Sample records for fatigue physiological condition

  1. Physiological and neurophysiological determinants of postcancer fatigue: design of a randomized controlled trial

    PubMed Central

    2012-01-01

    Background Postcancer fatigue is a frequently occurring, severe, and invalidating problem, impairing quality of life. Although it is possible to effectively treat postcancer fatigue with cognitive behaviour therapy, the nature of the underlying (neuro)physiology of postcancer fatigue remains unclear. Physiological aspects of fatigue include peripheral fatigue, originating in muscle or the neuromuscular junction; central fatigue, originating in nerves, spinal cord, and brain; and physical deconditioning, resulting from a decreased cardiopulmonary function. Studies on physiological aspects of postcancer fatigue mainly concentrate on deconditioning. Peripheral and central fatigue and brain morphology and function have been studied for patients with fatigue in the context of chronic fatigue syndrome and neuromuscular diseases and show several characteristic differences with healthy controls. Methods/design Fifty seven severely fatigued and 21 non-fatigued cancer survivors will be recruited from the Radboud University Nijmegen Medical Centre. Participants should have completed treatment of a malignant, solid tumour minimal one year earlier and should have no evidence of disease recurrence. Severely fatigued patients are randomly assigned to either the intervention condition (cognitive behaviour therapy) or the waiting list condition (start cognitive behaviour therapy after 6 months). All participants are assessed at baseline and the severely fatigued patients also after 6 months follow-up (at the end of cognitive behaviour therapy or waiting list). Primary outcome measures are fatigue severity, central and peripheral fatigue, brain morphology and function, and physical condition and activity. Discussion This study will be the first randomized controlled trial that characterizes (neuro)physiological factors of fatigue in disease-free cancer survivors and evaluates to which extent these factors can be influenced by cognitive behaviour therapy. The results of this study are not only essential for a theoretical understanding of this invalidating condition, but also for providing an objective biological marker for fatigue that could support the diagnosis and follow-up of treatment. Trial registration The study is registered at http://ClinicalTrials.gov (NCT01096641). PMID:22708881

  2. Physiological and psychological fatigue in extreme conditions: the military example.

    PubMed

    Weeks, Sharon R; McAuliffe, Caitlin L; Durussel, David; Pasquina, Paul F

    2010-05-01

    The extreme conditions causing fatigue in military service members in combat and combat training deserve special consideration. The collective effects of severe exertion, limited caloric intake, and sleep deprivation, combined with the inherent stressors of combat, lead to both physiological and psychological fatigue that may significantly impair performance. Studies of combat training have revealed a myriad of endocrine, cognitive, and neurological changes that occur as a result of exposure to extreme conditions. Further contributory effects of multiple military deployments, post-traumatic stress disorder, and traumatic brain injury may also influence both the susceptibility to and expression of fatigue states. Further research is needed to explore these effects to enhance military readiness and performance as well as prevent injuries. Copyright (c) 2010 American Academy of Physical Medicine and Rehabilitation. Published by Elsevier Inc. All rights reserved.

  3. Measuring listening-related effort and fatigue in school-aged children using pupillometry.

    PubMed

    McGarrigle, Ronan; Dawes, Piers; Stewart, Andrew J; Kuchinsky, Stefanie E; Munro, Kevin J

    2017-09-01

    Stress and fatigue from effortful listening may compromise well-being, learning, and academic achievement in school-aged children. The aim of this study was to investigate the effect of a signal-to-noise ratio (SNR) typical of those in school classrooms on listening effort (behavioral and pupillometric) and listening-related fatigue (self-report and pupillometric) in a group of school-aged children. A sample of 41 normal-hearing children aged 8-11years performed a narrative speech-picture verification task in a condition with recommended levels of background noise ("ideal": +15dB SNR) and a condition with typical classroom background noise levels ("typical": -2dB SNR). Participants showed increased task-evoked pupil dilation in the typical listening condition compared with the ideal listening condition, consistent with an increase in listening effort. No differences were found between listening conditions in terms of performance accuracy and response time on the behavioral task. Similarly, no differences were found between listening conditions in self-report and pupillometric markers of listening-related fatigue. This is the first study to (a) examine listening-related fatigue in children using pupillometry and (b) demonstrate physiological evidence consistent with increased listening effort while listening to spoken narratives despite ceiling-level task performance accuracy. Understanding the physiological mechanisms that underpin listening-related effort and fatigue could inform intervention strategies and ultimately mitigate listening difficulties in children. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Exploring Neuro-Physiological Correlates of Drivers' Mental Fatigue Caused by Sleep Deprivation Using Simultaneous EEG, ECG, and fNIRS Data

    PubMed Central

    Ahn, Sangtae; Nguyen, Thien; Jang, Hyojung; Kim, Jae G.; Jun, Sung C.

    2016-01-01

    Investigations of the neuro-physiological correlates of mental loads, or states, have attracted significant attention recently, as it is particularly important to evaluate mental fatigue in drivers operating a motor vehicle. In this research, we collected multimodal EEG/ECG/EOG and fNIRS data simultaneously to develop algorithms to explore neuro-physiological correlates of drivers' mental states. Each subject performed simulated driving under two different conditions (well-rested and sleep-deprived) on different days. During the experiment, we used 68 electrodes for EEG/ECG/EOG and 8 channels for fNIRS recordings. We extracted the prominent features of each modality to distinguish between the well-rested and sleep-deprived conditions, and all multimodal features, except EOG, were combined to quantify mental fatigue during driving. Finally, a novel driving condition level (DCL) was proposed that distinguished clearly between the features of well-rested and sleep-deprived conditions. This proposed DCL measure may be applicable to real-time monitoring of the mental states of vehicle drivers. Further, the combination of methods based on each classifier yielded substantial improvements in the classification accuracy between these two conditions. PMID:27242483

  5. Acoustic Correlates of Fatigue in Laryngeal Muscles: Findings for a Criterion-Based Prevention of Acquired Voice Pathologies

    ERIC Educational Resources Information Center

    Boucher, Victor J.

    2008-01-01

    Purpose: The objective was to identify acoustic correlates of laryngeal muscle fatigue in conditions of vocal effort. Method: In a previous study, a technique of electromyography (EMG) served to define physiological signs of "voice fatigue" in laryngeal muscles involved in voicing. These signs correspond to spectral changes in contraction…

  6. Mental Fatigue and Physical and Cognitive Performance During a 2-Bout Exercise Test.

    PubMed

    Vrijkotte, Susan; Meeusen, Romain; Vandervaeren, Cloe; Buyse, Luk; Cutsem, Jeroen van; Pattyn, Nathalie; Roelands, Bart

    2018-04-01

    The 2-bout exercise protocol has been developed to diagnose nonfunctional overreaching and the "overtraining syndrome." It consists of 2 maximal exercise bouts separated by 4 hours. Mental fatigue negatively influences performance, but the effects of its occurrence during the 2-bout exercise protocol have never been investigated. The aim of this study was to examine whether mental fatigue (induced during the rest period) influences physical and cognitive performance during/after the second exercise bout of the 2-bout exercise protocol. Nine healthy, well-trained male cyclists participated in a single-blind, randomized, placebo-controlled crossover study. The intervention consisted of either 1.5-hour rest (control) or performing a computer-based Stroop task to induce mental fatigue. Cognitive (Eriksen Flanker task), physiological (lactate, maximum heart rate, and maximum wattage), and subjective data (mental fatigue-visual analog scale, Profile of Mood States, and rating of perceived exertion) were gathered. Ratings of fatigue, tension, and mental fatigue were affected in the mental fatigue condition (P < .05). Neither physiological nor cognitive differences were found between conditions. Ratings of mental fatigue were already affected after the first maximum exercise test (P < .05). Neither physical nor cognitive performance was affected by mental fatigue, but subjective ratings did reveal significant differences. It is recommended to exclude mentally challenging tasks during the 2-bout exercise protocol rest period to ascertain unaffected subjective test results. This study should be repeated in athletes diagnosed with nonfunctional overreaching/overtraining syndrome.

  7. Workload Influence on Fatigue Related Psychological and Physiological Performance Changes of Aviators

    PubMed Central

    Liu, Xi-Wen; Bian, Ka; Wen, Zhi-Hong; Li, Xiao-Jing; Zhang, Zuo-Ming; Hu, Wen-Dong

    2014-01-01

    Objective We evaluated a variety of non-invasive physiological technologies and a series of test approaches for examination of aviator performances under conditions of mental workload in order to provide a standard real-time test for physiological and psychological pilot fatigue assessments. Methods Twenty-one male aviators were selected for a simulated flight in a hypobaric cabin with artificial altitude conditions of 2400 meter above sea level. The simulated flight lasted for 1.5 h, and was repeated for two times with an intervening 0.5 h rest period outside the hypobaric cabin. Subjective criteria (a fatigue assessment instrument [FAI]) and objective criteria (a standing-position balance test as well as a critical flicker fusion frequency (CFF) test) were used for fatigue evaluations. Results No significant change was observed in the FAI scores before and after the simulated flight, indicating that there was no subjective fatigue feeling among the participants. However, significant differences were observed in the standing-position balance and CFF tests among the subjects, suggesting that psychophysiological indexes can reflect mental changes caused by workload to a certain extent. The CFF test was the simplest and clearly indicated the occurrence of workload influences on pilot performances after a simulated flight. Conclusions Results showed that the CFF test was the easiest way to detect workload caused mental changes after a simulated flight in a hypobaric cabin and reflected the psychophysiological state of aviators. We suggest that this test might be used as an effective routine method for evaluating the workload influences on mental conditions of aviators. PMID:24505277

  8. Passing thoughts on the evolutionary stability of implicit motor behaviour: performance retention under physiological fatigue.

    PubMed

    Poolton, J M; Masters, R S W; Maxwell, J P

    2007-06-01

    Heuristics of evolutionary biology (e.g., survival of the fittest) dictate that phylogenetically older processes are inherently more stable and resilient to disruption than younger processes. On the grounds that non-declarative behaviour emerged long before declarative behaviour, Reber (1992) argues that implicit (non-declarative) learning is supported by neural processes that are evolutionarily older than those supporting explicit learning. Reber suggested that implicit learning thus leads to performance that is more robust than explicit learning. Applying this evolutionary framework to motor performance, we examined whether implicit motor learning, relative to explicit motor learning, conferred motor output that was resilient to physiological fatigue and durable over time. In Part One of the study a fatigued state was induced by a double Wingate Anaerobic test protocol. Fatigue had no affect on performance of participants in the implicit condition; whereas, performance of participants in the explicit condition deteriorated significantly. In Part Two of the study a convenience sample of participants was recalled following a one-year hiatus. In both the implicit and the explicit condition retention of performance was seen and, contrary to the findings in Part One, so was resilience to fatigue. The resilient performance in the explicit condition after one year may have resulted from forgetting (the decay of declarative knowledge) or from consolidation of declarative knowledge as implicit memories. In either case, implicit processes were left to more effectively support motor performance.

  9. Fatigue in healthy and diseased individuals.

    PubMed

    Finsterer, Josef; Mahjoub, Sinda Zarrouk

    2014-08-01

    Although fatigue is experienced by everyone, its definition and classification remains under debate. A review of the previously published data on fatigue. Fatigue is influenced by age, gender, physical condition, type of food, latency to last meal, mental status, psychological conditions, personality type, life experience, and the health status of an individual. Fatigue may not only be a symptom but also a measurable and quantifiable dimension, also known as fatigability. Additionally, it may be classified as a condition occurring at rest or under exercise or stress, as physiologic reaction or pathologic condition, as spontaneous phenomenon or triggerable state, as resistant or irresistant to preconditioning, training, or attitude, as prominent or collateral experience, and as accessible or inaccessible to any type of treatment or intervention. Fatigue may be the sole symptom of a disease or one among others. It may be also classified as acute or chronic. Quantification of fatigability is achievable by fatigue scores, force measurement, electromyography, or other means. Fatigue and fatigability need to be delineated from conditions such as sleepiness, apathy, exhaustion, exercise intolerance, lack of vigor, weakness, inertia, or tiredness. Among neurological disorders, the prevalence of fatigue is particularly increased in multiple sclerosis, amyotrophic lateral sclerosis, Parkinson disease, traumatic brain injury, stroke, and bleeding and also in neuromuscular disorders. Fatigue may be influenced by training, mental preconditioning, or drugs. Fatigue needs to be recognized as an important condition that is not only a symptom but may also be quantified and can be modified by various measures depending on the underlying cause. © The Author(s) 2013.

  10. The effects of physical fatigue and altitude on physiological, biochemical, and performance responses.

    DOT National Transportation Integrated Search

    1982-05-01

    Twelve healthy young men were evaluated in each of four experimental conditions involving the possible combinations of two exercise conditions given prior to performance testing (1 h of heavy exercise vs. no exercise) and two altitude conditions (gro...

  11. Mental Fatigue Impairs Intermittent Running Performance.

    PubMed

    Smith, Mitchell R; Marcora, Samuele M; Coutts, Aaron J

    2015-08-01

    The purpose of the study was to investigate the effects of mental fatigue on intermittent running performance. Ten male intermittent team sports players performed two identical self-paced, intermittent running protocols. The two trials were separated by 7 d and preceded, in a randomized-counterbalanced order, by 90 min of either emotionally neutral documentaries (control) or the AX-continuous performance test (AX-CPT; mental fatigue). Subjective ratings of fatigue and vigor were measured before and after these treatments, and motivation was recorded before the intermittent running protocol. Velocity, heart rate, oxygen consumption, blood glucose and lactate concentrations, and ratings of perceived exertion (RPE) were measured throughout the 45-min intermittent running protocol. Session RPE was recorded 30 min after the intermittent running protocol. Subjective ratings of fatigue were higher after the AX-CPT (P = 0.005). This mental fatigue significantly reduced velocity at low intensities (1.28 ± 0.18 m·s vs 1.31 ± 0.17 m·s; P = 0.037), whereas high-intensity running and peak velocities were not significantly affected. Running velocity at all intensities significantly declined over time in both conditions (P < 0.001). Oxygen consumption was significantly lower in the mental fatigue condition (P = 0.007). Other physiological variables, vigor and motivation, were not significantly affected. Ratings of perceived exertion during the intermittent running protocol were not significantly different between conditions despite lower overall velocity in the mental fatigue condition. Session RPE was significantly higher in the mental fatigue condition (P = 0.013). Mental fatigue impairs intermittent running performance. This negative effect of mental fatigue seems to be mediated by higher perception of effort.

  12. A sociological stance on fatigue and tiredness: Social inequalities, norms and representations.

    PubMed

    Loriol, Marc

    2017-04-01

    Fatigue is complex, representing simultaneously a physiological, psychological and social phenomenon. The sociological approach attempts to understand the experience of fatigue and its characterization at diverse periods and in various social contexts. After giving a sociological history of different forms of fatigue through the ages (acedia, melancholy, neurasthenia, chronic fatigue syndrome, etc.), this article proposes a social epidemiology of fatigue in the current period. Objectification of working and living conditions allows us to illustrate social inequalities in fatigue and exhaustion, but seems to contradict dominant social representations of fatigue today. It invites a critical discussion of contemporary theories of fatigue (such those of Alain Ehrenberg or Byung-Chul Han), which consider that fatigue is a condition of modern man, overwhelmed by his freedom. More modestly, analysis of the fatigue presented here rests on the capacity to be able to find a good balance between too much investment in work or life (which is exhausting) and not enough investment (which leads to boredom and lack of self-fulfillment). This balance depends on fragile and specific social norms in different professional or social circles and cannot be defined a priori. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  13. Fatigue: an overview.

    PubMed

    Rosenthal, Thomas C; Majeroni, Barbara A; Pretorius, Richard; Malik, Khalid

    2008-11-15

    Fatigue, a common presenting symptom in primary care, negatively impacts work performance, family life, and social relationships. The differential diagnosis of fatigue includes lifestyle issues, physical conditions, mental disorders, and treatment side effects. Fatigue can be classified as secondary to other medical conditions, physiologic, or chronic. The history and physical examination should focus on identifying common secondary causes (e.g., medications, anemia, pregnancy) and life-threatening problems, such as cancer. Results of laboratory studies affect management in only 5 percent of patients, and if initial results are normal, repeat testing is generally not indicated. Treatment of all types of fatigue should include a structured plan for regular physical activity that consists of stretching and aerobic exercise, such as walking. Caffeine and modafinil may be useful for episodic situations requiring alertness. Short naps are proven performance enhancers. Selective serotonin reuptake inhibitors, such as fluoxetine, paroxetine, or sertraline, may improve energy in patients with depression. Patients with chronic fatigue may respond to cognitive behavior therapy. Scheduling regular follow-up visits, rather than sporadic urgent appointments, is recommended for effective long-term management.

  14. Physiological and psychological markers associated with HIV-related fatigue.

    PubMed

    Barroso, Julie; Carlson, John R; Meynell, Janet

    2003-02-01

    Fatigue is among the most common and debilitating complaints of HIV-positive individuals. These data are part of a larger exploratory study investigating the relationships of selected psychological and physiological factors among 40 participants with HIV-related fatigue. Fatigue severity was measured using the HIV-Related Fatigue Scale. Fatigue was correlated with depression (r = .40, p < .01), state anxiety (r = .40, p <.01), and trait anxiety (r = .46, p <.01). Of the physiological factors, there were three statistically significant correlations: thyroid-stimulating hormone was negatively correlated with fatigue severity (r = -.36, p = .02), and platelets (r = .35, p = .03) and alkaline phosphatase (r = .27, p = .09) were positively correlated with fatigue severity. There were no correlations between fatigue severity and CD4 count (r = -.16, p = .31) or fatigue severity and HIV viral load levels (r = .031, p = .84). Even among the group with excellent viral suppression, fatigue scores were still very high for many participants.

  15. Influence of dietary nitrate supplementation on physiological and cognitive responses to incremental cycle exercise.

    PubMed

    Thompson, Kevin G; Turner, Louise; Prichard, Jonathon; Dodd, Fiona; Kennedy, David O; Haskell, Crystal; Blackwell, James R; Jones, Andrew M

    2014-03-01

    Dietary inorganic nitrate supplementation causes physiological effects which may enhance exercise tolerance. However it is not known whether nitrate might alter cognitive function during exercise. In a double-blind, cross-over study, sixteen subjects ingested either nitrate-rich beetroot juice or a placebo and completed a continuous cycle exercise test involving 20min stages at 50% and 70% V˙O2peak and a final stage at 90% V˙O2peak until volitional exhaustion. Cognitive tasks were completed before, during and after exercise. In the dietary nitrate condition: plasma [nitrite] increased (p<0.01), systolic blood pressure decreased (p<0.05) and there was a trend for a reduced oxygen uptake at 50% V˙O2peak. Tissue oxygenation improved across exercise intensities and exercise tolerance was greater at 90% V˙O2peak (p<0.05). Rating of perceived exertion, energy levels and cognitive performance were similar between conditions with mental fatigue being evident from 70% V˙O2peak onwards (p<0.05). Dietary nitrate supplementation enhanced short-term endurance exercise performance with concomitant mental fatigue but did not improve cognitive performance post-fatigue. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Appropriate Mechanochemical Conditions for Corrosion-Fatigue Testing of Magnesium Alloys for Temporary Bioimplant Applications

    NASA Astrophysics Data System (ADS)

    Harandi, Shervin Eslami; Singh Raman, R. K.

    2015-05-01

    Magnesium (Mg) alloys possess great potential as bioimplants. A temporary implant employed as support for the repair of a fractured bone must possess sufficient strength to maintain their mechanical integrity for the required duration of healing. However, Mg alloys are susceptible to sudden cracking or fracture under the simultaneous action of cyclic loading and the corrosive physiological environment, i.e., corrosion fatigue (CF). Investigations of such fracture should be performed under appropriate mechanochemical conditions that appropriately simulate the actual human body conditions. This article reviews the existing knowledge on CF of Mg alloys in simulated body fluid and describes a relatively more accurate testing procedure developed in the authors' laboratory.

  17. Physiological and psychosocial factors that predict HIV-related fatigue.

    PubMed

    Barroso, Julie; Hammill, Bradley G; Leserman, Jane; Salahuddin, Naima; Harmon, James L; Pence, Brian Wells

    2010-12-01

    Fatigue is one of the most common and debilitating symptoms experienced by HIV-infected people. We report the results of our longitudinal analysis of physiological and psychosocial factors that were thought to predict changes in HIV-related fatigue in 128 participants over a 1-year period, in an effort to sort out the complex interplay among a comprehensive set of physiological and psychosocial variables. Physiological measures included hepatic function (aspartate aminotransferase, alanine aminotransferase, gamma glutamyl transpeptidase, alkaline phosphatase, total bilirubin, hepatitis C status), thyroid function (thyroid stimulating hormone, thyroxine), HIV viral load, immunologic function (CD4, CD8, CD4/CD8 ratio, CD16, CD8CD38), gonadal function (testosterone, dehydroepiandrosterone), hematologic function (hemoglobin, hematocrit, serum erythropoietin), and cellular injury (lactic acid). Psychosocial measures included childhood and adult trauma, anxiety, depression, social support, stressful life events, and post-traumatic stress disorder (PTSD). Unemployment, not being on antiretroviral therapy, having fewer years since HIV diagnosis, more childhood trauma, more stressful life events, less social support, and more psychological distress (e.g., PTSD, anxiety and depression) put HIV-infected persons at risk for greater fatigue intensity and fatigue-related impairment in functioning during 1-year follow-up. Physiological variables did not predict greater fatigue. Stressful life events had both direct and indirect effects on fatigue.

  18. Physiological and Psychosocial Factors that Predict HIV-Related Fatigue

    PubMed Central

    Hammill, Bradley G.; Leserman, Jane; Salahuddin, Naima; Harmon, James L.; Pence, Brian Wells

    2010-01-01

    Fatigue is one of the most common and debilitating symptoms experienced by HIV-infected people. We report the results of our longitudinal analysis of physiological and psychosocial factors that were thought to predict changes in HIV-related fatigue in 128 participants over a 1-year period, in an effort to sort out the complex interplay among a comprehensive set of physiological and psychosocial variables. Physiological measures included hepatic function (aspartate aminotransferase, alanine aminotransferase, gamma glutamyl transpeptidase, alkaline phosphatase, total bilirubin, hepatitis C status), thyroid function (thyroid stimulating hormone, thyroxine), HIV viral load, immunologic function (CD4, CD8, CD4/CD8 ratio, CD16, CD8CD38), gonadal function (testosterone, dehydroepiandrosterone), hematologic function (hemoglobin, hematocrit, serum erythropoietin), and cellular injury (lactic acid). Psychosocial measures included childhood and adult trauma, anxiety, depression, social support, stressful life events, and post-traumatic stress disorder (PTSD). Unemployment, not being on antiretroviral therapy, having fewer years since HIV diagnosis, more childhood trauma, more stressful life events, less social support, and more psychological distress (e.g., PTSD, anxiety and depression) put HIV-infected persons at risk for greater fatigue intensity and fatigue-related impairment in functioning during 1-year follow-up. Physiological variables did not predict greater fatigue. Stressful life events had both direct and indirect effects on fatigue. PMID:20352317

  19. Mitigating passive fatigue during monotonous drives with thermal stimuli: Insights into the effect of different stimulation durations.

    PubMed

    Schmidt, Elisabeth; Bullinger, Angelika C

    2017-12-12

    Driving on monotonous roads has been shown to cause passive fatigue as even non-sleep-deprived drivers suffer from the lack of stimuli. Consequently, alertness is reduced and the risk of accidents increases. To counteract this risk, measures need to be taken to mitigate driver fatigue. While in the past, some studies have been focused on the potential of thermal stimuli to reduce fatigue, their results seem inconclusive. Examining the study conditions in which the thermal stimuli were studied, it becomes obvious that the duration of the thermal stimulus strongly affects perceived fatigue. To better understand this relation, a driving simulator study (n=33) was conducted investigating both a 2min and a 4min thermal stimulus (15öC), where air was circulated on non-sleep-deprived drivers. For the 4min stimulus, patterns of increased sympathetic activity (i.e. significant pupil dilatation and bradycardia) were recorded. Furthermore, participants subjectively rated fatigue significantly lower when the stimuli were applied, and preferred driving with the stimulus. The superior performance of the 4min stimulus can be derived from a longer effect on the physiological data as well as even lower subjective fatigue ratings. Results also point to the limits of thermal stimulation: 6min after the stimuli, the participants no longer feel an effect (based on subjective ratings). Future research on passive fatigue countermeasures should hence build on the identified effect of a 4min cooling stimulus to increase physiological arousal and focus on the opportunities to increase effect duration. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Fatigue in neuromuscular disorders: focus on Guillain-Barré syndrome and Pompe disease.

    PubMed

    de Vries, J M; Hagemans, M L C; Bussmann, J B J; van der Ploeg, A T; van Doorn, P A

    2010-03-01

    Fatigue accounts for an important part of the burden experienced by patients with neuromuscular disorders. Substantial high prevalence rates of fatigue are reported in a wide range of neuromuscular disorders, such as Guillain-Barré syndrome and Pompe disease. Fatigue can be subdivided into experienced fatigue and physiological fatigue. Physiological fatigue in turn can be of central or peripheral origin. Peripheral fatigue is an important contributor to fatigue in neuromuscular disorders, but in reaction to neuromuscular disease fatigue of central origin can be an important protective mechanism to restrict further damage. In most cases, severity of fatigue seems to be related with disease severity, possibly with the exception of fatigue occurring in a monophasic disorder like Guillain-Barré syndrome. Treatment of fatigue in neuromuscular disease starts with symptomatic treatment of the underlying disease. When symptoms of fatigue persist, non-pharmacological interventions, such as exercise and cognitive behavioral therapy, can be initiated.

  1. Managing fatigue in operational settings. 1: Physiological considerations and countermeasures

    NASA Technical Reports Server (NTRS)

    Rosekind, M. R.; Gander, P. H.; Gregory, K. B.; Smith, R. M.; Miller, D. L.; Oyung, R.; Webbon, L. L.; Johnson, J. M.

    1996-01-01

    The authors consider three aspects of managing fatigue in the workplace. They provide a brief overview of important scientific findings related to sleep and circadian physiology that establish the psychobiological foundation of fatigue. Their major focus is on the relevance of these findings to operational settings. In addition, they provide examples to describe practical fatigue countermeasures that can be used in operational settings.

  2. Compensatory Effort Parallels Midbrain Deactivation during Mental Fatigue: An fMRI Study

    PubMed Central

    Nakagawa, Seishu; Sugiura, Motoaki; Akitsuki, Yuko; Hosseini, S. M. Hadi; Kotozaki, Yuka; Miyauchi, Carlos Makoto; Yomogida, Yukihito; Yokoyama, Ryoichi; Takeuchi, Hikaru; Kawashima, Ryuta

    2013-01-01

    Fatigue reflects the functioning of our physiological negative feedback system, which prevents us from overworking. When fatigued, however, we often try to suppress this system in an effort to compensate for the resulting deterioration in performance. Previous studies have suggested that the effect of fatigue on neurovascular demand may be influenced by this compensatory effort. The primary goal of the present study was to isolate the effect of compensatory effort on neurovascular demand. Healthy male volunteers participated in a series of visual and auditory divided attention tasks that steadily increased fatigue levels for 2 hours. Functional magnetic resonance imaging scans were performed during the first and last quarter of the study (Pre and Post sessions, respectively). Tasks with low and high attentional load (Low and High conditions, respectively) were administrated in alternating blocks. We assumed that compensatory effort would be greater under the High-attentional-load condition compared with the Low-load condition. The difference was assessed during the two sessions. The effect of compensatory effort on neurovascular demand was evaluated by examining the interaction between load (High vs. Low) and time (Pre vs. Post). Significant fatigue-induced deactivation (i.e., Pre>Post) was observed in the frontal, temporal, occipital, and parietal cortices, in the cerebellum, and in the midbrain in both the High and Low conditions. The interaction was significantly greater in the High than in the Low condition in the midbrain. Neither significant fatigue-induced activation (i.e., Pre[PreE– PostE]) may reflect suppression of the negative feedback system that normally triggers recuperative rest to maintain homeostasis. PMID:23457592

  3. Analysis of physiological impact while reading stereoscopic radiographs

    NASA Astrophysics Data System (ADS)

    Unno, Yasuko Y.; Tajima, Takashi; Kuwabara, Takao; Hasegawa, Akira; Natsui, Nobutaka; Ishikawa, Kazuo; Hatada, Toyohiko

    2011-03-01

    A stereoscopic viewing technology is expected to improve diagnostic performance in terms of reading efficiency by adding one more dimension to the conventional 2D images. Although a stereoscopic technology has been applied to many different field including TV, movies and medical applications, physiological fatigue through reading stereoscopic radiographs has been concerned although no established physiological fatigue data have been provided. In this study, we measured the α-amylase concentration in saliva, heart rates and normalized tissue hemoglobin index (nTHI) in blood of frontal area to estimate physiological fatigue through reading both stereoscopic radiographs and the conventional 2D radiographs. In addition, subjective assessments were also performed. As a result, the pupil contraction occurred just after the reading of the stereoscopic images, but the subjective assessments regarding visual fatigue were nearly identical for the reading the conventional 2D and stereoscopic radiographs. The α-amylase concentration and the nTHI continued to decline while examinees read both 2D and stereoscopic images, which reflected the result of subjective assessment that almost half of the examinees reported to feel sleepy after reading. The subjective assessments regarding brain fatigue showed that there were little differences between 2D and stereoscopic reading. In summary, this study shows that the physiological fatigue caused by stereoscopic reading is equivalent to the conventional 2D reading including ocular fatigue and burden imposed on brain.

  4. Mother chair reparation to decrease subjective disorders in exclusive breast-feeding period

    NASA Astrophysics Data System (ADS)

    Santiana, M. A.; Yusuf, M.; Lokantara, W. D.

    2018-01-01

    Exclusive breastfeeding is the responsibility of the mother after childbirth. A specific constraint arise for the mother when during the breastfeeding process, the place is not in accordance with the physiological condition of the mother's body. A not physiologically corrected lactation place will cause subjective disorders for breastfeeding mothers. Complaints that arise include quick tiredness, with certain muscles sore and pain, which will ultimately decrease the motivation of the mothers to perform exclusive breastfeeding especially in the first six months of the baby's birth. An improved ergonomic designed chair, this research used experimental method with group within treatment (treatment by subject) to solve the problem. The study took place in Maternity Clinic “CB” Badung regency, Bali. Subjective disorders are measured based on general fatigue and musculoskeletal disorders mothers breastfeeding. Fatigue is predicted using 30 items of questionnaires while musculoskeletal compaints are predicted from the Nordic Body Map questionnaire. Data were analyzed descriptively and inferentially in an experiment condition using using t-pair test. The results showed that there were significant differences in fatigue in general and skeletal musculoskeletal disorders between treatment 1 (using old chair) with treatment 2 (using repaired seats) in breastfeeding mothers. Fatigue in general decreased by 35.6% and skeletal musculoskeletal disorders decreased by 26.8%. It was concluded that improved breastfeeding mothers' seats may decrease subjective disorders during exclusive breastfeeding. It is therefore advisable for breastfeeding mothers to use seats that match their anthropometry.

  5. The Nature of Self-Regulatory Fatigue and "Ego Depletion": Lessons From Physical Fatigue.

    PubMed

    Evans, Daniel R; Boggero, Ian A; Segerstrom, Suzanne C

    2015-07-30

    Self-regulation requires overriding a dominant response and leads to temporary self-regulatory fatigue. Existing theories of the nature and causes of self-regulatory fatigue highlight physiological substrates such as glucose, or psychological processes such as motivation, but these explanations are incomplete on their own. Historically, theories of physical fatigue demonstrate a similar pattern of useful but incomplete explanations, as recent views of physical fatigue emphasize the roles of both physiological and psychological factors. In addition to accounting for multiple inputs, these newer views also explain how fatigue can occur even in the presence of sufficient resources. Examining these newer theories of physical fatigue can serve as a foundation on which to build a more comprehensive understanding of self-regulatory fatigue that integrates possible neurobiological underpinnings of physical and self-regulatory fatigue, and suggests the possible function of self-regulatory fatigue. © 2015 by the Society for Personality and Social Psychology, Inc.

  6. The nature of self-regulatory fatigue and “ego depletion”: Lessons from physical fatigue

    PubMed Central

    Evans, Daniel R.; Boggero, Ian A.; Segerstrom, Suzanne C.

    2016-01-01

    Self-regulation requires overriding a dominant response, and leads to temporary self-regulatory fatigue. Existing theories of the nature and causes of self-regulatory fatigue highlight physiological substrates such as glucose or psychological processes such as motivation, but these explanations are incomplete on their own. Historically, theories of physical fatigue demonstrate a similar pattern of useful but incomplete explanations, as recent views of physical fatigue emphasize the roles of both physiological and psychological factors. In addition to accounting for multiple inputs, these newer views also explain how fatigue can occur even in the presence of sufficient resources. Examining these newer theories of physical fatigue can serve as a foundation on which to build a more comprehensive understanding of self-regulatory fatigue that integrates possible neurobiological underpinnings of physical and self-regulatory fatigue, and suggests the possible function of self-regulatory fatigue. PMID:26228914

  7. Detection of driving fatigue by using noncontact EMG and ECG signals measurement system.

    PubMed

    Fu, Rongrong; Wang, Hong

    2014-05-01

    Driver fatigue can be detected by constructing a discriminant mode using some features obtained from physiological signals. There exist two major challenges of this kind of methods. One is how to collect physiological signals from subjects while they are driving without any interruption. The other is to find features of physiological signals that are of corresponding change with the loss of attention caused by driver fatigue. Driving fatigue is detected based on the study of surface electromyography (EMG) and electrocardiograph (ECG) during the driving period. The noncontact data acquisition system was used to collect physiological signals from the biceps femoris of each subject to tackle the first challenge. Fast independent component analysis (FastICA) and digital filter were utilized to process the original signals. Based on the statistical analysis results given by Kolmogorov-Smirnov Z test, the peak factor of EMG (p < 0.001) and the maximum of the cross-relation curve of EMG and ECG (p < 0.001) were selected as the combined characteristic to detect fatigue of drivers. The discriminant criterion of fatigue was obtained from the training samples by using Mahalanobis distance, and then the average classification accuracy was given by 10-fold cross-validation. The results showed that the method proposed in this paper can give well performance in distinguishing the normal state and fatigue state. The noncontact, onboard vehicle drivers' fatigue detection system was developed to reduce fatigue-related risks.

  8. Effect of an amorphous titania nanotubes coating on the fatigue and corrosion behaviors of the biomedical Ti-6Al-4V and Ti-6Al-7Nb alloys.

    PubMed

    Campanelli, Leonardo Contri; Bortolan, Carolina Catanio; da Silva, Paulo Sergio Carvalho Pereira; Bolfarini, Claudemiro; Oliveira, Nilson Tadeu Camarinho

    2017-01-01

    An array of self-organized TiO 2 nanotubes with an amorphous structure was produced on the biomedical Ti-6Al-4V and Ti-6Al-7Nb alloys, and the resulting fatigue and corrosion behaviors were studied. The electrochemical response of the nanotubular oxide surfaces was investigated in Ringer physiological solution through potentiodynamic polarization and electrochemical impedance spectroscopy measurements. The absence of transpassivation in the chloride-containing solution, in addition to the micron-scale values of the passivation current density, indicated the excellent corrosion behavior of the coating and the satisfactory protection against the creation of potential stress concentrators in the surface. Axial fatigue tests were performed in physiological solution on polished and coated conditions, with characterization of the treated surfaces by scanning electron microscopy before and after the tests. The surface modification was not deleterious to the fatigue response of both alloys mainly due to the nano-scale dimension of the nanotubes layer. An estimation based on fracture mechanics revealed that a circumferential crack in the range of 5μm depth would be necessary to affect the fatigue performance, which is far from the thickness of the studied coating, although no cracks were actually observed in the oxide surfaces after the tests. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Effects of caffeine ingestion on endurance performance in mentally fatigued individuals.

    PubMed

    Azevedo, Rafael; Silva-Cavalcante, Marcos David; Gualano, Bruno; Lima-Silva, Adriano E; Bertuzzi, Romulo

    2016-12-01

    To examine the effects of caffeine ingestion on physiological and perceptual responses in mentally fatigued individuals. Eight male physically active subjects completed four cycling constant-workload tests in four experimental conditions at 80 % of maximal power output: control (C), mental fatigue (MF), mental fatigue plus caffeine ingestion (5 mg/kg) (MF-CAF), and mental fatigue plus placebo (MF-PLA). The mental fatigue was induced by a continuous performance task A-X version (AX-CPT). Before and after the AX-CPT, the profile of mood state (POMS) and blood samples for lactate measurement were collected. Oxygen consumption ([Formula: see text]), rating of perceived exertion (RPE), and electromyography (EMG) activity were measured during the cycling test. The time to exhaustion in C, MF, MF-PLA, and MF-CAF were 251 ± 30, 222 ± 23, 248 ± 28, and 285 ± 42 s, respectively. Delta values (corrected by C condition) were higher in MF-CAF than MF (P = 0.031). MF-CAF reported higher Vigor scores when compared with C (P = 0.046) and MF (P = 0.020). RPE at the first minute was significantly higher in MF-PLA than in C (P = 0.050); at the second minute, RPE was higher in MF-PLA than in C (P = 0.049) and MF-CAF (P = 0.048). EMG activity was not different between the conditions. Caffeine ingestion increased approximately 14 % endurance performance after the induction of mental fatigue. This effect was accompanied by a tendency to improvement in mood state (i.e., vigor). Therefore, caffeine ingestion can promote a beneficial effect on endurance performance in mentally fatigued individuals.

  10. Physiological and cognitive military related performances after 10-kilometer march.

    PubMed

    Yanovich, Ran; Hadid, Amir; Erlich, Tomer; Moran, Daniel S; Heled, Yuval

    2015-01-01

    Prior operational activities such as marching in diverse environments, with heavy backloads may cause early fatigue and reduce the unit's readiness. The purpose of this preliminary study was to evaluate the effect of 10-kilometer (km) march on selected, military oriented, physiological and cognitive performances. Eight healthy young males (age 25 ± 3 years) performed a series of cognitive and physiological tests, first without any prior physiological strain and then after a 10 km march in comfort laboratory conditions (24°C, 50%RH) consisting a 5 km/h speed and 2-6% incline with backload weighing 30% of their body weight. We found that the subjects' time to exhaustion (TTE) after the march decreased by 27% with no changes in anaerobic performance. Cognitive performance showed a significant (20%) reduction in accuracy and a tendency to reduce reaction time after the march. We conclude that a moderate-intensity march under relatively comfort environmental conditions may differently decrease selected military related physical and cognitive abilities. This phenomenon is probably associated with the type and intensity of the pre-mission physical activity and the magnitude of the associated mental fatigue. We suggest that quantifying these effects, as was presented in this preliminary study, by adopting this practical scientific approach would assist in preserving the soldiers' performance and health during training and military operations.

  11. Dietary fish oil delays hypoxic skeletal muscle fatigue and enhances caffeine-stimulated contractile recovery in the rat in vivo hindlimb.

    PubMed

    Peoples, Gregory E; McLennan, Peter L

    2017-06-01

    Oxygen efficiency influences skeletal muscle contractile function during physiological hypoxia. Dietary fish oil, providing docosahexaenoic acid (DHA), reduces the oxygen cost of muscle contraction. This study used an autologous perfused rat hindlimb model to examine the effects of a fish oil diet on skeletal muscle fatigue during an acute hypoxic challenge. Male Wistar rats were fed a diet rich in saturated fat (SF), long-chain (LC) n-6 polyunsaturated fatty acids (n-6 PUFA), or LC n-3 PUFA DHA from fish oil (FO) (8 weeks). During anaesthetised and ventilated conditions (normoxia 21% O 2 (SaO 2 -98%) and hypoxia 14% O 2 (SaO 2 -89%)) the hindlimb was perfused at a constant flow and the gastrocnemius-plantaris-soleus muscle bundle was stimulated via sciatic nerve (2 Hz, 6-12V, 0.05 ms) to established fatigue. Caffeine (2.5, 5, 10 mM) was supplied to the contracting muscle bundle via the arterial cannula to assess force recovery. Hypoxia, independent of diet, attenuated maximal twitch tension (normoxia: 82 ± 8; hypoxia: 41 ± 2 g·g -1 tissue w.w.). However, rats fed FO sustained higher peak twitch tension compared with the SF and n-6 PUFA groups (P < 0.05), and the time to decline to 50% of maximum twitch tension was extended (SF: 546 ± 58; n-6 PUFA: 522 ± 58; FO: 792 ± 96 s; P < 0.05). In addition, caffeine-stimulated skeletal muscle contractile recovery was enhanced in the FO-fed animals (SF: 41 ± 3; n-6 PUFA: 40 ± 4; FO: 52 ± 7% recovery; P < 0.05). These results support a physiological role of DHA in skeletal muscle membranes when exposed to low-oxygen stress that is consistent with the attenuation of muscle fatigue under physiologically normoxic conditions.

  12. Crew Factors in Flight Operations X: Alertness Management in Flight Operations

    NASA Technical Reports Server (NTRS)

    Rosekind, Mark R.; Gander, Philippa H.; Connell, Linda J.; Co, Elizabeth L.

    1999-01-01

    In response to a 1980 congressional request, NASA Ames Research Center initiated a Fatigue/Jet Lag Program to examine fatigue, sleep loss, and circadian disruption in aviation. Research has examined fatigue in a variety of flight environments using a range of measures (from self-report to performance to physiological). In 1991, the program evolved into the Fatigue Countermeasures Program, emphasizing the development and evaluation of strategies to maintain alertness and performance in operational settings. Over the years, the Federal Aviation Administration (FAA) has become a collaborative partner in support of fatigue research and other Program activities. From the inception of the Program, a principal goal was to return the information learned from research and other Program activities to the operational community. The objectives of this Education and Training Module are to explain what has been learned about the physiological mechanisms that underlie fatigue, demonstrate the application of this information in flight operations, and offer some specific fatigue counter-measure recommendations. It is intended for all segments of the aeronautics industry, including pilots, flight attendants, managers, schedulers, safety and policy personnel, maintenance crews, and others involved in an operational environment that challenges human physiological capabilities because of fatigue, sleep loss, and circadian disruption.

  13. Crew Factors in Flight Operations X: Alertness Management in Flight Operations

    NASA Technical Reports Server (NTRS)

    Rosekind, Mark R.; Gander, Philippa H.; Connell, Linda J.; Co, Elizabeth L.

    2001-01-01

    In response to a 1980 congressional request, NASA Ames Research Center initiated a Fatigue/Jet Lag Program to examine fatigue, sleep loss, and circadian disruption in aviation. Research has examined fatigue in a variety of flight environments using a range of measures (from self-report to performance to physiological). In 1991, the program evolved into the Fatigue Countermeasures Program, emphasizing the development and evaluation of strategies to maintain alertness and performance in operational settings. Over the years, the Federal Aviation Administration (FAA) has become a collaborative partner in support of fatigue research and other Program activities. From the inception of the Program, a principal goal was to return the information learned from research and other Program activities to the operational community. The objectives of this Education and Training Module are to explain what has been learned about the physiological mechanisms that underlie fatigue, demonstrate the application of this information in flight operations, and offer some specific fatigue countermeasure recommendations. It is intended for all segments of the aeronautics industry, including pilots, flight attendants, managers, schedulers, safety and policy personnel, maintenance crews, and others involved in an operational environment that challenges human physiological capabilities because of fatigue, sleep loss, and circadian disruption.

  14. Effect of different warm-up procedures on the performance of resistance training exercises.

    PubMed

    Ribeiro, Alex S; Romanzini, Marcelo; Schoenfeld, Brad J; Souza, Mariana F; Avelar, Ademar; Cyrino, Edilson S

    2014-08-01

    Warm-up has been shown to mediate numerous acute physiological alterations that have been purported to confer beneficial effects on performance. This study investigated the acute effects of different warm-up procedures on resistance training performance. Employing a randomized, counterbalanced crossover design, 15 men performed 3 exercises (4 sets of bench press, squat, and arm curl at 80% of 1RM) to failure in 4 conditions (control, specific, aerobic, and combined). Outcome measures included the sum of repetitions and a fatigue index measuring the decline between sets. There was no significant difference for the sum of repetitions or for fatigue index among conditions for the 3 exercises. Performance in the resistance training exercises was not influenced by warm-up.

  15. Sports massage with ozonised oil or non-ozonised oil: Comparative effects on recovery parameters after maximal effort in cyclists.

    PubMed

    Paoli, Antonio; Bianco, Antonino; Battaglia, Giuseppe; Bellafiore, Marianna; Grainer, Alessandro; Marcolin, Giuseppe; Cardoso, Claudia C; Dall'aglio, Roberto; Palma, Antonio

    2013-11-01

    To study the effects of passive rest (PR) and sports massage with (SMOZO) and without (SM) ozonised oil on sports performance psycho-physiological indices in competitive amateur cyclists after 3 pre-fatiguing Wingate cycle and post-recovery ramp tests. An intra-subjects experimental design with repeated measures. Department of Human Anatomy and Physiology, University of Padua. Fifteen male competitive cyclists (age: 27 ± 3.5 years, body weight: 77.6 ± 8.3 kg, height: 178 ± 7.7 cm) were studied. Subjects' power output (P), heart rate (HR), Visual Analogue Scale (VAS) score and blood lactate (BL) clearance in response to PR, SMOZO and SM recoveries were compared. There were no significant differences in cyclists' heart rate patterns in the three experimental conditions (p > 0.05). After SMOZO recovery, athletes showed a higher Pmax (p < 0.05) and a lower perceived fatigue VAS score (p < 0.033) in the ramp test. Blood lactate decreased more at T2 (mid-time point of treatment) and T3 (final time point of treatment) than T1 (beginning of treatment) compared to SM and PR conditions. These findings suggest that use of ozonised oil during sports massage increases blood lactate removal, improves performance and reduces the perception of fatigue in cyclists from 3 Wingate tests. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Psychophysiological responses to short-term cooling during a simulated monotonous driving task.

    PubMed

    Schmidt, Elisabeth; Decke, Ralf; Rasshofer, Ralph; Bullinger, Angelika C

    2017-07-01

    For drivers on monotonous routes, cognitive fatigue causes discomfort and poses an important risk for traffic safety. Countermeasures against this type of fatigue are required and thermal stimulation is one intervention method. Surprisingly, there are hardly studies available to measure the effect of cooling while driving. Hence, to better understand the effect of short-term cooling on the perceived sleepiness of car drivers, a driving simulator study (n = 34) was conducted in which physiological and vehicular data during cooling and control conditions were compared. The evaluation of the study showed that cooling applied during a monotonous drive increased the alertness of the car driver. The sleepiness rankings were significantly lower for the cooling condition. Furthermore, the significant pupillary and electrodermal responses were physiological indicators for increased sympathetic activation. In addition, during cooling a better driving performance was observed. In conclusion, the study shows generally that cooling has a positive short-term effect on drivers' wakefulness; in detail, a cooling period of 3 min delivers best results. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Stress, Sleep and Recovery in Elite Soccer: A Critical Review of the Literature.

    PubMed

    Nédélec, Mathieu; Halson, Shona; Abaidia, Abd-Elbasset; Ahmaidi, Said; Dupont, Gregory

    2015-10-01

    In elite soccer, players are frequently exposed to various situations and conditions that can interfere with sleep, potentially leading to sleep deprivation. This article provides a comprehensive and critical review of the current available literature regarding the potential acute and chronic stressors (i.e., psychological, sociological and physiological stressors) placed on elite soccer players that may result in compromised sleep quantity and/or quality. Sleep is an essential part of the recovery process as it provides a number of important psychological and physiological functions. The effects of sleep disturbance on post-soccer match fatigue mechanisms and recovery time course are also described. Physiological and cognitive changes that occur when competing at night are often not conducive to sleep induction. Although the influence of high-intensity exercise performed during the night on subsequent sleep is still debated, environmental conditions (e.g., bright light in the stadium, light emanated from the screens) and behaviours related to evening soccer matches (e.g., napping, caffeine consumption, alcohol consumption) as well as engagement and arousal induced by the match may all potentially affect subsequent sleep. Apart from night soccer matches, soccer players are subjected to inconsistency in match schedules, unique team schedules and travel fatigue that may also contribute to the sleep debt. Sleep deprivation may be detrimental to the outcome of the recovery process after a match, resulting in impaired muscle glycogen repletion, impaired muscle damage repair, alterations in cognitive function and an increase in mental fatigue. The role of sleep in recovery is a complex issue, reinforcing the need for future research to estimate the quantitative and qualitative importance of sleep and to identify influencing factors. Efficient and individualised solutions are likely needed.

  18. Chronic fatigue in Ehlers-Danlos syndrome-Hypermobile type.

    PubMed

    Hakim, Alan; De Wandele, Inge; O'Callaghan, Chris; Pocinki, Alan; Rowe, Peter

    2017-03-01

    Chronic fatigue is an important contributor to impaired health-related quality of life in Ehlers-Danlos syndrome. There is overlap in the symptoms and findings of EDS and chronic fatigue syndrome. A proportion of those with CFS likely have EDS that has not been identified. The evaluation of chronic fatigue in EDS needs to include a careful clinical examination and laboratory testing to exclude common causes of fatigue including anemia, hypothyroidisim, and chronic infection, as well as dysfunction of major physiological or organ systems. Other problems that commonly contribute to fatigue in EDS include sleep disorders, chronic pain, deconditioning, cardiovascular autonomic dysfunction, bowel and bladder dysfunction, psychological issues, and nutritional deficiencies. While there is no specific pharmacological treatment for fatigue, many medications are effective for specific symptoms (such as headache, menstrual dysfunction, or myalgia) and for co-morbid conditions that result in fatigue, including orthostatic intolerance and insomnia. Comprehensive treatment of fatigue needs to also evaluate for biomechanical problems that are common in EDS, and usually involves skilled physical therapy and attention to methods to prevent deconditioning. In addition to managing specific symptoms, treatment of fatigue in EDS also needs to focus on maintaining function and providing social, physical, and nutritional support, as well as providing on-going medical evaluation of new problems and review of new evidence about proposed treatments. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  19. Fatigue Factors in Regional Airline Operations

    NASA Technical Reports Server (NTRS)

    Rosekind, Mark R.; Weldon, Keri J.; Co, Elizabeth L.; Miller, Donna L.; Gregory, Kevin B.; Smith, Roy M.; Johnson, Julie M.; Gander, Philippa H.; Lebacqz, J. Victor

    1994-01-01

    This paper describes human sleep and circadian physiology regarding their role as contributors to fatigue engendered by flight operations. The demands of regional airline operations are then examined for potential areas where these physiological factors will be affected. Finally, approaches to systematically investigate these issues scientifically will be described.

  20. "They Sweat for Science": The Harvard Fatigue Laboratory and Self-Experimentation in American Exercise Physiology.

    PubMed

    Johnson, Andi

    2015-08-01

    In many scientific fields, the practice of self-experimentation waned over the course of the twentieth century. For exercise physiologists working today, however, the practice of self-experimentation is alive and well. This paper considers the role of the Harvard Fatigue Laboratory and its scientific director, D. Bruce Dill, in legitimizing the practice of self-experimentation in exercise physiology. Descriptions of self-experimentation are drawn from papers published by members of the Harvard Fatigue Lab. Attention is paid to the ethical and practical justifications for self-experimentation in both the lab and the field. Born out of the practical, immediate demands of fatigue protocols, self-experimentation performed the long-term, epistemological function of uniting physiological data across time and space, enabling researchers to contribute to a general human biology program.

  1. Quantitative physiologically based modeling of subjective fatigue during sleep deprivation.

    PubMed

    Fulcher, B D; Phillips, A J K; Robinson, P A

    2010-05-21

    A quantitative physiologically based model of the sleep-wake switch is used to predict variations in subjective fatigue-related measures during total sleep deprivation. The model includes the mutual inhibition of the sleep-active neurons in the hypothalamic ventrolateral preoptic area (VLPO) and the wake-active monoaminergic brainstem populations (MA), as well as circadian and homeostatic drives. We simulate sleep deprivation by introducing a drive to the MA, which we call wake effort, to maintain the system in a wakeful state. Physiologically this drive is proposed to be afferent from the cortex or the orexin group of the lateral hypothalamus. It is hypothesized that the need to exert this effort to maintain wakefulness at high homeostatic sleep pressure correlates with subjective fatigue levels. The model's output indeed exhibits good agreement with existing clinical time series of subjective fatigue-related measures, supporting this hypothesis. Subjective fatigue, adrenaline, and body temperature variations during two 72h sleep deprivation protocols are reproduced by the model. By distinguishing a motivation-dependent orexinergic contribution to the wake-effort drive, the model can be extended to interpret variation in performance levels during sleep deprivation in a way that is qualitatively consistent with existing, clinically derived results. The example of sleep deprivation thus demonstrates the ability of physiologically based sleep modeling to predict psychological measures from the underlying physiological interactions that produce them. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  2. Fatigue With Systolic Heart Failure

    PubMed Central

    Fink, Anne M.; Sullivan, Shawna L.; Zerwic, Julie J.; Piano, Mariann R.

    2010-01-01

    Background and Research Objective Fatigue is one of the most prevalent symptoms in persons with systolic heart failure (HF). There remains insufficient information about the physiological and psychosocial underpinnings of fatigue in HF. The specific aims of this study were to (1) determine the psychometric properties of 2 fatigue questionnaires in patients with HF, (2) compare fatigue in patients with HF to published scores of healthy adults and patients with cancer undergoing treatment, and (3) identify the physiological (eg, hemoglobin, B-type natriuretic peptide, body mass index, and ejection fraction) and psychosocial (eg, depressed mood) correlates of fatigue in HF. Subjects and Methods A convenience sample of 87 HF outpatients was recruited from 2 urban medical centers. Patients completed the Fatigue Symptom Inventory, Profile of Mood States, and Short Form-36 Health Survey. Results and Conclusions Patients with HF and patients with cancer reported similar levels of fatigue, and both patient groups reported significantly more fatigue than did healthy adults. Physical functioning and hemoglobin categories explained 30% of the variance in Fatigue Symptom Inventory-Interference Scale scores, whereas depressed mood and physical functioning explained 47% of the variance in Profile of Mood States Fatigue subscale scores. Patients with HF experienced substantial fatigue that is comparable with cancer-related fatigue. Low physical functioning, depressed mood, and low hemoglobin level were associated with HF-related fatigue. PMID:19707101

  3. Fatigue Countermeasures: Alertness Management in Flight Operations

    NASA Technical Reports Server (NTRS)

    Co, E. L.; Rosekind, M. R.; Johnson, J. M.; Weldon, K. J.; Smith, R. M.; Gregory, K. G.; Miller, D. L.; Gander, P. H.; Lebacqz, J. V.; Statler, Irving C. (Technical Monitor)

    1994-01-01

    Since 1980, the NASA Ames Fatigue Countermeasures Program has studied the effects and impact of fatigue on flight operations . Sleep loss and circadian disruption are two of the primary physiological factors that underlie fatigue in flight operations. The Program has developed an array of fatigue countermeasure recommendations that can be used to combat the effects of fatigue and continues to research potential new countermeasures. For example, one such strategy involved a NASA/FAA study on the effects of planned cockpit rest to improve crewmember alertness and performance. Based partly on the study results, the FAA is currently reviewing a proposed Advisory Circular for controlled rest on the flight deck. Since there is no simple answer to the issue of fatigue in aviation, an Education and Training Module has been developed to provide the industry with pertinent information on sleep, circadian rhythms, how flight operations affect these physiological factors, and recommendations for fatigue countermeasures. The Module will be updated as the Program's continued research efforts uncover new information and develop new countermeasure strategies,

  4. The role of central and peripheral muscle fatigue in postcancer fatigue: a randomized controlled trial.

    PubMed

    Prinsen, Hetty; van Dijk, Johannes P; Zwarts, Machiel J; Leer, Jan Willem H; Bleijenberg, Gijs; van Laarhoven, Hanneke W M

    2015-02-01

    Postcancer fatigue is a frequently occurring problem, impairing quality of life. Little is known about (neuro)physiological factors determining postcancer fatigue. It may be hypothesized that postcancer fatigue is characterized by low peripheral muscle fatigue and high central muscle fatigue. The aims of this study were to examine whether central and peripheral muscle fatigue differ between fatigued and non-fatigued cancer survivors and to examine the effect of cognitive behavioral therapy (CBT) on peripheral and central muscle fatigue of fatigued cancer survivors in a randomized controlled trial. Sixteen fatigued patients in the intervention group (CBT) and eight fatigued patients in the waiting list group were successfully assessed at baseline and six months later. Baseline measurements of 20 fatigued patients were compared with 20 non-fatigued patients. A twitch interpolation technique and surface electromyography were applied, respectively, during sustained contraction of the biceps brachii muscle. Muscle fiber conduction velocity (MFCV) and central activation failure (CAF) were not significantly different between fatigued and non-fatigued patients. Change scores of MFCV and CAF were not significantly different between patients in the CBT and waiting list groups. Patients in the CBT group reported a significantly larger decrease in fatigue scores than patients in the waiting list group. Postcancer fatigue is neither characterized by abnormally high central muscle fatigue nor by low peripheral muscle fatigue. These findings suggest a difference in the underlying physiological mechanism of postcancer fatigue vs. other fatigue syndromes. Copyright © 2015 American Academy of Hospice and Palliative Medicine. Published by Elsevier Inc. All rights reserved.

  5. The Power of Exercise and the Exercise of Power: The Harvard Fatigue Laboratory, Distance Running, and the Disappearance of Work, 1919-1947.

    PubMed

    Scheffler, Robin Wolfe

    2015-08-01

    In the early twentieth century, fatigue research marked an area of conflicting scientific, industrial, and cultural understandings of working bodies. These different understandings of the working body marked a key site of political conflict during the growth of industrial capitalism. Many fatigue researchers understood fatigue to be a physiological fact and allied themselves with Progressive-era reformers in urging industrial regulation. Opposed to these researchers were advocates of Taylorism and scientific management, who held that fatigue was a mental event and that productivity could be perpetually increased through managerial efficiency. Histories of this conflict typically cease with the end of the First World War, when it is assumed that industrial fatigue research withered away. This article extends the history of fatigue research through examining the activities of the Harvard Fatigue Laboratory in the 1920s and 1930s. The Laboratory developed sophisticated biochemical techniques to study the blood of exercising individuals. In particular, it found that exercising individuals could attain a biochemically "steady state," or equilibrium, and extrapolated from this to assert that fatigue was psychological, not physiological, in nature. In contrast to Progressive-era research, the Laboratory reached this conclusion through laboratory examination, not of industrial workers, but of Laboratory staff members and champion marathon runners. The translation of laboratory research to industrial settings, and the eventual erasure of physiological fatigue from discussions of labor, was a complex function of institutional settings, scientific innovation, and the cultural meanings of work and sport.

  6. FATIGUE OF BIOMATERIALS: HARD TISSUES

    PubMed Central

    Arola, D.; Bajaj, D.; Ivancik, J.; Majd, H.; Zhang, D.

    2009-01-01

    The fatigue and fracture behavior of hard tissues are topics of considerable interest today. This special group of organic materials comprises the highly mineralized and load-bearing tissues of the human body, and includes bone, cementum, dentin and enamel. An understanding of their fatigue behavior and the influence of loading conditions and physiological factors (e.g. aging and disease) on the mechanisms of degradation are essential for achieving lifelong health. But there is much more to this topic than the immediate medical issues. There are many challenges to characterizing the fatigue behavior of hard tissues, much of which is attributed to size constraints and the complexity of their microstructure. The relative importance of the constituents on the type and distribution of defects, rate of coalescence, and their contributions to the initiation and growth of cracks, are formidable topics that have not reached maturity. Hard tissues also provide a medium for learning and a source of inspiration in the design of new microstructures for engineering materials. This article briefly reviews fatigue of hard tissues with shared emphasis on current understanding, the challenges and the unanswered questions. PMID:20563239

  7. Short-term heat acclimation prior to a multi-day desert ultra-marathon improves physiological and psychological responses without compromising immune status.

    PubMed

    Willmott, Ashley G B; Hayes, Mark; Waldock, Kirsty A M; Relf, Rebecca L; Watkins, Emily R; James, Carl A; Gibson, Oliver R; Smeeton, Nicholas J; Richardson, Alan J; Watt, Peter W; Maxwell, Neil S

    2017-11-01

    Multistage, ultra-endurance events in hot, humid conditions necessitate thermal adaptation, often achieved through short term heat acclimation (STHA), to improve performance by reducing thermoregulatory strain and perceptions of heat stress. This study investigated the physiological, perceptual and immunological responses to STHA prior to the Marathon des Sables. Eight athletes (age 42 ± 4 years and body mass 81.9 ± 15.0 kg) completed 4 days of controlled hyperthermia STHA (60 min·day ‒1 , 45°C and 30% relative humidity). Pre, during and post sessions, physiological and perceptual measures were recorded. Immunological measures were recorded pre-post sessions 1 and 4. STHA improved thermal comfort (P = 0.02), sensation (P = 0.03) and perceived exertion (P = 0.04). A dissociated relationship between perceptual fatigue and T re was evident after STHA, with reductions in perceived Physical (P = 0.04) and General (P = 0.04) fatigue. Exercising T re and HR did not change (P > 0.05) however, sweat rate increased 14% (P = 0.02). No changes were found in white blood cell counts or content (P > 0.05). Four days of STHA facilitates effective perceptual adaptations, without compromising immune status prior to an ultra-endurance race in heat stress. A greater physiological strain is required to confer optimal physiological adaptations.

  8. Oxygen uptake during peak graded exercise and single-stage fatigue tests of wheelchair propulsion in manual wheelchair users and the able-bodied.

    PubMed

    Keyser, R E; Rodgers, M M; Gardner, E R; Russell, P J

    1999-10-01

    To determine if a single-stage, submaximal fatigue test on a wheelchair ergometer would result in higher than expected energy expenditure. An experimental survey design contrasting physiologic responses during peak graded exercise tests and fatigue tests. A rehabilitation science laboratory that included a prototypical wheelchair ergometer, open-circuit spirometry system, and heart rate monitor. Nine able-bodied non-wheelchair users (the NWC group: 6 men and 3 women, mean +/- SD age 30 +/- 7yrs) and 15 manual wheelchair users (the WC group: 12 men and 3 women, age 40 +/- 9yrs, time in wheelchair 16 +/- 9yrs). No subject had any disease, medication regimen, or upper body neurologic, orthopedic, or other condition that would limit wheelchair exercise. Peak oxygen uptake (VO2) for graded exercise testing and during fatigue testing, using a power output corresponding to 75% peak aerobic capacity on graded exercise test. In the WC group, VO2 at 6 minutes of fatigue testing was not significantly different from peak VO2. In the NWC group, VO2 was similar to the expected level throughout fatigue testing. Energy expenditure was higher than expected in the WC group but not in the NWC group. Fatigue testing may provide a useful evaluation of cardiorespiratory status in manual wheelchair users.

  9. A wireless body measurement system to study fatigue in multiple sclerosis.

    PubMed

    Yu, Fei; Bilberg, Arne; Stenager, Egon; Rabotti, Chiara; Zhang, Bin; Mischi, Massimo

    2012-12-01

    Fatigue is reported as the most common symptom by patients with multiple sclerosis (MS). The physiological and functional parameters related to fatigue in MS patients are currently not well established. A new wearable wireless body measurement system, named Fatigue Monitoring System (FAMOS), was developed to study fatigue in MS. It can continuously measure electrocardiogram, body-skin temperature, electromyogram and motions of feet. The goal of this study is to test the ability of distinguishing fatigued MS patients from healthy subjects by the use of FAMOS. This paper presents the realization of the measurement system including the design of both hardware and dedicated signal processing algorithms. Twenty-six participants including 17 MS patients with fatigue and 9 sex- and age-matched healthy controls were included in the study for continuous 24 h monitoring. The preliminary results show significant differences between fatigued MS patients and healthy controls. In conclusion, the FAMOS enables continuous data acquisition and estimation of multiple physiological and functional parameters. It provides a new, flexible and objective approach to study fatigue in MS, which can distinguish between fatigued MS patients and healthy controls. The usability and reliability of the FAMOS should however be further improved and validated through larger clinical trials.

  10. The fatigue experience for women with human immunodeficiency virus.

    PubMed

    Lee, K A; Portillo, C J; Miramontes, H

    1999-01-01

    To examine fatigue as a symptom experienced by women with human immunodeficiency virus (HIV). A convenience sample of 100 women with HIV. Independent sample t-tests were used to test for mean differences in fatigue related to variables in the women's sociocultural and home environment (ethnicity, employment, marital status, and parenting). Pearson product moment correlations were used to examine significant relationships between fatigue and physiologic variables (age, CD4 cell count, and sleep). Lower CD4 cell counts were related to more daytime sleep, higher evening fatigue, and higher morning fatigue. Morning fatigue was related to duration of wake episodes during the night, napping, and perception of sleep disturbance during the past week. The number of awakenings during the first night predicted the severity of fatigue the next evening. To understand the fatigue experienced by women with HIV, researchers and clinicians must focus on the relative contributions of sociocultural, home, and physiologic environments within which these women live. Additional research is ongoing to identify the strategies these women use to manage daily activities such that gender-relevant and culturally relevant interventions for alleviating fatigue can be tested in women with a variety of chronic illnesses, including HIV and acquired immune deficiency syndrome.

  11. The NASA Ames Fatigue Countermeasures Program: The Next Generation

    NASA Technical Reports Server (NTRS)

    Rosekind, Mark R.; Neri, David F.; Miller, Donna L.; Gregory, Kevin B.; Webbon, Lissa L.; Oyung, Ray L.

    1997-01-01

    Twenty-four hour, global aviation operations pose unique challenges to humans. Physiological requirements related to sleep, the internal circadian clock, and human fatigue are critical factors that are known to affect safety, performance, and productivity. Understanding the human operators' physiological capabilities, and limitations, will be important to address these issues as global demand for aviation activities continues to increase. In 1980, in response to a Congressional request, the National Aeronautics and Space Administration (NASA) Ames Research Center initiated a Fatigue/Jet Lag Program to examine the role of fatigue in flight operations. Originally established by Dr. John K. Lauber and Dr. Charles E. Billings, the Program was designed to address three objectives: (1) determine the extent of fatigue, sleep loss, and circadian disruption in flight operations; (2) determine how fatigue affected flight crew performance; and (3) develop strategies to maximize performance and alertness during flight operations.

  12. Power-duration relationship: Physiology, fatigue, and the limits of human performance.

    PubMed

    Burnley, Mark; Jones, Andrew M

    2018-02-01

    The duration that exercise can be maintained decreases as the power requirements increase. In this review, we describe the power-duration (PD) relationship across the full range of attainable power outputs in humans. We show that a remarkably small range of power outputs is sustainable (power outputs below the critical power, CP). We also show that the origin of neuromuscular fatigue differs considerably depending on the exercise intensity domain in which exercise is performed. In the moderate domain (below the lactate threshold, LT), fatigue develops slowly and is predominantly of central origin (residing in the central nervous system). In the heavy domain (above LT but below CP), both central and peripheral (muscle) fatigue are observed. In this domain, fatigue is frequently correlated with the depletion of muscle glycogen. Severe-intensity exercise (above the CP) is associated with progressive derangements of muscle metabolic homeostasis and consequent peripheral fatigue. To counter these effects, muscle activity increases progressively, as does pulmonary oxygen uptake ([Formula: see text]), with task failure being associated with the attainment of [Formula: see text] max. Although the loss of homeostasis and thus fatigue develop more rapidly the higher the power output is above CP, the metabolic disturbance and the degree of peripheral fatigue reach similar values at task failure. We provide evidence that the failure to continue severe-intensity exercise is a physiological phenomenon involving multiple interacting mechanisms which indicate a mismatch between neuromuscular power demand and instantaneous power supply. Valid integrative models of fatigue must account for the PD relationship and its physiological basis.

  13. Effects of Pulse Current on Endurance Exercise and Its Anti-Fatigue Properties in the Hepatic Tissue of Trained Rats

    PubMed Central

    Ju, Xiaowei; Zhu, Lvgang; Huang, Changlin; Huang, Tao; Zuo, Xincheng; Gao, Chunfang

    2013-01-01

    Fatigue is synonymous with a wide spectrum of familiar physiological conditions, from pathology and general health, to sport and physical exercise. Strenuous, prolonged exercise training causes fatigue. Although several studies have investigated the effects of electrical stimulation frequency on muscle fatigue, the effects of percutaneous pulse current stimulation on fatigue in the hepatic tissue of trained rats is still unclear. In order to find an effective strategy to prevent fatigue or enhance recovery, the effects of pulse current on endurance exercise and its anti-fatigue properties in exercised rats were studied. Rats were subjected to one, three or five weeks of swimming exercise training. After exercise training, rats in the treated group received daily applications of pulse current. All rats were sacrificed after one, three or five weeks of swimming exercise, and the major biochemical indexes were measured in serum and liver. The results demonstrate that pulse current could prolong the exhaustion swimming time, as well as decrease serum ALT, AST and LD levels and liver MDA content. It also elevated serum LDH activity, liver SOD activity and glycogen content. Furthermore, pulse current increased the expression of Bcl-2 and decreased the expression of Bax. Taken together, these results show that pulse current can elevate endurance capacity and facilitate recovery from fatigue. PMID:24116026

  14. Electromyogram and perceived fatigue changes in the trapezius muscle during typewriting and recovery.

    PubMed

    Kimura, Mitsutoshi; Sato, Hirotaka; Ochi, Mamoru; Hosoya, Satoshi; Sadoyama, Tsugutake

    2007-05-01

    The purpose of the present study was to investigate the development and recovery of muscle fatigue in the upper trapezius muscle by analyzing electromyographic signals. Six male subjects performed a simulated typewriting task for four 25-min sessions. During fatigue and the following rest periods, subjective fatigue and surface electromyography (EMG) from the trapezius muscle during isometric contraction at 30% maximum voluntary contraction (MVC) were periodically measured in the interval. We detected a significant decrease in muscle fiber conduction velocity (MFCV) (P = 0.008) and median frequency (MDF) (P = 0.026) as well as an increase in root mean square (RMS) (P = 0.039) and subjective fatigue (P = 0.0004) during the fatigue period. During the recovery period, subjective fatigue decreased drastically and significantly (P = 0.0004), however, the EMG parameters did not recover completely. Thus, physiological muscle fatigue in the trapezius developed in accordance with subjective muscle fatigue during typewriting. On the other hand, differences between the physiological and subjective parameters were found during recovery. Further studies should be necessary to reveal the discrepancy could be a major factor of a transition from temporal phenomena to serious chronic muscle fatigue and to identify the necessity of some guidelines to prevent VDT work-related chronic muscle fatigue in the trapezius.

  15. Exercise‐induced homeostatic perturbations provoked by singles tennis match play with reference to development of fatigue

    PubMed Central

    Mendez‐Villanueva, Alberto; Fernandez‐Fernandez, Jaime; Bishop, David

    2007-01-01

    This review addresses metabolic, neural, mechanical and thermal alterations during tennis match play with special focus on associations with fatigue. Several studies have provided a link between fatigue and the impairment of tennis skills proficiency. A tennis player's ability to maintain skilled on‐court performance and/or optimal muscle function during a demanding match can be compromised as a result of several homeostatic perturbations, for example hypoglycaemia, muscle damage and hyperthermia. Accordingly, an important physiological requirement to succeed at competitive level might be the player's ability to resist fatigue. However, research evidence on this topic is limited and it is unclear to what extent players experience fatigue during high‐level tennis match play and what the physiological mechanisms are that are likely to contribute to the deterioration in performance. PMID:17957005

  16. Cancer-related fatigue: can exercise physiology assist oncologists?

    PubMed

    Lucía, Alejandro; Earnest, Conrad; Pérez, Margarita

    2003-10-01

    Most patients with cancer experience fatigue, a severe activity-limiting symptom with a multifactorial origin. To avoid cancer-related fatigue, patients are frequently advised to seek periods of rest and to reduce their amount of physical activity. This advice is reminiscent of that formerly given to patients with heart disease. However, such recommendations can paradoxically compound symptoms of fatigue, since sedentary habits induce muscle catabolism and thus cause a further decrease in functional capacity. By contrast, there is scientific evidence that an exercise programme of low to moderate intensity can substantially reduce cancer-related fatigue and improve the quality of life of these patients. Current knowledge, combined with findings soon to be published, could launch new opportunities for patients with cancer. In this new century, exercise physiology could soon prove to be very useful for oncologists.

  17. Effects of extreme-duration heavy load carriage on neuromuscular function and locomotion: a military-based study.

    PubMed

    Grenier, Jordane G; Millet, Guillaume Y; Peyrot, Nicolas; Samozino, Pierre; Oullion, Roger; Messonnier, Laurent; Morin, Jean-Benoît

    2012-01-01

    Trekking and military missions generally consist of carrying heavy loads for extreme durations. These factors have been separately shown to be sources of neuromuscular (NM) fatigue and locomotor alterations. However, the question of their combined effects remains unresolved, and addressing this issue required a representative context. The aim was to investigate the effects of extreme-duration heavy load carriage on NM function and walking characteristics. Ten experienced infantrymen performed a 21-h simulated military mission (SMM) in a middle-mountain environment with equipment weighing ∼27 kg during battles and ∼43 kg during marches. NM function was evaluated for knee extensors (KE) and plantar flexors (PF) pre- and immediately post-SMM using isometric maximal voluntary contraction (MVC) measurement, neural electrical stimulation and surface EMG. The twitch-interpolation method was used to assess central fatigue. Peripheral changes were examined by stimulating the muscle in the relaxed state. The energy cost, mechanical work and spatio-temporal pattern of walking were also evaluated pre-/post-SMM on an instrumented treadmill in three equipment conditions: Sportswear, Battle and March. After the SMM, MVC declined by -10.2±3.6% for KE (P<0.01) and -10.7±16.1% for PF (P = 0.06). The origin of fatigue was essentially peripheral for both muscle groups. A trend toward low-frequency fatigue was detected for KE (5.5%, P = 0.08). These moderate NM alterations were concomitant with a large increase in perceived fatigue from pre- (rating of 8.3±2.2) to post-SMM (15.9±2.1, P<0.01). The SMM-related fatigue did not alter walking energetics or mechanics, and the different equipment carried on the treadmill did not interact with this fatigue either. this study reports the first data on physiological and biomechanical consequences of extreme-duration heavy load carriage. Unexpectedly, NM function alterations due to the 21-h SMM were moderate and did not alter walking characteristics. Name: Effect of prolonged military exercises with high load carriage on neuromuscular fatigue and physiological/biomechanical responses. Number: NCT01127191.

  18. Effects of Extreme-Duration Heavy Load Carriage on Neuromuscular Function and Locomotion: A Military-Based Study

    PubMed Central

    Grenier, Jordane G.; Millet, Guillaume Y.; Peyrot, Nicolas; Samozino, Pierre; Oullion, Roger; Messonnier, Laurent; Morin, Jean-Benoît

    2012-01-01

    Trekking and military missions generally consist of carrying heavy loads for extreme durations. These factors have been separately shown to be sources of neuromuscular (NM) fatigue and locomotor alterations. However, the question of their combined effects remains unresolved, and addressing this issue required a representative context. Purpose The aim was to investigate the effects of extreme-duration heavy load carriage on NM function and walking characteristics. Methods Ten experienced infantrymen performed a 21-h simulated military mission (SMM) in a middle-mountain environment with equipment weighing ∼27 kg during battles and ∼43 kg during marches. NM function was evaluated for knee extensors (KE) and plantar flexors (PF) pre- and immediately post-SMM using isometric maximal voluntary contraction (MVC) measurement, neural electrical stimulation and surface EMG. The twitch-interpolation method was used to assess central fatigue. Peripheral changes were examined by stimulating the muscle in the relaxed state. The energy cost, mechanical work and spatio-temporal pattern of walking were also evaluated pre−/post-SMM on an instrumented treadmill in three equipment conditions: Sportswear, Battle and March. Results After the SMM, MVC declined by −10.2±3.6% for KE (P<0.01) and −10.7±16.1% for PF (P = 0.06). The origin of fatigue was essentially peripheral for both muscle groups. A trend toward low-frequency fatigue was detected for KE (5.5%, P = 0.08). These moderate NM alterations were concomitant with a large increase in perceived fatigue from pre- (rating of 8.3±2.2) to post-SMM (15.9±2.1, P<0.01). The SMM-related fatigue did not alter walking energetics or mechanics, and the different equipment carried on the treadmill did not interact with this fatigue either. Conclusion this study reports the first data on physiological and biomechanical consequences of extreme-duration heavy load carriage. Unexpectedly, NM function alterations due to the 21-h SMM were moderate and did not alter walking characteristics. Clinical Trial Registration Name: Effect of prolonged military exercises with high load carriage on neuromuscular fatigue and physiological/biomechanical responses. Number: NCT01127191. PMID:22927995

  19. False Alarms and Overmonitoring: Major Factors in Alarm Fatigue Among Labor Nurses.

    PubMed

    Simpson, Kathleen Rice; Lyndon, Audrey

    2018-06-08

    Nurses can be exposed to hundreds of alarms during their shift, contributing to alarm fatigue. The purposes were to explore similarities and differences in perceptions of clinical alarms by labor nurses caring for generally healthy women compared with perceptions of adult intensive care unit (ICU) and neonatal ICU nurses caring for critically ill patients and to seek nurses' suggestions for potential improvements. Nurses were asked via focus groups about the utility of clinical alarms from medical devices. There was consensus that false alarms and too many devices generating alarms contributed to alarm fatigue, and most alarms lacked clinical relevance. Nurses identified certain types of alarms that they responded to immediately, but the vast majority of the alarms did not contribute to their clinical assessment or planned nursing care. Monitoring only those patients who need it and only those physiologic values that are warranted, based on patient condition, may decrease alarm burden.

  20. Decision fatigue: A conceptual analysis.

    PubMed

    Pignatiello, Grant A; Martin, Richard J; Hickman, Ronald L

    2018-03-01

    Decision fatigue is an applicable concept to healthcare psychology. Due to a lack of conceptual clarity, we present a concept analysis of decision fatigue. A search of the term "decision fatigue" was conducted across seven research databases, which yielded 17 relevant articles. The authors identified three antecedent themes (decisional, self-regulatory, and situational) and three attributional themes (behavioral, cognitive, and physiological) of decision fatigue. However, the extant literature failed to adequately describe consequences of decision fatigue. This concept analysis provides needed conceptual clarity for decision fatigue, a concept possessing relevance to nursing and allied health sciences.

  1. Fatigue mechanisms in patients with cancer: effects of tumor necrosis factor and exercise on skeletal muscle

    NASA Technical Reports Server (NTRS)

    St Pierre, B. A.; Kasper, C. E.; Lindsey, A. M.

    1992-01-01

    Fatigue is a common adverse effect of cancer and its therapy. However, the specific mechanisms underlying cancer fatigue are unclear. One physiologic mechanism may involve changes in skeletal muscle protein stores or metabolite concentration. A reduction in skeletal muscle protein stores may result from endogenous tumor necrosis factor (TNF) or from TNF administered as antineoplastic therapy. This muscle wasting would require patients to exert an unusually high amount of effort to generate adequate contractile force during exercise performance or during extended periods of sitting or standing. This additional effort could result in the onset of fatigue. Additionally, cancer fatigue may develop or become exacerbated during exercise as a consequence of changes in the concentration of skeletal muscle metabolites. These biochemical alterations may interfere with force that is produced by the muscle contractile proteins. These physiologic changes may play a role in the decision to include exercise in the rehabilitation plans of patients with cancer. They also may affect ideas about fatigue.

  2. A review of concepts regarding the origin of respiratory muscle fatigue

    NASA Astrophysics Data System (ADS)

    Kuraszkiewicz, Bożena; Piotrkiewicz, Maria

    2011-01-01

    In this review, the classification of respiratory muscle fatigue from the perspective of its origin is presented. The fatigue is classified as central or peripheral, and the latter further subdivided into high- and low-frequency fatigue. However, muscle fatigue is a complex process and all three types of fatigue probably occur simultaneously in the overloaded respiratory muscles. The relative importance of each type depends on the duration of respiratory loading and other physiological variables. However, central and high-frequency fatigue resolve rapidly once muscle overload is removed, whereas low-frequency fatigue persists over long time.

  3. Influence of mental workload on muscle endurance, fatigue, and recovery during intermittent static work.

    PubMed

    Mehta, Ranjana K; Agnew, Michael J

    2012-08-01

    Most occupational tasks involve some level of mental/cognitive processing in addition to physical work; however, the etiology of work-related musculoskeletal disorders (WMSDs) due to these demands remains unclear. The aim of this study was to quantify the interactive effects of physical and mental workload on muscle endurance, fatigue, and recovery during intermittent work. Twelve participants, balanced by gender, performed intermittent static shoulder abductions to exhaustion at 15, 35, and 55% of individual maximal voluntary contraction (MVC), in the absence (control) and presence (concurrent) of a mental arithmetic task. Changes in muscular capacity were determined using endurance time, strength decline, electromyographic (EMG) fatigue indicators, muscle oxygenation, and heart rate measures. Muscular recovery was quantified through changes in strength and physiological responses. Mental workload was associated with shorter endurance times, specifically at 35% MVC, and greater strength decline. EMG and oxygenation measures showed similar changes during fatigue manifestation during concurrent conditions compared to the control, despite shorter endurance times. Moreover, decreased heart rate variability during concurrent demand conditions indicated increased mental stress. Although strength recovery was not influenced by mental workload, a slower heart rate recovery was observed after concurrent demand conditions. The findings from this study provide fundamental evidence that physical capacity (fatigability and recovery) is adversely affected by mental workload. Thus, it is critical to determine or evaluate occupational demands based on modified muscular capacity (due to mental workload) to reduce risk of WMSD development.

  4. Detection and Alert of muscle fatigue considering a Surface Electromyography Chaotic Model

    NASA Astrophysics Data System (ADS)

    Herrera, V.; Romero, J. F.; Amestegui, M.

    2011-03-01

    This work propose a detection and alert algorithm for muscle fatigue in paraplegic patients undergoing electro-therapy sessions. The procedure is based on a mathematical chaotic model emulating physiological signals and Continuous Wavelet Transform (CWT). The chaotic model developed is based on a logistic map that provides suitable data accomplishing some physiological signal class patterns. The CWT was applied to signals generated by the model and the resulting vector was obtained through Total Wavelet Entropy (TWE). In this sense, the presented work propose a viable and practical alert and detection algorithm for muscle fatigue.

  5. Uniaxial and Multiaxial Fatigue Life Prediction of the Trabecular Bone Based on Physiological Loading: A Comparative Study.

    PubMed

    Fatihhi, S J; Harun, M N; Abdul Kadir, Mohammed Rafiq; Abdullah, Jaafar; Kamarul, T; Öchsner, Andreas; Syahrom, Ardiyansyah

    2015-10-01

    Fatigue assessment of the trabecular bone has been developed to give a better understanding of bone properties. While most fatigue studies are relying on uniaxial compressive load as the method of assessment, in various cases details are missing, or the uniaxial results are not very realistic. In this paper, the effect of three different load histories from physiological loading applied on the trabecular bone were studied in order to predict the first failure surface and the fatigue lifetime. The fatigue behaviour of the trabecular bone under uniaxial load was compared to that of multiaxial load using a finite element simulation. The plastic strain was found localized at the trabecular structure under multiaxial load. On average, applying multiaxial loads reduced more than five times the fatigue life of the trabecular bone. The results provide evidence that multiaxial loading is dominated in the low cycle fatigue in contrast to the uniaxial one. Both bone volume fraction and structural model index were best predictors of failure (p < 0.05) in fatigue for both types of loading, whilst uniaxial loading has indicated better values in most cases.

  6. Chronic Fatigue Syndrome and Women: Can Therapy Help?

    ERIC Educational Resources Information Center

    Burke, Susan G.

    1992-01-01

    Presents current research on chronic fatigue syndrome, which currently afflicts mostly females between ages of 25 and 55. Notes that, because depression is common symptom of chronic fatigue syndrome, mental health practitioners are often involved with victims and must formulate appropriate treatment strategy that considers physiological,…

  7. Delayed Exercise Promotes Remodeling in Sub-Rupture Fatigue Damaged Tendons

    PubMed Central

    Bell, R.; Boniello, M.R.; Gendron, N.R.; Flatow, E.L.; Andarawis-Puri, N.

