or without moderate-vigorous aerobic exercise appears to improve cancer-related fatigue and quality of life. Targeted physiological pathways suggest dietary intervention may alleviate cancer-related fatigue and improve quality of life, however the efficacy of nutrition management with or without exercise prescription requires further exploration.

  9. Examining the interaction of force and repetition on musculoskeletal disorder risk: a systematic literature review.

    PubMed

    Gallagher, Sean; Heberger, John R

    2013-02-01

    Our aims were (a) to perform a systematic literature review of epidemiological studies that examined the interaction of force and repetition with respect to musculoskeletal disorder (MSD) risk, (b) to assess the relationship of force and repetition in fatigue failure studies of musculoskeletal tissues, and (c) to synthesize these findings. Many epidemiological studies have examined the effects of force and repetition on MSD risk; however, relatively few have examined the interaction between these risk factors. In a literature search, we identified 12 studies that allowed evaluation of a force-repetition interaction with respect to MSD risk. Identified studies were subjected to a methodological quality assessment and critical review. We evaluated laboratory studies of fatigue failure to examine tissue failure responses to force and repetition. Of the 12 epidemiological studies that tested a Force x Repetition interaction, 10 reported evidence of interaction. Based on these results, the suggestion is made that force and repetition may be interdependent in terms of their influence on MSD risk. Fatigue failure studies of musculoskeletal tissues show a pattern of failure that mirrors the MSD risk observed in epidemiological studies. Evidence suggests that there may be interdependence between force and repetition with respect to MSD risk. Repetition seems to result in modest increases in risk for low-force tasks but rapid increases in risk for high-force tasks. This interaction may be representative of a fatigue failure process in affected tissues.

  10. FAA/NASA International Symposium on Advanced Structural Integrity Methods for Airframe Durability and Damage Tolerance

    NASA Technical Reports Server (NTRS)

    Harris, Charles E. (Editor)

    1994-01-01

    International technical experts in durability and damage tolerance of metallic airframe structures were assembled to present and discuss recent research findings and the development of advanced design and analysis methods, structural concepts, and advanced materials. The symposium focused on the dissemination of new knowledge and the peer-review of progress on the development of advanced methodologies. Papers were presented on: structural concepts for enhanced durability, damage tolerance, and maintainability; new metallic alloys and processing technology; fatigue crack initiation and small crack effects; fatigue crack growth models; fracture mechanics failure, criteria for ductile materials; structural mechanics methodology for residual strength and life prediction; development of flight load spectra for design and testing; and advanced approaches to resist corrosion and environmentally assisted fatigue.

  11. Prevalence of Chronic Fatigue Syndrome-Related Symptoms among Nurses.

    ERIC Educational Resources Information Center

    Jason, Leonard A.; And Others

    1993-01-01

    The prevalence of chronic fatigue syndrome among 1,474 nurses was addressed through a mailed questionnaire (202 respondents). Demographic characteristics, symptoms, and possible prevalence rates are presented and discussed. Implications of these findings are considered, and the methodology used is analyzed. Suggestions are made for conducting…

  12. Mobile Technology Use by People Experiencing Multiple Sclerosis Fatigue: Survey Methodology.

    PubMed

    Van Kessel, Kirsten; Babbage, Duncan R; Reay, Nicholas; Miner-Williams, Warren M; Kersten, Paula

    2017-02-28

    Fatigue is one of the most commonly reported symptoms of multiple sclerosis (MS). It has a profound impact on all spheres of life, for people with MS and their relatives. It is one of the key precipitants of early retirement. Individual, group, and Internet cognitive behavioral therapy-based approaches to supporting people with MS to manage their fatigue have been shown to be effective. The aim of this project was to (1) survey the types of mobile devices and level of Internet access people with MS use or would consider using for a health intervention and (2) characterize the levels of fatigue severity and their impact experienced by the people in our sample to provide an estimate of fatigue severity of people with MS in New Zealand. The ultimate goal of this work was to support the future development of a mobile intervention for the management of fatigue for people with MS. Survey methodology using an online questionnaire was used to assess people with MS. A total of 51 people with MS participated. The average age was 48.5 years, and the large majority of the sample (77%) was female. Participants reported significant levels of fatigue as measured with the summary score of the Neurological Fatigue Index (mean 31.4 [SD 5.3]). Most (84%) respondents scored on average more than 3 on the fatigue severity questions, reflecting significant fatigue. Mobile phone usage was high with 86% of respondents reporting having a mobile phone; apps were used by 75% of respondents. Most participants (92%) accessed the Internet from home. New Zealand respondents with MS experienced high levels of both fatigue severity and fatigue impact. The majority of participants have a mobile device and access to the Internet. These findings, along with limited access to face-to-face cognitive behavioral therapy-based interventions, create an opportunity to develop a mobile technology platform for delivering a cognitive behavioral therapy-based intervention to decrease the severity and impact of fatigue in people with MS. ©Kirsten Van Kessel, Duncan R Babbage, Nicholas Reay, Warren M Miner-Williams, Paula Kersten. Originally published in JMIR Mhealth and Uhealth (http://mhealth.jmir.org), 28.02.2017.

  13. Mobile Technology Use by People Experiencing Multiple Sclerosis Fatigue: Survey Methodology

    PubMed Central

    Reay, Nicholas

    2017-01-01

    Background Fatigue is one of the most commonly reported symptoms of multiple sclerosis (MS). It has a profound impact on all spheres of life, for people with MS and their relatives. It is one of the key precipitants of early retirement. Individual, group, and Internet cognitive behavioral therapy–based approaches to supporting people with MS to manage their fatigue have been shown to be effective. Objective The aim of this project was to (1) survey the types of mobile devices and level of Internet access people with MS use or would consider using for a health intervention and (2) characterize the levels of fatigue severity and their impact experienced by the people in our sample to provide an estimate of fatigue severity of people with MS in New Zealand. The ultimate goal of this work was to support the future development of a mobile intervention for the management of fatigue for people with MS. Methods Survey methodology using an online questionnaire was used to assess people with MS. A total of 51 people with MS participated. The average age was 48.5 years, and the large majority of the sample (77%) was female. Results Participants reported significant levels of fatigue as measured with the summary score of the Neurological Fatigue Index (mean 31.4 [SD 5.3]). Most (84%) respondents scored on average more than 3 on the fatigue severity questions, reflecting significant fatigue. Mobile phone usage was high with 86% of respondents reporting having a mobile phone; apps were used by 75% of respondents. Most participants (92%) accessed the Internet from home. Conclusions New Zealand respondents with MS experienced high levels of both fatigue severity and fatigue impact. The majority of participants have a mobile device and access to the Internet. These findings, along with limited access to face-to-face cognitive behavioral therapy–based interventions, create an opportunity to develop a mobile technology platform for delivering a cognitive behavioral therapy–based intervention to decrease the severity and impact of fatigue in people with MS. PMID:28246073

  14. NASA airframe structural integrity program

    NASA Technical Reports Server (NTRS)

    Harris, Charles E.

    1991-01-01

    NASA has initiated a research program with the long-term objective of supporting the aerospace industry in addressing issues related to the aging commercial transport fleet. The interdisciplinary program combines advanced fatigue crack growth prediction methodology with innovative nondestructive examination technology with the focus on multi-site damage (MSD) at riveted connections. A fracture mechanics evaluation of the concept of pressure proof testing the fuselage to screen for MSD has been completed. Also, a successful laboratory demonstration of the ability of the thermal flux method to detect disbonds at riveted lap splice joints has been conducted. All long-term program elements have been initiated and the plans for the methodology verification program are being coordinated with the airframe manufacturers.

  15. NASA airframe structural integrity program

    NASA Technical Reports Server (NTRS)

    Harris, Charles E.

    1990-01-01

    NASA initiated a research program with the long-term objective of supporting the aerospace industry in addressing issues related to the aging of the commercial transport fleet. The program combines advanced fatigue crack growth prediction methodology with innovative nondestructive examination technology with the focus on multi-stage damage (MSD) at rivited connections. A fracture mechanics evaluation of the concept of pressure proof testing the fuselage to screen for MSD was completed. A successful laboratory demonstration of the ability of the thermal flux method to detect disbonds at rivited lap splice joints was conducted. All long-term program elements were initiated, and the plans for the methodology verification program are being coordinated with the airframe manufacturers.

  16. Some consideration for evaluation of structural integrity of aging aircraft

    NASA Astrophysics Data System (ADS)

    Terada, Hiroyuki; Asada, Hiroo

    The objective of this paper is to examine the achievement and the limitation of state-of-the-art of the methodology of damage tolerant design and the subjects to be solved for further improvement. The topics discussed are: the basic concept of full-scale fatigue testing, fracture mechanics applications, repair of detected damages, inspection technology, and determination of inspection intervals, reliability assessment for practical application, and the importance of various kinds of data acquisition.

  17. The Preservation of Cued Recall in the Acute Mentally Fatigued State: A Randomised Crossover Study.

    PubMed

    Flindall, Ian Richard; Leff, Daniel Richard; Pucks, Neysan; Sugden, Colin; Darzi, Ara

    2016-01-01

    The objective of this study is to investigate the impact of acute mental fatigue on the recall of clinical information in the non-sleep-deprived state. Acute mental fatigue in the non-sleep-deprived subject is rarely studied in the medical workforce. Patient handover has been highlighted as an area of high risk especially in fatigued subjects. This study evaluates the deterioration in recall of clinical information over 2 h with cognitively demanding work in non-sleep-deprived subjects. A randomised crossover study involving twenty medical students assessed free (presentation) and cued (MCQ) recall of clinical case histories at 0 and 2 h under low and high cognitive load using the N-Back task. Acute mental fatigue was assessed through the Visual Analogue Scale, Stanford Scale and NASA-TLX Mental Workload Rating Scale. Free recall is significantly impaired by increased cognitive load (p < 0.05) with subjects demonstrating perceived mental fatigue during the high cognitive load assessment. There was no significant difference in the amount of information retrieved by cued recall under high and low cognitive load conditions (p = 1). This study demonstrates the loss of clinical information over a short time period involving a mentally fatiguing, high cognitive load task. Free recall for the handover of clinical information is unreliable. Memory cues maintain recall of clinical information. This study provides evidence towards the requirement for standardisation of a structured patient handover. The use of memory cues (involving recognition memory and cued recall methodology) would be beneficial in a handover checklist to aid recall of clinical information and supports evidence for their adoption into clinical practice.

  18. Effect of Grinding and Multi-Stimuli Aging on the Fatigue Strength of a Y-TZP Ceramic.

    PubMed

    Silvestri, Tais; Pereira, Gabriel Kalil Rocha; Guilardi, Luis Felipe; Rippe, Marilia Pivetta; Valandro, Luiz Felipe

    2018-01-01

    This study aimed to investigate the effect of grinding and multi-stimuli aging on the fatigue strength, surface topography and the phase transformation of Y-TZP ceramic. Discs were manufactured according to ISO-6872:2008 for biaxial flexure testing (diameter: 15 mm; thickness: 1.2 mm) and randomly assigned considering two factors "grinding" and "aging": C- control (as-sintered); CA- control + aging; G- ground; GA- ground + aging. Grinding was carried out with coarse diamond burs under water-cooling. Aging protocols consisted of: autoclave (134°C, 2 bars pressure, 20 hours), followed by storage for 365 days (samples were kept untouched at room temperature), and by mechanical cycling (106 cycles by 20 Hz under a load of 50% from the biaxial flexure monotonic tests). Flexural fatigue strengths (20,000 cycles; 6 Hz) were determined under sinusoidal cyclic loading using staircase approach. Additionally, surface topography analysis by FE-SEM and phase transformation analysis by X-ray Diffractometry were performed. Dixon and Mood methodology was used to analyze the fatigue strength data. Grinding promotes alterations of topographical pattern, while aging apparently did not alter it. Grinding triggered t-m phase transformation without impacting the fatigue strength of the Y-TZP ceramic; and aging promoted an intense t-m transformation that resulted in a toughening mechanism leading to higher fatigue strength for as-sintered condition, and a tendency of increase for ground condition (C < CA; G = GA). It concludes that grinding and aging procedures did not affect deleteriously the fatigue strength of the evaluated Y-TZP ceramic, although, it promotes surface topography alterations, except to aging, and t-m phase transformation.

  19. Fatigue strength reduction model: RANDOM3 and RANDOM4 user manual. Appendix 2: Development of advanced methodologies for probabilistic constitutive relationships of material strength models

    NASA Technical Reports Server (NTRS)

    Boyce, Lola; Lovelace, Thomas B.

    1989-01-01

    FORTRAN programs RANDOM3 and RANDOM4 are documented in the form of a user's manual. Both programs are based on fatigue strength reduction, using a probabilistic constitutive model. The programs predict the random lifetime of an engine component to reach a given fatigue strength. The theoretical backgrounds, input data instructions, and sample problems illustrating the use of the programs are included.

  20. A study on the influence of microstructure on small fatigue cracks

    NASA Astrophysics Data System (ADS)

    Castelluccio, Gustavo M.

    In spite of its significance in industrial applications, the prediction of the influence of microstructure on the early stages of crack formation and growth in engineering alloys remains underdeveloped. The formation and early growth of fatigue cracks in the high cycle fatigue regime lasts for much of the fatigue life, and it is strongly influenced by microstructural features such as grain size, twins and morphological and crystallographic texture. However, most fatigue models do not predict the in uence of the microstructure on early stages of crack formation, or they employ parameters that should be calibrated with experimental data from specimens with microstructures of interest. These post facto strategies are adequate to characterize materials, but they are not fully appropriate to aid in the design of fatigue-resistant engineering alloys. This thesis considers finite element computational models that explicitly render the microstructure of selected FCC metallic systems and introduces a fatigue methodology that estimates transgranular and intergranular fatigue growth for microstructurally small cracks. The driving forces for both failure modes are assessed by means of fatigue indicators, which are used along with life correlations to estimate the fatigue life. Furthermore, cracks with meandering paths are modeled by considering crack growth on a grain-by-grain basis with a damage model embedded analytically to account for stress and strain redistribution as the cracks extend. The methodology is implemented using a crystal plasticity constitutive model calibrated for studying the effect of microstructure on early fatigue life of a powder processed Ni-base RR1000 superalloy at elevated temperature under high cycle fatigue conditions. This alloy is employed for aircraft turbine engine disks, which undergo a thermomechanical production process to produce a controlled bimodal grain size distribution. The prediction of the fatigue life for this complex microstructure presents particular challenges that are discussed and addressed. The conclusions of this work describe the mechanistic of microstructural small crack. In particular, the fatigue crack growth driving force has been characterized as it evolves within grains and crosses to other grains. Furthermore, the computational models serve as a tool to assess the effects of microstructural features on early stages of fatigue crack formation and growth, such as distributions of grain size and twins.

  1. Computational simulation of probabilistic lifetime strength for aerospace materials subjected to high temperature, mechanical fatigue, creep and thermal fatigue

    NASA Technical Reports Server (NTRS)

    Boyce, Lola; Bast, Callie C.; Trimble, Greg A.

    1992-01-01

    This report presents the results of a fourth year effort of a research program, conducted for NASA-LeRC by the University of Texas at San Antonio (UTSA). The research included on-going development of methodology that provides probabilistic lifetime strength of aerospace materials via computational simulation. A probabilistic material strength degradation model, in the form of a randomized multifactor interaction equation, is postulated for strength degradation of structural components of aerospace propulsion systems subject to a number of effects or primitive variables. These primitive variables may include high temperature, fatigue or creep. In most cases, strength is reduced as a result of the action of a variable. This multifactor interaction strength degradation equation has been randomized and is included in the computer program, PROMISS. Also included in the research is the development of methodology to calibrate the above-described constitutive equation using actual experimental materials data together with regression analysis of that data, thereby predicting values for the empirical material constants for each effect or primitive variable. This regression methodology is included in the computer program, PROMISC. Actual experimental materials data were obtained from industry and the open literature for materials typically for applications in aerospace propulsion system components. Material data for Inconel 718 has been analyzed using the developed methodology.

  2. Computational simulation of probabilistic lifetime strength for aerospace materials subjected to high temperature, mechanical fatigue, creep, and thermal fatigue

    NASA Technical Reports Server (NTRS)

    Boyce, Lola; Bast, Callie C.; Trimble, Greg A.

    1992-01-01

    The results of a fourth year effort of a research program conducted for NASA-LeRC by The University of Texas at San Antonio (UTSA) are presented. The research included on-going development of methodology that provides probabilistic lifetime strength of aerospace materials via computational simulation. A probabilistic material strength degradation model, in the form of a randomized multifactor interaction equation, is postulated for strength degradation of structural components of aerospace propulsion systems subjected to a number of effects or primitive variables. These primitive variables may include high temperature, fatigue, or creep. In most cases, strength is reduced as a result of the action of a variable. This multifactor interaction strength degradation equation was randomized and is included in the computer program, PROMISC. Also included in the research is the development of methodology to calibrate the above-described constitutive equation using actual experimental materials data together with regression analysis of that data, thereby predicting values for the empirical material constants for each effect or primitive variable. This regression methodology is included in the computer program, PROMISC. Actual experimental materials data were obtained from industry and the open literature for materials typically for applications in aerospace propulsion system components. Material data for Inconel 718 was analyzed using the developed methodology.

  3. Measurement Reactivity and Fatigue Effects in Daily Diary Research with Families

    ERIC Educational Resources Information Center

    Reynolds, Bridget M.; Robles, Theodore F.; Repetti, Rena L.

    2016-01-01

    Methodological challenges associated with measurement reactivity and fatigue were addressed using diary data collected from mothers (n = 47), fathers (n = 39), and children (n = 47; 8-13 years) across 56 consecutive days. Demonstrating the feasibility of extended diary studies with families, on-time compliance rates were upward of 90% for all…

  4. A Novel Approach to Rotorcraft Damage Tolerance

    NASA Technical Reports Server (NTRS)

    Forth, Scott C.; Everett, Richard A.; Newman, John A.

    2002-01-01

    Damage-tolerance methodology is positioned to replace safe-life methodologies for designing rotorcraft structures. The argument for implementing a damage-tolerance method comes from the fundamental fact that rotorcraft structures typically fail by fatigue cracking. Therefore, if technology permits prediction of fatigue-crack growth in structures, a damage-tolerance method should deliver the most accurate prediction of component life. Implementing damage-tolerance (DT) into high-cycle-fatigue (HCF) components will require a shift from traditional DT methods that rely on detecting an initial flaw with nondestructive inspection (NDI) methods. The rapid accumulation of cycles in a HCF component will result in a design based on a traditional DT method that is either impractical because of frequent inspections, or because the design will be too heavy to operate efficiently. Furthermore, once a HCF component develops a detectable propagating crack, the remaining fatigue life is short, sometimes less than one flight hour, which does not leave sufficient time for inspection. Therefore, designing a HCF component will require basing the life analysis on an initial flaw that is undetectable with current NDI technology.

  5. The Effect of Structural Quality on Fatigue Life in 319 Aluminum Alloy Castings

    NASA Astrophysics Data System (ADS)

    Özdeş, Hüseyin; Tiryakioğlu, Murat

    2017-02-01

    Tensile and fatigue life data for 319 aluminum alloy from seventeen datasets reported in four independent studies from the literature have been reanalyzed. Analysis of fatigue life data involved mean stress correction for different R ratios used in fatigue testing, inclusion of survival (runout) data along with failure data, as well as volumetric correction for Weibull distributions for different specimen sizes used in these studies. Tensile data have been transformed into the structural quality index, Q T, which is used as a measure of the structural quality of castings. A distinct relationship has been observed between the expected fatigue life and mean quality index. Moreover, fatigue strengths at 104 and 106 cycles have been found increase with quality index, providing further evidence about the relationship observed between structural quality and fatigue performance. Empirical equations between Basquin parameters and structural quality index have been developed. The use of the comprehensive methodology to estimate fatigue life is demonstrated with an example.

  6. A Review of Non-Invasive Techniques to Detect and Predict Localised Muscle Fatigue

    PubMed Central

    Al-Mulla, Mohamed R.; Sepulveda, Francisco; Colley, Martin

    2011-01-01

    Muscle fatigue is an established area of research and various types of muscle fatigue have been investigated in order to fully understand the condition. This paper gives an overview of the various non-invasive techniques available for use in automated fatigue detection, such as mechanomyography, electromyography, near-infrared spectroscopy and ultrasound for both isometric and non-isometric contractions. Various signal analysis methods are compared by illustrating their applicability in real-time settings. This paper will be of interest to researchers who wish to select the most appropriate methodology for research on muscle fatigue detection or prediction, or for the development of devices that can be used in, e.g., sports scenarios to improve performance or prevent injury. To date, research on localised muscle fatigue focuses mainly on the clinical side. There is very little research carried out on the implementation of detecting/predicting fatigue using an autonomous system, although recent research on automating the process of localised muscle fatigue detection/prediction shows promising results. PMID:22163810

  7. Advances in Structural Integrity Analysis Methods for Aging Metallic Airframe Structures with Local Damage

    NASA Technical Reports Server (NTRS)

    Starnes, James H., Jr.; Newman, James C., Jr.; Harris, Charles E.; Piascik, Robert S.; Young, Richard D.; Rose, Cheryl A.

    2003-01-01

    Analysis methodologies for predicting fatigue-crack growth from rivet holes in panels subjected to cyclic loads and for predicting the residual strength of aluminum fuselage structures with cracks and subjected to combined internal pressure and mechanical loads are described. The fatigue-crack growth analysis methodology is based on small-crack theory and a plasticity induced crack-closure model, and the effect of a corrosive environment on crack-growth rate is included. The residual strength analysis methodology is based on the critical crack-tip-opening-angle fracture criterion that characterizes the fracture behavior of a material of interest, and a geometric and material nonlinear finite element shell analysis code that performs the structural analysis of the fuselage structure of interest. The methodologies have been verified experimentally for structures ranging from laboratory coupons to full-scale structural components. Analytical and experimental results based on these methodologies are described and compared for laboratory coupons and flat panels, small-scale pressurized shells, and full-scale curved stiffened panels. The residual strength analysis methodology is sufficiently general to include the effects of multiple-site damage on structural behavior.

  8. Characterization and damage evaluation of advanced materials

    NASA Astrophysics Data System (ADS)

    Mitrovic, Milan

    Mechanical characterization of advanced materials, namely magnetostrictive and graphite/epoxy composite materials, is studied in this dissertation, with an emphasis on damage evaluation of composite materials. Consequently, the work in this dissertation is divided into two parts, with the first part focusing on characterization of the magneto-elastic response of magnetostrictlve materials, while the second part of this dissertation describes methods for evaluating the fatigue damage in composite materials. The objective of the first part of this dissertation is to evaluate a nonlinear constitutive relation which more closely depict the magneto-elastic response of magnetostrictive materials. Correlation between experimental and theoretical values indicate that the model adequately predicts the nonlinear strain/field relations in specific regimes, and that the currently employed linear approaches are inappropriate for modeling the response of this material in a structure. The objective of the second part of this dissertation is to unravel the complexities associated with damage events associated with polymeric composite materials. The intent is to characterize and understand the influence of impact and fatigue induced damage on the residual thermo-mechanical properties and compressive strength of composite systems. The influence of fatigue generated matrix cracking and micro-delaminations on thermal expansion coefficient (TEC) and compressive strength is investigated for woven graphite/epoxy composite system. Experimental results indicate that a strong correlation exists between TEC and compressive strength measurements, indicating that TEC measurements can be used as a damage metric for this material systems. The influence of delaminations on the natural frequencies and mode shapes of a composite laminate is also investigated. Based on the changes of these parameters as a function of damage, a methodology for determining the size and location of damage is suggested. Finally, the influence of loading parameters on impact damage growth is investigated experimentally though constant amplitude and spectrum loading fatigue tests. Based on observed impact damage growth during these tests it is suggested that the low load levels can be deleted from the standardized test sequence without significant influence on impact damage propagation.

  9. Detailed finite element analysis and preliminary study of the effects of friction and fastener pre-tension on the mechanical behavior of fastened built-up members

    NASA Astrophysics Data System (ADS)

    Bonachera Martin, Francisco Javier

    The characterization of fatigue resistance is one of the main concerns in structural engineering, a concern that is particularly important in the evaluation of existing bridge members designed or erected before the development of fatigue design provisions. The ability of a structural member to develop alternate load paths after the failure of a component is known as member-level or internal redundancy. In fastened built-up members, these alternate load paths are affected by the combination of fastener pre-tension and friction between the structural member components in contact. In this study, a finite element methodology to model and analyze riveted and bolted built-up members was developed in ABAQUS and validated with experimental results. This methodology was used to created finite element models of three fastened plates subjected to tension, in which the middle plate had failed, in order to investigate the fundamental effects of combined fastener pre-tension and friction on their mechanical behavior. Detailed finite element models of riveted and bolted built-up flexural members were created and analyze to understand the effect of fastener pre-tension in member-level redundancy and resistance to fatigue and fracture. The obtained results showed that bolted members are able to re-distribute a larger portion of the load away from the failing component into the rest of the member than riveted members, and that this transfer of load also took place over a smaller length. Superior pre-tension of bolts, in comparison to rivets, results in larger frictional forces that develop at the contact interfaces between components and constitute additional alternate load paths that increase member-level redundancy which increase the fatigue and fracture resistance of the structural member during the failure of one of its components. Although fatigue and fracture potential may be mitigated by compressive stresses developing around the fastener hole due to fastener pre-tension, it was also observed, that at the surface of the fastener hole and at the contact interface with another plate, tensional stresses could develop; however, further computational and experimental work should be performed to verify this claim.

  10. Methodology Developed for Modeling the Fatigue Crack Growth Behavior of Single-Crystal, Nickel-Base Superalloys

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Because of their superior high-temperature properties, gas generator turbine airfoils made of single-crystal, nickel-base superalloys are fast becoming the standard equipment on today's advanced, high-performance aerospace engines. The increased temperature capabilities of these airfoils has allowed for a significant increase in the operating temperatures in turbine sections, resulting in superior propulsion performance and greater efficiencies. However, the previously developed methodologies for life-prediction models are based on experience with polycrystalline alloys and may not be applicable to single-crystal alloys under certain operating conditions. One of the main areas where behavior differences between single-crystal and polycrystalline alloys are readily apparent is subcritical fatigue crack growth (FCG). The NASA Lewis Research Center's work in this area enables accurate prediction of the subcritical fatigue crack growth behavior in single-crystal, nickel-based superalloys at elevated temperatures.

  11. The development and psychometric analysis of the Chinese HIV-Related Fatigue Scale.

    PubMed

    Li, Su-Yin; Wu, Hua-Shan; Barroso, Julie

    2016-04-01

    To develop a Chinese version of the human immunodeficiency virus-related Fatigue Scale and examine its reliability and validity. Fatigue is found in more than 70% of people infected with human immunodeficiency virus. However, a scale to assess fatigue in human immunodeficiency virus-positive people has not yet been developed for use in Chinese-speaking countries. A methodologic study involving instrument development and psychometric evaluation was used. The human immunodeficiency virus-related Fatigue Scale was examined through a two-step procedure: (1) translation and back translation and (2) psychometric analysis. A sample of 142 human immunodeficiency virus-positive patients was recruited from the Infectious Disease Outpatient Clinic in central Taiwan. Their fatigue data were analysed with Cronbach's α for internal consistency. Two weeks later, the data of a random sample of 28 patients from the original 142 were analysed for test-retest reliability. The correlation between the World Health Organization Quality of Life Assessment-Human Immunodeficiency Virus and the Chinese version of the human immunodeficiency virus-related Fatigue Scale was analysed for concurrent validity. The Chinese version of the human immunodeficiency virus-related Fatigue Scale scores of human immunodeficiency virus-positive patients with highly active antiretroviral therapy and those without were compared to demonstrate construct validity. The internal consistency and test-retest reliability of the Chinese version of the human immunodeficiency virus-related Fatigue Scale were 0·97 and 0·686, respectively. In regard to concurrent validity, a negative correlation was found between the scores of the Chinese version of the human immunodeficiency virus-related Fatigue Scale and the World Health Organization Quality of Life Assessment-Human Immunodeficiency Virus. Additionally, the Chinese version of the human immunodeficiency virus-related Fatigue Scale could be used to effectively distinguish fatigue differences between the human immunodeficiency virus-positive patients with highly active antiretroviral therapy and those without. The Chinese version of the human immunodeficiency virus-related Fatigue Scale presents good reliability and validity through a robust psychometric analysis. This scale can be appropriately applied to human immunodeficiency virus-positive patients by clinical staff and case managers in Chinese-speaking countries. The Chinese version of the human immunodeficiency virus-related Fatigue Scale is an effective and comprehensive tool that can help clinical professionals measure the frequency, strength and impact on the quality of life of fatigue in Chinese human immunodeficiency virus-positive patients. © 2016 John Wiley & Sons Ltd.

  12. The Meaning and Measurement of Work Fatigue: Development and Evaluation of the Three-Dimensional Work Fatigue Inventory (3D-WFI)

    PubMed Central

    Frone, Michael R.; Tidwell, Marie-Cecile O.

    2015-01-01

    Although work fatigue represents an important construct in several substantive areas, prior conceptual definitions and measures have been inadequate in a number of ways. The goals of the present study were to develop a conceptual definition and outline the desirable characteristics of a work fatigue measure; briefly examine several prior measures of work fatigue-related constructs; and develop and evaluate a new measure of work fatigue. The Three-Dimensional Work Fatigue Inventory (3D-WFI) provides separate and commensurate assessments of physical, mental, and emotional work fatigue. Results from a pilot study (N = 207) and a broader evaluative study of U.S. wage and salary workers (N = 2,477) suggest that the 3D-WFI is psychometrically sound and evinces a meaningful pattern of relations with variables that comprise the nomological network of work fatigue. As with all new measures, additional research is required to evaluate fully the utility of the 3D-WFI in research on work fatigue. PMID:25602275

  13. Roughness Effects on Fretting Fatigue

    NASA Astrophysics Data System (ADS)

    Yue, Tongyan; Abdel Wahab, Magd

    2017-05-01

    Fretting is a small oscillatory relative motion between two normal loaded contact surfaces. It may cause fretting fatigue, fretting wear and/or fretting corrosion damage depending on various fretting couples and working conditions. Fretting fatigue usually occurs at partial slip condition, and results in catastrophic failure at the stress levels below the fatigue limit of the material. Many parameters may affect fretting behaviour, including the applied normal load and displacement, material properties, roughness of the contact surfaces, frequency, etc. Since fretting damage is undesirable due to contacting, the effect of rough contact surfaces on fretting damage has been studied by many researchers. Experimental method on this topic is usually focusing on rough surface effects by finishing treatment and random rough surface effects in order to increase fretting fatigue life. However, most of numerical models on roughness are based on random surface. This paper reviewed both experimental and numerical methodology on the rough surface effects on fretting fatigue.

  14. 14 CFR 35.37 - Fatigue limits and evaluation.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fatigue limits and evaluation. 35.37... AIRWORTHINESS STANDARDS: PROPELLERS Tests and Inspections § 35.37 Fatigue limits and evaluation. This section does not apply to fixed-pitch wood propellers of conventional design. (a) Fatigue limits must be...

  15. High Energy Vibration for Gas Piping

    NASA Astrophysics Data System (ADS)

    Lee, Gary Y. H.; Chan, K. B.; Lee, Aylwin Y. S.; Jia, ShengXiang

    2017-07-01

    In September 2016, a gas compressor in offshore Sarawak has its rotor changed out. Prior to this change-out, pipe vibration study was carried-out by the project team to evaluate any potential high energy pipe vibration problems at the compressor’s existing relief valve downstream pipes due to process condition changes after rotor change out. This paper covers high frequency acoustic excitation (HFAE) vibration also known as acoustic induced vibration (AIV) study and discusses detailed methodologies as a companion to the Energy Institute Guidelines for the avoidance of vibration induced fatigue failure, which is a common industry practice to assess and mitigate for AIV induced fatigue failure. Such detailed theoretical studies can help to minimize or totally avoid physical pipe modification, leading to reduce offshore plant shutdown days to plant shutdowns only being required to accommodate gas compressor upgrades, reducing cost without compromising process safety.

  16. Development Status and Performance Comparisons of Environmental Barrier Coating Systems for SiCSiC Ceramic Matrix Composites

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Harder, Bryan

    2016-01-01

    Environmental barrier coatings (EBC) and SiCSiC ceramic matrix composites (CMCs) will play a crucial role in future aircraft turbine engine systems, because of their ability to significantly increase engine operating temperatures, reduce engine weight and cooling requirements. This paper presents current NASA EBC-CMC development emphases including: the coating composition and processing improvements, laser high heat flux-thermal gradient thermo-mechanical fatigue - environmental testing methodology development, and property evaluations for next generation EBC-CMC systems. EBCs processed with various deposition techniques including Plasma Spray, Electron Beam - Physical Vapor Deposition, and Plasma Spray Physical Vapor Deposition (PS-PVD) will be particularly discussed. The testing results and demonstrations of advanced EBCs-CMCs in complex simulated engine thermal gradient cyclic fatigue, oxidizing-steam and CMAS environments will help provide insights into the coating development strategies to meet long-term engine component durability goals.

  17. Fatigue life prediction of bonded primary joints

    NASA Technical Reports Server (NTRS)

    Knauss, J. F.

    1979-01-01

    The validation of a proposed fatigue life prediction methodology was sought through the use of aluminum butt and scarf joint and graphite/epoxy butt joint specimens in a constant amplitude fatigue environment. The structural properties of the HYSOL 9313 adhesive system were obtained by mechanical test of molded heat adhesive specimens. Aluminum contoured double cantilever beam specimens were used to generate crack velocity versus stress intensity factor data. The specific objectives were: (1) to ascertain the feasibility of predicting fatigue failure of an adhesive in a primary bonded composite structure by incorporating linear elastic crack growth behavior; and (2) to ascertain if acoustic emission and/or compliance measurement techniques can be used to detect flaws.

  18. Development of a realistic stress analysis for fatigue analysis of notched composite laminates

    NASA Technical Reports Server (NTRS)

    Humphreys, E. A.; Rosen, B. W.

    1979-01-01

    A finite element stress analysis which consists of a membrane and interlaminar shear spring analysis was developed. This approach was utilized in order to model physically realistic failure mechanisms while maintaining a high degree of computational economy. The accuracy of the stress analysis predictions is verified through comparisons with other solutions to the composite laminate edge effect problem. The stress analysis model was incorporated into an existing fatigue analysis methodology and the entire procedure computerized. A fatigue analysis is performed upon a square laminated composite plate with a circular central hole. A complete description and users guide for the computer code FLAC (Fatigue of Laminated Composites) is included as an appendix.

  19. A data-driven approach to modeling physical fatigue in the workplace using wearable sensors.

    PubMed

    Sedighi Maman, Zahra; Alamdar Yazdi, Mohammad Ali; Cavuoto, Lora A; Megahed, Fadel M

    2017-11-01

    Wearable sensors are currently being used to manage fatigue in professional athletics, transportation and mining industries. In manufacturing, physical fatigue is a challenging ergonomic/safety "issue" since it lowers productivity and increases the incidence of accidents. Therefore, physical fatigue must be managed. There are two main goals for this study. First, we examine the use of wearable sensors to detect physical fatigue occurrence in simulated manufacturing tasks. The second goal is to estimate the physical fatigue level over time. In order to achieve these goals, sensory data were recorded for eight healthy participants. Penalized logistic and multiple linear regression models were used for physical fatigue detection and level estimation, respectively. Important features from the five sensors locations were selected using Least Absolute Shrinkage and Selection Operator (LASSO), a popular variable selection methodology. The results show that the LASSO model performed well for both physical fatigue detection and modeling. The modeling approach is not participant and/or workload regime specific and thus can be adopted for other applications. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. A wireless fatigue monitoring system utilizing a bio-inspired tree ring data tracking technique.

    PubMed

    Bai, Shi; Li, Xuan; Xie, Zhaohui; Zhou, Zhi; Ou, Jinping

    2014-03-05

    Fatigue, a hot scientific research topic for centuries, can trigger sudden failure of critical structures such as aircraft and railway systems, resulting in enormous casualties as well as economic losses. The fatigue life of certain structures is intrinsically random and few monitoring techniques are capable of tracking the full life-cycle fatigue damage. In this paper, a novel in-situ wireless real-time fatigue monitoring system using a bio-inspired tree ring data tracking technique is proposed. The general framework, methodology, and verification of this intelligent system are discussed in details. The rain-flow counting (RFC) method is adopted as the core algorithm which quantifies fatigue damages, and Digital Signal Processing (DSP) is introduced as the core module for data collection and analysis. Laboratory test results based on strain gauges and polyvinylidene fluoride (PVDF) sensors have shown that the developed intelligent system can provide a reliable quick feedback and early warning of fatigue failure. With the merits of low cost, high accuracy and great reliability, the developed wireless fatigue sensing system can be further applied to mechanical engineering, civil infrastructures, transportation systems, aerospace engineering, etc.

  1. Measuring Fatigue in Persons with Spinal Cord Injury

    PubMed Central

    Anton, Hubert A.; Miller, William C.; Townson, Andrea F.

    2013-01-01

    Objective To evaluate the psychometric properties of the Fatigue Severity Scale (FSS) in persons with spinal cord injury (SCI). Design A two week methodological study was conducted to assess the internal consistency, reliability and the construct validity of the FSS. Setting A tertiary spinal cord rehabilitation facility. Participants 48 community living individuals at least one year post SCI with ASIA A or B SCI and no medical conditions causing fatigue. Main Outcome Measures The ASIA Impairment Scale; the FSS; a Visual Analogue Scale for Fatigue (VAS-F), the SF-36 vitality scale, and the Centre for Epidemiological Studies Depression – Scale (CES-D) Results Our sample was predominantly male (n=31, 65%) with tetraplegia (n=26, 54%) and ASIA A injuries (n=30, 63%). The mean FSS score at baseline was 4.4 (SD=1.4) with 54% (N=26) scoring greater than 4. The internal consistency of the FSS was Cronbach’s alpha = 0.89. Two-week test-retest reliability was ICC=0.84 (95% CI 0.74 – 0.90). The magnitude of the relationship was as hypothesized for the VAS-F(r=.67) and CES-D (r=.58) and lower than hypothesized for the vitality subscore (r=−.48) of the SF-36. Conclusions The FSS has acceptable reliability with regard to internal consistency, test-retest reliability, and validity in persons with motor complete SCI. PMID:18295634

  2. The meaning and measurement of work fatigue: Development and evaluation of the Three-Dimensional Work Fatigue Inventory (3D-WFI).

    PubMed

    Frone, Michael R; Tidwell, Marie-Cecile O

    2015-07-01

    Although work fatigue represents an important construct in several substantive areas, prior conceptual definitions and measures have been inadequate in a number of ways. The goals of the present study were to develop a conceptual definition and outline the desirable characteristics of a work fatigue measure, briefly examine several prior measures of work fatigue-related constructs, and develop and evaluate a new measure of work fatigue. The Three-Dimensional Work Fatigue Inventory (3D-WFI) provides separate and commensurate assessments of physical, mental, and emotional work fatigue. Results from a pilot study (n = 207) and a broader evaluative study of U.S. wage and salary workers (n = 2,477) suggest that the 3D-WFI is psychometrically sound and evinces a meaningful pattern of relations with variables that comprise the nomological network of work fatigue. As with all new measures, additional research is required to evaluate fully the utility of the 3D-WFI in research on work fatigue. (c) 2015 APA, all rights reserved).

  3. The Effects of Exercise Education Intervention on the Exercise Behaviour, Depression, and Fatigue Status of Chronic Kidney Disease Patients

    ERIC Educational Resources Information Center

    Kao, Yu-Hsiu; Huang, Yi-Ching; Chen, Pei-Ying; Wang, Kuo-Ming

    2012-01-01

    Purpose: The purpose of this paper is to investigate the effects of an exercise education intervention on exercise behavior, depression and fatigue status of chronic kidney disease (CKD) patients. Design/methodology/approach: This was a pilot study using an exercise education program as an intervention for CKD patients. The authors used the…

  4. Report on FY15 Alloy 617 SMT Creep-Fatigue Test Results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yanli; Jetter, Robert I.; Baird, Seth T.

    For the temperature range of 990-950C, Alloy 617 is a candidate IHX structural material for high temperature gas reactors (HTGRs) because of its high temperature creep properties. Also, its superior strength over a broad temperature range also offers advantages for certain component applications. In order for the designers to be able to use Alloy 617 for these high temperature components, Alloy 617 has to be approved for use in Section III (the nuclear section) of the ASME (American Society of Mechanical Engineers) Boiler and Pressure Vessel Code. A plan has been developed to propose a Code Case for use ofmore » Alloy 617 at elevated temperature in Section III of the ASME Code by September 2015. There has not been a new high temperature material approved for use in Section III for almost 20 years. The Alloy 617 Code Case effort would lead the way to establish a path for Code qualification of new high temperature materials of interest to other advanced SMRs. Creep-fatigue at elevated temperatures is the most damaging structural failure mode. In the past 40 years significant efforts have been devoted to the elevated temperature Code rule development in Section III, Subsection NH* of the ASME Boiler and Pressure Vessel Code, to ascertain conservative structural designs to prevent creep-fatigue failure. The current Subsection NH creep-fatigue procedure was established by the steps of (1) analytically obtaining a detailed stress-strain history, (2) comparing the stress and strain components to cyclic test results deconstructed into stress and strain quantities, and (3) recombining the results to obtain a damage function in the form of the so-called creep-fatigue damage-diagram. The deconstruction and recombination present difficulties in evaluation of test data and determination of cyclic damage in design. The uncertainties in these steps lead to the use of overly conservative design factors in the current creep-fatigue procedure. In addition, and of major significance to the viability of the Alloy 617 Code Case, the use of the current elastic analysis based rules in Subsection NH for the evaluation of strain limits (a precursor for the creep-fatigue rules) and the creep-fatigue rules themselves have been deemed inappropriate for Alloy 617 at temperatures above 650C (Corum and Brass, 1991). The rationale for this exclusion is that at higher temperatures it is not feasible to decouple plasticity and creep, which is the basis for the current simplified rules. This temperature, 650C, is well below the temperature range of interest for this material for the High Temperature Gas Cooled Reactor (HTGR) as well as the VHTR. The only current alternative is, thus, a full inelastic analysis which requires sophisticated material models which have not yet been formulated and verified. To address the prohibition on the use of current methods at very high temperatures, proposed Code rules have been developed which are based on the use of elastic-perfectly plastic (E-PP) analysis methods and which are expected to be applicable to very high temperatures. To provide data to implement the proposed rules and to verify their application, a series of tests have been initiated. One test concept, the Simplified Model Test (SMT), takes into account the stress and strain redistribution in real structures by including representative follow-up characteristics in the test specimen. The correlation parameter between test and design is the elastically calculated strain, and the dependent test variable is the observed cycles to failure. Although the initial priority for the SMT approach is to generate data to support validation of the E-PP Code Case for evaluation of creep-fatigue damage, the broader goal of the SMT approach is to develop a methodology for evaluation of creep fatigue damage which is simpler to implement than the current complex rules and applicable to the full temperature range from ambient conditions to the very high temperature creep regime of 900-950C. Also, guidance has been received from ASME Code committees that the proposed EPP methodology for evaluation of creep-fatigue damage should be extended to the other Subsection NH materials to the extent feasible. Thus, the scope of testing has been expanded to include SS304H and SS316H. This report describes the SMT approach and the development of testing capability to conduct SMT experiments on Alloy 617 and 304H and 316H and stainless steels. These SMT specimen data are also representative of component loading conditions and have been used as part of the verification of the proposed elastic-perfectly plastic Code Cases. Results from the SMT tests on both Alloy 617 and SS316H were compared to the predictions from the EPP Creep-Fatigue Code Case. Two different comparisons were made; one based on design life equal to the test duration and the other with an acceptable design life determined from the EPP Code Case procedure. The latter approach permits the determination of...« less

  5. Technical evaluation report of the Specialists Meeting on Characterization of Low Cycle High Temperature Fatigue by the Strainrange Partitioning Method

    NASA Technical Reports Server (NTRS)

    Drapier, J. M.; Hirschberg, M. H.

    1979-01-01

    The ability of the Strainrange Partitioning Method SRP was evaluated to correlate the creep-fatigue behavior of gas turbine materials and to predict the creep fatigue life of laboratory specimens subjected to complex cycling conditions. A reference body of high temperature creep fatigue data which can be used in the evaluation of other SRP and low cycle high temperature fatigue predictive techniques was provided.

  6. Damage development in titanium metal matrix composites subjected to cyclic loading

    NASA Technical Reports Server (NTRS)

    Johnson, W. S.

    1992-01-01

    Several layups of SCS-6/Ti-15-3 composites were investigated. Fatigue tests were conducted and analyzed for both notched and unnotched specimens at room temperature and elevated temperatures. Thermo-mechanical fatigue results were analyzed. Test results indicated that the stress in the 0 degree fibers is the controlling factor in fatigue life. The static and fatigue strength of these materials is shown to be strongly dependent on the level of residual stresses and the fiber/matrix interfacial strength. Fatigue tests of notched specimens showed that cracks can initiate and grow many fiber spacings in the matrix materials without breaking fibers. Fiber bridging models were applied to characterize the crack growth behavior. The matrix cracks are shown to significantly reduce the residual strength of notched composites. The notch strength of these composites was accurately predicted using a micromechanics based methodology.

  7. Damage development in titanium metal-matrix composites subjected to cyclic loading

    NASA Technical Reports Server (NTRS)

    Johnson, W. S.

    1993-01-01

    Several layups of SCS-6/Ti-15-3 composites were investigated. Fatigue tests were conducted and analyzed for both notched and unnotched specimens at room temperature and elevated temperatures. Thermo-mechanical fatigue results were analyzed. Test results indicated that the stress in the 0 degree fibers is the controlling factor in fatigue life. The static and fatigue strength of these materials is shown to be strongly dependent on the level of residual stresses and the fiber/matrix interfacial strength. Fatigue tests of notched specimens showed that cracks can initiate and grow many fiber spacings in the matrix materials without breaking fibers. Fiber bridging models were applied to characterize the crack growth behavior. The matrix cracks are shown to significantly reduce the residual strength of notched composites. The notch strength of these composites was accurately predicted using a micromechanics based methodology.

  8. Damage Tolerant Analysis of Cracked Al 2024-T3 Panels repaired with Single Boron/Epoxy Patch

    NASA Astrophysics Data System (ADS)

    Mahajan, Akshay D.; Murthy, A. Ramachandra; Nanda Kumar, M. R.; Gopinath, Smitha

    2018-06-01

    It is known that damage tolerant analysis has two objectives, namely, remaining life prediction and residual strength evaluation. To achieve the these objectives, determination of accurate and reliable fracture parameter is very important. XFEM methodologies for fatigue and fracture analysis of cracked aluminium panels repaired with different patch shapes made of single boron/epoxy have been developed. Heaviside and asymptotic crack tip enrichment functions are employed to model the crack. XFEM formulations such as displacement field formulation and element stiffness matrix formulation are presented. Domain form of interaction integral is employed to determine Stress Intensity Factor of repaired cracked panels. Computed SIFs are incorporated in Paris crack growth model to predict the remaining fatigue life. The residual strength has been computed by using the remaining life approach, which accounts for both crack growth constants and no. of cycles to failure. From the various studies conducted, it is observed that repaired panels have significant effect on reduction of the SIF at the crack tip and hence residual strength as well as remaining life of the patched cracked panels are improved significantly. The predicted remaining life and residual strength will be useful for design of structures/components under fatigue loading.

  9. The Influence of Roughness on Gear Surface Fatigue

    NASA Technical Reports Server (NTRS)

    Krantz, Timothy

    2005-01-01

    Gear working surfaces are subjected to repeated rolling and sliding contacts, and often designs require loads sufficient to cause eventual fatigue of the surface. This research provides experimental data and analytical tools to further the understanding of the causal relationship of gear surface roughness to surface fatigue. The research included evaluations and developments of statistical tools for gear fatigue data, experimental evaluation of the surface fatigue lives of superfinished gears with a near-mirror quality, and evaluations of the experiments by analytical methods and surface inspections. Alternative statistical methods were evaluated using Monte Carlo studies leading to a final recommendation to describe gear fatigue data using a Weibull distribution, maximum likelihood estimates of shape and scale parameters, and a presumed zero-valued location parameter. A new method was developed for comparing two datasets by extending the current methods of likelihood-ratio based statistics. The surface fatigue lives of superfinished gears were evaluated by carefully controlled experiments, and it is shown conclusively that superfinishing of gears can provide for significantly greater lives relative to ground gears. The measured life improvement was approximately a factor of five. To assist with application of this finding to products, the experimental condition was evaluated. The fatigue life results were expressed in terms of specific film thickness and shown to be consistent with bearing data. Elastohydrodynamic and stress analyses were completed to relate the stress condition to fatigue. Smooth-surface models do not adequately explain the improved fatigue lives. Based on analyses using a rough surface model, it is concluded that the improved fatigue lives of superfinished gears is due to a reduced rate of near-surface micropitting fatigue processes, not due to any reduced rate of spalling (sub-surface) fatigue processes. To complete the evaluations, surface inspection were completed. The surface topographies of the ground gears changed substantially due to running, but the topographies of the superfinished gears were essentially unchanged with running.

  10. Model Selection in Historical Research Using Approximate Bayesian Computation

    PubMed Central

    Rubio-Campillo, Xavier

    2016-01-01

    Formal Models and History Computational models are increasingly being used to study historical dynamics. This new trend, which could be named Model-Based History, makes use of recently published datasets and innovative quantitative methods to improve our understanding of past societies based on their written sources. The extensive use of formal models allows historians to re-evaluate hypotheses formulated decades ago and still subject to debate due to the lack of an adequate quantitative framework. The initiative has the potential to transform the discipline if it solves the challenges posed by the study of historical dynamics. These difficulties are based on the complexities of modelling social interaction, and the methodological issues raised by the evaluation of formal models against data with low sample size, high variance and strong fragmentation. Case Study This work examines an alternate approach to this evaluation based on a Bayesian-inspired model selection method. The validity of the classical Lanchester’s laws of combat is examined against a dataset comprising over a thousand battles spanning 300 years. Four variations of the basic equations are discussed, including the three most common formulations (linear, squared, and logarithmic) and a new variant introducing fatigue. Approximate Bayesian Computation is then used to infer both parameter values and model selection via Bayes Factors. Impact Results indicate decisive evidence favouring the new fatigue model. The interpretation of both parameter estimations and model selection provides new insights into the factors guiding the evolution of warfare. At a methodological level, the case study shows how model selection methods can be used to guide historical research through the comparison between existing hypotheses and empirical evidence. PMID:26730953

  11. Microstructure-sensitive small fatigue crack growth assessment. Effect of strain ratio multiaxial strain state and geometric discontinuities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Castelluccio, Gustavo M.; McDowell, David L.

    Fatigue crack initiation in the high cycle fatigue regime is strongly influenced by microstructural features. Research efforts have usually focused on predicting fatigue resistance against crack incubation without considering the early fatigue crack growth after encountering the first grain boundary. However, a significant fraction of the variability of the total fatigue life can be attributed to growth of small cracks as they encounter the first few grain boundaries, rather than crack formation within the first grain. Our paper builds on the framework previously developed by the authors to assess microstructure-sensitive small fatigue crack formation and early growth under complex loadingmore » conditions. Moreover, the scheme employs finite element simulations that explicitly render grains and crystallographic directions along with simulation of microstructurally small fatigue crack growth from grain to grain. The methodology employs a crystal plasticity algorithm in ABAQUS that was previously calibrated to study fatigue crack initiation in RR1000 Ni-base superalloy. Our work present simulations with non-zero applied mean strains and geometric discontinuities that were not previously considered for calibration. Results exhibit trends similar to those found in experiments for multiple metallic materials, conveying a consistent physical description of fatigue damage phenomena.« less

  12. Accelerated fatigue durability of a high performance composite

    NASA Technical Reports Server (NTRS)

    Rotem, A.

    1982-01-01

    The fatigue behavior of multidirectional graphite-epoxy laminates was analyzed theoretically and experimentally in an effort to establish an accelerated testing methodology. Analysis of the failure mechanism in fatigue of the laminates led to the determination of the failure mode governing fracture. The nonlinear, cyclic-dependent shear modulus was used to calculate the changing stress field in the laminate during the fatigue loading. Fatigue tests were performed at three different temperatures: 25 C, 74 C, and 114 C. The prediction of the S-N curves was made based on the artificial static strength artificial static strength at a reference temperature and the fatigue functions associated with them. The prediction of an S-N curve at other temperatures was performed using shifting factors determined for the specific failure mode. For multidirectional laminates, different S-N curves at different temperatures could be predicted using these shifting factors. Different S-N curves at different temperatures occur only when the fatigue failure mode is matrix dominated. It was found that whenever the fatigue failure mode is fiber dominated, temperature, over the range investigated, had no influence on the fatigue life. These results permit the prediction of long-time, low temperature fatigue behavior from data obtained in short time, high temperature testing, for laminates governed by a matrix failure mode.

  13. Microstructure-sensitive small fatigue crack growth assessment. Effect of strain ratio multiaxial strain state and geometric discontinuities

    DOE PAGES

    Castelluccio, Gustavo M.; McDowell, David L.

    2015-09-16

    Fatigue crack initiation in the high cycle fatigue regime is strongly influenced by microstructural features. Research efforts have usually focused on predicting fatigue resistance against crack incubation without considering the early fatigue crack growth after encountering the first grain boundary. However, a significant fraction of the variability of the total fatigue life can be attributed to growth of small cracks as they encounter the first few grain boundaries, rather than crack formation within the first grain. Our paper builds on the framework previously developed by the authors to assess microstructure-sensitive small fatigue crack formation and early growth under complex loadingmore » conditions. Moreover, the scheme employs finite element simulations that explicitly render grains and crystallographic directions along with simulation of microstructurally small fatigue crack growth from grain to grain. The methodology employs a crystal plasticity algorithm in ABAQUS that was previously calibrated to study fatigue crack initiation in RR1000 Ni-base superalloy. Our work present simulations with non-zero applied mean strains and geometric discontinuities that were not previously considered for calibration. Results exhibit trends similar to those found in experiments for multiple metallic materials, conveying a consistent physical description of fatigue damage phenomena.« less

  14. [Evaluating fatigue resistance effect of health food by near-infrared tissue oximeter].

    PubMed

    Wu, Jian; Ding, Hai-shu; Ye, Da-tian

    2009-09-01

    Currently, chronic fatigue syndrome (CFS) seriously affects people's normal living and work. In the present paper, the physiological parameters, such as tissue oxygenation saturation and heart rate, were used to evaluate the subjects' fatigue degree, and the fatigue resistance capsule and coffee were taken as a measure to adjust the fatigue. Human tissue oxygen saturation (rSO2) can be monitored noninvasively and in real time by near infrared spectroscopy (NIRS) based on spatially-resolved spectroscopy. Aiming at those brainworkers who need to work in an office for a long time; two static experiments were designed to evaluate the fatigue degree of the subjects who either take the fatigue resistance capsules/coffee or not. The rSO2 and heart rate (HR) of the subjects in the experiment group and contrast group were measured respectively for fatigue evaluation. This work particularly analyzed the changes in rSO2 in these two groups. The results show that the rSO2 of subjects in the experiment group evidently increased compared to that in the contrast group when the subjects took the fatigue resistance capsule or coffee, thereby show that the health food can reduce the fatigue to a certain extent.

  15. Accelerated Insertion of Materials - Composites

    DTIC Science & Technology

    2001-08-28

    Details • Damage Tolerance • Repair • Validation of Analysis Methodology • Fatigue • Static • Acoustic • Configuration Details • Damage Tolerance...Sensitivity – Fatigue – Adhesion – Damage Tolerance – All critical modes and environments Products: Material Specifications, B-Basis Design Allowables...Demonstrate damage tolerance AIM-C DARPA DARPA Workshop, Annapolis, August 27-28, 2001 Requalification of Polymer / Composite Parts • Material Changes – Raw

  16. A novel evaluation strategy for fatigue reliability of flexible nanoscale films

    NASA Astrophysics Data System (ADS)

    Zheng, Si-Xue; Luo, Xue-Mei; Wang, Dong; Zhang, Guang-Ping

    2018-03-01

    In order to evaluate fatigue reliability of nanoscale metal films on flexible substrates, here we proposed an effective evaluation way to obtain critical fatigue cracking strain based on the direct observation of fatigue damage sites through conventional dynamic bending testing technique. By this method, fatigue properties and damage behaviors of 930 nm-thick Au films and 600 nm-thick Mo-W multilayers with individual layer thickness 100 nm on flexible polyimide substrates were investigated. Coffin-Manson relationship between the fatigue life and the applied strain range was obtained for the Au films and Mo-W multilayers. The characterization of fatigue damage behaviors verifies the feasibility of this method, which seems easier and more effective comparing with the other testing methods.

  17. 14 CFR 29.571 - Fatigue Tolerance Evaluation of Metallic Structure.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Structure. 29.571 Section 29.571 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Evaluation § 29.571 Fatigue Tolerance Evaluation of Metallic Structure. (a) A fatigue tolerance evaluation of... Administrator. (d) Considering all rotorcraft structure, structural elements, and assemblies, each PSE must be...

  18. 14 CFR 29.571 - Fatigue Tolerance Evaluation of Metallic Structure.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Structure. 29.571 Section 29.571 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Evaluation § 29.571 Fatigue Tolerance Evaluation of Metallic Structure. (a) A fatigue tolerance evaluation of... Administrator. (d) Considering all rotorcraft structure, structural elements, and assemblies, each PSE must be...

  19. Rolling-Bearing Service Life Based on Probable Cause for Removal: A Tutorial

    NASA Technical Reports Server (NTRS)

    Zaretsky, Erwin V.; Branzai, Emanuel V.

    2017-01-01

    In 1947 and 1952, Gustaf Lundberg and Arvid Palmgren developed what is now referred to as the Lundberg-Palmgren Model for Rolling Bearing Life Prediction based on classical rolling-element fatigue. Today, bearing fatigue probably accounts for less than 5 percent of bearings removed from service for cause. A bearing service life prediction methodology and tutorial indexed to eight probable causes for bearing removal, including fatigue, are presented, which incorporate strict series reliability; Weibull statistical analysis; available published field data from the Naval Air Rework Facility; and 224,000 rolling-element bearings removed for rework from commercial aircraft engines.

  20. Fatigue failure of pb-free electronic packages under random vibration loads

    NASA Astrophysics Data System (ADS)

    Saravanan, S.; Prabhu, S.; Muthukumar, R.; Gowtham Raj, S.; Arun Veerabagu, S.

    2018-03-01

    The electronic equipment are used in several fields like, automotive, aerospace, consumer goods where they are subjected to vibration loads leading to failure of solder joints used in these equipment. This paper presents a methodology to predict the fatigue life of Pb-free surface mounted BGA packages subjected to random vibrations. The dynamic characteristics of the PCB, such as the natural frequencies, mode shapes and damping ratios were determined. Spectrum analysis was used to determine the stress response of the critical solder joint and the cumulative fatigue damage accumulated by the solder joint for a specific duration was determined.

