Sample records for fatigue properties database

  1. Fatigue Crack Growth Database for Damage Tolerance Analysis

    NASA Technical Reports Server (NTRS)

    Forman, R. G.; Shivakumar, V.; Cardinal, J. W.; Williams, L. C.; McKeighan, P. C.

    2005-01-01

    The objective of this project was to begin the process of developing a fatigue crack growth database (FCGD) of metallic materials for use in damage tolerance analysis of aircraft structure. For this initial effort, crack growth rate data in the NASGRO (Registered trademark) database, the United States Air Force Damage Tolerant Design Handbook, and other publicly available sources were examined and used to develop a database that characterizes crack growth behavior for specific applications (materials). The focus of this effort was on materials for general commercial aircraft applications, including large transport airplanes, small transport commuter airplanes, general aviation airplanes, and rotorcraft. The end products of this project are the FCGD software and this report. The specific goal of this effort was to present fatigue crack growth data in three usable formats: (1) NASGRO equation parameters, (2) Walker equation parameters, and (3) tabular data points. The development of this FCGD will begin the process of developing a consistent set of standard fatigue crack growth material properties. It is envisioned that the end product of the process will be a general repository for credible and well-documented fracture properties that may be used as a default standard in damage tolerance analyses.

  2. Fatigue and fracture properties of a super-austenitic stainless steel at 295 K and 4 K

    NASA Astrophysics Data System (ADS)

    McRae, D. M.; Walsh, R. P.; Dalder, E. N. C.; Litherland, S.; Trosen, M.; Kuhlmann, D. J.

    2014-01-01

    The tie plate structure for the ITER Central Solenoid (CS) is required to have high strength and good fatigue and fracture behavior at both room temperature and 4 K. A super-austenitic stainless steel - UNS 20910, commonly referred to by its trade name, Nitronic 50 (N50) - has been chosen for consideration to fulfill this task, due to its good room temperature and cryogenic yield strengths and weldability. Although N50 is often considered for cryogenic applications, little published data exists at 4 K. Here, a full series of tests have been conducted at 295 K and 4 K, and static tensile properties of four forgings of commercially-available N50 are reported along with fatigue life, fatigue crack growth rate (FCGR), and fracture toughness data. This study makes a significant contribution to the cryogenic mechanical properties database of high strength, paramagnetic alloys with potential for superconducting magnet applications.

  3. Psychometric properties of instruments used to measure fatigue in children and adolescents with cancer: a systematic review.

    PubMed

    Tomlinson, Deborah; Hinds, Pamela S; Ethier, Marie-Chantal; Ness, Kirsten K; Zupanec, Sue; Sung, Lillian

    2013-01-01

    Despite the recognized distressing symptom of fatigue in children with cancer, little information is available to assist in the selection of an instrument to be used to measure fatigue. The objectives of this study were to 1) describe the instruments that have been used to measure cancer-related fatigue in children and adolescents and 2) summarize the psychometric properties of the most commonly used instruments used to measure fatigue in children and adolescents with cancer. Five major electronic databases were systematically searched for studies using a fatigue measurement scale in a population of children or adolescents with cancer. Fatigue scales used in those studies were included in the review. From a total of 1753 articles, 25 were included. We identified two main fatigue measurement instruments used in a pediatric oncology population: 1) the Fatigue Scale-Child/Fatigue Scale-Adolescent and the proxy report versions for parents and staff and 2) the PedsQL™ Multidimensional Fatigue Scale. These two scales show similar attributes with reasonably good internal consistency and responsiveness. Either the Fatigue Scale or PedsQL Multidimensional Fatigue Scale can be incorporated into clinical research. Future research should focus on identifying specific fatigue measures more suited to different purposes such as comparative trials or identification of high-risk groups. Copyright © 2013 U.S. Cancer Pain Relief Committee. Published by Elsevier Inc. All rights reserved.

  4. The measurement of fatigue in chronic illness: a systematic review of unidimensional and multidimensional fatigue measures.

    PubMed

    Whitehead, Lisa

    2009-01-01

    Fatigue is a common symptom associated with a wide range of chronic diseases. A large number of instruments have been developed to measure fatigue. An assessment regarding the reliability, validity, and utility of fatigue measures is time-consuming for the clinician and researcher, and few reviews exist on which to draw such information. The aim of this article is to present a critical review of fatigue measures, the populations in which the scales have been used, and the extent to which the psychometric properties of each instrument have been evaluated to provide clinicians and researchers with information on which to base decisions. Seven databases were searched for all articles that measured fatigue and offered an insight into the psychometric properties of the scales used over the period 1980-2007. Criteria for judging the "ideal" measure were developed to encompass scale usability, clinical/research utility, and the robustness of psychometric properties. Twenty-two fatigue measures met the inclusion criteria and were evaluated. A further 17 measures met some of the criteria, but have not been tested beyond initial development, and are reviewed briefly at the end of the article. The review did not identify any instrument that met all the criteria of an ideal instrument. However, a small number of short instruments demonstrated good psychometric properties (Fatigue Severity Scale [FSS], Fatigue Impact Scale [FIS], and Brief Fatigue Inventory [BFI]), and three comprehensive instruments demonstrated the same (Fatigue Symptom Inventory [FSI], Multidimensional Assessment of Fatigue [MAF], and Multidimensional Fatigue Symptom Inventory [MFSI]). Only four measures (BFI, FSS, FSI, and MAF) demonstrated the ability to detect change over time. The clinician and researcher also should consider the populations in which the scale has been used previously to assess its validity with their own patient group, and assess the content of a scale to ensure that the key qualitative aspects of fatigue of the population of interest are covered.

  5. A high temperature fatigue life prediction computer code based on the total strain version of StrainRange Partitioning (SRP)

    NASA Technical Reports Server (NTRS)

    Mcgaw, Michael A.; Saltsman, James F.

    1993-01-01

    A recently developed high-temperature fatigue life prediction computer code is presented and an example of its usage given. The code discussed is based on the Total Strain version of Strainrange Partitioning (TS-SRP). Included in this code are procedures for characterizing the creep-fatigue durability behavior of an alloy according to TS-SRP guidelines and predicting cyclic life for complex cycle types for both isothermal and thermomechanical conditions. A reasonably extensive materials properties database is included with the code.

  6. A Systematic Review of Studies Using the Multidimensional Assessment of Fatigue Scale.

    PubMed

    Belza, Basia; Miyawaki, Christina E; Liu, Minhui; Aree-Ue, Suparb; Fessel, Melissa; Minott, Kenya R; Zhang, Xi

    2018-04-01

    To review how the Multidimensional Assessment of Fatigue (MAF) has been used and evaluate its psychometric properties. We conducted a database search using "multidimensional assessment of fatigue" or "MAF" as key terms from 1993 to 2015, and located 102 studies. Eighty-three were empirical studies and 19 were reviews/evaluations. Research was conducted in 17 countries; 32 diseases were represented. Nine language versions of the MAF were used. The mean of the Global Fatigue Index ranged from 10.9 to 49.4. The MAF was reported to be easy-to-use, had strong reliability and validity, and was used in populations who spoke languages other than English. The MAF is an acceptable assessment tool to measure fatigue and intervention effectiveness in various languages, diseases, and settings across the world.

  7. Fatigue Properties of Modified 316LN Stainless Steel at 4 K for High Field Cable-In Applications

    NASA Astrophysics Data System (ADS)

    Toplosky, V. J.; Walsh, R. P.; Han, K.

    2010-04-01

    Cable-In-Conduit-Conductor (CICC) alloys, exposed to Nb3Sn reaction heat-treatments, such as modified 316LN require a design specific database. A lack of fatigue life data (S-n curves) that could be applied in the design of the ITER CS and the NHMFL Series Connected Hybrid magnets is the impetus for the research presented here. The modified 316LN is distinguished by a lower carbon content and higher nitrogen content when compared to conventional 316LN. Because the interstitial alloying elements affect the mechanical properties significantly, it is necessary to characterize this alloy in a systematic way. In conjunction, to ensure magnet reliability and performance, several criteria and expectations must be met, including: high fatigue life at the operating stresses, optimal stress management at cryogenic temperatures and thin walled conduit to reduce coil mass. Tension-tension load control axial fatigue tests have good applicability to CICC solenoid magnet design, thus a series of 4 K strength versus fatigue life curves have been generated. In-situ samples of 316LN base metal, seam welded, butt welded and seam plus butt welded are removed directly from the conduit in order to address base and weld material fatigue life variability. The more than 30 fatigue tests show good grouping on the fatigue life curve and allow discretionary 4 K fatigue life predictions for conduit made with modified 316LN.

  8. Psychometric properties of the Multidimensional Assessment of Fatigue scale in traumatic brain injury: an NIDRR Traumatic Brain Injury Model Systems study.

    PubMed

    Lequerica, Anthony; Bushnik, Tamara; Wright, Jerry; Kolakowsky-Hayner, Stephanie A; Hammond, Flora M; Dijkers, Marcel P; Cantor, Joshua

    2012-01-01

    To investigate the psychometric properties of the Multidimensional Assessment of Fatigue (MAF) scale in a traumatic brain injury (TBI) sample. Prospective survey study. Community. One hundred sixty-seven individuals with TBI admitted for inpatient rehabilitation, enrolled into the TBI Model Systems national database, and followed up at either the first or second year postinjury. Not applicable. Multidimensional Assessment of Fatigue. The initial analysis, using items 1 to 14, which are based on a 10-point rating scale, found that only 1 item ("walking") misfit the overall construct of fatigue in this TBI population. However, this 10-point rating scale was found to have disordered thresholds. When ratings were collapsed into 4 response categories, all MAF items used to calculate the Global Fatigue Index formed a unidimensional scale. Findings generally support the unidimensionality of the MAF when used in a TBI population but call into question the use of a 10-point rating scale for items 1 to 14. Further study is needed to investigate the use of a 4-category rating scale across all items and the fit of the "walking" item for a measure of fatigue among individuals with TBI.

  9. Are There Any Natural Remedies That Reduce Chronic Fatigue Associated with Chronic Fatigue Syndrome?

    MedlinePlus

    ... management of chronic fatigue syndrome. Natural Medicines Comprehensive Database. http://www.naturaldatabase.com. Accessed Feb. 23, 2015. Magnesium. Natural Medicines Comprehensive Database. http://www.naturaldatabase.com. Accessed Feb. 24, 2015. ...

  10. Mechanical Properties of Plasma-Sprayed ZrO2-8 wt% Y2O3 Thermal Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Choi, Sung R.; Zhu, Dongming; Miller, Robert A.

    2004-01-01

    Mechanical behavior of free standing, plasma-sprayed ZrO2-8 wt% Y2O3 thermal barrier coatings, including strength, fracture toughness, fatigue, constitutive relation, elastic modulus, and directionality, has been determined under various loading-specimen configurations. This report presents and describes a summary of mechanical properties of the plasma-sprayed coating material to provide them as a design database.

  11. Quantitative assessment of motor fatigue: normative values and comparison with prior-polio patients.

    PubMed

    Meldrum, Dara; Cahalane, Eibhlis; Conroy, Ronan; Guthrie, Richard; Hardiman, Orla

    2007-06-01

    Motor fatigue is a common complaint of polio survivors and has a negative impact on activities of daily living. The aim of this study was to establish a normative database for hand grip strength and fatigue and to investigate differences between prior-polio subjects and normal controls. Static and dynamic hand grip fatigue and maximum voluntary isometric contraction (MVIC) of hand grip were measured in subjects with a prior history of polio (n = 44) and healthy controls (n = 494). A normative database of fatigue was developed using four indices of analysis. Compared with healthy controls, subjects with prior polio had significantly reduced hand grip strength but developed greater hand grip fatigue in only one fatigue index. Quantitative measurement of fatigue in the prior-polio population may be useful in order to detect change over time and to evaluate treatment strategies.

  12. Analysis of SNL/MSU/DOE Fatigue Database Trends for Wind Turbine Blade Materials 2010-2015.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mandell, John F.; Samborsky, Daniel D.; Miller, David A.

    Wind turbine blades are designed to several major structural conditions, including tip deflection, strength and b uckling during severe loading, as well as very high numbers of fatigue cycles and various service environments. The MSU Database Program has, since 1989, addressed the broad range of properties needed for current and potential blade materials through stati c and fatigue testing and test development in cooperation with Sandia National Laboratories and wind industry and supplier partners. This report is the latest in a series, giving test results and analysis for the period 2010 - 2015. Program data are compiled in a publicmore » database [1] and other reports and publications given in the cited references. The report begins with an executive summary and introductory material including background discussion of previous related studies. Section 3 describes experimental methods including processing, test methods, instrumentation and test development. Section 4 provides static tension, compression and shear stress - strain properties in three directions using coupons sectioned from a thick infused unidirectional glass/epoxy laminate. The nonlinear, shear dominated static properties were characterized with loading - u nloading - reloading (LUR) tests in tension and compression to increasing load levels, for +-45O laminates. Section 5 explores the origins of tensile fatigue sensitivity in glass fiber dominated laminates with variations in fabric architecture including speci ally prepared fabrics and aligned strand laminates. Several types of resins are considered, with variations in resin toughness and bonding to fibers, as well as cure cycle variations for an epoxy. Conclusions are drawn as to the limits of tensile fatigue r esistance and the effects of resin type and fabric architecture, including the behavior of a commercial aligned glass strand product. Interactions between cyclic fatigue response and creep are addressed for off - axis (+-45O) glass/epoxy laminates in Sectio n 6. The nonlinear fatigue and creep stress - strain and cumulative strain response are characterized in tension and compression as a function of stress level, cycles and cumulative time, using square and sinewave loading over a broad range of frequency. The results are analyzed in terms of the cycles and cumulative time under load. A cumulative strain failure criterion is established, and used to construct shear and tension constant life diagrams (CLD's) with data for nine R - values. The effects of a more duc tile urethne resin are also explored. A previous study of thick adhesives testing is extended to mixed mode fracture mechanics testing in Section 7. Mechanisms of static and fatigue crack extension near the laminate adherend interface are reported in deta il. Data are presented for mixed mode adhesive fracture, compared to mixed mode fracture in ply delamination. Fatigue crack growth exponents are also developed for a mixed mode cracked lap shear coupon. The data for fatigue trends and relative failure stra ins and exponents are compared for various blade component materials in Section 8. The effects of temperature and seawater saturation are considered for selected materials of interest for wind and hydrokinetic turbine blades in Section 9. Section 10 gives detailed conclusions for each section. A cknowledgements The research presented in this report was carried out under Sandia National Laboratories purchase orders 1325028 an d 1543945 between 2010 and 2015, with support from the DOE Wind and Water Technologies Office . In addition to the authors listed, significant contributions were made by Patrick Flaherty, Pancastya Agastra, Michael Schuster, and Michael Voth. Industry m aterials suppliers include Vectorply, Saertex, OCV, AGY, Bayer, Ashland, 3M and Nextel. Industry suppliers with significant contributions to the study were Hexion, PPG, Reichhold, Gurit and NEPTCO. Intentionally Left Blank« less

  13. Speech perception and production in severe environments

    NASA Astrophysics Data System (ADS)

    Pisoni, David B.

    1990-09-01

    The goal was to acquire new knowledge about speech perception and production in severe environments such as high masking noise, increased cognitive load or sustained attentional demands. Changes were examined in speech production under these adverse conditions through acoustic analysis techniques. One set of studies focused on the effects of noise on speech production. The experiments in this group were designed to generate a database of speech obtained in noise and in quiet. A second set of experiments was designed to examine the effects of cognitive load on the acoustic-phonetic properties of speech. Talkers were required to carry out a demanding perceptual motor task while they read lists of test words. A final set of experiments explored the effects of vocal fatigue on the acoustic-phonetic properties of speech. Both cognitive load and vocal fatigue are present in many applications where speech recognition technology is used, yet their influence on speech production is poorly understood.

  14. Traditional Chinese medicinal herbs for the treatment of idiopathic chronic fatigue and chronic fatigue syndrome.

    PubMed

    Adams, Denise; Wu, Taixiang; Yang, Xunzhe; Tai, Shusheng; Vohra, Sunita

    2009-10-07

    Chronic fatigue is increasingly common. Conventional medical care is limited in treating chronic fatigue, leading some patients to use traditional Chinese medicine therapies, including herbal medicine. To assess the effectiveness of traditional Chinese medicine herbal products in treating idiopathic chronic fatigue and chronic fatigue syndrome. The following databases were searched for terms related to traditional Chinese medicine, chronic fatigue, and clinical trials: CCDAN Controlled Trials Register (July 2009), MEDLINE (1966-2008), EMBASE (1980-2008), AMED (1985-2008), CINAHL (1982-2008), PSYCHINFO (1985-2008), CENTRAL (Issue 2 2008), the Chalmers Research Group PedCAM Database (2004), VIP Information (1989-2008), CNKI (1976-2008), OCLC Proceedings First (1992-2008), Conference Papers Index (1982-2008), and Dissertation Abstracts (1980-2008). Reference lists of included studies and review articles were examined and experts in the field were contacted for knowledge of additional studies. Selection criteria included published or unpublished randomized controlled trials (RCTs) of participants diagnosed with idiopathic chronic fatigue or chronic fatigue syndrome comparing traditional Chinese medicinal herbs with placebo, conventional standard of care (SOC), or no treatment/wait lists. The outcome of interest was fatigue. 13 databases were searched for RCTs investigating TCM herbal products for the treatment of chronic fatigue. Over 2400 references were located. Studies were screened and assessed for inclusion criteria by two authors. No studies that met all inclusion criteria were identified. Although studies examining the use of TCM herbal products for chronic fatigue were located, methodologic limitations resulted in the exclusion of all studies. Of note, many of the studies labelled as RCTs and conducted in China did not utilize rigorous randomization procedures. Improvements in methodology in future studies is required for meaningful synthesis of data.

  15. Computer programs to characterize alloys and predict cyclic life using the total strain version of strainrange partitioning: Tutorial and users manual, version 1.0

    NASA Technical Reports Server (NTRS)

    Saltsman, James F.

    1992-01-01

    This manual presents computer programs for characterizing and predicting fatigue and creep-fatigue resistance of metallic materials in the high-temperature, long-life regime for isothermal and nonisothermal fatigue. The programs use the total strain version of Strainrange Partitioning (TS-SRP). An extensive database has also been developed in a parallel effort. This database is probably the largest source of high-temperature, creep-fatigue test data available in the public domain and can be used with other life prediction methods as well. This users manual, software, and database are all in the public domain and are available through COSMIC (382 East Broad Street, Athens, GA 30602; (404) 542-3265, FAX (404) 542-4807). Two disks accompany this manual. The first disk contains the source code, executable files, and sample output from these programs. The second disk contains the creep-fatigue data in a format compatible with these programs.

  16. The Fatigue Assessment Scale: quality and availability in sarcoidosis and other diseases.

    PubMed

    Hendriks, Celine; Drent, Marjolein; Elfferich, Marjon; De Vries, Jolanda

    2018-06-07

    Fatigue is a problem experienced by many patients suffering from chronic diseases, including sarcoidosis patients. It has a substantial influence on patients' quality of life (QoL). It is, therefore, important to properly assess fatigue with a valid and reliable measure. The Fatigue Assessment Scale (FAS) is the only validated self-reporting instrument classifying fatigue in sarcoidosis. The aim of this review was to examine the psychometric properties of the FAS and the diseases and languages in which it has been used. Studies among sarcoidosis patients were also reviewed in terms of outcomes. Studies were identified by searching the electronic bibliographic database Pubmed. Search terms used were: FAS and fatigue. Articles were included in the review if the FAS had been used to assess fatigue. Since its introduction, the FAS was used in 26 different diseases or conditions, including stroke, neurologic disorders, rheumatoid arthritis, idiopathic pulmonary fibrosis and sarcoidosis. Its reliability and validity have proved to be good. Unidimensionality has been established. So far, the FAS is available in 20 languages and widely used in sarcoidosis. Digital versions as well as PDFs of various languages are available online (www.wasog.org). The FAS has good psychometric qualities for the diseases in which it has been examined, including sarcoidosis, and can be used in clinical practice. Healthcare workers can use the FAS to assess fatigue in the management, follow-up and clinical care programmes for their patients consistently across countries, as well as in clinical research.

  17. Ceramic Matrix Composites: High Temperature Effects. (Latest Citations from the Aerospace Database)

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The bibliography contains citations concerning the development and testing of ceramic matrix composites for high temperature use. Tests examining effects of the high temperatures on bond strength, thermal degradation, oxidation, thermal stress, thermal fatigue, and thermal expansion properties are referenced. Applications of the composites include space structures, gas turbine and engine components, control surfaces for spacecraft and transatmospheric vehicles, heat shields, and heat exchangers.

  18. 75 FR 61761 - Renewal of Charter for the Chronic Fatigue Syndrome Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-06

    ... professionals, and the biomedical, academic, and research communities about chronic fatigue syndrome advances... accessing the FACA database that is maintained by the Committee Management Secretariat under the General Services Administration. The Web site address for the FACA database is http://fido.gov/facadatabase . Dated...

  19. FLAPS (Fatigue Life Analysis Programs): Computer Programs to Predict Cyclic Life Using the Total Strain Version of Strainrange Partitioning and Other Life Prediction Methods. Users' Manual and Example Problems, Version 1.0

    NASA Technical Reports Server (NTRS)

    Arya, Vinod K.; Halford, Gary R. (Technical Monitor)

    2003-01-01

    This manual presents computer programs FLAPS for characterizing and predicting fatigue and creep-fatigue resistance of metallic materials in the high-temperature, long-life regime for isothermal and nonisothermal fatigue. The programs use the Total Strain version of Strainrange Partitioning (TS-SRP), and several other life prediction methods described in this manual. The user should be thoroughly familiar with the TS-SRP and these life prediction methods before attempting to use any of these programs. Improper understanding can lead to incorrect use of the method and erroneous life predictions. An extensive database has also been developed in a parallel effort. The database is probably the largest source of high-temperature, creep-fatigue test data available in the public domain and can be used with other life-prediction methods as well. This users' manual, software, and database are all in the public domain and can be obtained by contacting the author. The Compact Disk (CD) accompanying this manual contains an executable file for the FLAPS program, two datasets required for the example problems in the manual, and the creep-fatigue data in a format compatible with these programs.

  20. Decision fatigue: A conceptual analysis.

    PubMed

    Pignatiello, Grant A; Martin, Richard J; Hickman, Ronald L

    2018-03-01

    Decision fatigue is an applicable concept to healthcare psychology. Due to a lack of conceptual clarity, we present a concept analysis of decision fatigue. A search of the term "decision fatigue" was conducted across seven research databases, which yielded 17 relevant articles. The authors identified three antecedent themes (decisional, self-regulatory, and situational) and three attributional themes (behavioral, cognitive, and physiological) of decision fatigue. However, the extant literature failed to adequately describe consequences of decision fatigue. This concept analysis provides needed conceptual clarity for decision fatigue, a concept possessing relevance to nursing and allied health sciences.

  1. Materials Research for High Speed Civil Transport and Generic Hypersonics-Metals Durability

    NASA Technical Reports Server (NTRS)

    Schulz, Paul; Hoffman, Daniel

    1996-01-01

    This report covers a portion of an ongoing investigation of the durability of titanium alloys for the High Speed Civil Transport (HSCT). Candidate alloys need to possess an acceptable combination of properties including strength and toughness as well as fatigue and corrosion resistance when subjected to the HSCT operational environment. These materials must also be capable of being processed into required product forms while maintaining their properties. Processing operations being considered for this airplane include forming, welding, adhesive bonding, and superplastic forming with or without diffusion bonding. This program was designed to develop the material properties database required to lower the risk of using advanced titanium alloys on the HSCT.

  2. Automated Neuropsychological assessment Metrics Version 4 (ANAM4): Select Psychometric Properties and Administration Procedures

    DTIC Science & Technology

    2014-12-01

    management structure set up for Study 4 - COMPLETED Task 17 (Months 37-48) Operationalize database for Study 4 analysis scheme – COMPLETED Task...Heaton, K.J., Laufer, A.S., Maule, A., Vincent, A.S. (abstract submitted). Effects of acute sleep deprivation on ANAM4 TBI Battery performance in...and visual tracking degradation during acute sleep deprivation in a military sample. Aviat Space Environ Med 2014; 85:497 – 503. Background: Fatigue

  3. Effects of the Electron Beam Welding Process on the Microstructure, Tensile, Fatigue and Fracture Properties of Nickel Alloy Nimonic 80A

    NASA Astrophysics Data System (ADS)

    Zhang, H.; Huang, Chongxiang; Guan, Zhongwei; Li, Jiukai; Liu, Yongjie; Chen, Ronghua; Wang, Qingyuan

    2018-01-01

    The purpose of this study was to evaluate rotary bending high-cycle fatigue properties and crack growth of Nimonic 80A-based metal and electron beam-welded joints. All the tests were performed at room temperature. Fracture surfaces under high-cycle fatigue and fatigue crack growth were observed by scanning electron microscopy. Microstructure, hardness and tensile properties were also evaluated in order to understand the effects on the fatigue results obtained. It was found that the tensile properties, hardness and high-cycle fatigue properties of the welded joint are lower than the base metal. The fracture surface of the high-cycle fatigue shows that fatigue crack initiated from the surface under the high stress amplitude and from the subsurface under the low stress amplitude. The effect of the welding process on the statistical fatigue data was studied with a special focus on probabilistic life prediction and probabilistic lifetime limits. The fatigue crack growth rate versus stress intensity factor range data were obtained from the fatigue crack growth tests. From the results, it was evident that the fatigue crack growth rates of the welded are higher than the base metal. The mechanisms and fracture modes of fatigue crack growth of welded specimens were found to be related to the stress intensity factor range ΔK. In addition, the effective fatigue crack propagation thresholds and mismatch of welded joints were described and discussed.

  4. Charge Weld Effects on High Cycle Fatigue Behavior of a Hollow Extruded AA6082 Profile

    NASA Astrophysics Data System (ADS)

    Nanninga, N.; White, C.; Dickson, R.

    2011-10-01

    Fatigue properties of specimens taken from different locations along the length of a hollow AA6082 extrusion, where charge weld (interface between successive billets in multi-billet extrusions) properties and the degree of coring (accumulation of highly sheared billet surface material at back end of billet) are expected to vary, have been evaluated. The fatigue strength of transverse specimens containing charge welds is lower near the front of the extrusion where the charge weld separation is relatively large. The relationship between fatigue failure and charge weld separation appears to be directly related to charge weld properties. The lower fatigue properties of the specimens are likely associated with early overload fatigue failure along the charge weld interface. Coring does not appear to have significantly affected fatigue behavior.

  5. A Practical Engineering Approach to Predicting Fatigue Crack Growth in Riveted Lap Joints

    NASA Technical Reports Server (NTRS)

    Harris, Charles E.; Piascik, Robert S.; Newman, James C., Jr.

    1999-01-01

    An extensive experimental database has been assembled from very detailed teardown examinations of fatigue cracks found in rivet holes of fuselage structural components. Based on this experimental database, a comprehensive analysis methodology was developed to predict the onset of widespread fatigue damage in lap joints of fuselage structure. Several computer codes were developed with specialized capabilities to conduct the various analyses that make up the comprehensive methodology. Over the past several years, the authors have interrogated various aspects of the analysis methods to determine the degree of computational rigor required to produce numerical predictions with acceptable engineering accuracy. This study led to the formulation of a practical engineering approach to predicting fatigue crack growth in riveted lap joints. This paper describes the practical engineering approach and compares predictions with the results from several experimental studies.

  6. A Practical Engineering Approach to Predicting Fatigue Crack Growth in Riveted Lap Joints

    NASA Technical Reports Server (NTRS)

    Harris, C. E.; Piascik, R. S.; Newman, J. C., Jr.

    2000-01-01

    An extensive experimental database has been assembled from very detailed teardown examinations of fatigue cracks found in rivet holes of fuselage structural components. Based on this experimental database, a comprehensive analysis methodology was developed to predict the onset of widespread fatigue damage in lap joints of fuselage structure. Several computer codes were developed with specialized capabilities to conduct the various analyses that make up the comprehensive methodology. Over the past several years, the authors have interrogated various aspects of the analysis methods to determine the degree of computational rigor required to produce numerical predictions with acceptable engineering accuracy. This study led to the formulation of a practical engineering approach to predicting fatigue crack growth in riveted lap joints. This paper describes the practical engineering approach and compares predictions with the results from several experimental studies.

  7. An engineering approach to the prediction of fatigue behavior of unnotched/notched fiber reinforced composite laminates

    NASA Technical Reports Server (NTRS)

    Kulkarni, S. V.; Mclaughlin, P. V., Jr.

    1978-01-01

    An engineering approach is proposed for predicting unnotched/notched laminate fatigue behavior from basic lamina fatigue data. The fatigue analysis procedure was used to determine the laminate property (strength/stiffness) degradation as a function of fatigue cycles in uniaxial tension and in plane shear. These properties were then introduced into the failure model for a notched laminate to obtain damage growth, residual strength, and failure mode. The approach is thus essentially a combination of the cumulative damage accumulation (akin to the Miner-Palmgren hypothesis and its derivatives) and the damage growth rate (similar to the fracture mechanics approach) philosophies. An analysis/experiment correlation appears to confirm the basic postulates of material wearout and the predictability of laminate fatigue properties from lamina fatigue data.

  8. Considerations concerning fatigue life of metal matrix composites

    NASA Technical Reports Server (NTRS)

    Radhakrishnan, V. M.; Bartolotta, Paul A.