    2015-01-01

    Tendinopathy is a common musculoskeletal injury whose treatment is limited by ineffective therapeutic interventions. Previously we have shown that tendons ineffectively repair early sub-rupture fatigue damage. In contrast, physiological exercise has been shown to promote remodeling of healthy tendons but its utility as a therapeutic to promote repair of fatigue damaged tendons remains unknown. Therefore, the objective of this study was to assess the utility of exercise initiated 1 and 14 days after onset of fatigue damage to promote structural repair in fatigue damaged tendons. We hypothesized that exercise initiated 14 days after fatigue loading would promote remodeling as indicated by a decrease in area of collagen matrix damage, increased procollagen I and decorin, while decreasing proteins indicative of tendinopathy. Rats engaged in 6-week exercise for 30 min/day or 60 min/day starting 1 or 14 days after fatigue loading. Initiating exercise 1-day after onset of fatigue injury led to exacerbation of matrix damage, particularly at the tendon insertion. Initiating exercise 14 days after onset of fatigue injury led to remodeling of damaged regions in the midsubstance and collagen synthesis at the insertion. Physiological exercise applied after the initial biological response to injury has dampened can potentially promote remodeling of damaged tendons. PMID:25732052

  8. Physiological models to understand exercise fatigue and the adaptations that predict or enhance athletic performance.

    PubMed

    Noakes, T D

    2000-06-01

    A popular concept in the exercise sciences holds that fatigue develops during exercise of moderate to high intensity, when the capacity of the cardiorespiratory system to provide oxygen to the exercising muscles falls behind their demand inducing "anaerobic" metabolism. But this cardiovascular/anaerobic model is unsatisfactory because (i) a more rigorous analysis indicates that the first organ to be affected by anaerobiosis during maximal exercise would likely be the heart, not the skeletal muscles. This probability was fully appreciated by the pioneering exercise physiologists, A. V Hill, A. Bock and D. B. Dill, but has been systematically ignored by modern exercise physiologists; (ii) no study has yet definitely established the presence of either anaerobiosis, hypoxia or ischaemia in skeletal muscle during maximal exercise; (iii) the model is unable to explain why exercise terminates in a variety of conditions including prolonged exercise, exercise in the heat and at altitude, and in those with chronic diseases of the heart and lungs, without any evidence for skeletal muscle anaerobiosis, hypoxia or ischaemia, and before there is full activation of the total skeletal muscle mass, and (iv) cardiovascular and other measures believed to relate to skeletal muscle anaerobiosis, including the maximum oxygen consumption (VO2 max) and the "anaerobic threshold", are indifferent predictors of exercise capacity in athletes with similar abilities. This review considers four additional models that need to be considered when factors limiting either short duration, maximal or prolonged submaximal exercise are evaluated. These additional models are: (i) the energy supply/energy depletion model; (ii) the muscle power/muscle recruitment model; (iii) the biomechanical model and (iv) the psychological model. By reviewing features of these models, this review provides a broad overview of the physiological, metabolic and biomechanical factors that may limit exercise performance under different exercise conditions. A more complete understanding of fatigue during exercise, and the relevance of the adaptations that develop with training, requires that the potential relevance of each model to fatigue under different conditions of exercise must be considered.

  9. Rate of utilization of a given fraction of W' (the curvature constant of the power-duration relationship) does not affect fatigue during severe-intensity exercise.

    PubMed

    de Souza, Kristopher Mendes; Dekerle, Jeanne; Salvador, Paulo Cesar do Nascimento; de Lucas, Ricardo Dantas; Guglielmo, Luiz Guilherme Antonacci; Greco, Camila Coelho; Denadai, Benedito Sérgio

    2016-04-01

    What is the central question of this study? Does the rate of utilization of W' (the curvature constant of the power-duration relationship) affect fatigue during severe-intensity exercise? What is the main finding and its importance? The magnitude of fatigue after two severe-intensity exercises designed to deplete the same fraction of W' (70%) at two different rates of utilization (fast versus slow) was similar after both exercises. Moreover, the magnitude of fatigue was related to critical power (CP), supporting the contention that CP is a key determinant in fatigue development during high-intensity exercise. Thus, the CP model is a suitable approach to investigate fatigue mechanisms during high-intensity exercise. The depletion of W' (the curvature constant of the power-duration relationship) seems to contribute to fatigue during severe-intensity exercise. Therefore, the aim of this study was to determine the effect of a fast versus a slow rate of utilization of W' on the occurrence of fatigue within the severe-intensity domain. Fifteen healthy male subjects performed tests to determine the critical power, W' and peak torque in the control condition (TCON ) and immediately after two fatiguing work rates (THREE and TEN) set to deplete 70% W' in either 3 (TTHREE ) or 10 min (TTEN ). The TTHREE and TTEN were significantly reduced (F = 19.68, P = 0.01) in comparison to TCON . However, the magnitude of reduction in peak torque (TTHREE  = -19.8 ± 10.1% versus TTEN  = -16.8 ± 13.3%) was the same in the two fatiguing exercises (t = -0.76, P = 0.46). There was a significant inverse relationship between the critical power and the reduction in peak torque during both THREE (r = -0.49, P = 0.03) and TEN (r = -0.62, P = 0.02). In contrast, the W' was not significantly correlated with the reduction in peak torque during both THREE (r = -0.14, P = 0.33) and TEN (r = -0.30, P = 0.10). Thus, fatigue following severe-intensity exercises performed at different rates of utilization of W' was similar when the same work was done above the critical power (i.e. same amount of W' used). © 2016 The Authors. Experimental Physiology © 2016 The Physiological Society.

  10. Microfracture and changes in energy absorption to fracture of young vertebral cancellous bone following physiological fatigue loading.

    PubMed

    Lu, W W; Luk, K D K; Cheung, K C M; Gui-Xing, Qiu; Shen, J X; Yuen, L; Ouyang, J; Leong, J C Y

    2004-06-01

    Fifty-five human thoracolumbar vertebrae were randomly fatigue loaded and analyzed. The purpose of this study was to explore the relationship between fatigue loading, trabecular microfracture, and energy absorption to fracture in human cadaveric thoracolumbar vertebrae. Although trabecular microfractures are found in vivo and have been produced by fatigue loading in vitro, the effect of the level of physiologic fatigue loading on microfracture and energy absorption has not been investigated. Fifty-five human thoracolumbar vertebrae (T11-L4) were randomly divided into 5 groups: 1) control (no loading, n = 6); 2) axial compression to yield (n = 7); and 3-5) 20,000 cycles of fatigue loading at 2 Hz (each n = 14). The level of fatigue loading was determined as a proportion of the yield load of Group 2 as follows: 10% (Group 3), 20% (Group 4), and 30% (Group 5). Half of the specimens in groups 3 to 5 were used for radiographic and histomorphometric analysis to determine microfracture density and distribution, whereas the other half were tested to determine the energy absorption to yield failure. No radiographic evidence of gross fracture was found in any of the groups following fatigue loading. A mean 7.5% increase in stiffness was found in specimens subject to cyclic loading at 10% of yield stress (Group 3). Fatigue at 20% (Group 4) and 30% of yield stress (Group 5) caused significantly higher (P < 0.05) increases in mean stiffness of 23.6% and 24.2%, respectively. Microfracture density increased from 0.46/mm in Group 3 to 0.66/mm in Group 4 and 0.94/mm in Group 5 (P < 0.05). The energy absorbed to failure decreased from 21.9 J in Group 3 to 18.1 J and 19.6 J in Groups 4 and 5, respectively (P < 0.05). Fatigue loading at physiologic levels produced microfractures that are not detectable by radiography. Increased fatigue load results in an increase in microfracture density and decrease energy absorbed to fracture, indicating a reduced resistance to further fatigue loading.

  11. Effects of Fatigue on Throwing Performance in Experienced Team Handball Players

    PubMed Central

    Nuño, Alberto; van den Tillaar, Roland; Guisado, Rafael; Martín, Ignacio; Martinez, Isidoro; Chirosa, Luis J.

    2016-01-01

    Abstract The purpose of this study was to investigate the effect of central and peripheral physiological fatigue on throwing accuracy and ball release velocity in team handball. Twenty male subjects (age 24.7 ± 3.9 yrs, body mass 88.5 ± 5.0 kg, body height 1.86 ± 0.05 m, training experience 12.7 ± 3.8 yrs) from one handball team participated in this study. The participants completed four sets of eight laps of a circuit that consisted of specific team handball drills/exercises, with decreasing recovery times between the laps in each set in order to induce physiological fatigue. Duration of the recovery intervals determined the description of the effort made in each set: “light" (80 s recovery between laps), “moderate" (40 s), “hard" (20 s) and “very hard" (10 s). A heart rate, concentration of lactate in blood and the rate of perceived exertion (RPE) were recorded. Ball velocity and accuracy were measured after each set and they both decreased during a fatigue protocol. However, accuracy only decreased significantly in the end of the protocol, while ball release was already affected after the first round of the protocol. The results substantiate the initial hypothesis and confirm that both throwing accuracy and ball release velocity decrease significantly as physiological fatigue increases. These variables began to decrease when the fatigue quantification values were high or very high. The findings can be used by coaches to develop training programs to teach players how to identify fatigue thresholds and combat the effects of fatigue through decision-making skills at critical game moments. PMID:28031762

  12. [Damping inserts have no load reducing effect in the fatigued state].

    PubMed

    Melnyk, M; Gollhofer, A

    2008-09-01

    Overload injuries to the lower limbs may be attributed to repetitive, non-physiological load stimuli. However, these impact loads acting on the musculoskeletal can be reduced by wearing damping inserts. To date, however, there is only little evidence as to whether this positive effect can be assigned to the damping insert and, furthermore, whether this effect is detectable in states of muscle fatigue. Therefore, the influence of muscle fatigue in combination with the wearing of damping inserts was investigated in 13 subjects. The parameters examined in this study were ground reaction forces during walking and the muscular activation profile of the lower limb in the phase of initial ground contact. The results showed that neither in comparisons with and without damping inserts nor in states of muscular fatigue could significant differences were found in the ground reaction forces. Wereas, no significant differences could be detected in the investigated muscles, with and without damping inserts, preactivation in the peroneal and biceps femoris muscles were significantly earlier, in states of muscular fatigue with damping inserts, while no changes could be found in the anterior tibial, soleus, vastus lateralis and gastrocnemius muscles. The present results demonstrate that wearing damping inserts does not lead to a positive effect with regard to a reduction of the ground reaction forces. The earlier preactivation in the case of muscle fatigue with a damping insert is indicative of an increased energy expenditure which may be possibly associated with increased knee and ankle joint control. The high satisfaction concerning the comfort of wearing such inserts revealed by a questionnaire did not correlate with a reduction in loading condition. On the basis of the present results we cannot recommend the wearing of damping soft sole inserts in the context of a reduction in load condition.

  13. [Effects of long term mental arithmetic on physiological parameters, subjective indices and task performances].

    PubMed

    Yamada, Shimpei; Miyake, Shinji

    2007-03-01

    This study examined the effects of long term mental arithmetic on physiological parameters, subjective indices and task performances to investigate the psychophysiological changes induced by mental tasks. Fifteen male university students performed six successive trials of a ten-minute mental arithmetic task. They took a five-minute resting period before and after the tasks. CFF (Critical Flicker Fusion frequency) and subjective fatigue scores using a visual analog scale, POMS (Profiles of Mood States) and SFF (Subjective Feelings of Fatigue) were obtained after each task and resting period. The voices of participants who were instructed to speak five Japanese vowels ('a', 'i', 'u', 'e', 'o') were recorded after each block to investigate a chaotic property of vocal signals that is reported to be changed by fatigue. Subjective workload ratings were also obtained by the NASA-TLX (National Aeronautics and Space Administration-Task Load Index) after the task. Physiological signals of ECG (Electrocardiogram), PTG (Photoelectric Plethysmogram), SCL (Skin Conductance Level), TBV (Tissue Blood Volume) and Respiration were recorded for all experimental blocks. The number of answers, correct rates and average levels of task difficulty for each ten-minute task were used as task performance indices. In this experiment, the task performance did not decrease, whereas subjective fatigue increased. Activation of the sympathetic nervous system was suggested by physiological parameters.

  14. Evaluating Fatigue in Operational Settings: The NASA Ames Fatigue Countermeasures Program

    NASA Technical Reports Server (NTRS)

    Rosekind, Mark R.; Gregory, Kevin; Miller, Donna; Webbon, Lissa; Oyung, Ray

    1996-01-01

    In response to a 1980 Congressional request, NASA Ames initiated a program to examine fatigue in flight operations. The Program objectives are to examine fatigue, sleep loss, and circadian disruption in flight operations, determine the effects of these factors on flight crew performance, and the development of fatigue countermeasures. The NASA Ames Fatigue Countermeasures Program conducts controlled laboratory experiments, full-mission flight simulations, and field studies. A range of subjective, behavioral, performance, physiological, and environmental measures are used depending on study objectives. The Program has developed substantial expertise in gathering data during actual flight operations and in other work settings. This has required the development of ambulatory and other measures that can be carried throughout the world and used at 41,000 feet in aircraft cockpits. The NASA Ames Fatigue Countermeasures Program has examined fatigue in shorthaul, longhaul, overnight cargo, and helicopter operations. A recent study of planned cockpit rest periods demonstrated the effectiveness of a brief inflight nap to improve pilot performance and alertness. This study involved inflight reaction time/vigilance performance testing and EEG/EOG measures of physiological alertness. The NASA Ames Fatigue Countermeasures Program has applied scientific findings to the development of education and training materials on fatigue countermeasures, input to federal regulatory activities on pilot flight, duty, and rest requirements, and support of National Transportation Safety Board accident investigations. Current activities are examining fatigue in nonaugmented longhaul flights, regional/commuter flight operations, corporate/business aviation, and psychophysiological variables related to performance.

  15. The compression of perceived time in a hot environment depends on physiological and psychological factors.

    PubMed

    Tamm, Maria; Jakobson, Ainika; Havik, Merle; Burk, Andres; Timpmann, Saima; Allik, Jüri; Oöpik, Vahur; Kreegipuu, Kairi

    2014-01-01

    The human perception of time was observed under extremely hot conditions. Young healthy men performed a time production task repeatedly in 4 experimental trials in either a temperate (22 °C, relative humidity 35%) or a hot (42 °C, relative humidity 18%) environment and with or without a moderate-intensity treadmill exercise. Within 1 hour, the produced durations indicated a significant compression of short intervals (0.5 to 10 s) in the combination of exercising and high ambient temperature, while neither variable/condition alone was enough to yield the effect. Temporal judgement was analysed in relation to different indicators of arousal, such as critical flicker frequency (CFF), core temperature, heart rate, and subjective ratings of fatigue and exertion. The arousal-sensitive internal clock model (originally proposed by Treisman) is used to explain the temporal compression while exercising in heat. As a result, we suggest that the psychological response to heat stress, the more precisely perceived fatigue, is important in describing the relationship between core temperature and time perception. Temporal compression is related to higher core temperature, but only if a certain level of perceived fatigue is accounted for, implying the existence of a thermoemotional internal clock.

  16. Quantitative high-speed laryngoscopic analysis of vocal fold vibration in fatigued voice of young karaoke singers.

    PubMed

    Yiu, Edwin M-L; Wang, Gaowu; Lo, Andy C Y; Chan, Karen M-K; Ma, Estella P-M; Kong, Jiangping; Barrett, Elizabeth Ann

    2013-11-01

    The present study aimed to determine whether there were physiological differences in the vocal fold vibration between nonfatigued and fatigued voices using high-speed laryngoscopic imaging and quantitative analysis. Twenty participants aged from 18 to 23 years (mean, 21.2 years; standard deviation, 1.3 years) with normal voice were recruited to participate in an extended singing task. Vocal fatigue was induced using a singing task. High-speed laryngoscopic image recordings of /i/ phonation were taken before and after the singing task. The laryngoscopic images were semiautomatically analyzed with the quantitative high-speed video processing program to extract indices related to the anteroposterior dimension (length), transverse dimension (width), and the speed of opening and closing. Significant reduction in the glottal length-to-width ratio index was found after vocal fatigue. Physiologically, this indicated either a significantly shorter (anteroposteriorly) or a wider (transversely) glottis after vocal fatigue. The high-speed imaging technique using quantitative analysis has the potential for early identification of vocally fatigued voice. Copyright © 2013 The Voice Foundation. All rights reserved.

  17. The Effects of Mental Fatigue on Physical Performance: A Systematic Review.

    PubMed

    Van Cutsem, Jeroen; Marcora, Samuele; De Pauw, Kevin; Bailey, Stephen; Meeusen, Romain; Roelands, Bart

    2017-08-01

    Mental fatigue is a psychobiological state caused by prolonged periods of demanding cognitive activity. It has recently been suggested that mental fatigue can affect physical performance. Our objective was to evaluate the literature on impairment of physical performance due to mental fatigue and to create an overview of the potential factors underlying this effect. Two electronic databases, PubMed and Web of Science (until 28 April 2016), were searched for studies designed to test whether mental fatigue influenced performance of a physical task or influenced physiological and/or perceptual responses during the physical task. Studies using short (<30 min) self-regulatory depletion tasks were excluded from the review. A total of 11 articles were included, of which six were of strong and five of moderate quality. The general finding was a decline in endurance performance (decreased time to exhaustion and self-selected power output/velocity or increased completion time) associated with a higher than normal perceived exertion. Physiological variables traditionally associated with endurance performance (heart rate, blood lactate, oxygen uptake, cardiac output, maximal aerobic capacity) were unaffected by mental fatigue. Maximal strength, power, and anaerobic work were not affected by mental fatigue. The duration and intensity of the physical task appear to be important factors in the decrease in physical performance due to mental fatigue. The most important factor responsible for the negative impact of mental fatigue on endurance performance is a higher perceived exertion.

  18. Sleepiness and Safety: Where Biology Needs Technology.

    PubMed

    Abe, Takashi; Mollicone, Daniel; Basner, Mathias; Dinges, David F

    2014-04-01

    Maintaining human alertness and behavioral capability under conditions of sleep loss and circadian misalignment requires fatigue management technologies due to: (1) dynamic nonlinear modulation of performance capability by the interaction of sleep homeostatic drive and circadian regulation; (2) large differences among people in neurobehavioral vulnerability to sleep loss; (3) error in subjective estimates of fatigue on performance; and (4) to inform people of the need for recovery sleep. Two promising areas of technology have emerged for managing fatigue risk in safety-sensitive occupations. The first involves preventing fatigue by optimizing work schedules using biomathematical models of performance changes associated with sleep homeostatic and circadian dynamics. Increasingly these mathematical models account for individual differences to achieve a more accurate estimate of the timing and magnitude of fatigue effects on individuals. The second area involves technologies for detecting transient fatigue from drowsiness. The Psychomotor Vigilance Test (PVT), which has been extensively validated to be sensitive to deficits in attention from sleep loss and circadian misalignment, is an example in this category. Two shorter-duration versions of the PVT recently have been developed for evaluating whether operators have sufficient behavioral alertness prior to or during work. Another example is online tracking the percent of slow eyelid closures (PERCLOS), which has been shown to reflect momentary fluctuations of vigilance. Technologies for predicting and detecting sleepiness/fatigue have the potential to predict and prevent operator errors and accidents in safety-sensitive occupations, as well as physiological and mental diseases due to inadequate sleep and circadian misalignment.

  19. Sex Differences in Human Fatigability: Mechanisms and Insight to Physiological Responses

    PubMed Central

    Hunter, Sandra K.

    2014-01-01

    Sex-related differences in physiology and anatomy are responsible for profound differences in neuromuscular performance and fatigability between men and women. Women are usually less fatigable than men for similar intensity isometric fatiguing contractions. This sex difference in fatigability, however, is task specific because different neuromuscular sites will be stressed when the requirements of the task are altered, and the stress on these sites can differ for men and women. Task variables that can alter the sex difference in fatigue include the type, intensity and speed of contraction, the muscle group assessed, and the environmental conditions. Physiological mechanisms that are responsible for sex-based differences in fatigability may include activation of the motor neuron pool from cortical and subcortical regions, synaptic inputs to the motor neuron pool via activation of metabolically-sensitive small afferent fibres in the muscle, muscle perfusion, and skeletal muscle metabolism and fibre type properties. Non-physiological factors such as the sex bias of studying more males than females in human and animal experiments can also mask a true understanding of the magnitude and mechanisms of sex-based differences in physiology and fatigability. Despite recent developments, there is a tremendous lack of understanding of sex differences in neuromuscular function and fatigability, the prevailing mechanisms and the functional consequences. This review emphasises the need to understand sex-based differences in fatigability in order to shed light on the benefits and limitations that fatigability can exert for men and women during daily tasks, exercise performance, training and rehabilitation in both health and disease. PMID:24433272

  20. Devices for noninvasive transcranial electrostimulation of the brain endorphinergic system: application for improvement of human psycho-physiological status.

    PubMed

    Lebedev, Valery P; Malygin, A V; Kovalevski, A V; Rychkova, S V; Sisoev, V N; Kropotov, S P; Krupitski, E M; Gerasimova, L I; Glukhov, D V; Kozlowski, G P

    2002-03-01

    It is well known that deficit of endorphins plays an important role in disturbances of human psycho-physiological status. Previously, we revealed that brain endorphinergic structures have quasiresonance characteristics. On the basis of these data, a method of activation of the brain endorphinergic structures by means of noninvasive and rather selective transcranial electrostimulation (TES) as a kind of functional electrical stimulation (FES) was elaborated. New models of TES devices (TRANSAIR) were developed for indoor and outdoor usage. To increase the efficacy of TES, the frequency modulation according to normal distribution in the limits of the quasiresonance characteristics was put into operation. The blind and placebo-controlled (passive and active placebo) study was produced to estimate the TES effects on stress events and accompanied psycho-physiological and autonomic disturbances of different intensities on volunteers and patients in the following groups: everyday stress and fatigue; stress in regular military service and in field conditions; stress in the relatives of those lost in mass disaster; posttraumatic stress (thermal burns); and affective disorders in a postabstinence period. Some subjective verbal and nonverbal tests and objective tests (including heart rate variability) were used for estimation of the initial level of psycho-physiological status, which changes after TES sessions. It was demonstrated that fatigue, stress, and other accompanied psycho-physiological disturbances were significantly improved or abolished after 2-5 TES sessions. The TES effects were more pronounced in cases of heavier disturbances. In conclusion, activation of the brain endorphinergic structures by TES is an effective homeostatic method of FES that sufficiently improves quality of life.

  1. Physiological measures in participants with chronic fatigue syndrome, multiple sclerosis and healthy controls following repeated exercise: a pilot study.

    PubMed

    Hodges, L D; Nielsen, T; Baken, D

    2017-08-07

    To compare physiological responses of chronic fatigue syndrome (CFS/ME), multiple sclerosis (MS) and healthy controls (HC) following a 24-h repeated exercise test. Ten CFS, seven MS and 17 age- and gender-matched healthy controls (10, CFS HC; and seven, MS HC) were recruited. Each participant completed a maximal incremental cycle exercise test on day 1 and again 24 h later. Heart rate (HR), blood pressure (BP), rating of perceived exertion (RPE), oxygen consumption (V˙O2), carbon dioxide production and workload (WL) were recorded. Data analysis investigated these responses at anaerobic threshold (AT) and peak work rate (PWR). On day 2, both CFS and MS had significantly reduced max workload compared to HC. On day 2, significant differences were apparent in WL between CFS and CFS HC (93 ± 37 W, 132 ± 42 W, P<0·042). CFS workload decreased on day 2, alongside a decrease in HR but with an increase in V˙O2 (ml   kg   min -1 ). This was in comparison with an increase in WL, HR and V˙O2 for CFS HC. MS demonstrated a decreased WL compared to MS HC on both days of the study (D1 81 ± 30 W, 116 ±30 W; D2 84 ± 29 W, 118 ± 36 W); however, patients with MS were able to achieve a higher WL on day 2 alongside MS HC. These results suggest that exercise exhibits a different physiological response in MS and CFS/ME, demonstrating repeated cardiovascular exercise testing as a valid measure for differentiating between fatigue conditions. © 2017 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.

  2. The proposal of a clinical protocol to assess central and peripheral fatigue in myotonic dystrophy type 1.

    PubMed

    Baldanzi, S; Ricci, G; Bottari, M; Chico, L; Simoncini, C; Siciliano, G

    2017-07-01

    DM1 is an autosomal-dominant disorder characterized by muscle weakness, myotonia, and multisystemic involvement. According to current literature fatigue and daytime sleepiness are among the main symptoms of DM1. Oxidative stress has been proposed to be one of the pathogenic factors of fatigue consequent to DM1. In this study, we investigated the dimensions of experienced fatigue and  physiological fatigue in a sample of 26 DM1 patients (17 males, 9 females, mean age 41.6 years, SD±12.7); experienced fatigue has been studied through Fatigue Severity Scale (FSS), and physiological fatigue was measured through an intermittent incremental exercise of the forearm muscles using a myometer; oxidative stress balance markers trend during aerobic exercise test have been collected. The occurrence of central fatigue in the sample means that central activation worsens during the motor contraction; interestingly FSS score was significantly correlated to MVC (before and after the effort, r-before=-0.583, p<0.01, r-after= -0.534, p<0.05), and to motor disability measured by MRC (r=-0.496, p<0.05); moreover we found a strong tendency towards significance in the association to lactate baseline (r=0.378, p=0.057).Results are discussed to define whether or not, based on clinical and laboratory grounds, such exercise training protocol may be suitable for proper management of DM1 patients; proper assessment of fatigue should be included in algorithms for data collection in DM1 patient registries.

  3. Exercise performance, haemodynamics, and respiratory pattern do not identify heart failure patients who end exercise with dyspnoea from those with fatigue.

    PubMed

    Morosin, Marco; Farina, Stefania; Vignati, Carlo; Spadafora, Emanuele; Sciomer, Susanna; Salvioni, Elisabetta; Sinagra, Gianfranco; Agostoni, Piergiuseppe

    2018-02-01

    The two main symptoms referred by chronic heart failure (HF) patients as the causes of exercise termination during maximal cardiopulmonary exercise testing (CPET) are muscular fatigue and dyspnoea. So far, a physiological explanation why some HF patients end exercise because of dyspnoea and others because of fatigue is not available. We assessed whether patients referring dyspnoea or muscular fatigue may be distinguished by different ventilator or haemodynamic behaviours during exercise. We analysed exercise data of 170 consecutive HF patients with reduced left ventricular ejection fraction in stable clinical condition. All patients underwent maximal CPET and a second maximal CPET with measurement of cardiac output by inert gas rebreathing at peak exercise. Thirty-eight (age 65.0 ± 11.1 years) and 132 (65.1 ± 11.4 years) patients terminated CPET because of dyspnoea and fatigue, respectively. Haemodynamic and cardiorespiratory parameters were the same in fatigue and dyspnoea patients. VO 2 was 10.4 ± 3.2 and 10.5 ± 3.3 mL/min/kg at the anaerobic threshold and 15.5 ± 4.8 and 15.4 ± 4.3 at peak, in fatigue and dyspnoea patients, respectively. In fatigue and dyspnoea patients, peak heart rate was 110 ± 22 and 114 ± 22 beats/min, and VE/VCO 2 and VO 2 /work relationship slopes were 31.2 ± 6.8 and 30.6 ± 8.2 and 10.6 ± 4.2 and 11.4 ± 5.5 L/min/W, respectively. Peak cardiac output was 6.68 ± 2.51 and 6.21 ± 2.55 L/min (P = NS for all). In chronic HF patients in stable clinical condition, fatigue and dyspnoea as reasons of exercise termination do not highlight different ventilatory or haemodynamic patterns during effort. © 2017 The Authors. ESC Heart Failure published by John Wiley & Sons Ltd on behalf of the European Society of Cardiology.

  4. Psycho-physiological effects of visual artifacts by stereoscopic display systems

    NASA Astrophysics Data System (ADS)

    Kim, Sanghyun; Yoshitake, Junki; Morikawa, Hiroyuki; Kawai, Takashi; Yamada, Osamu; Iguchi, Akihiko

    2011-03-01

    The methods available for delivering stereoscopic (3D) display using glasses can be classified as time-multiplexing and spatial-multiplexing. With both methods, intrinsic visual artifacts result from the generation of the 3D image pair on a flat panel display device. In the case of the time-multiplexing method, an observer perceives three artifacts: flicker, the Mach-Dvorak effect, and a phantom array. These only occur under certain conditions, with flicker appearing in any conditions, the Mach-Dvorak effect during smooth pursuit eye movements (SPM), and a phantom array during saccadic eye movements (saccade). With spatial-multiplexing, the artifacts are temporal-parallax (due to the interlaced video signal), binocular rivalry, and reduced spatial resolution. These artifacts are considered one of the major impediments to the safety and comfort of 3D display users. In this study, the implications of the artifacts for the safety and comfort are evaluated by examining the psychological changes they cause through subjective symptoms of fatigue and the depth sensation. Physiological changes are also measured as objective responses based on analysis of heart and brain activation by visual artifacts. Further, to understand the characteristics of each artifact and the combined effects of the artifacts, four experimental conditions are developed and tested. The results show that perception of artifacts differs according to the visual environment and the display method. Furthermore visual fatigue and the depth sensation are influenced by the individual characteristics of each artifact. Similarly, heart rate variability and regional cerebral oxygenation changes by perception of artifacts in conditions.

  5. Rodent models of insomnia: a review of experimental procedures that induce sleep disturbances.

    PubMed

    Revel, Florent G; Gottowik, Juergen; Gatti, Sylvia; Wettstein, Joseph G; Moreau, Jean-Luc

    2009-06-01

    Insomnia, the most common sleep disorder, is characterized by persistent difficulty in falling or staying asleep despite adequate opportunity to sleep, leading to daytime fatigue and mental dysfunction. As sleep is a sophisticated physiological process generated by a network of neuronal systems that cannot be reproduced in-vitro, pre-clinical development of hypnotic drugs requires in-vivo investigations. Accordingly, this review critically evaluates current and putative rodent models of insomnia which could be used to screen novel hypnotics. Only few valid insomnia models are currently available, although many experimental conditions lead to disturbance of physiological sleep. We categorized these conditions as a function of the procedure used to induce perturbation of sleep, and we discuss their respective advantages and pitfalls with respect to validity, feasibility and translational value to human research.

  6. Effect of incorporating low intensity exercise into the recovery period after a rugby match.

    PubMed

    Suzuki, M; Umeda, T; Nakaji, S; Shimoyama, T; Mashiko, T; Sugawara, K

    2004-08-01

    The psychological and physiological condition of athletes affect both their performance in competitions and their health. Rugby is an intense sport which appears to impose psychological and physiological stress on players. However, there have been few studies of the most appropriate resting techniques to deliver effective recovery from a match. To compare the difference in recovery after a match using resting techniques with or without exercise. Fifteen Japanese college rugby football players were studied. Seven performed only normal daily activities and eight performed additional low intensity exercise during the post-match rest period. Players were examined just before and immediately after the match and one and two days after the match. Blood biochemistry and two neutrophil functions, phagocytic activity and oxidative burst, were measured to assess physiological condition, and the profile of mood states (POMS) scores were examined to evaluate psychological condition. Immediately after the match, muscle damage, decreases in neutrophil functions, and mental fatigue were observed in both groups. Muscle damage and neutrophil functions recovered with time almost equally in the two groups, but the POMS scores were significantly decreased only in subjects in the low intensity exercise group. Rugby matches impose both physiological and psychological stress on players. The addition of low intensity exercise to the rest period did not adversely affect physiological recovery and had a significantly beneficial effect on psychological recovery by enhancing relaxation.

  7. Evaluation of Physiological Indices to Indicate Sleepy or Relaxed States Using Illuminance Stimulation

    NASA Astrophysics Data System (ADS)

    Shibagaki, Yumi; Ogawa, Kozue; Hagiwara, Hiroshi

    The purpose of the present study was to clarify the ability of physiological indices to reflect the degree of sleepiness or relaxation of an individual due to stress, fatigue and other factors. Several studies have investigated the use of high-frequency (HF) components (0.15-0.40Hz) in heart rate variability to evaluate parasympathetic nervous activity. However, it has been difficult to assess the differences between states of sleepiness and relaxation using this method. In the present study, in order to evaluate the indices, two experimental illuminance conditions, 100 and 1,500 lx, reflecting differing states of arousal, were used during a cognitive judgment test lasting for 30 minutes. During the cognitive judgment test, electroencephalograms (EEG), electrocardiograms (ECG), physiological state and reaction time were measured, and results indicated that the two illuminance conditions could be differentiated from the recorded physiological data. More specifically, in the 1,500-lx condition, arousal level, activity level and test performance increased, and the level of HF components decreased. Opposite tendencies were observed in the 100-lx condition. Two indices of Lorenz plots (LP) at ECG RR intervals, center (C of LP) and ellipse area (S of LP), were subsequently determined from the physiological data. Subjects were then divided according to these LP indices based on their exhibited physiological responses, and we evaluated the effectiveness of the indices in differentiating between states of sleepiness and relaxation by comparing arousal level, psychological state, and reaction time. Results indicated that the C of LP and S of LP are possible indices for evaluating sleepiness or relaxation and suggest that these two indices may also be able to evaluate the relationship between physiological changes and other, subjective feelings.

  8. A central factor in pure tone auditory fatigue.

    DOT National Transportation Integrated Search

    1963-09-01

    A long accumulation of psychophysical and physiological evidence indicates that auditory fatigue has its locus of effect in the cochlea; transfer studies with negative or questionable results, and studies of cochlear chemistry and potentials with pos...

  9. Post-exercise recovery of contractile function and endurance in humans and mice is accelerated by heating and slowed by cooling skeletal muscle.

    PubMed

    Cheng, Arthur J; Willis, Sarah J; Zinner, Christoph; Chaillou, Thomas; Ivarsson, Niklas; Ørtenblad, Niels; Lanner, Johanna T; Holmberg, Hans-Christer; Westerblad, Håkan

    2017-12-15

    We investigated whether intramuscular temperature affects the acute recovery of exercise performance following fatigue-induced by endurance exercise. Mean power output was better preserved during an all-out arm-cycling exercise following a 2 h recovery period in which the upper arms were warmed to an intramuscular temperature of ̴ 38°C than when they were cooled to as low as 15°C, which suggested that recovery of exercise performance in humans is dependent on muscle temperature. Mechanisms underlying the temperature-dependent effect on recovery were studied in intact single mouse muscle fibres where we found that recovery of submaximal force and restoration of fatigue resistance was worsened by cooling (16-26°C) and improved by heating (36°C). Isolated whole mouse muscle experiments confirmed that cooling impaired muscle glycogen resynthesis. We conclude that skeletal muscle recovery from fatigue-induced by endurance exercise is impaired by cooling and improved by heating, due to changes in glycogen resynthesis rate. Manipulation of muscle temperature is believed to improve post-exercise recovery, with cooling being especially popular among athletes. However, it is unclear whether such temperature manipulations actually have positive effects. Accordingly, we studied the effect of muscle temperature on the acute recovery of force and fatigue resistance after endurance exercise. One hour of moderate-intensity arm cycling exercise in humans was followed by 2 h recovery in which the upper arms were either heated to 38°C, not treated (33°C), or cooled to ∼15°C. Fatigue resistance after the recovery period was assessed by performing 3 × 5 min sessions of all-out arm cycling at physiological temperature for all conditions (i.e. not heated or cooled). Power output during the all-out exercise was better maintained when muscles were heated during recovery, whereas cooling had the opposite effect. Mechanisms underlying the temperature-dependent effect on recovery were tested in mouse intact single muscle fibres, which were exposed to ∼12 min of glycogen-depleting fatiguing stimulation (350 ms tetani given at 10 s interval until force decreased to 30% of the starting force). Fibres were subsequently exposed to the same fatiguing stimulation protocol after 1-2 h of recovery at 16-36°C. Recovery of submaximal force (30 Hz), the tetanic myoplasmic free [Ca 2+ ] (measured with the fluorescent indicator indo-1), and fatigue resistance were all impaired by cooling (16-26°C) and improved by heating (36°C). In addition, glycogen resynthesis was faster at 36°C than 26°C in whole flexor digitorum brevis muscles. We conclude that recovery from exhaustive endurance exercise is accelerated by raising and slowed by lowering muscle temperature. © 2017 The Authors. The Journal of Physiology © 2017 The Physiological Society.

  10. Resistance of Magnesium Alloys to Corrosion Fatigue for Biodegradable Implant Applications: Current Status and Challenges

    PubMed Central

    Raman, R. K. Singh; Harandi, Shervin Eslami

    2017-01-01

    Magnesium (Mg) alloys are attracting increasing interest as the most suitable metallic materials for construction of biodegradable and bio-absorbable temporary implants. However, Mg-alloys can suffer premature and catastrophic fracture under the synergy of cyclic loading and corrosion (i.e., corrosion fatigue (CF)). Though Mg alloys are reported to be susceptible to CF also in the corrosive human body fluid, there are very limited studies on this topic. Furthermore, the in vitro test parameters employed in these investigations have not properly simulated the actual conditions in the human body. This article presents an overview of the findings of available studies on the CF of Mg alloys in pseudo-physiological solutions and the employed testing procedures, as well as identifying the knowledge gap. PMID:29144428

  11. Resistance of Magnesium Alloys to Corrosion Fatigue for Biodegradable Implant Applications: Current Status and Challenges.

    PubMed

    Raman, R K Singh; Harandi, Shervin Eslami

    2017-11-16

    Magnesium (Mg) alloys are attracting increasing interest as the most suitable metallic materials for construction of biodegradable and bio-absorbable temporary implants. However, Mg-alloys can suffer premature and catastrophic fracture under the synergy of cyclic loading and corrosion (i.e., corrosion fatigue (CF)). Though Mg alloys are reported to be susceptible to CF also in the corrosive human body fluid, there are very limited studies on this topic. Furthermore, the in vitro test parameters employed in these investigations have not properly simulated the actual conditions in the human body. This article presents an overview of the findings of available studies on the CF of Mg alloys in pseudo-physiological solutions and the employed testing procedures, as well as identifying the knowledge gap.

  12. Critical Care Performance in a Simulated Military Aircraft Cabin Environment.

    PubMed

    McNeill, Margaret M

    2018-04-01

    Critical Care Air Transport Teams care for 5% to 10% of injured patients who are transported on military aircraft to definitive treatment facilities. Little is known about how the aeromedical evacuation environment affects care. To determine the effects of 2 stressors of flight, altitude-induced hypoxia and aircraft noise, and to examine the contributions of fatigue and clinical experience on cognitive and physiological performance of the Critical Care Air Transport Team. This repeated measures 2 × 2 × 4 factorial study included 60 military nurses. The participants completed a simulated patient care scenario under aircraft cabin noise and altitude conditions. Differences in cognitive and physiological performance were analyzed using repeated measures analysis of variance. A multiple regression model was developed to determine the independent contributions of fatigue and clinical experience. Critical care scores ( P = .02) and errors and omissions ( P = .047) were negatively affected by noise. Noise was associated with increased respiratory rate ( P = .02). Critical care scores ( P < .001) and errors and omissions ( P = .002) worsened with altitude-induced hypoxemia. Heart rate and respiratory rate increased with altitude-induced hypoxemia; oxygen saturation decreased ( P < .001 for all 3 variables). In a simulated military aircraft environment, the care of critically ill patients was significantly affected by noise and altitude-induced hypoxemia. The participants did not report much fatigue and experience did not play a role, contrary to most findings in the literature. ©2018 American Association of Critical-Care Nurses.

  13. Meta-analysis of the predictive factors of postpartum fatigue.

    PubMed

    Badr, Hanan A; Zauszniewski, Jaclene A

    2017-08-01

    Nearly 64% of new mothers are affected by fatigue during the postpartum period, making it the most common problem that a woman faces as she adapts to motherhood. Postpartum fatigue can lead to serious negative effects on the mother's health and the newborn's development and interfere with mother-infant interaction. The aim of this meta-analysis was to identify predictive factors of postpartum fatigue and to document the magnitude of their effects using effect sizes. We used two search engines, PubMed and Google Scholar, to identify studies that met three inclusion criteria: (a) the article was written in English, (b) the article studied the predictive factors of postpartum fatigue, and (c) the article included information about the validity and reliability of the instruments used in the research. Nine articles met these inclusion criteria. The direction and strength of correlation coefficients between predictive factors and postpartum fatigue were examined across the studies to determine their effect sizes. Measurement of predictor variables occurred from 3days to 6months postpartum. Correlations reported between predictive factors and postpartum fatigue were as follows: small effect size (r range =0.10 to 0.29) for education level, age, postpartum hemorrhage, infection, and child care difficulties; medium effect size (r range =0.30 to 0.49) for physiological illness, low ferritin level, low hemoglobin level, sleeping problems, stress and anxiety, and breastfeeding problems; and large effect size (r range =0.50+) for depression. Postpartum fatigue is a common condition that can lead to serious health problems for a new mother and her newborn. Therefore, increased knowledge concerning factors that influence the onset of postpartum fatigue is needed for early identification of new mothers who may be at risk. Appropriate treatments, interventions, information, and support can then be initiated to prevent or minimize the postpartum fatigue. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. [Physical workload and maximum acceptable work time among supermarket workers in Cali, Colombia].

    PubMed

    Ariza, Luz Elena; Idrovo, Alvaro Javier

    2005-01-01

    In order to guarantee safety and health conditions in labor the maximum physical workload that can be supported by a worker during a labor day, without causing fatigue, must be determined. The objective of this study was to determine the relationship between the physical load, expressed as relative heart rate (RHR), and the maximum acceptable work time (MAWT) in a Colombian working population (n = 30) from a tropical environment. An observational study was carried out during a typical labor day in the warehouses of a supermarket. Physiological, demographic, health and labor conditions data were collected. The resting heart rate level and the average heart rate during work were measured, and the RHR was estimated according to with the model described by Wu & Wang. Significant correlations between MAWT and RHR and other physiological variables were observed. 43% of workers didn't fulfill the MAWT. The only single variable that was associated with fulfillment was a body mass index under 18.5 Kg/m2; the other associated variables were some specific conditions of the occupational environment. Results showed a negative correlation between physiological variables and MAWT. The RHR showed its potential usefulness in the enterprise's occupational health practice. It is important for companies to diminish extended schedules and implement physical conditioning programs.

  15. Bioimpedance analysis and HIV-related fatigue.

    PubMed

    Meynell, Janet; Barroso, Julie

    2005-01-01

    Although various physiological and psychological causes of fatigue in HIV-positive persons have been proposed, it is still not well understood. Bioimpedance analysis has proved to be an easily used, non-invasive measurement of body composition and cellular integrity. This study, looking at whether body composition as measured by bioimpedance analysis is associated with fatigue, is part of a pilot study looking for physiological and psychological biomarkers that could be factors in the fatigue experienced by HIV-positive people. Twenty-nine men and eleven women were measured for height, weight, and bioimpedance analysis. Correlations were examined between fatigue intensity and weight, body mass index, body cell mass, fat-free mass, extracellular mass, and phase angle. Because of the fat redistribution that has occurred with some people taking protease inhibitors, we also examined differences in weight, body mass index, body cell mass, fat-free mass, and fatigue intensity between those taking and those not taking protease inhibitors. There was no association between fatigue intensity and weight, body mass index, body cell mass, fat-free mass, or phase angle, nor were there differences between those taking and those not taking protease inhibitors. However, it was noted that both the phase angle and the ratio of extracellular mass to body cell mass (extracellular mass:body cell mass) were below their respective normal ranges, indicating that the participants were somewhat compromised nutritionally and with regard to cell membrane integrity. Although fatigue was not shown to be related to body composition measurement in this study, further work is needed on the causes of fatigue, because its effects on the lives of HIV-positive people can be devastating.

  16. Alertness Management In Flight Operations: A NASA Education and Training Module

    NASA Technical Reports Server (NTRS)

    Rosekind, Mark R.; Lebacqz, Victor J.; Gander, Philippa H.; Co, Elizabeth L.; Weldon, Keri J.; Smith, Roy M.; Miller, Donna L.; Gregory, Kevin B.; Statler, Irving C. (Technical Monitor)

    1994-01-01

    Since 1980, the NASA Ames Fatigue Countermeasures Program has been conducting research on sleep, circadian rhythms, and fatigue in a variety of flight operations 1. An original goal of the program was to return the scientific and operational knowledge to the aviation industry. To meet this goal, the NASA Ames Fatigue Countermeasures Program has created an Education and Training Module entitled, "Strategies for Alertness Management in Flight Operations." The Module was designed to meet three objectives: 1) explain the current state of knowledge about the physiological mechanisms underlying fatigue, 2) demonstrate how this knowledge can be applied to improve flight crew sleep, performance, and alertness, and 3) offer countermeasure recommendations. The Module is composed of two components: 1) a 60-minute live presentation provided by a knowledgeable individual and 2) a NASA/FAA Technical Memorandum (TM) that contains the presentation materials and appendices with complementary information. The TM is provided to all individuals attending the live presentation. The Module content is divided into three parts: 1) basic information on sleep, sleepiness, circadian rhythms, fatigue, and how flight operations affect these physiological factors, 2) common misconceptions about sleep, sleepiness, and fatigue, and 3) alertness management strategies. The Module is intended for pilots, management personnel, schedulers, flight attendants, and the many other individuals involved in the aviation system.

  17. Research on the Relationship between Reaction Ability and Mental State for Online Assessment of Driving Fatigue.

    PubMed

    Guo, Mengzhu; Li, Shiwu; Wang, Linhong; Chai, Meng; Chen, Facheng; Wei, Yunong

    2016-11-24

    Background: Driving fatigue affects the reaction ability of a driver. The aim of this research is to analyze the relationship between driving fatigue, physiological signals and driver's reaction time. Methods: Twenty subjects were tested during driving. Data pertaining to reaction time and physiological signals including electroencephalograph (EEG) were collected from twenty simulation experiments. Grey correlation analysis was used to select the input variable of the classification model. A support vector machine was used to divide the mental state into three levels. The penalty factor for the model was optimized using a genetic algorithm. Results: The results show that α/β has the greatest correlation to reaction time. The classification results show an accuracy of 86%, a sensitivity of 87.5% and a specificity of 85.53%. The average increase of reaction time is 16.72% from alert state to fatigued state. Females have a faster decrease in reaction ability than males as driving fatigue accumulates. Elderly drivers have longer reaction times than the young. Conclusions: A grey correlation analysis can be used to improve the classification accuracy of the support vector machine (SVM) model. This paper provides basic research that online detection of fatigue can be performed using only a simple device, which is more comfortable for users.

  18. Research on the Relationship between Reaction Ability and Mental State for Online Assessment of Driving Fatigue

    PubMed Central

    Guo, Mengzhu; Li, Shiwu; Wang, Linhong; Chai, Meng; Chen, Facheng; Wei, Yunong

    2016-01-01

    Background: Driving fatigue affects the reaction ability of a driver. The aim of this research is to analyze the relationship between driving fatigue, physiological signals and driver’s reaction time. Methods: Twenty subjects were tested during driving. Data pertaining to reaction time and physiological signals including electroencephalograph (EEG) were collected from twenty simulation experiments. Grey correlation analysis was used to select the input variable of the classification model. A support vector machine was used to divide the mental state into three levels. The penalty factor for the model was optimized using a genetic algorithm. Results: The results show that α/β has the greatest correlation to reaction time. The classification results show an accuracy of 86%, a sensitivity of 87.5% and a specificity of 85.53%. The average increase of reaction time is 16.72% from alert state to fatigued state. Females have a faster decrease in reaction ability than males as driving fatigue accumulates. Elderly drivers have longer reaction times than the young. Conclusions: A grey correlation analysis can be used to improve the classification accuracy of the support vector machine (SVM) model. This paper provides basic research that online detection of fatigue can be performed using only a simple device, which is more comfortable for users. PMID:27886139

  19. The Research on the Impact of Green Beans Sports Drinks on Relieving Fatigue in Sports Training.

    PubMed

    Qi, Li; Ying, Liu

    2015-01-01

    For researching the function of relieving fatigue of green beans sports drinks, this paper selected 60 mice as subjects. They were randomly divided into four groups (low dose group, middle dose group, high dose group and physiological saline group). Each time they were respectively feed 10g 20g/L, 40g/L, 80 g/L green beans sports drinks and 15ml/(kg.d) physiological saline. The experiment lasted for a month. We recorded weight of mice, swimming time and blood urea nitrogen indicators. The results show that green beans sports drinks can significantly prolong swimming time of mice (p <0.05). For serum urea the results show no effect. So green beans sports drinks have a certain function of relieving physical fatigue.

  20. Jet lag and travel fatigue: a comprehensive management plan for sport medicine physicians and high-performance support teams.

    PubMed

    Samuels, Charles H

    2012-05-01

    The impact of transcontinental travel and high-volume travel on athletes can result in physiologic disturbances and a complicated set of physical symptoms. Jet lag and travel fatigue have been identified by athletes, athletic trainers, coaches, and physicians as important but challenging problems that could benefit from practical solutions. Currently, there is a culture of disregard and lack of knowledge regarding the negative effects of jet lag and travel fatigue on the athlete's well-being and performance. In addition, the key physiologic metric (determination of the human circadian phase) that guides jet lag treatment interventions is elusive and thus limits evidence-based therapeutic advice. A better understanding of preflight, in-flight, and postflight management options, such as use of melatonin or the judicious application of sedatives, is important for the sports clinician to help athletes limit fatigue symptoms and maintain optimal performance. The purpose of this article was to provide a practical applied method of implementing a travel management program for athletic teams.

  1. Comparative Physiology of Fatigue.

    PubMed

    Jones, James H

    2016-11-01

    This review attempts to provide insights into factors associated with fatigue in human and nonhuman animals by using the two fundamental approaches of comparative physiology: determining common principles that govern structure and function in animals that are relatively invariant between animals and evaluating animals that have been highly adapted by natural selection to demonstrate extreme performance. In this review, I approach the topic of fatigue by considering factors that are associated with its reciprocal or inverse or duration of sustained performance before fatigue sets in to end the performance. The two general factors that I consider that affect endurance time more than any other are body temperature and body mass. The former affects endurance time because of thermodynamic effects on chemical reaction rates and metabolism; the latter acts through the mechanism of allometry or scaling. The examples of extreme animal performance that I discuss are two examples of bird migration, the diving performance of marine mammals, and the unique relationship that governs energy cost of locomotion in hopping kangaroos.

  2. [Research Progress on the Interaction Effects and Its Neural Mechanisms between Physical Fatigue and Mental Fatigue].

    PubMed

    Zhang, Lixin; Zhang, Chuncui; He, Feng; Zhao, Xin; Qi, Hongzhi; Wan, Baikun; Ming, Dong

    2015-10-01

    Fatigue is an exhaustion state caused by prolonged physical work and mental work, which can reduce working efficiency and even cause industrial accidents. Fatigue is a complex concept involving both physiological and psychological factors. Fatigue can cause a decline of concentration and work performance and induce chronic diseases. Prolonged fatigue may endanger life safety. In most of the scenarios, physical and mental workloads co-lead operator into fatigue state. Thus, it is very important to study the interaction influence and its neural mechanisms between physical and mental fatigues. This paper introduces recent progresses on the interaction effects and discusses some research challenges and future development directions. It is believed that mutual influence between physical fatigue and mental fatigue may occur in the central nervous system. Revealing the basal ganglia function and dopamine release may be important to explore the neural mechanisms between physical fatigue and mental fatigue. Future effort is to optimize fatigue models, to evaluate parameters and to explore the neural mechanisms so as to provide scientific basis and theoretical guidance for complex task designs and fatigue monitoring.

  3. Development of an algorithm for an EEG-based driver fatigue countermeasure.

    PubMed

    Lal, Saroj K L; Craig, Ashley; Boord, Peter; Kirkup, Les; Nguyen, Hung

    2003-01-01

    Fatigue affects a driver's ability to proceed safely. Driver-related fatigue and/or sleepiness are a significant cause of traffic accidents, which makes this an area of great socioeconomic concern. Monitoring physiological signals while driving provides the possibility of detecting and warning of fatigue. The aim of this paper is to describe an EEG-based fatigue countermeasure algorithm and to report its reliability. Changes in all major EEG bands during fatigue were used to develop the algorithm for detecting different levels of fatigue. The software was shown to be capable of detecting fatigue accurately in 10 subjects tested. The percentage of time the subjects were detected to be in a fatigue state was significantly different than the alert phase (P<.01). This is the first countermeasure software described that has shown to detect fatigue based on EEG changes in all frequency bands. Field research is required to evaluate the fatigue software in order to produce a robust and reliable fatigue countermeasure system. The development of the fatigue countermeasure algorithm forms the basis of a future fatigue countermeasure device. Implementation of electronic devices for fatigue detection is crucial for reducing fatigue-related road accidents and their associated costs.

  4. Crew Factors in Flight Operations XIV: Alertness Management in Regional Flight Operations Education Module

    NASA Technical Reports Server (NTRS)

    Rosekind, Mark R.; Co, Elizabeth L.; Neri, David F.; Oyung, Raymond L.; Mallis, Melissa M.

    2002-01-01

    Regional operations encompass a broad range of pilots and equipment. This module is intended to help all those involved in regional aviation, including pilots, schedulers, dispatchers, maintenance technicians, policy makers, and others, to understand the physiological factors underlying fatigue, how flight operations affect fatigue, and what can be done to counteract fatigue and maximize alertness and performance in their operations. The overall purpose of this module is to promote aviation safety, performance, and productivity. It is intended to meet three specific objectives: (1) to explain the current state of knowledge about the physiological mechanisms underlying fatigue; (2) to demonstrate how this knowledge can be applied to improving flight crew sleep, performance, and alertness; and (3) to offer strategies for alertness management. Aviation Safety Reporting System (ASRS) and National Transportation Safety Board (NISH) reports are used throughout this module to demonstrate that fatigue is a safety issue in the regional operations community. The appendices at the end of this module include the ASRS reports used for the examples contained in this publication, brief introductions to sleep disorders and relaxation techniques, summaries of relevant NASA publications, and a list of general readings on sleep, sleep disorders, and circadian rhythms.

  5. Crew Factors in Flight Operations XV: Alertness Management in General Aviation Education Module

    NASA Technical Reports Server (NTRS)

    Rosekind, Mark R.; Co, Elizabeth L.; Neri, David F.; Oyung, Raymond L.; Mallis, Melissa M.; Cannon, Mary M. (Technical Monitor)

    2002-01-01

    Regional operations encompass a broad range of pilots and equipment. This module is intended to help all those involved in regional aviation, including pilots, schedulers, dispatchers, maintenance technicians, policy makers, and others, to understand the physiological factors underlying fatigue, how flight operations affect fatigue, and what can be done to counteract fatigue and maximize alertness and performance in their operations. The overall purpose of this module is to promote aviation safety, performance, and productivity. It is intended to meet three specific objectives: (1) to explain the current state of knowledge about the physiological mechanisms underlying fatigue; (2) to demonstrate how this knowledge can be applied to improving flight crew sleep, performance, and alertness; and (3) to offer strategies for alertness management. Aviation Safety Reporting System (ASRS) and National Transportation Safety Board (NISH) reports are used throughout this module to demonstrate that fatigue is a safety issue in the regional operations community. The appendices at the end of this module include the ASRS reports used for the examples contained in this publication, brief introductions to sleep disorders and relaxation techniques, summaries of relevant NASA publications, and a list of general readings on sleep, sleep disorders, and circadian rhythms.

  6. Prediction of the thermal imaging minimum resolvable (circle) temperature difference with neural network application.

    PubMed

    Fang, Yi-Chin; Wu, Bo-Wen

    2008-12-01

    Thermal imaging is an important technology in both national defense and the private sector. An advantage of thermal imaging is its ability to be deployed while fully engaged in duties, not limited by weather or the brightness of indoor or outdoor conditions. However, in an outdoor environment, many factors, including atmospheric decay, target shape, great distance, fog, temperature out of range and diffraction limits can lead to bad image formation, which directly affects the accuracy of object recognition. The visual characteristics of the human eye mean that it has a much better capacity for picture recognition under normal conditions than artificial intelligence does. However, conditions of interference significantly reduce this capacity for picture recognition for instance, fatigue impairs human eyesight. Hence, psychological and physiological factors can affect the result when the human eye is adopted to measure MRTD (minimum resolvable temperature difference) and MRCTD (minimum resolvable circle temperature difference). This study explores thermal imaging recognition, and presents a method for effectively choosing the characteristic values and processing the images fully. Neural network technology is successfully applied to recognize thermal imaging and predict MRTD and MRCTD (Appendix A), exceeding thermal imaging recognition under fatigue and the limits of the human eye.

  7. Orderly recruitment of motor units under optical control in vivo.

    PubMed

    Llewellyn, Michael E; Thompson, Kimberly R; Deisseroth, Karl; Delp, Scott L

    2010-10-01

    A drawback of electrical stimulation for muscle control is that large, fatigable motor units are preferentially recruited before smaller motor units by the lowest-intensity electrical cuff stimulation. This phenomenon limits therapeutic applications because it is precisely the opposite of the normal physiological (orderly) recruitment pattern; therefore, a mechanism to achieve orderly recruitment has been a long-sought goal in physiology, medicine and engineering. Here we demonstrate a technology for reliable orderly recruitment in vivo. We find that under optical control with microbial opsins, recruitment of motor units proceeds in the physiological recruitment sequence, as indicated by multiple independent measures of motor unit recruitment including conduction latency, contraction and relaxation times, stimulation threshold and fatigue. As a result, we observed enhanced performance and reduced fatigue in vivo. These findings point to an unanticipated new modality of neural control with broad implications for nervous system and neuromuscular physiology, disease research and therapeutic innovation.

  8. Gamma Radiation Sterilization Reduces the High-cycle Fatigue Life of Allograft Bone.

    PubMed

    Islam, Anowarul; Chapin, Katherine; Moore, Emily; Ford, Joel; Rimnac, Clare; Akkus, Ozan

    2016-03-01

    Sterilization by gamma radiation impairs the mechanical properties of bone allografts. Previous work related to radiation-induced embrittlement of bone tissue has been limited mostly to monotonic testing which does not necessarily predict the high-cycle fatigue life of allografts in vivo. We designed a custom rotating-bending fatigue device to answer the following questions: (1) Does gamma radiation sterilization affect the high-cycle fatigue behavior of cortical bone; and (2) how does the fatigue life change with cyclic stress level? The high-cycle fatigue behavior of human cortical bone specimens was examined at stress levels related to physiologic levels using a custom-designed rotating-bending fatigue device. Test specimens were distributed among two treatment groups (n = 6/group); control and irradiated. Samples were tested until failure at stress levels of 25, 35, and 45 MPa. At 25 MPa, 83% of control samples survived 30 million cycles (run-out) whereas 83% of irradiated samples survived only 0.5 million cycles. At 35 MPa, irradiated samples showed an approximately 19-fold reduction in fatigue life compared with control samples (12.2 × 10(6) ± 12.3 × 10(6) versus 6.38 × 10(5) ± 6.81 × 10(5); p = 0.046), and in the case of 45 MPa, this reduction was approximately 17.5-fold (7.31 × 10(5) ± 6.39 × 10(5) versus 4.17 × 10(4) ± 1.91 × 10(4); p = 0.025). Equations to estimate high-cycle fatigue life of irradiated and control cortical bone allograft at a certain stress level were derived. Gamma radiation sterilization severely impairs the high cycle fatigue life of structural allograft bone tissues, more so than the decline that has been reported for monotonic mechanical properties. Therefore, clinicians need to be conservative in the expectation of the fatigue life of structural allograft bone tissues. Methods to preserve the fatigue strength of nonirradiated allograft bone tissue are needed. As opposed to what monotonic tests might suggest, the cyclic fatigue life of radiation-sterilized structural allografts is likely severely compromised relative to the nonirradiated condition and therefore should be taken into consideration. Methods to reduce the effect of irradiation or to recover structural allograft bone tissue fatigue strength are important to pursue.

  9. Fatigue sensation induced by the sounds associated with mental fatigue and its related neural activities: revealed by magnetoencephalography.

    PubMed

    Ishii, Akira; Tanaka, Masaaki; Iwamae, Masayoshi; Kim, Chongsoo; Yamano, Emi; Watanabe, Yasuyoshi

    2013-06-13

    It has been proposed that an inappropriately conditioned fatigue sensation could be one cause of chronic fatigue. Although classical conditioning of the fatigue sensation has been reported in rats, there have been no reports in humans. Our aim was to examine whether classical conditioning of the mental fatigue sensation can take place in humans and to clarify the neural mechanisms of fatigue sensation using magnetoencephalography (MEG). Ten and 9 healthy volunteers participated in a conditioning and a control experiment, respectively. In the conditioning experiment, we used metronome sounds as conditioned stimuli and two-back task trials as unconditioned stimuli to cause fatigue sensation. Participants underwent MEG measurement while listening to the metronome sounds for 6 min. Thereafter, fatigue-inducing mental task trials (two-back task trials), which are demanding working-memory task trials, were performed for 60 min; metronome sounds were started 30 min after the start of the task trials (conditioning session). The next day, neural activities while listening to the metronome for 6 min were measured. Levels of fatigue sensation were also assessed using a visual analogue scale. In the control experiment, participants listened to the metronome on the first and second days, but they did not perform conditioning session. MEG was not recorded in the control experiment. The level of fatigue sensation caused by listening to the metronome on the second day was significantly higher relative to that on the first day only when participants performed the conditioning session on the first day. Equivalent current dipoles (ECDs) in the insular cortex, with mean latencies of approximately 190 ms, were observed in six of eight participants after the conditioning session, although ECDs were not identified in any participant before the conditioning session. We demonstrated that the metronome sounds can cause mental fatigue sensation as a result of repeated pairings of the sounds with mental fatigue and that the insular cortex is involved in the neural substrates of this phenomenon.

  10. Influence of music on performance and psychophysiological responses during moderate-intensity exercise preceded by fatigue.

    PubMed

    Lopes-Silva, Joao P; Lima-Silva, Adriano E; Bertuzzi, Romulo; Silva-Cavalcante, Marcos D

    2015-02-01

    We examined the effects of listening to music on time to exhaustion and psychophysiological responses during moderate-intensity exercise performed in fatigued and non-fatigued conditions. Fourteen healthy men performed moderate-intensity exercise (60% Wmax) until exhaustion under four different conditions: with and without pre-fatigue (induced by 100 drop jumps) and listening and not listening to music. Time to exhaustion was lower in the fatigued than the non-fatigued condition regardless listening to music. Similarly, RPE was higher in the fatigued than the non-fatigued condition, but music had no effect. On the other hand, listening to music decreased the associative thoughts regardless of fatigue status. Heart rate was not influenced by any treatment. These results suggest that listening to music changes attentional focus but is not able to reverse fatigue-derived alteration of performance. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. The Effects of Metabolic Work Rate and Ambient Environment on Physiological Tolerance Times While Wearing Explosive and Chemical Personal Protective Equipment

    PubMed Central

    Costello, Joseph T.; Stewart, Kelly L.; Stewart, Ian B.

    2015-01-01

    This study evaluated the physiological tolerance times when wearing explosive and chemical (>35 kg) personal protective equipment (PPE) in simulated environmental extremes across a range of differing work intensities. Twelve healthy males undertook nine trials which involved walking on a treadmill at 2.5, 4, and 5.5 km·h−1 in the following environmental conditions, 21, 30, and 37°C wet bulb globe temperature (WBGT). Participants exercised for 60 min or until volitional fatigue, core temperature reached 39°C, or heart rate exceeded 90% of maximum. Tolerance time, core temperature, skin temperature, mean body temperature, heart rate, and body mass loss were measured. Exercise time was reduced in the higher WBGT environments (WBGT37 < WBGT30 < WBGT21; P < 0.05) and work intensities (5.5 < 4 < 2.5 km·h−1; P < 0.001). The majority of trials (85/108; 78.7%) were terminated due to participant's heart rate exceeding 90% of their maximum. A total of eight trials (7.4%) lasted the full duration. Only nine (8.3%) trials were terminated due to volitional fatigue and six (5.6%) due to core temperatures in excess of 39°C. These results demonstrate that physiological tolerance times are influenced by the external environment and workload and that cardiovascular strain is the limiting factor to work tolerance when wearing this heavy multilayered PPE. PMID:25866818

  12. The influence of sodium bicarbonate on maximal force and rates of force development in the triceps surae and brachii during fatiguing exercise.

    PubMed

    Siegler, Jason C; Mudie, Kurt; Marshall, Paul

    2016-11-01

    What is the central question of this study? Does metabolic alkalosis in humans, induced by sodium bicarbonate, affect rates of skeletal muscle fatigue differentially in muscle groups composed predominately of slow- and fast-twitch fibres? What is the main finding and its importance? Sodium bicarbonate exhibited no effect on the fatigue profile observed between triceps surae and brachii muscle groups during and after 2 min of tetanic stimulation. For the first time in exercising humans, we have profiled the effect of sodium bicarbonate on the voluntary and involuntary contractile characteristics of muscle groups representative of predominately slow- and fast-twitch fibres. The effect of metabolic alkalosis on fibre-specific maximal force production and rates of force development (RFD) has been investigated previously in animal models, with evidence suggesting an improved capacity to develop force rapidly in fast- compared with slow-twitch muscle. We have attempted to model in vivo the fatigue profile of voluntary and involuntary maximal force and RFD in the triceps surae and brachii after sodium bicarbonate (NaHCO 3 ) ingestion. In a double-blind, three-way repeated-measures design, participants (n = 10) ingested either 0.3 g kg -1 NaHCO 3 (ALK) or equivalent calcium carbonate (PLA) prior to 2 min of continuous (1 Hz) supramaximal stimulation (300 ms at 40 Hz) of the triceps surae or brachii, with maximal voluntary efforts (maximal voluntary torque) coupled with direct muscle stimulation also measured at baseline, 1 and 2 min. Metabolic alkalosis was achieved in both ALK trials but was not different between muscle groups. Regardless of the conditions, involuntary torque declined nearly 60% in the triceps brachii (P < 0.001) and ∼30% in the triceps surae (P < 0.001). In all trials, there was a significant decline in normalized involuntary RFD (P < 0.05). Maximal voluntary torque declined nearly 28% but was not different between conditions (P < 0.01), and although declining nearly 21% in voluntary RFD (P < 0.05) there was no difference between PLA and ALK in either muscle group (P = 0.93). Sodium bicarbonate exhibited no effect on the fatigue observed between representative fibre-type muscle groups on maximal voluntary and involuntary torque or rates of torque development during and after 2 min of tetanic stimulation. © 2016 The Authors. Experimental Physiology © 2016 The Physiological Society.

  13. Central and Peripheral Fatigue During Resistance Exercise - A Critical Review.

    PubMed

    Zając, Adam; Chalimoniuk, Małgorzata; Maszczyk, Adam; Gołaś, Artur; Lngfort, Józef

    2015-12-22

    Resistance exercise is a popular form of conditioning for numerous sport disciplines, and recently different modes of strength training are being evaluated for health benefits. Resistance exercise differs significantly in nature, and several variables determine the direction and range of adaptive changes that occur in the muscular and skeletal system of the body. Some modes of resistance training can also be effective in stimulating the cardiovascular system. These variables include exercise selection (general, specific, single or multi joint, dynamic, explosive), type of resistance (free weights, variable resistance, isokinetics), order of exercise (upper and lower body or push and pull exercises), and most of all the training load which includes intensity expressed as % of 1RM, number of repetitions, number of sets and the rest interval between sets. Manipulating these variables allows for specific adaptive changes which may include gains in muscle mass, muscle strength or muscle endurance. It has been well established that during resistance exercise fatigue occurs, regardless of the volume and intensity of work applied. The peripheral mechanisms of fatigue have been studied and explained in more detail than those related to the CNS. This review is an attempt to bring together the latest knowledge regarding fatigue, both peripheral and central, during resistance exercise. The authors of this review concentrated on physiological and biochemical mechanisms underlying fatigue in exercises performed with maximal intensity, as well as those performed to exhaustion with numerous repetitions and submaximal load.

  14. Post-traumatic hypopituitarism and fatigue.

    PubMed

    Masel, Brent E; Zgaljardic, Dennis J; Forman, Jack

    2017-10-01

    Post-traumatic hypopituitarism (PTH) associated with chronic cognitive, psychiatric, and/or behavioural sequelae is common following moderate to severe traumatic brain injury (TBI). More specifically, due to a cascade of hormonal deficiencies secondary to PTH, individuals with TBI may experience debilitating fatigue that can negatively impact functional recovery, as it can limit participation in brain injury rehabilitation services and lead to an increase in maladaptive lifestyle practices. While the mechanisms underlying fatigue and TBI are not entirely understood, the current review will address the specific anatomy and physiology of the pituitary gland, as well as the association between pituitary dysfunction and fatigue in individuals with TBI.

  15. Mathematical Modeling of Physical and Cognitive Performance Decrement from Mechanical and Inhalation Insults

    DTIC Science & Technology

    2009-12-01

    INHALATION TOXICOLOGY RESEARCH 2.1.1 Development of a Fatigue Model & Blood Oxygen-based Parameter Corre- lates Liu et al. (2002) introduced a muscle ...and Stuhmiller, J.H. “Generalization of a ‘phenomenological’ muscle fatigue model.” Technical report J0287-10-382 (in preparation). Product 3. Sih...physiologic response to exercise and a model of muscle fatigue which have been developed and validated separately are integrated. Integration occurs through

  16. You make me tired: An experimental test of the role of interpersonal operant conditioning in fatigue.

    PubMed

    Lenaert, Bert; Jansen, Rebecca; van Heugten, Caroline M

    2018-04-01

    Chronic fatigue is highly prevalent in the general population as well as in multiple chronic diseases and psychiatric disorders. Its etiology however remains poorly understood and cannot be explained by biological factors alone. Occurring in a psychosocial context, the experience and communication of fatigue may be shaped by social interactions. In particular, interpersonal operant conditioning may strengthen and perpetuate fatigue complaints. In this experiment, individuals (N = 44) repeatedly rated their currently experienced fatigue while engaging in cognitive effort (working memory task). Subtle social reward was given when fatigue increased relative to the previous rating; or disapproval when fatigue decreased. In the control condition, only neutral feedback was given. Although all participants became more fatigued during cognitive effort, interpersonal operant conditioning led to increased fatigue reporting relative to neutral feedback. This effect occurred independently of conscious awareness. Interestingly, the experimental condition also performed worse on the working memory task. Results suggest that fatigue complaints (and cognitive performance) may become controlled by their consequences such as social reward, and not exclusively by their antecedents such as effort. Results have implications for treatment development and suggest that interpersonal operant conditioning may contribute to fatigue becoming a chronic symptom. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Generation of synthetic surface electromyography signals under fatigue conditions for varying force inputs using feedback control algorithm.

    PubMed

    Venugopal, G; Deepak, P; Ghosh, Diptasree M; Ramakrishnan, S

    2017-11-01

    Surface electromyography is a non-invasive technique used for recording the electrical activity of neuromuscular systems. These signals are random, complex and multi-component. There are several techniques to extract information about the force exerted by muscles during any activity. This work attempts to generate surface electromyography signals for various magnitudes of force under isometric non-fatigue and fatigue conditions using a feedback model. The model is based on existing current distribution, volume conductor relations, the feedback control algorithm for rate coding and generation of firing pattern. The result shows that synthetic surface electromyography signals are highly complex in both non-fatigue and fatigue conditions. Furthermore, surface electromyography signals have higher amplitude and lower frequency under fatigue condition. This model can be used to study the influence of various signal parameters under fatigue and non-fatigue conditions.

  18. ACL graft constructs: In-vitro fatigue testing highlights the occurrence of irrecoverable lengthening and the need for adequate (pre)conditioning to avert the recurrence of knee instability.

    PubMed

    Blythe, A; Tasker, T; Zioupos, P

    2006-01-01

    The performance of ACL grafts in both the short and long term is only as good as the condition of the graft at the time of surgery. If the graft lengthens under load at the two fixation ends incorporation will take longer to occur. Previous studies have shown that the various grafts currently used are strong enough. However, data on strength came primarily from quasistatic single pull to failure tests with, in some cases, modest cycling to precondition the grafts. The present study examined the in-vitro biomechanical behaviour of model ACL grafts, which have been fatigue cycled to failure over a wide range of loads in physiological ambient conditions. Load/deformation curves and the stretch of the grafts was continuously recorded until final rupture. The grafts demonstrated typical creep-rupture like behaviour with elongation (non-recoverable stretch) and loss of stiffness leading to gradual failure. Some of the graft designs were consistently shown to elongate up to 20 mm in length within the first 2000 cycles at moderate physiological loads and a further 10 mm of elongation occurred between the initial preconditioned state and just prior to complete rupture. Not enough attention has been paid previously to the likely long term elongation patterns of ACL grafts post-surgery and even after the usual empirical preconditioning has been performed by the surgeon. Increased graft dimensions may result in recurrent knee instability and may also lead to failure of the graft to incorporate. Preconditioning in-vitro may still be a way to remove some slack and prepare the graft for its operational environment by stiffening in particular the tissue/fixation interface for those grafts that use soft polymer fixation ends.

  19. Multiple Causes of Fatigue during Shortening Contractions in Rat Slow Twitch Skeletal Muscle

    PubMed Central

    Hortemo, Kristin Halvorsen; Munkvik, Morten; Lunde, Per Kristian; Sejersted, Ole M.

    2013-01-01

    Fatigue in muscles that shorten might have other causes than fatigue during isometric contractions, since both cross-bridge cycling and energy demand are different in the two exercise modes. While isometric contractions are extensively studied, the causes of fatigue in shortening contractions are poorly mapped. Here, we investigate fatigue mechanisms during shortening contractions in slow twitch skeletal muscle in near physiological conditions. Fatigue was induced in rat soleus muscles with maintained blood supply by in situ shortening contractions at 37°C. Muscles were stimulated repeatedly (1 s on/off at 30 Hz) for 15 min against a constant load, allowing the muscle to shorten and perform work. Fatigue and subsequent recovery was examined at 20 s, 100 s and 15 min exercise. The effects of prior exercise were investigated in a second exercise bout. Fatigue developed in three distinct phases. During the first 20 s the regulatory protein Myosin Light Chain-2 (slow isoform, MLC-2s) was rapidly dephosphorylated in parallel with reduced rate of force development and reduced shortening. In the second phase there was degradation of high-energy phosphates and accumulation of lactate, and these changes were related to slowing of muscle relengthening and relaxation, culminating at 100 s exercise. Slowing of relaxation was also associated with increased leak of calcium from the SR. During the third phase of exercise there was restoration of high-energy phosphates and elimination of lactate, and the slowing of relaxation disappeared, whereas dephosphorylation of MLC-2s and reduced shortening prevailed. Prior exercise improved relaxation parameters in a subsequent exercise bout, and we propose that this effect is a result of less accumulation of lactate due to more rapid onset of oxidative metabolism. The correlation between dephosphorylation of MLC-2s and reduced shortening was confirmed in various experimental settings, and we suggest MLC-2s as an important regulator of muscle shortening. PMID:23977116

  20. Physiological and psychological correlates of fatigue in HIV disease.

    PubMed

    Phillips, Kenneth D; Sowell, Richard L; Rojas, Michelle; Tavakoli, Abbas; Fulk, Laura J; Hand, Gregory A

    2004-07-01

    Fatigue is a frequent symptom reported by persons living with HIV disease and one that affects all aspects of quality of life. To improve quality of care of persons with HIV disease, it is important to address all factors that contribute to fatigue. The purpose of this study was to determine the associations of physiological, psychological, and sociological factors with fatigue in an HIV-infected population. With Piper's integrated fatigue model guiding selection, factors examined in this study were hemoglobin, hematocrit, CD4+ cell count, HIV-RNA viral load, total sleep time, sleep quality, daytime sleepiness, HIV-related symptoms, anxiety, depression, and perceived stress. The sample (N = 79) for this descriptive correlational study was recruited from a primary health care association in South Carolina and consisted of 42 (53.2%) HIV-infected women and 37 (46.8%) HIV-infected men between the ages of 24 and 63 years (x = 39.9, s = 7.9). Of the participants, 70 (90%) were African American, 5 (6%) were Caucasian, and 3 (4%) were Hispanic. Using Pearson's r, significant relationships were observed between fatigue and sleep quality, daytime sleepiness, HIV-related symptoms, state anxiety, trait anxiety, depression, and perceived stress. Sleep quality (F5,65 = 12.02, P = 0.0009), state anxiety (F5,65 = 8.28, P = 0.0054), HIV-related symptoms (F5,65 = 4.87, P = 0.0308), and depression (F5,65 = 7.31, P = 0.0087) retained significance in a 3-step, backward stepwise elimination model and accounted for 67% of the variance in fatigue. These findings underscore the need for addressing psychosocial stressors and sleep quality in developing effective care for HIV-infected individuals who experience fatigue.

  1. A review of fatigue in people with HIV infection.

    PubMed

    Barroso, J

    1999-01-01

    Fatigue is often cited by clinicians as a debilitating symptom suffered by the many who are infected with HIV. This article provides a review of HIV-related fatigue, including research on possible physiological causes such as anemia, CD4 count, impaired liver function, impaired thyroid function, and cortisol abnormalities. Psychological causes of fatigue, particularly depression, are reviewed as well. Measurement issues, such as the use of inappropriate tools, the problem of measuring the presence or absence of fatigue, and the use of tools developed for other groups of patients, are reviewed. The need for a comprehensive fatigue tool that is appropriate for people with HIV is discussed. Current treatment research, including thyroid replacement, hyperbaric oxygen, and dextroamphetamine, is presented. Finally, the implications for further research, including the need for qualitative studies to learn more about the phenomenon, develop an instrument to measure fatigue, and examine variables together to get a complete picture of this complex concept, are reviewed.

  2. Monitoring and Managing Fatigue in Basketball

    PubMed Central

    Edwards, Toby; Spiteri, Tania; Piggott, Benjamin; Bonhotal, Joshua; Joyce, Christopher

    2018-01-01

    The sport of basketball exposes athletes to frequent high intensity movements including sprinting, jumping, accelerations, decelerations and changes of direction during training and competition which can lead to acute and accumulated chronic fatigue. Fatigue may affect the ability of the athlete to perform over the course of a lengthy season. The ability of practitioners to quantify the workload and subsequent fatigue in basketball athletes in order to monitor and manage fatigue levels may be beneficial in maintaining high levels of performance and preventing unfavorable physical and physiological training adaptations. There is currently limited research quantifying training or competition workload outside of time motion analysis in basketball. In addition, systematic research investigating methods to monitor and manage athlete fatigue in basketball throughout a season is scarce. To effectively optimize and maintain peak training and playing performance throughout a basketball season, potential workload and fatigue monitoring strategies need to be discussed. PMID:29910323

  3. Single-channel EEG-based mental fatigue detection based on deep belief network.

    PubMed

    Pinyi Li; Wenhui Jiang; Fei Su

    2016-08-01

    Mental fatigue has a pernicious influence on road and work place safety as well as a negative symptom of many acute and chronic illnesses, since the ability of concentrating, responding and judging quickly decreases during the fatigue or drowsiness stage. Electroencephalography (EEG) has been proven to be a robust physiological indicator of human cognitive state over the last few decades. But most existing EEG-based fatigue detection methods have poor performance in accuracy. This paper proposed a single-channel EEG-based mental fatigue detection method based on Deep Belief Network (DBN). The fused nonliear features from specified sub-bands and dynamic analysis, a total of 21 features are extracted as the input of the DBN to discriminate three classes of mental state including alert, slight fatigue and severe fatigue. Experimental results show the good performance of the proposed model comparing with those state-of-art methods.

  4. Fatigue sensation induced by the sounds associated with mental fatigue and its related neural activities: revealed by magnetoencephalography

    PubMed Central

    2013-01-01

    Background It has been proposed that an inappropriately conditioned fatigue sensation could be one cause of chronic fatigue. Although classical conditioning of the fatigue sensation has been reported in rats, there have been no reports in humans. Our aim was to examine whether classical conditioning of the mental fatigue sensation can take place in humans and to clarify the neural mechanisms of fatigue sensation using magnetoencephalography (MEG). Methods Ten and 9 healthy volunteers participated in a conditioning and a control experiment, respectively. In the conditioning experiment, we used metronome sounds as conditioned stimuli and two-back task trials as unconditioned stimuli to cause fatigue sensation. Participants underwent MEG measurement while listening to the metronome sounds for 6 min. Thereafter, fatigue-inducing mental task trials (two-back task trials), which are demanding working-memory task trials, were performed for 60 min; metronome sounds were started 30 min after the start of the task trials (conditioning session). The next day, neural activities while listening to the metronome for 6 min were measured. Levels of fatigue sensation were also assessed using a visual analogue scale. In the control experiment, participants listened to the metronome on the first and second days, but they did not perform conditioning session. MEG was not recorded in the control experiment. Results The level of fatigue sensation caused by listening to the metronome on the second day was significantly higher relative to that on the first day only when participants performed the conditioning session on the first day. Equivalent current dipoles (ECDs) in the insular cortex, with mean latencies of approximately 190 ms, were observed in six of eight participants after the conditioning session, although ECDs were not identified in any participant before the conditioning session. Conclusions We demonstrated that the metronome sounds can cause mental fatigue sensation as a result of repeated pairings of the sounds with mental fatigue and that the insular cortex is involved in the neural substrates of this phenomenon. PMID:23764106

  5. Neural basis of exertional fatigue in the heat: A review of magnetic resonance imaging methods.

    PubMed

    Tan, X R; Low, I C C; Stephenson, M C; Soong, T W; Lee, J K W

    2018-03-01

    The central nervous system, specifically the brain, is implicated in the development of exertional fatigue under a hot environment. Diverse neuroimaging techniques have been used to visualize the brain activity during or after exercise. Notably, the use of magnetic resonance imaging (MRI) has become prevalent due to its excellent spatial resolution and versatility. This review evaluates the significance and limitations of various brain MRI techniques in exercise studies-brain volumetric analysis, functional MRI, functional connectivity MRI, and arterial spin labeling. The review aims to provide a summary on the neural basis of exertional fatigue and proposes future directions for brain MRI studies. A systematic literature search was performed where a total of thirty-seven brain MRI studies associated with exercise, fatigue, or related physiological factors were reviewed. The findings suggest that with moderate dehydration, there is a decrease in total brain volume accompanied with expansion of ventricular volume. With exercise fatigue, there is increased activation of sensorimotor and cognitive brain areas, increased thalamo-insular activation and decreased interhemispheric connectivity in motor cortex. Under passive hyperthermia, there are regional changes in cerebral perfusion, a reduction in local connectivity in functional brain networks and an impairment to executive function. Current literature suggests that the brain structure and function are influenced by exercise, fatigue, and related physiological perturbations. However, there is still a dearth of knowledge and it is hoped that through understanding of MRI advantages and limitations, future studies will shed light on the central origin of exertional fatigue in the heat. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  6. A mechanism for sickness sleep: lessons from invertebrates.

    PubMed

    Davis, Kristen C; Raizen, David M

    2017-08-15

    During health, animal sleep is regulated by an internal clock and by the duration of prior wakefulness. During sickness, sleep is regulated by cytokines released from either peripheral cells or from cells within the nervous system. These cytokines regulate central nervous system neurons to induce sleep. Recent research in the invertebrates Caenorhabditis elegans and Drosophila melanogaster has led to new insights into the mechanism of sleep during sickness. Sickness is triggered by exposure to environments such as infection, heat, or ultraviolet light irradiation, all of which cause cellular stress. Epidermal growth factor is released from stressed cells and signals to activate central neuroendocrine cell(s). These neuron(s) release neuropeptides including those containing an amidated arginine(R)-phenylalanine(F) motif at their C-termini (RFamide peptides). Importantly, mechanisms regulating sickness sleep are partially distinct from those regulating healthy sleep. We will here review key findings that have elucidated the central neuroendocrine mechanism of sleep during sickness. Adaptive mechanisms employed in the control of sickness sleep may play a role in correcting cellular homeostasis after various insults. We speculate that these mechanisms may play a maladaptive role in human pathological conditions such as in the fatigue and anorexia associated with autoimmune diseases, with major depression, and with unexplained chronic fatigue. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.