  1. What roles do team climate, roster control, and work life conflict play in shiftworkers' fatigue longitudinally?

    PubMed

    Pisarski, Anne; Barbour, Jennifer P

    2014-05-01

    The study aimed to examine shiftworkers fatigue and the longitudinal relationships that impact on fatigue such as team climate, work life conflict, control of shifts and shift type in shift working nurses. We used a quantitative survey methodology and analysed data with a moderated hierarchical multiple regression. After matching across two time periods 18 months apart, the sample consisted of 166 nurses from one Australian hospital. Of these nurses, 61 worked two rotating day shifts (morning & afternoon/evening) and 105 were rotating shiftworkers who worked three shifts (morning afternoon/evening and nights). The findings suggest that control over shift scheduling can have significant effects on fatigue for both two-shift and three-shift workers. A significant negative relationship between positive team climate and fatigue was moderated by shift type. At both Time 1 and Time 2, work life conflict was the strongest predictor of concurrent fatigue, but over time it was not. Copyright © 2013 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  2. The characterization of widespread fatigue damage in fuselage structure

    NASA Technical Reports Server (NTRS)

    Piascik, Robert S.; Willard, Scott A.; Miller, Matthew

    1994-01-01

    The characteristics of widespread fatigue damage (WSFD) in fuselage riveted structure were established by detailed nondestructive and destructive examinations of fatigue damage contained in a full size fuselage test article. The objectives of this were to establish an experimental data base for validating emerging WSFD analytical prediction methodology and to identify first order effects that contribute to fatigue crack initiation and growth. Detailed examinations were performed on a test panel containing four bays of a riveted lap splice joint. The panel was removed from a full scale fuselage test article after receiving 60,000 full pressurization cycles. The results of in situ examinations document the progression of fuselage skin fatigue crack growth through crack linkup. Detailed tear down examinations and fractography of the lap splice joint region revealed fatigue crack initiation sites, crack morphology, and crack linkup geometry. From this large data base, distributions of crack size and locations are presented and discussions of operative damage mechanisms are offered.

  3. The characterization of widespread fatigue damage in fuselage structure

    NASA Technical Reports Server (NTRS)

    Piascik, Robert S.; Willard, Scott A.; Miller, Matthew

    1994-01-01

    The characteristics of widespread fatigue damage (WSFD) in fuselage riveted structure were established by detailed nondestructive and destructive examinations of fatigue damage contained in a full size fuselage test article. The objectives of this work were to establish an experimental data base for validating emerging WSFD analytical prediction methodology and to identify first order effects that contribute to fatigue crack initiation and growth. Detailed examinations were performed on a test panel containing four bays of a riveted lap splice joint. The panel was removed from a full scale fuselage test article after receiving 60,000 full pressurization cycles. The results of in situ examinations document the progression of fuselage skin fatigue crack growth through crack linkup. Detailed tear down examinations and fractography of the lap splice joint region revealed fatigue crack initiation sites, crack morphology and crack linkup geometry. From this large data base, distributions of crack size and locations are presented and discussions of operative damage mechanisms are offered.

  4. Probabilistic Material Strength Degradation Model for Inconel 718 Components Subjected to High Temperature, High-Cycle and Low-Cycle Mechanical Fatigue, Creep and Thermal Fatigue Effects

    NASA Technical Reports Server (NTRS)

    Bast, Callie C.; Boyce, Lola

    1995-01-01

    The development of methodology for a probabilistic material strength degradation is described. The probabilistic model, in the form of a postulated randomized multifactor equation, provides for quantification of uncertainty in the lifetime material strength of aerospace propulsion system components subjected to a number of diverse random effects. This model is embodied in the computer program entitled PROMISS, which can include up to eighteen different effects. Presently, the model includes five effects that typically reduce lifetime strength: high temperature, high-cycle mechanical fatigue, low-cycle mechanical fatigue, creep and thermal fatigue. Results, in the form of cumulative distribution functions, illustrated the sensitivity of lifetime strength to any current value of an effect. In addition, verification studies comparing predictions of high-cycle mechanical fatigue and high temperature effects with experiments are presented. Results from this limited verification study strongly supported that material degradation can be represented by randomized multifactor interaction models.

  5. Replacing Myalgic Encephalomyelitis and Chronic Fatigue Syndrome with Systemic Exercise Intolerance Disease Is Not the Way forward

    PubMed Central

    Twisk, Frank N.M.

    2016-01-01

    Myalgic encephalomyelitis (ME), described in the medical literature since 1938, is characterized by distinctive muscular symptoms, neurological symptoms, and signs of circulatory impairment. The only mandatory feature of chronic fatigue syndrome (CFS), introduced in 1988 and redefined in 1994, is chronic fatigue, which should be accompanied by at least four or more out of eight “additional” symptoms. The use of the abstract, polythetic criteria of CFS, which define a heterogeneous patient population, and self-report has hampered both scientific progress and accurate diagnosis. To resolve the “diagnostic impasse” the Institute of Medicine proposes that a new clinical entity, systemic exercise intolerance disease (SEID), should replace the clinical entities ME and CFS. However, adopting SEID and its defining symptoms, does not resolve methodological and diagnostic issues. Firstly, a new diagnostic entity cannot replace two distinct, partially overlapping, clinical entities such as ME and CFS. Secondly, due to the nature of the diagnostic criteria, the employment of self-report, and the lack of criteria to exclude patients with other conditions, the SEID criteria seem to select an even more heterogeneous patient population, causing additional diagnostic confusion. This article discusses methodological and diagnostic issues related to SEID and proposes a methodological solution for the current “diagnostic impasse”. PMID:26861399

  6. 14 CFR 23.574 - Metallic damage tolerance and fatigue evaluation of commuter category airplanes.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... evaluation of commuter category airplanes. 23.574 Section 23.574 Aeronautics and Space FEDERAL AVIATION... COMMUTER CATEGORY AIRPLANES Structure Fatigue Evaluation § 23.574 Metallic damage tolerance and fatigue evaluation of commuter category airplanes. For commuter category airplanes— (a) Metallic damage tolerance. An...

  7. 14 CFR 23.574 - Metallic damage tolerance and fatigue evaluation of commuter category airplanes.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... evaluation of commuter category airplanes. 23.574 Section 23.574 Aeronautics and Space FEDERAL AVIATION... COMMUTER CATEGORY AIRPLANES Structure Fatigue Evaluation § 23.574 Metallic damage tolerance and fatigue evaluation of commuter category airplanes. For commuter category airplanes— (a) Metallic damage tolerance. An...

  8. 14 CFR 23.574 - Metallic damage tolerance and fatigue evaluation of commuter category airplanes.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... evaluation of commuter category airplanes. 23.574 Section 23.574 Aeronautics and Space FEDERAL AVIATION... COMMUTER CATEGORY AIRPLANES Structure Fatigue Evaluation § 23.574 Metallic damage tolerance and fatigue evaluation of commuter category airplanes. For commuter category airplanes— (a) Metallic damage tolerance. An...

  9. 14 CFR 23.574 - Metallic damage tolerance and fatigue evaluation of commuter category airplanes.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... evaluation of commuter category airplanes. 23.574 Section 23.574 Aeronautics and Space FEDERAL AVIATION... COMMUTER CATEGORY AIRPLANES Structure Fatigue Evaluation § 23.574 Metallic damage tolerance and fatigue evaluation of commuter category airplanes. For commuter category airplanes— (a) Metallic damage tolerance. An...

  10. 14 CFR 23.574 - Metallic damage tolerance and fatigue evaluation of commuter category airplanes.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... evaluation of commuter category airplanes. 23.574 Section 23.574 Aeronautics and Space FEDERAL AVIATION... COMMUTER CATEGORY AIRPLANES Structure Fatigue Evaluation § 23.574 Metallic damage tolerance and fatigue evaluation of commuter category airplanes. For commuter category airplanes— (a) Metallic damage tolerance. An...

  11. The Neural Substrates of Self-Evaluation of Mental Fatigue: A Magnetoencephalography Study

    PubMed Central

    Ishii, Akira; Tanaka, Masaaki; Watanabe, Yasuyoshi

    2014-01-01

    There have been several studies of the neural mechanisms underlying sensation of fatigue. However, little is known about the neural mechanisms underlying self-evaluation of the level of fatigue. The aim of this study was to identify the neural substrates involved in self-evaluation of the level of mental fatigue. We used magnetoencephalography (MEG) with high temporal resolution on 14 healthy participants. During MEG recordings, participants were asked to evaluate their level of mental fatigue in time with execution cues (evaluation trials) or to do nothing in time with execution cues (control trials). The MEG data were analyzed with equivalent current dipole (ECD) and spatial filtering methods to localize the neural activity related to the evaluation of mental fatigue. The daily level of fatigue sensation was assessed using the Checklist Individual Strength questionnaire. In evaluation trials, ECDs were observed in the posterior cingulate cortex (PCC) in seven of 14 participants, with a mean latency of 366.0 ms. The proportion of the participants with ECDs in the PCC was higher in evaluation trials than in control trials (P<0.05, McNemar test). The extent of the decreased delta band power in the PCC (Brodmann’s area 31) 600–700 ms after the onset of the execution cue and that in the dorsolateral prefrontal cortex (DLPFC; Brodmann’s area 9) 800–900 ms after the onset of the execution cue were greater in the evaluation trials than in the control trials. The decrease in delta band power in the DLPFC was positively related to that in the PCC and to the daily level of fatigue sensation. These data suggest that the PCC and DLPFC are involved in the self-evaluation of mental fatigue. PMID:24752677

  12. 14 CFR 29.571 - Fatigue evaluation of structure.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Strength Requirements Fatigue Evaluation... fatigue, considering the effects of environment, intrinsic/discrete flaws, or accidental damage will be avoided. Parts to be evaluated include, but are not limited to, rotors, rotor drive systems between the...

  13. 14 CFR 29.571 - Fatigue evaluation of structure.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Strength Requirements Fatigue Evaluation... fatigue, considering the effects of environment, intrinsic/discrete flaws, or accidental damage will be avoided. Parts to be evaluated include, but are not limited to, rotors, rotor drive systems between the...

  14. Fatigue life and crack growth prediction methodology

    NASA Technical Reports Server (NTRS)

    Newman, J. C., Jr.; Phillips, E. P.; Everett, R. A., Jr.

    1993-01-01

    The capabilities of a plasticity-induced crack-closure model and life-prediction code to predict fatigue crack growth and fatigue lives of metallic materials are reviewed. Crack-tip constraint factors, to account for three-dimensional effects, were selected to correlate large-crack growth rate data as a function of the effective-stress-intensity factor range (delta(K(sub eff))) under constant-amplitude loading. Some modifications to the delta(K(sub eff))-rate relations were needed in the near threshold regime to fit small-crack growth rate behavior and endurance limits. The model was then used to calculate small- and large-crack growth rates, and in some cases total fatigue lives, for several aluminum and titanium alloys under constant-amplitude, variable-amplitude, and spectrum loading. Fatigue lives were calculated using the crack growth relations and microstructural features like those that initiated cracks. Results from the tests and analyses agreed well.

  15. Data and methods for studying commercial motor vehicle driver fatigue, highway safety and long-term driver health.

    PubMed

    Stern, Hal S; Blower, Daniel; Cohen, Michael L; Czeisler, Charles A; Dinges, David F; Greenhouse, Joel B; Guo, Feng; Hanowski, Richard J; Hartenbaum, Natalie P; Krueger, Gerald P; Mallis, Melissa M; Pain, Richard F; Rizzo, Matthew; Sinha, Esha; Small, Dylan S; Stuart, Elizabeth A; Wegman, David H

    2018-03-09

    This article summarizes the recommendations on data and methodology issues for studying commercial motor vehicle driver fatigue of a National Academies of Sciences, Engineering, and Medicine study. A framework is provided that identifies the various factors affecting driver fatigue and relating driver fatigue to crash risk and long-term driver health. The relevant factors include characteristics of the driver, vehicle, carrier and environment. Limitations of existing data are considered and potential sources of additional data described. Statistical methods that can be used to improve understanding of the relevant relationships from observational data are also described. The recommendations for enhanced data collection and the use of modern statistical methods for causal inference have the potential to enhance our understanding of the relationship of fatigue to highway safety and to long-term driver health. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  16. A Wireless Fatigue Monitoring System Utilizing a Bio-Inspired Tree Ring Data Tracking Technique

    PubMed Central

    Bai, Shi; Li, Xuan; Xie, Zhaohui; Zhou, Zhi; Ou, Jinping

    2014-01-01

    Fatigue, a hot scientific research topic for centuries, can trigger sudden failure of critical structures such as aircraft and railway systems, resulting in enormous casualties as well as economic losses. The fatigue life of certain structures is intrinsically random and few monitoring techniques are capable of tracking the full life-cycle fatigue damage. In this paper, a novel in-situ wireless real-time fatigue monitoring system using a bio-inspired tree ring data tracking technique is proposed. The general framework, methodology, and verification of this intelligent system are discussed in details. The rain-flow counting (RFC) method is adopted as the core algorithm which quantifies fatigue damages, and Digital Signal Processing (DSP) is introduced as the core module for data collection and analysis. Laboratory test results based on strain gauges and polyvinylidene fluoride (PVDF) sensors have shown that the developed intelligent system can provide a reliable quick feedback and early warning of fatigue failure. With the merits of low cost, high accuracy and great reliability, the developed wireless fatigue sensing system can be further applied to mechanical engineering, civil infrastructures, transportation systems, aerospace engineering, etc. PMID:24603635

  17. Muscle fatigue evaluation of astronaut upper limb based on sEMG and subjective assessment

    NASA Astrophysics Data System (ADS)

    Zu, Xiaoqi; Zhou, Qianxiang; Li, Yun

    2012-07-01

    All movements are driven by muscle contraction, and it is easy to cause muscle fatigue. Evaluation of muscle fatigue is a hot topic in the area of astronaut life support training and rehabilitation. If muscle gets into fatigue condition, it may reduce work efficiency and has an impact on psychological performance. Therefore it is necessary to develop an accurate and usable method on muscle fatigue evaluation of astronaut upper limb. In this study, we developed a method based on surface electromyography (sEMG) and subjective assessment (Borg scale) to evaluate local muscle fatigue. Fifteen healthy young male subjects participated in the experiment. They performed isometric muscle contractions of the upper limb. sEMG of the biceps brachii were recorded during the entire process of isotonic muscle contraction and Borg scales of muscle fatigue were collected in certain times. sEMG were divided into several parts, and then mean energy of each parts were calculated by the one-twelfth band octave method. Equations were derived based on the relationship between the mean energy of sEMG and Borg scale. The results showed that cubic curve could describe the degree of local muscle fatigue, and could be used to evaluate and monitor local muscle fatigue during the entire process.

  18. 14 CFR 27.571 - Fatigue evaluation of flight structure.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... § 27.309, except that maneuvering load factors need not exceed the maximum values expected in operation... paragraph (a)(3) of this section. (b) Fatigue tolerance evaluation. It must be shown that the fatigue tolerance of the structure ensures that the probability of catastrophic fatigue failure is extremely remote...

  19. Neuromuscular fatigue during exercise: Methodological considerations, etiology and potential role in chronic fatigue.

    PubMed

    Twomey, Rosie; Aboodarda, Saied Jalal; Kruger, Renata; Culos-Reed, Susan Nicole; Temesi, John; Millet, Guillaume Y

    2017-04-01

    The term fatigue is used to describe a distressing and persistent symptom of physical and/or mental tiredness in certain clinical populations, with distinct but ultimately complex, multifactorial and heterogenous pathophysiology. Chronic fatigue impacts on quality of life, reduces the capacity to perform activities of daily living, and is typically measured using subjective self-report tools. Fatigue also refers to an acute reduction in the ability to produce maximal force or power due to exercise. The classical measurement of exercise-induced fatigue involves neuromuscular assessments before and after a fatiguing task. The limitations and alternatives to this approach are reviewed in this paper in relation to the lower limb and whole-body exercise, given the functional relevance to locomotion, rehabilitation and activities of daily living. It is suggested that under some circumstances, alterations in the central and/or peripheral mechanisms of fatigue during exercise may be related to the sensations of chronic fatigue. As such, the neurophysiological correlates of exercise-induced fatigue are briefly examined in two clinical examples where chronic fatigue is common: cancer survivors and people with multiple sclerosis. This review highlights the relationship between objective measures of fatigability with whole-body exercise and perceptions of fatigue as a priority for future research, given the importance of exercise in relieving symptoms of chronic fatigue and/or overall disease management. As chronic fatigue is likely to be specific to the individual and unlikely to be due to a simple biological or psychosocial explanation, tailored exercise programmes are a potential target for therapeutic intervention. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  20. Review of fatigue and fracture research at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Everett, Richard A., Jr.

    1988-01-01

    Most dynamic components in helicopters are designed with a safe-life constant-amplitude testing approach that has not changed in many years. In contrast, the fatigue methodology in other industries has advanced significantly in the last two decades. Recent research at the NASA Langley Research Center and the U.S. Army Aerostructures Directorate at Langley are reviewed relative to fatigue and fracture design methodology for metallic components. Most of the Langley research was directed towards the damage tolerance design approach, but some work was done that is applicable to the safe-life approach. In the areas of testing, damage tolerance concepts are concentrating on the small-crack effect in crack growth and measurement of crack opening stresses. Tests were conducted to determine the effects of a machining scratch on the fatigue life of a high strength steel. In the area of analysis, work was concentrated on developing a crack closure model that will predict fatigue life under spectrum loading for several different metal alloys including a high strength steel that is often used in the dynamic components of helicopters. Work is also continuing in developing a three-dimensional, finite-element stress analysis for cracked and uncracked isotropic and anisotropic structures. A numerical technique for solving simultaneous equations called the multigrid method is being pursued to enhance the solution schemes in both the finite-element analysis and the boundary element analysis. Finally, a fracture mechanics project involving an elastic-plastic finite element analysis of J-resistance curve is also being pursued.

  1. Three Dimensional Numerical Simulation and Characterization of Crack Growth in the Weld Region of a Friction Stir Welded Structure

    NASA Technical Reports Server (NTRS)

    Seshadri, Banavara R.; Smith, Stephen W.; Newman, John A.

    2013-01-01

    Friction stir welding (FSW) fabrication technology is being adopted in aerospace applications. The use of this technology can reduce production cost, lead-times, reduce structural weight and need for fasteners and lap joints, which are typically the primary locations of crack initiation and multi-site fatigue damage in aerospace structures. FSW is a solid state welding process that is well-suited for joining aluminum alloy components; however, the process introduces residual stresses (both tensile and compressive) in joined components. The propagation of fatigue cracks in a residual stress field and the resulting redistribution of the residual stress field and its effect on crack closure have to be estimated. To insure the safe insertion of complex integral structures, an accurate understanding of the fatigue crack growth behavior and the complex crack path process must be understood. A life prediction methodology for fatigue crack growth through the weld under the influence of residual stresses in aluminum alloy structures fabricated using FSW will be detailed. The effects and significance of the magnitude of residual stress at a crack tip on the estimated crack tip driving force are highlighted. The location of the crack tip relative to the FSW and the effect of microstructure on fatigue crack growth are considered. A damage tolerant life prediction methodology accounting for microstructural variation in the weld zone and residual stress field will lead to the design of lighter and more reliable aerospace structures

  2. Designing for fiber composite structural durability in hygrothermomechanical environment

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.

    1985-01-01

    A methodology is described which can be used to design/analyze fiber composite structures subjected to complex hygrothermomechanical environments. This methodology includes composite mechanics and advanced structural analysis methods (finite element). Select examples are described to illustrate the application of the available methodology. The examples include: (1) composite progressive fracture; (2) composite design for high cycle fatigue combined with hot-wet conditions; and (3) general laminate design.

  3. Evaluation of fatigue life of CRM-reinforced SMA and its relationship to dynamic stiffness.

    PubMed

    Mashaan, Nuha Salim; Karim, Mohamed Rehan; Abdel Aziz, Mahrez; Ibrahim, Mohd Rasdan; Katman, Herda Yati; Koting, Suhana

    2014-01-01

    Fatigue cracking is an essential problem of asphalt concrete that contributes to pavement damage. Although stone matrix asphalt (SMA) has significantly provided resistance to rutting failure, its resistance to fatigue failure is yet to be fully addressed. The aim of this study is to evaluate the effect of crumb rubber modifier (CRM) on stiffness and fatigue properties of SMA mixtures at optimum binder content, using four different modification levels, namely, 6%, 8%, 10%, and 12% CRM by weight of the bitumen. The testing undertaken on the asphalt mix comprises the dynamic stiffness (indirect tensile test), dynamic creep (repeated load creep), and fatigue test (indirect tensile fatigue test) at temperature of 25°C. The indirect tensile fatigue test was conducted at three different stress levels (200, 300, and 400 kPa). Experimental results indicate that CRM-reinforced SMA mixtures exhibit significantly higher fatigue life compared to the mixtures without CRM. Further, higher correlation coefficient was obtained between the fatigue life and resilient modulus as compared to permanent strain; thus resilient modulus might be a more reliable indicator in evaluating the fatigue life of asphalt mixture.

  4. Detecting fatigue thresholds from electromyographic signals: A systematic review on approaches and methodologies.

    PubMed

    Ertl, Peter; Kruse, Annika; Tilp, Markus

    2016-10-01

    The aim of the current paper was to systematically review the relevant existing electromyographic threshold concepts within the literature. The electronic databases MEDLINE and SCOPUS were screened for papers published between January 1980 and April 2015 including the keywords: neuromuscular fatigue threshold, anaerobic threshold, electromyographic threshold, muscular fatigue, aerobic-anaerobictransition, ventilatory threshold, exercise testing, and cycle-ergometer. 32 articles were assessed with regard to their electromyographic methodologies, description of results, statistical analysis and test protocols. Only one article was of very good quality. 21 were of good quality and two articles were of very low quality. The review process revealed that: (i) there is consistent evidence of one or two non-linear increases of EMG that might reflect the additional recruitment of motor units (MU) or different fiber types during fatiguing cycle ergometer exercise, (ii) most studies reported no statistically significant difference between electromyographic and metabolic thresholds, (iii) one minute protocols with increments between 10 and 25W appear most appropriate to detect muscular threshold, (iv) threshold detection from the vastus medialis, vastus lateralis, and rectus femoris is recommended, and (v) there is a great variety in study protocols, measurement techniques, and data processing. Therefore, we recommend further research and standardization in the detection of EMGTs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Microstructural evaluation of cumulative fatigue damage below the fatigue limit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fukuoka, C.; Nakagawa, Y.G.

    1996-05-01

    The objective of this work is to evaluate the microstructural changes induced near and below the fatigue limit in a pressure vessel steel plate, SA508. Dislocation cell to cell misorientation differences, {theta}, which increase with fatigue damage accumulation, are measured by the Selected Area Diffraction (SAD) method. The misorientation difference, {theta}, of the sample failed just above the fatigue limit is about 4.0 degrees on the average, which is about the same as that for the failure conditions of low cycle fatigue at higher stresses. The {theta} value increases even below the fatigue limit, but it does not increase atmore » stresses which are lower than 50% of the fatigue limit.« less

  6. A comparison of life prediction methodologies for titanium matrix composites subjected to thermomechanical fatigue

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Calcaterra, J.R.; Johnson, W.S.; Neu, R.W.

    1997-12-31

    Several methodologies have been developed to predict the lives of titanium matrix composites (TMCs) subjected to thermomechanical fatigue (TMF). This paper reviews and compares five life prediction models developed at NASA-LaRC. Wright Laboratories, based on a dingle parameter, the fiber stress in the load-carrying, or 0{degree}, direction. The two other models, both developed at Wright Labs. are multi-parameter models. These can account for long-term damage, which is beyond the scope of the single-parameter models, but this benefit is offset by the additional complexity of the methodologies. Each of the methodologies was used to model data generated at NASA-LeRC. Wright Labs.more » and Georgia Tech for the SCS-6/Timetal 21-S material system. VISCOPLY, a micromechanical stress analysis code, was used to determine the constituent stress state for each test and was used for each model to maintain consistency. The predictive capabilities of the models are compared, and the ability of each model to accurately predict the responses of tests dominated by differing damage mechanisms is addressed.« less

  7. Development of a Composite Delamination Fatigue Life Prediction Methodology

    NASA Technical Reports Server (NTRS)

    OBrien, Thomas K.

    2009-01-01

    Delamination is one of the most significant and unique failure modes in composite structures. Because of a lack of understanding of the consequences of delamination and the inability to predict delamination onset and growth, many composite parts are unnecessarily rejected upon inspection, both immediately after manufacture and while in service. NASA Langley is leading the efforts in the U.S. to develop a fatigue life prediction methodology for composite delamination using fracture mechanics. Research being performed to this end will be reviewed. Emphasis will be placed on the development of test standards for delamination characterization, incorporation of approaches for modeling delamination in commercial finite element codes, and efforts to mature the technology for use in design handbooks and certification documents.

  8. 77 FR 50576 - Damage Tolerance and Fatigue Evaluation of Composite Rotorcraft Structures; OMB Approval of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-22

    ... Composite Rotorcraft Structures; OMB Approval of Information Collection AGENCY: Federal Aviation... requirement contained in the FAA's final rule, ``Damage Tolerance and Fatigue Evaluation of Composite... and Fatigue Evaluation of Composite Rotorcraft Structures,'' published in the Federal Register (76 FR...

  9. Structural Optimization Methodology for Rotating Disks of Aircraft Engines

    NASA Technical Reports Server (NTRS)

    Armand, Sasan C.

    1995-01-01

    In support of the preliminary evaluation of various engine technologies, a methodology has been developed for structurally designing the rotating disks of an aircraft engine. The structural design methodology, along with a previously derived methodology for predicting low-cycle fatigue life, was implemented in a computer program. An interface computer program was also developed that gathers the required data from a flowpath analysis program (WATE) being used at NASA Lewis. The computer program developed for this study requires minimum interaction with the user, thus allowing engineers with varying backgrounds in aeropropulsion to successfully execute it. The stress analysis portion of the methodology and the computer program were verified by employing the finite element analysis method. The 10th- stage, high-pressure-compressor disk of the Energy Efficient Engine Program (E3) engine was used to verify the stress analysis; the differences between the stresses and displacements obtained from the computer program developed for this study and from the finite element analysis were all below 3 percent for the problem solved. The computer program developed for this study was employed to structurally optimize the rotating disks of the E3 high-pressure compressor. The rotating disks designed by the computer program in this study were approximately 26 percent lighter than calculated from the E3 drawings. The methodology is presented herein.

  10. Optimization of Nanocomposite Modified Asphalt Mixtures Fatigue Life using Response Surface Methodology

    NASA Astrophysics Data System (ADS)

    Bala, N.; Napiah, M.; Kamaruddin, I.; Danlami, N.

    2018-04-01

    In this study, modelling and optimization of materials polyethylene, polypropylene and nanosilica for nanocomposite modified asphalt mixtures has been examined to obtain optimum quantities for higher fatique life. Response Surface Methodology (RSM) was applied for the optimization based on Box Behnken design (BBD). Interaction effects of independent variables polymers and nanosilica on fatique life were evaluated. The result indicates that the individual effects of polymers and nanosilica content are both important. However, the content of nanosilica used has more significant effect on fatique life resistance. Also, the mean error obtained from optimization results is less than 5% for all the responses, this indicates that predicted values are in agreement with experimental results. Furthermore, it was concluded that asphalt mixture design with high performance properties, optimization using RSM is a very effective approach.

  11. 77 FR 42547 - Agency Information Collection Activities: Requests for Comments; Clearance of Renewed Approval of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-19

    ... and Fatigue Evaluation of Composite Rotorcraft Structures AGENCY: Federal Aviation Administration (FAA... Tolerance and Fatigue Evaluation of Composite Rotorcraft Structures. Form Numbers: There are no FAA forms... ``Damage Tolerance and Fatigue Evaluation of Composite Rotorcraft Structures'' final rule (76 FR 74655...

  12. Comparative study on the welded structure fatigue strength assessment method

    NASA Astrophysics Data System (ADS)

    Hu, Tao

    2018-04-01

    Due to the welding structure is widely applied in various industries, especially the pressure container, motorcycle, automobile, aviation, ship industry, such as large crane steel structure, so for welded structure fatigue strength evaluation is particularly important. For welded structure fatigue strength evaluation method mainly has four kinds of, the more from the use of two kinds of welded structure fatigue strength evaluation method, namely the nominal stress method and the hot spot stress evaluation method, comparing from its principle, calculation method for the process analysis and research, compare the similarities and the advantages and disadvantages, the analysis of practical engineering problems to provide the reference for every profession and trade, as well as the future welded structure fatigue strength and life evaluation method put forward outlook.

  13. Objective evaluation of fatigue by EEG spectral analysis in steady-state visual evoked potential-based brain-computer interfaces

    PubMed Central

    2014-01-01

    Background The fatigue that users suffer when using steady-state visual evoked potential (SSVEP)-based brain-computer interfaces (BCIs) can cause a number of serious problems such as signal quality degradation and system performance deterioration, users’ discomfort and even risk of photosensitive epileptic seizures, posing heavy restrictions on the applications of SSVEP-based BCIs. Towards alleviating the fatigue, a fundamental step is to measure and evaluate it but most existing works adopt self-reported questionnaire methods which are subjective, offline and memory dependent. This paper proposes an objective and real-time approach based on electroencephalography (EEG) spectral analysis to evaluate the fatigue in SSVEP-based BCIs. Methods How the EEG indices (amplitudes in δ, θ, α and β frequency bands), the selected ratio indices (θ/α and (θ + α)/β), and SSVEP properties (amplitude and signal-to-noise ratio (SNR)) changes with the increasing fatigue level are investigated through two elaborate SSVEP-based BCI experiments, one validates mainly the effectiveness and another considers more practical situations. Meanwhile, a self-reported fatigue questionnaire is used to provide a subjective reference. ANOVA is employed to test the significance of the difference between the alert state and the fatigue state for each index. Results Consistent results are obtained in two experiments: the significant increases in α and (θ + α)/β, as well as the decrease in θ/α are found associated with the increasing fatigue level, indicating that EEG spectral analysis can provide robust objective evaluation of the fatigue in SSVEP-based BCIs. Moreover, the results show that the amplitude and SNR of the elicited SSVEP are significantly affected by users’ fatigue. Conclusions The experiment results demonstrate the feasibility and effectiveness of the proposed method as an objective and real-time evaluation of the fatigue in SSVEP-based BCIs. This method would be helpful in understanding the fatigue problem and optimizing the system design to alleviate the fatigue in SSVEP-based BCIs. PMID:24621009

  14. Interactive Inverse Groundwater Modeling - Addressing User Fatigue

    NASA Astrophysics Data System (ADS)

    Singh, A.; Minsker, B. S.

    2006-12-01

    This paper builds on ongoing research on developing an interactive and multi-objective framework to solve the groundwater inverse problem. In this work we solve the classic groundwater inverse problem of estimating a spatially continuous conductivity field, given field measurements of hydraulic heads. The proposed framework is based on an interactive multi-objective genetic algorithm (IMOGA) that not only considers quantitative measures such as calibration error and degree of regularization, but also takes into account expert knowledge about the structure of the underlying conductivity field expressed as subjective rankings of potential conductivity fields by the expert. The IMOGA converges to the optimal Pareto front representing the best trade- off among the qualitative as well as quantitative objectives. However, since the IMOGA is a population-based iterative search it requires the user to evaluate hundreds of solutions. This leads to the problem of 'user fatigue'. We propose a two step methodology to combat user fatigue in such interactive systems. The first step is choosing only a few highly representative solutions to be shown to the expert for ranking. Spatial clustering is used to group the search space based on the similarity of the conductivity fields. Sampling is then carried out from different clusters to improve the diversity of solutions shown to the user. Once the expert has ranked representative solutions from each cluster a machine learning model is used to 'learn user preference' and extrapolate these for the solutions not ranked by the expert. We investigate different machine learning models such as Decision Trees, Bayesian learning model, and instance based weighting to model user preference. In addition, we also investigate ways to improve the performance of these models by providing information about the spatial structure of the conductivity fields (which is what the expert bases his or her rank on). Results are shown for each of these machine learning models and the advantages and disadvantages for each approach are discussed. These results indicate that using the proposed two-step methodology leads to significant reduction in user-fatigue without deteriorating the solution quality of the IMOGA.

  15. Evaluation of Fatigue Life of CRM-Reinforced SMA and Its Relationship to Dynamic Stiffness

    PubMed Central

    Mashaan, Nuha Salim; Karim, Mohamed Rehan; Abdel Aziz, Mahrez; Ibrahim, Mohd Rasdan; Katman, Herda Yati

    2014-01-01

    Fatigue cracking is an essential problem of asphalt concrete that contributes to pavement damage. Although stone matrix asphalt (SMA) has significantly provided resistance to rutting failure, its resistance to fatigue failure is yet to be fully addressed. The aim of this study is to evaluate the effect of crumb rubber modifier (CRM) on stiffness and fatigue properties of SMA mixtures at optimum binder content, using four different modification levels, namely, 6%, 8%, 10%, and 12% CRM by weight of the bitumen. The testing undertaken on the asphalt mix comprises the dynamic stiffness (indirect tensile test), dynamic creep (repeated load creep), and fatigue test (indirect tensile fatigue test) at temperature of 25°C. The indirect tensile fatigue test was conducted at three different stress levels (200, 300, and 400 kPa). Experimental results indicate that CRM-reinforced SMA mixtures exhibit significantly higher fatigue life compared to the mixtures without CRM. Further, higher correlation coefficient was obtained between the fatigue life and resilient modulus as compared to permanent strain; thus resilient modulus might be a more reliable indicator in evaluating the fatigue life of asphalt mixture. PMID:25050406

  16. Reliability Quantification of the Flexure: A Critical Stirling Convertor Component

    NASA Technical Reports Server (NTRS)

    Shah, Ashwin R.; Korovaichuk, Igor; Zampino, Edward J.

    2004-01-01

    Uncertainties in the manufacturing, fabrication process, material behavior, loads, and boundary conditions results in the variation of the stresses and strains induced in the flexures and its fatigue life. Past experience and the test data at material coupon levels revealed a significant amount of scatter of the fatigue life. Owing to these facts, the design of the flexure, using conventional approaches based on safety factor or traditional reliability based on similar equipment considerations does not provide a direct measure of reliability. Additionally, it may not be feasible to run actual long term fatigue tests due to cost and time constraints. Therefore it is difficult to ascertain material fatigue strength limit. The objective of the paper is to present a methodology and quantified results of numerical simulation for the reliability of flexures used in the Stirling convertor for their structural performance. The proposed approach is based on application of finite element analysis method in combination with the random fatigue limit model, which includes uncertainties in material fatigue life. Additionally, sensitivity of fatigue life reliability to the design variables is quantified and its use to develop guidelines to improve design, manufacturing, quality control and inspection design process is described.

  17. Fatigue Crack Prognostics by Optical Quantification of Defect Frequency

    NASA Astrophysics Data System (ADS)

    Chan, K. S.; Buckner, B. D.; Earthman, J. C.

    2018-01-01

    Defect frequency, a fatigue crack prognostics indicator, is defined as the number of microcracks per second detected using a laser beam that is scanned across a surface at a constant predetermined frequency. In the present article, a mechanistic approach was taken to develop a methodology for deducing crack length and crack growth information from defect frequency data generated from laser scanning measurements made on fatigued surfaces. The method was developed by considering a defect frequency vs fatigue cycle curve that comprised three regions: (i) a crack initiation regime of rising defect frequency, (ii) a plateau region of a relatively constant defect frequency, and (iii) a region of rapid rising defect frequency due to crack growth. Relations between defect frequency and fatigue cycle were developed for each of these three regions and utilized to deduce crack depth information from laser scanning data of 7075-T6 notched specimens. The proposed method was validated using experimental data of crack density and crack length data from the literature for a structural steel. The proposed approach was successful in predicting the length or depth of small fatigue cracks in notched 7075-T6 specimens and in smooth fatigue specimens of a structural steel.

  18. Guided Imagery as a Treatment Option for Fatigue

    PubMed Central

    Menzies, Victoria; Jallo, Nancy

    2013-01-01

    Purpose Fatigue is one of the most common complaints experienced among the general population. Because fatigue is recognized as a biobehavioral occurrence, a biobehavioral intervention such as guided imagery may be effective in reducing self-reported fatigue. Therefore, the purpose of this study was to explore the research literature related to the use of guided imagery as a nonpharmacological mind-body intervention for the symptom of fatigue. Method The electronic databases MEDLINE, CINAHL, PsychInfo, Psychology and Behavioral Sciences Collection and the Cochrane Library were searched from January 1980 to June 2010. Findings Of 24 articles retrieved, eight met the inclusion criteria and were included in this systematic literature review. Findings were inconsistent regarding the effectiveness of guided imagery on fatigue. Studies varied in study length, duration of the applied guided imagery intervention, dosage, and whether the images were targeted to the purpose of the intervention. Implications Guided imagery is a simple, economic intervention with the potential to effectively treat fatigue, thus further research is warranted using systematic, well-designed methodologies Standardizing guided imagery interventions according to total duration of exposure and targeted imagery in a variety of different populations adequately powered to detect changes will contribute to and strengthen nursing’s symptom-management armamentarium. PMID:21772047

  19. Evaluation of driver fatigue on two channels of EEG data.

    PubMed

    Li, Wei; He, Qi-chang; Fan, Xiu-min; Fei, Zhi-min

    2012-01-11

    Electroencephalogram (EEG) data is an effective indicator to evaluate driver fatigue. The 16 channels of EEG data are collected and transformed into three bands (θ, α, and β) in the current paper. First, 12 types of energy parameters are computed based on the EEG data. Then, Grey Relational Analysis (GRA) is introduced to identify the optimal indicator of driver fatigue, after which, the number of significant electrodes is reduced using Kernel Principle Component Analysis (KPCA). Finally, the evaluation model for driver fatigue is established with the regression equation based on the EEG data from two significant electrodes (Fp1 and O1). The experimental results verify that the model is effective in evaluating driver fatigue. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  20. Distinct Evening Fatigue Profiles in Oncology Outpatients Receiving Chemotherapy

    PubMed Central

    Wright, Fay; Cooper, Bruce A.; Conley, Yvette P.; Hammer, Marilyn J.; Chen, Lee-May; Paul, Steven M.; Levine, Jon D.; Miaskowski, Christine; Kober, Kord M.

    2018-01-01

    Background Fatigue is the most common and debilitating symptom experienced by oncology patients during chemotherapy (CTX). Fatigue severity demonstrates a large amount of inter-individual and diurnal variability. Purpose Study purposes were to evaluate for subgroups of patients with distinct evening fatigue profiles and evaluate how these subgroups differed on demographic, clinical, and symptom characteristics. Methods Outpatients with breast, gastrointestinal, gynecological, or lung cancer (n=1332) completed questionnaires six times over two cycles of CTX. Lee Fatigue Scale (LFS) evaluated evening fatigue severity. Latent profile analysis was used to identify distinct evening fatigue profiles. Results Four distinct evening fatigue classes (i.e., Low (14.0%), Moderate (17.2%), High (36.0%), Very High (32.8%)) were identified. Compared to the Low class, patients in the Very High evening fatigue class were: younger, female, had childcare responsibilities, had more years of education, had a lower functional status, had a higher comorbidity burden, and were diagnosed with breast cancer. Patients in the Very High class reported higher levels of depressive symptoms, sleep disturbance, and evening fatigue at enrollment. Conclusions Findings provide new insights into modifiable risk factors for higher levels of evening fatigue. Clinicians can use this information to identify higher risk patients and plan appropriate interventions. PMID:29725554

  1. Real-time monitoring of acoustic linear and nonlinear behavior of titanium alloys during low-cycle fatigue and high-cycle fatigue

    NASA Astrophysics Data System (ADS)

    Frouin, Jerome; Sathish, Shamachary; Na, Jeong K.

    2000-05-01

    An in-situ technique to measure sound velocity, ultrasonic attenuation and acoustic nonlinear property has been developed for characterization and early detection of fatigue damage in aerospace materials. For this purpose we have developed a computer software and measurement technique including hardware for the automation of the measurement. New transducer holder and special grips are designed. The automation has allowed us to test the long-term stability of the electronics over a period of time and so proof of the linearity of the system. Real-time monitoring of the material nonlinearity has been performed on dog-bone specimens from zero fatigue all the way to the final fracture under low-cycle fatigue test condition (LCF) and high-cycle test condition (HCF). Real-time health monitoring of the material can greatly contribute to the understanding of material behavior under cyclic loading. Interpretation of the results show that correlation exist between the slope of the curve described by the material nonlinearity and the life of the component. This new methodology was developed with an objective to predict the initiation of fatigue microcracks, and to detect, in-situ fatigue crack initiation as well as to quantify early stages of fatigue damage.

  2. Quality-of-life among head and neck cancer survivors at one year after treatment--a systematic review.

    PubMed

    So, W K W; Chan, R J; Chan, D N S; Hughes, B G M; Chair, S Y; Choi, K C; Chan, C W H

    2012-10-01

    The importance of quality-of-life (QoL) research has been recognised over the past two decades in patients with head and neck (H&N) cancer. The aims of this systematic review are to evaluate the QoL status of H&N cancer survivors one year after treatment and to identify the determinants affecting their QoL. Pubmed, Medline, Scopus, Sciencedirect and CINAHL (2000-2011) were searched for relevant studies, and two of the present authors assessed their methodological quality. The characteristics and main findings of the studies were extracted and reported. Thirty-seven studies met the inclusion criteria, and the methodological quality of the majority was moderate to high. While patients of the group in question recover their global QoL by 12 months after treatment, a number of outstanding issues persist - deterioration in physical functioning, fatigue, xerostomia and sticky saliva. Age, cancer site, stage of disease, social support, smoking, feeding tube placement and alcohol consumption are the significant determinants of QoL at 12 months, while gender has little or no influence. Regular assessments should be carried out to monitor physical functioning, degree of fatigue, xerostomia and sticky saliva. Further research is required to develop appropriate and effective interventions to deal with these issues, and thus to promote the patients' QoL. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. A microstructurally based model of solder joints under conditions of thermomechanical fatigue

    NASA Astrophysics Data System (ADS)

    Frear, D. R.; Burchett, S. N.; Rashid, M. M.

    The thermomechanical fatigue failure of solder joints is increasingly becoming an important reliability issue. We present two computational methodologies that have been developed to predict the behavior of near eutectic Sn-Pb solder joints under fatigue conditions that are based on metallurgical tests as fundamental input for constitutive relations. The two-phase model mathematically predicts the heterogeneous coarsening behavior of near eutectic Sn-Pb solder. The finite element simulations from this model agree well with experimental thermomechanical fatigue tests. The simulations show that the presence of an initial heterogeneity in the solder microstructure could significantly degrade the fatigue lifetime. The single phase model is a computational technique that was developed to predict solder joint behavior using materials data for constitutive relation constants that could be determined through straightforward metallurgical experiments. A shear/torsion test sample was developed to impose strain in two different orientations. Materials constants were derived from these tests and the results showed an adequate fit to experimental results. The single-phase model could be very useful for conditions where microstructural evolution is not a dominant factor in fatigue.

  4. Fatigue-Life Prediction Methodology Using Small-Crack Theory

    NASA Technical Reports Server (NTRS)

    Newmann, James C., Jr.; Phillips, Edward P.; Swain, M. H.

    1997-01-01

    This paper reviews the capabilities of a plasticity-induced crack-closure model to predict fatigue lives of metallic materials using 'small-crack theory' for various materials and loading conditions. Crack-tip constraint factors, to account for three-dimensional state-of-stress effects, were selected to correlate large-crack growth rate data as a function of the effective-stress-intensity factor range (delta K(eff)) under constant-amplitude loading. Some modifications to the delta k(eff)-rate relations were needed in the near-threshold regime to fit measured small-crack growth rate behavior and fatigue endurance limits. The model was then used to calculate small- and large-crack growth rates, and to predict total fatigue lives, for notched and un-notched specimens made of two aluminum alloys and a steel under constant-amplitude and spectrum loading. Fatigue lives were calculated using the crack-growth relations and microstructural features like those that initiated cracks for the aluminum alloys and steel for edge-notched specimens. An equivalent-initial-flaw-size concept was used to calculate fatigue lives in other cases. Results from the tests and analyses agreed well.

  5. The fatigue evaluation method for a structural stainless steel using the magnetic sensor composed of three pancake coils

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oka, M.; Tsuchida, Y.; Enokizono, M.

    May metallic structural materials, such as stainless steels, are currently used in our surroundings. If external force is repeatedly added for many years, it is thought that fatigue damage accumulates in stainless steels. When excessive fatigue damage accumulates in these metals, there is a possibility that they are destroyed by fatigue damage accumulation. Therefore, it is important to know the amount of the fatigue damage they have suffered in order to prevent them from being destroyed. We are developing the fatigue evaluation method for stainless steels with a magnetic sensor composed of three pancake type coils. In this research, themore » inspection object is ferritic stainless steels such as SUS430. The method of fatigue evaluation for ferritic stainless steels uses the three coil type sensor, and shows a good correlation between the number of stress cycles and the output signal of the sensor, even though the correlation between the output signal and an added stress is not completely accurate. This paper describes the evaluation method of fatigue damage in ferritic stainless steel using a magnetic sensor composed of three pancake-type coils.« less

  6. 75 FR 24502 - Damage Tolerance and Fatigue Evaluation of Composite Rotorcraft Structures; Reopening of Comment...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-05

    .... FAA-2009-0660; Notice No. 10-09] RIN 2120-AJ52 Damage Tolerance and Fatigue Evaluation of Composite... requirements of normal and transport category rotorcraft. The amendment would address advances in composite... 793) Notice No. 09-12, entitled ``Damage Tolerance and Fatigue Evaluation of Composite Rotorcraft...

  7. 77 FR 4890 - Damage Tolerance and Fatigue Evaluation for Composite Rotorcraft Structures, and Damage Tolerance...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-01

    ...-AJ52, 2120-AJ51 Damage Tolerance and Fatigue Evaluation for Composite Rotorcraft Structures, and Damage... Tolerance and Fatigue Evaluation for Composite Rotorcraft Structures'' (76 FR 74655), published December 1... December 2, 2011. In the ``Composite Rotorcraft Structures'' rule, the FAA amended its regulations to...

  8. Multiscale Thermo-Mechanical Design and Analysis of High Frequency and High Power Vacuum Electron Devices

    NASA Astrophysics Data System (ADS)

    Gamzina, Diana

    Diana Gamzina March 2016 Mechanical and Aerospace Engineering Multiscale Thermo-Mechanical Design and Analysis of High Frequency and High Power Vacuum Electron Devices Abstract A methodology for performing thermo-mechanical design and analysis of high frequency and high average power vacuum electron devices is presented. This methodology results in a "first-pass" engineering design directly ready for manufacturing. The methodology includes establishment of thermal and mechanical boundary conditions, evaluation of convective film heat transfer coefficients, identification of material options, evaluation of temperature and stress field distributions, assessment of microscale effects on the stress state of the material, and fatigue analysis. The feature size of vacuum electron devices operating in the high frequency regime of 100 GHz to 1 THz is comparable to the microstructure of the materials employed for their fabrication. As a result, the thermo-mechanical performance of a device is affected by the local material microstructure. Such multiscale effects on the stress state are considered in the range of scales from about 10 microns up to a few millimeters. The design and analysis methodology is demonstrated on three separate microwave devices: a 95 GHz 10 kW cw sheet beam klystron, a 263 GHz 50 W long pulse wide-bandwidth sheet beam travelling wave tube, and a 346 GHz 1 W cw backward wave oscillator.

  9. Human perception testing methodology for evaluating EO/IR imaging systems

    NASA Astrophysics Data System (ADS)

    Graybeal, John J.; Monfort, Samuel S.; Du Bosq, Todd W.; Familoni, Babajide O.

    2018-04-01

    The U.S. Army's RDECOM CERDEC Night Vision and Electronic Sensors Directorate (NVESD) Perception Lab is tasked with supporting the development of sensor systems for the U.S. Army by evaluating human performance of emerging technologies. Typical research questions involve detection, recognition and identification as a function of range, blur, noise, spectral band, image processing techniques, image characteristics, and human factors. NVESD's Perception Lab provides an essential bridge between the physics of the imaging systems and the performance of the human operator. In addition to quantifying sensor performance, perception test results can also be used to generate models of human performance and to drive future sensor requirements. The Perception Lab seeks to develop and employ scientifically valid and efficient perception testing procedures within the practical constraints of Army research, including rapid development timelines for critical technologies, unique guidelines for ethical testing of Army personnel, and limited resources. The purpose of this paper is to describe NVESD Perception Lab capabilities, recent methodological improvements designed to align our methodology more closely with scientific best practice, and to discuss goals for future improvements and expanded capabilities. Specifically, we discuss modifying our methodology to improve training, to account for human fatigue, to improve assessments of human performance, and to increase experimental design consultation provided by research psychologists. Ultimately, this paper outlines a template for assessing human perception and overall system performance related to EO/IR imaging systems.

  10. Fatigue Test Design: Scenarios for Biaxial Fatigue Testing of a 60-Meter Wind Turbine Blade

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Post, Nathan

    Current practice in commercial certification of wind turbine blades is to perform separate flap and lead-lag fatigue tests. The National Renewable Energy Laboratory has been researching and evaluating biaxial fatigue testing techniques and demonstrating various options, typically on smaller-scale test articles at the National Wind Technology Center. This report evaluates some of these biaxial fatigue options in the context of application to a multimegawatt blade certification test program at the Wind Technology Testing Center in Charlestown, Massachusetts.

  11. Acoustic emission characteristics of copper alloys under low-cycle fatigue conditions

    NASA Technical Reports Server (NTRS)

    Krampfner, Y.; Kawamoto, A.; Ono, K.; Green, A.

    1975-01-01

    The acoustic emission (AE) characteristics of pure copper, zirconium-copper, and several copper alloys were determined to develop nondestructive evaluation schemes of thrust chambers through AE techniques. The AE counts rms voltages, frequency spectrum, and amplitude distribution analysis evaluated AE behavior under fatigue loading conditions. The results were interpreted with the evaluation of wave forms, crack propagation characteristics, as well as scanning electron fractographs of fatigue-tested samples. AE signals at the beginning of a fatigue test were produced by a sample of annealed alloys. A sample of zirconium-containing alloys annealed repeatedly after each fatigue loading cycle showed numerous surface cracks during the subsequent fatigue cycle, emitting strong-burst AE signals. Amplitude distribution analysis exhibits responses that are characteristic of certain types of AE signals.

  12. Effect of micromorphology at the fatigue crack tip on the crack growth in electron beam welded Ti-6Al-4V joint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tao, Junhui; Hu, Shubing, E-mail: 187352581@qq.com

    In this paper, we describe experiments on welded joints of Ti-6Al-4V alloy specimens exhibiting fatigue characteristics in the base metal (BM), hot affected zone (HAZ) and fuse zone (FZ). The effect of micromorphology on crack propagation at the tip of the fatigue crack in joints formed by electron beam welding was investigated using an optical microscope, transmission electron microscope and other methodologies. The results demonstrated that the fatigue crack originated in and propagated along α/β boundaries in the BM. In the HAZ, the fatigue crack occurred at the boundary between martensite laths, and propagated through most irregular-equiaxed α phases andmore » a few martensite laths. In the FZ, the fatigue crack originated at the boundaries between the fine crushing phases among martensite laths, and propagated along a majority of α/β boundaries and several narrow martensite laths. The electron beam welded joint of Ti-6Al-4V alloy showed instances of zigzag fatigue cracks that increased in degree from lowest in the HAZ, moderate in the FZ to greatest in the BM. Conversely, fatigue crack growth rate (FCGR) was greatest in the HAZ, less in the FZ and slowest in the BM. - Highlights: •Ti-6Al-4V welded joint exhibits different fatigue characteristics. •The fatigue crack propagates along α/β boundaries in the BM. •The fatigue crack propagates through α phases and martensite laths in the HAZ. •The fatigue crack propagates along α/β boundaries and martensite laths in the FZ. •Fatigue crack growth rate is fastest in the HAZ, less in the FZ, slowest in the BM.« less

  13. A finite element model on effects of impact load and cavitation on fatigue crack propagation in mechanical bileaflet aortic heart valve.

    PubMed

    Mohammadi, H; Klassen, R J; Wan, W-K

    2008-10-01

    Pyrolytic carbon mechanical heart valves (MHVs) are widely used to replace dysfunctional and failed heart valves. As the human heart beats around 40 million times per year, fatigue is the prime mechanism of mechanical failure. In this study, a finite element approach is implemented to develop a model for fatigue analysis of MHVs due to the impact force between the leaflet and the stent and cavitation in the aortic position. A two-step method to predict crack propagation in the leaflets of MHVs has been developed. Stress intensity factors (SIFs) are computed at a small initiated crack located on the leaflet edge (the worst case) using the boundary element method (BEM). Static analysis of the crack is performed to analyse the stress distribution around the front crack zone when the crack is opened; this is followed by a dynamic crack analysis to consider crack propagation using the finite element approach. Two factors are taken into account in the calculation of the SIFs: first, the effect of microjet formation due to cavitation in the vicinity of leaflets, resulting in water hammer pressure; second, the effect of the impact force between the leaflet and the stent of the MHVs, both in the closing phase. The critical initial crack length, the SIFs, the water hammer pressure, and the maximum jet velocity due to cavitation have been calculated. With an initial crack length of 35 microm, the fatigue life of the heart valve is greater than 60 years (i.e. about 2.2 x 10(9) cycles) and, with an initial crack length of 170 microm, the fatigue life of the heart valve would be around 2.5 years (i.e. about 9.1 x 10(7) cycles). For an initial crack length greater than 170 microm, there is catastrophic failure and fatigue cracking no longer occurs. A finite element model of fatigue analysis using Patran command language (PCL custom code) in MSC software can be used to evaluate the useful lifespan of MHVs. Similar methodologies can be extended to other medical devices under cyclic loads.

  14. Probabilistic analysis for fatigue strength degradation of materials

    NASA Technical Reports Server (NTRS)

    Royce, Lola

    1989-01-01

    This report presents the results of the first year of a research program conducted for NASA-LeRC by the University of Texas at San Antonio. The research included development of methodology that provides a probabilistic treatment of lifetime prediction of structural components of aerospace propulsion systems subjected to fatigue. Material strength degradation models, based on primitive variables, include both a fatigue strength reduction model and a fatigue crack growth model. Linear elastic fracture mechanics is utilized in the latter model. Probabilistic analysis is based on simulation, and both maximum entropy and maximum penalized likelihood methods are used for the generation of probability density functions. The resulting constitutive relationships are included in several computer programs, RANDOM2, RANDOM3, and RANDOM4. These programs determine the random lifetime of an engine component, in mechanical load cycles, to reach a critical fatigue strength or crack size. The material considered was a cast nickel base superalloy, one typical of those used in the Space Shuttle Main Engine.

  15. Life prediction technologies for aeronautical propulsion systems

    NASA Technical Reports Server (NTRS)

    Mcgaw, Michael A.

    1987-01-01

    Fatigue and fracture problems continue to occur in aeronautical gas turbine engines. Components whose useful life is limited by these failure modes include turbine hot-section blades, vanes and disks. Safety considerations dictate that catastrophic failures be avoided, while economic considerations dictate that noncatastrophic failures occur as infrequently as possible. The design decision is therefore in making the tradeoff between engine performance and durability. The NASA Lewis Research Center has contributed to the aeropropulsion industry in the areas of life prediction technology for 30 years, developing creep and fatigue life prediction methodologies for hot-section materials. Emphasis is placed on the development of methods capable of handling both thermal and mechanical fatigue under severe environments. Recent accomplishments include the development of more accurate creep-fatigue life prediction methods such as the total strain version of Lewis' Strainrange Partitioning (SRP) and the HOST-developed Cyclic Damage Accumulation (CDA) model. Other examples include the Double Damage Curve Approach (DDCA), which provides greatly improved accuracy for cumulative fatigue design rules.

  16. Chronic fatigue syndrome defies the mind-body-schism of medicine. New perspectives on a multiple realisable developmental systems disorder.

    PubMed

    Ulvestad, Elling

    2008-09-01

    The article maintains that chronic fatigue syndrome can be properly understood only by taking an integrated perspective in which evolutionary, developmental and ecological aspects are considered. The integrative approach, supplemented by a complexity theory and psychoneuroimmunological research, is capable of explaining why there are so few structural aberrations to be found in chronic fatigue syndrome and why specific treatment is so difficult to establish. A major outcome of the investigation, that all individuals with chronic fatigue syndrome are diseased in their own way, emphasises the need to study the development of personalised life histories. It also highlights an ethical dimension; personalised disease defies essentialist thinking on patient management. Another major outcome, which follows from the developmental systems perspective, is the dissolution of ontological mind-body dualism. This in turn allows for a methodological complementation of the biological and phenomenological approaches to knowledge. New research strategies that may help to resolve chronic fatigue syndrome, grounded in the revised perspective on individual development, are suggested.

  17. Reliability approach to rotating-component design. [fatigue life and stress concentration

    NASA Technical Reports Server (NTRS)

    Kececioglu, D. B.; Lalli, V. R.

    1975-01-01

    A probabilistic methodology for designing rotating mechanical components using reliability to relate stress to strength is explained. The experimental test machines and data obtained for steel to verify this methodology are described. A sample mechanical rotating component design problem is solved by comparing a deterministic design method with the new design-by reliability approach. The new method shows that a smaller size and weight can be obtained for specified rotating shaft life and reliability, and uses the statistical distortion-energy theory with statistical fatigue diagrams for optimum shaft design. Statistical methods are presented for (1) determining strength distributions for steel experimentally, (2) determining a failure theory for stress variations in a rotating shaft subjected to reversed bending and steady torque, and (3) relating strength to stress by reliability.

  18. FAA/NASA International Symposium on Advanced Structural Integrity Methods for Airframe Durability and Damage Tolerance, part 2

    NASA Technical Reports Server (NTRS)

    Harris, Charles E. (Editor)

    1994-01-01

    The international technical experts in the areas of durability and damage tolerance of metallic airframe structures were assembled to present and discuss recent research findings and the development of advanced design and analysis methods, structural concepts, and advanced materials. The principal focus of the symposium was on the dissemination of new knowledge and the peer-review of progress on the development of advanced methodologies. Papers were presented on the following topics: structural concepts for enhanced durability, damage tolerance, and maintainability; new metallic alloys and processing technology; fatigue crack initiation and small crack effects; fatigue crack growth models; fracture mechanics failure criteria for ductile materials; structural mechanics methodology for residual strength and life prediction; development of flight load spectra for design and testing; and corrosion resistance.