    1993-01-01

    Since metal matrix composites (MMC) are composed from two very distinct materials each having their own physical and mechanical properties, it is feasible that the fatigue resistance depends on the strength of the weaker constituent. Based on this assumption, isothermal fatigue lives of several MMC's were analyzed utilizing a fatigue life diagram approach. For each MMC, the fatigue life diagram was quantified using the mechanical properties of its constituents. The fatigue life regions controlled by fiber fracture and matrix were also quantitatively defined.

  9. Lack of muscle contractile property changes at the time of perceived physical exhaustion suggests central mechanisms contributing to early motor task failure in patients with cancer-related fatigue.

    PubMed

    Kisiel-Sajewicz, Katarzyna; Davis, Mellar P; Siemionow, Vlodek; Seyidova-Khoshknabi, Dilara; Wyant, Alexandria; Walsh, Declan; Hou, Juliet; Yue, Guang H

    2012-09-01

    Fatigue is one of the most common symptoms reported by cancer survivors, and fatigue worsens when patients are engaged in muscle exertion, which results in early motor task failure. Central fatigue plays a significant role, more than muscle (peripheral) fatigue, in contributing to early task failure in cancer-related fatigue (CRF). The purpose of this study was to determine if muscle contractile property alterations (reflecting muscle fatigue) occurred at the end of a low-intensity muscle contraction to exhaustion and if these properties differed between those with CRF and healthy controls. Ten patients (aged 59.9±10.6 years, seven women) with advanced solid cancer and CRF and 12 age- and gender-matched healthy controls (aged 46.6±12.8 years, nine women) performed a sustained contraction of the right arm elbow flexion at 30% maximal level until exhaustion. Peak twitch force, time to peak twitch force, rate of peak twitch force development, and half relaxation time derived from electrical stimulation-evoked twitches were analyzed pre- and post-sustained contraction. CRF patients reported significantly greater fatigue as measured by the Brief Fatigue Inventory and failed the motor task earlier, 340±140 vs. 503±155 seconds in controls. All contractile property parameters did not change significantly in CRF but did change significantly in controls. CRF patients perceive physical exhaustion sooner during a motor fatigue task with minimal muscular fatigue. The observation supports that central fatigue is a more significant factor than peripheral fatigue in causing fatigue feelings and limits motor function in cancer survivors with fatigue symptoms. Copyright © 2012. Published by Elsevier Inc.

  10. Fatigue Analysis of Magnesium Alloys Components for Car Industry

    NASA Astrophysics Data System (ADS)

    Marsavina, Liviu; Rusu, Lucian; Șerban, Dan Andrei; Negru, Radu Marcel; Cernescu, Anghel

    2017-12-01

    The use of magnesium alloys in the automotive industry increased in the last decade because of their low weight and relative good mechanical properties. However, the variable loading conditions require a good fatigue behavior. This paper summaries the fatigue properties of magnesium alloys and presents new fatigue curve results for die cast AM50 magnesium alloy.

  11. Metal Matrix Composites: Fatigue and Fracture Testing. (Latest citations from the Aerospace Database)

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The bibliography contains citations concerning techniques and results of testing metal matrix composites for fatigue and fracture. Methods include non-destructive testing techniques, and static and cyclic techniques for assessing compression, tensile, bending, and impact characteristics.

  12. Structure-property relations and modeling of small crack fatigue behavior of various magnesium alloys

    NASA Astrophysics Data System (ADS)

    Bernard, Jairus Daniel

    Lightweight structural components are important to the automotive and aerospace industries so that better fuel economy can be realized. Magnesium alloys in particular are being examined to fulfill this need due to their attractive stiffness- and strength-to-weight ratios when compared to other materials. However, when introducing a material into new roles, one needs to properly characterize its mechanical properties. Fatigue behavior is especially important considering aerospace and automotive component applications. Therefore, quantifying the structure-property relationships and accurately predicting the fatigue behavior for these materials are vital. This study has two purposes. The first is to quantify the structure-property relationships for the fatigue behavior in an AM30 magnesium alloy. The second is to use the microstructural-based MultiStage Fatigue (MSF) model in order to accurately predict the fatigue behavior of three magnesium alloys: AM30, Elektron 21, and AZ61. While some studies have previously quantified the MSF material constants for several magnesium alloys, detailed research into the fatigue regimes, notably the microstructurally small crack (MSC) region, is lacking. Hence, the contribution of this work is the first of its kind to experimentally quantify the fatigue crack incubation and MSC regimes that are used for the MultiStage Fatigue model. Using a multi-faceted experimental approach, these regimes were explored with a replica method that used a dual-stage silicone based compound along with previously published in situ fatigue tests. These observations were used in calibrating the MultiStage Fatigue model.

  13. Fatigue properties of dissimilar metal laser welded lap joints

    NASA Astrophysics Data System (ADS)

    Dinsley, Christopher Paul

    This work involves laser welding austenitic and duplex stainless steel to zinc-coated mild steel, more specifically 1.2mm V1437, which is a Volvo Truck Coiporation rephosphorised mild steel. The work investigates both tensile and lap shear properties of similar and dissimilar metal laser welded butt and lap joints, with the majority of the investigation concentrating on the fatigue properties of dissimilar metal laser welded lap joints. The problems encountered when laser welding zinc-coated steel are addressed and overcome with regard to dissimilar metal lap joints with stainless steel. The result being the production of a set of guidelines for laser welding stainless steel to zinc-coated mild steel. The stages of laser welded lap joint fatigue life are defined and the factors affecting dissimilar metal laser welded lap joint fatigue properties are analysed and determined; the findings suggesting that dissimilar metal lap joint fatigue properties are primarily controlled by the local stress at the internal lap face and the early crack growth rate of the material at the internal lap face. The lap joint rotation, in turn, is controlled by sheet thickness, weld width and interfacial gap. Laser welded lap joint fatigue properties are found to be independent of base material properties, allowing dissimilar metal lap joints to be produced without fatigue failure occurring preferentially in the weaker parent material, irrespective of large base material property differences. The effects of Marangoni flow on the compositions of the laser weld beads are experimentally characterised. The results providing definite proof of the stirring mechanism within the weld pool through the use of speeds maps for chromium and nickel. Keywords: Laser welding, dissimilar metal, Zinc-coated mild steel, Austenitic stainless steel, Duplex stainless steel, Fatigue, Lap joint rotation, Automotive.

  14. The effect of matrix mechanical properties on (0)8 unidirectional SiC/Ti composite fatigue resistance

    NASA Technical Reports Server (NTRS)

    Gabb, T. P.; Gayda, J.; Lerch, B. A.; Halford, G. R.

    1991-01-01

    The relationship between constituent and MMC properties in fatigue loading is investigated with low-cycle fatigue-resistance testing of an alloy Ti-15-3 matrix reinforced with SiC SCS-6 fibers. The fabrication of the composite is described, and specimens are generated that are weak and ductile (WD), strong and moderately ductile (SM), or strong and brittle (SB). Strain is measured during MMC fatigue tests at a constant load amplitude with a load-controlled waveform and during matrix-alloy fatigue tests at a constant strain amplitude using a strain-controlled waveform. The fatigue resistance of the (0)8 SiC/Ti-15-3 composite is found to be slightly influenced by matrix mechanical properties, and the composite- and matrix-alloy fatigue lives are not correlated. This finding is suggested to relate to the different crack-initiation and -growth processes in MMCs and matrix alloys.

  15. Cancer-Related Fatigue and Its Associations with Depression and Anxiety: A Systematic Review

    PubMed Central

    Brown, Linda F.; Kroenke, Kurt

    2010-01-01

    Background Fatigue is an important symptom in cancer and has been shown to be associated with psychological distress. Objectives This review assesses evidence regarding associations of CRF with depression and anxiety. Methods Database searches yielded 59 studies reporting correlation coefficients or odds ratios. Results Combined sample size was 12,103. Average correlation of fatigue with depression, weighted by sample size, was 0.56 and for anxiety, 0.46. Thirty-one instruments were used to assess fatigue, suggesting a lack of consensus on measurement. Conclusion This review confirms the association of fatigue with depression and anxiety. Directionality needs to be better delineated in longitudinal studies. PMID:19855028

  16. Psychometric properties of the multidimensional fatigue inventory in Brazilian Hodgkin's lymphoma survivors.

    PubMed

    Baptista, Renata Lyrio R; Biasoli, Irene; Scheliga, Adriana; Soares, Andrea; Brabo, Eloa; Morais, José Carlos; Werneck, Guilherme Loureiro; Spector, Nelson

    2012-12-01

    Fatigue is the most common symptom among Hodgkin's lymphoma survivors. To evaluate the psychometric properties of the Brazilian version of the Multidimensional Fatigue Inventory (MFI). The MFI was translated into Brazilian Portuguese using established forward-backward translation procedures, and the psychometric properties were evaluated in a sample of 200 Hodgkin's lymphoma survivors. The psychometric properties evaluated included internal consistency and construct validity. The MFI was administered along with the informed consent form. The overall Cronbach's alpha coefficient for the 20 items was 0.84, ranging from 0.59 to 0.81 for each of the five scales. Correlations between items and scales ranged from 0.32 to 0.72. The factor analysis yielded a five-factor solution that explained 65% of the variance. The first factor merged the original "general fatigue" and "physical fatigue" scales, as has been previously reported. The second factor identified the original "mental fatigue" scale and the fifth factor identified the original "reduced activity" scale. Questions from the original "reduced motivation" scale were represented in both factors three and four. The Brazilian version of the MFI showed satisfactory psychometric properties and can be considered a valid research tool for assessing cancer-related fatigue. Copyright © 2012 U.S. Cancer Pain Relief Committee. Published by Elsevier Inc. All rights reserved.

  17. Effect of welding structure and δ-ferrite on fatigue properties for TIG welded austenitic stainless steels at cryogenic temperatures

    NASA Astrophysics Data System (ADS)

    Yuri, Tetsumi; Ogata, Toshio; Saito, Masahiro; Hirayama, Yoshiaki

    2000-04-01

    High-cycle and low-cycle fatigue properties of base and weld metals for SUS304L and SUS316L and the effects of welding structure and δ-ferrite on fatigue properties were investigated at cryogenic temperatures in order to evaluate the long-life reliability of the structural materials to be used in liquid hydrogen supertankers and storage tanks and to develop a welding process for these applications. The S-N curves of the base and weld metals shifted towards higher levels, i.e., the longer life side, with decreasing test temperatures. High-cycle fatigue tests demonstrated the ratios of fatigue strength at 10 6 cycles to tensile strength of the weld metals to be 0.35-0.7, falling below those of base metals with decreasing test temperatures. Fatigue crack initiation sites in SUS304L weld metals were mostly at blowholes with diameters of 200-700 μm, and those of SUS316L weld metals were at weld pass interface boundaries. Low-cycle fatigue tests revealed the fatigue lives of the weld metals to be somewhat lower than those of the base metals. Although δ-ferrite reduces the toughness of austenitic stainless steels at cryogenic temperatures, the effects of δ-ferrite on high-cycle and low-cycle fatigue properties are not clear or significant.

  18. Systematic content evaluation and review of measurement properties of questionnaires for measuring self-reported fatigue among older people.

    PubMed

    Egerton, Thorlene; Riphagen, Ingrid I; Nygård, Arnhild J; Thingstad, Pernille; Helbostad, Jorunn L

    2015-09-01

    The assessment of fatigue in older people requires simple and user-friendly questionnaires that capture the phenomenon, yet are free from items indistinguishable from other disorders and experiences. This study aimed to evaluate the content, and systematically review and rate the measurement properties of self-report questionnaires for measuring fatigue, in order to identify the most suitable questionnaires for older people. This study firstly involved identification of questionnaires that purport to measure self-reported fatigue, and evaluation of the content using a rating scale developed for the purpose from contemporary understanding of the construct. Secondly, for the questionnaires that had acceptable content, we identified studies reporting measurement properties and rated the methodological quality of those studies according to the COSMIN system. Finally, we extracted and synthesised the results of the studies to give an overall rating for each questionnaire for each measurement property. The protocol was registered with PROSPERO (CRD42013005589). Of the 77 identified questionnaires, twelve were selected for review after content evaluation. Methodological quality varied, and there was a lack of information on measurement error and responsiveness. The PROMIS-Fatigue item bank and short forms perform the best. The FACIT-Fatigue scale, Parkinsons Fatigue Scale, Perform Questionnaire, and Uni-dimensional Fatigue Impact Scale also perform well and can be recommended. Minor modifications to improve performance are suggested. Further evaluation of unresolved measurement properties, particularly with samples including older people, is needed for all the recommended questionnaires.

  19. Evaluating Changes in Tendon Crimp with Fatigue Loading as an ex vivo Structural Assessment of Tendon Damage

    PubMed Central

    Freedman, Benjamin R.; Zuskov, Andrey; Sarver, Joseph J.; Buckley, Mark R.; Soslowsky, Louis J.

    2015-01-01

    The complex structure of tendons relates to their mechanical properties. Previous research has associated the waviness of collagen fibers (crimp) during quasi-static tensile loading to tensile mechanics, but less is known about the role of fatigue loading on crimp properties. In this study (IACUC approved), mouse patellar tendons were fatigue loaded while an integrated plane polariscope simultaneously assessed crimp properties. We demonstrate a novel structural mechanism whereby tendon crimp amplitude and frequency are altered with fatigue loading. In particular, fatigue loading increased the crimp amplitude across the tendon width and length, and these structural alterations were shown to be both region and load dependent. The change in crimp amplitude was strongly correlated to mechanical tissue laxity (defined as the ratio of displacement and gauge length relative to the first cycle of fatigue loading assessed at constant load throughout testing), at all loads and regions evaluated. Together, this study highlights the role of fatigue loading on tendon crimp properties as a function of load applied and region evaluated, and offers an additional structural mechanism for mechanical alterations that may lead to ultimate tendon failure. PMID:25773654

  20. New Powder Metallurgical Approach to Achieve High Fatigue Strength in Ti-6Al-4V Alloy

    NASA Astrophysics Data System (ADS)

    Cao, Fei; Ravi Chandran, K. S.; Kumar, Pankaj; Sun, Pei; Zak Fang, Z.; Koopman, Mark

    2016-05-01

    Recently, manufacturing of titanium by sintering and dehydrogenation of hydride powders has generated a great deal of interest. An overarching concern regarding powder metallurgy (PM) titanium is that critical mechanical properties, especially the high-cycle fatigue strength, are lower than those of wrought titanium alloys. It is demonstrated here that PM Ti-6Al-4V alloy with mechanical properties comparable (in fatigue strength) and exceeding (in tensile properties) those of wrought Ti-6Al-4V can be produced from titanium hydride powder, through the hydrogen sintering and phase transformation process. Tensile and fatigue behavior, as well as fatigue fracture mechanisms, have been investigated under three processing conditions. It is shown that a reduction in the size of extreme-sized pores by changing the hydride particle size distribution can lead to improved fatigue strength. Further densification by pneumatic isostatic forging leads to a fatigue strength of ~550 MPa, comparable to the best of PM Ti-6Al-4V alloys prepared by other methods and approaching the fatigue strengths of wrought Ti-6Al-4V alloys. The microstructural factors that limit fatigue strength in PM titanium have been investigated, and pathways to achieve greater fatigue strengths in PM Ti-6Al-4V alloys have been identified.

  1. Shorter Versus Longer Shift Durations to Mitigate Fatigue and Fatigue-Related Risks in Emergency Medical Services Personnel and Related Shift Workers: A Systematic Review

    DOT National Transportation Integrated Search

    2018-01-11

    Background: This study comprehensively reviewed the literature on the impact of shorter versus longer shifts on critical and important outcomes for Emergency Medical Services (EMS) personnel and related shift worker groups. Methods: Six databases (e....

  2. Influence of Deposition Conditions on Fatigue Properties of Martensitic Stainless Steel with Tin Film Coated by Arc Ion Plating Method

    NASA Astrophysics Data System (ADS)

    Fukui, Satoshi; Yonekura, Daisuke; Murakami, Ri-Ichi

    The surface properties like roughness etc. strongly influence the fatigue strength of high-tensile steel. To investigate the effect of surface condition and TiN coating on the fatigue strength of high-strength steel, four-point bending fatigue tests were carried out for martensitic stainless steel with TiN film coated using arc ion plating (AIP) method. This study, using samples that had been polished under several size of grind particle, examines the influence of pre-coating treatment on fatigue properties. A 2-µm-thick TiN film was deposited onto the substrate under three kinds of polishing condition. The difference of the hardness originated in the residual stress or thin deformation layer where the difference of the size of grinding particle of the surface polishing. And it leads the transformation of the interface of the substrate and the TiN film and improves fatigue limit.

  3. The effects of multiple repairs on Inconel 718 weld mechanical properties

    NASA Technical Reports Server (NTRS)

    Russell, C. K.; Nunes, A. C., Jr.; Moore, D.

    1991-01-01

    Inconel 718 weldments were repaired 3, 6, 9, and 13 times using the gas tungsten arc welding process. The welded panels were machined into mechanical test specimens, postweld heat treated, and nondestructively tested. Tensile properties and high cycle fatigue life were evaluated and the results compared to unrepaired weld properties. Mechanical property data were analyzed using the statistical methods of difference in means for tensile properties and difference in log means and Weibull analysis for high cycle fatigue properties. Statistical analysis performed on the data did not show a significant decrease in tensile or high cycle fatigue properties due to the repeated repairs. Some degradation was observed in all properties, however, it was minimal.

  4. Low cycle fatigue and creep-fatigue behavior of Ni-based alloy 230 at 850 C

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Xiang; Yang, Zhiqing; Sokolov, Mikhail A

    Strain-controlled low cycle fatigue (LCF) and creep-fatigue testing of Ni-based alloy 230 were carried out at 850 C. The material creep-fatigue life decreased compared with its low cycle fatigue life at the same total strain range. Longer hold time at peak tensile strain further reduced the material creep-fatigue life. Based on the electron backscatter diffraction, a novel material deformation characterization method was applied, which revealed that in low cycle fatigue testing as the total strain range increased, the deformation was segregated to grain boundaries since the test temperature was higher than the material equicohesive temperature and grain boundaries became weakermore » regions compared with grains. Creep-fatigue tests enhanced the localized deformation, resulting in material interior intergranular cracking, and accelerated material damage. Precipitation in alloy 230 helped slip dispersion, favorable for fatigue property, but grain boundary cellular precipitates formed after material exposure to the elevated temperature had a deleterious effect on the material low cycle fatigue and creep-fatigue property.« less

  5. Comparison of Elevated Temperature Tensile Properties and Fatigue Behavior of Two Variants of a Woven SiC/SiC Composite

    NASA Technical Reports Server (NTRS)

    Kalluri, Sreeramesh; Brewer, David N.; Sreeramesh, Kalluri

    2005-01-01

    Tensile properties (elastic modulus, proportional limit strength, in-plane tensile strength, and strain at failure) of two variants of a woven SiC/SiC composite, manufactured during two separate time periods (9/99 and 1/01), were determined at 1038 and 1204 C by conducting tensile tests on specimens machined from plates. Continuous cycling fatigue tests (R = 0.05) and 20 cpm) were also conducted at the same two temperatures on specimens from both composites. In this study, average tensile properties, 95% confidence intervals associated with the tensile properties, and geometric mean fatigue lives of both composite materials are compared. The observed similarities and differences in the tensile properties are highlighted and an attempt is made to understand the relationship, if any, between the tensile properties and the fatigue behaviors of the two woven composites.

  6. [Prevalence of chronic fatigue syndrome in 4 family practices in Leiden].

    PubMed

    Versluis, R G; de Waal, M W; Opmeer, C; Petri, H; Springer, M P

    1997-08-02

    To determine the prevalence of chronic fatigue syndrome (CFS) in general practice. Descriptive. General practice and primary health care centres in Leyden region, the Netherlands. RNUH-LEO is a computerized database which contains the anonymous patient information of one general practice (with two practitioners) and four primary health care centres. The fourteen participating general practitioners were asked what International Classification of Primary Care (ICPC) code they used to indicate a patient with chronic fatigue or with CFS. With these codes and with the code for depression patients were selected from the database. It then was determined whether these patients met the criteria of CFS by Holmes et al. The general practitioners used 10 codes. Including the code for depression a total of 601 patients were preselected from a total of 23,000 patients in the database. Based on the information from the patients' records in the database, 42 of the preselected patients were selected who might fulfill the Holmes' criteria of CFS. According to the patients' own general practitioner, 25 of the 42 patients would fulfil the Holmes' criteria. The men:women ratio was 1:5. The prevalence of CFS in the population surveyed was estimated to be at least 1.1 per 1,000 patients.

  7. Tensile and Fatigue Properties of Single and Multiple Dissimilar Welded Joints of DP980 and HSLA

    NASA Astrophysics Data System (ADS)

    Cui, Q. L.; Parkes, D.; Westerbaan, D.; Nayak, S. S.; Zhou, Y.; Saha, D. C.; Liu, D.; Goodwin, F.; Bhole, S.; Chen, D. L.

    2017-02-01

    The present study focused on single and multiple dissimilar joints between DP980 and high-strength low-alloy (HSLA) galvanized steels. The tensile properties of the dissimilar joint between the strong DP980 and the relatively soft HSLA reflected only the properties of HSLA with plastic deformation, and final fracture took place entirely in HSLA. The fatigue properties of the dissimilar joints were more intriguing, with the strong DP980 outperforming at high stress amplitude and the ductile HSLA outperforming at low stress amplitude. For different load amplitudes, fatigue failure occurred in different materials and at different locations. The fatigue strength of DP980 was more negatively impaired by weld defects than that of HSLA.

  8. Psychometric properties and Dutch norm data of the PedsQL Multidimensional Fatigue Scale for Young Adults.

    PubMed

    Haverman, Lotte; Limperg, Perrine F; van Oers, Hedy A; van Rossum, Marion A J; Maurice-Stam, Heleen; Grootenhuis, Martha A

    2014-12-01

    The aim of this study was to assess internal consistency and construct validity (known-groups validity) and to provide Dutch norm data for the Dutch Pediatric Quality of Life Inventory Multidimensional Fatigue Scale for Young Adults ages 18-30 years (PedsQL fatigue_YA). A Dutch sample of 649 young adults completed online a sociodemographic questionnaire and the PedsQL fatigue_YA including three subscales: general fatigue, sleep/rest fatigue and cognitive fatigue (0-100: Higher scores indicate less fatigue symptoms). The PedsQL fatigue_YA showed satisfactory to good internal consistency (Cronbach's alpha = .70-.94), except for one scale (.68). The mean scale scores were 68.23 (SD 19.15) for 'general fatigue,' 67.04 (SD 15.54) for 'sleep/rest fatigue' and 74.62 (SD 19.02) for 'cognitive fatigue.' Men reported significantly higher scores on 'general fatigue' and 'sleep/rest fatigue' than women. The PedsQL fatigue_YA distinguished between healthy young adults and young adults with chronic health conditions, with higher scores on all scales in healthy young adults than in those with a chronic health condition. The results demonstrate good psychometric properties of the PedsQL fatigue_YA in a sample of Dutch young adults. With the current norms available, it is possible to evaluate fatigue in the Netherlands from childhood to adulthood with the PedsQL Multidimensional Fatigue Scale.

  9. [Treatment on fatigue of patients with postpolio syndrome. A systematic review].

    PubMed

    Aguila-Maturana, Ana M; Alegre-De Miquel, Cayetano

    2010-05-16

    Fatigue is the most common symptom and the most disabling in patients with post-polio syndrome. To analyze the effectiveness of various treatments used to improve fatigue syndrome patients post-polio. Systematic review. Is defined a bibliographic search strategy in Medline (from 1961), EMBASE (from 1980), ISI Web of Knowledge and Cochrane Library, Cochrane Central Register of Controlled Trials (CENTRAL), AMED (January 1985), EMI and Physiotherapy Evidence Database (PEDro) until February 2008, the population defined (post-polio syndrome patients) and intervention (any treatment for fatigue in these patients). Outcome were selected as different scales of fatigue and fatigue or vitality dimension scales quality of life. Clinical trials were selected. We retrieved 396 articles, of which 23 were analyzed in detail. Finally, 19 were included in the analysis, a total of 705 patients. Lamotrigine, bromocriptine, aerobics and flexibility exercises, hydrokinesitherapy and technical aids are treatment techniques that reduce more fatigue in these patients.

  10. A Review of the Fatigue Properties of Additively Manufactured Ti-6Al-4V

    NASA Astrophysics Data System (ADS)

    Cao, Fei; Zhang, Tiantian; Ryder, Matthew A.; Lados, Diana A.

    2018-03-01

    Various additive manufacturing (AM) technologies have been used to fabricate Ti-6Al-4V. The fatigue performance of Ti-6Al-4V varies from process to process. In this review, fatigue properties of Ti-6Al-4V alloys made by different AM technologies and post-fabrication treatments were compiled and discussed to correlate with the materials' characteristic features, primarily surface roughness and porosity. Microstructure anisotropy and porosity effects on fatigue crack growth and fatigue life are also presented and discussed. A modified Kitagawa-Takahashi diagram developed from current available fatigue data was used to quantify the influence of defects on fatigue strength. This review aims to assist in selecting/optimizing AM processes to achieve high fatigue resistance in Ti-6Al-4V, as well as provide a better understanding of the advantages and limitations of current AM techniques in producing titanium alloys.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    MANDELL, JOHN F.; SAMBORSKY, DANIEL D.; CAIRNS, DOUGLAS

    This report presents the major findings of the Montana State University Composite Materials Fatigue Program from 1997 to 2001, and is intended to be used in conjunction with the DOE/MSU Composite Materials Fatigue Database. Additions of greatest interest to the database in this time period include environmental and time under load effects for various resin systems; large tow carbon fiber laminates and glass/carbon hybrids; new reinforcement architectures varying from large strands to prepreg with well-dispersed fibers; spectrum loading and cumulative damage laws; giga-cycle testing of strands; tough resins for improved structural integrity; static and fatigue data for interply delamination; andmore » design knockdown factors due to flaws and structural details as well as time under load and environmental conditions. The origins of a transition to increased tensile fatigue sensitivity with increasing fiber content are explored in detail for typical stranded reinforcing fabrics. The second focus of the report is on structural details which are prone to delamination failure, including ply terminations, skin-stiffener intersections, and sandwich panel terminations. Finite element based methodologies for predicting delamination initiation and growth in structural details are developed and validated, and simplified design recommendations are presented.« less

  12. Cyclic fatigue of a high-strength corrosion-resistant sheet TRIP steel

    NASA Astrophysics Data System (ADS)

    Terent'ev, V. F.; Alekseeva, L. E.; Korableva, S. A.; Prosvirnin, D. V.; Pankova, M. N.; Filippov, G. A.

    2014-04-01

    The mechanical properties of 0.3- and 0.8-mm-thick high-strength corrosion-resistant TRIP steel having various levels of strength properties are studied during static and cyclic loading in the high-cycle fatigue range. The fatigue fracture surface is analyzed by fractography, and the obtained results demonstrate ductile and quasi-brittle fracture mechanisms of this steel depending on the strength properties of the steel and the content of deformation martensite in it.

  13. Comparison of the cohesive and delamination fatigue properties of atomic-layer-deposited alumina and titania ultrathin protective coatings deposited at 200 °C

    PubMed Central

    Sadeghi-Tohidi, Farzad; Samet, David; Graham, Samuel; Pierron, Olivier N

    2014-01-01

    The fatigue properties of ultrathin protective coatings on silicon thin films were investigated. The cohesive and delamination fatigue properties of 22 nm-thick atomic-layered-deposited (ALD) titania were characterized and compared to that of 25 nm-thick alumina. Both coatings were deposited at 200 °C. The fatigue rates are comparable at 30 °C, 50% relative humidity (RH) while they are one order of magnitude larger for alumina compared to titania at 80 °C, 90% RH. The improved fatigue performance is believed to be related to the improved stability of the ALD titania coating with water compared to ALD alumina, which may in part be related to the fact that ALD titania is crystalline, while ALD alumina is amorphous. Static fatigue crack nucleation and propagation was not observed. The underlying fatigue mechanism is different from previously documented mechanisms, such as stress corrosion cracking, and appears to result from the presence of compressive stresses and a rough coating–substrate interface. PMID:27877645

  14. Chronic debilitating fatigue in Irish general practice: a survey of general practitioners' experience.

    PubMed

    Fitzgibbon, E J; Murphy, D; O'Shea, K; Kelleher, C

    1997-10-01

    Doctors are called upon to treat chronic debilitating fatigue without the help of a protocol of care. To estimate the incidence of chronic debilitating fatigue in Irish general practice, to obtain information on management strategy and outcome, to explore the attitudes of practitioners (GPs) towards the concept of a chronic fatigue syndrome (CFS), and to recruit practitioners to a prospective study of chronic fatigue in primary care. A total of 200 names were selected from the database of the Irish College of General Practitioners (ICGP); 164 of these were eligible for the study. Altogether, 118 questionnaires were returned (72%). Ninety-two (78%) responders identified cases of chronic fatigue, giving an estimated 2.1 cases per practice and an incidence of 1 per 1000 population. All social classes were represented, with a male to female ratio of 1:2. Eleven disparate approaches to treatment were advocated. Many (38%) were dissatisfied with the quality of care delivered, and 45% seldom or hardly ever referred cases for specialist opinion. The majority (58%) accepted CFS as a distinct entity, 34% were undecided, and 8% rejected it. Forty-two (35%) GPs volunteered for a prospective study. Chronic fatigue is found in Irish general practice among patients of both sexes and all social classes. Doctors differ considerably in their management of patients and are dissatisfied with the quality of care they deliver. Many cases are not referred for specialist opinion. A prospective database is required to accurately assess the scale of this public health problem and to develop a protocol of care.

  15. Hydraulic Fatigue-Testing Machine

    NASA Technical Reports Server (NTRS)

    Hodo, James D.; Moore, Dennis R.; Morris, Thomas F.; Tiller, Newton G.