  7. The Assessment of Muscular Effort, Fatigue, and Physiological Adaptation Using EMG and Wavelet Analysis.

    PubMed

    Graham, Ryan B; Wachowiak, Mark P; Gurd, Brendon J

    2015-01-01

    Peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC-1α) is a transcription factor co-activator that helps coordinate mitochondrial biogenesis within skeletal muscle following exercise. While evidence gleaned from submaximal exercise suggests that intracellular pathways associated with the activation of PGC-1α, as well as the expression of PGC-1α itself are activated to a greater extent following higher intensities of exercise, we have recently shown that this effect does not extend to supramaximal exercise, despite corresponding increases in muscle activation amplitude measured with electromyography (EMG). Spectral analyses of EMG data may provide a more in-depth assessment of changes in muscle electrophysiology occurring across different exercise intensities, and therefore the goal of the present study was to apply continuous wavelet transforms (CWTs) to our previous data to comprehensively evaluate: 1) differences in muscle electrophysiological properties at different exercise intensities (i.e. 73%, 100%, and 133% of peak aerobic power), and 2) muscular effort and fatigue across a single interval of exercise at each intensity, in an attempt to shed mechanistic insight into our previous observations that the increase in PGC-1α is dissociated from exercise intensity following supramaximal exercise. In general, the CWTs revealed that localized muscle fatigue was only greater than the 73% condition in the 133% exercise intensity condition, which directly matched the work rate results. Specifically, there were greater drop-offs in frequency, larger changes in burst power, as well as greater changes in burst area under this intensity, which were already observable during the first interval. As a whole, the results from the present study suggest that supramaximal exercise causes extreme localized muscular fatigue, and it is possible that the blunted PGC-1α effects observed in our previous study are the result of fatigue-associated increases in muscle acidosis. This should be explored in future research using further combinations of EMG and muscle biochemistry and histology.

  8. β2-adrenergic stimulation enhances Ca2+ release and contractile properties of skeletal muscles, and counteracts exercise-induced reductions in Na+-K+-ATPase Vmax in trained men.

    PubMed

    Hostrup, M; Kalsen, A; Ortenblad, N; Juel, C; Mørch, K; Rzeppa, S; Karlsson, S; Backer, V; Bangsbo, J

    2014-12-15

    The aim of the present study was to examine the effect of β2-adrenergic stimulation on skeletal muscle contractile properties, sarcoplasmic reticulum (SR) rates of Ca(2+) release and uptake, and Na(+)-K(+)-ATPase activity before and after fatiguing exercise in trained men. The study consisted of two experiments (EXP1, n = 10 males, EXP2, n = 20 males), where β2-adrenoceptor agonist (terbutaline) or placebo was randomly administered in double-blinded crossover designs. In EXP1, maximal voluntary isometric contraction (MVC) of m. quadriceps was measured, followed by exercise to fatigue at 120% of maximal oxygen uptake (V̇O2, max ). A muscle biopsy was taken after MVC (non-fatigue) and at time of fatigue. In EXP2, contractile properties of m. quadriceps were measured with electrical stimulations before (non-fatigue) and after two fatiguing 45 s sprints. Non-fatigued MVCs were 6 ± 3 and 6 ± 2% higher (P < 0.05) with terbutaline than placebo in EXP1 and EXP2, respectively. Furthermore, peak twitch force was 11 ± 7% higher (P < 0.01) with terbutaline than placebo at non-fatigue. After sprints, MVC declined (P < 0.05) to the same levels with terbutaline as placebo, whereas peak twitch force was lower (P < 0.05) and half-relaxation time was prolonged (P < 0.05) with terbutaline. Rates of SR Ca(2+) release and uptake at 400 nm [Ca(2+)] were 15 ± 5 and 14 ± 5% (P < 0.05) higher, respectively, with terbutaline than placebo at non-fatigue, but declined (P < 0.05) to similar levels at time of fatigue. Na(+)-K(+)-ATPase activity was unaffected by terbutaline compared with placebo at non-fatigue, but terbutaline counteracted exercise-induced reductions in maximum rate of activity (Vmax) at time of fatigue. In conclusion, increased contractile force induced by β2-adrenergic stimulation is associated with enhanced rate of Ca(2+) release in humans. While β2-adrenergic stimulation elicits positive inotropic and lusitropic effects on non-fatigued m. quadriceps, these effects are blunted when muscles fatigue. © 2014 The Authors. The Journal of Physiology © 2014 The Physiological Society.

  9. The influence of maternal condition on offspring performance in sockeye salmon Oncorhynchus nerka.

    PubMed

    Tierney, K B; Patterson, D A; Kennedy, C J

    2009-10-01

    Eggs were taken from adult sockeye salmon Oncorhynchus nerka that had reached their journey's end in spawn-ready and moribund condition, and fertilized by healthy males. Egg number, size, hatching success and offspring growth did not differ with maternal condition, which suggests the absence of any persisting physiological maternal effects. Differences were noted in the swimming behaviour and physiology of the offspring at parr stage. In a 30 min schooling test conducted using groups of five in a flume, parr from moribund females were more likely to fatigue, were not as tightly schooled, and had a diminished startle response, both in the per cent responding and the burst distance. In individual, confined swimming tests conducted within a tube, post-exercise plasma lactate concentration, which is an indicator of white muscle use, was greater for parr from moribund adult females. The moribund females also had elevated lactate following exercise (their migration), which suggests heritable differences may exist in muscle use. This study shows that juvenile O. nerka artificially propagated from females exhausted by their return migration can exhibit swimming performance differences, indicating that maternal condition may need to be considered in breeding programmes.

  10. The Research on the Impact of Maca Polypeptide on Sport Fatigue.

    PubMed

    Miao, Hua

    2015-01-01

    In order to study the effect of maca polypeptide on sport fatigue, this paper selected 40 male mice, and they were randomly divided into group A, B, C and D. group A, B and C were fed food with different concentrations of maca polypeptide, and group D was control group. After two weeks of feeding, measured physiological indexes of mice, including blood glucose, urea nitrogen and creatinine. At last gived the experimental results, as well as the analysis. Experimental results show that maca polypeptide can improve the ability of anti-fatigue mice, and in a certain concentration range, the higher the concentration, the better the resistance to fatigue.

  11. Investigation of a ceramic matrix composite under strain controlled fatigue condition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gudaitis, J.J.; Mall, S.

    The fatigue behavior along with damage mechanisms and failure modes of a fiber reinforced ceramic matrix composite with a cross-ply lay-up was investigated under strain controlled mode. Two fatigue conditions involving tension-tension and tension-compression cycling were employed. The strain range versus fatigue life curves for both fatigue conditions were in agreement with each other. However, damage mechanisms and failure modes were different for both cases.

  12. Effects of Yoga on Physiological Indices, Anxiety and Social Functioning in Multiple Sclerosis Patients: A Randomized Trial

    PubMed Central

    Hasanpour-Dehkordi, Ali; Solati, Kamal

    2016-01-01

    Introduction Multiple sclerosis (MS) as a chronic disease could affect patients’ various domains of life. Aim This study was conducted to study the effect of yoga on the physiological indices, anxiety and social functioning of patients with MS in southwest, Iran. Materials and Methods In this clinical trial study, 60 MS patients were enrolled according to inclusion criteria and randomly assigned to two groups of 30 each. Prior to and after intervention, the patients’ vital signs were measured. For case group yoga exercises were performed three sessions a week for 12 weeks while control group performed no exercise. The data were gathered by questionnaire and analysed by descriptive and analytical statistics in SPSS. Results Prior to intervention, there was no significant difference in fatigue severity and pain between the two groups but the mean fatigue severity and pain in case group decreased compared to the control group after the intervention. Prior to intervention, there was no significant difference in mean physiological indices between the two groups but the mean physiological indices in case group decreased significantly after the intervention (p<0.05). Conclusion Yoga is likely to increase self-efficacy of MS patients through enhancing physical activity, increasing the strength of lower limbs and balance, and decreasing fatigue and pain, and finally to promote social functioning and to relieve stress and anxiety in these patients. PMID:27504387

  13. Influence of viewing distance and size of tv on visual fatigue and feeling of involvement.

    PubMed

    Sakamoto, Kiyomi; Asahara, Shigeo; Yamashita, Kuniko; Okada, Akira

    2012-12-01

    Using physiological and psychological measurements, we carried out experiments to investigate the influence of viewing distance and TV screen size on visual fatigue and feeling of involvement using 17-inch, 42-inch and 65-inch displays. The experiment was an ordinary viewing test with the content similar to everyday TV programs for one hour including scenery, sport, drama, etc., with commercials sandwiched in between. The number of participants was 16 (8 persons aged 21-31, and 8 persons aged 50-70) for each display size. In all, 48 participants viewed 3 display sizes. In our physiological evaluation, CFF (critical flicker fusion frequency), blink rate and a sympathetic nerve activity index were used; and in the psychological evaluation, questionnaires and interviews were employed. Our results, based on physiological and psychological measurements, suggest the opti- mum viewing distance to be around 165-220 cm, irrespective of screen size. Our evaluations, which are based on optimum viewing distance for minimal visual fatigue and a closer feeling of involvement, might therefore not agree with the currently recommended viewing distance, which is defined as 2 or 3 times the display's height.

  14. Effects of Adaptogens on the Central Nervous System and the Molecular Mechanisms Associated with Their Stress—Protective Activity

    PubMed Central

    Panossian, Alexander; Wikman, Georg

    2010-01-01

    Adaptogens were initially defined as substances that enhance the “state of non-specific resistance” in stress, a physiological condition that is linked with various disorders of the neuroendocrine-immune system. Studies on animals and isolated neuronal cells have revealed that adaptogens exhibit neuroprotective, anti-fatigue, antidepressive, anxiolytic, nootropic and CNS stimulating activity. In addition, a number of clinical trials demonstrate that adaptogens exert an anti-fatigue effect that increases mental work capacity against a background of stress and fatigue, particularly in tolerance to mental exhaustion and enhanced attention. Indeed, recent pharmacological studies of a number of adaptogens have provided a rationale for these effects also at the molecular level. It was discovered that the stress—protective activity of adaptogens was associated with regulation of homeostasis via several mechanisms of action, which was linked with the hypothalamic-pituitary-adrenal axis and the regulation of key mediators of stress response, such as molecular chaperons (e.g., HSP70), stress-activated c-Jun N-terminal protein kinase 1 (JNK1), Forkhead box O (FOXO) transcription factor DAF-16, cortisol and nitric oxide. PMID:27713248

  15. Effect of fatigue and gender on kinematics and ground reaction forces variables in recreational runners

    PubMed Central

    Durá-Gil, Juan V.; Palomares, Nicolás; Medina, Enrique; Llana-Belloch, Salvador

    2018-01-01

    The presence of fatigue has been shown to modify running biomechanics. Overall in terms of gender, women are at lower risk than men for sustaining running-related injuries, although it depends on the factors taken into account. One possible reason for these differences in the injury rate and location might be the dissimilar running patterns between men and women. The purpose of this study was to determine the effect of fatigue and gender on the kinematic and ground reaction forces (GRF) parameters in recreational runners. Fifty-seven participants (28 males and 29 females) had kinematic and GRF variables measured while running at speed of 3.3 m s−1 before and after a fatigue test protocol. The fatigue protocol included (1) a running Course-Navette test, (2) running up and down a flight of stairs for 5 min, and (3) performance of alternating jumps on a step (five sets of 1 minute each with 30 resting seconds between the sets). Fatigue decreased dorsiflexion (14.24 ± 4.98° in pre-fatigue and 12.65 ± 6.21° in fatigue condition, p < 0.05) at foot strike phase in females, and plantar flexion (−19.23 ± 4.12° in pre-fatigue and −18.26 ± 5.31° in fatigue condition, p < 0.05) at toe-off phase in males. These changes led to a decreased loading rate (88.14 ± 25.82 BW/s in pre-fatigue and 83.97 ± 18.83 BW/s in fatigue condition, p < 0.05) and the impact peak in females (1.95 ± 0.31 BW in pre-fatigue and 1.90 ± 0.31 BW in fatigue condition, p < 0.05), and higher peak propulsive forces in males (−0.26 ± 0.04 BW in pre-fatigue and −0.27 ± 0.05 BW in fatigue condition, p < 0.05) in the fatigue condition. It seems that better responses to impact under a fatigue condition are observed among women. Further studies should confirm whether these changes represent a strategy to optimize shock attenuation, prevent running injuries and improve running economy. PMID:29576960

  16. Effect of fatigue and gender on kinematics and ground reaction forces variables in recreational runners.

    PubMed

    Bazuelo-Ruiz, Bruno; Durá-Gil, Juan V; Palomares, Nicolás; Medina, Enrique; Llana-Belloch, Salvador

    2018-01-01

    The presence of fatigue has been shown to modify running biomechanics. Overall in terms of gender, women are at lower risk than men for sustaining running-related injuries, although it depends on the factors taken into account. One possible reason for these differences in the injury rate and location might be the dissimilar running patterns between men and women. The purpose of this study was to determine the effect of fatigue and gender on the kinematic and ground reaction forces (GRF) parameters in recreational runners. Fifty-seven participants (28 males and 29 females) had kinematic and GRF variables measured while running at speed of 3.3 m s -1 before and after a fatigue test protocol. The fatigue protocol included (1) a running Course-Navette test, (2) running up and down a flight of stairs for 5 min, and (3) performance of alternating jumps on a step (five sets of 1 minute each with 30 resting seconds between the sets). Fatigue decreased dorsiflexion (14.24 ± 4.98° in pre-fatigue and 12.65 ± 6.21° in fatigue condition, p  < 0.05) at foot strike phase in females, and plantar flexion (-19.23 ± 4.12° in pre-fatigue and -18.26 ± 5.31° in fatigue condition, p  < 0.05) at toe-off phase in males. These changes led to a decreased loading rate (88.14 ± 25.82 BW/s in pre-fatigue and 83.97 ± 18.83 BW/s in fatigue condition, p  < 0.05) and the impact peak in females (1.95 ± 0.31 BW in pre-fatigue and 1.90 ± 0.31 BW in fatigue condition, p  < 0.05), and higher peak propulsive forces in males (-0.26 ± 0.04 BW in pre-fatigue and -0.27 ± 0.05 BW in fatigue condition, p  < 0.05) in the fatigue condition. It seems that better responses to impact under a fatigue condition are observed among women. Further studies should confirm whether these changes represent a strategy to optimize shock attenuation, prevent running injuries and improve running economy.

  17. Methods of estimating the effect of integral motorcycle helmets on physiological and psychological performance.

    PubMed

    Bogdan, Anna; Sudoł-Szopińska, Iwona; Luczak, Anna; Konarska, Maria; Pietrowski, Piotr

    2012-01-01

    This article proposes a method for a comprehensive assessment of the effect of integral motorcycle helmets on physiological and cognitive responses of motorcyclists. To verify the reliability of commonly used tests, we conducted experiments with 5 motorcyclists. We recorded changes in physiological parameters (heart rate, local skin temperature, core temperature, air temperature, relative humidity in the space between the helmet and the surface of the head, and the concentration of O(2) and CO(2) under the helmet) and in psychological parameters (motorcyclists' reflexes, fatigue, perceptiveness and mood). We also studied changes in the motorcyclists' subjective sensation of thermal comfort. The results made it possible to identify reliable parameters for assessing the effect of integral helmets on performance, i.e., physiological factors (head skin temperature, internal temperature and concentration of O(2) and CO(2) under the helmet) and on psychomotor factors (reaction time, attention and vigilance, work performance, concentration and a subjective feeling of mood and fatigue).

  18. Feasibility study on mental healthcare using indoor plants for office workers

    NASA Astrophysics Data System (ADS)

    Kubota, Tsuyoshi; Matsumoto, Hiroshi; Genjo, Kaori; Nakano, Takaoki

    2017-10-01

    In recent years, it has become a problem that office workers' stresses affect their intellectual productivity. As one of strategies mitigating the stress while working, many studies on the effect of indoor plants introduced into the office have been conducted. The psychological and physiological effects of indoor plants have been expected to mitigate the office workers' stresses. Also, the effects of green amenities such as improvement of productivity, control of the indoor thermal environment, relaxation and recovery of visual fatigue, and improvement of air quality have been expected. In this study, a field investigation on the green amenity effects of indoor plants on office workers' psychological and physiological responses in an actual office was conducted and discussed. This paper describes the measurement results of the physical environment and workers' psychological and physiological responses under the condition with shelves installed with indoor plants in an office room. It was suggested that indoor plants such as mint, basil and begonia, and a combination of red and green plants were effective for mitigating worker's stresses.

  19. Cyclic fatigue-crack propagation, stress-corrosion, and fracture-toughness behavior in pyrolytic carbon-coated graphite for prosthetic heart valve applications.

    PubMed

    Ritchie, R O; Dauskardt, R H; Yu, W K; Brendzel, A M

    1990-02-01

    Fracture-mechanics tests were performed to characterize the cyclic fatigue, stress-corrosion cracking, and fracture-toughness behavior of a pyrolytic carbon-coated graphite composite material used in the manufacture of cardiac valve prostheses. Testing was carried out using compact tension C(T) samples containing "atomically" sharp precracks, both in room-temperature air and principally in a simulated physiological environment of 37 degrees C Ringer's lactate solution. Under sustained (monotonic) loads, the composite exhibited resistance-curve behavior, with a fracture toughness (KIc) between 1.1 and 1.9 MPa square root of m, and subcritical stress-corrosion crack velocities (da/dt) which were a function of the stress intensity K raised to the 74th power (over the range approximately 10(-9) to over 10(-5) m/s). More importantly, contrary to common perception, under cyclic loading conditions the composite was found to display true (cyclic) fatigue failure in both environments; fatigue-crack growth rates (da/dN) were seen to be a function of the 19th power of the stress-intensity range delta K (over the range approximately 10(-11) to over 10(-8) m/cycle). As subcritical crack velocities under cyclic loading were found to be many orders of magnitude faster than those measured under equivalent monotonic loads and to occur at typically 45% lower stress-intensity levels, cyclic fatigue in pyrolytic carbon-coated graphite is reasoned to be a vital consideration in the design and life-prediction procedures of prosthetic devices manufactured from this material.

  20. Effects of prolonged fasting on fatigue and quality of life in patients with multiple sclerosis.

    PubMed

    Etemadifar, Masoud; Sayahi, Farnaz; Alroughani, Raed; Toghianifar, Nafiseh; Akbari, Mojtaba; Nasr, Zahra

    2016-06-01

    Fasting is one of the recommended worships of several great religions in the world. During the month of Ramadan, circadian rhythm and pattern of eating changes result in physiological, biochemical and hormonal changes in the body. Many Muslims with medical conditions ask their physicians about the feasibility and safety of fasting during Ramadan. In this study, we aim to assess the effect of Ramadan fasting on the quality of life and fatigue in multiple sclerosis (MS) patients. Relapsing-remitting MS (RRMS) patients according to McDonald's criteria who had mild disability (EDSS score ≤3) were included in this study. Fatigue and quality of life were were assessed using the validated Persian versions of modified fatigue impact scale (MFIS) and multiple sclerosis quality of life-54 (MSQOL-54) questionnaires, respectively. 218 patients (150 females and 68 males) were enrolled in our study. There was no statistically significant difference between the mean total score of MSIF before and after fasting (25.50 ± 13.81 versus 26.94 ± 16.65; p = 0.58). The mean physical health and mental health composites of quality of life increased significantly after fasting (p = 0.008 and p = 0.003 respectively). Despite the observed lack of favorable effects on fatigue, our results showed increased quality of life of MS patients once Ramadan has ended. Whether this is specifically related to Ramadan-related fasting deserves further testing in appropriately designed larger prospective clinical studies.

  1. Factors on working conditions and prolonged fatigue among physicians in Japan.

    PubMed

    Wada, Koji; Arimatsu, Mayuri; Yoshikawa, Toru; Oda, Susumu; Taniguchi, Hatsumi; Higashi, Toshiaki; Aizawa, Yoshiharu

    2008-10-01

    Fatigue among physicians could affect patients' safety and physicians' health. Fatigue could be caused by unfavorable working conditions. However, there have been no studies on the working conditions and fatigue among physicians in Japan. The objective of this study was to determine the factors on working conditions associated with prolonged fatigue among physicians in Japan. A questionnaire was mailed to physicians who graduated from one of the medical schools in Japan and who have had more than 3 years of experience in clinical practice. They were asked to assess 10 different aspects of their working conditions using a 5-point Likert scale. Prolonged fatigue was measured using the checklist of individual strength questionnaire. Multiple regression analysis was used to examine the multivariate relationship between the variables and prolonged fatigue. Data from 377 men and 101 women were analyzed in this study. For both male and female physicians, a harder workload was positively associated and better career satisfaction was negatively associated with prolonged fatigue. Prolonged fatigue was negatively associated with better relationships with other physicians and staff for male physicians and less personal time for female physicians. The adjusted variance in prolonged fatigue related to exposure variables was 26 and 29% in men and in women, respectively. The result of this study suggested that it is desirable to take these factors into consideration in the management of prolonged fatigue among physicians in Japan.

  2. Prevalence, Incidence, and Classification of Chronic Fatigue Syndrome in Olmsted County, Minnesota, as Estimated Using the Rochester Epidemiology Project

    PubMed Central

    Vincent, Ann; Brimmer, Dana J.; Whipple, Mary O.; Jones, James F.; Boneva, Roumiana; Lahr, Brian D.; Maloney, Elizabeth; St. Sauver, Jennifer L.; Reeves, William C.

    2012-01-01

    Objective To estimate the prevalence and incidence of chronic fatigue syndrome in Olmsted County, Minnesota, using the 1994 case definition and describe exclusionary and comorbid conditions observed in patients who presented for evaluation of long-standing fatigue. Patients and Methods We conducted a retrospective medical record review of potential cases of chronic fatigue syndrome identified from January 1, 1998, through December 31, 2002, using the Rochester Epidemiology Project, a population-based database. Patients were classified as having chronic fatigue syndrome if the medical record review documented fatigue of 6 months' duration, at least 4 of 8 chronic fatigue syndrome–defining symptoms, and symptoms that interfered with daily work or activities. Patients not meeting all of the criteria were classified as having insufficient/idiopathic fatigue. Results We identified 686 potential patients with chronic fatigue, 2 of whom declined consent for medical record review. Of the remaining 684 patients, 151 (22%) met criteria for chronic fatigue syndrome or insufficient/idiopathic fatigue. The overall prevalence and incidence of chronic fatigue syndrome and insufficient/idiopathic fatigue were 71.34 per 100,000 persons and 13.16 per 100,000 person-years vs 73.70 per 100,000 persons and 13.58 per 100,000 person-years, respectively. The potential cases included 482 patients (70%) who had an exclusionary condition, and almost half the patients who met either criterion had at least one nonexclusionary comorbid condition. Conclusion The incidence and prevalence of chronic fatigue syndrome and insufficient/idiopathic fatigue are relatively low in Olmsted County. Careful clinical evaluation to identify whether fatigue could be attributed to exclusionary or comorbid conditions rather than chronic fatigue syndrome itself will ensure appropriate assessment for patients without chronic fatigue syndrome. PMID:23140977

  3. The Association between Job-Related Psychosocial Factors and Prolonged Fatigue among Industrial Employees in Taiwan

    PubMed Central

    Tang, Feng-Cheng; Li, Ren-Hau; Huang, Shu-Ling

    2016-01-01

    Background and Objectives Prolonged fatigue is common among employees, but the relationship between prolonged fatigue and job-related psychosocial factors is seldom studied. This study aimed (1) to assess the individual relations of physical condition, psychological condition, and job-related psychosocial factors to prolonged fatigue among employees, and (2) to clarify the associations between job-related psychosocial factors and prolonged fatigue using hierarchical regression when demographic characteristics, physical condition, and psychological condition were controlled. Methods A cross-sectional study was employed. A questionnaire was used to obtain information pertaining to demographic characteristics, physical condition (perceived physical health and exercise routine), psychological condition (perceived mental health and psychological distress), job-related psychosocial factors (job demand, job control, and workplace social support), and prolonged fatigue. Results A total of 3,109 employees were recruited. Using multiple regression with controlled demographic characteristics, psychological condition explained 52.0% of the variance in prolonged fatigue. Physical condition and job-related psychosocial factors had an adjusted R2 of 0.370 and 0.251, respectively. Hierarchical multiple regression revealed that, among job-related psychosocial factors, job demand and job control showed significant associations with fatigue. Conclusion Our findings highlight the role of job demand and job control, in addition to the role of perceived physical health, perceived mental health, and psychological distress, in workers’ prolonged fatigue. However, more research is required to verify the causation among all the variables. PMID:26930064

  4. Single-leg hop testing following fatiguing exercise: reliability and biomechanical analysis.

    PubMed

    Augustsson, J; Thomeé, R; Lindén, C; Folkesson, M; Tranberg, R; Karlsson, J

    2006-04-01

    A fatiguing exercise protocol was combined with single-leg hop testing to improve the possibilities of evaluating the effects of training or rehabilitation interventions. In the first test-retest experiment, 11 healthy male subjects performed two trials of single-leg hops under three different test conditions: non-fatigued and following fatiguing exercise, which consisted of unilateral weight machine knee extensions at 80% and 50%, respectively, of 1 repetition maximum (1 RM) strength. Intraclass correlation coefficients ranged from 0.75 to 0.98 for different hop test conditions, indicating that all tests were reliable. For the second experiment, eight healthy male subjects performed the fatiguing exercise protocol to investigate how fatigue influences lower-extremity joint kinematics and kinetics during single-leg hops. Hip, knee and ankle joint angles, moments and powers, as well as ground-reaction forces were recorded with a six-camera, motion-capture system and a force platform. Recovery of hop performance following the fatiguing exercise was also measured. During the take-off for the single-leg hops, hip and knee flexion angles, generated powers for the knee and ankle joints, and ground-reaction forces decreased for the fatigued hop conditions compared with the non-fatigued condition (P<0.05). Compared with landing during the non-fatigued condition, hip moments and ground-reaction forces were lower for the fatigued hop conditions (P<0.05). The negative joint power was two to three times greater for the knee than for the hip and five to 10 times greater for the knee than for the ankle during landing for all test conditions (P<0.05). Most measured variables had recovered three minutes post-exercise. It is concluded that the fatiguing exercise protocol combined with single-leg hop testing was a reliable method for investigating functional performance under fatigued test conditions. Further, subjects utilized an adapted hop strategy, which employed less hip and knee flexion and generated powers for the knee and ankle joints during take-off, and less hip joint moments during landing under fatigued conditions. The large negative power values observed at the knee joint during the landing phase of the single-leg hop, during which the quadriceps muscle activates eccentrically, indicate that not only hop distance but also the ability to perform successful landings should be investigated when assessing dynamic knee function.

  5. Digital Health: Tracking Physiomes and Activity Using Wearable Biosensors Reveals Useful Health-Related Information

    PubMed Central

    Zhou, Gao; Zhou, Wenyu; Schüssler-Fiorenza Rose, Sophia Miryam; Perelman, Dalia; Colbert, Elizabeth; Runge, Ryan; Rego, Shannon; Sonecha, Ria; Datta, Somalee; McLaughlin, Tracey; Snyder, Michael P.

    2017-01-01

    A new wave of portable biosensors allows frequent measurement of health-related physiology. We investigated the use of these devices to monitor human physiological changes during various activities and their role in managing health and diagnosing and analyzing disease. By recording over 250,000 daily measurements for up to 43 individuals, we found personalized circadian differences in physiological parameters, replicating previous physiological findings. Interestingly, we found striking changes in particular environments, such as airline flights (decreased peripheral capillary oxygen saturation [SpO2] and increased radiation exposure). These events are associated with physiological macro-phenotypes such as fatigue, providing a strong association between reduced pressure/oxygen and fatigue on high-altitude flights. Importantly, we combined biosensor information with frequent medical measurements and made two important observations: First, wearable devices were useful in identification of early signs of Lyme disease and inflammatory responses; we used this information to develop a personalized, activity-based normalization framework to identify abnormal physiological signals from longitudinal data for facile disease detection. Second, wearables distinguish physiological differences between insulin-sensitive and -resistant individuals. Overall, these results indicate that portable biosensors provide useful information for monitoring personal activities and physiology and are likely to play an important role in managing health and enabling affordable health care access to groups traditionally limited by socioeconomic class or remote geography. PMID:28081144

  6. Crew Factors in Flight Operations. 11; A Survey of Fatigue Factors in Regional Airline Operations

    NASA Technical Reports Server (NTRS)

    Co, Elizabeth L.; Gregory, Kevin B.; Johnson, Julie M.; Rosekind, Mark R.

    1999-01-01

    This report is the eleventh in a series on the physiological effects of flight operations on flight crews. A 119-question survey was completed by 1,424 flight crewmembers from 26 regional carriers to identify factors contributing to fatigue in regional airline operations. Eighty-nine percent of crewmembers identified fatigue as a moderate or serious concern with 88% reporting that it was a common occurrence and 92% reporting that, when it occurs, fatigue represents a moderate or serious safety issue. However, 86% reported they received no company training addressing fatigue issues. Identified fatigue factors included multiple flight segments, scheduling considerations, varying regulations, and others. The two most commonly cited fatigue factors regarded flying multiple (more than four) segments. Scheduling factors accounted for nine of the ten most common recommendations to reduce fatigue in regional operations. Differing requirements among regulations were cited as contributing to fatigue. Other identified factors were the flight deck environment, automation, and diet. The data suggested specific recommendations, including education of industry personnel about fatigue issues and examination of scheduling practices. Education plays a critical role in any effort to address fatigue. Analyzing scheduling practices and identifying potential improvements may result in reduced fatigue as well as other benefits to operations.

  7. Fatigue Analysis Before and After Shaker Exercise: Physiologic Tool for Exercise Design

    PubMed Central

    White, Kevin T.; Easterling, Caryn; Roberts, Niles; Shaker, Reza

    2016-01-01

    Recent studies suggest that the Shaker exercise induces fatigue in the upper esophageal sphincter (UES) opening muscles and sternocleidomastoid (SCM), with the SCMs fatiguing earliest. The aim of this study was to measure fatigue induced by the isometric portion of the Shaker exercise by measuring the rate of change in the median frequency (MF rate) of the power spectral density (PSD) function, which is interpreted as proportional to the rate of fatigue, from surface electromyography (EMG) of suprahyoid (SHM), infrahyoid (IHM), and SCM. EMG data compared fatigue-related changes from 20-, 40-, and 60-s isometric hold durations of the Shaker exercise. We found that fatigue-related changes were manifested during the 20-s hold. The findings confirm that the SCM fatigues initially and as fast as or faster than the SHM and IHM. In addition, upon completion of the exercise protocol, the SCM had a decreased MF rate, implying improved fatigue resistance, while the SHM and IHM showed increased MF rates, implying that these muscles increased their fatiguing effort. We conclude that the Shaker exercise initially leads to increased fatigue resistance of the SCM, after which the exercise loads the less fatigue-resistant SHM and IHM, potentiating the therapeutic effect of the Shaker exercise regimen with continued exercise performance. PMID:18369673

  8. Psychophysiological Assessment of Fatigue in Commercial Aviation Operations

    NASA Technical Reports Server (NTRS)

    Hernandez, Norma; Cowings, Patricia; Toscano, William

    2012-01-01

    The overall goal of this study is to improve our understanding of crew work hours, workload, sleep, fatigue, and performance, and the relationships between these variables on actual flight deck performance. Specifically, this study will provide objective measures of physiology and performance, which may benefit investigators in identifying fatigue levels of operators in commercial aviation and provide a way to better design strategies to limit crew fatigue. This research was supported by an agreement between NASA Ames Research Center and easyJet Airline Company, Ltd., Luton, UK. Twenty commercial pilots volunteered to participant in the study that included 15 flight duty days. Participants wore a Zephyr Bioharness ambulatory physiological monitor each flight day, which measured their heart rate, respiration rate, skin temperature, activity and posture. In addition, pilots completed sleep log diaries, self-report scales of mood, sleepiness and workload, and a Performance Vigilance Task (PVT). All data were sent to NASA researchers for processing and analyses. Heart rate variability data of several subjects were subjected to a spectral analysis to examine power in specific frequency bands. Increased power in low frequency band was associated with reports of higher subjective sleepinesss in some subjects. Analyses of other participants data are currently underway.

  9. [Evaluating fatigue resistance effect of health food by near-infrared tissue oximeter].

    PubMed

    Wu, Jian; Ding, Hai-shu; Ye, Da-tian

    2009-09-01

    Currently, chronic fatigue syndrome (CFS) seriously affects people's normal living and work. In the present paper, the physiological parameters, such as tissue oxygenation saturation and heart rate, were used to evaluate the subjects' fatigue degree, and the fatigue resistance capsule and coffee were taken as a measure to adjust the fatigue. Human tissue oxygen saturation (rSO2) can be monitored noninvasively and in real time by near infrared spectroscopy (NIRS) based on spatially-resolved spectroscopy. Aiming at those brainworkers who need to work in an office for a long time; two static experiments were designed to evaluate the fatigue degree of the subjects who either take the fatigue resistance capsules/coffee or not. The rSO2 and heart rate (HR) of the subjects in the experiment group and contrast group were measured respectively for fatigue evaluation. This work particularly analyzed the changes in rSO2 in these two groups. The results show that the rSO2 of subjects in the experiment group evidently increased compared to that in the contrast group when the subjects took the fatigue resistance capsule or coffee, thereby show that the health food can reduce the fatigue to a certain extent.

  10. Fatigue in HIV-Infected People: A Three-Year Observational Study

    PubMed Central

    Barroso, Julie; Leserman, Jane; Harmon, James L.; Hammill, Bradley; Pence, Brian W.

    2015-01-01

    Context HIV-related fatigue remains the most frequent complaint of seropositive patients. Objectives To describe the natural course of fatigue in HIV infection, in a sample (n=128) followed for a three-year period. Methods A longitudinal prospective design was used to determine what factors influenced changes in fatigue intensity and fatigue-related impairment of functioning in a community-dwelling sample of HIV-infected individuals. Participants were followed every six months for a three-year period. At each study visit, we collected data on a large number of physiological and psychosocial markers that have been shown to be related to fatigue in HIV-infected people. At three-month intervals between study visits, we collected data on fatigue via mailed questionnaires. Results Fatigue in HIV infection is largely a result of stressful life events, and is closely tied to the anxiety and depression that accompany such events. Fatigue did not remit spontaneously over the course of the study, indicating the need for interventions to ameliorate this debilitating symptom. Conclusion Intervening to help people who are suffering from HIV-related fatigue to deal with stressful life events may help to ameliorate this debilitating symptom. PMID:25701691

  11. Neuromuscular fatigue in racquet sports.

    PubMed

    Girard, Olivier; Millet, Grégoire P

    2008-02-01

    This article describes the physiologic and neural mechanisms that cause neuromuscular fatigue in racquet sports: table tennis, tennis, squash, and badminton. In these intermittent and dual activities, performance may be limited as a match progresses because of a reduced central activation, linked to changes in neurotransmitter concentration or in response to afferent sensory feedback. Alternatively, modulation of spinal loop properties may occur because of changes in metabolic or mechanical properties within the muscle. Finally, increased fatigue manifested by mistimed strokes, lower speed, and altered on-court movements may be caused by ionic disturbances and impairments in excitation-contraction coupling properties. These alterations in neuromuscular function contribute to decrease in racquet sports performance observed under fatigue.

  12. Neuromuscular fatigue in racquet sports.

    PubMed

    Girard, Olivier; Millet, Grégoire P

    2009-02-01

    This article describes the physiologic and neural mechanisms that cause neuromuscular fatigue in racquet sports: table tennis, tennis, squash, and badminton. In these intermittent and dual activities, performance may be limited as a match progresses because of a reduced central activation, linked to changes in neurotransmitter concentration or in response to afferent sensory feedback. Alternatively, modulation of spinal loop properties may occur because of changes in metabolic or mechanical properties within the muscle. Finally, increased fatigue manifested by mistimed strokes, lower speed, and altered on-court movements may be caused by ionic disturbances and impairments in excitation-contraction coupling properties. These alterations in neuromuscular function contribute to decrease in racquet sports performance observed under fatigue.

  13. Beyond pain in fibromyalgia: insights into the symptom of fatigue

    PubMed Central

    2013-01-01

    Fatigue is a disabling, multifaceted symptom that is highly prevalent and stubbornly persistent. Although fatigue is a frequent complaint among patients with fibromyalgia, it has not received the same attention as pain. Reasons for this include lack of standardized nomenclature to communicate about fatigue, lack of evidence-based guidelines for fatigue assessment, and a deficiency in effective treatment strategies. Fatigue does not occur in isolation; rather, it is present concurrently in varying severity with other fibromyalgia symptoms such as chronic widespread pain, unrefreshing sleep, anxiety, depression, cognitive difficulties, and so on. Survey-based and preliminary mechanistic studies indicate that multiple symptoms feed into fatigue and it may be associated with a variety of physiological mechanisms. Therefore, fatigue assessment in clinical and research settings must consider this multi-dimensionality. While no clinical trial to date has specifically targeted fatigue, randomized controlled trials, systematic reviews, and meta-analyses indicate that treatment modalities studied in the context of other fibromyalgia symptoms could also improve fatigue. The Outcome Measures in Rheumatology (OMERACT) Fibromyalgia Working Group and the Patient Reported Outcomes Measurement Information System (PROMIS) have been instrumental in propelling the study of fatigue in fibromyalgia to the forefront. The ongoing efforts by PROMIS to develop a brief fibromyalgia-specific fatigue measure for use in clinical and research settings will help define fatigue, allow for better assessment, and advance our understanding of fatigue. PMID:24289848

  14. Effects of foliage plants on human physiological and psychological responses at different temperatures

    NASA Astrophysics Data System (ADS)

    Jumeno, Desto; Matsumoto, Hiroshi

    2015-02-01

    Escalation of task demands and time pressures tends to make a worker run into work stress, which leads to mental fatigue and depression. The mental fatigue can be reduced when attention capacity is restored. Nature can serve as a source of fascination which can restore the attention capacity. People bring plants indoors so they can experience nature in their workplace. The stress and fatigue are also affected by air temperatures. The increase or decrease of temperatures from the comfort zone may induce the stress and fatigue. The objective of this study is to investigate the intervention of using foliage plants placed inside a building at different air temperature levels. The effects of foliage plants on human stress and fatigue were measured by human physiological responses such as heart rate, amylase level, electroencephalography (EEG), and the secondary task-reaction time. Several different tasks, namely typing, math and logical sequences are included in the investigation of these studies. Fifteen subjects, with the age ranged from 22 to 38 years old have participated in the study using within subject design. From the study, it is revealed that the presence of foliage plants at several temperatures have different effects on meditation, secondary task reaction time and typing accuracy. This study also revealed that the presence of plants on several types of tasks has different effects of attention which are useful for increasing work performance.

  15. Analysis of electrical and magnetic bio-signals associated with motor performance and fatigue

    NASA Astrophysics Data System (ADS)

    Yao, Bing

    This dissertation reports findings centered principally on comprehensive research related to human bio-signals (EEG, MEG, EMG and fMRI) acquired during repetitive maximal voluntary contractions (MVC) that induced severe fatigue. Fatigue is a common experience that reduces productivity and quality of life and increases chances of injury. Although abundant information has been gained in the last several decades regarding muscular and spinal-level mechanisms of muscle fatigue, very little is known about how cortical centers control and respond to fatigue. The main purpose of this study was to examine the fatigue effects on the central nervous system by analyzing the bio-signals collected in the designed experiments. Healthy human subjects were asked to perform a series of repetitive handgrip MVCs with their dominant hand until exhaustion. Handgrip forces, electrical activity (EMG) from primary and non-primary muscles, and EEG, MEG, or fMRI signals from different locations of the brain were recorded simultaneously. The time series data were segmented into several physiologically meaningful epochs (time phases), from rest to preparation to movement execution/sustaining. A series of studies, including motor-related cortical potential (MRCP) analysis, power spectrum analysis, time-frequency (spectrogram) analysis of EEG, EEG source localization and nonlinear analysis (fractal dimension and largest Lyapunov exponent), and fMRI analysis, was applied to the data. We hypothesized that the fatigue effects would act differently on brain signals of different phases. The MRCP results showed that the negative potential (NP) related to motor task preparation only had minimal changes with fatigue. The power of all EEG frequencies did not alter significantly during the preparation phase but decreased significantly during the sustained phase of the contraction. The fractal dimension and the largest Lyapunov exponent decreased significantly during the sustained phase as fatigue progressed. On the other hand, the fMRI results only exhibited insignificant fatigue-related reductions of brain activation volume and no significant change of dipole strength derived from multi-channel EEG data. These results have been interpreted by a hypothetical neurophysiological model, in which two groups of cortical neurons (phasic and tonic) are preferentially activated in each physiological phase of the voluntary motor action.

  16. Effects of a One-to-One Fatigue Management Course for People With Chronic Conditions and Fatigue.

    PubMed

    Van Heest, Katy N L; Mogush, Ashley R; Mathiowetz, Virgil G

    We assessed the impact of a one-to-one fatigue management course on participants' fatigue, self-efficacy, quality of life, and energy conservation behaviors. This observational study used a one-group, pretest-posttest, follow-up design. Forty-nine people with chronic conditions and fatigue participated in the one-to-one fatigue management course in outpatient and community-based settings. The Functional Assessment of Chronic Illness Therapy-Fatigue Scale was used to measure fatigue; the Functional Assessment of Cancer Therapy-General measured quality of life; and the Self-Efficacy for Performing Energy Conservation Strategies Assessment was used to measure self-efficacy. Participants showed significant reductions in fatigue and significant increases in self-efficacy and quality of life at posttest. These beneficial effects were maintained at follow-up. The Social Well-Being subscale was the only measure on which outcomes did not change significantly. The one-to-one fatigue management course is a beneficial intervention for people with chronic conditions and fatigue. Copyright © 2017 by the American Occupational Therapy Association, Inc.

  17. Fatigue Life Estimation under Cumulative Cyclic Loading Conditions

    NASA Technical Reports Server (NTRS)

    Kalluri, Sreeramesh; McGaw, Michael A; Halford, Gary R.

    1999-01-01

    The cumulative fatigue behavior of a cobalt-base superalloy, Haynes 188 was investigated at 760 C in air. Initially strain-controlled tests were conducted on solid cylindrical gauge section specimens of Haynes 188 under fully-reversed, tensile and compressive mean strain-controlled fatigue tests. Fatigue data from these tests were used to establish the baseline fatigue behavior of the alloy with 1) a total strain range type fatigue life relation and 2) the Smith-Wastson-Topper (SWT) parameter. Subsequently, two load-level multi-block fatigue tests were conducted on similar specimens of Haynes 188 at the same temperature. Fatigue lives of the multi-block tests were estimated with 1) the Linear Damage Rule (LDR) and 2) the nonlinear Damage Curve Approach (DCA) both with and without the consideration of mean stresses generated during the cumulative fatigue tests. Fatigue life predictions by the nonlinear DCA were much closer to the experimentally observed lives than those obtained by the LDR. In the presence of mean stresses, the SWT parameter estimated the fatigue lives more accurately under tensile conditions than under compressive conditions.

  18. [Physiological mechanisms of the etiology of visual fatigue during work involving visual stress].

    PubMed

    Korniushina, T A

    2000-01-01

    Physiological parameters of vision were studied in three professional groups (a total of 1204 subjects): microscope operators, subjects working with magnifying glasses, and computer users. General and specific features of visual system fatigue formation were identified. Because of complete (in microscope operators) or partial (in subjects working with magnifying glasses and display users) "deprivation" of accommodation, these subjects develop early presbyopia (at the age of 30-35 years). In microscope operators long strain of accommodation system leads to professional myopia, while display users develop pseudomyopia. The highest overstrain is observed after 4 years of work in microscope operators, after 5 years in magnifying glass users, and after 6 years in computer users.

  19. HYPNOSIS IN THE TREATMENT OF MORGELLONS DISEASE: A Case Study1

    PubMed Central

    Gartner, Ashley M.; Dolan, Sara L.; Stanford, Matthew S.; Elkins, Gary R.

    2014-01-01

    Morgellons Disease is a condition involving painful skin lesions, fibrous growths protruding from the skin, and subcutaneous stinging and burning sensations, along with symptoms of anxiety, depression, fatigue, and memory and attention deficits. The etiological and physiological bases of these symptoms are unclear, making the diagnosis controversial and challenging to treat. There are currently no established treatments for Morgellons Disease. The following case example depicts treatment of a woman with Morgellons Disease using hypnotherapy. Data from this case example suggest that hypnotherapy is a promising intervention for the physical and psychological symptoms associated with Morgellons Disease. PMID:21390982

  20. Hypnosis in the treatment of Morgellons disease: a case study.

    PubMed

    Gartner, Ashley M; Dolan, Sara L; Stanford, Matthew S; Elkins, Gary R

    2011-04-01

    Morgellons Disease is a condition involving painful skin lesions, fibrous growths protruding from the skin, and subcutaneous stinging and burning sensations, along with symptoms of anxiety, depression, fatigue, and memory and attention deficits. The etiological and physiological bases of these symptoms are unclear, making the diagnosis controversial and challenging to treat. There are currently no established treatments for Morgellons Disease. The following case example depicts treatment of a woman with Morgellons Disease using hypnotherapy. Data from this case example suggest that hypnotherapy is a promising intervention for the physical and psychological symptoms associated with Morgellons Disease.

  1. Reduced Electromyographic Fatigue Threshold after Performing a Cognitive Fatiguing Task.

    PubMed

    Ferris, Justine R; Tomlinson, Mary A; Ward, Tayler N; Pepin, Marie E; Malek, Moh H

    2018-02-22

    Cognitive fatigue tasks performed prior to exercise may reduce exercise capacity. The electromyographic fatigue threshold (EMGFT) is the highest exercise intensity that can be maintained without significant increase in the EMG amplitude versus time relationship. To date, no studies have examined the effect of cognitive fatigue on the estimation of the EMGFT. The purpose of this study, therefore, was to determine whether or not cognitive fatigue prior to performing exercise reduces the estimated EMGFT. Eight healthy college-aged men were recruited from a university student population and visited the laboratory on multiple occasions. In a randomized order, subjects performed either the cognitive fatigue task (AX Continuous Performance Test; AX-CPT) for 60 min on one visit (experimental condition) or watched a video on trains for 60 min on the other visit (control condition). After each condition, subjects performed the incremental single-leg knee-extensor ergometry test while the EMG amplitude was recorded from the rectus femoris muscle and heart rate was monitored throughout. Thereafter, the EMGFT was calculated for each participant for each visit and compared using paired samples t-test. For exercise outcomes, there were no significant mean differences for maximal power output between the two conditions (control: 51 ± 5 vs. fatigue: 50 ± 3 W), but a significant decrease in EMGFT between the two conditions (control: 31 ± 3 vs. fatigue: 24 ± 2 W; p = 0.013). Moreover, maximal heart rate was significantly different between the two conditions (control: 151 ± 5 vs. fatigue: 132 ± 6; p = 0.027). These results suggest that performing the cognitive fatiguing task reduces the EMGFT with a corresponding reduction in maximal heart rate response.

  2. Evaluation of corrosion fatigue and life prediction of lower arm for automotive suspension component

    NASA Astrophysics Data System (ADS)

    Kim, Yong-Sang; Kim, Jung-Gu

    2017-01-01

    Lower arm is one of the suspension components of automobile. It is suffered from driving vibration and corrosive environment, namely corrosion fatigue. In this study, corrosion fatigue property of lower arm was investigated, and a modified model based on Palmgren-Miner rule was developed to predict the lifetimes of corrosion fatigue. The corrosion fatigue life of lower arm was about 1/6 times shorter than fatigue life. Based on the results of corrosion fatigue tests and meteorological data in Seoul and Halifax, the corrosion fatigue life of lower arm was predicted. The satisfaction of 10-year and 300,000 km warranty was dominated by the climate of automobile driving. This prediction indicates that the weather condition or driving condition influences the life of automotive parts. Therefore, to determine the warranty of automotive parts, the driving condition has to be carefully considered.

  3. Reduced Dual-Task Performance in MS Patients Is Further Decreased by Muscle Fatigue.

    PubMed

    Wolkorte, Ria; Heersema, Dorothea J; Zijdewind, Inge

    2015-06-01

    Multiple sclerosis (MS) can be accompanied by motor, cognitive, and sensory impairments. Additionally, MS patients often report fatigue as one of their most debilitating symptoms. It is, therefore, expected that MS patients will have difficulties in performing cognitive-motor dual tasks (DTs), especially in a fatiguing condition. To determine whether MS patients are more challenged by a DT than controls in a fatiguing and less-fatiguing condition and whether DT performance is associated with perceived fatigue. A group of 19 MS patients and 19 age-, sex-, and education-matched controls performed a cognitive task (2-choice reaction time task) separately or concurrent with a low-force or a high-force motor task (index finger abduction at 10% or 30% maximal voluntary contraction). MS patients performed less well on a cognitive task than controls. Cognitive task performance under DT conditions decreased more for MS patients. Moreover, under high-force DT conditions, cognitive performance declined in both groups but to a larger degree for MS patients. Besides a decline in cognitive task performance, MS patients also showed a stronger decrease in motor performance under high-force DT conditions. DT costs were positively related to perceived fatigue as measured by questionnaires. Compared with controls, MS patients performed less well on DTs as demonstrated by a reduction in both cognitive and motor performances. This performance decrease was stronger under fatiguing conditions and was related to the sense of fatigue of MS patients. These data illustrate problems that MS patients may encounter in daily life because of their fatigue. © The Author(s) 2014.

  4. [Pulmonary rehabilitation after total laryngectomy using a heat and moisture exchanger (HME)].

    PubMed

    Lorenz, K J; Maier, H

    2009-08-01

    A complete removal of the larynx has profound consequences for a patient. Since laryngectomy involves the separation of the upper airway from the lower airway, it not only implies a loss of the voice organ but also leads to chronic lung problems such as increased coughing, mucus production and expectoration. In addition, laryngectomees complain of fatigue, sleeping problems, a reduced sense of smell and taste, and a loss of social contact. A heat and moisture exchanger (HME) cassette can replace a function of the upper airway which consists in conditioning inspired air. It can improve pulmonary symptoms in three ways. 1. An HME cassette heats and moisturises inhaled air and thus creates nearly physiological conditions in the region of the deep airway. 2. The use of an HME cassette leads to an increase in breathing resistance, thereby reducing dynamic airway compression and improving lung ventilation. 3. An HME cassette acts as a filter and removes larger particles from incoming air. This review examines the current understanding of lung physiology after laryngectomy and assesses the effects of HME cassettes on the conditioning of respiratory air, lung function and psychosocial problems. Georg Thieme Verlag KG Stuttgart, New York.

  5. Exercise therapy for fatigue in multiple sclerosis.

    PubMed

    Heine, Martin; van de Port, Ingrid; Rietberg, Marc B; van Wegen, Erwin E H; Kwakkel, Gert

    2015-09-11

    Multiple sclerosis (MS) is an immune-mediated disease of the central nervous system affecting an estimated 1.3 million people worldwide. It is characterised by a variety of disabling symptoms of which excessive fatigue is the most frequent. Fatigue is often reported as the most invalidating symptom in people with MS. Various mechanisms directly and indirectly related to the disease and physical inactivity have been proposed to contribute to the degree of fatigue. Exercise therapy can induce physiological and psychological changes that may counter these mechanisms and reduce fatigue in MS. To determine the effectiveness and safety of exercise therapy compared to a no-exercise control condition or another intervention on fatigue, measured with self-reported questionnaires, of people with MS. We searched the Cochrane Multiple Sclerosis and Rare Diseases of the Central Nervous System Group Trials Specialised Register, which, among other sources, contains trials from: the Cochrane Central Register of Controlled Trials (CENTRAL) (2014, Issue 10), MEDLINE (from 1966 to October 2014), EMBASE (from 1974 to October 2014), CINAHL (from 1981 to October 2014), LILACS (from 1982 to October 2014), PEDro (from 1999 to October 2014), and Clinical trials registries (October 2014). Two review authors independently screened the reference lists of identified trials and related reviews. We included randomized controlled trials (RCTs) evaluating the efficacy of exercise therapy compared to no exercise therapy or other interventions for adults with MS that included subjective fatigue as an outcome. In these trials, fatigue should have been measured using questionnaires that primarily assessed fatigue or sub-scales of questionnaires that measured fatigue or sub-scales of questionnaires not primarily designed for the assessment of fatigue but explicitly used as such. Two review authors independently selected the articles, extracted data, and determined methodological quality of the included trials. Methodological quality was determined by means of the Cochrane 'risk of bias' tool and the PEDro scale. The combined body of evidence was summarised using the GRADE approach. The results were aggregated using meta-analysis for those trials that provided sufficient data to do so. Forty-five trials, studying 69 exercise interventions, were eligible for this review, including 2250 people with MS. The prescribed exercise interventions were categorised as endurance training (23 interventions), muscle power training (nine interventions), task-oriented training (five interventions), mixed training (15 interventions), or 'other' (e.g. yoga; 17 interventions). Thirty-six included trials (1603 participants) provided sufficient data on the outcome of fatigue for meta-analysis. In general, exercise interventions were studied in mostly participants with the relapsing-remitting MS phenotype, and with an Expanded Disability Status Scale less than 6.0. Based on 26 trials that used a non-exercise control, we found a significant effect on fatigue in favour of exercise therapy (standardized mean difference (SMD) -0.53, 95% confidence interval (CI) -0.73 to -0.33; P value < 0.01). However, there was significant heterogeneity between trials (I(2) > 58%). The mean methodological quality, as well as the combined body of evidence, was moderate. When considering the different types of exercise therapy, we found a significant effect on fatigue in favour of exercise therapy compared to no exercise for endurance training (SMDfixed effect -0.43, 95% CI -0.69 to -0.17; P value < 0.01), mixed training (SMDrandom effect -0.73, 95% CI -1.23 to -0.23; P value < 0.01), and 'other' training (SMDfixed effect -0.54, 95% CI -0.79 to -0.29; P value < 0.01). Across all studies, one fall was reported. Given the number of MS relapses reported for the exercise condition (N = 25) and non-exercise control condition (N = 26), exercise does not seem to be associated with a significant risk of a MS relapse. However, in general, MS relapses were defined and reported poorly. Exercise therapy can be prescribed in people with MS without harm. Exercise therapy, and particularly endurance, mixed, or 'other' training, may reduce self reported fatigue. However, there are still some important methodological issues to overcome. Unfortunately, most trials did not explicitly include people who experienced fatigue, did not target the therapy on fatigue specifically, and did not use a validated measure of fatigue as the primary measurement of outcome.

  6. Research on fatigue driving pre-warning system based on multi-information fusion

    NASA Astrophysics Data System (ADS)

    Zhao, Xuyang; Ye, Wenwu

    2018-05-01

    With the development of science and technology, transportation network has grown faster. But at the same time, the quantity of traffic accidents due to fatigue driving grows faster as well. In the meantime, fatigue driving has been one of the main causes of traffic accidents. Therefore, it is indispensable for us to study the detection of fatigue driving to help to driving safety. There are numerous approaches in discrimination method. Each type of method has its reasonable theoretical basis, but the disadvantages of traditional fatigue driving detection methods have been more and more obvious since we study the traditional physiology and psychological features of fatigue drivers. So we set up a new system based on multi-information fusion and pattern recognition theory. In the paper, the fatigue driving pre-warning system discriminates fatigue by analyzing the characteristic parameters, the parameters derived from the steering wheel angle, the driver's power of gripping and the heart rate. And the data analysis system is established based on fuzzy C-means clustering theory. Finally, KNN classifier is used to establish the relation between feature indexes and fatigue degree. It is verified that the system has the better accuracy, agility and robustness according to our confirmatory experiment.

  7. Multiaxial and Thermomechanical Fatigue of Materials: A Historical Perspective and Some Future Challenges

    NASA Technical Reports Server (NTRS)

    Kalluri, Sreeramesh

    2013-01-01

    Structural materials used in engineering applications routinely subjected to repetitive mechanical loads in multiple directions under non-isothermal conditions. Over past few decades, several multiaxial fatigue life estimation models (stress- and strain-based) developed for isothermal conditions. Historically, numerous fatigue life prediction models also developed for thermomechanical fatigue (TMF) life prediction, predominantly for uniaxial mechanical loading conditions. Realistic structural components encounter multiaxial loads and non-isothermal loading conditions, which increase potential for interaction of damage modes. A need exists for mechanical testing and development verification of life prediction models under such conditions.

  8. Effect of eccentric exercise with reduced muscle glycogen on plasma interleukin-6 and neuromuscular responses of musculus quadriceps femoris.

    PubMed

    Gavin, James P; Myers, Stephen D; Willems, Mark E T

    2016-07-01

    Eccentric exercise can result in muscle damage and interleukin-6 (IL-6) secretion. Glycogen availability is a potent stimulator of IL-6 secretion. We examined effects of eccentric exercise in a low-glycogen state on neuromuscular function and plasma IL-6 secretion. Twelve active men (23 ± 4 yr, 179 ± 5 cm, 77 ± 10 kg, means ± SD) completed two downhill treadmill runs (gradient, -12%, 5 × 8 min; speed, 12.1 ± 1.1 km/h) with normal (NG) and reduced muscle glycogen (RG) in randomized order and at least 6 wk apart. Muscle glycogen was reduced using an established cycling protocol until exhaustion and dietary manipulation the evening before the morning run. Physiological responses were measured up to 48 h after the downhill runs. During recovery, force deficits of musculus quadriceps femoris by maximal isometric contractions were similar. Changes in low-frequency fatigue were larger with RG. Voluntary activation and plasma IL-6 levels were similar in recovery between conditions. It is concluded that unaccustomed, damaging eccentric exercise with low muscle glycogen of the m. quadriceps femoris 1) exacerbated low-frequency fatigue but 2) had no additional effect on IL-6 secretion. Neuromuscular impairment after eccentric exercise with low muscle glycogen appears to have a greater peripheral component in early recovery. Copyright © 2016 the American Physiological Society.

  9. 75 FR 30284 - Airworthiness Directives; Empresa Brasileira de Aeronautica S.A. (EMBRAER) Model ERJ 170 Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-01

    ... condition as: During ERJ 170 airplane full scale fatigue test, cracks were found in some structural... intervals, could prevent a timely detection of fatigue cracks. Undetected fatigue cracks in these areas... unsafe condition for the specified products. The MCAI states: During ERJ 170 airplane full scale fatigue...

  10. Is the notion of central fatigue based on a solid foundation?

    PubMed

    Contessa, Paola; Puleo, Alessio; De Luca, Carlo J

    2016-02-01

    Exercise-induced muscle fatigue has been shown to be the consequence of peripheral factors that impair muscle fiber contractile mechanisms. Central factors arising within the central nervous system have also been hypothesized to induce muscle fatigue, but no direct empirical evidence that is causally associated to reduction of muscle force-generating capability has yet been reported. We developed a simulation model to investigate whether peripheral factors of muscle fatigue are sufficient to explain the muscle force behavior observed during empirical studies of fatiguing voluntary contractions, which is commonly attributed to central factors. Peripheral factors of muscle fatigue were included in the model as a time-dependent decrease in the amplitude of the motor unit force twitches. Our simulation study indicated that the force behavior commonly attributed to central fatigue could be explained solely by peripheral factors during simulated fatiguing submaximal voluntary contractions. It also revealed important flaws regarding the use of the interpolated twitch response from electrical stimulation of the muscle as a means for assessing central fatigue. Our analysis does not directly refute the concept of central fatigue. However, it raises important concerns about the manner in which it is measured and about the interpretation of the commonly accepted causes of central fatigue and questions the very need for the existence of central fatigue. Copyright © 2016 the American Physiological Society.

  11. Frontier studies on fatigue, autonomic nerve dysfunction, and sleep-rhythm disorder.

    PubMed

    Tanaka, Masaaki; Tajima, Seiki; Mizuno, Kei; Ishii, Akira; Konishi, Yukuo; Miike, Teruhisa; Watanabe, Yasuyoshi

    2015-11-01

    Fatigue is defined as a condition or phenomenon of decreased ability and efficiency of mental and/or physical activities, caused by excessive mental or physical activities, diseases, or syndromes. It is often accompanied by a peculiar sense of discomfort, a desire to rest, and reduced motivation, referred to as fatigue sensation. Acute fatigue is a normal condition or phenomenon that disappears after a period of rest; in contrast, chronic fatigue, lasting at least 6 months, does not disappear after ordinary rest. Chronic fatigue impairs activities and contributes to various medical conditions, such as cardiovascular disease, epileptic seizures, and death. In addition, many people complain of chronic fatigue. For example, in Japan, more than one third of the general adult population complains of chronic fatigue. It would thus be of great value to clarify the mechanisms underlying chronic fatigue and to develop efficient treatment methods to overcome it. Here, we review data primarily from behavioral, electrophysiological, and neuroimaging experiments related to neural dysfunction as well as autonomic nervous system, sleep, and circadian rhythm disorders in fatigue. These data provide new perspectives on the mechanisms underlying chronic fatigue and on overcoming it.

  12. Effects of mental workload on physiological and subjective responses during traffic density monitoring: A field study.

    PubMed

    Fallahi, Majid; Motamedzade, Majid; Heidarimoghadam, Rashid; Soltanian, Ali Reza; Miyake, Shinji

    2016-01-01

    This study evaluated operators' mental workload while monitoring traffic density in a city traffic control center. To determine the mental workload, physiological signals (ECG, EMG) were recorded and the NASA-Task Load Index (TLX) was administered for 16 operators. The results showed that the operators experienced a larger mental workload during high traffic density than during low traffic density. The traffic control center stressors caused changes in heart rate variability features and EMG amplitude, although the average workload score was significantly higher in HTD conditions than in LTD conditions. The findings indicated that increasing traffic congestion had a significant effect on HR, RMSSD, SDNN, LF/HF ratio, and EMG amplitude. The results suggested that when operators' workload increases, their mental fatigue and stress level increase and their mental health deteriorate. Therefore, it maybe necessary to implement an ergonomic program to manage mental health. Furthermore, by evaluating mental workload, the traffic control center director can organize the center's traffic congestion operators to sustain the appropriate mental workload and improve traffic control management. Copyright © 2015 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  13. Potential of M-Wave Elicited by Double Pulse for Muscle Fatigue Evaluation in Intermittent Muscle Activation by Functional Electrical Stimulation for Motor Rehabilitation

    PubMed Central

    Miura, Naoto; Watanabe, Takashi

    2016-01-01

    Clinical studies on application of functional electrical stimulation (FES) to motor rehabilitation have been increasing. However, muscle fatigue appears early in the course of repetitive movement production training by FES. Although M-wave variables were suggested to be reliable indices of muscle fatigue in long lasting constant electrical stimulation under the isometric condition, the ability of M-wave needs more studies under intermittent stimulation condition, because the intervals between electrical stimulations help recovery of muscle activation level. In this paper, M-waves elicited by double pulses were examined in muscle fatigue evaluation during repetitive movements considering rehabilitation training with surface electrical stimulation. M-waves were measured under the two conditions of repetitive stimulation: knee extension force production under the isometric condition and the dynamic movement condition by knee joint angle control. Amplitude of M-wave elicited by the 2nd pulse of a double pulse decreased during muscle fatigue in both measurement conditions, while the change in M-waves elicited by single pulses in a stimulation burst was not relevant to muscle fatigue in repeated activation with stimulation interval of 1 s. Fatigue index obtained from M-waves elicited by 2nd pulses was suggested to provide good estimation of muscle fatigue during repetitive movements with FES. PMID:27110556

  14. Investigating gender differences under conditions of fatigue in a simulated high G aerial combat environment.

    PubMed

    Chelette, T L

    1997-06-01

    Advances in technology have equipped high-performance combat aircraft with the capability of delivering higher and higher sustained acceleration or G-forces on the pilots flying them. While the physiological effects of increased g-forces on the human body continue to be investigated, studies examining the effects of acceleration on the cognitive abilities of high-performance aircraft pilots remain sparse. Additionally, as higher technology is making its way into the cockpit, so are female pilots. With even fewer studies investigating women's physiological and cognitive tolerances to the stressors in the high-performance cockpit and flight environment, Dr. Chelette's study aimed to investigate these issues. Examining pilot workload, flight task abilities, and the effects of sleeplessness on both male and female pilots, Dr. Chelette's results revealed findings that will make their way into the high-performance cockpit of the future.

  15. CHANGES IN PHYSIOLOGICAL TREMOR RESULTING FROM SLEEP DEPRIVATION UNDER CONDITIONS OF INCREASING FATIGUE DURING PROLONGED MILITARY TRAINING

    PubMed Central

    Gajewski, J; Mazur–Różycka, J

    2014-01-01

    The aim of the study was to define the changes of the characteristics of physiological postural tremor under conditions of increasing fatigue and lack of sleep during prolonged military training (survival). The subjects of the study were 15 students of the Polish Air Force Academy in Dęblin. The average age was 19.9±1.3 years. During the 36-hour-long continuous military training (survival) the subjects were deprived of sleep. Four tremor measurements were carried out for each of the subjects: Day 1 – morning, after rest (measurement 0); Day 2 – morning, after overnight physical exercise (measurement 1); afternoon, after continuous sleep deprivation (measurement 2); Day 3 – morning, after a full night sleep (measurement 3). The accelerometric method using an acceleration measuring kit was applied to analyse tremor. A significant difference between mean values of the index evaluating tremor power in low frequencies L2-4 in measurement 0 and measurement 3 was observed (p<0.01). No significant differences were found in mean values of index L10-20. Mean frequencies F2-4 differed significantly from each other (F2,42=4.53; p<0.01). Their values were 2.94±0.11, 2.99±0.9, 2.93±0.07 and 2.91±0.07 for successive measurements. A gradual, significant decrease of F8-14 was observed (F2,42=5.143; p<0.01). Prolonged sleep deprivation combined with performing tasks demanding constant physical effort causes long-lasting (over 24 hours) changes of the amplitude of low-frequency tremor changes. This phenomenon may significantly influence psychomotor performance, deteriorating the ability to perform tasks requiring movement precision. PMID:25609888

  16. GSNOR Deficiency Enhances In Situ Skeletal Muscle Strength, Fatigue Resistance, and RyR1 S-Nitrosylation Without Impacting Mitochondrial Content and Activity

    PubMed Central

    Moon, Younghye; Cao, Yenong; Zhu, Jingjing; Xu, Yuanyuan; Balkan, Wayne; Buys, Emmanuel S.; Diaz, Francisca; Kerrick, W. Glenn; Hare, Joshua M.

    2017-01-01

    Abstract Aim: Nitric oxide (NO) plays important, but incompletely defined roles in skeletal muscle. NO exerts its regulatory effects partly though S-nitrosylation, which is balanced by denitrosylation by enzymes such as S-nitrosoglutathione reductase (GSNOR), whose functions in skeletal muscle remain to be fully deciphered. Results: GSNOR null (GSNOR−/−) tibialis anterior (TA) muscles showed normal growth and were stronger and more fatigue resistant than controls in situ. However, GSNOR−/− lumbrical muscles showed normal contractility and Ca2+ handling in vitro, suggesting important differences in GSNOR function between muscles or between in vitro and in situ environments. GSNOR−/− TA muscles exhibited normal mitochondrial content, and capillary densities, but reduced type IIA fiber content. GSNOR inhibition did not impact mitochondrial respiratory complex I, III, or IV activities. These findings argue that enhanced GSNOR−/− TA contractility is not driven by changes in mitochondrial content or activity, fiber type, or blood vessel density. However, loss of GSNOR led to RyR1 hypernitrosylation, which is believed to increase muscle force output under physiological conditions. cGMP synthesis by soluble guanylate cyclase (sGC) was decreased in resting GSNOR−/− muscle and was more responsive to agonist (DETANO, BAY 41, and BAY 58) stimulation, suggesting that GSNOR modulates cGMP production in skeletal muscle. Innovation: GSNOR may act as a “brake” on skeletal muscle contractile performance under physiological conditions by modulating nitrosylation/denitrosylation balance. Conclusions: GSNOR may play important roles in skeletal muscle contractility, RyR1 S-nitrosylation, fiber type specification, and sGC activity. Antioxid. Redox Signal. 26, 165–181. PMID:27412893

  17. Effects of load mass carried in a backpack upon respiratory muscle fatigue.

    PubMed

    Faghy, Mark; Blacker, Sam; Brown, Peter I

    2016-11-01

    The purpose of this study was to investigate whether loads carried in a backpack, with a load mass ranging from 0 to 20 kg, causes respiratory muscle fatigue. Eight males performed four randomised load carriage (LC) trials comprising 60 min walking at 6.5 km h(-1) wearing a backpack of either 0 (LC0), 10 (LC10), 15 (LC15) or 20 kg (LC20). Inspiratory (PImax) and expiratory (PEmax) mouth pressures were assessed prior to and immediately following each trial. Pulmonary gas exchange, heart rate (HR), blood lactate and glucose concentration and perceptual responses were recorded during the first and final 60 s of each trial. Group mean PImax and PEmax were unchanged following 60-min load carriage in all conditions (p > .05). There was an increase over time in pulmonary gas exchange, HR and perceptions of effort relative to baseline measures during each trial (p < .05) with changes not different between trials (p > .05). These findings indicate that sub-maximal walking with no load or carrying 10, 15 or 20 kg in a backpack for up to 60 min does not cause respiratory muscle fatigue despite causing an increase in physiological, metabolic and perceptual parameters.

  18. Mental Fatigue Impairs Soccer-Specific Physical and Technical Performance.

    PubMed

    Smith, Mitchell R; Coutts, Aaron J; Merlini, Michele; Deprez, Dieter; Lenoir, Matthieu; Marcora, Samuele M

    2016-02-01

    To investigate the effects of mental fatigue on soccer-specific physical and technical performance. This investigation consisted of two separate studies. Study 1 assessed the soccer-specific physical performance of 12 moderately trained soccer players using the Yo-Yo Intermittent Recovery Test, Level 1 (Yo-Yo IR1). Study 2 assessed the soccer-specific technical performance of 14 experienced soccer players using the Loughborough Soccer Passing and Shooting Tests (LSPT, LSST). Each test was performed on two occasions and preceded, in a randomized, counterbalanced order, by 30 min of the Stroop task (mentally fatiguing treatment) or 30 min of reading magazines (control treatment). Subjective ratings of mental fatigue were measured before and after treatment, and mental effort and motivation were measured after treatment. Distance run, heart rate, and ratings of perceived exertion were recorded during the Yo-Yo IR1. LSPT performance time was calculated as original time plus penalty time. LSST performance was assessed using shot speed, shot accuracy, and shot sequence time. Subjective ratings of mental fatigue and effort were higher after the Stroop task in both studies (P < 0.001), whereas motivation was similar between conditions. This mental fatigue significantly reduced running distance in the Yo-Yo IR1 (P < 0.001). No difference in heart rate existed between conditions, whereas ratings of perceived exertion were significantly higher at iso-time in the mental fatigue condition (P < 0.01). LSPT original time and performance time were not different between conditions; however, penalty time significantly increased in the mental fatigue condition (P = 0.015). Mental fatigue also impaired shot speed (P = 0.024) and accuracy (P < 0.01), whereas shot sequence time was similar between conditions. Mental fatigue impairs soccer-specific running, passing, and shooting performance.

  19. Role of Inflammation in Human Fatigue: Relevance of Multidimensional Assessments and Potential Neuronal Mechanisms

    PubMed Central

    Karshikoff, Bianka; Sundelin, Tina; Lasselin, Julie

    2017-01-01

    Fatigue is a highly disabling symptom in various medical conditions. While inflammation has been suggested as a potential contributor to the development of fatigue, underlying mechanisms remain poorly understood. In this review, we propose that a better assessment of central fatigue, taking into account its multidimensional features, could help elucidate the role and mechanisms of inflammation in fatigue development. A description of the features of central fatigue is provided, and the current evidence describing the association between inflammation and fatigue in various medical conditions is reviewed. Additionally, the effect of inflammation on specific neuronal processes that may be involved in distinct fatigue dimensions is described. We suggest that the multidimensional aspects of fatigue should be assessed in future studies of inflammation-induced fatigue and that this would benefit the development of effective therapeutic interventions. PMID:28163706

  20. Study Progress of Physiological Responses in High Temperature Environment

    NASA Astrophysics Data System (ADS)

    Li, K.; Zheng, G. Z.; Bu, W. T.; Wang, Y. J.; Lu, Y. Z.

    2017-10-01

    Certain workers are exposed to high temperatures for a long time. Heat stress will result in a series of physiological responses, and cause adverse effects on the health and safety of workers. This paper summarizes the physiological changes of cardiovascular system, core temperature, skin temperature, water-electrolyte metabolism, alimentary system, neuroendocrine system, reaction time and thermal fatigue in high temperature environments. It can provide a theoretical guidance for labor safety in high temperature environment.

  1. Prevalence of sarcopenia and relevance of body composition, physiological function, fatigue, and health-related quality of life in patients before allogeneic hematopoietic stem cell transplantation.

    PubMed

    Morishita, Shinichiro; Kaida, Katsuji; Tanaka, Takashi; Itani, Yusuke; Ikegame, Kazuhiro; Okada, Masaya; Ishii, Shinichi; Kodama, Norihiko; Ogawa, Hiroyasu; Domen, Kazuhisa

    2012-12-01

    Cachexia in patients with hematological malignancies is often related to sarcopenia. We believe that allogeneic hematopoietic stem cell transplant (allo-HSCT) patients often exhibit sarcopenia prior to transplantation. Here, we aimed to investigate the prevalence of sarcopenia and its relationship with body composition, physiological function, nutrition, fatigue, and health-related quality of life (QOL) in patients before allo-HSCT. We further investigated the confounding factors associated with sarcopenia. We included 164 patients with allo-HSCT in this study. Body composition, handgrip, knee extensor strength, and 6-min walk test were evaluated. Furthermore, fatigue, nutritional status, and health-related QOL were also evaluated. Eighty-three patients (50.6 %) enrolled in our study had sarcopenia prior to allo-HSCT. Patients with sarcopenia experienced decreased muscular strength and increased fatigue compared with patients without sarcopenia (p < 0.05). Patients with sarcopenia showed significantly lower scores in physical functioning, bodily pain, and vitality in health-related QOL than those without sarcopenia. Multivariate regression analysis revealed that only gender and body mass index were significantly related to sarcopenia (gender, odds ratio, 3.09; body mass index, odds ratio, 0.70; p < 0.01). Sarcopenia is common in patients before allo-HSCT and related to low muscle strength, fatigue, and health-related QOL. Male patients may be more susceptible to sarcopenia than female patients before allo-HSCT. Further study of rehabilitation with gender insight is warranted for patients receiving allo-HSCT.

  2. Effect of burdock extract on physical performance and physiological fatigue in mice

    PubMed Central

    CHEN, Wen-Chyuan; HSU, Yi-Ju; LEE, Mon-Chien; LI, Hua Shuai; HO, Chun-Sheng; HUANG, Chi-Chang; CHEN, Fu-An

    2017-01-01

    Burdock (BD) is a common vegetable with many pharmacological properties. However, few studies have examined the effect of BD on exercise performance and physical fatigue. We aimed to evaluate the potential beneficial effects of BD on fatigue and ergogenic functions following physical challenge in mice. Methods: Male ICR mice were divided into four groups to receive either vehicle, or BD at 348.5, 697 or 1,742.5 mg/kg/day, by daily oral gavage for 4 weeks. Exercise performance and fatigue were evaluated from forelimb grip strength, exhaustive swimming time, and post-exercise levels of physical fatigue-related biomarkers serum lactate, ammonia, glucose, and creatine kinase (CK). Results: BD supplementation elevated endurance and grip strength in a dose-dependent manner. It also significantly decreased lactate, ammonia, and CK levels after physical challenge. In addition, BD supplementation had few subchronic toxic effects. Conclusions: Supplementation with BD has a wide spectrum of bioactive effects, including health promotion, performance improvement, and fatigue reduction. PMID:28890521

  3. Predictive model of muscle fatigue after spinal cord injury in humans.

    PubMed

    Shields, Richard K; Chang, Ya-Ju; Dudley-Javoroski, Shauna; Lin, Cheng-Hsiang

    2006-07-01

    The fatigability of paralyzed muscle limits its ability to deliver physiological loads to paralyzed extremities during repetitive electrical stimulation. The purposes of this study were to determine the reliability of measuring paralyzed muscle fatigue and to develop a model to predict the temporal changes in muscle fatigue that occur after spinal cord injury (SCI). Thirty-four subjects underwent soleus fatigue testing with a modified Burke electrical stimulation fatigue protocol. The between-day reliability of this protocol was high (intraclass correlation, 0.96). We fit the fatigue index (FI) data to a quadratic-linear segmental polynomial model. FI declined rapidly (0.3854 per year) for the first 1.7 years, and more slowly (0.01 per year) thereafter. The rapid decline of FI immediately after SCI implies that a "window of opportunity" exists for the clinician if the goal is to prevent these changes. Understanding the timing of change in muscle endurance properties (and, therefore, load-generating capacity) after SCI may assist clinicians when developing therapeutic interventions to maintain musculoskeletal integrity.

  4. Effects of bergamot ( Citrus bergamia (Risso) Wright & Arn.) essential oil aromatherapy on mood states, parasympathetic nervous system activity, and salivary cortisol levels in 41 healthy females.

    PubMed

    Watanabe, Eri; Kuchta, Kenny; Kimura, Mari; Rauwald, Hans Wilhelm; Kamei, Tsutomu; Imanishi, Jiro

    2015-01-01

    Bergamot essential oil (BEO) is commonly used against psychological stress and anxiety in aromatherapy. The primary aim of the present study was to obtain first clinical evidence for these psychological and physiological effects. A secondary aim was to achieve some fundamental understanding of the relevant pharmacological processes. Endocrinological, physiological, and psychological effects of BEO vapor inhalation on 41 healthy females were tested using a random crossover study design. Volunteers were exposed to 3 experimental setups (rest (R), rest + water vapor (RW), rest + water vapor + bergamot essential oil (RWB)) for 15 min each. Immediately after each setup, saliva samples were collected and the volunteers rested for 10 min. Subsequently, they completed the Profile of Mood States, State-Trait Anxiety Inventory, and Fatigue Self-Check List. High-frequency (HF) heart rate values, an indicator for parasympathetic nervous system activity, were calculated from heart rate variability values measured both during the 15 min of the experiment and during the subsequent 10 min of rest. Salivary cortisol (CS) levels in the saliva samples were analyzed using ELISA. CS of all 3 conditions R, RW, and RWB were found to be significantly distinct (p = 0.003). In the subsequent multiple comparison test, the CS value of RWB was significantly lower when compared to the R setup. When comparing the HF values of the RWB setup during the 10 min of rest after the experiment to those of RW, this parameter was significantly increased (p = 0.026) in the RWB setup for which scores for negative emotions and fatigue were also improved. These results demonstrate that BEO inhaled together with water vapor exerts psychological and physiological effects in a relatively short time. © 2015 S. Karger GmbH, Freiburg.

  5. Visual-motor recalibration in geographical slant perception

    NASA Technical Reports Server (NTRS)

    Bhalla, M.; Proffitt, D. R.; Kaiser, M. K. (Principal Investigator)

    1999-01-01

    In 4 experiments, it was shown that hills appear steeper to people who are encumbered by wearing a heavy backpack (Experiment 1), are fatigued (Experiment 2), are of low physical fitness (Experiment 3), or are elderly and/or in declining health (Experiment 4). Visually guided actions are unaffected by these manipulations of physiological potential. Although dissociable, the awareness and action systems were also shown to be interconnected. Recalibration of the transformation relating awareness and actions was found to occur over long-term changes in physiological potential (fitness level, age, and health) but not with transitory changes (fatigue and load). Findings are discussed in terms of a time-dependent coordination between the separate systems that control explicit visual awareness and visually guided action.

  6. Physical activity, sleep, and fatigue in community dwelling Stroke Survivors.

    PubMed

    Shepherd, Anthony I; Pulsford, Richard; Poltawski, Leon; Forster, Anne; Taylor, Rod S; Spencer, Anne; Hollands, Laura; James, Martin; Allison, Rhoda; Norris, Meriel; Calitri, Raff; Dean, Sarah G

    2018-05-21

    Stroke can lead to physiological and psychological impairments and impact individuals' physical activity (PA), fatigue and sleep patterns. We analysed wrist-worn accelerometry data and the Fatigue Assessment Scale from 41 stroke survivors following a physical rehabilitation programme, to examine relationships between PA levels, fatigue and sleep. Validated acceleration thresholds were used to quantify time spent in each PA intensity/sleep category. Stroke survivors performed less moderate to vigorous PA (MVPA) in 10 minute bouts than the National Stroke guidelines recommend. Regression analysis revealed associations at baseline between light PA and fatigue (p = 0.02) and MVPA and sleep efficiency (p = 0.04). Light PA was positively associated with fatigue at 6 months (p = 0.03), whilst sleep efficiency and fatigue were associated at 9 months (p = 0.02). No other effects were shown at baseline, 6 or 9 months. The magnitude of these associations were small and are unlikely to be clinically meaningful. Larger trials need to examine the efficacy and utility of accelerometry to assess PA and sleep in stroke survivors.

  7. Measurement of fatigue in industries.

    PubMed

    Saito, K

    1999-04-01

    Fatigue of workers is a complex phenomenon resulting from various factors in technically innovated modern industries, and it appears as a feeling of exhaustion, lowering of physiological functions, breakdown of autonomic nervous balance, and decrease in work efficiency. On the other hand industrial fatigue is caused by excessive workload, remarkable alteration in working posture and diurnal and nocturnal rhythms in daily life. Working modes in modern industries have changed from work with the whole body into that with the hands, arms, legs and/or eyes which are parts of the body, and from physical work to mental work. Visual display terminal (VDT) work is one of the most characteristic jobs in the various kinds of workplaces. A large number of fatigue tests have already been adopted, but it is still hard to draw a generalized conclusion as to the method of selecting the most appropriate test battery for a given work load. As apparatus for fatigue measurement of VDT work we have developed VRT (Visual Reaction Test) and the Portable Fatigue Meter. Furthermore, we have presented immune parameters of peripheral blood and splenic T cells for physical fatigue.

  8. Surface-distributed low-frequency asynchronous stimulation delays fatigue of stimulated muscles.

    PubMed

    Maneski, Lana Z Popović; Malešević, Nebojša M; Savić, Andrej M; Keller, Thierry; Popović, Dejan B

    2013-12-01

    One important reason why functional electrical stimulation (FES) has not gained widespread clinical use is the limitation imposed by rapid muscle fatigue due to non-physiological activation of the stimulated muscles. We aimed to show that asynchronous low-pulse-rate (LPR) electrical stimulation applied by multipad surface electrodes greatly postpones the occurrence of muscle fatigue compared with conventional stimulation (high pulse rate, HPR). We compared the produced force vs. time of the forearm muscles responsible for finger flexion in 2 stimulation protocols, LPR (fL = 10 Hz) and HPR (fH = 40 Hz). Surface-distributed low-frequency asynchronous stimulation (sDLFAS) doubles the time interval before the onset of fatigue (104 ± 80%) compared with conventional synchronous stimulation. Combining the performance of multipad electrodes (increased selectivity and facilitated positioning) with sDLFAS (decreased fatigue) can improve many FES applications in both the lower and upper extremities. Copyright © 2013 Wiley Periodicals, Inc.

  9. The combined fatigue effects of sequential exposure to seated whole body vibration and physical, mental, or concurrent work demands

    PubMed Central

    Lang, Angelica E.; Stobart, Jamie; Kociolek, Aaron M.; Milosavljevic, Stephan; Trask, Catherine

    2017-01-01

    Many occupations in agriculture, construction, transportation, and forestry are non-routine, involving non-cyclical tasks, both discretionary and non-discretionary work breaks, and a mix of work activities. Workers in these industries are exposed to seated whole body vibration (WBV) and tasks consisting of physical, mental, or a combination of demands. Risk assessment tools for non-routinized jobs have emerged but there remains a need to understand the combined effects of different work demands to improve risk assessment methods and ultimately inform ergonomists and workers on optimum work arrangement and scheduling strategies. The objective of this study was to investigate fatigue-related human responses of WBV sequentially combined with physical, mental, or concurrent physical and mental demands. Sixteen healthy participants performed four conditions on four separate days: (1) physically demanding work, (2) mentally demanding work, (3) concurrent work, and (4) control quiet sitting. For each condition, participants performed two 15-minute bouts of the experimental task, separated by 30-minutes of simulated WBV based on realistic all-terrain vehicle (ATV) riding data. A test battery of fatigue measures consisting of biomechanical, physiological, cognitive, and sensorimotor measurements were collected at four interval periods: pre-session, after the first bout of the experimental task and before WBV, after WBV and before the second bout of the experimental task, and post-session. Nine measures demonstrated statistically significant time effects during the control condition; 11, 7, and 12 measures were significant in the physical, mental, and concurrent conditions, respectively. Overall, the effects of seated WBV in combination with different tasks are not additive but possibly synergistic or antagonistic. There appears to be a beneficial effect of seated ATV operation as a means of increasing task variation; but since excessive WBV may independently pose a health risk in the longer-term, these beneficial results may not be sensible as a long-term solution. PMID:29236752

  10. The combined fatigue effects of sequential exposure to seated whole body vibration and physical, mental, or concurrent work demands.