  19. Fatigue crack growth model RANDOM2 user manual. Appendix 1: Development of advanced methodologies for probabilistic constitutive relationships of material strength models

    NASA Technical Reports Server (NTRS)

    Boyce, Lola; Lovelace, Thomas B.

    1989-01-01

    FORTRAN program RANDOM2 is presented in the form of a user's manual. RANDOM2 is based on fracture mechanics using a probabilistic fatigue crack growth model. It predicts the random lifetime of an engine component to reach a given crack size. Details of the theoretical background, input data instructions, and a sample problem illustrating the use of the program are included.

  20. Test Population Selection from Weibull-Based, Monte Carlo Simulations of Fatigue Life

    NASA Technical Reports Server (NTRS)

    Vlcek, Brian L.; Zaretsky, Erwin V.; Hendricks, Robert C.

    2008-01-01

    Fatigue life is probabilistic and not deterministic. Experimentally establishing the fatigue life of materials, components, and systems is both time consuming and costly. As a result, conclusions regarding fatigue life are often inferred from a statistically insufficient number of physical tests. A proposed methodology for comparing life results as a function of variability due to Weibull parameters, variability between successive trials, and variability due to size of the experimental population is presented. Using Monte Carlo simulation of randomly selected lives from a large Weibull distribution, the variation in the L10 fatigue life of aluminum alloy AL6061 rotating rod fatigue tests was determined as a function of population size. These results were compared to the L10 fatigue lives of small (10 each) populations from AL2024, AL7075 and AL6061. For aluminum alloy AL6061, a simple algebraic relationship was established for the upper and lower L10 fatigue life limits as a function of the number of specimens failed. For most engineering applications where less than 30 percent variability can be tolerated in the maximum and minimum values, at least 30 to 35 test samples are necessary. The variability of test results based on small sample sizes can be greater than actual differences, if any, that exists between materials and can result in erroneous conclusions. The fatigue life of AL2024 is statistically longer than AL6061 and AL7075. However, there is no statistical difference between the fatigue lives of AL6061 and AL7075 even though AL7075 had a fatigue life 30 percent greater than AL6061.

  1. Test Population Selection from Weibull-Based, Monte Carlo Simulations of Fatigue Life

    NASA Technical Reports Server (NTRS)

    Vlcek, Brian L.; Zaretsky, Erwin V.; Hendricks, Robert C.

    2012-01-01

    Fatigue life is probabilistic and not deterministic. Experimentally establishing the fatigue life of materials, components, and systems is both time consuming and costly. As a result, conclusions regarding fatigue life are often inferred from a statistically insufficient number of physical tests. A proposed methodology for comparing life results as a function of variability due to Weibull parameters, variability between successive trials, and variability due to size of the experimental population is presented. Using Monte Carlo simulation of randomly selected lives from a large Weibull distribution, the variation in the L10 fatigue life of aluminum alloy AL6061 rotating rod fatigue tests was determined as a function of population size. These results were compared to the L10 fatigue lives of small (10 each) populations from AL2024, AL7075 and AL6061. For aluminum alloy AL6061, a simple algebraic relationship was established for the upper and lower L10 fatigue life limits as a function of the number of specimens failed. For most engineering applications where less than 30 percent variability can be tolerated in the maximum and minimum values, at least 30 to 35 test samples are necessary. The variability of test results based on small sample sizes can be greater than actual differences, if any, that exists between materials and can result in erroneous conclusions. The fatigue life of AL2024 is statistically longer than AL6061 and AL7075. However, there is no statistical difference between the fatigue lives of AL6061 and AL7075 even though AL7075 had a fatigue life 30 percent greater than AL6061.

  2. Fatigue and neuromuscular diseases.

    PubMed

    Féasson, L; Camdessanché, J-P; El Mandhi, L; Calmels, P; Millet, G-Y

    2006-07-01

    To identify the role of fatigue, its evaluation and its causes in the pathophysiology context of acquired or hereditary neuromuscular diseases of the spinal anterior horn cell, peripheral nerve, neuromuscular junction and muscle. A literature review has been done on Medline with the following keywords: neuromuscular disease, peripheral neuropathy, myopathy, fatigue assessment, exercise intolerance, force assessment, fatigue scale and questionnaire, then with the terms: Fatigue Severity Scale, Chalder Fatigue Scale, Fatigue Questionnaire, Piper Fatigue Scale, electromyography and the combination of the word Fatigue with the following terms: Amyotrophic Lateral Sclerosis (ALS), Post-Polio Syndrome (PPS), Guillain-Barre Syndrome, Immune Neuropathy, Charcot-Marie-Tooth Disease, Myasthenia Gravis (MG), Metabolic Myopathy, Mitochondrial Myopathy, Muscular Dystrophy, Facioscapulohumeral Dystrophy, Myotonic Dystrophy. Fatigue is a symptom very frequently reported by patients. Fatigue is mainly evaluated by strength loss after an exercise, by change in electromyographic activity during a given exercise and by questionnaires that takes into account the subjective (psychological) part of fatigue. Due to the large diversity of motor disorders, there are multiple clinical expressions of fatigue that differ in their presentation, consequences and therapeutic approach. This review shows that fatigue has to be taken into account in patients with neuromuscular diseases. In this context, pathophysiology of fatigue often implies the motor component but the disease evolution and the physical obligates of daily life also induce an important psychological component.

  3. Evaluation of prolonged fatigue post-West Nile virus infection and association of fatigue with elevated antiviral and proinflammatory cytokines.

    PubMed

    Garcia, Melissa N; Hause, Anne M; Walker, Christopher M; Orange, Jordan S; Hasbun, Rodrigo; Murray, Kristy O

    2014-09-01

    This study aimed to characterize fatigue postinfection among study participants with a history of West Nile virus (WNV) infection and determine whether antiviral and pro-inflammatory cytokines were significantly elevated in those reporting prolonged fatigue. We found that 31% (44/140) of study participants experienced prolonged (more than 6 months) fatigue postinfection, with an average length of fatigue duration of 5 years. Females, those younger than 50 years of age, and those with symptomatic clinical WNV disease were significantly more likely to report fatigue. Pro-inflammatory and antiviral cytokines (granulocyte macrophage colony stimulating factor, interferon-γ, interferon-γ inducing protein 10, interleukin 2, interleukin 6, and interleukin 12p70) were significantly elevated in those reporting fatigue postinfection compared to those not reporting fatigue. Clinicians should consider history of WNV infection as a possible factor when evaluating causes of prolonged fatigue following a febrile viral illness in their patients.

  4. Conditioning monitoring by microstructural evaluation of cumulative fatigue damage

    NASA Astrophysics Data System (ADS)

    Fukuoka, C.; Nakagawa, Y. G.; Lance, J. J.; Pangborn, R. N.

    1996-12-01

    The objective of this work is to evaluate the damage induced below and above the fatigue limit (Δ σ t =360 MPa) in pressure vessel steels, such as SA508. Fatigue damage was induced in samples taken from an SA508 steel plate by various loading histories in order to examine the influence of prior cyclic loading below the fatigue limit. Cell-to-cell misorientation differences were measured by the selected area diffraction (SAD) method. Surface cracking was also studied by the replication method. Small cracks were observed after precycling both below and above the fatigue limit. It was, however, found that fatigue test bars had a longer lifetime after precycling below the fatigue limit, while precycling above the fatigue limit caused other specimens to fail even when subsequently cycled below the fatigue limit. Cell-to-cell misorientation usually increases with accumulation of fatigue damage, but it was found that the misorientations measured after precycling below the fatigue limit decreased again at the beginning of the subsequent cycling above the fatigue limit. It should be noted that the misorientation at failure was always about 4 to 5 deg, regardless of loading histories. Misorientation showed good correlation with the fatigue lifetime of the samples.

  5. Fatigue reassessment for lifetime extension of offshore wind monopile substructures

    NASA Astrophysics Data System (ADS)

    Ziegler, Lisa; Muskulus, Michael

    2016-09-01

    Fatigue reassessment is required to decide about lifetime extension of aging offshore wind farms. This paper presents a methodology to identify important parameters to monitor during the operational phase of offshore wind turbines. An elementary effects method is applied to analyze the global sensitivity of residual fatigue lifetimes to environmental, structural and operational parameters. Therefore, renewed lifetime simulations are performed for a case study which consists of a 5 MW turbine with monopile substructure in 20 m water depth. Results show that corrosion, turbine availability, and turbulence intensity are the most influential parameters. This can vary strongly for other settings (water depth, turbine size, etc.) making case-specific assessments necessary.

  6. Fatigue in Patients With Advanced Terminal Cancer Correlates With Inflammation, Poor Quality of Life and Sleep, and Anxiety/Depression.

    PubMed

    Rodrigues, Alex Rua; Trufelli, Damila Cristina; Fonseca, Fernando; de Paula, Larissa Carvalho; Giglio, Auro Del

    2016-12-01

    To assess which laboratory and clinical factors are associated with fatigue in patients with terminal cancer. We evaluated 51 patients with advanced incurable solid tumors using the Chalder Fatigue Questionnaire (CFQ) and the Functional Assessment of Chronic Illness Therapy-Fatigue (FACIT-F) scale for fatigue; the Pittsburgh Sleep Quality Index (PSQI-BR) for sleep quality; the Hospital Anxiety and Depression Scale (HADS) for anxiety and depression; the European Organization for Research and Treatment of Cancer (EORTC) Core Quality of Life Questionnaire, Version 3.0 (QLQ C-30); and Functional Assessment of Cancer Therapy (FACT) for quality of life. We also analyzed several inflammatory markers and the modified Glasgow prognostic score (mGPS). We observed severe fatigue in 19 (38%) patients (FACIT-F score >36). There was a significant correlation between fatigue as evaluated by the CFQ and quality of sleep and between the CFQ mental fatigue subscale scores and TNF-α level. When fatigue was evaluated using the FACIT-F scale, we observed a significant association between fatigue and anxiety/depression, quality of sleep, mGPS, and hemoglobin levels. Fatigue measured both with the CFQ and FACIT-F scale correlated with poor quality of life according to the EORTC QLQ C-30. In patients with advanced cancer, fatigue is a common symptom associated with the presence of inflammation, poor quality of sleep, depression/anxiety, and poor quality of life. © The Author(s) 2015.

  7. 14 CFR 25.571 - Damage-tolerance and fatigue evaluation of structure.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... contribute to a catastrophic failure (such as wing, empennage, control surfaces and their systems, the... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Structure Fatigue Evaluation § 25... of similar structural design and sonic excitation environment, that— (1) Sonic fatigue cracks are not...

  8. 14 CFR 25.571 - Damage-tolerance and fatigue evaluation of structure.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... contribute to a catastrophic failure (such as wing, empennage, control surfaces and their systems, the... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Structure Fatigue Evaluation § 25... of similar structural design and sonic excitation environment, that— (1) Sonic fatigue cracks are not...

  9. 14 CFR 25.571 - Damage-tolerance and fatigue evaluation of structure.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... contribute to a catastrophic failure (such as wing, empennage, control surfaces and their systems, the... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Structure Fatigue Evaluation § 25... of similar structural design and sonic excitation environment, that— (1) Sonic fatigue cracks are not...

  10. Giardia-specific cellular immune responses in post-giardiasis chronic fatigue syndrome.

    PubMed

    Hanevik, Kurt; Kristoffersen, Einar; Mørch, Kristine; Rye, Kristin Paulsen; Sørnes, Steinar; Svärd, Staffan; Bruserud, Øystein; Langeland, Nina

    2017-01-28

    The role of pathogen specific cellular immune responses against the eliciting pathogen in development of post-infectious chronic fatigue syndrome (PI-CFS) is not known and such studies are difficult to perform. The aim of this study was to evaluate specific anti-Giardia cellular immunity in cases that developed CFS after Giardia infection compared to cases that recovered well. Patients reporting chronic fatigue in a questionnaire study three years after a Giardia outbreak were clinically evaluated five years after the outbreak and grouped according to Fukuda criteria for CFS and idiopathic chronic fatigue. Giardia specific immune responses were evaluated in 39 of these patients by proliferation assay, T cell activation and cytokine release analysis. 20 Giardia exposed non-fatigued individuals and 10 healthy unexposed individuals were recruited as controls. Patients were clinically classified into CFS (n = 15), idiopathic chronic fatigue (n = 5), fatigue from other causes (n = 9) and recovered from fatigue (n = 10). There were statistically significant antigen specific differences between these Giardia exposed groups and unexposed controls. However, we did not find differences between the Giardia exposed fatigue classification groups with regard to CD4 T cell activation, proliferation or cytokine levels in 6 days cultured PBMCs. Interestingly, sCD40L was increased in patients with PI-CFS and other persons with fatigue after Giardia infection compared to the non-fatigued group, and correlated well with fatigue levels at the time of sampling. Our data show antigen specific cellular immune responses in the groups previously exposed to Giardia and increased sCD40L in fatigued patients.

  11. A pilot mixed-methods evaluation of MS INFoRm: a self-directed fatigue management resource for individuals with multiple sclerosis.

    PubMed

    Akbar, Nadine; Turpin, Karen; Petrin, Julie; Smyth, Penny; Finlayson, Marcia

    2018-06-01

    Fatigue management interventions for individuals with multiple sclerosis (MS) often feature structured programmes requiring repeated, in-person attendance that is not possible for all individuals. We sought to determine whether MS INFoRm, a self-directed fatigue management resource for individuals with MS, was worth further, more rigorous evaluation. Our indicators of worthiness were actual use of the resource by participants over 3 months, reductions in fatigue impact and increases in self-efficacy, and participant reports of changes in fatigue management knowledge and behaviours. This was a single-group, mixed-methods, before-after pilot study in individuals with MS reporting mild to moderate fatigue. Thirty-five participants were provided with MS INFoRm by a USB flash drive to use at home for 3 months, on their own volition. Twenty-three participants completed all standardized questionnaires, semi-structured interviews and study process measures. Participants reported actively using MS INFoRm over the 3-month study period (median total time spent using MS INFoRm=315 min) as well as significantly lower overall fatigue impact (Modified Fatigue Impact Scale: t=2.6, P=0.01), increased knowledge of MS fatigue (z=-2.8, P=0.01) and greater confidence in managing MS fatigue (z=-3.3, P=0.001). Individuals with significant reductions in fatigue impact also reported behavioural changes including tracking fatigue, better communication with others, greater awareness, improved quality of life and being more proactive. This study provides evidence that further rigorous evaluation of MS INFoRm, a self-directed resource for managing fatigue, is worth pursuing.

  12. 14 CFR 25.571 - Damage-tolerance and fatigue evaluation of structure.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... contribute to a catastrophic failure (such as wing, empennage, control surfaces and their systems, the... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Structure Fatigue Evaluation § 25... and sonic excitation environment, that— (1) Sonic fatigue cracks are not probable in any part of the...

  13. CONTRIBUTORS TO FATIGUE IN PATIENTS RECEIVING MECHANICAL VENTILATORY SUPPORT: A DESCRIPTIVE CORRELATIONAL STUDY

    PubMed Central

    Chlan, Linda L.; Savik, Kay

    2015-01-01

    Objectives To describe levels of fatigue and explore clinical factors that might contribute to fatigue in critically ill patients receiving mechanical ventilation. Research Methodology/Design Descriptive, correlational design. Sample was a sub-set of patients enrolled in a randomized clinical trial testing patient-directed music for anxiety self-management. Clinical factors included age, gender, length of ICU stay, length of ventilatory support, illness severity (APACHE III), and sedative exposure (sedation intensity and frequency). Descriptive statistics and mixed models were used to address the study objectives. Setting Medical and surgical intensive care units in the Midwestern U.S.A. Main Outcome Measures Fatigue was measured daily via a 100-mm Visual Analog Scale, up to 25 days. Results A sample of 80 patients (50% female) receiving ventilatory support for a median 7.9 days (range 1-46) with a mean age of 61.2 years (SD 14.8) provided daily fatigue ratings. ICU admission APACHE III was 61.5 (SD 19.8). Baseline mean fatigue ratings were 60.7 (SD 27.9), with fluctuations over time indicating a general trend upward. Mixed models analysis implicated illness severity (β(se(β)) = .27(.12)) and sedation frequency (β(se(β)) = 1.2(.52)) as significant contributors to fatigue ratings. Conclusion Illness severity and more frequent sedative administration were related to higher fatigue ratings in these mechanically ventilated patients. PMID:26005034

  14. An Investigation of High-Cycle Fatigue Models for Metallic Structures Exhibiting Snap-Through Response

    NASA Technical Reports Server (NTRS)

    Przekop, Adam; Rizzi, Stephen A.; Sweitzer, Karl A.

    2007-01-01

    A study is undertaken to develop a methodology for determining the suitability of various high-cycle fatigue models for metallic structures subjected to combined thermal-acoustic loadings. Two features of this problem differentiate it from the fatigue of structures subject to acoustic loading alone. Potentially large mean stresses associated with the thermally pre- and post-buckled states require models capable of handling those conditions. Snap-through motion between multiple post-buckled equilibrium positions introduces very high alternating stress. The thermal-acoustic time history response of a clamped aluminum beam structure with geometric and material nonlinearities is determined via numerical simulation. A cumulative damage model is employed using a rainflow cycle counting scheme and fatigue estimates are made for 2024-T3 aluminum using various non-zero mean fatigue models, including Walker, Morrow, Morrow with true fracture strength, and MMPDS. A baseline zero-mean model is additionally considered. It is shown that for this material, the Walker model produces the most conservative fatigue estimates when the stress response has a tensile mean introduced by geometric nonlinearity, but remains in the linear elastic range. However, when the loading level is sufficiently high to produce plasticity, the response becomes more fully reversed and the baseline, Morrow, and Morrow with true fracture strength models produce the most conservative fatigue estimates.

  15. A life prediction model for laminated composite structural components

    NASA Technical Reports Server (NTRS)

    Allen, David H.

    1990-01-01

    A life prediction methodology for laminated continuous fiber composites subjected to fatigue loading conditions was developed. A summary is presented of research completed. A phenomenological damage evolution law was formulated for matrix cracking which is independent of stacking sequence. Mechanistic and physical support was developed for the phenomenological evolution law proposed above. The damage evolution law proposed above was implemented to a finite element computer program. And preliminary predictions were obtained for a structural component undergoing fatigue loading induced damage.

  16. 14 CFR 35.37 - Fatigue limits and evaluation.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... AIRWORTHINESS STANDARDS: PROPELLERS Tests and Inspections § 35.37 Fatigue limits and evaluation. This section does not apply to fixed-pitch wood propellers of conventional design. (a) Fatigue limits must be established by tests, or analysis based on tests, for propeller: (1) Hubs. (2) Blades. (3) Blade retention...

  17. 14 CFR 35.37 - Fatigue limits and evaluation.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... AIRWORTHINESS STANDARDS: PROPELLERS Tests and Inspections § 35.37 Fatigue limits and evaluation. This section does not apply to fixed-pitch wood propellers of conventional design. (a) Fatigue limits must be established by tests, or analysis based on tests, for propeller: (1) Hubs. (2) Blades. (3) Blade retention...

  18. 14 CFR 35.37 - Fatigue limits and evaluation.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... AIRWORTHINESS STANDARDS: PROPELLERS Tests and Inspections § 35.37 Fatigue limits and evaluation. This section does not apply to fixed-pitch wood propellers of conventional design. (a) Fatigue limits must be established by tests, or analysis based on tests, for propeller: (1) Hubs. (2) Blades. (3) Blade retention...

  19. 14 CFR 35.37 - Fatigue limits and evaluation.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... AIRWORTHINESS STANDARDS: PROPELLERS Tests and Inspections § 35.37 Fatigue limits and evaluation. This section does not apply to fixed-pitch wood propellers of conventional design. (a) Fatigue limits must be established by tests, or analysis based on tests, for propeller: (1) Hubs. (2) Blades. (3) Blade retention...

  20. Isothermal and thermal-mechanical fatigue of VVER-440 reactor pressure vessel steels

    NASA Astrophysics Data System (ADS)

    Fekete, Balazs; Trampus, Peter

    2015-09-01

    The fatigue life of the structural materials 15Ch2MFA (CrMoV-alloyed ferritic steel) and 08Ch18N10T (CrNi-alloyed austenitic steel) of VVER-440 reactor pressure vessel under completely reserved total strain controlled low cycle fatigue tests were investigated. An advanced test facility was developed for GLEEBLE-3800 physical simulator which was able to perform thermomechanical fatigue experiments under in-service conditions of VVER nuclear reactors. The low cycle fatigue results were evaluated with the plastic strain based Coffin-Manson law, and plastic strain energy based model as well. It was shown that both methods are able to predict the fatigue life of reactor pressure vessel steels accurately. Interrupted fatigue tests were also carried out to investigate the kinetic of the fatigue evolution of the materials. On these samples microstructural evaluation by TEM was performed. The investigated low cycle fatigue behavior can provide reference for remaining life assessment and lifetime extension analysis.

  1. Chronic fatigue in Ehlers-Danlos syndrome-Hypermobile type.

    PubMed

    Hakim, Alan; De Wandele, Inge; O'Callaghan, Chris; Pocinki, Alan; Rowe, Peter

    2017-03-01

    Chronic fatigue is an important contributor to impaired health-related quality of life in Ehlers-Danlos syndrome. There is overlap in the symptoms and findings of EDS and chronic fatigue syndrome. A proportion of those with CFS likely have EDS that has not been identified. The evaluation of chronic fatigue in EDS needs to include a careful clinical examination and laboratory testing to exclude common causes of fatigue including anemia, hypothyroidisim, and chronic infection, as well as dysfunction of major physiological or organ systems. Other problems that commonly contribute to fatigue in EDS include sleep disorders, chronic pain, deconditioning, cardiovascular autonomic dysfunction, bowel and bladder dysfunction, psychological issues, and nutritional deficiencies. While there is no specific pharmacological treatment for fatigue, many medications are effective for specific symptoms (such as headache, menstrual dysfunction, or myalgia) and for co-morbid conditions that result in fatigue, including orthostatic intolerance and insomnia. Comprehensive treatment of fatigue needs to also evaluate for biomechanical problems that are common in EDS, and usually involves skilled physical therapy and attention to methods to prevent deconditioning. In addition to managing specific symptoms, treatment of fatigue in EDS also needs to focus on maintaining function and providing social, physical, and nutritional support, as well as providing on-going medical evaluation of new problems and review of new evidence about proposed treatments. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  2. Conditioning monitoring by microstructural evaluation of cumulative fatigue damage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fukuoka, C.; Nakagawa, Y.G.; Lance, J.J.

    1996-12-01

    The objective of this work is to evaluate the damage induced below and above the fatigue limit ({Delta}{sigma}{sub t} = 360 MPa) in pressure vessel steels, such as SA508. Fatigue damage was induced in samples taken from an SA508 steel plate by various loading histories in order to examine the influence of prior cyclic loading below the fatigue limit. Cell-to-cell misorientation differences were measured by the selected area diffraction (SAD) method. Surface cracking was also studied by the replication method. Small cracks were observed after precycling both below and above the fatigue limit. It was, however, found that fatigue testmore » bars had a longer lifetime after precycling below the fatigue limit, while precycling above the fatigue limit caused other specimens to fail even when subsequently cycled below the fatigue limit. Cell-to-cell misorientation usually increases with accumulation of fatigue damage, but it was found that the misorientations measured after precycling below the fatigue limit decreased again at the beginning of the subsequent cycling above the fatigue limit. It should be noted that the misorientation at failure was always about 4 to 5 deg, regardless of loading histories. Misorientation showed good correlation with the fatigue lifetime of the samples.« less

  3. Fatigue Life Prediction Based on Crack Closure and Equivalent Initial Flaw Size

    PubMed Central

    Wang, Qiang; Zhang, Wei; Jiang, Shan

    2015-01-01

    Failure analysis and fatigue life prediction are necessary and critical for engineering structural materials. In this paper, a general methodology is proposed to predict fatigue life of smooth and circular-hole specimens, in which the crack closure model and equivalent initial flaw size (EIFS) concept are employed. Different effects of crack closure on small crack growth region and long crack growth region are considered in the proposed method. The EIFS is determined by the fatigue limit and fatigue threshold stress intensity factor △Kth. Fatigue limit is directly obtained from experimental data, and △Kth is calculated by using a back-extrapolation method. Experimental data for smooth and circular-hole specimens in three different alloys (Al2024-T3, Al7075-T6 and Ti-6Al-4V) under multiple stress ratios are used to validate the method. In the validation section, Semi-circular surface crack and quarter-circular corner crack are assumed to be the initial crack shapes for the smooth and circular-hole specimens, respectively. A good agreement is observed between model predictions and experimental data. The detailed analysis and discussion are performed on the proposed model. Some conclusions and future work are given. PMID:28793625

  4. A microstructurally based model of solder joints under conditions of thermomechanical fatigue

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frear, D.R.; Burchett, S.N.; Rashid, M.M.

    The thermomechanical fatigue failure of solder joints in increasingly becoming an important reliability issue. In this paper we present two computational methodologies that have been developed to predict the behavior of near eutectic Sn-Pb solder joints under fatigue conditions that are based on metallurgical tests as fundamental input for constitutive relations. The two-phase model mathematically predicts the heterogeneous coarsening behavior of near eutectic Sn-Pb solder. The finite element simulations from this model agree well with experimental thermomechanical fatigue tests. The simulations show that the presence of an initial heterogeneity in the solder microstructure could significantly degrade the fatigue lifetime. Themore » single phase model is a computational technique that was developed to predict solder joint behavior using materials data for constitutive relation constants that could be determined through straightforward metallurgical experiments. A shear/torsion test sample was developed to impose strain in two different orientations. Materials constants were derived from these tests and the results showed an adequate fit to experimental results. The single-phase model could be very useful for conditions where microstructural evolution is not a dominant factor in fatigue.« less

  5. Effects of foot reflexology on fatigue, sleep and pain: a systematic review and meta-analysis.

    PubMed

    Lee, Jeongsoon; Han, Misook; Chung, Younghae; Kim, Jinsun; Choi, Jungsook

    2011-12-01

    The purpose of this study was to evaluate the effectiveness of foot reflexology on fatigue, sleep and pain. A systematic review and meta-analysis were conducted. Electronic database and manual searches were conducted on all published studies reporting the effects of foot reflexology on fatigue, sleep, and pain. Forty four studies were eligible including 15 studies associated with fatigue, 18 with sleep, and 11 with pain. The effects of foot reflexology were analyzed using Comprehensive Meta-Analysis Version 2.0. The homogeneity and the fail-safe N were calculated. Moreover, a funnel plot was used to assess publication bias. The effects on fatigue, sleep, and pain were not homogeneous and ranged from 0.63 to 5.29, 0.01 to 3.22, and 0.43 to 2.67, respectively. The weighted averages for fatigue, sleep, and pain were 1.43, 1.19, and 1.35, respectively. No publication bias was detected as evaluated by fail-safe N. Foot reflexology had a larger effect on fatigue and sleep and a smaller effect on pain. This meta-analysis indicates that foot reflexology is a useful nursing intervention to relieve fatigue and to promote sleep. Further studies are needed to evaluate the effects of foot reflexology on outcome variables other than fatigue, sleep and pain.

  6. Effects of Dietary Supplementation of Astaxanthin and Sesamin on Daily Fatigue: A Randomized, Double-Blind, Placebo-Controlled, Two-Way Crossover Study

    PubMed Central

    Imai, Ayano; Oda, Yuriko; Seki, Shinobu; Nakagawa, Kiyotaka; Miyazawa, Teruo; Ueda, Fumitaka

    2018-01-01

    Severe fatigue can negatively affect quality of life, and oxidative stress may play a role in its mechanism. The aim of this study was to evaluate the effect of dietary supplementation of astaxanthin and sesamin (AS), strong food-derived antioxidants, on fatigue. Twenty-four healthy volunteers were supplemented with AS and placebo, each for four weeks. After each supplementation period, participants underwent tasks inducing mental and physical fatigue (visual display terminal task and ergometer task, respectively). Subjective fatigue was evaluated using a visual analogue scale during and after the mental and physical tasks, and daily subjective fatigue was evaluated by the Chalder fatigue questionnaire. Secondary outcomes included other subjective feelings, work efficiency, autonomic nerve activity, levels of an oxidative stress marker (plasma phosphatidylcholine hydroperoxide (PCOOH)) and safety. AS supplementation was associated with significantly improved recovery from mental fatigue compared with placebo. Increased PCOOH levels during mental and physical tasks were attenuated by AS supplementation. No differences between AS and placebo were detected in secondary outcomes, and no adverse effects of AS supplementation were observed. In conclusion, AS supplementation may be a candidate to promote recovery from mental fatigue which is experienced by many healthy people. PMID:29495607

  7. Fatigue and gynecologic cancer.

    PubMed

    Olt, George J

    2003-02-01

    Fatigue is common in women with gynecologic cancers and is thought to be multifactorial. Anemia, cachexia, pain, and depression are frequently associated with cancer and treatment-related fatigue and should be evaluated and treated. The National Comprehensive Cancer Network Fatigue Practice Guidelines are helpful in the assessment and treatment of women with gynecologic cancer-related fatigue.

  8. Application of damage tolerance methodology in certification of the Piaggio P-180 Avanti

    NASA Technical Reports Server (NTRS)

    Johnson, Jerry

    1992-01-01

    The Piaggio P-180 Avanti, a twin pusher-prop engine nine-passenger business aircraft was certified in 1990, to the requirements of FAR Part 23 and Associated Special Conditions for Composite Structure. Certification included the application of a damage tolerant methodology to the design of the composite forward wing and empennage (vertical fin, horizontal stabilizer, tailcone, and rudder) structure. This methodology included an extensive analytical evaluation coupled with sub-component and full-scale testing of the structure. The work from the Damage Tolerance Analysis Assessment was incorporated into the full-scale testing. Damage representing hazards such as dropped tools, ground equipment, handling, and runway debris, was applied to the test articles. Additional substantiation included allowing manufacturing discrepancies to exist unrepaired on the full-scale articles and simulated bondline failures in critical elements. The importance of full-scale testing in the critical environmental conditions and the application of critical damage are addressed. The implication of damage tolerance on static and fatigue testing is discussed. Good correlation between finite element solutions and experimental test data was observed.

  9. Fatigue evaluation of socket welded piping in nuclear power plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vecchio, R.S.

    1996-12-01

    Fatigue failures in piping systems occur, almost without exception, at the welded connections. In nuclear power plant systems, such failures occur predominantly at the socket welds of small diameter piping ad fillet attachment welds under high-cycle vibratory conditions. Nearly all socket weld fatigue failures are identified by leaks which, though not high in volume, generally are costly due to attendant radiological contamination. Such fatigue cracking was recently identified in the 3/4 in. diameter recirculation and relief piping socket welds from the reactor coolant system (RCS) charging pumps at a nuclear power plant. Consequently, a fatigue evaluation was performed to determinemore » the cause of cracking and provide an acceptable repair. Socket weld fatigue life was evaluated using S-N type fatigue life curves for welded structures developed by AASHTO and the assessment of an effective cyclic stress range adjacent to each socket weld. Based on the calculated effective tress ranges and assignment of the socket weld details to the appropriate AASHTO S-N curves, the socket weld fatigue lives were calculated and found to be in excellent agreement with the accumulated cyclic life to-date.« less

  10. Biologic interventions for fatigue in rheumatoid arthritis.

    PubMed

    Almeida, Celia; Choy, Ernest H S; Hewlett, Sarah; Kirwan, John R; Cramp, Fiona; Chalder, Trudie; Pollock, Jon; Christensen, Robin

    2016-06-06

    Fatigue is a common and potentially distressing symptom for patients with rheumatoid arthritis (RA), with no accepted evidence-based management guidelines. Evidence suggests that biologic interventions improve symptoms and signs in RA as well as reducing joint damage. To evaluate the effect of biologic interventions on fatigue in rheumatoid arthritis. We searched the following electronic databases up to 1 April 2014: Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, EMBASE, Cochrane Database of Systematic Reviews, Current Controlled Trials Register, the National Research Register Archive, The UKCRN Portfolio Database, AMED, CINAHL, PsycINFO, Social Science Citation Index, Web of Science, and Dissertation Abstracts International. In addition, we checked the reference lists of articles identified for inclusion for additional studies and contacted key authors. We included randomised controlled trials if they evaluated a biologic intervention in people with rheumatoid arthritis and had self reported fatigue as an outcome measure. Two reviewers selected relevant trials, assessed methodological quality and extracted data. Where appropriate, we pooled data in meta-analyses using a random-effects model. We identified 32 studies for inclusion in this current review. Twenty studies evaluated five anti-tumour necrosis factor (anti-TNF) biologic agents (adalimumab, certolizumab, etanercept, golimumab and infliximab), and 12 studies focused on five non-anti-TNF biologic agents (abatacept, canakinumab, rituximab, tocilizumab and an anti-interferon gamma monoclonal antibody). All but two of the studies were double-blind randomised placebo-controlled trials. In some trials, patients could receive concomitant disease-modifying anti-rheumatic drugs (DMARDs). These studies added either biologics or placebo to DMARDs. Investigators did not change the dose of the latter from baseline. In total, these studies included 9946 participants in the intervention groups and 4682 participants in the control groups. Overall, quality of randomised controlled trials was moderate with a low to unclear risk of bias in the reporting of the outcome of fatigue. We downgraded the quality of the studies from high to moderate because of potential reporting bias (studies included post hoc analyses favouring reporting of positive result and did not always include all randomised individuals). Some studies recruited only participants with early disease. The studies used five different instruments to assess fatigue in these studies: the Functional Assessment of Chronic Illness Therapy Fatigue Domain (FACIT-F), Short Form-36 Vitality Domain (SF-36 VT), Visual Analogue Scale (VAS) (0 to 100 or 0 to 10) and the Numerical Rating Scale (NRS). We calculated standard mean differences for pooled data in meta-analyses. Overall treatment by biologic agents led to statistically significant reduction in fatigue with a standardised mean difference of -0.43 (95% confidence interval (CI) -0.38 to -0.49). This equates to a difference of 6.45 units (95% CI 5.7 to 7.35) of FACIT-F score (range 0 to 52). Both types of biologic agents achieved a similar level of improvement: for anti-TNF agents, this stood at -0.42 (95% CI -0.35 to -0.49), equivalent to 6.3 units (95% CI 5.3 to 7.4) on the FACIT-F score; and for non-anti-TNF agents, it was -0.46 (95% CI -0.39 to -0.53), equivalent to 6.9 units (95% CI 5.85 to 7.95) on the FACIT-F score. In most studies, the double-blind period was 24 weeks or less. No study assessed long-term changes in fatigue. Treatment with biologic interventions in patients with active RA can lead to a small to moderate improvement in fatigue. The magnitude of improvement is similar for anti-TNF and non-anti-TNF biologics. However, it is unclear whether the improvement results from a direct action of the biologics on fatigue or indirectly through reduction in inflammation, disease activity or some other mechanism.

  11. Evaluating the effectiveness of using electroencephalogram power indices to measure visual fatigue.

    PubMed

    Hsu, Bin-Wei; Wang, Mao-Jiun J

    2013-02-01

    Electroencephalography (EEG) is widely used in cognitive and behavioral research. This study evaluates the effectiveness of using the EEG power index to measure visual fatigue. Three common visual fatigue measures, critical-flicker fusion (CFF), near-point accommodation (NPA), and subjective eye-fatigue rating, were used for comparison. The study participants were 20 men with a mean age of 20.4 yr. (SD = 1.5). The experimental task was a car-racing video game. Results indicated that the EEG power indices were valid as a visual fatigue measure and the sensitivity of the objective measures (CFF and EEG power index) was higher than the subjective measure. The EEG beta and EEG alpha were effective for measuring visual fatigue in short- and long-duration tasks, respectively. EEG beta/alpha were the most effective power indexes for the visual fatigue measure.

  12. Ae Behavior of Smart Stress Memory Patch after Variable Amplitude Loading

    NASA Astrophysics Data System (ADS)

    Fujino, Y.; Nambu, S.; Enoki, M.

    Recently, the structural health monitoring becomes increasingly great important to assure the ease and safety of our life, and it is required significantly to develop non-destructive evaluation for structures such as bridges and tunnels. Some sacrificed specimens have been developed to evaluate the fatigue damage of structures such as fatigue cycles and residual lifetime, but it can be applied only when the stress history is known beforehand. These fatigue sensors need no cable and can be used at low cost in contrast to strain gage. In previous study, a smart stress memory patch was developed as a new fatigue sensor. The patch can measure simultaneously the maximum stress, stress amplitude and the number of fatigue cycles by crack length measurement and Kaiser effect of Acoustic Emission (AE). The crack growth behavior under constant amplitude (CA) loading has been investigated, and AE behavior also has been evaluated only after CA loading. However, AE characteristics after variable amplitude (VA) loading in service are extremely important. Moreover, it is very important to control AE behavior of the smart patch in order to evaluate the applied stress using Kaiser effect. In this study, fatigue test with single overload was investigated to evaluate its influence. Moreover, effect of crack length and heat treatment on AE behavior was also investigated. Finally, AE behavior of the patch was evaluated after fatigue CA loading with overload or VA loading with log-normal distribution and overload.

  13. Fatigue in young survivors of extracranial childhood cancer: a Finnish nationwide survey.

    PubMed

    Mört, Susanna; Lähteenmäki, Päivi M; Matomäki, Jaakko; Salmi, Toivo T; Salanterä, Sanna

    2011-11-01

    To evaluate self-reports of fatigue by young cancer survivors (aged 11-18 years), to compare young survivors' fatigue scores with the scores of a healthy control group and of the parent proxy evaluation, and to analyze whether demographic or disease-related factors are associated with young survivors' fatigue. Cross-sectional quantitative study. An urban hospital in southwestern Finland. 384 survivors diagnosed with an extracranial malignancy at age 16 or younger, who have survived four or more years postdiagnosis, and who are free of cancer. General matched population controls were randomly selected from the Finnish Population Registry. Demographic data and a self-report written fatigue questionnaire. Total fatigue (TF), general fatigue (GF), sleep or rest fatigue (SF), and cognitive fatigue. The control populations reported significantly more issues with TF, GF, and SF than did the survivor population. In survivors, older age, the need for remedial education at school, and a sarcoma diagnosis were associated with increasing fatigue, whereas female gender, better school grades, and greater health-related quality-of-life (HRQOL) scores were associated with lower fatigue. The study variables explained 49%-65% of the variation in fatigue scores. Although survivors and their matched controls seem to have similar fatigue, subgroups of survivors do experience excessive fatigue, which may have an impact on their HRQOL. This study increases the knowledge about fatigue levels of young survivors of extracranial malignancies and identifies the need for instruments specifically designed to assess fatigue in this population. The healthcare team should pay attention to the fatigue level of young survivors, particularly SF.

  14. Validation of the Modified Fatigue Impact Scale in mild to moderate traumatic brain injury.

    PubMed

    Schiehser, Dawn M; Delano-Wood, Lisa; Jak, Amy J; Matthews, Scott C; Simmons, Alan N; Jacobson, Mark W; Filoteo, J Vincent; Bondi, Mark W; Orff, Henry J; Liu, Lin

    2015-01-01

    To evaluate the validity of the Modified Fatigue Impact Scale (MFIS) in veterans with a history of mild to moderate traumatic brain injury (TBI). Veterans (N = 106) with mild (92%) or moderate (8%) TBI. Veterans Administration Health System. Factor structure, internal consistency, convergent validity, sensitivity, and specificity of the MFIS were examined. Principal component analysis identified 2 viable MFIS factors: a Cognitive subscale and a Physical/Activities subscale. Item analysis revealed high internal consistency of the MFIS Total scale and subscale items. Strong convergent validity of the MFIS scales was established with 2 Beck Depression Inventory II fatigue items. Receiver operating characteristic curve analysis revealed good to excellent accuracy of the MFIS in classifying fatigued versus nonfatigued individuals. The MFIS is a valid multidimensional measure that can be used to evaluate the impact of fatigue on cognitive and physical functioning in individuals with mild to moderate TBI. The psychometric properties of the MFIS make it useful for evaluating fatigue and provide the potential for improving research on fatigue in this population.

  15. Nondestructive evaluation of fatigue damage on low alloy steel by magnetomechanical acoustic emission technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hiraasawa, T.; Saito, K.; Komura, I.

    1995-08-01

    A modified magnetomechanical acoustic emission (MAE) technique, denoted Pulse-MAE, in which the magnetization by current pulse was adopted, was newly developed and its applicability was assessed for the nondestructive detection and evaluation of fatigue damage in reactor pressure vessel steel SFVV2 and SA508 class2. MAE signals were measured with both conventional MAE and Pulse-MAE technique for fatigue damaged specimens having several damage fractions, and peak voltage ratio Vp/Vo, where Vp and Vo were the peak voltage for damaged and undamaged specimen respectively, was chosen as a measure. Vp/Vo was found to increase monotonously at the early stage of fatigue processmore » and the rate of increase in Vp/Vo during the fatigue process was larger in Pulse-MAE than conventional MAE. Therefore, Pulse-MAE technique proved to have higher sensitivity for the detection of fatigue damage compared with the conventional MAE and to have the potential of a practical technique for nondestructive detection and evaluation of fatigue damage in actual components.« less

  16. Muscle fatigue: general understanding and treatment

    PubMed Central

    Wan, Jing-jing; Qin, Zhen; Wang, Peng-yuan; Sun, Yang; Liu, Xia

    2017-01-01

    Muscle fatigue is a common complaint in clinical practice. In humans, muscle fatigue can be defined as exercise-induced decrease in the ability to produce force. Here, to provide a general understanding and describe potential therapies for muscle fatigue, we summarize studies on muscle fatigue, including topics such as the sequence of events observed during force production, in vivo fatigue-site evaluation techniques, diagnostic markers and non-specific but effective treatments. PMID:28983090

  17. Fatigue in prostate cancer patients treated with external beam radiotherapy: a prospective 5-year long-term patient-reported evaluation.

    PubMed

    Fransson, Per

    2010-01-01

    Limited information is available regarding the long-term effect of external beam radiotherapy (EBRT) on fatigue in individuals with prostate cancer (PC). Men with PC treated with EBRT from January 1992 to June 2003 were enrolled in a prospective study. The QLQ-C30 questionnaire was used to evaluate pre-treatment fatigue and up to 5 years post-treatment. 407 men with 5-year assessments were analyzed. Fatigue increased between pre-treatment (mean: 15.5; CI: 13.6-17.4) and 5-years post-treatment (mean: 22.8; CI: 20.5-25.1; P<0.001). Pre-treatment fatigue was absent in 206/407 (59%) patients and 5-year post-treatment was reported by 264/407 (66%). Sixteen of 407 patients (4%) reported severe fatigue after 5 years. Physical-, emotional-, cognitive function, and dyspnea were the factors that correlated most to higher level of fatigue 5-year post-treatment. Fatigue is a common symptom among patients with PC. A large percentage of patients reported pre-treatment fatigue. Fatigue increased over time, with the highest level seen at the end of EBRT. Severe fatigue was reported by 4% 5-year post-treatment. More work is needed in order to identify which patients are most susceptible to developing fatigue especially during radiotherapy.

  18. A new methodology for automating acoustic emission detection of metallic fatigue fractures in highly demanding aerospace environments: An overview

    NASA Astrophysics Data System (ADS)

    Holford, Karen M.; Eaton, Mark J.; Hensman, James J.; Pullin, Rhys; Evans, Sam L.; Dervilis, Nikolaos; Worden, Keith

    2017-04-01

    The acoustic emission (AE) phenomenon has many attributes that make it desirable as a structural health monitoring or non-destructive testing technique, including the capability to continuously and globally monitor large structures using a sparse sensor array and with no dependency on defect size. However, AE monitoring is yet to fulfil its true potential, due mainly to limitations in location accuracy and signal characterisation that often arise in complex structures with high levels of background noise. Furthermore, the technique has been criticised for a lack of quantitative results and the large amount of operator interpretation required during data analysis. This paper begins by introducing the challenges faced in developing an AE based structural health monitoring system and then gives a review of previous progress made in addresing these challenges. Subsequently an overview of a novel methodology for automatic detection of fatigue fractures in complex geometries and noisy environments is presented, which combines a number of signal processing techniques to address the current limitations of AE monitoring. The technique was developed for monitoring metallic landing gear components during pre-flight certification testing and results are presented from a full-scale steel landing gear component undergoing fatigue loading. Fracture onset was successfully identify automatically at 49,000 fatigue cycles prior to final failure (validated by the use of dye penetrant inspection) and the fracture position was located to within 10 mm of the actual location.

  19. Probabilistic Simulation of Multi-Scale Composite Behavior

    NASA Technical Reports Server (NTRS)

    Chamis, Christos C.

    2012-01-01

    A methodology is developed to computationally assess the non-deterministic composite response at all composite scales (from micro to structural) due to the uncertainties in the constituent (fiber and matrix) properties, in the fabrication process and in structural variables (primitive variables). The methodology is computationally efficient for simulating the probability distributions of composite behavior, such as material properties, laminate and structural responses. Bi-products of the methodology are probabilistic sensitivities of the composite primitive variables. The methodology has been implemented into the computer codes PICAN (Probabilistic Integrated Composite ANalyzer) and IPACS (Integrated Probabilistic Assessment of Composite Structures). The accuracy and efficiency of this methodology are demonstrated by simulating the uncertainties in composite typical laminates and comparing the results with the Monte Carlo simulation method. Available experimental data of composite laminate behavior at all scales fall within the scatters predicted by PICAN. Multi-scaling is extended to simulate probabilistic thermo-mechanical fatigue and to simulate the probabilistic design of a composite redome in order to illustrate its versatility. Results show that probabilistic fatigue can be simulated for different temperature amplitudes and for different cyclic stress magnitudes. Results also show that laminate configurations can be selected to increase the redome reliability by several orders of magnitude without increasing the laminate thickness--a unique feature of structural composites. The old reference denotes that nothing fundamental has been done since that time.

  20. Multi-parameter vital sign database to assist in alarm optimization for general care units.

    PubMed

    Welch, James; Kanter, Benjamin; Skora, Brooke; McCombie, Scott; Henry, Isaac; McCombie, Devin; Kennedy, Rosemary; Soller, Babs

    2016-12-01

    Continual vital sign assessment on the general care, medical-surgical floor is expected to provide early indication of patient deterioration and increase the effectiveness of rapid response teams. However, there is concern that continual, multi-parameter vital sign monitoring will produce alarm fatigue. The objective of this study was the development of a methodology to help care teams optimize alarm settings. An on-body wireless monitoring system was used to continually assess heart rate, respiratory rate, SpO 2 and noninvasive blood pressure in the general ward of ten hospitals between April 1, 2014 and January 19, 2015. These data, 94,575 h for 3430 patients are contained in a large database, accessible with cloud computing tools. Simulation scenarios assessed the total alarm rate as a function of threshold and annunciation delay (s). The total alarm rate of ten alarms/patient/day predicted from the cloud-hosted database was the same as the total alarm rate for a 10 day evaluation (1550 h for 36 patients) in an independent hospital. Plots of vital sign distributions in the cloud-hosted database were similar to other large databases published by different authors. The cloud-hosted database can be used to run simulations for various alarm thresholds and annunciation delays to predict the total alarm burden experienced by nursing staff. This methodology might, in the future, be used to help reduce alarm fatigue without sacrificing the ability to continually monitor all vital signs.

  1. Preliminary test results in support of integrated EPP and SMT design methods development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yanli; Jetter, Robert I.; Sham, T. -L.

    2016-02-09

    The proposed integrated Elastic Perfectly-Plastic (EPP) and Simplified Model Test (SMT) methodology consists of incorporating a SMT data-based approach for creep-fatigue damage evaluation into the EPP methodology to avoid using the creep-fatigue interaction diagram (the D diagram) and to minimize over-conservatism while properly accounting for localized defects and stress risers. To support the implementation of the proposed code rules and to verify their applicability, a series of thermomechanical tests have been initiated. One test concept, the Simplified Model Test (SMT), takes into account the stress and strain redistribution in real structures by including representative follow-up characteristics in the test specimen.more » The second test concept is the two-bar thermal ratcheting tests with cyclic loading at high temperatures using specimens representing key features of potential component designs. This report summaries the previous SMT results on Alloy 617, SS316H and SS304H and presents the recent development on SMT approach on Alloy 617. These SMT specimen data are also representative of component loading conditions and have been used as part of the verification of the proposed integrated EPP and SMT design methods development. The previous two-bar thermal ratcheting test results on Alloy 617 and SS316H are also summarized and the new results from two bar thermal ratcheting tests on SS316H at a lower temperature range are reported.« less

  2. A creep cavity growth model for creep-fatigue life prediction of a unidirectional W/Cu composite

    NASA Astrophysics Data System (ADS)

    Kim, Young-Suk; Verrilli, Michael J.; Halford, Gary R.

    1992-05-01

    A microstructural model was developed to predict creep-fatigue life in a (0)(sub 4), 9 volume percent tungsten fiber-reinforced copper matrix composite at the temperature of 833 K. The mechanism of failure of the composite is assumed to be governed by the growth of quasi-equilibrium cavities in the copper matrix of the composite, based on the microscopically observed failure mechanisms. The methodology uses a cavity growth model developed for prediction of creep fracture. Instantaneous values of strain rate and stress in the copper matrix during fatigue cycles were calculated and incorporated in the model to predict cyclic life. The stress in the copper matrix was determined by use of a simple two-bar model for the fiber and matrix during cyclic loading. The model successfully predicted the composite creep-fatigue life under tension-tension cyclic loading through the use of this instantaneous matrix stress level. Inclusion of additional mechanisms such as cavity nucleation, grain boundary sliding, and the effect of fibers on matrix-stress level would result in more generalized predictions of creep-fatigue life.

  3. A creep cavity growth model for creep-fatigue life prediction of a unidirectional W/Cu composite

    NASA Technical Reports Server (NTRS)

    Kim, Young-Suk; Verrilli, Michael J.; Halford, Gary R.

    1992-01-01

    A microstructural model was developed to predict creep-fatigue life in a (0)(sub 4), 9 volume percent tungsten fiber-reinforced copper matrix composite at the temperature of 833 K. The mechanism of failure of the composite is assumed to be governed by the growth of quasi-equilibrium cavities in the copper matrix of the composite, based on the microscopically observed failure mechanisms. The methodology uses a cavity growth model developed for prediction of creep fracture. Instantaneous values of strain rate and stress in the copper matrix during fatigue cycles were calculated and incorporated in the model to predict cyclic life. The stress in the copper matrix was determined by use of a simple two-bar model for the fiber and matrix during cyclic loading. The model successfully predicted the composite creep-fatigue life under tension-tension cyclic loading through the use of this instantaneous matrix stress level. Inclusion of additional mechanisms such as cavity nucleation, grain boundary sliding, and the effect of fibers on matrix-stress level would result in more generalized predictions of creep-fatigue life.

  4. Saccadic eye movement metrics reflect surgical residents' fatigue.

    PubMed

    Di Stasi, Leandro L; McCamy, Michael B; Macknik, Stephen L; Mankin, James A; Hooft, Nicole; Catena, Andrés; Martinez-Conde, Susana

    2014-04-01

    Little is known about the effects of surgical residents' fatigue on patient safety. We monitored surgical residents' fatigue levels during their call day using (1) eye movement metrics, (2) objective measures of laparoscopic surgical performance, and (3) subjective reports based on standardized questionnaires. Prior attempts to investigate the effects of fatigue on surgical performance have suffered from methodological limitations, including inconsistent definitions and lack of objective measures of fatigue, and nonstandardized measures of surgical performance. Recent research has shown that fatigue can affect the characteristics of saccadic (fast ballistic) eye movements in nonsurgical scenarios. Here we asked whether fatigue induced by time-on-duty (~24 hours) might affect saccadic metrics in surgical residents. Because saccadic velocity is not under voluntary control, a fatigue index based on saccadic velocity has the potential to provide an accurate and unbiased measure of the resident's fatigue level. We measured the eye movements of members of the general surgery resident team at St. Joseph's Hospital and Medical Center (Phoenix, AZ) (6 males and 6 females), using a head-mounted video eye tracker (similar configuration to a surgical headlight), during the performance of 3 tasks: 2 simulated laparoscopic surgery tasks (peg transfer and precision cutting) and a guided saccade task, before and after their call day. Residents rated their perceived fatigue level every 3 hours throughout their 24-hour shift, using a standardized scale. Time-on-duty decreased saccadic velocity and increased subjective fatigue but did not affect laparoscopic performance. These results support the hypothesis that saccadic indices reflect graded changes in fatigue. They also indicate that fatigue due to prolonged time-on-duty does not result necessarily in medical error, highlighting the complicated relationship among continuity of care, patient safety, and fatigued providers. Our data show, for the first time, that saccadic velocity is a reliable indicator of the subjective fatigue of health care professionals during prolonged time-on-duty. These findings have potential impacts for the development of neuroergonomic tools to detect fatigue among health professionals and in the specifications of future guidelines regarding residents' duty hours.

  5. Fatigue life characterization of Superpave mixtures at the Virginia Smart Road.

    DOT National Transportation Integrated Search

    2005-01-01

    Laboratory fatigue testing was performed on six Superpave HMA mixtures in use at the Virginia Smart Road. Evaluation of the applied strain and resulting fatigue life was performed to fit regressions to predict the fatigue performance of each mixture....

  6. Prevalence, Incidence, and Classification of Chronic Fatigue Syndrome in Olmsted County, Minnesota, as Estimated Using the Rochester Epidemiology Project

    PubMed Central

    Vincent, Ann; Brimmer, Dana J.; Whipple, Mary O.; Jones, James F.; Boneva, Roumiana; Lahr, Brian D.; Maloney, Elizabeth; St. Sauver, Jennifer L.; Reeves, William C.

    2012-01-01

    Objective To estimate the prevalence and incidence of chronic fatigue syndrome in Olmsted County, Minnesota, using the 1994 case definition and describe exclusionary and comorbid conditions observed in patients who presented for evaluation of long-standing fatigue. Patients and Methods We conducted a retrospective medical record review of potential cases of chronic fatigue syndrome identified from January 1, 1998, through December 31, 2002, using the Rochester Epidemiology Project, a population-based database. Patients were classified as having chronic fatigue syndrome if the medical record review documented fatigue of 6 months' duration, at least 4 of 8 chronic fatigue syndrome–defining symptoms, and symptoms that interfered with daily work or activities. Patients not meeting all of the criteria were classified as having insufficient/idiopathic fatigue. Results We identified 686 potential patients with chronic fatigue, 2 of whom declined consent for medical record review. Of the remaining 684 patients, 151 (22%) met criteria for chronic fatigue syndrome or insufficient/idiopathic fatigue. The overall prevalence and incidence of chronic fatigue syndrome and insufficient/idiopathic fatigue were 71.34 per 100,000 persons and 13.16 per 100,000 person-years vs 73.70 per 100,000 persons and 13.58 per 100,000 person-years, respectively. The potential cases included 482 patients (70%) who had an exclusionary condition, and almost half the patients who met either criterion had at least one nonexclusionary comorbid condition. Conclusion The incidence and prevalence of chronic fatigue syndrome and insufficient/idiopathic fatigue are relatively low in Olmsted County. Careful clinical evaluation to identify whether fatigue could be attributed to exclusionary or comorbid conditions rather than chronic fatigue syndrome itself will ensure appropriate assessment for patients without chronic fatigue syndrome. PMID:23140977

  7. Thermal barrier coating life prediction model development, phase 1

    NASA Technical Reports Server (NTRS)

    Demasi, Jeanine T.; Ortiz, Milton

    1989-01-01

    The objective of this program was to establish a methodology to predict thermal barrier coating (TBC) life on gas turbine engine components. The approach involved experimental life measurement coupled with analytical modeling of relevant degradation modes. Evaluation of experimental and flight service components indicate the predominant failure mode to be thermomechanical spallation of the ceramic coating layer resulting from propagation of a dominant near interface crack. Examination of fractionally exposed specimens indicated that dominant crack formation results from progressive structural damage in the form of subcritical microcrack link-up. Tests conducted to isolate important life drivers have shown MCrAlY oxidation to significantly affect the rate of damage accumulation. Mechanical property testing has shown the plasma deposited ceramic to exhibit a non-linear stress-strain response, creep and fatigue. The fatigue based life prediction model developed accounts for the unusual ceramic behavior and also incorporates an experimentally determined oxide rate model. The model predicts the growth of this oxide scale to influence the intensity of the mechanic driving force, resulting from cyclic strains and stresses caused by thermally induced and externally imposed mechanical loads.

  8. Evaluation of Pressurization Fatigue Life of 1441 Al-li Fuselage Panel

    NASA Technical Reports Server (NTRS)

    Bird, R. Keith; Dicus, Dennis I.; Fridlyander, Joseph; Davydov, Valentin

    1999-01-01

    A study was conducted to evaluate the pressurization fatigue life of fuselage panels with skins fabricated from 1441 Al-Li, an attractive new Russian alloy. The study indicated that 1441 Al-Li has several advantages over conventional aluminum fuselage skin alloy with respect to fatigue behavior. Smooth 1441 Al-Li sheet specimens exhibited a fatigue endurance limit similar to that for 1163 Al (Russian version of 2024 Al) sheet. Notched 1441 Al-Li sheet specimens exhibited greater fatigue strength and longer fatigue life than 1163 Al. In addition, Tu-204 fuselage panels fabricated by Tupolev Design Bureau using Al-Li skin and ring frames with riveted 7000-series aluminum stiffeners had longer pressurization fatigue lives than did panels constructed from conventional aluminum alloys. Taking into account the lower density of this alloy, the results suggest that 1441 Al-Li has the potential to improve fuselage performance while decreasing structural weight.

  9. Integrating Oil Debris and Vibration Measurements for Intelligent Machine Health Monitoring. Degree awarded by Toledo Univ., May 2002

    NASA Technical Reports Server (NTRS)

    Dempsey, Paula J.

    2003-01-01

    A diagnostic tool for detecting damage to gears was developed. Two different measurement technologies, oil debris analysis and vibration were integrated into a health monitoring system for detecting surface fatigue pitting damage on gears. This integrated system showed improved detection and decision-making capabilities as compared to using individual measurement technologies. This diagnostic tool was developed and evaluated experimentally by collecting vibration and oil debris data from fatigue tests performed in the NASA Glenn Spur Gear Fatigue Rig. An oil debris sensor and the two vibration algorithms were adapted as the diagnostic tools. An inductance type oil debris sensor was selected for the oil analysis measurement technology. Gear damage data for this type of sensor was limited to data collected in the NASA Glenn test rigs. For this reason, this analysis included development of a parameter for detecting gear pitting damage using this type of sensor. The vibration data was used to calculate two previously available gear vibration diagnostic algorithms. The two vibration algorithms were selected based on their maturity and published success in detecting damage to gears. Oil debris and vibration features were then developed using fuzzy logic analysis techniques, then input into a multi sensor data fusion process. Results show combining the vibration and oil debris measurement technologies improves the detection of pitting damage on spur gears. As a result of this research, this new diagnostic tool has significantly improved detection of gear damage in the NASA Glenn Spur Gear Fatigue Rigs. This research also resulted in several other findings that will improve the development of future health monitoring systems. Oil debris analysis was found to be more reliable than vibration analysis for detecting pitting fatigue failure of gears and is capable of indicating damage progression. Also, some vibration algorithms are as sensitive to operational effects as they are to damage. Another finding was that clear threshold limits must be established for diagnostic tools. Based on additional experimental data obtained from the NASA Glenn Spiral Bevel Gear Fatigue Rig, the methodology developed in this study can be successfully implemented on other geared systems.