    1987-01-01

    Fatigue-testing machine applies fluctuating tension to number of specimens at same time. When sample breaks, machine continues to test remaining specimens. Series of tensile tests needed to determine fatigue properties of materials performed more rapidly than in conventional fatigue-testing machine.

  16. Reliability and Validity of Survey Instruments to Measure Work-Related Fatigue in the Emergency Medical Services Setting: A Systematic Review.

    PubMed

    Patterson, P Daniel; Weaver, Matthew D; Fabio, Anthony; Teasley, Ellen M; Renn, Megan L; Curtis, Brett R; Matthews, Margaret E; Kroemer, Andrew J; Xun, Xiaoshuang; Bizhanova, Zhadyra; Weiss, Patricia M; Sequeira, Denisse J; Coppler, Patrick J; Lang, Eddy S; Higgins, J Stephen

    2018-02-15

    This study sought to systematically search the literature to identify reliable and valid survey instruments for fatigue measurement in the Emergency Medical Services (EMS) occupational setting. A systematic review study design was used and searched six databases, including one website. The research question guiding the search was developed a priori and registered with the PROSPERO database of systematic reviews: "Are there reliable and valid instruments for measuring fatigue among EMS personnel?" (2016:CRD42016040097). The primary outcome of interest was criterion-related validity. Important outcomes of interest included reliability (e.g., internal consistency), and indicators of sensitivity and specificity. Members of the research team independently screened records from the databases. Full-text articles were evaluated by adapting the Bolster and Rourke system for categorizing findings of systematic reviews, and the rated data abstracted from the body of literature as favorable, unfavorable, mixed/inconclusive, or no impact. The Grading of Recommendations, Assessment, Development and Evaluation (GRADE) methodology was used to evaluate the quality of evidence. The search strategy yielded 1,257 unique records. Thirty-four unique experimental and non-experimental studies were determined relevant following full-text review. Nineteen studies reported on the reliability and/or validity of ten different fatigue survey instruments. Eighteen different studies evaluated the reliability and/or validity of four different sleepiness survey instruments. None of the retained studies reported sensitivity or specificity. Evidence quality was rated as very low across all outcomes. In this systematic review, limited evidence of the reliability and validity of 14 different survey instruments to assess the fatigue and/or sleepiness status of EMS personnel and related shift worker groups was identified.

  17. Fatigue crack growth and fracture behavior of bainitic rail steels.

    DOT National Transportation Integrated Search

    2011-08-01

    "The microstructuremechanical properties relationships, fracture toughness, fatigue crack growth and fracture surface morphology of J6 bainitic, manganese, and pearlitic rail steels were studied. Microstructuremechanical properties correlation ...

  18. Fatigue crack growth and fracture behavior of bainitic rail steels.

    DOT National Transportation Integrated Search

    2011-09-01

    "The microstructuremechanical properties relationships, fracture toughness, fatigue crack growth and fracture surface morphology of J6 bainitic, manganese, and pearlitic rail steels were studied. Microstructuremechanical properties correlation ...

  19. A Review of Australian and New Zealand Investigations on Aeronautical Fatigue During the Period April 2005 to March 2007

    DTIC Science & Technology

    2007-04-01

    possessed better fatigue properties than the 2024T3 series alloys . It was also possible to develop a fracture mechanic approach which could match...Mechanical Properties of 7050-T7451 Aluminium Alloy . (J.Calero, DSTO) - Paper to be presented at ICAF 2007 Symposium Abstract “It is not uncommon...conductivity, strength, fatigue life and fracture toughness properties of 7050- T7451 aluminium alloy . The test program investigated temperatures ranging

  20. A Review of Australian and New Zealand Investigations on Aeronautical Fatigue During the Period April 2011 to March 2013

    DTIC Science & Technology

    2013-04-01

    properties in high-strength coarse grain titanium alloy with rough and torturous fatigue surfaces - Kevin Walker, (DSTO and RMIT University Australia), and...Wanhill, R. J. H. (1995) Damage tolerance engineering property evaluations of aerospace aluminium alloys with emphasis on fatigue crack growth. National...T6/T651 alloys . The testing of 7075-T6 C(T) coupons confirmed that the properties are very similar to the 7075-T651 material. Baseline

  1. Microstructure-Sensitive Modeling of High Cycle Fatigue (Preprint)

    DTIC Science & Technology

    2009-03-01

    SUBJECT TERMS microplasticity , microstructure-sensitive modeling, high cycle fatigue, fatigue variability 16. SECURITY CLASSIFICATION OF: 17...3Air Force Research Laboratory Wright Patterson Air Force Base, Ohio 45433 Keywords: Microplasticity , microstructure-sensitive modeling, high cycle...cyclic microplasticity ) plays a key role in modeling fatigue resistance. Unlike effective properties such as elastic stiffness, fatigue is

  2. Neuromuscular fatigue in racquet sports.

    PubMed

    Girard, Olivier; Millet, Grégoire P

    2008-02-01

    This article describes the physiologic and neural mechanisms that cause neuromuscular fatigue in racquet sports: table tennis, tennis, squash, and badminton. In these intermittent and dual activities, performance may be limited as a match progresses because of a reduced central activation, linked to changes in neurotransmitter concentration or in response to afferent sensory feedback. Alternatively, modulation of spinal loop properties may occur because of changes in metabolic or mechanical properties within the muscle. Finally, increased fatigue manifested by mistimed strokes, lower speed, and altered on-court movements may be caused by ionic disturbances and impairments in excitation-contraction coupling properties. These alterations in neuromuscular function contribute to decrease in racquet sports performance observed under fatigue.

  3. Neuromuscular fatigue in racquet sports.

    PubMed

    Girard, Olivier; Millet, Grégoire P

    2009-02-01

    This article describes the physiologic and neural mechanisms that cause neuromuscular fatigue in racquet sports: table tennis, tennis, squash, and badminton. In these intermittent and dual activities, performance may be limited as a match progresses because of a reduced central activation, linked to changes in neurotransmitter concentration or in response to afferent sensory feedback. Alternatively, modulation of spinal loop properties may occur because of changes in metabolic or mechanical properties within the muscle. Finally, increased fatigue manifested by mistimed strokes, lower speed, and altered on-court movements may be caused by ionic disturbances and impairments in excitation-contraction coupling properties. These alterations in neuromuscular function contribute to decrease in racquet sports performance observed under fatigue.

  4. An Assessment of Cumulative Axial and Torsional Fatigue in a Cobalt-Base Superalloy

    NASA Technical Reports Server (NTRS)

    Kalluri, Sreeramesh; Bonacuse, Peter J.

    2010-01-01

    Cumulative fatigue under axial and torsional loading conditions can include both load-order (higMow and low/high) as well as load-type sequence (axial/torsional and torsional/axial) effects. Previously reported experimental studies on a cobalt-base superalloy, Haynes 188 at 538 C, addressed these effects. These studies characterized the cumulative axial and torsional fatigue behavior under high amplitude followed by low amplitude (Kalluri, S. and Bonacuse, P. J., "Cumulative Axial and Torsional Fatigue: An Investigation of Load-Type Sequance Effects," in Multiaxial Fatigue and Deformation: Testing and Prediction, ASTM STP 1387, S. Kalluri, and P. J. Bonacuse, Eds., American Society for Testing and Materials, West Conshohocken, PA, 2000, pp. 281-301) and low amplitude followed by high amplitude (Bonacuse, P. and Kalluri, S. "Sequenced Axial and Torsional Cumulative Fatigue: Low Amplitude Followed by High Amplitude Loading," Biaxial/Multiaxial Fatigue and Fracture, ESIS Publication 31, A. Carpinteri, M. De Freitas, and A. Spagnoli, Eds., Elsevier, New York, 2003, pp. 165-182) conditions. In both studies, experiments with the following four load-type sequences were performed: (a) axial/axial, (b) torsional/torsional, (c) axial/torsional, and (d) torsional/axial. In this paper, the cumulative axial and torsional fatigue data generated in the two previous studies are combined to generate a comprehensive cumulative fatigue database on both the load-order and load-type sequence effects. This comprehensive database is used to examine applicability of the Palmgren-langer-Miner linear damage rule and a nonlinear damage curve approach for Haynes 188 subjected to the load-order and load-type sequencing described above. Summations of life fractions from the experiments are compared to the predictions from both the linear and nonlinear cumulative fatigue damage approaches. The significance of load-order versus load-type sequence effects for axial and torsional loading conditions is discussed. Possible reasons for the observed differences between the computed and observed summations of cycle fractions are rationalized in terms of the observed ever lutions of cyclic axial and shear stress ranges in the cumulative fatigue tests.

  5. Fatigue properties of JIS H3300 C1220 copper for strain life prediction

    NASA Astrophysics Data System (ADS)

    Harun, Muhammad Faiz; Mohammad, Roslina

    2018-05-01

    The existing methods for estimating strain life parameters are dependent on the material's monotonic tensile properties. However, a few of these methods yield quite complicated expressions for calculating fatigue parameters, and are specific to certain groups of materials only. The Universal Slopes method, Modified Universal Slopes method, Uniform Material Law, the Hardness method, and Medians method are a few existing methods for predicting strain-life fatigue based on monotonic tensile material properties and hardness of material. In the present study, nine methods for estimating fatigue life and properties are applied on JIS H3300 C1220 copper to determine the best methods for strain life estimation of this ductile material. Experimental strain-life curves are compared to estimations obtained using each method. Muralidharan-Manson's Modified Universal Slopes method and Bäumel-Seeger's method for unalloyed and low-alloy steels are found to yield batter accuracy in estimating fatigue life with a deviation of less than 25%. However, the prediction of both methods only yield much better accuracy for a cycle of less than 1000 or for strain amplitudes of more than 1% and less than 6%. Manson's Original Universal Slopes method and Ong's Modified Four-Point Correlation method are found to predict the strain-life fatigue of copper with better accuracy for a high number of cycles of strain amplitudes of less than 1%. The differences between mechanical behavior during monotonic and cyclic loading and the complexity in deciding the coefficient in an equation are probably the reason for the lack of a reliable method for estimating fatigue behavior using the monotonic properties of a group of materials. It is therefore suggested that a differential approach and new expressions be developed to estimate the strain-life fatigue parameters for ductile materials such as copper.

  6. Movement kinematics and cyclic fatigue of NiTi rotary instruments: a systematic review.

    PubMed

    Ferreira, F; Adeodato, C; Barbosa, I; Aboud, L; Scelza, P; Zaccaro Scelza, M

    2017-02-01

    The aim of this review was to provide a detailed analysis of the literature concerning the correlation between different movement kinematics and the cyclic fatigue resistance of NiTi rotary endodontic instruments. From June 2014 to August 2015, four independent reviewers comprehensively and systematically searched the Medline (PubMed), EMBASE, Web of Science, Scopus and Google Scholar databases for works published since January 2005, using the following search terms: endodontics; nickel-titanium rotary files; continuous rotation; reciprocating motion; cyclic fatigue. In addition to the electronic searches, manual searches were performed to include articles listed in the reference sections of high-impact published articles that were not indexed in the databases. Laboratory studies in English language were considered for this review. The electronic and manual searches resulted in identification of 75 articles. Based on the inclusion criteria, 32 articles were selected for analysis of full-text copies. Specific analysis was then made of 20 articles that described the effects of reciprocating and continuous movements on cyclic fatigue of the instruments. A wide range of testing conditions and methodologies have been used to compare the cyclic fatigue resistance of rotary endodontic instruments. Most studies report that reciprocating motion improves the fatigue resistance of endodontic instruments, compared to continuous rotation, independent of other variables such as the speed of rotation, the angle or radius of curvature of simulated canals, geometry and taper, or the surface characteristics of the NiTi instruments. © 2016 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  7. Effects of bio-functionalizing surface treatments on the mechanical behavior of open porous titanium biomaterials.

    PubMed

    Amin Yavari, S; Ahmadi, S M; van der Stok, J; Wauthle, R; Riemslag, A C; Janssen, M; Schrooten, J; Weinans, H; Zadpoor, A A

    2014-08-01

    Bio-functionalizing surface treatments are often applied for improving the bioactivity of biomaterials that are based on otherwise bioinert titanium alloys. When applied on highly porous titanium alloy structures intended for orthopedic bone regeneration purposes, such surface treatments could significantly change the static and fatigue properties of these structures and, thus, affect the application of the biomaterial as bone substitute. Therefore, the interplay between biofunctionalizing surface treatments and mechanical behavior needs to be controlled. In this paper, we studied the effects of two bio-functionalizing surface treatments, namely alkali-acid heat treatment (AlAcH) and acid-alkali (AcAl), on the static and fatigue properties of three different highly porous titanium alloy implants manufactured using selective laser melting. It was found that AlAcH treatment results in minimal mass loss. The static and fatigue properties of AlAcH specimens were therefore not much different from as-manufactured (AsM) specimens. In contrast, AcAl resulted in substantial mass loss and also in significantly less static and fatigue properties particularly for porous structures with the highest porosity. The ratio of the static mechanical properties of AcAl specimens to that of AsM specimen was in the range of 1.5-6. The fatigue lives of AcAl specimens were much more severely affected by the applied surface treatments with fatigue lives up to 23 times smaller than that of AsM specimens particularly for the porous structures with the highest porosity. In conclusion, the fatigue properties of surface treated porous titanium are dependent not only on the type of applied surface treatment but also on the porosity of the biomaterial. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Fatigue in the general population of Colombia - normative values for the multidimensional fatigue inventory MFI-20.

    PubMed

    Hinz, Andreas; Barboza, Carolyn Finck; Barradas, Susana; Körner, Annett; Beierlein, Volker; Singer, Susanne

    2013-01-01

    Fatigue is a frequent symptom in cancer patients. In Europe and Northern America fatigue questionnaires were developed and tested, but their generalizability to other cultural contexts is largely unknown. The aim of this study is to provide normative values for the Multidimensional Fatigue Inventory (MFI-20) based on a representative sample of the general population in Colombia and to test psychometric properties. 1,500 individuals completed a questionnaire that contained the MFI-20, as well as other questionnaires, and questions on sociodemographic variables and chronic diseases. The mean values of the scales were marginally higher than those for 2 European samples. The mean value of the total score was 44.3 ± 14.1. Women were affected by fatigue more than men, and there was an almost linear age trend, with higher mean scores for older subjects. People with chronic diseases were affected by fatigue more than people without chronic conditions. The best psychometric properties were obtained for the total scale (sum score) of the MFI-20. The normative values presented here can help us to assess the individual burden of fatigue in a Latin American context. Psychometric properties of the MFI-20 in Colombia are similar to those obtained in Europe. © 2013 S. Karger GmbH, Freiburg.

  9. Materials testing protocol for small joint prostheses.

    PubMed

    Savory, K M; Hutchinson, D T; Bloebaum, R

    1994-10-01

    In this article, a protocol for the evaluation of new materials for small joint prostheses is introduced. The testing methods employed in the protocol were developed by reviewing reported clinical failure modes and conditions found in vivo. The methods developed quantitatively evaluates the fatigue, fatigue crack propagation, and wear resistance properties of materials. For this study, a silicone elastomer similar to Dow Corning Silastic HP100, a radiation stable polypropylene, and a copolymer of polypropylene and ethylene propylene-diene monomer (EPDM) are evaluated. None of the materials tested demonstrated the ideal properties that are sought in a self-hinging joint prostheses. The silicone elastomer had excellent wear properties; however, cracks quickly propagated, causing catastrophic failure when fatigued. Conversely, the copolymer showed excellent fatigue crack propagation resistance and less than favorable wear properties. The polypropylene did not perform well in any evaluation.

  10. Effect of service usage on tensile, fatigue, and fracture properties of 7075-T6 and 7178-T6 aluminum alloys

    NASA Technical Reports Server (NTRS)

    Everett, R. A., Jr.

    1975-01-01

    A study has been made to determine the effects of extensive service usage on some basic material properties of 7075-T6 and 7178-T6 aluminum alloy materials. The effects of service usage were determined by comparing material properties for new material (generally obtained from the literature) with those for material cut from the center wing box of a C-130B transport airplane with 6385 flight-hours of service. The properties investigated were notched and unnotched fatigue strengths, fatigue-crack-growth rate, fracture toughness, and tensile properties. For the properties investigated and the parameter ranges considered (crack length, stress ratio, etc.), the results obtained showed no significant difference between service and new materials.

  11. European Scientific Notes. Volume 34, Number 7,

    DTIC Science & Technology

    1980-07-31

    fatigue , the effect of patient during the fitting, but which moisture on mechanical properties, could still be bent 900 without delamin- and creep...behavior. In the fatigue ating the composite or debonding the work; different reinforcing fibers composite from the aluminum . Once (including glass-carbon... fatigue work sulting structure has better properties Sturgeon has under way includes the than steel and weighs a good deal less, effect of

  12. The Effects of Fracture Origin Size on Fatigue Properties of Ductile Cast Iron with Small Chill Structures

    NASA Astrophysics Data System (ADS)

    Sameshima, Daigo; Nakamura, Takashi; Horikawa, Noritaka; Oguma, Hiroyuki; Endo, Takeshi

    Reducing the weight of a machine structure is an increasingly important consideration both for the conservation of resources during production and for the energy saving during operation. With these objectives in mind, thin-walled ductile cast iron has recently been developed. Because rapid cooling could result in brittle microstructure of cementite (chill) in this cast iron, it is necessary to investigate the effect of cementite on the fatigue properties. Therefore, fatigue tests were carried out on a ductile cast iron of block castings which contained a relatively small amount of cementite. Fracture surface observation indicated that the fracture origins were located at graphite clusters and cast shrinkage porosity, not at cementite. It appears that when the size of the cementite is smaller than that of the graphite, the cementite does not affect the fatigue properties of ductile cast iron. Not surprisingly, the fatigue lives were found to increase with decrease in the size of the fatigue fracture origin. The threshold initial stress intensity factor range ΔKini,th for fatigue failure was found to be about 3-4MPa√m, independent of microstructure.

  13. Simulation of long-term fatigue damage in bioprosthetic heart valves: effects of leaflet and stent elastic properties

    PubMed Central

    Martin, Caitlin

    2014-01-01

    One of the major failure modes of bioprosthetic heart valves (BHVs) is noncalcific structural deterioration due to fatigue of the tissue leaflets; yet, the mechanisms of fatigue are not well understood. BHV durability is primarily assessed based on visual inspection of the leaflets following accelerated wear testing. In this study, we developed a computational framework to simulate BHV leaflet fatigue, which is both efficient and quantitative, making it an attractive alternative to traditional accelerated wear testing. We utilize a phenomenological soft tissue fatigue damage model developed previously to describe the stress softening and permanent set of the glutaraldehyde-treated bovine pericardium leaflets in BHVs subjected to cyclic loading. A parametric study was conducted to determine the effects of altered leaflet and stent elastic properties on the fatigue of the leaflets. The simulation results show that heterogeneity of the leaflet elastic properties, poor leaflet coaptation, and little stent-tip deflection may accelerate leaflet fatigue, which agrees with clinical findings. Therefore, the developed framework may be an invaluable tool for evaluating leaflet durability in new tissue valve designs, including traditional BHVs as well as new transcatheter valves. PMID:24092257

  14. Fatigue Crack Growth Properties of Rail Steels

    DOT National Transportation Integrated Search

    1981-10-01

    Fatigue crack propagation properties of rail steels were determined experimentally. The investigation covered 66 rail steels. The effects of the following parameters were studied: stress ratio (ratio of minimum to maximum stress in a cycle), frequenc...

  15. Driver fatigue and road safety on Poland's national roads.

    PubMed

    Jamroz, Kazimierz; Smolarek, Leszek

    2013-01-01

    This paper presents an overview of factors causing driver fatigue as described in the literature. Next, a traffic crash database for 2003-2007 is used to identify the causes, circumstances and consequences of accidents caused by driver fatigue on Poland's national roads. The results of the study were used to build a model showing the relationship between the concentration of road accidents and casualties, and the time of day. Finally, the level of relative accident risk at night-time versus daytime is defined. A map shows the risk of death and severe injury on the network of Poland's national roads. The paper suggests to road authorities steps to reduce fatigue-related road accidents in Poland.

  16. Effect of volume fraction of alpha and transformed beta on the high cycle fatigue properties of bimodal Ti6Al4V alloy

    NASA Astrophysics Data System (ADS)

    Jadhav, Shital; Powar, Amit; Patil, Sandip; Supare, Ashish; Farane, Bhagwan; Singh, Rajkumar, Dr.

    2017-05-01

    The present study was performed to investigate the effect of volume fraction of alpha and transformed beta phase on the high-cycle fatigue (HCF) properties of the bimodal titanium Ti6Al4V alloy. The effect of such morphology on mechanical properties was studied using tensile and rotating bending fatigue test as per ASTM standards. Microstructures and fractography of the specimens were studied using optical and scanning electron microscopy (SEM) respectively.Ti6Al4V alloy samples were heat treated to have three distinctive volume fractions of alpha and transformed beta phase. With an increase in quench delay from 30,50 and 70 sec during quenching after solutionizing temperature of 967°C, the volume fraction of alpha was found to be increased from 20% to 67%. Tests on tensile and rotating bending fatigue showed that the specimen with 20% volume fraction of alpha phase exhibited the highest tensile and fatigue strength, however the properties gets deteriorate with increase in volume fraction of alpha.

  17. Predicting Fatigue Lives Of Metal-Matrix/Fiber Composites

    NASA Technical Reports Server (NTRS)

    Bartolotta, Paul A.

    1994-01-01

    Method of prediction of fatigue lives of intermetallic-matrix/fiber composite parts at high temperatures styled after method of universal slopes. It suffices to perform relatively small numbers of fatigue tests. Data from fatigue tests correlated with tensile-test data by fitting universal-slopes equation to both sets of data. Thereafter, universal-slopes equation used to predict fatigue lives from tensile properties.

  18. Evaluation of fatigue properties of EN31 steel heat treated using biodegradable gingili oil

    NASA Astrophysics Data System (ADS)

    Harichandra, B. P.; Prashanth, Mrudula; Prakash, S. V.

    2016-09-01

    Rotating bending fatigue is the most commonly encountered loading in most machines and machine tools. At the same time, modern literature in this area is very little. EN31 steel is a steel which is commonly used in load bearing applications which encounters fatigue loading. Further, studies on heat treated EN31 steel to improve fatigue strength is hardly reported. This paper takes this rare issue further ahead by using bio-degradable gingili oil to heat treat EN31 steel for fatigue applications. This paper reports the results of rotating bending fatigue study of EN31 steel. Fatigue tests were conducted for three conditions a) Untreated, b) Heat treated with water, and c) Heat treated with gingili oil, with cantilever loads ranging from 30% to 90% using double sided rotating bending fatigue testing machine. It is seen that EN31 steel heat treated using gingili oil has far superior fatigue properties than water treated and untreated ones, with gingili oil quenched specimen have ∼10 times more fatigue life than water quenched specimen and ∼100 times more than unquenched specimens when lower bending stresses are involved.

  19. Fatigue Crack Initiation Properties of Rail Steels

    DOT National Transportation Integrated Search

    1982-01-01

    Fatigue crack initiation properties of rail-steels were determined experimentally. One new and four used rail steels were investigated. The effects of the following parameters were studied: stress ratio (ratio of minimum to maximum stress in a cycle)...

  20. High Cycle Fatigue Properties Of Electron Beam Melted TI-6AL-4V Samples Without And With Integrated Defects ("Effects Of Defects")

    NASA Astrophysics Data System (ADS)

    Brandl, Erhard; Greitemeier, Daniel; Maier, Hans Jurgen; Syassen, Freerk

    2012-07-01

    The understanding of additive manufactured material properties is still at an early stage and mostly not profound. Nowadays, there is only little experience in predicting the effect of defects (e.g. porosity, unmelted spots, insufficient bonding between the layers) on the fatigue behaviour. In this paper, some of these questions are adressed. An electron beam melting process is used to manufacture Ti-6Al-4V high cycle fatigue samples without and with intentionally integrated defects inside of the samples. The samples were annealed or hot isostatically pressed. The defects were analysed by non- destructive methods before and by light/electron microscopy after the tests. In order to predict the high cycle fatigue properties, the crack propagation properties of the material (da/dN - ΔK curve) were tested and AFGROW simulation was used.

  1. Reliability and validity of a Chinese version of the Multidimensional Fatigue Symptom Inventory-Short Form (MFSI-SF-C).

    PubMed

    Pien, Li-Chung; Chu, Hsin; Chen, Wen-Chun; Chang, Yu-Shiun; Liao, Yuan-Mei; Chen, Chiung-Hua; Chou, Kuei-Ru

    2011-08-01

    To examine the psychometric properties of the Chinese version of the Multidimensional Fatigue Symptom Inventory-Short Form (MFSI-SF-C) for use in Chinese-speaking countries. The assessment of fatigue is a challenging task for most researchers because culture may influence perceptions of meaning of fatigue. The lack of examination of the psychometric properties of the fatigue measures across studies limits the scientific rigour for generating additional research on the concept of 'fatigue.' A cross-sectional study. The study recruited 107 cancer inpatients from two medical centres in Taiwan. The MFSI-SF-C was examined using a two step process: (1) Translation and back-translation of the instrument; and (2) Examination of internal consistency reliability, test-retest reliability, content validity and construct validity. The results showed that the Cronbach's α of MFSI-SF-C total scale and subscales ranged between 0·83-0·92. The content validity index was 0·93. The difference between the fatigue of cancer patients and the comparison group of healthy people in the community was significant. The results demonstrated good convergent validity when comparing fatigue with depression and quality of life. Factor analysis confirmed the four dimensions of fatigue: physical, emotional, mental and vigour. It showed moderate intercorrelation between subscales and high factor loadings also helped to clarify the psychometric meaning. The reliability and validity information presented in this article support the use of the Chinese version of the MFSI-SF as a research instrument for measuring fatigue in Chinese populations. This study also provides evidence that the MFSI-SF possesses robust psychometric properties. The MFSI-SF-C is an effective and comprehensive tool for measuring fatigue in Chinese patients with cancer. © 2011 Blackwell Publishing Ltd.

  2. Experimental Investigation of the Influence of Joint Geometric Configurations on the Mechanical Properties of Intermittent Jointed Rock Models Under Cyclic Uniaxial Compression

    NASA Astrophysics Data System (ADS)

    Liu, Yi; Dai, Feng; Fan, Pengxian; Xu, Nuwen; Dong, Lu

    2017-06-01

    Intermittent joints in rock mass are quite sensitive to cyclic loading conditions. Understanding the fatigue mechanical properties of jointed rocks is beneficial for rational design and stability analysis of rock engineering projects. This study experimentally investigated the influences of joint geometry (i.e., dip angle, persistency, density and spacing) on the fatigue mechanism of synthetic jointed rock models. Our results revealed that the stress-strain curve of jointed rock under cyclic loadings is dominated by its curve under monotonic uniaxial loadings; the terminal strain in fatigue curve is equal to the post-peak strain corresponding to the maximum cyclic stress in the monotonic stress-strain curve. The four joint geometrical parameters studied significantly affect the fatigue properties of jointed rocks, including the irreversible strains, the fatigue deformation modulus, the energy evolution, the damage variable and the crack coalescence patterns. The higher the values of the geometrical parameters, the lower the elastic energy stores in this jointed rock, the higher the fatigue damage accumulates in the first few cycles, and the lower the fatigue life. The elastic energy has certain storage limitation, at which the fatigue failure occurs. Two basic micro-cracks, i.e., tensile wing crack and shear crack, are observed in cyclic loading and unloading tests, which are controlled principally by joint dip angle and persistency. In general, shear cracks only occur in the jointed rock with higher dip angle or higher persistency, and the jointed rock is characterized by lower fatigue strength, larger damage variable and lower fatigue life.

  3. Fatigue of notched fiber composite laminates. Part 2: Analytical and experimental evaluation

    NASA Technical Reports Server (NTRS)

    Kulkarni, S. V.; Mclaughlin, P. V., Jr.; Pipes, R. B.

    1976-01-01

    The analytical/experimental correlation study was performed to develop an understanding of the behavior of notched Boron/epoxy laminates subjected to tension/tension fatigue loading. It is postulated that the fatigue induced property changes (stiffness as well as strength) of the laminate can be obtained from the lamina fatigue properties. To that end, the Boron/epoxy lamina static and fatigue data (lifetime, residual stiffness and strength) were obtained initially. The longitudinal and transverse tension data were determined from the (0) and (90) laminate tests while the in-plane shear data were obtained from the (+ or - 45) sub s laminates. The static tests obtained the notched strength and mode of failure while the fatigue tests determined lifetime, damage propagation and residual strength. The failure in static tension occurred in a transverse crack propagation mode.

  4. Hydrogen-enabled microstructure and fatigue strength engineering of titanium alloys

    NASA Astrophysics Data System (ADS)

    Paramore, James D.; Fang, Zhigang Zak; Dunstan, Matthew; Sun, Pei; Butler, Brady G.

    2017-02-01

    Traditionally, titanium alloys with satisfactory mechanical properties can only be produced via energy-intensive and costly wrought processes, while titanium alloys produced using low-cost powder metallurgy methods consistently result in inferior mechanical properties, especially low fatigue strength. Herein, we demonstrate a new microstructural engineering approach for producing low-cost titanium alloys with exceptional fatigue strength via the hydrogen sintering and phase transformation (HSPT) process. The high fatigue strength presented in this work is achieved by creating wrought-like microstructures without resorting to wrought processing. This is accomplished by generating an ultrafine-grained as-sintered microstructure through hydrogen-enabled phase transformations, facilitating the subsequent creation of fatigue-resistant microstructures via simple heat treatments. The exceptional strength, ductility, and fatigue performance reported in this paper are a breakthrough in the field of low-cost titanium processing.