    PubMed

    Yung, Marcus; Lang, Angelica E; Stobart, Jamie; Kociolek, Aaron M; Milosavljevic, Stephan; Trask, Catherine

    2017-01-01

    Many occupations in agriculture, construction, transportation, and forestry are non-routine, involving non-cyclical tasks, both discretionary and non-discretionary work breaks, and a mix of work activities. Workers in these industries are exposed to seated whole body vibration (WBV) and tasks consisting of physical, mental, or a combination of demands. Risk assessment tools for non-routinized jobs have emerged but there remains a need to understand the combined effects of different work demands to improve risk assessment methods and ultimately inform ergonomists and workers on optimum work arrangement and scheduling strategies. The objective of this study was to investigate fatigue-related human responses of WBV sequentially combined with physical, mental, or concurrent physical and mental demands. Sixteen healthy participants performed four conditions on four separate days: (1) physically demanding work, (2) mentally demanding work, (3) concurrent work, and (4) control quiet sitting. For each condition, participants performed two 15-minute bouts of the experimental task, separated by 30-minutes of simulated WBV based on realistic all-terrain vehicle (ATV) riding data. A test battery of fatigue measures consisting of biomechanical, physiological, cognitive, and sensorimotor measurements were collected at four interval periods: pre-session, after the first bout of the experimental task and before WBV, after WBV and before the second bout of the experimental task, and post-session. Nine measures demonstrated statistically significant time effects during the control condition; 11, 7, and 12 measures were significant in the physical, mental, and concurrent conditions, respectively. Overall, the effects of seated WBV in combination with different tasks are not additive but possibly synergistic or antagonistic. There appears to be a beneficial effect of seated ATV operation as a means of increasing task variation; but since excessive WBV may independently pose a health risk in the longer-term, these beneficial results may not be sensible as a long-term solution.

  11. Mechanical degradation of fuel cell membranes under fatigue fracture tests

    NASA Astrophysics Data System (ADS)

    Khorasany, Ramin M. H.; Sadeghi Alavijeh, Alireza; Kjeang, Erik; Wang, G. G.; Rajapakse, R. K. N. D.

    2015-01-01

    The effects of cyclic stresses on the fatigue and mechanical stability of perfluorosulfonic acid (PFSA) membranes are experimentally investigated under standard fuel cell conditions. The experiments are conducted ex-situ by subjecting membrane specimens to cyclic uniaxial tension at controlled temperature and relative humidity. The fatigue lifetime is measured in terms of the number of cycles until ultimate fracture. The results indicate that the membrane fatigue lifetime is a strong function of the applied stress, temperature, and relative humidity. The fatigue life increases exponentially with reduced stresses in all cases. The effect of temperature is found to be more significant than that of humidity, with reduced fatigue life at high temperatures. The maximum membrane strain at fracture is determined to decrease exponentially with increasing membrane lifetime. At a given fatigue life, a membrane exposed to fuel cell conditions is shown to accommodate more plastic strain before fracture than one exposed to room conditions. Overall, the proposed ex-situ membrane fatigue experiment can be utilized to benchmark the fatigue lifetime of new materials in a fraction of the time and cost associated with conventional in-situ accelerated stress testing methods.

  12. Corrosion fatigue of biomedical metallic alloys: mechanisms and mitigation.

    PubMed

    Antunes, Renato Altobelli; de Oliveira, Mara Cristina Lopes

    2012-03-01

    Cyclic stresses are often related to the premature mechanical failure of metallic biomaterials. The complex interaction between fatigue and corrosion in the physiological environment has been subject of many investigations. In this context, microstructure, heat treatments, plastic deformation, surface finishing and coatings have decisive influence on the mechanisms of fatigue crack nucleation and growth. Furthermore, wear is frequently present and contributes to the process. However, despite all the effort at elucidating the mechanisms that govern corrosion fatigue of biomedical alloys, failures continue to occur. This work reviews the literature on corrosion-fatigue-related phenomena of Ti alloys, surgical stainless steels, Co-Cr-Mo and Mg alloys. The aim was to discuss the correlation between structural and surface aspects of these materials and the onset of fatigue in the highly saline environment of the human body. By understanding such correlation, mitigation of corrosion fatigue failure may be achieved in a reliable scientific-based manner. Different mitigation methods are also reviewed and discussed throughout the text. It is intended that the information condensed in this article should be a valuable tool in the development of increasingly successful designs against the corrosion fatigue of metallic implants. Copyright © 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  13. Challenges of physiological monitoring in a Navy operational setting

    NASA Technical Reports Server (NTRS)

    Banta, Guy R.

    1988-01-01

    Challenges to physiological monitoring in the Navy include environmental extremes, acceptance of use by test subjects, data transfer, data interpretation, and capability of relating collected data to valid operational relevant criterion measures. These problems are discussed with respect to diving, electrophysiological monitoring, in-flight monitoring, aircrew fatigue, in-flight cardiac stress, and in-flight monitoring devices.

  14. Differences between the physiologic and psychologic effects of aromatherapy body treatment.

    PubMed

    Takeda, Hitomi; Tsujita, Junzo; Kaya, Mitsuharu; Takemura, Masanori; Oku, Yoshitaka

    2008-07-01

    The wide use of herbal plants and essential oils for the prevention and treatment of diseases dates back to ancient times. However, the scientific basis for the beneficial effects of such plants and oils has not been precisely clarified. The purpose of this study was to evaluate the effects of aromatherapy body treatment on healthy subjects. We compared the physiologic and psychologic effects of aromatherapy body treatment (E), massage treatment with carrier oil alone (C), and rest in healthy adults. Seven (7) female and 6 male volunteers participated as subjects. Each subject underwent 3 trials, in which the Advanced Trail Making Test (ATMT) was given as a stress-inducing task before and after 1 of 3 treatments. The State Anxiety Inventory (SAI), the Visual Analog Scale, and the Face Scale were used to assess anxiety, feelings, and mood, respectively. After the treatments, the SAI score and the feelings of fatigue were decreased, the positive and comfortable feelings were increased, and mood improved significantly in C and E. Furthermore, significant declines in the feelings of mental and total fatigue were maintained even after the second ATMT in E. On the other hand, the cortisol concentration in the saliva did not show significant changes in any of the trials. Secretory immunoglobulin A levels in the saliva increased significantly after all treatments. We conclude that massage treatments, irrespective of the presence of essential oils, are more advantageous than rest in terms of psychologic or subjective evaluations but not in terms of physiologic or objective evaluations. Furthermore, as compared to massage alone, the aromatherapy body treatment provides a stronger and continuous relief from fatigue, especially fatigue of mental origin.

  15. Fatigue in Adolescents With Cancer Compared to Healthy Adolescents

    PubMed Central

    Daniel, Lauren C.; Brumley, Lauren D.; Schwartz, Lisa A.

    2015-01-01

    Background Cancer-related fatigue is one of the most pervasive and debilitating side-effects of cancer treatment and adolescents consistently rate cancer-related fatigue as one of the most distressing aspects of treatment. Because fatigue is also high in adolescents without cancer, the current study aims to describe fatigue in adolescents with cancer relative to a control group and to identify associates of such fatigue. Knowing this is important for understanding the extent of the problem in adolescents with cancer relative to healthy adolescents and for understanding who is most at risk for fatigue and related distress. Procedure Adolescents with cancer and their caregivers (n =102) and adolescents without a history of chronic health conditions and their caregivers (n =97) completed the Multidimensional Fatigue Scale and measures of depression, quality of life (QoL), affect, coping, and family functioning. Results Adolescents with cancer and their caregivers reported significantly more adolescent fatigue across all domains (with the exception of adolescent reports of cognitive fatigue) relative to adolescents without chronic health conditions. Higher fatigue was significantly related to adolescent report of more symptoms of depression, poorer QoL, higher negative affect, less positive affect, and behavioral disengagement coping style. Fatigue was not related to active coping or family functioning. Conclusions Adolescents with cancer experience significantly more fatigue than peers without chronic health conditions. Reports of fatigue are closely related to multiple indicators of psychosocial well-being, suggesting that fatigue may be an important cancer-related symptom to assess and manage to improve adolescent QoL. PMID:23897651

  16. The Influence of Work-Related Fatigue, Work Conditions, and Personal Characteristics on Intent to Leave Among New Nurses.

    PubMed

    Liu, Yi; Wu, Li-Min; Chou, Pi-Ling; Chen, Mei-Hsin; Yang, Li-Chien; Hsu, Hsin-Tien

    2016-01-01

    This study aimed to (a) test the fit of the hypothesized model for new nurses' intent to leave and (b) determine the extent to which personal characteristics, work conditions, and work-related fatigue predict intent to leave among new nurses. This study was a cross-sectional survey study. A total of 162 new nurses were recruited. A hypothesized model was proposed for model testing. Structural equation modelling was used for data analysis. Work conditions only had an effect through work-related fatigue on new nurses' intent to leave. Personal characteristics did not have a significant effect on new nurses' intent to leave. The final model showed a good fit. Work-related fatigue, work conditions, and health explained 65% of the variance in new nurses' intent to leave. Work-related fatigue was a major determinant of new nurses' intent to leave. More attention should be paid to fatigue reduction strategies among new nurses. Work-related fatigue should be monitored, particularly for new nurses who work more than 10 hr per day and who have greater workloads. © 2015 Sigma Theta Tau International.

  17. Improvements of mechanical fatigue reliability of Cu interconnects on flexible substrates through MoTi alloy under-layer

    NASA Astrophysics Data System (ADS)

    Lee, Young-Joo; Shin, Hae-A.-Seul; Nam, Dae-Hyun; Yeon, Han-Wool; Nam, Boae; Woo, Kyoohee; Joo, Young-Chang

    2015-01-01

    The mechanical fatigue of Cu films and lines on flexible substrates was investigated, and an improvement in the structures through the use of a MoTi alloy under-layer was proposed. Fatigue reliability was decreased by 3-fold in lines compared with films in the tensile condition and by 6-fold in the compressive condition. Crack formation was observed to be more detrimental for lines than for films. With a MoTi under-layer, the fatigue limit was increased by 2 times that of a structure without MoTi in the tensile condition and by 15 times in the compressive bending condition. The suppression of delamination through the use of a MoTi under-layer improved the fatigue reliability under compressive bending.

  18. Balancing ballistic protection against physiological strain: evidence from laboratory and field trials.

    PubMed

    Taylor, Nigel A S; Burdon, Catriona A; van den Heuvel, Anne M J; Fogarty, Alison L; Notley, Sean R; Hunt, Andrew P; Billing, Daniel C; Drain, Jace R; Silk, Aaron J; Patterson, Mark J; Peoples, Gregory E

    2016-02-01

    This project was based on the premise that decisions concerning the ballistic protection provided to defence personnel should derive from an evaluation of the balance between protection level and its impact on physiological function, mobility, and operational capability. Civilians and soldiers participated in laboratory- and field-based studies in which ensembles providing five levels of ballistic protection were evaluated, each with progressive increases in protection, mass (3.4-11.0 kg), and surface-area coverage (0.25-0.52 m(2)). Physiological trials were conducted on volunteers (N = 8) in a laboratory, under hot-dry conditions simulating an urban patrol: walking at 4 km·h(-1) (90 min) and 6 km·h(-1) (30 min or to fatigue). Field-based trials were used to evaluate tactical battlefield movements (mobility) of soldiers (N = 31) under tropical conditions, and across functional tests of power, speed, agility, endurance, and balance. Finally, trials were conducted at a jungle training centre, with soldiers (N = 32) patrolling under tropical conditions (averaging 5 h). In the laboratory, work tolerance was reduced as protection increased, with deep-body temperature climbing relentlessly. However, the protective ensembles could be grouped into two equally stressful categories, each providing a different level of ballistic protection. This outcome was supported during the mobility trials, with the greatest performance decrement evident during fire and movement simulations, as the ensemble mass was increased (-2.12%·kg(-1)). The jungle patrol trials similarly supported this outcome. Therefore, although ballistic protection does increase physiological strain, this research has provided a basis on which to determine how that strain can be balanced against the mission-specific level of required personal protection.

  19. Is physiological glucocorticoid replacement important in children?

    PubMed Central

    Porter, John; Blair, Joanne; Ross, Richard J

    2017-01-01

    Cortisol has a distinct circadian rhythm with low concentrations at night, rising in the early hours of the morning, peaking on waking and declining over the day to low concentrations in the evening. Loss of this circadian rhythm, as seen in jetlag and shift work, is associated with fatigue in the short term and diabetes and obesity in the medium to long term. Patients with adrenal insufficiency on current glucocorticoid replacement with hydrocortisone have unphysiological cortisol concentrations being low on waking and high after each dose of hydrocortisone. Patients with adrenal insufficiency complain of fatigue, a poor quality of life and there is evidence of poor health outcomes including obesity potentially related to glucocorticoid replacement. New technologies are being developed that deliver more physiological glucocorticoid replacement including hydrocortisone by subcutaneous pump, Plenadren, a once-daily modified-release hydrocortisone and Chronocort, a delayed and sustained absorption hydrocortisone formulation that replicates the overnight profile of cortisol. In this review, we summarise the evidence regarding physiological glucocorticoid replacement with a focus on relevance to paediatrics. PMID:27582458

  20. Physiological Correlates of Endurance Time Variability during Constant-Workrate Cycling Exercise in Patients with COPD

    PubMed Central

    Vivodtzev, Isabelle; Gagnon, Philippe; Pepin, Véronique; Saey, Didier; Laviolette, Louis; Brouillard, Cynthia; Maltais, François

    2011-01-01

    Rationale The endurance time (Tend) during constant-workrate cycling exercise (CET) is highly variable in COPD. We investigated pulmonary and physiological variables that may contribute to these variations in Tend. Methods Ninety-two patients with COPD completed a CET performed at 80% of peak workrate capacity (Wpeak). Patients were divided into tertiles of Tend [Group 1: <4 min; Group 2: 4–6 min; Group 3: >6 min]. Disease severity (FEV1), aerobic fitness (Wpeak, peak oxygen consumption [ peak], ventilatory threshold [ VT]), quadriceps strength (MVC), symptom scores at the end of CET and exercise intensity during CET (heart rate at the end of CET to heart rate at peak incremental exercise ratio [HRCET/HRpeak]) were analyzed as potential variables influencing Tend. Results Wpeak, peak, VT, MVC, leg fatigue at end of CET, and HRCET/HRpeak were lower in group 1 than in group 2 or 3 (p≤0.05). VT and leg fatigue at end of CET independently predicted Tend in multiple regression analysis (r = 0.50, p = 0.001). Conclusion Tend was independently related to the aerobic fitness and to tolerance to leg fatigue at the end of exercise. A large fraction of the variability in Tend was not explained by the physiological parameters assessed in the present study. Individualization of exercise intensity during CET should help in reducing variations in Tend among patients with COPD. PMID:21386991

  1. A Comparison of Target Detection and Rifle Marksmanship During Live and Simulator Firing with and without Caffeine Consumption

    DTIC Science & Technology

    2003-01-01

    effort to quantify the effect of physiological and psychological stressors and/or ergogenic aids on marksmanship. The Weaponeer training simulator has...the supported prone position. Over the duration of a session, subjects complained of physical and psychological fatigue. Muscle, back and shoulder...likely that postural and psychological fatigue were contributing factors. As the supported prone position facilitates the greatest firing accuracy due

  2. Changes in Physiological Parameters Induced by Indoor Simulated Driving: Effect of Lower Body Exercise at Mid-Term Break

    PubMed Central

    Liang, Wen Chieh; Yuan, John; Sun, Deh Chuan; Lin, Ming Han

    2009-01-01

    The study monitored physiological parameter changes after 120-min of simulated driving. Blood pressures, heart rate (HR), heart rate variability (HRV) and palm temperatures were measured using an ANSWatch® monitor. Subjects were divided into two groups (A & B). Both groups performed 2-hour driving, but group B additionally took a 15-min exercise break. Heart rate, systolic pressure, LF/HF, and palm temperature decreased for group A after driving; for group B only HR and palm temperatures decreased. HRV and parasympathetic indices HF(AU) and HF(NU) increased for group A, while HRV and sympathetic index LF(AU) increased in group B. Group A had higher fatigue scores than group B. ANS activation may overcome some fatigue symptoms, but the recovery is nonetheless incomplete. Exercise break is proven to be an effective remedy, especially if accompanied by the ANS actions. The normalized parasympathetic index HF(NU), the normalized sympathetic index LF(NU), and the sympatho-vagal balance index LF/HF are three most promising parameters that could be further developed to monitor driver fatigue. PMID:22399979

  3. Characteristics of the sequence effect in Parkinson's disease.

    PubMed

    Kang, Suk Yun; Wasaka, Toshiaki; Shamim, Ejaz A; Auh, Sungyoung; Ueki, Yoshino; Lopez, Grisel J; Kida, Tetsuo; Jin, Seung-Hyun; Dang, Nguyet; Hallett, Mark

    2010-10-15

    The sequence effect (SE) in Parkinson's disease (PD) is progressive slowing of sequential movements. It is a feature of bradykinesia, but is separate from a general slowness without deterioration over time. It is commonly seen in PD, but its physiology is unclear. We measured general slowness and the SE separately with a computer-based, modified Purdue pegboard in 11 patients with advanced PD. We conducted a placebo-controlled, four-way crossover study to learn whether levodopa and repetitive transcranial magnetic stimulation (rTMS) could improve general slowness or the SE. We also examined the correlation between the SE and clinical fatigue. Levodopa alone and rTMS alone improved general slowness, but rTMS showed no additive effect on levodopa. Levodopa alone, rTMS alone, and their combination did not alleviate the SE. There was no correlation between the SE and fatigue. This study suggests that dopaminergic dysfunction and abnormal motor cortex excitability are not the relevant mechanisms for the SE. Additionally, the SE is not a component of clinical fatigue. Further work is needed to establish the physiology and clinical relevance of the SE. © 2010 Movement Disorder Society.

  4. Locomotor Muscle Fatigue Does Not Alter Oxygen Uptake Kinetics during High-Intensity Exercise.

    PubMed

    Hopker, James G; Caporaso, Giuseppe; Azzalin, Andrea; Carpenter, Roger; Marcora, Samuele M

    2016-01-01

    The [Formula: see text] slow component ([Formula: see text]) that develops during high-intensity aerobic exercise is thought to be strongly associated with locomotor muscle fatigue. We sought to experimentally test this hypothesis by pre-fatiguing the locomotor muscles used during subsequent high-intensity cycling exercise. Over two separate visits, eight healthy male participants were asked to either perform a non-metabolically stressful 100 intermittent drop-jumps protocol (pre-fatigue condition) or rest for 33 min (control condition) according to a random and counterbalanced order. Locomotor muscle fatigue was quantified with 6-s maximal sprints at a fixed pedaling cadence of 90 rev·min -1 . Oxygen kinetics and other responses (heart rate, capillary blood lactate concentration and rating of perceived exertion, RPE) were measured during two subsequent bouts of 6 min cycling exercise at 50% of the delta between the lactate threshold and [Formula: see text] determined during a preliminary incremental exercise test. All tests were performed on the same cycle ergometer. Despite significant locomotor muscle fatigue ( P = 0.03), the [Formula: see text] was not significantly different between the pre-fatigue (464 ± 301 mL·min -1 ) and the control (556 ± 223 mL·min -1 ) condition ( P = 0.50). Blood lactate response was not significantly different between conditions ( P = 0.48) but RPE was significantly higher following the pre-fatiguing exercise protocol compared with the control condition ( P < 0.01) suggesting higher muscle recruitment. These results demonstrate experimentally that locomotor muscle fatigue does not significantly alter the [Formula: see text] kinetic response to high intensity aerobic exercise, and challenge the hypothesis that the [Formula: see text] is strongly associated with locomotor muscle fatigue.

  5. Locomotor Muscle Fatigue Does Not Alter Oxygen Uptake Kinetics during High-Intensity Exercise

    PubMed Central

    Hopker, James G.; Caporaso, Giuseppe; Azzalin, Andrea; Carpenter, Roger; Marcora, Samuele M.

    2016-01-01

    The V˙O2 slow component (V˙O2sc) that develops during high-intensity aerobic exercise is thought to be strongly associated with locomotor muscle fatigue. We sought to experimentally test this hypothesis by pre-fatiguing the locomotor muscles used during subsequent high-intensity cycling exercise. Over two separate visits, eight healthy male participants were asked to either perform a non-metabolically stressful 100 intermittent drop-jumps protocol (pre-fatigue condition) or rest for 33 min (control condition) according to a random and counterbalanced order. Locomotor muscle fatigue was quantified with 6-s maximal sprints at a fixed pedaling cadence of 90 rev·min−1. Oxygen kinetics and other responses (heart rate, capillary blood lactate concentration and rating of perceived exertion, RPE) were measured during two subsequent bouts of 6 min cycling exercise at 50% of the delta between the lactate threshold and V˙O2max determined during a preliminary incremental exercise test. All tests were performed on the same cycle ergometer. Despite significant locomotor muscle fatigue (P = 0.03), the V˙O2sc was not significantly different between the pre-fatigue (464 ± 301 mL·min−1) and the control (556 ± 223 mL·min−1) condition (P = 0.50). Blood lactate response was not significantly different between conditions (P = 0.48) but RPE was significantly higher following the pre-fatiguing exercise protocol compared with the control condition (P < 0.01) suggesting higher muscle recruitment. These results demonstrate experimentally that locomotor muscle fatigue does not significantly alter the V˙O2 kinetic response to high intensity aerobic exercise, and challenge the hypothesis that the V˙O2sc is strongly associated with locomotor muscle fatigue. PMID:27790156

  6. Fatiguing contractions increase protein S-glutathionylation occupancy in mouse skeletal muscle.

    PubMed

    Kramer, Philip A; Duan, Jicheng; Gaffrey, Matthew J; Shukla, Anil K; Wang, Lu; Bammler, Theo K; Qian, Wei-Jun; Marcinek, David J

    2018-05-23

    Protein S-glutathionylation is an important reversible post-translational modification implicated in redox signaling. Oxidative modifications to protein thiols can alter the activity of metabolic enzymes, transcription factors, kinases, phosphatases, and the function of contractile proteins. However, the extent to which muscle contraction induces oxidative modifications in redox sensitive thiols is not known. The purpose of this study was to determine the targets of S-glutathionylation redox signaling following fatiguing contractions. Anesthetized adult male CB6F1 (BALB/cBy × C57BL/6) mice were subjected to acute fatiguing contractions for 15 min using in vivo stimulations. The right (stimulated) and left (unstimulated) gastrocnemius muscleswere collected 60 min after the last stimulation and processed for redox proteomics assay of S-glutathionylation. Using selective reduction with a glutaredoxin enzyme cocktail and resin-assisted enrichment technique, we quantified the levels of site-specific protein S-glutathionylation at rest and following fatiguing contractions. Redox proteomics revealed over 2200 sites of S-glutathionylation modifications, of which 1290 were significantly increased after fatiguing contractions. Muscle contraction leads to the greatest increase in S-glutathionylation in the mitochondria (1.03%) and the smallest increase in the nucleus (0.47%). Regulatory cysteines were significantly S-glutathionylated on mitochondrial complex I and II, GAPDH, MDH1, ACO2, and mitochondrial complex V among others. Similarly, S-glutathionylation of RYR1, SERCA1, titin, and troponin I2 are known to regulate muscle contractility and were significantly S-glutathionylated after just 15 min of fatiguing contractions. The largest fold changes (> 1.6) in the S-glutathionylated proteome after fatigue occurred on signaling proteins such as 14-3-3 protein gamma and MAP2K4, as well as proteins like SERCA1, and NDUV2 of mitochondrial complex I, at previously unknown glutathionylation sites. These findings highlight the important role of redox control over muscle physiology, metabolism, and the exercise adaptive response. This study lays the groundwork for future investigation into the altered exercise adaptation associated with chronic conditions, such as sarcopenia. Copyright © 2018. Published by Elsevier B.V.

  7. Research on the Effects of Fatigue within the Corporate/Business Aircraft Environment

    NASA Technical Reports Server (NTRS)

    Neri, David F.; Rosekind, Mark R.; Co, Elizabeth L.; Gregory, Kevin B.; Miller, Donna L.

    1997-01-01

    In 1980, responding to a Congressional request, NASA Ames Research Center created a program to examine whether 'there is a safety problem of uncertain magnitude, due to transmeridian flying and a potential problem due to fatigue in association with various factors found in air transport operations.' The NASA Ames Fatigue/Jet Lag Program was created to collect systematic, scientific information on fatigue, sleep, circadian rhythms, and performance in flight operations. Three Program goals were established and continue to guide research efforts to: (1) determine the extent of fatigue, sleep loss, and circadian disruption in flight operations; (2) determine the impact of these factors on flight crew performance; (3) develop and evaluate countermeasures to mitigate the adverse effects of these factors and maximize flight crew performance and alertness. Since 1980, studies have been conducted in a variety of aviation environments, in controlled laboratory environments, as well as in a full-mission flight simulation. Early studies included investigations of short-haul, long-haul, and overnight cargo flight crews. In 1991, the name of the program was changed to the Fatigue Countermeasures Program to provide a greater emphasis on the development and evaluation of countermeasures. More recent work has examined the effects of planned cockpit rest as an operational countermeasure and provided analyses of the pertinent sleep/duty factors preceding an aviation accident at Guantanamo Bay, Cuba. The Short-Haul study examined the extent of sleep loss, circadian disruption, and fatigue engendered by flying commercial short-haul air transport operations (flight legs less than eight hours). This was one of the first field studies conducted by the NASA program and provided unique insight into the physiological and subjective effects of flying commercial short-haul operations. It demonstrated that a range of measures could be obtained in an operational environment without disturbing the regular performance of duties. The Long-Haul study examined how long-haul flight crews organized their sleep during a variety of international trip patterns and examined how duty requirements, local time, and the circadian system affected the timing, duration, and quality of sleep. Duty requirements and local time can be viewed as external/environmental constraints on time available for sleep, while the internal circadian system is a major physiological modulator of sleep duration and quality. The Overnight Cargo study documented the psychophysiological effects of flying overnight cargo operations. The data collected clearly demonstrated that overnight cargo operations, like other night work, involve physiological disruption not found in comparable daytime operations.

  8. Microstructural evaluation of cumulative fatigue damage in a plant component sample

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fukuoka, C.; Nakagawa, Y.G.; Yoshida, K.

    1996-12-31

    Fatigue damage accumulated in a real plant was evaluated in terms of microstructural conditioning. Microstructural damage induced in laboratory by cyclic deformation near and below the fatigue limit was also examined. A Transmission Electron Microscopy (TEM) technique called the Selected Area Diffraction (SAD) method was employed in this study. In earlier studies, it was found that the SAD value indicating a magnitude of crystallographic misorientation in the substructure (dislocation cells) was increasing with the increase of fatigue damage accumulation. Small samples removed from PWR feed water nozzle welds were examined by the SAD. It was found that the damage statemore » measured by the SAD well agreed with the morphological evidence. Cyclic stresses near or below the fatigue limit were applied to samples taken from a SA508 steel plate at various stresses. The SAD value increased even below the fatigue limit, but there was no sign of microstructural conditioning below the stresses of 50% of the fatigue limit. These results suggested that at stresses below the current design curve (below half the fatigue limit) no microstructural conditioning proceeded. It was concluded that the microstructural method was effective to evaluate damage accumulation in real plant components, and also that the current design curve was adequate in terms of microstructural conditioning state.« less

  9. Fatigue properties on the failure mode of a dental implant in a simulated body environment

    NASA Astrophysics Data System (ADS)

    Kim, Min Gun

    2011-10-01

    This study undertook a fatigue test in a simulated body environment that has reflected the conditions (such as the body fluid conditions, the micro-current of cell membranes, and the chewing force) within a living body. First, the study sought to evaluate the fatigue limit under normal conditions and in a simulated body environment, looking into the governing factors of implant fatigue strength through an observation of the fracture mode. In addition, the crack initiation behavior of a tungsten-carbide-coated abutment screw was examined. The fatigue limit of an implant within the simulated body environment decreased by 19 % compared to the limit noted under normal conditions. Several corrosion pits were observed on the abutment screw after the fatigue test in the simulated body environment. For the model used in this study, the implant fracture was mostly governed by the fatigue failure of the abutment screw; accordingly, the influence by the fixture on the fatigue strength of the implant was noted to be low. For the abutment screw coated with tungsten carbide, several times the normal amount of stress was found to be concentrated on the contact part due to the elastic interaction between the coating material and the base material.

  10. Fatigue crack damage detection using subharmonic component with nonlinear boundary condition

    NASA Astrophysics Data System (ADS)

    Wu, Weiliang; Shen, Yanfeng; Qu, Wenzhong; Xiao, Li; Giurgiutiu, Victor

    2015-03-01

    In recent years, researchers have focused on structural health monitoring (SHM) and damage detection techniques using nonlinear vibration and nonlinear ultrasonic methods. Fatigue cracks may exhibit contact acoustic nonlinearity (CAN) with distinctive features such as superharmonics and subharmonics in the power spectrum of the sensing signals. However, challenges have been noticed in the practical applications of the harmonic methods. For instance, superharmonics can also be generated by the piezoelectric transducers and the electronic equipment; super/subharmonics may also stem from the nonlinear boundary conditions such as structural fixtures and joints. It is hard to tell whether the nonlinear features come from the structural damage or the intrinsic nonlinear boundary conditions. The objective of this paper is to demonstrate the application of nonlinear ultrasonic subharmonic method for detecting fatigue cracks with nonlinear boundary conditions. The fatigue crack was qualitatively modeled as a single-degree-of-freedom (SDOF) system with non-classical hysteretic nonlinear interface forces at both sides of the crack surfaces. The threshold of subharmonic generation was studied, and the influence of crack interface parameters on the subharmonic resonance condition was investigated. The different threshold behaviors between the nonlinear boundary condition and the fatigue crack was found, which can be used to distinguish the source of nonlinear subharmonic features. To evaluate the proposed method, experiments of an aluminum plate with a fatigue crack were conducted to quantitatively verify the subharmonic resonance range. Two surface-bonded piezoelectric transducers were used to generate and receive ultrasonic wave signals. The fatigue damage was characterized in terms of a subharmonic damage index. The experimental results demonstrated that the subharmonic component of the sensing signal can be used to detect the fatigue crack and further distinguish it from inherent nonlinear boundary conditions.

  11. Fatigue crack damage detection using subharmonic component with nonlinear boundary condition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Weiliang, E-mail: wwl@whu.edu.cn; Qu, Wenzhong, E-mail: qwz@whu.edu.cn, E-mail: xiaoli6401@126.com; Xiao, Li, E-mail: qwz@whu.edu.cn, E-mail: xiaoli6401@126.com

    In recent years, researchers have focused on structural health monitoring (SHM) and damage detection techniques using nonlinear vibration and nonlinear ultrasonic methods. Fatigue cracks may exhibit contact acoustic nonlinearity (CAN) with distinctive features such as superharmonics and subharmonics in the power spectrum of the sensing signals. However, challenges have been noticed in the practical applications of the harmonic methods. For instance, superharmonics can also be generated by the piezoelectric transducers and the electronic equipment; super/subharmonics may also stem from the nonlinear boundary conditions such as structural fixtures and joints. It is hard to tell whether the nonlinear features come frommore » the structural damage or the intrinsic nonlinear boundary conditions. The objective of this paper is to demonstrate the application of nonlinear ultrasonic subharmonic method for detecting fatigue cracks with nonlinear boundary conditions. The fatigue crack was qualitatively modeled as a single-degree-of-freedom (SDOF) system with non-classical hysteretic nonlinear interface forces at both sides of the crack surfaces. The threshold of subharmonic generation was studied, and the influence of crack interface parameters on the subharmonic resonance condition was investigated. The different threshold behaviors between the nonlinear boundary condition and the fatigue crack was found, which can be used to distinguish the source of nonlinear subharmonic features. To evaluate the proposed method, experiments of an aluminum plate with a fatigue crack were conducted to quantitatively verify the subharmonic resonance range. Two surface-bonded piezoelectric transducers were used to generate and receive ultrasonic wave signals. The fatigue damage was characterized in terms of a subharmonic damage index. The experimental results demonstrated that the subharmonic component of the sensing signal can be used to detect the fatigue crack and further distinguish it from inherent nonlinear boundary conditions.« less

  12. Psychometric properties and Dutch norm data of the PedsQL Multidimensional Fatigue Scale for Young Adults.

    PubMed

    Haverman, Lotte; Limperg, Perrine F; van Oers, Hedy A; van Rossum, Marion A J; Maurice-Stam, Heleen; Grootenhuis, Martha A

    2014-12-01

    The aim of this study was to assess internal consistency and construct validity (known-groups validity) and to provide Dutch norm data for the Dutch Pediatric Quality of Life Inventory Multidimensional Fatigue Scale for Young Adults ages 18-30 years (PedsQL fatigue_YA). A Dutch sample of 649 young adults completed online a sociodemographic questionnaire and the PedsQL fatigue_YA including three subscales: general fatigue, sleep/rest fatigue and cognitive fatigue (0-100: Higher scores indicate less fatigue symptoms). The PedsQL fatigue_YA showed satisfactory to good internal consistency (Cronbach's alpha = .70-.94), except for one scale (.68). The mean scale scores were 68.23 (SD 19.15) for 'general fatigue,' 67.04 (SD 15.54) for 'sleep/rest fatigue' and 74.62 (SD 19.02) for 'cognitive fatigue.' Men reported significantly higher scores on 'general fatigue' and 'sleep/rest fatigue' than women. The PedsQL fatigue_YA distinguished between healthy young adults and young adults with chronic health conditions, with higher scores on all scales in healthy young adults than in those with a chronic health condition. The results demonstrate good psychometric properties of the PedsQL fatigue_YA in a sample of Dutch young adults. With the current norms available, it is possible to evaluate fatigue in the Netherlands from childhood to adulthood with the PedsQL Multidimensional Fatigue Scale.

  13. Factors Influencing Dwell Fatigue Cracking in Notches of Powder Metallurgy Superalloys

    NASA Technical Reports Server (NTRS)

    Gabb, T. P.; Telesman, J.; Ghosn, L.; Garg, A.; Gayda, J.

    2011-01-01

    The influences of heat treatment and cyclic dwells on the notch fatigue resistance of powder metallurgy disk superalloys were investigated for low solvus high refractory (LSHR) and ME3 disk alloys. Disks were processed to produce material conditions with varied microstructures and associated mechanical properties. Notched specimens were first subjected to baseline dwell fatigue cycles having a dwell at maximum load, as well as tensile, stress relaxation, creep rupture, and dwell fatigue crack growth tests at 704 C. Several material heat treatments displayed a bimodal distribution of fatigue life with the lives varying by two orders-of-magnitude, while others had more consistent fatigue lives. This response was compared to other mechanical properties, in search of correlations. The wide scatter in baseline dwell fatigue life was observed only for material conditions resistant to stress relaxation. For selected materials and conditions, additional tests were then performed with the dwells shifted in part or in total to minimum tensile load. The tests performed with dwells at minimum load exhibited lower fatigue lives than max dwell tests, and also exhibited early crack initiation and a substantial increase in the number of initiation sites. These results could be explained in part by modeling evolution of peak stresses in the notch with continued dwell fatigue cycling. Fatigue-environment interactions were determined to limit life for the fatigue cycles with dwells.

  14. Effects of knee and ankle muscle fatigue on postural control in the unipedal stance.

    PubMed

    Bizid, Riadh; Margnes, Eric; François, Yrieix; Jully, Jean Louis; Gonzalez, Gerard; Dupui, Philippe; Paillard, Thierry

    2009-06-01

    The aim of this study was to compare the effects of acute muscle fatigue of the ankle and knee musculature on postural control by immediate measures after performing fatiguing tasks (POST condition). One group of subjects (n = 8) performed a fatiguing task by voluntary contractions of the triceps surae (group TRI) and the other (n = 9) performed a fatiguing task by voluntary contractions of the quadriceps femoris (group QUA). Each muscle group was exercised until the loss of maximal voluntary contraction torque reached 50% (isokinetic dynamometer). Posture was assessed by measuring the centre of foot pressure (COP) with a force platform during a test of unipedal quiet standing posture with eyes closed. Initially (in PRE condition), the mean COP velocity was not significantly different between group TRI and group QUA. In POST condition, the mean COP velocity increased more in group QUA than in group TRI. The postural control was more impaired by knee muscle fatigue than by ankle muscle fatigue.

  15. Effect of grinding conditions on the fatigue life of titanium 5Al-2.5Sn alloy

    NASA Technical Reports Server (NTRS)

    Rangaswamy, P.; Terutung, H.; Jeelani, S.

    1991-01-01

    An investigation into the effect of grinding conditions on the fatigue life of titanium 5Al-2.5Sn is presented. Damage to surface integrity and changes in the residual stresses distribution are studied to assess changes in fatigue life. A surface grinding machine, operating at speeds ranging from 2000 to 6000 fpm and using SiC wheels of grit sizes 60 and 120, was used to grind flat subsize specimens of 0.1-in. thickness. After grinding, the specimens were fatigued at a chosen stress and compared with the unadulterated material. A standard profilometer, a microhardness tester, and a scanning electron microscope were utilized to examine surface characteristics and measure roughness and hardness. Increased grinding speed in both wet and dry applications tended to decrease the fatigue life of the specimens. Fatigue life increased markedly at 2000 fpm under wet conditions, but then decreased at higher speeds. Grit size had no effect on the fatigue life.

  16. Effect of Temper Condition on the Corrosion and Fatigue Performance of AA2219 Aluminum Alloy

    NASA Astrophysics Data System (ADS)

    Ghosh, Rahul; Venugopal, A.; Rao, G. Sudarshan; Ramesh Narayanan, P.; Pant, Bhanu; Cherian, Roy M.

    2018-02-01

    The effect of temper condition and corrosion on the fatigue behavior of alloy AA2219 has been investigated in different temper conditions (T87 and T851). Corrosion testing was performed by exposing the tensile specimens to 3.5% NaCl solution for different time periods, and the corrosion damage was quantified using a 3D profilometer. The exposure-tested specimens were subjected for fatigue testing at different stress levels, and the reduction in fatigue life was measured along with detailed fracture morphology variations. The results indicated that the alloy in both tempers suffers localized corrosion damage and the measured corrosion depth was 120 and 1200 µm, respectively, for T87 and T851 conditions. The loss in fatigue strength was found to be high for T851 (67%) when compared to that of T87 temper condition (58%) for a pre-corrosion time of 15 days. In both cases, fatigue crack initiation is associated with corrosion pits, which act as stress raisers. However, the crack propagation was predominantly transgranular for T87 and a mixed transgranular and intergranular fracture in the case of T851 temper condition. This was shown to be due to the heterogeneous microstructure due to the thermomechanical working and the delay in quench time imposed on the alloy forging in T851 temper condition. The findings in this paper present useful information for the selection of appropriate heat treatment condition to facilitate control of the corrosion behavior which is of great significance for their fatigue performance.

  17. Fatigue Damage of Collagenous Tissues: Experiment, Modeling and Simulation Studies

    PubMed Central

    Martin, Caitlin; Sun, Wei

    2017-01-01

    Mechanical fatigue damage is a critical issue for soft tissues and tissue-derived materials, particularly for musculoskeletal and cardiovascular applications; yet, our understanding of the fatigue damage process is incomplete. Soft tissue fatigue experiments are often difficult and time-consuming to perform, which has hindered progress in this area. However, the recent development of soft-tissue fatigue-damage constitutive models has enabled simulation-based fatigue analyses of tissues under various conditions. Computational simulations facilitate highly controlled and quantitative analyses to study the distinct effects of various loading conditions and design features on tissue durability; thus, they are advantageous over complex fatigue experiments. Although significant work to calibrate the constitutive models from fatigue experiments and to validate predictability remains, further development in these areas will add to our knowledge of soft-tissue fatigue damage and will facilitate the design of durable treatments and devices. In this review, the experimental, modeling, and simulation efforts to study collagenous tissue fatigue damage are summarized and critically assessed. PMID:25955007

  18. Prolonged fatigue in Ukraine and the United States: Prevalence and risk factors

    PubMed Central

    Friedberg, Fred; Tintle, Nathan; Clark, Jake; Bromet, Evelyn J.

    2015-01-01

    Background Prolonged, severe, unalleviated fatigue may be disabling whether it occurs on its own or in conjunction with medical or psychiatric conditions. This paper compares the prevalence and correlates of prolonged fatigue in general population samples in Ukraine versus the U.S. Methods Population surveys were conducted in 2002 in both Ukraine (Ukraine World Mental Health [WMH] Survey) and the U.S. (National Comorbidity Survey-Replication; NCS-R). Both surveys administered the Composite International Diagnostic Interview (CIDI 3.0), which contained modules assessing: neurasthenia (prolonged fatigue); mood, anxiety, and alcohol/drug use disorders; chronic medical conditions; and demographic characteristics. Multivariable logistic regression was used to examine risk factors in each country. Results The lifetime prevalence of prolonged fatigue was higher in Ukraine (5.2%) than the U.S. (3.7%). In both countries, one-fifth of individuals with prolonged fatigue had no medical or DSM-IV psychiatric condition. Also in both settings, fatigue was significantly associated with sociodemographic characteristics (being female, not working, and married before) as well as early onset and adult episodes of mood/anxiety disorder. Fatigue prevalence in Ukraine increased with age, but decreased in the U.S. at age 70. Unique risk factors for fatigue in Ukraine included lower socio-economic status, Ukrainian vs Russian ethnicity, and cardiovascular disease. Unique risk factors in the U.S. were parental depression/anxiety, adult episodes of alcohol/drugs, pain conditions, and other health problems. Conclusions The lifetime prevalence of prolonged fatigue in Ukraine was 40% higher than that found in U.S. data. In addition, fatigue prevalence increased sharply with age in Ukraine perhaps due to limited social and medical resources and greater comorbidity. PMID:26807341

  19. Development and field application of a nonlinear ultrasonic modulation technique for fatigue crack detection without reference data from an intact condition

    NASA Astrophysics Data System (ADS)

    Lim, Hyung Jin; Kim, Yongtak; Koo, Gunhee; Yang, Suyoung; Sohn, Hoon; Bae, In-hwan; Jang, Jeong-Hwan

    2016-09-01

    In this study, a fatigue crack detection technique, which detects a fatigue crack without relying on any reference data obtained from the intact condition of a target structure, is developed using nonlinear ultrasonic modulation and applied to a real bridge structure. Using two wafer-type lead zirconate titanate (PZT) transducers, ultrasonic excitations at two distinctive frequencies are applied to a target inspection spot and the corresponding ultrasonic response is measured by another PZT transducer. Then, the nonlinear modulation components produced by a breathing-crack are extracted from the measured ultrasonic response, and a statistical classifier, which can determine if the nonlinear modulation components are statistically significant in comparison with the background noise level, is proposed. The effectiveness of the proposed fatigue crack detection technique is experimentally validated using the data obtained from aluminum plates and aircraft fitting-lug specimens under varying temperature and loading conditions, and through a field testing of Yeongjong Grand Bridge in South Korea. The uniqueness of this study lies in that (1) detection of a micro fatigue crack with less than 1 μm width and fatigue cracks in the range of 10-20 μm in width using nonlinear ultrasonic modulation, (2) automated detection of fatigue crack formation without using reference data obtained from an intact condition, (3) reliable and robust diagnosis under varying temperature and loading conditions, (4) application of a local fatigue crack detection technique to online monitoring of a real bridge.

  20. Influence of Deposition Conditions on Fatigue Properties of Martensitic Stainless Steel with Tin Film Coated by Arc Ion Plating Method

    NASA Astrophysics Data System (ADS)

    Fukui, Satoshi; Yonekura, Daisuke; Murakami, Ri-Ichi

    The surface properties like roughness etc. strongly influence the fatigue strength of high-tensile steel. To investigate the effect of surface condition and TiN coating on the fatigue strength of high-strength steel, four-point bending fatigue tests were carried out for martensitic stainless steel with TiN film coated using arc ion plating (AIP) method. This study, using samples that had been polished under several size of grind particle, examines the influence of pre-coating treatment on fatigue properties. A 2-µm-thick TiN film was deposited onto the substrate under three kinds of polishing condition. The difference of the hardness originated in the residual stress or thin deformation layer where the difference of the size of grinding particle of the surface polishing. And it leads the transformation of the interface of the substrate and the TiN film and improves fatigue limit.

  1. The Fatigue Life Prediction of Train Wheel Rims Containing Spherical Inclusions

    NASA Astrophysics Data System (ADS)

    Li, Yajie; Chen, Huanguo; Cai, Li; Chen, Pei; Qian, Jiacheng; Wu, Jianwei

    2018-03-01

    It is a common phenomenon that fatigue crack initiation occurs frequently in the inclusions of wheel rims. Research on the fatigue life of wheel rims with spherical inclusions is of great significance on the reliability of wheels. To find the danger point and working condition of a wheel, the stress state of the wheel rim with spherical inclusions was analyzed using the finite element method. Results revealed that curve conditions are dangerous. The critical plane method, based on the cumulative fatigue damage theory, was used to predict the fatigue life of the wheel rim and whether it contained spherical inclusions or not under curve conditions. It was found that the fatigue life of the wheel rim is significantly shorter when the wheel rim contains spherical inclusions. Analysis of the results can provide a theoretical basis and technical support for train operations and maintenance.

  2. The Regularities of Fatigue Crack Growth in Airframes Elements at Real Operation Conditions

    NASA Astrophysics Data System (ADS)

    Pavelko, Igors; Pavelko, Vitalijs

    The results of analytical and experimental researches concerning predicting of fatigue crack growth in the operating conditions are presented. First of all the main factors causing a fatigue damage initiation and growth are analyzed and divided to two groups. Common conditions of fatigue damage precise predicting are established. The problem of fatigue crack growth at the stresses of variable amplitude was analyzed and an approach of description of this process is performed. Two examples present the efficiency of this approach. Theory of fatigue crack growth indication and the crack growth indicator (CGI) are developed. There is planned and executed a flight experiment using CGI located on two aircraft An-24 and An-26. Results of crack growth in CGI at operational load allowed to evaluate the parameters of generalized Paris-Erdogan law and statistical properties of crack increment per flight.

  3. A motor unit-based model of muscle fatigue

    PubMed Central

    2017-01-01

    Muscle fatigue is a temporary decline in the force and power capacity of skeletal muscle resulting from muscle activity. Because control of muscle is realized at the level of the motor unit (MU), it seems important to consider the physiological properties of motor units when attempting to understand and predict muscle fatigue. Therefore, we developed a phenomenological model of motor unit fatigue as a tractable means to predict muscle fatigue for a variety of tasks and to illustrate the individual contractile responses of MUs whose collective action determines the trajectory of changes in muscle force capacity during prolonged activity. An existing MU population model was used to simulate MU firing rates and isometric muscle forces and, to that model, we added fatigue-related changes in MU force, contraction time, and firing rate associated with sustained voluntary contractions. The model accurately estimated endurance times for sustained isometric contractions across a wide range of target levels. In addition, simulations were run for situations that have little experimental precedent to demonstrate the potential utility of the model to predict motor unit fatigue for more complicated, real-world applications. Moreover, the model provided insight into the complex orchestration of MU force contributions during fatigue, that would be unattainable with current experimental approaches. PMID:28574981

  4. Changes in the flexion relaxation response induced by lumbar muscle fatigue.

    PubMed

    Descarreaux, Martin; Lafond, Danik; Jeffrey-Gauthier, Renaud; Centomo, Hugo; Cantin, Vincent

    2008-01-24

    The flexion relaxation phenomenon (FRP) is an interesting model to study the modulation of lumbar stability. Previous investigations have explored the effect of load, angular velocity and posture on this particular response. However, the influence of muscular fatigue on FRP parameters has not been thoroughly examined. The objective of the study is to identify the effect of erector spinae (ES) muscle fatigue and spine loading on myoelectric silence onset and cessation in healthy individuals during a flexion-extension task. Twenty healthy subjects participated in this study and performed blocks of 3 complete trunk flexions under 4 different experimental conditions: no fatigue/no load (1), no fatigue/load (2), fatigue/no load(3), and fatigue/load (4). Fatigue was induced according to the Sorenson protocol, and electromyographic (EMG) power spectral analysis confirmed that muscular fatigue was adequate in each subject. Trunk and pelvis angles and surface EMG of the ES L2 and L5 were recorded during a flexion-extension task. Trunk flexion angle corresponding to the onset and cessation of myoelectric silence was then compared across the different experimental conditions using 2 x 2 repeated-measures ANOVA. Onset of myoelectric silence during the flexion motion appeared earlier after the fatigue task. Additionally, the cessation of myoelectric silence was observed later during the extension after the fatigue task. Statistical analysis also yielded a main effect of load, indicating a persistence of ES myoelectric activity in flexion during the load condition. The results of this study suggest that the presence of fatigue of the ES muscles modifies the FRP. Superficial back muscle fatigue seems to induce a shift in load-sharing towards passive stabilizing structures. The loss of muscle contribution together with or without laxity in the viscoelastic tissues may have a substantial impact on post fatigue stability.

  5. Classifying Lower Extremity Muscle Fatigue during Walking using Machine Learning and Inertial Sensors

    PubMed Central

    Zhang, Jian; Lockhart, Thurmon E.; Soangra, Rahul

    2013-01-01

    Fatigue in lower extremity musculature is associated with decline in postural stability, motor performance and alters normal walking patterns in human subjects. Automated recognition of lower extremity muscle fatigue condition may be advantageous in early detection of fall and injury risks. Supervised machine learning methods such as Support Vector Machines (SVM) have been previously used for classifying healthy and pathological gait patterns and also for separating old and young gait patterns. In this study we explore the classification potential of SVM in recognition of gait patterns utilizing an inertial measurement unit associated with lower extremity muscular fatigue. Both kinematic and kinetic gait patterns of 17 participants (29±11 years) were recorded and analyzed in normal and fatigued state of walking. Lower extremities were fatigued by performance of a squatting exercise until the participants reached 60% of their baseline maximal voluntary exertion level. Feature selection methods were used to classify fatigue and no-fatigue conditions based on temporal and frequency information of the signals. Additionally, influences of three different kernel schemes (i.e., linear, polynomial, and radial basis function) were investigated for SVM classification. The results indicated that lower extremity muscle fatigue condition influenced gait and loading responses. In terms of the SVM classification results, an accuracy of 96% was reached in distinguishing the two gait patterns (fatigue and no-fatigue) within the same subject using the kinematic, time and frequency domain features. It is also found that linear kernel and RBF kernel were equally good to identify intra-individual fatigue characteristics. These results suggest that intra-subject fatigue classification using gait patterns from an inertial sensor holds considerable potential in identifying “at-risk” gait due to muscle fatigue. PMID:24081829

  6. Reciprocal relationship between acute stress and acute fatigue in everyday life in a sample of university students.

    PubMed

    Doerr, Johanna M; Ditzen, Beate; Strahler, Jana; Linnemann, Alexandra; Ziemek, Jannis; Skoluda, Nadine; Hoppmann, Christiane A; Nater, Urs M

    2015-09-01

    We investigated whether stress may influence fatigue, or vice versa, as well as factors mediating this relationship. Fifty healthy participants (31 females, 23.6±3.2 years) completed up to 5 momentary assessments of stress and fatigue during 5 days of preparation for their final examinations (exam condition) and 5 days of a regular semester week (control condition). Sleep quality was measured by self-report at awakening. A sub-group of participants (n=25) also collected saliva samples. Fatigue was associated with concurrent stress, stress reported at the previous measurement point, and previous-day stress. However, momentary stress was also predicted by concurrent fatigue, fatigue at the previous time point, and previous-day fatigue. Sleep quality mediated the association between stress and next-day fatigue. Cortisol and alpha-amylase did not mediate the stress-fatigue relationship. In conclusion, there is a reciprocal stress-fatigue relationship. Both prevention and intervention programs should comprehensively cover how stress and fatigue might influence one another. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Effect of Environment on Fatigue Behavior of a Nicalon(TM)/Si-N-C Ceramic Matrix Composite

    NASA Technical Reports Server (NTRS)

    Kalluri, Sreeramesh; Ojard, Greg C.; Verrilli, Michael J.; Kiraly, Louis J. (Technical Monitor)

    2002-01-01

    The effect of environmental exposure on the fatigue life of Nicalon(TM) /Si-N-C composite was investigated in this study. Test specimens with arrays of 1.8 mm diameter holes and two different open areas, 25 and 35%, were machined. Three environmental conditions were studied: 1) continuous fatigue cycling in air, 2) fatigue cycling in air alternating with humidity exposure, and 3) fatigue cycling in air alternating with exposure to a salt-fog environment. All fatigue testing on specimens with holes was performed with a load ratio, R = 0.05, and at a temperature of 910 C. In general, fatigue lives were shortest for specimens subjected to salt-fog exposure and longest for specimens subjected to continuous fatigue cycling in air. The fatigue data generated on the specimens with holes were compared with fatigue data generated in air on specimens with no holes. Fatigue strength reduction factors for different environmental conditions and open areas investigated in the study were calculated for the Nicalon(TM) /Si-N-C composite.

  8. Reduced Radial Displacement of the Gastrocnemius Medialis Muscle After Electrically Elicited Fatigue.

    PubMed

    Macgregor, Lewis J; Ditroilo, Massimiliano; Smith, Iain J; Fairweather, Malcolm M; Hunter, Angus M

    2016-08-01

    Assessments of skeletal-muscle functional capacity often necessitate maximal contractile effort, which exacerbates muscle fatigue or injury. Tensiomyography (TMG) has been investigated as a means to assess muscle contractile function after fatigue; however, observations have not been contextualized by concurrent physiological measures. To measure peripheral-fatigue-induced alterations in mechanical and contractile properties of the plantar-flexor muscles through noninvasive TMG concurrently with maximal voluntary contraction (MVC) and passive muscle tension (PMT) to validate TMG as a gauge of peripheral fatigue. Pre- and posttest intervention with control. University laboratory. 21 healthy male volunteers. Subjects' plantar flexors were tested for TMG parameters, along with MVC and PMT, before and after either a 5-min rest period (control) or a 5-min electrical-stimulation intervention (fatigue). Temporal (contraction velocity) and spatial (radial displacement) contractile parameters of the gastrocnemius medialis were recorded through TMG. MVC was measured as an indicator of muscle fatigue, and PMT was measured to assess muscle stiffness. Radial displacement demonstrated a fatigue-associated reduction (3.3 ± 1.2 vs 4.0 ± 1.4 mm, P = .031), while contraction velocity remained unaltered. In addition, MVC significantly declined by 122.6 ± 104 N (P < .001) after stimulation (fatigue). PMT was significantly increased after fatigue (139.8 ± 54.3 vs 111.3 ± 44.6 N, P = .007). TMG successfully detected fatigue, evident from reduced MVC, by displaying impaired muscle displacement accompanied by elevated PMT. TMG could be useful in establishing skeletal-muscle fatigue status without exacerbating the functional decrement of the muscle.

  9. PROMIS Fatigue Item Bank had Clinical Validity across Diverse Chronic Conditions.

    PubMed

    Cella, David; Lai, Jin-Shei; Jensen, Sally E; Christodoulou, Christopher; Junghaenel, Doerte U; Reeve, Bryce B; Stone, Arthur A

    2016-05-01

    To evaluate the comparability and responsiveness of Patient-Reported Outcomes Measurement Information System (PROMIS) fatigue item bank across six chronic conditions. Individuals (n = 1,430) with chronic obstructive pulmonary disease (n = 125), chronic heart failure (n = 60), chronic back pain (n = 218), major depressive disorder (n = 196), rheumatoid arthritis (n = 521), and cancer (n = 310) completed assessments from the PROMIS fatigue item bank at baseline and a clinically relevant follow-up. The cancer and arthritis samples were followed in observational studies; the other four groups were enrolled immediately before a planned clinical intervention. All participants completed global ratings of change at follow-up. Linear mixed-effects models and standardized response means were estimated to examine clinical validity and responsiveness to change. All patient groups reported more fatigue than the general population (range = 0.2-1.29 standard deviation worse). The four clinical groups with pretreatment baseline data experienced significant improvement in fatigue at follow-up (effect size range = 0.25-0.91). Individuals reporting better overall health usually experienced larger fatigue changes than those reporting worse overall health. The results support the PROMIS fatigue measures's responsiveness to change in six different chronic conditions. In addition, these results support the ability of the PROMIS fatigue measures to compare differences in fatigue across a range of chronic conditions, thereby enabling comparative effectiveness research. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Effects of oxygen concentrations on driver fatigue during simulated driving.

    PubMed

    Sung, Eun-Jung; Min, Byung-Chan; Kim, Seung-Chul; Kim, Chul-Jung

    2005-01-01

    Driver fatigue has been the cause of traffic accidents. Despite this, the amount of time that drivers spend within cars has been increasing due to complex city life, traffic congestion, and particular occupational requirements. Consequently, fatigue and stress cannot be avoided. In present study, in order to find out the possibility for reducing fatigue while driving due to the supply of oxygen, driver fatigue resulting from the passage of time when different oxygen concentrations are supplied has been examined through subjective evaluations and reaction times using driving simulator for 10 male subjects. The results revealed the subjective fatigue feeling was highest in the low rate (18%) oxygen condition, while in the high rate (30%), it decreased to a certain extent. The feeling of sleepiness also showed the tendency to decrease somewhat in the case of the driving time having passed over 1h in the high-rate conditions. Also, the reaction time for braking after being instructed to suddenly stop following more than 2h of driving was reduced in the high-rate oxygen conditions compared to the low-rate oxygen condition. From the above results, it was shown that while driving a car, if the oxygen rate is lowered, fatigue is felt severely, and that in the case of supplying a high-rate of oxygen, the feeling of fatigue is lowered to some extent and the reaction time is shortened. It was suggested that the driver's fatigue can be reduced according to the supply of oxygen.

  11. Altered impulse activity modifies synaptic physiology and mitochondria in crayfish phasic motor neurons.

    PubMed

    Nguyen, P V; Atwood, H L

    1994-12-01

    1. Crayfish phasic motor synapses produce large initial excitatory postsynaptic potentials (EPSPs) that fatigue rapidly during high-frequency stimulation. Periodic in vivo stimulation of an identified phasic abdominal extensor motor neuron (axon 3) induced long-term adaptation (LTA) of neuromuscular transmission: initial EPSP amplitude became smaller and synaptic depression was significantly reduced. We tested the hypothesis that activity-induced synaptic fatigue-resistance seen during LTA was dependent upon, or correlated with, mitochondrial oxidative competence. 2. Periodic unilateral conditioning stimulation of axon 3 entering each of two adjacent homologous abdominal segments (segments 2 and 3) increased the synaptic stamina in both "conditioned" axons; mean final EPSP amplitudes, recorded after 20 min of 5-Hz test stimulation, were significantly larger than those measured with the same protocol from contralateral unstimulated axons. 3. During 5-Hz test stimulation of the conditioned axon 3 of segment 3, acute superfusion with 0.8 mM dinitrophenol or 20 mM sodium azide [inhibitors of oxidative adenosinetriphosphate (ATP) synthesis] produced increased synaptic depression. Drug-free saline superfusion of the conditioned axon 3 of segment 2 in these same animals did not affect the increased synaptic fatigue resistance seen in this segment. Thus both successful induction (in axon 3 of saline-perfused segment 2) and attenuation (in axon 3 of drug-perfused segment 3) of the increased synaptic stamina can be demonstrated with this twin-segment conditioning protocol. 4. Confocal microscopic imaging of mitochondrial rhodamine-123 (Rh123) fluorescence was used to assess relative oxidative competence of conditioned and unconditioned phasic axons. Conditioned phasic axons showed significantly higher mean mitochondrial Rh123 fluorescence than contralateral unstimulated axons. In the same preparations that showed increased postconditioning Rh123 fluorescence, the synaptic fatigue resistance measured from conditioned axon 3 was also significantly greater than that recorded from contralateral unstimulated axon 3. 5. Axotomy of the phasic extensor nerve root (containing axon 3), before in vivo conditioning stimulation of its decentralized segment, prevented induction of both the increased synaptic stamina in axon 3 and the enhanced mitochondrial fluorescence in decentralized motor axons of the nerve root. Hence, induction of both changes requires axonal transport of materials between the soma and the motor synapses of axon 3. 5. Axotomy of the phasic extensor nerve root (containing axon 3), before in vivo conditioning stimulation of its decentralized segment, Prevented induction of both the increased synaptic stamina in axon 3 and the enhanced mitochondrial fluorescence in decentralized motor axons of the nerve root Hence, induction of both changes requires axonal transport of materials between the soma and the motor synapses of axon 3 6. Because mitochondrial Rh123 fluorescence is primarily dependent upon the oxidative activity of these organelles, our findings suggest that conditioning stimulation of phasic extensor axon 3 increases its mitochondrial oxidative competence and that the enhanced synaptic stamina seen during LTA in axon 3 is correlated with, and dependent upon, oxidative activity.(ABSTRACT TRUNCATED AT 400 WORDS)

  12. Physiological demands of downhill mountain biking.

    PubMed

    Burr, Jamie F; Drury, C Taylor; Ivey, Adam C; Warburton, Darren E R

    2012-12-01

    Mountain biking is a popular recreational pursuit and the physiological demands of cross-country style riding have been well documented. However, little is known regarding the growing discipline of gravity-assisted downhill cycling. We characterised the physiological demands of downhill mountain biking under typical riding conditions. Riding oxygen consumption (VO(2)) and heart rate (HR) were measured on 11 male and eight female experienced downhill cyclists and compared with data during a standardised incremental to maximum (VO(2max)) exercise test. The mean VO(2) while riding was 23.1 ± 6.9 ml · kg(-1) · min(-1) or 52 ± 14% of VO(2max) with corresponding heart rates of 146 ± 11 bpm (80 ± 6% HRmax). Over 65% of the ride was in a zone at or above an intensity level associated with improvements in health-related fitness. However, the participants' heart rates and ratings of perceived exertion were artificially inflated in comparison with the actual metabolic demands of the downhill ride. Substantial muscular fatigue was evident in grip strength, which decreased 5.4 ± 9.4 kg (5.5 ± 11.2%, P = 0.03) post-ride. Participation in downhill mountain biking is associated with significant physiological demands, which are in a range associated with beneficial effects on health-related fitness.

  13. The tired teen: A review of the assessment and management of the adolescent with sleepiness and fatigue

    PubMed Central

    Findlay, Sheri M

    2008-01-01

    The symptoms of sleepiness and fatigue are frequently encountered when caring for adolescents. Up to 40% of healthy teens experience regular sleepiness, defined as an increased tendency to fall asleep. Fatigue is the perception of low energy following normal activity and is reported by up to 30% of well teens. Chronic fatigue syndrome is an unusual syndrome with severe fatigue accompanied by other physical and neurological symptoms. A thorough assessment is required for all teens with sleepiness and fatigue; however, a treatable underlying medical condition is rarely found. Most fatigue and sleepiness in teens is attributable to lifestyle issues, notably too little time spent sleeping. Physicians are in a position to screen for, assess and manage these common conditions in teens. PMID:19119351

  14. Fatigue in Type 2 Diabetes: Impact on Quality of Life and Predictors.

    PubMed

    Singh, Rupali; Teel, Cynthia; Sabus, Carla; McGinnis, Patricia; Kluding, Patricia

    2016-01-01

    Fatigue is a persistent symptom, impacting quality of life (QoL) and functional status in people with type 2 diabetes, yet the symptom of fatigue has not been fully explored. The purpose of this study was to explore the relationship between fatigue, QoL functional status and to investigate the predictors of fatigue. These possible predictors included body mass index (BMI), Hemoglobin A1C (HbA1C), sleep quality, pain, number of complications from diabetes, years since diagnosis and depression. Forty-eight individuals with type 2 diabetes (22 females, 26 males; 59.66±7.24 years of age; 10.45 ±7.38 years since diagnosis) participated in the study. Fatigue was assessed by using Multidimensional Fatigue Inventory (MFI-20). Other outcomes included: QoL (Audit of Diabetes Dependent QoL), and functional status (6 minute walk test), BMI, HbA1c, sleep (Pittsburg sleep quality index, PSQI), pain (Visual Analog Scale), number of complications, years since diagnosis, and depression (Beck's depression Inventory-2). The Pearson correlation analysis followed by multivariable linear regression model was used. Fatigue was negatively related to quality of life and functional status. Multivariable linear regression analysis revealed sleep, pain and BMI as the independent predictors of fatigue signaling the presence of physiological (sleep, pain, BMI) phenomenon that could undermine health outcomes.

  15. Fatigue in Type 2 Diabetes: Impact on Quality of Life and Predictors

    PubMed Central

    Teel, Cynthia; Sabus, Carla; McGinnis, Patricia; Kluding, Patricia

    2016-01-01

    Fatigue is a persistent symptom, impacting quality of life (QoL) and functional status in people with type 2 diabetes, yet the symptom of fatigue has not been fully explored. The purpose of this study was to explore the relationship between fatigue, QoL functional status and to investigate the predictors of fatigue. These possible predictors included body mass index (BMI), Hemoglobin A1C (HbA1C), sleep quality, pain, number of complications from diabetes, years since diagnosis and depression. Forty-eight individuals with type 2 diabetes (22 females, 26 males; 59.66±7.24 years of age; 10.45 ±7.38 years since diagnosis) participated in the study. Fatigue was assessed by using Multidimensional Fatigue Inventory (MFI-20). Other outcomes included: QoL (Audit of Diabetes Dependent QoL), and functional status (6 minute walk test), BMI, HbA1c, sleep (Pittsburg sleep quality index, PSQI), pain (Visual Analog Scale), number of complications, years since diagnosis, and depression (Beck’s depression Inventory-2). The Pearson correlation analysis followed by multivariable linear regression model was used. Fatigue was negatively related to quality of life and functional status. Multivariable linear regression analysis revealed sleep, pain and BMI as the independent predictors of fatigue signaling the presence of physiological (sleep, pain, BMI) phenomenon that could undermine health outcomes. PMID:27824886

  16. Neural Correlates of Central Inhibition during Physical Fatigue

    PubMed Central

    Tanaka, Masaaki; Ishii, Akira; Watanabe, Yasuyoshi

    2013-01-01

    Central inhibition plays a pivotal role in determining physical performance during physical fatigue. Classical conditioning of central inhibition is believed to be associated with the pathophysiology of chronic fatigue. We tried to determine whether classical conditioning of central inhibition can really occur and to clarify the neural mechanisms of central inhibition related to classical conditioning during physical fatigue using magnetoencephalography (MEG). Eight right-handed volunteers participated in this study. We used metronome sounds as conditioned stimuli and maximum handgrip trials as unconditioned stimuli to cause central inhibition. Participants underwent MEG recording during imagery of maximum grips of the right hand guided by metronome sounds for 10 min. Thereafter, fatigue-inducing maximum handgrip trials were performed for 10 min; the metronome sounds were started 5 min after the beginning of the handgrip trials. The next day, neural activities during imagery of maximum grips of the right hand guided by metronome sounds were measured for 10 min. Levels of fatigue sensation and sympathetic nerve activity on the second day were significantly higher relative to those of the first day. Equivalent current dipoles (ECDs) in the posterior cingulated cortex (PCC), with latencies of approximately 460 ms, were observed in all the participants on the second day, although ECDs were not identified in any of the participants on the first day. We demonstrated that classical conditioning of central inhibition can occur and that the PCC is involved in the neural substrates of central inhibition related to classical conditioning during physical fatigue. PMID:23923034

  17. Inflammatory fatigue and sickness behaviour - lessons for the diagnosis and management of chronic fatigue syndrome.

    PubMed

    Arnett, S V; Clark, I A

    2012-12-10

    Persistent and severe fatigue is a common part of the presentation of a diverse range of disease processes. There is a growing body of evidence indicating a common inflammatory pathophysiology underlying many conditions where fatigue is a primary patient concern, including chronic fatigue syndrome. This review explores current models of how inflammatory mediators act on the central nervous system to produce fatigue and sickness behaviour, and the commonality of these processes in conditions as diverse as surgical trauma, infection, various cancers, inflammatory bowel disease, connective tissue diseases and autoimmune diseases. We also discuss evidence indicating chronic fatigue syndrome may have important pathophysiological similarities with cytokine mediated sickness behaviour, and what lessons can be applied from sickness behaviour to chronic fatigue syndrome with regards to the diagnosis and management. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. G-Induced Visual Symptoms in a Military Helicopter Pilot.

    PubMed

    McMahon, Terry W; Newman, David G

    2016-11-01

    Military helicopters are increasingly agile and capable of producing significant G forces experienced in the longitudinal (z) axis of the body in a head-to-foot direction (+Gz). Dehydration and fatigue can adversely affect a pilot's +Gz tolerance, leading to +Gz-induced symptomatology occurring at lower +Gz levels than expected. The potential for adverse consequences of +Gz exposure to affect flight safety in military helicopter operations needs to be recognized. This case report describes a helicopter pilot who experienced +Gz-induced visual impairment during low-level flight. The incident occurred during a tropical training exercise, with an ambient temperature of around 35°C (95°F). As a result of the operational tempo and the environmental conditions, aircrew were generally fatigued and dehydrated. During a low-level steep turn, a Blackhawk pilot experienced significant visual deterioration. The +Gz level was estimated at +2.5 Gz. After completing the turn, the pilot's vision returned to normal, and the flight concluded without further incident. This case highlights the potential dangers of +Gz exposure in tactical helicopters. Although the +Gz level was moderate, the pilot's +Gz tolerance was reduced by the combined effects of dehydration and fatigue. The dangers of such +Gz-induced visual impairment during low-level flight are clear. More awareness of +Gz physiology and +Gz tolerance-reducing factors in helicopter operations is needed. Reprint & Copyright © 2016 Association of Military Surgeons of the U.S.

  19. Fatigue Damage and Lifetime of SiC/SiC Ceramic-Matrix Composite under Cyclic Loading at Elevated Temperatures

    PubMed Central

    Li, Longbiao

    2017-01-01

    In this paper, the fatigue damage and lifetime of 2D SiC/SiC ceramic-matrix composites (CMCs) under cyclic fatigue loading at 750, 1000, 1100, 1200 and 1300 °C in air and in steam atmosphere have been investigated. The damage evolution versus applied cycles of 2D SiC/SiC composites were analyzed using fatigue hysteresis dissipated energy, fatigue hysteresis modulus, fatigue peak strain and interface shear stress. The presence of steam accelerated the damage development inside of SiC/SiC composites, which increased the increasing rate of the fatigue hysteresis dissipated energy and the fatigue peak strain, and the decreasing rate of the fatigue hysteresis modulus and the interface shear stress. The fatigue life stress-cycle (S-N) curves and fatigue limit stresses of 2D SiC/SiC composites at different temperatures in air and in steam condition have been predicted. The fatigue limit stresses approach 67%, 28%, 39% 17% and 28% tensile strength at 750, 1000, 1100, 1200 and 1300 °C in air, and 49%, 10%, 9% and 19% tensile strength at 750, 1000, 1200 and 1300 °C in steam conditions, respectively. PMID:28772736

  20. A phenomenological study of fatigue in patients with primary biliary cirrhosis.

    PubMed

    Jorgensen, Roberta

    2006-09-01

    This paper reports the findings of research on the lived experience of fatigue in patients with primary biliary cirrhosis - a type of chronic liver disease. Fatigue is a universal phenomenon, commonly associated with both acute and chronic illness, but also seen in healthy individuals. However, it is not often addressed in healthcare encounters despite its disabling nature, perhaps because of the multitude of contributing factors and the lack of effective treatments. It is a common and debilitating symptom in patients with primary biliary cirrhosis. Despite the prevalence of fatigue in this condition, patients' experiences of this symptom have not been researched. An interpretive-phenomenological approach developed by van Manen was chosen and this combines features of descriptive and interpretive phenomenology. Eight participants were interviewed during 2005 about their fatigue experience. Thematic analysis was conducted. Five themes were identified: an unreliable body, fatigue as always present yet insidious, planning a life to conserve energy, struggling to maintain normality and emotional consequences. These themes reflected the unrelenting, intrusive nature of fatigue into the lives of those affected. This research will provide empathic insight into the fatigue experience in this condition and generate communication about coping strategies. It will add to the body of research on fatigue in chronic conditions and may generate ideas for intervention research.

  1. A potential biomarker for fatigue: Oxidative stress and anti-oxidative activity.

    PubMed

    Fukuda, Sanae; Nojima, Junzo; Motoki, Yukari; Yamaguti, Kouzi; Nakatomi, Yasuhito; Okawa, Naoko; Fujiwara, Kazumi; Watanabe, Yasuyoshi; Kuratsune, Hirohiko

    2016-07-01

    We sought to determine whether oxidative stress and anti-oxidative activity could act as biomarkers that discriminate patients with chronic fatigue syndrome (CFS) from healthy volunteers at acute and sub-acute fatigue and resting conditions. We calculated the oxidative stress index (OSI) from reactive oxygen metabolites-derived compounds (d-ROMs) and the biological antioxidant potential (BAP). We determined changes in d-ROMs, BAP, and OSI in acute and sub-acute fatigue in two healthy groups, and compared their values at rest between patients with CFS (diagnosed by Fukuda 1994 criteria) and another group of healthy controls. Following acute fatigue in healthy controls, d-ROMs and OSI increased, and BAP decreased. Although d-ROMs and OSI were significantly higher after sub-acute fatigue, BAP did not decrease. Resting condition yielded higher d-ROMs, higher OSI, and lower BAP in patients with CFS than in healthy volunteers, but lower d-ROMs and OSI when compared with sub-acute controls. BAP values did not significantly differ between patients with CFS and controls in the sub-acute condition. However, values were significantly higher than in the resting condition for controls. Thus, measured of oxidative stress (d-ROMS) and anti-oxidative activity (BAP) might be useful for discriminating acute, sub-acute, and resting fatigue in healthy people from patients with CFS, or for evaluating fatigue levels in healthy people. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Investigating the effects of maximal anaerobic fatigue on dynamic postural control using the Y-Balance Test.

    PubMed

    Johnston, William; Dolan, Kara; Reid, Niamh; Coughlan, Garrett F; Caulfield, Brian

    2018-01-01

    The Y Balance Test is one of the most commonly used dynamic balance assessments, providing an insight into the integration of the sensorimotor subsystems. In recent times, there has been an increase in interest surrounding it's use in various clinical populations demonstrating alterations in motor function. Therefore, it is important to examine the effect physiological influences such as fatigue play in dynamic postural control, and establish a timeframe for its recovery. Descriptive laboratory study. Twenty male and female (age 23.75±4.79years, height 174.12±8.45cm, mass 69.32±8.76kg) partaking in competitive sport, completed the Y Balance Test protocol at 0, 10 and 20min, prior to a modified 60s Wingate fatiguing protocol. Post-fatigue assessments were then completed at 0, 10 and 20 min post-fatiguing intervention. Intraclass correlation coefficients demonstrated excellent intra-session reliability (0.976-0.982) across the three pre-fatigue YBT tests. Post-hoc paired sample t-tests demonstrated that all three reach directions demonstrated statistically significant differences between pre-fatigue and the first post-fatigue measurement (anterior; p=0.019, posteromedial; p=0.019 & posterolateral; p=0.003). The anterior reach direction returned to pre-fatigue levels within 10min (p=0.632). The posteromedial reach direction returned to pre-fatigue levels within 20min (p=0.236), while the posterolateral direction maintained a statistically significant difference at 20min (p=0.023). Maximal anaerobic fatigue has a negative effect on normalised Y balance test scores in all three directions. Following the fatiguing protocol, dynamic postural control returns to pre-fatigue levels for the anterior (<10min), posteromedial (<20min) and posterolateral (>20min). Copyright © 2017 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  3. The interaction of psychological and physiological homeostatic drives and role of general control principles in the regulation of physiological systems, exercise and the fatigue process - The Integrative Governor theory.

    PubMed

    St Clair Gibson, A; Swart, J; Tucker, R

    2018-02-01

    Either central (brain) or peripheral (body physiological system) control mechanisms, or a combination of these, have been championed in the last few decades in the field of Exercise Sciences as how physiological activity and fatigue processes are regulated. In this review, we suggest that the concept of 'central' or 'peripheral' mechanisms are both artificial constructs that have 'straight-jacketed' research in the field, and rather that competition between psychological and physiological homeostatic drives is central to the regulation of both, and that governing principles, rather than distinct physical processes, underpin all physical system and exercise regulation. As part of the Integrative Governor theory we develop in this review, we suggest that both psychological and physiological drives and requirements are underpinned by homeostatic principles, and that regulation of the relative activity of each is by dynamic negative feedback activity, as the fundamental general operational controller. Because of this competitive, dynamic interplay, we propose that the activity in all systems will oscillate, that these oscillations create information, and comparison of this oscillatory information with either prior information, current activity, or activity templates create efferent responses that change the activity in the different systems in a similarly dynamic manner. Changes in a particular system are always the result of perturbations occurring outside the system itself, the behavioural causative 'history' of this external activity will be evident in the pattern of the oscillations, and awareness of change occurs as a result of unexpected rather than planned change in physiological activity or psychological state.

  4. Fatigue Crack Growth Behavior Evaluation of Grainex Mar-M 247 for NASA's High Temperature, High Speed Turbine Seal Test Rig

    NASA Technical Reports Server (NTRS)

    Delgado, Irebert R.; Steinetz, Bruce M.; Rimnac, Clare M.; Lewandowski, John J.

    2008-01-01

    The fatigue crack growth behavior of Grainex Mar-M 247 is evaluated for NASA s Turbine Seal Test Facility. The facility is used to test air-to-air seals primarily for use in advanced jet engine applications. Because of extreme seal test conditions of temperature, pressure, and surface speeds, surface cracks may develop over time in the disk bolt holes. An inspection interval is developed to preclude catastrophic disk failure by using experimental fatigue crack growth data. By combining current fatigue crack growth results with previous fatigue strain-life experimental work, an inspection interval is determined for the test disk. The fatigue crack growth life of the NASA disk bolt holes is found to be 367 cycles at a crack depth of 0.501 mm using a factor of 2 on life at maximum operating conditions. Combining this result with previous fatigue strain-life experimental work gives a total fatigue life of 1032 cycles at a crack depth of 0.501 mm. Eddy-current inspections are suggested starting at 665 cycles since eddy current detection thresholds are currently at 0.381 mm. Inspection intervals are recommended every 50 cycles when operated at maximum operating conditions.

  5. Advanced Physiological Estimation of Cognitive Status. Part 2

    DTIC Science & Technology

    2011-05-24

    Neurofeedback Algorithms and Gaze Controller EEG Sensor System g.USBamp *, ** • internal 24-bit ADC and digital signal processor • 16 channels (expandable...SUBJECT TERMS EEG eye-tracking mental state estimation machine learning Leonard J. Trejo Pacific Development and Technology LLC 999 Commercial St. Palo...fatigue, overload) Technology Transfer Opportunity Technology from PDT – Methods to acquire various physiological signals ( EEG , EOG, EMG, ECG, etc

  6. Critical Power: An Important Fatigue Threshold in Exercise Physiology

    PubMed Central

    Poole, David C.; Burnley, Mark; Vanhatalo, Anni; Rossiter, Harry B.; Jones, Andrew M.

    2016-01-01

    The hyperbolic form of the power-duration relationship is rigorous and highly conserved across species, forms of exercise and individual muscles/muscle groups. For modalities such as cycling, the relationship resolves to two parameters, the asymptote for power (critical power, CP) and the so-called W′ (work doable above CP), which together predict the tolerable duration of exercise above CP. Crucially, the CP concept integrates sentinel physiological profiles - respiratory, metabolic and contractile - within a coherent framework that has great scientific and practical utility. Rather than calibrating equivalent exercise intensities relative to metabolically distant parameters such as the lactate threshold or V̇O2 max, setting the exercise intensity relative to CP unifies the profile of systemic and intramuscular responses and, if greater than CP, predicts the tolerable duration of exercise until W′ is expended, V̇O2 max is attained, and intolerance is manifested. CP may be regarded as a ‘fatigue threshold’ in the sense that it separates exercise intensity domains within which the physiological responses to exercise can (CP) be stabilized. The CP concept therefore enables important insights into 1) the principal loci of fatigue development (central vs. peripheral) at different intensities of exercise, and 2) mechanisms of cardiovascular and metabolic control and their modulation by factors such as O2 delivery. Practically, the CP concept has great potential application in optimizing athletic training programs and performance as well as improving the life quality for individuals enduring chronic disease. PMID:27031742

  7. Anatomic and physiological characteristics of the ferret lateral rectus muscle and abducens nucleus.

    PubMed

    Bishop, Keith N; McClung, J Ross; Goldberg, Stephen J; Shall, Mary S

    2007-11-01

    The ferret has become a popular model for physiological and neurodevelopmental research in the visual system. We believed it important, therefore, to study extraocular whole muscle as well as single motor unit physiology in the ferret. Using extracellular stimulation, 62 individual motor units in the ferret abducens nucleus were evaluated for their contractile characteristics. Of these motor units, 56 innervated the lateral rectus (LR) muscle alone, while 6 were split between the LR and retractor bulbi (RB) muscle slips. In addition to individual motor units, the whole LR muscle was evaluated for twitch, tetanic peak force, and fatigue. The abducens nucleus motor units showed a twitch contraction time of 15.4 ms, a mean twitch tension of 30.2 mg, and an average fusion frequency of 154 Hz. Single-unit fatigue index averaged 0.634. Whole muscle twitch contraction time was 16.7 ms with a mean twitch tension of 3.32 g. The average fatigue index of whole muscle was 0.408. The abducens nucleus was examined with horseradish peroxidase conjugated with the subunit B of cholera toxin histochemistry and found to contain an average of 183 motoneurons. Samples of LR were found to contain an average of 4,687 fibers, indicating an LR innervation ratio of 25.6:1. Compared with cat and squirrel monkeys, the ferret LR motor units contract more slowly yet more powerfully. The functional visual requirements of the ferret may explain these fundamental differences.

  8. Critical Power: An Important Fatigue Threshold in Exercise Physiology.

    PubMed

    Poole, David C; Burnley, Mark; Vanhatalo, Anni; Rossiter, Harry B; Jones, Andrew M

    2016-11-01

    : The hyperbolic form of the power-duration relationship is rigorous and highly conserved across species, forms of exercise, and individual muscles/muscle groups. For modalities such as cycling, the relationship resolves to two parameters, the asymptote for power (critical power [CP]) and the so-called W' (work doable above CP), which together predict the tolerable duration of exercise above CP. Crucially, the CP concept integrates sentinel physiological profiles-respiratory, metabolic, and contractile-within a coherent framework that has great scientific and practical utility. Rather than calibrating equivalent exercise intensities relative to metabolically distant parameters such as the lactate threshold or V˙O2max, setting the exercise intensity relative to CP unifies the profile of systemic and intramuscular responses and, if greater than CP, predicts the tolerable duration of exercise until W' is expended, V˙O2max is attained, and intolerance is manifested. CP may be regarded as a "fatigue threshold" in the sense that it separates exercise intensity domains within which the physiological responses to exercise can (CP) be stabilized. The CP concept therefore enables important insights into 1) the principal loci of fatigue development (central vs. peripheral) at different intensities of exercise and 2) mechanisms of cardiovascular and metabolic control and their modulation by factors such as O2 delivery. Practically, the CP concept has great potential application in optimizing athletic training programs and performance as well as improving the life quality for individuals enduring chronic disease.

  9. Light as a chronobiologic countermeasure for long-duration space operations

    NASA Technical Reports Server (NTRS)

    Samel, Alexander (Editor); Gander, Philippa (Editor); Evans, Julie; Graeber, R. Curtis; Hackett, Elizabeth; Keil, Lanny; Maab, Hartmut; Raabe, Wolfgang; Rosekind, Mark; Rountree, Mike

    1991-01-01

    Long-duration space missions require adaptation to work-rest schedules which are substantially shifted with respect to earth. Astronauts are expected to work in two-shift operations and the environmental synchronizers (zeitgebers) in a spacecraft differ significantly from those on earth. A study on circadian rhythms, sleep, and performance was conducted by exposing four subjects to 6 deg head-down tilt bedrest (to simulate the effects of the weightless condition) and imposing a 12-h shift (6 h delay per day for two days). Bright light was tested in a cross-over design as a countermeasure for achieving faster resynchronization and regaining stable conditions for sleep and circadian rhythmicity. Data collection included objective sleep recording, temperature, heart rate, and excretion of hormones and electrolytes as well as performance and responses to questionnaires. Even without a shift in the sleep-wake cycle, the sleep quantity, circadian amplitudes and 24 h means decreased in many functions under bedrest conditions. During the shift days, sleepiness and fatigue increased, and alertness decreased. However, sleep quantity was regained, and resynchronization was completed within seven days after the shift for almost all functions, irrespective of whether light was administered during day-time or night-time hours. The time of day of light exposure surprisingly appeared not to have a discriminatory effect on the resynchronization speed under shift and bedrest conditions. The results indicate that simulated weightlessness alters circadian rhythms and sleep, and that schedule changes induce additional physiological disruption with decreased subjective alertness and increased fatigue. Because of their operational implications, these phenomena deserve additional investigation.