  10. I’ve lost the person I used to be—Experiences of the consequences of fatigue following myocardial infarction

    PubMed Central

    Fredriksson-Larsson, Ulla; Alsen, Pia; Brink, Eva

    2013-01-01

    Fatigue has been found to be the most frequent and bothersome symptom after myocardial infarction (MI), influencing health-related quality of life negatively. Moreover, fatigue after MI has been described as incomprehensible due to its unpredictable occurrence and lack of relationship to physical effort. The aim of this study is therefore to explore persons’ experiences of consequences of fatigue and their strategies for dealing with it 2 months after MI. In total, 18 informants, aged 42–75 years, participated in the study. Interviews were conducted and analysed using constructivist grounded theory methodology. Grounded in the data, the main consequence of fatigue, as illustrated in the core category, was: I’ve lost the person I used to be. It indicates a sense of reduced ability to manage daily life due to experiences of fatigue. The core category was developed from the four categories: involuntary thoughts, certainties replaced with question marks, driving with the handbrake on and just being is enough. Furthermore, attempts to relieve fatigue were limited. These findings indicate that patients with symptoms of fatigue should be supported in developing relief strategies, for example, rest and sleep hygiene as well as physical activity. In conclusion, the results show that fatigue can be understood in light of the concepts “comprehensibility” and “manageability.” They also indicate that, working from a person-centered perspective, health-care professionals can support patients experiencing post-MI fatigue by giving them opportunities to straighten out the question marks and by inviting them to discuss involuntary thoughts and feelings of being restricted in their daily life functioning. PMID:23769653

  11. The fatigue behavior of an amorphous brittle composite material

    NASA Astrophysics Data System (ADS)

    Kumar, Brijesh

    The use of poly methyl methacrylate (PMMA) based bone cement as a grouting agent for the in-vivo fixation of orthopaedic implants has been in practice for nearly fifty years. Fatigue failure of the bone cement has been identified as the primary cause of cement failure. Implant loosening due to the failure of the cement is one of the major reasons necessitating revision surgery. The need for a more fatigue resistant bone cement is well documented in the literature. One method of producing a more fatigue resistant bone cement is to reinforce it with short fibers. The fundamental purpose of this work was to investigate the possible improvement of the fatigue characteristics of bone cement provided by the following two types of fiber reinforcements: short flexible Polyethylene Terephalate (PET) fibers and stiff milled carbon fibers. It has been shown that the reinforcement of the bone cement with fibers provides substantial improvement of the fracture toughness of the bone cement. In this investigation the impact of fiber reinforcement on the fatigue properties of the bone cement was studied. The effects of the fiber reinforcement on the fatigue life of bone cement has been determined experimentally. Since fatigue characteristics are known to have considerable scatter, a methodology was developed to analyze the experimental data in a statistically rigorous manner. The effect of the fiber reinforcement on bone cement was also analyzed using a theoretical approach and by conducting extensive Scanning Electron Microscopy (SEM) of the fractured surfaces. The results of this study indicate that fiber reinforcement improves the fatigue life of bone cement at a very high level of reliability. This could potentially lead to a more fatigue tolerant bone cement, which would delay the need for revision surgery due to implant loosening.

  12. Effects of the Electron Beam Welding Process on the Microstructure, Tensile, Fatigue and Fracture Properties of Nickel Alloy Nimonic 80A

    NASA Astrophysics Data System (ADS)

    Zhang, H.; Huang, Chongxiang; Guan, Zhongwei; Li, Jiukai; Liu, Yongjie; Chen, Ronghua; Wang, Qingyuan

    2018-01-01

    The purpose of this study was to evaluate rotary bending high-cycle fatigue properties and crack growth of Nimonic 80A-based metal and electron beam-welded joints. All the tests were performed at room temperature. Fracture surfaces under high-cycle fatigue and fatigue crack growth were observed by scanning electron microscopy. Microstructure, hardness and tensile properties were also evaluated in order to understand the effects on the fatigue results obtained. It was found that the tensile properties, hardness and high-cycle fatigue properties of the welded joint are lower than the base metal. The fracture surface of the high-cycle fatigue shows that fatigue crack initiated from the surface under the high stress amplitude and from the subsurface under the low stress amplitude. The effect of the welding process on the statistical fatigue data was studied with a special focus on probabilistic life prediction and probabilistic lifetime limits. The fatigue crack growth rate versus stress intensity factor range data were obtained from the fatigue crack growth tests. From the results, it was evident that the fatigue crack growth rates of the welded are higher than the base metal. The mechanisms and fracture modes of fatigue crack growth of welded specimens were found to be related to the stress intensity factor range ΔK. In addition, the effective fatigue crack propagation thresholds and mismatch of welded joints were described and discussed.

  13. The brief fatigue inventory: comparison of data collection using a novel audio device with conventional paper questionnaire.

    PubMed

    Pallett, Edward; Rentowl, Patricia; Hanning, Christopher

    2009-09-01

    An Electronic Portable Information Collection audio device (EPIC-Vox) has been developed to deliver questionnaires in spoken word format via headphones. Patients respond by pressing buttons on the device. The aims of this study were to determine limits of agreement between, and test-retest reliability of audio (A) and paper (P) versions of the Brief Fatigue Inventory (BFI). Two hundred sixty outpatients (204 male, mean age 55.7 years) attending a sleep disorders clinic were allocated to four groups using block randomization. All completed the BFI twice, separated by a one-minute distracter task. Half the patients completed paper and audio versions, then an evaluation questionnaire. The remainder completed either paper or audio versions to compare test-retest reliability. BFI global scores were analyzed using Bland-Altman methodology. Agreement between categorical fatigue severity scores was determined using Cohen's kappa. The mean (SD) difference between paper and audio scores was -0.04 (0.48). The limits of agreement (mean difference+/-2SD) were -0.93 to +1.00. Test-retest reliability of the paper BFI showed a mean (SD) difference of 0.17 (0.32) between first and second presentations (limits -0.46 to +0.81). For audio, the mean (SD) difference was 0.17 (0.48) (limits -0.79 to +1.14). For agreement between categorical scores, Cohen's kappa=0.73 for P and A, 0.67 (P at test and retest) and 0.87 (A at test and retest). Evaluation preferences (n=128): 36.7% audio; 18.0% paper; and 45.3% no preference. A total of 99.2% found EPIC-Vox "easy to use." These data demonstrate that the English audio version of the BFI provides an acceptable alternative to the paper questionnaire.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tanaka, T.; Shimizu, S.; Ogata, Y.

    For the primary coolant piping of PWRs in Japan, cast duplex stainless steel which is excellent in terms of strength, corrosion resistance, and weldability has conventionally been used. The cast duplex stainless steel contains the ferrite phase in the austenite matrix and thermal aging after long term service is known to change its material characteristics. It is considered appropriate to apply the methodology of elastic plastic fracture mechanics for an evaluation of the integrity of the primary coolant piping after thermal aging. Therefore we evaluated the integrity of the primary coolant piping for an initial PWR plant in Japan bymore » means of elastic plastic fracture mechanics. The evaluation results show that the crack will not grow into an unstable fracture and the integrity of the piping will be secured, even when such through wall crack length is assumed to equal the fatigue crack growth length for a service period of up to 60 years.« less

  15. Psychometric analysis of the Multidimensional Fatigue Inventory in a sample of persons treated for myocardial infarction.

    PubMed

    Fredriksson-Larsson, Ulla; Brink, Eva; Alsén, Pia; Falk, Kristin; Lundgren-Nilsson, Åsa

    2015-01-01

    Fatigue after myocardial infarction is a frequent and distressing symptom in the early recovery phase. The purpose of this study is to psychometrically evaluate the Multidimensional Fatigue Inventory (MFI-20). The MFI-20 was evaluated using Rasch analysis. The result showed that the MFI-20 can be used to obtain a global score reflecting an underlying unidimensional trait of fatigue; a transformation of the summarized raw scale scores into interval scale scores could be made. Also, 4 of the 5 original dimensions separately fitted the Rasch model. Calculation of a global score increases the possibility of identifying persons experiencing fatigue after myocardial infarction, and using the MFI-20 dimension scores increases the possibility of determining each person's specific fatigue profile.

  16. Fatigue loading of tendon

    PubMed Central

    Shepherd, Jennifer H; Screen, Hazel R C

    2013-01-01

    Tendon injuries, often called tendinopathies, are debilitating and painful conditions, generally considered to develop as a result of tendon overuse. The aetiology of tendinopathy remains poorly understood, and whilst tendon biopsies have provided some information concerning tendon appearance in late-stage disease, there is still little information concerning the mechanical and cellular events associated with disease initiation and progression. Investigating this in situ is challenging, and numerous models have been developed to investigate how overuse may generate tendon fatigue damage and how this may relate to tendinopathy conditions. This article aims to review these models and our current understanding of tendon fatigue damage. We review the strengths and limitations of different methodologies for characterizing tendon fatigue, considering in vitro methods that adopt both viable and non-viable samples, as well as the range of different in vivo approaches. By comparing data across model systems, we review the current understanding of fatigue damage development. Additionally, we compare these findings with data from tendinopathic tissue biopsies to provide some insights into how these models may relate to the aetiology of tendinopathy. Fatigue-induced damage consistently highlights the same microstructural, biological and mechanical changes to the tendon across all model systems and also correlates well with the findings from tendinopathic biopsy tissue. The multiple testing routes support matrix damage as an important contributor to tendinopathic conditions, but cellular responses to fatigue appear complex and often contradictory. PMID:23837793

  17. Microstructural evaluation of cumulative fatigue damage in a plant component sample

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fukuoka, C.; Nakagawa, Y.G.; Yoshida, K.

    1996-12-31

    Fatigue damage accumulated in a real plant was evaluated in terms of microstructural conditioning. Microstructural damage induced in laboratory by cyclic deformation near and below the fatigue limit was also examined. A Transmission Electron Microscopy (TEM) technique called the Selected Area Diffraction (SAD) method was employed in this study. In earlier studies, it was found that the SAD value indicating a magnitude of crystallographic misorientation in the substructure (dislocation cells) was increasing with the increase of fatigue damage accumulation. Small samples removed from PWR feed water nozzle welds were examined by the SAD. It was found that the damage statemore » measured by the SAD well agreed with the morphological evidence. Cyclic stresses near or below the fatigue limit were applied to samples taken from a SA508 steel plate at various stresses. The SAD value increased even below the fatigue limit, but there was no sign of microstructural conditioning below the stresses of 50% of the fatigue limit. These results suggested that at stresses below the current design curve (below half the fatigue limit) no microstructural conditioning proceeded. It was concluded that the microstructural method was effective to evaluate damage accumulation in real plant components, and also that the current design curve was adequate in terms of microstructural conditioning state.« less

  18. The effects of pitting on fatigue crack nucleation in 7075-T6 aluminum alloy

    NASA Technical Reports Server (NTRS)

    Ma, LI; Hoeppner, David W.

    1994-01-01

    A high-strength aluminum alloy, 7075-T6, was studied to quantitatively evaluate chemical pitting effects of its corrosion fatigue life. The study focused on pit nucleation, pit growth, and fatigue crack nucleation. Pitting corrosion fatigue experiments were conducted in 3.5 percent NaCl aqueous solution under constant amplitude sinusoidal loading at two frequencies, 5 and 20 Hz. Smooth and unnotched specimens were used in this investigation. A video recording system was developed to allow in situ observation of the surface changes of the specimens during testing. The results indicated that pitting corrosion considerably reduces the fatigue strength by accelerating fatigue crack nucleation. A metallographic examination was conducted on the specimens to evaluate the nature of corrosion pits. First, the actual shapes of the corrosion pits were evaluated by cross-sectioning the pits. Secondly, the relation between corrosion pits and microstructure was also investigated. Finally, the possibility of another corrosion mechanism that might be involved in pitting was explored in this investigation. The fractography of the tested specimens showed that corner corrosion pits were responsible for fatigue crack nucleation in the material due to the associated stress concentration. The pits exhibited variance of morphology. Fatigue life for the experimental conditions appeared to be strongly dependent on pitting kinetics and the crack nucleation stage.

  19. Subjective and objective evaluation of visual fatigue on viewing 3D display continuously

    NASA Astrophysics Data System (ADS)

    Wang, Danli; Xie, Yaohua; Yang, Xinpan; Lu, Yang; Guo, Anxiang

    2015-03-01

    In recent years, three-dimensional (3D) displays become more and more popular in many fields. Although they can provide better viewing experience, they cause extra problems, e.g., visual fatigue. Subjective or objective methods are usually used in discrete viewing processes to evaluate visual fatigue. However, little research combines subjective indicators and objective ones in an entirely continuous viewing process. In this paper, we propose a method to evaluate real-time visual fatigue both subjectively and objectively. Subjects watch stereo contents on a polarized 3D display continuously. Visual Reaction Time (VRT), Critical Flicker Frequency (CFF), Punctum Maximum Accommodation (PMA) and subjective scores of visual fatigue are collected before and after viewing. During the viewing process, the subjects rate the visual fatigue whenever it changes, without breaking the viewing process. At the same time, the blink frequency (BF) and percentage of eye closure (PERCLOS) of each subject is recorded for comparison to a previous research. The results show that the subjective visual fatigue and PERCLOS increase with time and they are greater in a continuous process than a discrete one. The BF increased with time during the continuous viewing process. Besides, the visual fatigue also induced significant changes of VRT, CFF and PMA.

  20. Predictors and Trajectories of Morning Fatigue Are Distinct from Evening Fatigue

    PubMed Central

    Wright, Fay; Melkus, Gail D’Eramo; Hammer, Marilyn; Schmidt, Brian L.; Knobf, M. Tish; Paul, Steven M.; Cartwright, Frances; Mastick, Judy; Cooper, Bruce A.; Chen, Lee-May; Melisko, Michelle; Levine, Jon D.; Kober, Kord; Aouizerat, Bradley E.; Miaskowski, Christine

    2015-01-01

    Context Fatigue is the most common symptom in oncology patients during chemotherapy (CTX). Little is known about the predictors of interindividual variability in initial levels and trajectories of morning fatigue severity in these patients. Objectives An evaluation was done to determine which demographic, clinical, and symptom characteristics were associated with initial levels as well as the trajectories of morning fatigue and to compare findings with our companion paper on evening fatigue. Methods A sample of outpatients with breast, gastrointestinal, gynecological, and lung cancer (N=586) completed demographic and symptom questionnaires a total of six times over two cycles of CTX. Fatigue severity was evaluated using the Lee Fatigue Scale. Hierarchical linear modeling (HLM) was used to answer the study objectives. Results A large amount of interindividual variability was found in the morning fatigue trajectories. A piecewise model fit the data best. Patients with higher body mass index (BMI), who did not exercise regularly, with a lower functional status, and who had higher levels of state anxiety, sleep disturbance and depressive symptoms, reported higher levels of morning fatigue at enrollment. Variations in the trajectories of morning fatigue were predicted by the patients’ ethnicity and younger age. Conclusion The modifiable risk factors that were associated with only morning fatigue were BMI, exercise, and state anxiety. Modifiable risk factors that were associated with both morning and evening fatigue included functional status, depressive symptoms, and sleep disturbance. Using this information, clinicians can identify patients at higher risk for more severe morning fatigue and evening fatigue, provide individualized patient education, and tailor interventions to address the modifiable risk factors. PMID:25828559

  1. Modeling Quasi-Static and Fatigue-Driven Delamination Migration

    NASA Technical Reports Server (NTRS)

    De Carvalho, N. V.; Ratcliffe, J. G.; Chen, B. Y.; Pinho, S. T.; Baiz, P. M.; Tay, T. E.

    2014-01-01

    An approach was proposed and assessed for the high-fidelity modeling of progressive damage and failure in composite materials. It combines the Floating Node Method (FNM) and the Virtual Crack Closure Technique (VCCT) to represent multiple interacting failure mechanisms in a mesh-independent fashion. Delamination, matrix cracking, and migration were captured failure and migration criteria based on fracture mechanics. Quasi-static and fatigue loading were modeled within the same overall framework. The methodology proposed was illustrated by simulating the delamination migration test, showing good agreement with the available experimental data.

  2. Damage assessment in multilayered MEMS structures under thermal fatigue

    NASA Astrophysics Data System (ADS)

    Maligno, A. R.; Whalley, D. C.; Silberschmidt, V. V.

    2011-07-01

    This paper reports on the application of a Physics of Failure (PoF) methodology to assessing the reliability of a micro electro mechanical system (MEMS). Numerical simulations, based on the finite element method (FEM) using a sub-domain approach was used to examine the damage onset due to temperature variations (e.g. yielding of metals which may lead to thermal fatigue). In this work remeshing techniques were employed in order to develop a damage tolerance approach based on the assumption that initial flaws exist in the multi-layered.

  3. Effects of Relaxing Music on Mental Fatigue Induced by a Continuous Performance Task: Behavioral and ERPs Evidence.

    PubMed

    Guo, Wei; Ren, Jie; Wang, Biye; Zhu, Qin

    2015-01-01

    The purpose of this study was to investigate whether listening to relaxing music would help reduce mental fatigue and to maintain performance after a continuous performance task. The experiment involved two fatigue evaluation phases carried out before and after a fatigue inducing phase. A 1-hour AX-continuous performance test was used to induce mental fatigue in the fatigue-inducing phase, and participants' subjective evaluation on the mental fatigue, as well as their neurobehavioral performance in a Go/NoGo task, were measured before and after the fatigue-inducing phase. A total of 36 undergraduate students (18-22 years) participated in the study and were randomly assigned to the music group and control group. The music group performed the fatigue-inducing task while listening to relaxing music, and the control group performed the same task without any music. Our results revealed that after the fatigue-inducing phase, (a) the music group demonstrated significantly less mental fatigue than control group, (b) reaction time significantly increased for the control group but not for the music group, (c) larger Go-P3 and NoGo-P3 amplitudes were observed in the music group, although larger NoGo-N2 amplitudes were detected for both groups. These results combined to suggest that listening to relaxing music alleviated the mental fatigue associated with performing an enduring cognitive-motor task.

  4. Sensitivity, reliability and the effects of diurnal variation on a test battery of field usable upper limb fatigue measures.

    PubMed

    Yung, Marcus; Wells, Richard P

    2017-07-01

    Fatigue has been linked to deficits in production quality and productivity and, if of long duration, work-related musculoskeletal disorders. It may thus be a useful risk indicator and design and evaluation tool. However, there is limited information on the test-retest reliability, the sensitivity and the effects of diurnal fluctuation on field usable fatigue measures. This study reports on an evaluation of 11 measurement tools and their 14 parameters. Eight measures were found to have test-retest ICC values greater than 0.8. Four measures were particularly responsive during an intermittent fatiguing condition. However, two responsive measures demonstrated rhythmic behaviour, with significant time effects from 08:00 to mid-afternoon and early evening. Action tremor, muscle mechanomyography and perceived fatigue were found to be most reliable and most responsive; but additional analytical considerations might be required when interpreting daylong responses of MMG and action tremor. Practitioner Summary: This paper presents findings from test-retest and daylong reliability and responsiveness evaluations of 11 fatigue measures. This paper suggests that action tremor, muscle mechanomyography and perceived fatigue were most reliable and most responsive. However, mechanomyography and action tremor may be susceptible to diurnal changes.

  5. Evaluating Changes in Tendon Crimp with Fatigue Loading as an ex vivo Structural Assessment of Tendon Damage

    PubMed Central

    Freedman, Benjamin R.; Zuskov, Andrey; Sarver, Joseph J.; Buckley, Mark R.; Soslowsky, Louis J.

    2015-01-01

    The complex structure of tendons relates to their mechanical properties. Previous research has associated the waviness of collagen fibers (crimp) during quasi-static tensile loading to tensile mechanics, but less is known about the role of fatigue loading on crimp properties. In this study (IACUC approved), mouse patellar tendons were fatigue loaded while an integrated plane polariscope simultaneously assessed crimp properties. We demonstrate a novel structural mechanism whereby tendon crimp amplitude and frequency are altered with fatigue loading. In particular, fatigue loading increased the crimp amplitude across the tendon width and length, and these structural alterations were shown to be both region and load dependent. The change in crimp amplitude was strongly correlated to mechanical tissue laxity (defined as the ratio of displacement and gauge length relative to the first cycle of fatigue loading assessed at constant load throughout testing), at all loads and regions evaluated. Together, this study highlights the role of fatigue loading on tendon crimp properties as a function of load applied and region evaluated, and offers an additional structural mechanism for mechanical alterations that may lead to ultimate tendon failure. PMID:25773654

  6. Fatigue of restorative materials.

    PubMed

    Baran, G; Boberick, K; McCool, J

    2001-01-01

    Failure due to fatigue manifests itself in dental prostheses and restorations as wear, fractured margins, delaminated coatings, and bulk fracture. Mechanisms responsible for fatigue-induced failure depend on material ductility: Brittle materials are susceptible to catastrophic failure, while ductile materials utilize their plasticity to reduce stress concentrations at the crack tip. Because of the expense associated with the replacement of failed restorations, there is a strong desire on the part of basic scientists and clinicians to evaluate the resistance of materials to fatigue in laboratory tests. Test variables include fatigue-loading mode and test environment, such as soaking in water. The outcome variable is typically fracture strength, and these data typically fit the Weibull distribution. Analysis of fatigue data permits predictive inferences to be made concerning the survival of structures fabricated from restorative materials under specified loading conditions. Although many dental-restorative materials are routinely evaluated, only limited use has been made of fatigue data collected in vitro: Wear of materials and the survival of porcelain restorations has been modeled by both fracture mechanics and probabilistic approaches. A need still exists for a clinical failure database and for the development of valid test methods for the evaluation of composite materials.

  7. New optomechanical approach to quantitative characterization of fatigue behavior of dynamically loaded structures

    NASA Astrophysics Data System (ADS)

    Furlong, Cosme; Pryputniewicz, Ryszard J.

    1995-06-01

    The basic relationships between stress and strain under cyclic conditions of loading are not at present well understood. It would seem that information of this type is vital for a fundamental approach to understand the fatigue behavior of dynamically loaded structures. In this paper, experimental and computational methods are utilized to study the fatigue behavior of a thin aluminum cantilever plate subjected to dynamic loading. The studies are performed by combining optomechanical and finite element methods. The cantilever plate is loaded periodically by excitation set at a fixed amplitude and at a specific resonance frequency of the plate. By continuously applying this type of loading and using holographic interferometry, the behavior of the plate during a specific period of time is investigated. Quantitative information is obtained from laser vibrometry data which are utilized by a finite element program to calculate strains and stresses assuming a homogeneous and isotropic material and constant strain elements. It is shown that the use of experimental and computational hybrid methodologies allows identification of different zones of the plate that are fatigue critical. This optomechanical approach proves to be a viable tool for understanding of fatigue behavior of mechanical components and for performing optimization of structures subjected to fatigue conditions.

  8. Predicting the Reliability of Brittle Material Structures Subjected to Transient Proof Test and Service Loading

    NASA Astrophysics Data System (ADS)

    Nemeth, Noel N.; Jadaan, Osama M.; Palfi, Tamas; Baker, Eric H.

    Brittle materials today are being used, or considered, for a wide variety of high tech applications that operate in harsh environments, including static and rotating turbine parts, thermal protection systems, dental prosthetics, fuel cells, oxygen transport membranes, radomes, and MEMS. Designing brittle material components to sustain repeated load without fracturing while using the minimum amount of material requires the use of a probabilistic design methodology. The NASA CARES/Life 1 (Ceramic Analysis and Reliability Evaluation of Structure/Life) code provides a general-purpose analysis tool that predicts the probability of failure of a ceramic component as a function of its time in service. This capability includes predicting the time-dependent failure probability of ceramic components against catastrophic rupture when subjected to transient thermomechanical loads (including cyclic loads). The developed methodology allows for changes in material response that can occur with temperature or time (i.e. changing fatigue and Weibull parameters with temperature or time). For this article an overview of the transient reliability methodology and how this methodology is extended to account for proof testing is described. The CARES/Life code has been modified to have the ability to interface with commercially available finite element analysis (FEA) codes executed for transient load histories. Examples are provided to demonstrate the features of the methodology as implemented in the CARES/Life program.

  9. A reliability-based cost effective fail-safe design procedure

    NASA Technical Reports Server (NTRS)

    Hanagud, S.; Uppaluri, B.

    1976-01-01

    The authors have developed a methodology for cost-effective fatigue design of structures subject to random fatigue loading. A stochastic model for fatigue crack propagation under random loading has been discussed. Fracture mechanics is then used to estimate the parameters of the model and the residual strength of structures with cracks. The stochastic model and residual strength variations have been used to develop procedures for estimating the probability of failure and its changes with inspection frequency. This information on reliability is then used to construct an objective function in terms of either a total weight function or cost function. A procedure for selecting the design variables, subject to constraints, by optimizing the objective function has been illustrated by examples. In particular, optimum design of stiffened panel has been discussed.

  10. A Systematic Review of Chronic Fatigue Syndrome: Don't Assume It's Depression

    PubMed Central

    Griffith, James P.; Zarrouf, Fahd A.

    2008-01-01

    Objective: Chronic fatigue syndrome (CFS) is characterized by profound, debilitating fatigue and a combination of several other symptoms resulting in substantial reduction in occupational, personal, social, and educational status. CFS is often misdiagnosed as depression. The objective of this study was to evaluate and discuss different etiologies, approaches, and management strategies of CFS and to present ways to differentiate it from the fatigue symptom of depression. Data Sources: A MEDLINE search was conducted to identify existing information about CFS and depression using the headings chronic fatigue syndrome AND depression. The alternative terms major depressive disorder and mood disorder were also searched in conjunction with the term chronic fatigue syndrome. Additionally, MEDLINE was searched using the term chronic fatigue. All searches were limited to articles published within the last 10 years, in English. A total of 302 articles were identified by these searches. Also, the term chronic fatigue syndrome was searched by itself. This search was limited to articles published within the last 5 years, in English, and resulted in an additional 460 articles. Additional publications were identified by manually searching the reference lists of the articles from both searches. Study Selection and Data Extraction: CFS definitions, etiologies, differential diagnoses (especially depression) and management strategies were extracted, reviewed, and summarized to meet the objectives of this article. Data Synthesis: CFS is underdiagnosed in more than 80% of the people who have it; at the same time, it is often misdiagnosed as depression. Genetic, immunologic, infectious, metabolic, and neurologic etiologies were suggested to explain CFS. A biopsychosocial model was suggested for evaluating, managing, and differentiating CFS from depression. Conclusions: Evaluating and managing chronic fatigue is a challenging situation for physicians, as it is a challenging and difficult condition for patients. A biopsychosocial approach in the evaluation and management is recommended. More studies about CFS manifestations, evaluation, and management are needed. PMID:18458765

  11. Subgroups of Chemotherapy Patients With Distinct Morning and Evening Fatigue Trajectories

    PubMed Central

    Kober, Kord M.; Cooper, Bruce A.; Paul, Steven M.; Dunn, Laura B.; Levine, Jon D.; Wright, Fay; Hammer, Marilyn J.; Mastick, Judy; Venook, Alan; Aouizerat, Bradley E.; Miaskowski, Christine

    2017-01-01

    Purpose Purposes of this study were to: identify subgroups of patients with distinct trajectories for morning and evening fatigue; evaluate for differences in demographic and clinical characteristics among these subgroups; and compare and contrast the predictors of subgroup membership for morning and evening fatigue. Methods Outpatients with breast, gastrointestinal, gynecological, or lung cancer (n=582) completed questionnaires a total of six times over two cycles of CTX. Morning and evening fatigue severity were evaluated using the Lee Fatigue Scale. Latent profile analysis (LPA) was used to identify distinct subgroups. Results Three latent classes were identified for morning fatigue (i.e., Low (31.8%), High (51.4%), and Very High (16.8%)) and for evening evening fatigue (i.e., Moderate (20.0%), High (21.8%), and Very High (58.2%)). Most of the disease and treatment characteristics did not distinguish among the morning and evening fatigue classes. Compared to the Low class, patients in the High and Very High morning fatigue class were younger, had a lower functional status and higher level of comorbidity. Compared to the Moderate class, patients in the Very High evening fatigue class were younger, more likely to be female, had child care responsibilities, had a lower functional status, and a higher level of comorbidity. Conclusion LPA allows for the identification of risk factors for more severe fatigue. Since an overlap was not observed across the morning and evening fatigue classes and unique predictors for morning and evening fatigue were identified, these findings suggest that morning and evening fatigue may have distinct underlying mechanisms. PMID:26361758

  12. Thermo-elastic nondestructive evaluation of fatigue damage in PMR-15 resin

    NASA Astrophysics Data System (ADS)

    Welter, J. T.; Sathish, S.; Tandon, G. P.; Schehl, N.; Cherry, M.; Nalladega, V.; Lindgren, E. A.; Hall, R.

    2012-05-01

    Thermoset polyimide resins are used as the polymer matrix in high temperature composites for aerospace applications such as engine shrouds. At these locations the components have to withstand high temperatures and significant vibration. A number of studies have investigated the effects of thermal exposure on mechanical properties of polyimide resins, and the effects of fatigue on thermoplastics have been discussed at length. However, the effects of fatigue on thermosets, in particular polyimides, have largely been overlooked. In this paper we present studies of nondestructive evaluation of fatigue damage in a thermoset polyimide resin, PMR-15, performed by measuring the changes in the evolution of heat in the samples during cyclic loading. The temperature changes are measured using a high sensitivity IR camera as a function of number of fatigue cycles. Interrupted fatigue tests were performed on four samples. The temperature rise during an increment of fatigue cycling shows two linear regions each with a different slope (region 1 and region 2). Region 1 remains constant for every increment of fatigue, while region 2 increases. The onset of region 2 occurs at the same increase in temperature due to hysteretic heating for all samples. Experimental observations are explained using a phenomenological two phase model based on crosslinking density variations in observed in other thermoset resins at microscopic scales. The results of these experiments are discussed in reference to utilizing this technique for detection and evaluation of fatigue in PMR-15 resin and composites.

  13. Development of Fatigue and Crack Propagation Design and Analysis Methodology in a Corrosive Environment for Typical Mechanically-Fastened Joints. Volume 3. Phase II Documentation.

    DTIC Science & Technology

    1984-10-01

    8217. .,.. .-- . -.- , -. .... , . - .. , -. , , . ..- . . -.- - .- -. . ..-. . . . -. . . . -.- . . . . - . . K~~ K 7--- K, log SclI I.I. Fig. A-2 True Stress Versus Plastic Strain for Cyclic Response

  14. Nonlinear Fatigue Damage Model Based on the Residual Strength Degradation Law

    NASA Astrophysics Data System (ADS)

    Yongyi, Gao; Zhixiao, Su

    In this paper, a logarithmic expression to describe the residual strength degradation process is developed in order to fatigue test results for normalized carbon steel. The definition and expression of fatigue damage due to symmetrical stress with a constant amplitude are also given. The expression of fatigue damage can also explain the nonlinear properties of fatigue damage. Furthermore, the fatigue damage of structures under random stress is analyzed, and an iterative formula to describe the fatigue damage process is deduced. Finally, an approximate method for evaluating the fatigue life of structures under repeated random stress blocking is presented through various calculation examples.

  15. Improved High-Cycle Fatigue (HCF) Life Prediction

    DTIC Science & Technology

    2001-01-01

    fatigue in 2024 - T351 aluminum alloy ’, Wear 221, 24-36. Appendix 6C CHARACTERIZATION OF FRETTING FATIGUE INITIATED CRACKS P.J. Golden A.F...0.8. To evaluate the effects of surface residual stresses on notch fatigue life , shot peened specimens were tested at R = -1.0 and 0.1. Data in...Behavior - Response • The undamaged fatigue test program demonstrates the sensitivity of surface effects (for different

  16. Fatigue assessment of an existing steel bridge by finite element modelling and field measurements

    NASA Astrophysics Data System (ADS)

    Kwad, J.; Alencar, G.; Correia, J.; Jesus, A.; Calçada, R.; Kripakaran, P.

    2017-05-01

    The evaluation of fatigue life of structural details in metallic bridges is a major challenge for bridge engineers. A reliable and cost-effective approach is essential to ensure appropriate maintenance and management of these structures. Typically, local stresses predicted by a finite element model of the bridge are employed to assess the fatigue life of fatigue-prone details. This paper illustrates an approach for fatigue assessment based on measured data for a connection in an old bascule steel bridge located in Exeter (UK). A finite element model is first developed from the design information. The finite element model of the bridge is calibrated using measured responses from an ambient vibration test. The stress time histories are calculated through dynamic analysis of the updated finite element model. Stress cycles are computed through the rainflow counting algorithm, and the fatigue prone details are evaluated using the standard SN curves approach and the Miner’s rule. Results show that the proposed approach can estimate the fatigue damage of a fatigue prone detail in a structure using measured strain data.

  17. Fatigue in patients with low grade glioma: systematic evaluation of assessment and prevalence.

    PubMed

    van Coevorden-van Loon, Ellen M P; Coomans, Marijke B; Heijenbrok-Kal, Majanka H; Ribbers, Gerard M; van den Bent, Martin J

    2017-06-01

    Fatigue is the most prevalent and disabling symptom in cancer patients. Yet, scientific literature on this topic is scarce and reports disparate results. This study systematically reviews how fatigue is assessed in patients with low-grade glioma and evaluates its prevalence in LGG patients. A systematic literature search was performed in PubMed, Embase and PsychINFO for articles reporting on fatigue in patients with LGG. Two reviewers independently extracted data from selected articles. Inclusion criteria were: (1) patients with suspected or confirmed LGG; (2) fatigue was assessed as primary or secondary outcome measure; (3) age≥ 18 years; (4) full-length article written in English or Dutch. In total, 19 articles were selected, including 971 patients. Seven self-assessment instruments were identified. Prevalence rates ranged from 39 to 77%. Fatigue was found to be a common side effect of treatment. The prevalence rates ranged from 20 to 76% when fatigue was reported as a mild or moderate side effect and fatigue was prevalent in 4% when reported as a severe side effect. Fatigue is a common problem in LGG patients that warrants more therapeutic and scientific attention. Gaining deeper insight in the underlying mechanisms of fatigue is essential in targeting therapy to individual patients.

  18. Case definitions for chronic fatigue syndrome/myalgic encephalomyelitis (CFS/ME): a systematic review

    PubMed Central

    Brurberg, Kjetil Gundro; Fønhus, Marita Sporstøl; Larun, Lillebeth; Flottorp, Signe; Malterud, Kirsti

    2014-01-01

    Objective To identify case definitions for chronic fatigue syndrome/myalgic encephalomyelitis (CFS/ME), and explore how the validity of case definitions can be evaluated in the absence of a reference standard. Design Systematic review. Setting International. Participants A literature search, updated as of November 2013, led to the identification of 20 case definitions and inclusion of 38 validation studies. Primary and secondary outcome measure Validation studies were assessed for risk of bias and categorised according to three validation models: (1) independent application of several case definitions on the same population, (2) sequential application of different case definitions on patients diagnosed with CFS/ME with one set of diagnostic criteria or (3) comparison of prevalence estimates from different case definitions applied on different populations. Results A total of 38 studies contributed data of sufficient quality and consistency for evaluation of validity, with CDC-1994/Fukuda as the most frequently applied case definition. No study rigorously assessed the reproducibility or feasibility of case definitions. Validation studies were small with methodological weaknesses and inconsistent results. No empirical data indicated that any case definition specifically identified patients with a neuroimmunological condition. Conclusions Classification of patients according to severity and symptom patterns, aiming to predict prognosis or effectiveness of therapy, seems useful. Development of further case definitions of CFS/ME should be given a low priority. Consistency in research can be achieved by applying diagnostic criteria that have been subjected to systematic evaluation. PMID:24508851

  19. Fatigue in people with localized colorectal cancer who do and do not receive chemotherapy: a longitudinal prospective study

    PubMed Central

    Vardy, J. L.; Dhillon, H. M.; Pond, G. R.; Renton, C.; Dodd, A.; Zhang, H.; Clarke, S. J.; Tannock, I. F.

    2016-01-01

    Background Fatigue is associated with cancer and chemotherapy and may be sustained. Here, we describe a prospective longitudinal study evaluating fatigue and putative mechanisms in people with colorectal cancer (CRC). Patients and methods People with localized CRC completed the Functional Assessment of Cancer Treatment-Fatigue (FACT-F) questionnaire at baseline (before chemotherapy, if given), 6, 12, and 24 months. Healthy controls (HCs) were assessed at the first three time points. Fatigue was defined by standardized FACT-F scores ≤68/100. Quality-of-life (QoL, assessed by the FACT-G questionnaire), affective, and cognitive symptoms were evaluated. Associations were sought between fatigue, baseline factors, and blood tests (including hemoglobin, cytokines, and sex hormones). Regression analyses, Fisher's exact tests, and Wilcoxon rank-sum tests assessed levels of fatigue at each time point and change in fatigue from baseline. A repeated-measures analysis investigated prognostic factors of fatigue across all time points. Results A total of 289 subjects with localized CRC (173 received chemotherapy) and 72 HCs were assessed. More CRC patients had fatigue than HCs at baseline (52% versus 26%, P < 0.001). Fatigue was increased in the chemotherapy (CTh) group at 6 months [CTh+ 70% versus CTh− 31% (P < 0.001), HCs 22%] and remained more common at 12 [CTh+ 44% versus CTh− 31% (P = 0.079)] and 24 months [CTh+ 39% versus CTh− 24% (P = 0.047)]. There was no significant difference between those not receiving chemotherapy and HCs at follow-up assessments. Fatigue was associated with poor QoL, affective and cognitive symptoms, but not consistently with cytokine levels. Predictors for sustained fatigue were baseline fatigue, treatment group, cognitive and affective symptoms, poorer QoL, and comorbidities. Conclusions CRC patients have more fatigue than HCs at baseline. Fatigue peaks immediately after adjuvant chemotherapy, but remains common for 2 years in those who receive chemotherapy. Cognitive and affective symptoms, QoL, comorbidities, chemotherapy, and baseline fatigue predict for longer term fatigue. PMID:27443634

  20. Probabilistic Analysis for Comparing Fatigue Data Based on Johnson-Weibull Parameters

    NASA Technical Reports Server (NTRS)

    Vlcek, Brian L.; Hendricks, Robert C.; Zaretsky, Erwin V.

    2013-01-01

    Leonard Johnson published a methodology for establishing the confidence that two populations of data are different. Johnson's methodology is dependent on limited combinations of test parameters (Weibull slope, mean life ratio, and degrees of freedom) and a set of complex mathematical equations. In this report, a simplified algebraic equation for confidence numbers is derived based on the original work of Johnson. The confidence numbers calculated with this equation are compared to those obtained graphically by Johnson. Using the ratios of mean life, the resultant values of confidence numbers at the 99 percent level deviate less than 1 percent from those of Johnson. At a 90 percent confidence level, the calculated values differ between +2 and 4 percent. The simplified equation is used to rank the experimental lives of three aluminum alloys (AL 2024, AL 6061, and AL 7075), each tested at three stress levels in rotating beam fatigue, analyzed using the Johnson- Weibull method, and compared to the ASTM Standard (E739 91) method of comparison. The ASTM Standard did not statistically distinguish between AL 6061 and AL 7075. However, it is possible to rank the fatigue lives of different materials with a reasonable degree of statistical certainty based on combined confidence numbers using the Johnson- Weibull analysis. AL 2024 was found to have the longest fatigue life, followed by AL 7075, and then AL 6061. The ASTM Standard and the Johnson-Weibull analysis result in the same stress-life exponent p for each of the three aluminum alloys at the median, or L(sub 50), lives

  1. Stimulated peripheral production of interferon-gamma is related to fatigue and depression in multiple sclerosis.

    PubMed

    Pokryszko-Dragan, A; Frydecka, I; Kosmaczewska, A; Ciszak, L; Bilińska, M; Gruszka, E; Podemski, R; Frydecka, D

    2012-10-01

    The aim of the study was to evaluate the stimulated production of interferon-gamma (IFNγ) by peripheral CD3+CD4+ T lymphocytes in patients with multiple sclerosis (MS) with regard to the degree of fatigue, and to investigate relationships between immunological parameters, level of depression and clinical variables. Forty MS patients (30 women, 10 men, aged 22-60 years): 20 fatigued and 20 non-fatigued were involved in the study. Fatigue was evaluated using the Fatigue Severity Scale (FSS) and Modified Fatigue Impact Scale (MFIS), depression level - using Beck Depression Inventory (BDI). Production of IFNγ by stimulated peripheral blood CD3+CD4+ T lymphocytes, assessed using flow cytometry, was compared between MS patients with different levels of fatigue and controls. Correlations were searched out between immunological findings and BDI, age, duration and course of MS, relapse rate, disability (assessed in Expanded Disability Status Scale - EDSS) and its progression. Stimulated production of IFNγ by CD3+CD4+ T lymphocytes was higher in severely fatigued patients in comparison with non-fatigued ones and controls, tended to correlate with FSS and MFIS, and correlated with BDI. No relationships were found between immunological findings and disease-related variables. Stimulated production of IFNγ by peripheral CD3+CD4+ T lymphocytes is related to fatigue and depression in MS patients. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Effect of mental fatigue on the central nervous system: an electroencephalography study

    PubMed Central

    2012-01-01

    Background Fatigue can be classified as mental and physical depending on its cause, and each type of fatigue has a multi-factorial nature. We examined the effect of mental fatigue on the central nervous system using electroencephalography (EEG) in eighteen healthy male volunteers. Methods After enrollment, subjects were randomly assigned to two groups in a single-blinded, crossover fashion to perform two types of mental fatigue-inducing experiments. Each experiment consisted of four 30-min fatigue-inducing 0- or 2-back test sessions and two evaluation sessions performed just before and after the fatigue-inducing sessions. During the evaluation session, the participants were assessed using EEG. Eleven electrodes were attached to the head skin, from positions F3, Fz, F4, C3, Cz, C4, P3, Pz, P4, O1, and O2. Results In the 2-back test, the beta power density on the Pz electrode and the alpha power densities on the P3 and O2 electrodes were decreased, and the theta power density on the Cz electrode was increased after the fatigue-inducing mental task sessions. In the 0-back test, no electrodes were altered after the fatigue-inducing sessions. Conclusions Different types of mental fatigue produced different kinds of alterations of the spontaneous EEG variables. Our findings provide new perspectives on the neural mechanisms underlying mental fatigue. PMID:22954020

  3. Nondestructive evaluation of loading and fatigue effects in Haynes(R) 230(R) alloy

    NASA Astrophysics Data System (ADS)

    Saleh, Tarik Adel

    Nondestructive evaluation is a useful method for studying the effects of deformation and fatigue. In this dissertation I employed neutron and X-ray diffraction, nonlinear resonant ultrasound spectroscopy (NRUS), and infrared thermography to study the effects of deformation and fatigue on two different nickel based superalloys. The alloys studied were HAYNES 230, a solid solution strengthened alloy with 4% M6C carbides, and secondarily HASTELLOY C-2000 a similar single phase alloy. Using neutron and X-ray diffraction, the deformation behavior of HAYNES 230 was revealed to be composite-like during compression, but unusual in tension, where the carbides provide strengthening until just after the macroscopic yield strength and then they begin to debond and crack, creating a tension-compression asymmetry that is revealed clearly by in situ diffraction. In fatigue of HAYNES 230, the hkl elastic strains changed very little in tension-tension fatigue. However, in situ tension-compression studies showed large changes over the initial stages of fatigue. The HAYNES 230 samples studies had two distinct starting textures, measured by neutron diffraction. Some samples were texture free initially and deformed in tension and compression to fiber textures. Other samples started with a bimodal texture due to cross-rolling and incomplete annealing. The final texture of these bimodal samples is shown through modeling to be a superposition of the initial texture and typical FCC deformation mechanisms. The texture-free samples deformed significantly more macroscopically and in internal elastic strains than the samples with the cross-rolled texture. In contrast to the relative insensitivity of neutron diffraction to the effects of tension-tension fatigue, NRUS revealed large differences between as-received and progressively fatigued samples. This showed that microcracking and void formation are the primary mechanisms responsible for fatigue damage in tension-tension fatigue. NRUS is shown to be a useful complimentary technique to neutron diffraction to evaluate fatigue damage. Finally, infrared thermography is used to show temperature changes over the course of fatigue in HASTELLOY C-2000. Four stages of temperature are shown over the course of a single fatigue test. Both empirical and theoretical relationships between steady state temperature and fatigue life are developed and presented.

  4. Fatigue Crack Growth Behavior of Gas Metal Arc Welded AISI 409 Grade Ferritic Stainless Steel Joints

    NASA Astrophysics Data System (ADS)

    Lakshminarayanan, A. K.; Shanmugam, K.; Balasubramanian, V.

    2009-10-01

    The effect of filler metals such as austenitic stainless steel, ferritic stainless steel, and duplex stainless steel on fatigue crack growth behavior of the gas metal arc welded ferritic stainless steel joints was investigated. Rolled plates of 4 mm thickness were used as the base material for preparing single ‘V’ butt welded joints. Center cracked tensile specimens were prepared to evaluate fatigue crack growth behavior. Servo hydraulic controlled fatigue testing machine with a capacity of 100 kN was used to evaluate the fatigue crack growth behavior of the welded joints. From this investigation, it was found that the joints fabricated by duplex stainless steel filler metal showed superior fatigue crack growth resistance compared to the joints fabricated by austenitic and ferritic stainless steel filler metals. Higher yield strength and relatively higher toughness may be the reasons for superior fatigue performance of the joints fabricated by duplex stainless steel filler metal.

  5. Experimental Evaluation of Fatigue Crack Initiation from Corroded Hemispherical Notches in Aerospace Structural Materials

    NASA Technical Reports Server (NTRS)

    Garcia, Daniel B.; Forman, Royce; Shindo, David

    2010-01-01

    A test program was developed and executed to evaluate the influence of corroded hemispherical notches on the fatigue crack initiation and propagation in aluminum 7075-T7351, 4340 steel, and D6AC steel. Surface enhancements such as shot peening and laser shock peening were also incorporated as part of the test effort with the intent of improving fatigue performance. In addition to the testing, fracture mechanics and endurance limit based analysis methods were evaluated to characterize the results with the objective of challenging typical assumptions used in modeling fatigue cracks from corrosion pits. The results specifically demonstrate that the aluminum and steel alloys behave differently with respect to fatigue crack initiation from hemispherical corrosion pits. The aluminum test results were bounded by the fracture mechanics and endurance limit models while exhibiting a general insensitivity to the residual stress field generated by shot peening. The steel specimens were better characterized by the endurance limit fatigue properties and did exhibit sensitivities to residual stresses from the shot peening and laser shock peening

  6. Influence of dental restorations and mastication loadings on dentine fatigue behaviour: Image-based modelling approach.

    PubMed

    Vukicevic, Arso M; Zelic, Ksenija; Jovicic, Gordana; Djuric, Marija; Filipovic, Nenad

    2015-05-01

    The aim of this study was to use Finite Element Analysis (FEA) to estimate the influence of various mastication loads and different tooth treatments (composite restoration and endodontic treatment) on dentine fatigue. The analysis of fatigue behaviour of human dentine in intact and composite restored teeth with root-canal-treatment using FEA and fatigue theory was performed. Dentine fatigue behaviour was analysed in three virtual models: intact, composite-restored and endodontically-treated tooth. Volumetric change during the polymerization of composite was modelled by thermal expansion in a heat transfer analysis. Low and high shrinkage stresses were obtained by varying the linear shrinkage of composite. Mastication forces were applied occlusally with the load of 100, 150 and 200N. Assuming one million cycles, Fatigue Failure Index (FFI) was determined using Goodman's criterion while residual fatigue lifetime assessment was performed using Paris-power law. The analysis of the Goodman diagram gave both maximal allowed crack size and maximal number of cycles for the given stress ratio. The size of cracks was measured on virtual models. For the given conditions, fatigue-failure is not likely to happen neither in the intact tooth nor in treated teeth with low shrinkage stress. In the cases of high shrinkage stress, crack length was much larger than the maximal allowed crack and failure occurred with 150 and 200N loads. The maximal allowed crack size was slightly lower in the tooth with root canal treatment which induced somewhat higher FFI than in the case of tooth with only composite restoration. Main factors that lead to dentine fatigue are levels of occlusal load and polymerization stress. However, root canal treatment has small influence on dentine fatigue. The methodology proposed in this study provides a new insight into the fatigue behaviour of teeth after dental treatments. Furthermore, it estimates maximal allowed crack size and maximal number of cycles for a specific case. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Evaluation of the psychometric properties of the PROMIS Cancer Fatigue Short Form with cancer patients.

    PubMed

    Cessna, Julie M; Jim, Heather S L; Sutton, Steven K; Asvat, Yasmin; Small, Brent J; Salsman, John M; Zachariah, Babu; Fishman, Mayer; Field, Teresa; Fernandez, Hugo; Perez, Lia; Jacobsen, Paul B

    2016-02-01

    Fatigue is common among cancer patients and adversely impacts quality of life. As such, it is important to measure fatigue accurately in a way that is not burdensome to patients. The 7-item Patient Reported Outcome Measurement Information System (PROMIS) Cancer Fatigue Short Form scale was recently developed using item response theory (IRT). The current study evaluated the psychometric properties of this scale in two samples of cancer patients using classical test theory (CTT). Two samples were used: 121 men with prostate cancer and 136 patients scheduled to undergo hematopoietic cell transplantation (HCT) for hematologic cancer. All participants completed the PROMIS Cancer Fatigue Short Form as well as validated measures of fatigue, vitality, and depression. HCT patients also completed measures of anxiety, perceived stress, and a clinical interview designed to identify cases of cancer-related fatigue. PROMIS Cancer Fatigue Short Form items loaded on a single factor (CFI=0.948) and the scale demonstrated good internal consistency reliability in both samples (Cronbach's alphas>0.86). Correlations with psychosocial measures were significant (p values<.0001) and in the expected direction, offering evidence for convergent and concurrent validity. PROMIS Fatigue scores were significantly higher in patients who met case definition criteria for cancer-related fatigue (p<.0001), demonstrating criterion validity. The current study provides evidence that the PROMIS Cancer Fatigue Short Form is a reliable and valid measure of fatigue in cancer patients. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Evaluation of the Psychometric Properties of the PROMIS Cancer Fatigue Short Form with Cancer Patients

    PubMed Central

    Cessna, Julie M.; Jim, Heather S.L.; Sutton, Steven K.; Asvat, Yasmin; Small, Brent J.; Salsman, John M.; Zachariah, Babu; Fishman, Mayer; Field, Teresa; Fernandez, Hugo; Perez, Lia; Jacobsen, Paul B.

    2016-01-01

    Objective Fatigue is common among cancer patients and adversely impacts quality of life. As such, it is important to measure fatigue accurately in a way that is not burdensome to patients. The 7-item Patient Reported Outcome Measurement Information System (PROMIS) Cancer Fatigue Short Form scale was recently developed using item response theory (IRT). The current study evaluated the psychometric properties of this scale in two samples of cancer patients using classical test theory (CTT). Methods Two samples were used: 121 men with prostate cancer and 136 patients scheduled to undergo hematopoietic cell transplantation (HCT) for hematologic cancer. All participants completed the PROMIS Cancer Fatigue Short Form as well as validated measures of fatigue, vitality, and depression. HCT patients also completed measures of anxiety, perceived stress, and a clinical interview designed to identify cases of cancer -related fatigue. Results PROMIS Cancer Fatigue Short Form items loaded on a single factor (CFI = 0.948) and the scale demonstrated good internal consistency reliability in both samples (Cronbach’s alphas > 0.86). Correlations with psychosocial measures were significant (p-values < .0001) and in the expected direction, offering evidence for convergent and concurrent validity. PROMIS Fatigue scores were significantly higher in patients who met case definition criteria for cancer-related fatigue (p < .0001), demonstrating criterion validity. Conclusion The current study provides evidence that the PROMIS Cancer Fatigue Short Form is a reliable and valid measure of fatigue in cancer patients. PMID:26800633

  9. Fatigue in Residency Education: Understanding the Influence of Work Hours Regulations in Europe.

    PubMed

    Taylor, Taryn S; Teunissen, Pim W; Dornan, Tim; Lingard, Lorelei

    2017-12-01

    Although one proposed solution to the problem of fatigued medical trainees is the implementation of work hours regulations, concerns about the effectiveness of these regulations are growing. Canada remains one of the few Western jurisdictions without legislated regulation. Recent research suggests that fatigue is a complex social construct, rather than simply a lack of sleep; thus, the authors explored how regulations and fatigue are understood in countries with established work hours frameworks to better inform other jurisdictions looking to address trainee fatigue. Using constructivist grounded theory methodology, the authors conducted individual, semistructured interviews in 2015-2016 with 13 postgraduate medical trainees from four European countries with established work hours regulations. Data collection and analysis proceeded iteratively, and the authors used a constant comparative approach to analysis. Trainees reported that they were commonly fatigued and that they violated the work hours restrictions for various reasons, including educational pursuits. Although they understood the regulations were legislated specifically to ensure safe patient care and optimize trainee well-being, they also described implicit meanings (e.g., monitoring for trainee efficiency) and unintended consequences (e.g., losing a sense of vocation). Work hours regulations carry multiple, conflicting meanings for trainees that are captured by three predominant rhetorics: the rhetoric of patient safety, of well-being, and of efficiency. Tensions within each of those rhetorics reveal that managing fatigue within clinical training environments is complex. These findings suggest that straightforward solutions are unlikely to solve the problem of fatigue, assure patient safety, and improve trainee well-being.

  10. Fatigue damage assessment of high-usage in-service aircraft fuselage structure

    NASA Astrophysics Data System (ADS)

    Mosinyi, Bao Rasebolai

    As the commercial and military aircraft fleets continue to age, there is a growing concern that multiple-site damage (MSD) can compromise structural integrity. Multiple site damage is the simultaneous occurrence of many small cracks at independent structural locations, and is the natural result of fatigue, corrosion, fretting and other possible damage mechanisms. These MSD cracks may linkup and form a fatigue lead crack of critical length. The presence of MSD also reduces the structure's ability to withstand longer cracks. The objective of the current study is to assess, both experimentally and analytically, MSD formation and growth in the lap joint of curved panels removed from a retired aircraft. A Boeing 727-232 airplane owned and operated by Delta Air Lines, and retired at its design service goal, was selected for the study. Two panels removed from the left-hand side of the fuselage crown, near stringer 4L, were subjected to extended fatigue testing using the Full-Scale Aircraft Structural Test Evaluation and Research (FASTER) facility located at the Federal Aviation Administration (FAA) William J. Hughes Technical Center. The state of MSD was continuously assessed using several nondestructive inspection (NDI) methods. Damage to the load attachment points of the first panel resulted in termination of the fatigue test at 43,500 fatigue cycles, before cracks had developed in the lap joint. The fatigue test for the second panel was initially conducted under simulated in-service loading conditions for 120,000 cycles, and no cracks were detected in the skin of the panel test section. Artificial damage was then introduced into the panel at selected rivets in the critical (lower) rivet row, and the fatigue loads were increased. Visually detectable crack growth from the artificial notches was first seen after 133,000 cycles. The resulting lead crack grew along the lower rivet row, eventually forming an 11.8" long unstable crack after 141,771 cycles, at which point the test was terminated. Posttest fractograpic examinations of the crack surfaces were conducted, revealing the presence of subsurface MSD at the critical rivet row of the lap joint. Special attention was also given to the stringer clips that attach the fuselage frames to the stringers, since they also experienced cracking during the fatigue tests. The performance of the different conventional and emerging NDI methods was also assessed, and some of the emerging NDI methods were quite effective in detecting and measuring the length of subsurface cracks. Delta Air Lines conducted a separate destructive investigation on the state of damage along the right-hand side of the fuselage, near stringer 4R. A comparison of these two studies showed that the lap joint on the left hand-side of the aircraft, along stringer 4L, had better fatigue life than the one on the opposite side, along stringer 4R. The cause of the difference in fatigue life was investigated by close examination of the rivet installation qualities, and was found to be a result of better rivet installation along the lap joint at stringer 4L. Finite element models for both the skin and substructures of the panels were developed and geometrically nonlinear finite element analyses were conducted to verify the loading conditions and to determine near-field parameters governing MSD initiation and growth. Fatigue crack growth predictions based on the NASGRO equation were in good agreement with the experimental crack growth data for through-the-thickness cracks. For subsurface cracks, simulation of crack growth was found to correlate better with fractography data when an empirical crack growth model was used. The results of the study contribute to the understanding of the initiation and growth of MSD in the inner skin layer of a lap joint, and provide valuable data for the evaluation and validation of analytical methodologies to predict MSD initiation and growth and a better understanding on the effect of manufacturing quality on damage accumulation along the lap joint.

  11. Grainex Mar-M 247 Turbine Disk Life Study for NASA's High Temperature High Speed Turbine Seal Test Facility

    NASA Technical Reports Server (NTRS)

    Delgado, Irebert R.

    2015-01-01

    An experimental and analytical fatigue life study was performed on the Grainex Mar-M 247 disk used in NASA s Turbine Seal Test Facility. To preclude fatigue cracks from growing to critical size in the NASA disk bolt holes due to cyclic loading at severe test conditions, a retirement-for-cause methodology was adopted to detect and monitor cracks within the bolt holes using eddy-current inspection. For the NASA disk material that was tested, the fatigue strain-life to crack initiation at a total strain of 0.5 percent, a minimum to maximum strain ratio of 0, and a bolt hole temperature of 649 C was calculated to be 665 cycles using -99.95 percent prediction intervals. The fatigue crack propagation life was calculated to be 367 cycles after implementing a safety factor of 2 on life. Thus, the NASA disk bolt hole total life or retirement life was determined to be 1032 cycles at a crack depth of 0.501 mm. An initial NASA disk bolt hole inspection at 665 cycles is suggested with 50 cycle inspection intervals thereafter to monitor fatigue crack growth.

  12. Materials testing protocol for small joint prostheses.

    PubMed

    Savory, K M; Hutchinson, D T; Bloebaum, R

    1994-10-01

    In this article, a protocol for the evaluation of new materials for small joint prostheses is introduced. The testing methods employed in the protocol were developed by reviewing reported clinical failure modes and conditions found in vivo. The methods developed quantitatively evaluates the fatigue, fatigue crack propagation, and wear resistance properties of materials. For this study, a silicone elastomer similar to Dow Corning Silastic HP100, a radiation stable polypropylene, and a copolymer of polypropylene and ethylene propylene-diene monomer (EPDM) are evaluated. None of the materials tested demonstrated the ideal properties that are sought in a self-hinging joint prostheses. The silicone elastomer had excellent wear properties; however, cracks quickly propagated, causing catastrophic failure when fatigued. Conversely, the copolymer showed excellent fatigue crack propagation resistance and less than favorable wear properties. The polypropylene did not perform well in any evaluation.