  5. Hydrogen-enabled microstructure and fatigue strength engineering of titanium alloys

    DOE PAGES

    Paramore, James D.; Fang, Zhigang Zak; Dunstan, Matthew; ...

    2017-02-01

    Traditionally, titanium alloys with satisfactory mechanical properties can only be produced via energy-intensive and costly wrought processes, while titanium alloys produced using low-cost powder metallurgy methods consistently result in inferior mechanical properties, especially low fatigue strength. Herein, we demonstrate a new microstructural engineering approach for producing low-cost titanium alloys with exceptional fatigue strength via the hydrogen sintering and phase transformation (HSPT) process. The high fatigue strength presented in this work is achieved by creating wroughtlike microstructures without resorting to wrought processing. This is accomplished by generating an ultrafine-grained as-sintered microstructure through hydrogen-enabled phase transformations, facilitating the subsequent creation of fatigue-resistantmore » microstructures via simple heat treatments. Finally, the exceptional strength, ductility, and fatigue performance reported in this paper are a breakthrough in the field of low-cost titanium processing.« less

  6. Hydrogen-enabled microstructure and fatigue strength engineering of titanium alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paramore, James D.; Fang, Zhigang Zak; Dunstan, Matthew

    Traditionally, titanium alloys with satisfactory mechanical properties can only be produced via energy-intensive and costly wrought processes, while titanium alloys produced using low-cost powder metallurgy methods consistently result in inferior mechanical properties, especially low fatigue strength. Herein, we demonstrate a new microstructural engineering approach for producing low-cost titanium alloys with exceptional fatigue strength via the hydrogen sintering and phase transformation (HSPT) process. The high fatigue strength presented in this work is achieved by creating wroughtlike microstructures without resorting to wrought processing. This is accomplished by generating an ultrafine-grained as-sintered microstructure through hydrogen-enabled phase transformations, facilitating the subsequent creation of fatigue-resistantmore » microstructures via simple heat treatments. Finally, the exceptional strength, ductility, and fatigue performance reported in this paper are a breakthrough in the field of low-cost titanium processing.« less

  7. Hydrogen-enabled microstructure and fatigue strength engineering of titanium alloys

    PubMed Central

    Paramore, James D.; Fang, Zhigang Zak; Dunstan, Matthew; Sun, Pei; Butler, Brady G.

    2017-01-01

    Traditionally, titanium alloys with satisfactory mechanical properties can only be produced via energy-intensive and costly wrought processes, while titanium alloys produced using low-cost powder metallurgy methods consistently result in inferior mechanical properties, especially low fatigue strength. Herein, we demonstrate a new microstructural engineering approach for producing low-cost titanium alloys with exceptional fatigue strength via the hydrogen sintering and phase transformation (HSPT) process. The high fatigue strength presented in this work is achieved by creating wrought-like microstructures without resorting to wrought processing. This is accomplished by generating an ultrafine-grained as-sintered microstructure through hydrogen-enabled phase transformations, facilitating the subsequent creation of fatigue-resistant microstructures via simple heat treatments. The exceptional strength, ductility, and fatigue performance reported in this paper are a breakthrough in the field of low-cost titanium processing. PMID:28145527

  8. Experimental Investigation on the Fatigue Mechanical Properties of Intermittently Jointed Rock Models Under Cyclic Uniaxial Compression with Different Loading Parameters

    NASA Astrophysics Data System (ADS)

    Liu, Yi; Dai, Feng; Dong, Lu; Xu, Nuwen; Feng, Peng

    2018-01-01

    Intermittently jointed rocks, widely existing in many mining and civil engineering structures, are quite susceptible to cyclic loading. Understanding the fatigue mechanism of jointed rocks is vital to the rational design and the long-term stability analysis of rock structures. In this study, the fatigue mechanical properties of synthetic jointed rock models under different cyclic conditions are systematically investigated in the laboratory, including four loading frequencies, four maximum stresses, and four amplitudes. Our experimental results reveal the influence of the three cyclic loading parameters on the mechanical properties of jointed rock models, regarding the fatigue deformation characteristics, the fatigue energy and damage evolution, and the fatigue failure and progressive failure behavior. Under lower loading frequency or higher maximum stress and amplitude, the jointed specimen is characterized by higher fatigue deformation moduli and higher dissipated hysteresis energy, resulting in higher cumulative damage and lower fatigue life. However, the fatigue failure modes of jointed specimens are independent of cyclic loading parameters; all tested jointed specimens exhibit a prominent tensile splitting failure mode. Three different crack coalescence patterns are classified between two adjacent joints. Furthermore, different from the progressive failure under static monotonic loading, the jointed rock specimens under cyclic compression fail more abruptly without evident preceding signs. The tensile cracks on the front surface of jointed specimens always initiate from the joint tips and then propagate at a certain angle with the joints toward the direction of maximum compression.

  9. Fatigue Properties of Butt Welded Aluminum Alloy and Carbon Steel Joints by Friction Stirring

    NASA Astrophysics Data System (ADS)

    Okane, M.; Shitaka, T.; Ishida, M.; Chaki, T.; Yasui, T.; Fukumoto, M.

    2017-05-01

    The butt dissimilar joints of Al-Mg-Si alloy JIS A6063 and carbon steel JIS S45C by means of friction stir welding were prepared for investigating fatigue properties of the joints. The joining tool used has cemented carbide thread probe and a shoulder made of alloy tool steel. All the fatigue tests were carried out under a load-controlled condition with a load ratio R=0.1 in air at room temperature. From the experimental results, it was found that hardness near the interface in A6063 was lower than that of base material. Three types of fatigue fracture occurred even in case of same welding condition. The first one was fracture at boundary between the lower hardness region and base material in A6063, the second type was initiated in the stir zone by FSW process and the last one was fracture at interface. Fatigue strength in case of the second one was lower than others. Furthermore, to investigate the effect of heat treatment on fatigue properties of the dissimilar joints, fatigue tests were also carried out with using the specimens which were heat treated under the same condition to aging process in T6 treatment. Fatigue fracture was initiated at interface between A6063 and S45C in case of the heat treated specimen, but fatigue strength was improved approximately 25% as compared with that of the non-heat treated specimen.

  10. Microstructure, Tensile and Fatigue Properties of Al-5 wt.%Mg Alloy Manufactured by Twin Roll Strip Casting

    NASA Astrophysics Data System (ADS)

    Heo, Joon-Young; Baek, Min-Seok; Euh, Kwang-Jun; Lee, Kee-Ahn

    2018-04-01

    This study investigated the microstructure, tensile and fatigue properties of Al-5 wt.%Mg alloy manufactured by twin roll strip casting. Strips cast as a fabricated (F) specimen and a specimen heat treated (O) at 400 °C/5 h were produced and compared. In the F specimen, microstructural observation discovered clustered precipitates in the center area, while in the O specimen precipitates were relatively more evenly distributed. Al, Al6(Mn, Fe), Mg2Al3 and Mg2Si phases were observed. However, most of the Mg2Al3 phase in the heat-treated O specimen was dissolved. A room temperature tensile test measured yield strength of 177.7 MPa, ultimate tensile strength of 286.1 MPa and elongation of 11.1% in the F specimen and 167.7 MPa (YS), 301.5 MPa (UTS) and 24.6% (EL) in the O specimen. A high cycle fatigue test measured a fatigue limit of 145 MPa in the F specimen and 165 MPa in the O specimen, and the O specimen achieved greater fatigue properties in all fatigue stress conditions. The tensile and fatigue fracture surfaces of the above-mentioned specimens were observed, and this study attempted to investigate the tensile and fatigue deformation behavior of strip cast Al-5 wt.%Mg based on the findings.

  11. Evaluation of Fatigue Behavior and Surface Characteristics of Aluminum Alloy 2024 T6 After Electric Discharge Machining

    NASA Astrophysics Data System (ADS)

    Mehmood, Shahid; Shah, Masood; Pasha, Riffat Asim; Sultan, Amir

    2017-10-01

    The effect of electric discharge machining (EDM) on surface quality and consequently on the fatigue performance of Al 2024 T6 is investigated. Five levels of discharge current are analyzed, while all other electrical and nonelectrical parameters are kept constant. At each discharge current level, dog-bone specimens are machined by generating a peripheral notch at the center. The fatigue tests are performed on four-point rotating bending machine at room temperature. For comparison purposes, fatigue tests are also performed on the conventionally machined specimens. Linearized SN curves for 95% failure probability and with four different confidence levels (75, 90, 95 and 99%) are plotted for each discharge current level as well as for conventionally machined specimens. These plots show that the electric discharge machined (EDMed) specimens give inferior fatigue behavior as compared to conventionally machined specimen. Moreover, discharge current inversely affects the fatigue life, and this influence is highly pronounced at lower stresses. The EDMed surfaces are characterized by surface properties that could be responsible for change in fatigue life such as surface morphology, surface roughness, white layer thickness, microhardness and residual stresses. It is found that all these surface properties are affected by changing discharge current level. However, change in fatigue life by discharge current could not be associated independently to any single surface property.

  12. Fatigue Properties of the Ultra-High Strength Steel TM210A

    PubMed Central

    Kang, Xia; Zhao, Gui-ping

    2017-01-01

    This paper presents the results of an experiment to investigate the high cycle fatigue properties of the ultra-high strength steel TM210A. A constant amplitude rotating bending fatigue experiment was performed at room temperature at stress ratio R = −1. In order to evaluate the notch effect, the fatigue experiment was carried out upon two sets of specimens, smooth and notched, respectively. In the experiment, the rotating bending fatigue life was tested using the group method, and the rotating bending fatigue limit was tested using the staircase method at 1 × 107 cycles. A double weighted least square method was then used to fit the stress-life (S–N) curve. The S–N curves of the two sets of specimens were obtained and the morphologies of the fractures of the two sets of specimens were observed with scanning electron microscopy (SEM). The results showed that the fatigue limit of the smooth specimen for rotating bending fatigue was 615 MPa; the ratio of the fatigue limit to tensile strength was 0.29, and the cracks initiated at the surface of the smooth specimen; while the fatigue limit of the notched specimen for rotating bending fatigue was 363 MPa, and the cracks initiated at the edge of the notch. The fatigue notch sensitivity index of the ultra-high strength maraging steel TM210A was 0.69. PMID:28891934

  13. Elucidating the Relations Between Monotonic and Fatigue Properties of Laser Powder Bed Fusion Stainless Steel 316L

    NASA Astrophysics Data System (ADS)

    Zhang, Meng; Sun, Chen-Nan; Zhang, Xiang; Goh, Phoi Chin; Wei, Jun; Li, Hua; Hardacre, David

    2018-03-01

    The laser powder bed fusion (L-PBF) technique builds parts with higher static strength than the conventional manufacturing processes through the formation of ultrafine grains. However, its fatigue endurance strength σ f does not match the increased monotonic tensile strength σ b. This work examines the monotonic and fatigue properties of as-built and heat-treated L-PBF stainless steel 316L. It was found that the general linear relation σ f = mσ b for describing conventional ferrous materials is not applicable to L-PBF parts because of the influence of porosity. Instead, the ductility parameter correlated linearly with fatigue strength and was proposed as the new fatigue assessment criterion for porous L-PBF parts. Annealed parts conformed to the strength-ductility trade-off. Fatigue resistance was reduced at short lives, but the effect was partially offset by the higher ductility such that comparing with an as-built part of equivalent monotonic strength, the heat-treated parts were more fatigue resistant.

  14. Development of a remote-controlled fatigue test machine using a laser extensometer for investigation of irradiation effect on fatigue properties

    NASA Astrophysics Data System (ADS)

    Yonekawa, M.; Ishii, T.; Ohmi, M.; Takada, F.; Hoshiya, T.; Niimi, M.; Ioka, I.; Miwa, Y.; Tsuji, H.

    2002-12-01

    In order to investigate effects of neutron irradiation on fatigue properties of nuclear materials, a remote-controlled high temperature fatigue test machine was developed at the hot laboratory of the Japan Materials Testing Reactor (JMTR) in the Japan Atomic Energy Research Institute (JAERI). A small-sized fatigue specimen having double blades to measure strain with a laser extensometer was designed for this machine. A strain amplitude in fatigue tests of a completely reversed push-pull type using a triangular wave was controlled with an accuracy of ±3% of the total strain range during test. Low cycle fatigue tests of type 304 stainless steel irradiated in JMTR at 823 K up to a fast neutron fluence of 1×10 25 n/m 2 ( E>1 MeV) were performed in total strain ranges of 0.7-1.4% at 823 K using the designed small-sized specimens.

  15. Properties of materials in high pressure hydrogen at cryogenic, room, and elevated temperatures

    NASA Technical Reports Server (NTRS)

    Harris, J. A., Jr.; Vanwanderham, M. C.

    1973-01-01

    Various tests were conducted to determine the mechanical properties of 12 alloys that are commonly used or proposed for use in pressurized gaseous hydrogen or hydrogen containing environments. Properties determined in the hydrogen environments were compared to properties determined in a pure helium environment at the same conditions to establish environmental degradation. The specific mechanical properties tested include: high-cycle fatigue, low-cycle fatigue, fracture mechanics, creep-rupture, and tensile.

  16. Effects of Defects in Laser Additive Manufactured Ti-6Al-4V on Fatigue Properties

    NASA Astrophysics Data System (ADS)

    Wycisk, Eric; Solbach, Andreas; Siddique, Shafaqat; Herzog, Dirk; Walther, Frank; Emmelmann, Claus

    Laser Additive Manufacturing (LAM) enables economical production of complex lightweight structures as well as patient individual implants. Due to these possibilities the additive manufacturing technology gains increasing importance in the aircraft and the medical industry. Yet these industries obtain high quality standards and demand predictability of material properties for static and dynamic load cases. However, especially fatigue and crack propagation properties are not sufficiently determined. Therefore this paper presents an analysis and simulation of crack propagation behavior considering Laser Additive Manufacturing specific defects, such as porosity and surface roughness. For the mechanical characterization of laser additive manufactured titanium alloy Ti-6Al-4V, crack propagation rates are experimentally determined and used for an analytical modeling and simulation of fatigue. Using experimental results from HCF tests and simulated data, the fatigue and crack resistance performance is analyzed considering material specific defects and surface roughness. The accumulated results enable the reliable prediction of the defects influence on fatigue life of laser additive manufactured titanium components.

  17. Prevalence, Incidence, and Classification of Chronic Fatigue Syndrome in Olmsted County, Minnesota, as Estimated Using the Rochester Epidemiology Project

    PubMed Central

    Vincent, Ann; Brimmer, Dana J.; Whipple, Mary O.; Jones, James F.; Boneva, Roumiana; Lahr, Brian D.; Maloney, Elizabeth; St. Sauver, Jennifer L.; Reeves, William C.

    2012-01-01

    Objective To estimate the prevalence and incidence of chronic fatigue syndrome in Olmsted County, Minnesota, using the 1994 case definition and describe exclusionary and comorbid conditions observed in patients who presented for evaluation of long-standing fatigue. Patients and Methods We conducted a retrospective medical record review of potential cases of chronic fatigue syndrome identified from January 1, 1998, through December 31, 2002, using the Rochester Epidemiology Project, a population-based database. Patients were classified as having chronic fatigue syndrome if the medical record review documented fatigue of 6 months' duration, at least 4 of 8 chronic fatigue syndrome–defining symptoms, and symptoms that interfered with daily work or activities. Patients not meeting all of the criteria were classified as having insufficient/idiopathic fatigue. Results We identified 686 potential patients with chronic fatigue, 2 of whom declined consent for medical record review. Of the remaining 684 patients, 151 (22%) met criteria for chronic fatigue syndrome or insufficient/idiopathic fatigue. The overall prevalence and incidence of chronic fatigue syndrome and insufficient/idiopathic fatigue were 71.34 per 100,000 persons and 13.16 per 100,000 person-years vs 73.70 per 100,000 persons and 13.58 per 100,000 person-years, respectively. The potential cases included 482 patients (70%) who had an exclusionary condition, and almost half the patients who met either criterion had at least one nonexclusionary comorbid condition. Conclusion The incidence and prevalence of chronic fatigue syndrome and insufficient/idiopathic fatigue are relatively low in Olmsted County. Careful clinical evaluation to identify whether fatigue could be attributed to exclusionary or comorbid conditions rather than chronic fatigue syndrome itself will ensure appropriate assessment for patients without chronic fatigue syndrome. PMID:23140977

  18. Active and passive fatigue in simulated driving: discriminating styles of workload regulation and their safety impacts.

    PubMed

    Saxby, Dyani J; Matthews, Gerald; Warm, Joel S; Hitchcock, Edward M; Neubauer, Catherine

    2013-12-01

    Despite the known dangers of driver fatigue, it is a difficult construct to study empirically. Different forms of task-induced fatigue may differ in their effects on driver performance and safety. Desmond and Hancock (2001) defined active and passive fatigue states that reflect different styles of workload regulation. In 2 driving simulator studies we investigated the multidimensional subjective states and safety outcomes associated with active and passive fatigue. Wind gusts were used to induce active fatigue, and full vehicle automation to induce passive fatigue. Drive duration was independently manipulated to track the development of fatigue states over time. Participants were undergraduate students. Study 1 (N = 108) focused on subjective response and associated cognitive stress processes, while Study 2 (N = 168) tested fatigue effects on vehicle control and alertness. In both studies the 2 fatigue manipulations produced different patterns of subjective response reflecting different styles of workload regulation, appraisal, and coping. Active fatigue was associated with distress, overload, and heightened coping efforts, whereas passive fatigue corresponded to large-magnitude declines in task engagement, cognitive underload, and reduced challenge appraisal. Study 2 showed that only passive fatigue reduced alertness, operationalized as speed of braking and steering responses to an emergency event. Passive fatigue also increased crash probability, but did not affect a measure of vehicle control. Findings support theories that see fatigue as an outcome of strategies for managing workload. The distinction between active and passive fatigue is important for assessment of fatigue and for evaluating automated driving systems which may induce dangerous levels of passive fatigue. PsycINFO Database Record (c) 2013 APA, all rights reserved.

  19. A Preliminary Review of Fatigue Among Rail Staff

    PubMed Central

    Fan, Jialin; Smith, Andrew P.

    2018-01-01

    Background: Fatigue is a severe problem in the rail industry, which may jeopardize train crew's health and safety. Nonetheless, a preliminary review of all empirical evidence for train crew fatigue is still lacking. The aim of the present paper is, therefore, to provide a preliminary description of occupational fatigue in the rail industry. This paper reviews the literature with the research question examining the risk factors associated with train crew fatigue, covering both papers published in refereed journals and reports from trade organizations and regulators. It assesses the progress of research on railway fatigue, including research on the main risk factors for railway fatigue, the association between fatigue and railway incidents, and how to better manage fatigue in the railway industry. Methods: Systematic searches were performed in both science and industry databases. The searches considered studies published before August 2017. The main exclusion criterion was fatigue not being directly measured through subjective or objective methods. Results: A total of 31 studies were included in the main review. The causes of fatigue included long working hours, heavy workload, early morning or night shifts, and insufficient sleep. Poor working environment, particular job roles, and individual differences also contributed to fatigue. Conclusion: Fatigue in the rail industry includes most of the features of occupational fatigue, and it is also subject to industry-specific factors. The effect of fatigue on well-being and the fatigued population in the railway industry are still not clear. Future studies can consider associations between occupational risk factors and perceived fatigue by examining the prevalence of fatigue and identifying the potential risk factors in staff within the railway industry. PMID:29867630

  20. β2-Adrenergic stimulation enhances Ca2+ release and contractile properties of skeletal muscles, and counteracts exercise-induced reductions in Na+–K+-ATPase Vmax in trained men

    PubMed Central

    Hostrup, M; Kalsen, A; Ørtenblad, N; Juel, C; Mørch, K; Rzeppa, S; Karlsson, S; Backer, V; Bangsbo, J

    2014-01-01

    The aim of the present study was to examine the effect of β2-adrenergic stimulation on skeletal muscle contractile properties, sarcoplasmic reticulum (SR) rates of Ca2+ release and uptake, and Na+–K+-ATPase activity before and after fatiguing exercise in trained men. The study consisted of two experiments (EXP1, n = 10 males, EXP2, n = 20 males), where β2-adrenoceptor agonist (terbutaline) or placebo was randomly administered in double-blinded crossover designs. In EXP1, maximal voluntary isometric contraction (MVC) of m. quadriceps was measured, followed by exercise to fatigue at 120% of maximal oxygen uptake (). A muscle biopsy was taken after MVC (non-fatigue) and at time of fatigue. In EXP2, contractile properties of m. quadriceps were measured with electrical stimulations before (non-fatigue) and after two fatiguing 45 s sprints. Non-fatigued MVCs were 6 ± 3 and 6 ± 2% higher (P < 0.05) with terbutaline than placebo in EXP1 and EXP2, respectively. Furthermore, peak twitch force was 11 ± 7% higher (P < 0.01) with terbutaline than placebo at non-fatigue. After sprints, MVC declined (P < 0.05) to the same levels with terbutaline as placebo, whereas peak twitch force was lower (P < 0.05) and half-relaxation time was prolonged (P < 0.05) with terbutaline. Rates of SR Ca2+ release and uptake at 400 nm [Ca2+] were 15 ± 5 and 14 ± 5% (P < 0.05) higher, respectively, with terbutaline than placebo at non-fatigue, but declined (P < 0.05) to similar levels at time of fatigue. Na+–K+-ATPase activity was unaffected by terbutaline compared with placebo at non-fatigue, but terbutaline counteracted exercise-induced reductions in maximum rate of activity (Vmax) at time of fatigue. In conclusion, increased contractile force induced by β2-adrenergic stimulation is associated with enhanced rate of Ca2+ release in humans. While β2-adrenergic stimulation elicits positive inotropic and lusitropic effects on non-fatigued m. quadriceps, these effects are blunted when muscles fatigue. PMID:25344552

  1. The effects of accumulated muscle fatigue on the mechanomyographic waveform: implications for injury prediction.

    PubMed

    Tosovic, D; Than, C; Brown, J M M

    2016-08-01

    Muscle fatigue has been identified as a risk factor for spontaneous muscle injuries in sport. However, few studies have investigated the accumulated effects of muscle fatigue on human muscle contractile properties. This study aimed to determine whether repeated bouts of exercise inducing acute fatigue leads to longer-term fatigue-related changes in muscle contractile properties. Maximum voluntary contraction (MVC), electromyographic (EMG) and mechanomyographic (MMG) measures were recorded in the biceps brachii of 11 participants for 13 days, before and after a maximally fatiguing exercise protocol. The exercise protocol involved participants repetitively lifting a weight (concentric contractions only) equal to 40 % MVC, until failure. A significant (p < 0.05) acute pre- to post-exercise decline of biceps brachii MVC and median power frequency (MPF) was observed each day, whilst no difference existed between pre-exercise MVC or MPF values on subsequent days (days 2-13). However, decreases in number of lift repetitions and in pre-exercise MMG values of muscle belly displacement, contraction velocity and half-relaxation velocity were observed through to day 13. Whilst MVC and MPF measures resolved by the following day's test session, MMG measures indicated an ongoing decrement in muscle performance through days 2-13 consistent with the decline in lift repetitions observed. These results suggest that MMG may be more sensitive in detecting accumulated muscle fatigue than the 'gold standard' measures of MVC/MPF. Considering that muscle fatigue leads to injury, the on-going monitoring of MMG derived contractile properties of muscles in athletes may aid in the prediction of fatigued-induced muscle injury.

  2. Resilient modulus and the fatigue properties of Kansas hot mix asphalt mixes

    DOT National Transportation Integrated Search

    2006-08-01

    This research study aimed to determine the dynamic modulus, bending stiffness and fatigue properties of four representative Superpave Hot Mix Asphalt (HMA) mixtures used in the construction of base layers of Kansas flexible pavements and to compare t...

  3. Study on the Effect of Secondary Banded Structure on the Fatigue Property of Non-Quenched and Tempered Micro Alloyed Steel

    NASA Astrophysics Data System (ADS)

    Yajie, Cheng; Qingliang, Liao; Yue, Zhang

    Due to composition segregation and cooling speed, streamline or banded structure were often obtained in the thermal forming parts along the direction of parts forming. Generally speaking, banded structure doesn't decrease the longitudinal mechanical properties, so the secondary banded structure can't get enough attention. The effect of secondary banded structure on the fatigue properties of micro alloyed DG20Mn and 35CrMo steel was investigated using the axial tensile fatigue test of stress ratio of 0.1. The result shows that secondary banded structure was obtained in the center of the steel parts, because of the composition segregation and the lower cooling rate in center part of steel. Secondary banded structure has no significant effect on axial tensile properties of both DG20Mn and 35CrMo, but decreases the axial tensile fatigue performance of DG20Mn steel. This study suggests that under the high cyclic tensile stress, multi-source damage cracks in steel initiated by large strain of pearlite of secondary banded structure, which is larger than damage strain, is the major factor of the decrease of fatigue life of steel.

  4. Docetaxel-related fatigue in men with metastatic prostate cancer: a descriptive analysis.

    PubMed

    Bergin, A R T; Hovey, E; Lloyd, A; Marx, G; Parente, P; Rapke, T; de Souza, P

    2017-09-01

    Fatigue is a prevalent and debilitating side effect of docetaxel chemotherapy in metastatic prostate cancer. A better understanding of the kinetics and nature of docetaxel-related fatigue may provide a framework for intervention. This secondary analysis was performed using the MOTIF database, from a phase III, randomised, double-blind, placebo-controlled study of modafinil (200 mg/day for 15 days) for docetaxel-related fatigue in men with metastatic prostate cancer [1]. The pattern of fatigue was analysed using the MDASI (MD Anderson Symptom Inventory) score. The impact of modafinil, cumulative docetaxel exposure, age and smoking status on fatigue kinetics were explored. Fatigue-related symptoms were assessed using the SOMA6 (fatigue and related symptoms) subset of the SPHERE (Somatic and Psychological Health Report). Mood was tracked using the short form 36 health survey questionnaire (SF-36). Across four docetaxel cycles, fatigue scores were higher in the first week and decreased over weeks two and three. Whilst men randomised to modafinil had reduced fatigue scores, cumulative docetaxel had little impact. Younger men (55-68 years) had significantly reduced fatigue scores, whereas current and ex-smokers had higher scores. There was no significant change in mood status or haemoglobin across treatment cycles. Men described both 'somnolence' and 'muscle fatigue' contributing significantly to their symptom complex. Assessment and management of docetaxel-related fatigue remains an important challenge. Given the complex, multifactorial nature of fatigue, identification through structured interview and interventions targeted to specific 'at risk' groups may be the most beneficial. Understanding the temporal pattern (kinetics) and nature of fatigue is critical to guide this process.

  5. Factors Influencing Dwell Fatigue Cracking in Notches of Powder Metallurgy Superalloys

    NASA Technical Reports Server (NTRS)

    Gabb, T. P.; Telesman, J.; Ghosn, L.; Garg, A.; Gayda, J.

    2011-01-01

    The influences of heat treatment and cyclic dwells on the notch fatigue resistance of powder metallurgy disk superalloys were investigated for low solvus high refractory (LSHR) and ME3 disk alloys. Disks were processed to produce material conditions with varied microstructures and associated mechanical properties. Notched specimens were first subjected to baseline dwell fatigue cycles having a dwell at maximum load, as well as tensile, stress relaxation, creep rupture, and dwell fatigue crack growth tests at 704 C. Several material heat treatments displayed a bimodal distribution of fatigue life with the lives varying by two orders-of-magnitude, while others had more consistent fatigue lives. This response was compared to other mechanical properties, in search of correlations. The wide scatter in baseline dwell fatigue life was observed only for material conditions resistant to stress relaxation. For selected materials and conditions, additional tests were then performed with the dwells shifted in part or in total to minimum tensile load. The tests performed with dwells at minimum load exhibited lower fatigue lives than max dwell tests, and also exhibited early crack initiation and a substantial increase in the number of initiation sites. These results could be explained in part by modeling evolution of peak stresses in the notch with continued dwell fatigue cycling. Fatigue-environment interactions were determined to limit life for the fatigue cycles with dwells.

  6. Nonlinear Fatigue Damage Model Based on the Residual Strength Degradation Law

    NASA Astrophysics Data System (ADS)

    Yongyi, Gao; Zhixiao, Su

    In this paper, a logarithmic expression to describe the residual strength degradation process is developed in order to fatigue test results for normalized carbon steel. The definition and expression of fatigue damage due to symmetrical stress with a constant amplitude are also given. The expression of fatigue damage can also explain the nonlinear properties of fatigue damage. Furthermore, the fatigue damage of structures under random stress is analyzed, and an iterative formula to describe the fatigue damage process is deduced. Finally, an approximate method for evaluating the fatigue life of structures under repeated random stress blocking is presented through various calculation examples.