  10. Physical activity buffers fatigue only under low chronic stress.

    PubMed

    Strahler, Jana; Doerr, Johanna M; Ditzen, Beate; Linnemann, Alexandra; Skoluda, Nadine; Nater, Urs M

    2016-09-01

    Fatigue is one of the most commonly reported complaints in the general population. As physical activity (PA) has been shown to have beneficial effects, we hypothesized that everyday life PA improves fatigue. Thirty-three healthy students (21 women, 22.8 ± 3.3 years, 21.7 ± 2.3 kg/m(2)) completed two ambulatory assessment periods. During five days at the beginning of the semester (control condition) and five days during final examination preparation (examination condition), participants repeatedly reported on general fatigue (awakening, 10 am, 2 pm, 6 pm and 9 pm) by means of an electronic diary, collected saliva samples for the assessment of cortisol and α-amylase immediately after providing information on fatigue and wore a triaxial accelerometer to continuously record PA. Self-perceived chronic stress was assessed as a moderator. Using hierarchical linear modeling, including PA, condition (control vs. examination), sex and chronic stress as predictors, PA level during the 15 min prior to data entry did not predict momentary fatigue level. Furthermore, there was no effect of condition. However, a significant cross-level interaction of perceived chronic stress with PA was observed. In fact, the (negative) relationship between PA and fatigue was stronger in those participants with less chronic stress. Neither cortisol nor α-amylase was significantly related to physical activity or fatigue. Our study showed an immediate short-term buffering effect of everyday life PA on general fatigue, but only when experiencing lower chronic stress. There seems to be no short-term benefit of PA in the face of higher chronic stress. These findings highlight the importance of considering chronic stress when evaluating the effectiveness of PA interventions in different target populations, in particular among chronically stressed and fatigued subjects.

  11. Experimental and modeling results of creep fatigue life of Inconel 617 and Haynes 230 at 850 C

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Xiang; Sokolov, Mikhail A; Sham, Sam

    Creep fatigue testing of Ni-based superalloy Inconel 617 and Haynes 230 were conducted in the air at 850 C. Tests were performed with fully reversed axial strain control at a total strain range of 0.5%, 1.0% or 1.5% and hold time at maximum tensile strain for 3, 10 or 30 min. In addition, two creep fatigue life prediction methods, i.e. linear damage summation and frequency-modified tensile hysteresis energy modeling, were evaluated and compared with experimental results. Under all creep fatigue tests, Haynes 230 performed better than Inconel 617. Compared to the low cycle fatigue life, the cycles to failure formore » both materials decreased under creep fatigue test conditions. Longer hold time at maximum tensile strain would cause a further reduction in both material creep fatigue life. The linear damage summation could predict the creep fatigue life of Inconel 617 for limited test conditions, but considerably underestimated the creep fatigue life of Haynes 230. In contrast, frequency-modified tensile hysteresis energy modeling showed promising creep fatigue life prediction results for both materials.« less

  12. Experimental and modeling results of creep-fatigue life of Inconel 617 and Haynes 230 at 850 °C

    NASA Astrophysics Data System (ADS)

    Chen, Xiang; Sokolov, Mikhail A.; Sham, Sam; Erdman, Donald L., III; Busby, Jeremy T.; Mo, Kun; Stubbins, James F.

    2013-01-01

    Creep-fatigue testing of Ni-based superalloy Inconel 617 and Haynes 230 were conducted in the air at 850 °C. Tests were performed with fully reversed axial strain control at a total strain range of 0.5%, 1.0% or 1.5% and hold time at maximum tensile strain for 3, 10 or 30 min. In addition, two creep-fatigue life prediction methods, i.e. linear damage summation and frequency-modified tensile hysteresis energy modeling, were evaluated and compared with experimental results. Under all creep-fatigue tests, Haynes 230 performed better than Inconel 617. Compared to the low cycle fatigue life, the cycles to failure for both materials decreased under creep-fatigue test conditions. Longer hold time at maximum tensile strain would cause a further reduction in both material creep-fatigue life. The linear damage summation could predict the creep-fatigue life of Inconel 617 for limited test conditions, but considerably underestimated the creep-fatigue life of Haynes 230. In contrast, frequency-modified tensile hysteresis energy modeling showed promising creep-fatigue life prediction results for both materials.

  13. Predictors and treatment strategies of HIV-related fatigue in the combined antiretroviral therapy era.

    PubMed

    Jong, Eefje; Oudhoff, Lisanne A; Epskamp, Cynthia; Wagener, Marlies N; van Duijn, Miranda; Fischer, Steven; van Gorp, Eric Cm

    2010-06-19

    To assess predictors and reported treatment strategies of HIV-related fatigue in the combined antiretroviral (cART) era. Five databases were searched and reference lists of pertinent articles were checked. Studies published since 1996 on predictors or therapy of HIV-related fatigue measured by a validated instrument were selected. A total of 42 studies met the inclusion criteria. The reported HIV-related fatigue prevalence in the selected studies varied from 33 to 88%. The strongest predictors for sociodemographic variables were unemployment and inadequate income. Concerning HIV-associated factors, the use of cART was the strongest predictor. Comorbidity and sleeping difficulties were important factors when assessing physiological influences. Laboratory parameters were not predictive of fatigue. The strongest and most uniform associations were observed between fatigue and psychological factors such as depression and anxiety. Reported therapeutic interventions for HIV-related fatigue include testosterone, psycho-stimulants (dextroamphetamine, methylphenidate hydrochloride, pemoline, modafinil), dehydroepiandrosterone, fluoxetine and cognitive behavioural or relaxation therapy. HIV-related fatigue has a high prevalence and is strongly associated with psychological factors such as depression and anxiety. A validated instrument should be used to measure intensity and consequences of fatigue in HIV-infected individuals. In the case of fatigue, clinicians should not only search for physical mechanisms, but should question depression and anxiety in detail. There is a need for intervention studies comparing the effect of medication (antidepressants, anxiolytics) and behavioural interventions (cognitive-behavioural therapy, relaxation therapy, graded exercise therapy) to direct the best treatment strategy. Treatment of HIV-related fatigue is important in the care for HIV-infected patients and requires a multidisciplinary approach.

  14. A Taxonomy of Fatigue Concepts and Their Relation to Hearing Loss

    PubMed Central

    Hornsby, Benjamin W.Y.; Naylor, Graham; Bess, Fred H.

    2016-01-01

    Fatigue is common in individuals with a variety of chronic health conditions and can have significant negative effects on quality of life. Although limited in scope, recent work suggests persons with hearing loss may be at increased risk for fatigue, in part due to effortful listening that is exacerbated by their hearing impairment. However, the mechanisms responsible for hearing loss-related fatigue, and the efficacy of audiologic interventions for reducing fatigue, remain unclear. To improve our understanding of hearing loss-related fatigue, as a field it is important to develop a common conceptual understanding of this construct. In this paper the broader fatigue literature is reviewed to identify and describe core constructs, consequences and methods for assessing fatigue and related constructs. Finally, our current knowledge linking hearing loss and fatigue is described and may be summarised as follows: Hearing impairment increases the risk of subjective fatigue and vigor deficits.Adults with hearing loss require more time to recover from fatigue after work, and have more work absences.Sustained, effortful, listening can be fatiguing.Optimal methods for eliciting and measuring fatigue in persons with hearing loss remain unclear and may vary with listening condition.Amplification may minimize decrements in cognitive processing speed during sustained effortful listening. Future research is needed to develop reliable measurement methods to quantify hearing loss-related fatigue; explore factors responsible for modulating fatigue in people with hearing loss; and identify and evaluate potential interventions for reducing hearing loss-related fatigue. PMID:27355763

  15. Capsaicin Supplementation Reduces Physical Fatigue and Improves Exercise Performance in Mice

    PubMed Central

    Hsu, Yi-Ju; Huang, Wen-Ching; Chiu, Chien-Chao; Liu, Yan-Lin; Chiu, Wan-Chun; Chiu, Chun-Hui; Chiu, Yen-Shuo; Huang, Chi-Chang

    2016-01-01

    Chili pepper is used as a food, seasoning and has been revered for its medicinal and health claims. It is very popular and is the most common spice worldwide. Capsaicin (CAP) is a major pungent and bioactive phytochemical in chili peppers. CAP has been shown to improve mitochondrial biogenesis and adenosine triphosphate (ATP) production. However, there is limited evidence around the effects of CAP on physical fatigue and exercise performance. The purpose of this study was to evaluate the potential beneficial effects of CAP on anti-fatigue and ergogenic functions following physiological challenge. Female Institute of Cancer Research (ICR) mice from four groups (n = 8 per group) were orally administered CAP for 4 weeks at 0, 205, 410, and 1025 mg/kg/day, which were respectively designated the vehicle, CAP-1X, CAP-2X, and CAP-5X groups. The anti-fatigue activity and exercise performance was evaluated using forelimb grip strength, exhaustive swimming time, and levels of serum lactate, ammonia, glucose, BUN (blood urea nitrogen) and creatine kinase (CK) after a 15-min swimming exercise. The grip strength and exhaustive swimming time of the CAP-5X group were significantly higher than other groups. CAP supplementation dose-dependently reduced serum lactate, ammonia, BUN and CK levels, and increased glucose concentration after the 15-min swimming test. In addition, CAP also increased hepatic glycogen content, an important energy source for exercise. The possible mechanism was relevant to energy homeostasis and the physiological modulations by CAP supplementation. Therefore, our results suggest that CAP supplementation may have a wide spectrum of bioactivities for promoting health, performance improvement and fatigue amelioration. PMID:27775591

  16. Capsaicin Supplementation Reduces Physical Fatigue and Improves Exercise Performance in Mice.

    PubMed

    Hsu, Yi-Ju; Huang, Wen-Ching; Chiu, Chien-Chao; Liu, Yan-Lin; Chiu, Wan-Chun; Chiu, Chun-Hui; Chiu, Yen-Shuo; Huang, Chi-Chang

    2016-10-20

    Chili pepper is used as a food, seasoning and has been revered for its medicinal and health claims. It is very popular and is the most common spice worldwide. Capsaicin (CAP) is a major pungent and bioactive phytochemical in chili peppers. CAP has been shown to improve mitochondrial biogenesis and adenosine triphosphate (ATP) production. However, there is limited evidence around the effects of CAP on physical fatigue and exercise performance. The purpose of this study was to evaluate the potential beneficial effects of CAP on anti-fatigue and ergogenic functions following physiological challenge. Female Institute of Cancer Research (ICR) mice from four groups ( n = 8 per group) were orally administered CAP for 4 weeks at 0, 205, 410, and 1025 mg/kg/day, which were respectively designated the vehicle, CAP-1X, CAP-2X, and CAP-5X groups. The anti-fatigue activity and exercise performance was evaluated using forelimb grip strength, exhaustive swimming time, and levels of serum lactate, ammonia, glucose, BUN (blood urea nitrogen) and creatine kinase (CK) after a 15-min swimming exercise. The grip strength and exhaustive swimming time of the CAP-5X group were significantly higher than other groups. CAP supplementation dose-dependently reduced serum lactate, ammonia, BUN and CK levels, and increased glucose concentration after the 15-min swimming test. In addition, CAP also increased hepatic glycogen content, an important energy source for exercise. The possible mechanism was relevant to energy homeostasis and the physiological modulations by CAP supplementation. Therefore, our results suggest that CAP supplementation may have a wide spectrum of bioactivities for promoting health, performance improvement and fatigue amelioration.

  17. Effect of partition board color on mood and autonomic nervous function.

    PubMed

    Sakuragi, Sokichi; Sugiyama, Yoshiki

    2011-12-01

    The purpose of this study was to evaluate the effects of the presence or absence (control) of a partition board and its color (red, yellow, blue) on subjective mood ratings and changes in autonomic nervous system indicators induced by a video game task. The increase in the mean Profile of Mood States (POMS) Fatigue score and mean Oppressive feeling rating after the task was lowest with the blue partition board. Multiple-regression analysis identified oppressive feeling and error scores on the second half of the task as statistically significant contributors to Fatigue. While explanatory variables were limited to the physiological indices, multiple-regression analysis identified a significant contribution of autonomic reactivity (assessed by heart rate variability) to Fatigue. These results suggest that a blue partition board would reduce task-induced subjective fatigue, in part by lowering the oppressive feeling of being enclosed during the task, possibly by increasing autonomic reactivity.

  18. Analysis of Physiological, Technical, and Tactical Analysis during a Friendly Football Match of Elite U19.

    PubMed

    Ortega, Juan Ignacio; Evangelio, Carlos; Clemente, Filipe Manuel; Martins, Fernando Manuel Lourenço; González-Víllora, Sixto

    2016-06-16

    The main objective was to analyze a friendly match of youth elite soccer players identifying the variance of tactical and physiological response parameters during the game. In addition, detecting the impact of both halves on player performance. For the purposes of this study twenty-two U19 players were analyzed playing 11v11. Activity profile, heart rate (HR and HRmax), grouped in five different zones were analyzed via Bluetooth technology, technical performance was analyzed by the Team Sport Assessment Procedure (TSAP), and tactical performance was measured by Social Network Analysis. A comparison of heart rate responses showed significant main effects in the halves (p = 0.001; η p 2 = 0.623). A comparison between tactical position and technical performance had significant main effects (p = 0.001; η p 2 = 0.390). Tactical position showed statistically significant effects on tactical prominence (p = 0.002; η p 2 = 0.296). Therefore, fatigue is a component distinguished in technical/tactical parameters, such as volume of play and efficiency index. Results suggest that fatigue effects may constrain technical performance and, for that reason, the use of instruments to monitor the fatigue effect during matches may be suggested.

  19. The Fire-Walker’s High: Affect and Physiological Responses in an Extreme Collective Ritual

    PubMed Central

    Fischer, Ronald; Xygalatas, Dimitris; Mitkidis, Panagiotis; Reddish, Paul; Tok, Penny; Konvalinka, Ivana; Bulbulia, Joseph

    2014-01-01

    How do people feel during extreme collective rituals? Despite longstanding speculation, few studies have attempted to quantify ritual experiences. Using a novel pre/post design, we quantified physiological fluctuations (heart rates) and self-reported affective states from a collective fire-walking ritual in a Mauritian Hindu community. Specifically, we compared changes in levels of happiness, fatigue, and heart rate reactivity among high-ordeal participants (fire-walkers), low-ordeal participants (non-fire-walking participants with familial bonds to fire-walkers) and spectators (unrelated/unknown to the fire-walkers). We observed that fire-walkers experienced the highest increase in heart rate and reported greater happiness post-ritual compared to low-ordeal participants and spectators. Low-ordeal participants reported increased fatigue after the ritual compared to both fire-walkers and spectators, suggesting empathetic identification effects. Thus, witnessing the ritualistic suffering of loved ones may be more exhausting than experiencing suffering oneself. The findings demonstrate that the level of ritual involvement is important for shaping affective responses to collective rituals. Enduring a ritual ordeal is associated with greater happiness, whereas observing a loved-one endure a ritual ordeal is associated with greater fatigue post-ritual. PMID:24586315

  20. Analysis of Physiological, Technical, and Tactical Analysis during a Friendly Football Match of Elite U19

    PubMed Central

    Ortega, Juan Ignacio; Evangelio, Carlos; Clemente, Filipe Manuel; Martins, Fernando Manuel Lourenço; González-Víllora, Sixto

    2016-01-01

    The main objective was to analyze a friendly match of youth elite soccer players identifying the variance of tactical and physiological response parameters during the game. In addition, detecting the impact of both halves on player performance. For the purposes of this study twenty-two U19 players were analyzed playing 11v11. Activity profile, heart rate (HR and HRmax), grouped in five different zones were analyzed via Bluetooth technology, technical performance was analyzed by the Team Sport Assessment Procedure (TSAP), and tactical performance was measured by Social Network Analysis. A comparison of heart rate responses showed significant main effects in the halves (p = 0.001; ηp2 = 0.623). A comparison between tactical position and technical performance had significant main effects (p = 0.001; ηp2 = 0.390). Tactical position showed statistically significant effects on tactical prominence (p = 0.002; ηp2 = 0.296). Therefore, fatigue is a component distinguished in technical/tactical parameters, such as volume of play and efficiency index. Results suggest that fatigue effects may constrain technical performance and, for that reason, the use of instruments to monitor the fatigue effect during matches may be suggested. PMID:29910283

  1. The fire-walker's high: affect and physiological responses in an extreme collective ritual.

    PubMed

    Fischer, Ronald; Xygalatas, Dimitris; Mitkidis, Panagiotis; Reddish, Paul; Tok, Penny; Konvalinka, Ivana; Bulbulia, Joseph

    2014-01-01

    How do people feel during extreme collective rituals? Despite longstanding speculation, few studies have attempted to quantify ritual experiences. Using a novel pre/post design, we quantified physiological fluctuations (heart rates) and self-reported affective states from a collective fire-walking ritual in a Mauritian Hindu community. Specifically, we compared changes in levels of happiness, fatigue, and heart rate reactivity among high-ordeal participants (fire-walkers), low-ordeal participants (non-fire-walking participants with familial bonds to fire-walkers) and spectators (unrelated/unknown to the fire-walkers). We observed that fire-walkers experienced the highest increase in heart rate and reported greater happiness post-ritual compared to low-ordeal participants and spectators. Low-ordeal participants reported increased fatigue after the ritual compared to both fire-walkers and spectators, suggesting empathetic identification effects. Thus, witnessing the ritualistic suffering of loved ones may be more exhausting than experiencing suffering oneself. The findings demonstrate that the level of ritual involvement is important for shaping affective responses to collective rituals. Enduring a ritual ordeal is associated with greater happiness, whereas observing a loved-one endure a ritual ordeal is associated with greater fatigue post-ritual.

  2. Effects of firefighters' self-contained breathing apparatus' weight and its harness design on the physiological and subjective responses.

    PubMed

    Bakri, Ilham; Lee, Joo-Young; Nakao, Kouhei; Wakabayashi, Hitoshi; Tochihara, Yutaka

    2012-01-01

    To examine the effects of firefighters' self-contained breathing apparatus' (SCBA) weight and its harness design on the physiological and subjective responses, eight male students performed treadmill exercise under four conditions: the 8 kg firefighter protective clothing (PC) (Control), the PC + an 11 kg SCBA with an old harness (Test A), the PC + a 6.4 kg SCBA with an old harness (Test B) and the PC + a 6.4 kg SCBA with a new harness (Test C), at ambient temperatures (T(a)) of 22°C and 32°C. Besides highlighting the fact that a heavy SCBA had a significant effect on the oxygen consumption and metabolic rate, this experiment also found that in a T(a) of 32°C, in particular, the combined effect of 4.7 kg lighter SCBA and new harness design could reduce metabolic rate and improved subjective muscle fatigue and thermal discomfort. An effort to alleviate the physiological and subjective burden of firefighters by reducing the weight of SCBA and by using the new harness design has provided satisfactory results in reduced oxygen consumption and in improved subjective responses in a hot air environment.

  3. Biomedical research on the International Space Station postural and manipulation problems of the human upper limb in weightlessness

    NASA Astrophysics Data System (ADS)

    Neri, Gianluca; Zolesi, Valfredo

    2000-01-01

    Accumulated evidence, based on information gathered on space flight missions and ground based models involving both humans and animals, clearly suggests that exposure to states of microgravity conditions for varying duration induces certain physiological changes; they involve cardiovascular deconditioning, balance disorders, bone weakening, muscle hypertrophy, disturbed sleep patterns and depressed immune responses. The effects of the microgravity on the astronauts' movement and attitude have been studied during different space missions, increasing the knowledge of the human physiology in weightlessness. The purpose of the research addressed in the present paper is to understand and to assess the performances of the upper limb, especially during grasp. Objects of the research are the physiological changes related to the long-term duration spaceflight environment. Specifically, the changes concerning the upper limb are investigated, with particular regard to the performances of the hand in zero-g environments. This research presents also effects on the Earth, improving the studies on a number of pathological states, on the health care and the rehabilitation. In this perspective, a set of experiments are proposed, aimed at the evaluation of the effects of the zero-g environments on neurophysiology of grasping movements, fatigue assessment, precision grip. .

  4. Characterization and Modeling of Asphalt Binder Fatigue

    NASA Astrophysics Data System (ADS)

    Safaei, Farinaz

    Fatigue cracking is a primary distress in asphalt pavements caused by the accumulation of damage under repeated traffic loading. Many factors influence fatigue damage in pavements, including pavement structure, environmental conditions, and asphalt mixture volumetric properties. Asphalt binder is the weakest asphalt concrete constituent and, thus, plays a critical role in determining the fatigue resistance of pavements. Therefore, the ability to characterize and model the inherent fatigue performance of an asphalt binder is a necessary first step to design. A comprehensive understanding and prediction of asphalt binder fatigue performance require a suitable experiment coupled with a model to predict how the binder will perform under various traffic, temperature, and structural conditions encountered in the field. The simplified viscoelastic continuum damage (S-VECD) model has been used successfully by researchers to predict the damage evolution in asphalt mixtures for various traffic and climatic conditions using limited uniaxial test data. Although the literature shows promise for applying VECD modeling to asphalt binder fatigue, the past efforts have several shortcomings. It has been demonstrated that flow and adhesion loss can impede DSR fatigue test results. Thus, definition of test conditions (e.g., temperature) where cyclic DSR tests are appropriate for fatigue characterization of binders is necessary. In addition, the applicability of the model to predict fatigue performance under varying loading and thermal history has not been rigorously evaluated. Furthermore, the effects of material nonlinearity have been largely neglected in past modeling efforts for simplicity. In addition, past efforts have employed the parallel plate DSR geometry for the fatigue characterization of asphalt binders. In the parallel plate geometry, the strain depends on the radial distance from the specimen center. Therefore, the material will fail at different rates as a function of radial location. Past efforts have neglected the radial strain gradient, using the apparent shear stress at the sample edge to infer fatigue damage and derive S-VECD model parameters. Apparent edge stress is calculated using linear mapping to the total torque, which is erroneous in the presence of material or geometric nonlinearities (such as cracking). This study seeks to overcome the aforementioned shortcomings of past efforts to improve the ability to characterize and predict asphalt binder fatigue.

  5. Defining the Physiological Factors that Contribute to Postflight Changes in Functional Performance

    NASA Technical Reports Server (NTRS)

    Bloomberg, J. J.; Arzeno, N.; Buxton, R.; Feiveson, A. H.; Kofman, I.; Lawrence, E.; Lee, S. M. C.; Mulavara, A. P.; Peters, B. T.; Platts, S. H.; hide

    2009-01-01

    Astronauts experience alterations in multiple physiological systems due to exposure to the microgravity conditions of space flight. These physiological changes include sensorimotor disturbances, cardiovascular deconditioning and loss of muscle mass and strength. These changes might affect the ability of crewmembers to perform critical mission tasks immediately after landing on lunar and Martian surfaces. To date, changes in functional performance have not been systematically studied or correlated with physiological changes. To understand how changes in physiological function impact functional performance an interdisciplinary pre/postflight testing regimen (Functional Task Test, FTT) has been developed that systematically evaluates both astronaut postflight functional performance and related physiological changes. The overall objective of the FTT is to identify the key underlying physiological factors that contribute to performance of functional tests that are representative of critical mission tasks. This study will identify which physiological systems contribute the most to impaired performance on each functional test. This will allow us to identify the physiological systems that play the largest role in decrement in functional performance. Using this information we can then design and implement countermeasures that specifically target the physiological systems most responsible for the altered functional performance associated with space flight. The functional test battery was designed to address high priority tasks identified by the Constellation program as critical for mission success. The set of functional tests making up the FTT include the: 1) Seat Egress and Walk Test, 2) Ladder Climb Test, 3) Recovery from Fall/Stand Test, 4) Rock Translation Test, 5) Jump Down Test, 6) Torque Generation Test, and 7) Construction Activity Board Test. Corresponding physiological measures include assessments of postural and gait control, dynamic visual acuity, fine motor control, plasma volume, orthostatic intolerance, upper and lower body muscle strength, power, fatigue, control and neuromuscular drive. Crewmembers perform both functional and physiological tests before and after short (Shuttle) and long-duration (ISS) space flight. Data are collected on R+0 (Shuttle only), R+1, R+6 and R+30.

  6. Cyclic fatigue damage characteristics observed for simple loadings extended to multiaxial life prediction

    NASA Technical Reports Server (NTRS)

    Jones, David J.; Kurath, Peter

    1988-01-01

    Fully reversed uniaxial strain controlled fatigue tests were performed on smooth cylindrical specimens made of 304 stainless steel. Fatigue life data and cracking observations for uniaxial tests were compared with life data and cracking behavior observed in fully reversed torsional tests. It was determined that the product of maximum principle strain amplitude and maximum principle stress provided the best correlation of fatigue lives for these two loading conditions. Implementation of this parameter is in agreement with observed physical damage and it accounts for the variation of stress-strain response, which is unique to specific loading conditions. Biaxial fatigue tests were conducted on tubular specimens employing both in-phase and out-of-phase tension torsion cyclic strain paths. Cracking observations indicated that the physical damage which occurred in the biaxial tests was similar to the damage observed in uniaxial and torsional tests. The Smith, Watson, and Topper parameter was then extended to predict the fatigue lives resulting from the more complex loading conditions.

  7. Kinetic Post-match Fatigue in Professional and Youth Soccer Players During the Competitive Period

    PubMed Central

    Djaoui, Leo; Diaz-Cidoncha Garcia, Jorge; Hautier, Christophe; Dellal, Alexandre

    2016-01-01

    Background No previous research has analysed kinetic fatigue of elite adult players and elite youth players during the competitive period. Objectives The aim of the present study was to analyse kinetic post-match fatigue in professional and youth soccer players during the competitive period. Materials and Methods resting heart rate (HRrest), post-effort recovery heart rate (HRrecovery), rate of perceived exertion fatigue (RPEf), muscle soreness and blood samples with creatine kinase (CK) and resting lactate (La) from nine professional soccer players were measured immediately before, 24 hour and 48 hour after two official French first league matches (Ligue 1) whereas RPEf, HRrest, and 20m speed performance (speed-20 m) were measured in ten U-17 elite players immediately before, 24 hour and 48h after a friendly match. Results for professionals, a soccer match elevated all physiological markers during the next 24 hours (P < 0.05); only HRrecovery remained significantly different 48 hours after the match (P < 0.05) whereas there was no variation of HRrest, RPEf, and speed-20m, which were elevated until 24h and got back to reference values 48 hours after the match (P < 0.05) for the U17 players. Comparing the two groups, HRrest results remained lower all the time for professionals, and RPEf was lower for U-17, 24 hours after the match (P < 0.05). Conclusions Independent of their level, professional soccer players, need 48 hours to recover after an official match. Professionals gain more fatigue than young players after a match, but recover as fast. Thus, they recover more efficiently especially due to a better physical condition and fitness training. It is expected that the results showed in the study help elite soccer and fitness coaches to manage the training load of the team according to the match. PMID:27217927

  8. Thermomechanical and isothermal fatigue behavior of a (90)sub 8 titanium matrix composite

    NASA Technical Reports Server (NTRS)

    Castelli, Michael G.

    1993-01-01

    An experimental investigation was conducted to analyze the fatigue damage mechanisms operative in a 35 fiber volume percent (90 deg) titanium matrix composite (TMC) under 427 C isothermal and thermomechanical loading conditions. The thermomechanical fatigue (TMF) tests were performed with a temperature cycle from 200 to 427 C under closely controlled conditions to define both the deformation and fatigue life behavior. Degradation of the TMC's isothermal elastic moduli and coefficient of thermal expansion were monitored throughout the TMF tests. The results indicated TMF life trends which contrasted those established in a comparable (0 deg) system, as TMF loading of the (90 deg) TMC was not found to be 'life-limiting' in comparison to maximum temperature isothermal conditions. In-phase lives were very similar to those established under 427 C isothermal conditions. High stress isothermal fatigue at 427 C produced increased strain ratchetting and stiffness degradation relative to TMF conditions. Out-of-phase loadings produced TMF lives approximately an order of magnitude greater than the lives determined under isothermal and in-phase conditions. Extensive fractography and metallography were also performed. Two key issues were identified and appeared to dominate the fatigue damage and life of the (90 deg) TMC, namely, the weak fiber/matrix interface and environmental attack of the fiber/matrix interface via the exposed (90 deg) fiber ends.

  9. Fatigue and voluntary utilization of automation in simulated driving.

    PubMed

    Neubauer, Catherine; Matthews, Gerald; Langheim, Lisa; Saxby, Dyani

    2012-10-01

    A driving simulator was used to assess the impact on fatigue, stress, and workload of full vehicle automation that was initiated by the driver. Previous studies have shown that mandatory use of full automation induces a state of "passive fatigue" associated with loss of alertness. By contrast, voluntary use of automation may enhance the driver's perceptions of control and ability to manage fatigue. Participants were assigned to one of two experimental conditions, automation optional (AO) and nonautomation (NA), and then performed a 35 min, monotonous simulated drive. In the last 5 min, automation was unavailable and drivers were required to respond to an emergency event. Subjective state and workload were evaluated before and after the drive. Making automation available to the driver failed to alleviate fatigue and stress states induced by driving in monotonous conditions. Drivers who were fatigued prior to the drive were more likely to choose to use automation, but automation use increased distress, especially in fatigue-prone drivers. Drivers in the AO condition were slower to initiate steering responses to the emergency event, suggesting optional automation may be distracting. Optional, driver-controlled automation appears to pose the same dangers to task engagement and alertness as externally initiated automation. Drivers of automated vehicles may be vulnerable to fatigue that persists when normal vehicle control is restored. It is important to evaluate automated systems' impact on driver fatigue, to seek design solutions to the issue of maintaining driver engagement, and to address the vulnerabilities of fatigue-prone drivers.

  10. Influence of shear cutting parameters on the fatigue behavior of a dual-phase steel

    NASA Astrophysics Data System (ADS)

    Paetzold, I.; Dittmann, F.; Feistle, M.; Golle, R.; Haefele, P.; Hoffmann, H.; Volk, W.

    2017-09-01

    The influence of the edge condition of car body and chassis components made of steel sheet on fatigue behavior under dynamic loading presents a major challenge for automotive manufacturers and suppliers. The calculated lifetime is based on material data determined by the fatigue testing of specimens with polished edges. Prototype components are often manufactured by milling or laser cutting, whereby in practice, the series components are produced by shear cutting due to its cost-efficiency. Since the fatigue crack in such components usually starts from a shear cut edge, the calculated and experimental determined lifetime will vary due to the different conditions at the shear cut edges. Therefore, the material data determined with polished edges can result in a non-conservative component design. The aim of this study is to understand the relationship between the shear cutting process and the fatigue behavior of a dual-phase steel sheet. The geometry of the shear cut edge as well as the depth and degree of work hardening in the shear affected zone can be adjusted by using specific shear cutting parameters, such as die clearance and cutting edge radius. Stress-controlled fatigue tests of unnotched specimens were carried out to compare the fatigue behavior of different edge conditions. By evaluating the results of the fatigue experiments, influential shear cutting parameters on fatigue behavior were identified. It was possible to assess investigated shear cutting strategies regarding the fatigue behavior of a high-strength steel DP800.

  11. Influence of inspiratory resistive loading on expiratory muscle fatigue in healthy humans.

    PubMed

    Peters, Carli M; Welch, Joseph F; Dominelli, Paolo B; Molgat-Seon, Yannick; Romer, Lee M; McKenzie, Donald C; Sheel, A William

    2017-09-01

    What is the central question of this study? This study is the first to measure objectively both inspiratory and expiratory muscle fatigue after inspiratory resistive loading to determine whether the expiratory muscles are activated to the point of fatigue when specifically loading the inspiratory muscles. What is the main finding and its importance? The absence of abdominal muscle fatigue suggests that future studies attempting to understand the neural and circulatory consequences of diaphragm fatigue can use inspiratory resistive loading without considering the confounding effects of abdominal muscle fatigue. Expiratory resistive loading elicits inspiratory as well as expiratory muscle fatigue, suggesting parallel coactivation of the inspiratory muscles during expiration. It is unknown whether the expiratory muscles are likewise coactivated to the point of fatigue during inspiratory resistive loading (IRL). The purpose of this study was to determine whether IRL elicits expiratory as well as inspiratory muscle fatigue. Healthy male subjects (n = 9) underwent isocapnic IRL (60% maximal inspiratory pressure, 15 breaths min -1 , 0.7 inspiratory duty cycle) to task failure. Abdominal and diaphragm contractile function was assessed at baseline and at 3, 15 and 30 min post-IRL by measuring gastric twitch pressure (P ga,tw ) and transdiaphragmatic twitch pressure (P di,tw ) in response to potentiated magnetic stimulation of the thoracic and phrenic nerves, respectively. Fatigue was defined as a significant reduction from baseline in P ga,tw or P di,tw . Throughout IRL, there was a time-dependent increase in cardiac frequency and mean arterial blood pressure, suggesting activation of the respiratory muscle metaboreflex. The P di,tw was significantly lower than baseline (34.3 ± 9.6 cmH 2 O) at 3 (23.2 ± 5.7 cmH 2 O, P < 0.001), 15 (24.2 ± 5.1 cmH 2 O, P < 0.001) and 30 min post-IRL (26.3 ± 6.0 cmH 2 O, P < 0.001). The P ga,tw was not significantly different from baseline (37.6 ± 17.1 cmH 2 O) at 3 (36.5 ± 14.6 cmH 2 O), 15 (33.7 ± 12.4 cmH 2 O) and 30 min post-IRL (32.9 ± 11.3 cmH 2 O). Inspiratory resistive loading elicits objective evidence of diaphragm, but not abdominal, muscle fatigue. Agonist-antagonist interactions for the respiratory muscles appear to be more important during expiratory versus inspiratory loading. © 2017 The Authors. Experimental Physiology © 2017 The Physiological Society.

  12. Exercise-induced quadriceps muscle fatigue in men and women: effects of arterial oxygen content and respiratory muscle work.

    PubMed

    Dominelli, Paolo B; Molgat-Seon, Yannick; Griesdale, Donald E G; Peters, Carli M; Blouin, Jean-Sébastien; Sekhon, Mypinder; Dominelli, Giulio S; Henderson, William R; Foster, Glen E; Romer, Lee M; Koehle, Michael S; Sheel, A William

    2017-08-01

    High work of breathing and exercise-induced arterial hypoxaemia (EIAH) can decrease O 2 delivery and exacerbate exercise-induced quadriceps fatigue in healthy men. Women have a higher work of breathing during exercise, dedicate a greater fraction of whole-body V̇O2 towards their respiratory muscles and develop EIAH. Despite a greater reduction in men's work of breathing, the attenuation of quadriceps fatigue was similar between the sexes. The degree of EIAH was similar between sexes, and regardless of sex, those who developed the greatest hypoxaemia during exercise demonstrated the most attenuation of quadriceps fatigue. Based on our previous finding that women have a greater relative oxygen cost of breathing, women appear to be especially susceptible to work of breathing-related changes in quadriceps muscle fatigue. Reducing the work of breathing or eliminating exercise-induced arterial hypoxaemia (EIAH) during exercise decreases the severity of quadriceps fatigue in men. Women have a greater work of breathing during exercise, dedicate a greater fraction of whole-body V̇O2 towards their respiratory muscles, and demonstrate EIAH, suggesting women may be especially susceptible to quadriceps fatigue. Healthy subjects (8 male, 8 female) completed three constant load exercise tests over 4 days. During the first (control) test, subjects exercised at ∼85% of maximum while arterial blood gases and work of breathing were assessed. Subsequent constant load exercise tests were iso-time and iso-work rate, but with EIAH prevented by inspiring hyperoxic gas or work of breathing reduced via a proportional assist ventilator (PAV). Quadriceps fatigue was assessed by measuring force in response to femoral nerve stimulation. For both sexes, quadriceps force was equally reduced after the control trial (-27 ± 2% baseline) and was attenuated with hyperoxia and PAV (-18 ± 1 and -17 ± 2% baseline, P < 0.01, respectively), with no sex difference. EIAH was similar between the sexes, and regardless of sex, subjects with the lowest oxyhaemoglobin saturation during the control test had the greatest quadriceps fatigue attenuation with hyperoxia (r 2  = 0.79, P < 0.0001). For the PAV trial, despite reducing the work of breathing to a greater degree in men (men: 60 ± 5, women: 75 ± 6% control, P < 0.05), the attenuation of quadriceps fatigue was similar between the sexes (36 ± 4 vs. 37 ± 7%). Owing to a greater relative V̇O2 of the respiratory muscles in women, less of a change in work of breathing is needed to reduce quadriceps fatigue. © 2017 The Authors. The Journal of Physiology © 2017 The Physiological Society.

  13. EEG alpha spindle measures as indicators of driver fatigue under real traffic conditions.

    PubMed

    Simon, Michael; Schmidt, Eike A; Kincses, Wilhelm E; Fritzsche, Martin; Bruns, Andreas; Aufmuth, Claus; Bogdan, Martin; Rosenstiel, Wolfgang; Schrauf, Michael

    2011-06-01

    The purpose of this study is to show the effectiveness of EEG alpha spindles, defined by short narrowband bursts in the alpha band, as an objective measure for assessing driver fatigue under real driving conditions. An algorithm for the identification of alpha spindles is described. The performance of the algorithm is tested based on simulated data. The method is applied to real data recorded under real traffic conditions and compared with the performance of traditional EEG fatigue measures, i.e. alpha-band power. As a highly valid fatigue reference, the last 20 min of driving from participants who aborted the drive due to heavy fatigue were used in contrast to the initial 20 min of driving. Statistical analysis revealed significant increases from the first to the last driving section of several alpha spindle parameters and among all traditional EEG frequency bands, only of alpha-band power; with larger effect sizes for the alpha spindle based measures. An increased level of fatigue over the same time periods for drop-outs, as compared to participants who did not abort the drive, was observed only by means of alpha spindle parameters. EEG alpha spindle parameters increase both fatigue detection sensitivity and specificity as compared to EEG alpha-band power. It is demonstrated that alpha spindles are superior to EEG band power measures for assessing driver fatigue under real traffic conditions. Copyright © 2011 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  14. Mental Fatigue and Spatial References Impair Soccer Players' Physical and Tactical Performances

    PubMed Central

    Coutinho, Diogo; Gonçalves, Bruno; Travassos, Bruno; Wong, Del P.; Coutts, Aaron J.; Sampaio, Jaime E

    2017-01-01

    This study examined the effects of mental fatigue and additional corridor and pitch sector lines on players' physical and tactical performances during soccer small-sided games. Twelve youth players performed four Gk+6vs6+Gk small-sided games. Prior to the game, one team performed a motor coordination task to induce mental fatigue, while the other one performed a control task. A repeated measures design allowed to compare players' performances across four conditions: (a) with mental fatigue against opponents without mental fatigue in a normal pitch (MEN), (b) with mental fatigue on a pitch with additional reference lines (#MEN); (c) without mental fatigue against mentally fatigued opponents on a normal pitch (CTR); and (d) without mental fatigue on a pitch with reference lines (#CTR). Player's physical performance was assessed by the distance covered per minute and the number of accelerations and decelerations (0.5–3.0 m/s2; > −3.0 m/s2). Positional data was used to determine individual (spatial exploration index, time synchronized in longitudinal and lateral directions) and team-related variables (length, width, speed of dispersion and contraction). Unclear effects were found for the physical activity measures in most of the conditions. There was a small decrease in time spent laterally synchronized and a moderate decrease in the contraction speed when MEN compared to the CTR. Also, there was a small decrease in the time spent longitudinally synchronized during the #MEN condition compared to MEN. The results showed that mental fatigue affects the ability to use environmental information and players' positioning, while the additional reference lines may have enhanced the use of less relevant information to guide their actions during the #MEN condition. Overall, coaches could manipulate the mental fatigue and reference lines to induce variability and adaptation in young soccer players' behavior. PMID:28983273

  15. Perception and predictability of travel fatigue after long-haul flights: a retrospective study.

    PubMed

    Flower, David J C; Irvine, David; Folkard, Simon

    2003-02-01

    The impact of travel fatigue and jet lag varies between individuals and may significantly affect the ability of some to perform their occupational role following a transmeridian flight. It would be advantageous in an occupational setting to be able to predict prior to travel those who may suffer most. A Traveler Profile Questionnaire was developed to assess the perceived severity of travel fatigue in 100 subjects making transmeridian flights. The questionnaire provided an internally consistent measure of fatigue and confirmed that subjects experienced greater symptoms of travel fatigue following east/west flights when compared with north/south. Easterly travel was rated marginally worse than travel in a westerly direction. The respondents scores as measured by the Circadian Type Inventory (Folkard 1987) and Composite Morningness Questionnaire (Smith 1989) were used to identify whether such tools could be used as indicators of susceptibility to the effects of travel fatigue. After allowing for a gender difference, increased rigidity in sleeping habits as shown by a decrease in the Flexibility/Rigidity score on the Circadian Type Inventory was associated with an increase in the composite 'severity' score for travel fatigue derived from ratings of specific physiological symptoms. The Traveler Profile Questionnaire, while internally consistent was nonetheless insufficient to be used in a predictive capacity to identify those individuals who would suffer most from the effects of travel fatigue.

  16. Fatigue in Multiple Sclerosis: Neural Correlates and the Role of Non-Invasive Brain Stimulation

    PubMed Central

    Chalah, Moussa A.; Riachi, Naji; Ahdab, Rechdi; Créange, Alain; Lefaucheur, Jean-Pascal; Ayache, Samar S.

    2015-01-01

    Multiple sclerosis (MS) is a chronic progressive inflammatory disease of the central nervous system (CNS) and the major cause of non-traumatic disability in young adults. Fatigue is a frequent symptom reported by the majority of MS patients during their disease course and drastically affects their quality of life. Despite its significant prevalence and impact, the underlying pathophysiological mechanisms are not well elucidated. MS fatigue is still considered the result of multifactorial and complex constellations, and is commonly classified into “primary” fatigue related to the pathological changes of the disease itself, and “secondary” fatigue attributed to mimicking symptoms, comorbid sleep and mood disorders, and medications side effects. Radiological, physiological, and endocrine data have raised hypotheses regarding the origin of this symptom, some of which have succeeded in identifying an association between MS fatigue and structural or functional abnormalities within various brain networks. Hence, the aim of this work is to reappraise the neural correlates of MS fatigue and to discuss the rationale for the emergent use of noninvasive brain stimulation (NIBS) techniques as potential treatments. This will include a presentation of the various NIBS modalities and a suggestion of their potential mechanisms of action in this context. Specific issues related to the value of transcranial direct current stimulation (tDCS) will be addressed. PMID:26648845

  17. Effects of Wearing a Compression Garment During Night Sleep on Recovery From High-Intensity Eccentric-Concentric Quadriceps Muscle Fatigue.

    PubMed

    Shimokochi, Yohei; Kuwano, Satoshi; Yamaguchi, Taichi; Abutani, Hiroyuki; Shima, Norihiro

    2017-10-01

    This study aimed to investigate the effects of wearing a compression garment (CG) during night sleep on muscle fatigue recovery after high-intensity eccentric and concentric knee extensor exercises. Seventeen male college students participated in 2 experimental sessions under CG and non-CG (NCG) wearing conditions. Before night sleep under CG or NCG wearing conditions, the subjects performed a fatiguing protocol consisting of 10 sets of 10 repetitions of maximal isokinetic eccentric and concentric knee extensor contractions, with 30-second rest intervals between the sets. Immediately before and after and 24 hours after the fatiguing protocol, maximum voluntary isometric contraction (MVIC) force for knee extensor muscles was measured; surface electromyographic data from the vastus medialis and rectus femoris were also measured. A 2-way repeated-measure analysis of variance followed by Bonferroni pairwise comparisons were used to analyze the differences in each variable. Paired-sample t-tests were used to analyze the mean differences between the conditions at the same time points for each variable. The MVIC 24 hours after the fatiguing protocol was approximately 10% greater in the CG than in the NCG condition (p = 0.033). Changes in the electromyographic variables over time did not significantly differ between the conditions. Thus, it was concluded that wearing a CG during night sleep may promote localized muscle fatigue recovery but does not influence neurological factors after the fatiguing exercise.

  18. A telemedicine instrument for remote evaluation of tremor: design and initial applications in fatigue and patients with Parkinson's Disease

    PubMed Central

    2011-01-01

    Introduction A novel system that combines a compact mobile instrument and Internet communications is presented in this paper for remote evaluation of tremors. The system presents a high potential application in Parkinson's disease and connects to the Internet through a TCP/IP protocol. Tremor transduction is carried out by accelerometers, and the data processing, presentation and storage were obtained by a virtual instrument. The system supplies the peak frequency (fp), the amplitude (Afp) and power in this frequency (Pfp), the total power (Ptot), and the power in low (1-4 Hz) and high (4-7 Hz) frequencies (Plf and Phf, respectively). Methods The ability of the proposed system to detect abnormal tremors was initially demonstrated by a fatigue study in normal subjects. In close agreement with physiological fundamentals, the presence of fatigue increased fp, Afp, Pfp and Pt (p < 0.05), while the removal of fatigue reduced all the mentioned parameters (p < 0.05). The system was also evaluated in a preliminary in vivo test in parkinsonian patients. Afp, Pfp, Ptot, Plf and Phf were the most accurate parameters in the detection of the adverse effects of this disease (Se = 100%, Sp = 100%), followed by fp (Se = 100%, Sp = 80%). Tests for Internet transmission that realistically simulated clinical conditions revealed adequate acquisition and analysis of tremor signals and also revealed that the user could adequately receive medical recommendations. Conclusions The proposed system can be used in a wide spectrum of telemedicine scenarios, enabling the home evaluation of tremor occurrence under specific medical treatments and contributing to reduce the costs of the assistance offered to these patients. PMID:21306628

  19. Experimental Constraints on the Fatigue of Icy Satellite Lithospheres by Tidal Forces

    NASA Astrophysics Data System (ADS)

    Hammond, Noah P.; Barr, Amy C.; Cooper, Reid F.; Caswell, Tess E.; Hirth, Greg

    2018-02-01

    Fatigue can cause materials that undergo cyclic loading to experience brittle failure at much lower stresses than under monotonic loading. We propose that the lithospheres of icy satellites could become fatigued and thus weakened by cyclical tidal stresses. To test this hypothesis, we performed a series of laboratory experiments to measure the fatigue of water ice at temperatures of 198 K and 233 K and at a loading frequency of 1 Hz. We find that ice is not susceptible to fatigue at our experimental conditions and that the brittle failure stress does not decrease with increasing number of loading cycles. Even though fatigue was not observed at our experimental conditions, colder temperatures, lower loading frequencies, and impurities in the ice shells of icy satellites may increase the likelihood of fatigue crack growth. We also explore other mechanisms that may explain the weak behavior of the lithospheres of some icy satellites.

  20. Low cycle fatigue

    NASA Technical Reports Server (NTRS)

    Solomon, H. D. (Editor); Kaisand, L. R. (Editor); Halford, G. R. (Editor); Leis, B. N. (Editor)

    1988-01-01

    The papers contained in this volume focus on various aspects of low cycle fatigue, including cyclic deformation, crack propagation, high-temperature low cycle fatigue, microstructural defects, multiaxial and variable amplitude loading, and life prediction. Papers are presented on the low cycle fatigue of some aluminum alloys, prediction of crack growth under creep-fatigue loading conditions, high-temperature low cycle fatigue behavior and lifetime prediction of a nickel-base ODS alloy, and an integrated approach to creep-fatigue life prediction. Other topics discussed include thermal fatigue testing of coated monocrystalline superalloys, low cycle fatigue of Al-Mg-Si alloys, and the effect of superimposed stresses at high frequency on low cycle fatigue.

  1. Effects of sour crude oil on fatigue properties of steel plates for shipbuilding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ouchi, H.; Kobayashi, J.; Ishikawa, T.

    1994-12-31

    The concentration of diffusible hydrogen introduced into steel was measured, and fatigue crack growth tests and fatigue life tests were carried out in sour crude oil containing a high concentration of hydrogen sulfide and under electrolytic hydrogen-charging conditions in neutral solution, using a high strength steel produced by the thermo-mechanical control process (TMCP) and a mild steel which are steels for hull plates. Comparison of the results demonstrated that a very small amount of hydrogen such as that introduced into steel from sour crude oil under atmospheric pressure accelerated the fatigue crack growth in the high {Delta}K regime and shortenedmore » the fatigue life in the high stress range region, but did not shorten the fatigue life in the low stress region. The electrolytic hydrogen-charging condition appeared to be appropriate as a fatigue-crack-growth test environment to simulate sour crude oil. The deterioration of fatigue characteristics of the TMCP high strength steel was similar with that of the mild steel.« less

  2. Viscoelastic and fatigue properties of model methacrylate-based dentin adhesives

    PubMed Central

    Singh, Viraj; Misra, Anil; Marangos, Orestes; Park, Jonggu; Ye, Qiang; Kieweg, Sarah L.; Spencer, Paulette

    2013-01-01

    The objective of the current study is to characterize the viscoelastic and fatigue properties of model methacrylate-based dentin adhesives under dry and wet conditions. Static, creep, and fatigue tests were performed on cylindrical samples in a 3-point bending clamp. Static results showed that the apparent elastic modulus of the model adhesive varied from 2.56 to 3.53 GPa in the dry condition, and from 1.04 to 1.62 GPa in the wet condition, depending upon the rate of loading. Significant differences were also found for the creep behavior of the model adhesive under dry and wet conditions. A linear viscoelastic model was developed by fitting the adhesive creep behavior. The developed model with 5 Kelvin Voigt elements predicted the apparent elastic moduli measured in the static tests. The model was then utilized to interpret the fatigue test results. It was found that the failure under cyclic loading can be due to creep or fatigue, which has implications for the failure criterion that are applied for these types of tests. Finally, it was found that the adhesive samples tested under dry conditions were more durable than those tested under wet conditions. PMID:20848661

  3. Influence of fatigue and velocity on the latency and recruitment order of scapular muscles.

    PubMed

    Mendez-Rebolledo, Guillermo; Gatica-Rojas, Valeska; Guzman-Muñoz, Eduardo; Martinez-Valdes, Eduardo; Guzman-Venegas, Rodrigo; Berral de la Rosa, Francisco Jose

    2018-07-01

    To determine the influence of velocity and fatigue on scapular muscle activation latency and recruitment order during a voluntary arm raise task, in healthy individuals. Cross-sectional study. University laboratory. Twenty three male adults per group (high-velocity and low-velocity). Onset latency of scapular muscles [Anterior deltoid (AD), lower trapezius (LT), middle trapezius (MT), upper trapezius (UT), and serratus anterior (SA)] was assessed by surface electromyography. The participants were assigned to one of two groups: low-velocity or high-velocity. Both groups performed a voluntary arm raise task in the scapular plane under two conditions: no-fatigue and fatigue. The UT showed early activation (p < 0.01) in the fatigue condition when performing the arm raise task at a high velocity. At a low velocity and with no muscular fatigue, the recruitment order was MT, LT, SA, AD, and UT. However, the recruitment order changed in the high-velocity with muscular fatigue condition, since the recruitment order was UT, AD, SA, LT, and MT. The simultaneous presence of fatigue and high-velocity in an arm raise task is associated with a decrease in the UT activation latency and a modification of the recruitment order of scapular muscles. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Effect of Curcumin Supplementation on Physiological Fatigue and Physical Performance in Mice

    PubMed Central

    Huang, Wen-Ching; Chiu, Wan-Chun; Chuang, Hsiao-Li; Tang, Deh-Wei; Lee, Zon-Min; Wei, Li; Chen, Fu-An; Huang, Chi-Chang

    2015-01-01

    Curcumin (CCM) is a well-known phytocompound and food component found in the spice turmeric and has multifunctional bioactivities. However, few studies have examined its effects on exercise performance and physical fatigue. We aimed to evaluate the potential beneficial effects of CCM supplementation on fatigue and ergogenic function following physical challenge in mice. Male ICR mice were divided into four groups to receive vehicle or CCM (180 μg/mL) by oral gavage at 0, 12.3, 24.6, or 61.5 mL/kg/day for four weeks. Exercise performance and anti-fatigue function were evaluated after physical challenge by forelimb grip strength, exhaustive swimming time, and levels of physical fatigue-associated biomarkers serum lactate, ammonia, blood urea nitrogen (BUN), and glucose and tissue damage markers such as aspartate transaminase (AST), alanine transaminase (ALT), and creatine kinase (CK). CCM supplementation dose-dependently increased grip strength and endurance performance and significantly decreased lactate, ammonia, BUN, AST, ALT, and CK levels after physical challenge. Muscular glycogen content, an important energy source for exercise, was significantly increased. CCM supplementation had few subchronic toxic effects. CCM supplementation may have a wide spectrum of bioactivities for promoting health, improving exercise performance and preventing fatigue. PMID:25647661

  5. Physical exercise-induced fatigue: the role of serotonergic and dopaminergic systems

    PubMed Central

    Cordeiro, L.M.S.; Rabelo, P.C.R.; Moraes, M.M.; Teixeira-Coelho, F.; Coimbra, C.C.; Wanner, S.P.; Soares, D.D.

    2017-01-01

    Brain serotonin and dopamine are neurotransmitters related to fatigue, a feeling that leads to reduced intensity or interruption of physical exercises, thereby regulating performance. The present review aims to present advances on the understanding of fatigue, which has recently been proposed as a defense mechanism instead of a “physiological failure” in the context of prolonged (aerobic) exercises. We also present recent advances on the association between serotonin, dopamine and fatigue. Experiments with rodents, which allow direct manipulation of brain serotonin and dopamine during exercise, clearly indicate that increased serotoninergic activity reduces performance, while increased dopaminergic activity is associated with increased performance. Nevertheless, experiments with humans, particularly those involving nutritional supplementation or pharmacological manipulations, have yielded conflicting results on the relationship between serotonin, dopamine and fatigue. The only clear and reproducible effect observed in humans is increased performance in hot environments after treatment with inhibitors of dopamine reuptake. Because the serotonergic and dopaminergic systems interact with each other, the serotonin-to-dopamine ratio seems to be more relevant for determining fatigue than analyzing or manipulating only one of the two transmitters. Finally, physical training protocols induce neuroplasticity, thus modulating the action of these neurotransmitters in order to improve physical performance. PMID:29069229

  6. Acoustic emission characteristics of copper alloys under low-cycle fatigue conditions

    NASA Technical Reports Server (NTRS)

    Krampfner, Y.; Kawamoto, A.; Ono, K.; Green, A.

    1975-01-01

    The acoustic emission (AE) characteristics of pure copper, zirconium-copper, and several copper alloys were determined to develop nondestructive evaluation schemes of thrust chambers through AE techniques. The AE counts rms voltages, frequency spectrum, and amplitude distribution analysis evaluated AE behavior under fatigue loading conditions. The results were interpreted with the evaluation of wave forms, crack propagation characteristics, as well as scanning electron fractographs of fatigue-tested samples. AE signals at the beginning of a fatigue test were produced by a sample of annealed alloys. A sample of zirconium-containing alloys annealed repeatedly after each fatigue loading cycle showed numerous surface cracks during the subsequent fatigue cycle, emitting strong-burst AE signals. Amplitude distribution analysis exhibits responses that are characteristic of certain types of AE signals.

  7. Assessment of muscle fatigue using electromygraphm sensing

    NASA Astrophysics Data System (ADS)

    Helmi, Muhammad Hazimin Bin; Ping, Chew Sue; Ishak, Nur Elliza Binti; Saad, Mohd Alimi Bin Mohd; Mokhtar, Anis Shahida Niza Binti

    2017-08-01

    Muscle fatigue is condition of muscle decline in ability after undergoing any physical activity. Observation of the muscle condition of an athlete during training is crucial to prevent or minimize injury and able to achieve optimum performance in actual competition. The aim of this project is to develop a muscle monitoring system to detect muscle fatigue in swimming athlete. This device is capable to measure muscle stress level of the swimmer and at the same time provide indication of muscle fatigue level to trainer. Electromyography signal was recorded from the muscle movement while practicing the front crawl stroke repetitively. The time domain data was processed to frequency spectra in order to study the effect of muscle fatigue. The results show that the recorded EMG signal is able to sense muscle fatigue.

  8. The effect of muscle fatigue and low back pain on lumbar movement variability and complexity.

    PubMed

    Bauer, C M; Rast, F M; Ernst, M J; Meichtry, A; Kool, J; Rissanen, S M; Suni, J H; Kankaanpää, M

    2017-04-01

    Changes in movement variability and complexity may reflect an adaptation strategy to fatigue. One unresolved question is whether this adaptation is hampered by the presence of low back pain (LBP). This study investigated if changes in movement variability and complexity after fatigue are influenced by the presence of LBP. It is hypothesised that pain free people and people suffering from LBP differ in their response to fatigue. The effect of an isometric endurance test on lumbar movement was tested in 27 pain free participants and 59 participants suffering from LBP. Movement variability and complexity were quantified with %determinism and sample entropy of lumbar angular displacement and velocity. Generalized linear models were fitted for each outcome. Bayesian estimation of the group-fatigue effect with 95% highest posterior density intervals (95%HPDI) was performed. After fatiguing %determinism decreased and sample entropy increased in the pain free group, compared to the LBP group. The corresponding group-fatigue effects were 3.7 (95%HPDI: 2.3-7.1) and -1.4 (95%HPDI: -2.7 to -0.1). These effects manifested in angular velocity, but not in angular displacement. The effects indicate that pain free participants showed more complex and less predictable lumbar movement with a lower degree of structure in its variability following fatigue while participants suffering from LBP did not. This may be physiological responses to avoid overload of fatigued tissue, increase endurance, or a consequence of reduced movement control caused by fatigue. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Fatigue in adults with Marfan syndrome, occurrence and associations to pain and other factors.

    PubMed

    Bathen, Trine; Velvin, Gry; Rand-Hendriksen, Svend; Robinson, Hilde Stendal

    2014-08-01

    This study aims to investigate how fatigue affects adults with verified Marfan syndrome (MFS) in their daily lives, by examining fatigue levels and prevalence of severe fatigue compared to the general Norwegian population and individuals with other comparable chronic conditions. We investigated associations between socio-demographic characteristics, Marfan-related health problems, pain and fatigue. A cross-sectional study was conducted, using a postal questionnaire including the Fatigue Severity Scale (FSS) and questions on socio-demographic characteristics, Marfan-related health problems and pain. One hundred seventeen persons with MFS were invited to participate, 73 answered (62%). Participants reported significantly higher FSS scores and prevalence of severe fatigue compared to the general Norwegian population and patients with rheumatoid arthritis (RA), but lower than for other chronic conditions. Participants with chronic pain reported higher fatigue scores than those without chronic pain. Participants on disability benefits reported higher fatigue scores than participants who were working or enrolled in higher education. Marfan-related health problems like aortic dissection and use of blood pressure medication were not significantly associated with fatigue. In multivariable regression analyses chronic pain and employment status were significantly associated with fatigue. The final multivariable model explained 24% of the variance in fatigue scores. Our results show that fatigue is common in MFS patients and that it interferes with their daily lives. Chronic pain and employment status show significant associations to fatigue. This implies that fatigue is important to address when meeting MFS patients in clinical practice. There is need for more research on fatigue in Marfan syndrome. © 2014 Wiley Periodicals, Inc.

  10. In-air and pressurized water reactor environment fatigue experiments of 316 stainless steel to study the effect of environment on cyclic hardening

    NASA Astrophysics Data System (ADS)

    Mohanty, Subhasish; Soppet, William K.; Majumdar, Saurindranath; Natesan, Krishnamurti

    2016-05-01

    Argonne National Laboratory (ANL), under the sponsorship of Department of Energy's Light Water Reactor Sustainability (LWRS) program, is trying to develop a mechanistic approach for more accurate life estimation of LWR components. In this context, ANL has conducted many fatigue experiments under different test and environment conditions on type 316 stainless steel (316 SS) material which is widely used in the US reactors. Contrary to the conventional S ∼ N curve based empirical fatigue life estimation approach, the aim of the present DOE sponsored work is to develop an understanding of the material ageing issues more mechanistically (e.g. time dependent hardening and softening) under different test and environmental conditions. Better mechanistic understanding will help develop computer-based advanced modeling tools to better extrapolate stress-strain evolution of reactor components under multi-axial stress states and hence help predict their fatigue life more accurately. Mechanics-based modeling of fatigue such as by using finite element (FE) tools requires the time/cycle dependent material hardening properties. Presently such time-dependent material hardening properties are hardly available in fatigue modeling literature even under in-air conditions. Getting those material properties under PWR environment, are even harder. Through this work we made preliminary attempt to generate time/cycle dependent stress-strain data both under in-air and PWR water conditions for further study such as for possible development of material models and constitutive relations for FE model implementation. Although, there are open-ended possibility to further improve the discussed test methods and related material estimation techniques we anticipate that the data presented in this paper will help the metal fatigue research community particularly, the researchers who are dealing with mechanistic modeling of metal fatigue such as using FE tools. In this paper the fatigue experiments under different test and environment conditions and related stress-strain results for 316 SS are discussed.

  11. Behavior of Fatigue Crack Tip Opening in Air and Corrosive Atmosphere

    NASA Astrophysics Data System (ADS)

    Hayashi, Morihito; Toeda, Kazunori

    In the study, a formula for predicting fatigue crack tip opening displacement is deduced firstly. And then, due to comparing actual crack growth rate with the deduced formula, the crack tip configuration factor is defined to figure out the crack tip opening configuration that is useful to clarify the behavior of fatigue crack tip formation apparently. Applying the concept, the crack growth of 7/3 brass and 6/4 brass is predicted from the formula, by replacing material properties such as plastic flow resistance, Young modulus, the Poisson ratio, and fatigue toughness, and fatigue test conditions such as the stress intensity factor range, the load ratio, and cycle frequency. Furthermore, the theoretically expected results are verified with the fatigue tests which were carried out on CT specimens under different load conditions of load ratio, cycle frequency, and cyclic peak load, in different environments of air or corrosive ammonia atmosphere, for various brasses. And by comparing and discussing the calculated crack growth rate with attained experimental results, the apparent configuration factor at the crack tip is determined. And through the attained factor which changes along with crack growth, the behaviors of fatigue crack tip formation under different test conditions have been found out.

  12. Principles and Guidelines for Duty and Rest Scheduling in Commercial Aviation

    NASA Technical Reports Server (NTRS)

    Dinges, David F.; Graeber, R. Curtis; Rosekind, Mark R.; Samel, Alexander

    1996-01-01

    The aviation industry requires 24-hour activities to meet operational demands. Growth in global long-haul, regional, overnight cargo, and short-haul domestic operations will continue to increase these round-the-clock requirements. Flight crews must be available to support 24-hour-a-day operations to meet these industry demands. Both domestic and international aviation can also require crossing multiple time zones. Therefore, shift work, night work, irregular work schedules, unpredictable work schedules, and dm zone changes will continue to be commonplace components of the aviation industry. These factors pose known challenges to human physiology, and because they result in performance-impairing fatigue, they pose a risk to safety. It is critical to acknowledge and, whenever possible, incorporate scientific information on fatigue, human sleep, and circadian physiology into 24-hour aviation operations. Utilization of such scientific information can help promote crew performance and alertness during flight operations and thereby maintain and improve the safety margin.

  13. Cyclic fatigue analysis of rocket thrust chambers. Volume 1: OFHC copper chamber low cycle fatigue

    NASA Technical Reports Server (NTRS)

    Miller, R. W.

    1974-01-01

    A three-dimensional finite element elasto-plastic strain analysis was performed for the throat section of a regeneratively cooled rocket combustion chamber. The analysis employed the RETSCP finite element computer program. The analysis included thermal and pressure loads, and the effects of temperature dependent material properties, to determine the strain range corresponding to the chamber operating cycle. The analysis was performed for chamber configuration and operating conditions corresponding to a hydrogen-oxygen combustion chamber which was fatigue tested to failure. The computed strain range at typical chamber operating conditions was used in conjunction with oxygen-free, high-conductivity (OHFC) copper isothermal fatigue test data to predict chamber low-cycle fatigue life.

  14. The Relationships Between Microstructure, Tensile Properties and Fatigue Life in Ti-5Al-5V-5Mo-3Cr-0.4Fe (Ti-5553)

    NASA Astrophysics Data System (ADS)

    Foltz, John W., IV

    beta-titanium alloys are being increasingly used in airframes as a way to decrease the weight of the aircraft. As a result of this movement, Ti-5Al-5V-5Mo-3Cr-0.4Fe (Timetal 555), a high-strength beta titanium alloy, is being used on the current generation of landing gear. This alloy features good combinations of strength, ductility, toughness and fatigue life in alpha+beta processed conditions, but little is known about beta-processed conditions. Recent work by the Center for the Accelerated Maturation of Materials (CAMM) research group at The Ohio State University has improved the tensile property knowledge base for beta-processed conditions in this alloy, and this thesis augments the aforementioned development with description of how microstructure affects fatigue life. In this work, beta-processed microstructures have been produced in a Gleeble(TM) thermomechanical simulator and subsequently characterized with a combination of electron and optical microscopy techniques. Four-point bending fatigue tests have been carried out on the material to characterize fatigue life. All the microstructural conditions have been fatigue tested with the maximum test stress equal to 90% of the measured yield strength. The subsequent results from tensile tests, fatigue tests, and microstructural quantification have been analyzed using Bayesian neural networks in an attempt to predict fatigue life using microstructural and tensile inputs. Good correlation has been developed between lifetime predictions and experimental results using microstructure and tensile inputs. Trained Bayesian neural networks have also been used in a predictive fashion to explore functional dependencies between these inputs and fatigue life. In this work, one section discusses the thermal treatments that led to the observed microstructures, and the possible sequence of precipitation that led to these microstructures. The thesis then describes the implications of microstructure on fatigue life and implications of tensile properties on fatigue life. Several additional experiments are then described that highlight possible causes for the observed dependence of microstructure on fatigue life, including fractographic evidence to provide support of microstructural dependencies.

  15. Insomnia, metabolic rate and sleep restoration.

    PubMed

    Bonnet, M H; Arand, D L

    2003-07-01

    Studies have shown occasional evidence of increased physiological activity in patients with primary insomnia. We hypothesized that metabolic rate, as measured by overall oxygen use (VO2), might be a more general index of increased physiological activity. An initial experiment found elevated VO2 both at night and during the day in patients with primary insomnia as compared with matched normal sleepers. A second experiment found significant but more modest increases in VO2 in patients with Sleep State Misperception Insomnia [who complain of poor sleep but who had normal sleep by electroencephalographic (EEG) criteria]. In a third experiment, normal young adults were given caffeine 400 mg three times per day (TID) for 1 week as a means of increasing VO2 and possibly producing other symptoms of insomnia. Participants developed many symptoms consistent with those seen in patients with primary insomnia (poor sleep, increased latency on the Multiple Sleep Latency Test, increasing fatigue despite physiological activation, and increased anxiety on the Minnesota Multiphasic Personality Inventory (MMPI)). In a final experiment, physiological arousal was again produced by caffeine to determine if sleep with elevated arousal would be less restorative. All subjects (Ss) slept for 3.5 h after being given 400 mg of caffeine. During 41 h of sleep deprivation that followed, there was no significant condition difference for the Multiple Sleep Latency Test or mood measures. The results provided only weak support for the idea that sleep is less restorative after physiological arousal.

  16. Circadian and Sex Differences After Acute High-Altitude Exposure: Are Early Acclimation Responses Improved by Blue Light?

    PubMed

    Silva-Urra, Juan A; Núñez-Espinosa, Cristian A; Niño-Mendez, Oscar A; Gaitán-Peñas, Héctor; Altavilla, Cesare; Toro-Salinas, Andrés; Torrella, Joan R; Pagès, Teresa; Javierre, Casimiro F; Behn, Claus; Viscor, Ginés

    2015-12-01

    The possible effects of blue light during acute hypoxia and the circadian rhythm on several physiological and cognitive parameters were studied. Fifty-seven volunteers were randomly assigned to 2 groups: nocturnal (2200-0230 hours) or diurnal (0900-1330 hours) and exposed to acute hypoxia (4000 m simulated altitude) in a hypobaric chamber. The participants were illuminated by blue LEDs or common artificial light on 2 different days. During each session, arterial oxygen saturation (Spo2), blood pressure, heart rate variability, and cognitive parameters were measured at sea level, after reaching the simulated altitude of 4000 m, and after 3 hours at this altitude. The circadian rhythm caused significant differences in blood pressure and heart rate variability. A 4% to 9% decrease in waking nocturnal Spo2 under acute hypoxia was observed. Acute hypoxia also induced a significant reduction (4%-8%) in systolic pressure, slightly more marked (up to 13%) under blue lighting. Women had significantly increased systolic (4%) and diastolic (12%) pressures under acute hypoxia at night compared with daytime pressure; this was not observed in men. Some tendencies toward better cognitive performance (d2 attention test) were seen under blue illumination, although when considered together with physiological parameters and reaction time, there was no conclusive favorable effect of blue light on cognitive fatigue suppression after 3 hours of acute hypobaric hypoxia. It remains to be seen whether longer exposure to blue light under hypobaric hypoxic conditions would induce favorable effects against fatigue. Copyright © 2015 Wilderness Medical Society. Published by Elsevier Inc. All rights reserved.

  17. Effect of grinding on the fatigue life of titanium alloy (5 Al-2.5 Sn) under dry and wet conditions

    NASA Technical Reports Server (NTRS)

    Rangaswamy, Partha; Terutung, Hendra; Jeelani, Shaik

    1989-01-01

    The principal factors in the performance of aerospace materials are strength-to-weight ratio, fatigue life, fracture toughness, survivability and, of course, reliability. Machining processes and, in particular, grinding under adverse conditions have been found to cause damage to surface integrity and affect the residual stress distribution in the surface and subsurface region. These effects have a direct bearing on the fatigue life. In this investigation the effects of grinding conditions on the fatigue life of Titanium 5 Al-2.5Sn were studied. This alloy is used in ground form in the manufacturing of some critical components in the space shuttle's main engine. It is essential that materials for such applications be properly characterized for use in severe service conditions. Flat sub-size specimens 0.1 inch thick were ground on a surface grinding machine equipped with a variable speed motor at speeds of 2000 to 6000 rpm using SiC wheels of grit sizes 60 and 120. The grinding parameters used in this investigation were chosen from a separate study. The ground specimens were then fatigued at a selected stress and the resulting lives were compared with that of the virgin material. The surfaces of the specimens were examined under a scanning electron microscope, and the roughness and hardness were measured using a standard profilometer and microhardness tester, respectively. The fatigue life of the ground specimens was found to decrease with the increase in speed for both dry and wet conditions. The fatigue life of specimens ground under wet conditions showed a significant increase at the wheel speed of 2000 rpm for both the grit sizes and thereafter decreased with increase profilometry, microhardness measurements and scanning electron microscopic examination.

  18. Fatigue Performance of Powder Metallurgy (PM) Ti-6Al-4V Alloy: A Critical Analysis of Current Fatigue Data and Metallurgical Approaches for Improving Fatigue Strength

    NASA Astrophysics Data System (ADS)

    Cao, Fei; Ravi Chandran, K. S.

    2016-03-01

    A comprehensive assessment of fatigue performance of powder metallurgy (PM) Ti-6Al-4V alloy, manufactured using various powder-based processing approaches to-date, is performed in this work. The focus is on PM processes that use either blended element (BE) or pre-alloyed (PA) powder as feedstock. Porosity and the microstructure condition have been found to be the two most dominant material variables that control the fatigue strength. The evaluation reveals that the fatigue performance of PM Ti-6Al-4V, in the as-sintered state, is far lower than that in the wrought condition. This is largely caused by residual porosity, even if it is present in small amounts, or, by the coarse lamellar colony microstructure. The fatigue strength is significantly improved by the closure of pores, and it approaches the levels of wrought Ti-6Al-4V alloys, after hot-isostatic-pressing (HIPing). Further thermo-mechanical and heat treatments lead to additional increases in fatigue strength-in one case, a high fatigue strength level, exceeding that of the mill-annealed condition, was achieved. The work identifies the powder, process and microstructure improvements that are necessary for achieving high fatigue strength in powder metallurgical Ti-6Al-4V alloys in order for them to effectively compete with wrought forms. The present findings, gathered from the traditional titanium powder metallurgy, are also directly applicable to additively manufactured titanium, because of the similarities in pores, defects, and microstructures between the two manufacturing processes.

  19. Fatigue in industry.

    PubMed Central

    Grandjean, E

    1979-01-01

    Physical fatigue is a painful phenomenon which is localised in overstressed muscles. Mental fatigue is a diffuse sensation of weariness; it is a functional state, one of several intermediate conditions between the two extremes of alarm and sleep. A neurophysiological model of fatigue, involving an activating and inhibitory system has been developed. Fatigue in industrial practice has clinical symptoms: psychic instability, fits of depression and increased liability to illness. Indicators of fatigue are work of performance, subjective feelings of fatigue, electroencephalography, flicker-fusion frequency and various psychomotor and mental tests. Several field studies do, to some extent, confirm the above-mentioned concept of fatigue. PMID:40999

  20. Investigating the Effects of Exam Length on Performance and Cognitive Fatigue

    PubMed Central

    Jensen, Jamie L.; Berry, Dane A.; Kummer, Tyler A.

    2013-01-01

    This study examined the effects of exam length on student performance and cognitive fatigue in an undergraduate biology classroom. Exams tested higher order thinking skills. To test our hypothesis, we administered standard- and extended-length high-level exams to two populations of non-majors biology students. We gathered exam performance data between conditions as well as performance on the first and second half of exams within conditions. We showed that lengthier exams led to better performance on assessment items shared between conditions, possibly lending support to the spreading activation theory. It also led to greater performance on the final exam, lending support to the testing effect in creative problem solving. Lengthier exams did not result in lower performance due to fatiguing conditions, although students perceived subjective fatigue. Implications of these findings are discussed with respect to assessment practices. PMID:23950918

  1. Features that exacerbate fatigue severity in joint hypermobility syndrome/Ehlers-Danlos syndrome - hypermobility type.

    PubMed

    Krahe, Anne Maree; Adams, Roger David; Nicholson, Leslie Lorenda

    2018-08-01

    To assess the prevalence, severity and impact of fatigue on individuals with joint hypermobility syndrome (JHS)/Ehlers-Danlos syndrome - hypermobility type (EDS-HT) and establish potential determinants of fatigue severity in this population. Questionnaires on symptoms and signs related to fatigue, quality of life, mental health, physical activity participation and sleep quality were completed by people with JHS/EDS-HT recruited through two social media sites. Multiple regression analysis was performed to identify predictors of fatigue in this population. Significant fatigue was reported by 79.5% of the 117 participants. Multiple regression analysis identified five predictors of fatigue severity, four being potentially modifiable, accounting for 52.3% of the variance in reported fatigue scores. Predictors of fatigue severity were: the self-perceived extent of joint hypermobility, orthostatic dizziness related to heat and exercise, levels of participation in personal relationships and community, current levels of physical activity and dissatisfaction with the diagnostic process and management options provided for their condition. Fatigue is a significant symptom associated with JHS/EDS-HT. Assessment of individuals with this condition should include measures of fatigue severity to enable targeted management of potentially modifiable factors associated with fatigue severity. Implications for rehabilitation Fatigue is a significant symptom reported by individuals affected by joint hypermobility syndrome/Ehlers-Danlos syndrome - hypermobility type. Potentially modifiable features that contribute to fatigue severity in this population have been identified. Targeted management of these features may decrease the severity and impact of fatigue in joint hypermobility syndrome/Ehlers-Danlos syndrome - hypermobility type.

  2. Effect of Chlorella Ingestion on Oxidative Stress and Fatigue Symptoms in Healthy Men.

    PubMed

    Okada, Hirotaka; Yoshida, Noriko; Kakuma, Tatsuyuki; Toyomasu, Kouji

    2018-05-21

    We examined the effects of dietary chlorella ingestion on oxidative stress and fatigue symptoms in healthy men under resting and fatigue conditions. We conducted a double-blind, parallel-arm controlled study. Twenty-seven healthy male volunteers (mean age, 35.4±10.4 years) were randomly divided into the chlorella and placebo groups, and received chlorella (6 g/day) and lactose as placebo (7.2 g/day), respectively, for 4 weeks. To simulate mild fatigue, subjects underwent exercise (40% of the heart rate reserve) for 30 minutes. Fatigue was measured using the visual analog scale of fatigue (F-VAS) pre- and post-exercise. Serum antioxidant capacity (AC), malondialdehyde levels, and other indices of oxidative stress were measured pre- and post-exercise. All measurements were repeated after the intervention period and the results were compared with baseline measurements. Under resting conditions, AC significantly increased after the intervention period in the chlorella group, but not in the placebo group. Malondialdehyde levels after the intervention period were significantly lower in the chlorella group than in the placebo group. There were no significant differences in any of the oxidative-stress indices measured pre- and post-exercise, either before or after intervention, in either group. F-VAS significantly increased after exercise at all measurement time-points in both groups, except after the intervention period in the chlorella group. Under fatigue conditions, there were no significant differences in oxidative stress indices between the groups. Our results suggest that chlorella ingestion has the potential to relieve oxidative stress and enhance tolerance for fatigue under resting conditions.

  3. Chronic pain and fatigue: Associations with religion and spirituality

    PubMed Central

    Baetz, Marilyn; Bowen, Rudy

    2008-01-01

    BACKGROUND: Conditions with chronic, non-life-threatening pain and fatigue remain a challenge to treat, and are associated with high health care use. Understanding psychological and psychosocial contributing and coping factors, and working with patients to modify them, is one goal of management. An individual’s spirituality and/or religion may be one such factor that can influence the experience of chronic pain or fatigue. METHODS: The Canadian Community Health Survey (2002) obtained data from 37,000 individuals 15 years of age or older. From these data, four conditions with chronic pain and fatigue were analyzed together – fibromyalgia, back pain, migraine headaches and chronic fatigue syndrome. Additional data from the survey were used to determine how religion and spirituality affect psychological well-being, as well as the use of various coping methods. RESULTS: Religious persons were less likely to have chronic pain and fatigue, while those who were spiritual but not affiliated with regular worship attendance were more likely to have those conditions. Individuals with chronic pain and fatigue were more likely to use prayer and seek spiritual support as a coping method than the general population. Furthermore, chronic pain and fatigue sufferers who were both religious and spiritual were more likely to have better psychological well-being and use positive coping strategies. INTERPRETATION: Consideration of an individual’s spirituality and/or religion, and how it may be used in coping may be an additional component to the overall management of chronic pain and fatigue. PMID:18958309

  4. Fatigue Properties of Butt Welded Aluminum Alloy and Carbon Steel Joints by Friction Stirring

    NASA Astrophysics Data System (ADS)

    Okane, M.; Shitaka, T.; Ishida, M.; Chaki, T.; Yasui, T.; Fukumoto, M.

    2017-05-01

    The butt dissimilar joints of Al-Mg-Si alloy JIS A6063 and carbon steel JIS S45C by means of friction stir welding were prepared for investigating fatigue properties of the joints. The joining tool used has cemented carbide thread probe and a shoulder made of alloy tool steel. All the fatigue tests were carried out under a load-controlled condition with a load ratio R=0.1 in air at room temperature. From the experimental results, it was found that hardness near the interface in A6063 was lower than that of base material. Three types of fatigue fracture occurred even in case of same welding condition. The first one was fracture at boundary between the lower hardness region and base material in A6063, the second type was initiated in the stir zone by FSW process and the last one was fracture at interface. Fatigue strength in case of the second one was lower than others. Furthermore, to investigate the effect of heat treatment on fatigue properties of the dissimilar joints, fatigue tests were also carried out with using the specimens which were heat treated under the same condition to aging process in T6 treatment. Fatigue fracture was initiated at interface between A6063 and S45C in case of the heat treated specimen, but fatigue strength was improved approximately 25% as compared with that of the non-heat treated specimen.

  5. Exercising Impacts on Fatigue, Depression, and Paresthesia in Female Patients with Multiple Sclerosis.

    PubMed

    Razazian, Nazanin; Yavari, Zeinab; Farnia, Vahid; Azizi, Akram; Kordavani, Laleh; Bahmani, Dena Sadeghi; Holsboer-Trachsler, Edith; Brand, Serge

    2016-05-01

    Multiple sclerosis (MS) is a chronic progressive autoimmune disease impacting both body and mind. Typically, patients with MS report fatigue, depression, and paresthesia. Standard treatment consists of immune modulatory medication, though there is growing evidence that exercising programs have a positive influence on fatigue and psychological symptoms such as depression. We tested the hypothesis that, in addition to the standard immune regulatory medication, either yoga or aquatic exercise can ameliorate both fatigue and depression, and we examined whether these interventions also influence paresthesia compared with a nonexercise control condition. Fifty-four women with MS (mean age: M = 33.94 yr, SD = 6.92) were randomly assigned to one of the following conditions: yoga, aquatic exercise, or nonexercise control. Their existing immune modulatory therapy remained unchanged. Participants completed questionnaires covering symptoms of fatigue, depression, and paresthesia, both at baseline and on completion of the study 8 wk later. Compared with the nonexercise control condition and over time, fatigue, depression, and paresthesia decreased significantly in the yoga and aquatic exercise groups. On study completion, the likelihood of reporting moderate to severe depression was 35-fold higher in the nonexercise control condition than in the intervention conditions (yoga and aquatic exercising values collapsed). The pattern of results suggests that for females with MS and treated with standard immune regulatory medication, exercise training programs such as yoga and aquatic exercising positively impact on core symptoms of MS, namely, fatigue, depression, and paresthesia. Exercise training programs should be considered in the future as possible complements to standard treatments.

  6. Tensile and Fatigue Testing and Material Hardening Model Development for 508 LAS Base Metal and 316 SS Similar Metal Weld under In-air and PWR Primary Loop Water Conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohanty, Subhasish; Soppet, William; Majumdar, Saurin

    This report provides an update on an assessment of environmentally assisted fatigue for light water reactor components under extended service conditions. This report is a deliverable in September 2015 under the work package for environmentally assisted fatigue under DOE’s Light Water Reactor Sustainability program. In an April 2015 report we presented a baseline mechanistic finite element model of a two-loop pressurized water reactor (PWR) for systemlevel heat transfer analysis and subsequent thermal-mechanical stress analysis and fatigue life estimation under reactor thermal-mechanical cycles. In the present report, we provide tensile and fatigue test data for 508 low-alloy steel (LAS) base metal,more » 508 LAS heat-affected zone metal in 508 LAS–316 stainless steel (SS) dissimilar metal welds, and 316 SS-316 SS similar metal welds. The test was conducted under different conditions such as in air at room temperature, in air at 300 oC, and under PWR primary loop water conditions. Data are provided on materials properties related to time-independent tensile tests and time-dependent cyclic tests, such as elastic modulus, elastic and offset strain yield limit stress, and linear and nonlinear kinematic hardening model parameters. The overall objective of this report is to provide guidance to estimate tensile/fatigue hardening parameters from test data. Also, the material models and parameters reported here can directly be used in commercially available finite element codes for fatigue and ratcheting evaluation of reactor components under in-air and PWR water conditions.« less

  7. Nonlinear analysis of gait kinematics to track changes in oxygen consumption in prolonged load carriage walking: a pilot study.