  13. Evaluating Interactive Fatigue Management Workshops for Occupational Health Professionals in the United Kingdom

    PubMed Central

    Ali, Sheila; Chalder, Trudie; Madan, Ira

    2014-01-01

    Background Disabling fatigue is common in the working age population. It is essential that occupational health (OH) professionals are up-to-date with the management of fatigue in order to reduce the impact of fatigue on workplace productivity. Our aim was to evaluate the impact of one-day workshops on OH professionals' knowledge of fatigue and chronic fatigue syndrome (CFS), and their confidence in diagnosing and managing these in a working population. Methods Five interactive problem-based workshops were held in the United Kingdom. These workshops were developed and delivered by experts in the field. Questionnaires were self-administered immediately prior to, immediately after, and 4 months following each workshop. Questionnaires included measures of satisfaction, knowledge of fatigue and CFS, and confidence in diagnosing and managing fatigue. Open-ended questions were used to elicit feedback about the workshops. Results General knowledge of fatigue increased significantly after training (with a 25% increase in the median score). Participants showed significantly higher levels of confidence in diagnosing and managing CFS (with a 62.5% increase in the median score), and high scores were maintained 4 months after the workshops. OH physicians scored higher on knowledge and confidence than nurses. Similarly, thematic analysis revealed that participants had increased knowledge and confidence after attending the workshops. Conclusion Fatigue can lead to severe functional impairment with adverse workplace outcomes. One-day workshops can be effective in training OH professionals in how to diagnose and manage fatigue and CFS. Training may increase general knowledge of fatigue and confidence in fatigue management in an OH setting. PMID:25516811

  14. Lack of Energy: An Important and Distinct Component of HIV-Related Fatigue and Daytime Function

    PubMed Central

    Aouizerat, Bradley E.; Gay, Caryl L.; Lerdal, Anners; Portillo, Carmen J.; Lee, Kathryn A.

    2012-01-01

    Context Fatigue is a prevalent symptom among adults living with human immunodeficiency virus (HIV). There is increasing evidence that fatigue and energy are related, yet distinct constructs. Although HIV-related fatigue has been well studied, little is known about perceived energy and how it relates to fatigue, individual characteristics, and other symptoms. Objectives To describe the experience of perceived energy in adults with HIV and evaluate its relationship to demographic and clinical characteristics as well as symptoms of fatigue, sleep disturbance, anxiety, depression, and daytime function. Methods The design was descriptive, comparative, and correlational. The sample of 318 adults with HIV completed a demographic questionnaire, the Memorial Symptom Assessment Scale, and measures of fatigue, sleep disturbance, anxiety, depressive symptoms, and daytime function. Medical records were reviewed for disease and treatment data. Participants who reported a lack of energy were compared with those who did not on demographic, clinical, and symptom variables. Regression models of perceived energy and its interference with daytime function also were evaluated. Results Perceived lack of energy was highly prevalent (65%) and more strongly related to interference with daytime function than more general measures of fatigue severity, even when controlling for other characteristics and symptoms. Like other aspects of fatigue, lack of energy was associated with sleep disturbance, anxiety, and depressive symptoms. Lack of energy was more strongly related to morning fatigue than to evening fatigue. Conclusion Lack of energy interferes with daytime function and is not just the inverse of fatigue but a distinct perception that differs from fatigue. PMID:22917712

  15. Handgrip fatiguing exercise can provide objective assessment of cancer-related fatigue: a pilot study.

    PubMed

    Veni, T; Boyas, S; Beaune, B; Bourgeois, H; Rahmani, A; Landry, S; Bochereau, A; Durand, S; Morel, B

    2018-06-24

    As a subjective symptom, cancer-related fatigue is assessed via patient-reported outcomes. Due to the inherent bias of such evaluation, screening and treatment for cancer-related fatigue remains suboptimal. The purpose is to evaluate whether objective cancer patients' hand muscle mechanical parameters (maximal force, critical force, force variability) extracted from a fatiguing handgrip exercise may be correlated to the different dimensions (physical, emotional, and cognitive) of cancer-related fatigue. Fourteen women with advanced breast cancer, still under or having previously received chemotherapy within the preceding 3 months, and 11 healthy women participated to the present study. Cancer-related fatigue was first assessed through the EORTC QLQ-30 and its fatigue module. Fatigability was then measured during 60 maximal repeated handgrip contractions. The maximum force, critical force (asymptote of the force-time evolution), and force variability (root mean square of the successive differences) were extracted. Multiple regression models were performed to investigate the influence of the force parameters on cancer-related fatigue's dimensions. The multiple linear regression analysis evidenced that physical fatigue was best explained by maximum force and critical force (r = 0.81; p = 0.029). The emotional fatigue was best explained by maximum force, critical force, and force variability (r = 0.83; p = 0.008). The cognitive fatigue was best explained by critical force and force variability (r = 0.62; p = 0.035). The handgrip maximal force, critical force, and force variability may offer objective measures of the different dimensions of cancer-related fatigue and could provide a complementary approach to the patient reported outcomes.

  16. Development of an in situ fatigue sensor.

    DOT National Transportation Integrated Search

    2011-01-01

    A prototype in situ fatigue sensor has been designed, constructed and evaluated experimentally for its ability to monitor the accumulation of fatigue damage in a cyclically loaded steel structure, e.g., highway bridge. The sensor consists of multiple...

  17. Assessing severity of illness and outcomes of treatment in children with Chronic Fatigue Syndrome/Myalgic Encephalomyelitis (CFS/ME): a systematic review of patient-reported outcome measures (PROMs).

    PubMed

    Haywood, K L; Collin, S M; Crawley, E

    2014-11-01

    Chronic Fatigue Syndrome or Myalgic Encephalomyelitis (CFS/ME) in children is characterized by persistent or recurrent debilitating fatigue which results in a substantial reduction in activity. There is a growing interest in the use of questionnaires, or patient-reported outcome measures (PROMs), to assess how patients function and feel in relation to their health and associated healthcare. However, guidance for PROM selection for children with CFS/ME does not exist. We reviewed the quality and acceptability of PROMs used with children with CFS/ME to inform recommendations for practice. We conducted a systematic review of PROMs completed by children with CFS/ME. The quality of the evaluative studies and the reviewed measures were assessed against recommended criteria using an appraisal framework and the COnsensus-based Standards for the selection of health Measurement INstruments (COSMIN) checklist. We sought evidence of measurement (reliability, validity, responsiveness, interpretability, data quality) and practical properties (acceptability, relevance, feasibility). Sixteen articles were included in the review, providing evidence of reliability and/or validity for 13 PROMs. Of these, five were child-specific (one health-related quality-of-life; four emotional well-being) and eight were not (four emotional well-being, three fatigue-specific; and one generic). All measures had limited evidence of measurement properties and no evidence of practical properties. Recommendations for patient-reported assessment are difficult to make because of limited evidence of the quality and acceptability of PROMs for children with CFS/ME. The appraisal method highlighted significant methodological and quality issues which must be addressed in future research. There is a lack of qualitative evidence describing the outcomes of healthcare that are important to children with CFS/ME, and the relevance or appropriateness of available measures. Future PROM development and evaluation in this group must seek to involve children collaboratively to ensure that the outcomes that children care about are assessed in an acceptable way. © 2014 John Wiley & Sons Ltd.

  18. Life prediction technologies for aeronautical propulsion systems

    NASA Technical Reports Server (NTRS)

    Mcgaw, Michael A.

    1990-01-01

    Fatigue and fracture problems continue to occur in aeronautical gas turbine engines. Components whose useful life is limited by these failure modes include turbine hot-section blades, vanes, and disks. Safety considerations dictate that catastrophic failures be avoided, while economic considerations dictate that catastrophic failures be avoided, while economic considerations dictate that noncatastrophic failures occur as infrequently as possible. Therefore, the decision in design is making the tradeoff between engine performance and durability. LeRC has contributed to the aeropropulsion industry in the area of life prediction technology for over 30 years, developing creep and fatigue life prediction methodologies for hot-section materials. At the present time, emphasis is being placed on the development of methods capable of handling both thermal and mechanical fatigue under severe environments. Recent accomplishments include the development of more accurate creep-fatigue life prediction methods such as the total strain version of LeRC's strain-range partitioning (SRP) and the HOST-developed cyclic damage accumulation (CDA) model. Other examples include the development of a more accurate cumulative fatigue damage rule - the double damage curve approach (DDCA), which provides greatly improved accuracy in comparison with usual cumulative fatigue design rules. Other accomplishments in the area of high-temperature fatigue crack growth may also be mentioned. Finally, we are looking to the future and are beginning to do research on the advanced methods which will be required for development of advanced materials and propulsion systems over the next 10-20 years.

  19. A Rasch Analysis of Assessments of Morning and Evening Fatigue in Oncology Patients Using the Lee Fatigue Scale.

    PubMed

    Lerdal, Anners; Kottorp, Anders; Gay, Caryl; Aouizerat, Bradley E; Lee, Kathryn A; Miaskowski, Christine

    2016-06-01

    To accurately investigate diurnal variations in fatigue, a measure needs to be psychometrically sound and demonstrate stable item function in relationship to time of day. Rasch analysis is a modern psychometric approach that can be used to evaluate these characteristics. To evaluate, using Rasch analysis, the psychometric properties of the Lee Fatigue Scale (LFS) in a sample of oncology patients. The sample comprised 587 patients (mean age 57.3 ± 11.9 years, 80% women) undergoing chemotherapy for breast, gastrointestinal, gynecological, or lung cancer. Patients completed the 13-item LFS within 30 minutes of awakening (i.e., morning fatigue) and before going to bed (i.e., evening fatigue). Rasch analysis was used to assess validity and reliability. In initial analyses of differential item function, eight of the 13 items functioned differently depending on whether the LFS was completed in the morning or in the evening. Subsequent analyses were conducted separately for the morning and evening fatigue assessments. Nine of the morning fatigue items and 10 of the evening fatigue items demonstrated acceptable goodness-of-fit to the Rasch model. Principal components analyses indicated that both morning and evening assessments demonstrated unidimensionality. Person-separation indices indicated that both morning and evening fatigue scales were able to distinguish four distinct strata of fatigue severity. Excluding four items from the morning fatigue scale and three items from the evening fatigue scale improved the psychometric properties of the LFS for assessing diurnal variations in fatigue severity in oncology patients. Copyright © 2016 American Academy of Hospice and Palliative Medicine. Published by Elsevier Inc. All rights reserved.

  20. The contribution of clinical and psychosocial factors to fatigue in 182 patients with inflammatory bowel disease: a cross-sectional study.

    PubMed

    Artom, M; Czuber-Dochan, W; Sturt, J; Murrells, T; Norton, C

    2017-02-01

    Fatigue is a frequently reported and predominant symptom experienced by patients with inflammatory bowel disease (IBD) and its impact has been associated with poorer quality of life (QoL). The complex interplay between disease-related variables and potentially modifiable psychosocial factors in IBD-fatigue has yet to be unravelled. To evaluate the contribution of clinical, sociodemographic and psychosocial factors to the severity and impact of IBD-fatigue and QoL. In a cross-sectional study, 182 patients with IBD were recruited from three tertiary referral hospitals' out-patient clinics in London. Fatigue was assessed utilising the Inflammatory Bowel Disease-Fatigue Scale (IBD-F), the Multidimensional Fatigue Inventory (MFI); and QoL by the Inflammatory Bowel Disease Questionnaire (IBDQ). Patients completed self-report questionnaires evaluating emotional, cognitive and behavioural factors potentially correlated with fatigue. Sociodemographic data were collected. Disease-related and laboratory data were retrieved from patients' hospital electronic medical records. In hierarchical regression models, disease activity was the only clinical factor consistently associated with severity and impact of fatigue and QoL (P = 0.01). More negative fatigue perceptions were significantly associated with greater IBD-F1 scores (P = 0.01). When controlling for clinical factors (disease activity and anti-TNF therapy), negative perceptions of fatigue, and all-or-nothing and avoidance behaviours explained an additional 41% of the variance in fatigue impact (IBD-F2). Apart from disease activity, emotional and behavioural factors and patients' negative fatigue perceptions may be key factors to be addressed. Further exploration of these factors in longitudinal and intervention studies may help to develop effective models of fatigue management. © 2016 John Wiley & Sons Ltd.

  1. Fatigue evaluation for Tsing Ma Bridge using structural health monitoring data

    NASA Astrophysics Data System (ADS)

    Chan, Hung-tin Tommy; Ko, Jan Ming; Li, Zhao-Xia

    2001-08-01

    Fatigue assessment for the Tsing Ma Bridge (TMB) are presented based on the British standard BS5400 and the real-time structural health monitoring data under railway loading. TMB, as an essential portion of transport network for the Hong Kong airport, is the longest suspension bridge in the world carrying both highway and railway traffic. The bridge design has been mainly based on BS5400. A structural health monitoring system - Wind and Structural Health Monitoring System (WASHMS) for TMB has been operated since the bridge commissioning in May 1997. In order to assess the fatigue behavior of TMB under railway loading, strain gauges were installed on the bridge deck to measure the strain-time histories as soon as the bridge is loaded by a standard railway loading due to the service of an actual train. The strain-time history data at the critical members are then used to determine the stress spectrum, of which the rainflow method recommended for railway bridges by BS5400 is applied to count cycles of stress range. Miner's law is employed to evaluate fatigue damage and remaining service life of the bridge. The evaluated results of fatigue damage and remaining service life would help us to well understand about the fatigue design of the bridge and status in fatigue accumulation.

  2. Psychometric properties of the multidimensional fatigue inventory in Brazilian Hodgkin's lymphoma survivors.

    PubMed

    Baptista, Renata Lyrio R; Biasoli, Irene; Scheliga, Adriana; Soares, Andrea; Brabo, Eloa; Morais, José Carlos; Werneck, Guilherme Loureiro; Spector, Nelson

    2012-12-01

    Fatigue is the most common symptom among Hodgkin's lymphoma survivors. To evaluate the psychometric properties of the Brazilian version of the Multidimensional Fatigue Inventory (MFI). The MFI was translated into Brazilian Portuguese using established forward-backward translation procedures, and the psychometric properties were evaluated in a sample of 200 Hodgkin's lymphoma survivors. The psychometric properties evaluated included internal consistency and construct validity. The MFI was administered along with the informed consent form. The overall Cronbach's alpha coefficient for the 20 items was 0.84, ranging from 0.59 to 0.81 for each of the five scales. Correlations between items and scales ranged from 0.32 to 0.72. The factor analysis yielded a five-factor solution that explained 65% of the variance. The first factor merged the original "general fatigue" and "physical fatigue" scales, as has been previously reported. The second factor identified the original "mental fatigue" scale and the fifth factor identified the original "reduced activity" scale. Questions from the original "reduced motivation" scale were represented in both factors three and four. The Brazilian version of the MFI showed satisfactory psychometric properties and can be considered a valid research tool for assessing cancer-related fatigue. Copyright © 2012 U.S. Cancer Pain Relief Committee. Published by Elsevier Inc. All rights reserved.

  3. Assembly line performance and modeling

    NASA Astrophysics Data System (ADS)

    Rane, Arun B.; Sunnapwar, Vivek K.

    2017-09-01

    Automobile sector forms the backbone of manufacturing sector. Vehicle assembly line is important section in automobile plant where repetitive tasks are performed one after another at different workstations. In this thesis, a methodology is proposed to reduce cycle time and time loss due to important factors like equipment failure, shortage of inventory, absenteeism, set-up, material handling, rejection and fatigue to improve output within given cost constraints. Various relationships between these factors, corresponding cost and output are established by scientific approach. This methodology is validated in three different vehicle assembly plants. Proposed methodology may help practitioners to optimize the assembly line using lean techniques.

  4. The detection of tightly closed flaws by nondestructive testing (NDT) methods. [fatigue crack formation in aluminum alloy test specimens

    NASA Technical Reports Server (NTRS)

    Rummel, W. D.; Rathke, R. A.; Todd, P. H., Jr.; Mullen, S. J.

    1975-01-01

    Liquid penetrant, ultrasonic, eddy current and X-radiographic techniques were optimized and applied to the evaluation of 2219-T87 aluminum alloy test specimens in integrally stiffened panel, and weld panel configurations. Fatigue cracks in integrally stiffened panels, lack-of-fusion in weld panels, and fatigue cracks in weld panels were the flaw types used for evaluation. A 2319 aluminum alloy weld filler rod was used for all welding to produce the test specimens. Forty seven integrally stiffened panels containing a total of 146 fatigue cracks, ninety three lack-of-penetration (LOP) specimens containing a total of 239 LOP flaws, and one-hundred seventeen welded specimens containing a total of 293 fatigue cracks were evaluated. Nondestructive test detection reliability enhancement was evaluated during separate inspection sequences in the specimens in the 'as-machined or as-welded', post etched and post proof loaded conditions. Results of the nondestructive test evaluations were compared to the actual flaw size obtained by measurement of the fracture specimens after completing all inspection sequences. Inspection data were then analyzed to provide a statistical basis for determining the flaw detection reliability.

  5. Surface Irregularity Factor as a Parameter to Evaluate the Fatigue Damage State of CFRP

    PubMed Central

    Zuluaga-Ramírez, Pablo; Frövel, Malte; Belenguer, Tomás; Salazar, Félix

    2015-01-01

    This work presents an optical non-contact technique to evaluate the fatigue damage state of CFRP structures measuring the irregularity factor of the surface. This factor includes information about surface topology and can be measured easily on field, by techniques such as optical perfilometers. The surface irregularity factor has been correlated with stiffness degradation, which is a well-accepted parameter for the evaluation of the fatigue damage state of composite materials. Constant amplitude fatigue loads (CAL) and realistic variable amplitude loads (VAL), representative of real in- flight conditions, have been applied to “dog bone” shaped tensile specimens. It has been shown that the measurement of the surface irregularity parameters can be applied to evaluate the damage state of a structure, and that it is independent of the type of fatigue load that has caused the damage. As a result, this measurement technique is applicable for a wide range of inspections of composite material structures, from pressurized tanks with constant amplitude loads, to variable amplitude loaded aeronautical structures such as wings and empennages, up to automotive and other industrial applications. PMID:28793655

  6. Repeatability of testing procedures for resilient modulus and fatigue : appendices.

    DOT National Transportation Integrated Search

    1989-04-01

    The article is the appendices of "Repeatability of testing procedures for resilient modulus and fatigue". : Extensive use of diametral resilient modulus and fatigue testing is made by the Oregon State Highway Division to evaluate asphaltic concrete m...

  7. Lamb wave-based damage quantification and probability of detection modeling for fatigue life assessment of riveted lap joint

    NASA Astrophysics Data System (ADS)

    He, Jingjing; Wang, Dengjiang; Zhang, Weifang

    2015-03-01

    This study presents an experimental and modeling study for damage detection and quantification in riveted lap joints. Embedded lead zirconate titanate piezoelectric (PZT) ceramic wafer-type sensors are employed to perform in-situ non-destructive testing during fatigue cyclical loading. A multi-feature integration method is developed to quantify the crack size using signal features of correlation coefficient, amplitude change, and phase change. In addition, probability of detection (POD) model is constructed to quantify the reliability of the developed sizing method. Using the developed crack size quantification method and the resulting POD curve, probabilistic fatigue life prediction can be performed to provide comprehensive information for decision-making. The effectiveness of the overall methodology is demonstrated and validated using several aircraft lap joint specimens from different manufactures and under different loading conditions.

  8. Evaluation of stress intensity factors for bi-material interface cracks using displacement jump methods

    NASA Astrophysics Data System (ADS)

    Nehar, K. C.; Hachi, B. E.; Cazes, F.; Haboussi, M.

    2017-12-01

    The aim of the present work is to investigate the numerical modeling of interfacial cracks that may appear at the interface between two isotropic elastic materials. The extended finite element method is employed to analyze brittle and bi-material interfacial fatigue crack growth by computing the mixed mode stress intensity factors (SIF). Three different approaches are introduced to compute the SIFs. In the first one, mixed mode SIF is deduced from the computation of the contour integral as per the classical J-integral method, whereas a displacement method is used to evaluate the SIF by using either one or two displacement jumps located along the crack path in the second and third approaches. The displacement jump method is rather classical for mono-materials, but has to our knowledge not been used up to now for a bi-material. Hence, use of displacement jump for characterizing bi-material cracks constitutes the main contribution of the present study. Several benchmark tests including parametric studies are performed to show the effectiveness of these computational methodologies for SIF considering static and fatigue problems of bi-material structures. It is found that results based on the displacement jump methods are in a very good agreement with those of exact solutions, such as for the J-integral method, but with a larger domain of applicability and a better numerical efficiency (less time consuming and less spurious boundary effect).

  9. Surface protection overview

    NASA Technical Reports Server (NTRS)

    Levine, S. R.

    1982-01-01

    A first-cut integrated environmental attack life prediction methodology for hot section components is addressed. The HOST program is concerned with oxidation and hot corrosion attack of metallic coatings as well as their degradation by interdiffusion with the substrate. The effects of the environment and coatings on creep/fatigue behavior are being addressed through a joint effort with the Fatigue sub-project. An initial effort will attempt to scope the problem of thermal barrier coating life prediction. Verification of models will be carried out through benchmark rig tests including a 4 atm. replaceable blade turbine and a 50 atm. pressurized burner rig.

  10. Development of a patient reported outcome scale for fatigue in multiple sclerosis: The Neurological Fatigue Index (NFI-MS)

    PubMed Central

    2010-01-01

    Background Fatigue is a common and debilitating symptom in multiple sclerosis (MS). Best-practice guidelines suggest that health services should repeatedly assess fatigue in persons with MS. Several fatigue scales are available but concern has been expressed about their validity. The objective of this study was to examine the reliability and validity of a new scale for MS fatigue, the Neurological Fatigue Index (NFI-MS). Methods Qualitative analysis of 40 MS patient interviews had previously contributed to a coherent definition of fatigue, and a potential 52 item set representing the salient themes. A draft questionnaire was mailed out to 1223 people with MS, and the resulting data subjected to both factor and Rasch analysis. Results Data from 635 (51.9% response) respondents were split randomly into an 'evaluation' and 'validation' sample. Exploratory factor analysis identified four potential subscales: 'physical', 'cognitive', 'relief by diurnal sleep or rest' and 'abnormal nocturnal sleep and sleepiness'. Rasch analysis led to further item reduction and the generation of a Summary scale comprising items from the Physical and Cognitive subscales. The scales were shown to fit Rasch model expectations, across both the evaluation and validation samples. Conclusion A simple 10-item Summary scale, together with scales measuring the physical and cognitive components of fatigue, were validated for MS fatigue. PMID:20152031

  11. Fatigue is correlated with disease activity but not with the type of organ involvement in Behçet's syndrome: a comparative clinical survey.

    PubMed

    Buyuktas, Deram; Hatemi, Gulen; Yuksel-Findikoglu, Sukran; Ugurlu, Serdal; Yazici, Hasan; Yurdakul, Sebahattin

    2015-01-01

    Fatigue is an important problem in inflammatory diseases and affects the quality of life (QoL). We aimed to evaluate the severity and impact of fatigue in Behçet's syndrome (BS) and to determine its association with type of organ involvement and gender. One hundred and fifty-two BS, 51 rheumatoid arthritis (RA), 51 systemic lupus erythematosus (SLE), 51 ankylosing spondylitis (AS) patients and 65 healthy controls were evaluated by the fatigue severity scale, fatigue impact scale, fibromyalgia impact questionnaire (FIQ), RAPID3, SF-36 and Behçet's syndrome activity scale (the latter only in BS patients). We also analysed subgroups of BS patients with predominantly eye, vascular, joint and mucocutaneous involvement and did an additional gender analysis. Fatigue severity and fatigue impact scores were similar among BS, RA, SLE and AS patients and significantly higher than that in healthy controls (F4df=8.51; p<0.001 and F4df=8.67; p<0.001, respectively). The fatigue severity and fatigue impact scores were similarly high in BS subgroups with different types of organ involvement, and in both genders. Fatigue is an important problem in BS, as it is in other inflammatory conditions. It is similarly severe in subgroups of patients with eye, vascular, joint and mucocutaneous involvement and in either gender. Fatigue is a candidate outcome measure for clinical trials, to assess the life impact of Behçet's syndrome.

  12. Diagnosis of retrofit fatigue crack re-initiation and growth in steel-girder bridges for proactive repair and emergency planning.

    DOT National Transportation Integrated Search

    2014-07-01

    This report presents a vibration : - : based damage : - : detection methodology that is capable of effectively capturing crack growth : near connections and crack re : - : initiation of retrofitted connections. The proposed damage detection algorithm...

  13. Damage-Tolerance and Fatigue Evaluation of Structure

    DOT National Transportation Integrated Search

    1997-02-18

    This advisory circular (AC) sets forth an acceptable means of compliance : with the provisions of Part 25 of the Federal Aviation Regulations (FAR) dealing with the damage-tolerance and fatigue evaluation requirements of transport category aircraft s...

  14. Fatigue and sleep quality in rheumatoid arthritis patients during hospital admission.

    PubMed

    Szady, Paulina; Bączyk, Grażyna; Kozłowska, Katarzyna

    2017-01-01

    Rheumatoid arthritis (RA) is a systemic disease of connective tissue characterised by chronic course with periods of exacerbation and remission. Even in the early stages of the disease patients report the occurrence of fatigue and sleep disorders. Reduced sleep quality and chronic fatigue are common among patients with rheumatoid arthritis. The aim of the research was to evaluate the severity of fatigue and sleep quality assessment among patients hospitalised with rheumatoid arthritis and to determine the relation between the level of symptoms of fatigue and sleep quality and variables such as: age, gender, disease duration, marital status, applied pharmacological treatment, and pain intensity. The study involved 38 patients (12 men and 26 women) hospitalised in the Rheumatologic Ward of the Orthopaedics and Rehabilitation Hospital of the University of Medical Sciences. The average age of the entire group was 56.26 years. Fatigue was evaluated with use of Polish version of Functional Assessment of Chronic Illness Therapy-Fatigue (FACIT-F), while in order to evaluate sleep quality within the examined group of patients the Pittsburgh Sleep Quality Index (PSQI) was used. Patients with rheumatoid arthritis in the analysed group have lower sleep quality, and within subjects with such a diagnosis the fatigue is present. The relation was found between fatigue and such variables as: age, illness duration, marital status, applied pharmacological treatment, and severity of pain. Sleep quality within patients with RA is correlated by such variables as: age, gender, applied pharmaceutical treatment, and severity of pain. It was identified that patients with lower sleep quality experience increased levels of fatigue. There is a need to clarify which factors determine the level of fatigue and sleep quality in patients suffering from RA in future population-based research and to indicate to doctors, nurses, psychologists, and physiotherapists the significance and importance of the problem, which requires specialised and holistic care.

  15. Effects of chicken essence on recovery from mental fatigue in healthy males

    PubMed Central

    Yamano, Emi; Tanaka, Masaaki; Ishii, Akira; Tsuruoka, Nobuo; Abe, Keiichi; Watanabe, Yasuyoshi

    2013-01-01

    Background Fatigue is a common symptom in modern society. There has been a recent resurgence of interest in traditional remedies for fatigue. Chicken essence, which is rich in anserine and carnosine, has been widely taken in Asian countries as a traditional remedy with various aims, including attenuation of physical and mental fatigue. However, the evidence for its efficacy specifically for mental fatigue remains unclear. We examined the effect of essence of chicken on mental fatigue in humans, using our established fatigue-inducing task and evaluation methods. Material/Methods In this placebo-controlled crossover study, 20 healthy male volunteers were randomized to receive daily oral administration of essence of chicken or placebo drink provided by Cerebos Pacific Ltd. via Suntory holdings Ltd. for 4 weeks. The participants performed 2-back test trials as a fatigue-inducing mental task and then had a rest session. Just before and after each session, they completed cognitive task trials focusing on selective attention to evaluate the level of mental fatigue. Results After essence of chicken intake for 1 and 4 weeks, the reaction times on the cognitive task trials after the rest session were significantly shorter than those at baseline, and significant changes were not observed with placebo intake. The reaction times before and after the fatigue-inducing session were not altered by either essence of chicken or placebo intake. Conclusions We showed that daily intake of essence of chicken could be effective for the recovery from mental fatigue and is a promising candidate for use as an anti-fatigue food. PMID:23831862

  16. Probabilistic Simulation of Combined Thermo-Mechanical Cyclic Fatigue in Composites

    NASA Technical Reports Server (NTRS)

    Chamis, Christos C.

    2011-01-01

    A methodology to compute probabilistically-combined thermo-mechanical fatigue life of polymer matrix laminated composites has been developed and is demonstrated. Matrix degradation effects caused by long-term environmental exposure and mechanical/thermal cyclic loads are accounted for in the simulation process. A unified time-temperature-stress-dependent multifactor-interaction relationship developed at NASA Glenn Research Center has been used to model the degradation/aging of material properties due to cyclic loads. The fast probability-integration method is used to compute probabilistic distribution of response. Sensitivities of fatigue life reliability to uncertainties in the primitive random variables (e.g., constituent properties, fiber volume ratio, void volume ratio, ply thickness, etc.) computed and their significance in the reliability-based design for maximum life is discussed. The effect of variation in the thermal cyclic loads on the fatigue reliability for a (0/+/-45/90)s graphite/epoxy laminate with a ply thickness of 0.127 mm, with respect to impending failure modes has been studied. The results show that, at low mechanical-cyclic loads and low thermal-cyclic amplitudes, fatigue life for 0.999 reliability is most sensitive to matrix compressive strength, matrix modulus, thermal expansion coefficient, and ply thickness. Whereas at high mechanical-cyclic loads and high thermal-cyclic amplitudes, fatigue life at 0.999 reliability is more sensitive to the shear strength of matrix, longitudinal fiber modulus, matrix modulus, and ply thickness.

  17. Influence of pelvic floor muscle fatigue on stress urinary incontinence: a systematic review.

    PubMed

    Thomaz, Rafaela Prusch; Colla, Cássia; Darski, Caroline; Paiva, Luciana Laureano

    2018-02-01

    Stress urinary incontinence (SUI) is the most common urinary complaint among women and is defined by the International Continence Society as any involuntary loss of urine due to physical effort, sneezing or coughing. Many women with SUI state that the loss of urine occurs after performing repetitive movements, which may suggest that it is the result of fatigue of the pelvic floor muscles (PFM). Thus, we performed the systematic review of the literature on the influence of PFM fatigue on the development or worsening of the symptoms of SUI in women. The PubMed, Scopus, EMBASE, PEDro, LILACS, SciELO, Cochrane Library, Google Scholar, CINAHL and Periódicos CAPES databases were searched for articles using the keywords "fatigue", "pelvic floor", "stress urinary incontinence" and "women", in Portuguese and in English. Methodological quality was assessed using the Downs and Black scale, and the data collected from the studies were analyzed descriptively. Of the 2,010 articles found, five met the inclusion criteria and were analyzed. They were published between 2004 and 2015, and included a total of 30,320 women with ages ranging from 24 to 53.6 years. Of the studies analyzed, three showed an association between fatigue and SUI, and two did not show such an association. This study confirmed that PFM fatigue can influence the development and/or worsening of SUI.

  18. Probabilistic Simulation for Combined Cycle Fatigue in Composites

    NASA Technical Reports Server (NTRS)

    Chamis, Christos C.

    2010-01-01

    A methodology to compute probabilistic fatigue life of polymer matrix laminated composites has been developed and demonstrated. Matrix degradation effects caused by long term environmental exposure and mechanical/thermal cyclic loads are accounted for in the simulation process. A unified time-temperature-stress dependent multifactor interaction relationship developed at NASA Glenn Research Center has been used to model the degradation/aging of material properties due to cyclic loads. The fast probability integration method is used to compute probabilistic distribution of response. Sensitivities of fatigue life reliability to uncertainties in the primitive random variables (e.g., constituent properties, fiber volume ratio, void volume ratio, ply thickness, etc.) computed and their significance in the reliability-based design for maximum life is discussed. The effect of variation in the thermal cyclic loads on the fatigue reliability for a (0/+/- 45/90)s graphite/epoxy laminate with a ply thickness of 0.127 mm, with respect to impending failure modes has been studied. The results show that, at low mechanical cyclic loads and low thermal cyclic amplitudes, fatigue life for 0.999 reliability is most sensitive to matrix compressive strength, matrix modulus, thermal expansion coefficient, and ply thickness. Whereas at high mechanical cyclic loads and high thermal cyclic amplitudes, fatigue life at 0.999 reliability is more sensitive to the shear strength of matrix, longitudinal fiber modulus, matrix modulus, and ply thickness.

  19. Probabilistic Simulation of Combined Thermo-Mechanical Cyclic Fatigue in Composites

    NASA Technical Reports Server (NTRS)

    Chamis, Christos C.

    2010-01-01

    A methodology to compute probabilistically-combined thermo-mechanical fatigue life of polymer matrix laminated composites has been developed and is demonstrated. Matrix degradation effects caused by long-term environmental exposure and mechanical/thermal cyclic loads are accounted for in the simulation process. A unified time-temperature-stress-dependent multifactor-interaction relationship developed at NASA Glenn Research Center has been used to model the degradation/aging of material properties due to cyclic loads. The fast probability-integration method is used to compute probabilistic distribution of response. Sensitivities of fatigue life reliability to uncertainties in the primitive random variables (e.g., constituent properties, fiber volume ratio, void volume ratio, ply thickness, etc.) computed and their significance in the reliability-based design for maximum life is discussed. The effect of variation in the thermal cyclic loads on the fatigue reliability for a (0/+/-45/90)s graphite/epoxy laminate with a ply thickness of 0.127 mm, with respect to impending failure modes has been studied. The results show that, at low mechanical-cyclic loads and low thermal-cyclic amplitudes, fatigue life for 0.999 reliability is most sensitive to matrix compressive strength, matrix modulus, thermal expansion coefficient, and ply thickness. Whereas at high mechanical-cyclic loads and high thermal-cyclic amplitudes, fatigue life at 0.999 reliability is more sensitive to the shear strength of matrix, longitudinal fiber modulus, matrix modulus, and ply thickness.

  20. Effect of Cyclic Thermo-Mechanical Loads on Fatigue Reliability in Polymer Matrix Composites

    NASA Technical Reports Server (NTRS)

    Shah, A. R.; Murthy, P. L. N.; Chamis, C. C.

    1996-01-01

    A methodology to compute probabilistic fatigue life of polymer matrix laminated composites has been developed and demonstrated. Matrix degradation effects caused by long term environmental exposure and mechanical/thermal cyclic loads are accounted for in the simulation process. A unified time-temperature-stress dependent multi-factor interaction relationship developed at NASA Lewis Research Center has been used to model the degradation/aging of material properties due to cyclic loads. The fast probability integration method is used to compute probabilistic distribution of response. Sensitivities of fatigue life reliability to uncertainties in the primitive random variables (e.g., constituent properties, fiber volume ratio, void volume ratio, ply thickness, etc.) computed and their significance in the reliability- based design for maximum life is discussed. The effect of variation in the thermal cyclic loads on the fatigue reliability for a (0/+/- 45/90)(sub s) graphite/epoxy laminate with a ply thickness of 0.127 mm, with respect to impending failure modes has been studied. The results show that, at low mechanical cyclic loads and low thermal cyclic amplitudes, fatigue life for 0.999 reliability is most sensitive to matrix compressive strength, matrix modulus, thermal expansion coefficient, and ply thickness. Whereas at high mechanical cyclic loads and high thermal cyclic amplitudes, fatigue life at 0.999 reliability is more sensitive to the shear strength of matrix, longitudinal fiber modulus, matrix modulus, and ply thickness.

  1. Learning and cognitive fatigue trajectories in multiple sclerosis defined using a burst measurement design.

    PubMed

    Holtzer, Roee; Foley, Frederick; D'Orio, Vanessa; Spat, Jessica; Shuman, Melissa; Wang, Cuiling

    2013-10-01

    Compromised learning and cognitive fatigue are critical clinical features in multiple sclerosis. This study was designed to determine the effect of repeated exposures within and across study visits on performance measures of learning and cognitive fatigue in relapsing-remitting multiple sclerosis (RRMS). Thirty patients with RRMS and 30 controls were recruited. Using a burst measurement design (i.e. repeated assessments within and across study visits) the oral version of the Symbol Digit Modalities Test (SDMT) was administered three times during the baseline and two consecutive monthly follow-up visits for a total of nine test administrations. Learning was assessed within and across study visits whereas cognitive fatigue was assessed during the course of each test administration that was divided into three 30-second intervals. Linear mixed-effect models revealed compromised learning within (95% CI: 2.6355 to 3.9867) and across (95% CI: 1.3250 to 3.1861) visits and worse cognitive fatigue (95% CI: -2.1761 to -0.1720) in patients with RRMS compared with controls. Among patients with RRMS, worse self-rated cognitive dysfunction predicted poor learning within (95% CI: -0.1112 to -0.0020) and across (95% CI: -0.0724 to -0.0106) visits. Burst design is optimal to study learning and cognitive fatigue. This methodology, using the SDMT or other time-efficient tests as outcome measures, can be successfully implemented in longitudinal studies and clinical trials.

  2. The influence of sleep and activity patterns on fatigue in women with HIV/AIDS.

    PubMed

    Lee, K A; Portillo, C J; Miramontes, H

    2001-01-01

    The cause of HIV-related fatigue is most likely multifactorial. When presented as a chief complaint, clinicians often include an assessment of stress level, depression, anemia, infection, and amount of sleep and activity. The empirical bases for these evaluations vary in their validity and implementation in clinical practice, but the basis for evaluating adequate amounts of sleep and activity currently lacks empirical research. The purpose of this study was to describe HIV seropositive women's sleep and activity patterns related to their fatigue experience. Sleep and activity were assessed with wrist actigraphy to obtain objective measures of total sleep time, number of awakenings, and sleep efficiency, as well as level of daytime activity, 24-hour activity rhythm, and naps. This sample of 100 women with HIV/AIDS averaged only 6.5 hours of sleep at night, and 45% of the sample napped. CD4 cell counts were unrelated to sleep and fatigue measures. Compared to the low-fatigue group, the women with high fatigue had significantly more difficulty falling asleep, more awakenings from nighttime sleep, poorer daytime functioning, and a higher frequency of depressive symptoms. Findings from this study provide clinicians with empirically based support for detailed clinical evaluations of sleep and activity patterns, as well as anxiety and depression, in clients who complain of fatigue. Findings also provide data for potential interventions to improve sleep and activity in persons living with HIV/AIDS and to reduce fatigue and depressive symptoms.

  3. A Systematic Review of Studies Using the Multidimensional Assessment of Fatigue Scale.

    PubMed

    Belza, Basia; Miyawaki, Christina E; Liu, Minhui; Aree-Ue, Suparb; Fessel, Melissa; Minott, Kenya R; Zhang, Xi

    2018-04-01

    To review how the Multidimensional Assessment of Fatigue (MAF) has been used and evaluate its psychometric properties. We conducted a database search using "multidimensional assessment of fatigue" or "MAF" as key terms from 1993 to 2015, and located 102 studies. Eighty-three were empirical studies and 19 were reviews/evaluations. Research was conducted in 17 countries; 32 diseases were represented. Nine language versions of the MAF were used. The mean of the Global Fatigue Index ranged from 10.9 to 49.4. The MAF was reported to be easy-to-use, had strong reliability and validity, and was used in populations who spoke languages other than English. The MAF is an acceptable assessment tool to measure fatigue and intervention effectiveness in various languages, diseases, and settings across the world.

  4. Psychometric Evaluation of the Multidimensional Assessment of Fatigue Scale for Use with Pregnant and Postpartum Women

    ERIC Educational Resources Information Center

    Fairbrother, Nichole; Hutton, Eileen K.; Stoll, Kathrin; Hall, Wendy; Kluka, Sandy

    2008-01-01

    Although fatigue is a common experience for pregnant women and new mothers, few measures of fatigue have been validated for use with this population. To address this gap, the authors assessed psychometric properties of the Multidimensional Assessment of Fatigue (MAF) scale, which was used in 2 independent samples of pregnant women. Results…

  5. Fatigue Crack Growth Behavior Evaluation of Grainex Mar-M 247 for NASA's High Temperature, High Speed Turbine Seal Test Rig

    NASA Technical Reports Server (NTRS)

    Delgado, Irebert R.; Steinetz, Bruce M.; Rimnac, Clare M.; Lewandowski, John J.

    2008-01-01

    The fatigue crack growth behavior of Grainex Mar-M 247 is evaluated for NASA s Turbine Seal Test Facility. The facility is used to test air-to-air seals primarily for use in advanced jet engine applications. Because of extreme seal test conditions of temperature, pressure, and surface speeds, surface cracks may develop over time in the disk bolt holes. An inspection interval is developed to preclude catastrophic disk failure by using experimental fatigue crack growth data. By combining current fatigue crack growth results with previous fatigue strain-life experimental work, an inspection interval is determined for the test disk. The fatigue crack growth life of the NASA disk bolt holes is found to be 367 cycles at a crack depth of 0.501 mm using a factor of 2 on life at maximum operating conditions. Combining this result with previous fatigue strain-life experimental work gives a total fatigue life of 1032 cycles at a crack depth of 0.501 mm. Eddy-current inspections are suggested starting at 665 cycles since eddy current detection thresholds are currently at 0.381 mm. Inspection intervals are recommended every 50 cycles when operated at maximum operating conditions.

  6. Effect of Applied Potential on Fatigue Life of Electropolished Nitinol Wires

    NASA Astrophysics Data System (ADS)

    Sivan, Shiril; Di Prima, Matthew; Weaver, Jason D.

    2017-09-01

    Nitinol is used as a metallic biomaterial in medical devices due to its shape memory and pseudoelastic properties. The clinical performance of nitinol depends on factors which include the surface finish, the local environment, and the mechanical loads to which the device is subjected. Preclinical evaluations of device durability are performed with fatigue tests while electrochemical characterization methods such as ASTM F2129 are employed to evaluate corrosion susceptibility by determining the rest potential and breakdown potential. However, it is well established that the rest potential of a metal surface can vary with the local environment. Very little is known regarding the influence of voltage on fatigue life of nitinol. In this study, we developed a fatigue testing method in which an electrochemical system was integrated with a rotary bend wire fatigue tester. Samples were fatigued at various strain levels at electropotentials anodic and cathodic to the rest potential to determine if it could influence fatigue life. Wires at potentials negative to the rest potential had a significantly higher number of cycles to fracture than wires held at potentials above the breakdown potential. For wires for which no potential was applied, they had fatigue life similar to wires at negative potentials.

  7. Enhancement of welded steel bridge girders susceptible to distortion-induced fatigue.

    DOT National Transportation Integrated Search

    2014-10-01

    The goal of this study was to develop and evaluate the performance of retrofit techniques for existing steel : bridges that have already sustained damage due to distortion-induced fatigue, or are anticipated to experience : distortion-induced fatigue...

  8. [Research Progress on the Interaction Effects and Its Neural Mechanisms between Physical Fatigue and Mental Fatigue].

    PubMed

    Zhang, Lixin; Zhang, Chuncui; He, Feng; Zhao, Xin; Qi, Hongzhi; Wan, Baikun; Ming, Dong

    2015-10-01

    Fatigue is an exhaustion state caused by prolonged physical work and mental work, which can reduce working efficiency and even cause industrial accidents. Fatigue is a complex concept involving both physiological and psychological factors. Fatigue can cause a decline of concentration and work performance and induce chronic diseases. Prolonged fatigue may endanger life safety. In most of the scenarios, physical and mental workloads co-lead operator into fatigue state. Thus, it is very important to study the interaction influence and its neural mechanisms between physical and mental fatigues. This paper introduces recent progresses on the interaction effects and discusses some research challenges and future development directions. It is believed that mutual influence between physical fatigue and mental fatigue may occur in the central nervous system. Revealing the basal ganglia function and dopamine release may be important to explore the neural mechanisms between physical fatigue and mental fatigue. Future effort is to optimize fatigue models, to evaluate parameters and to explore the neural mechanisms so as to provide scientific basis and theoretical guidance for complex task designs and fatigue monitoring.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skochko, G.W.; Herrmann, T.P.

    Axial load cycling fatigue tests of threaded fasteners are useful in determining fastener fatigue failure or design properties. By using appropriate design factors between the failure and design fatigue strengths, such tests are used to establish fatigue failure and design parameters of fasteners for axial and bending cyclic load conditions. This paper reviews the factors which influence the fatigue strength of low Alloy steel threaded fasteners, identifies those most significant to fatigue strength, and provides design guidelines based on the direct evaluation of fatigue tests of threaded fasteners. Influences on fatigue strength of thread manufacturing process (machining and rolling ofmore » threads), effect of fastener membrane and bending stresses, thread root radii, fastener sizes, fastener tensile strength, stress relaxation, mean stress, and test temperature are discussed.« less

  10. Validation of Fatigue Modeling Predictions in Aviation Operations

    NASA Technical Reports Server (NTRS)

    Gregory, Kevin; Martinez, Siera; Flynn-Evans, Erin

    2017-01-01

    Bio-mathematical fatigue models that predict levels of alertness and performance are one potential tool for use within integrated fatigue risk management approaches. A number of models have been developed that provide predictions based on acute and chronic sleep loss, circadian desynchronization, and sleep inertia. Some are publicly available and gaining traction in settings such as commercial aviation as a means of evaluating flight crew schedules for potential fatigue-related risks. Yet, most models have not been rigorously evaluated and independently validated for the operations to which they are being applied and many users are not fully aware of the limitations in which model results should be interpreted and applied.

  11. Fatigue damage evaluation of austenitic stainless steel using nonlinear ultrasonic waves in low cycle regime

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Jianfeng; Xuan, Fu-Zhen, E-mail: fzxuan@ecust.edu.cn

    The interrupted low cycle fatigue test of austenitic stainless steel was conducted and the dislocation structure and fatigue damage was evaluated subsequently by using both transmission electron microscope and nonlinear ultrasonic wave techniques. A “mountain shape” correlation between the nonlinear acoustic parameter and the fatigue life fraction was achieved. This was ascribed to the generation and evolution of planar dislocation structure and nonplanar dislocation structure such as veins, walls, and cells. The “mountain shape” correlation was interpreted successfully by the combined contribution of dislocation monopole and dipole with an internal-stress dependent term of acoustic nonlinearity.

  12. The effects of fatigue on performance in simulated nursing work.

    PubMed

    Barker, Linsey M; Nussbaum, Maury A

    2011-09-01

    Fatigue is associated with increased rates of medical errors and healthcare worker injuries, yet existing research in this sector has not considered multiple dimensions of fatigue simultaneously. This study evaluated hypothesised causal relationships between mental and physical fatigue and performance. High and low levels of mental and physical fatigue were induced in 16 participants during simulated nursing work tasks in a laboratory setting. Task-induced changes in fatigue dimensions were quantified using both subjective and objective measures, as were changes in performance on physical and mental tasks. Completing the simulated work tasks increased total fatigue, mental fatigue and physical fatigue in all experimental conditions. Higher physical fatigue adversely affected measures of physical and mental performance, whereas higher mental fatigue had a positive effect on one measure of mental performance. Overall, these results suggest causal effects between manipulated levels of mental and physical fatigue and task-induced changes in mental and physical performance. STATEMENT OF RELEVANCE: Nurse fatigue and performance has implications for patient and provider safety. Results from this study demonstrate the importance of a multidimensional view of fatigue in understanding the causal relationships between fatigue and performance. The findings can guide future work aimed at predicting fatigue-related performance decrements and designing interventions.

  13. Development of an algorithm for an EEG-based driver fatigue countermeasure.

    PubMed

    Lal, Saroj K L; Craig, Ashley; Boord, Peter; Kirkup, Les; Nguyen, Hung

    2003-01-01

    Fatigue affects a driver's ability to proceed safely. Driver-related fatigue and/or sleepiness are a significant cause of traffic accidents, which makes this an area of great socioeconomic concern. Monitoring physiological signals while driving provides the possibility of detecting and warning of fatigue. The aim of this paper is to describe an EEG-based fatigue countermeasure algorithm and to report its reliability. Changes in all major EEG bands during fatigue were used to develop the algorithm for detecting different levels of fatigue. The software was shown to be capable of detecting fatigue accurately in 10 subjects tested. The percentage of time the subjects were detected to be in a fatigue state was significantly different than the alert phase (P<.01). This is the first countermeasure software described that has shown to detect fatigue based on EEG changes in all frequency bands. Field research is required to evaluate the fatigue software in order to produce a robust and reliable fatigue countermeasure system. The development of the fatigue countermeasure algorithm forms the basis of a future fatigue countermeasure device. Implementation of electronic devices for fatigue detection is crucial for reducing fatigue-related road accidents and their associated costs.

  14. Laboratory Study on the Fatigue Resistance of Asphaltic Concrete Containing Titanium Dioxide

    NASA Astrophysics Data System (ADS)

    Buhari, Rosnawati; Ezree Abdullah, Mohd; Khairul Ahmad, Mohd; Azhar Tajudin, Saiful; Khatijah Abu Bakar, Siti

    2018-03-01

    This study aims to evaluate the fatigue performance of modified asphalt mixture using Indirect Tensile Fatigue Test. Titanium Dioxide (TiO2) powder in a form of rutile was used for producing asphalt concrete with lower mixing and compaction temperature compared to conventional hot mix asphalt without reducing its physical and mechanical also resistance to fatigue. The characteristic of the asphalt and modified asphalt was evaluated using penetration test, softening test and rotational viscosity test. Titanium dioxide of 2%, 4%, 6%, 8% and 10% by weight of asphalt has been incorporated into unaged 80/100 asphalt mix in order to improvise its performance and to fulfill the objectives of this experimental study. As a result, TiO2 as an additive is potential to decrease the penetration and increasing the softening point of the asphalt. In terms of fatigue performance testing, addition TiO2 additive does help in improving the fatigue properties as it shows greater result than the control asphalt. In conclusion, TiO2 is great in improving fatigue properties.

  15. Impact of exercise-induced fatigue on the strength, postural control, and gait of children with a neuromuscular disease.

    PubMed

    Hart, Raphael; Ballaz, Laurent; Robert, Maxime; Pouliot, Annie; D'Arcy, Sylvie; Raison, Maxime; Lemay, Martin

    2014-08-01

    Children with a neuromuscular disease are prone to early muscular fatigue. The objective of the present study was to evaluate the effects of fatigue induced by a walking exercise on the strength, postural control, and gait of children with a neuromuscular disease. Maximal isometric knee strength (extension and flexion), quiet standing postural control, and gait were evaluated in 12 children (8.8 [1.4] yrs) with a neuromuscular disease before and after a walking exercise. The participants were asked to stop walking when they considered themselves "very fatigued." After the exercise-induced fatigue, a significant increase in range of motion in pelvis obliquity, hip abduction and adduction, and ankle flexion and extension during gait was reported along with an increase in stride length variability. Fatigue also reduced the knee flexor strength and had a detrimental effect on postural control. Fatigue affects the strength, postural control, and gait of children with a neuromuscular disease and could notably increase the risks of falling and the occurrence of serious injuries.

  16. Transient Reliability Analysis Capability Developed for CARES/Life

    NASA Technical Reports Server (NTRS)

    Nemeth, Noel N.

    2001-01-01

    The CARES/Life software developed at the NASA Glenn Research Center provides a general-purpose design tool that predicts the probability of the failure of a ceramic component as a function of its time in service. This award-winning software has been widely used by U.S. industry to establish the reliability and life of a brittle material (e.g., ceramic, intermetallic, and graphite) structures in a wide variety of 21st century applications.Present capabilities of the NASA CARES/Life code include probabilistic life prediction of ceramic components subjected to fast fracture, slow crack growth (stress corrosion), and cyclic fatigue failure modes. Currently, this code can compute the time-dependent reliability of ceramic structures subjected to simple time-dependent loading. For example, in slow crack growth failure conditions CARES/Life can handle sustained and linearly increasing time-dependent loads, whereas in cyclic fatigue applications various types of repetitive constant-amplitude loads can be accounted for. However, in real applications applied loads are rarely that simple but vary with time in more complex ways such as engine startup, shutdown, and dynamic and vibrational loads. In addition, when a given component is subjected to transient environmental and or thermal conditions, the material properties also vary with time. A methodology has now been developed to allow the CARES/Life computer code to perform reliability analysis of ceramic components undergoing transient thermal and mechanical loading. This means that CARES/Life will be able to analyze finite element models of ceramic components that simulate dynamic engine operating conditions. The methodology developed is generalized to account for material property variation (on strength distribution and fatigue) as a function of temperature. This allows CARES/Life to analyze components undergoing rapid temperature change in other words, components undergoing thermal shock. In addition, the capability has been developed to perform reliability analysis for components that undergo proof testing involving transient loads. This methodology was developed for environmentally assisted crack growth (crack growth as a function of time and loading), but it will be extended to account for cyclic fatigue (crack growth as a function of load cycles) as well.

  17. The Boeing 747 fatigue integrity program

    NASA Technical Reports Server (NTRS)

    Spencer, M. M.

    1972-01-01

    The fatigue integrity program which was established to insure economic operations and to provide foundation data for inspection and maintenance is discussed. Significant features of the 747 fatigue integrity program are: (1) fatigue analyses which are continually updated to reflect design changes, fatigue test results, and static and flight load survey measurements; (2) material selection and detail design by using initial fatigue analyses, service experience, and testing; and (3) fatigue testing to check detail design quality and to verify the analyses, culminated by the test of a structurally complete airframe. Fatigue stress analyses were performed with the aid of experimental as well as analytical procedures. Extensive application was made of the stress severity factor, developed at Boeing, for evaluating peak stresses in complex joints. A frame of reference was established by families of structural fatigue performance curves (S-N curves) encompassing the range of materials and fatigue qualities anticipated for the 747 airplane design.

  18. The measurement of fatigue in chronic illness: a systematic review of unidimensional and multidimensional fatigue measures.

    PubMed

    Whitehead, Lisa

    2009-01-01

    Fatigue is a common symptom associated with a wide range of chronic diseases. A large number of instruments have been developed to measure fatigue. An assessment regarding the reliability, validity, and utility of fatigue measures is time-consuming for the clinician and researcher, and few reviews exist on which to draw such information. The aim of this article is to present a critical review of fatigue measures, the populations in which the scales have been used, and the extent to which the psychometric properties of each instrument have been evaluated to provide clinicians and researchers with information on which to base decisions. Seven databases were searched for all articles that measured fatigue and offered an insight into the psychometric properties of the scales used over the period 1980-2007. Criteria for judging the "ideal" measure were developed to encompass scale usability, clinical/research utility, and the robustness of psychometric properties. Twenty-two fatigue measures met the inclusion criteria and were evaluated. A further 17 measures met some of the criteria, but have not been tested beyond initial development, and are reviewed briefly at the end of the article. The review did not identify any instrument that met all the criteria of an ideal instrument. However, a small number of short instruments demonstrated good psychometric properties (Fatigue Severity Scale [FSS], Fatigue Impact Scale [FIS], and Brief Fatigue Inventory [BFI]), and three comprehensive instruments demonstrated the same (Fatigue Symptom Inventory [FSI], Multidimensional Assessment of Fatigue [MAF], and Multidimensional Fatigue Symptom Inventory [MFSI]). Only four measures (BFI, FSS, FSI, and MAF) demonstrated the ability to detect change over time. The clinician and researcher also should consider the populations in which the scale has been used previously to assess its validity with their own patient group, and assess the content of a scale to ensure that the key qualitative aspects of fatigue of the population of interest are covered.

  19. Using aggregated single patient (N-of-1) trials to determine the effectiveness of psychostimulants to reduce fatigue in advanced cancer patients: a rationale and protocol.

    PubMed

    Senior, Hugh Ej; Mitchell, Geoffrey K; Nikles, Jane; Carmont, Sue-Ann; Schluter, Philip J; Currow, David C; Vora, Rohan; Yelland, Michael J; Agar, Meera; Good, Phillip D; Hardy, Janet R

    2013-04-23

    It is estimated that 29% of deaths in Australia are caused by malignant disease each year and can be expected to increase with population ageing. In advanced cancer, the prevalence of fatigue is high at 70-90%, and can be related to the disease and/or the treatment. The negative impact of fatigue on function (physical, mental, social and spiritual) and quality of life is substantial for many palliative patients as well as their families/carers. This paper describes the design of single patient trials (n-of-1 s or SPTs) of a psychostimulant, methylphenidate hydrochloride (MPH) (5 mg bd), compared to placebo as a treatment for fatigue, with a population estimate of the benefit by the aggregation of multiple SPTs. Forty patients who have advanced cancer will be enrolled through specialist palliative care services in Australia. Patients will complete up to 3 cycles of treatment. Each cycle is 6 days long and has 3 days treatment and 3 days placebo. The order of treatment and placebo is randomly allocated for each cycle. The primary outcome is a reduction in fatigue severity as measured by the Functional Assessment of Cancer Therapy-fatigue subscale (FACIT-F). Secondary outcomes include adverse events, quality of life, additional fatigue assessments, depression and Australian Karnovsky Performance Scale. This study will provide high-level evidence using a novel methodological approach about the effectiveness of psychostimulants for cancer-related fatigue. If effective, the findings will guide clinical practice in reducing this prevalent condition to improve function and quality of life. Australian New Zealand Clinical Trials Registry ACTRN12609000794202.

  20. Ocean power technology design optimization

    DOE PAGES

    van Rij, Jennifer; Yu, Yi -Hsiang; Edwards, Kathleen; ...