  7. Evaluation of the psychometric properties of the PROMIS Cancer Fatigue Short Form with cancer patients.

    PubMed

    Cessna, Julie M; Jim, Heather S L; Sutton, Steven K; Asvat, Yasmin; Small, Brent J; Salsman, John M; Zachariah, Babu; Fishman, Mayer; Field, Teresa; Fernandez, Hugo; Perez, Lia; Jacobsen, Paul B

    2016-02-01

    Fatigue is common among cancer patients and adversely impacts quality of life. As such, it is important to measure fatigue accurately in a way that is not burdensome to patients. The 7-item Patient Reported Outcome Measurement Information System (PROMIS) Cancer Fatigue Short Form scale was recently developed using item response theory (IRT). The current study evaluated the psychometric properties of this scale in two samples of cancer patients using classical test theory (CTT). Two samples were used: 121 men with prostate cancer and 136 patients scheduled to undergo hematopoietic cell transplantation (HCT) for hematologic cancer. All participants completed the PROMIS Cancer Fatigue Short Form as well as validated measures of fatigue, vitality, and depression. HCT patients also completed measures of anxiety, perceived stress, and a clinical interview designed to identify cases of cancer-related fatigue. PROMIS Cancer Fatigue Short Form items loaded on a single factor (CFI=0.948) and the scale demonstrated good internal consistency reliability in both samples (Cronbach's alphas>0.86). Correlations with psychosocial measures were significant (p values<.0001) and in the expected direction, offering evidence for convergent and concurrent validity. PROMIS Fatigue scores were significantly higher in patients who met case definition criteria for cancer-related fatigue (p<.0001), demonstrating criterion validity. The current study provides evidence that the PROMIS Cancer Fatigue Short Form is a reliable and valid measure of fatigue in cancer patients. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Evaluation of the Psychometric Properties of the PROMIS Cancer Fatigue Short Form with Cancer Patients

    PubMed Central

    Cessna, Julie M.; Jim, Heather S.L.; Sutton, Steven K.; Asvat, Yasmin; Small, Brent J.; Salsman, John M.; Zachariah, Babu; Fishman, Mayer; Field, Teresa; Fernandez, Hugo; Perez, Lia; Jacobsen, Paul B.

    2016-01-01

    Objective Fatigue is common among cancer patients and adversely impacts quality of life. As such, it is important to measure fatigue accurately in a way that is not burdensome to patients. The 7-item Patient Reported Outcome Measurement Information System (PROMIS) Cancer Fatigue Short Form scale was recently developed using item response theory (IRT). The current study evaluated the psychometric properties of this scale in two samples of cancer patients using classical test theory (CTT). Methods Two samples were used: 121 men with prostate cancer and 136 patients scheduled to undergo hematopoietic cell transplantation (HCT) for hematologic cancer. All participants completed the PROMIS Cancer Fatigue Short Form as well as validated measures of fatigue, vitality, and depression. HCT patients also completed measures of anxiety, perceived stress, and a clinical interview designed to identify cases of cancer -related fatigue. Results PROMIS Cancer Fatigue Short Form items loaded on a single factor (CFI = 0.948) and the scale demonstrated good internal consistency reliability in both samples (Cronbach’s alphas > 0.86). Correlations with psychosocial measures were significant (p-values < .0001) and in the expected direction, offering evidence for convergent and concurrent validity. PROMIS Fatigue scores were significantly higher in patients who met case definition criteria for cancer-related fatigue (p < .0001), demonstrating criterion validity. Conclusion The current study provides evidence that the PROMIS Cancer Fatigue Short Form is a reliable and valid measure of fatigue in cancer patients. PMID:26800633

  9. Effects of the Heterogeneity in the Electron Beam Welded Joint on Mechanical Properties of Ti6Al4V Alloy

    NASA Astrophysics Data System (ADS)

    Liu, Jing; Gao, Xiao-Long; Zhang, Lin-Jie; Zhang, Jian-Xun

    2015-01-01

    The aim of this investigation was to evaluate the effect of microstructure heterogeneity on the tensile and low cycle fatigue properties of electron beam welded (EBW) Ti6Al4V sheets. To achieve this goal, the tensile and low cycle fatigue property in the EBW joints and base metal (BM) specimens is compared. During the tensile testing, digital image correlation technology was used to measure the plastic strain field evolution within the specimens. The experimental results showed that the tensile ductility and low cycle fatigue strength of EBW joints are lower than that of BM specimens, mainly because of the effect of microstructure heterogeneity of the welded joint. Moreover, the EBW joints exhibit the cyclic hardening behavior during low fatigue process, while BM specimens exhibit the cyclic softening behavior. Compared with the BM specimens with uniform microstructure, the heterogeneity of microstructure in the EBW joint is found to decrease the mechanical properties of welded joint.

  10. The effect of microstructure on the tensile and fatigue behavior of Ti-22Al-23Nb in air and vacuum

    NASA Astrophysics Data System (ADS)

    Luetjering, Stephanie

    Titanium aluminide alloys containing the ordered orthorhombic (O) phase, based on Ti2AlNb, exhibit high specific strengths at elevated temperature along with good room temperature tensile ductility and fracture toughness values. They are thus considered as potential materials for aerospace applications both in their monolithic form and as matrices in metal matrix composites. Microstructure/property relationships have been studied to a great extend with regard to tensile and creep properties. However, only little is known in the key areas of fatigue crack initiation, fatigue crack propagation and fatigue life. The main objective of this work therefore is to get a comprehensive understanding of the effects of microstructural parameters (such as volume fraction of the individual phases, their size and distribution) on the cyclic properties of O-based titanium aluminides. Furthermore, the performance of these alloys in aggressive environments, a critical issue for this alloy class, is being addressed. Tensile, isothermal fatigue, and fatigue crack growth (FCG) tests were conducted at 20°C and 540°C both in lab air and vacuum (pressure ≤ 1 x 10-6 torr) on three microstructural conditions of a representative O-based titanium alloy, Ti-22Al-23Nb. Results indicate a strong effect of microstructure on tensile and FCG properties, whereas only a slight influence of microstructure on the fatigue life is evident. The O phase contributes mainly to the material's yield stress. The tensile elongation is predominantly influenced by the beta phase volume fraction. The observed effect of microstructure on the FCG behavior is attributed to crack closure, crack front geometry and crystallographic texture. Environmental effects on the fatigue life are pronounced at elevated temperature and high applied stress amplitudes only. These conditions lead to premature crack initiation at the specimen's surface for testing in air, whereas testing in vacuum results in subsurface crack nucleation and an extended fatigue life of about two orders of magnitude. The FCG behavior is influenced by the environment at both 20°C and 540°C, proposing fatigue crack growth mechanisms enhanced by hydrogen embrittlement.

  11. Laser Peening for Reliable Fatigue Life. Delivery Order 0025: Volume 1 - Simulation and Optimization of a Laser Peening Process

    DTIC Science & Technology

    2009-10-01

    122 viii FOREWARD This report represents a portion of the total work conducted under Contract No. FA8650-04-D-3446-25 for the Wright...applied to improve fatigue and corrosion properties of metals. The ability to use a high energy laser pulse to generate shock waves, inducing a...Laser Peening (LP). In the LP process, favorable residual stresses are induced on a surface to improve fatigue and fretting properties of metals. In

  12. Hygrothermal Effects in Continuous Fibre Reinforced Composites. Part 4. Mechanical Properties 2 - Fatigue and Time-Dependent Properties (Effets Hygrothermiques dans les Composites a Renfort de Fibre Continu. Partie 4. Proprietes Mecaniques 2 - Fatigue et Proprietes Dependant du Temps)

    DTIC Science & Technology

    1983-09-01

    reduction of stress intensity at a crack tip due to Lreep was responsible for increasing the fatigue life during the "slow- fast " L .sts. As creep is clearly...Aeronautical Establishment Structures and Materials Laboratory SPONSORING AGENCY/AGENCE DE SUBVENTION 8 DATE FILE/DOSSIER LAB. ORDER PAGES FIGS/ DIAGRAMMES

  13. Research on graphite reinforced glass matrix composites

    NASA Technical Reports Server (NTRS)

    Prewo, K. M.; Thompson, E. R.

    1981-01-01

    A broad group of fibers and matrices were combined to create a wide range of composite properties. Primary material fabrication procedures were developed which readily permit the fabrication of flat plate and shaped composites. Composite mechanical properties were measured under a wide range of test conditions. Tensile, flexure mechanical fatigue, thermal fatigue, fracture toughness, and fatigue crack growth resistance were evaluated. Selected fiber-matrix combinations were shown to maintain their strength at up to 1300 K when tested in an inert atmosphere. Composite high temperature mechanical properties were shown to be limited primarily by the oxidation resistance of the graphite fibers. Composite thermal dimensional stability was measured and found to be excellent.

  14. Report on Visit to the U.S. and Europe in May 1983, Covering the 1983 ICAF (International Committee on Aeronautical Fatigue) Meetings and Related Visits.

    DTIC Science & Technology

    1983-07-01

    thickness 2/20 2.4 FATIGUE PROPERTIES OF ALUMINIUM ALLOYS 2/20 2.4.1 Fractography and microstructural relationships in aluminium alloys 2/20 2.4.2 Effect... alloy 7010 2/24 2.4.5 Crack propagation and toughness In 7475-T73 sheet 2/25 2.4.6 Evaluation of aluminium-lithium alloys 2/25 2.5 FATIGUE PROPERTIES OF...of composites 2/41 2.8.5 Development of carbon fibre reinforced plastics with suitable properties for use in high performance structures 2/42 2.8.6

  15. Assessing fatigue in inflammatory bowel disease: comparison of three fatigue scales.

    PubMed

    Norton, C; Czuber-Dochan, W; Bassett, P; Berliner, S; Bredin, F; Darvell, M; Forbes, A; Gay, M; Ream, E; Terry, H

    2015-07-01

    Fatigue is commonly reported by patients with inflammatory bowel disease (IBD), both in quiescent and active disease. Few fatigue scales have been tested in IBD. To assess three fatigue assessment scales in IBD and to determine correlates of fatigue. Potential participants (n = 2131) were randomly selected from an IBD organisation's members' database; 605 volunteered and were posted three fatigue scales: Inflammatory Bowel Disease Fatigue scale, Multidimensional Fatigue Inventory and Multidimensional Assessment Fatigue scale and questionnaires assessing anxiety, depression, quality of life (QoL) and IBD activity. The questionnaires were tested for stability over time with another group (n = 70) of invited participants. Internal consistency was measured by Cronbach's alpha and test-retest reliability by the intraclass correlation coefficient (ICC). Four hundred and sixty-five of 605 (77%) questionnaires were returned; of 70 invited, 48/70 returned test (68.6%) and 41/70 (58.6%) returned retest. The three scales are highly correlated (P < 0.001). Test-retest suggests reasonable agreement with ICC values between 0.65 and 0.84. Lower age, female gender, IBD diagnosis, anxiety, depression and QoL were associated with fatigue (P < 0.001) on univariable analysis. However, on multivariable analysis only depression and low QoL were consistently associated with fatigue, while female gender was associated on most scales. IBD diagnosis, age and other factors were not consistently associated with severity or impact of fatigue once other variables were controlled for. All three fatigue scales are likely to measure IBD fatigue adequately. Responsiveness to change has not been tested. Depression, poorer QoL and probably female gender are the major associations of fatigue in IBD. © 2015 John Wiley & Sons Ltd.

  16. Cognitive and affective mechanisms of pain and fatigue in multiple sclerosis.

    PubMed

    Arewasikporn, Anne; Turner, Aaron P; Alschuler, Kevin N; Hughes, Abbey J; Ehde, Dawn M

    2018-06-01

    To examine the extent to which pain catastrophizing, fatigue catastrophizing, positive affect, and negative affect simultaneously mediated the associations between common symptoms of multiple sclerosis (MS; i.e., pain, fatigue) and impact on daily life, depressive symptoms, and resilience. Participants were community-dwelling adults with MS (N = 163) reporting chronic pain, fatigue, and/or moderate depressive symptoms. Multiple mediation path analysis was used to model potential mediators of pain and fatigue separately, using baseline data from a randomized controlled trial comparing two symptom self-management interventions. In the pain model, pain catastrophizing was a mediator of pain intensity with pain interference and depression. Negative affect was a mediator of pain intensity with depression and resilience. In the fatigue model, fatigue catastrophizing was a mediator of fatigue intensity with fatigue impact and depression. Positive affect was a mediator of fatigue intensity with depression and resilience. These findings provide preliminary support for the presence of differential effects of cognitive-affective mediators and suggest potential targets for psychological interventions based on an individual's clinical presentation. The differential mediating effects also support the inclusion of both positive and negative aspects of psychological health in models of pain and fatigue, which would not be otherwise apparent if negative constructs were examined in isolation. To our knowledge, this is the first study to utilize a multivariate path analysis approach to examine cognitive-affective mediators of pain and fatigue in MS, while also examining positive and negative constructs concurrently. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  17. The influence of fatigue on decision-making in athletes: a systematic review.

    PubMed

    Almonroeder, Thomas Gus; Tighe, Sarah Marie; Miller, Taylor Matthew; Lanning, Christopher Ray

    2018-06-14

    A potential challenge associated with sports is that athletes must often perform the cognitive processing associated with decision-making (i.e., movement selection) when fatigued. The purpose of this systematic review was to summarise studies that have analysed the extent to which fatigue influences the effects of decision-making on lower extremity mechanics during execution of common sports manoeuvres. We specifically focused on mechanics associated with ACL injury risk. Reviewers searched the PubMed, SPORTDiscus, CINAHL and Web of Science databases. The search identified 183 unique articles. Five of these articles met our eligibility criteria. Two of the studies incorporated fatigue protocols where athletes progressed to exhaustion and found that the effects of decision-making on mechanics were more pronounced with fatigue. The nature of the results appears to indicate that fatigue may compromise an athlete's cognitive processing in a manner that diminishes their ability to control movement when rapid decision-making is required. However, three subsequent studies utilised fatigue protocols designed to mimic sports participation and found that fatigue did not influence the effects of decision-making on mechanics. In general, these findings appear to indicate that fatigue may only affect the cognitive processing associated with decision-making when athletes approach a state of exhaustion.

  18. Effects of foot reflexology on fatigue, sleep and pain: a systematic review and meta-analysis.

    PubMed

    Lee, Jeongsoon; Han, Misook; Chung, Younghae; Kim, Jinsun; Choi, Jungsook

    2011-12-01

    The purpose of this study was to evaluate the effectiveness of foot reflexology on fatigue, sleep and pain. A systematic review and meta-analysis were conducted. Electronic database and manual searches were conducted on all published studies reporting the effects of foot reflexology on fatigue, sleep, and pain. Forty four studies were eligible including 15 studies associated with fatigue, 18 with sleep, and 11 with pain. The effects of foot reflexology were analyzed using Comprehensive Meta-Analysis Version 2.0. The homogeneity and the fail-safe N were calculated. Moreover, a funnel plot was used to assess publication bias. The effects on fatigue, sleep, and pain were not homogeneous and ranged from 0.63 to 5.29, 0.01 to 3.22, and 0.43 to 2.67, respectively. The weighted averages for fatigue, sleep, and pain were 1.43, 1.19, and 1.35, respectively. No publication bias was detected as evaluated by fail-safe N. Foot reflexology had a larger effect on fatigue and sleep and a smaller effect on pain. This meta-analysis indicates that foot reflexology is a useful nursing intervention to relieve fatigue and to promote sleep. Further studies are needed to evaluate the effects of foot reflexology on outcome variables other than fatigue, sleep and pain.

  19. Major League Baseball pace-of-play rules and their influence on predicted muscle fatigue during simulated baseball games.

    PubMed

    Sonne, Michael W L; Keir, Peter J

    2016-11-01

    Major League Baseball (MLB) has proposed rule changes to speed up baseball games. Reducing the time between pitches may impair recovery from fatigue. Fatigue is a known precursor to injury and may jeopardise joint stability. This study examined how fatigue accumulated during baseball games and how different pace of play initiatives may influence fatigue. Pitcher data were retrieved from a public database. A predictive model of muscle fatigue estimated muscle fatigue in 8 arm muscles. A self-selected pace (22.7 s), 12 s pace (Rule 8.04 from the MLB) and a 20 s rest (a pitch clock examined in the 2014 Arizona Fall League (AFL)) were examined. Significantly more muscle fatigue existed in both the AFL and Rule 8.04 conditions, when compared to the self-selected pace condition (5.01 ± 1.73%, 3.95 ± 1.20% and 3.70 ± 1.10% MVC force lost, respectively). Elevated levels of muscle fatigue are predicted in the flexor-pronator mass, which is responsible for providing elbow stability. Reduced effectiveness of the flexor-pronator mass may reduce the active contributions to joint rotational stiffness, increasing strain on the ulnar collateral ligament (UCL) and possibly increasing injury risk.

  20. Psychometric Evaluation of the Multidimensional Assessment of Fatigue Scale for Use with Pregnant and Postpartum Women

    ERIC Educational Resources Information Center

    Fairbrother, Nichole; Hutton, Eileen K.; Stoll, Kathrin; Hall, Wendy; Kluka, Sandy

    2008-01-01

    Although fatigue is a common experience for pregnant women and new mothers, few measures of fatigue have been validated for use with this population. To address this gap, the authors assessed psychometric properties of the Multidimensional Assessment of Fatigue (MAF) scale, which was used in 2 independent samples of pregnant women. Results…

  1. Fatigue properties of superelastic Ti-Ni filaments and braided cables for bone fixation.

    PubMed

    Baril, Y; Brailovski, V

    2010-02-01

    This work is focused on the fatigue properties of the braided hollow tubular cables for bone fixation made of superelastic Ti-Ni filaments. To evaluate the fatigue life of the cable and the impact of braiding on fatigue life, a comparative study was conducted on both the braided cable and the single filament. The results of strain-controlled fatigue testing under variable mean and alternating strain conditions demonstrated that: (a) even though alternating strain is the most influent parameter, mean strain also has a significant impact on the fatigue life of both the filament and the braid; an improvement in the braided cable's fatigue life is observed under mean strains corresponding to the middle of the superelastic loop plateau; and (b) run-out (10(5) cycles) is reached at 1% of alternating strain for the filament, and at 0.3% for the braided cable. It was proved that the negative impact of braiding on fatigue life is caused: (a) by friction-induced damage of the braided filaments during cable manufacturing and (b) by locally occurring bending in the vicinity of the filaments' crossing, combined with the interfilament fretting during repetitive stretching of the braided cable.

  2. Effects of microstructural inclusions on fatigue life of polyether ether ketone (PEEK).

    PubMed

    Simsiriwong, Jutima; Shrestha, Rakish; Shamsaei, Nima; Lugo, Marcos; Moser, Robert D

    2015-11-01

    In this study, the effects of microstructural inclusions on fatigue life of polyether ether ketone (PEEK) was investigated. Due to the versatility of its material properties, the semi-crystralline PEEK polymer has been increasingly adopted in a wide range of applications particularly as a biomaterial for orthopedic, trauma, and spinal implants. To obtain the cyclic behavior of PEEK, uniaxial fully-reversed strain-controlled fatigue tests were conducted at ambient temperature and at 0.02 mm/mm to 0.04 mm/mm strain amplitudes. The microstructure of PEEK was obtained using the optical and the scanning electron microscope (SEM) to determine the microstructural inclusion properties in PEEK specimen such as inclusion size, type, and nearest neighbor distance. SEM analysis was also conducted on the fracture surface of fatigue specimens to observe microstructural inclusions that served as the crack incubation sites. Based on the experimental strain-life results and the observed microstructure of fatigue specimens, a microstructure-sensitive fatigue model was used to predict the fatigue life of PEEK that includes both crack incubation and small crack growth regimes. Results show that the employed model is applicable to capture microstructural effects on fatigue behavior of PEEK. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Impact of surface porosity and topography on the mechanical behavior of high strength biomedical polymers.

    PubMed

    Evans, Nathan T; Irvin, Cameron W; Safranski, David L; Gall, Ken

    2016-06-01

    The ability to control the surface topography of orthopedic implant materials is desired to improve osseointegration but is often at the expense of mechanical performance in load bearing environments. Here we investigate the effects of surface modifications, roughness and porosity, on the mechanical properties of a set of polymers with diverse chemistry and structure. Both roughness and surface porosity resulted in samples with lower strength, failure strain and fatigue life due to stress concentrations at the surface; however, the decrease in ductility and fatigue strength were greater than the decrease in monotonic strength. The fatigue properties of the injection molded polymers did not correlate with yield strength as would be traditionally observed in metals. Rather, the fatigue properties and the capacity to maintain properties with the introduction of surface porosity correlated with the fracture toughness of the polymers. Polymer structure impacted the materials relative capacity to maintain monotonic and cyclic properties in the face of surface texture and porosity. Generally, amorphous polymers with large ratios of upper to lower yield points demonstrated a more significant drop in ductility and fatigue strength with the introduction of porosity compared to crystalline polymers with smaller ratios in their upper to lower yield strength. The latter materials have more effective dissipation mechanisms to minimize the impact of surface porosity on both monotonic and cyclic damage. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Laboratory Study on the Fatigue Resistance of Asphaltic Concrete Containing Titanium Dioxide

    NASA Astrophysics Data System (ADS)

    Buhari, Rosnawati; Ezree Abdullah, Mohd; Khairul Ahmad, Mohd; Azhar Tajudin, Saiful; Khatijah Abu Bakar, Siti

    2018-03-01

    This study aims to evaluate the fatigue performance of modified asphalt mixture using Indirect Tensile Fatigue Test. Titanium Dioxide (TiO2) powder in a form of rutile was used for producing asphalt concrete with lower mixing and compaction temperature compared to conventional hot mix asphalt without reducing its physical and mechanical also resistance to fatigue. The characteristic of the asphalt and modified asphalt was evaluated using penetration test, softening test and rotational viscosity test. Titanium dioxide of 2%, 4%, 6%, 8% and 10% by weight of asphalt has been incorporated into unaged 80/100 asphalt mix in order to improvise its performance and to fulfill the objectives of this experimental study. As a result, TiO2 as an additive is potential to decrease the penetration and increasing the softening point of the asphalt. In terms of fatigue performance testing, addition TiO2 additive does help in improving the fatigue properties as it shows greater result than the control asphalt. In conclusion, TiO2 is great in improving fatigue properties.

  5. A Rasch Analysis of Assessments of Morning and Evening Fatigue in Oncology Patients Using the Lee Fatigue Scale.

    PubMed

    Lerdal, Anners; Kottorp, Anders; Gay, Caryl; Aouizerat, Bradley E; Lee, Kathryn A; Miaskowski, Christine

    2016-06-01

    To accurately investigate diurnal variations in fatigue, a measure needs to be psychometrically sound and demonstrate stable item function in relationship to time of day. Rasch analysis is a modern psychometric approach that can be used to evaluate these characteristics. To evaluate, using Rasch analysis, the psychometric properties of the Lee Fatigue Scale (LFS) in a sample of oncology patients. The sample comprised 587 patients (mean age 57.3 ± 11.9 years, 80% women) undergoing chemotherapy for breast, gastrointestinal, gynecological, or lung cancer. Patients completed the 13-item LFS within 30 minutes of awakening (i.e., morning fatigue) and before going to bed (i.e., evening fatigue). Rasch analysis was used to assess validity and reliability. In initial analyses of differential item function, eight of the 13 items functioned differently depending on whether the LFS was completed in the morning or in the evening. Subsequent analyses were conducted separately for the morning and evening fatigue assessments. Nine of the morning fatigue items and 10 of the evening fatigue items demonstrated acceptable goodness-of-fit to the Rasch model. Principal components analyses indicated that both morning and evening assessments demonstrated unidimensionality. Person-separation indices indicated that both morning and evening fatigue scales were able to distinguish four distinct strata of fatigue severity. Excluding four items from the morning fatigue scale and three items from the evening fatigue scale improved the psychometric properties of the LFS for assessing diurnal variations in fatigue severity in oncology patients. Copyright © 2016 American Academy of Hospice and Palliative Medicine. Published by Elsevier Inc. All rights reserved.

  6. Fatigue Effect on Low-Frequency Force Fluctuations and Muscular Oscillations during Rhythmic Isometric Contraction

    PubMed Central

    Lin, Yen-Ting; Kuo, Chia-Hua; Hwang, Ing-Shiou

    2014-01-01

    Continuous force output containing numerous intermittent force pulses is not completely smooth. By characterizing force fluctuation properties and force pulse metrics, this study investigated adaptive changes in trajectory control, both force-generating capacity and force fluctuations, as fatigue progresses. Sixteen healthy subjects (20–24 years old) completed rhythmic isometric gripping with the non-dominant hand to volitional failure. Before and immediately following the fatigue intervention, we measured the gripping force to couple a 0.5 Hz sinusoidal target in the range of 50–100% maximal voluntary contraction. Dynamic force output was off-line decomposed into 1) an ideal force trajectory spectrally identical to the target rate; and 2) a force pulse trace pertaining to force fluctuations and error-correction attempts. The amplitude of ideal force trajectory regarding to force-generating capacity was more suppressed than that of the force pulse trace with increasing fatigue, which also shifted the force pulse trace to lower frequency bands. Multi-scale entropy analysis revealed that the complexity of the force pulse trace at high time scales increased with fatigue, contrary to the decrease in complexity of the force pulse trace at low time scales. Statistical properties of individual force pulses in the spatial and temporal domains varied with muscular fatigue, concurrent with marked suppression of gamma muscular oscillations (40–60 Hz) in the post-fatigue test. In conclusion, this study first reveals that muscular fatigue impairs the amplitude modulation of force pattern generation more than it affects the amplitude responsiveness of fine-tuning a force trajectory. Besides, motor fatigue results disadvantageously in enhancement of motor noises, simplification of short-term force-tuning strategy, and slow responsiveness to force errors, pertaining to dimensional changes in force fluctuations, scaling properties of force pulse, and muscular oscillation. PMID:24465605

  7. Acute effects of muscle fatigue on anticipatory and reactive postural control in older individuals: a systematic review of the evidence.

    PubMed

    Papa, Evan V; Garg, Hina; Dibble, Leland E

    2015-01-01

    Falls are the leading cause of traumatic brain injury and fractures and the No. 1 cause of emergency department visits by older adults. Although declines in muscle strength and sensory function contribute to increased falls in older adults, skeletal muscle fatigue is often overlooked as an additional contributor to fall risk. In an effort to increase awareness of the detrimental effects of skeletal muscle fatigue on postural control, we sought to systematically review research studies examining this issue. The specific purpose of this review was to provide a detailed assessment of how anticipatory and reactive postural control tasks are influenced by acute muscle fatigue in healthy older individuals. An extensive search was performed using the CINAHL, Scopus, PubMed, SPORTDiscus, and AgeLine databases for the period from inception of each database to June 2013. This systematic review used standardized search criteria and quality assessments via the American Academy for Cerebral Palsy and Developmental Medicine Methodology to Develop Systematic Reviews of Treatment Interventions (2008 version, revision 1.2, AACPDM, Milwaukee, Wisconsin). A total of 334 citations were found. Six studies were selected for inclusion, whereas 328 studies were excluded from the analytical review. The majority of articles (5 of 6) utilized reactive postural control paradigms. All studies incorporated extrinsic measures of muscle fatigue, such as declines in maximal voluntary contraction or available active range of motion. The most common biomechanical postural control task outcomes were spatial measures, temporal measures, and end-points of lower extremity joint kinetics. On the basis of systematic review of relevant literature, it appears that muscle fatigue induces clear deteriorations in reactive postural control. A paucity of high-quality studies examining anticipatory postural control supports the need for further research in this area. These results should serve to heighten awareness regarding the potential negative effects of acute muscle fatigue on postural control and support the examination of muscle endurance training as a fall risk intervention in future studies.

  8. Fatigue properties of MA 6000E, a gamma-prime strengthened ODS alloy. [Oxide Dispersion Strengthened Ni-base alloy for gas turbine blade applications

    NASA Technical Reports Server (NTRS)

    Kim, Y. G.; Merrick, H. F.

    1980-01-01

    MA 6000E is a corrosion resistant, gamma-prime strengthened ODS alloy under development for advanced turbine blade applications. The high temperature, 1093 C, rupture strength is superior to conventional nickel-base alloys. This paper addresses the fatigue behavior of the alloy. Excellent properties are exhibited in low and high cycle fatigue and also thermal fatigue. This is attributed to a unique combination of microstructural features, i.e., a fine distribution of dispersed oxides and other nonmetallics, and the highly elongated grain structure which advantageously modify the deformation characteristics and crack initiation and propagation modes from that characteristic of conventional gamma-prime hardened superalloys.

  9. Application of millisecond pulsed laser for thermal fatigue property evaluation

    NASA Astrophysics Data System (ADS)

    Pan, Sining; Yu, Gang; Li, Shaoxia; He, Xiuli; Xia, Chunyang; Ning, Weijian; Zheng, Caiyun

    2018-02-01

    An approach based on millisecond pulsed laser is proposed for thermal fatigue property evaluation in this paper. Cyclic thermal stresses and strains within millisecond interval are induced by complex and transient temperature gradients with pulsed laser heating. The influence of laser parameters on surface temperature is studied. The combination of low pulse repetition rate and high pulse energy produces small temperature oscillation, while high pulse repetition rate and low pulse energy introduces large temperature shock. The possibility of application is confirmed by two thermal fatigue tests of compacted graphite iron with different laser controlled modes. The developed approach is able to fulfill the preset temperature cycles and simulate thermal fatigue failure of engine components.

  10. Effects of Grain Size on the Fatigue Properties in Cold-Expanded Austenitic HNSs

    NASA Astrophysics Data System (ADS)

    Shin, Jong-Ho; Kim, Young-Deak; Lee, Jong-Wook

    2018-05-01

    Cold-expanded austenitic high nitrogen steel (HNS) was subjected to investigate the effects of grain size on the stress-controlled high cycle fatigue (HCF) as well as the strain-controlled low cycle fatigue (LCF) properties. The austenitic HNSs with two different grain sizes (160 and 292 μm) were fabricated by the different hot forging strain. The fine-grained (FG) specimen exhibited longer LCF life and higher HCF limit than those of the coarse-grained (CG) specimen. Fatigue crack growth testing showed that crack propagation rate in the FG specimen was the same as that in the CG specimen, implying that crack propagation rate did not affect the discrepancy of LCF life and HCF limit between two cold-expanded HNSs. Therefore, it was estimated that superior LCF and HCF properties in the FG specimen resulted from the retardation of the fatigue crack initiation as compared with the CG specimen. Transmission electron microscopy showed that the effective grain size including twin boundaries are much finer in the FG specimen than that in the CG specimen, which can give favorable contributions to strengthening.