    PubMed

    Schiffman, Jeffrey M; Chelidze, David; Adams, Albert; Segala, David B; Hasselquist, Leif

    2009-09-18

    Linking human mechanical work to physiological work for the purpose of developing a model of physical fatigue is a complex problem that cannot be solved easily by conventional biomechanical analysis. The purpose of the study was to determine if two nonlinear analysis methods can address the fundamental issue of utilizing kinematic data to track oxygen consumption from a prolonged walking trial: we evaluated the effectiveness of dynamical systems and fractal analysis in this study. Further, we selected, oxygen consumption as a measure to represent the underlying physiological measure of fatigue. Three male US Army Soldier volunteers (means: 23.3 yr; 1.80 m; 77.3 kg) walked for 120 min at 1.34 m/s with a 40-kg load on a level treadmill. Gait kinematic data and oxygen consumption (VO(2)) data were collected over the 120-min period. For the fractal analysis, utilizing stride interval data, we calculated fractal dimension. For the dynamical systems analysis, kinematic angle time series were used to estimate phase space warping based features at uniform time intervals: smooth orthogonal decomposition (SOD) was used to extract slowly time-varying trends from these features. Estimated fractal dimensions showed no apparent trend or correlation with independently measured VO(2). While inter-individual difference did exist in the VO(2) data, dominant SOD time trends tracked and correlated with the VO(2) for all volunteers. Thus, dynamical systems analysis using gait kinematics may be suitable to develop a model to predict physiologic fatigue based on biomechanical work.

  8. A Physiological Case Study of a Paralympic Wheelchair Tennis Player: Reflective Practise

    PubMed Central

    Diaper, Nicholas J.; Goosey-Tolfrey, Victoria L.

    2009-01-01

    This study was designed to examine the physiological changes caused by long-term training in a world class female tennis player in preparation for a major championship. Additionally, we aim to describe the training interventions and determine a suitable cooling strategy that was to be used at the 2004 Paralympic Games. The athlete underwent regular physiological assessment during 2003-2004. Physiological measures involved body composition, submaximal and peak oxygen uptake and key variables associated with maximal sprinting. In addition, a suitable match-play cooling intervention and hydration strategy was also explored. Body composition improved over the course of the study. Aerobic capacity fell by 21%, yet the submaximal physiological variables such as lactate profile and pushing economy improved. The trade off of aerobic capacity was perhaps noticeably counter-balanced with the maintenance of the peak sprinting speed and improvement found in the fatigue profile across ten repeated sprints. The extensive training programme was responsible for these changes and these adaptations resulted in a more confident athlete, in peak physical condition leading into the Paralympic Games. It is difficult to appreciate the extent to which this work had an impact on tennis performance given the skill requirements of wheelchair tennis and this warrants future attention. Key points Physiological adaptations were apparent over the two-year training period. The training emphasis resulted in a reduction in aerobic capacity, yet an improvement in repetitive sprint performance was seen leading into the Major competition. An effective cooling technique was identified that could be used during wheelchair tennis performance. The athlete and coaches were complimentary to the physiological support provided, which resulted in a more confident athlete at the Paralympic Games. PMID:24149542

  9. Comparison of Effects Produced by Physiological Versus Traditional Vocal Warm-up in Contemporary Commercial Music Singers.

    PubMed

    Portillo, María Priscilla; Rojas, Sandra; Guzman, Marco; Quezada, Camilo

    2018-03-01

    The present study aimed to observe whether physiological warm-up and traditional singing warm-up differently affect aerodynamic, electroglottographic, acoustic, and self-perceived parameters of voice in Contemporary Commercial Music singers. Thirty subjects were asked to perform a 15-minute session of vocal warm-up. They were randomly assigned to one of two types of vocal warm-up: physiological (based on semi-occluded exercises) or traditional (singing warm-up based on open vowel [a:]). Aerodynamic, electroglottographic, acoustic, and self-perceived voice quality assessments were carried out before (pre) and after (post) warm-up. No significant differences were found when comparing both types of vocal warm-up methods, either in subjective or in objective measures. Furthermore, the main positive effect observed in both groups when comparing pre and post conditions was a better self-reported quality of voice. Additionally, significant differences were observed for sound pressure level (decrease), glottal airflow (increase), and aerodynamic efficiency (decrease) in the traditional warm-up group. Both traditional and physiological warm-ups produce favorable voice sensations. Moreover, there are no evident differences in aerodynamic and electroglottographic variables when comparing both types of vocal warm-ups. Some changes after traditional warm-up (decreased intensity, increased airflow, and decreased aerodynamic efficiency) could imply an early stage of vocal fatigue. Copyright © 2018 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  10. A microstructurally based model of solder joints under conditions of thermomechanical fatigue

    NASA Astrophysics Data System (ADS)

    Frear, D. R.; Burchett, S. N.; Rashid, M. M.

    The thermomechanical fatigue failure of solder joints is increasingly becoming an important reliability issue. We present two computational methodologies that have been developed to predict the behavior of near eutectic Sn-Pb solder joints under fatigue conditions that are based on metallurgical tests as fundamental input for constitutive relations. The two-phase model mathematically predicts the heterogeneous coarsening behavior of near eutectic Sn-Pb solder. The finite element simulations from this model agree well with experimental thermomechanical fatigue tests. The simulations show that the presence of an initial heterogeneity in the solder microstructure could significantly degrade the fatigue lifetime. The single phase model is a computational technique that was developed to predict solder joint behavior using materials data for constitutive relation constants that could be determined through straightforward metallurgical experiments. A shear/torsion test sample was developed to impose strain in two different orientations. Materials constants were derived from these tests and the results showed an adequate fit to experimental results. The single-phase model could be very useful for conditions where microstructural evolution is not a dominant factor in fatigue.

  11. Data related to cyclic deformation and fatigue behavior of direct laser deposited Ti-6Al-4V with and without heat treatment.

    PubMed

    Sterling, Amanda J; Torries, Brian; Shamsaei, Nima; Thompson, Scott M

    2016-03-01

    Data is presented describing the strain-controlled, fully-reversed uniaxial cyclic deformation and fatigue behavior of Ti-6Al-4V specimens additively manufactured via Laser Engineered Net Shaping (LENS) - a Direct Laser Deposition (DLD) process. The data was collected by performing multiple fatigue tests on specimens with various microstructural states/conditions, i.e. in their 'as-built', annealed (below the beta transus temperature), or heat treated (above the beta transus temperature) condition. Such data aids in characterizing the mechanical integrity and fatigue resistance of DLD parts. Data presented herein also allows for elucidating the strong microstructure coupling of the fatigue behavior of DLD Ti-6Al-4V, as the data trends were found to vary with material condition (i.e. as-built, annealed or heat treated) [1]. This data is of interest to the additive manufacturing and fatigue scientific communities, as well as the aerospace and biomedical industries, since additively-manufactured parts cannot be reliably deployed for public use, until their mechanical properties are understood with high certainty.

  12. Data related to cyclic deformation and fatigue behavior of direct laser deposited Ti–6Al–4V with and without heat treatment

    PubMed Central

    Sterling, Amanda J.; Torries, Brian; Shamsaei, Nima; Thompson, Scott M.

    2016-01-01

    Data is presented describing the strain-controlled, fully-reversed uniaxial cyclic deformation and fatigue behavior of Ti–6Al–4V specimens additively manufactured via Laser Engineered Net Shaping (LENS) – a Direct Laser Deposition (DLD) process. The data was collected by performing multiple fatigue tests on specimens with various microstructural states/conditions, i.e. in their ‘as-built’, annealed (below the beta transus temperature), or heat treated (above the beta transus temperature) condition. Such data aids in characterizing the mechanical integrity and fatigue resistance of DLD parts. Data presented herein also allows for elucidating the strong microstructure coupling of the fatigue behavior of DLD Ti–6Al–4V, as the data trends were found to vary with material condition (i.e. as-built, annealed or heat treated) [1]. This data is of interest to the additive manufacturing and fatigue scientific communities, as well as the aerospace and biomedical industries, since additively-manufactured parts cannot be reliably deployed for public use, until their mechanical properties are understood with high certainty. PMID:26949728

  13. Cardiorespiratory assessment of decongestant-antihistamine effects of altitude, +Gz, and fatigue tolerances.

    DOT National Transportation Integrated Search

    1978-04-01

    Decongestants and antihistamines are known to produce effects capable of adversely modifying physiological function and psychomotor task performance. Because of relevance to safe pilot performance, the effects of single doses of two decongestant-anti...

  14. Error mapping controller: a closed loop neuroprosthesis controlled by artificial neural networks.

    PubMed

    Pedrocchi, Alessandra; Ferrante, Simona; De Momi, Elena; Ferrigno, Giancarlo

    2006-10-09

    The design of an optimal neuroprostheses controller and its clinical use presents several challenges. First, the physiological system is characterized by highly inter-subjects varying properties and also by non stationary behaviour with time, due to conditioning level and fatigue. Secondly, the easiness to use in routine clinical practice requires experienced operators. Therefore, feedback controllers, avoiding long setting procedures, are required. The error mapping controller (EMC) here proposed uses artificial neural networks (ANNs) both for the design of an inverse model and of a feedback controller. A neuromuscular model is used to validate the performance of the controllers in simulations. The EMC performance is compared to a Proportional Integral Derivative (PID) included in an anti wind-up scheme (called PIDAW) and to a controller with an ANN as inverse model and a PID in the feedback loop (NEUROPID). In addition tests on the EMC robustness in response to variations of the Plant parameters and to mechanical disturbances are carried out. The EMC shows improvements with respect to the other controllers in tracking accuracy, capability to prolong exercise managing fatigue, robustness to parameter variations and resistance to mechanical disturbances. Different from the other controllers, the EMC is capable of balancing between tracking accuracy and mapping of fatigue during the exercise. In this way, it avoids overstressing muscles and allows a considerable prolongation of the movement. The collection of the training sets does not require any particular experimental setting and can be introduced in routine clinical practice.

  15. Textile for heart valve prostheses: fabric long-term durability testing.

    PubMed

    Heim, Frederic; Durand, Bernard; Chakfe, Nabil

    2010-01-01

    The rapid developments and success in percutaneous vascular surgery over the last two decades with the now common stent grafts implantation, make the noninvasive surgery technique today attractive even for heart valve replacement. Less traumatic for the patient and also less time consuming, percutaneous heart valve replacement is however at its beginning and restricted to end of life patients. The noninvasive procedure expects from the heart valve prosthesis material to be resistant and adapted to folding requirements of the implantation process (catheter). Polyester fabric could be a suited material for heart valve implanted percutaneously. Highly flexible and resistant, polyester fabric proved to be well adapted to the dynamic behavior of a valve and polyester (Dacron) is also widely used for vascular grafts implantation and shows good biocompatibility and durability. However, today there's no data available on long-term durability of fabric used as heart valve material. The purpose of this work is to study the long term behavior of a microdenier polyester fabric construction under combined in vitro flexure and tension fatigue stress. In the novel in vitro testing technique presented, a fabric specimen was subjected to combined flexural and tensile fatigue generated by fluid flow under physiological pressure conditions. The results obtained show how flexural properties change with fatigue time, which reflects directly on the suitability of a fabric in such devices. It was also observed that these fabric structural changes directly influence the in vitro behavior of the textile heart valve prosthesis. (c) 2009 Wiley Periodicals, Inc.

  16. Error mapping controller: a closed loop neuroprosthesis controlled by artificial neural networks

    PubMed Central

    Pedrocchi, Alessandra; Ferrante, Simona; De Momi, Elena; Ferrigno, Giancarlo

    2006-01-01

    Background The design of an optimal neuroprostheses controller and its clinical use presents several challenges. First, the physiological system is characterized by highly inter-subjects varying properties and also by non stationary behaviour with time, due to conditioning level and fatigue. Secondly, the easiness to use in routine clinical practice requires experienced operators. Therefore, feedback controllers, avoiding long setting procedures, are required. Methods The error mapping controller (EMC) here proposed uses artificial neural networks (ANNs) both for the design of an inverse model and of a feedback controller. A neuromuscular model is used to validate the performance of the controllers in simulations. The EMC performance is compared to a Proportional Integral Derivative (PID) included in an anti wind-up scheme (called PIDAW) and to a controller with an ANN as inverse model and a PID in the feedback loop (NEUROPID). In addition tests on the EMC robustness in response to variations of the Plant parameters and to mechanical disturbances are carried out. Results The EMC shows improvements with respect to the other controllers in tracking accuracy, capability to prolong exercise managing fatigue, robustness to parameter variations and resistance to mechanical disturbances. Conclusion Different from the other controllers, the EMC is capable of balancing between tracking accuracy and mapping of fatigue during the exercise. In this way, it avoids overstressing muscles and allows a considerable prolongation of the movement. The collection of the training sets does not require any particular experimental setting and can be introduced in routine clinical practice. PMID:17029636

  17. [Cement augmentation on the spine : Biomechanical considerations].

    PubMed

    Kolb, J P; Weiser, L; Kueny, R A; Huber, G; Rueger, J M; Lehmann, W

    2015-09-01

    Vertebral compression fractures are the most common osteoporotic fractures. Since the introduction of vertebroplasty and screw augmentation, the management of osteoporotic fractures has changed significantly. The biomechanical characteristics of the risk of adjacent fractures and novel treatment modalities for osteoporotic vertebral fractures, including pure cement augmentation by vertebroplasty, and cement augmentation of screws for posterior instrumentation, are explored. Eighteen human osteoporotic lumbar spines (L1-5) adjacent to vertebral bodies after vertebroplasty were tested in a servo-hydraulic machine. As augmentation compounds we used standard cement and a modified low-strength cement. Different anchoring pedicle screws were tested with and without cement augmentation in another cohort of human specimens with a simple pull-out test and a fatigue test that better reflects physiological conditions. Cement augmentation in the osteoporotic spine leads to greater biomechanical stability. However, change in vertebral stiffness resulted in alterations with the risk of adjacent fractures. By using a less firm cement compound, the risk of adjacent fractures is significantly reduced. Both screw augmentation techniques resulted in a significant increase in the withdrawal force compared with the group without cement. Augmentation using perforated screws showed the highest stability in the fatigue test. The augmentation of cement leads to a significant change in the biomechanical properties. Differences in the stability of adjacent vertebral bodies increase the risk of adjacent fractures, which could be mitigated by a modified cement compound with reduced strength. Screws that were specifically designed for cement application displayed greatest stability in the fatigue test.

  18. An overview of elevated temperature damage mechanisms and fatigue behavior of a unidirectional SCS-6/Ti-15-3 composite

    NASA Technical Reports Server (NTRS)

    Castelli, Michael G.; Gayda, John

    1993-01-01

    The fatigue behavior of a unidirectionally reinforced titanium matrix composite (TMC), SiC/Ti-15-3, was thoroughly characterized to support life prediction modeling of advanced TMC disks designed for gas turbine engine applications. The results of this coupon-level experimental investigation are reviewed. On a stress basis, the isothermal fatigue behavior of the (0 deg) TMC revealed significant improvements over the unreinforced matrix. In contrast, the (90 deg) TMC exhibited degraded properties and lives for similar comparisons. This was attributed to the weak fiber/matrix interfacial bond. Encasing the (0 deg) TMC with a Ti-15-3 case did not affect isothermal fatigue lives at higher strain levels. However, at lower strain levels, rapid initiation and propagation of large fatigue cracks in the case degraded the fatigue lives. Thermomechanical fatigue (TMF) lives were significantly reduced for the (0 deg) TMC when compared to isothermal lives. At high strains, in-phase TMF produced extremely short lives. This degradation was attributed to fiber overload failures brought about by stress relaxation in the matrix. At low strains, out-of-phase TMF conditions became life limiting. Environment-assisted surface cracking was found to accelerate fatigue failure. This produced extensive matrix damage with minimal fiber damage. For the (90 deg) TMC, TMF conditions did not promote an additional degradation in cyclic life beyond that observed under isothermal conditions.

  19. Assessment of the microstructure and torsional fatigue performance of an induction hardened vanadium microalloyed medium-carbon steel

    NASA Astrophysics Data System (ADS)

    Rothleutner, Lee M.

    Vanadium microalloying of medium-carbon bar steels is a common practice in industry for a number of hot rolled as well as forged and controlled-cooled components. However, use of vanadium microalloyed steels has expanded into applications beyond their originally designed controlled-cooled processing scheme. Applications such as transmission shafts often require additional heat-treatments such as quench and tempering and/or induction hardening to meet packaging or performance requirements. As a result, there is uncertainty regarding the influence of vanadium on the properties of heat-treated components, specifically the effect of rapid heat-treating such as induction hardening. In the current study, the microstructural evolution and torsional fatigue behavior of induction hardened 1045 and 10V45 (0.08 wt pct V) steels were examined. Torsional fatigue specimens specifically designed for this research were machined from the as-received, hot rolled bars and induction hardened using both scanning (96 kHz/72 kW) and single-shot (31 kHz/128 kW) methods. Four conditions were evaluated, three scan hardened to 25, 32, and 44 pct nominal effective case depths and one single-shot hardened to 44 pct. Torsional fatigue tests were conducted at a stress ratio of 0.1 and shear stress amplitudes of 550, 600, and 650 MPa. Physical simulations using the thermal profiles from select induction hardened conditions were conducted in the GleebleRTM 3500 to augment microstructural analysis of torsional fatigue specimens. Thermal profiles were calculated by a collaborating private company using electro-thermal finite element analysis. Residual stresses were evaluated for all conditions using a strain gage hole drilling technique. The results showed that vanadium microalloying has an influence on the microstructure in the highest hardness region of the induction-hardened case as well as the total case region. Vanadium microalloyed conditions consistently exhibited a greater amount of non-martensitic transformation products in the induction-hardened case. In the total case region, vanadium reduced the total case depth by inhibiting austenite formation at low austenitizing temperatures; however, the non-martensitic constituents in the case microstructure and the reduced total case depth of the vanadium microalloyed steel did not translate directly to a degradation of torsional fatigue properties. In general, vanadium microalloying was not found to affect torsional fatigue performance significantly with one exception. In the 25 pct effective case depth condition, the 10V45 steel had a ~75 pct increase in fatigue life at all shear stress amplitudes when compared to the 1045 steel. The improved fatigue performance is likely a result of the significantly higher case hardness this condition exhibited compared to all other conditions. The direct influence of vanadium on the improved fatigue life of the 25 pct effective case depth condition is confounded with the slightly higher carbon content of the 10V45 steel. In addition, the 10V45 conditions showed a consistently higher case hardness than the in 1045 conditions. The increased hardness of the 10V45 steel did not increase the compressive residual stresses at the surface. Induction hardening parameters were more closely related to changes in residual stress than vanadium microalloying additions. Torsional fatigue data from the current study as well as from literature were used to develop an empirical multiple linear regression model that accounts for case depth as well as carbon content when predicting torsional fatigue life of induction hardened medium-carbon steels.

  20. 49 CFR Appendix D to Part 228 - Guidance on Fatigue Management Plans

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... treatment of any medical condition that may affect alertness or fatigue, including sleep disorders; (3... employee fatigue and cumulative sleep loss; (5) Methods to minimize accidents and incidents that occur as a... drowsiness and fatigue while an employee is on duty; (7) Opportunities to obtain restful sleep at lodging...

  1. 49 CFR Appendix D to Part 228 - Guidance on Fatigue Management Plans

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... treatment of any medical condition that may affect alertness or fatigue, including sleep disorders; (3... employee fatigue and cumulative sleep loss; (5) Methods to minimize accidents and incidents that occur as a... drowsiness and fatigue while an employee is on duty; (7) Opportunities to obtain restful sleep at lodging...

  2. 49 CFR Appendix D to Part 228 - Guidance on Fatigue Management Plans

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... treatment of any medical condition that may affect alertness or fatigue, including sleep disorders; (3... employee fatigue and cumulative sleep loss; (5) Methods to minimize accidents and incidents that occur as a... drowsiness and fatigue while an employee is on duty; (7) Opportunities to obtain restful sleep at lodging...

  3. A Fatigue Model for Discontinuous Particulate-Reinforced Aluminum Alloy Composite: Influence of Microstructure

    NASA Astrophysics Data System (ADS)

    McCullough, R. R.; Jordon, J. B.; Brammer, A. T.; Manigandan, K.; Srivatsan, T. S.; Allison, P. G.; Rushing, T. W.

    2014-01-01

    In this paper, the use of a microstructure-sensitive fatigue model is put forth for the analysis of discontinuously reinforced aluminum alloy metal matrix composite. The fatigue model was used for a ceramic particle-reinforced aluminum alloy deformed under conditions of fully reversed strain control. Experimental results revealed the aluminum alloy to be strongly influenced by volume fraction of the particulate reinforcement phase under conditions of strain-controlled fatigue. The model safely characterizes the evolution of fatigue damage in this aluminum alloy composite into the distinct stages of crack initiation and crack growth culminating in failure. The model is able to capture the specific influence of particle volume fraction, particle size, and nearest neighbor distance in quantifying fatigue life. The model yields good results for correlation of the predicted results with the experimental test results on the fatigue behavior of the chosen aluminum alloy for two different percentages of the ceramic particle reinforcement. Further, the model illustrates that both particle size and volume fraction are key factors that govern fatigue lifetime. This conclusion is well supported by fractographic observations of the cyclically deformed and failed specimens.

  4. Crack Nucleation in β Titanium Alloys under High Cycle Fatigue Conditions - A Review

    NASA Astrophysics Data System (ADS)

    Benjamin, Rohit; Nageswara Rao, M.

    2017-05-01

    Beta titanium (β-Ti) alloys have emerged over the last 3 to 4 decades as an important class of titanium alloys. Many of the applications that they found, particularly in aerospace sector, are such that their high cycle fatigue (HCF) behavior becomes critical. In HCF regime, crack nucleation accounts for major part of the life. Consequently it becomes important to understand the mechanisms underlying the nucleation of cracks under HCF type loading conditions. The purpose of this review is to document the best understanding we have on date on crack nucleation in β-Ti alloys under HCF conditions. Role of various microstructural features encountered in β-Ti alloys in influencing the crack nucleation under HCF conditions has been reviewed. It has been brought out that changes in processing can result in changes in microstructure which in turn influence the time for crack nucleation/fatigue life and fatigue limit. While majority of fatigue failures originate at the surface, subsurface cracking is not uncommon with β-Ti alloys and the factors leading to subsurface cracking have been discussed in this review.

  5. Factors of working conditions and prolonged fatigue among teachers at public elementary and junior high schools.

    PubMed

    Shimizu, Midori; Wada, Koji; Wang, Guoqin; Kawashima, Masatoshi; Yoshino, Yae; Sakaguchi, Hiroko; Ohta, Hiroshi; Miyaoka, Hitoshi; Aizawa, Yoshiharu

    2011-01-01

    Prolonged fatigue among elementary and junior high school teachers not only damages their health but also affects the quality of education. The aim of this study was to determine the factors of working conditions associated with prolonged fatigue among teachers at public elementary and junior high schools. We distributed a self-reported, anonymous questionnaire to 3,154 teachers (1,983 in elementary schools, 1,171 in junior high schools) working in public schools in a city in Japan. They were asked to assess 18 aspects of their working conditions using a seven-point Likert scale. Prolonged fatigue was measured using the Japanese version of the checklist individual strength questionnaire. Multiple regression analysis was used to examine the association between working conditions and prolonged fatigue. Gender, age, and school type were introduced as confounders. In all, 2,167 teachers participated in this study. Results showed that qualitative and quantitative workload (time pressure due to heavy workload, interruptions, physically demanding job, extra work at home), communication with colleagues (poor communication, lack of support), and career factors (underestimation of performance by the board of education or supervisors, occupational position not reflecting training, lack of prospects for work, job insecurity) were associated with prolonged fatigue.

  6. Psychological profiles of gender and personality traces of Brazilian professional athletes of futsal, and their influence on physiological parameters

    PubMed Central

    do Nascimento, Marcelo Guimarães Boia; Gomes, Sérgio Adriano; Mota, Márcio Rabelo; Aparecida, Renata; de Melo, Gislane Ferreira

    2016-01-01

    The present study aimed to identify the psychological profiles of professional futsal players in terms of the gender schema and to evaluate the physiological parameters (speed, acceleration, strength, and power) and fatigue index of these athletes according to their gender profiles and relative to their positions on the court. The Masculine Inventory of the Self-concept Gender Schemas was used to classify the sample into typological groups, and the Running Anaerobic Sprint Test was used to measure the physiological parameters (speed, acceleration, strength, and power) and the fatigue index. The study sample was composed of 64 male professional futsal players who competed in the National Indoor Soccer league in 2013; the subjects had an average weight of 76.00±6.7 kg. Among the athletes studied, 23 (35.9%) were classified as heteroschematic female, 22 (34.4%) as heteroschematic male, and 19 (29.7%) as isoschematic. Regarding their positions on the court, eleven were goalkeepers (17.2%), 13 (20.3%) were defenders, 28 (43.8%) were midfielders, and 12 (18.8%) were attackers. The players had similar weights even when belonging to different typological groups and having different positions in the court. However, it is worth noting that male heteroschematic players had a greater mean weight (77.11±5.93 kg) and that the goalkeeper was, on average, the heaviest player (79.36±8.14 kg). The results of the physiological parameter analysis relative to typological group showed that, on average, high-level soccer players presented similar performance profiles in different rounds, as statistically significant differences were not found in any of the studied physiological variables (weight, distance, speed, acceleration, strength, power, and fatigue index). Although the results of this research did not reveal statistically significant differences between the groups in terms of the assessed variables, we observed that some results related to personality traits associated with both the male and female components could help to clarify and establish relationships with some strategic aspects inherent to futsal. PMID:27069373

  7. Damage mechanisms in bithermal and thermomechanical fatigue of Haynes 188

    NASA Technical Reports Server (NTRS)

    Kalluri, Sreeramesh; Halford, Gary R.

    1992-01-01

    Post failure fractographic and metallographic studies were conducted on Haynes 188 specimens fatigued under bithermal and thermomechanical loading conditions between 316 and 760 C. Bithermal fatigue specimens examined included those tested under high strain rate in-phase and out-phase, tensile creep in-phase, and compressive creep out-of-phase loading conditions. Specimens tested under in-phase and out-of-phase thermomechanical fatigue were also examined. The nature of failure mode (transgrandular versus intergranular), the topography of the fracture surface, and the roles of oxidation and metallurgical changes were studied for each type of bithermal and thermomechanical test.

  8. [Effect of different backpack loads on physiological parame ters in walking].

    PubMed

    Zhao, Meiya; Tian, Shan; Tang, Qiaohong; Ni, Yikun; Wang, Lizhen; Fan, Yubo

    2014-10-01

    This study investigated the effect of prolonged walking with load carriage on body posture, muscle fatigue, heart rate and blood pressure of the tested subjects. Ten healthy volunteers performed 30 min walking trials on treadmill (speed = 1.1 m/s) with different backpack loads [0% body weight (BW), 10% BW, 15% BW and 20% BW]. The change of body posture, muscle fatigue, heart rate and blood pressure before and after walking and the recovery of muscle fatigue during the rest time (0, 5, 10 and 15 min) were collected using the Bortec AMT-8 and the NDI Optotrak Certus. Results showed that the forward trunk and head angle, muscle fatigue, heart rate and blood pressure increased with the increasing backpack loads and bearing time. With the 20% BW load, the forward angle, muscle fatigue and systolic pressure were significantly higher than with lighter weights. No significantly increased heart rate and diastolic pressure were found. Decreased muscle fatigue was found after removing the backpack in each load trial. But the recovery of the person with 20% BW load was slower than that of 0% BW, 10% BW and 15% BW. These findings indicated that the upper limit of backpack loads for college-aged students should be between 15% BW and 20% BW according to muscle fatigue and forward angle. It is suggested that backpack loads should be restricted to no more than 15% BW for walks of up to 30 min duration to avoid irreversible muscle fatigue.

  9. Fatigue does not conjointly alter postural and cognitive performance when standing in a shooting position under dual-task conditions.

    PubMed

    Bermejo, José Luis; García-Massó, Xavier; Paillard, Thierry; Noé, Frédéric

    2018-02-01

    This study investigated the effects of fatigue on balance control and cognitive performance in a standing shooting position. Nineteen soldiers were asked to stand while holding a rifle (single task - ST). They also had to perform this postural task while simultaneously completing a cognitive task (dual task - DT). Both the ST and DT were performed in pre- and post-fatigue conditions. In pre-fatigue, participants achieved better balance control in the DT than in the ST, thus suggesting that the increased cognitive activity associated with the DT improves balance control by shifting the attentional focus away from a highly automatised activity. In post-fatigue, balance control was degraded in both the ST and DT, while reaction time was enhanced in the first minutes following the fatiguing exercise without affecting the accuracy of response in the cognitive task, which highlights the relative independent effects of fatigue on balance control and cognitive performance.

  10. Analysis of Crew Fatigue in AIA Guantanamo Bay Aviation Accident

    NASA Technical Reports Server (NTRS)

    Rosekind, Mark R.; Gregory, Kevin B.; Miller, Donna L.; Co, Elizabeth L.; Lebacqz, J. Victor; Statler, Irving C. (Technical Monitor)

    1994-01-01

    Flight operations can engender fatigue, which can affect flight crew performance, vigilance, and mood. The National Transportation Safety Board (NTSB) requested the NASA Fatigue Countermeasures Program to analyze crew fatigue factors in an aviation accident that occurred at Guantanamo Bay, Cuba. There are specific fatigue factors that can be considered in such investigations: cumulative sleep loss, continuous hours of wakefulness prior to the incident or accident, and the time of day at which the accident occurred. Data from the NTSB Human Performance Investigator's Factual Report, the Operations Group Chairman's Factual Report, and the Flight 808 Crew Statements were analyzed, using conservative estimates and averages to reconcile discrepancies among the sources. Analysis of these data determined the following: the entire crew displayed cumulative sleep loss, operated during an extended period of continuous wakefulness, and obtained sleep at times in opposition to the circadian disposition for sleep, and that the accident occurred in the afternoon window of physiological sleepiness. In addition to these findings, evidence that fatigue affected performance was suggested by the cockpit voice recorder (CVR) transcript as well as in the captain's testimony. Examples from the CVR showed degraded decision-making skills, fixation, and slowed responses, all of which can be affected by fatigue; also, the captain testified to feeling "lethargic and indifferent" just prior to the accident. Therefore, the sleep/wake history data supports the hypothesis that fatigue was a factor that affected crewmembers' performance. Furthermore, the examples from the CVR and the captain's testimony support the hypothesis that the fatigue had an impact on specific actions involved in the occurrence of the accident.

  11. Low heart rate variability and cancer-related fatigue in breast cancer survivors

    PubMed Central

    Crosswell, Alexandra D.; Lockwood, Kimberly G.; Ganz, Patricia A.; Bower, Julienne E.

    2015-01-01

    Cancer-related fatigue is a common and often long lasting symptom for many breast cancer survivors. Fatigued survivors show evidence of elevated inflammation, but the physiological mechanisms driving inflammatory activity have not been determined. Alterations in the autonomic nervous system, and particularly parasympathetic nervous system activity, are a plausible, yet understudied contributor to cancer-related fatigue. The goal of this study was to replicate one previous study showing an association between lower parasympathetic activity and higher fatigue in breast cancer survivors (Fagundes et al., 2011), and to examine whether inflammation mediates this association. Study participants were drawn from two samples and included 84 women originally diagnosed with early-stage breast cancer prior to age 50. Participants completed questionnaires, provided blood samples for determination of interleukin (IL)-6 and C-reactive protein (CRP), and underwent electrocardiography (ECG) assessment for evaluation of resting heart rate variability (HRV), a measure of parasympathetic activity. Results showed that lower HRV was associated with higher fatigue (p < .05), as predicted. In bivariate analyses, HRV was also correlated with circulating concentrations of IL-6 and CRP. However, path analyses did not support inflammation as a mediator of the association between HRV and fatigue; instead, associations among these variables appeared to be driven by age and BMI. These findings identify HRV as a potential contributor to cancer-related fatigue, but suggest that inflammation does not mediate this association in younger, healthy breast cancer survivors who are several years post-treatment. The autonomic nervous system merits additional attention in research on the etiology of cancer-related fatigue. PMID:24845177

  12. The compensatory interaction between motor unit firing behavior and muscle force during fatigue.

    PubMed

    Contessa, Paola; De Luca, Carlo J; Kline, Joshua C

    2016-10-01

    Throughout the literature, different observations of motor unit firing behavior during muscle fatigue have been reported and explained with varieties of conjectures. The disagreement amongst previous studies has resulted, in part, from the limited number of available motor units and from the misleading practice of grouping motor unit data across different subjects, contractions, and force levels. To establish a more clear understanding of motor unit control during fatigue, we investigated the firing behavior of motor units from the vastus lateralis muscle of individual subjects during a fatigue protocol of repeated voluntary constant force isometric contractions. Surface electromyographic decomposition technology provided the firings of 1,890 motor unit firing trains. These data revealed that to sustain the contraction force as the muscle fatigued, the following occurred: 1) motor unit firing rates increased; 2) new motor units were recruited; and 3) motor unit recruitment thresholds decreased. Although the degree of these adaptations was subject specific, the behavior was consistent in all subjects. When we compared our empirical observations with those obtained from simulation, we found that the fatigue-induced changes in motor unit firing behavior can be explained by increasing excitation to the motoneuron pool that compensates for the fatigue-induced decrease in muscle force twitch reported in empirical studies. Yet, the fundamental motor unit control scheme remains invariant throughout the development of fatigue. These findings indicate that the central nervous system regulates motor unit firing behavior by adjusting the operating point of the excitation to the motoneuron pool to sustain the contraction force as the muscle fatigues. Copyright © 2016 the American Physiological Society.

  13. Thermal Fatigue and Fracture Behavior of Ceramic Thermal Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Zhu, Dong-Ming; Choi, Sung R.; Miller, Robert A.

    2001-01-01

    Thermal fatigue and fracture behavior of plasma-sprayed ceramic thermal barrier coatings has been investigated under high heat flux and thermal cyclic conditions. The coating crack propagation is studied under laser heat flux cyclic thermal loading, and is correlated with dynamic fatigue and strength test results. The coating stress response and inelasticity, fatigue and creep interactions, and interface damage mechanisms during dynamic thermal fatigue processes are emphasized.

  14. The postural control can be optimized by the first movement initiation condition encountered when submitted to muscle fatigue.

    PubMed

    Monjo, Florian; Forestier, Nicolas

    2017-08-01

    We investigated whether and how the movement initiation condition (IC) encountered during the early movements performed following focal muscle fatigue affects the postural control of discrete ballistic movements. For this purpose, subjects performed shoulder flexions in a standing posture at maximal velocity under two movement IC, i.e., in self-paced conditions and submitted to a Stroop-like task in which participants had to trigger fast shoulder flexions at the presentation of incongruent colors. Shoulder flexion kinematics, surface muscle activity of focal and postural muscles as well as center-of-pressure kinematics were recorded. The initial IC and the order in which subjects were submitted to these two conditions were varied within two separate experimental sessions. IC schedule was repeated before and after fatigue protocols involving shoulder flexors. The aim of this fatigue procedure was to affect acceleration-generating capacities of focal muscles. In such conditions, the postural muscle activity preceding and accompanying movement execution is expected to decrease. Following fatigue, when subjects initially moved in self-paced conditions, postural muscle activity decreased and scaled to the lower focal peak acceleration. This postural strategy then transferred to the Stroop-like task. In contrast, when subjects initially moved submitted to the Stroop-like task, postural muscle activity did not decrease and this transferred to self-paced movements. Regarding the center-of-pressure peak velocity, which is indicative of the efficiency of the postural actions generated in stabilizing posture, no difference appeared between the two sessions post-fatigue. This highlights an optimization of the postural actions when subjects first moved in self-paced conditions, smaller postural muscle activation levels resulting in similar postural consequences. In conclusion, the level of neuromuscular activity associated with the postural control is affected and can be optimized by the initial movement IC experienced post-fatigue. Beyond the fundamental contributions arising from these results, we point out potential applications for trainers and sports instructors. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Hand rest and wrist support are effective in preventing fatigue during prolonged typing.

    PubMed

    Callegari, Bianca; de Resende, Marília Maniglia; da Silva Filho, Manoel

    Case series (longitudinal). Only few reports concerning the efficacy of commonly used strategies for preventing upper limb occupational disorders associated with prolonged typing exist. We aimed to investigate whether the duration of typing and the use of 2 strategies (hand rest and wrist support) changes muscle physiological response and therefore the electromyography records. We enrolled 25 volunteers, who were unfamiliar with the task and did not have musculoskeletal disorders. The subjects underwent 3 prolonged typing protocols to investigate the efficacy of the 2 adopted strategies in reducing the trapezius, biceps brachii, and extensor digitorum communis fatigue. Typing for 1 hour induced muscular fatigue (60%-67% of the subjects). The extensor digitorum communis muscle exhibited the highest percentage of fatigue (72%-84%) after 1 and 4 hours of typing (1 hour, P = .04; 4 hours, P = .02). Fatigue levels in this muscle were significantly reduced (24%) with the use of pause typing (4 hours, P = .045), whereas biceps brachii muscle fatigue was reduced (32%) only with the use of wrist supports (P = .02, after 4 hours). Trapezius muscle fatigue was unaffected by the tested occupational strategies (1 hour, P = .62; 4 hours, P = .85). Despite presenting an overall tendency for fatigue detected during the application of the protocols, the assessed muscles exhibited different behavior patterns, depending on both the preventive strategy applied and the muscle mechanical role during the task. Hand rest and wrist support can successfully reduce muscle fatigue in specific upper limb muscles during prolonged typing, leading to a muscle-selective reduction in the occurrence of fatigue and thus provide direct evidence that they may prevent work-related musculoskeletal disorders. N/A. Copyright © 2016 Hanley & Belfus. Published by Elsevier Inc. All rights reserved.

  16. Monitoring driver fatigue using a single-channel electroencephalographic device: A validation study by gaze-based, driving performance, and subjective data.

    PubMed

    Morales, José M; Díaz-Piedra, Carolina; Rieiro, Héctor; Roca-González, Joaquín; Romero, Samuel; Catena, Andrés; Fuentes, Luis J; Di Stasi, Leandro L

    2017-12-01

    Driver fatigue can impair performance as much as alcohol does. It is the most important road safety concern, causing thousands of accidents and fatalities every year. Thanks to technological developments, wearable, single-channel EEG devices are now getting considerable attention as fatigue monitors, as they could help drivers to assess their own levels of fatigue and, therefore, prevent the deterioration of performance. However, the few studies that have used single-channel EEG devices to investigate the physiological effects of driver fatigue have had inconsistent results, and the question of whether we can monitor driver fatigue reliably with these EEG devices remains open. Here, we assessed the validity of a single-channel EEG device (TGAM-based chip) to monitor changes in mental state (from alertness to fatigue). Fifteen drivers performed a 2-h simulated driving task while we recorded, simultaneously, their prefrontal brain activity and saccadic velocity. We used saccadic velocity as the reference index of fatigue. We also collected subjective ratings of alertness and fatigue, as well as driving performance. We found that the power spectra of the delta EEG band showed an inverted U-shaped quadratic trend (EEG power spectra increased for the first hour and half, and decreased during the last thirty minutes), while the power spectra of the beta band linearly increased as the driving session progressed. Coherently, saccadic velocity linearly decreased and speeding time increased, suggesting a clear effect of fatigue. Subjective data corroborated these conclusions. Overall, our results suggest that the TGAM-based chip EEG device is able to detect changes in mental state while performing a complex and dynamic everyday task as driving. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Fatigue of internal combustion engines

    NASA Technical Reports Server (NTRS)

    Dumanois, P

    1924-01-01

    The above conditions enable the employment of a criterion of general fatigue which simultaneously takes account of both mechanical and thermal conditions, for the sake of comparing any projected engine with engines of the same type already in use.

  18. Effects of concurrent physical and cognitive demands on muscle activity and heart rate variability in a repetitive upper-extremity precision task.

    PubMed

    Srinivasan, Divya; Mathiassen, Svend Erik; Hallman, David M; Samani, Afshin; Madeleine, Pascal; Lyskov, Eugene

    2016-01-01

    Most previous studies of concurrent physical and cognitive demands have addressed tasks of limited relevance to occupational work, and with dissociated physical and cognitive task components. This study investigated effects on muscle activity and heart rate variability of executing a repetitive occupational task with an added cognitive demand integral to correct task performance. Thirty-five healthy females performed 7.5 min of standardized repetitive pipetting work in a baseline condition and a concurrent cognitive condition involving a complex instruction for correct performance. Average levels and variabilities of electromyographic activities in the upper trapezius and extensor carpi radialis (ECR) muscles were compared between these two conditions. Heart rate and heart rate variability were also assessed to measure autonomic nervous system activation. Subjects also rated perceived fatigue in the neck-shoulder region, as well as exertion. Concurrent cognitive demands increased trapezius muscle activity from 8.2% of maximum voluntary exertion (MVE) in baseline to 9.0% MVE (p = 0.0005), but did not significantly affect ECR muscle activity, heart rate, heart rate variability, perceived fatigue or exertion. Trapezius muscle activity increased by about 10%, without any accompanying cardiovascular response to indicate increased sympathetic activation. We suggest this slight increase in trapezius muscle activity to be due to changed muscle activation patterns within or among shoulder muscles. The results suggest that it may be possible to introduce modest cognitive demands necessary for correct performance in repetitive precision work without any major physiological effects, at least in the short term.

  19. Psychophysiological effects of audiovisual stimuli during cycle exercise.

    PubMed

    Barreto-Silva, Vinícius; Bigliassi, Marcelo; Chierotti, Priscila; Altimari, Leandro R

    2018-05-01

    Immersive environments induced by audiovisual stimuli are hypothesised to facilitate the control of movements and ameliorate fatigue-related symptoms during exercise. The objective of the present study was to investigate the effects of pleasant and unpleasant audiovisual stimuli on perceptual and psychophysiological responses during moderate-intensity exercises performed on an electromagnetically braked cycle ergometer. Twenty young adults were administered three experimental conditions in a randomised and counterbalanced order: unpleasant stimulus (US; e.g. images depicting laboured breathing); pleasant stimulus (PS; e.g. images depicting pleasant emotions); and neutral stimulus (NS; e.g. neutral facial expressions). The exercise had 10 min of duration (2 min of warm-up + 6 min of exercise + 2 min of warm-down). During all conditions, the rate of perceived exertion and heart rate variability were monitored to further understanding of the moderating influence of audiovisual stimuli on perceptual and psychophysiological responses, respectively. The results of the present study indicate that PS ameliorated fatigue-related symptoms and reduced the physiological stress imposed by the exercise bout. Conversely, US increased the global activity of the autonomic nervous system and increased exertional responses to a greater degree when compared to PS. Accordingly, audiovisual stimuli appear to induce a psychophysiological response in which individuals visualise themselves within the story presented in the video. In such instances, individuals appear to copy the behaviour observed in the videos as if the situation was real. This mirroring mechanism has the potential to up-/down-regulate the cardiac work as if in fact the exercise intensities were different in each condition.

  20. Effect of Surface Impulsive Thermal Loads on Fatigue Behavior of Constant Volume Propulsion Engine Combustor Materials

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Fox, Dennis S.; Miller, Robert A.; Ghosn, Louis J.; Kalluri, Sreeramesh

    2004-01-01

    The development of advanced high performance constant-volume-combustion-cycle engines (CVCCE) requires robust design of the engine components that are capable of enduring harsh combustion environments under high frequency thermal and mechanical fatigue conditions. In this study, a simulated engine test rig has been established to evaluate thermal fatigue behavior of a candidate engine combustor material, Haynes 188, under superimposed CO2 laser surface impulsive thermal loads (30 to 100 Hz) in conjunction with the mechanical fatigue loads (10 Hz). The mechanical high cycle fatigue (HCF) testing of some laser pre-exposed specimens has also been conducted under a frequency of 100 Hz to determine the laser surface damage effect. The test results have indicated that material surface oxidation and creep-enhanced fatigue is an important mechanism for the surface crack initiation and propagation under the simulated CVCCE engine conditions.

  1. Roughness Effects on Fretting Fatigue

    NASA Astrophysics Data System (ADS)

    Yue, Tongyan; Abdel Wahab, Magd

    2017-05-01

    Fretting is a small oscillatory relative motion between two normal loaded contact surfaces. It may cause fretting fatigue, fretting wear and/or fretting corrosion damage depending on various fretting couples and working conditions. Fretting fatigue usually occurs at partial slip condition, and results in catastrophic failure at the stress levels below the fatigue limit of the material. Many parameters may affect fretting behaviour, including the applied normal load and displacement, material properties, roughness of the contact surfaces, frequency, etc. Since fretting damage is undesirable due to contacting, the effect of rough contact surfaces on fretting damage has been studied by many researchers. Experimental method on this topic is usually focusing on rough surface effects by finishing treatment and random rough surface effects in order to increase fretting fatigue life. However, most of numerical models on roughness are based on random surface. This paper reviewed both experimental and numerical methodology on the rough surface effects on fretting fatigue.

  2. Normalized coffin-manson plot in terms of a new life function based on stress relaxation under creep-fatigue conditions

    NASA Astrophysics Data System (ADS)

    Jeong, Chang Yeol; Nam, Soo Woo; Lim, Jong Dae

    2003-04-01

    A new life prediction function based on a model formulated in terms of stress relaxation during hold time under creep-fatigue conditions is proposed. From the idea that reduction in fatigue life with hold is due to the creep effect of stress relaxation that results in additional energy dissipation in the hysteresis loop, it is suggested that the relaxed stress range may be a creep-fatigue damage function. Creep-fatigue data from the present and other investigators are used to check the validity of the proposed life prediction equation. It is shown that the data satisfy the applicability of the life relation model. Accordingly, using this life prediction model, one may realize that all the Coffin-Manson plots at various levels of hold time in strain-controlled creep-fatigue tests can be normalized to make one straight line.

  3. Understanding postoperative fatigue.

    PubMed

    Rose, E A; King, T C

    1978-07-01

    Performance characteristics of the central nervous, cardiovascular, respiratory and muscular systems in man postoperatively have received little investigative attention, despite the well known syndrome of postoperative fatigue. The impairmen in perception and psychomotor skills that has been shown to result from caloric restriction, bedrest, sedation and sleep deprivation suggests that a similar deficit may occur after surgical procedures. After a simple elective surgical procedure, maximal oxygen uptake decreases and the adaptability of heart rate to submaximal workloads is impaired. Similar deleterious effects on cardiorespiratory performance have been documented with starvation and bedrest; an understanding of cardiorespiratory performance postoperatively awaits further investigation. Maximal muscular force of contraction is also impaired by caloric restriction and bedrest, suggesting that similar effects may be seen in the postoperative state, although this has not been studied. A better understanding of the syndrome of postoperative fatigue could be achieved by a descriptive analysis of physiologic performance postoperatively. Such descriptive data could form the basis for objective evaluation of therapeutic measures intended to improve performance, such as nutritional supplementation and pharmacologic intervention. The observation that exercise with the patient in the supine position may decrease the impairment in maximal aerobic power otherwise expected in immobilized patients suggests that controlled exercise therapy may be of value in reducing physiologic impairment postoperatively.

  4. Ageing and moisture uptake in polymethyl methacrylate (PMMA) bone cements☆

    PubMed Central

    Ayre, Wayne Nishio; Denyer, Stephen P.; Evans, Samuel L.

    2014-01-01

    Bone cements are extensively employed in orthopaedics for joint arthroplasty, however implant failure in the form of aseptic loosening is known to occur after long-term use. The exact mechanism causing this is not well understood, however it is thought to arise from a combination of fatigue and chemical degradation resulting from the hostile in vivo environment. In this study, two commercial bone cements were aged in an isotonic fluid at physiological temperatures and changes in moisture uptake, microstructure and mechanical and fatigue properties were studied. Initial penetration of water into the cement followed Fickian diffusion and was thought to be caused by vacancies created by leaching monomer. An increase in weight of approximately 2% was experienced after 30 days ageing and was accompanied by hydrolysis of poly(methyl methacrylate) (PMMA) in the outermost layers of the cement. This molecular change and the plasticising effect of water resulted in reduced mechanical and fatigue properties over time. Cement ageing is therefore thought to be a key contributor in the long-term failure of cemented joint replacements. The results from this study have highlighted the need to develop cements capable of withstanding long-term degradation and for more accurate test methods, which fully account for physiological ageing. PMID:24445003

  5. Isometric quadriceps strength determines sailing performance and neuromuscular fatigue during an upwind sailing emulation.

    PubMed

    Bourgois, Jan G; Callewaert, Margot; Celie, Bert; De Clercq, Dirk; Boone, Jan

    2016-01-01

    This study investigates the physiological responses to upwind sailing on a laser emulation ergometer and analyses the components of the physical profile that determine the physiological responses related to sailing level. Ten male high-level laser sailors performed an upwind sailing test, incremental cycling test and quadriceps strength test. During the upwind sailing test, heart rate (HR), oxygen uptake, ventilation, respiratory exchange ratio, rating of perceived exertion (RPE) and lactate concentration were measured, combined with near-infrared spectroscopy (NIRS) and electromyography (EMG) registration of the M. Vastus lateralis. Repeated measures ANOVA showed for the cardio-respiratory, metabolic and muscles responses (mean power frequency [MPF], root mean square [RMS], deoxy[Hb+Mb]) during the upwind sailing test an initial significant increase followed by a stabilisation, despite a constant increase in RPE. Stepwise regression analysis showed that better sailing level was for 46.5% predicted by lower MPF decrease. Lower MPF decrease was for 57.8% predicted by a higher maximal isometric quadriceps strength. In conclusion, this study indicates that higher sailing level was mainly determined by a lower rate of neuromuscular fatigue during the upwind sailing test (as indicated by MPF decrease). Additionally, the level of neuromuscular fatigue was mainly determined by higher maximal isometric quadriceps strength stressing the importance of resistance training in the planning of training.

  6. Ageing and moisture uptake in polymethyl methacrylate (PMMA) bone cements.

    PubMed

    Ayre, Wayne Nishio; Denyer, Stephen P; Evans, Samuel L

    2014-04-01

    Bone cements are extensively employed in orthopaedics for joint arthroplasty, however implant failure in the form of aseptic loosening is known to occur after long-term use. The exact mechanism causing this is not well understood, however it is thought to arise from a combination of fatigue and chemical degradation resulting from the hostile in vivo environment. In this study, two commercial bone cements were aged in an isotonic fluid at physiological temperatures and changes in moisture uptake, microstructure and mechanical and fatigue properties were studied. Initial penetration of water into the cement followed Fickian diffusion and was thought to be caused by vacancies created by leaching monomer. An increase in weight of approximately 2% was experienced after 30 days ageing and was accompanied by hydrolysis of poly(methyl methacrylate) (PMMA) in the outermost layers of the cement. This molecular change and the plasticising effect of water resulted in reduced mechanical and fatigue properties over time. Cement ageing is therefore thought to be a key contributor in the long-term failure of cemented joint replacements. The results from this study have highlighted the need to develop cements capable of withstanding long-term degradation and for more accurate test methods, which fully account for physiological ageing. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

  7. A nerve stimulation method to selectively recruit smaller motor-units in rat skeletal muscle.

    PubMed

    van Bolhuis, A I; Holsheimer, J; Savelberg, H H

    2001-05-30

    Electrical stimulation of peripheral nerve results in a motor-unit recruitment order opposite to that attained by natural neural control, i.e. from large, fast-fatiguing to progressively smaller, fatigue-resistant motor-units. Yet animal studies involving physiological exercise protocols of low intensity and long duration require minimal fatigue. The present study sought to apply a nerve stimulation method to selectively recruit smaller motor-units in rat skeletal muscle. Two pulse generators were used, independently supplying short supramaximal cathodal stimulating pulses (0.5 ms) and long subthreshold cathodal inactivating pulses (1.5 s) to the sciatic nerve. Propagation of action potentials was selectively blocked in nerve fibres of different diameter by adjusting the strength of the inactivating current. A tensile-testing machine was used to gauge isometric muscle force of the plantaris and both heads of the gastrocnemius muscle. The order of motor-unit recruitment was estimated from twitch characteristics, i.e. peak force and relaxation time. The results showed prolonged relaxation at lower twitch peak forces as the intensity of the inactivating current increased, indicating a reduction of the number of large motor-units to force production. It is shown that the nerve stimulation method described is effective in mimicking physiological muscle control.

  8. Perspectives on Asthenia in Astronauts and Cosmonauts: Review of the International Research Literature

    NASA Technical Reports Server (NTRS)

    Sandoval, Luis; Keeton, Kathryn; Shea, Camille; Otto, Christian; Patterson, Holly; Leveton, Lauren

    2012-01-01

    The Behavioral Health and Performance Element (BHP) is one of the 6 elements in the NASA Human Research Program (HRP) and is responsible for managing 4 of the identified and named risks to human health and performance from human space exploration: a) Risk of Behavioral Conditions (BMed), b) Risk of Psychiatric Disorders (BMed), c) Risk of Performance Decrements due to inadequate Cooperation, Coordination, Communication and Psychological Adaptation within a Team (Team), and d) Risk of Performance Errors due to Sleep Loss, Circadian De-synchronization, Fatigue and Work Overload (Sleep). Each risk is reviewed by a NASA HRP Standing Review Panel (SRP), and recently the Behavioral Medicine Risk of Psychiatric Disorders was reviewed. The aim of this report is to address one of the recommendations made by that panel, specifically the recommendation that the "literature on asthenia should be evaluated (possibly as a psychological or psychosomatic / psycho-physiological analogue of chronic fatigue syndrome)" (SRP p. 4), in addition to General Recommendation 4, which states that "all reviews must include non-English language materials as well as materials appearing in conferences reports, books, and other non-refereed journal outlets" (SRP p. 2).

  9. Effect of outdoor exposure at ambient and elevated temperatures on fatigue life of Ti-6Al-4V titanium alloy sheet in the annealed and the solution treated and aged condition

    NASA Technical Reports Server (NTRS)

    Phillips, E. P.

    1974-01-01

    Specimens of Ti-6Al-4V titanium alloy sheet in the annealed and the solution-treated and aged heat-treatment condition were exposed outdoors at ambient and 560 K (550 F) temperatures to determine the effect of outdoor exposure on fatigue life. Effects of exposure were determined by comparing fatigue lives of exposed specimens to those of unexpected specimens. Two procedures for fatigue testing the exposed specimens were evaluated: (1) fatigue tests conducted outdoors by applying 1200 load cycles per week until failure occurred and (2) conventional fatigue tests (continuous cycling until failure occurred) conducted indoors after outdoor exposure under static load. The exposure period ranged from 9 to 28 months for the outdoor fatigue-test group and was 24 months for the static-load group. All fatigue tests were constant-amplitude bending of specimens containing a drilled hole (stress concentration factor of 1.6). The results of the tests indicate that the fatigue lives of solution-treated and aged specimens were significantly reduced by the outdoor exposure at 560 K but not by the exposure at ambient temperature. Fatigue lives of the annealed specimens were essentially unaffected by the outdoor exposure at either temperature. The two test procedures - outdoor fatigue test and indoor fatigue test after outdoor exposure - led to the same conclusions about exposure effects.

  10. Effect of Pre-Strain on the Fatigue Behavior of Extruded AZ31 Alloys

    NASA Astrophysics Data System (ADS)

    Wu, Yanjun

    2017-09-01

    An attempt is made to rationalize the effect of pre-strain history on fatigue behaviors of AZ31 magnesium alloy. Axial fatigue tests were conducted in the extruded and pre-compressioned AZ31 alloy under low cycle total strain control fatigue conditions. The pre-strain process influences the plastic deformation mechanism activated during fatigue deformation, especially during tensile loading, by enhancing the activity of detwinning mechanism. The low-cycle fatigue lifetime of extruded AZ31 alloy can be enhanced by the pre-compression process. And the hysteresis energy was successfully used to predict the low-cycle fatigue lifetime.

  11. A modified PMMA cement (Sub-cement) for accelerated fatigue testing of cemented implant constructs using cadaveric bone.

    PubMed

    Race, Amos; Miller, Mark A; Mann, Kenneth A

    2008-10-20

    Pre-clinical screening of cemented implant systems could be improved by modeling the longer-term response of the implant/cement/bone construct to cyclic loading. We formulated bone cement with degraded fatigue fracture properties (Sub-cement) such that long-term fatigue could be simulated in short-term cadaver tests. Sub-cement was made by adding a chain-transfer agent to standard polymethylmethacrylate (PMMA) cement. This reduced the molecular weight of the inter-bead matrix without changing reaction-rate or handling characteristics. Static mechanical properties were approximately equivalent to normal cement. Over a physiologically reasonable range of stress-intensity factor, fatigue crack propagation rates for Sub-cement were higher by a factor of 25+/-19. When tested in a simplified 2 1/2-D physical model of a stem-cement-bone system, crack growth from the stem was accelerated by a factor of 100. Sub-cement accelerated both crack initiation and growth rate. Sub-cement is now being evaluated in full stem/cement/femur models.

  12. Polyphasic Temporal Behavior of Finger-Tapping Performance: A Measure of Motor Skills and Fatigue.

    PubMed

    Aydin, Leyla; Kiziltan, Erhan; Gundogan, Nimet Unay

    2016-01-01

    Successive voluntary motor movement involves a number of physiological mechanisms and may reflect motor skill development and neuromuscular fatigue. In this study, the temporal behavior of finger tapping was investigated in relation to motor skills and fatigue by using a long-term computer-based test. The finger-tapping performances of 29 healthy male volunteers were analyzed using linear and nonlinear regression models established for inter-tapping interval. The results suggest that finger-tapping performance exhibits a polyphasic nature, and has several characteristic time points, which may be directly related to muscle dynamics and energy consumption. In conclusion, we believe that future studies evaluating the polyphasic nature of the maximal voluntary movement will lead to the definition of objective scales that can be used in the follow up of some neuromuscular diseases, as well as, the determination of motor skills, individual ability, and peripheral fatigue through the use of a low cost, easy-to-use computer-based finger-tapping test.

  13. Aircrew fatigue in long-haul operations.

    PubMed

    Samel, A; Wegmann, H M; Vejvoda, M

    1997-07-01

    The studies were conducted on the transmeridian routes Düsseldorf (DUS)-Atlanta (ATL) and Hamburg (HAM)-Los Angeles (LAX), and on the north-south route Frankfurt (FRA)-Mahe (SEZ). Scheduled flight duration was between 8:50 hours (ATL-DUS) and 11:50 hours (HAM-LAX). In total, 25 rotations (50 flights) have been investigated by pre-, in- and post-flight data collection of sleep, taskload, fatigue and stress by electroencephalogram and electrocardiogram measurements and subjective ratings. Inflight ratings of taskload showed low perceived exertion during the Atlantic flights, and were moderate during the north-south transitions. Fatigue ratings increased with progressing flight duration. Towards the end of long U.S.-westcoast flights performed at day-time, and in all night flights, fatigue was elevated compared to the 'baseline' ratings collected during the day-time DUS-ATL flights. Fatigue was rated as being 'critical' by several pilots, particularly during the return flight SEZ-FRA when fatigue was severely pronounced. From the findings it is concluded that duty schedules, as performed on the route HAM-LAX (because of long duty hours), and particularly on the route FRA-SEZ (because of consecutive night work), may place excessive demands on mental and physiological capacity. With respect to legal aspects, the results are significant and should promote further deliberations for advanced schemes of flight duty time limitations and rest requirements.

  14. Pilot fatigue survey: exploring fatigue factors in air medical operations.

    PubMed

    Gregory, Kevin B; Winn, William; Johnson, Kent; Rosekind, Mark R

    2010-01-01

    Humans confront significant physiological challenges with sleep and alertness when working in 24/7 operations. A web-based national survey of air medical pilots examined issues relevant to fatigue and sleep management. Six hundred ninety-seven responses were received, with a majority of rotor wing pilots working 3/3/7 and 7/7 duty schedules. Over 84% of the pilots reported that fatigue had affected their flight performance; less than 28% reported "nodding off" during flight. More than 90% reported a separate work site "rest" room with a bed available. Over 90% reported no company policies restricting on-duty sleep. Approximately half of the pilots reported getting 4 hours or more sleep during a typical night shift. Approximately half reported that sleep inertia had never compromised flight safety. Over 90% reported that it was better to sleep during the night and overcome sleep inertia if necessary. Survey results reflected practices that can mitigate the degrading effects of fatigue, including the availability of designated work-site sleep rooms. As demands continue to evolve, the need remains for sustained efforts to address fatigue-related risks in the air medical transport industry. This includes further study of sleep inertia issues and the need for alertness management programs. Copyright © 2010 Air Medical Journal Associates. Published by Elsevier Inc. All rights reserved.

  15. Compressive Strength of Notched Poly(Phenylene Sulfide) Aerospace Composite: Influence of Fatigue and Environment

    NASA Astrophysics Data System (ADS)

    Niitsu, G. T.; Lopes, C. M. A.

    2013-08-01

    The purpose of this work is to evaluate the influences of fatigue and environmental conditions (-55 °C, 23 °C, and 82 °C/Wet) on the ultimate compression strength of notched carbon-fiber-reinforced poly(phenylene sulfide) composites by performing open-hole compression (OHC) tests. Analysis of the fatigue effect showed that at temperatures of -55 and 23 °C, the ultimate OHC strengths were higher for fatigued than for not-fatigued specimens; this could be attributed to fiber splitting and delamination during fatigue cycling, which reduces the stress concentration at the hole edge, thus increasing the composite strength. This effect of increasing strength for fatigued specimens was not observed under the 82 °C/Wet conditions, since the test temperature near the matrix glass transition temperature ( T g) together with moisture content resulted in matrix softening, suggesting a reduction in fiber splitting during cycling; similar OHC strengths were verified for fatigued and not-fatigued specimens tested at 82 °C/Wet. Analysis of the temperature effect showed that the ultimate OHC strengths decreased with increasing temperature. A high temperature together with moisture content (82 °C/Wet condition) reduced the composite compressive strengths, since a temperature close to the matrix T g resulted in matrix softening, which reduced the lateral support provided by the resin to the 0° fibers, leading to fiber instability failure at reduced applied loads. On the other hand, a low temperature (-55 °C) improved the compressive strength because of possible fiber-matrix interfacial strengthening, increasing the fiber contribution to compressive strength.

  16. 75 FR 75882 - Airworthiness Directives; British Aerospace Regional Aircraft Models Jetstream Series 3101 and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-07

    ... describes the unsafe condition as: As a result of the fatigue-testing programme on the Jetstream fatigue... result of the fatigue-testing programme on the Jetstream fatigue test specimen, it has been identified....S. registry. We also estimate that it will take about 15 work-hours per product to comply with the...

  17. Fatigue Analysis of Magnesium Alloys Components for Car Industry

    NASA Astrophysics Data System (ADS)

    Marsavina, Liviu; Rusu, Lucian; Șerban, Dan Andrei; Negru, Radu Marcel; Cernescu, Anghel

    2017-12-01

    The use of magnesium alloys in the automotive industry increased in the last decade because of their low weight and relative good mechanical properties. However, the variable loading conditions require a good fatigue behavior. This paper summaries the fatigue properties of magnesium alloys and presents new fatigue curve results for die cast AM50 magnesium alloy.

  18. Prior Acute Mental Exertion in Exercise and Sport

    PubMed Central

    Silva-Júnior, Fernando Lopes e; Emanuel, Patrick; Sousa, Jordan; Silva, Matheus; Teixeira, Silmar; Pires, Flávio Oliveira; Machado, Sérgio; Arias-Carrion, Oscar

    2016-01-01

    Introduction: Mental exertion is a psychophysiological state caused by sustained and prolonged cognitive activity. The understanding of the possible effects of acute mental exertion on physical performance, and their physiological and psychological responses are of great importance for the performance of different occupations, such as military, construction workers, athletes (professional or recreational) or simply practicing regular exercise, since these occupations often combine physical and mental tasks while performing their activities. However, the effects of implementation of a cognitive task on responses to aerobic exercise and sports are poorly understood. Our narrative review aims to provide information on the current research related to the effects of prior acute mental fatigue on physical performance and their physiological and psychological responses associated with exercise and sports. Methods: The literature search was conducted using the databases PubMed, ISI Web of Knowledge and PsycInfo using the following terms and their combinations: “mental exertion”, “mental fatigue”, “mental fatigue and performance”, “mental exertion and sports” “mental exertion and exercise”. Results: We concluded that prior acute mental exertion affects effectively the physiological and psychophysiological responses during the cognitive task, and performance in exercise. Conclusion: Additional studies involving prior acute mental exertion, exercise/sports and physical performance still need to be carried out in order to analyze the physiological, psychophysiological and neurophysiological responses subsequently to acute mental exertion in order to identify cardiovascular factors, psychological, neuropsychological associates. PMID:27867415

  19. Fatigue crack growth in fiber reinforced plastics

    NASA Technical Reports Server (NTRS)

    Mandell, J. F.

    1979-01-01

    Fatigue crack growth in fiber composites occurs by such complex modes as to frustrate efforts at developing comprehensive theories and models. Under certain loading conditions and with certain types of reinforcement, simpler modes of fatigue crack growth are observed. These modes are more amenable to modeling efforts, and the fatigue crack growth rate can be predicted in some cases. Thus, a formula for prediction of ligamented mode fatigue crack growth rate is available.

  20. Resistance to Fracture, Fatigue and Stress-Corrosion of Al-Cu-Li-Zr Alloys

    DTIC Science & Technology

    1985-02-19

    alloys , in both smooth and notch fatigue conditions, are compared in Figure 15 giving a summary of Mg- effect on S-N fatigue behavior. Several ...crack initiation of conventional aluminum alloys and reported that fatigue cracks were associated with cracked constituent particles in 2024 -T3... fatigue cracks. Kung & Fine (14) investigated surface crack initiation in a 2024 -T4 alloy . They observed that at high stresses most cracks formed

  1. Effect of laser shock processing on fatigue life of 2205 duplex stainless steel notched specimens

    NASA Astrophysics Data System (ADS)

    Vázquez Jiménez, César A.; Gómez Rosas, Gilberto; Rubio González, Carlos; Granados Alejo, Vignaud; Hereñú, Silvina

    2017-12-01

    The effect laser shock processing (LSP) on high cycle fatigue behavior of 2205 duplex stainless steel (DSS) notched samples was investigated. The swept direction parallel (LSP 1) and perpendicular (LSP 2) to rolling were used in order to examine the sensitivity of LSP to manufacturing process since this steel present significantly anisotropy. The Nd:YAG pulsed laser operating at 10 Hz frequency and 1064 nm wavelength was utilized. The LSP configuration was the water jet mode without protective coating. Notched specimens 4 mm thick were treated on both sides, and then fatigue loading was applied with R = 0.1. The results showed that the LSP 2 condition induces higher compressive residual stresses as well as a higher fatigue life than the LSP 1 condition. By applying LSP 2 condition, an enhancement of fatigue life up to 402% is reported. In addition, the microhardness profiles showed different depths of hardening layer for each direction, according to the anisotropy observed.

  2. A fatigue monitoring system based on time-domain and frequency-domain analysis of pulse data

    NASA Astrophysics Data System (ADS)

    Shen, Jiaai

    2018-04-01

    Fatigue is almost a problem that everyone would face, and a psychosis that everyone hates. If we can test people's fatigue condition and remind them of the tiredness, dangers in life, for instance, traffic accidents and sudden death will be effectively reduced, people's fatigued operations will be avoided. And people can be assisted to have access to their own and others' physical condition in time to alternate work with rest. The article develops a wearable bracelet based on FFT Pulse Frequency Spectrum Analysis and IBI's standard deviation and range calculation, according to people's heart rate (BPM) and inter-beat interval (IBI) while being tired and conscious. The hardware part is based on Arduino, pulse rate sensor, and Bluetooth module, and the software part is relied on network micro database and APP. By doing sample experiment to get more accurate standard value to judge tiredness, we prove that we can judge people's fatigue condition based on heart rate (BPM) and inter-beat interval (IBI).

  3. Corrosion and Fatigue Behavior of High-Strength Steel Treated with a Zn-Alloy Thermo-diffusion Coating

    NASA Astrophysics Data System (ADS)

    Mulligan, C. P.; Vigilante, G. N.; Cannon, J. J.

    2017-11-01

    High and low cycle fatigue tests were conducted on high-strength steel using four-point bending. The materials tested were ASTM A723 steel in the as-machined condition, grit-blasted condition, MIL-DTL-16232 heavy manganese phosphate-coated condition, and ASTM A1059 Zn-alloy thermo-diffusion coated (Zn-TDC). The ASTM A723 steel base material exhibits a yield strength of 1000 MPa. The effects of the surface treatments versus uncoated steel were examined. The fatigue life of the Zn-TDC specimens was generally reduced on as-coated specimens versus uncoated or phosphate-coated specimens. Several mechanisms are examined including the role of compressive residual stress relief with the Zn-TDC process as well as fatigue crack initiation from the hardened Zn-Fe alloy surface layer produced in the gas-metal reaction. Additionally, the effects of corrosion pitting on the fatigue life of coated specimens are explored as the Zn-TDC specimens exhibit significantly improved corrosion resistance over phosphate-coated and oiled specimens.

  4. The effect of hold-times on the fatigue behavior of type AISI 316L stainless steel under deuteron irradiation

    NASA Astrophysics Data System (ADS)

    Scholz, R.; Mueller, R.

    1998-10-01

    Strain controlled fatigue tests have been performed in torsion at 400°C on type 316L stainless steel samples in both 20% cold worked and annealed conditions during an irradiation with 19 MeV deuterons. A hold-time was imposed in the loading cycle. For the cold worked (cw) material, at shear strain ranges of 1.13% and 1.3%, irradiation creep induced stress relaxation led to the built up of a mean stress. The fatigue life was significantly reduced in comparison to thermal control tests. For the annealed (ann) material, tested under similar experimental conditions, irradiation creep effects were negligibly small compared to cyclic and irradiation hardening. The fatigue life was only slightly reduced. Continuous cycling tests conducted under irradiation conditions lay in the scatter band of the thermal control tests. The difference in fatigue life between continuous cycling and hold-time tests is attributed mainly to the observed difference in irradiation hardening.

  5. Effect of moisture on the fatigue behavior of graphite/epoxy composite laminates

    NASA Technical Reports Server (NTRS)

    Ramani, S. V.; Nelson, H. G.

    1979-01-01

    The form of the moisture distribution in the specimen (gradient and flat profile) was considered to establish the influence of accelerated moisture conditioning on fatigue behavior. For the gradient specimens having an average moisture content of 1.4 percent, fatigue life was reduced by a factor of 8 at all stress levels investigated. Corresponding reduction in fatigue life for the flat moisture profile specimens at the same average moisture content was comparatively smaller, being about a factor of 5 from the value in dry specimens. X-ray radiographic analysis of damage accumulation in compression-compression fatigue revealed interlaminar cracking to be the dominant mode of failure responsible for the observed enhanced cyclic degradation of moisture-conditioned specimens. This finding was corroborated by the observed systematic reduction in interlaminar shear strength as a function of moisture content, which, in turn, increased the propensity for delamination under cyclic compressive loads. Residual strength measurements on cycled specimens indicated significant strength reductions at long lives, particularly in moisture conditioned specimens.

  6. Light therapy for multiple sclerosis-associated fatigue: Study protocol for a randomized controlled trial.

    PubMed

    Mateen, Farrah J; Manalo, Natalie C; Grundy, Sara J; Houghton, Melissa A; Hotan, Gladia C; Erickson, Hans; Videnovic, Aleksandar

    2017-09-01

    Fatigue is the most commonly reported symptom among multiple sclerosis (MS) patients, more than a quarter of whom consider fatigue to be their most disabling symptom. However, there are few effective treatment options for fatigue. We aim to investigate whether supplemental exposure to bright white light will reduce MS-associated fatigue. Eligible participants will have clinically confirmed multiple sclerosis based on the revised McDonald criteria (2010) and a score ≥36 on the Fatigue Severity Scale (FSS). Participants will be randomized 1:1 to bright white light (10,000 lux; active condition) or dim red light (<300 lux; control condition) self-administered for 1 hour twice daily. The study will include a 2-week baseline period, a 4-week treatment period, and a 4-week washout period. Participants will record their sleep duration, exercise, caffeine, and medication intake daily. Participants will record their fatigue using the Visual Analogue Fatigue Scale (VAFS) 4 times every third day, providing snapshots of their fatigue level at different times of day. Participants will self-report their fatigue severity using FSS on 3 separate visits: at baseline (week 0), following completion of the treatment phase (week 6), and at study completion (week 10). The primary outcome will be the change in the average FSS score after light therapy. We will perform an intention-to-treat analysis, comparing the active and control groups to assess the postintervention difference in fatigue levels reported on FSS. Secondary outcome measures include change in global VAFS scores during the light therapy and self-reported quality of life in the Multiple Sclerosis Quality of Life-54. We present a study design and rationale for randomizing a nonpharmacological intervention for MS-associated fatigue, using bright light therapy. The study limitations relate to the logistical issues of a self-administered intervention requiring frequent participant self-report in a relapsing condition. Ultimately, light therapy for the treatment of MS-associated fatigue may provide a low-cost, noninvasive, self-administered treatment for one of the most prevalent and burdensome symptoms experienced by people with MS.

  7. Effectiveness of Shot Peening in Suppressing Fatigue Cracking at Non-Metallic Inclusions in Udimet(trademark) 720

    NASA Technical Reports Server (NTRS)

    Barrie, Robert L.; Gabb, Timothy P.; Telesman, Jack; Kantzos, Peter T.; Prescenzi, Anthony; Biles, Tiffany; Bonacuse, Peter J.

    2005-01-01

    The fatigue lives of modern powder metallurgy disk alloys can be reduced by over an order of magnitude by surface cracking at inherent non-metallic inclusions. The objective of this work was to study the effectiveness of shot peening in suppressing LCF crack initiation and growth at surface nonmetallic inclusions. Inclusions were carefully introduced at elevated levels during powder metallurgy processing of the nickel-base disk superalloy Udimet 720. Multiple strain-controlled fatigue tests were then performed on machined specimens at 427 and 650 C in peened and unpeened conditions. Analyses were performed to compare the low cycle fatigue lives and failure initiation sites as a function of inclusion content, shot peening, and fatigue conditions. A large majority of the failures in as-machined specimens with introduced inclusions occurred at cracks initiating from inclusions intersecting the specimen surface. The inclusions could reduce fatigue life by up to 100X. Large inclusions had the greatest effect on life in tests at low strain ranges and high strain ratios. Shot peening can be used to improve life in these conditions by reducing the most severe effects of inclusions.

  8. A microstructurally based model of solder joints under conditions of thermomechanical fatigue

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frear, D.R.; Burchett, S.N.; Rashid, M.M.

    The thermomechanical fatigue failure of solder joints in increasingly becoming an important reliability issue. In this paper we present two computational methodologies that have been developed to predict the behavior of near eutectic Sn-Pb solder joints under fatigue conditions that are based on metallurgical tests as fundamental input for constitutive relations. The two-phase model mathematically predicts the heterogeneous coarsening behavior of near eutectic Sn-Pb solder. The finite element simulations from this model agree well with experimental thermomechanical fatigue tests. The simulations show that the presence of an initial heterogeneity in the solder microstructure could significantly degrade the fatigue lifetime. Themore » single phase model is a computational technique that was developed to predict solder joint behavior using materials data for constitutive relation constants that could be determined through straightforward metallurgical experiments. A shear/torsion test sample was developed to impose strain in two different orientations. Materials constants were derived from these tests and the results showed an adequate fit to experimental results. The single-phase model could be very useful for conditions where microstructural evolution is not a dominant factor in fatigue.« less

  9. Microstructural evaluation of cumulative fatigue damage below the fatigue limit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fukuoka, C.; Nakagawa, Y.G.

    1996-05-01

    The objective of this work is to evaluate the microstructural changes induced near and below the fatigue limit in a pressure vessel steel plate, SA508. Dislocation cell to cell misorientation differences, {theta}, which increase with fatigue damage accumulation, are measured by the Selected Area Diffraction (SAD) method. The misorientation difference, {theta}, of the sample failed just above the fatigue limit is about 4.0 degrees on the average, which is about the same as that for the failure conditions of low cycle fatigue at higher stresses. The {theta} value increases even below the fatigue limit, but it does not increase atmore » stresses which are lower than 50% of the fatigue limit.« less

  10. Effects of Oxygen Content on Tensile and Fatigue Performance of Ti-6Al-4 V Manufactured by Selective Laser Melting

    NASA Astrophysics Data System (ADS)

    Quintana, Oscar A.; Tong, Weidong

    2017-12-01

    We investigated the selective laser melting (SLM) process for development of Ti-6Al-4 V solid material with oxygen content corresponding to the extra low interstitial (ELI) and non-ELI conditions. The microstructure, chemistry, and tensile properties of samples in as-built and hot isostatically pressed (HIPed) condition were evaluated for both material types, while fatigue performance was evaluated by rotating bending fatigue tests on both smooth and notched SLM ELI and non-ELI Ti-6Al-4 V samples in HIPed condition.

  11. Intellectual Self-Management in Old Age.

    ERIC Educational Resources Information Center

    Skinner, B.F.

    1983-01-01

    Holds that as people get older they can employ certain techniques to offset some of the physiological limitations on their intellectual abilities. Provides tips for overcoming some sensory deficiencies, memory loss, motivational changes, mental fatigue, and changes in social environment of the old. (Author/AOS)

  12. Major League Baseball pace-of-play rules and their influence on predicted muscle fatigue during simulated baseball games.

    PubMed

    Sonne, Michael W L; Keir, Peter J

    2016-11-01

    Major League Baseball (MLB) has proposed rule changes to speed up baseball games. Reducing the time between pitches may impair recovery from fatigue. Fatigue is a known precursor to injury and may jeopardise joint stability. This study examined how fatigue accumulated during baseball games and how different pace of play initiatives may influence fatigue. Pitcher data were retrieved from a public database. A predictive model of muscle fatigue estimated muscle fatigue in 8 arm muscles. A self-selected pace (22.7 s), 12 s pace (Rule 8.04 from the MLB) and a 20 s rest (a pitch clock examined in the 2014 Arizona Fall League (AFL)) were examined. Significantly more muscle fatigue existed in both the AFL and Rule 8.04 conditions, when compared to the self-selected pace condition (5.01 ± 1.73%, 3.95 ± 1.20% and 3.70 ± 1.10% MVC force lost, respectively). Elevated levels of muscle fatigue are predicted in the flexor-pronator mass, which is responsible for providing elbow stability. Reduced effectiveness of the flexor-pronator mass may reduce the active contributions to joint rotational stiffness, increasing strain on the ulnar collateral ligament (UCL) and possibly increasing injury risk.

  13. Reduced servo-control of fatigued human finger extensor and flexor muscles.

    PubMed Central

    Hagbarth, K E; Bongiovanni, L G; Nordin, M

    1995-01-01

    1. In healthy human subjects holding the index finger semi-extended at the metacarpophalangeal joint against a moderate load, electromyographic (EMG) activity was recorded from the finger extensor and flexor muscles during different stages of muscle fatigue. The aim was to study the effect of muscle fatigue on the level of background EMG activity and on the reflex responses to torque pulses causing sudden extensor unloadings. Paired comparisons were made between the averaged EMG and finger deflection responses under two conditions: (1) at a stage of fatigue (following a sustained co-contraction) when great effort was required to maintain the finger position, and (2) under non-fatigue conditions while the subject tried to produce similar background EMG levels to those in the corresponding fatigue trials. 2. Both the unloading reflex in the extensor and the concurrent stretch reflex in the flexor were significantly less pronounced and had a longer latency in the fatigue trials. Consequently, the finger deflections had a larger amplitude and were arrested later in the fatigue trials. 3. It is concluded that--with avoidance of 'automatic gain compensation', i.e. reflex modifications attributable to differences in background EMG levels--the servo-like action of the unloading and stretch reflexes is reduced in fatigued finger extensor and flexor muscles. PMID:7562624

  14. Influence of Lumbar Muscle Fatigue on Trunk Adaptations during Sudden External Perturbations

    PubMed Central

    Abboud, Jacques; Nougarou, François; Lardon, Arnaud; Dugas, Claude; Descarreaux, Martin

    2016-01-01

    Introduction: When the spine is subjected to perturbations, neuromuscular responses such as reflex muscle contractions contribute to the overall balance control and spinal stabilization mechanisms. These responses are influenced by muscle fatigue, which has been shown to trigger changes in muscle recruitment patterns. Neuromuscular adaptations, e.g., attenuation of reflex activation and/or postural oscillations following repeated unexpected external perturbations, have also been described. However, the characterization of these adaptations still remains unclear. Using high-density electromyography (EMG) may help understand how the nervous system chooses to deal with an unknown perturbation in different physiological and/or mechanical perturbation environments. Aim: To characterize trunk neuromuscular adaptations following repeated sudden external perturbations after a back muscle fatigue task using high-density EMG. Methods: Twenty-five healthy participants experienced a series of 15 sudden external perturbations before and after back muscle fatigue. Erector spinae muscle activity was recorded using high-density EMG. Trunk kinematics during perturbation trials were collected using a 3-D motion analysis system. A two-way repeated measure ANOVA was conducted to assess: (1) the adaptation effect across trials; (2) the fatigue effect; and (3) the interaction effect (fatigue × adaptation) for the baseline activity, the reflex latency, the reflex peak and trunk kinematic variables (flexion angle, velocity and time to peak velocity). Muscle activity spatial distribution before and following the fatigue task was also compared using t-tests for dependent samples. Results: An attenuation of muscle reflex peak was observed across perturbation trials before the fatigue task, but not after. The spatial distribution of muscle activity was significantly higher before the fatigue task compared to post-fatigue trials. Baseline activity showed a trend to higher values after muscle fatigue, as well as reduction through perturbation trials. Main effects of fatigue and adaptation were found for time to peak velocity. No adaptation nor fatigue effect were identified for reflex latency, flexion angle or trunk velocity. Conclusion: The results show that muscle fatigue leads to reduced spatial distribution of back muscle activity and suggest a limited ability to use across-trial redundancy to adapt EMG reflex peak and optimize spinal stabilization using retroactive control. PMID:27895569

  15. Technical evaluation report of the Specialists Meeting on Characterization of Low Cycle High Temperature Fatigue by the Strainrange Partitioning Method

    NASA Technical Reports Server (NTRS)

    Drapier, J. M.; Hirschberg, M. H.

    1979-01-01

    The ability of the Strainrange Partitioning Method SRP was evaluated to correlate the creep-fatigue behavior of gas turbine materials and to predict the creep fatigue life of laboratory specimens subjected to complex cycling conditions. A reference body of high temperature creep fatigue data which can be used in the evaluation of other SRP and low cycle high temperature fatigue predictive techniques was provided.

  16. Fatigue and durability of Nitinol stents.

    PubMed

    Pelton, A R; Schroeder, V; Mitchell, M R; Gong, Xiao-Yan; Barney, M; Robertson, S W

    2008-04-01

    Nitinol self-expanding stents are effective in treating peripheral artery disease, including the superficial femoral, carotid, and renal arteries. However, fracture occurrences of up to 50% have been reported in some stents after one year. These stent fractures are likely due to in vivo cyclic displacements. As such, the cyclic fatigue and durability properties of Nitinol-based endovascular stents are discussed in terms of an engineering-based experimental testing program. In this paper, the combined effects of cardiac pulsatile fatigue and stent-vessel oversizing are evaluated for application to both stents and stent subcomponents. In particular, displacement-controlled fatigue tests were performed on stent-like specimens processed from Nitinol microtubing. Fatigue data were collected with combinations of simulated oversizing conditions and pulsatile cycles that were identified by computer modeling of the stent that mimic in vivo deformation conditions. These data are analyzed with non-linear finite element computations and are illustrated with strain-life and strain-based constant-life diagrams. The utility of this approach is demonstrated in conjunction with 10 million cycle pulsatile fatigue tests of Cordis SMART Control((R)) Nitinol self-expanding stents to calculate fatigue safety factors and thereby predict in vivo fatigue resistance. These results demonstrate the non-linear constant fatigue-life response of Nitinol stents, whereby, contrary to conventional engineering materials, the fatigue life of Nitinol is observed to increase with increasing mean strain.

  17. Risk factors and visual fatigue of baggage X-ray security screeners: a structural equation modelling analysis.

    PubMed

    Yu, Rui-Feng; Yang, Lin-Dong; Wu, Xin

    2017-05-01

    This study identified the risk factors influencing visual fatigue in baggage X-ray security screeners and estimated the strength of correlations between those factors and visual fatigue using structural equation modelling approach. Two hundred and five X-ray security screeners participated in a questionnaire survey. The result showed that satisfaction with the VDT's physical features and the work environment conditions were negatively correlated with the intensity of visual fatigue, whereas job stress and job burnout had direct positive influences. The path coefficient between the image quality of VDT and visual fatigue was not significant. The total effects of job burnout, job stress, the VDT's physical features and the work environment conditions on visual fatigue were 0.471, 0.469, -0.268 and -0.251 respectively. These findings indicated that both extrinsic factors relating to VDT and workplace environment and psychological factors including job burnout and job stress should be considered in the workplace design and work organisation of security screening tasks to reduce screeners' visual fatigue. Practitioner Summary: This study identified the risk factors influencing visual fatigue in baggage X-ray security screeners and estimated the strength of correlations between those factors and visual fatigue. The findings were of great importance to the workplace design and the work organisation of security screening tasks to reduce screeners' visual fatigue.