    2017-07-18

    For this study, the National Renewable Energy Laboratory and Ocean Power Technologies (OPT) conducted a collaborative code validation and design optimization study for OPT's PowerBuoy wave energy converter (WEC). NREL utilized WEC-Sim, an open-source WEC simulator, to compare four design variations of OPT's PowerBuoy. As an input to the WEC-Sim models, viscous drag coefficients for the PowerBuoy floats were first evaluated using computational fluid dynamics. The resulting WEC-Sim PowerBuoy models were then validated with experimental power output and fatigue load data provided by OPT. The validated WEC-Sim models were then used to simulate the power performance and loads for operationalmore » conditions, extreme conditions, and directional waves, for each of the four PowerBuoy design variations, assuming the wave environment of Humboldt Bay, California. And finally, ratios of power-to-weight, power-to-fatigue-load, power-to-maximum-extreme-load, power-to-water-plane-area, and power-to-wetted-surface-area were used to make a final comparison of the potential PowerBuoy WEC designs. Lastly, the design comparison methodologies developed and presented in this study are applicable to other WEC devices and may be useful as a framework for future WEC design development projects.« less

  1. Ocean power technology design optimization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    van Rij, Jennifer; Yu, Yi -Hsiang; Edwards, Kathleen

    For this study, the National Renewable Energy Laboratory and Ocean Power Technologies (OPT) conducted a collaborative code validation and design optimization study for OPT's PowerBuoy wave energy converter (WEC). NREL utilized WEC-Sim, an open-source WEC simulator, to compare four design variations of OPT's PowerBuoy. As an input to the WEC-Sim models, viscous drag coefficients for the PowerBuoy floats were first evaluated using computational fluid dynamics. The resulting WEC-Sim PowerBuoy models were then validated with experimental power output and fatigue load data provided by OPT. The validated WEC-Sim models were then used to simulate the power performance and loads for operationalmore » conditions, extreme conditions, and directional waves, for each of the four PowerBuoy design variations, assuming the wave environment of Humboldt Bay, California. And finally, ratios of power-to-weight, power-to-fatigue-load, power-to-maximum-extreme-load, power-to-water-plane-area, and power-to-wetted-surface-area were used to make a final comparison of the potential PowerBuoy WEC designs. Lastly, the design comparison methodologies developed and presented in this study are applicable to other WEC devices and may be useful as a framework for future WEC design development projects.« less

  2. ARC Collaborative Research Seminar Series

    Science.gov Websites

    been used to formulate design rules for hydration-based TES systems. Don Siegel is an Associate structural-acoustics, design of complex systems, and blast event simulations. Technology that he developed interests includes advanced fatigue and fracture assessment methodologies, computational methods for

  3. Accelerated Testing Methodology in Constant Stress-Rate Testing for Advanced Structural Ceramics: A Preloading Technique

    NASA Technical Reports Server (NTRS)

    Choi, Sung R.; Gyekenyesi, John P.; Huebert, Dean; Bartlett, Allen; Choi, Han-Ho

    2001-01-01

    Preloading technique was used as a means of an accelerated testing methodology in constant stress-rate ('dynamic fatigue') testing for two different brittle materials. The theory developed previously for fatigue strength as a function of preload was further verified through extensive constant stress-rate testing for glass-ceramic and CRT glass in room temperature distilled water. The preloading technique was also used in this study to identify the prevailing failure mechanisms at elevated temperatures, particularly at lower test rate in which a series of mechanisms would be associated simultaneously with material failure, resulting in significant strength increase or decrease. Two different advanced ceramics including SiC whisker-reinforced composite silicon nitride and 96 wt% alumina were used at elevated temperatures. It was found that the preloading technique can be used as an additional tool to pinpoint the dominant failure mechanism that is associated with such a phenomenon of considerable strength increase or decrease.

  4. Simulation of thermomechanical fatigue in solder joints

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fang, H.E.; Porter, V.L.; Fye, R.M.

    1997-12-31

    Thermomechanical fatigue (TMF) is a very complex phenomenon in electronic component systems and has been identified as one prominent degradation mechanism for surface mount solder joints in the stockpile. In order to precisely predict the TMF-related effects on the reliability of electronic components in weapons, a multi-level simulation methodology is being developed at Sandia National Laboratories. This methodology links simulation codes of continuum mechanics (JAS3D), microstructural mechanics (GLAD), and microstructural evolution (PARGRAIN) to treat the disparate length scales that exist between the macroscopic response of the component and the microstructural changes occurring in its constituent materials. JAS3D is used tomore » predict strain/temperature distributions in the component due to environmental variable fluctuations. GLAD identifies damage initiation and accumulation in detail based on the spatial information provided by JAS3D. PARGRAIN simulates the changes of material microstructure, such as the heterogeneous coarsening in Sn-Pb solder, when the component`s service environment varies.« less

  5. Accelerated Testing Methodology in Constant Stress-Rate Testing for Advanced Structural Ceramics: A Preloading Technique

    NASA Technical Reports Server (NTRS)

    Choi, Sung R.; Gyekenyesi, John P.; Huebert, Dean; Bartlett, Allen; Choi, Han-Ho

    2001-01-01

    Preloading technique was used as a means of an accelerated testing methodology in constant stress-rate (dynamic fatigue) testing for two different brittle materials. The theory developed previously for fatigue strength as a function of preload was further verified through extensive constant stress-rate testing for glass-ceramic and CRT glass in room temperature distilled water. The preloading technique was also used in this study to identify the prevailing failure mechanisms at elevated temperatures, particularly at lower test rates in which a series of mechanisms would be associated simultaneously with material failure, resulting in significant strength increase or decrease. Two different advanced ceramics including SiC whisker-reinforced composite silicon nitride and 96 wt% alumina were used at elevated temperatures. It was found that the preloading technique can be used as an additional tool to pinpoint the dominant failure mechanism that is associated with such a phenomenon of considerable strength increase or decrease.

  6. Modeling Operator Performance in Low Task Load Supervisory Domains

    DTIC Science & Technology

    2011-06-01

    PDF Probability Distribution Function SAFE System for Aircrew Fatigue Evaluation SAFTE Sleep , Activity, Fatigue, and Task Effectiveness SCT...attentional capacity due to high mental workload. In low task load settings, fatigue is mainly caused by lack of sleep and boredom experienced by...performance decrements. Also, psychological fatigue is strongly correlated with lack of sleep . Not surprisingly, operators of the morning shift reported the

  7. Activity Patterns in Response to Symptoms in Patients Being Treated for Chronic Fatigue Syndrome: An Experience Sampling Methodology Study

    PubMed Central

    2016-01-01

    Objective: Cognitive–behavioral models of chronic fatigue syndrome (CFS) propose that patients respond to symptoms with 2 predominant activity patterns—activity limitation and all-or-nothing behaviors—both of which may contribute to illness persistence. The current study investigated whether activity patterns occurred at the same time as, or followed on from, patient symptom experience and affect. Method: Twenty-three adults with CFS were recruited from U.K. CFS services. Experience sampling methodology (ESM) was used to assess fluctuations in patient symptom experience, affect, and activity management patterns over 10 assessments per day for a total of 6 days. Assessments were conducted within patients’ daily life and were delivered through an app on touchscreen Android mobile phones. Multilevel model analyses were conducted to examine the role of self-reported patient fatigue, pain, and affect as predictors of change in activity patterns at the same and subsequent assessment. Results: Current experience of fatigue-related symptoms and pain predicted higher patient activity limitation at the current and subsequent assessments whereas subjective wellness predicted higher all-or-nothing behavior at both times. Current pain predicted less all-or-nothing behavior at the subsequent assessment. In contrast to hypotheses, current positive affect was predictive of current activity limitation whereas current negative affect was predictive of current all-or-nothing behavior. Both activity patterns varied at the momentary level. Conclusions: Patient symptom experiences appear to be driving patient activity management patterns in line with the cognitive–behavioral model of CFS. ESM offers a useful method for examining multiple interacting variables within the context of patients’ daily life. PMID:27819461

  8. A fatigue resistance test for elderly persons based on grip strength: reliability and comparison with healthy young subjects.

    PubMed

    Bautmans, Ivan; Mets, Tony

    2005-06-01

    Although a wide variety of protocols are available for evaluating skeletal muscle fatigue resistance, they often necessitate important technological resources or are too complicated for elderly subjects. We present here a new test, designed for elderly persons, based on maintaining maximal voluntary grip strength as long as possible. The aim of the study was to determine the reliability of this test procedure in hospitalized geriatric patients and in young healthy persons. Fatigue resistance was considered as the time in which grip strength decreases to 50% of its maximum value. Twenty geriatric, hospitalized patients (age 83 +/- 6 yrs) and thirty-nine young, healthy persons (age 23 +/- 4 yrs) were evaluated for fatigue resistance by two different observers. Height, weight and body mass index were determined for each participant and the current amount of sports activity was recorded in the young subjects. All participants were able to perform the test. Inter- and intra-rater reliability in both subgroups was good to excellent, with ICC(3,1) values ranging from 0.77 to 0.94. No significant differences in inter- and intra-rater measurements were found, except for inter-observer evaluations of the dominant hand in hospitalized geriatric patients. No significant relationships were found between fatigue resistance and maximal grip strength, anthropometrics or gender. The proposed fatigue resistance test is a reliable tool to evaluate geriatric hospitalized patients as well as young, active and healthy persons. Fatigue resistance scores are not related to gender, maximal strength or anthropometrics within the observed subgroups.

  9. Cross-cultural adaptation, reliability, and validity of the Turkish version of the Cancer Fatigue Scale in patients with breast cancer

    PubMed

    Şahin, Sedef; Huri, Meral; Aran, Orkun Tahir; Uyanık, Mine

    2018-02-23

    Background/aim: The Cancer Fatigue Scale (CFS) was developed to evaluate the severity of fatigue in patients with breast cancer. The aim of this study is to translate and culturally adapt a Turkish version and investigate the validity and reliability of the CFS in Turkish patients with fatigue symptoms. Materials and methods: Eighty participants completed the Turkish version of the CFS for breast cancer and the European Organization for Research and Treatment of Cancer Quality of Life Core Questionnaire ″Core 30″ (EORTC QLQ-C30). Test-retest reliability was evaluated by repeating the CFS with a 7-day interval. Results: The CFS demonstrated high test-retest reliability (ICC = 0.95) and good internal consistency (Cronbach′s alpha = 0.74) for all domains. The Kaiser-Meyer-Olkin measure of sampling adequacy was found to be 0.819, which is considered to be satisfactory (>0.5). Correlations between domains of CFS physical and EORTC physical (r: 0.77), CFS cognitive and EORTC cognitive (r: 0.70), and CFS physical and EORTC fatigue (r: 0.80) were found to be significant. Conclusion: The Turkish version of the CFS is a reliable and valid instrument to assess physical, effective, and cognitive dimensions of fatigue. The CFS may be used to evaluate the severity of fatigue in Turkish-speaking breast cancer patients.

  10. Tension and fatigue behavior of 316LVM 1x7 multi-strand cables used as implantable electrodes.

    PubMed

    Lewandowski, John J; Varadarajan, Ravikumar; Smith, Brian; Tuma, Chris; Shazly, Mostafa; Vatamanu, Luciano O

    2008-07-15

    The mechanical behavior of 316LVM 1x7 cables were evaluated in uniaxial tension, and in cyclic strain-controlled fatigue with the use of a Flex tester operated to provide fully reversed bending fatigue. The magnitude of cyclic strains imparted to each cable tested was controlled via the use of different diameter mandrels. Smaller diameter mandrels produced higher values of cyclic strain and lower fatigue life. Multiple samples were tested and analyzed via scanning electron microscopy. The fatigue results were analyzed via a Coffin-Manson-Basquin approach and compared to fatigue data obtained from the literature where testing was conducted on similar materials, but under rotating bending fatigue conditions.

  11. Fatigue Damage Spectrum calculation in a Mission Synthesis procedure for Sine-on-Random excitations

    NASA Astrophysics Data System (ADS)

    Angeli, Andrea; Cornelis, Bram; Troncossi, Marco

    2016-09-01

    In many real-life environments, certain mechanical and electronic components may be subjected to Sine-on-Random vibrations, i.e. excitations composed of random vibrations superimposed on deterministic (sinusoidal) contributions, in particular sine tones due to some rotating parts of the system (e.g. helicopters, engine-mounted components,...). These components must be designed to withstand the fatigue damage induced by the “composed” vibration environment, and qualification tests are advisable for the most critical ones. In the case of an accelerated qualification test, a proper test tailoring which starts from the real environment (measured vibration signals) and which preserves not only the accumulated fatigue damage but also the “nature” of the excitation (i.e. sinusoidal components plus random process) is important to obtain reliable results. In this paper, the classic time domain approach is taken as a reference for the comparison of different methods for the Fatigue Damage Spectrum (FDS) calculation in case of Sine-on-Random vibration environments. Then, a methodology to compute a Sine-on-Random specification based on a mission FDS is proposed.

  12. 3D characterization of trans- and inter-lamellar fatigue crack in (α + β) Ti alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Babout, Laurent, E-mail: Laurent.babout@p.lodz.pl; Jopek, Łukasz; Preuss, Michael

    2014-12-15

    This paper presents a three dimensional image processing strategy that has been developed to quantitatively analyze and correlate the path of a fatigue crack with the lamellar microstructure found in Ti-6246. The analysis is carried out on X-ray microtomography images acquired in situ during uniaxial fatigue testing. The crack, the primary β-grain boundaries and the α lamellae have been segmented separately and merged for the first time to allow a better characterization and understanding of their mutual interaction. This has particularly emphasized the role of translamellar crack growth at a very high propagation angle with regard to the lamellar orientation,more » supporting the central role of colonies favorably oriented for basal 〈a〉 slip to guide the crack in the fully lamellar microstructure of Ti alloy. - Highlights: • 3D tomography images reveal strong short fatigue crack interaction with α lamellae. • Proposed 3D image processing methodology makes their segmentation possible. • Crack-lamellae orientation maps show prevalence of translamellar cracking. • Angle study comforts the influence of basal/prismatic slip on crack path.« less

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    MANDELL, JOHN F.; SAMBORSKY, DANIEL D.; CAIRNS, DOUGLAS

    This report presents the major findings of the Montana State University Composite Materials Fatigue Program from 1997 to 2001, and is intended to be used in conjunction with the DOE/MSU Composite Materials Fatigue Database. Additions of greatest interest to the database in this time period include environmental and time under load effects for various resin systems; large tow carbon fiber laminates and glass/carbon hybrids; new reinforcement architectures varying from large strands to prepreg with well-dispersed fibers; spectrum loading and cumulative damage laws; giga-cycle testing of strands; tough resins for improved structural integrity; static and fatigue data for interply delamination; andmore » design knockdown factors due to flaws and structural details as well as time under load and environmental conditions. The origins of a transition to increased tensile fatigue sensitivity with increasing fiber content are explored in detail for typical stranded reinforcing fabrics. The second focus of the report is on structural details which are prone to delamination failure, including ply terminations, skin-stiffener intersections, and sandwich panel terminations. Finite element based methodologies for predicting delamination initiation and growth in structural details are developed and validated, and simplified design recommendations are presented.« less

  14. Modeling Fatigue Damage Onset and Progression in Composites Using an Element-Based Virtual Crack Closure Technique Combined With the Floating Node Method

    NASA Technical Reports Server (NTRS)

    De Carvalho, Nelson V.; Krueger, Ronald

    2016-01-01

    A new methodology is proposed to model the onset and propagation of matrix cracks and delaminations in carbon-epoxy composites subject to fatigue loading. An extended interface element, based on the Floating Node Method, is developed to represent delaminations and matrix cracks explicitly in a mesh independent fashion. Crack propagation is determined using an element-based Virtual Crack Closure Technique approach to determine mixed-mode energy release rates, and the Paris-Law relationship to obtain crack growth rate. Crack onset is determined using a stressbased onset criterion coupled with a stress vs. cycle curve and Palmgren-Miner rule to account for fatigue damage accumulation. The approach is implemented in Abaqus/Standard® via the user subroutine functionality. Verification exercises are performed to assess the accuracy and correct implementation of the approach. Finally, it was demonstrated that this approach captured the differences in failure morphology in fatigue for two laminates of identical stiffness, but with layups containing ?deg plies that were either stacked in a single group, or distributed through the laminate thickness.

  15. 14 CFR 29.571 - Fatigue evaluation of structure.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ..., but are not limited to, rotors, rotor drive systems between the engines and rotor hubs, controls... drive systems between the engines and rotor hubs, controls, fuselage, fixed and movable control surfaces... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Strength Requirements Fatigue Evaluation...

  16. Designing fine aggregate mixtures to evaluate fatigue crack-growth in asphalt mixtures.

    DOT National Transportation Integrated Search

    2011-04-01

    Fatigue cracking is a significant form of pavement distress in flexible pavements. The properties of the : sand-asphalt mortars or fine aggregate matrix (FAM) can be used to characterize the evolution of fatigue : crack growth and self-healing in asp...

  17. Fatigue after stroke: the development and evaluation of a case definition.

    PubMed

    Lynch, Joanna; Mead, Gillian; Greig, Carolyn; Young, Archie; Lewis, Susan; Sharpe, Michael

    2007-11-01

    While fatigue after stroke is a common problem, it has no generally accepted definition. Our aim was to develop a case definition for post-stroke fatigue and to test its psychometric properties. A case definition with face validity and an associated structured interview was constructed. After initial piloting, the feasibility, reliability (test-retest and inter-rater) and concurrent validity (in relation to four fatigue severity scales) were determined in 55 patients with stroke. All participating patients provided satisfactory answers to all the case definition probe questions demonstrating its feasibility For test-retest reliability, kappa was 0.78 (95% CI, 0.57-0.94, P<.01) and for inter-rater reliability kappa was 0.80 (95% CI, 0.62-0.99, P<.01). Patients fulfilling the case definition also had substantially higher fatigue scores on four fatigue severity scales (P<.001) indicating concurrent validity. The proposed case definition is feasible to administer and reliable in practice, and there is evidence of concurrent validity. It requires further evaluation in different settings.

  18. Effect of burdock extract on physical performance and physiological fatigue in mice

    PubMed Central

    CHEN, Wen-Chyuan; HSU, Yi-Ju; LEE, Mon-Chien; LI, Hua Shuai; HO, Chun-Sheng; HUANG, Chi-Chang; CHEN, Fu-An

    2017-01-01

    Burdock (BD) is a common vegetable with many pharmacological properties. However, few studies have examined the effect of BD on exercise performance and physical fatigue. We aimed to evaluate the potential beneficial effects of BD on fatigue and ergogenic functions following physical challenge in mice. Methods: Male ICR mice were divided into four groups to receive either vehicle, or BD at 348.5, 697 or 1,742.5 mg/kg/day, by daily oral gavage for 4 weeks. Exercise performance and fatigue were evaluated from forelimb grip strength, exhaustive swimming time, and post-exercise levels of physical fatigue-related biomarkers serum lactate, ammonia, glucose, and creatine kinase (CK). Results: BD supplementation elevated endurance and grip strength in a dose-dependent manner. It also significantly decreased lactate, ammonia, and CK levels after physical challenge. In addition, BD supplementation had few subchronic toxic effects. Conclusions: Supplementation with BD has a wide spectrum of bioactive effects, including health promotion, performance improvement, and fatigue reduction. PMID:28890521

  19. Circadian variation of fatigue in both patients with paralytic poliomyelitis and post-polio syndrome.

    PubMed

    Viana, Celiana Figueiredo; Pradella-Hallinan, Márcia; Quadros, Abrahão Augusto Juviniano; Marin, Luis Fabiano; Oliveira, Acary Souza Bulle

    2013-07-01

    It was to evaluate the degree of fatigue in patients with paralytic poliomyelitis (PP) and with post-polio syndrome (PPS), and correlate it with parameters of sleep and the circadian cycle. Thirty patients, 17 female (56.7%), participated in the study: they answered the Revised Piper Fatigue Scale and performed a nocturnal polysomnographic study. Eleven had PP (mean age±standard deviation of 47.9±6.4 years), and 19 had PPS (mean age±standard deviation of 46.4±5.6 years). Our study showed that fatigue was worse in the afternoon in the PP Group and had a progressive increase throughout the day in the PPS Group. We also observed compromised quality of sleep in both groups, but no statically significant difference was found in the sleep parameters measured by polysomnography. Fatigue has a well-defined circadian variation, especially in PPS Group. Poor sleep quality is associated with fatigue and, therefore, sleep disturbances should be evaluated and treated in this group of PPS.

  20. Clinical, laboratory, and neuroimaging characteristics of fatigue in HIV-infected individuals.

    PubMed

    Schifitto, Giovanni; Deng, Lijuan; Yeh, Tzu-Min; Evans, Scott R; Ernst, Thomas; Zhong, Jianhui; Clifford, David

    2011-02-01

    Fatigue is among the most common symptoms reported by HIV-infected individuals. Previous reports suggest that the prevalence of fatigue varies by disease status with rates close to 80% in patients with AIDS. However, most studies have not been conducted in the setting of a controlled trial and have not assessed the association of fatigue with cellular markers of brain activity. Data for this study were derived from baseline and longitudinal evaluations in ACTG A5090, a randomized, double-blind, placebo-controlled trial of the Selegiline Transdermal System for the treatment of HIV-associated cognitive impairment. Fatigue was assessed using the Fatigue Severity Scale with scores of >4 considered "fatigued". Participants in a substudy underwent brain magnetic resonance spectroscopy (MRS) imaging, an in vivo method for assessing brain metabolites associated with neuronal and glia activity. Differences between fatigued and non-fatigued participants were evaluated with respect to demographics and clinical characteristics, plasma and CSF HIV-1 RNA concentration, CD4 counts, and brain metabolites. One hundred and twenty-eight participants were enrolled (88% male, median age = 45 years) and 82 participants (64%, 95% confidence interval 55%, 72%) were fatigued at baseline. MRS was conducted in 62 of the 128 participants. Fatigued participants were significantly younger (p = 0.011), had lower Karnofsky scores (p = 0.032), and had higher levels of depressive symptoms on the Center for Epidemiologic Studies Depression (CES-D) scale (p < 0.001) than non-fatigued participants. Statistically significant differences between fatigued and non-fatigued groups were not detected for plasma and CSF HIV-1RNA concentration, CD4 counts, or on neuropsychological tests. MRS revealed significantly lower levels of the cellular energy marker total creatine (p = 0.002) in the basal ganglia of fatigued participants. Statistically significant differences in other brain metabolites were not detected. Longitudinal data showed that fatigue persisted and worse fatigue at baseline was predictor of future fatigue. Among the cognitive tests, baseline Stroop score was associated with future fatigue. Fatigue was present in 64% of A5090 study participants and persisted during the 24 weeks of follow-up. Fatigue was associated with worse functional performance and depressive mood. Lower cellular energy levels in the basal ganglia, as measured by MRS total creatine concentration, suggest energy dysmetabolism in this brain region. This observation, taken together with the association between fatigue and neuropsychological tests of frontal lobe performance is consistent with the hypothesis of a striatal-cortical circuitry involvement in the symptoms of fatigue.

  1. Long-term assessment of fatigue in patients with culture-confirmed Lyme disease.

    PubMed

    Wormser, Gary P; Weitzner, Erica; McKenna, Donna; Nadelman, Robert B; Scavarda, Carol; Nowakowski, John

    2015-02-01

    Fatigue is a common symptom with numerous causes. Severe fatigue is thought to be an important manifestation of post-treatment Lyme disease syndrome. The frequency with which severe fatigue occurs as a long-term sequela in prospectively followed patients with Lyme disease is unknown. Patients with culture-confirmed Lyme disease who originally presented with erythema migrans have been evaluated annually in a prospective study to determine their long-term outcome. In 2011-2013, subjects were evaluated for fatigue using an 11-item Fatigue Severity Scale (FSS-11) that has been used in studies of post-treatment Lyme disease syndrome. An FSS-11 score of ≥4.0 is indicative of severe fatigue. A total of 100 subjects were assessed, 52% of whom were male; the mean age was 64.9 years (range, 42-86 years). The mean duration of follow-up was 15.4 years (range, 11-20 years). Nine subjects had severe fatigue but in none as a consequence of Lyme disease. Only 3 subjects were thought to possibly have persistent fatigue from Lyme disease. The FSS-11 value for these 3 individuals was less than 4, averaging 2.27, and none had functional impairment. Severe fatigue was found in 9 patients (9%) with culture-confirmed early Lyme disease at 11 to 20 years after presentation, but was due to causes other than Lyme disease. Fatigue of lesser severity was possibly due to Lyme disease, but was found in only 3% of 100 patients, and therefore is rarely a long-term complication of this infection. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Estimating mental fatigue based on electroencephalogram and heart rate variability

    NASA Astrophysics Data System (ADS)

    Zhang, Chong; Yu, Xiaolin

    2010-01-01

    The effects of long term mental arithmetic task on psychology are investigated by subjective self-reporting measures and action performance test. Based on electroencephalogram (EEG) and heart rate variability (HRV), the impacts of prolonged cognitive activity on central nervous system and autonomic nervous system are observed and analyzed. Wavelet packet parameters of EEG and power spectral indices of HRV are combined to estimate the change of mental fatigue. Then wavelet packet parameters of EEG which change significantly are extracted as the features of brain activity in different mental fatigue state, support vector machine (SVM) algorithm is applied to differentiate two mental fatigue states. The experimental results show that long term mental arithmetic task induces the mental fatigue. The wavelet packet parameters of EEG and power spectral indices of HRV are strongly correlated with mental fatigue. The predominant activity of autonomic nervous system of subjects turns to the sympathetic activity from parasympathetic activity after the task. Moreover, the slow waves of EEG increase, the fast waves of EEG and the degree of disorder of brain decrease compared with the pre-task. The SVM algorithm can effectively differentiate two mental fatigue states, which achieves the maximum classification accuracy (91%). The SVM algorithm could be a promising tool for the evaluation of mental fatigue. Fatigue, especially mental fatigue, is a common phenomenon in modern life, is a persistent occupational hazard for professional. Mental fatigue is usually accompanied with a sense of weariness, reduced alertness, and reduced mental performance, which would lead the accidents in life, decrease productivity in workplace and harm the health. Therefore, the evaluation of mental fatigue is important for the occupational risk protection, productivity, and occupational health.

  3. Fatigue in primary Sjögren's syndrome is associated with lower levels of proinflammatory cytokines.

    PubMed

    Howard Tripp, Nadia; Tarn, Jessica; Natasari, Andini; Gillespie, Colin; Mitchell, Sheryl; Hackett, Katie L; Bowman, Simon J; Price, Elizabeth; Pease, Colin T; Emery, Paul; Lanyon, Peter; Hunter, John; Gupta, Monica; Bombardieri, Michele; Sutcliffe, Nurhan; Pitzalis, Costantino; McLaren, John; Cooper, Annie; Regan, Marian; Giles, Ian; Isenberg, David A; Saravanan, Vadivelu; Coady, David; Dasgupta, Bhaskar; McHugh, Neil; Young-Min, Steven; Moots, Robert; Gendi, Nagui; Akil, Mohammed; Griffiths, Bridget; Lendrem, Dennis W; Ng, Wan-Fai

    2016-01-01

    This article reports relationships between serum cytokine levels and patient-reported levels of fatigue, in the chronic immunological condition primary Sjögren's syndrome (pSS). Blood levels of 24 cytokines were measured in 159 patients with pSS from the United Kingdom Primary Sjögren's Syndrome Registry and 28 healthy non-fatigued controls. Differences between cytokines in cases and controls were evaluated using Wilcoxon test. Patient-reported scores for fatigue were evaluated, classified according to severity and compared with cytokine levels using analysis of variance. Logistic regression was used to determine the most important predictors of fatigue levels. 14 cytokines were significantly higher in patients with pSS (n=159) compared to non-fatigued healthy controls (n=28). While serum levels were elevated in patients with pSS compared to healthy controls, unexpectedly, the levels of 4 proinflammatory cytokines-interferon-γ-induced protein-10 (IP-10) (p=0.019), tumour necrosis factor-α (p=0.046), lymphotoxin-α (p=0.034) and interferon-γ (IFN-γ) (p=0.022)-were inversely related to patient-reported levels of fatigue. A regression model predicting fatigue levels in pSS based on cytokine levels, disease-specific and clinical parameters, as well as anxiety, pain and depression, revealed IP-10, IFN-γ (both inversely), pain and depression (both positively) as the most important predictors of fatigue. This model correctly predicts fatigue levels with reasonable (67%) accuracy. Cytokines, pain and depression appear to be the most powerful predictors of fatigue in pSS. Our data challenge the notion that proinflammatory cytokines directly mediate fatigue in chronic immunological conditions. Instead, we hypothesise that mechanisms regulating inflammatory responses may be important.

  4. Fatigue in primary Sjögren's syndrome is associated with lower levels of proinflammatory cytokines

    PubMed Central

    Howard Tripp, Nadia; Tarn, Jessica; Natasari, Andini; Gillespie, Colin; Mitchell, Sheryl; Hackett, Katie L; Bowman, Simon J; Price, Elizabeth; Pease, Colin T; Emery, Paul; Lanyon, Peter; Hunter, John; Gupta, Monica; Bombardieri, Michele; Sutcliffe, Nurhan; Pitzalis, Costantino; McLaren, John; Cooper, Annie; Regan, Marian; Giles, Ian; Isenberg, David A; Saravanan, Vadivelu; Coady, David; Dasgupta, Bhaskar; McHugh, Neil; Young-Min, Steven; Moots, Robert; Gendi, Nagui; Akil, Mohammed; Griffiths, Bridget; Lendrem, Dennis W; Ng, Wan-Fai

    2016-01-01

    Objectives This article reports relationships between serum cytokine levels and patient-reported levels of fatigue, in the chronic immunological condition primary Sjögren's syndrome (pSS). Methods Blood levels of 24 cytokines were measured in 159 patients with pSS from the United Kingdom Primary Sjögren's Syndrome Registry and 28 healthy non-fatigued controls. Differences between cytokines in cases and controls were evaluated using Wilcoxon test. Patient-reported scores for fatigue were evaluated, classified according to severity and compared with cytokine levels using analysis of variance. Logistic regression was used to determine the most important predictors of fatigue levels. Results 14 cytokines were significantly higher in patients with pSS (n=159) compared to non-fatigued healthy controls (n=28). While serum levels were elevated in patients with pSS compared to healthy controls, unexpectedly, the levels of 4 proinflammatory cytokines—interferon-γ-induced protein-10 (IP-10) (p=0.019), tumour necrosis factor-α (p=0.046), lymphotoxin-α (p=0.034) and interferon-γ (IFN-γ) (p=0.022)—were inversely related to patient-reported levels of fatigue. A regression model predicting fatigue levels in pSS based on cytokine levels, disease-specific and clinical parameters, as well as anxiety, pain and depression, revealed IP-10, IFN-γ (both inversely), pain and depression (both positively) as the most important predictors of fatigue. This model correctly predicts fatigue levels with reasonable (67%) accuracy. Conclusions Cytokines, pain and depression appear to be the most powerful predictors of fatigue in pSS. Our data challenge the notion that proinflammatory cytokines directly mediate fatigue in chronic immunological conditions. Instead, we hypothesise that mechanisms regulating inflammatory responses may be important. PMID:27493792

  5. Fatigue and voluntary utilization of automation in simulated driving.

    PubMed

    Neubauer, Catherine; Matthews, Gerald; Langheim, Lisa; Saxby, Dyani

    2012-10-01

    A driving simulator was used to assess the impact on fatigue, stress, and workload of full vehicle automation that was initiated by the driver. Previous studies have shown that mandatory use of full automation induces a state of "passive fatigue" associated with loss of alertness. By contrast, voluntary use of automation may enhance the driver's perceptions of control and ability to manage fatigue. Participants were assigned to one of two experimental conditions, automation optional (AO) and nonautomation (NA), and then performed a 35 min, monotonous simulated drive. In the last 5 min, automation was unavailable and drivers were required to respond to an emergency event. Subjective state and workload were evaluated before and after the drive. Making automation available to the driver failed to alleviate fatigue and stress states induced by driving in monotonous conditions. Drivers who were fatigued prior to the drive were more likely to choose to use automation, but automation use increased distress, especially in fatigue-prone drivers. Drivers in the AO condition were slower to initiate steering responses to the emergency event, suggesting optional automation may be distracting. Optional, driver-controlled automation appears to pose the same dangers to task engagement and alertness as externally initiated automation. Drivers of automated vehicles may be vulnerable to fatigue that persists when normal vehicle control is restored. It is important to evaluate automated systems' impact on driver fatigue, to seek design solutions to the issue of maintaining driver engagement, and to address the vulnerabilities of fatigue-prone drivers.

  6. Validity and reliability of the multidimensional assessment of fatigue scale in Iranian patients with relapsing-remitting subtype of multiple sclerosis.

    PubMed

    Behrangrad, Shabnam; Kordi Yoosefinejad, Amin

    2018-03-01

    The purpose of this study is to investigate the validity and reliability of the Persian version of the Multidimensional Assessment of Fatigue Scale (MAFS) in an Iranian population with multiple sclerosis. A self-reported survey on fatigue including the MAFS, Fatigue Impact Scale and demographic measures was completed by 130 patients with multiple sclerosis and 60 healthy persons sampled with a convenience method. Test-retest reliability and validity were evaluated 3 days apart. Construct validity of the MAFS was assessed with the Fatigue Impact Scale. The MAFS had high internal consistency (Cronbach's alpha >0.9) and 3-d test-retest reliability (intraclass correlation coefficient = 0.99). Correlation between the Fatigue Impact Scale and MAFS was high (r = 0.99). Correlation between MAFS scores and the Expanded Disability Status Scale was also strong (r = 0.85). Questionnaire items showed acceptable item-scale correlation (0.968-0.993). The Persian version of the MAFS appears to be a valid and reliable questionnaire. It is an appropriate short multidimensional instrument to assess fatigue in patients with multiple sclerosis in clinical practice and research. Implications for Rehabilitation The Persian version of Multidimensional Assessment of Fatigue is a valid and reliable instrument for the assessment and monitoring the fatigue in Persian-language patients with multiple sclerosis. It is very easy to administer and a time efficient scale in comparison to other instruments evaluating fatigue in patients with multiple sclerosis.

  7. The Characteristics of Fatigue Damage in the Fuselage Riveted Lap Splice Joint

    NASA Technical Reports Server (NTRS)

    Piascik, Robert S.; Willard, Scott A.

    1997-01-01

    An extensive data base has been developed to form the physical basis for new analytical methodology to predict the onset of widespread fatigue damage in the fuselage lap splice joint. The results of detailed destructive examinations have been cataloged to describe the physical nature of MSD in the lap splice joint. ne catalog includes a detailed description, e.g., crack initiation, growth rates, size, location, and fracture morphology, of fatigue damage in the fuselage lap splice joint structure. Detailed examinations were conducted on a lap splice joint panel removed from a full scale fuselage test article after completing a 60,000 cycle pressure test. The panel contained a four bay region that exhibited visible outer skin cracks and regions of crack link-up along the upper rivet row. Destructive examinations revealed undetected fatigue damage in the outer skin, inner skin, and tear strap regions. Outer skin fatigue cracks were found to initiate by fretting damage along the faying surface. The cracks grew along the faying surface to a length equivalent to two to three skin thicknesses before penetrating the outboard surface of the outer skin. Analysis of fracture surface marker bands produced during full scale testing revealed that all upper rivet row fatigue cracks contained in a dim bay region grow at similar rates; this important result suggests that fracture mechanics based methods can be used to predict the growth of outer skin fatigue cracks in lap splice structure. Results are presented showing the affects of MSD and out-of-plane pressure loads on outer skin crack link-up.

  8. Structural design of composite rotor blades with consideration of manufacturability, durability, and manufacturing uncertainties

    NASA Astrophysics Data System (ADS)

    Li, Leihong

    A modular structural design methodology for composite blades is developed. This design method can be used to design composite rotor blades with sophisticate geometric cross-sections. This design method hierarchically decomposed the highly-coupled interdisciplinary rotor analysis into global and local levels. In the global level, aeroelastic response analysis and rotor trim are conduced based on multi-body dynamic models. In the local level, variational asymptotic beam sectional analysis methods are used for the equivalent one-dimensional beam properties. Compared with traditional design methodology, the proposed method is more efficient and accurate. Then, the proposed method is used to study three different design problems that have not been investigated before. The first is to add manufacturing constraints into design optimization. The introduction of manufacturing constraints complicates the optimization process. However, the design with manufacturing constraints benefits the manufacturing process and reduces the risk of violating major performance constraints. Next, a new design procedure for structural design against fatigue failure is proposed. This procedure combines the fatigue analysis with the optimization process. The durability or fatigue analysis employs a strength-based model. The design is subject to stiffness, frequency, and durability constraints. Finally, the manufacturing uncertainty impacts on rotor blade aeroelastic behavior are investigated, and a probabilistic design method is proposed to control the impacts of uncertainty on blade structural performance. The uncertainty factors include dimensions, shapes, material properties, and service loads.

  9. A preliminary path analysis: Effect of psychopathological symptoms, mental and physical dysfunctions related to quality of life and body mass index on fatigue severity of Iranian patients with multiple sclerosis.

    PubMed

    Salehpoor, Ghasem; Hosseininezhad, Mozaffar; Rezaei, Sajjad

    2012-01-01

    Multiple sclerosis (MS) is a neurological disease with fatigue as most prevalent symptom. Psychopathological symptoms, physical and mental dysfunctions and body mass abnormalities potentially could deteriorate fatigue. Thus, in this study, we aimed at evaluating the effect of these factors on fatigue severity of MS patients. In this cross-sectional study, 162 patients with mean age of 34.1 ± 9.4 (16-58 years) were recruited by consecutive sampling. All the patients, after completing demographic information were evaluated using Persian versions of Fatigue Severity Scale (FSS), depression, anxiety and stress scale (DASS-21), and short form Health Survey Questionnaire (SF-36). Correlation analysis showed a significant relationship between fatigue severity and depression, anxiety, stress, physical component summary (PCS) and mental component summary (MCS) (P < 0.01). Findings of path analysis demonstrated that PCS is the only variable which has a direct effect on fatigue severity (β = -0.278, P < 0.05). Moreover, the strongest standard coefficient (β) belonged to cause and effect relationship between MCS and depression (β = -0.691, P < 0.0001). Present study made the role of psychopathological symptoms and physical and mental dysfunctions prominent in exacerbation of fatigue severity. Moreover, we can refer to more sensible effect of physical dysfunction related to life on fatigue.

  10. Development of advanced structural analysis methodologies for predicting widespread fatigue damage in aircraft structures

    NASA Technical Reports Server (NTRS)

    Harris, Charles E.; Starnes, James H., Jr.; Newman, James C., Jr.

    1995-01-01

    NASA is developing a 'tool box' that includes a number of advanced structural analysis computer codes which, taken together, represent the comprehensive fracture mechanics capability required to predict the onset of widespread fatigue damage. These structural analysis tools have complementary and specialized capabilities ranging from a finite-element-based stress-analysis code for two- and three-dimensional built-up structures with cracks to a fatigue and fracture analysis code that uses stress-intensity factors and material-property data found in 'look-up' tables or from equations. NASA is conducting critical experiments necessary to verify the predictive capabilities of the codes, and these tests represent a first step in the technology-validation and industry-acceptance processes. NASA has established cooperative programs with aircraft manufacturers to facilitate the comprehensive transfer of this technology by making these advanced structural analysis codes available to industry.

  11. Thermal fatigue behaviour for a 316 L type steel

    NASA Astrophysics Data System (ADS)

    Fissolo, A.; Marini, B.; Nais, G.; Wident, P.

    1996-10-01

    This paper deals with initiation and growth of cracks produced by thermal fatigue loadings on 316 L steel, which is a reference material for the first wall of the next fusion reactor ITER. Two types of facilities have been built. As for true components, thermal cycles have been repeatedly applied on the surface of the specimen. The first is mainly concerned with initiation, which is detected with a light microscope. The second allows one to determine the propagation of a single crack. Crack initiation is analyzed using the French RCC-MR code procedure, and the strain-controlled isothermal fatigue curves. To predict crack growth, a model previously proposed by Haigh and Skelton is applied. This is based on determination of effective stress intensity factors, which takes into account both plastic strain and crack closure phenomena. It is shown that estimations obtained with such methodologies are in good agreement with experimental data.

  12. Generating Fatigue Crack Growth Thresholds with Constant Amplitude Loads

    NASA Technical Reports Server (NTRS)

    Forth, Scott C.; Newman, James C., J.; Forman, Royce G.

    2002-01-01

    The fatigue crack growth threshold, defining crack growth as either very slow or nonexistent, has been traditionally determined with standardized load reduction methodologies. Some experimental procedures tend to induce load history effects that result in remote crack closure from plasticity. This history can affect the crack driving force, i.e. during the unloading process the crack will close first at some point along the wake, reducing the effective load at the crack tip. One way to reduce the effects of load history is to propagate a crack under constant amplitude loading. As a crack propagates under constant amplitude loading, the stress intensity factor, K, will increase, as will the crack growth rate, da/dN. A fatigue crack growth threshold test procedure is developed and experimentally validated that does not produce load history effects and can be conducted at a specified stress ratio, R.

  13. Determining cyclic corrosion cracking resistance for titanium alloys with allowance for electrochemical conditions at the fatigue corrosion crack tip

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Panasyuk, V.V.; Ratich, L.V.; Petranyuk, I.Ya.

    1994-08-01

    Published data are examined on how various factors affect fatigue crack growth rates. Basic diagrams have been constructed for the cyclic cracking resistance in Ti-6Al-4V and Ti-6Al-2Sn alloys in air, distilled water, and 3.5% NaCl for use in working-life calculations. Appropriate heat treatment can produce two microstructures in a titanium alloy, one of which has the largest cyclic cracking resistance, while in the second, the cracks grow at the lowest rate. The cyclic corrosion cracking resistance for a titanium alloy should be determined in relation to the state of stress and strain and to the electrochemical conditions at the corrosionmore » fatigue crack tip, while the variations in fatigue crack growth rate for a given stress intensity factor in a corrosive medium are due to differing electrochemical conditions at the crack tip during the testing on different specimens. Basic diagrams can be derived for titanium alloys by using a physically sound methodology developed previously for steels, which is based on invariant diagrams for cyclic cracking resistance in air and in the corresponding medium, which can be constructed in relation to extremal working and electrochemical conditions at corrosion-fatigue crack tips.« less

  14. What is the best term in Spanish to express the concept of cancer-related fatigue?

    PubMed

    Centeno, Carlos; Portela Tejedor, María Angustias; Carvajal, Ana; San Miguel, Maria Teresa; Urdiroz, Julia; Ramos, Luis; De Santiago, Ana

    2009-05-01

    Fatigue is one of the most frequent symptoms in patients with cancer. No adequate term in Spanish has been defined to describe the English concept of fatigue. To identify the most suitable Spanish words that define the concept of fatigue and to check psychometric characteristics. Consensus with professional experts on Spanish words that best suit the English concept of fatigue. A prospective study on oncologic patients was also undertaken, which included an evaluation of the intensity of fatigue through visual numeric scales (VNS) where the words had been previously selected. The fatigue subscale of the Functional Assessment of Cancer Therapy-Fatigue (FACT-F) questionnaire was taken as a reference. The experts highlighted the words cansancio, agotamiento, and debilidad (tiredness, exhaustion, and weakness) as the terms that best defined the concept of fatigue. In the psychometric assessment study, 100 patients were included, of which 61 (61%) presented diagnostic values for cancer-related fatigue in the FACT-F fatigue subscale (score 34/52 or lower). The VNS for the chosen terms obtained a high correlation with the FACT-F fatigue subscale results: cansancio (tiredness) r = -0.71, agotamiento (exhaustion) r = -0.74, debilidad (weakness) r = -0.74, with no statistical differences between them. For the detection of fatigue by means of the VNS, tiredness (cutoff point > or =4/10) gave sensitivity (S) 0.90 and specificity (E) 0.72; exhaustion (cutoff point > or =3/10) S 0.95 and E 0.90 and weakness (cutoff point > or =4/10) S 0.92 and E 0.72. The ROC curve was 0.88 for tiredness, 0.94 for exhaustion, and 0.92 for weakness, with no significant difference between the areas mentioned. The terms cansancio, agotamiento, and debilidad (tiredness, exhaustion, and weakness) are suitable for defining the English concept of fatigue in Spanish, and should be the preferred option for inclusion in evaluation tools.

  15. Failure mechanisms and lifetime prediction methodology for polybutylene pipe in water distribution system

    NASA Astrophysics Data System (ADS)

    Niu, Xiqun

    Polybutylene (PB) is a semicrystalline thermoplastics. It has been widely used in potable water distribution piping system. However, field practice shows that failure occurs much earlier than the expected service lifetime. What are the causes and how to appropriately evaluate its lifetime motivate this study. In this thesis, three parts of work have been done. First is the understanding of PB, which includes material thermo and mechanical characterization, aging phenomena and notch sensitivity. The second part analyzes the applicability of the existing lifetime testing method for PB. It is shown that PB is an anomaly in terms of the temperature-lifetime relation because of the fracture mechanism transition across the testing temperature range. The third part is the development of the methodology of lifetime prediction for PB pipe. The fracture process of PB pipe consists of three stages, i.e., crack initiation, slow crack growth (SCG) and crack instability. The practical lifetime of PB pipe is primarily determined by the duration of the first two stages. The mechanism of crack initiation and the quantitative estimation of the time to crack initiation are studied by employing environment stress cracking technique. A fatigue slow crack growth testing method has been developed and applied in the study of SCG. By using Paris-Erdogan equation, a model is constructed to evaluate the time for SCG. As a result, the total lifetime is determined. Through this work, the failure mechanisms of PB pipe has been analyzed and the lifetime prediction methodology has been developed.

  16. Holographic evaluation of fatigue cracks by a compressive stress (HYSTERESIS) technique

    NASA Technical Reports Server (NTRS)

    Freska, S. A.; Rummel, W. D.

    1974-01-01

    Holographic interferometry compares unknown field of optical waves with known one. Differences are displayed as interference bands or fringes. Technique was evaluated on fatigue-cracked 2219-T87 aluminum-alloy panels. Small cracks were detected when specimen was incrementally unloaded.

  17. Clinical, laboratory, and neuroimaging characteristics of fatigue in HIV-infected individuals

    PubMed Central

    Schifitto, Giovanni; Deng, Lijuan; Yeh, Tzu-min; Evans, Scott R.; Ernst, Thomas; Zhong, Jianhui; Clifford, David

    2011-01-01

    Fatigue is among the most common symptoms reported by HIV-infected individuals. Previous reports suggest that the prevalence of fatigue varies by disease status with rates close to 80% in patients with AIDS. However, most studies have not been conducted in the setting of a controlled trial and have not assessed the association of fatigue with cellular markers of brain activity. Data for this study were derived from baseline and longitudinal evaluations in ACTG A5090, a randomized, double-blind, placebo-controlled trial of the Selegiline Transdermal System for the treatment of HIV-associated cognitive impairment. Fatigue was assessed using the Fatigue Severity Scale with scores of >4 considered “fatigued”. Participants in a substudy underwent brain magnetic resonance spectroscopy (MRS) imaging, an in vivo method for assessing brain metabolites associated with neuronal and glia activity. Differences between fatigued and non-fatigued participants were evaluated with respect to demographics and clinical characteristics, plasma and CSF HIV-1 RNA concentration, CD4 counts, and brain metabolites. One hundred and twenty-eight participants were enrolled (88% male, median age=45 years) and 82 participants (64%, 95% confidence interval 55%, 72%) were fatigued at baseline. MRS was conducted in 62 of the 128 participants. Fatigued participants were significantly younger (p=0.011), had lower Karnofsky scores (p=0.032), and had higher levels of depressive symptoms on the Center for Epidemiologic Studies Depression (CES-D) scale (p<0.001) than non-fatigued participants. Statistically significant differences between fatigued and non-fatigued groups were not detected for plasma and CSF HIV-1RNA concentration, CD4 counts, or on neuropsychological tests. MRS revealed significantly lower levels of the cellular energy marker total creatine (p=0.002) in the basal ganglia of fatigued participants. Statistically significant differences in other brain metabolites were not detected. Longitudinal data showed that fatigue persisted and worse fatigue at baseline was predictor of future fatigue. Among the cognitive tests, baseline Stroop score was associated with future fatigue. Fatigue was present in 64% of A5090 study participants and persisted during the 24 weeks of follow-up. Fatigue was associated with worse functional performance and depressive mood. Lower cellular energy levels in the basal ganglia, as measured by MRS total creatine concentration, suggest energy dysmetabolism in this brain region. This observation, taken together with the association between fatigue and neuropsychological tests of frontal lobe performance is consistent with the hypothesis of a striatal–cortical circuitry involvement in the symptoms of fatigue. PMID:21181521

  18. Neural Mechanism of Chronic Fatigue Syndrome

    DTIC Science & Technology

    2004-04-01

    Goodwin GM, Lawrie SM. Effects of exercise on cognitive and motor function in chronic fatigue syndrome and depression. J Neurol Neurosurg Psychiatry 1998;65...about how the CNS is affected by CFS. This study will focus on evaluating brain activities of CFS patients during fatigue and non-fatigue muscle exercises ...capacity of brain signal to the working muscle. Post- exercise motor cortical excitability is reduced in CFS patients as compared with healthy volunteers

  19. Methods of Collection of Biological Information for Fatigue Evaluation during Visual Display Terminals (VDT) Operation

    NASA Astrophysics Data System (ADS)

    Hachiya, Yuriko; Ogai, Harutoshi; Okazaki, Hiroko; Fujisaki, Takeshi; Uchida, Kazuhiko; Oda, Susumu; Wada, Futoshi; Mori, Koji

    A method for the analysis of fatigue parameters has been rarely researched in VDT operation. Up to now, fatigue was evaluated by changing of biological information. If signals regarding fatigue are detected, fatigue can be measured. The purpose of this study proposed experiment and analysis method to extract parameters related to fatigue from the biological information during VDT operation using the Independent Component Analysis (ICA). An experiment had 11 subjects. As for the experiment were light loaded VDT operation and heavy loaded VDT operation. A measurement item were amount of work, a mistake number, subjective symptom, surface skin temperature (forehead and apex nasi), heart rate, skin blood flow of forearm and respiratory rate. In the heavy loaded operation group, mistake number and subjective symptom score were increased to compare with the other. And Two-factor ANOVA was used for analysis. The result of mistake number was confirmed that heavy loaded. After the moving averages of waveshape were calculated, it was made to extract independent components by using the ICA. The results of the ICA suggest that the independent components increase according to accumulation of fatigue. Thus, the independent components would be a possible parameter of fatigue. However, further experiments should continue in order to obtain the conclusive finding of our research.

  20. Nondestructive Evaluation of Metal Fatigue Using Nonlinear Acoustics

    NASA Technical Reports Server (NTRS)

    Cantrell, John H., Jr.

    2008-01-01

    Safe-life and damage-tolerant design philosophies of high performance structures have driven the development of various methods to evaluate nondestructively the accumulation of damage in such structures resulting from cyclic loading. Although many techniques have proven useful, none has been able to provide an unambiguous, quantitative assessment of damage accumulation at each stage of fatigue from the virgin state to fracture. A method based on nonlinear acoustics is shown to provide such a means to assess the state of metal fatigue. The salient features of an analytical model are presented of the microelastic-plastic nonlinearities resulting from the interaction of an acoustic wave with fatigue-generated dislocation substructures and cracks that predictably evolve during the metal fatigue process. The interaction is quantified by the material (acoustic) nonlinearity parameter extracted from acoustic harmonic generation measurements. The parameters typically increase monotonically by several hundred percent over the fatigue life of the metal, thus providing a unique measure of the state of fatigue. Application of the model to aluminum alloy 2024-T4, 410Cb stainless steel, and IN100 nickel-base superalloy specimens fatigued using different loading conditions yields good agreement between theory and experiment. Application of the model and measurement technique to the on-site inspection of steam turbine blades is discussed.

  1. Fatigue behavior of a cross-ply ceramic matrix composite at elevated temperature under tension-tension loading. Master`s thesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steiner, C.D.

    This study investigated the fatigue behavior and damage mechanisms of a (0/90)4s SiC/MAS ceramic matrix composite under tension-tension loading at two elevated temperatures and two frequencies. Stress and strain hystereses, maximum and minimum strain, and modulus of elasticity were evaluated to characterize the material behavior. Microscopy and fractography were used to evaluate damage progression and mechanisms. Fatigue life was independent of frequency at both temperatures.

  2. A Methodology for Protective Vibration Monitoring of Hydropower Units Based on the Mechanical Properties.

    PubMed

    Nässelqvist, Mattias; Gustavsson, Rolf; Aidanpää, Jan-Olov

    2013-07-01

    It is important to monitor the radial loads in hydropower units in order to protect the machine from harmful radial loads. Existing recommendations in the standards regarding the radial movements of the shaft and bearing housing in hydropower units, ISO-7919-5 (International Organization for Standardization, 2005, "ISO 7919-5: Mechanical Vibration-Evaluation of Machine Vibration by Measurements on Rotating Shafts-Part 5: Machine Sets in Hydraulic Power Generating and Pumping Plants," Geneva, Switzerland) and ISO-10816-5 (International Organization for Standardization, 2000, "ISO 10816-5: Mechanical Vibration-Evaluation of Machine Vibration by Measurements on Non-Rotating Parts-Part 5: Machine Sets in Hydraulic Power Generating and Pumping Plants," Geneva, Switzerland), have alarm levels based on statistical data and do not consider the mechanical properties of the machine. The synchronous speed of the unit determines the maximum recommended shaft displacement and housing acceleration, according to these standards. This paper presents a methodology for the alarm and trip levels based on the design criteria of the hydropower unit and the measured radial loads in the machine during operation. When a hydropower unit is designed, one of its design criteria is to withstand certain loads spectra without the occurrence of fatigue in the mechanical components. These calculated limits for fatigue are used to set limits for the maximum radial loads allowed in the machine before it shuts down in order to protect itself from damage due to high radial loads. Radial loads in hydropower units are caused by unbalance, shape deviations, dynamic flow properties in the turbine, etc. Standards exist for balancing and manufacturers (and power plant owners) have recommendations for maximum allowed shape deviations in generators. These standards and recommendations determine which loads, at a maximum, should be allowed before an alarm is sent that the machine needs maintenance. The radial bearing load can be determined using load cells, bearing properties multiplied by shaft displacement, or bearing bracket stiffness multiplied by housing compression or movement. Different load measurement methods should be used depending on the design of the machine and accuracy demands in the load measurement. The methodology presented in the paper is applied to a 40 MW hydropower unit; suggestions are presented for the alarm and trip levels for the machine based on the mechanical properties and radial loads.

  3. Creep-Fatigue Damage Investigation and Modeling of Alloy 617 at High Temperatures

    NASA Astrophysics Data System (ADS)

    Tahir, Fraaz

    The Very High Temperature Reactor (VHTR) is one of six conceptual designs proposed for Generation IV nuclear reactors. Alloy 617, a solid solution strengthened Ni-base superalloy, is currently the primary candidate material for the tubing of the Intermediate Heat Exchanger (IHX) in the VHTR design. Steady-state operation of the nuclear power plant at elevated temperatures leads to creep deformation, whereas loading transients including startup and shutdown generate fatigue. A detailed understanding of the creep-fatigue interaction in Alloy 617 is necessary before it can be considered as a material for nuclear construction in ASME Boiler and Pressure Vessel Code. Current design codes for components undergoing creep-fatigue interaction at elevated temperatures require creep-fatigue testing data covering the entire range from fatigue-dominant to creep-dominant loading. Classical strain-controlled tests, which produce stress relaxation during the hold period, show a saturation in cycle life with increasing hold periods due to the rapid stress-relaxation of Alloy 617 at high temperatures. Therefore, applying longer hold time in these tests cannot generate creep-dominated failure. In this study, uniaxial isothermal creep-fatigue tests with non-traditional loading waveforms were designed and performed at 850 and 950°C, with an objective of generating test data in the creep-dominant regime. The new loading waveforms are hybrid strain-controlled and force-controlled testing which avoid stress relaxation during the creep hold. The experimental data showed varying proportions of creep and fatigue damage, and provided evidence for the inadequacy of the widely-used time fraction rule for estimating creep damage under creep-fatigue conditions. Micro-scale damage features in failed test specimens, such as fatigue cracks and creep voids, were quantified using a Scanning Electron Microscope (SEM) to find a correlation between creep and fatigue damage. Quantitative statistical imaging analysis showed that the microstructural damage features (cracks and voids) are correlated with a new mechanical driving force parameter. The results from this image-based damage analysis were used to develop a phenomenological life-prediction methodology called the effective time fraction approach. Finally, the constitutive creep-fatigue response of the material at 950°C was modeled using a unified viscoplastic model coupled with a damage accumulation model. The simulation results were used to validate an energy-based constitutive life-prediction model, as a mechanistic model for potential component and structure level creep-fatigue analysis.

  4. Application of millisecond pulsed laser for thermal fatigue property evaluation

    NASA Astrophysics Data System (ADS)

    Pan, Sining; Yu, Gang; Li, Shaoxia; He, Xiuli; Xia, Chunyang; Ning, Weijian; Zheng, Caiyun

    2018-02-01

    An approach based on millisecond pulsed laser is proposed for thermal fatigue property evaluation in this paper. Cyclic thermal stresses and strains within millisecond interval are induced by complex and transient temperature gradients with pulsed laser heating. The influence of laser parameters on surface temperature is studied. The combination of low pulse repetition rate and high pulse energy produces small temperature oscillation, while high pulse repetition rate and low pulse energy introduces large temperature shock. The possibility of application is confirmed by two thermal fatigue tests of compacted graphite iron with different laser controlled modes. The developed approach is able to fulfill the preset temperature cycles and simulate thermal fatigue failure of engine components.

  5. Psychometric properties and Dutch norm data of the PedsQL Multidimensional Fatigue Scale for Young Adults.

    PubMed

    Haverman, Lotte; Limperg, Perrine F; van Oers, Hedy A; van Rossum, Marion A J; Maurice-Stam, Heleen; Grootenhuis, Martha A

    2014-12-01

    The aim of this study was to assess internal consistency and construct validity (known-groups validity) and to provide Dutch norm data for the Dutch Pediatric Quality of Life Inventory Multidimensional Fatigue Scale for Young Adults ages 18-30 years (PedsQL fatigue_YA). A Dutch sample of 649 young adults completed online a sociodemographic questionnaire and the PedsQL fatigue_YA including three subscales: general fatigue, sleep/rest fatigue and cognitive fatigue (0-100: Higher scores indicate less fatigue symptoms). The PedsQL fatigue_YA showed satisfactory to good internal consistency (Cronbach's alpha = .70-.94), except for one scale (.68). The mean scale scores were 68.23 (SD 19.15) for 'general fatigue,' 67.04 (SD 15.54) for 'sleep/rest fatigue' and 74.62 (SD 19.02) for 'cognitive fatigue.' Men reported significantly higher scores on 'general fatigue' and 'sleep/rest fatigue' than women. The PedsQL fatigue_YA distinguished between healthy young adults and young adults with chronic health conditions, with higher scores on all scales in healthy young adults than in those with a chronic health condition. The results demonstrate good psychometric properties of the PedsQL fatigue_YA in a sample of Dutch young adults. With the current norms available, it is possible to evaluate fatigue in the Netherlands from childhood to adulthood with the PedsQL Multidimensional Fatigue Scale.