  11. Bipolar ferroelectric fatigue in (K0.5Na0.5)(Nb0.7Ta0.3)O3 ceramics and improved fatigue endurance on addition of ZnO

    NASA Astrophysics Data System (ADS)

    Vineetha, P.; Shanmuga Priya, B.; Venkata Saravanan, K.

    2018-04-01

    Ferroelectric ceramics are the key components in piezoelectric devices used today, thus long term reliability is a major industrial concern. The two important things that have to be considered in the ferroelectric material based device are aging and fatigue. The first one describes degradation with time whereas the later one is characterized by the change of material property during electrical loading. In the present work ferroelectric polarization and bipolar fatigue properties of undoped and ZnO doped lead free (K0.5Na0.5)(Nb0.7Ta0.3)O3 (KNNT) ceramics prepared by solid state reaction method were investigated. X-ray diffraction analysis of the samples reveal perovskite monoclinic phase along with the secondary phase of K2Nb4O11. The ferroelectric studies indicate that ZnO addition reduce fatigue as well as a well saturated hysteresis loop is obtained. The results reveal that addition of ZnO enhances the ferroelectric properties of KNNT ceramics.

  12. Designing fine aggregate mixtures to evaluate fatigue crack-growth in asphalt mixtures.

    DOT National Transportation Integrated Search

    2011-04-01

    Fatigue cracking is a significant form of pavement distress in flexible pavements. The properties of the : sand-asphalt mortars or fine aggregate matrix (FAM) can be used to characterize the evolution of fatigue : crack growth and self-healing in asp...

  13. Uniaxial low cycle fatigue behavior for pre-corroded 16MND5 bainitic steel in simulated pressurized water reactor environment

    NASA Astrophysics Data System (ADS)

    Chen, Xu; Ren, Bin; Yu, Dunji; Xu, Bin; Zhang, Zhe; Chen, Gang

    2018-06-01

    The effects of uniaxial tension properties and low cycle fatigue behavior of 16MND5 bainitic steel cylinder pre-corroded in simulated pressurized water reactor (PWR) were investigated by fatigue at room temperature in air and immersion test system, scanning electron microscopy (SEM), energy disperse spectroscopy (EDS). The experimental results indicated that the corrosion fatigue lives of 16MND5 specimen were significantly affected by the strain amplitude and simulated PWR environments. The compositions of corrosion products were complexly formed in simulated PWR environments. The porous corrosion surface of pre-corroded materials tended to generate pits as a result of promoting contact area to the fresh metal, which promoted crack initiation. For original materials, the fatigue cracks initiated at inclusions imbedded in the micro-cracks. Moreover, the simulated PWR environments degraded the mechanical properties and low cycle fatigue behavior of 16MND5 specimens remarkably. Pre-corrosion of 16MND5 specimen mainly affected the plastic term of the Coffin-Manson equation.

  14. Literature survey on oxidations and fatigue lives at elevated temperatures

    NASA Technical Reports Server (NTRS)

    Liu, H. W.; Oshida, Y.

    1984-01-01

    Nickel-base superalloys are the most complex and the most widely used for high temperature applications such as aircraft engine components. The desirable properties of nickel-base superalloys at high temperatures are tensile strength, thermomechanical fatigue resistance, low thermal expansion, as well as oxidation resistance. At elevated temperature, fatigue cracks are often initiated by grain boundary oxidation, and fatigue cracks often propagate along grain boundaries, where the oxidation rate is higher. Oxidation takes place at the interface between metal and gas. Properties of the metal substrate, the gaseous environment, as well as the oxides formed all interact to make the oxidation behavior of nickel-base superalloys extremely complicated. The important topics include general oxidation, selective oxidation, internal oxidation, grain boundary oxidation, multilayer oxide structure, accelerated oxidation under stress, stress-generation during oxidation, composition and substrate microstructural changes due to prolonged oxidation, fatigue crack initiation at oxidized grain boundaries and the oxidation accelerated fatigue crack propagation along grain boundaries.

  15. Capturing the post-exertional exacerbation of fatigue following physical and cognitive challenge in patients with chronic fatigue syndrome.

    PubMed

    Keech, Andrew; Sandler, Carolina X; Vollmer-Conna, Ute; Cvejic, Erin; Lloyd, Andrew R; Barry, Benjamin K

    2015-12-01

    To design and validate an instrument to capture the characteristic post-exertional exacerbation of fatigue in patients with chronic fatigue syndrome (CFS). Firstly, patients with CFS (N=19) participated in five focus group discussions to jointly explore the nature of fatigue and dynamic changes after activity, and inform development of a self-report instrument - the Fatigue and Energy Scale (FES). The psychometric properties of the FES were then examined in two case-control challenge studies: a physically-demanding challenge (moderate-intensity aerobic exercise; N=10 patients), and a cognitively-demanding challenge (simulated driving; N=11 patients). Finally, ecological validity was evaluated by recording in association with tasks of daily living (N=9). Common descriptors for fatigue included 'exhaustion', 'tiredness', 'drained of energy', 'heaviness in the limbs', and 'foggy in the head'. Based on the qualitative data, fatigue was conceptualised as consisting of 'physical' and 'cognitive' dimensions. Analysis of the psychometric properties of the FES showed good sensitivity to the changing symptoms during a post-exertional exacerbation of fatigue following both physical exercise and driving simulation challenges, as well as tasks of daily living. The 'fatigue' experienced by patients with CFS covers both physical and cognitive components. The FES captured the phenomenon of a post-exertional exacerbation of fatigue commonly reported by patients with CFS. The characteristics of the symptom response to physical and cognitive challenges were similar. Both the FES and the challenge paradigms offer key tools to reliably investigate biological correlates of the dynamic changes in fatigue. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Effects of N-acetylcysteine on isolated skeletal muscle contractile properties after an acute bout of aerobic exercise.

    PubMed

    Jannig, Paulo R; Alves, Christiano R R; Voltarelli, Vanessa A; Bozi, Luiz H M; Vieira, Janaina S; Brum, Patricia C; Bechara, Luiz R G

    2017-12-15

    The current study tested the hypotheses that 1) an acute bout of aerobic exercise impairs isolated skeletal muscle contractile properties and 2) N-acetylcysteine (a thiol antioxidant; NAC) administration can restore the impaired muscle contractility after exercise. At rest or immediately after an acute bout of aerobic exercise, extensor digitorum longus (EDL) and soleus muscles from male Wistar rats were harvested for ex vivo skeletal muscle contraction experiments. Muscles from exercised animals were incubated in Krebs Ringer's buffer in absence or presence of 20mM of NAC. Force capacity and fatigue properties were evaluated. Exercised EDL and soleus displayed lower force production across various stimulation frequencies (p<0.001), indicating that skeletal muscle force production was impaired after an acute bout of exercise. However, NAC treatment restored the loss of force production in both EDL and soleus after fatiguing exercise (p<0.05). Additionally, NAC treatment increased relative force production at different time points during a fatigue-induced protocol, suggesting that NAC treatment mitigates fatigue induced by successive contractions. NAC treatment improves force capacity and fatigue properties in ex vivo skeletal muscle from rats submitted to an acute bout of aerobic exercise. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Life prediction of l6 steel using strain-life curve and cyclic stress-strain curve by means of low cycle fatigue testing

    NASA Astrophysics Data System (ADS)

    Inamdar, Sanket; Ukhande, Manoj; Date, Prashant; Lomate, Dattaprasad; Takale, Shyam; Singh, RKP

    2017-05-01

    L6 Steel is used as die material in closed die hot forging process. This material is having some unique properties. These properties are due to its composition. Strain softening is the noticeable property of this material. Due to this in spite of cracking at high stress this material gets plastically deformed and encounters loss in time as well as money. Studies of these properties are necessary to nurture this material at fullest extent. In this paper, numerous experiments have been carried on L6 material to evaluate cyclic Stress - strain behavior as swell as strain-life behavior of the material. Low cycle fatigue test is carried out on MTS fatigue test machine at fully reverse loading condition R=-1. Also strain softening effect on forging metal forming process is explained in detail. The failed samples during low cycle fatigue test further investigated metallurgically on scanning electron microscopy. Based on this study, life estimation of hot forging die is carried out and it’s correlation with actual shop floor data is found out. This work also concludes about effect of pre-treatments like nitro-carburizing and surface coating on L6 steel material, to enhance its fatigue life to certain extent.

  18. The Relationships Between Microstructure, Tensile Properties and Fatigue Life in Ti-5Al-5V-5Mo-3Cr-0.4Fe (Ti-5553)

    NASA Astrophysics Data System (ADS)

    Foltz, John W., IV

    beta-titanium alloys are being increasingly used in airframes as a way to decrease the weight of the aircraft. As a result of this movement, Ti-5Al-5V-5Mo-3Cr-0.4Fe (Timetal 555), a high-strength beta titanium alloy, is being used on the current generation of landing gear. This alloy features good combinations of strength, ductility, toughness and fatigue life in alpha+beta processed conditions, but little is known about beta-processed conditions. Recent work by the Center for the Accelerated Maturation of Materials (CAMM) research group at The Ohio State University has improved the tensile property knowledge base for beta-processed conditions in this alloy, and this thesis augments the aforementioned development with description of how microstructure affects fatigue life. In this work, beta-processed microstructures have been produced in a Gleeble(TM) thermomechanical simulator and subsequently characterized with a combination of electron and optical microscopy techniques. Four-point bending fatigue tests have been carried out on the material to characterize fatigue life. All the microstructural conditions have been fatigue tested with the maximum test stress equal to 90% of the measured yield strength. The subsequent results from tensile tests, fatigue tests, and microstructural quantification have been analyzed using Bayesian neural networks in an attempt to predict fatigue life using microstructural and tensile inputs. Good correlation has been developed between lifetime predictions and experimental results using microstructure and tensile inputs. Trained Bayesian neural networks have also been used in a predictive fashion to explore functional dependencies between these inputs and fatigue life. In this work, one section discusses the thermal treatments that led to the observed microstructures, and the possible sequence of precipitation that led to these microstructures. The thesis then describes the implications of microstructure on fatigue life and implications of tensile properties on fatigue life. Several additional experiments are then described that highlight possible causes for the observed dependence of microstructure on fatigue life, including fractographic evidence to provide support of microstructural dependencies.

  19. β2-adrenergic stimulation enhances Ca2+ release and contractile properties of skeletal muscles, and counteracts exercise-induced reductions in Na+-K+-ATPase Vmax in trained men.

    PubMed

    Hostrup, M; Kalsen, A; Ortenblad, N; Juel, C; Mørch, K; Rzeppa, S; Karlsson, S; Backer, V; Bangsbo, J

    2014-12-15

    The aim of the present study was to examine the effect of β2-adrenergic stimulation on skeletal muscle contractile properties, sarcoplasmic reticulum (SR) rates of Ca(2+) release and uptake, and Na(+)-K(+)-ATPase activity before and after fatiguing exercise in trained men. The study consisted of two experiments (EXP1, n = 10 males, EXP2, n = 20 males), where β2-adrenoceptor agonist (terbutaline) or placebo was randomly administered in double-blinded crossover designs. In EXP1, maximal voluntary isometric contraction (MVC) of m. quadriceps was measured, followed by exercise to fatigue at 120% of maximal oxygen uptake (V̇O2, max ). A muscle biopsy was taken after MVC (non-fatigue) and at time of fatigue. In EXP2, contractile properties of m. quadriceps were measured with electrical stimulations before (non-fatigue) and after two fatiguing 45 s sprints. Non-fatigued MVCs were 6 ± 3 and 6 ± 2% higher (P < 0.05) with terbutaline than placebo in EXP1 and EXP2, respectively. Furthermore, peak twitch force was 11 ± 7% higher (P < 0.01) with terbutaline than placebo at non-fatigue. After sprints, MVC declined (P < 0.05) to the same levels with terbutaline as placebo, whereas peak twitch force was lower (P < 0.05) and half-relaxation time was prolonged (P < 0.05) with terbutaline. Rates of SR Ca(2+) release and uptake at 400 nm [Ca(2+)] were 15 ± 5 and 14 ± 5% (P < 0.05) higher, respectively, with terbutaline than placebo at non-fatigue, but declined (P < 0.05) to similar levels at time of fatigue. Na(+)-K(+)-ATPase activity was unaffected by terbutaline compared with placebo at non-fatigue, but terbutaline counteracted exercise-induced reductions in maximum rate of activity (Vmax) at time of fatigue. In conclusion, increased contractile force induced by β2-adrenergic stimulation is associated with enhanced rate of Ca(2+) release in humans. While β2-adrenergic stimulation elicits positive inotropic and lusitropic effects on non-fatigued m. quadriceps, these effects are blunted when muscles fatigue. © 2014 The Authors. The Journal of Physiology © 2014 The Physiological Society.

  20. Validity and everyday clinical applicability of lumbar muscle fatigue assessment methods in patients with chronic non-specific low back pain: a systematic review.

    PubMed

    Villafañe, Jorge H; Gobbo, Massimiliano; Peranzoni, Matteo; Naik, Ganesh; Imperio, Grace; Cleland, Joshua A; Negrini, Stefano

    2016-09-01

    This systematic literature review aimed at examining the validity and applicability in everyday clinical rehabilitation practise of methods for the assessment of back muscle fatiguability in patients with chronic non-specific low back pain (CNSLBP). Extensive research was performed in MEDLINE, Cumulative Index of Nursing and Allied Health Literature (CINAHL), Embase, Physiotherapy Evidence Database (PEDro) and Cochrane Central Register of Controlled Trials (CENTRAL) databases from their inception to September 2014. Potentially relevant articles were also manually looked for in the reference lists of the identified publications. Studies examining lumbar muscle fatigue in people with CNSLBP were selected. Two reviewers independently selected the articles, carried out the study quality assessment and extracted the results. A modified Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) scale was used to evaluate the scientific rigour of the selected works. Twenty-four studies fulfilled the selection criteria and were included in the systematic review. We found conflicting data regarding the validity of methods used to examine back muscle fatigue. The Biering-Sorensen test, performed in conjunction with surface electromyography spectral analysis, turned out to be the most widely used and comparatively, the most optimal modality currently available to assess objective back muscle fatigue in daily clinical practise, even though critical limitations are discussed. Future research should address the identification of an advanced method for lower back fatigue assessment in patients with CNSLBP which, eventually, might provide physical therapists with an objective and reliable test usable in everyday clinical practise. Implications for Rehabilitation Despite its limitations, the Biering-Sorensen test is currently the most used, convenient and easily available fatiguing test for lumbar muscles. To increase validity and reliability of the Biering-Sorensen test, concomitant activation of synergistic muscles should be taken into account. Pooled mean frequency and half-width of the spectrum are currently the most valid electromyographic parameters to assess fatigue in chronic non-specific low back pain. Body mass index, grading of pain and level of disability of the study population should be reported to enhance research quality.

  1. Thin-film diffusion brazing of titanium alloys

    NASA Technical Reports Server (NTRS)

    Mikus, E. B.

    1972-01-01

    A thin film diffusion brazing technique for joining titanium alloys by use of a Cu intermediate is described. The method has been characterized in terms of static and dynamic mechanical properties on Ti-6Al-4V alloy. These include tensile, fracture toughness, stress corrosion, shear, corrosion fatigue, mechanical fatigue and acoustic fatigue. Most of the properties of titanium joints formed by thin film diffusion brazing are equal or exceed base metal properties. The advantages of thin film diffusion brazing over solid state diffusion bonding and brazing with conventional braze alloys are discussed. The producibility advantages of this process over others provide the potential for producing high efficiency joints in structural components of titanium alloys for the minimum cost.

  2. Relationship between unit cell type and porosity and the fatigue behavior of selective laser melted meta-biomaterials.

    PubMed

    Amin Yavari, S; Ahmadi, S M; Wauthle, R; Pouran, B; Schrooten, J; Weinans, H; Zadpoor, A A

    2015-03-01

    Meta-materials are structures when their small-scale properties are considered, but behave as materials when their homogenized macroscopic properties are studied. There is an intimate relationship between the design of the small-scale structure and the homogenized properties of such materials. In this article, we studied that relationship for meta-biomaterials that are aimed for biomedical applications, otherwise known as meta-biomaterials. Selective laser melted porous titanium (Ti6Al4V ELI) structures were manufactured based on three different types of repeating unit cells, namely cube, diamond, and truncated cuboctahedron, and with different porosities. The morphological features, static mechanical properties, and fatigue behavior of the porous biomaterials were studied with a focus on their fatigue behavior. It was observed that, in addition to static mechanical properties, the fatigue properties of the porous biomaterials are highly dependent on the type of unit cell as well as on porosity. None of the porous structures based on the cube unit cell failed after 10(6) loading cycles even when the applied stress reached 80% of their yield strengths. For both other unit cells, higher porosities resulted in shorter fatigue lives for the same level of applied stress. When normalized with respect to their yield stresses, the S-N data points of structures with different porosities very well (R(2)>0.8) conformed to one single power law specific to the type of the unit cell. For the same level of normalized applied stress, the truncated cuboctahedron unit cell resulted in a longer fatigue life as compared to the diamond unit cell. In a similar comparison, the fatigue lives of the porous structures based on both truncated cuboctahedron and diamond unit cells were longer than that of the porous structures based on the rhombic dodecahedron unit cell (determined in a previous study). The data presented in this study could serve as a basis for design of porous biomaterials as well as for corroboration of relevant analytical and computational models. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Mechanical properties and fatigue crack growth rate of laser-welded 4130 steel

    NASA Astrophysics Data System (ADS)

    Tsay, L. W.; Li, Y. M.; Chen, C.; Cheng, S. W.

    1992-07-01

    The effect of the type of the postweld heat treatment (PWHT) on the mechanical and fatigue properties of AISI 4130 laser-welded steel were investigated using results of tensile, impact, and fatigue-crack-growth tests and SEM observations. The results show that necking of a tensile specimen is concentrated in the overtempered zone, resulting in an overall reduction in elongation of the weld. It was found that a 1-hr PWHT at 525 C or a laser multiple-tempering process can greatly improve the impact toughness of laser-welded steel.

  4. Adaption of an In-Situ Microscale Tension Technique to Enable Fatigue Testing (PREPRINT)

    DTIC Science & Technology

    2012-08-01

    mechanical properties , including fatigue performance, are strongly related to the crystallographic texture of these alloys.[5-7] With the combined use...effects, exploration of deformation micromechanisms, and measurement of the local properties in a bulk material (e.g., variations in the local...Approved for public release; distribution unlimited 9 microstructure of this material , would be expected to exhibit a reduction in mechanical properties

  5. Fatigue properties of an 1421 aluminum alloy processed by ECAE

    NASA Astrophysics Data System (ADS)

    Mogucheva, A.; Kaibyshev, R.

    2010-07-01

    Fatigue properties and fatigue crack growth rate were examined in an Al-Mg-Li-Sc-Zr allow subjected to equal channel angular extrusion (ECAE) with rectangular shape of channels up to a total strain of ~4 at a temperature of 325°C followed by solution treatment with subsequent oil quenching with aging. After this processing the fraction recrystallized was ~80pct; the deformed microstructure remains essentially unchanged under solution treatment due to high density of Al3Sc coherent dispersoids playing a role of effective pinning agents. It was shown that the fatigue limit of this material attained a value of ~185 MPa. Thermomechanical processing provided a decrease in fatigue crack propagation growth rate and an increase in the stress intensity factor, K1c, in comparison with extruded bar. However, characteristics of crack propagation resistance did not attain values suitable for application of this alloy for critical aircraft components.

  6. Influence of UFG structure formation on mechanical and fatigue properties in Ti-6Al-7Nb alloy

    NASA Astrophysics Data System (ADS)

    Polyakova, V. V.; Anumalasetty, V. N.; Semenova, I. P.; Valiev, R. Z.

    2014-08-01

    Ultrafine-grained (UFG) Ti alloys have potential applications in osteosynthesis and orthopedics due to high bio-compatibility and increased weight-to- strength ratio. In current study, Ti6Al7Nb ELI alloy is processed through equal channel angular pressing-conform (ECAP-Conform) and subsequent thermomechanical processing to generate a UFG microstructure. The fatigue properties of UFG alloys are compared to coarse grained (CG) alloys. Our study demonstrates that the UFG alloys with an average grain size of ~180 nm showed 35% enhancement of fatigue endurance limit as compared to coarse-grained alloys. On the fracture surfaces of the UFG and CG samples fatigue striations and dimpled relief were observed. However, the fracture surface of the UFG sample looks smoother; fewer amounts of secondary micro-cracks and more ductile rupture were also observed, which testifies to the good crack resistance in the UFG alloy after high-cyclic fatigue tests.

  7. An investigation on high temperature fatigue properties of tempered nuclear-grade deposited weld metals

    NASA Astrophysics Data System (ADS)

    Cao, X. Y.; Zhu, P.; Yong, Q.; Liu, T. G.; Lu, Y. H.; Zhao, J. C.; Jiang, Y.; Shoji, T.

    2018-02-01

    Effect of tempering on low cycle fatigue (LCF) behaviors of nuclear-grade deposited weld metal was investigated, and The LCF tests were performed at 350 °C with strain amplitudes ranging from 0.2% to 0.6%. The results showed that at a low strain amplitude, deposited weld metal tempered for 1 h had a high fatigue resistance due to high yield strength, while at a high strain amplitude, the one tempered for 24 h had a superior fatigue resistance due to high ductility. Deposited weld metal tempered for 1 h exhibited cyclic hardening at the tested strain amplitudes. Deposited weld metal tempered for 24 h exhibited cyclic hardening at a low strain amplitude but cyclic softening at a high strain amplitude. Existence and decomposition of martensite-austenite (M-A) islands as well as dislocations activities contributed to fatigue property discrepancy among the two tempered deposited weld metal.

  8. Psychometric evaluation of the Multidimensional Assessment of Fatigue scale for use with pregnant and postpartum women.

    PubMed

    Fairbrother, Nichole; Hutton, Eileen K; Stoll, Kathrin; Hall, Wendy; Kluka, Sandy

    2008-06-01

    Although fatigue is a common experience for pregnant women and new mothers, few measures of fatigue have been validated for use with this population. To address this gap, the authors assessed psychometric properties of the Multidimensional Assessment of Fatigue (MAF) scale, which was used in 2 independent samples of pregnant women. Results indicated that the psychometric properties of the scale were very similar across samples and time points. The scale possesses a high level of internal consistency, has good convergent validity with measures of sleep quality and depression, and discriminates well from a measure of social support. Contrary to previous evaluations of the MAF, data strongly suggest that the scale represents a unidimensional construct best represented by a single factor. Results indicate that the MAF is a useful measure of fatigue among pregnant and postpartum women.

  9. Effects of Hot Rolling on Low-Cycle Fatigue Properties of Zn-22 wt.% Al Alloy at Room Temperature

    NASA Astrophysics Data System (ADS)

    Dong, X. H.; Cao, Q. D.; Ma, S. J.; Han, S. H.; Tang, W.; Zhang, X. P.

    2016-09-01

    The effects of the reduction ratio (RR) on the low-cycle fatigue (LCF) properties of the Zn-22 wt.% Al (Zn-22Al) alloy were investigated. Various grain sizes from 0.68 to 1.13 μm were obtained by controlled RRs. Tensile and LCF tests were carried out at room temperature. Superplasticity and cyclic softening were observed. Strength and ductility of the rolled Zn-22Al alloy increased with the RR, owing to the decrease in its grain size. The RR did not affect the cyclic softening behavior of the alloy. The fatigue life of the alloy decreased with increasing strain amplitude, while the fatigue life first decreased and then increased with increasing RR. The longest fatigue life was observed for the alloy rolled at a RR of 60%. A bilinear Coffin-Manson relationship was observed to hold true for this alloy.

  10. Fatigue of restorative materials.

    PubMed

    Baran, G; Boberick, K; McCool, J

    2001-01-01

    Failure due to fatigue manifests itself in dental prostheses and restorations as wear, fractured margins, delaminated coatings, and bulk fracture. Mechanisms responsible for fatigue-induced failure depend on material ductility: Brittle materials are susceptible to catastrophic failure, while ductile materials utilize their plasticity to reduce stress concentrations at the crack tip. Because of the expense associated with the replacement of failed restorations, there is a strong desire on the part of basic scientists and clinicians to evaluate the resistance of materials to fatigue in laboratory tests. Test variables include fatigue-loading mode and test environment, such as soaking in water. The outcome variable is typically fracture strength, and these data typically fit the Weibull distribution. Analysis of fatigue data permits predictive inferences to be made concerning the survival of structures fabricated from restorative materials under specified loading conditions. Although many dental-restorative materials are routinely evaluated, only limited use has been made of fatigue data collected in vitro: Wear of materials and the survival of porcelain restorations has been modeled by both fracture mechanics and probabilistic approaches. A need still exists for a clinical failure database and for the development of valid test methods for the evaluation of composite materials.

  11. Guided Imagery as a Treatment Option for Fatigue

    PubMed Central

    Menzies, Victoria; Jallo, Nancy

    2013-01-01

    Purpose Fatigue is one of the most common complaints experienced among the general population. Because fatigue is recognized as a biobehavioral occurrence, a biobehavioral intervention such as guided imagery may be effective in reducing self-reported fatigue. Therefore, the purpose of this study was to explore the research literature related to the use of guided imagery as a nonpharmacological mind-body intervention for the symptom of fatigue. Method The electronic databases MEDLINE, CINAHL, PsychInfo, Psychology and Behavioral Sciences Collection and the Cochrane Library were searched from January 1980 to June 2010. Findings Of 24 articles retrieved, eight met the inclusion criteria and were included in this systematic literature review. Findings were inconsistent regarding the effectiveness of guided imagery on fatigue. Studies varied in study length, duration of the applied guided imagery intervention, dosage, and whether the images were targeted to the purpose of the intervention. Implications Guided imagery is a simple, economic intervention with the potential to effectively treat fatigue, thus further research is warranted using systematic, well-designed methodologies Standardizing guided imagery interventions according to total duration of exposure and targeted imagery in a variety of different populations adequately powered to detect changes will contribute to and strengthen nursing’s symptom-management armamentarium. PMID:21772047

  12. Study on Determination Method of Fatigue Testing Load for Wind Turbine Blade

    NASA Astrophysics Data System (ADS)

    Liao, Gaohua; Wu, Jianzhong

    2017-07-01

    In this paper, the load calculation method of the fatigue test was studied for the wind turbine blade under uniaxial loading. The characteristics of wind load and blade equivalent load were analyzed. The fatigue property and damage theory of blade material were studied. The fatigue load for 2MW blade was calculated by Bladed, and the stress calculated by ANSYS. Goodman modified exponential function S-N curve and linear cumulative damage rule were used to calculate the fatigue load of wind turbine blades. It lays the foundation for the design and experiment of wind turbine blade fatigue loading system.

  13. Unified risk analysis of fatigue failure in ductile alloy components during all three stages of fatigue crack evolution process.

    PubMed

    Patankar, Ravindra

    2003-10-01

    Statistical fatigue life of a ductile alloy specimen is traditionally divided into three stages, namely, crack nucleation, small crack growth, and large crack growth. Crack nucleation and small crack growth show a wide variation and hence a big spread on cycles versus crack length graph. Relatively, large crack growth shows a lesser variation. Therefore, different models are fitted to the different stages of the fatigue evolution process, thus treating different stages as different phenomena. With these independent models, it is impossible to predict one phenomenon based on the information available about the other phenomenon. Experimentally, it is easier to carry out crack length measurements of large cracks compared to nucleating cracks and small cracks. Thus, it is easier to collect statistical data for large crack growth compared to the painstaking effort it would take to collect statistical data for crack nucleation and small crack growth. This article presents a fracture mechanics-based stochastic model of fatigue crack growth in ductile alloys that are commonly encountered in mechanical structures and machine components. The model has been validated by Ray (1998) for crack propagation by various statistical fatigue data. Based on the model, this article proposes a technique to predict statistical information of fatigue crack nucleation and small crack growth properties that uses the statistical properties of large crack growth under constant amplitude stress excitation. The statistical properties of large crack growth under constant amplitude stress excitation can be obtained via experiments.

  14. How does tissue regeneration influence the mechanical behavior of additively manufactured porous biomaterials?

    PubMed

    Hedayati, R; Janbaz, S; Sadighi, M; Mohammadi-Aghdam, M; Zadpoor, A A

    2017-01-01

    Although the initial mechanical properties of additively manufactured porous biomaterials are intensively studied during the last few years, almost no information is available regarding the evolution of the mechanical properties of implant-bone complex as the tissue regeneration progresses. In this paper, we studied the effects of tissue regeneration on the static and fatigue behavior of selective laser melted porous titanium structures with three different porosities (i.e. 77, 81, and 85%). The porous structures were filled with four different polymeric materials with mechanical properties in the range of those observed for de novo bone (0.7GPa

  15. Fatigue and contraction of slow and fast muscles in hypokinetic/hypodynamic rats

    NASA Technical Reports Server (NTRS)

    Fell, R. D.; Gladden, L. B.; Steffen, J. M.; Musacchia, X. J.

    1985-01-01

    The effects of hypokinesia/hypodynamia (H/H) on the fatigability and contractile properties of the rat soleus (S) and gastrocnemius (G) muscles have been investigated experimentally. Whole body suspension for one week was used to induce H/H, and fatigue was brought on by train stimulation for periods of 45 and 16 minutes. Following stimulation, rapid rates of fatigue were observed in the G-muscles of the suspended rats, while minimal fatigue was observed in the S-muscles. The twitch and tetanic contractile properties of the muscles were measured before and after train stimulation. It is found that H/H suspension increased twitch tension in the G-muscles, but did not change any contractile properties in the S-muscles. The peak twitch, train, tetanic tensions and time to peak were unchanged in the S-muscles of the suspended rats. On the basis of the experimental results, it is concluded that 1 wk of muscle atropy induced by H/H significantly increases fatigability in G-muscles, but does not affect the contractile properties of fast-twitch and slow-twitch muscles.