  18. Effects of moisture, elevated temperature, and fatigue loading on the behavior of graphite/epoxy buffer strip panels with center cracks

    NASA Technical Reports Server (NTRS)

    Bigelow, C. A.

    1988-01-01

    The effects of fatigue loading combined with moisture and heat on the behavior of graphite epoxy panels with either Kevlar-49 or S-glass buffer strips were studied. Buffer strip panels, that had a slit in the center to represent damage, were moisture conditioned or heated, fatigue loaded, and then tested in tension to measure their residual strength. The buffer strips were parallel to the loading direction and were made by replacing narrow strips of the 0 deg graphite plies with Kevlar-49 epoxy or S-glass epoxy on a 1-for-1 basis. The panels were subjected to a fatigue loading spectrum. One group of panels was preconditioned by soaking in 60 C water to produce a 1 percent weight gain then tested at room temperature. One group was heated to 82 C during the fatigue loading. Another group was moisture conditioned and then tested at 82 C. The residual strengths of the buffer panels were not highly affected by the fatigue loading, the number of repetitions of the loading spectrum, or the maximum strain level. The moisture conditioning reduced the residual strengths of the S-glass buffer strip panel by 10 to 15 percent below the ambient results. The moisture conditioning did not have a large effect on the Kevlar-49 panels.

  19. Study of fatigue behavior of longitudinal welded pipes

    NASA Astrophysics Data System (ADS)

    Simion, P.; Dia, V.; Istrate, B.; Hrituleac, G.; Hrituleac, I.; Munteanu, C.

    2016-08-01

    During transport and storage of the various fluids, welded pipes are subjected to cyclic loading due to pressure fluctuations that often exceed the prescribed values for normal operation. These cyclic loading can significantly reduce the life of the pipes; as a result the design should be based on the fatigue strength not only on static resistance. In general the fatigue strength of pipes is dependent by strength, pipe geometry and surface quality. In case of the electric longitudinal welded pipes, the fatigue strength is significantly limited by concentration of residual stress and the size of existing defects in the weld seam. This paper presents the fatigue behaviour of the electric welded pipes by high frequency, under conditions that simulate real operating conditions pipes. Fatigue testing was performed on welded pipes made of micro alloyed carbon steels. Some of these pipes were previously subjected to a heat treatment of normalization, in order to also determine the influence of heat treatment on the fatigue strength of welded pipes. To determine and correlate the different factors affecting the fatigue strength, welded pipes were also subjected to various tests: tensile tests, impact tests, measurement of micro hardness, microstructural analysis by optical microscopy and scanning electron microscopy.

  20. Trunk extensor muscle fatigue influences trunk muscle activities.

    PubMed

    Hoseinpoor, Tahere Seyed; Kahrizi, Sedighe; Mobini, Bahram

    2015-01-01

    Trunk muscles fatigue is one of the risk factors in workplaces and daily activities. Loads would be redistributed among active and passive tissues in a non-optimal manner in fatigue conditions. Therefore, a single tissue might be overloaded with minimal loads and as a result the risk of injury would increase. The goal of this paper was to assess the electromyographic response of trunk extensor and abdominal muscles after trunk extensor muscles fatigue induced by cyclic lifting task. This was an experimental study that twenty healthy women participated. For assessing automatic response of trunk extensor and abdominal muscles before and after the fatigue task, electromyographic activities of 6 muscles: thorasic erector spine (TES), lumbar erector spine (LES), lumbar multifidus (LMF), transverse abdominis/ internal oblique (TrA/IO), rectus abdominis (RA) and external oblique (EO) were recorded in standing position with no load and symmetric axial loads equal to 25% of their body weights. Statistical analysis showed that all the abdominal muscles activity decreased with axial loads after performing fatigue task but trunk extensor activity remained constant. Results of the current study indicated that muscle recruitment strategies changed with muscle fatigue and load bearing, therefore risks of tissue injury may increase in fatigue conditions.

  1. Study on optimization method of test conditions for fatigue crack detection using lock-in vibrothermography

    NASA Astrophysics Data System (ADS)

    Min, Qing-xu; Zhu, Jun-zhen; Feng, Fu-zhou; Xu, Chao; Sun, Ji-wei

    2017-06-01

    In this paper, the lock-in vibrothermography (LVT) is utilized for defect detection. Specifically, for a metal plate with an artificial fatigue crack, the temperature rise of the defective area is used for analyzing the influence of different test conditions, i.e. engagement force, excitation intensity, and modulated frequency. The multivariate nonlinear and logistic regression models are employed to estimate the POD (probability of detection) and POA (probability of alarm) of fatigue crack, respectively. The resulting optimal selection of test conditions is presented. The study aims to provide an optimized selection method of the test conditions in the vibrothermography system with the enhanced detection ability.

  2. The Effectiveness of FES-Evoked EMG Potentials to Assess Muscle Force and Fatigue in Individuals with Spinal Cord Injury

    PubMed Central

    Ibitoye, Morufu Olusola; Estigoni, Eduardo H.; Hamzaid, Nur Azah; Wahab, Ahmad Khairi Abdul; Davis, Glen M.

    2014-01-01

    The evoked electromyographic signal (eEMG) potential is the standard index used to monitor both electrical changes within the motor unit during muscular activity and the electrical patterns during evoked contraction. However, technical and physiological limitations often preclude the acquisition and analysis of the signal especially during functional electrical stimulation (FES)-evoked contractions. Hence, an accurate quantification of the relationship between the eEMG potential and FES-evoked muscle response remains elusive and continues to attract the attention of researchers due to its potential application in the fields of biomechanics, muscle physiology, and rehabilitation science. We conducted a systematic review to examine the effectiveness of eEMG potentials to assess muscle force and fatigue, particularly as a biofeedback descriptor of FES-evoked contractions in individuals with spinal cord injury. At the outset, 2867 citations were identified and, finally, fifty-nine trials met the inclusion criteria. Four hypotheses were proposed and evaluated to inform this review. The results showed that eEMG is effective at quantifying muscle force and fatigue during isometric contraction, but may not be effective during dynamic contractions including cycling and stepping. Positive correlation of up to r = 0.90 (p < 0.05) between the decline in the peak-to-peak amplitude of the eEMG and the decline in the force output during fatiguing isometric contractions has been reported. In the available prediction models, the performance index of the eEMG signal to estimate the generated muscle force ranged from 3.8% to 34% for 18 s to 70 s ahead of the actual muscle force generation. The strength and inherent limitations of the eEMG signal to assess muscle force and fatigue were evident from our findings with implications in clinical management of spinal cord injury (SCI) population. PMID:25025551

  3. Cigarette smoke directly impairs skeletal muscle function through capillary regression and altered myofibre calcium kinetics in mice.

    PubMed

    Nogueira, Leonardo; Trisko, Breanna M; Lima-Rosa, Frederico L; Jackson, Jason; Lund-Palau, Helena; Yamaguchi, Masahiro; Breen, Ellen C

    2018-05-23

    Cigarette smoke components directly alter muscle fatigue resistance and intracellular muscle fibre Ca 2+ handling independent of a change in lung structure. Changes in muscle vascular structure are associated with a depletion of satellite cells. Sarcoplasmic reticulum Ca 2+ uptake is substantially impaired in myofibres during fatiguing contractions in mice treated with cigarette smoke extract. Cigarette smokers exhibit exercise intolerance before a decline in respiratory function. In the present study, the direct effects of cigarette smoke on limb muscle function were tested by comparing cigarette smoke delivered to mice by weekly injections of cigarette smoke extract (CSE), or nose-only exposure (CS) 5 days each week, for 8 weeks. Cigarette smoke delivered by either route did not alter pulmonary airspace size. Muscle fatigue measured in situ was 50% lower in the CSE and CS groups than in control. This was accompanied by 34% and 22% decreases in soleus capillary-to-fibre ratio of the CSE and CS groups, respectively, and a trend for fewer skeletal muscle actin-positive arterioles (P = 0.07). In addition, fewer quiescent satellite cells (Nes+Pax7+) were associated with soleus fibres in mice with skeletal myofibre VEGF gene deletion (decreased 47%) and CS exposed (decreased 73%) than with control fibres. Contractile properties of isolated extensor digitorum longus and soleus muscles were impaired. In flexor digitorum brevis myofibres isolated from CSE mice, fatigue resistance was diminished by 43% compared to control and CS myofibres, and this was accompanied by a pronounced slowing in relaxation, an increase in intracellular Ca 2+ accumulation, and a slowing in sarcoplasmic reticulum Ca 2+ uptake. These data suggest that cigarette smoke components may impair hindlimb muscle vascular structure, fatigue resistance and myofibre calcium handling, and these changes ultimately affect contractile efficiency of locomotor muscles independent of a change in lung function. © 2018 The Authors. The Journal of Physiology © 2018 The Physiological Society.

  4. Fatigue and In Vivo Validation of a Peritoneum-Lined Self-Expanding Nitinol Stent-Graft

    PubMed Central

    Bastijanic, Jennifer M.; Etscheidt, Jordan; Sattiraju, Mallika; Bonsignore, Craig; Kopchok, George; White, Rodney; Sarac, Timur P.

    2014-01-01

    Purpose To assess the fatigue and in vivo performance of a new stent-graft incorporating bovine peritoneum lining that is designed for application in peripheral vascular occlusive disease. Methods Bovine peritoneum-lined stent-grafts were subjected to accelerated in vitro pulsatile fatigue and axial/torsional fatigue testing designed to simulate 10 years of physiological strain on the devices. At specified times the devices were evaluated for stent fracture, suture failure, or tissue tearing. Seven dogs underwent bilateral common iliac artery (CIA) balloon angioplasty injury with unilateral placement of the peritoneum-lined stent-graft. Angiography and intravascular ultrasound were performed prior to treatment, after treatment, and prior to sacrifice at 30 days. Vessels were perfusion fixed and histologically evaluated at 5 regions: above stent, proximal stent, mid stent, distal stent, and below stent. Results No evidence of stent, suture, or tissue failure was present during or after pulsatile and axial/torsional fatigue testing. At 30±0.3 days after implantation, all vessels were patent. The average lumen area at explantation across stented vessels was 25.45 mm2. Lumen areas tended to be reduced above (23.57 mm2) and below (24.17 mm2) the stent. Lumen areas were consistent across stented regions at explantation (proximal stent 27.80 mm2, mid stent 25.88 mm2, and distal stent 25.81 mm2). The mean neointimal area in peritoneum-lined stents was 2.02±1.52 mm2, with a neointima:media ratio of 1.03±0.50. These values were significantly lower in the above and below stent areas than in the stented regions, but there was no difference in either measure within the proximal, mid, or distal stent. Conclusion The custom-designed peritoneum-lined stent-graft is promising for clinical peripheral applications due to its ability to resist relevant long-term physiological stresses and outstanding short-term patency rates in canine implantations. PMID:25290804

  5. Assessment of Musculoskeletal Strength and Levels of Fatigue during Different Phases of Menstrual Cycle in Young Adults

    PubMed Central

    D Souza, Urban John; Shivaprakash, G

    2017-01-01

    Introduction Some of the physiological factors and athletic performance might show variation along the phases of menstrual cycle. The alterations seen in these physiological parameters of various systems relating to oscillations in hormonal levels do affect the autonomic nervous system and metabolic functions. Former studies heave inconclusively about the influence of hormones on exercise performance, predominantly muscle strength and rate of fatigue during different phases of the menstrual cycle. Studies regarding influence of these variations during bleeding phase were not done. Aim To evaluate the muscle strength variations and also the rate of fatigue during various phases of the menstrual cycle in young adults. Materials and Methods This was a prospective study conducted among 100 healthy adult female volunteers aged 18-24 years, with normal regular menstrual cycles persistent between 26- 32 days (average of 28 days), for a minimum of last 6 months. Muscle strength was assessed by calculating the work done and fatigue rate using Mosso’s ergograph and by handgrip dynamometer strength. Each subject was evaluated consecutively for two menstrual cycles in all three phases which were classified as Phase 1- Menstrual phase, Phase 2- Follicular phase and Phase 3- Luteal phase. The data obtained was analysed by statistical tool One-way ANOVA followed by a post-hoc Tukeys test. A p-value of ≤ 0.05 was considered significant. Results The amount of work done and handgrip strength was significantly higher in phase 2 (p<0.001) and relatively reduced in phase 1 and 3 (p<0.001) of menstrual cycle. In terms of fatigue rate percentage, phase 2 showed significantly lesser values (p<0.001) as compared to phase 1 and 3 of menstrual cycle. Conclusion We conclude that the cyclical variation in endogenous reproductive hormones increases the muscle strength in follicular phase of the menstrual cycle. Thus provide support for the influence of these hormones in regulation of these parameters in the premenopausal age group. PMID:28384857

  6. Effect of Play-based Occupational Therapy on Symptoms of Hospitalized Children with Cancer: A Single-subject Study.

    PubMed

    Mohammadi, Ahmad; Mehraban, Afsoon Hassani; Damavandi, Shahla A

    2017-01-01

    Cancer is one of the four leading causes of death in children. Its courses of diagnosis and treatment can cause physiologic symptoms and psychological distress that secondarily affect children's quality of life and participation in daily activities. The aim of this study was to investigate the effect of play-based occupational therapy on pain, anxiety, and fatigue in hospitalized children with cancer who were receiving chemotherapy. Two hospitalized children with acute lymphoblastic leukemia at least 4 months after diagnoses who received two courses of chemotherapy participated in this pilot study. Takata Play History and Iranian Children Participation Assessment Scale were used to develop intervention protocol. Nine, 30-45 min play-based occupational therapy sessions took place for each child. Children filled out the Faces Pain Scale, Visual Fatigue Scale, and Faces Anxiety Scale before and after each intervention session. Pain, anxiety, and fatigue levels decreased in both participants. Furthermore, the results showed a relationship between pain, anxiety, and fatigue variables in these children. Play-based occupational therapy can be effective in improving pain, anxiety, and fatigue levels in hospitalized children with cancer receiving chemotherapy.

  7. Effect of Play-based Occupational Therapy on Symptoms of Hospitalized Children with Cancer: A Single-subject Study

    PubMed Central

    Mohammadi, Ahmad; Mehraban, Afsoon Hassani; Damavandi, Shahla A.

    2017-01-01

    Objective: Cancer is one of the four leading causes of death in children. Its courses of diagnosis and treatment can cause physiologic symptoms and psychological distress that secondarily affect children's quality of life and participation in daily activities. The aim of this study was to investigate the effect of play-based occupational therapy on pain, anxiety, and fatigue in hospitalized children with cancer who were receiving chemotherapy. Methods: Two hospitalized children with acute lymphoblastic leukemia at least 4 months after diagnoses who received two courses of chemotherapy participated in this pilot study. Takata Play History and Iranian Children Participation Assessment Scale were used to develop intervention protocol. Nine, 30–45 min play-based occupational therapy sessions took place for each child. Children filled out the Faces Pain Scale, Visual Fatigue Scale, and Faces Anxiety Scale before and after each intervention session. Results: Pain, anxiety, and fatigue levels decreased in both participants. Furthermore, the results showed a relationship between pain, anxiety, and fatigue variables in these children. Conclusions: Play-based occupational therapy can be effective in improving pain, anxiety, and fatigue levels in hospitalized children with cancer receiving chemotherapy. PMID:28503651

  8. Effects of an 8-Week Outdoor Brisk Walking Program on Fatigue in Hi-Tech Industry Employees: A Randomized Control Trial.

    PubMed

    Wu, Li-Ling; Wang, Kuo-Ming; Liao, Po-I; Kao, Yu-Hsiu; Huang, Yi-Ching

    2015-10-01

    Over 73% of hi-tech industry employees in Taiwan lack regular exercise. They are exposed to a highly variable and stressful work environment for extended periods of time, and may subsequently experience depression, detrimental to workers' physiological and mental health. In this cross-sectional survey, the authors explored the effect of an 8-week brisk walking program on the fatigue of employees in the hi-tech industry. The participants, from a hi-tech company in northern Taiwan, were randomly assigned to an experimental group (EG; 41 subjects, Mage = 33.34 ± 6.40) or control group (CG; 45 subjects, Mage = 29.40 ± 3.60). Following the 8-week brisk walking program, the EG showed significantly lower scores for subjective fatigue, working motivation, attention, and overall fatigue. The authors confirmed that the 8-week outdoor brisk walking program significantly improved the level of fatigue among employees of the hi-tech industry. The finding serves as an important reference for health authorities in Taiwan and provides awareness of workplace health promotion in the hi-tech industry. © 2015 The Author(s).

  9. A 3-week multimodal intervention involving high-intensity interval training in female cancer survivors: a randomized controlled trial.

    PubMed

    Schmitt, Joachim; Lindner, Nathalie; Reuss-Borst, Monika; Holmberg, Hans-Christer; Sperlich, Billy

    2016-02-01

    To compare the effects of a 3-week multimodal rehabilitation involving supervised high-intensity interval training (HIIT) on female breast cancer survivors with respect to key variables of aerobic fitness, body composition, energy expenditure, cancer-related fatigue, and quality of life to those of a standard multimodal rehabilitation program. A randomized controlled trial design was administered. Twenty-eight women, who had been treated for cancer were randomly assigned to either a group performing exercise of low-to-moderate intensity (LMIE; n = 14) or a group performing high-intensity interval training (HIIT; n = 14) as part of a 3-week multimodal rehabilitation program. No adverse events related to the exercise were reported. Work economy improved following both HIIT and LMIE, with improved peak oxygen uptake following LMIE. HIIT reduced mean total body fat mass with no change in body mass, muscle or fat-free mass (best P < 0.06). LMIE increased muscle and total fat-free body mass. Total energy expenditure (P = 0.45) did not change between the groups, whereas both improved quality of life to a similar high extent and lessened cancer-related fatigue. This randomized controlled study demonstrates that HIIT can be performed by female cancer survivors without adverse health effects. Here, HIIT and LMIE both improved work economy, quality of life and cancer-related fatigue, body composition or energy expenditure. Since the outcomes were similar, but HIIT takes less time, this may be a time-efficient strategy for improving certain aspects of the health of female cancer survivors. © 2016 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.

  10. Cognitive, physical and physiological responses of school boy cricketers to a 30-over batting simulation.

    PubMed

    Goble, David; Christie, Candice Jo-Anne

    2017-06-01

    The purpose of this study was to assess how cognitive and physical performance are affected during a prolonged, fatigue-inducing cricket-batting simulation. Fifteen amateur batters from three Eastern Cape schools in South Africa were recruited (mean ± SD: age 17 ± 0.92 years; stature 1.75 ± 0.07 m; body mass 78.3 ± 13.2 kg). Participants completed a 6-stage, 30-over batting simulation (BATEX © ). During the protocol, there were five periods of cognitive assessment (CogState brief test battery, Melbourne, Australia). The primary outcome measures from each cognitive task were speed and accuracy/error rates. Physiological (heart rate) and physical (sprint times) responses were also recorded. Sprint times deteriorated (d = 0.84; P < 0.01) while physiological responses increased (d = 0.91; P < 0.01) as batting duration increased, with longest times and highest responses occurring in the final stage. Prolonged batting had a large effect on executive task performance (d = 0.85; P = 0.03), and moderate effects on visual attention and vigilance (d = 0.56; P = 0.21) and attention and working memory (d = 0.61; P = 0.11), reducing task performance after 30 overs. Therefore, prolonged batting with repeated shuttle running fatigues amateur batters and adversely affects higher-order cognitive function. This will affect decision-making, response selection, response execution and other batting-related executive processes. We recommend that training should incorporate greater proportions of centre-wicket batting with repeated, high-intensity shuttle running. This will improve batting-related skills and information processing when fatigued, making practice more representative of competition.

  11. Influence of blood flow occlusion on the development of peripheral and central fatigue during small muscle mass handgrip exercise

    PubMed Central

    Broxterman, R M; Craig, J C; Smith, J R; Wilcox, S L; Jia, C; Warren, S; Barstow, T J

    2015-01-01

    Abstract The influence of the muscle metabolic milieu on peripheral and central fatigue is currently unclear. Moreover, the relationships between peripheral and central fatigue and the curvature constant (W ′) have not been investigated. Six men (age: 25 ± 4 years, body mass: 82 ± 10 kg, height: 179 ± 4 cm) completed four constant power handgrip tests to exhaustion under conditions of control exercise (Con), blood flow occlusion exercise (Occ), Con with 5 min post-exercise blood flow occlusion (Con + Occ), and Occ with 5 min post-exercise blood flow occlusion (Occ + Occ). Neuromuscular fatigue measurements and W ′ were obtained for each subject. Each trial resulted in significant peripheral and central fatigue. Significantly greater peripheral (79.7 ± 5.1% vs. 22.7 ± 6.0%) and central (42.6 ± 3.9% vs. 4.9 ± 2.0%) fatigue occurred for Occ than for Con. In addition, significantly greater peripheral (83.0 ± 4.2% vs. 69.0 ± 6.2%) and central (65.5 ± 14.6% vs. 18.6 ± 4.1%) fatigue occurred for Occ + Occ than for Con + Occ. W ′ was significantly related to the magnitude of global (r = 0.91) and peripheral (r = 0.83) fatigue. The current findings demonstrate that blood flow occlusion exacerbated the development of both peripheral and central fatigue and that post-exercise blood flow occlusion prevented the recovery of both peripheral and central fatigue. Moreover, the current findings suggest that W ′ may be determined by the magnitude of fatigue accrued during exercise. Key points Critical power represents an important threshold for neuromuscular fatigue development and may, therefore, dictate intensities for which exercise tolerance is determined by the magnitude of fatigue accrued. Peripheral fatigue appears to be constant across O2 delivery conditions for large muscle mass exercise, but this consistency is equivocal for smaller muscle mass exercise. We sought to determine the influence of blood flow occlusion during handgrip exercise on neuromuscular fatigue development and to examine the relationship between neuromuscular fatigue development and W ′. Blood flow occlusion influenced the development of both peripheral and central fatigue, thus providing further evidence that the magnitude of peripheral fatigue is not constant across O2 delivery conditions for small muscle mass exercise. W ′ appears to be related to the magnitude of fatigue accrued during exercise, which may explain the reported consistency of intramuscular metabolic perturbations and work performed for severe-intensity exercise. PMID:26104881

  12. Physiological signal analysis for fatigue level of experienced and inexperienced drivers.

    PubMed

    Li, Rui; Su, Wencheng; Lu, Zhangping

    2017-02-17

    We studied the changes in driving fatigue levels of experienced and inexperienced drivers at 3 periods of the day: 9:00 a.m.-12:00 p.m., 12:00 p.m.-2:00 p.m., and 4:00 p.m.-6:00 p.m. Thirty drivers were involved in 120-min real-car driving, and sleepiness ratings (Stanford Sleepiness Scale, SSS; Hoddes et al. 1973 ), electroencephalogram (EEG) signals, and heart rates (HRs) were recorded. Together with principal component analysis, the relationship between EEG signals and HR was explored and used to determine a comprehensive indicator of driving fatigue. Then the comprehensive indicator was assessed via paired t test. Experienced and inexperienced drivers behaved significantly differently in terms of subjective fatigue during preliminary trials. At the beginning of trials and after termination, subjective fatigue level was aggravated with prolonged continuous driving. Moreover, we discussed the changing rules of EEG signals and HR and found that with prolonged time, the ratios of δ and β waves significantly declined, whereas that of the θ wave significantly rose. The ratio of (α + θ)/β significantly rose both before trials and after termination, but HR dropped significantly. However, one-factor analysis of variance shows that driving experience significantly affects the θ wave, (α + θ)/β ratio, and HR. We found that in a monotonous road environment, fatigue symptoms occurred in inexperienced drivers and experienced drivers after about 60 and 80 min of continuous driving, respectively. Therefore, as for drivers with different experiences, restriction on continuous driving time would avoid fatigued driving and thereby eliminate traffic accidents. We find that the comprehensive indicator changes significantly with fatigue level. The integration of different indicators improves the recognition accuracy of different driving fatigue levels.

  13. Auditory fatigue : influence of mental factors.

    DOT National Transportation Integrated Search

    1965-01-01

    Conflicting reports regarding the influence of mental tasks on auditory fatigue have recently appeared in the literature. In the present study, 10 male subjects were exposed to 4000 cps fatigue toe at 40 dB SL for 3 min under conditions of mental ari...

  14. Physiological Factors Contributing to Postflight Changes in Functional Performance

    NASA Technical Reports Server (NTRS)

    Bloomberg, J. J.; Feedback, D. L.; Feiverson, A. H.; Lee, S. M. C.; Mulavara, A. P.; Peters, B. T.; Platts, S. H.; Reschke, M. F.; Ryder, J.; Spiering, B. A.; hide

    2009-01-01

    Astronauts experience alterations in multiple physiological systems due to exposure to the microgravity conditions of space flight. These physiological changes include sensorimotor disturbances, cardiovascular deconditioning and loss of muscle mass and strength. These changes might affect the ability of crewmembers to perform critical mission tasks immediately after landing on lunar and Martian surfaces. To date, changes in functional performance have not been systematically studied or correlated with physiological changes. To understand how changes in physiological function impact functional performance an interdisciplinary pre/postflight testing regimen (Functional Task Test, FTT) has been developed that systematically evaluates both astronaut postflight functional performance and related physiological changes. The overall objectives of the FTT are to: Develop a set of functional tasks that represent critical mission tasks for Constellation. Determine the ability to perform these tasks after flight. Identify the key physiological factors that contribute to functional decrements. Use this information to develop targeted countermeasures. The functional test battery was designed to address high priority tasks identified by the Constellation program as critical for mission success. The set of functional tests making up the FTT include the: 1) Seat Egress and Walk Test, 2) Ladder Climb Test, 3) Recovery from Fall/Stand Test, 4) Rock Translation Test, 5) Jump Down Test, 6) Torque Generation Test, and 7) Construction Activity Board Test. Corresponding physiological measures include assessments of postural and gait control, dynamic visual acuity, fine motor control, plasma volume, orthostatic intolerance, upper and lower body muscle strength, power, fatigue, control and neuromuscular drive. Crewmembers will perform both functional and physiological tests before and after short (Shuttle) and long-duration (ISS) space flight. Data will be collected on R+0 (Shuttle only), R+1, R+6 and R+30. Using a multivariate regression model we will identify which physiological systems contribute the most to impaired performance on each functional test. This will allow us to identify the physiological systems that play the largest role in decrement in functional performance. Using this information we can then design and implement countermeasures that specifically target the physiological systems most responsible for the altered functional performance associated with space flight.

  15. Research on fatigue cracking growth parameters in asphaltic mixtures using computed tomography

    NASA Astrophysics Data System (ADS)

    Braz, D.; Lopes, R. T.; Motta, L. M. G.

    2004-01-01

    Distress of asphalt concrete pavement due to repeated bending from traffic loads has been a well-recognized problem in Brazil. If it is assumed that fatigue cracking growth is governed by the conditions at the crack tip, and that the crack tip conditions can be characterized by the stress intensity factor, then fatigue cracking growth as a function of stress intensity range Δ K can be determined. Computed tomography technique is used to detect crack evolution in asphaltic mixtures which were submitted to fatigue tests. Fatigue tests under conditions of controlled stress were carried out using diametral compression equipment and repeat loading. The aim of this work is imaging several specimens at different stages of the fatigue tests. In preliminary studies it was noted that the trajectory of a crack was influenced by the existence of voids in the originally unloaded specimens. Cracks would first be observed in the central region of a specimen, propagating in the direction of the extremities. Analyzing the graphics, that represent the fatigue cracking growth (d c/d N) as a function of stress intensity factor (Δ K), it is noticed that the curve has practically shown the same behavior for all specimens at the same level of the static tension rupture stress. The experimental values obtained for the constants A and n (of the Paris-Erdogan Law) present good agreement with the results obtained by Liang and Zhou.

  16. Fatigue loading of tendon

    PubMed Central

    Shepherd, Jennifer H; Screen, Hazel R C

    2013-01-01

    Tendon injuries, often called tendinopathies, are debilitating and painful conditions, generally considered to develop as a result of tendon overuse. The aetiology of tendinopathy remains poorly understood, and whilst tendon biopsies have provided some information concerning tendon appearance in late-stage disease, there is still little information concerning the mechanical and cellular events associated with disease initiation and progression. Investigating this in situ is challenging, and numerous models have been developed to investigate how overuse may generate tendon fatigue damage and how this may relate to tendinopathy conditions. This article aims to review these models and our current understanding of tendon fatigue damage. We review the strengths and limitations of different methodologies for characterizing tendon fatigue, considering in vitro methods that adopt both viable and non-viable samples, as well as the range of different in vivo approaches. By comparing data across model systems, we review the current understanding of fatigue damage development. Additionally, we compare these findings with data from tendinopathic tissue biopsies to provide some insights into how these models may relate to the aetiology of tendinopathy. Fatigue-induced damage consistently highlights the same microstructural, biological and mechanical changes to the tendon across all model systems and also correlates well with the findings from tendinopathic biopsy tissue. The multiple testing routes support matrix damage as an important contributor to tendinopathic conditions, but cellular responses to fatigue appear complex and often contradictory. PMID:23837793

  17. Fatigue-induced early onset of anticipatory postural adjustments in non-fatigued muscles: support for a centrally mediated adaptation.

    PubMed

    Strang, Adam J; Berg, William P; Hieronymus, Mathias

    2009-08-01

    Muscle fatigue has been shown to result in early onset of anticipatory postural adjustments (APAs) relative to those produced in a non-fatigued state. This adaptation is thought to reflect an attempt to preserve postural stability during a focal movement performed in a fatigued state. It remains unclear, however, whether this adaptation is of central (e.g., central nervous system motor command) or peripheral (e.g., muscle contractile properties), origin. One way to confirm that this adaptation is centrally driven is to identify fatigued-induced early APA onsets in non-fatigued muscles. In this study, APAs were obtained using a rapid bilateral reaching maneuver and recorded via surface electromyography before and after conditions of rest (n = 25) or fatigue (n = 25). Fatigue was generated using isokinetic exercise of the right leg. Results showed that fatigue-induced early APA onsets occurred in fatigued and non-fatigued muscles, confirming that fatigue-induced early APA onset is a centrally mediated adaptation.

  18. Fatigue acceptance test limit criterion for larger diameter rolled thread fasteners

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kephart, A.R.

    1997-05-01

    This document describes a fatigue lifetime acceptance test criterion by which studs having rolled threads, larger than 1.0 inches in diameter, can be assured to meet minimum quality attributes associated with a controlled rolling process. This criterion is derived from a stress dependent, room temperature air fatigue database for test studs having a 0.625 inch diameter threads of Alloys X-750 HTH and direct aged 625. Anticipated fatigue lives of larger threads are based on thread root elastic stress concentration factors which increase with increasing thread diameters. Over the thread size range of interest, a 30% increase in notch stress ismore » equivalent to a factor of five (5X) reduction in fatigue life. The resulting diameter dependent fatigue acceptance criterion is normalized to the aerospace rolled thread acceptance standards for a 1.0 inch diameter, 0.125 inch pitch, Unified National thread with a controlled Root radius (UNR). Testing was conducted at a stress of 50% of the minimum specified material ultimate strength, 80 Ksi, and at a stress ratio (R) of 0.10. Limited test data for fastener diameters of 1.00 to 2.25 inches are compared to the acceptance criterion. Sensitivity of fatigue life of threads to test nut geometry variables was also shown to be dependent on notch stress conditions. Bearing surface concavity of the compression nuts and thread flank contact mismatch conditions can significantly affect the fastener fatigue life. Without improved controls these conditions could potentially provide misleading acceptance data. Alternate test nut geometry features are described and implemented in the rolled thread stud specification, MIL-DTL-24789(SH), to mitigate the potential effects on fatigue acceptance data.« less

  19. Whole body heat stress attenuates the pressure response to muscle metaboreceptor stimulation in humans.

    PubMed

    Cui, Jian; Blaha, Cheryl; Sinoway, Lawrence I

    2016-11-01

    The effects of whole body heat stress on sympathetic and cardiovascular responses to stimulation of muscle metaboreceptors and mechanoreceptors remains unclear. We examined the muscle sympathetic nerve activity (MSNA), blood pressure, and heart rate in 14 young healthy subjects during fatiguing isometric handgrip exercise, postexercise circulatory occlusion (PECO), and passive muscle stretch during PECO. The protocol was performed under normothermic and whole body heat stress (increase internal temperature ~0.6°C via a heating suit) conditions. Heat stress increased the resting MSNA and heart rate. Heat stress did not alter the mean blood pressure (MAP), heart rate, and MSNA responses (i.e., changes) to fatiguing exercise. During PECO, whole body heat stress accentuated the heart rate response [change (Δ) of 5.8 ± 1.5 to Δ10.0 ± 2.1 beats/min, P = 0.03], did not alter the MSNA response (Δ16.4 ± 2.8 to Δ17.3 ± 3.8 bursts/min, P = 0.74), and lowered the MAP response (Δ20 ± 2 to Δ12 ± 1 mmHg, P < 0.001). Under normothermic conditions, passive stretch during PECO evoked significant increases in MAP and MSNA (both P < 0.001). Of note, heat stress prevented the MAP and MSNA responses to stretch during PECO (both P > 0.05). These data suggest that whole body heat stress attenuates the pressor response due to metaboreceptor stimulation, and the sympathetic nerve response due to mechanoreceptor stimulation. Copyright © 2016 the American Physiological Society.

  20. Stress-relaxation and fatigue behaviour of synthetic brow-suspension materials.

    PubMed

    Kwon, Kyung-Ah; Shipley, Rebecca J; Edirisinghe, Mohan; Rayment, Andrew W; Best, Serena M; Cameron, Ruth E; Salam, Tahrina; Rose, Geoffrey E; Ezra, Daniel G

    2015-02-01

    Ptosis describes a low position of the upper eyelid. When this condition is due to poor function of the levator palpebrae superioris muscle, responsible for raising the lid, "brow-suspension" ptosis correction is usually performed, which involves internally attaching the malpositioned eyelid to the forehead musculature using brow-suspension materials. In service, such materials are exposed to both rapid tensile loading and unloading sequences during blinking, and a more sustained tensile strain during extended periods of closure. In this study, various mechanical tests were conducted to characterise and compare some of commonly-used synthetic brow-suspension materials (Prolene(®), Supramid Extra(®) II, Silicone rods (Visitec(®) Seiff frontalis suspension set) and Mersilene(®) mesh) for their time-dependent response. At a given constant tensile strain or load, all of the brow-suspension materials exhibited stress-relaxation or creep, with Prolene(®) having a statistically different relaxation or creep ratio as compared with those of others. Uniaxial tensile cyclic tests through preconditioning and fatigue tests demonstrated drastically different time-dependent response amongst the various materials. Although the tests generated hysteresis force-strain loops for all materials, the mechanical properties such as the number of cycles required to reach the steady-state, the reduction in the peak force, and the cyclic energy dissipation varied considerably. To reach the steady-state, Prolene(®) and the silicone rod required the greatest and the least number of cycles, respectively. Furthermore, the fatigue tests at physiologically relevant conditions (15% strain controlled at 6.5 Hz) demonstrated that the reduction in the peak force during 100,000 cycles ranged from 15% to 58%, with Prolene(®) and the silicone rod exhibiting the greatest and the least value, respectively. Many factors need to be considered to select the most suitable brow-suspension material for ptosis correction. These novel data on the mechanical time-dependent performance could therefore help to guide clinicians in their decision-making process for optimal surgical outcome. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Benefits of interval-training on fatigue and functional capacities in Charcot-Marie-Tooth disease.

    PubMed

    El Mhandi, Lhassan; Millet, Guillaume Y; Calmels, Paul; Richard, Antoine; Oullion, Roger; Gautheron, Vincent; Féasson, Léonard

    2008-05-01

    Exercise intolerance and undue fatigue are common complaints in patients with Charcot-Marie-Tooth (CMT) disease. Reduced physical ability is due directly to the disease, but it is also due to physical deconditioning. The aim of this study was to test whether 24 weeks of interval-training exercise (ITE) cycling can significantly improve physiological, neuromuscular, and functional capacities and alleviate fatigue in CMT patients. Eight CMT patients (4 CMT1A and 4 CMT2) participated in ITE for 3 nonconsecutive days per week. Cardiovascular fitness, muscle strength, fatigue resistance, and functional capacities were measured before and after 12 weeks of supervised hospital training and again after another 12 weeks of unsupervised home training. Training was well tolerated. There were significant improvements in cardiorespiratory capacities, isokinetic concentric strength, and functional ability measurements. All patients experienced an improvement in their self-reported visual analogic scale for fatigue and pain during training. However, there was no significant change in their isometric force production and indices of fatigue resistance after training. Although the improvement in exercise tolerance may be due in part to reversal of the deconditioning effect of their related sedentary lifestyle, this clinical trial suggests that ITE can benefit CMT patients especially in their functional performance and subjective perception of pain and fatigue. Moreover, the improvement observed at the end of the first supervised period ITE was maintained after the second unsupervised home period, although there was no further improvement in performance and tolerance.

  2. Influence of dissolved hydrogen on the fatigue crack growth behaviour of AISI 4140 steel

    NASA Astrophysics Data System (ADS)

    Ramasagara Nagarajan, Varun

    Many metallic structural components come into contact with hydrogen during manufacturing processes or forming operations such as hot stamping of auto body frames and while in service. This interaction of metallic parts with hydrogen can occur due to various reasons such as water molecule dissociation during plating operations, interaction with atmospheric hydrogen due to the moisture present in air during stamping operations or due to prevailing conditions in service (e.g.: acidic or marine environments). Hydrogen, being much smaller in size compared to other metallic elements such as Iron in steels, can enter the material and become dissolved in the matrix. It can lodge itself in interstitials locations of the metal atoms, at vacancies or dislocations in the metallic matrix or at grain boundaries or inclusions (impurities) in the alloy. This dissolved hydrogen can affect the functional life of these structural components leading to catastrophic failures in mission critical applications resulting in loss of lives and structural component. Therefore, it is very important to understand the influence of the dissolved hydrogen on the failure of these structural materials due to cyclic loading (fatigue). For the next generation of hydrogen based fuel cell vehicles and energy systems, it is very crucial to develop structural materials for hydrogen storage and containment which are highly resistant to hydrogen embrittlement. These materials should also be able to provide good long term life in cyclic loading, without undergoing degradation, even when exposed to hydrogen rich environments for extended periods of time. The primary focus of this investigation was to examine the influence of dissolved hydrogen on the fatigue crack growth behaviour of a commercially available high strength medium carbon low alloy (AISI 4140) steel. The secondary objective was to examine the influence of microstructure on the fatigue crack growth behaviour of this material and to determine the hydrogen induced failure mechanism in this material during cyclic loading. The secondary objective of this investigation was to determine the role of inclusions and their influence in affecting the fatigue crack growth rate of this material. Compact tension and tensile specimens were prepared as per ASTM E-647, E-399 and E-8 standards. The specimens were tested in three different heat treated conditions i.e. annealed (as received) as well as two austempered conditions. These specimens were precharged with hydrogen (ex situ) using cathodic charging method at a constant current density at three different time periods ranging from 150 to 250 hours before conducting fatigue crack growth tests. Mode 1 type fatigue tests were then performed in ambient atmosphere at constant amplitude using load ratio R of 0.1. The near threshold fatigue crack growth rate, fatigue threshold and the fatigue crack growth rate in the linear region were determined. Fatigue crack growth behaviour of specimens without any dissolve hydrogen were then compared with the specimens with different concentration of dissolved hydrogen. The test results show that the dissolved hydrogen concentration increases with the increase in charging time in all three heat treated conditions and the hydrogen uptake shows a strong dependence on the microstructure of the alloy. It was also observed that the microstructure has a significant influence of on the fatigue crack growth and SCC behaviour of the alloy with dissolved hydrogen. As the dissolved hydrogen concentration increases, the fatigue threshold was found to decrease and the near threshold crack growth rate increases in all three heat treated conditions showing the deleterious effect of hydrogen, but to a different extent in each condition. Current test results also indicate that the fatigue crack growth rates in the linear region increases as the dissolved hydrogen content increases in all three heat treated conditions. It is also observed that increasing the austempering temperature decreases the resistance to hydrogen embrittlement. An interesting phenomenon was also observed in annealed specimen charged with hydrogen for 250 h which had an unusually high fatigue threshold (DeltaKth).

  3. Managing fatigue in operational settings I : physiological considerations and countermeasures

    DOT National Transportation Integrated Search

    1996-01-01

    Modern society has evolved to rely increasingly on 24-hour operations in many diverse settings. Furthermore, the requirement for 24-hour operations will grow as the United States competes in the 24-hour global economy. Humans are hard-wired with a ge...

  4. Kinesiology tape mediates soccer-simulated and local peroneal fatigue in soccer players.

    PubMed

    Farquharson, Claire; Greig, Matt

    2017-01-01

    To investigate the efficacy of kinesiology taping in mediating the influence of fatigue on ankle sprain risk, 12 male soccer players completed single-leg dynamic balance trials pre- and post-exercise (soccer-specific protocol, isokinetic ankle inversion/eversion protocol) in each of three counter-balanced taping conditions (no tape, zinc oxide tape ZO, kinesiology tape KT). Balance was quantified as the overall stability index (OSI) and directional stability indices of platform deflection. Soccer-specific fatigue only increased OSI in the no tape condition (p = 0.03), with ZO and KT trials negating a fatigue affect. Localized fatigue increased OSI in the no tape (p = 0.01) and ZO (p = 0.05) trials, with no increase in the KT trial. A similar pattern was observed in medio-lateral and anterio-posterior balance indices. KT mediates soccer-simulated and local peroneal fatigue, with practical implications for epidemiological observations of increased injury risk during the latter stages of match play.

  5. Reference values for fatigued versus non-fatigued limb symmetry index measured by a newly designed single-leg hop test battery in healthy subjects: a pilot study.

    PubMed

    Leister, Iris; Mattiassich, Georg; Kindermann, Harald; Ortmaier, Reinhold; Barthofer, Jürgen; Vasvary, Imre; Katzensteiner, Klaus; Stelzhammer, Christine; Kulnik, Stefan Tino

    2018-01-01

    There is sparse evidence for return to sport criteria after knee injury. Functional performance deficits, particularly in fatigued muscular condition, should be verified prior to the attempt to return to high-risk pivoting sports. The purpose of this study was to generate reference values for the limb symmetry index (LSI) of healthy subjects in fatigued and non-fatigued muscular condition in a newly designed test battery. Forty-two healthy subjects [22 females, 20 males; mean (SD) age 30.4 (6.6) years] were evaluated using a test battery consisting of an isometric strength test, a series of five single-leg hop tests and an integrated fatigue protocol. Subjective physical activity was assessed with the Tegner Activity Scale (TAS). The cut-off values for healthy subjects were calculated considering the fifth percentile as the minimum reference value for the LSI and single-leg hop distance. The mean (SD) overall LSI was 98.8% (4.6). No significant gender or age specific differences in limb symmetry were observed. The comparison of the non-fatigued LSI with the overall LSI revealed no clinically relevant change due to muscular fatigue. Repeated measures ANOVA revealed a significant within effect on fatigue/non-fatigue condition ( F (1,38)  = 18.000; p  < 0.001, η 2  = 0.321) on absolute single-leg hop distance. Moreover, a significant between effect on the TAS-parameter ( F (1,38)  = 5.928; p  = 0.020, η 2  = 0.135 between: TAS ≤ 5/TAS > 5) and on gender ( F (1,38)  = 23.956; p  < 0.001, η 2  = 0.387) could be detected. The absolute jumping distance in the single-leg hop for distance was significantly reduced due to fatigue. No clinically relevant effect of muscular fatigue was observed on limb symmetry in our study sample. Gender and physical activity are important factors to be considered when interpreting reference values.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skochko, G.W.; Herrmann, T.P.

    Axial load cycling fatigue tests of threaded fasteners are useful in determining fastener fatigue failure or design properties. By using appropriate design factors between the failure and design fatigue strengths, such tests are used to establish fatigue failure and design parameters of fasteners for axial and bending cyclic load conditions. This paper reviews the factors which influence the fatigue strength of low Alloy steel threaded fasteners, identifies those most significant to fatigue strength, and provides design guidelines based on the direct evaluation of fatigue tests of threaded fasteners. Influences on fatigue strength of thread manufacturing process (machining and rolling ofmore » threads), effect of fastener membrane and bending stresses, thread root radii, fastener sizes, fastener tensile strength, stress relaxation, mean stress, and test temperature are discussed.« less

  7. Central and peripheral fatigue development in the shoulder muscle with obesity during an isometric endurance task.

    PubMed

    Pajoutan, Mojdeh; Ghesmaty Sangachin, Mahboobeh; Cavuoto, Lora A

    2017-07-21

    Fatigue increases the likelihood of developing work-related musculoskeletal disorders and injury. Due to the physiological and neuromuscular changes that accompany obesity, it may alter the fatigue development mechanism and exacerbate injury risk. The upper extremities have the highest incidence rates for work-related musculoskeletal disorders. Therefore, the goals of this study were to investigate the effect of obesity on central vs. peripheral fatigue as well as on the physical signs of fatigue on the middle deltoid muscle. A measure of central activation ratio was used to quantify central fatigue by considering the increment in the torque output by superimposed twitch relative to its corresponding maximum voluntary contraction. For this purpose, electrical stimulation was delivered at the middle deltoid muscles of 22 non-obese (18 < body mass index (BMI) < 25 kg/m 2 ) and 17 obese (30 < BMI < 40 kg/m 2 ) individuals aged 18-32 years old. Participants completed superimposed maximum voluntary isometric contractions of shoulder abduction before and after a sustained isometric fatiguing task at either 30 or 60% of the muscle capacity. Differences in endurance time, torque fluctuation, torque loss, and muscle activity measured by an electromyography sensor were also investigated. A greater reduction of voluntary activation of motor units (p = 0.001) with fatigue was observed for individuals who are obese. Contrary to the effect of obesity on central fatigue, a trend toward reduced peripheral fatigue (p = 0.06) was observed for the obese group compared to the non-obese group. On average, a 14% higher rate of torque loss per second was observed among individuals with obesity in comparison to non-obese participants. The observed greater contribution of central fatigue during the sustained endurance tasks suggests that among young healthy obese individuals, the faster fatigue development with obesity, commonly reported in the literature, is most likely due to the central elements rather than the peripheral factors. This finding has implications for fatigue prevention programs during sustained exertions and can help to develop training, work, and rest schedules considering obesity.

  8. Mental Fatigue: Impairment of Technical Performance in Small-Sided Soccer Games.

    PubMed

    Badin, Oliver O; Smith, Mitchell R; Conte, Daniele; Coutts, Aaron J

    2016-11-01

    To assess the effects of mental fatigue on physical and technical performance in small-sided soccer games. Twenty soccer players (age 17.8 ± 1.0 y, height 179 ± 5 cm, body mass 72.4 ± 6.8 kg, playing experience 8.3 ± 1.4 y) from an Australian National Premier League soccer club volunteered to participate in this randomized crossover investigation. Participants played 15-min 5-vs-5 small-sided games (SSGs) without goalkeepers on 2 occasions separated by 1 wk. Before the SSG, 1 team watched a 30-min emotionally neutral documentary (control), while the other performed 30 min of a computer-based Stroop task (mental fatigue). Subjective ratings of mental and physical fatigue were recorded before and after treatment and after the SSG. Motivation was assessed before treatment and SSG; mental effort was assessed after treatment and SSG. Player activity profiles and heart rate (HR) were measured throughout the SSG, whereas ratings of perceived exertion (RPEs) were recorded before the SSG and immediately after each half. Video recordings of the SSG allowed for notational analysis of technical variables. Subjective ratings of mental fatigue and effort were higher after the Stroop task, whereas motivation for the upcoming SSG was similar between conditions. HR during the SSG was possibly higher in the control condition, whereas RPE was likely higher in the mental-fatigue condition. Mental fatigue had an unclear effect on most physical-performance variables but impaired most technical-performance variables. Mental fatigue impairs technical but not physical performance in small-sided soccer games.

  9. The need for monitoring metabolic status

    NASA Astrophysics Data System (ADS)

    Vanderveen, John E.

    2005-05-01

    Modern military operations utilize complex technologies that require high levels of readiness and sustained cognitive and physical performance of combat military combat personnel. These military operations often depend on weapon systems that use advanced computer technology coupled with an array of sensors that provide continuous information on the battlefield environment and on equipment function. However there is a lack of real-time information on status of the personnel who control these systems and who are vital to mission success. Failure of the human element renders the weapon system useless so it is important to know if an individual is physically and cognitively fit to perform his or her task. Based on the premise that status of metabolic processes provide an early indication of a change in an individuals physiological status, monitoring of selective biomarkers of metabolism and organ function can provide insight on the individual"s ability to perform mission tasks. During combat individuals may not be aware that they have reached a compromised physiological condition due to dehydration, physical exertion, stress, fatigue, sleep deprivation, exposure to toxins or other condition that may affect physical and cognitive performance and health. Systems that can provide the individual or his or her commander with information about significant changes in one or more metabolic functions could permit timely intervention to correct the condition. In the event that serious injury has already occurred to an individual, metabolic monitoring can provide valuable intelligence needed for decisions on achieving mission objectives.

  10. Damage mechanisms in alloy 800H under creep-fatigue conditions

    NASA Astrophysics Data System (ADS)

    Mu, Z.; Bothe, K.; Gerold, V.

    1994-05-01

    The interaction between fatigue damage (i.e., fatigue crack propagation) and internal grain boundary damage (i.e., cavity formation at grain boundaries) has been studied for the Alloy 800H at 750 C for constant plastic strain ranges but different experimental conditions. Most experiments were performed at constant ranges of alternating tensile/compression stresses. Symmetrical as well as asymmetrical tests (with larger compression stresses) were performed. In comparison to the former tests, asymmetrical tests led to shorter cyclic lifetimes mainly due to cavity formation which was not observed for symmetrical tests. It could be shown that a fast compressive and a slow tensile half cycle (at large compressive and low tensile stresses) are ideal conditions for the nucleation and growth of cavities. Based on quantitative measurements of the cavity density from interrupted fatigue tests, a physical model is presented which can predict the number of cycles to failure. This cycle number is determined only by fatigue crack growth which is controlled by (1) athermal plastic deformation, (2) creep deformation and (3) rate enhancement by cavitation.

  11. High temperature tension-compression fatigue behavior of a tungsten copper composite

    NASA Technical Reports Server (NTRS)

    Verrilli, Michael J.; Gabb, Timothy P.

    1990-01-01

    The high temperature fatigue of a (O)12 tungsten fiber reinforced copper matrix composite was investigated. Specimens having fiber volume percentages of 10 and 36 were fatigued under fully-reversed, strain-controlled conditions at both 260 and 560 C. The fatigue life was found to be independent of fiber volume fraction because fatigue damage preferentially occurred in the matrix. Also, the composite fatigue lives were shorter at 560 C as compared to 260 C due to changes in mode of matrix failure. On a total strain basis, the fatigue life of the composite at 560 C was the same as the life of unreinforced copper, indicating that the presence of the fibers did not degrade the fatigue resistance of the copper matrix in this composite system. Comparison of strain-controlled fatigue data to previously-generated load-controlled data revealed that the strain-controlled fatigue lives were longer because of mean strain and mean stress effects.

  12. Tension and fatigue behavior of 316LVM 1x7 multi-strand cables used as implantable electrodes.

    PubMed

    Lewandowski, John J; Varadarajan, Ravikumar; Smith, Brian; Tuma, Chris; Shazly, Mostafa; Vatamanu, Luciano O

    2008-07-15

    The mechanical behavior of 316LVM 1x7 cables were evaluated in uniaxial tension, and in cyclic strain-controlled fatigue with the use of a Flex tester operated to provide fully reversed bending fatigue. The magnitude of cyclic strains imparted to each cable tested was controlled via the use of different diameter mandrels. Smaller diameter mandrels produced higher values of cyclic strain and lower fatigue life. Multiple samples were tested and analyzed via scanning electron microscopy. The fatigue results were analyzed via a Coffin-Manson-Basquin approach and compared to fatigue data obtained from the literature where testing was conducted on similar materials, but under rotating bending fatigue conditions.

  13. Cognitive and Physical Fatigue Tasks Enhance Pain, Cognitive Fatigue and Physical Fatigue in People with Fibromyalgia

    PubMed Central

    Dailey, Dana L; Keffala, Valerie J; Sluka, Kathleen A

    2014-01-01

    Objective Fibromyalgia is a condition characterized by chronic widespread muscle pain and fatigue. The primary objective of this study was to determine if pain, perceived cognitive fatigue, and perceived physical fatigue were enhanced in participants with fibromyalgia compared to healthy controls during a cognitive fatigue task, a physical fatigue task and a dual fatigue task. Methods Twenty four people with fibromyalgia and 33 healthy controls completed pain, fatigue and function measures. A cognitive fatigue task (Controlled Oral Word Association Test) and physical fatigue task (Valpar peg test) were done individually and combined for a dual fatigue task. Resting pain, perceived cognitive fatigue and perceived physical fatigue were assessed during each task using visual analogue scales. Function was assessed with shoulder range of motion and grip. Results People with fibromyalgia had significantly higher increases in pain, cognitive fatigue and physical fatigue when compared to healthy controls after completion of a cognitive fatigue task, a physical fatigue task, or a dual fatigue task (p<0.01). People with fibromyalgia performed equivalently on measures of physical performance and cognitive performance on the physical and cognitive fatigue tasks, respectively. Conclusions These data show that people with fibromyalgia show larger increases in pain, perceived cognitive fatigue and perceived physical fatigue to both cognitive and physical fatigue tasks compared to healthy controls. The increases in pain and fatigue during cognitive and physical fatigue tasks could influence subject participation in daily activities and rehabilitation. PMID:25074583

  14. Effect of NaCl Solution Spraying on Fatigue Lives of Smooth and Slit Specimens of 0.37% Carbon Steel

    NASA Astrophysics Data System (ADS)

    Makabe, Chobin; Ferdous, Md. Shafiul; Shimabukuro, Akimichi; Murdani, Anggit

    2017-07-01

    The fatigue crack initiation life and growth rate are affected by experimental conditions. A corrosive environment can be created in a laboratory by means of dropping salt water onto the specimen surface, spraying chloride mist into the experimental chamber, etc. In the case of smooth specimens of some metals, fatigue life is shortened and the fatigue limit disappears under such corrosive experimental conditions. In this study, the effects of intermittent spraying of 3% NaCl solution-mist on corrosion fatigue behavior were investigated. The material used was 0.37% carbon steel. This is called JIS S35C in Japan. Spraying of 3% NaCl solution-mist attacked the surface layer of the specimen. It is well known that the pitting, oxidation-reduction reaction, etc. affect the fatigue strength of metals in a corrosive environment. We carried out corrosion fatigue tests with smooth specimens, holed specimens and slit specimens. Then the effects of such specimen geometry on the fatigue strength were investigated when the NaCl solution-mist was sprayed onto the specimen surface. In the case of lower stress amplitude application in slit specimens, the fatigue life in a corrosive atmosphere was longer than that in the open air. It is discussed that the behavior is related to the crack closure which happens when the oxide builds up and clogs the crack or slit.

  15. Ultrasonic Fatigue Endurance of Thin Carbon Fiber Sheets

    NASA Astrophysics Data System (ADS)

    Domínguez Almaraz, Gonzalo M.; Ruiz Vilchez, Julio A.; Dominguez, Aymeric; Meyer, Yann

    2016-04-01

    Ultrasonic fatigue tests were carried out on thin carbon fiber sheets (0.3 mm of thickness) to determine the fatigue endurance under very high-frequency loading (20 kHz). This material, called the gas diffusion layer (GDL), plays a major role in the overall performances of proton exchange membrane fuel cells (PEMFCs). The study of its physical-chemical properties is an on-going subject in the literature; nevertheless, no knowledge is available concerning the high-frequency fatigue endurance. A principal difficulty in carrying out ultrasonic fatigue tests on this material was to determine the dimensions of testing specimen to fit the resonance condition. This aspect was solved by modal numerical simulation: The testing specimen has been a combination of a low-strength steel frame (to facilitate the attachment to the ultrasonic machine and to increase the mass of the specimen), and the carbon fiber hourglass-shape profile. Under resonance condition, a stationary elastic wave is generated along the specimen that induces high stress at the neck section and high displacements at the ends. Results show that fatigue life was close to 3 × 108 cycles when the high Von Misses stress at the neck section was 170 MPa, whereas fatigue life attains the 4.5 × 109 cycles when stress decreases to 117 MPa. Crack initiation and propagation were analyzed, and conclusions were drawn concerning the fatigue endurance of these fiber carbon sheets under ultrasonic fatigue testing.

  16. Photic effects on sustained performance

    NASA Technical Reports Server (NTRS)

    French, J.; Whitmore, J.; Hannon, P. J.; Brainard, G.; Schiflett, S.

    1992-01-01

    Research is described which evaluates manipulating environmental light intensity as a means to attenuate fatigue. A counter balanced, within-subjects design was used to compare nine male subjects exposed to dim (100 lux) and bright (3000 lux) light conditions. Oral temperature values were greater for the bright light group over the dim light condition. Melatonin levels were suppressed by bright light treatment. Also, the frequency of eye blink rate was less for subjects during bright over dim light exposure. Light exposure was without effect on subjective fatigue. However, irrespective of light condition, significant effects on confusion, fatigue, and vigor mood dimensions were found as a result of 30 hour sleep deprivation. The findings suggest that bright lights may be used to help sustain nocturnal activity otherwise susceptible to fatigue. Such findings may have implications for the lighting arrangements on space flights during the subjective night for astronauts.

  17. The effects of fatigue on performance in simulated nursing work.

    PubMed

    Barker, Linsey M; Nussbaum, Maury A

    2011-09-01

    Fatigue is associated with increased rates of medical errors and healthcare worker injuries, yet existing research in this sector has not considered multiple dimensions of fatigue simultaneously. This study evaluated hypothesised causal relationships between mental and physical fatigue and performance. High and low levels of mental and physical fatigue were induced in 16 participants during simulated nursing work tasks in a laboratory setting. Task-induced changes in fatigue dimensions were quantified using both subjective and objective measures, as were changes in performance on physical and mental tasks. Completing the simulated work tasks increased total fatigue, mental fatigue and physical fatigue in all experimental conditions. Higher physical fatigue adversely affected measures of physical and mental performance, whereas higher mental fatigue had a positive effect on one measure of mental performance. Overall, these results suggest causal effects between manipulated levels of mental and physical fatigue and task-induced changes in mental and physical performance. STATEMENT OF RELEVANCE: Nurse fatigue and performance has implications for patient and provider safety. Results from this study demonstrate the importance of a multidimensional view of fatigue in understanding the causal relationships between fatigue and performance. The findings can guide future work aimed at predicting fatigue-related performance decrements and designing interventions.

  18. AsMA Medical Guidelines for Air Travel: stresses of flight.

    PubMed

    Thibeault, Claude; Evans, Anthony D

    2015-05-01

    Medical Guidelines for Airline Travel provide information that enables healthcare providers to properly advise patients who plan to travel by air. Modern commercial aircraft are very safe and, in most cases, reasonably comfortable. However, all flights, short or long haul, impose stresses on passengers. Preflight stresses include airport commotion on the ground such as carrying baggage, walking long distances, getting to the gate on time, and being delayed. In-flight stresses include acceleration, vibration (including turbulence), noise, lowered barometric pressure, variations of temperature and humidity, and fatigue among others. Healthy passengers normally tolerate these stresses quite well; however, there is the potential for passengers to become ill during or after the flight due to these stresses, especially for those with pre-existing medical conditions and reduced physiological reserves.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ritchie, IAltenberger, RKNalla, YSano LWagner, RO

    The effect of surface treatment on the stress/life fatigue behavior of a titanium Ti-6Al-4V turbine fan blade alloy is investigated in the regime of 102 to 106 cycles to failure under fully reversed stress-controlled isothermal push-pull loading between 25? and 550?C at a frequency of 5 Hz. Specifically, the fatigue behavior was examined in specimens in the deep-rolled and laser-shock peened surface conditions, and compared to results on samples in the untreated (machined and stress annealed) condition. Although the fatigue resistance of the Ti-6Al-4V alloy declined with increasing test temperature regardless of surface condition, deep-rolling and laser-shock peening surface treatmentsmore » were found to extend the fatigue lives by factors of more than 30 and 5-10, respectively, in the high-cycle and low-cycle fatigue regimes at temperatures as high as 550?C. At these temperatures, compressive residual stresses are essentially relaxed; however, it is the presence of near-surface work hardened layers, with a nanocystalline structure in the case of deep-rolling and dense dislocation tangles in the case of laser-shock peening, which remain fairly stable even after cycling at 450?-550?C, that provide the basis for the beneficial role of mechanical surface treatments on the fatigue strength of Ti-6Al-4V at elevated temperatures.« less

  20. Evidence for sensitized fatigue pathways in patients with chronic fatigue syndrome.

    PubMed

    Staud, Roland; Mokthech, Meriem; Price, Donald D; Robinson, Michael E

    2015-04-01

    Patients with chronic fatigue syndrome (CFS) frequently demonstrate intolerance to physical exertion that is often reported as increased and long-lasting fatigue. Because no specific metabolic alterations have been identified in CFS patients, we hypothesized that sensitized fatigue pathways become activated during exercise corresponding with increased fatigue. After exhausting handgrip exercise, muscle metabolites were trapped in the forearm tissues of 39 CFS patients and 29 normal control (NC) by sudden occlusion for up to 5 minutes. A nonocclusive condition of similar duration was used as control. Repeated fatigue and pain ratings were obtained before and after exercise. Mechanical and heat hyperalgesia were assessed by quantitative sensory testing. All subjects fulfilled the 1994 Fukuda Criteria for CFS. Normal control and CFS subjects exercised for 6.6 (2.4) and 7.0 (2.7) minutes (P > 0.05). Forearm occlusion lasted for 4.7 (1.3) and 4.9 (1.8) minutes in NC and CFS subjects, respectively (P > 0.05). Although fatigue ratings of CFS subjects increased from 4.8 (2.0) to 5.6 (2.1) visual analogue scale (VAS) units during forearm occlusion, they decreased from 5.0 (1.8) to 4.8 (2.0) VAS units during the control condition without occlusion (P = 0.04). A similar time course of fatigue ratings was observed in NC (P > 0.05), although their ratings were significantly lower than those of CFS subjects (P < 0.001). Quantitative sensory testing demonstrated heat and mechanical hyperalgesia in CFS subjects. Our findings provide indirect evidence for significant contributions of peripheral tissues to the increased exercise-related fatigue in CFS patients consistent with sensitization of fatigue pathways. Future interventions that reduce sensitization of fatigue pathways in CFS patients may be of therapeutic benefit.

  1. Fatigue in primary Sjögren's syndrome is associated with lower levels of proinflammatory cytokines.

    PubMed

    Howard Tripp, Nadia; Tarn, Jessica; Natasari, Andini; Gillespie, Colin; Mitchell, Sheryl; Hackett, Katie L; Bowman, Simon J; Price, Elizabeth; Pease, Colin T; Emery, Paul; Lanyon, Peter; Hunter, John; Gupta, Monica; Bombardieri, Michele; Sutcliffe, Nurhan; Pitzalis, Costantino; McLaren, John; Cooper, Annie; Regan, Marian; Giles, Ian; Isenberg, David A; Saravanan, Vadivelu; Coady, David; Dasgupta, Bhaskar; McHugh, Neil; Young-Min, Steven; Moots, Robert; Gendi, Nagui; Akil, Mohammed; Griffiths, Bridget; Lendrem, Dennis W; Ng, Wan-Fai

    2016-01-01

    This article reports relationships between serum cytokine levels and patient-reported levels of fatigue, in the chronic immunological condition primary Sjögren's syndrome (pSS). Blood levels of 24 cytokines were measured in 159 patients with pSS from the United Kingdom Primary Sjögren's Syndrome Registry and 28 healthy non-fatigued controls. Differences between cytokines in cases and controls were evaluated using Wilcoxon test. Patient-reported scores for fatigue were evaluated, classified according to severity and compared with cytokine levels using analysis of variance. Logistic regression was used to determine the most important predictors of fatigue levels. 14 cytokines were significantly higher in patients with pSS (n=159) compared to non-fatigued healthy controls (n=28). While serum levels were elevated in patients with pSS compared to healthy controls, unexpectedly, the levels of 4 proinflammatory cytokines-interferon-γ-induced protein-10 (IP-10) (p=0.019), tumour necrosis factor-α (p=0.046), lymphotoxin-α (p=0.034) and interferon-γ (IFN-γ) (p=0.022)-were inversely related to patient-reported levels of fatigue. A regression model predicting fatigue levels in pSS based on cytokine levels, disease-specific and clinical parameters, as well as anxiety, pain and depression, revealed IP-10, IFN-γ (both inversely), pain and depression (both positively) as the most important predictors of fatigue. This model correctly predicts fatigue levels with reasonable (67%) accuracy. Cytokines, pain and depression appear to be the most powerful predictors of fatigue in pSS. Our data challenge the notion that proinflammatory cytokines directly mediate fatigue in chronic immunological conditions. Instead, we hypothesise that mechanisms regulating inflammatory responses may be important.

  2. Fatigue in primary Sjögren's syndrome is associated with lower levels of proinflammatory cytokines

    PubMed Central

    Howard Tripp, Nadia; Tarn, Jessica; Natasari, Andini; Gillespie, Colin; Mitchell, Sheryl; Hackett, Katie L; Bowman, Simon J; Price, Elizabeth; Pease, Colin T; Emery, Paul; Lanyon, Peter; Hunter, John; Gupta, Monica; Bombardieri, Michele; Sutcliffe, Nurhan; Pitzalis, Costantino; McLaren, John; Cooper, Annie; Regan, Marian; Giles, Ian; Isenberg, David A; Saravanan, Vadivelu; Coady, David; Dasgupta, Bhaskar; McHugh, Neil; Young-Min, Steven; Moots, Robert; Gendi, Nagui; Akil, Mohammed; Griffiths, Bridget; Lendrem, Dennis W; Ng, Wan-Fai

    2016-01-01

    Objectives This article reports relationships between serum cytokine levels and patient-reported levels of fatigue, in the chronic immunological condition primary Sjögren's syndrome (pSS). Methods Blood levels of 24 cytokines were measured in 159 patients with pSS from the United Kingdom Primary Sjögren's Syndrome Registry and 28 healthy non-fatigued controls. Differences between cytokines in cases and controls were evaluated using Wilcoxon test. Patient-reported scores for fatigue were evaluated, classified according to severity and compared with cytokine levels using analysis of variance. Logistic regression was used to determine the most important predictors of fatigue levels. Results 14 cytokines were significantly higher in patients with pSS (n=159) compared to non-fatigued healthy controls (n=28). While serum levels were elevated in patients with pSS compared to healthy controls, unexpectedly, the levels of 4 proinflammatory cytokines—interferon-γ-induced protein-10 (IP-10) (p=0.019), tumour necrosis factor-α (p=0.046), lymphotoxin-α (p=0.034) and interferon-γ (IFN-γ) (p=0.022)—were inversely related to patient-reported levels of fatigue. A regression model predicting fatigue levels in pSS based on cytokine levels, disease-specific and clinical parameters, as well as anxiety, pain and depression, revealed IP-10, IFN-γ (both inversely), pain and depression (both positively) as the most important predictors of fatigue. This model correctly predicts fatigue levels with reasonable (67%) accuracy. Conclusions Cytokines, pain and depression appear to be the most powerful predictors of fatigue in pSS. Our data challenge the notion that proinflammatory cytokines directly mediate fatigue in chronic immunological conditions. Instead, we hypothesise that mechanisms regulating inflammatory responses may be important. PMID:27493792

  3. The relationship between cell phone use and management of driver fatigue: It's complicated.

    PubMed

    Saxby, Dyani Juanita; Matthews, Gerald; Neubauer, Catherine

    2017-06-01

    Voice communication may enhance performance during monotonous, potentially fatiguing driving conditions (Atchley & Chan, 2011); however, it is unclear whether safety benefits of conversation are outweighed by costs. The present study tested whether personalized conversations intended to simulate hands-free cell phone conversation may counter objective and subjective fatigue effects elicited by vehicle automation. A passive fatigue state (Desmond & Hancock, 2001), characterized by disengagement from the task, was induced using full vehicle automation prior to drivers resuming full control over the driving simulator. A conversation was initiated shortly after reversion to manual control. During the conversation an emergency event occurred. The fatigue manipulation produced greater task disengagement and slower response to the emergency event, relative to a control condition. Conversation did not mitigate passive fatigue effects; rather, it added worry about matters unrelated to the driving task. Conversation moderately improved vehicle control, as measured by SDLP, but it failed to counter fatigue-induced slowing of braking in response to an emergency event. Finally, conversation appeared to have a hidden danger in that it reduced drivers' insights into performance impairments when in a state of passive fatigue. Automation induced passive fatigue, indicated by loss of task engagement; yet, simulated cell phone conversation did not counter the subjective automation-induced fatigue. Conversation also failed to counter objective loss of performance (slower braking speed) resulting from automation. Cell phone conversation in passive fatigue states may impair drivers' awareness of their performance deficits. Practical applications: Results suggest that conversation, even using a hands-free device, may not be a safe way to reduce fatigue and increase alertness during transitions from automated to manual vehicle control. Copyright © 2017 Elsevier Ltd and National Safety Council. All rights reserved.

  4. Wet, volatile, and dry biomarkers of exercise-induced muscle fatigue.

    PubMed

    Finsterer, Josef; Drory, Vivian E

    2016-01-21

    The physiological background of exercise-induced muscle fatigue(EIMUF) is only poorly understood. Thus, monitoring of EIMUF by a single or multiple biomarkers(BMs) is under debate. After a systematic literature review 91 papers were included. EIMUF is mainly due to depletion of substrates, increased oxidative stress, muscle membrane depolarisation following potassium depletion, muscle hyperthermia, muscle damage, impaired oxygen supply to the muscle, activation of an inflammatory response, or impaired calcium-handling. Dehydration, hyperammonemia, mitochondrial biogenesis, and genetic responses are also discussed. Since EIMUF is dependent on age, sex, degree of fatigue, type, intensity, and duration of exercise, energy supply during exercise, climate, training status (physical fitness), and health status, BMs currently available for monitoring EIMUF have limited reliability. Generally, wet, volatile, and dry BMs are differentiated. Among dry BMs of EIMUF the most promising include power output measures, electrophysiological measures, cardiologic measures, and questionnaires. Among wet BMs of EIMUF those most applicable include markers of ATP-metabolism, of oxidative stress, muscle damage, and inflammation. VO2-kinetics are used as a volatile BM. Though the physiology of EIMUF remains to be fully elucidated, some promising BMs have been recently introduced, which together with other BMs, could be useful in monitoring EIMUF. The combination of biomarkers seems to be more efficient than a single biomarker to monitor EIMUF. However, it is essential that efficacy, reliability, and applicability of each BM candidate is validated in appropriate studies.

  5. Hot-Spot Fatigue and Impact Damage Detection on a Helicopter Tailboom

    DTIC Science & Technology

    2011-09-01

    other 14 PZT disks were used as sensors. Among the 28 PZT disks, 16 PZT disks were placed in the two fatigue hot-spot areas to detect cracks initiated...more efficient and effective airframe maintenance, fatigue cracking and impact damage detection technologies were developed and demonstrated on a...SHM system in successfully monitoring fatigue cracks initiated from cyclical loading conditions; detecting, locating and quantifying ballistic

  6. Real-time monitoring of acoustic linear and nonlinear behavior of titanium alloys during low-cycle fatigue and high-cycle fatigue

    NASA Astrophysics Data System (ADS)

    Frouin, Jerome; Sathish, Shamachary; Na, Jeong K.

    2000-05-01

    An in-situ technique to measure sound velocity, ultrasonic attenuation and acoustic nonlinear property has been developed for characterization and early detection of fatigue damage in aerospace materials. For this purpose we have developed a computer software and measurement technique including hardware for the automation of the measurement. New transducer holder and special grips are designed. The automation has allowed us to test the long-term stability of the electronics over a period of time and so proof of the linearity of the system. Real-time monitoring of the material nonlinearity has been performed on dog-bone specimens from zero fatigue all the way to the final fracture under low-cycle fatigue test condition (LCF) and high-cycle test condition (HCF). Real-time health monitoring of the material can greatly contribute to the understanding of material behavior under cyclic loading. Interpretation of the results show that correlation exist between the slope of the curve described by the material nonlinearity and the life of the component. This new methodology was developed with an objective to predict the initiation of fatigue microcracks, and to detect, in-situ fatigue crack initiation as well as to quantify early stages of fatigue damage.

  7. Effects of Subsensory Noise and Fatigue on Knee Landing and Cross-over Cutting Biomechanics in Male Athletes.

    PubMed

    Qu, Xingda; Jiang, Jianxin; Hu, Xinyao

    2018-06-01

    The objective of this study was to examine the effects of subsensory noise and fatigue on knee biomechanics during the athletic task of landing followed by cross-over cutting. A total of 32 healthy male athletes participated in the study. They were evenly divided into 2 groups: no fatigue group and fatigue group. Fatigue was induced to the lower extremity by a repetitive squatting exercise in the fatigue group. Subsensory noise was generated by linear miniature vibrators bilaterally placed around the knee joints. During data collection, the participants were instructed to perform landing followed by cross-over cutting in both the subsensory on and off conditions. Dependent variables were selected to assess knee biomechanics in the phases of landing and cross-over cutting, separately. Results showed that fatigue resulted in larger knee flexion during landing and larger knee internal rotation during cross-over cutting. Subsensory noise was found to reduce knee rotation impulse during cross-over cutting. These findings suggest that cross-over cutting is more dangerous than landing in the fatigue condition, and subsensory noise may lead to changes in knee biomechanics consistent with reduced risk of anterior cruciate ligament injuries, but the changes may be task-specific.

  8. Tiredness and fatigue during processes of illness and recovery: A qualitative study of women recovered from fibromyalgia syndrome.

    PubMed

    Grape, Hedda Eik; Solbrække, Kari Nyheim; Kirkevold, Marit; Mengshoel, Anne Marit

    2017-01-01

    Fibromyalgia syndrome (FMS), a chronic musculoskeletal pain condition, is often accompanied by fatigue. In this study, inspired by narrative approaches to health and illness, we explore how women who have regained their health after FMS describe tiredness along a storyline from before they fell ill, through their illness, recovery process, and present-day health. The data derive from qualitative interviews with eight Norwegian women who previously suffered from FMS but who no longer had the condition at the time of interview. We undertook a narrative analysis to understand the complexity of the stories about tiredness and fatigue and on this basis identified a storyline based on four sub-narratives: 1) Alarming but ignored tiredness (before illness); 2) paralyzing fatigue (during illness); 3) making sense of fatigue (recovery process); and 4) integrating tiredness into life (today). The findings highlight participants' different understandings and meanings of tiredness and fatigue and the ways in which these link past, present, and future. Significantly, a clear distinction between tiredness and fatigue was not always found. Overall, the storyline that emerges from the narratives is about balancing tiredness/fatigue with everyday life, and how this unfolds in different ways across the span of FMS, from falling ill to recovering and regaining health.

  9. A New Ductility Exhaustion Model for High Temperature Low Cycle Fatigue Life Prediction of Turbine Disk Alloys

    NASA Astrophysics Data System (ADS)

    Zhu, Shun-Peng; Huang, Hong-Zhong; Li, Haiqing; Sun, Rui; Zuo, Ming J.

    2011-06-01

    Based on ductility exhaustion theory and the generalized energy-based damage parameter, a new viscosity-based life prediction model is introduced to account for the mean strain/stress effects in the low cycle fatigue regime. The loading waveform parameters and cyclic hardening effects are also incorporated within this model. It is assumed that damage accrues by means of viscous flow and ductility consumption is only related to plastic strain and creep strain under high temperature low cycle fatigue conditions. In the developed model, dynamic viscosity is used to describe the flow behavior. This model provides a better prediction of Superalloy GH4133's fatigue behavior when compared to Goswami's ductility model and the generalized damage parameter. Under non-zero mean strain conditions, moreover, the proposed model provides more accurate predictions of Superalloy GH4133's fatigue behavior than that with zero mean strains.

  10. Fatigue of Nitinol: The state-of-the-art and ongoing challenges.

    PubMed

    Mahtabi, M J; Shamsaei, Nima; Mitchell, M R

    2015-10-01

    Nitinol, a nearly equiatomic alloy of nickel and titanium, has been considered for a wide range of applications including medical and dental devices and implants as well as aerospace and automotive components and structures. The realistic loading condition in many of these applications is cyclic; therefore, fatigue is often the main failure mode for such components and structures. The fatigue behavior of Nitinol involves many more complexities compared with traditional metal alloys arising from its uniqueness in material properties such as superelasticity and shape memory effects. In this paper, a review of the present state-of-the-art on the fatigue behavior of superelastic Nitinol is presented. Various aspects of fatigue of Nitinol are discussed and microstructural effects are explained. Effects of material preparation and testing conditions are also reviewed. Finally, several conclusions are made and recommendations for future works are offered. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Fracture resistance and fatigue crack growth characteristics of two Al-Cu-Mg-Zr alloys

    NASA Technical Reports Server (NTRS)

    Sarkar, Bhaskar; Lisagor, W. B.

    1992-01-01

    The dependence of strength, fracture resistance, and fatigue crack growth rate on the aging conditions of two alloy compositions based on Al-3.7Cu-1.85Mg-0.2Mn is investigated. Mechanical properties were evaluated in two heat treatment conditions and in two orientations (longitudinal and transverse). Compact tension specimens were used to determine fatigue crack growth characteristics and fracture resistance. The aging response was monitored on coupons using hardness measurements determined with a standard Rockwell hardness tester. Fracture resistance is found to increase with increasing yield strength during artificial aging of age-hardenable 2124-Zr alloys processed by powder metallurgy techniques. Fatigue crack growth rate increases with increasing strength. It is argued that these changes are related to deformation modes of the alloys; a homogeneous deformation mode tends to increase fracture resistance and to decrease the resistance to the fatigue crack propagation rate.

  12. Effect of tendon vibration during wide-pulse neuromuscular electrical stimulation (NMES) on the decline and recovery of muscle force.

    PubMed

    Bochkezanian, Vanesa; Newton, Robert U; Trajano, Gabriel S; Vieira, Amilton; Pulverenti, Timothy S; Blazevich, Anthony J

    2017-05-02

    Neuromuscular electrical stimulation (NMES) is commonly used to activate skeletal muscles and reverse muscle atrophy in clinical populations. Clinical recommendations for NMES suggest the use of short pulse widths (100-200 μs) and low-to-moderate pulse frequencies (30-50 Hz). However, this type of NMES causes rapid muscle fatigue due to the (non-physiological) high stimulation intensities and non-orderly recruitment of motor units. The use of both wide pulse widths (1000 μs) and tendon vibration might optimize motor unit activation through spinal reflex pathways and thus delay the onset of muscle fatigue, increasing muscle force and mass. Thus, the objective of this study was to examine the acute effects of patellar tendon vibration superimposed onto wide-pulse width (1000 μs) knee extensor electrical stimulation (NMES, 30 Hz) on peak muscle force, total impulse before "muscle fatigue", and the post-exercise recovery of muscle function. Tendon vibration (Vib), NMES (STIM) or NMES superimposed onto vibration (STIM + Vib) were applied in separate sessions to 16 healthy adults. Total torque-time integral (TTI), maximal voluntary contraction torque (MVIC) and indirect measures of muscle damage were tested before, immediately after, 1 h and 48 h after each stimulus. TTI increased (145.0 ± 127.7%) in STIM only for "positive responders" to the tendon vibration (8/16 subjects), but decreased in "negative responders" (-43.5 ± 25.7%). MVIC (-8.7%) and rectus femoris electromyography (RF EMG) (-16.7%) decreased after STIM (group effect) for at least 1 h, but not after STIM + Vib. No changes were detected in indirect markers of muscle damage in any condition. Tendon vibration superimposed onto wide-pulse width NMES increased TTI only in 8 of 16 subjects, but reduced voluntary force loss (fatigue) ubiquitously. Negative responders to tendon vibration may derive greater benefit from wide-pulse width NMES alone.

  13. Metabolic Myopathies and Physical Activity: When Fatigue Is More Than Simple Exertion.

    ERIC Educational Resources Information Center

    Tarnopolsky, Mark A.

    2002-01-01

    When patients experience fatigue and muscle cramps beyond exercise adaptation, physicians should consider metabolic myopathies. The most common conditions seen in active patients are myoadenylate deaminase deficiency and disorders such as McArdle's disease. Targeted family histories and basic laboratory studies help rule out conditions mimicking…

  14. A Simulation of Low and High Cycle Fatigue Failure Effects for Metal Matrix Composites Based on Innovative J2-Flow Elastoplasticity Model

    PubMed Central

    Wang, Zhaoling; Xiao, Heng

    2017-01-01

    New elastoplastic J2-flow constitutive equations at finite deformations are proposed for the purpose of simulating the fatigue failure behavior for metal matrix composites. A new, direct approach is established in a two-fold sense of unification. Namely, both low and high cycle fatigue failure effects of metal matrix composites may be simultaneously simulated for various cases of the weight percentage of reinforcing particles. Novel results are presented in four respects. First, both the yield condition and the loading–unloading conditions in a usual sense need not be involved but may be automatically incorporated into inherent features of the proposed constitutive equations; second, low-to-high cycle fatigue failure effects may be directly represented by a simple condition for asymptotic loss of the material strength, without involving any additional damage-like variables; third, both high and low cycle fatigue failure effects need not be separately treated but may be automatically derived as model predictions with a unified criterion for critical failure states, without assuming any ad hoc failure criteria; and, finally, explicit expressions for each incorporated model parameter changing with the weight percentage of reinforcing particles may be obtainable directly from appropriate test data. Numerical examples are presented for medium-to-high cycle fatigue failure effects and for complicated duplex effects from low to high cycle fatigue failure effects. Simulation results are in good agreement with experimental data. PMID:28946637

  15. The effects of mental fatigue on cricket-relevant performance among elite players.

    PubMed

    Veness, Darren; Patterson, Stephen David; Jeffries, Owen; Waldron, Mark

    2017-12-01

    This study investigated the effects of a mentally fatiguing test on physical tasks among elite cricketers. In a cross-over design, 10 elite male cricket players from a professional club performed a cricket run-two test, a Batak Lite reaction time test and a Yo-Yo-Intermittent Recovery Level 1 (Yo-Yo-IR1) test, providing a rating of perceived exertion (RPE) after completing a 30-min Stroop test (mental fatigue condition) or 30-min control condition. Perceived fatigue was assessed before and after the two conditions and motivation was measured before testing. There were post-treatment differences in the perception of mental fatigue (P < 0.001; d = -7.82, 95% CIs = -9.05-6.66; most likely). Cricket run-two (P = 0.002; d = -0.51, 95% CIs = -0.72-0.30; very likely), Yo-Yo-IR1 distance (P = 0.023; d = 0.39, 95% CIs = 0.14-0.64; likely) and RPE (P = 0.001; d = -1.82, 95% CIs = -2.49-1.14; most likely) were negatively affected by mental fatigue. The Batak Lite test was not affected (P = 0.137), yet a moderate (d = 0.41, 95% CIs = -0.05-0.87) change was likely. Mental fatigue, induced by an app-based Stroop test, negatively affected cricket-relevant performance.

  16. The Effect of Nutrition Therapy and Exercise on Cancer-Related Fatigue and Quality of Life in Men with Prostate Cancer: A Systematic Review

    PubMed Central

    Baguley, Brenton J.; Bolam, Kate A.; Wright, Olivia R. L.