  6. Risk factors of fatigue status among Chinese adolescents.

    PubMed

    Jin, Yuelong; Peng, Baozhen; Li, Yijun; Song, Lei; He, Lianping; Fu, Rui; Wu, Qianqian; Fan, Qingxiu; Yao, Yingshui

    2015-01-01

    In recent years, fatigue is common among adolescents. The aim of this study is to evaluate fatigue status and find related factors of fatigue among students ranged from 13-26 years from Wuhu, China. This is a case-control, cross-sectional observational study. The students from six middle schools (high school? 26 years old?) in Wuhu city were recruited, Self-Rating Fatigue Scale (SFS) was used to measure the fatigue status among students ranged from 13-26 years, and some demographic characteristics of students also was determined. A total of 726 students are included in our study. A significant difference was observed between fatigue status and grade, a balanced diet, the partial eclipse, picky for food, lack of sleep, excessive fatigue, drinking (P < 0.05). The risk factors of fatigue status include myopia, partial eclipse, picky for food, lacking of sleep, drinking; grade while a balanced diet is the protective factor of fatigue. Therefore, the school should pay more attention to the fatigue among students in middle school in China, and take some properly measures to reduce the fatigue.

  7. Muscle Deoxygenation Causes Muscle Fatigue

    NASA Technical Reports Server (NTRS)

    Murthy, G.; Hargens, A. R.; Lehman, S.; Rempel, D.

    1999-01-01

    Muscle fatigue is a common musculoskeletal disorder in the work place, and may be a harbinger for more disabling cumulative trauma disorders. Although the cause of fatigue is multifactorial, reduced blood flow and muscle oxygenation may be the primary factor in causing muscle fatigue during low intensity muscle exertion. Muscle fatigue is defined as a reduction in muscle force production, and also occurs among astronauts who are subjected to postural constraints while performing lengthy, repetitive tasks. The objectives of this research are to: 1) develop an objective tool to study the role of decreased muscle oxygenation on muscle force production, and 2) to evaluate muscle fatigue during prolonged glovebox work.

  8. Assessment of Daily and Weekly Fatigue among African American Cancer Survivors

    PubMed Central

    Sobel, Rina M.; McSorley, Anna-Michelle M.; Roesch, Scott C.; Malcarne, Vanessa L.; Hawes, Starlyn M.; Sadler, Georgia Robins

    2013-01-01

    This investigation evaluates two common measures of cancer-related fatigue, one multidimensional/retrospective and one unidimensional/same-day. Fifty-two African American survivors of diverse cancers completed fatigue visual analogue scales once daily, and the Multidimensional Fatigue Symptom Inventory (MFSI) once weekly, for four weeks. Zero-order correlations showed retrospectivefatigue was significantly related to average, peak, and most recent same-dayfatigue. Multilevel random coefficient modeling showed unidimensional fatigue shared the most variance with the MFSI’s General subscale for three weeks, and with the Vigor subscale for one week. Researchers and clinicians may wish to prioritize multidimensional measures when assessing cancer-related fatigue, if appropriate. PMID:23844922

  9. Fatigue Behavior of an Advanced SiC/SiC Composite with an Oxidation Inhibited Matrix at 1200 deg C in Air and in Steam

    DTIC Science & Technology

    2010-03-01

    eight-harness-satin (8HS) weave plies. Tensile stress -strain behavior and tensile properties were evaluated at 1200˚C. Tension-tension fatigue tests...ratio of minimum stress to maximum stress of R = 0.05, with maximum stresses ranging from 100 to 140 MPa in air and in steam. Fatigue run-out was...Hz, the presence of steam appeared to have little influence on the fatigue resistance for the fatigue stress levels < 140 MPa. The presence of steam

  10. Experimental Study on Fatigue Behaviour of Shot-Peened Open-Hole Steel Plates

    PubMed Central

    Wang, Zhi-Yu; Wang, Qing-Yuan; Cao, Mengqin

    2017-01-01

    This paper presents an experimental study on the fatigue behaviour of shot-peened open-hole plates with Q345 steel. The beneficial effects induced by shot peening on the fatigue life improvement are highlighted. The characteristic fatigue crack initiation and propagation modes of open-hole details under fatigue loading are revealed. The surface hardening effect brought by the shot peening is analyzed from the aspects of in-depth micro-hardness and compressive residual stress. The fatigue life results are evaluated and related design suggestions are made as a comparison with codified detail categories. In particular, a fracture mechanics theory-based method is proposed and demonstrated its validity in predicting the fatigue life of studied shot-peened open-hole details. PMID:28841160

  11. Efficacy of an Emotion-Focused Treatment for Prolonged Fatigue

    ERIC Educational Resources Information Center

    Schutte, Nicola S.; Malouff, John M.; Brown, Rhonda F.

    2008-01-01

    Previous research findings have suggested a relationship between less adaptive emotional functioning and fatigue. The present study used a research design involving multiple baselines across participants to evaluate the efficacy of a new emotion-focused treatment for prolonged fatigue delivered in a cognitive behavioral therapy framework. The 13…

  12. Comparison of fatigue analysis approaches for hot-mix asphalt to ensure a state of good repair.

    DOT National Transportation Integrated Search

    2013-10-01

    Fatigue cracking is a primary form of distress in hot-mix asphalt. The long-term nature of fatigue due to repeated : loading and aging and its required tie to pavement structure present challenges in terms of evaluating mixture : resistance. This pro...

  13. 14 CFR 25.571 - Damage-tolerance and fatigue evaluation of structure.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... catastrophic failure (such as wing, empennage, control surfaces and their systems, the fuselage, engine... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Structure Fatigue Evaluation § 25..., or by the service history of airplanes of similar structural design and sonic excitation environment...

  14. Effects of Distant Reiki On Pain, Anxiety and Fatigue in Oncology Patients in Turkey: A Pilot Study.

    PubMed

    Demir, Melike; Can, Gulbeyaz; Kelam, Ayhan; Aydıner, Aydın

    2015-01-01

    Fatigue, stress and pain are common symptoms among cancer patients, affecting the quality of life. The purpose of the present study was to determine the effect of distant Reiki on pain, anxiety and fatigue in oncology patients. Participants in the control group received usual medical and nursing care during their stay. The intervention group received usual care plus five distant Reiki sessions, one each night for 30 min. A face to face interview was performed and patient personal and illness related characteristics were evaluated using the Patient Characteristics form. Pain, stress and fatigue were evaluated according to a numeric rating scale. The experimental group was predominantly composed of women (71.4%), married individuals (40%), and primary school graduates (40%). The control group was predominantly male (72.7%), married (60%), and primary school graduates (60%). The control group demonstrated greater levels of pain (p=0.002), stress (p=0.001) and fatigue (p=0.001). The Reiki group pain score (p<0.0001), stress score (p<0.001) and fatigue score were also significantly lower. The results of this study indicate that Reiki may decreasepain, anxiety and fatigue in oncology patients.

  15. Experiences and management of fatigue in everyday life among adult patients living with heart failure: a systematic review of qualitative evidence.

    PubMed

    Schjoedt, Inge; Sommer, Irene; Bjerrum, Merete Bender

    2016-03-01

    Fatigue, a common and distressing symptom of heart failure, is a non-specific, invisible and subjective experience, which is difficult to describe and for which there are no effective interventions. Fatigue negatively impacts on patients' everyday life, prognosis and quality of life, therefore it is important that patients can manage, monitor and respond to changes in fatigue. To cope with fatigue patients may need or seek advice on self-management strategies. To synthesize the best available evidence on the experiences and management of fatigue in everyday life among adult patients with stable heart failure. Adults with confirmed and stable heart failure. Studies exploring the experiences and management of fatigue in everyday life among adults with heart failure. Qualitative studies focusing on qualitative data, including, but not limited to, designs within phenomenology, grounded theory or ethnography. A three-step search strategy was used to identify published and unpublished qualitative studies from 1995 to 2014. Studies that met the inclusion criteria were assessed by two independent reviewers for methodological validity using the standardized critical appraisal tools of the Joanna Briggs Institute Qualitative Assessment and Review Instrument (JBI-QARI). Data was extracted from the five included studies using JBI-QARI. Findings were identified and arranged according to the three research questions: patients' experiences of fatigue, impact of fatigue on everyday life and how patients' managed fatigue and its consequences in everyday life. Findings were pooled using JBI-QARI. From the five included studies, 108 findings were derived and subsequently aggregated into 24 categories, which were finally meta-synthesized into five syntheses: "A pervasive and unignorable bodily experience" captured the patients' descriptions of fatigue experiences; "Limited performance of daily living and social activities" and "Loss of self-esteem, identity and intellectual function" aggregated the impact of fatigue on patients' everyday life; "Using protecting and restoring strategies according to the body barometer" and "A dynamic balance between accepting and struggling against fatigue" captured how patients managed fatigue and its consequences. Three different types of bodily fatigue challenge patients with heart failure. Decreased physical capacity, unpredictability and fluctuating intensity are dominant features of fatigue experiences, which cause limitations in performing daily and social activities, increased dependency of others, and loss of self-esteem, identity and intellectual function. Patients' management of fatigue and its consequences is an ongoing process involving use of protective and restorative activities to handle the specific bodily fatigue. However it also relates to living constructively with fatigue by striking a balance between adjusting to and struggling against fatigue. Healthcare providers should be accountable to their patients, recognizing and taking into consideration patients' fatigue experiences and the meaning of fatigue, in order to provide optimal and individual care to their patients. Further qualitative research is needed to consider cultural factors of importance for managing fatigue in everyday life among patients with heart failure. Furthermore research should explore and test different kinds of physical and mind-body activities on the patients' functional capacity and wellbeing.

  16. Movement kinematics and cyclic fatigue of NiTi rotary instruments: a systematic review.

    PubMed

    Ferreira, F; Adeodato, C; Barbosa, I; Aboud, L; Scelza, P; Zaccaro Scelza, M

    2017-02-01

    The aim of this review was to provide a detailed analysis of the literature concerning the correlation between different movement kinematics and the cyclic fatigue resistance of NiTi rotary endodontic instruments. From June 2014 to August 2015, four independent reviewers comprehensively and systematically searched the Medline (PubMed), EMBASE, Web of Science, Scopus and Google Scholar databases for works published since January 2005, using the following search terms: endodontics; nickel-titanium rotary files; continuous rotation; reciprocating motion; cyclic fatigue. In addition to the electronic searches, manual searches were performed to include articles listed in the reference sections of high-impact published articles that were not indexed in the databases. Laboratory studies in English language were considered for this review. The electronic and manual searches resulted in identification of 75 articles. Based on the inclusion criteria, 32 articles were selected for analysis of full-text copies. Specific analysis was then made of 20 articles that described the effects of reciprocating and continuous movements on cyclic fatigue of the instruments. A wide range of testing conditions and methodologies have been used to compare the cyclic fatigue resistance of rotary endodontic instruments. Most studies report that reciprocating motion improves the fatigue resistance of endodontic instruments, compared to continuous rotation, independent of other variables such as the speed of rotation, the angle or radius of curvature of simulated canals, geometry and taper, or the surface characteristics of the NiTi instruments. © 2016 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  17. Ultrasonic Evaluation of Fatigue Damage

    NASA Astrophysics Data System (ADS)

    Bayer, P.; Singher, L.; Notea, A.

    2004-02-01

    Despite the fact that most engineers and designers are aware of fatigue, many severe breakdowns of industrial plant and machinery still occur due to fatigue. In effect, it's been estimated that fatigue causes at least 80% of the failures in modern engineering components. From an operational point of view, the detection of fatigue damage, preferably at a very early stage, is a critically important consideration in order to prevent possible catastrophic equipment failure and associated losses. This paper describes the investigation involving the use of ultrasonic waves as a potential tool for early detection of fatigue damage. The parameters investigated were the ultrasonic wave velocities (longitudinal and transverse waves) and attenuation coefficient before fatigue damage and after progressive stages of fatigue. Although comparatively small uncertainties were observed, the feasibility of utilizing the velocity of ultrasonic waves as a fatigue monitor was barely substantiated within actual research conditions. However, careful measurements of the ultrasonic attenuation parameter had demonstrated its potential to provide an early assessment of damage during fatigue.

  18. Chronic Fatigue and Personality: A Twin Study of Causal Pathways and Shared Liabilities

    PubMed Central

    Poeschla, Brian; Strachan, Eric; Dansie, Elizabeth; Buchwald, Dedra S.; Afari, Niloofar

    2013-01-01

    Background The etiology of chronic fatigue syndrome (CFS) remains unknown. Personality traits influence well-being and may play a role in CFS and unexplained chronic fatigue. Purpose To examine the association of emotional instability and extraversion with chronic fatigue and CFS in a genetically informative sample. Methods We evaluated 245 twin pairs for two definitions of chronic fatigue. They completed the Neuroticism and Extraversion subscales of the NEO-FFI. Using a co-twin control design, we examined the association between personality and chronic fatigue. Results Higher emotional instability was associated with both definitions of chronic fatigue and was confounded by shared genetics. Lower extraversion was also associated with both definitions of fatigue, but was not confounded by familial factors. Conclusions Both emotional instability and extraversion are related to chronic fatigue and CFS. Whereas emotional instability and chronic fatigue are linked by shared genetic mechanisms, the relationship with extraversion may be causal and bi-directional. PMID:23361410

  19. Psychometric evaluation of the Multidimensional Assessment of Fatigue scale for use with pregnant and postpartum women.

    PubMed

    Fairbrother, Nichole; Hutton, Eileen K; Stoll, Kathrin; Hall, Wendy; Kluka, Sandy

    2008-06-01

    Although fatigue is a common experience for pregnant women and new mothers, few measures of fatigue have been validated for use with this population. To address this gap, the authors assessed psychometric properties of the Multidimensional Assessment of Fatigue (MAF) scale, which was used in 2 independent samples of pregnant women. Results indicated that the psychometric properties of the scale were very similar across samples and time points. The scale possesses a high level of internal consistency, has good convergent validity with measures of sleep quality and depression, and discriminates well from a measure of social support. Contrary to previous evaluations of the MAF, data strongly suggest that the scale represents a unidimensional construct best represented by a single factor. Results indicate that the MAF is a useful measure of fatigue among pregnant and postpartum women.

  20. Research on the Fatigue Flexural Performance of RC Beams Attacked by Salt Spray

    NASA Astrophysics Data System (ADS)

    Mao, Jiang-hong; Xu, Fang-yuan; Jin, Wei-liang; Zhang, Jun; Wu, Xi-xi; Chen, Cai-sheng

    2018-04-01

    The fatigue flexural performance of RC beams attacked by salt spray was studied. A testing method involving electro osmosis, electrical accelerated corrosion and salt spray was proposed. This corrosion process method effectively simulates real-world salt spray and fatigue loading exerted by RC components on sea bridges. Four RC beams that have different stress amplitudes were tested. It is found that deterioration by corrosion and fatigue loading reduces the fatigue life of the RC and decreases the ability of deformation. The fatigue life and deflection ability could be reduced by increasing the stress amplitude and the corrosion duration time. The test result demonstrates that this experimental method can couple corrosion deterioration and fatigue loading reasonably. This procedure may be applied to evaluate the fatigue life and concrete durability of RC components located in a natural salt spray environment.

  1. Obesity, diet, physical activity, and health-related quality of life in endometrial cancer survivors.

    PubMed

    Koutoukidis, Dimitrios A; Knobf, M Tish; Lanceley, Anne

    2015-06-01

    Obesity, low-quality diet, and inactivity are all prevalent among survivors of endometrial cancer. The present review was conducted to assess whether these characteristics are associated with health-related quality of life (HRQoL). Electronic databases, conference abstracts, and reference lists were searched, and researchers were contacted for preliminary results of ongoing studies. The quality of the methodology and reporting was evaluated using appropriate checklists. Standardized mean differences were calculated, and data were synthesized narratively. Eight of the 4385 reports retrieved from the literature were included in the analysis. Four of the 8 studies were cross-sectional, 1 was retrospective, 1 was prospective, and 2 were randomized controlled trials. Obesity was negatively associated with overall HRQoL in 4 of 4 studies and with physical well-being in 6 of 6 studies, while it was positively associated with fatigue in 2 of 4 studies. Meeting the recommendations for being physically active, eating a diet high in fruit and vegetables, and abstaining from smoking were positively associated with overall HRQoL in 2 of 2 studies, with physical well-being in 2 of 3 studies, and with fatigue in 1 of 3 studies. Improvements in fatigue and physical well-being were evident after lifestyle interventions. The findings indicate a healthy lifestyle is positively associated with HRQoL in this population, but the number of studies is limited. Additional randomized controlled trials to test effective and practical interventions promoting a healthy lifestyle in survivors of endometrial cancer are warranted. © The Author(s) 2015. Published by Oxford University Press on behalf of the International Life Sciences Institute.

  2. Effect of ball geometry on endurance limit in bending of drilled balls

    NASA Technical Reports Server (NTRS)

    Munson, H. E.

    1975-01-01

    Four designs of drilled (cylindrically hollow) balls were tested for resistance to bending fatigue. Bending fatigue has been demonstrated to be a limiting factor in previous evaluations of the drilled ball concept. A web reinforced drilled ball was most successful in resisting bending fatigue. Another design of through drilled design, involving a heavier wall than the standard reference ball, also showed significant improvement in resistance to bending fatigue.

  3. Humoral and cellular immune responses after influenza vaccination in patients with postcancer fatigue

    PubMed Central

    Prinsen, Hetty; van Laarhoven, Hanneke WM; Pots, Jeanette M; Duiveman-de Boer, Tjitske; Mulder, Sasja F; van Herpen, Carla ML; Jacobs, Joannes FM; Leer, Jan Willem H; Bleijenberg, Gijs; Stelma, Foekje F; Torensma, Ruurd; de Vries, I Jolanda M

    2015-01-01

    The aim of this study was to compare humoral and cellular immune responses to influenza vaccination in cancer survivors with and without severe symptoms of fatigue. Severely fatigued (n = 15) and non-fatigued (n = 12) disease-free cancer survivors were vaccinated against seasonal influenza. Humoral immunity was evaluated at baseline and post-vaccination by a hemagglutination inhibition assay. Cellular immunity was evaluated at baseline and post-vaccination by lymphocyte proliferation and activation assays. Regulatory T cells were measured at baseline by flow cytometry and heat-shock protein 90 alpha levels by ELISA. Comparable humoral immune responses were observed in fatigued and non-fatigued patients, both pre- and post-vaccination. At baseline, fatigued patients showed a significantly diminished cellular proliferation upon virus stimulation with strain H3N2 (1414 ± 1201 counts), and a trend in a similar direction with strain H1N1 (3025 ± 2339 counts), compared to non-fatigued patients (3099 ± 2401 and 5877 ± 4604 counts, respectively). The percentage of regulatory T lymphocytes was significantly increased (4.4 ± 2.1% versus 2.4 ± 0.8%) and significantly lower amounts of interleukin 2 were detected prior to vaccination in fatigued compared to non-fatigued patients (36.3 ± 44.3 pg/ml vs. 94.0 ± 45.4 pg/ml with strain H3N2 and 28.4 ± 44.0 pg/ml versus 74.5 ± 56.1 pg/ml with strain H1N1). Pre-vaccination heat-shock protein 90 alpha concentrations, post-vaccination cellular proliferation, and post-vaccination cytokine concentrations did not differ between both groups. In conclusion, influenza vaccination is favorable for severely fatigued cancer survivors and should be recommended when indicated. However, compared to non-fatigued cancer survivors, fatigued cancer survivors showed several significant differences in immunological reactivity at baseline, which warrants further investigation. PMID:25996472

  4. HIV-associated fatigue in the era of highly active antiretroviral therapy: novel biological mechanisms?

    PubMed

    Payne, B A I; Hateley, C L; Ong, E L C; Premchand, N; Schmid, M L; Schwab, U; Newton, J L; Price, D A

    2013-04-01

    The aim of the study was to determine the prevalence and risk factors for HIV-associated fatigue in the era of highly active antiretroviral therapy (HAART). A cross-sectional survey of 100 stable HIV-infected out-patients was carried out. Severity of fatigue was measured using the Fatigue Impact Scale (FIS). Symptoms of orthostatic intolerance (dysautonomia) were evaluated using the Orthostatic Grading Scale (OGS). Data for HIV-infected patients were compared with those for 166 uninfected controls and 74 patients with chronic fatigue syndrome (CFS)/myalgic encephalomyelitis (encephalopathy) (ME). Ninety-one per cent of HIV-infected patients were on HAART and 78% had suppressed plasma HIV viral load (≤ 40 HIV-1 RNA copies/mL). Fifty-one per cent of HIV-infected patients reported excessive symptomatic fatigue (FIS ≥ 40), and 28% reported severe fatigue symptoms (FIS ≥ 80). The mean FIS score among HIV-infected patients was 50.8 [standard deviation (SD) 41.9] compared with 13.0 (SD 17.6) in uninfected control subjects, and 92.9 (SD 29.0) in CFS patients (P < 0.001 for comparison of HIV-infected patients and uninfected controls). Among HIV-infected patients, fatigue severity was not significantly associated with current or nadir CD4 lymphocyte count, HIV plasma viral load, or whether on HAART. Prior dideoxynucleoside analogue (d-drug) exposure (P = 0.016) and the presence of clinical lipodystrophy syndrome (P = 0.011) were associated with fatigue. Additionally, fatigue severity correlated strongly with symptomatic orthostatic intolerance (r = 0.65; P < 0.001). Fatigue is very common and often severe in HIV-infected out-patients, despite viral suppression and good immune function. In a subgroup of patients, prior d-drug exposure may contribute to fatigue, suggesting a metabolic basis. Dysautonomia may also drive fatigue associated with HIV infection, as in other chronic diseases, and CFS/ME, and should be further evaluated with the potential for a shared therapeutic approach. © 2012 British HIV Association.

  5. Technologic Distractions (Part 1): Summary of Approaches to Manage Alert Quantity With Intent to Reduce Alert Fatigue and Suggestions for Alert Fatigue Metrics.

    PubMed

    Kane-Gill, Sandra L; O'Connor, Michael F; Rothschild, Jeffrey M; Selby, Nicholas M; McLean, Barbara; Bonafide, Christopher P; Cvach, Maria M; Hu, Xiao; Konkani, Avinash; Pelter, Michele M; Winters, Bradford D

    2017-09-01

    To provide ICU clinicians with evidence-based guidance on tested interventions that reduce or prevent alert fatigue within clinical decision support systems. Systematic review of PubMed, Embase, SCOPUS, and CINAHL for relevant literature from 1966 to February 2017. Focus on critically ill patients and included evaluations in other patient care settings, as well. Identified interventions designed to reduce or prevent alert fatigue within clinical decision support systems. Study selection was based on one primary key question to identify effective interventions that attempted to reduce alert fatigue and three secondary key questions that covered the negative effects of alert fatigue, potential unintended consequences of efforts to reduce alert fatigue, and ideal alert quantity. Data were abstracted by two reviewers independently using a standardized abstraction tool. Surveys, meeting abstracts, "gray" literature, studies not available in English, and studies with non-original data were excluded. For the primary key question, articles were excluded if they did not provide a comparator as key question 1 was designed as a problem, intervention, comparison, and outcome question. We anticipated that reduction in alert fatigue, including the concept of desensitization may not be directly measured and thus considered interventions that reduced alert quantity as a surrogate marker for alert fatigue. Twenty-six articles met the inclusion criteria. Approaches for managing alert fatigue in the ICU are provided as a result of reviewing tested interventions that reduced alert quantity with the anticipated effect of reducing fatigue. Suggested alert management strategies include prioritizing alerts, developing sophisticated alerts, customizing commercially available alerts, and including end user opinion in alert selection. Alert fatigue itself is studied less frequently, as an outcome, and there is a need for more precise evaluation. Standardized metrics for alert fatigue is needed to advance the field. Suggestions for standardized metrics are provided in this document.

  6. Fracture mechanics data for 2024-T861 and 2124-T851 aluminum

    NASA Technical Reports Server (NTRS)

    Pionke, L. J.; Linback, R. K.

    1974-01-01

    The fracture toughness and fatigue flaw growth characteristics of 2024-T861 and 2124-T851 aluminum were evaluated under plane stress conditions. Center cracked tension specimens were employed to evaluate these properties under a number of different test conditions which included variations in specimen thickness, specimen orientation, test environment, and initial flaw size. The effect of buckling was also investigated for all tests of thin gage specimens, and the effect of frequency and stress ratio was evaluated for the cyclic tests. Fracture toughness test results were analyzed and presented in terms of fracture resistance curves; fatigue flaw growth data was analyzed using empirical rate models. The results of the study indicate that both fracture toughness and resistance to fatigue crack growth improve with increasing temperature and decreasing thickness. The presence of buckling during testing of thin gage panels was found to degrade the resistance to fatigue flaw growth only at elevated temperatures.

  7. Proposed Performance Measures and Strategies for Implementation of the Fatigue Risk Management Guidelines for Emergency Medical Services.

    PubMed

    Martin-Gill, Christian; Higgins, J Stephen; Van Dongen, Hans P A; Buysse, Daniel J; Thackery, Ronald W; Kupas, Douglas F; Becker, David S; Dean, Bradley E; Lindbeck, George H; Guyette, Francis X; Penner, Josef H; Violanti, John M; Lang, Eddy S; Patterson, P Daniel

    2018-02-15

    Performance measures are a key component of implementation, dissemination, and evaluation of evidence-based guidelines (EBGs). We developed performance measures for Emergency Medical Services (EMS) stakeholders to enable the implementation of guidelines for fatigue risk management in the EMS setting. Panelists associated with the Fatigue in EMS Project, which was supported by the National Highway Traffic Safety Administration (NHTSA), used an iterative process to develop a draft set of performance measures linked to 5 recommendations for fatigue risk management in EMS. We used a cross-sectional survey design and the Content Validity Index (CVI) to quantify agreement among panelists on the wording and content of draft measures. An anonymous web-based tool was used to solicit the panelists' perceptions of clarity and relevance of draft measures. Panelists rated the clarity and relevance separately for each draft measure on a 4-point scale. CVI scores ≥0.78 for clarity and relevance were specified a priori to signify agreement and completion of measurement development. Panelists judged 5 performance measures for fatigue risk management as clear and relevant. These measures address use of fatigue and/or sleepiness survey instruments, optimal duration of shifts, access to caffeine as a fatigue countermeasure, use of napping during shift work, and the delivery of education and training on fatigue risk management for EMS personnel. Panelists complemented performance measures with suggestions for implementation by EMS agencies. Performance measures for fatigue risk management in the EMS setting will facilitate the implementation and evaluation of the EBG for Fatigue in EMS.

  8. Fatigue in a Representative Population of Older Persons and Its Association With Functional Impairment, Functional Limitation, and Disability

    PubMed Central

    Nayfield, Susan G.; Patel, Kushang V.; Eldadah, Basil; Cesari, Matteo; Ferrucci, Luigi; Ceresini, Graziano; Guralnik, Jack M.

    2009-01-01

    Background Older persons often complain of fatigue, but the functional consequences of this symptom are unclear. The aim of the present study was to evaluate fatigue and its association with measures of physical function and disability in a representative sample of the older population. Methods Cross-sectional data from a population-based sample of 1,055 Italian men and women aged 65 and older were analyzed. Fatigue was defined according to two questions evaluating whether participants felt that “everything was an effort” and/or they “could not get going” on three or more days in the past week. Objective measures of physical function were handgrip strength, the Short Physical Performance Battery (SPPB), and 400-m walking speed. Disability was defined as the inability to complete the 400-m walk test and self-reported difficulty in activities of daily living (ADL) and instrumental activities of daily living (IADL). Results The prevalence of fatigue was higher in women (29%) than in men (15%). In age-adjusted analyses, fatigued men and women had weaker handgrip strength, lower SPPB score, slower walking speed, and higher mobility, ADL, and IADL disability than nonfatigued persons. Further adjustment for health behaviors, diseases, inflammatory markers, and thyroid function generally reduced the relationship between fatigue and functional outcomes, but fatigue remained significantly associated with SPPB score, walking speed, and mobility and IADL disability. Conclusions Older persons who report fatigue had significantly poorer functional status than those who did not report this symptom. The causal link between fatigue and these outcomes should be further investigated. PMID:19176328

  9. Correlation between Driver Subjective Fatigue and Bus Lateral Position in a Driving Simulator.

    PubMed

    Gharagozlou, Faramarz; Mazloumi, Adel; Saraji, Gebraeil Nasl; Nahvi, Ali; Ashouri, Mohammadreza; Mozaffari, Hamed

    2015-08-01

    Driver fatigue as a leading cause of death in the transportation industry can impair the driving performance in long-distance driving task. Studies on the links of driver subjective fatigue and the bus lateral position are still an exploratory issue that requires further investigation. This study aimed to determine the correlation between the driver subjective fatigue and the bus lateral position in a driving simulator. This descriptive-analytical research was conducted on 30 professional male bus drivers participated in a two-hour driving session. The driver subjective fatigue was assessed by the Fatigue Visual Analogue Scale (F-VAS) at 10-min intervals. Simultaneously, the performance measures of lane drifting as the mean and standard deviation of the bus lateral position (SDLP) were calculated during the simulated driving task. Descriptive statistics and the Spearman correlation coefficient were used to describe and analyze the data. Fatigue levels had an increasing trend as the time-on-task of driving increased. Time-on-task of driving had the greatest effect on the fatigue self-evaluation (r = 0.605, p < 0.0001). The results showed a significant correlation between fatigue self-evaluation and bus lateral position (r = 0.567, p < 0.0001). As the time of driving increased, driving performance was affected adversely, as shown by the increase in the SDLP. Even so, the effect of individual differences on driving performance should not be overlooked. This work concludes that predicting the state of a driver fatigue based on the group mean data has some complications for any application.

  10. Correlation between Driver Subjective Fatigue and Bus Lateral Position in a Driving Simulator

    PubMed Central

    Gharagozlou, Faramarz; Mazloumi, Adel; Saraji, Gebraeil Nasl; Nahvi, Ali; Ashouri, Mohammadreza; Mozaffari, Hamed

    2015-01-01

    Background: Driver fatigue as a leading cause of death in the transportation industry can impair the driving performance in long-distance driving task. Studies on the links of driver subjective fatigue and the bus lateral position are still an exploratory issue that requires further investigation. This study aimed to determine the correlation between the driver subjective fatigue and the bus lateral position in a driving simulator. Methods: This descriptive-analytical research was conducted on 30 professional male bus drivers participated in a two-hour driving session. The driver subjective fatigue was assessed by the Fatigue Visual Analogue Scale (F-VAS) at 10-min intervals. Simultaneously, the performance measures of lane drifting as the mean and standard deviation of the bus lateral position (SDLP) were calculated during the simulated driving task. Descriptive statistics and the Spearman correlation coefficient were used to describe and analyze the data. Results: Fatigue levels had an increasing trend as the time-on-task of driving increased. Time-on-task of driving had the greatest effect on the fatigue self-evaluation (r = 0.605, p < 0.0001). The results showed a significant correlation between fatigue self-evaluation and bus lateral position (r = 0.567, p < 0.0001). Conclusion: As the time of driving increased, driving performance was affected adversely, as shown by the increase in the SDLP. Even so, the effect of individual differences on driving performance should not be overlooked. This work concludes that predicting the state of a driver fatigue based on the group mean data has some complications for any application. PMID:26396734

  11. Long-Term Muscle Fatigue After Standing Work.

    PubMed

    Garcia, Maria-Gabriela; Läubli, Thomas; Martin, Bernard J

    2015-11-01

    The aims of this study were to determine long-term fatigue effects in the lower limbs associated with standing work and to estimate possible age and gender influences. The progressive accumulation of muscle fatigue effects is assumed to lead to musculoskeletal disorders, as fatigue generated by sustained low-level exertions exhibits long-lasting effects. However, these effects have received little attention in the lower limbs. Fourteen men and 12 women from two different age groups simulated standing work for 5 hr including 5-min seated rest breaks and a 30-min lunch. The younger group was also tested in a control day. Muscle fatigue was quantified by electrically induced muscle twitches (muscle twitch force [MTF]), postural stability, and subjective evaluation of discomfort. MTF showed a significant fatigue effect after standing work that persisted beyond 30 min after the end of the workday. MTF was not affected on the control day. The center of pressure displacement speed increased significantly over time after standing work but was also affected on the control day. Subjective evaluations of discomfort indicated a significant increase in perception of fatigue immediately after the end of standing work; however, this perception did not persist 30 min after. Age and gender did not influence fatigue. Objective measures show the long-term effects of muscle fatigue after 5 hr of standing work; however, this fatigue is no longer perceived after 30 min of rest postwork. The present results suggest that occupational activities requiring prolonged standing are likely to contribute to lower-extremity and/or back disorders. © 2015, Human Factors and Ergonomics Society.

  12. A Multiscale Virtual Fabrication and Lattice Modeling Approach for the Fatigue Performance Prediction of Asphalt Concrete

    NASA Astrophysics Data System (ADS)

    Dehghan Banadaki, Arash

    Predicting the ultimate performance of asphalt concrete under realistic loading conditions is the main key to developing better-performing materials, designing long-lasting pavements, and performing reliable lifecycle analysis for pavements. The fatigue performance of asphalt concrete depends on the mechanical properties of the constituent materials, namely asphalt binder and aggregate. This dependent link between performance and mechanical properties is extremely complex, and experimental techniques often are used to try to characterize the performance of hot mix asphalt. However, given the seemingly uncountable number of mixture designs and loading conditions, it is simply not economical to try to understand and characterize the material behavior solely by experimentation. It is well known that analytical and computational modeling methods can be combined with experimental techniques to reduce the costs associated with understanding and characterizing the mechanical behavior of the constituent materials. This study aims to develop a multiscale micromechanical lattice-based model to predict cracking in asphalt concrete using component material properties. The proposed algorithm, while capturing different phenomena for different scales, also minimizes the need for laboratory experiments. The developed methodology builds on a previously developed lattice model and the viscoelastic continuum damage model to link the component material properties to the mixture fatigue performance. The resulting lattice model is applied to predict the dynamic modulus mastercurves for different scales. A framework for capturing the so-called structuralization effects is introduced that significantly improves the accuracy of the modulus prediction. Furthermore, air voids are added to the model to help capture this important micromechanical feature that affects the fatigue performance of asphalt concrete as well as the modulus value. The effects of rate dependency are captured by implementing the viscoelastic fracture criterion. In the end, an efficient cyclic loading framework is developed to evaluate the damage accumulation in the material that is caused by long-sustained cyclic loads.

  13. Evaluation of fatigue-prone details using a low-cost thermoelastic stress analysis system.

    DOT National Transportation Integrated Search

    2016-11-01

    This study was designed to develop a novel approach for in situ evaluation of stress fields in the vicinity of fatigue-prone details on highway bridges using a low-cost microbolometer thermal imager. : The method was adapted into a field-deployable i...

  14. 14 CFR 29.573 - Damage Tolerance and Fatigue Evaluation of Composite Rotorcraft Structures.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Composite Rotorcraft Structures. 29.573 Section 29.573 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... Structures. (a) Each applicant must evaluate the composite rotorcraft structure under the damage tolerance..., types, and sizes of damage, considering fatigue, environmental effects, intrinsic and discrete flaws...

  15. 14 CFR 27.573 - Damage Tolerance and Fatigue Evaluation of Composite Rotorcraft Structures.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Composite Rotorcraft Structures. 27.573 Section 27.573 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... Structures. (a) Each applicant must evaluate the composite rotorcraft structure under the damage tolerance..., types, and sizes of damage, considering fatigue, environmental effects, intrinsic and discrete flaws...

  16. 14 CFR 27.573 - Damage Tolerance and Fatigue Evaluation of Composite Rotorcraft Structures.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Composite Rotorcraft Structures. 27.573 Section 27.573 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... Structures. (a) Each applicant must evaluate the composite rotorcraft structure under the damage tolerance..., types, and sizes of damage, considering fatigue, environmental effects, intrinsic and discrete flaws...

  17. 14 CFR 29.573 - Damage Tolerance and Fatigue Evaluation of Composite Rotorcraft Structures.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Composite Rotorcraft Structures. 29.573 Section 29.573 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... Structures. (a) Each applicant must evaluate the composite rotorcraft structure under the damage tolerance..., types, and sizes of damage, considering fatigue, environmental effects, intrinsic and discrete flaws...

  18. 14 CFR 27.573 - Damage Tolerance and Fatigue Evaluation of Composite Rotorcraft Structures.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Composite Rotorcraft Structures. 27.573 Section 27.573 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... Structures. (a) Each applicant must evaluate the composite rotorcraft structure under the damage tolerance..., types, and sizes of damage, considering fatigue, environmental effects, intrinsic and discrete flaws...

  19. 14 CFR 29.573 - Damage Tolerance and Fatigue Evaluation of Composite Rotorcraft Structures.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Composite Rotorcraft Structures. 29.573 Section 29.573 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... Structures. (a) Each applicant must evaluate the composite rotorcraft structure under the damage tolerance..., types, and sizes of damage, considering fatigue, environmental effects, intrinsic and discrete flaws...

  20. 77 FR 60167 - Agency Information Collection Activities: Requests for Comments; Clearance of Renewed Approval of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-02

    ... and Fatigue Evaluation of Composite Rotorcraft Structures AGENCY: Federal Aviation Administration (FAA... Control Number: 2120-0753. Title: Damage Tolerance and Fatigue Evaluation of Composite Rotorcraft... technology for composite rotorcraft structures. In order to show compliance and obtain type certification...

  1. Selected topics in railroad tank car safety research. Volume 1 : fatigue evaluation of prototype tank car head shield

    DOT National Transportation Integrated Search

    1978-08-01

    The characteristics of a prototype head shield for hazardous material tank cars were evaluated with respect to the maintenance of its structural integrity under normal service conditions. The primary concern was with the resistance to fatigue damage ...

  2. Evaluation of the effect of progressive relaxation exercises on fatigue and sleep quality in patients with multiple sclerosis.

    PubMed

    Dayapoğlu, Nuray; Tan, Mehtap

    2012-10-01

    Fatigue and sleep problems are very commonly observed in patients with multiple sclerosis (MS). The Progressive Muscle Relaxation Technique (PMRT), used as one of the alternative methods in recent years, is reported to have benefits such as facilitating sleep and reducing sensitivity against fatigue. This research was conducted to investigate the effect of PMRT on fatigue and sleep quality in patients with MS. This research was performed as a single-group pretest/post-test pretrial model. The research was conducted between March 2008 and December 2009 in the neurology polyclinic. The study was conducted with 32 patients who met the research criteria and agreed to participate in the study. A Personal Information Form was used as a data collection tool, Fatigue Severity Scale was used for measuring fatigue, and the Pittsburgh Sleep Quality Index was used for evaluating the sleep quality. PMRT was applied to the sample group once a day for 6 weeks. Percentage, paired t-test, and Pearson's correlation analysis were used in the assessment of data. It was determined that PMRT decreased patients' fatigue level and improved their sleep quality, and this difference was observed to be statistically significant. Moreover, patients' fatigue level increased as their sleep quality decreased. This study supports the effect of PMRT on fatigue and sleep quality in patients with MS, and it is recommended that further studies be conducted on this subject in the future.

  3. Chemotherapy-Induced Fatigue Correlates With Higher Fatigue Scores Before Treatment.

    PubMed

    Araújo, José Klerton Luz; Giglio, Adriana Del; Munhoz, Bruna Antenusse; Fonseca, Fernando Luiz Affonso; Cruz, Felipe Melo; Giglio, Auro Del

    2017-06-01

    Cancer chemotherapy can induce fatigue in about 20% to 30% of patients. So far, there is very little information as to the predictors of chemotherapy-induced fatigue (CIF). We evaluated potential predictors of CIF in a sample of patients with cancer with several types of solid tumors scheduled to receive chemotherapy according to institutional protocols. Before their first and second chemotherapy cycles, patients answered to the Brief Fatigue Inventory (BFI), Chalder, Mini Nutritional Assessment (MNA), Stress thermometer, and HADS questionnaires as well as provided blood samples for inflammatory markers. We evaluated 52 patients, 37 (71%) were female and mean age was 53 years. The most common tumors were breast cancer 21 (40%) and gastrointestinal tumors 12 (23%). Although 14 (25.2%) patients had an increase in their fatigue BFI scores equal or above 3 points from baseline, we observed no significant overall differences between BFI scores before and after chemotherapy. The only 2 factors associated with an increase of 3 points in the BFI scores after chemotherapy were race and higher baseline BFI levels. By multivariate analysis, overall BFI and Chalder scores after chemotherapy also correlated significantly with their respective baseline scores before treatment. HADS scores before treatment correlated with overall BFI scores postchemotherapy, whereas MNA scores before chemotherapy and female sex correlated with higher Chalder scores after treatment. We conclude that fatigue induced by chemotherapy is common and consistently associated with higher fatigue scores before treatment. Screening for fatigue before chemotherapy may help to identify patients who are prone to develop CIF.

  4. Cross-cultural adaptation and psychometric evaluations of the Turkish version of Parkinson Fatigue Scale.

    PubMed

    Ozturk, Erhan Arif; Kocer, Bilge Gonenli; Umay, Ebru; Cakci, Aytul

    2018-06-07

    The objectives of the present study were to translate and cross-culturally adapt the English version of the Parkinson Fatigue Scale into Turkish, to evaluate its psychometric properties, and to compare them with that of other language versions. A total of 144 patients with idiopathic Parkinson disease were included in the study. The Turkish version of Parkinson Fatigue Scale was evaluated for data quality, scaling assumptions, acceptability, reliability, and validity. The questionnaire response rate was 100% for both test and retest. The percentage of missing data was zero for items, and the percentage of computable scores was full. Floor and ceiling effects were absent. The Parkinson Fatigue Scale provides an acceptable internal consistency (Cronbach's alpha was 0.974 for 1st test and 0.964 for a retest, and corrected item-to-total correlations were ranged from 0.715 to 0.906) and test-retest reliability (Cohen's kappa coefficients were ranged from 0.632 to 0.786 for individuals items, and intraclass correlation coefficient was 0.887 for the overall Parkinson Fatigue Scale Score). An exploratory factor analysis of the items revealed a single factor explaining 71.7% of variance. The goodness-of-fit statistics for the one-factorial confirmatory factor analysis were Tucker Lewis index = 0.961, comparative fit index = 0.971 and root mean square error of approximation = 0.077 for a single factor. The average Parkinson Fatigue Scale Score was correlated significantly with sociodemographic data, clinical characteristics and scores of rating scales. The Turkish version of the Parkinson Fatigue Scale seems to be culturally well adapted and have good psychometric properties. The scale can be used in further studies to assess the fatigue in patients with Parkinson's disease.

  5. Electrical Stimulation Frequency and Skeletal Muscle Characteristics: Effects on Force and Fatigue.

    PubMed

    Vromans, Maria; Faghri, Pouran

    2017-12-05

    This investigation aimed to determine the force and muscle surface electromyography (EMG) responses to different frequencies of electrical stimulation (ES) in two groups of muscles with different size and fiber composition (fast- and slow-twitch fiber proportions) during a fatigue-inducing protocol. Progression towards fatigue was evaluated in the abductor pollicis brevis (APB) and vastus lateralis (VL) when activated by ES at three frequencies (10, 35, and 50Hz). Ten healthy adults (mean age: 23.2 ± 3.0 years) were recruited; participants signed an IRB approved consent form prior to participation. Protocols were developed to 1) identify initial ES current intensity required to generate the 25% maximal voluntary contraction (MVC) at each ES frequency and 2) evaluate changes in force and EMG activity during ES-induced contraction at each frequency while progressing towards fatigue. For both muscles, stimulation at 10Hz required higher current intensity of ES to generate the initial force. There was a significant decline in force in response to ES-induced fatigue for all frequencies and for both muscles (p<0.05). However, the EMG response was not consistent between muscles. During the progression towards fatigue, the APB displayed an initial drop in force followed by an increase in EMG activity and the VL displayed a decrease in EMG activity for all frequencies. Overall, it appeared that there were some significant interactions between muscle size and fiber composition during progression towards fatigue for different ES frequencies. It could be postulated that muscle characteristics (size and fiber composition) should be considered when evaluating progression towards fatigue as EMG and force responses are not consistent between muscles.

  6. Initiation and growth of multiple-site damage in the riveted lap joint of a curved stiffened fuselage panel: An experimental and analytical study

    NASA Astrophysics Data System (ADS)

    Ahmed, Abubaker Ali

    As part of the structural integrity research of the National Aging Aircraft Research Program, a comprehensive study on multiple-site damage (MSD) initiation and growth in a pristine lap-joint fuselage panel has been conducted. The curved stiffened fuselage panel was tested at the Full-Scale Aircraft Structural Test Evaluation and Research (FASTER) facility located at the Federal Aviation Administration William J. Hughes Technical Center. A strain survey test was conducted to verify proper load application. The panel was then subjected to a fatigue test with constant-amplitude cyclic loading. The applied loading spectrum included underload marker cycles so that crack growth history could be reconstructed from post-test fractographic examinations. Crack formation and growth were monitored via nondestructive and high-magnification visual inspections. Strain gage measurements recorded during the strain survey tests indicated that the inner surface of the skin along the upper rivet row of the lap joint experienced high tensile stresses due to local bending. During the fatigue loading, cracks were detected by eddy-current inspections at multiple rivet holes along the upper rivet row. Through-thickness cracks were detected visually after about 80% of the fatigue life. Once MSD cracks from two adjacent rivet holes linked up, there was a quick deterioration in the structural integrity of the lap joint. The linkup resulted in a 2.87" (72.9-mm) lead fatigue crack that rapidly propagated across 12 rivet holes and crossed over into the next skin bay, at which stage the fatigue test was terminated. A post-fatigue residual strength test was then conducted by loading the panel quasi-statically up to final failure. The panel failed catastrophically when the crack extended instantaneously across three additional bays. Post-test fractographic examinations of the fracture surfaces in the lap joint of the fuselage panel were conducted to characterize subsurface crack initiation and growth. Results showed evidence of fretting damage and crack initiation at multiple locations near the rivet holes along the faying surface of the skin. The subsurface cracks grew significantly along the faying surface before reaching the outer surface of the skin, forming elliptical crack fronts. A finite element model (FE) of the panel was constructed and geometrically-nonlinear analyses conducted to determine strain distribution under the applied loads. The FE model was validated by comparing the analysis results with the strain gage measurements recorded during the strain survey test. The validated FE model was then used to determine stress-intensity factors at the crack tips. Stress-intensity factor results indicated that crack growth in the lap joint was under mixed-mode; however, the opening-mode stress intensity factor was dominant. The stress-intensity factors computed from the FE analysis were used to conduct cycle-by-cycle integration of fatigue crack growth. In the cycle-by-cycle integration, the NASGRO crack growth model was used with its parameters selected to account for the effects of plasticity-induced crack closure and the test environment on crack growth rate. Fatigue crack growth predictions from cycle-by-cycle computation were in good agreement with the experimental measured crack growth data. The results of the study provide key insights into the natural development and growth of MSD cracks in the pristine lap joint. The data provided by the study represent a valuable source for the evaluation and validation of analytical methodologies used for predicting MSD crack initiation and growth.

  7. Fatigue life assessment of 316L stainless steel and DIN-1.4914 martensitic steel before and after TEXTOR exposure

    NASA Astrophysics Data System (ADS)

    Shakib, J. I.; Ullmaier, H.; Little, E. A.; Schmitz, W.; Faulkner, R. G.; Chung, T. E.

    1992-09-01

    The effects of plasma exposure in the TEXTOR tokomak on elevated temperature fatigue lifetime and failure micromechanisms of 316L austenitic stainless steel and DIN 1.4914 martensitic steel (NET reference heats) have been evaluated. Fatigue tests were carried out in vacuum in the temperature range 150°-450°C and compared with data from reference specimens.Plasma-induced surface modifications lead to significant deterioration in fatigue life of 316L steel, whereas the lifetime of 1.4914 steel is unaffected. Fatigue in the 1.4914 steel is surface-initiated only at high stresses. At low stress amplitudes internal fatigue initiation at inclusions was observed.

  8. [Preliminary study of rabbit experiment modality for evaluating cardiac fatigue].

    PubMed

    Yan, Xiaobo; Luo, Linmei; Liu, Leichu; Xiao, Shouzhong; Deng, Suyuan; Xiang, Lingli; Zhang, Cong

    2013-04-01

    This paper presents a preliminary study of rabbit experiment modality incorporating a new indicator for evaluating cardiac function changes, providing a basis for subsequent study of cardiac fatigue. Using only biochemical indicators, such as troponins, is difficult to make a distinction between exercise-induced cardiac fatigue (EICF) and exercise-induced cardiac damage (EICD). Therefore, some new indicators are needed to evaluate cardiac fatigue synthetically. In our study, we used New Zealand white rabbits to conduct a multi-step swimming experiments with load. We made the rabbits reach an exhaustive state to evaluate whether the amplitude ratio of the first to second heart sound (S1/S2) and heart rate (HR) during the exhaustive exercise would be decreased and whether they would be able to recover after the exhaustive exercise for 24 hours. During the first phase of swimming, S1/S2 and HR were increased, and then decreased at exhaustive state. They were recovered after the exhaustive exercise for 24 hours. Overloading led to deaths of three rabbis, and new phenomena from overloading and related to this kind of death were observed. The experiments proved that Multi-steps swimming experiments with loads by using New Zealand white rabbit is useful for studying cardiac fatigue and premonition of sudden cardiac death.

  9. Objective Evaluation of Visual Fatigue Using Binocular Fusion Maintenance.

    PubMed

    Hirota, Masakazu; Morimoto, Takeshi; Kanda, Hiroyuki; Endo, Takao; Miyoshi, Tomomitsu; Miyagawa, Suguru; Hirohara, Yoko; Yamaguchi, Tatsuo; Saika, Makoto; Fujikado, Takashi

    2018-03-01

    In this study, we investigated whether an individual's visual fatigue can be evaluated objectively and quantitatively from their ability to maintain binocular fusion. Binocular fusion maintenance (BFM) was measured using a custom-made binocular open-view Shack-Hartmann wavefront aberrometer equipped with liquid crystal shutters, wherein eye movements and wavefront aberrations were measured simultaneously. Transmittance in the liquid crystal shutter in front of the subject's nondominant eye was reduced linearly, and BFM was determined from the transmittance at the point when binocular fusion was broken and vergence eye movement was induced. In total, 40 healthy subjects underwent the BFM test and completed a questionnaire regarding subjective symptoms before and after a visual task lasting 30 minutes. BFM was significantly reduced after the visual task ( P < 0.001) and was negatively correlated with the total subjective eye symptom score (adjusted R 2 = 0.752, P < 0.001). Furthermore, the diagnostic accuracy for visual fatigue was significantly higher in BFM than in the conventional test results (aggregated fusional vergence range, near point of convergence, and the high-frequency component of accommodative microfluctuations; P = 0.007). These results suggest that BFM can be used as an indicator for evaluating visual fatigue. BFM can be used to evaluate the visual fatigue caused by the new visual devices, such as head-mount display, objectively.

  10. Evaluating cyclic fatigue of sealants during outdoor testing

    Treesearch

    R. Sam Williams; Steven Lacher; Corey Halpin; Christopher White

    2009-01-01

    A computer-controlled test apparatus (CCTA) and other instrumentation for subjecting sealant specimens to cyclic fatigue during outdoor exposure was developed. The CCTA enables us to use weather-induced conditions to cyclic fatigue specimens and to conduct controlled tests in-situ during the outdoor exposure. Thermally induced dimensional changes of an aluminum bar...

  11. Fatigue damage evaluation of short fiber CFRP based on phase information of thermoelastic temperature change

    NASA Astrophysics Data System (ADS)

    Sakagami, Takahide; Shiozawa, Daiki; Nakamura, Yu; Nonaka, Shinichi; Hamada, Kenichi

    2017-05-01

    Carbon fiber-reinforced plastic (CFRP) is widely used for structural members of transportation vehicles such as automobile, aircraft or spacecraft, utilizing its excellent specific strength and specific rigidity in contrast with the metal. Short carbon fiber composite materials are receiving a lot of attentions because of their excellent moldability and productivity, however they show complicated behaviors in fatigue fracture due to the random fibers orientation. In this study, thermoelastic stress analysis (TSA) using an infrared thermography was applied to the evaluation of fatigue damage in short carbon fiber composites. The distributions of the thermoelastic temperature change was measured during the fatigue test, as well as the phase difference between the thermoelastic temperature change and applied loading signal. Evolution of fatigue damages was detected from distributions of thermoelastic temperature change according to the thermoelastic damage analysis (TDA) procedure. It was also found that fatigue damage evolution was clearly detected than ever by the newly developed thermoelastic phase damage analysis (TPDA) in which damaged area was emphasized in the differential phase delay images utilizing the nature that carbon fiber show opposite phase thermoelastic temperature change.

  12. Evaluation of cyclic flexural fatigue of M-wire nickel-titanium rotary instruments.

    PubMed

    Al-Hadlaq, Solaiman M S; Aljarbou, Fahad A; AlThumairy, Riyadh I

    2010-02-01

    This study was conducted to investigate cyclic flexural fatigue resistance of GT series X rotary files made from the newly developed M-wire nickel-titanium alloy compared with GT and Profile nickel-titanium files made from a conventional nickel-titanium alloy. Fifteen files, size 30/0.04, of each type were used to evaluate the cyclic flexural fatigue resistance. A simple device was specifically constructed to measure the time each file type required to fail under cyclic flexural fatigue testing. The results of this experiment indicated that the GT series X files had superior cyclic flexural fatigue resistance than the other 2 file types made from a conventional nickel-titanium alloy (P = .004). On the other hand, the difference between the Profile and the GT files was not statistically significant. The findings of this study suggest that size 30/0.04 nickel-titanium rotary files made from the newly developed M-wire alloy have better cyclic flexural fatigue resistance than files of similar design and size made from the conventional nickel-titanium alloy. Copyright 2010 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  13. Visual fatigue modeling for stereoscopic video shot based on camera motion

    NASA Astrophysics Data System (ADS)

    Shi, Guozhong; Sang, Xinzhu; Yu, Xunbo; Liu, Yangdong; Liu, Jing

    2014-11-01

    As three-dimensional television (3-DTV) and 3-D movie become popular, the discomfort of visual feeling limits further applications of 3D display technology. The cause of visual discomfort from stereoscopic video conflicts between accommodation and convergence, excessive binocular parallax, fast motion of objects and so on. Here, a novel method for evaluating visual fatigue is demonstrated. Influence factors including spatial structure, motion scale and comfortable zone are analyzed. According to the human visual system (HVS), people only need to converge their eyes to the specific objects for static cameras and background. Relative motion should be considered for different camera conditions determining different factor coefficients and weights. Compared with the traditional visual fatigue prediction model, a novel visual fatigue predicting model is presented. Visual fatigue degree is predicted using multiple linear regression method combining with the subjective evaluation. Consequently, each factor can reflect the characteristics of the scene, and the total visual fatigue score can be indicated according to the proposed algorithm. Compared with conventional algorithms which ignored the status of the camera, our approach exhibits reliable performance in terms of correlation with subjective test results.

  14. Driver fatigue detection through multiple entropy fusion analysis in an EEG-based system.

    PubMed

    Min, Jianliang; Wang, Ping; Hu, Jianfeng

    2017-01-01

    Driver fatigue is an important contributor to road accidents, and fatigue detection has major implications for transportation safety. The aim of this research is to analyze the multiple entropy fusion method and evaluate several channel regions to effectively detect a driver's fatigue state based on electroencephalogram (EEG) records. First, we fused multiple entropies, i.e., spectral entropy, approximate entropy, sample entropy and fuzzy entropy, as features compared with autoregressive (AR) modeling by four classifiers. Second, we captured four significant channel regions according to weight-based electrodes via a simplified channel selection method. Finally, the evaluation model for detecting driver fatigue was established with four classifiers based on the EEG data from four channel regions. Twelve healthy subjects performed continuous simulated driving for 1-2 hours with EEG monitoring on a static simulator. The leave-one-out cross-validation approach obtained an accuracy of 98.3%, a sensitivity of 98.3% and a specificity of 98.2%. The experimental results verified the effectiveness of the proposed method, indicating that the multiple entropy fusion features are significant factors for inferring the fatigue state of a driver.

  15. Charge Weld Effects on High Cycle Fatigue Behavior of a Hollow Extruded AA6082 Profile

    NASA Astrophysics Data System (ADS)

    Nanninga, N.; White, C.; Dickson, R.

    2011-10-01

    Fatigue properties of specimens taken from different locations along the length of a hollow AA6082 extrusion, where charge weld (interface between successive billets in multi-billet extrusions) properties and the degree of coring (accumulation of highly sheared billet surface material at back end of billet) are expected to vary, have been evaluated. The fatigue strength of transverse specimens containing charge welds is lower near the front of the extrusion where the charge weld separation is relatively large. The relationship between fatigue failure and charge weld separation appears to be directly related to charge weld properties. The lower fatigue properties of the specimens are likely associated with early overload fatigue failure along the charge weld interface. Coring does not appear to have significantly affected fatigue behavior.

  16. 77 FR 50576 - Fatigue Tolerance Evaluation of Metallic Structures; OMB Approval of Information Collection

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-22

    ...-0413; Amdt. No. 29-55] RIN 2120-AJ51 Fatigue Tolerance Evaluation of Metallic Structures; OMB Approval of Information Collection AGENCY: Federal Aviation Administration, DOT. ACTION: Final rule; OMB approval of information collection. SUMMARY: This document notifies the public of the Office of Management...

  17. A systematic review of the scales used for the measurement of cancer-related fatigue (CRF).

    PubMed

    Minton, O; Stone, P

    2009-01-01

    Fatigue in cancer is very common and can be experienced at all stages of disease and in survivors. There is no accepted definition of cancer-related fatigue (CRF) and no agreement on how it should be measured. A number of scales have been developed to quantify the phenomenon of CRF. These vary in the quality of psychometric properties, ease of administration, dimensions of CRF covered and extent of use in studies of cancer patients. This review seeks to identify the available tools for measuring CRF and to make recommendations for ongoing research into CRF. A systematic review methodology was used to identify scales that have been validated to measure CRF. The inclusion criteria required the scale to have been validated for use in cancer patients and/or widely used in this population. Scales also had to meet a minimum quality score for inclusion. The reviewers identified 14 scales that met the inclusion criteria. The most commonly used scales and best validated were the Functional Assessment of Cancer Therapy Fatigue (FACT F), the European Organisation for Research and Treatment of Cancer Quality of Life Questionnaire (EORTC QLQ C30) (fatigue subscale) and the Fatigue Questionnaire (FQ). Unidimensional scales are the easiest to administer and have been most widely used. The authors recommend the use of the EORTC QLQ C30 fatigue subscale or the FACT F. The FQ gives a multidimensional assessment and has also been widely used. A substantial minority of the scales identified have not been used extensively or sufficiently validated in cancer patients and cannot be recommended for routine use without further validation.

  18. Nonlinear acoustic measurements ahead of a notch during fatigue

    NASA Astrophysics Data System (ADS)

    Martin, R. W.; Mooers, R. D.; Hutson, A. L.; Sathish, S.; Blodgett, M. P.

    2013-01-01

    This paper presents measurements of relative nonlinear acoustic parameter (βrel), ahead of a notch in Al 7075-T651 dog bone samples, subjected to fatigue. It is compared with crack growth measurements on the same samples. Measurements performed on two samples subjected to identical fatigue conditions that failed at vastly different number of fatigue cycles are described. The βrel measurement for both samples as a function of fatigue cycles was fit a Boltzmann curve. The role of changing βrel ahead of a notch is explored as a possible approach for remain life evaluation.