  16. Characterization of fatigue properties of binders and mastics at intermediate temperatures using dynamic shear rheometer.

    DOT National Transportation Integrated Search

    2013-10-01

    The paper compares the fatigue life of neat and modified PAV-aged binders and mastics and : determines the influence of dust on fatigue life using the Linear Amplitude Sweep (LAS) method. It : will also compare these results with results from the DER...

  17. Fatigue-induced early onset of anticipatory postural adjustments in non-fatigued muscles: support for a centrally mediated adaptation.

    PubMed

    Strang, Adam J; Berg, William P; Hieronymus, Mathias

    2009-08-01

    Muscle fatigue has been shown to result in early onset of anticipatory postural adjustments (APAs) relative to those produced in a non-fatigued state. This adaptation is thought to reflect an attempt to preserve postural stability during a focal movement performed in a fatigued state. It remains unclear, however, whether this adaptation is of central (e.g., central nervous system motor command) or peripheral (e.g., muscle contractile properties), origin. One way to confirm that this adaptation is centrally driven is to identify fatigued-induced early APA onsets in non-fatigued muscles. In this study, APAs were obtained using a rapid bilateral reaching maneuver and recorded via surface electromyography before and after conditions of rest (n = 25) or fatigue (n = 25). Fatigue was generated using isokinetic exercise of the right leg. Results showed that fatigue-induced early APA onsets occurred in fatigued and non-fatigued muscles, confirming that fatigue-induced early APA onset is a centrally mediated adaptation.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skochko, G.W.; Herrmann, T.P.

    Axial load cycling fatigue tests of threaded fasteners are useful in determining fastener fatigue failure or design properties. By using appropriate design factors between the failure and design fatigue strengths, such tests are used to establish fatigue failure and design parameters of fasteners for axial and bending cyclic load conditions. This paper reviews the factors which influence the fatigue strength of low Alloy steel threaded fasteners, identifies those most significant to fatigue strength, and provides design guidelines based on the direct evaluation of fatigue tests of threaded fasteners. Influences on fatigue strength of thread manufacturing process (machining and rolling ofmore » threads), effect of fastener membrane and bending stresses, thread root radii, fastener sizes, fastener tensile strength, stress relaxation, mean stress, and test temperature are discussed.« less

  19. Fracture and fatigue behavior of shot-blasted titanium dental implants.

    PubMed

    Gil, F J; Planell, J A; Padrós, A

    2002-01-01

    This investigation studies the effect of the shot-blasting treatment on the cyclic deformation behavior of a commercially pure titanium, with two microstructures: equiaxed and acicular. The fatigue tests were carried out in artificial saliva medium at 37 degrees C. Cyclic deformation tests have been carried out up to fracture, and the fatigue crack nucleation and propagation have been analyzed. The results show that the shot-blasting treatment improves the fatigue life in the microstructures studied, and that the equiaxed was better in mechanical properties than the acicular. The cause of this improvement in the mechanical properties is due to the compressive stress on the material surface for the shot-blasted specimens. Hardness tests were carried out to determine the value of these internal stresses.

  20. Assessment of microalloying effects on the high temperature fatigue behavior of NiAl

    NASA Technical Reports Server (NTRS)

    Noebe, R. D.; Lerch, B. A.; Rao, K. B. S.

    1995-01-01

    Binary NiAl suffers from a lack of strength and poor creep properties at and above 1000 K. Poor creep resistance in turn affects low cycle fatigue (LCF) lives at low strain ranges due to the additional interactions of creep damage. One approach for improving these properties involved microalloying with either Zr or N. As an integral part of a much larger alloying program the low cycle fatigue behavior of Zr and N doped nickel aluminides produced by extrusion of prealloyed powders has been investigated. Strain controlled LCF tests were performed in air at 1000 K. The influence of these microalloying additions on the fatigue life and cyclic stress response of polycrystalline NiAl are discussed.

  1. The Effects of Mental Fatigue on Physical Performance: A Systematic Review.

    PubMed

    Van Cutsem, Jeroen; Marcora, Samuele; De Pauw, Kevin; Bailey, Stephen; Meeusen, Romain; Roelands, Bart

    2017-08-01

    Mental fatigue is a psychobiological state caused by prolonged periods of demanding cognitive activity. It has recently been suggested that mental fatigue can affect physical performance. Our objective was to evaluate the literature on impairment of physical performance due to mental fatigue and to create an overview of the potential factors underlying this effect. Two electronic databases, PubMed and Web of Science (until 28 April 2016), were searched for studies designed to test whether mental fatigue influenced performance of a physical task or influenced physiological and/or perceptual responses during the physical task. Studies using short (<30 min) self-regulatory depletion tasks were excluded from the review. A total of 11 articles were included, of which six were of strong and five of moderate quality. The general finding was a decline in endurance performance (decreased time to exhaustion and self-selected power output/velocity or increased completion time) associated with a higher than normal perceived exertion. Physiological variables traditionally associated with endurance performance (heart rate, blood lactate, oxygen uptake, cardiac output, maximal aerobic capacity) were unaffected by mental fatigue. Maximal strength, power, and anaerobic work were not affected by mental fatigue. The duration and intensity of the physical task appear to be important factors in the decrease in physical performance due to mental fatigue. The most important factor responsible for the negative impact of mental fatigue on endurance performance is a higher perceived exertion.

  2. Effect of exercise interventions on perceived fatigue in people with multiple sclerosis: synthesis of meta-analytic reviews.

    PubMed

    Safari, Reza; Van der Linden, Marietta L; Mercer, Tom H

    2017-06-01

    Although exercise training has been advocated as a nonpharmacological treatment for multiple sclerosis (MS) related fatigue, no consensus exists regarding its effectiveness. To address this, we collated meta-analytic reviews that explored the effectiveness of exercise training for the treatment of MS-related fatigue. We searched five online databases for relevant reviews, published since 2005, and identified 172 records. Five reviews were retained for systematic extraction of information and evidence quality analysis. Although our review synthesis indicated that exercise training interventions have a moderate effect on fatigue reduction in people with MS, no clear insight was obtained regarding the relative effectiveness of specific types or modes of exercise intervention. Moreover, Grading of Recommendation Assessment, Development and Evaluation revealed that the overall quality of evidence emanating from these five reviews was 'very low'.

  3. Plasma immersion ion implantation on 15-5PH stainless steel: influence on fatigue strength and wear resistance

    NASA Astrophysics Data System (ADS)

    Bonora, R.; Cioffi, M. O. H.; Voorwald, H. J. C.

    2017-05-01

    Surface improvement in steels is of great interest for applications in industry. The aim of this investigation is to study the effect of nitrogen ion implantation on the axial fatigue strength and wear resistance of 15-5 PH stainless steel. It is well know that electroplated coatings, which are used to improve abrasive wear and corrosion properties, affects negatively the fatigue strength. It is also important to consider requirements to reduce the use of coated materials with electroplated chromium and cadmium, that produce waste, which is harmful to health and environment. The HVOF (High velocity oxygen fuel) process provides hardness, wear strength and higher fatigue resistance in comparison to electroplated chromium. Plasma immersion ion implantation has been used to enhance the hardness, wear, fatigue and corrosion properties of metals and alloys. In the present research the fatigue life increased twice for 15-5 PH three hours PIII treated in comparison to base material. From the abrasive wear tests a lower pin mass reduction was observed, associated to the superficial treatments. The improvement of fatigue and mechanical performance is attributed to a combination of nitrides phase structure and compressive residual stresses during the PIII treatment.

  4. A fatigue monitoring system based on time-domain and frequency-domain analysis of pulse data

    NASA Astrophysics Data System (ADS)

    Shen, Jiaai

    2018-04-01

    Fatigue is almost a problem that everyone would face, and a psychosis that everyone hates. If we can test people's fatigue condition and remind them of the tiredness, dangers in life, for instance, traffic accidents and sudden death will be effectively reduced, people's fatigued operations will be avoided. And people can be assisted to have access to their own and others' physical condition in time to alternate work with rest. The article develops a wearable bracelet based on FFT Pulse Frequency Spectrum Analysis and IBI's standard deviation and range calculation, according to people's heart rate (BPM) and inter-beat interval (IBI) while being tired and conscious. The hardware part is based on Arduino, pulse rate sensor, and Bluetooth module, and the software part is relied on network micro database and APP. By doing sample experiment to get more accurate standard value to judge tiredness, we prove that we can judge people's fatigue condition based on heart rate (BPM) and inter-beat interval (IBI).

  5. The effects of Nitinol phases on corrosion and fatigue behavior

    NASA Astrophysics Data System (ADS)

    Denton, Melissa

    The purpose of these studies was to provide a detailed understanding of Nitinol phases and their effects on corrosion and fatigue life. The two primary phases, austenite and martensite, were carefully evaluated with respect to material geometry, corrosion behavior, wear, and fatigue life. Material characterization was performed using several techniques that include metallography, scanning electron microscopy (SEM), transmission electron microscopy (TEM), atomic force microscopy (AFM), x-ray photoelectron spectrum (XPS), and Auger electron spectroscopy (AES). Uniaxial tensile tests were conducted to determine the mechanical properties such as elongation, ultimate tensile strength, modulus, transformation strain, and plateau stress. In addition, accelerated wear testing and four point bend fatigue testing were completed to study the fatigue life and durability of the material. The corrosion of Nitinol was found to be dependent on various surface conditions. Electrochemical corrosion behavior of each phase was investigated using cyclic potentiodyamic polarization testing. The corrosion response of electropolished Nitinol was found to be acceptable, even after durability testing. Stress-induced martensite had a lower breakdown potential due to a rougher surface morphology, while thermally induced martensite and austenite performed similarly well. The surface conditioning also had a significant effect on Nitinol mechanical properties. Electropolishing provided a smooth mirror finish that reduced localized texture and enhanced the ductility of the material. Quasi-static mechanical properties can be good indicators of fatigue life, but further fatigue testing revealed that phase transformations had an important role as well. The governing mechanisms for the fatigue life of Nitinol were determined to be both martesitic phase transformations and surface defects. A new ultimate dislocation strain model was proposed based on specific accelerated step-strain testing.

  6. Microstructure and Fatigue Properties of Laser Welded DP590 Dual-Phase Steel Joints

    NASA Astrophysics Data System (ADS)

    Xie, Chaojie; Yang, Shanglei; Liu, Haobo; Zhang, Qi; Cao, Yaming; Wang, Yuan

    2017-08-01

    In this paper, cold-rolled DP590 dual-phase steel sheets with 1.5 mm thickness were butt-welded by a fiber laser, and the evolution and effect on microhardness, tensile property and fatigue property of the welded joint microstructure were studied. The results showed that the base metal is composed of ferrite and martensite, with the martensite dispersed in the ferrite matrix in an island manner. The microstructure of the weld zone was lath-shaped martensite that can be refined further by increasing the welding speed, while the heat-affected zone was composed of ferrite and tempered martensite. The microhardness increased with increasing welding speed, and the hardness reached its highest value—393.8 HV—when the welding speed was 5 m/min. Static tensile fracture of the welded joints always occurred in the base metal, and the elongation at break was more than 16%. The conditional fatigue limits of the base metal and the weld joints were 354.2 and 233.6 MPa, respectively, under tension-tension fatigue tests with a stress rate of 0.1. After observation of the fatigue fracture morphology, it was evident that the fatigue crack of the base metal had sprouted into the surface pits and that its expansion would be accelerated under the action of a secondary crack. The fatigue source of the welded joint was generated in the weld zone and expanded along the martensite, forming a large number of fatigue striations. Transient breaking, which occurred in the heat-affected zone of the joint as a result of the formation of a large number of dimples, reflected the obvious characteristics of ductile fracture.

  7. Biopsychosocial risk factors of persistent fatigue after acute infection: A systematic review to inform interventions.

    PubMed

    Hulme, Katrin; Hudson, Joanna L; Rojczyk, Philine; Little, Paul; Moss-Morris, Rona

    2017-08-01

    Fatigue is a prevalent and debilitating symptom, preceded by an acute infectious episode in some patients. This systematic review aimed to identify risk factors for the development of persistent fatigue after an acute infection, to develop an evidence-based working model of post-infectious fatigue. Electronic databases (Medline, PsycINFO and EMBASE) were searched, from inception to March 2016, for studies which investigated biopsychosocial risk factors of on-going fatigue after an acute infection. Inclusion criteria were: prospective design; biological, psychological or social risk factors; standardised measure of post-infectious fatigue (self-report scales or clinical diagnosis). Studies were excluded if the sample had a pre-existing medical condition, infection was conceptualised as 'vaccination' or they were intervention trials. A narrative synthesis was performed. Eighty-one full texts were screened, of which seventeen were included in the review. Over half included glandular fever populations. Other infections included dengue fever, 'general'/'viral' and Q-fever. Risk factors were summarised under biological, social, behavioural, cognitive and emotional subthemes. Patients' cognitive and behavioural responses to the acute illness, and pre-infection or baseline distress and fatigue were the most consistent risk factors for post-infectious fatigue. An empirical summary model is provided, highlighting the risk factors most consistently associated with persistent fatigue. The components of the model, the possible interaction of risk factors and implications for understanding the fatigue trajectory and informing preventative treatments are discussed. Copyright © 2017. Published by Elsevier Inc.

  8. Incidence of fatigue symptoms and diagnoses presenting in UK primary care from 1990 to 2001.

    PubMed

    Gallagher, Arlene M; Thomas, Janice M; Hamilton, William T; White, Peter D

    2004-12-01

    Little is known about whether the incidence of symptoms of fatigue presented in primary care, and the consequent diagnoses made, change over time. The UK General Practice Research Database was used to investigate the annual incidence of both fatigue symptoms and diagnoses recorded in UK primary care from 1990 to 2001. The overall incidence of all fatigue diagnoses decreased from 87 per 100 000 patients in 1990 to 49 in 2001, a reduction of 44%, while postviral fatigue syndromes decreased from 81% of all fatigue diagnoses in 1990 to 60% in 2001. Chronic fatigue syndrome (CFS) and myalgic encephalomyelitis (ME) together increased from 9% to 26% of all fatigue diagnoses. The incidence of fibromyalgia increased from less than 1 per 100 000 to 35 per 100 000. In contrast, there was no consistent change in the incidence of all recorded symptoms of fatigue, with an average of 1503 per 100 000, equivalent to 1.5% per year. CFS/ME and fibromyalgia were rarely diagnosed in children and were uncommon in the elderly. All symptoms and diagnoses were more common in females than in males. The overall incidence of fatigue diagnoses in general has fallen, but the incidence rates of the specific diagnoses of CFS/ME and fibromyalgia have risen, against a background of little change in symptom reporting. This is likely to reflect fashions in diagnostic labelling rather than true changes in incidence.

  9. Study of the Influence of Metallurgical Factors on Fatigue and Fracture of Aerospace Structural Materials

    DTIC Science & Technology

    1989-03-01

    11 II. MICROSTRUCTURE/ PROPERTY RELATIONSHIPS IN ADVANCED 12 STRUCTURAL ALLOYS A. Research Objectives 12 B. Summary of Research Efforts 12 1. Fracture...relationship is needed. Figure 5. Correlation between crack growth rates and effective 7 AK for small and large fatigue cracks in a titanium aluminide ...Microstructural/ Property Relationships in Advanced Structural Alloys Table I. Tensile and Fracture Properties of A-Fe-X Alloys in the 13 LT

  10. SHM-Based Probabilistic Fatigue Life Prediction for Bridges Based on FE Model Updating

    PubMed Central

    Lee, Young-Joo; Cho, Soojin

    2016-01-01

    Fatigue life prediction for a bridge should be based on the current condition of the bridge, and various sources of uncertainty, such as material properties, anticipated vehicle loads and environmental conditions, make the prediction very challenging. This paper presents a new approach for probabilistic fatigue life prediction for bridges using finite element (FE) model updating based on structural health monitoring (SHM) data. Recently, various types of SHM systems have been used to monitor and evaluate the long-term structural performance of bridges. For example, SHM data can be used to estimate the degradation of an in-service bridge, which makes it possible to update the initial FE model. The proposed method consists of three steps: (1) identifying the modal properties of a bridge, such as mode shapes and natural frequencies, based on the ambient vibration under passing vehicles; (2) updating the structural parameters of an initial FE model using the identified modal properties; and (3) predicting the probabilistic fatigue life using the updated FE model. The proposed method is demonstrated by application to a numerical model of a bridge, and the impact of FE model updating on the bridge fatigue life is discussed. PMID:26950125

  11. Fatigue Behavior of an Advanced SiC/SiC Composite with an Oxidation Inhibited Matrix at 1200 deg C in Air and in Steam

    DTIC Science & Technology

    2010-03-01

    eight-harness-satin (8HS) weave plies. Tensile stress -strain behavior and tensile properties were evaluated at 1200˚C. Tension-tension fatigue tests...ratio of minimum stress to maximum stress of R = 0.05, with maximum stresses ranging from 100 to 140 MPa in air and in steam. Fatigue run-out was...Hz, the presence of steam appeared to have little influence on the fatigue resistance for the fatigue stress levels < 140 MPa. The presence of steam

  12. Psychometric Properties of the Fatigue Severity Scale in Polio Survivors

    ERIC Educational Resources Information Center

    Burger, Helena; Franchignoni, Franco; Puzic, Natasa; Giordano, Andrea

    2010-01-01

    The objective of this study was to evaluate by means of classical test theory and Rasch analysis the scaling characteristics and psychometric properties of the Fatigue Severity Scale (FSS) in polio survivors. A questionnaire, consisting of five general questions (sex, age, age at time of acute polio, sequelae of polio, and new symptoms), the FSS,…

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Silva, F. S.

    Functionally graded components exhibit spatial variations of mechanical properties in contrast with, and as an alternative to, purely homogeneous components. A large class of graded materials, however, are in fact mostly homogeneous materials with property variations (chemical or mechanical) restricted to a specific area or layer produced by applying for example a coating or by introducing sub-surface residual stresses. However, it is also possible to obtain graded materials with a smooth transition of mechanical properties along the entire component, for example in a 40 mm component. This is possible, for example, by using centrifugal casting technique or incremental melting andmore » solidification technique. In this paper we will study fully metallic functionally graded components with a smooth gradient, focusing on fatigue crack propagation. Fatigue propagation will be assessed in the direction parallel to the gradation (in different homogeneous layers of the functionally graded component) to assess what would be fatigue crack propagation on the direction perpendicular to the gradation. Fatigue crack growth rate (standard mode I fatigue crack growth) will be correlated to the mode I stress intensity factor range. Other mechanical properties of different layers of the component (Young's modulus) will also be considered in this analysis. The effect of residual stresses along the component gradation on crack propagation will also be taken into account. A qualitative analysis of the effects of some important features, present in functionally graded materials, will be made based on the obtained results.« less

  14. Fatigue among HIV-infected patients in the era of highly active antiretroviral therapy.

    PubMed

    Henderson, M; Safa, F; Easterbrook, P; Hotopf, M

    2005-09-01

    To describe the prevalence of operationally defined fatigue in an ethnically diverse HIV-infected population in south London, and to examine the association of fatigue with demographic characteristics, stage of disease, antiretroviral therapy and psychological factors. A descriptive comparative cross-sectional study of HIV-infected patients attending a London HIV clinic over a 5-month period in 2002 was performed. Demographic and clinical data were obtained from the local database. Participants completed four self-administered questionnaires-the Chalder Fatigue Scale (CFS), a measure of physical and mental fatigue; the General Health Questionnaire (GHQ-12) to detect anxiety and depression; the Medical Outcomes Study 36-Item Short-Form Health Survey (SF-36) to measure functional status, and the Illness Perception Questionnaire (IPQ). Fatigue 'cases' were defined as those scoring at least 4 on the CFS. Multivariate logistic regression was used to identify factors associated with the presence of fatigue. Two hundred and five patients were approached and 148 (72%) agreed to participate. Overall, 65% of patients were defined as fatigued. Significant psychological distress on the GHQ-12, functional impairment on the SF-36 and a higher CD4 count were all independently associated with the presence of fatigue. There was no association with use of antiretroviral therapy or demographic characteristics. The presence of fatigue in HIV-infected patients is most strongly associated with psychological factors and not with more advanced HIV disease or the use of highly active antiretroviral therapy. This highlights the importance of investigation and management of underlying depression and anxiety in patients presenting with fatigue.

  15. Predictors and treatment strategies of HIV-related fatigue in the combined antiretroviral therapy era.

    PubMed

    Jong, Eefje; Oudhoff, Lisanne A; Epskamp, Cynthia; Wagener, Marlies N; van Duijn, Miranda; Fischer, Steven; van Gorp, Eric Cm

    2010-06-19

    To assess predictors and reported treatment strategies of HIV-related fatigue in the combined antiretroviral (cART) era. Five databases were searched and reference lists of pertinent articles were checked. Studies published since 1996 on predictors or therapy of HIV-related fatigue measured by a validated instrument were selected. A total of 42 studies met the inclusion criteria. The reported HIV-related fatigue prevalence in the selected studies varied from 33 to 88%. The strongest predictors for sociodemographic variables were unemployment and inadequate income. Concerning HIV-associated factors, the use of cART was the strongest predictor. Comorbidity and sleeping difficulties were important factors when assessing physiological influences. Laboratory parameters were not predictive of fatigue. The strongest and most uniform associations were observed between fatigue and psychological factors such as depression and anxiety. Reported therapeutic interventions for HIV-related fatigue include testosterone, psycho-stimulants (dextroamphetamine, methylphenidate hydrochloride, pemoline, modafinil), dehydroepiandrosterone, fluoxetine and cognitive behavioural or relaxation therapy. HIV-related fatigue has a high prevalence and is strongly associated with psychological factors such as depression and anxiety. A validated instrument should be used to measure intensity and consequences of fatigue in HIV-infected individuals. In the case of fatigue, clinicians should not only search for physical mechanisms, but should question depression and anxiety in detail. There is a need for intervention studies comparing the effect of medication (antidepressants, anxiolytics) and behavioural interventions (cognitive-behavioural therapy, relaxation therapy, graded exercise therapy) to direct the best treatment strategy. Treatment of HIV-related fatigue is important in the care for HIV-infected patients and requires a multidisciplinary approach.

  16. Risk and predictors of fatigue after infectious mononucleosis in a large primary-care cohort.

    PubMed

    Petersen, I; Thomas, J M; Hamilton, W T; White, P D

    2006-01-01

    Fatigue has been found to complicate infectious mononucleosis (IM) when patients are directly asked about it. We do not know whether such fatigue is clinically significant, nor whether IM is a specific risk for fatigue (or whether it can follow other common infections). Various risk markers for post-infectious fatigue have been identified, but findings are inconsistent. To determine the risk of clinically reported fatigue (compared with depression) after IM (compared with both influenza and tonsillitis) in patients attending primary care, and to examine risk markers for post-IM fatigue. Comparison of matched primary-care cohorts. We identified 1438 adult patients with a positive heterophil antibody test for IM from the UK General Practice Research Database. These patients were individually matched on age, sex and practice to two comparison groups; one with a clinical diagnosis of influenza and the other of tonsillitis. The odds ratios (ORs) (95%CI) for reported fatigue after IM vs. influenza and tonsillitis were 4.4 (2.9-6.9) and 6.6 (4.2-10.4), respectively. Risk markers for post-IM fatigue included female sex and premorbid mood disorder. By comparison, the ORs for depression after IM vs. influenza and tonsillitis were 1.6 (0.9-2.6) and 2.3 (1.4-3.9), respectively. IM is a specific and significant risk for clinically reported fatigue, which is both separate from, and more common than, depression. Female sex and premorbid mood disorder are risk markers for fatigue. These can be used both to target prevention strategies and to explore aetiological mechanisms.

  17. High strain rate and quasi-static tensile behaviour of Ti-6Al-4V after cyclic damage

    NASA Astrophysics Data System (ADS)

    Galán López, J.; Verleysen, P.; Degrieck, J.

    2012-08-01

    It is common that energy absorbing structural elements are subjected to a number of loading cycles before a crash event. Several studies have shown that previous fatigue can significantly influence the tensile properties of some materials, and hence the behaviour of structural elements made of them. However, when the capacity of absorbing energy of engineering materials is determined, fresh material without any fatigue damage is most often used. This study investigates the effect of fatigue damage on the dynamic tensile properties of Ti-6Al-4V in thin-sheet form. Results are completed with tests at quasi-static strain rates and observations of the fracture surfaces, and compared with results obtained from other alloys and steel grades. The experiments show that the dynamic properties of Ti-6Al-4V are not affected by a number of fatigue loading cycles high enough to significantly reduce the energy absorbing capabilities of EDM machined samples.

  18. In-air and pressurized water reactor environment fatigue experiments of 316 stainless steel to study the effect of environment on cyclic hardening

    NASA Astrophysics Data System (ADS)

    Mohanty, Subhasish; Soppet, William K.; Majumdar, Saurindranath; Natesan, Krishnamurti

    2016-05-01

    Argonne National Laboratory (ANL), under the sponsorship of Department of Energy's Light Water Reactor Sustainability (LWRS) program, is trying to develop a mechanistic approach for more accurate life estimation of LWR components. In this context, ANL has conducted many fatigue experiments under different test and environment conditions on type 316 stainless steel (316 SS) material which is widely used in the US reactors. Contrary to the conventional S ∼ N curve based empirical fatigue life estimation approach, the aim of the present DOE sponsored work is to develop an understanding of the material ageing issues more mechanistically (e.g. time dependent hardening and softening) under different test and environmental conditions. Better mechanistic understanding will help develop computer-based advanced modeling tools to better extrapolate stress-strain evolution of reactor components under multi-axial stress states and hence help predict their fatigue life more accurately. Mechanics-based modeling of fatigue such as by using finite element (FE) tools requires the time/cycle dependent material hardening properties. Presently such time-dependent material hardening properties are hardly available in fatigue modeling literature even under in-air conditions. Getting those material properties under PWR environment, are even harder. Through this work we made preliminary attempt to generate time/cycle dependent stress-strain data both under in-air and PWR water conditions for further study such as for possible development of material models and constitutive relations for FE model implementation. Although, there are open-ended possibility to further improve the discussed test methods and related material estimation techniques we anticipate that the data presented in this paper will help the metal fatigue research community particularly, the researchers who are dealing with mechanistic modeling of metal fatigue such as using FE tools. In this paper the fatigue experiments under different test and environment conditions and related stress-strain results for 316 SS are discussed.

  19. Effect of Low-Temperature Thermomechanical Treatment on the Structure and Mechanical, Fatigue and Corrosion Characteristics of Sheets from an Alloy of the Al - Mg - Si - Cu - Zn System

    NASA Astrophysics Data System (ADS)

    Makhsidov, V. V.; Kolobnev, N. I.; Kochubey, A. Ya.; Fomina, M. A.; Zamyatin, V. M.; Pushin, V. G.

    2014-11-01

    The effect of deformation on the structure, strength and fatigue properties, stresses on the surface and sensitivity to intercrystalline corrosion of sheets from alloy 1370 of the Al -Mg - Si - Cu - Zn system with one-side cladding is investigated. Application of deformation to sheets of alloy 1370 between the stages of artificial aging lowers the depth of penetration of ICC (≤ 0.10 mm) and raises the fatigue characteristics (by up to a factor of 2) at a high level of mechanical properties.

  20. Fiberglass epoxy laminate fatigue properties at 300 and 20 K

    NASA Technical Reports Server (NTRS)

    Toth, J. M., Jr.; Bailey, W. J.; Boyce, D. A.

    1985-01-01

    A subcritical liquid hydrogen orbital storage and supply experiment is being designed for flight in the Space Shuttle cargo bay. The Cryogenic Fluid Management Experiment (CFME) includes a liquid hydrogen tank supported in a vacuum jacket by two fiberglass epoxy composite trunnion mounts. The ability of the CFME to last for the required seven missions depends primarily on the fatigue life of the composite trunnions at cryogenic temperatures. To verify the trunnion design and test the performance of the composite material, fatigue property data at 300 and 20 K were obtained for the specific E-glass fabric/S-glass unidirectional laminate that will be used for the CFME trunnions. The fatigue life of this laminate was greater at 20 K than at 300 K, and was satisfactory for the intended application.

  1. Effects of combined plasma chromizing and shot peening on the fatigue properties of a Ti6Al4V alloy

    NASA Astrophysics Data System (ADS)

    Yu, Shouming; Liu, Daoxin; Zhang, Xiaohua; Du, Dongxing

    2015-10-01

    A plasma chromizing treatment was conducted on Ti6Al4V samples by employing the recently developed double glow plasma surface alloying technology. The Cr-alloyed layer consisted of four sub-layers, namely the Cr deposition, Cr2Ti, CrTi4, and Cr-Ti solid-solution layers. The local hardness and moduli were determined via nanoindentation. In addition, the fatigue properties of the samples were evaluated by using a rotating-bending fatigue machine under a given load. The results showed that the hardness or elastic moduli of the adjacent sub-layers differed significantly and the fatigue properties of the Ti6Al4V alloy deteriorated with the plasma chromizing treatment. This deterioration stemmed mainly from cracks initiated at the interfaces between the sub-layers and the microstructural changes of the substrate; these changes were induced by the high temperature used in the plasma chromizing process. However, the fatigue life of the plasma-chromized samples was increased by a shot peening post-treatment. The fatigue life of the samples resulting from this combination of treatments was slightly higher than that of the single-shot-peened Ti6Al4V substrate. In fact, the sample retaining only the Cr-Ti solid-solution layer (that is, the first three sub-layers were removed), when shot-peened, exhibited the highest fatigue life among all the tested samples; this was attributed to that sample having the highest residual compressive stress, the significant work hardening, and the good hardness to toughness balance.