    2017-01-01

    Background: Improvements in diet and/or exercise are often advocated during prostate cancer treatment, yet the efficacy of, and optimal nutrition and exercise prescription for managing cancer-related fatigue and quality of life remains elusive. The aim of this study is to systematically review the effects of nutrition and/or exercise on cancer-related fatigue and/or quality of life. Methods: A literature search was conducted in six electronic databases. The Delphi quality assessment list was used to evaluate the methodological quality of the literature. The study characteristics and results were summarized in accordance with the review’s Population, Intervention, Control, Outcome (PICO) criteria. Results: A total of 20 articles (one diet only, two combined diet and exercise, and seventeen exercise only studies) were included in the review. Soy supplementation improved quality of life, but resulted in several adverse effects. Prescribing healthy eating guidelines with combined resistance training and aerobic exercise improved cancer-related fatigue, yet its effect on quality of life was inconclusive. Combined resistance training with aerobic exercise showed improvements in cancer-related fatigue and quality of life. In isolation, resistance training appears to be more effective in improving cancer-related fatigue and quality of life than aerobic exercise. Studies that utilised an exercise professional to supervise the exercise sessions were more likely to report improvements in both cancer-related fatigue and quality of life than those prescribing unsupervised or partially supervised sessions. Neither exercise frequency nor duration appeared to influence cancer-related fatigue or quality of life, with further research required to explore the potential dose-response effect of exercise intensity. Conclusion: Supervised moderate-hard resistance training with or without moderate-vigorous aerobic exercise appears to improve cancer-related fatigue and quality of life. Targeted physiological pathways suggest dietary intervention may alleviate cancer-related fatigue and improve quality of life, however the efficacy of nutrition management with or without exercise prescription requires further exploration. PMID:28895922

  17. The Effect of Nutrition Therapy and Exercise on Cancer-Related Fatigue and Quality of Life in Men with Prostate Cancer: A Systematic Review.

    PubMed

    Baguley, Brenton J; Bolam, Kate A; Wright, Olivia R L; Skinner, Tina L

    2017-09-12

    Improvements in diet and/or exercise are often advocated during prostate cancer treatment, yet the efficacy of, and optimal nutrition and exercise prescription for managing cancer-related fatigue and quality of life remains elusive. The aim of this study is to systematically review the effects of nutrition and/or exercise on cancer-related fatigue and/or quality of life. A literature search was conducted in six electronic databases. The Delphi quality assessment list was used to evaluate the methodological quality of the literature. The study characteristics and results were summarized in accordance with the review's Population, Intervention, Control, Outcome (PICO) criteria. A total of 20 articles (one diet only, two combined diet and exercise, and seventeen exercise only studies) were included in the review. Soy supplementation improved quality of life, but resulted in several adverse effects. Prescribing healthy eating guidelines with combined resistance training and aerobic exercise improved cancer-related fatigue, yet its effect on quality of life was inconclusive. Combined resistance training with aerobic exercise showed improvements in cancer-related fatigue and quality of life. In isolation, resistance training appears to be more effective in improving cancer-related fatigue and quality of life than aerobic exercise. Studies that utilised an exercise professional to supervise the exercise sessions were more likely to report improvements in both cancer-related fatigue and quality of life than those prescribing unsupervised or partially supervised sessions. Neither exercise frequency nor duration appeared to influence cancer-related fatigue or quality of life, with further research required to explore the potential dose-response effect of exercise intensity. Supervised moderate-hard resistance training with or without moderate-vigorous aerobic exercise appears to improve cancer-related fatigue and quality of life. Targeted physiological pathways suggest dietary intervention may alleviate cancer-related fatigue and improve quality of life, however the efficacy of nutrition management with or without exercise prescription requires further exploration.

  18. Skeletal muscle power and fatigue at the tolerable limit of ramp-incremental exercise in COPD.

    PubMed

    Cannon, Daniel T; Coelho, Ana Claudia; Cao, Robert; Cheng, Andrew; Porszasz, Janos; Casaburi, Richard; Rossiter, Harry B

    2016-12-01

    Muscle fatigue (a reduced power for a given activation) is common following exercise in chronic obstructive pulmonary disease (COPD). Whether muscle fatigue, and reduced maximal voluntary locomotor power, are sufficient to limit whole body exercise in COPD is unknown. We hypothesized in COPD: 1) exercise is terminated with a locomotor muscle power reserve; 2) reduction in maximal locomotor power is related to ventilatory limitation; and 3) muscle fatigue at intolerance is less than age-matched controls. We used a rapid switch from hyperbolic to isokinetic cycling to measure the decline in peak isokinetic power at the limit of incremental exercise ("performance fatigue") in 13 COPD patients (FEV 1 49 ± 17%pred) and 12 controls. By establishing the baseline relationship between muscle activity and isokinetic power, we apportioned performance fatigue into the reduction in muscle activation and muscle fatigue. Peak isokinetic power at intolerance was ~130% of peak incremental power in controls (274 ± 73 vs. 212 ± 84 W, P < 0.05), but ~260% in COPD patients (187 ± 141 vs. 72 ± 34 W, P < 0.05), greater than controls (P < 0.05). Muscle fatigue as a fraction of baseline peak isokinetic power was not different in COPD patients vs. controls (0.11 ± 0.20 vs. 0.19 ± 0.11). Baseline to intolerance, the median frequency of maximal isokinetic muscle activity, was unchanged in COPD patients but reduced in controls (+4.3 ± 11.6 vs. -5.5 ± 7.6%, P < 0.05). Performance fatigue as a fraction of peak incremental power was greater in COPD vs. controls and related to resting (FEV 1 /FVC) and peak exercise (V̇ E /maximal voluntary ventilation) pulmonary function (r 2 = 0.47 and 0.55, P < 0.05). COPD patients are more fatigable than controls, but this fatigue is insufficient to constrain locomotor power and define exercise intolerance. Copyright © 2016 the American Physiological Society.

  19. Determining cyclic corrosion cracking resistance for titanium alloys with allowance for electrochemical conditions at the fatigue corrosion crack tip

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Panasyuk, V.V.; Ratich, L.V.; Petranyuk, I.Ya.

    1994-08-01

    Published data are examined on how various factors affect fatigue crack growth rates. Basic diagrams have been constructed for the cyclic cracking resistance in Ti-6Al-4V and Ti-6Al-2Sn alloys in air, distilled water, and 3.5% NaCl for use in working-life calculations. Appropriate heat treatment can produce two microstructures in a titanium alloy, one of which has the largest cyclic cracking resistance, while in the second, the cracks grow at the lowest rate. The cyclic corrosion cracking resistance for a titanium alloy should be determined in relation to the state of stress and strain and to the electrochemical conditions at the corrosionmore » fatigue crack tip, while the variations in fatigue crack growth rate for a given stress intensity factor in a corrosive medium are due to differing electrochemical conditions at the crack tip during the testing on different specimens. Basic diagrams can be derived for titanium alloys by using a physically sound methodology developed previously for steels, which is based on invariant diagrams for cyclic cracking resistance in air and in the corresponding medium, which can be constructed in relation to extremal working and electrochemical conditions at corrosion-fatigue crack tips.« less

  20. Microstructural examination of fatigue crack tip in high strength steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fukuoka, C.; Yoshizawa, H.; Nakagawa, Y.G.

    1993-10-01

    Fatigue tests were performed to examine how microstructural conditioning influences crack initiation and propagation in SA508 class 3 low-carbon steel. A 3-mm-long crack was introduced in compact tension (CT) fatigue test specimens under four different loads in order to obtain crack tip plastic zones at different stress intensity factor ranges, [Delta]K = 18, 36, 54, and 72 MPa[radical]m. The microstructure of the plastic zones around the crack tip were examined by transmission electron microscopy (TEM) and selected area electron diffraction (SAD). Micro-orientation of the dislocation cells in the plastic zones of all of the CT samples increased to 4 degmore » from the level of an as-received sample. Four-point bending fatigue tests were performed for plate shape samples with a large cyclic strain range. The SAD value of the bending samples was also 4 deg in the damaged area where cracks already initiated at an early stage of the fatigue process. These test results indicate that the microstructural conditioning is a prerequisite for the fatigue crack initiation and propagation in SA508. These observations may lead to better understanding of how fatigue initiation processes transit to cracks.« less

  1. Influence of friction stir processing on the room temperature fatigue cracking mechanisms of A356 aluminum alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nelaturu, Phalgun; Jana, Saumyadeep; Mishra, Rajiv S.

    Here, failure by fatigue is a common problem associated with cast aluminum alloys due to defects like shrinkage porosities, non-metallic inclusions, etc. Friction stir processing (FSP) has recently emerged as an effective technique for local modification of microstructure. This study investigates the fatigue crack initiation and growth mechanisms in cast and FSPed A356 aluminum alloy. Two sets of parameters were used to friction stir the cast alloy resulting in the complete modification the cast microstructure to a wrought microstructure. Both the FSPed microstructures exhibited severe abnormal grain growth (AGG) after heat treatment leading to a multimodal grain size distribution –more » the grain sizes ranging from a few microns to a few millimeters. One of the FSP conditions displayed an excellent improvement in fatigue life by an order of magnitude, while the other condition displayed an unexpectedly large scatter in fatigue lives. Detailed study of the fractured fatigue specimens by electron back scattered diffraction (EBSD) revealed that both, fatigue crack initiation and propagation, were intimately tied to the grain size as well as the grain misorientations in the microstructure.« less

  2. A Study on Fretting Behavior in Room Temperature for Inconel Alloy 690

    NASA Astrophysics Data System (ADS)

    Kwon, Jae Do; Chai, Young Suck; Bae, Yong Tak; Choi, Sung Jong

    The initial crack under fretting condition occurs at lower stress amplitude and lower cycles of cyclic loading than that under plain fatigue condition. The fretting damage, for example, can be observed in fossil and nuclear power plant, aircraft, automobile and petroleum chemical plants etc. INCONEL alloy 690 is a high-chromium nickel alloy having excellent resistance to many corrosive aqueous media and high-temperature atmospheres. This alloy is used extensively in the industries of nuclear power, chemicals, heat-treatment and electronics. In this paper, the effect of fretting damage on fatigue behavior for INCONEL alloy 690 was studied. Also, various kinds of tests on mechanical properties such as hardness, tension and plain fatigue tests are performed. Fretting fatigue tests were carried out with flat-flat contact configuration using a bridge type contact pad and plate type specimen. Through these experiments, it is found that the fretting fatigue strength decreased about 43% compared to the plain fatigue strength. In fretting fatigue, the wear debris is observed on the contact surface, and the oblique micro-cracks are initiated at an earlier stage. These results can be used as the basic data in a structural integrity evaluation of heat and corrosion resistant alloy considering fretting damages.

  3. Influence of friction stir processing on the room temperature fatigue cracking mechanisms of A356 aluminum alloy

    DOE PAGES

    Nelaturu, Phalgun; Jana, Saumyadeep; Mishra, Rajiv S.; ...

    2018-01-11

    Here, failure by fatigue is a common problem associated with cast aluminum alloys due to defects like shrinkage porosities, non-metallic inclusions, etc. Friction stir processing (FSP) has recently emerged as an effective technique for local modification of microstructure. This study investigates the fatigue crack initiation and growth mechanisms in cast and FSPed A356 aluminum alloy. Two sets of parameters were used to friction stir the cast alloy resulting in the complete modification the cast microstructure to a wrought microstructure. Both the FSPed microstructures exhibited severe abnormal grain growth (AGG) after heat treatment leading to a multimodal grain size distribution –more » the grain sizes ranging from a few microns to a few millimeters. One of the FSP conditions displayed an excellent improvement in fatigue life by an order of magnitude, while the other condition displayed an unexpectedly large scatter in fatigue lives. Detailed study of the fractured fatigue specimens by electron back scattered diffraction (EBSD) revealed that both, fatigue crack initiation and propagation, were intimately tied to the grain size as well as the grain misorientations in the microstructure.« less

  4. Axial-Load Fatigue Tests on 17-7 PH Stainless Steel Under Constant-Amplitude Loading

    NASA Technical Reports Server (NTRS)

    Leybold, Herbert A.

    1960-01-01

    Axial-load fatigue tests were conducted at room temperature on notched and unnotched sheet specimens of 17-7 PH stainless steel in Condition TH 1050. The notched specimens had theoretical stress-concentration factors of 2.32, 4.00, and 5.00. All specimens were tested under completely reversed loading. S-N curves are presented for each specimen configuration and ratios of fatigue strengths of unnotched specimens to those of notched specimens are given. Predictions of the fatigue behavior of notched specimens near the fatigue limit were made.

  5. A Weakest-Link Approach for Fatigue Limit of 30CrNiMo8 Steels (Preprint)

    DTIC Science & Technology

    2011-03-01

    34Application of a Weakest-Link Concept to the Fatigue Limit of the Bearing Steel Sae 52100 in a Bainitic Condition," Fatigue and Fracture of...AFRL-RX-WP-TP-2011-4206 A WEAKEST-LINK APPROACH FOR FATIGUE LIMIT OF 30CrNiMo8 STEELS (PREPRINT) S. Ekwaro-Osire and H.V. Kulkarni Texas...2011 4. TITLE AND SUBTITLE A WEAKEST-LINK APPROACH FOR FATIGUE LIMIT OF 30CrNiMo8 STEELS (PREPRINT) 5a. CONTRACT NUMBER In-house 5b. GRANT

  6. Dynamic and static fatigue behavior of sintered silicon nitrides

    NASA Technical Reports Server (NTRS)

    Chang, J.; Khandelwal, P.; Heitman, P. W.

    1987-01-01

    The dynamic and static fatigue behavior of Kyocera SN220M sintered silicon nitride at 1000 C was studied. Fractographic analysis of the material failing in dynamic fatigue revealed the presence of slow crack growth (SCG) at stressing rates below 41 MPa/min. Under conditions of static fatigue this material also displayed SCG at stresses below 345 MPa. SCG appears to be controlled by microcracking of the grain boundaries. The crack velocity exponent (n) determined from both dynamic and static fatigue tests ranged from 11 to 16.

  7. Strategies to increase vitamin C in plants: from plant defense perspective to food biofortification.

    PubMed

    Locato, Vittoria; Cimini, Sara; Gara, Laura De

    2013-01-01

    Vitamin C participates in several physiological processes, among others, immune stimulation, synthesis of collagen, hormones, neurotransmitters, and iron absorption. Severe deficiency leads to scurvy, whereas a limited vitamin C intake causes general symptoms, such as increased susceptibility to infections, fatigue, insomnia, and weight loss. Surprisingly vitamin C deficiencies are spread in both developing and developed countries, with the latter actually trying to overcome this lack through dietary supplements and food fortification. Therefore new strategies aimed to increase vitamin C in food plants would be of interest to improve human health. Interestingly, plants are not only living bioreactors for vitamin C production in optimal growing conditions, but also they can increase their vitamin C content as consequence of stress conditions. An overview of the different approaches aimed at increasing vitamin C level in plant food is given. They include genotype selection by "classical" breeding, bio-engineering and changes of the agronomic conditions, on the basis of the emerging concepts that plant can enhance vitamin C synthesis as part of defense responses.

  8. Randomized, controlled trial of biofeedback with anal manometry, transanal ultrasound, or pelvic floor retraining with digital guidance alone in the treatment of mild to moderate fecal incontinence.

    PubMed

    Solomon, Michael J; Pager, Chet K; Rex, Jenny; Roberts, Rachael; Manning, Jane

    2003-06-01

    A prospective, three-armed, randomized, controlled trial was performed to assess whether pelvic floor exercises with biofeedback using anal manometry or transanal ultrasound are superior to pelvic floor exercises with feedback from digital examination alone in terms of continence, quality of life, physiologic sphincter strength, and compliance. Its secondary objectives were to assess whether there are any differences in these outcomes between biofeedback with transanal ultrasound vs. anal manometry and to correlate the physiologic measures with clinical outcome. One hundred twenty patients with mild to moderate fecal incontinence were randomized into one of three treatment groups: biofeedback with anal manometry, biofeedback with transanal ultrasound, or pelvic floor exercises with feedback from digital examination alone. Commencing one week after an initial 45-minute assessment session, patients attended monthly treatments for a total of five sessions. Each session lasted 30 minutes and involved sphincter exercises with biofeedback that involved instrumentation or digital examination alone, and patients were encouraged to perform identical exercises twice per day between outpatient visits. One hundred two patients (85 percent) completed the four-month treatment program. Across all treatment allocations, patients experienced modest but highly significant improvements in all nine outcome measures during treatment, with 70 percent of all patients perceiving improvement in symptom severity and 69 percent of patients reporting improved quality of life. With the possible exception of isotonic fatigue time, there were no significant differences between the three treatment groups in compliance, physiologic sphincter strength, and clinical or quality-of-life measures. Correlations between physiologic measures and clinical outcomes were much stronger with ultrasound-based measures than with manometry. Although patients in this study who completed pelvic floor exercises with feedback from digital examination achieved no additional benefit from biofeedback and measurement with transanal ultrasound or manometry, it may be that the guidance received through digital examination alone offered patients in the pelvic floor exercise group an effective biofeedback mechanism. Contrary to our hypothesis, the use of transanal ultrasound offered no benefit over manometry, but the use of ultrasound for isotonic fatigue time and isometric fatigue contractions provided potentially important physiologic measures that require further study. This study has confirmed, through a large sample of patients, that pelvic floor retraining programs are an effective treatment for improving physiologic, clinical, and quality-of-life parameters in the short term.

  9. Characterization of failure processes in tungsten copper composites under fatigue loading conditions

    NASA Technical Reports Server (NTRS)

    Kim, Yong-Suk; Verrilli, Michael J.; Gabb, Timothy P.

    1989-01-01

    A fractographic and metallographic investigation was performed on specimens of a tungsten fiber reinforced copper matrix composite (9 vol percent), which had experienced fatigue failures at elevated temperatures. Major failure modes and possible failure mechanisms, with an emphasis placed on characterizing fatigue damage accumulation, were determined. Metallography of specimens fatigued under isothermal cyclic loading suggested that fatigue damage initiates in the matrix. Cracks nucleated within the copper matrix at grain boundaries, and they propagated through cavity coalescence. The growing cracks subsequently interacted with the reinforcing tungsten fibers, producing a localized ductile fiber failure. Examinations of interrupted tests before final failure confirmed the suggested fatigue damage processes.

  10. An Assessment of Cumulative Axial and Torsional Fatigue in a Cobalt-Base Superalloy

    NASA Technical Reports Server (NTRS)

    Kalluri, Sreeramesh; Bonacuse, Peter J.

    2010-01-01

    Cumulative fatigue under axial and torsional loading conditions can include both load-order (higMow and low/high) as well as load-type sequence (axial/torsional and torsional/axial) effects. Previously reported experimental studies on a cobalt-base superalloy, Haynes 188 at 538 C, addressed these effects. These studies characterized the cumulative axial and torsional fatigue behavior under high amplitude followed by low amplitude (Kalluri, S. and Bonacuse, P. J., "Cumulative Axial and Torsional Fatigue: An Investigation of Load-Type Sequance Effects," in Multiaxial Fatigue and Deformation: Testing and Prediction, ASTM STP 1387, S. Kalluri, and P. J. Bonacuse, Eds., American Society for Testing and Materials, West Conshohocken, PA, 2000, pp. 281-301) and low amplitude followed by high amplitude (Bonacuse, P. and Kalluri, S. "Sequenced Axial and Torsional Cumulative Fatigue: Low Amplitude Followed by High Amplitude Loading," Biaxial/Multiaxial Fatigue and Fracture, ESIS Publication 31, A. Carpinteri, M. De Freitas, and A. Spagnoli, Eds., Elsevier, New York, 2003, pp. 165-182) conditions. In both studies, experiments with the following four load-type sequences were performed: (a) axial/axial, (b) torsional/torsional, (c) axial/torsional, and (d) torsional/axial. In this paper, the cumulative axial and torsional fatigue data generated in the two previous studies are combined to generate a comprehensive cumulative fatigue database on both the load-order and load-type sequence effects. This comprehensive database is used to examine applicability of the Palmgren-langer-Miner linear damage rule and a nonlinear damage curve approach for Haynes 188 subjected to the load-order and load-type sequencing described above. Summations of life fractions from the experiments are compared to the predictions from both the linear and nonlinear cumulative fatigue damage approaches. The significance of load-order versus load-type sequence effects for axial and torsional loading conditions is discussed. Possible reasons for the observed differences between the computed and observed summations of cycle fractions are rationalized in terms of the observed ever lutions of cyclic axial and shear stress ranges in the cumulative fatigue tests.

  11. Fatigue-related firing of muscle nociceptors reduces voluntary activation of ipsilateral but not contralateral lower limb muscles.

    PubMed

    Kennedy, David S; Fitzpatrick, Siobhan C; Gandevia, Simon C; Taylor, Janet L

    2015-02-15

    During fatiguing upper limb exercise, maintained firing of group III/IV muscle afferents can limit voluntary drive to muscles within the same limb. It is not known if this effect occurs in the lower limb. We investigated the effects of group III/IV muscle afferent firing from fatigued ipsilateral and contralateral extensor muscles and ipsilateral flexor muscles of the knee on voluntary activation of the knee extensors. In three experiments, we examined voluntary activation of the knee extensors by measuring changes in superimposed twitches evoked by femoral nerve stimulation. Subjects attended on 2 days for each experiment. On one day a sphygmomanometer cuff occluded blood flow of the fatigued muscles to maintain firing of group III/IV muscle afferents. After a 2-min extensor contraction (experiment 1; n = 9), mean voluntary activation was lower with than without maintained ischemia (47 ± 19% vs. 87 ± 8%, respectively; P < 0.001). After a 2-min knee flexor maximal voluntary contraction (MVC) (experiment 2; n = 8), mean voluntary activation was also lower with than without ischemia (59 ± 21% vs. 79 ± 9%; P < 0.01). After the contralateral (left) MVC (experiment 3; n = 8), mean voluntary activation of the right leg was similar with or without ischemia (92 ± 6% vs. 93 ± 4%; P = 0.65). After fatiguing exercise, activity in group III/IV muscle afferents reduces voluntary activation of the fatigued muscle and nonfatigued antagonist muscles in the same leg. However, group III/IV muscle afferents from the fatigued left leg had no effect on the unfatigued right leg. This suggests that any "crossover" of central fatigue in the lower limbs is not mediated by group III/IV muscle afferents. Copyright © 2015 the American Physiological Society.

  12. Effects of age and muscle action type on acute strength and power recovery following fatigue of the leg flexors.

    PubMed

    Thompson, Brennan J; Conchola, Eric C; Stock, Matt S

    2015-12-01

    Short-term strength and power recovery patterns following fatigue have received little research attention, particularly as they pertain to age-specific responses, and the leg flexors (i.e., hamstrings) muscle group. Thus, research is warranted addressing these issues because both age-related alterations in the neuromuscular system and mode of muscle action (e.g., eccentric, concentric, isometric) may differentially influence recovery responses from fatigue. The aim of this study was to investigate the strength and power recovery responses for eccentric, concentric, and isometric muscle actions of the leg flexors in young and older men following an isometric, intermittent fatigue-inducing protocol. Nineteen young (age = 25 ± 3 years) and nineteen older (71 ± 4) men performed maximal voluntary contractions (MVCs) for eccentric, concentric, and isometric muscle actions followed by a fatigue protocol of intermittent (0.6 duty cycle) isometric contractions of the leg flexors at 60% of isometric MVC. MVCs of each muscle action were performed at 0, 7, 15, and 30 min following fatigue. Peak torque (PT) and mean power values were calculated from the MVCs and the eccentric/concentric ratio (ECR) was derived. For PT and mean power, young men showed incomplete recovery at all time phases, whereas the older men had recovered by 7 min. Eccentric and isometric muscle actions showed incomplete recovery at all time phases, but concentric recovered by 7 min, independent of age. The ECR was depressed for up to 30 min following fatigue. More rapid and pronounced recovery in older men and concentric contractions may be related to physiological differences specific to aging and muscle action motor unit patterns. Individuals and clinicians may use these time course responses as a guide for recovery following activity-induced fatigue.

  13. On the fractography of overload, stress corrosion, and cyclic fatigue failures in pyrolytic-carbon materials used in prosthetic heart-valve devices.

    PubMed

    Ritchie, R O; Dauskardt, R H; Pennisi, F J

    1992-01-01

    A scanning electron microscopy study is reported of the nature and morphology of fracture surfaces in pyrocarbons commonly used for the manufacture of mechanical heart-valve prostheses. Specifically, silicon-alloyed low-temperature-isotropic (LTI)-pyrolytic carbon is examined, both as a coating on graphite and as a monolithic material, following overload, stress corrosion (static fatigue), and cyclic fatigue failures in a simulated physiological environment of 37 degrees C Ringer's solution. It is found that, in contrast to most metallic materials yet in keeping with many ceramics, there are no distinct fracture morphologies in pyro-carbons which are characteristic of a specific mode of loading; fracture surfaces appear to be identical for both catastrophic and subcritical crack growth under either sustained or cyclic loading. We conclude that caution should be used in assigning the likely cause of failure of pyrolytic carbon heart-valve components using fractographic examination.

  14. Physiology of the motor cortex in polio survivors.

    PubMed

    Lupu, Vitalie D; Danielian, Laura; Johnsen, Jacqueline A; Vasconcelos, Olavo M; Prokhorenko, Olga A; Jabbari, Bahman; Campbell, William W; Floeter, Mary Kay

    2008-02-01

    We hypothesized that the corticospinal system undergoes functional changes in long-term polio survivors. Central motor conduction times (CMCTs) to the four limbs were measured in 24 polio survivors using transcranial magnetic stimulation (TMS). Resting motor thresholds and CMCTs were normal. In 17 subjects whose legs were affected by polio and 13 healthy controls, single- and paired-pulse TMS was used to assess motor cortex excitability while recording from tibialis anterior (TA) muscles at rest and following maximal contraction until fatigue. In polio survivors the slope of the recruitment curve was normal, but maximal motor evoked potentials (MEPs) were larger than in controls. MEPs were depressed after fatiguing exercise. Three patients with central fatigue by twitch interpolation had a trend toward slower recovery. There was no association with symptoms of post-polio syndrome. These changes occurring after polio may allow the motor cortex to activate a greater proportion of the motor neurons innervating affected muscles.

  15. Validation of a Smartphone-Based Approach to In Situ Cognitive Fatigue Assessment

    PubMed Central

    Linden, Mark

    2017-01-01

    Background Acquired Brain Injuries (ABIs) can result in multiple detrimental cognitive effects, such as reduced memory capability, concentration, and planning. These effects can lead to cognitive fatigue, which can exacerbate the symptoms of ABIs and hinder management and recovery. Assessing cognitive fatigue is difficult due to the largely subjective nature of the condition and existing assessment approaches. Traditional methods of assessment use self-assessment questionnaires delivered in a medical setting, but recent work has attempted to employ more objective cognitive tests as a way of evaluating cognitive fatigue. However, these tests are still predominantly delivered within a medical environment, limiting their utility and efficacy. Objective The aim of this research was to investigate how cognitive fatigue can be accurately assessed in situ, during the quotidian activities of life. It was hypothesized that this assessment could be achieved through the use of mobile assistive technology to assess working memory, sustained attention, information processing speed, reaction time, and cognitive throughput. Methods The study used a bespoke smartphone app to track daily cognitive performance, in order to assess potential levels of cognitive fatigue. Twenty-one participants with no prior reported brain injuries took place in a two-week study, resulting in 81 individual testing instances being collected. The smartphone app delivered three cognitive tests on a daily basis: (1) Spatial Span to measure visuospatial working memory; (2) Psychomotor Vigilance Task (PVT) to measure sustained attention, information processing speed, and reaction time; and (3) a Mental Arithmetic Test to measure cognitive throughput. A smartphone-optimized version of the Mental Fatigue Scale (MFS) self-assessment questionnaire was used as a baseline to assess the validity of the three cognitive tests, as the questionnaire has already been validated in multiple peer-reviewed studies. Results The most highly correlated results were from the PVT, which showed a positive correlation with those from the prevalidated MFS, measuring 0.342 (P<.008). Scores from the cognitive tests were entered into a regression model and showed that only reaction time in the PVT was a significant predictor of fatigue (P=.016, F=2.682, 95% CI 9.0-84.2). Higher scores on the MFS were related to increases in reaction time during our mobile variant of the PVT. Conclusions The results show that the PVT mobile cognitive test developed for this study could be used as a valid and reliable method for measuring cognitive fatigue in situ. This test would remove the subjectivity associated with established self-assessment approaches and the need for assessments to be performed in a medical setting. Based on our findings, future work could explore delivering a small set of tests with increased duration to further improve measurement reliability. Moreover, as the smartphone assessment tool can be used as part of everyday life, additional sources of data relating to physiological, psychological, and environmental context could be included within the analysis to improve the nature and precision of the assessment process. PMID:28818818

  16. Effects of stretching and fatigue on peak torque, muscle imbalance, and stability.

    PubMed

    Costa, Pablo B; Ruas, Cassio V; Smith, Cory M

    2018-01-01

    The present study examined the acute effects of hamstrings stretching and fatigue on knee extension and flexion peak torque (PT), hamstrings to quadriceps (H:Q) ratio, and postural stability. Seventeen women (mean±SD age=21.8±2.1 years; body mass=63.0±10.5 kg; height=164.7±6.2 cm) and eighteen men (25.8±4.6 years; 83.6±13.2 kg; 175.3±6.0 cm) took part in three laboratory visits. The first visit was a familiarization session, and the subsequent two visits were randomly assigned as a control or stretching condition. For the testing visits, subjects performed a postural stability assessment, stretched (or sat quietly during the control condition), performed a 50-repetition unilateral isokinetic fatigue protocol, and repeated the postural stability assessment. There were no significant differences between control and stretching conditions for initial quadriceps and hamstrings PT, initial H:Q ratio, quadriceps and hamstrings PT fatigue indexes, H:Q ratio Fatigue Index, rating of perceived exertion (RPE), or postural stability (P>0.05). When analyzing 5 intervals of 10 repetitions, significant declines in quadriceps PT were found in all intervals for both conditions (P<0.05). However, a decline in hamstrings PT was only found until the fourth interval (i.e., repetitions 31 to 40) for the stretching condition (P<0.05). Stretching the hamstrings immediately prior to long-duration activities may eventually cause adverse effects in force-generating capacity of this muscle group to occur earlier when fatiguing tasks are involved. Nevertheless, no changes were found for the H:Q ratios after stretching when compared to no-stretching.

  17. Mechanisms of in vivo muscle fatigue in humans: investigating age‐related fatigue resistance with a computational model

    PubMed Central

    Callahan, Damien M.; Umberger, Brian R.

    2016-01-01

    Key points Muscle fatigue can be defined as the transient decrease in maximal force that occurs in response to muscle use. Fatigue develops because of a complex set of changes within the neuromuscular system that are difficult to evaluate simultaneously in humans.The skeletal muscle of older adults fatigues less than that of young adults during static contractions. The potential sources of this difference are multiple and intertwined.To evaluate the individual mechanisms of fatigue, we developed an integrative computational model based on neural, biochemical, morphological and physiological properties of human skeletal muscle.Our results indicate first that the model provides accurate predictions of fatigue and second that the age‐related resistance to fatigue is due largely to a lower reliance on glycolytic metabolism during contraction.This model should prove useful for generating hypotheses for future experimental studies into the mechanisms of muscle fatigue. Abstract During repeated or sustained muscle activation, force‐generating capacity becomes limited in a process referred to as fatigue. Multiple factors, including motor unit activation patterns, muscle fibre contractile properties and bioenergetic function, can impact force‐generating capacity and thus the potential to resist fatigue. Given that neuromuscular fatigue depends on interrelated factors, quantifying their independent effects on force‐generating capacity is not possible in vivo. Computational models can provide insight into complex systems in which multiple inputs determine discrete outputs. However, few computational models to date have investigated neuromuscular fatigue by incorporating the multiple levels of neuromuscular function known to impact human in vivo function. To address this limitation, we present a computational model that predicts neural activation, biomechanical forces, intracellular metabolic perturbations and, ultimately, fatigue during repeated isometric contractions. This model was compared with metabolic and contractile responses to repeated activation using values reported in the literature. Once validated in this way, the model was modified to reflect age‐related changes in neuromuscular function. Comparisons between initial and age‐modified simulations indicated that the age‐modified model predicted less fatigue during repeated isometric contractions, consistent with reports in the literature. Together, our simulations suggest that reduced glycolytic flux is the greatest contributor to the phenomenon of age‐related fatigue resistance. In contrast, oxidative resynthesis of phosphocreatine between intermittent contractions and inherent buffering capacity had minimal impact on predicted fatigue during isometric contractions. The insights gained from these simulations cannot be achieved through traditional in vivo or in vitro experimentation alone. PMID:26824934

  18. The Effect of Moderate and High-Intensity Fatigue on Groundstroke Accuracy in Expert and Non-Expert Tennis Players

    PubMed Central

    Lyons, Mark; Al-Nakeeb, Yahya; Hankey, Joanne; Nevill, Alan

    2013-01-01

    Exploring the effects of fatigue on skilled performance in tennis presents a significant challenge to the researcher with respect to ecological validity. This study examined the effects of moderate and high-intensity fatigue on groundstroke accuracy in expert and non-expert tennis players. The research also explored whether the effects of fatigue are the same regardless of gender and player’s achievement motivation characteristics. 13 expert (7 male, 6 female) and 17 non-expert (13 male, 4 female) tennis players participated in the study. Groundstroke accuracy was assessed using the modified Loughborough Tennis Skills Test. Fatigue was induced using the Loughborough Intermittent Tennis Test with moderate (70%) and high-intensities (90%) set as a percentage of peak heart rate (attained during a tennis-specific maximal hitting sprint test). Ratings of perceived exertion were used as an adjunct to the monitoring of heart rate. Achievement goal indicators for each player were assessed using the 2 x 2 Achievement Goals Questionnaire for Sport in an effort to examine if this personality characteristic provides insight into how players perform under moderate and high-intensity fatigue conditions. A series of mixed ANOVA’s revealed significant fatigue effects on groundstroke accuracy regardless of expertise. The expert players however, maintained better groundstroke accuracy across all conditions compared to the novice players. Nevertheless, in both groups, performance following high-intensity fatigue deteriorated compared to performance at rest and performance while moderately fatigued. Groundstroke accuracy under moderate levels of fatigue was equivalent to that at rest. Fatigue effects were also similar regardless of gender. No fatigue by expertise, or fatigue by gender interactions were found. Fatigue effects were also equivalent regardless of player’s achievement goal indicators. Future research is required to explore the effects of fatigue on performance in tennis using ecologically valid designs that mimic more closely the demands of match play. Key Points Groundstroke accuracy under moderate-intensity fatigue is equivalent to performance at rest. Groundstroke accuracy declines significantly in both expert (40.3% decline) and non-expert (49.6%) tennis players following high-intensity fatigue. Expert players are more consistent, hit more accurate shots and fewer out shots across all fatigue intensities. The effects of fatigue on groundstroke accuracy are the same regardless of gender and player’s achievement goal indicators. PMID:24149809

  19. Relationship between fatigue life in the creep-fatigue region and stress-strain response

    NASA Technical Reports Server (NTRS)

    Berkovits, A.; Nadiv, S.

    1988-01-01

    On the basis of mechanical tests and metallographic studies, strainrange partitioned lives were predicted by introducing stress-strain materials parameters into the Universal Slopes Equation. This was the result of correlating fatigue damage mechanisms and deformation mechanisms operating at elevated temperatures on the basis of observed mechanical and microstructural behavior. Correlation between high temperature fatigue and stress strain properties for nickel base superalloys and stainless steel substantiated the method. Parameters which must be evaluated for PP- and CC- life are the maximum stress achievable under entirely plastic and creep conditions respectively and corresponding inelastic strains, and the elastic modulus. For plasticity/creep interaction conditions (PC and CP) two more pairs of stress strain parameters must be ascertained.

  20. Fatigue, Creep-Fatigue, and Thermomechanical Fatigue Life Testing of Alloys

    NASA Technical Reports Server (NTRS)

    Halford, Gary R.; Lerch, Bradley A.; McGaw, Michael A.

    2000-01-01

    The fatigue crack initiation resistance of an alloy is determined by conducting a series of tests over a range of values of stress amplitude or strain range. The observed number of cycles to failure is plotted against the stress amplitude or strain range to obtain a fatigue curve. The fatigue properties quoted for an alloy are typically the constants used in the equation(s) that describe the fatigue curve. Fatigue lives of interest may be as low as 10(exp 2) or higher than 10(exp 9) cycles. Because of the enormous scatter associated with fatigue, dozens of tests may be needed to confidently establish a fatigue curve, and the cost may run into several thousands of dollars. To further establish the effects on fatigue life of the test temperature, environment, alloy condition, mean stress effects, creep-fatigue effects, thermomechanical cycling, etc. requires an extraordinarily large and usually very costly test matrix. The total effort required to establish the fatigue resistance of an alloy should not be taken lightly. Fatigue crack initiation tests are conducted on relatively small and presumed to be initially crack-free, samples of an alloy that are intended to be representative of the alloy's metallurgical and physical condition. Generally, samples are smooth and have uniformly polished surfaces within the test section. Some may have intentionally machined notches of well-controlled geometry, but the surface at the root of the notch is usually not polished. The purpose of polishing is to attain a reproducible surface finish. This is to eliminate surface finish as an uncontrolled variable. Representative test specimen geometries will be discussed later. Test specimens are cyclically loaded until macroscopically observable cracks initiate and eventually grow to failure. Normally, the fatigue failure life of a specimen is defined as the number of cycles to separation of the specimen into two pieces. Alternative definitions are becoming more common, particularly for low-cycle fatigue testing, wherein some prescribed indication of impending failure due to cracking is adopted. Specific criteria will be described later. As a rule, cracks that develop during testing are not measured nor are the test parameters intentionally altered owing to the presence of cracking.

  1. Fatigue crack layer propagation in silicon-iron

    NASA Technical Reports Server (NTRS)

    Birol, Y.; Welsch, G.; Chudnovsky, A.

    1986-01-01

    Fatigue crack propagation in metal is almost always accompanied by plastic deformation unless conditions strongly favor brittle fracture. The analysis of the plastic zone is crucial to the understanding of crack propagation behavior as it governs the crack growth kinetics. This research was undertaken to study the fatigue crack propagation in a silicon iron alloy. Kinetic and plasticity aspects of fatigue crack propagation in the alloy were obtained, including the characterization of damage evolution.

  2. Considerations in Physiological Metric Selection for Online Detection of Operator State: A Case Study

    DTIC Science & Technology

    2016-07-17

    e.g., we omit functional magnetic resonance imaging; fMRI ). Researchers have investigated fatigue and related constructs using several different...integration and links to underlying memory systems. Personality and So- cial Psychology Review, 4(2), 108–131. 26. Prinzel, L. J., Freeman, F. G

  3. Racial Battle Fatigue for Latina/o Students: A Quantitative Perspective

    ERIC Educational Resources Information Center

    Franklin, Jeremy D.; Smith, William A.; Hung, Man

    2014-01-01

    Previous literature demonstrates that as a result of racial microaggressions and hostile campus racial climates, Latina/o students often state they experience psychological, physiological, and behavioral stress responses during and after racialized incidents on campuses. The purpose of this study is to quantitatively test the racial battle fatigue…

  4. Fatigue Stressors in Simulated Long-Duration Flight. Effects on Performance, Information Processing, Subjective Fatigue, and Physiological Cost

    DTIC Science & Technology

    1980-12-01

    transferase or monoamine oxidase. These enzymes are similar to cholinesterase which destroys acetycholine, the agent secreted by the para- sympathetic nervous...the adrenergic neurons. Levels of norepinephrine are controlled in part by the intraneural metabolic activity of the enzyme monoamine oxidase. Chronic...GJ 4’ to Lu~ (n N. 0 N CIO.I V) m~ -4 4 V) -4 -- 4 ot o0m - N 0 LOlCD W m%0 w M %* " m m m v m v " -4 -4- inC-4J-4 - Coq 00.~. 0 a)) a. CD-v U X X x L

  5. Approach to the Underperforming Athlete.

    PubMed

    Solomon, Mary L; Weiss Kelly, Amanda K

    2016-03-01

    Children and adolescents who participate in intense sports training may face physical and psychologic stresses. The pediatric health care provider can play an important role in monitoring an athlete's preparation by obtaining a proper sports history, assessing sleep hygiene, discussing nutrition and hydration guidelines, and evaluating physiologic causes of fatigue. Educating parents and athletes on the potential risks of high-intensity training, inadequate rest and sleep, and a poor diet may improve the athlete's performance and prevent symptoms of overtraining syndrome. Infectious mononucleosis must also be considered a cause of fatigue among adolescents. The signs and symptoms of overtraining and burnout are discussed in this article. Copyright 2016, SLACK Incorporated.

  6. A Physiologically Based, Multi-Scale Model of Skeletal Muscle Structure and Function

    PubMed Central

    Röhrle, O.; Davidson, J. B.; Pullan, A. J.

    2012-01-01

    Models of skeletal muscle can be classified as phenomenological or biophysical. Phenomenological models predict the muscle’s response to a specified input based on experimental measurements. Prominent phenomenological models are the Hill-type muscle models, which have been incorporated into rigid-body modeling frameworks, and three-dimensional continuum-mechanical models. Biophysically based models attempt to predict the muscle’s response as emerging from the underlying physiology of the system. In this contribution, the conventional biophysically based modeling methodology is extended to include several structural and functional characteristics of skeletal muscle. The result is a physiologically based, multi-scale skeletal muscle finite element model that is capable of representing detailed, geometrical descriptions of skeletal muscle fibers and their grouping. Together with a well-established model of motor-unit recruitment, the electro-physiological behavior of single muscle fibers within motor units is computed and linked to a continuum-mechanical constitutive law. The bridging between the cellular level and the organ level has been achieved via a multi-scale constitutive law and homogenization. The effect of homogenization has been investigated by varying the number of embedded skeletal muscle fibers and/or motor units and computing the resulting exerted muscle forces while applying the same excitatory input. All simulations were conducted using an anatomically realistic finite element model of the tibialis anterior muscle. Given the fact that the underlying electro-physiological cellular muscle model is capable of modeling metabolic fatigue effects such as potassium accumulation in the T-tubular space and inorganic phosphate build-up, the proposed framework provides a novel simulation-based way to investigate muscle behavior ranging from motor-unit recruitment to force generation and fatigue. PMID:22993509

  7. The Impact of Moderate and High Intensity Total Body Fatigue on Passing Accuracy in Expert and Novice Basketball Players

    PubMed Central

    Lyons, Mark; Al-Nakeeb, Yahya; Nevill, Alan

    2006-01-01

    Despite the acknowledged importance of fatigue on performance in sport, ecologically sound studies investigating fatigue and its effects on sport-specific skills are surprisingly rare. The aim of this study was to investigate the effect of moderate and high intensity total body fatigue on passing accuracy in expert and novice basketball players. Ten novice basketball players (age: 23.30 ± 1.05 yrs) and ten expert basketball players (age: 22.50 ± 0.41 yrs) volunteered to participate in the study. Both groups performed the modified AAHPERD Basketball Passing Test under three different testing conditions: rest, moderate intensity and high intensity total body fatigue. Fatigue intensity was established using a percentage of the maximal number of squat thrusts performed by the participant in one minute. ANOVA with repeated measures revealed a significant (F 2,36 = 5.252, p = 0.01) level of fatigue by level of skill interaction. On examination of the mean scores it is clear that following high intensity total body fatigue there is a significant detriment in the passing performance of both novice and expert basketball players when compared to their resting scores. Fundamentally however, the detrimental impact of fatigue on passing performance is not as steep in the expert players compared to the novice players. The results suggest that expert or skilled players are better able to cope with both moderate and high intensity fatigue conditions and maintain a higher level of performance when compared to novice players. The findings of this research therefore, suggest the need for trainers and conditioning coaches in basketball to include moderate, but particularly high intensity exercise into their skills sessions. This specific training may enable players at all levels of the game to better cope with the demands of the game on court and maintain a higher standard of play. Key Points Aim: to investigate the effect of moderate and high intensity total body fatigue on basketball-passing accuracy in expert and novice basketball players. Fatigue intensity was set as a percentage of the maximal number of squat thrusts performed by the participant in one minute. ANOVA with repeated measures revealed a significant level of fatigue by level of skill interaction. Despite a significant detriment in passing-performance in both novice and expert players following high intensity total body fatigue, this detriment was not as steep in the expert players when compared to the novice players PMID:24259994

  8. Nigella sativa seed extract attenuates the fatigue induced by exhaustive swimming in rats

    PubMed Central

    Rahman, Mahbubur; Yang, Dong Kwon; Kim, Gi-Beum; Lee, Sei-Jin; Kim, Shang-Jin

    2017-01-01

    In previous studies, Nigella sativa (NS) has been studied due to its various physiological and pharmacological activities. However, evidence on the effects of NS on physical fatigue following exhaustive swimming remains limited. In the present study, the authors evaluated the potential beneficial effects of NS against the fatigue activity following exhaustive swimming. Rats were orally administered with NS extract (2 g/kg/day) for 21 days, and the anti-fatigue effect was assessed by exhaustive swimming exercise. The presented results indicated that pre-treatment of NS extract significantly increased the time to exhaustion. In hemodynamic parameters, NS extract increased blood pO2 and O2sat, but decreased pCO2. For underlying mechanisms, NS extract protected depletion of energy, indicated by increased levels of blood pH, glucose and tissue glycogen contents, and decreased levels of blood lactate, tissue lactic dehydrogenase and creatine kinase, when the NS extract was pre-treated. In addition, the NS extract inhibited oxidative stress following exhaustive swimming, as reflected by the results of increased levels of superoxide dismutase and redox ratio, and decreased the level of malondialdehyde when the NS extract was pre-treated. Collectively, the present study demonstrated that NS extract has an anti-fatigue activity against exhaustive swimming by energy restoration and oxidative-stress defense. PMID:28413647

  9. Pictorial Representation of Self and Illness Measure (PRISM): a graphic instrument to assess suffering in fatigued cancer survivors.

    PubMed

    Gielissen, Marieke F M; Prins, Judith B; Knoop, Hans; Verhagen, Stans; Bleijenberg, Gijs

    2013-06-01

    The Pictorial Representation of Self and Illness Measure (PRISM) measures in a simple, graphic way the burden of suffering due to illness. The question addressed in this study is whether the PRISM is a valid instrument to measure suffering in cancer survivors experiencing severe fatigue. Quantitative and qualitative data of a previous randomized controlled trial demonstrating the efficacy of cognitive behavior therapy (CBT) especially designed for postcancer fatigue was used to assess convergent validity and sensitivity to change in a sample of 83 cancer survivors. The PRISM, yielding self-illness separation (SIS-fatigue = suffering due to fatigue; SIS-cancer = suffering due to cancer), fatigue severity (Checklist Individual Strength; CIS-fatigue), functional impairment, psychological well-being, quality of life, and coping with the experience of cancer (Impact of Event Scale; IES). Moderate significant correlations were found with the PRISM and the above-mentioned measures. On the basis of SIS scores, the sample was divided into two separate groups: cancer survivors who suffered more because of fatigue and cancer survivors who suffered more because they had cancer in the past. The two groups had different scores on CIS-fatigue and IES, in line with that aspect that caused them the most suffering. The qualitative data confirmed this finding. Participants in the CBT condition demonstrated a significant difference between SIS-fatigue at baseline versus 6 months later compared with those in the waiting list condition. No change of SIS-cancer was found. The PRISM seems to be a valuable tool in fatigue research and clinical practice. PsycINFO Database Record (c) 2013 APA, all rights reserved.

  10. The effect of ondansetron, a 5-HT3 receptor antagonist, in chronic fatigue syndrome: a randomized controlled trial.

    PubMed

    The, Gerard K H; Bleijenberg, Gijs; Buitelaar, Jan K; van der Meer, Jos W M

    2010-05-01

    Accumulating data support the involvement of the serotonin (5-hydroxytryptamine [5-HT]) system in the pathophysiology of chronic fatigue syndrome. Neuropharmacologic studies point to a hyperactive 5-HT system, and open-label treatment studies with 5-HT(3) receptor antagonists have shown promising results. In this randomized controlled clinical trial, the effect of ondansetron, a 5-HT(3) receptor antagonist, was assessed on fatigue severity and functional impairment in adult patients with chronic fatigue syndrome. A randomized, placebo-controlled, double-blind clinical trial was conducted at Radboud University Nijmegen Medical Centre, The Netherlands. Sixty-seven adult patients who fulfilled the US Centers for Disease Control and Prevention (CDC) criteria for chronic fatigue syndrome and who were free from current psychiatric comorbidity participated in the clinical trial. Participants received either ondansetron 16 mg per day or placebo for 10 weeks. The primary outcome variables were fatigue severity (Checklist Individual Strength fatigue severity subscale [CIS-fatigue]) and functional impairment (Sickness Impact Profile-8 [SIP-8]). The effect of ondansetron was assessed by analysis of covariance. Data were analyzed on an intention-to-treat basis. All patients were recruited between June 2003 and March 2006. Thirty-three patients were allocated to the ondansetron condition, 34 to the placebo condition. The 2 groups were well matched in terms of age, sex, fatigue severity, functional impairment, and CDC symptoms. Analysis of covariance showed no significant differences between the ondansetron- and placebo-treated groups during the 10-week treatment period in fatigue severity and functional impairment. This clinical trial demonstrates no benefit of ondansetron compared to placebo in the treatment of chronic fatigue syndrome. www.trialregister.nl: ISRCTN02536681. ©Copyright 2010 Physicians Postgraduate Press, Inc.

  11. The assessment and analysis of astronaut mental fatigue in long-duration spaceflight

    NASA Astrophysics Data System (ADS)

    Li, Yun; Zhou, Qianxiang; Zu, Xiaoqi

    2012-07-01

    In the field of aerospace, mental work has become the main form of most operations, and the other operations are mixed works which are mental work dominated. Confined spaces, silent space environment, specified mode of communication, limited contract with the ground and discomfort of weightlessness also can lead to the aggravation and acceleration of mental fatigue. In aerospace activities, due to the instantaneous distraction of operator, slow response or lack of coordination could lead to serious accident, the study of mental fatigue is particularly important. In order to study the impact of continuous mental task and rest, we conducted an experiment which combined subjective evaluation with physiology index evaluation. Five subjects were selected in the experiment, and they were asked to perform continuous operation task in a simulator to imitate astronaut schedule. In the course of the experiment, subjective fatigue score (used Samn-Perelli and SWAT) and EEG power spectra were measured at the following hours: 8:00(starting time), 11:30, 15:00, 19:00, 23:00(before sleep), 6:00(after sleep), and 8:00(end time). The experiment showed that a short rest is not enough to make the subjects restored to the original state. The reduction of high frequency components and increase of low frequency in EEG also became more obvious with the increased mental fatigue. Gravity frequency of EEG had a shift to low frequency and is strongly correlated with mental fatigue level. These phenomena were similar with the results of subjective test. The SWAT also could tell us the main causes of metal fatigue during this process.

  12. Evaluating cyclic fatigue of sealants during outdoor testing

    Treesearch

    R. Sam Williams; Steven Lacher; Corey Halpin; Christopher White

    2009-01-01

    A computer-controlled test apparatus (CCTA) and other instrumentation for subjecting sealant specimens to cyclic fatigue during outdoor exposure was developed. The CCTA enables us to use weather-induced conditions to cyclic fatigue specimens and to conduct controlled tests in-situ during the outdoor exposure. Thermally induced dimensional changes of an aluminum bar...

  13. Design-Optimization and Material Selection for a Proximal Radius Fracture-Fixation Implant

    NASA Astrophysics Data System (ADS)

    Grujicic, M.; Xie, X.; Arakere, G.; Grujicic, A.; Wagner, D. W.; Vallejo, A.

    2010-11-01

    The problem of optimal size, shape, and placement of a proximal radius-fracture fixation-plate is addressed computationally using a combined finite-element/design-optimization procedure. To expand the set of physiological loading conditions experienced by the implant during normal everyday activities of the patient, beyond those typically covered by the pre-clinical implant-evaluation testing procedures, the case of a wheel-chair push exertion is considered. Toward that end, a musculoskeletal multi-body inverse-dynamics analysis is carried out of a human propelling a wheelchair. The results obtained are used as input to a finite-element structural analysis for evaluation of the maximum stress and fatigue life of the parametrically defined implant design. While optimizing the design of the radius-fracture fixation-plate, realistic functional requirements pertaining to the attainment of the required level of the devise safety factor and longevity/lifecycle were considered. It is argued that the type of analyses employed in the present work should be: (a) used to complement the standard experimental pre-clinical implant-evaluation tests (the tests which normally include a limited number of daily-living physiological loading conditions and which rely on single pass/fail outcomes/decisions with respect to a set of lower-bound implant-performance criteria) and (b) integrated early in the implant design and material/manufacturing-route selection process.

  14. Microstructural examination of

    NASA Astrophysics Data System (ADS)

    Fukuoka, C.; Yoshizawa, H.; Nakagawa, Y. G.; Lapides, M. E.

    1993-10-01

    Fatigue tests were performed to examine how microstructural conditioning influences crack initiation and propagation in SA508 class 3 low-carbon steel. A 3-mm-long crack was introduced in compact tension (CT) fatigue test specimens under four different loads in order to obtain crack tip plastic zones at different stress intensity factor ranges, ΔK = 18, 36, 54, and 72 MPa√m. The microstructure of the plastic zones around the crack tip were examined by trans- mission electron microscopy (TEM) and selected area electron diffraction (SAD). Micro- orientation of the dislocation cells in the plastic zones of all of the CT samples increased to 4 deg from the level of an as-received sample. Four-point bending fatigue tests were performed for plate shape samples with a large cyclic strain range. The SAD value of the bending samples was also 4 deg in the damaged area where cracks already initiated at an early stage of the fatigue process. These test results indicate that the microstructural conditioning is a prerequisite for the fatigue crack initiation and propagation in SA508. These observations may lead to better under- standing of how fatigue initiation processes transit to cracks.

  15. Dysregulated stress signal sensitivity and inflammatory disinhibition as a pathophysiological mechanism of stress-related chronic fatigue.

    PubMed

    Strahler, Jana; Skoluda, Nadine; Rohleder, Nicolas; Nater, Urs M

    2016-09-01

    Chronic stress and its subsequent effects on biological stress systems have long been recognized as predisposing and perpetuating factors in chronic fatigue, although the exact mechanisms are far from being completely understood. In this review, we propose that sensitivity of immune cells to glucocorticoids (GCs) and catecholamines (CATs) may be the missing link in elucidating how stress turns into chronic fatigue. We searched for in vitro studies investigating the impact of GCs or CATs on mitogen-stimulated immune cells in chronically stressed or fatigued populations, with 34 original studies fulfilling our inclusion criteria. Besides mixed cross-sectional findings for stress- and fatigue-related changes of GC sensitivity under basal conditions or acute stress, longitudinal studies indicate a decrease with ongoing stress. Research on CATs is still scarce, but initial findings point towards a reduction of CAT sensitivity under chronic stress. In the long run, resistance of immune cells to stress signals under conditions of chronic stress might translate into self-maintaining inflammation and inflammatory disinhibition under acute stress, which in turn lead to fatigue. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Effect of flooring on standing comfort and fatigue.

    PubMed

    Cham, R; Redfern, M S

    2001-01-01

    This study investigated the influence of flooring on subjective discomfort and fatigue during standing and on potentially related objective measures. Participants stood for 4 h on each of 7 flooring conditions while performing computer tasks. During the 3rd and 4th h, floor type had a significant effect on a number of subjective ratings, including lower-leg and lower-back discomfort/fatigue and 2 of 4 objective variables (center of pressure weight shift and lower-extremity skin temperature). In addition, lower-leg volumetric measurements showed tendencies toward greater lower-extremity swelling on uncomfortable floors. The hard floor and 1 floor mat condition consistently had the worst discomfort/fatigue and objective ratings. Significant relationships were noted between the affected subjective ratings and objective variables. In general, floor mats characterized by increased elasticity, decreased energy absorption, and increased stiffness resulted in less discomfort and fatigue. Thus flooring properties do affect low-back and lower-leg discomfort/fatigue, but the result may be detectable only after 3 h of standing. Potential applications of this research include the reduction of work-related health problems associated with long-term standing.

  17. The Influence of Roughness on Gear Surface Fatigue

    NASA Technical Reports Server (NTRS)

    Krantz, Timothy

    2005-01-01

    Gear working surfaces are subjected to repeated rolling and sliding contacts, and often designs require loads sufficient to cause eventual fatigue of the surface. This research provides experimental data and analytical tools to further the understanding of the causal relationship of gear surface roughness to surface fatigue. The research included evaluations and developments of statistical tools for gear fatigue data, experimental evaluation of the surface fatigue lives of superfinished gears with a near-mirror quality, and evaluations of the experiments by analytical methods and surface inspections. Alternative statistical methods were evaluated using Monte Carlo studies leading to a final recommendation to describe gear fatigue data using a Weibull distribution, maximum likelihood estimates of shape and scale parameters, and a presumed zero-valued location parameter. A new method was developed for comparing two datasets by extending the current methods of likelihood-ratio based statistics. The surface fatigue lives of superfinished gears were evaluated by carefully controlled experiments, and it is shown conclusively that superfinishing of gears can provide for significantly greater lives relative to ground gears. The measured life improvement was approximately a factor of five. To assist with application of this finding to products, the experimental condition was evaluated. The fatigue life results were expressed in terms of specific film thickness and shown to be consistent with bearing data. Elastohydrodynamic and stress analyses were completed to relate the stress condition to fatigue. Smooth-surface models do not adequately explain the improved fatigue lives. Based on analyses using a rough surface model, it is concluded that the improved fatigue lives of superfinished gears is due to a reduced rate of near-surface micropitting fatigue processes, not due to any reduced rate of spalling (sub-surface) fatigue processes. To complete the evaluations, surface inspection were completed. The surface topographies of the ground gears changed substantially due to running, but the topographies of the superfinished gears were essentially unchanged with running.

  18. Reviews on factors affecting fatigue behavior of high-Mn steels

    NASA Astrophysics Data System (ADS)

    Kim, Sangshik; Jeong, Daeho; Sung, Hyokyung

    2018-01-01

    A variety of factors affect the fatigue behavior of high-Mn steels, which include both extrinsic (i.e., loading type, R ratio, specimen type, surface condition, temperature, and environment) and intrinsic (i.e., chemical composition, grain size, microstructure, stacking fault energy) factors. Very often, the influence of extrinsic factors on the fatigue behavior is even greater than that of intrinsic factors, misleading the interpretation of fatigue data. The metallurgical factors influence the initiation and propagation behaviors of fatigue by altering the characteristics of slip that is prerequisite for fatigue damage accumulation. It is however not easy to separate the effect of each factor since they affect the fatigue behavior of high-Mn steels in complex and synergistic way. In this review, the fatigue data of high-Mn steels are summarized and the factors complicating the interpretation are discussed.

  19. Is Listening in Noise Worth It? The Neurobiology of Speech Recognition in Challenging Listening Conditions.

    PubMed

    Eckert, Mark A; Teubner-Rhodes, Susan; Vaden, Kenneth I

    2016-01-01

    This review examines findings from functional neuroimaging studies of speech recognition in noise to provide a neural systems level explanation for the effort and fatigue that can be experienced during speech recognition in challenging listening conditions. Neuroimaging studies of speech recognition consistently demonstrate that challenging listening conditions engage neural systems that are used to monitor and optimize performance across a wide range of tasks. These systems appear to improve speech recognition in younger and older adults, but sustained engagement of these systems also appears to produce an experience of effort and fatigue that may affect the value of communication. When considered in the broader context of the neuroimaging and decision making literature, the speech recognition findings from functional imaging studies indicate that the expected value, or expected level of speech recognition given the difficulty of listening conditions, should be considered when measuring effort and fatigue. The authors propose that the behavioral economics or neuroeconomics of listening can provide a conceptual and experimental framework for understanding effort and fatigue that may have clinical significance.

  20. Is Listening in Noise Worth It? The Neurobiology of Speech Recognition in Challenging Listening Conditions

    PubMed Central

    Eckert, Mark A.; Teubner-Rhodes, Susan; Vaden, Kenneth I.

    2016-01-01

    This review examines findings from functional neuroimaging studies of speech recognition in noise to provide a neural systems level explanation for the effort and fatigue that can be experienced during speech recognition in challenging listening conditions. Neuroimaging studies of speech recognition consistently demonstrate that challenging listening conditions engage neural systems that are used to monitor and optimize performance across a wide range of tasks. These systems appear to improve speech recognition in younger and older adults, but sustained engagement of these systems also appears to produce an experience of effort and fatigue that may affect the value of communication. When considered in the broader context of the neuroimaging and decision making literature, the speech recognition findings from functional imaging studies indicate that the expected value, or expected level of speech recognition given the difficulty of listening conditions, should be considered when measuring effort and fatigue. We propose that the behavioral economics and/or neuroeconomics of listening can provide a conceptual and experimental framework for understanding effort and fatigue that may have clinical significance. PMID:27355759

  1. The dynamic relationship between emotional and physical states: an observational study of personal health records

    PubMed Central

    Lee, Ye-Seul; Jung, Won-Mo; Jang, Hyunchul; Kim, Sanghyun; Chung, Sun-Yong; Chae, Younbyoung

    2017-01-01

    Objectives Recently, there has been increasing interest in preventing and managing diseases both inside and outside medical institutions, and these concerns have supported the development of the individual Personal Health Record (PHR). Thus, the current study created a mobile platform called “Mind Mirror” to evaluate psychological and physical conditions and investigated whether PHRs would be a useful tool for assessment of the dynamic relationship between the emotional and physical conditions of an individual. Methods Mind Mirror was used to collect 30 days of observational data about emotional valence and the physical states of pain and fatigue from 20 healthy participants, and these data were used to analyze the dynamic relationship between emotional and physical conditions. Additionally, based on the cross-correlations between these three parameters, a multilevel multivariate regression model (mixed linear model [MLM]) was implemented. Results The strongest cross-correlation between emotional and physical conditions was at lag 0, which implies that emotion and body condition changed concurrently. In the MLM, emotional valence was negatively associated with fatigue (β =−0.233, P<0.001), fatigue was positively associated with pain (β =0.250, P<0.001), and pain was positively associated with fatigue (β =0.398, P<0.001). Conclusion Our study showed that emotional valence and one’s physical condition negatively influenced one another, while fatigue and pain positively affected each other. These findings suggest that the mind and body interact instantaneously, in addition to providing a possible solution for the recording and management of health using a PHR on a daily basis. PMID:28223814

  2. Ultrasonic Evaluation of Fatigue Damage

    NASA Astrophysics Data System (ADS)

    Bayer, P.; Singher, L.; Notea, A.

    2004-02-01

    Despite the fact that most engineers and designers are aware of fatigue, many severe breakdowns of industrial plant and machinery still occur due to fatigue. In effect, it's been estimated that fatigue causes at least 80% of the failures in modern engineering components. From an operational point of view, the detection of fatigue damage, preferably at a very early stage, is a critically important consideration in order to prevent possible catastrophic equipment failure and associated losses. This paper describes the investigation involving the use of ultrasonic waves as a potential tool for early detection of fatigue damage. The parameters investigated were the ultrasonic wave velocities (longitudinal and transverse waves) and attenuation coefficient before fatigue damage and after progressive stages of fatigue. Although comparatively small uncertainties were observed, the feasibility of utilizing the velocity of ultrasonic waves as a fatigue monitor was barely substantiated within actual research conditions. However, careful measurements of the ultrasonic attenuation parameter had demonstrated its potential to provide an early assessment of damage during fatigue.

  3. The effect of fatigue on the corrosion resistance of common medical alloys.

    PubMed

    Di Prima, Matthew; Gutierrez, Erick; Weaver, Jason D

    2017-10-01

    The effect of mechanical fatigue on the corrosion resistance of medical devices has been a concern for devices that experience significant fatigue during their lifespan and devices made from metallic alloys. The Food and Drug Administration had recommended in some instances for corrosion testing to be performed on post-fatigued devices [Non-clinical tests and recommended labeling for intravascular stents and associated delivery systems: guidance for industry and FDA staff. 2005: Food and Drug Administration, Center for Devices and Radiological Health], although the need for this has been debated [Nagaraja S, et al., J Biomed Mater Res Part B: Appl Biomater 2016, 8.] This study seeks to evaluate the effect of fatigue on the corrosion resistance of 5 different materials commonly used in medical devices: 316 LVM stainless steel, MP35N cobalt chromium, electropolished nitinol, mechanically polished nitinol, and black oxide nitinol. Prior to corrosion testing per ASTM F2129, wires of each alloy were split into subgroups and subjected to either nothing (that is, as received); high strain fatigue for less than 8 min; short-term phosphate buffered saline (PBS) soak for less than 8 min; low strain fatigue for 8 days; or long-term PBS soak for 8 days. Results from corrosion testing showed that the rest potential trended to an equilibrium potential with increasing time in PBS and that there was no statistical (p > 0.05) difference in breakdown potential between the fatigued and matching PBS soak groups for 9 out of 10 test conditions. Our results suggest that under these nonfretting conditions, corrosion susceptibility as measured by breakdown potential per ASTM F2129 was unaffected by the fatigue condition. 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 2019-2026, 2017. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.

  4. An assessment of cold work effects on strain-controlled low-cycle fatigue behavior of type 304 stainless steel

    NASA Astrophysics Data System (ADS)

    Rao, K. Bhanu Sankara; Valsan, M.; Sandhya, R.; Mannan, S. L.; Rodriguez, P.

    1993-04-01

    The influence of prior cold work (PCW) on low-cycle fatigue (LCF) behavior of type 304 stainless steel has been studied at 300, 823, 923, and 1023 K by conducting total axial strain-controlled tests in solution annealed (SA, 0 pct PCW) condition and on specimens having three levels of PCW, namely, 10, 20, and 30 pct. A triangular waveform with a constant frequency of 0.1 Hz was employed for all of the tests performed over strain amplitudes in the range of ±0.25 to ± 1.25 pct. These studies have revealed that fatigue life is strongly dependent on PCW, temperature, and strain amplitude employed in testing. The SA material generally displayed better endurance in terms of total and plastic strain amplitudes than the material in 10, 20, and 30 pct PCW conditions at all of the temperatures. However, at 300 K at very low strain amplitudes, PCW material exhibited better total strain fatigue resistance. At 823 K, LCF life decreased with increasing PCW, whereas at 923 K, 10 pct PCW displayed the lowest life. An improvement in life occurred for prior deformations exceeding 10 pct at all strain amplitudes at 923 K. Fatigue life showed a noticeable decrease with increasing temperature up to 1023 K in PCW state. On the other hand, SA material displayed a minimum in fatigue life at 923 K. The fatigue life results of SA as well as all of the PCW conditions obeyed the Basquin and Coffin-Manson relationships at 300, 823, and 923 K. The constants and exponents in these equations were found to depend on the test temperature and prior metallurgical state of the material. A study is made of cyclic stress-strain behavior in SA and PCW states and the relationship between the cyclic strain-hardening exponent and fatigue behavior at different temperatures has been explored. The influence of environment on fatigue crack initiation and propagation behavior has been examined.

  5. Ankle Bracing, Fatigue, and Time to Stabilization in Collegiate Volleyball Athletes

    PubMed Central

    Shaw, Megan Y; Gribble, Phillip A; Frye, Jamie L

    2008-01-01

    Context: Fatigue has been shown to disrupt dynamic stability in healthy volunteers. It is not known if wearing prophylactic ankle supports can improve dynamic stability in fatigued athletes. Objective: To determine the type of ankle brace that may be more effective at providing dynamic stability after a jump-landing task during normal and fatigued conditions. Design: Two separate repeated-measures analyses of variance with 2 within-subjects factors (condition and time) were performed for each dependent variable. Setting: Research laboratory. Patients or Other Participants: Ten healthy female collegiate volleyball athletes participated (age  =  19.5 ± 1.27 years, height  =  179.07 ± 7.6 cm, mass  =  69.86 ± 5.42 kg). Intervention(s): Athletes participated in 3 separate testing sessions, applying a different bracing condition at each session: no brace (NB), Swede-O Universal lace-up ankle brace (AB), and Active Ankle brace (AA). Three trials of a jump-landing task were performed under each condition before and after induced functional fatigue. The jump-landing task consisted of a single-leg landing onto a force plate from a height equivalent to 50% of each participant's maximal jump height and from a starting position 70 cm from the center of the force plate. Main Outcome Measure(s): Time to stabilization in the anterior-posterior (APTTS) and medial-lateral (MLTTS) directions. Results: For APTTS, a condition-by-time interaction existed (F2,18  =  5.55, P  =  .013). For the AA condition, Tukey post hoc testing revealed faster pretest (2.734 ± 0.331 seconds) APTTS than posttest (3.817 ± 0.263 seconds). Post hoc testing also revealed that the AB condition provided faster APTTS (2.492 ± 0.271 seconds) than AA (3.817 ± 0.263 seconds) and NB (3.341 ± 0.339 seconds) conditions during posttesting. No statistically significant findings were associated with MLTTS. Conclusions: Fatigue increased APTTS for the AA condition. Because the AB condition was more effective than the other 2 conditions during the posttesting, the AB appears to be the best option for providing dynamic stability in the anterior-posterior direction during a landing task. PMID:18345341

  6. Offshore fatigue design turbulence

    NASA Astrophysics Data System (ADS)

    Larsen, Gunner C.

    2001-07-01

    Fatigue damage on wind turbines is mainly caused by stochastic loading originating from turbulence. While onshore sites display large differences in terrain topology, and thereby also in turbulence conditions, offshore sites are far more homogeneous, as the majority of them are likely to be associated with shallow water areas. However, despite this fact, specific recommendations on offshore turbulence intensities, applicable for fatigue design purposes, are lacking in the present IEC code. This article presents specific guidelines for such loading. These guidelines are based on the statistical analysis of a large number of wind data originating from two Danish shallow water offshore sites. The turbulence standard deviation depends on the mean wind speed, upstream conditions, measuring height and thermal convection. Defining a population of turbulence standard deviations, at a given measuring position, uniquely by the mean wind speed, variations in upstream conditions and atmospheric stability will appear as variability of the turbulence standard deviation. Distributions of such turbulence standard deviations, conditioned on the mean wind speed, are quantified by fitting the measured data to logarithmic Gaussian distributions. By combining a simple heuristic load model with the parametrized conditional probability density functions of the turbulence standard deviations, an empirical offshore design turbulence intensity is determined. For pure stochastic loading (as associated with standstill situations), the design turbulence intensity yields a fatigue damage equal to the average fatigue damage caused by the distributed turbulence intensity. If the stochastic loading is combined with a periodic deterministic loading (as in the normal operating situation), the proposed design turbulence intensity is shown to be conservative.

  7. Stress ratio effects in fatigue of lost foam cast aluminum alloy 356

    NASA Astrophysics Data System (ADS)

    Palmer, David E.

    Lost foam casting is a highly versatile metalcasting process that offers significant benefits in terms of design flexibility, energy consumption, and environmental impact. In the present work, the fatigue behavior of lost foam cast aluminum alloy 356, in conditions T6 and T7, was investigated, under both zero and non-zero mean stress conditions, with either as-cast or machined surface finish. Scanning electron microscopy was used to identify and measure the defect from which fatigue fracture initiated. Based on the results, the applicability of nine different fatigue mean stress equations was compared. The widely-used Goodman equation was found to be highly non-conservative, while the Stulen, Topper-Sandor, and Walker equations performed reasonably well. Each of these three equations includes a material-dependent term for stress ratio sensitivity. The stress ratio sensitivity was found to be affected by heat treatment, with the T6 condition having greater sensitivity than the T7 condition. The surface condition (as-cast vs. machined) did not significantly affect the stress ratio sensitivity. The fatigue life of as-cast specimens was found to be approximately 60--70% lower than that of machined specimens at the same equivalent stress. This reduction could not be attributed to pore size alone, and is suspected to be due to the greater concentration of pyrolysis products at the as-cast surface. Directions for future work, including improved testing methods and some possible methods of improving the properties of lost foam castings, are discussed.

  8. Study the Cyclic Plasticity Behavior of 508 LAS under Constant, Variable and Grid-Load-Following Loading Cycles for Fatigue Evaluation of PWR Components

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohanty, Subhasish; Barua, Bipul; Soppet, William K.

    This report provides an update of an earlier assessment of environmentally assisted fatigue for components in light water reactors. This report is a deliverable in September 2016 under the work package for environmentally assisted fatigue under DOE’s Light Water Reactor Sustainability program. In an April 2016 report, we presented a detailed thermal-mechanical stress analysis model for simulating the stress-strain state of a reactor pressure vessel and its nozzles under grid-load-following conditions. In this report, we provide stress-controlled fatigue test data for 508 LAS base metal alloy under different loading amplitudes (constant, variable, and random grid-load-following) and environmental conditions (in airmore » or pressurized water reactor coolant water at 300°C). Also presented is a cyclic plasticity-based analytical model that can simultaneously capture the amplitude and time dependency of the component behavior under fatigue loading. Results related to both amplitude-dependent and amplitude-independent parameters are presented. The validation results for the analytical/mechanistic model are discussed. This report provides guidance for estimating time-dependent, amplitude-independent parameters related to material behavior under different service conditions. The developed mechanistic models and the reported material parameters can be used to conduct more accurate fatigue and ratcheting evaluation of reactor components.« less

  9. Fatigue resistance of bovine teeth restored with resin-bonded fiber posts: effect of post surface conditioning.

    PubMed

    Zamboni, Sandra C; Baldissara, Paolo; Pelogia, Fernanda; Bottino, Marco Antonio; Scotti, Roberto; Valandro, Luiz Felipe

    2008-01-01

    This study evaluated the effect of post surface conditioning on the fatigue resistance of bovine teeth restored with resin-bonded fiber-reinforced composite (FRC). Root canals of 20 single-rooted bovine teeth (16 mm long) were prepared to 12 mm using a preparation drill of a double-tapered fiber post system. Using acrylic resin, each specimen was embedded (up to 3.0 mm from the cervical part of the specimen) in a PVC cylinder and allocated into one of two groups (n = 10) based on the post surface conditioning method: acid etching plus silanization or tribochemical silica coating (30 pm SiO(x) + silanization). The root canal dentin was etched (H2PO3 for 30 seconds), rinsed, and dried. A multi-step adhesive system was applied to the root dentin and the fiber posts were cemented with resin cement. The specimens were submitted to one million fatigue cycles. After fatigue testing, a score was given based on the number of fatigue cycles until fracture. All of the specimens were resistant to fatigue. No fracture of the root or the post and no loss of retention of the post were observed. The methodology and the results of this study indicate that tribochemical silica coating and acid etching performed equally well when dynamic mechanical loading was used.

  10. In-air and pressurized water reactor environment fatigue experiments of 316 stainless steel to study the effect of environment on cyclic hardening

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohanty, Subhasish; Soppet, William K.; Majumdar, Saurindranath

    Argonne National Laboratory (ANL), under the sponsorship of Department of Energy’s Light Water Reactor Sustainability (LWRS) program, is trying to develop a mechanistic approach for more accurate life estimation of LWR components. In this context, ANL has conducted many fatigue experiments under different test and environment conditions on type 316 stainless steel (316SS) material which is widely used in the US reactors. Contrary to the conventional S~N curve based empirical fatigue life estimation approach, the aim of the present DOE sponsored work is to develop an understanding of the material ageing issues more mechanistically (e.g. time dependent hardening and softening)more » under different test and environmental conditions. Better mechanistic understanding will help develop computer-based advanced modeling tools to better extrapolate stress-strain evolution of reactor components under multi-axial stress states and hence help predict their fatigue life more accurately. In this paper (part-I) the fatigue experiments under different test and environment conditions and related stress-strain results for 316 SS are discussed. In a second paper (part-II) the related evolutionary cyclic plasticity material modeling techniques and results are discussed.« less

  11. Fatigue and Creep Crack Propagation behaviour of Alloy 617 in the Annealed and Aged Conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Julian K. Benz; Richard N. Wright

    2013-10-01

    The crack propagation behaviour of Alloy 617 was studied under various conditions. Elevated temperature fatigue and creep-fatigue crack growth experiments were conducted at 650 and 800 degrees C under constant stress intensity (triangle K) conditions and triangular or trapezoidal waveforms at various frequencies on as-received, aged, and carburized material. Environmental conditions included both laboratory air and characteristic VHTR impure helium. As-received Alloy 617 displayed an increase in the crack growth rate (da/dN) as the frequency was decreased in air which indicated a time-dependent contribution component in fatigue crack propagation. Material aged at 650°C did not display any influence on themore » fatigue crack growth rates nor the increasing trend of crack growth rate with decreasing frequency even though significant microstructural evolution, including y’ (Ni3Al) after short times, occurred during aging. In contrast, carburized Alloy 617 showed an increase in crack growth rates at all frequencies tested compared to the material in the standard annealed condition. Crack growth studies under quasi-constant K (i.e. creep) conditions were also completed at 650 degrees C and a stress intensity of K = 40 MPa9 (square root)m. The results indicate that crack growth is primarily intergranular and increased creep crack growth rates exist in the impure helium environment when compared to the results in laboratory air. Furthermore, the propagation rates (da/dt) continually increased for the duration of the creep crack growth either due to material aging or evolution of a crack tip creep zone. Finally, fatigue crack propagation tests at 800 degrees C on annealed Alloy 617 indicated that crack propagation rates were higher in air than impure helium at the largest frequencies and lowest stress intensities. The rates in helium, however, eventually surpass the rates in air as the frequency is reduced and the stress intensity is decreased which was not observed at 650 degrees C.« less

  12. Blueberry

    MedlinePlus

    ... fatigue syndrome (CFS), colic, fever, varicose veins, and hemorrhoids. Blueberry is also used for improving circulation, and ... fatigue syndrome (CFS). Fever. Sore throat. Varicose veins. Hemorrhoids. Bad circulation. Diarrhea. Constipation. Labor pains. Other conditions. ...

  13. Breaking up workplace sitting time with intermittent standing bouts improves fatigue and musculoskeletal discomfort in overweight/obese office workers.

    PubMed

    Thorp, Alicia A; Kingwell, Bronwyn A; Owen, Neville; Dunstan, David W

    2014-11-01

    To examine whether the introduction of intermittent standing bouts during the workday using a height-adjustable workstation can improve subjective levels of fatigue, musculoskeletal discomfort and work productivity relative to seated work. Overweight/obese office workers (n=23; age 48.2±7.9 years, body mass index 29.6±4 kg/m(2)) undertook two, 5-day experimental conditions in an equal, randomised (1:1) order. In a simulated office environment, participants performed their usual occupational tasks for 8 h/day in a: seated work posture (SIT condition); or interchanging between a standing and seated work posture every 30 min using an electric, height-adjustable workstation (STAND-SIT condition). Self-administered questionnaires measuring fatigue, musculoskeletal discomfort and work productivity were performed on day 5 of each experimental condition. Participants' total fatigue score was significantly higher during the SIT condition (mean 67.8 (95% CI 58.8 to 76.7)) compared with the STAND-SIT condition (52.7 (43.8 to 61.5); p<0.001). Lower back musculoskeletal discomfort was significantly reduced during the STAND-SIT condition compared with the SIT condition (31.8% reduction; p=0.03). Despite concentration/focus being significantly higher during the SIT condition (p=0.006), there was a trend towards improved overall work productivity in favour of the STAND-SIT condition (p=0.053). Transitioning from a seated to a standing work posture every 30 min across the workday, relative to seated work, led to a significant reduction in fatigue levels and lower back discomfort in overweight/obese office workers, while maintaining work productivity. Future investigations should be directed at understanding whether sustained use of height-adjustable workstations promote concentration and productivity at work. ACTRN12611000632998. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  14. Conditioning monitoring by microstructural evaluation of cumulative fatigue damage

    NASA Astrophysics Data System (ADS)

    Fukuoka, C.; Nakagawa, Y. G.; Lance, J. J.; Pangborn, R. N.

    1996-12-01

    The objective of this work is to evaluate the damage induced below and above the fatigue limit (Δ σ t =360 MPa) in pressure vessel steels, such as SA508. Fatigue damage was induced in samples taken from an SA508 steel plate by various loading histories in order to examine the influence of prior cyclic loading below the fatigue limit. Cell-to-cell misorientation differences were measured by the selected area diffraction (SAD) method. Surface cracking was also studied by the replication method. Small cracks were observed after precycling both below and above the fatigue limit. It was, however, found that fatigue test bars had a longer lifetime after precycling below the fatigue limit, while precycling above the fatigue limit caused other specimens to fail even when subsequently cycled below the fatigue limit. Cell-to-cell misorientation usually increases with accumulation of fatigue damage, but it was found that the misorientations measured after precycling below the fatigue limit decreased again at the beginning of the subsequent cycling above the fatigue limit. It should be noted that the misorientation at failure was always about 4 to 5 deg, regardless of loading histories. Misorientation showed good correlation with the fatigue lifetime of the samples.

  15. Failure of a laminated composite under tension-compression fatigue loading

    NASA Technical Reports Server (NTRS)

    Rotem, A.; Nelson, H. G.

    1989-01-01

    The fatigue behavior of composite laminates under tension-compression loading is analyzed and compared with behavior under tension-tension and compression-compression loading. It is shown that for meaningful fatigue conditions, the tension-compression case is the dominant one. Both tension and compression failure modes can occur under the reversed loading, and failure is dependent on the specific lay-up of the laminate and the difference between the tensile static strength and the absolute value of the compressive static strength. The use of a fatigue failure envelope for determining the fatigue life and mode of failure is proposed and demonstrated.

  16. Nonlinear acoustic measurements ahead of a notch during fatigue

    NASA Astrophysics Data System (ADS)

    Martin, R. W.; Mooers, R. D.; Hutson, A. L.; Sathish, S.; Blodgett, M. P.

    2013-01-01

    This paper presents measurements of relative nonlinear acoustic parameter (βrel), ahead of a notch in Al 7075-T651 dog bone samples, subjected to fatigue. It is compared with crack growth measurements on the same samples. Measurements performed on two samples subjected to identical fatigue conditions that failed at vastly different number of fatigue cycles are described. The βrel measurement for both samples as a function of fatigue cycles was fit a Boltzmann curve. The role of changing βrel ahead of a notch is explored as a possible approach for remain life evaluation.

  17. Effect of interlaminar normal stresses on the uniaxial zero-to-tension fatigue behavior of graphite/epoxy tubes

    NASA Technical Reports Server (NTRS)

    Krempl, Erhard; An, Deukman

    1991-01-01

    Fatigue tests conducted with and without internal pressure have been found to possess approximately the same fatigue life as (+/-45)s graphite/epoxy tubes for zero-to-tension axial load-controlled conditions on an axial torsion servohydraulic apparatus. These tests therefore cannot be considered as confirmations of the suspected detrimental effect of interlaminar tensile stresses on the fatigue performance of thin-walled tubes. The addition of 90-deg plies on both the inside and the outside is found to significantly improve the tubes' static and fatigue strengths.

  18. Fatigue (PDQ®)—Patient Version

    Cancer.gov

    Expert-reviewed information summary about fatigue, a condition marked by extreme tiredness and inability to function because of lack of energy, often seen as a complication of cancer or its treatment.

  19. Effect of choline supplementation on fatigue in trained cyclists.

    PubMed

    Spector, S A; Jackman, M R; Sabounjian, L A; Sakkas, C; Landers, D M; Willis, W T

    1995-05-01

    The availability of choline, the precurser of the neurotransmitter, acetylcholine, in the diet is sufficient to provide the body's requirements under normal conditions. However, preliminary evidence indicates that depletion of choline may limit performance, while oral supplementation may delay fatigue during prolonged efforts. A double-blind cross-over design was used to determine the relationship between plasma choline and fatigue during supramaximal brief and submaximal prolonged activities. Twenty male cyclists (ages 23-29) with maximal aerobic power (VO2max) between 58 and 81 ml.min-1.kg-1 were randomly divided into BRIEF (N = 10) and PROLONGED (N = 10) groups. One hour after drinking a beverage with or without choline bitartrate (2.43 g), cyclists began riding at a power output equivalent to approximately 150% (BRIEF) and 70% (PROLONGED) of VO2max at a cadence of 80-90 rpm. Time to exhaustion, indirect calorimetry and serum choline, lactate, and glucose were measured. Increases in choline levels of 37 and 52% were seen within one hour of ingestion for BRIEF and PROLONGED groups, respectively. Neither group depleted choline during exercise under the choline or placebo conditions. Fatigue times and work performed under either test condition for the BRIEF or PROLONGED groups were similar. Consequently, trained cyclists do not deplete choline during supramaximal brief or prolonged submaximal exercise, nor do they benefit from choline supplementation to delay fatigue under these conditions.

  20. A Taxonomy of Fatigue Concepts and Their Relation to Hearing Loss

    ERIC Educational Resources Information Center

    Hornsby, Benjamin W. Y.; Naylor, Graham; Bess, Fred H.

    2016-01-01

    Fatigue is common in individuals with a variety of chronic health conditions and can have significant negative effects on quality of life. Although limited in scope, recent work suggests persons with hearing loss may be at increased risk for fatigue, in part due to effortful listening that is exacerbated by their hearing impairment. However, the…

Top