  19. Investigation of Gear and Bearing Fatigue Damage Using Debris Particle Distributions

    NASA Technical Reports Server (NTRS)

    Dempsey, Paula J.; Lewicki, David G.; Decker, Harry J.

    2004-01-01

    A diagnostic tool was developed for detecting fatigue damage to spur gears, spiral bevel gears, and rolling element bearings. This diagnostic tool was developed and evaluated experimentally by collecting oil debris data from fatigue tests performed in the NASA Glenn Spur Gear Fatigue Rig, Spiral Bevel Gear Test Facility, and the 500hp Helicopter Transmission Test Stand. During each test, data from an online, in-line, inductance type oil debris sensor was monitored and recorded for the occurrence of pitting damage. Results indicate oil debris alone cannot discriminate between bearing and gear fatigue damage.

  20. Using Wii Fit to reduce fatigue among African American women with systemic lupus erythematosus: a pilot study.

    PubMed

    Yuen, H K; Holthaus, K; Kamen, D L; Sword, D O; Breland, H L

    2011-10-01

    Fatigue and physical deconditioning are common, difficult to treat conditions among patients with systemic lupus erythematosus (SLE). The aim of this pilot study was to evaluate the effectiveness of a home-based exercise program using the Wii Fit system in patients with SLE. Fifteen sedentary African American women with SLE experiencing moderate to severe fatigue participated in a home exercise program using the Wii Fit 3 days a week for 30 minutes each for 10 weeks. A one-group pretest-post test design was used to evaluate the effectiveness of this program. Primary outcome measure was severity of fatigue. Secondary outcome measures were body weight, waist circumference, fatigue-related symptoms of distress, activity level, and physical fitness. At the completion of the 10-week Wii Fit exercise program, participants perceived fatigue severity as measured by the Fatigue Severity Scale to be significantly decreased (p = 0.002), and body weight and waist circumference were significantly reduced (p = 0.01). In addition, anxiety level, as measured by Hospital Anxiety and Depression Scale, and overall intensity of total pain experience, as measured by Short-form of the McGill Pain Questionnaire, were also significantly reduced (p < 0.05). Findings provide preliminary evidence that the Wii Fit motivates this population to exercise, which leads to alleviation of fatigue and reduced body weight, waist circumference, anxiety level, and overall intensity of total pain experience.

  1. [The effects of foot reflexology on fatigue and insomnia in patients suffering from coal workers' pneumoconiosis].

    PubMed

    Lee, Young-Mee; Sohng, Kyeong-Yae

    2005-12-01

    The purpose of this study was to determine the effects of foot reflexology on fatigue and insomnia in patients suffering from coal workers' pneumoconiosis. This study was a quasi-experimental study of pre-test and post-test design in a non-equivalent control group. The subjects of this study consisted of both the experimental group of twenty-nine and the control group of thirty coal workers' pneumoconiosis patients. Data was collected from December 10, 2002 to February 15, 2003. Foot reflexology was performed for 60 minutes twice a week through five weeks in the experimental group, but none in the control group. To evaluate the effects of foot reflexology, the scores of fatigue and insomnia were measured before and after the experiment in both groups. Fatigue was evaluated by Fatigue Symptoms Inventory. Insomnia was measured with the visual analogue scale (VAS). Data of this experiment was analyzed by Chi-square test, t-test, unpaired t-test and Repeated Measures ANOVA with the SAS Program. The scores of fatigue and insomnia decreased in the experimental group but not in the control group. There was a significant difference of fatigue and insomnia between the two groups. It is suggested that foot reflexology might have beneficial effects on reducing fatigue and insomnia in patients suffering from coal workers' pneumoconiosis, and can be recommended as a nursing intervention program for patients with coal workers' pneumoconiosis.

  2. Using Wii Fit to reduce fatigue among African American women with systemic lupus erythematosus: A pilot study

    PubMed Central

    Yuen, Hon K.; Holthaus, Katy; Kamen, Diane L.; Sword, David; Breland, Hazel L.

    2012-01-01

    Fatigue and physical deconditioning are common, difficult to treat conditions among patients with systemic lupus erythematosus (SLE). The aim of this pilot study is to evaluate the effectiveness of a home-based exercise program using the Wii Fit system in patients with SLE. Fifteen sedentary African American women with SLE experiencing moderate to severe fatigue participated in a home exercise program using the Wii Fit 3 days a week for 30 minutes each for 10 weeks. A one-group pretest-posttest design was used to evaluate the effectiveness of this program. Primary outcome measure was severity of fatigue. Secondary outcome measures were body weight, waist circumference, fatigue-related symptoms of distress, activity level and physical fitness. At the completion of the 10-week Wii Fit exercise program, participants perceived fatigue severity as measured by the Fatigue Severity Scale to be significantly decreased (P=0.002), body weight and waist circumference were significantly reduced (Ps=0.01). In addition, anxiety level as measured by Hospital Anxiety and Depression Scale, and overall intensity of total pain experience as measured by Short-form of the McGill Pain Questionnaire were also significantly reduced (Ps<0.05). Findings provide preliminary support that the Wii Fit motivates this population to exercise which leads to alleviation of fatigue and reduced body weight, waist circumference, anxiety level, and overall intensity of total pain experience. PMID:21700656

  3. Potential of M-Wave Elicited by Double Pulse for Muscle Fatigue Evaluation in Intermittent Muscle Activation by Functional Electrical Stimulation for Motor Rehabilitation

    PubMed Central

    Miura, Naoto; Watanabe, Takashi

    2016-01-01

    Clinical studies on application of functional electrical stimulation (FES) to motor rehabilitation have been increasing. However, muscle fatigue appears early in the course of repetitive movement production training by FES. Although M-wave variables were suggested to be reliable indices of muscle fatigue in long lasting constant electrical stimulation under the isometric condition, the ability of M-wave needs more studies under intermittent stimulation condition, because the intervals between electrical stimulations help recovery of muscle activation level. In this paper, M-waves elicited by double pulses were examined in muscle fatigue evaluation during repetitive movements considering rehabilitation training with surface electrical stimulation. M-waves were measured under the two conditions of repetitive stimulation: knee extension force production under the isometric condition and the dynamic movement condition by knee joint angle control. Amplitude of M-wave elicited by the 2nd pulse of a double pulse decreased during muscle fatigue in both measurement conditions, while the change in M-waves elicited by single pulses in a stimulation burst was not relevant to muscle fatigue in repeated activation with stimulation interval of 1 s. Fatigue index obtained from M-waves elicited by 2nd pulses was suggested to provide good estimation of muscle fatigue during repetitive movements with FES. PMID:27110556

  4. Stereoscopic visual fatigue assessment and modeling

    NASA Astrophysics Data System (ADS)

    Wang, Danli; Wang, Tingting; Gong, Yue

    2014-03-01

    Evaluation of stereoscopic visual fatigue is one of the focuses in the user experience research. It is measured in either subjective or objective methods. Objective measures are more preferred for their capability to quantify the degree of human visual fatigue without being affected by individual variation. However, little research has been conducted on the integration of objective indicators, or the sensibility of each objective indicator in reflecting subjective fatigue. The paper proposes a simply effective method to evaluate visual fatigue more objectively. The stereoscopic viewing process is divided into series of sessions, after each of which viewers rate their visual fatigue with subjective scores (SS) according to a five-grading scale, followed by tests of the punctum maximum accommodation (PMA) and visual reaction time (VRT). Throughout the entire viewing process, their eye movements are recorded by an infrared camera. The pupil size (PS) and percentage of eyelid closure over the pupil over time (PERCLOS) are extracted from the videos processed by the algorithm. Based on the method, an experiment with 14 subjects was conducted to assess visual fatigue induced by 3D images on polarized 3D display. The experiment consisted of 10 sessions (5min per session), each containing the same 75 images displayed randomly. The results show that PMA, VRT and PERCLOS are the most efficient indicators of subjective visual fatigue and finally a predictive model is derived from the stepwise multiple regressions.

  5. Evaluation of corrosion fatigue and life prediction of lower arm for automotive suspension component

    NASA Astrophysics Data System (ADS)

    Kim, Yong-Sang; Kim, Jung-Gu

    2017-01-01

    Lower arm is one of the suspension components of automobile. It is suffered from driving vibration and corrosive environment, namely corrosion fatigue. In this study, corrosion fatigue property of lower arm was investigated, and a modified model based on Palmgren-Miner rule was developed to predict the lifetimes of corrosion fatigue. The corrosion fatigue life of lower arm was about 1/6 times shorter than fatigue life. Based on the results of corrosion fatigue tests and meteorological data in Seoul and Halifax, the corrosion fatigue life of lower arm was predicted. The satisfaction of 10-year and 300,000 km warranty was dominated by the climate of automobile driving. This prediction indicates that the weather condition or driving condition influences the life of automotive parts. Therefore, to determine the warranty of automotive parts, the driving condition has to be carefully considered.

  6. Quantitative assessment of motor fatigue: normative values and comparison with prior-polio patients.

    PubMed

    Meldrum, Dara; Cahalane, Eibhlis; Conroy, Ronan; Guthrie, Richard; Hardiman, Orla

    2007-06-01

    Motor fatigue is a common complaint of polio survivors and has a negative impact on activities of daily living. The aim of this study was to establish a normative database for hand grip strength and fatigue and to investigate differences between prior-polio subjects and normal controls. Static and dynamic hand grip fatigue and maximum voluntary isometric contraction (MVIC) of hand grip were measured in subjects with a prior history of polio (n = 44) and healthy controls (n = 494). A normative database of fatigue was developed using four indices of analysis. Compared with healthy controls, subjects with prior polio had significantly reduced hand grip strength but developed greater hand grip fatigue in only one fatigue index. Quantitative measurement of fatigue in the prior-polio population may be useful in order to detect change over time and to evaluate treatment strategies.

  7. Prevalence of Fatigue and Associated Factors in a Spinal Cord Injury Population: Data from an Internet-Based and Face-to-Face Surveys.

    PubMed

    Cudeiro-Blanco, Javier; Onate-Figuérez, Ana; Soto-León, Vanesa; Avendaño-Coy, Juan; Mordillo-Mateos, Laura; Brocalero-Camacho, Angela; Esclarin-Ruz, Ana; Rotondi, Mario; Aguilar, Juan; Arias, Pablo; Oliviero, Antonio

    2017-08-01

    Fatigue has a profound impact on patients with spinal cord injury (SCI), but only limited treatments are available. The aim of this study was to determine the prevalence of fatigue in SCI and its association with clinical and demographic factors. We used an internet-based survey and a face-to-face interview to estimate the prevalence of fatigue in a SCI population. Fatigue was measured using the Fatigue Severity Scale (FSS). Clinically significant fatigue was defined as FSS scores greater than or equal to four. A total of 253 participants with SCI were included in the study. Clinically significant fatigue was present in one third of our sample. There was no relationship between fatigue and injury level or completeness. We found significant correlations between depression, pain, and level of injury. The relation of fatigue with completeness of injury and spasticity is less clear. Moreover, the online survey and the standard face-to-face interview showed similar results concerning fatigue evaluation. Several factors may contribute to fatigue, however. Future studies should be conducted to clarify which are the most relevant ones and, if possible, to determine which factors are modifiable.

  8. A Systematic Review of the Safety and Effect of Neurofeedback on Fatigue and Cognition.

    PubMed

    Luctkar-Flude, Marian; Groll, Dianne

    2015-07-01

    Many cancer survivors continue to experience ongoing symptoms, such as fatigue and cognitive impairment, which are poorly managed and have few effective, evidence-based treatment options. Neurofeedback is a noninvasive, drug-free form of brain training that may alleviate long-term symptoms reported by cancer patients. The purpose of this systematic review of the literature was to describe the effectiveness and safety of neurofeedback for managing fatigue and cognitive impairment. A systematic review of the literature was conducted using Joanna Briggs Institute (JBI) methodology. A comprehensive search of 5 databases was conducted: Medline, CINAHL, AMED, PsycInfo, and Embase. Randomized and nonrandomized controlled trials, controlled before and after studies, cohort, case control studies, and descriptive studies were included in this review. Twenty-seven relevant studies were included in the critical appraisals. The quality of most studies was poor to moderate based on the JBI critical appraisal checklists. Seventeen studies were deemed of sufficient quality to be included in the review: 10 experimental studies and 7 descriptive studies. Of these, only 2 were rated as high-quality studies and the remaining were rated as moderate quality. All 17 included studies reported positive results for at least one fatigue or cognitive outcome in a variety of populations, including 1 study with breast cancer survivors. Neurofeedback interventions were well tolerated with only 3 studies reporting any side effects. Despite issues with methodological quality, the overall positive findings and few reported side effects suggest neurofeedback could be helpful in alleviating fatigue and cognitive impairment. Currently, there is insufficient evidence that neurofeedback is an effective therapy for management of these symptoms in cancer survivors, however, these promising results support the need for further research with this patient population. More information about which neurofeedback technologies, approaches, and protocols could be successfully used with cancer survivors and with minimal side effects is needed. This research will have significance to nurses and physicians in oncology and primary care settings who provide follow-up care and counseling to cancer survivors experiencing debilitating symptoms in order to provide information and education related to evidence-based therapy options. © The Author(s) 2015.

  9. Prevalence of fatigue and chronic fatigue syndrome in a primary care practice.

    PubMed

    Bates, D W; Schmitt, W; Buchwald, D; Ware, N C; Lee, J; Thoyer, E; Kornish, R J; Komaroff, A L

    1993-12-27

    Our goals were to determine the prevalence of unusual, debilitating fatigue and the frequency with which it was associated with the chronic fatigue syndrome (CFS) or other physical or psychological illness in an outpatient clinic population. We prospectively evaluated a cohort of 1000 consecutive patients in a primary care clinic in an urban, hospital-based general medicine practice. The study protocol included a detailed history, physical examination, and laboratory and psychiatric testing. Five patients who came because of CFS studies were excluded. Of the remaining 995, 323 reported fatigue, and 271 (27%) complained of at least 6 months of unusual fatigue that interfered with their daily lives. Of the 271, self-report or record review revealed a medical or psychiatric condition that could have explained the fatigue in 186 (69%). Thus, 85 (8.5%) of 995 patients had a debilitating fatigue of at least 6 months' duration, without apparent cause. Of these patients, 48 refused further evaluation, and 11 were unavailable for follow-up; 26 completed the protocol. Three of the 26 were hypothyroid, and one had a major psychiatric disorder. Of the remaining 22 patients, three met Centers for Disease Control and Prevention criteria for CFS, four met British criteria, and 10 met the Australian case definition. The point prevalences of CFS were thus 0.3% (95% confidence interval [CI], 0% to 0.6%), 0.4% (95% CI, 0% to 0.8%), and 1.0% (95% CI, 0.4% to 1.6%) using the Centers for Disease Control and Prevention, British, and Australian case definitions, respectively. These estimates were conservative, because they assumed that none of the patients who refused evaluation or were unavailable for follow-up would meet criteria for CFS. While chronic, debilitating fatigue is common in medical outpatients, CFS is relatively uncommon. Prevalence depends substantially on the case definition used.

  10. Preloading To Accelerate Slow-Crack-Growth Testing

    NASA Technical Reports Server (NTRS)

    Gyekenyesi, John P.; Choi, Sung R.; Pawlik, Ralph J.

    2004-01-01

    An accelerated-testing methodology has been developed for measuring the slow-crack-growth (SCG) behavior of brittle materials. Like the prior methodology, the accelerated-testing methodology involves dynamic fatigue ( constant stress-rate) testing, in which a load or a displacement is applied to a specimen at a constant rate. SCG parameters or life prediction parameters needed for designing components made of the same material as that of the specimen are calculated from the relationship between (1) the strength of the material as measured in the test and (2) the applied stress rate used in the test. Despite its simplicity and convenience, dynamic fatigue testing as practiced heretofore has one major drawback: it is extremely time-consuming, especially at low stress rates. The present accelerated methodology reduces the time needed to test a specimen at a given rate of applied load, stress, or displacement. Instead of starting the test from zero applied load or displacement as in the prior methodology, one preloads the specimen and increases the applied load at the specified rate (see Figure 1). One might expect the preload to alter the results of the test and indeed it does, but fortunately, it is possible to account for the effect of the preload in interpreting the results. The accounting is done by calculating the normalized strength (defined as the strength in the presence of preload the strength in the absence of preload) as a function of (1) the preloading factor (defined as the preload stress the strength in the absence of preload) and (2) a SCG parameter, denoted n, that is used in a power-law crack-speed formulation. Figure 2 presents numerical results from this theoretical calculation.

  11. Heat shock proteins and chronic fatigue in primary Sjögren's syndrome.

    PubMed

    Bårdsen, Kjetil; Nilsen, Mari Mæland; Kvaløy, Jan Terje; Norheim, Katrine Brække; Jonsson, Grete; Omdal, Roald

    2016-04-01

    Fatigue occurs frequently in patients with cancer, neurological diseases and chronic inflammatory diseases, but the biological mechanisms that lead to and regulate fatigue are largely unknown. When the innate immune system is activated, heat shock proteins (HSPs) are produced to protect cells. Some extracellular HSPs appear to recognize cellular targets in the brain, and we hypothesize that fatigue may be generated by specific HSPs signalling through neuronal or glial cells in the central nervous system. From a cohort of patients with primary Sjögren's syndrome, 20 patients with high and 20 patients with low fatigue were selected. Fatigue was evaluated with a fatigue visual analogue scale. Plasma concentrations of HSP32, HSP60, HSP72 and HSP90α were measured and analysed to determine if there were associations with the level of fatigue. Plasma concentrations of HSP90α were significantly higher in patients with high fatigue compared with those with low fatigue, and there was a tendency to higher concentrations of HSP72 in patients with high fatigue compared with patients with low fatigue. There were no differences in concentrations of HSP32 and HSP60 between the high- and low-fatigue groups. Thus, extracellular HSPs, particularly HSP90α, may signal fatigue in chronic inflammation. This supports the hypothesis that fatigue is generated by cellular defence mechanisms. © The Author(s) 2016.

  12. Dangerous intersections? A review of studies of fatigue and distraction in the automated vehicle.

    PubMed

    Matthews, Gerald; Neubauer, Catherine; Saxby, Dyani J; Wohleber, Ryan W; Lin, Jinchao

    2018-04-10

    The impacts of fatigue on the vehicle driver may change with technological advancements including automation and the increasing prevalence of potentially distracting in-car systems. This article reviews the authors' simulation studies of how fatigue, automation, and distraction may intersect as threats to safety. Distinguishing between states of active and passive fatigue supports understanding of fatigue and the development of countermeasures. Active fatigue is a stress-like state driven by overload of cognitive capabilities. Passive fatigue is produced by underload and monotony, and is associated with loss of task engagement and alertness. Our studies show that automated driving reliably elicits subjective symptoms of passive fatigue and also loss of alertness that persists following manual takeover. Passive fatigue also impairs attention and automation use in operators of Remotely Piloted Vehicles (RPVs). Use of in-vehicle media has been proposed as a countermeasure to fatigue, but such media may also be distracting. Studies tested whether various forms of phone-based media interacted with automation-induced fatigue, but effects were complex and dependent on task configuration. Selection of fatigue countermeasures should be guided by an understanding of the form of fatigue confronting the operator. System design, regulation of level of automation, managing distraction, and selection of fatigue-resilient personnel are all possible interventions for passive fatigue, but careful evaluation of interventions is necessary prior to deployment. Copyright © 2018. Published by Elsevier Ltd.

  13. Evaluation of the anti-fatigue effects of a traditional herbal drug, Gongjin-dan, under insufficient sleep conditions: study protocol for a randomised controlled trial.

    PubMed

    Son, Mi Ju; Im, Hwi-Jin; Kim, Young-Eun; Ku, Boncho; Lee, Jun-Hwan; Son, Chang-Gue

    2016-08-22

    Many herbal medicines are traditionally used as anti-fatigue agents in east Asian countries; however, there is a dearth of clinical evidence supporting the anti-fatigue effects of such medicines and their mechanisms. This study is a feasibility trial to assess the clinical efficacy of Gongjin-dan (GJD) and verify its mechanisms by exploring fatigue outcomes, including endocrine and immunological biomarkers in humans. To investigate the anti-fatigue effects of GJD and the mechanism underlying these effects, a randomised, double-blind, placebo-controlled crossover clinical trial was designed. Participants (24 healthy male volunteers) will be hospitalised for 4 days (3 nights), during which acute fatigue and stress conditions will be induced by sleep deprivation, and GJD or a placebo will be administered (twice daily). The primary outcome will be changes in serum cortisol levels, measured in the morning, as an objective biomarker of sleep deprivation-induced fatigue and stress. The secondary outcomes will include: the Fatigue Severity Scale; the Brief Fatigue Inventory, and the Leeds Sleep Evaluation Questionnaire scores; levels of salivary cortisol, epinephrine, norepinephrine, oxidative stress-related biomarkers, homocysteine, and immunological factors; and heart rate variability. After a washout period of more than 4 weeks, a second treatment phase will commence in which participants who were previously administered the placebo will receive the drug and vice versa, following the same treatment regime as in the first phase. This study protocol provides a unique opportunity to enhance our understanding of fatigue and the effects of GJD on fatigue in terms of endocrine and immunological mechanisms by validating the study design and determining feasibility. Findings from this trial will help researchers to design a pilot or definitive clinical trial of traditional herbal medicine for chronic fatigue. Korean National Clinical Trial Registry CRIS; KCT0001681 , registered on 29 October 2015.

  14. Patients with primary biliary cholangitis and fatigue present with depressive symptoms and selected cognitive deficits, but with normal attention performance and brain structure.

    PubMed

    Zenouzi, Roman; von der Gablentz, Janina; Heldmann, Marcus; Göttlich, Martin; Weiler-Normann, Christina; Sebode, Marcial; Ehlken, Hanno; Hartl, Johannes; Fellbrich, Anja; Siemonsen, Susanne; Schramm, Christoph; Münte, Thomas F; Lohse, Ansgar W

    2018-01-01

    In primary biliary cholangitis (PBC) fatigue is a major clinical challenge of unknown etiology. By demonstrating that fatigue in PBC is associated with an impaired cognitive performance, previous studies have pointed out the possibility of brain abnormalities underlying fatigue in PBC. Whether structural brain changes are present in PBC patients with fatigue, however, is unclear. To evaluate the role of structural brain abnormalities in PBC patients severely affected from fatigue we, therefore, performed a case-control cerebral magnetic resonance imaging (cMRI) study and correlated changes of white and grey brain matter with the cognitive and attention performance. 20 female patients with PBC and 20 female age-matched controls were examined in this study. The assessment of fatigue, psychological symptoms, cognitive and attention performance included clinical questionnaires, established cognition tests and a computerized test battery of attention performance. T1-weighted cMRI and diffusion tensor imaging (DTI) scans were acquired with a 3 Tesla scanner. Structural brain alterations were investigated with voxel-based morphometry (VBM) and DTI analyses. Results were correlated to the cognitive and attention performance. Compared to healthy controls, PBC patients had significantly higher levels of fatigue and associated psychological symptoms. Except for an impairment of verbal fluency, no cognitive or attention deficits were found in the PBC cohort. The VBM and DTI analyses revealed neither major structural brain abnormalities in the PBC cohort nor correlations with the cognitive and attention performance. Despite the high burden of fatigue and selected cognitive deficits, the attention performance of PBC patients appears to be comparable to healthy people. As structural brain alterations do not seem to be present in PBC patients with fatigue, fatigue in PBC must be regarded as purely functional. Future studies should evaluate, whether functional brain changes underlie fatigue in PBC.

  15. Changes in and predictors of severity of fatigue in women with breast cancer: A longitudinal study.

    PubMed

    Huang, Hsiang-Ping; Chen, Mei-Ling; Liang, Jersey; Miaskowski, Christine

    2014-04-01

    Fatigue is the most common symptom experienced by cancer patients. However, longitudinal studies of changes in the severity and predictors of fatigue are limited. The purposes of this study were to evaluate changes in fatigue severity in women with breast cancer prior to and for twelve months after surgery. Factors that affected the severity and the trajectory of fatigue were identified. This observational prospective study approached 334 women who were scheduled for breast cancer surgery in a medical center located in northern Taiwan. Among the 334 women, 239 met the inclusion/exclusion criteria. The final sample size used for the data analysis was 200. Fatigue, depressive symptom, and symptom distress were evaluated in women prior to and at 1, 2, 3, 4, 5, 6, 8, 10, and 12 months after surgery for breast cancer. Hierarchical linear modeling (HLM) was applied where level-1 data consisted of repeated observations of study variables within each subject and level-2 data consisted of static characteristics of individual subject. The fatigue levels ranged from 1.92 to 3.09. Changes in fatigue severity demonstrated a quadratic trajectory that increased and reached the peak at the second month after the surgery, followed by a gradual decreased. After adjusting for the effect of receipt of chemotherapy, symptom distress, and depressive symptom, the quadratic change pattern for fatigue became imperceptible. Women who had a partial mastectomy (P=0.028), had a higher educational level (P=0.048), were married (P=0.043), and had poorer functional performance at diagnosis (P=0.043) had higher levels of fatigue. Patients who underwent surgery for breast cancer reported mild to moderate levels of fatigue over a period of 12 months. Fatigue levels fluctuated with patients' level of depressive symptoms, symptom distress, and receipt of chemotherapy. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Certification Testing Methodology for Composite Structure. Volume 2. Methodology Development

    DTIC Science & Technology

    1986-10-01

    parameter, sample size and fa- tigue test duration. The required input are 1. Residual strength Weibull shape parameter ( ALPR ) 2. Fatigue life Weibull shape...INPUT STRENGTH ALPHA’) READ(*,*) ALPR ALPRI = 1.O/ ALPR WRITE(*, 2) 2 FORMAT( 2X, ’PLEASE INPUT LIFE ALPHA’) READ(*,*) ALPL ALPLI - 1.0/ALPL WRITE(*, 3...3 FORMAT(2X,’PLEASE INPUT SAMPLE SIZE’) READ(*,*) N AN - N WRITE(*,4) 4 FORMAT(2X,’PLEASE INPUT TEST DURATION’) READ(*,*) T RALP - ALPL/ ALPR ARGR - 1

  17. A preliminary damage tolerance methodology for composite structures

    NASA Technical Reports Server (NTRS)

    Wilkins, D. J.

    1983-01-01

    The certification experience for the primary, safety-of-flight composite structure applications on the F-16 is discussed. The rationale for the selection of delamination as the major issue for damage tolerance is discussed, as well as the modeling approach selected. The development of the necessary coupon-level data base is briefly summarized. The major emphasis is on the description of a full-scale fatigue test where delamination growth was obtained to demonstrate the validity of the selected approach. A summary is used to review the generic features of the methodology.

  18. Multi-centre parallel arm randomised controlled trial to assess the effectiveness and cost-effectiveness of a group-based cognitive behavioural approach to managing fatigue in people with multiple sclerosis.

    PubMed

    Thomas, Peter W; Thomas, Sarah; Kersten, Paula; Jones, Rosemary; Nock, Alison; Slingsby, Vicky; Green, Colin; Baker, Roger; Galvin, Kate; Hillier, Charles

    2010-06-16

    Fatigue is one of the most commonly reported and debilitating symptoms of multiple sclerosis (MS); approximately two-thirds of people with MS consider it to be one of their three most troubling symptoms. It may limit or prevent participation in everyday activities, work, leisure, and social pursuits, reduce psychological well-being and is one of the key precipitants of early retirement. Energy effectiveness approaches have been shown to be effective in reducing MS-fatigue, increasing self-efficacy and improving quality of life. Cognitive behavioural approaches have been found to be effective for managing fatigue in other conditions, such as chronic fatigue syndrome, and more recently, in MS. The aim of this pragmatic trial is to evaluate the clinical and cost-effectiveness of a recently developed group-based fatigue management intervention (that blends cognitive behavioural and energy effectiveness approaches) compared with current local practice. This is a multi-centre parallel arm block-randomised controlled trial (RCT) of a six session group-based fatigue management intervention, delivered by health professionals, compared with current local practice. 180 consenting adults with a confirmed diagnosis of MS and significant fatigue levels, recruited via secondary/primary care or newsletters/websites, will be randomised to receive the fatigue management intervention or current local practice. An economic evaluation will be undertaken alongside the trial. Primary outcomes are fatigue severity, self-efficacy and disease-specific quality of life. Secondary outcomes include fatigue impact, general quality of life, mood, activity patterns, and cost-effectiveness. Outcomes in those receiving the fatigue management intervention will be measured 1 week prior to, and 1, 4, and 12 months after the intervention (and at equivalent times in those receiving current local practice). A qualitative component will examine what aspects of the fatigue management intervention participants found helpful/unhelpful and barriers to change. This trial is the fourth stage of a research programme that has followed the Medical Research Council guidance for developing and evaluating complex interventions. What makes the intervention unique is that it blends cognitive behavioural and energy effectiveness approaches. A potential strength of the intervention is that it could be integrated into existing service delivery models as it has been designed to be delivered by staff already working with people with MS. Service users will be involved throughout this research. Current Controlled Trials ISRCTN76517470.

  19. [Mediator effect analysis of the trait coping style on job stress and fatigue of the military personnel stationed in plateau and high cold region].

    PubMed

    Zhang, J J; Jia, J M; Tao, N; Song, Z X; Ge, H; Jiang, Y; Tian, H; Qiu, E C; Tang, J H; Liu, J W

    2017-03-20

    Objective: To investigate the fatigue status of military personnel stationed in plateau and high cold region, and to analyze the mediator effect of trait coping style on job stress and fatigue. Methods: In October 2010, with the method of cluster random sampling survey, 531 military personnel stationed in plateau and high cold region were chosen as subject. The fatigue status were evaluated by the Chinese version multidimensional fatigue inventory (MFI-20) , job stress were evaluated by the Job Stress Survey (JSS) , and trait coping style were evaluated by the Trait Coping Style Questionnaire (TCSQ) . Results: According to the information of different population characteristics, mean rank of physical fatigue about the urban (town) group were higher than that of rural group ( Z =-2.200, P <0.05) ; mean rank of reduced motivation about the urban (town) group were higher than that of rural group ( Z =-2.781, P <0.05) ; mean rank of general fatigue scores about the urban (town) group were higher than that of rural group ( Z =-3.026, P <0.05) ; mean rank of physical fatigue about the up or equal 20-years old age group were higher than that of below 20-years old age group ( Z =-4.045, P <0.05) ; mean rank of reduced motivation about the up or equal 20-years old age group were higher than that of below 20-years old age group ( Z =-2.182, P <0.05) ; mean rank of mental fatigue about the up or equal 20-years old age group were higher than that of below 20-years old age group ( Z =-2.879, P <0.05) ; mean rank of general fatigue scores about the up or equal 20-years old age group were higher than that of below 20-years old age group ( Z =-3.647, P <0.05) ; mean rank of reduced motivation were significant statistical difference among the military officers, sergeancy and soldier group ( F =18.965, P <0.05) ; mean rank of general fatigue scores were significant statistical difference among the military officers, sergeancy and soldier group ( F =14.711, P <0.05) . The score of negative coping style were positively correlated with the score of physical fatigue ( r (s)=0.129) , reduced activity ( r (s)=0.123) , reduced motivation ( r (s)=0.149) and general fatigue ( r (s)=0.174) respectively, the score of organizational support lack strength were positively correlated with the score of physical fatigue ( r (s)=0.090) , reduced activity ( r (s)=0.098) , reduced motivation ( r (s)=0.099) and general fatigue ( r (s)=0.130) respectively. The mediator effect of negative coping style on the job stress and fatigue was 0.013 ( P <0.01) . Conclusion: The fatigue statuses of the urban (town) group and the up or equal 20-years old age group are poor, and the negative coping style plays mediator effect on the job stress and fatigue.

  20. The development of peripheral fatigue and short-term recovery during self-paced high-intensity exercise

    PubMed Central

    Froyd, Christian; Millet, Guillaume Y; Noakes, Timothy D

    2013-01-01

    The time course of muscular fatigue that develops during and after an intense bout of self-paced dynamic exercise was characterized by using different forms of electrical stimulation (ES) of the exercising muscles. Ten active subjects performed a time trial (TT) involving repetitive concentric extension/flexion of the right knee using a Biodex dynamometer. Neuromuscular function (NMF), including ES and a 5 s maximal isometric voluntary contraction (MVC), was assessed before the start of the TT and immediately (<5 s) after each 20% of the TT had been completed, as well as 1, 2, 4 and 8 min after TT termination. The TT time was 347 ± 98 s. MVCs were 52% of baseline values at TT termination. Torque responses from ES were reduced to 33–68% of baseline using different methods of stimulation, suggesting that the extent to which peripheral fatigue is documented during exercise depends upon NMF assessment methodology. The major changes in muscle function occurred within the first 40% of exercise. Significant recovery in skeletal muscle function occurs within the first 1–2 min after exercise, showing that previous studies may have underestimated the extent to which peripheral fatigue develops during exercise. PMID:23230235

  1. Development of an EORTC quality of life phase III module measuring cancer-related fatigue (EORTC QLQ-FA13).

    PubMed

    Weis, Joachim; Arraras, Juan Ignacio; Conroy, Thierry; Efficace, Fabio; Fleissner, Claudia; Görög, Attila; Hammerlid, Eva; Holzner, Bernhard; Jones, Louise; Lanceley, Anne; Singer, Susanne; Wirtz, Markus; Flechtner, Henning; Bottomley, Andrew

    2013-05-01

    European Organisation for Research and Treatment of Cancer (EORTC) has developed a new multidimensional instrument measuring cancer-related fatigue that can be used in conjunction with the quality of life core questionnaire, EORTC QLQ-C30. The paper focuses on the development of the phase III module, collaborating with seven European countries, including a patient sample of 318 patients. The methodology followed the EORTC guidelines for developing phase III modules. Patients were assessed by questionnaires (EORTC QLQ-C30 with the EORTC Fatigue Module FA15) followed by an interview, asking for their opinions on the difficulty in understanding, on annoyance and on intrusiveness. The phase II FA15 was revised on the basis of qualitative analyses (comments of the patients), quantitative results (descriptive statistics) as well as the multi-item response theory analyses. The three dimensions (physical, emotional and cognitive) of the scale could be confirmed. As a result, EORTC QLQ-FA13 is now available as a valid phase III module measuring cancer-related fatigue in clinical trials and will be psychometrically improved in the upcoming phase IV. Copyright © 2012 John Wiley & Sons, Ltd.

  2. Crack Growth Simulation and Residual Strength Prediction in Airplane Fuselages

    NASA Technical Reports Server (NTRS)

    Chen, Chuin-Shan; Wawrzynek, Paul A.; Ingraffea, Anthony R.

    1999-01-01

    This is the final report for the NASA funded project entitled "Crack Growth Prediction Methodology for Multi-Site Damage." The primary objective of the project was to create a capability to simulate curvilinear fatigue crack growth and ductile tearing in aircraft fuselages subjected to widespread fatigue damage. The second objective was to validate the capability by way of comparisons to experimental results. Both objectives have been achieved and the results are detailed herein. In the first part of the report, the crack tip opening angle (CTOA) fracture criterion, obtained and correlated from coupon tests to predict fracture behavior and residual strength of built-up aircraft fuselages, is discussed. Geometrically nonlinear, elastic-plastic, thin shell finite element analyses are used to simulate stable crack growth and to predict residual strength. Both measured and predicted results of laboratory flat panel tests and full-scale fuselage panel tests show substantial reduction of residual strength due to the occurrence of multi-site damage (MSD). Detailed comparisons of n stable crack growth history, and residual strength between the predicted and experimental results are used to assess the validity of the analysis methodology. In the second part of the report, issues related to crack trajectory prediction in thin shells; an evolving methodology uses the crack turning phenomenon to improve the structural integrity of aircraft structures are discussed, A directional criterion is developed based on the maximum tangential stress theory, but taking into account the effect of T-stress and fracture toughness orthotropy. Possible extensions of the current crack growth directional criterion to handle geometrically and materially nonlinear problems are discussed. The path independent contour integral method for T-stress evaluation is derived and its accuracy is assessed using a p- and hp-version adaptive finite element method. Curvilinear crack growth is simulated in coupon tests and in full-scale fuselage panel tests. Both T-stress and fracture toughness orthotropy are found to be essential to predict the observed crack paths. The analysis methodology and software program (FRANC3D/STAGS) developed herein allows engineers to maintain aging aircraft economically while insuring continuous airworthiness. Consequently, it will improve the technology to support the safe operation of the current aircraft fleet as well as the design of more damage-tolerant aircraft for the next generation fleet.

  3. Reliability of surface electromyography in the assessment of paraspinal muscle fatigue: an updated systematic review.

    PubMed

    Mohseni Bandpei, Mohammad A; Rahmani, Nahid; Majdoleslam, Basir; Abdollahi, Iraj; Ali, Shabnam Shah; Ahmad, Ashfaq

    2014-09-01

    The purpose of this study was to review the literature to determine whether surface electromyography (EMG) is a reliable tool to assess paraspinal muscle fatigue in healthy subjects and in patients with low back pain (LBP). A literature search for the period of 2000 to 2012 was performed, using PubMed, ProQuest, Science Direct, EMBASE, OVID, CINAHL, and MEDLINE databases. Electromyography, reliability, median frequency, paraspinal muscle, endurance, low back pain, and muscle fatigue were used as keywords. The literature search yielded 178 studies using the above keywords. Twelve articles were selected according to the inclusion criteria of the study. In 7 of the 12 studies, the surface EMG was only applied in healthy subjects, and in 5 studies, the reliability of surface EMG was investigated in patients with LBP or a comparison with a control group. In all of these studies, median frequency was shown to be a reliable EMG parameter to assess paraspinal muscles fatigue. There was a wide variation among studies in terms of methodology, surface EMG parameters, electrode location, procedure, and homogeneity of the study population. The results suggest that there seems to be a convincing body of evidence to support the merit of surface EMG in the assessment of paraspinal muscle fatigue in healthy subject and in patients with LBP. Copyright © 2014 National University of Health Sciences. Published by Elsevier Inc. All rights reserved.

  4. Numerical verification of two-component dental implant in the context of fatigue life for various load cases.

    PubMed

    Szajek, Krzysztof; Wierszycki, Marcin

    2016-01-01

    Dental implant designing is a complex process which considers many limitations both biological and mechanical in nature. In earlier studies, a complete procedure for improvement of two-component dental implant was proposed. However, the optimization tasks carried out required assumption on representative load case, which raised doubts on optimality for the other load cases. This paper deals with verification of the optimal design in context of fatigue life and its main goal is to answer the question if the assumed load scenario (solely horizontal occlusal load) leads to the design which is also "safe" for oblique occlussal loads regardless the angle from an implant axis. The verification is carried out with series of finite element analyses for wide spectrum of physiologically justified loads. The design of experiment methodology with full factorial technique is utilized. All computations are done in Abaqus suite. The maximal Mises stress and normalized effective stress amplitude for various load cases are discussed and compared with the assumed "safe" limit (equivalent of fatigue life for 5e6 cycles). The obtained results proof that coronial-appical load component should be taken into consideration in the two component dental implant when fatigue life is optimized. However, its influence in the analyzed case is small and does not change the fact that the fatigue life improvement is observed for all components within whole range of analyzed loads.

  5. Experimental and modeling results of creep fatigue life of Inconel 617 and Haynes 230 at 850 C

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Xiang; Sokolov, Mikhail A; Sham, Sam

    Creep fatigue testing of Ni-based superalloy Inconel 617 and Haynes 230 were conducted in the air at 850 C. Tests were performed with fully reversed axial strain control at a total strain range of 0.5%, 1.0% or 1.5% and hold time at maximum tensile strain for 3, 10 or 30 min. In addition, two creep fatigue life prediction methods, i.e. linear damage summation and frequency-modified tensile hysteresis energy modeling, were evaluated and compared with experimental results. Under all creep fatigue tests, Haynes 230 performed better than Inconel 617. Compared to the low cycle fatigue life, the cycles to failure formore » both materials decreased under creep fatigue test conditions. Longer hold time at maximum tensile strain would cause a further reduction in both material creep fatigue life. The linear damage summation could predict the creep fatigue life of Inconel 617 for limited test conditions, but considerably underestimated the creep fatigue life of Haynes 230. In contrast, frequency-modified tensile hysteresis energy modeling showed promising creep fatigue life prediction results for both materials.« less

  6. Fatigue crack initiation of magnesium alloys under elastic stress amplitudes: A review

    NASA Astrophysics Data System (ADS)

    Wang, B. J.; Xu, D. K.; Wang, S. D.; Han, E. H.

    2017-12-01

    The most advantageous property of magnesium (Mg) alloys is their density, which is lower compared with traditional metallic materials. Mg alloys, considered the lightest metallic structural material among others, have great potential for applications as secondary load components in the transportation and aerospace industries. The fatigue evaluation of Mg alloys under elastic stress amplitudes is very important in ensuring their service safety and reliability. Given their hexagonal close packed structure, the fatigue crack initiation of Mg and its alloys is closely related to the deformation mechanisms of twinning and basal slips. However, for Mg alloys with shrinkage porosities and inclusions, fatigue cracks will preferentially initiate at these defects, remarkably reducing the fatigue lifetime. In this paper, some fundamental aspects about the fatigue crack initiation mechanisms of Mg alloys are reviewed, including the 3 followings: 1) Fatigue crack initiation of as-cast Mg alloys, 2) influence of microstructure on fatigue crack initiation of wrought Mg alloys, and 3) the effect of heat treatment on fatigue initiation mechanisms. Moreover, some unresolved issues and future target on the fatigue crack initiation mechanism of Mg alloys are also described.

  7. Experimental and modeling results of creep-fatigue life of Inconel 617 and Haynes 230 at 850 °C

    NASA Astrophysics Data System (ADS)

    Chen, Xiang; Sokolov, Mikhail A.; Sham, Sam; Erdman, Donald L., III; Busby, Jeremy T.; Mo, Kun; Stubbins, James F.

    2013-01-01

    Creep-fatigue testing of Ni-based superalloy Inconel 617 and Haynes 230 were conducted in the air at 850 °C. Tests were performed with fully reversed axial strain control at a total strain range of 0.5%, 1.0% or 1.5% and hold time at maximum tensile strain for 3, 10 or 30 min. In addition, two creep-fatigue life prediction methods, i.e. linear damage summation and frequency-modified tensile hysteresis energy modeling, were evaluated and compared with experimental results. Under all creep-fatigue tests, Haynes 230 performed better than Inconel 617. Compared to the low cycle fatigue life, the cycles to failure for both materials decreased under creep-fatigue test conditions. Longer hold time at maximum tensile strain would cause a further reduction in both material creep-fatigue life. The linear damage summation could predict the creep-fatigue life of Inconel 617 for limited test conditions, but considerably underestimated the creep-fatigue life of Haynes 230. In contrast, frequency-modified tensile hysteresis energy modeling showed promising creep-fatigue life prediction results for both materials.

  8. Fatigue life estimation of a 1D aluminum beam under mode-I loading using the electromechanical impedance technique

    NASA Astrophysics Data System (ADS)

    Lim, Yee Yan; Kiong Soh, Chee

    2011-12-01

    Structures in service are often subjected to fatigue loads. Cracks would develop and lead to failure if left unnoticed after a large number of cyclic loadings. Monitoring the process of fatigue crack propagation as well as estimating the remaining useful life of a structure is thus essential to prevent catastrophe while minimizing earlier-than-required replacement. The advent of smart materials such as piezo-impedance transducers (lead zirconate titanate, PZT) has ushered in a new era of structural health monitoring (SHM) based on non-destructive evaluation (NDE). This paper presents a series of investigative studies to evaluate the feasibility of fatigue crack monitoring and estimation of remaining useful life using the electromechanical impedance (EMI) technique employing a PZT transducer. Experimental tests were conducted to study the ability of the EMI technique in monitoring fatigue crack in 1D lab-sized aluminum beams. The experimental results prove that the EMI technique is very sensitive to fatigue crack propagation. A proof-of-concept semi-analytical damage model for fatigue life estimation has been developed by incorporating the linear elastic fracture mechanics (LEFM) theory into the finite element (FE) model. The prediction of the model matches closely with the experiment, suggesting the possibility of replacing costly experiments in future.

  9. A Pragmatic Evaluation of the National Cancer Institute Physician Data Query (PDQ)®-Based Brief Counseling on Cancer-Related Fatigue among Patients Undergoing Radiation Therapy

    PubMed Central

    Bauml, Joshua; Xie, Sharon X; Penn, Courtney; Desai, Krupali; Dong, Kimberly W; Bruner, Deborah Watkins; Vapiwala, Neha; Mao, Jun James

    2018-01-01

    Purpose Cancer-Related Fatigue (CRF) negatively affects quality of life among cancer patients. This study seeks to evaluate the outcome and patient receptiveness of a brief counseling program based on National Cancer Institute (NCI) PDQ® information to manage CRF when integrated into Radiation Therapy (RT). Methods We conducted a prospective cohort study among patients undergoing non-palliative RT. Patients with stage I–III tumors and with Karnofsky score 60 or better were given a ten-minute behavioral counseling session during the first two weeks of RT. The Brief Fatigue Inventory (BFI) was administered at baseline/end of RT. Results Of 93 patients enrolled, 89% found the counseling useful and practical. By the end of RT, 59% reported increased exercise, 41.6% sought nutrition counseling, 72.7% prioritized daily activities, 74.4% took daytime naps, and 70.5% talked with other cancer patients. Regarding counseling, patients who had received chemotherapy prior to RT had no change in fatigue (−0.2), those who received RT alone had mild increase in fatigue (0.7, p=0.02), and those who received concurrent chemotherapy experienced a substantial increase in fatigue (3.0 to 5.2, p=0.05). Higher baseline fatigue and receipt of chemotherapy were predictive of worsened fatigue in a multivariate model (both p<0.01). Conclusion Our data suggests that brief behavioral counseling based on NCI guidelines is well accepted by patients showing an uptake in many activities to cope with CRF. Those who receive concurrent chemotherapy and with higher baseline fatigue are at risk for worsening fatigue despite of guideline-based therapy. PMID:29479490

  10. Cytokine polymorphisms are associated with fatigue in adults living with HIV/AIDS

    PubMed Central

    Lee, Kathryn A.; Gay, Caryl L.; Lerdal, Anners; Pullinger, Clive R.; Aouizerat, Bradley E.

    2014-01-01

    Fatigue has been associated with inflammation and cytokine activity among adults, but this relationship has not been evaluated among adults living with HIV. Diurnal patterns of fatigue have been previously identified in adults with HIV/AIDS. Thus, the purpose of this study was to describe these fatigue patterns in relation to cytokine plasma concentrations and gene polymorphisms. A convenience sample of 317 adults living with HIV/AIDS completed a measure of fatigue in the morning and evening for three consecutive days; participants reporting low levels of both morning and evening fatigue (n=110) or high levels of fatigue in the morning and evening (n=114) were included in the analysis, resulting in a final sample of 224 adults (151 men, 55 women, and 18 transgender). Plasma cytokines were analyzed, and genotyping was conducted for 15 candidate genes involved in cytokine signaling: interferon-gamma (IFNG), IFNG receptor 1 (IFNGR1), interleukins (IL), nuclear factor of kappa light polypeptide gene enhancer in B cells (NFKB-1 and -2), and tumor necrosis factor alpha (TNFA). Demographic and clinical variables were evaluated as potential covariates. Controlling for genomic estimates of ancestry and self-reported race/ethnicity and gender, the high fatigue pattern was associated with five single nucleotide polymorphisms (SNPs): IL1B rs1071676 and rs1143627, IL4 rs2243274, and TNFA rs1800683 and rs1041981. The IL1B and TNFA polymorphisms were not associated with plasma levels of IL-1β or TNFα, respectively. This study strengthens the evidence for an association between inflammation and fatigue. In this chronic illness population, the cytokine polymorphisms associated with high levels of morning and evening fatigue provide direction for future personalized medicine intervention research. PMID:24632226

  11. Psychometric Properties of the Chinese Version of the Occupational Fatigue Exhaustion/Recovery Scale: A Test in a Nursing Population.

    PubMed

    Fang, Jin-Bo; Zhou, Chun-Fen; Huang, Jing; Qiu, Chang-Jian

    2018-06-01

    The Occupational Fatigue Exhaustion/Recovery Scale (OFER) was designed to assess occupational fatigue in nurses. Although the original English version of this instrument has shown high degrees of reliability and validity, a Chinese version of this scale has yet to be verified. The aim of this study was to evaluate the psychometric properties of the OFER in a population of Chinese nurses. The scale was translated using translation and back-translation. The validities and reliabilities were evaluated on 923 qualified participants using content validity index, concurrent validity, factorial validity, internal consistency reliability, and test-retest reliability. The content validity index for the OFER was .92. The correlation coefficients between the scores of the OFER subscales and the criteria in this study (varying from -.498 to .705) verified that the OFER has acceptable concurrent validity. Principal component analysis and confirmatory factor analysis revealed that three factors correspond to the structure of the original instrument and that recovery mediates the relationship between acute and chronic fatigue. The Cronbach's alpha for the chronic fatigue, acute fatigue, and intershift recovery subscales were .83, .85, and .86, respectively. Test-retest reliabilities with correlation coefficients from .61 to .78 were found in the three subscales. OFER is a reliable and valid instrument for assessing work-related fatigue in Chinese nurses. However, further improvement of the acute fatigue subscale is recommended. The OFER has the potential to elicit information that is useful for assessing fatigue in nurses in China. Furthermore, as it differentiates between acute and chronic fatigue, OFER may be an effective tool for guiding the development and implementation of various, related intervention measures.

  12. Active and Passive Fatigue in Simulated Driving: Discriminating Styles of Workload Regulation and Their Safety Impacts

    PubMed Central

    Saxby, Dyani J.; Matthews, Gerald; Warm, Joel S.; Hitchcock, Edward M.; Neubauer, Catherine

    2015-01-01

    Despite the known dangers of driver fatigue, it is a difficult construct to study empirically. Different forms of task-induced fatigue may differ in their effects on driver performance and safety. Desmond and Hancock (2001) defined active and passive fatigue states that reflect different styles of workload regulation. In 2 driving simulator studies we investigated the multidimensional subjective states and safety outcomes associated with active and passive fatigue. Wind gusts were used to induce active fatigue, and full vehicle automation to induce passive fatigue. Drive duration was independently manipulated to track the development of fatigue states over time. Participants were undergraduate students. Study 1 (N = 108) focused on subjective response and associated cognitive stress processes, while Study 2 (N = 168) tested fatigue effects on vehicle control and alertness. In both studies the 2 fatigue manipulations produced different patterns of subjective response reflecting different styles of workload regulation, appraisal, and coping. Active fatigue was associated with distress, overload, and heightened coping efforts, whereas passive fatigue corresponded to large-magnitude declines in task engagement, cognitive underload, and reduced challenge appraisal. Study 2 showed that only passive fatigue reduced alertness, operationalized as speed of braking and steering responses to an emergency event. Passive fatigue also increased crash probability, but did not affect a measure of vehicle control. Findings support theories that see fatigue as an outcome of strategies for managing workload. The distinction between active and passive fatigue is important for assessment of fatigue and for evaluating automated driving systems which may induce dangerous levels of passive fatigue. PMID:24041288

  13. Evaluation of materials during outdoor testing using a computer-controlled test apparatus

    Treesearch

    R. Sam Williams; Steven Lacher; Corey Halpin; Christopher White

    2006-01-01

    Ultraviolet radiation, moisture, heat, and cyclic fatigue are some of the stressors that cause materials to degrade outdoors. Considerable research has addressed the effects of ultraviolet radiation and moisture on the rate of this degradation. An often overlooked stressor on materials, during outdoor testing, is the cyclic fatigue. Cyclic fatigue is caused by self-...

  14. Corrosion fatigue of 2219-T87 aluminum alloy

    NASA Technical Reports Server (NTRS)

    Mcmillan, V. C.

    1986-01-01

    Corrosion fatigue studies were conducted on bare, chemical conversion coated, and anodized 2219-T87 aluminum alloy. These tests were performed using a rotating beam machine running at a velocity of 2500 rpm. The corrosive environments tested were distilled water, 100 ppm NaCl, and 3.5 percent NaCl. Results were compared to the endurance limit in air. An evaluation of the effect of protective coatings on corrosion fatigue was made by comparing the fatigue properties of specimens with coatings to those without.

  15. Quantitative methods in assessment of neurologic function.

    PubMed

    Potvin, A R; Tourtellotte, W W; Syndulko, K; Potvin, J

    1981-01-01

    Traditionally, neurologists have emphasized qualitative techniques for assessing results of clinical trials. However, in recent years qualitative evaluations have been increasingly augmented by quantitative tests for measuring neurologic functions pertaining to mental state, strength, steadiness, reactions, speed, coordination, sensation, fatigue, gait, station, and simulated activities of daily living. Quantitative tests have long been used by psychologists for evaluating asymptomatic function, assessing human information processing, and predicting proficiency in skilled tasks; however, their methodology has never been directly assessed for validity in a clinical environment. In this report, relevant contributions from the literature on asymptomatic human performance and that on clinical quantitative neurologic function are reviewed and assessed. While emphasis is focused on tests appropriate for evaluating clinical neurologic trials, evaluations of tests for reproducibility, reliability, validity, and examiner training procedures, and for effects of motivation, learning, handedness, age, and sex are also reported and interpreted. Examples of statistical strategies for data analysis, scoring systems, data reduction methods, and data display concepts are presented. Although investigative work still remains to be done, it appears that carefully selected and evaluated tests of sensory and motor function should be an essential factor for evaluating clinical trials in an objective manner.

  16. A Taxonomy of Fatigue Concepts and Their Relation to Hearing Loss

    PubMed Central

    Hornsby, Benjamin W.Y.; Naylor, Graham; Bess, Fred H.

    2016-01-01

    Fatigue is common in individuals with a variety of chronic health conditions and can have significant negative effects on quality of life. Although limited in scope, recent work suggests persons with hearing loss may be at increased risk for fatigue, in part due to effortful listening that is exacerbated by their hearing impairment. However, the mechanisms responsible for hearing loss-related fatigue, and the efficacy of audiologic interventions for reducing fatigue, remain unclear. To improve our understanding of hearing loss-related fatigue, as a field it is important to develop a common conceptual understanding of this construct. In this paper the broader fatigue literature is reviewed to identify and describe core constructs, consequences and methods for assessing fatigue and related constructs. Finally, our current knowledge linking hearing loss and fatigue is described and may be summarised as follows: Hearing impairment increases the risk of subjective fatigue and vigor deficits.Adults with hearing loss require more time to recover from fatigue after work, and have more work absences.Sustained, effortful, listening can be fatiguing.Optimal methods for eliciting and measuring fatigue in persons with hearing loss remain unclear and may vary with listening condition.Amplification may minimize decrements in cognitive processing speed during sustained effortful listening. Future research is needed to develop reliable measurement methods to quantify hearing loss-related fatigue; explore factors responsible for modulating fatigue in people with hearing loss; and identify and evaluate potential interventions for reducing hearing loss-related fatigue. PMID:27355763

  17. Fatigue Analysis of Proton Exchange Membrane Fuel Cell Stacks Based on Structural Stress Distribution

    NASA Astrophysics Data System (ADS)

    Wu, C. W.; Liu, B.; Wei, M. Y.; Liu, L. F.

    2017-05-01

    Proton exchange membrane fuel cell (PEMFC) stack usually undergoes various vibrations during packing, transportation and serving time, in particular for those used in the automobiles and portable equipment. Based on the Miner fatigue damage theory, the fatigue lives of the fuel cell components are first assessed. Then the component fatigue life contours of the stack are obtained under four working conditions, i.e. the three single-axial (in X-, Y- and Z-axis separately) and multi-axial random vibrations. Accordingly, the component damage under various vibrations is evaluated. The stress distribution on the gasket and PEM will greatly affect their fatigue lives. Finally, we compare the fatigue lives of 4-bolt- and 6-bolt-clamping stacks under the same total clamping force, and find that increasing the bolt number could improve the bolt fatigue lives.

  18. A Micro-Mechanism-Based Continuum Corrosion Fatigue Damage Model for Steels

    NASA Astrophysics Data System (ADS)

    Sun, Bin; Li, Zhaoxia

    2018-05-01

    A micro-mechanism-based corrosion fatigue damage model is developed for studying the high-cycle corrosion fatigue of steel from multi-scale viewpoint. The developed physical corrosion fatigue damage model establishes micro-macro relationships between macroscopic continuum damage evolution and collective evolution behavior of microscopic pits and cracks, which can be used to describe the multi-scale corrosion fatigue process of steel. As a case study, the model is used to predict continuum damage evolution and number density of the corrosion pit and short crack of steel component in 5% NaCl water under constant stress amplitude at 20 kHz, and the numerical results are compared with experimental results. It shows that the model is effective and can be used to evaluate the continuum macroscopic corrosion fatigue damage and study microscopic corrosion fatigue mechanisms of steel.

  19. Microtexture Analysis and Modeling of Ambient Fatigue and Creep-Fatigue Damages in Ti-6Al-4V Alloy

    NASA Astrophysics Data System (ADS)

    Kumar, Jalaj; Singh, A. K.; Raman, S. Ganesh Sundara; Kumar, Vikas

    2017-02-01

    In the present investigation, microtexture analysis using electron back-scattered diffraction technique has been performed to study fatigue- and creep-fatigue damages and associated deformation structures in Ti-6Al-4V alloy. Special emphasis has been given to low-angle grain boundary configuration and its possible application as a damage indicator. Damage is mostly present in the form of voids as investigated through scanning electron microscopy. Stored deformation energies have been evaluated for the strain-controlled fatigue-, the stress-controlled fatigue-, and the creep-fatigue-tested samples. Stored deformation energies have also been analyzed vis-à-vis total damage energies to quantify the contribution of damages to various samples. A relation between the stored deformation energy and the applied strain amplitude has been proposed in this study.

  20. A Micro-Mechanism-Based Continuum Corrosion Fatigue Damage Model for Steels

    NASA Astrophysics Data System (ADS)

    Sun, Bin; Li, Zhaoxia

    2018-04-01

    A micro-mechanism-based corrosion fatigue damage model is developed for studying the high-cycle corrosion fatigue of steel from multi-scale viewpoint. The developed physical corrosion fatigue damage model establishes micro-macro relationships between macroscopic continuum damage evolution and collective evolution behavior of microscopic pits and cracks, which can be used to describe the multi-scale corrosion fatigue process of steel. As a case study, the model is used to predict continuum damage evolution and number density of the corrosion pit and short crack of steel component in 5% NaCl water under constant stress amplitude at 20 kHz, and the numerical results are compared with experimental results. It shows that the model is effective and can be used to evaluate the continuum macroscopic corrosion fatigue damage and study microscopic corrosion fatigue mechanisms of steel.

Top