  2. Screening, Assessment, and Management of Fatigue in Adult Survivors of Cancer: An American Society of Clinical Oncology Clinical Practice Guideline Adaptation

    PubMed Central

    Bower, Julienne E.; Bak, Kate; Berger, Ann; Breitbart, William; Escalante, Carmelita P.; Ganz, Patricia A.; Schnipper, Hester Hill; Lacchetti, Christina; Ligibel, Jennifer A.; Lyman, Gary H.; Ogaily, Mohammed S.; Pirl, William F.; Jacobsen, Paul B.

    2014-01-01

    Purpose This guideline presents screening, assessment, and treatment approaches for the management of adult cancer survivors who are experiencing symptoms of fatigue after completion of primary treatment. Methods A systematic search of clinical practice guideline databases, guideline developer Web sites, and published health literature identified the pan-Canadian guideline on screening, assessment, and care of cancer-related fatigue in adults with cancer, the National Comprehensive Cancer Network (NCCN) Clinical Practice Guidelines In Oncology (NCCN Guidelines) for Cancer-Related Fatigue and the NCCN Guidelines for Survivorship. These three guidelines were appraised and selected for adaptation. Results It is recommended that all patients with cancer be evaluated for the presence of fatigue after completion of primary treatment and be offered specific information and strategies for fatigue management. For those who report moderate to severe fatigue, comprehensive assessment should be conducted, and medical and treatable contributing factors should be addressed. In terms of treatment strategies, evidence indicates that physical activity interventions, psychosocial interventions, and mind-body interventions may reduce cancer-related fatigue in post-treatment patients. There is limited evidence for use of psychostimulants in the management of fatigue in patients who are disease free after active treatment. Conclusion Fatigue is prevalent in cancer survivors and often causes significant disruption in functioning and quality of life. Regular screening, assessment, and education and appropriate treatment of fatigue are important in managing this distressing symptom. Given the multiple factors contributing to post-treatment fatigue, interventions should be tailored to each patient's specific needs. In particular, a number of nonpharmacologic treatment approaches have demonstrated efficacy in cancer survivors. PMID:24733803

  3. Tensile, Creep, and Fatigue Behaviors of 3D-Printed Acrylonitrile Butadiene Styrene

    NASA Astrophysics Data System (ADS)

    Zhang, Hanyin; Cai, Linlin; Golub, Michael; Zhang, Yi; Yang, Xuehui; Schlarman, Kate; Zhang, Jing

    2018-01-01

    Acrylonitrile butadiene styrene (ABS) is a widely used thermoplastics in 3D printing. However, there is a lack of thorough investigation of the mechanical properties of 3D-printed ABS components, including orientation-dependent tensile strength and creep fatigue properties. In this work, a systematic characterization is conducted on the mechanical properties of 3D-printed ABS components. Specifically, the effect of printing orientation on the tensile and creep properties is investigated. The results show that, in tensile tests, the 0° printing orientation has the highest Young's modulus of 1.81 GPa, and ultimate strength of 224 MPa. In the creep test, the 90° printing orientation has the lowest k value of 0.2 in the plastics creep model, suggesting 90° is the most creep resistant direction. In the fatigue test, the average cycle number under load of 30 N is 3796 cycles. The average cycle number decreases to 128 cycles when the load is 60 N. Using the Paris law, with an estimated crack size of 0.75 mm, and stress intensity factor is varied from 352 to 700 N√ m, the derived fatigue crack growth rate is 0.0341 mm/cycle. This study provides important mechanical property data that is useful for applying 3D-printed ABS in engineering applications.

  4. A novel evaluation strategy for fatigue reliability of flexible nanoscale films

    NASA Astrophysics Data System (ADS)

    Zheng, Si-Xue; Luo, Xue-Mei; Wang, Dong; Zhang, Guang-Ping

    2018-03-01

    In order to evaluate fatigue reliability of nanoscale metal films on flexible substrates, here we proposed an effective evaluation way to obtain critical fatigue cracking strain based on the direct observation of fatigue damage sites through conventional dynamic bending testing technique. By this method, fatigue properties and damage behaviors of 930 nm-thick Au films and 600 nm-thick Mo-W multilayers with individual layer thickness 100 nm on flexible polyimide substrates were investigated. Coffin-Manson relationship between the fatigue life and the applied strain range was obtained for the Au films and Mo-W multilayers. The characterization of fatigue damage behaviors verifies the feasibility of this method, which seems easier and more effective comparing with the other testing methods.

  5. Measurement of Fatigue in Cancer, Stroke, and HIV Using the Functional Assessment of Chronic Illness Therapy – Fatigue (FACIT-F) Scale

    PubMed Central

    Butt, Zeeshan; Lai, Jin-shei; Rao, Deepa; Heinemann, Allen W.; Bill, Alex; Cella, David

    2012-01-01

    Objective Given the importance of fatigue in cancer, stroke and HIV, we sought to assess the measurement properties of a single, well-described fatigue scale in these populations. We hypothesized that the psychometric properties of the Functional Assessment of Chronic Illness Therapy – Fatigue (FACIT-F) subscale would be favorable and that the scale could serve as a useful indicator of fatigue in these populations. Methods Patients were eligible for the study if they were outpatients, aged 18 or older, with a diagnosis of cancer (n=297), stroke (n=51), or HIV/AIDS (n=51). All participants were able to understand and speak English. Patients answered study-related questions, including the FACIT-F using a touch-screen laptop, assisted by the research assistant as necessary. Clinical information was abstracted from patients’ medical records. Results Item-level statistics on the FACIT-F were similar across the groups and internal consistency reliability was uniformly high (α>0.91). Correlations with performance status ratings were statistically significant across the groups (range r=−0.28 to −0.80). Fatigue scores were moderately to highly correlated with general quality of life (range r=0.66–0.80) in patients with cancer, stroke, and HIV. Divergent validity was supported in low correlations with variables not expected to correlate with fatigue. Conclusions Originally developed to assess cancer-related fatigue, the FACIT-F has utility as a measure of fatigue in other populations, such as stroke and HIV. Ongoing research will soon allow for comparison of FACIT-F scores to those obtained using the fatigue measures from the Patient-Reported Outcomes Measurement Information System (PROMIS®; www.nihpromis.org) initiative. PMID:23272990

  6. A Constitutive Relationship between Fatigue Limit and Microstructure in Nanostructured Bainitic Steels

    PubMed Central

    Mueller, Inga; Rementeria, Rosalia; Caballero, Francisca G.; Kuntz, Matthias; Sourmail, Thomas; Kerscher, Eberhard

    2016-01-01

    The recently developed nanobainitic steels show high strength as well as high ductility. Although this combination seems to be promising for fatigue design, fatigue properties of nanostructured bainitic steels are often surprisingly low. To improve the fatigue behavior, an understanding of the correlation between the nanobainitic microstructure and the fatigue limit is fundamental. Therefore, our hypothesis to predict the fatigue limit was that the main function of the microstructure is not necessarily totally avoiding the initiation of a fatigue crack, but the microstructure has to increase the ability to decelerate or to stop a growing fatigue crack. Thus, the key to understanding the fatigue behavior of nanostructured bainite is to understand the role of the microstructural features that could act as barriers for growing fatigue cracks. To prove this hypothesis, we carried out fatigue tests, crack growth experiments, and correlated these results to the size of microstructural features gained from microstructural analysis by light optical microscope and EBSD-measurements. Finally, we were able to identify microstructural features that influence the fatigue crack growth and the fatigue limit of nanostructured bainitic steels. PMID:28773953

  7. Effects of Pulse Current on Endurance Exercise and Its Anti-Fatigue Properties in the Hepatic Tissue of Trained Rats

    PubMed Central

    Ju, Xiaowei; Zhu, Lvgang; Huang, Changlin; Huang, Tao; Zuo, Xincheng; Gao, Chunfang

    2013-01-01

    Fatigue is synonymous with a wide spectrum of familiar physiological conditions, from pathology and general health, to sport and physical exercise. Strenuous, prolonged exercise training causes fatigue. Although several studies have investigated the effects of electrical stimulation frequency on muscle fatigue, the effects of percutaneous pulse current stimulation on fatigue in the hepatic tissue of trained rats is still unclear. In order to find an effective strategy to prevent fatigue or enhance recovery, the effects of pulse current on endurance exercise and its anti-fatigue properties in exercised rats were studied. Rats were subjected to one, three or five weeks of swimming exercise training. After exercise training, rats in the treated group received daily applications of pulse current. All rats were sacrificed after one, three or five weeks of swimming exercise, and the major biochemical indexes were measured in serum and liver. The results demonstrate that pulse current could prolong the exhaustion swimming time, as well as decrease serum ALT, AST and LD levels and liver MDA content. It also elevated serum LDH activity, liver SOD activity and glycogen content. Furthermore, pulse current increased the expression of Bcl-2 and decreased the expression of Bax. Taken together, these results show that pulse current can elevate endurance capacity and facilitate recovery from fatigue. PMID:24116026

  8. Sleepiness/fatigue and distraction/inattention as factors for fatal versus nonfatal commercial motor vehicle driver injuries.

    PubMed

    Bunn, T L; Slavova, S; Struttmann, T W; Browning, S R

    2005-09-01

    A retrospective population-based case-control study was conducted to determine whether driver sleepiness/fatigue and inattention/distraction increase the likelihood that a commercial motor vehicle collision (CVC) will be fatal. Cases were identified as CVC drivers who died (fatal) and controls were drivers who survived (nonfatal) an injury collision using the Kentucky Collision Report Analysis for Safer Highways (CRASH) electronic database from 1998-2002. Cases and controls were matched on unit type and roadway type. Conditional logistic regression was performed. Driver sleepiness/fatigue, distraction/inattention, age of 51 years of age and older, and nonuse of safety belts increase the odds that a CVC will be fatal. Primary safety belt law enactment and enforcement for all states, commercial vehicle driver education addressing fatigue and distraction and other approaches including decreased hours-of-service, rest breaks and policy changes, etc. may decrease the probability that a CVC will be fatal.

  9. Optimal management of fatigue in patients with systemic lupus erythematosus: a systematic review

    PubMed Central

    Yuen, Hon K; Cunningham, Melissa A

    2014-01-01

    Among the host of distressing pathophysiological and psychosocial symptoms, fatigue is the most prevalent complaint in patients with systemic lupus erythematosus (SLE). This review is to update the current findings on non-pharmacological, pharmacological, and modality strategies to manage fatigue in patients with SLE and to provide some recommendations on optimal management of fatigue based on the best available evidence. We performed a systematic literature search of the PubMed and Scopus databases to identify publications on fatigue management in patients with SLE. Based on the studies reported in the literature, we identified nine intervention strategies that have the potential to alleviate fatigue in patients with SLE. Of the nine strategies, aerobic exercise and belimumab seem to have the strongest evidence of treatment efficacy. N-acetylcysteine and ultraviolet-A1 phototherapy demonstrated low-to-moderate levels of evidence. Psychosocial interventions, dietary manipulation (low calorie or glycemic index diet) aiming for weight loss, vitamin D supplementation, and acupuncture all had weak evidence. Dehydroepiandrosterone is not recommended due to a lack of evidence for its efficacy. In addition to taking treatment efficacy and side effects into consideration, clinicians should consider factors such as cost of treatment, commitments, and burden to the patient when selecting fatigue management strategies for patients with SLE. Any comorbidities, such as psychological distress, chronic pain, sleep disturbance, obesity, or hypovitaminosis D, associated with fatigue should be addressed. PMID:25328393

  10. Effect of Rolling on High-Cycle Fatigue and Fracture of an Al - Mg - Sc Alloy

    NASA Astrophysics Data System (ADS)

    Zhemchuzhnikova, D. A.; Petrov, A. P.; Eremeev, N. V.; Eremeev, V. V.; Kaibyshev, R. O.

    2016-07-01

    The tensile strength and fatigue properties of alloy 1575 of the Al - Mg - Sc system are studied after hot deformation (at 360°C) and subsequent cold rolling with different reduction ratios. The effect of the deformed structure on the properties and mechanisms of fracture of the alloy under cyclic tests is determined.

  11. Properties of Isokinetic Fatigue at Various Movement Speeds in Adult Males.

    ERIC Educational Resources Information Center

    Clarke, David H.; Manning, James M.

    1985-01-01

    Eighteen male subjects, aged 20 to 28 years, engaged in three fatigue bouts using an isokinetic dynamometer to measure knee extension contractions. Peak torque varied inversely with movement speed, and the pattern of decrement was independent of speed. Time to peak torque did not change significantly across trials in isokinetic fatigue. (Author/MT)

  12. Time perspective and social preference in older and younger adults: Effects of self-regulatory fatigue.

    PubMed

    Segerstrom, Suzanne C; Geiger, Paul J; Combs, Hannah L; Boggero, Ian A

    2016-09-01

    Socioemotional selectivity theory predicts that when perceived time in life is limited, people will prefer emotionally close social partners over less emotionally rewarding partners. Regulating social choices with regard to time perspective can make the best use of time with regard to well-being. However, doing so may depend on the self-regulatory capacity of the individual. Two studies, 1 with younger adults (N = 101) and 1 with younger (N = 42) and older (N = 39) adults, experimentally tested the effects of time perspective and self-regulatory fatigue on preferences for emotionally close partners and knowledgeable partners. In both studies and across younger and older adults, when self-regulatory fatigue was low, the perception of limited time resulted in a greater preference for close social partners relative to knowledgeable social partners. However, this shift was eliminated by self-regulatory fatigue. In Study 2, when fatigued, younger adults preferred close social partners to knowledgeable partners across time perspectives; older adults preferred close and knowledgeable partners more equally across time perspectives. These findings have implications for social decision-making and satisfaction among people who experience chronic self-regulatory fatigue. They also contradict previous suggestions that only younger adults are susceptible to self-regulatory fatigue. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  13. Effects Of Welding On The Fatigue Behaviour Of Commercial Aluminum AA-1100 Joints

    NASA Astrophysics Data System (ADS)

    Uthayakumar, M.; Balasubramanian, V.; Rani, Ahmad Majdi Abdul; Hadzima, Branislav

    2018-04-01

    Friction Stir Welding (FSW) is an budding solid state welding process, which is frequently used for joining aluminum alloys where materials can be joined without melt and recast. Therefore, when welding alloys through FSW the phase transformations occurs will be in the solid state form. The present work is aimed in evaluating the fatigue life of friction stir welded commercial grade aluminum alloy joints. The commercial grade AA1100 aluminum alloy of 12mm thickness plate is welded and the specimens are tested using a rotary beam fatigue testing machine at different stress levels. The stress versus number of cycles (S-N) curves was plotted using the data points. The Fatigue life of tungsten inert gas (TIG) and metal inert gas (MIG) welded joints was compared. The fatigue life of the weld joints was interrelated with the tensile properties, microstructure and micro hardness properties. The effects of the notches and welding processes are evaluated and reported.

  14. A novel in situ device based on a bionic piezoelectric actuator to study tensile and fatigue properties of bulk materials.

    PubMed

    Wang, Shupeng; Zhang, Zhihui; Ren, Luquan; Zhao, Hongwei; Liang, Yunhong; Zhu, Bing

    2014-06-01

    In this work, a miniaturized device based on a bionic piezoelectric actuator was developed to investigate the static tensile and dynamic fatigue properties of bulk materials. The device mainly consists of a bionic stepping piezoelectric actuator based on wedge block clamping, a pair of grippers, and a set of precise signal test system. Tensile and fatigue examinations share a set of driving system and a set of signal test system. In situ tensile and fatigue examinations under scanning electron microscope or metallographic microscope could be carried out due to the miniaturized dimensions of the device. The structure and working principle of the device were discussed and the effects of output difference between two piezoelectric stacks on the device were theoretically analyzed. The tensile and fatigue examinations on ordinary copper were carried out using this device and its feasibility was verified through the comparison tests with a commercial tensile examination instrument.

  15. The Cyclic Mechanical and Fatigue Properties of Ferroanelastic Beta Prime Gold Cadmium. Ph.D. Thesis. Final Report

    NASA Technical Reports Server (NTRS)

    Karz, R. S.

    1973-01-01

    The fatigue behavior of beta prime Au1.05Cd0.95 alloy was investigated and found to be exceptional for certain orientations with lives of 10,000 to 1,000,000 cycles at total strain amplitudes above 0.05 not uncommon. Fatigue lives were influenced principally by the stress level which controlled the amount of plastic deformation, and stress fatigue resistance was low compared with most metals. Failure always exhibited brittle characteristics. An algorithm was devised to predict mechanical behavior from the twin system orientations and was found in good agreement with experiment for longitudinal strains above 0.04. The cyclic mechanical properties were examined, and a model for the behavior was proposed utilizing previous theories of the restoring force and the Peierls-Nabarro stress for twinning and new concepts. Gold-cadmium was found to have certain strain fatigue resistant applications, particularly in electronics where the alloy's high electrical conductivity is utilized.

  16. A novel in situ device based on a bionic piezoelectric actuator to study tensile and fatigue properties of bulk materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Shupeng; Zhang, Zhihui, E-mail: zhzh@jlu.edu.cn; Ren, Luquan

    2014-06-15

    In this work, a miniaturized device based on a bionic piezoelectric actuator was developed to investigate the static tensile and dynamic fatigue properties of bulk materials. The device mainly consists of a bionic stepping piezoelectric actuator based on wedge block clamping, a pair of grippers, and a set of precise signal test system. Tensile and fatigue examinations share a set of driving system and a set of signal test system. In situ tensile and fatigue examinations under scanning electron microscope or metallographic microscope could be carried out due to the miniaturized dimensions of the device. The structure and working principlemore » of the device were discussed and the effects of output difference between two piezoelectric stacks on the device were theoretically analyzed. The tensile and fatigue examinations on ordinary copper were carried out using this device and its feasibility was verified through the comparison tests with a commercial tensile examination instrument.« less

  17. Piezoelectric and mechanical properties of fatigue resistant, self-healing PZT-ionomer composites

    NASA Astrophysics Data System (ADS)

    James, N. K.; Lafont, U.; van der Zwaag, S.; Groen, W. A.

    2014-05-01

    Piezoelectric ceramic-polymer composites with 0-3 connectivity were fabricated using lead zirconium titanate (PZT) powder dispersed in an ionomer (Zn ionomer) and its reference ethylene methacrylic acid copolymer (EMAA) polymer matrix. The PZT-Zn ionomer and PZT-EMAA composites were prepared by melt extrusion followed by hot pressing. The effects of poling conditions such as temperature, time and electric field on the piezoelectric properties of the composites were investigated. The experimentally observed piezoelectric charge coefficient and dielectric constant of the composites were compared with theoretical models. The results show that PZT-Zn ionomer composites have better piezoelectric properties compared to PZT-EMAA composites. The static and fatigue properties of the composites were investigated. The PZT-Zn ionomer composites were found to have excellent fatigue resistance even at strain levels of 4%. Due to the self-healing capabilities of the ionomer matrix, the loss of piezoelectric properties after high strain tensile cyclic loading could be partially recovered by thermal healing.

  18. Traffic accidents involving fatigue driving and their extent of casualties.

    PubMed

    Zhang, Guangnan; Yau, Kelvin K W; Zhang, Xun; Li, Yanyan

    2016-02-01

    The rapid progress of motorization has increased the number of traffic-related casualties. Although fatigue driving is a major cause of traffic accidents, the public remains not rather aware of its potential harmfulness. Fatigue driving has been termed as a "silent killer." Thus, a thorough study of traffic accidents and the risk factors associated with fatigue-related casualties is of utmost importance. In this study, we analyze traffic accident data for the period 2006-2010 in Guangdong Province, China. The study data were extracted from the traffic accident database of China's Public Security Department. A logistic regression model is used to assess the effect of driver characteristics, type of vehicles, road conditions, and environmental factors on fatigue-related traffic accident occurrence and severity. On the one hand, male drivers, trucks, driving during midnight to dawn, and morning rush hours are identified as risk factors of fatigue-related crashes but do not necessarily result in severe casualties. Driving at night without street-lights contributes to fatigue-related crashes and severe casualties. On the other hand, while factors such as less experienced drivers, unsafe vehicle status, slippery roads, driving at night with street-lights, and weekends do not have significant effect on fatigue-related crashes, yet accidents associated with these factors are likely to have severe casualties. The empirical results of the present study have important policy implications on the reduction of fatigue-related crashes as well as their severity. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Fatigue testing of energy storing prosthetic feet.

    PubMed

    Toh, S L; Goh, J C; Tan, P H; Tay, T E

    1993-12-01

    This paper describes a simple approach to the fatigue testing of prosthetic feet. A fatigue testing machine for prosthetic feet was designed as part of the programme to develop an energy storing prosthetic foot (ESPF). The fatigue tester does not simulate the loading pattern on the foot during normal walking. However, cyclic vertical loads are applied to the heel and forefoot during heel-strike and toe-off respectively, for 500,000 cycles. The maximum load applied was chosen to be 1.5 times that applied by the bodyweight of the amputee and the test frequency was chosen to be 2 Hz to shorten the test duration. Four prosthetic feet were tested: two Lambda feet (a newly developed ESPF), a Kingsley SACH foot and a Proteor SACH foot. It was found that the Lambda feet have very good fatigue properties. The Kingsley SACH foot performed better than the Proteor model, with no signs of wear at the heel. The results obtained using the simple approach was found to be comparable to the results from more complex fatigue machines which simulate the load pattern during normal walking. This suggests that simple load simulating machines, which are less costly and require less maintenance, are useful substitutes in studying the fatigue properties of prosthetic feet.

  20. Multi-parameter vital sign database to assist in alarm optimization for general care units.

    PubMed

    Welch, James; Kanter, Benjamin; Skora, Brooke; McCombie, Scott; Henry, Isaac; McCombie, Devin; Kennedy, Rosemary; Soller, Babs

    2016-12-01

    Continual vital sign assessment on the general care, medical-surgical floor is expected to provide early indication of patient deterioration and increase the effectiveness of rapid response teams. However, there is concern that continual, multi-parameter vital sign monitoring will produce alarm fatigue. The objective of this study was the development of a methodology to help care teams optimize alarm settings. An on-body wireless monitoring system was used to continually assess heart rate, respiratory rate, SpO 2 and noninvasive blood pressure in the general ward of ten hospitals between April 1, 2014 and January 19, 2015. These data, 94,575 h for 3430 patients are contained in a large database, accessible with cloud computing tools. Simulation scenarios assessed the total alarm rate as a function of threshold and annunciation delay (s). The total alarm rate of ten alarms/patient/day predicted from the cloud-hosted database was the same as the total alarm rate for a 10 day evaluation (1550 h for 36 patients) in an independent hospital. Plots of vital sign distributions in the cloud-hosted database were similar to other large databases published by different authors. The cloud-hosted database can be used to run simulations for various alarm thresholds and annunciation delays to predict the total alarm burden experienced by nursing staff. This methodology might, in the future, be used to help reduce alarm fatigue without sacrificing the ability to continually monitor all vital signs.

  1. Fatigue Variability of a Single Crystal Superalloy at Elevated Temperature (Preprint)

    DTIC Science & Technology

    2009-03-01

    cast slabs of PWA 1484 with the primary longitudinal axis in the > direction (±5 °). The dogbone specimens had a 6 mm gage length and 4 mm...literature concerning the fatigue properties of PWA 1484. It has been reported that fatigue failures often start from eutectics and carbides [ 4 , 6 ...COVERED (From - To) March 2009 Journal Article Preprint 01 March 2009 – 01 March 2009 4 . TITLE AND SUBTITLE FATIGUE VARIABILITY OF A SINGLE CRYSTAL

  2. Corrosion fatigue of 2219-T87 aluminum alloy

    NASA Technical Reports Server (NTRS)

    Mcmillan, V. C.

    1986-01-01

    Corrosion fatigue studies were conducted on bare, chemical conversion coated, and anodized 2219-T87 aluminum alloy. These tests were performed using a rotating beam machine running at a velocity of 2500 rpm. The corrosive environments tested were distilled water, 100 ppm NaCl, and 3.5 percent NaCl. Results were compared to the endurance limit in air. An evaluation of the effect of protective coatings on corrosion fatigue was made by comparing the fatigue properties of specimens with coatings to those without.

  3. Pictorial Representation of Self and Illness Measure (PRISM): a graphic instrument to assess suffering in fatigued cancer survivors.

    PubMed

    Gielissen, Marieke F M; Prins, Judith B; Knoop, Hans; Verhagen, Stans; Bleijenberg, Gijs

    2013-06-01

    The Pictorial Representation of Self and Illness Measure (PRISM) measures in a simple, graphic way the burden of suffering due to illness. The question addressed in this study is whether the PRISM is a valid instrument to measure suffering in cancer survivors experiencing severe fatigue. Quantitative and qualitative data of a previous randomized controlled trial demonstrating the efficacy of cognitive behavior therapy (CBT) especially designed for postcancer fatigue was used to assess convergent validity and sensitivity to change in a sample of 83 cancer survivors. The PRISM, yielding self-illness separation (SIS-fatigue = suffering due to fatigue; SIS-cancer = suffering due to cancer), fatigue severity (Checklist Individual Strength; CIS-fatigue), functional impairment, psychological well-being, quality of life, and coping with the experience of cancer (Impact of Event Scale; IES). Moderate significant correlations were found with the PRISM and the above-mentioned measures. On the basis of SIS scores, the sample was divided into two separate groups: cancer survivors who suffered more because of fatigue and cancer survivors who suffered more because they had cancer in the past. The two groups had different scores on CIS-fatigue and IES, in line with that aspect that caused them the most suffering. The qualitative data confirmed this finding. Participants in the CBT condition demonstrated a significant difference between SIS-fatigue at baseline versus 6 months later compared with those in the waiting list condition. No change of SIS-cancer was found. The PRISM seems to be a valuable tool in fatigue research and clinical practice. PsycINFO Database Record (c) 2013 APA, all rights reserved.

  4. Fatigue properties of die cast zinc alloys for automotive lock applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schrems, Karol K.; Dogan, Omer N.; Goodwin, F.E.

    2004-06-01

    During the 1970’s many automotive lock systems were converted from zinc die casting alloys to engineering plastics for reasons of weight and cost. Recent increases in requirements for precision and security have caused automotive and other lock designers to reconsider zinc alloy die-castings for these applications. To enable this, there is a need for mechanical property data comparable to that of the plastics materials used in these applications. In this work, rotary bending fatigue tests were performed on Alloys 3, 5, ZA-8 and AcuZinc 5 using an R.R. Moore fatigue machine. Testing was performed at 30 Hz and was stoppedmore » at 1x107 cycles. The fatigue limit results were compared to data reported in the literature for higher number of cycles and faster rotations.« less

  5. Damage formation, fatigue behavior and strength properties of ZrO{sub 2}-based ceramics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kozulin, A. A., E-mail: kozulyn@ftf.tsu.ru; Kulkov, S. S.; Narikovich, A. S.

    It is suggested that a non-destructive testing technique using a three-dimensional X-ray tomography be applied to detecting internal structural defects and monitoring damage formation in a ceramic composite structure subjected to a bending load. Three-point bending tests are used to investigate the fatigue behavior and mechanical and physical properties of medical-grade ZrO{sub 2}-based ceramics. The bending strength and flexural modulus are derived under static conditions at a loading rate of 2 mm/min. The fatigue strength and fatigue limit under dynamic loading are investigated at a frequency of 10 Hz in three stress ranges: 0.91–0.98, 0.8–0.83, and 0.73–0.77 MPa of themore » static bending strength. The average values of the bending strength and flexural modulus of sintered specimens are 43 MPa and 22 GPa, respectively. The mechanical properties of the ceramics are found to be similar to those of bone tissues. The testing results lead us to conclude that the fatigue limit obtained from 10{sup 5} stress cycles is in the range 33–34 MPa, i.e. it accounts for about 75% of the static bending strength for the test material.« less

  6. Strain-cycling fatigue behavior of ten structural metals tested in liquid helium (4 K), in liquid nitrogen (78 K), and in ambient air (300 K)

    NASA Technical Reports Server (NTRS)

    Nachtigall, A. J.

    1974-01-01

    Strain-cycling fatigue behavior of 10 different structural alloys and metals was investigated in liquid helium (4 K), in liquid nitrogen (78 K), and in ambient air (300 K). At high cyclic lives, fatigue resistance increased with decreasing temperature for all the materials investigated. At low cyclic lives, fatigue resistance generally decreased with decreasing temperature for the materials investigated. Only for Inconel 718 did fatigue resistance increase with decreasing temperature over the entire life range investigated. Comparison of the experimental fatigue behavior with that predicted by the Manson method of universal slopes showed that the fatigue behavior of these materials can be predicted for cryogenic temperatures by using material tensile properties obtained at those same temperatures.

  7. High Cycle Fatigue (HCF) Science and Technology Program 2000 Annual Report

    DTIC Science & Technology

    2000-01-01

    in an area of deep compressive stress. • Results of industry and government testing have indicated the ability to stop crack initiation and...fatigue crack nucleation process with the cyclic deformation behavior of the alloy for different microstructures and crystallographic texture ... texture combinations investigated, bimodal fine uni-rolled and lamellar cross-rolled displayed superior fatigue properties to the remaining four

  8. Analysis of Lightweight Materials for the AM2 System

    DTIC Science & Technology

    2014-06-01

    and fatigue behavior in magnesium alloys . Materials Science & Engineering A (Structural Materials: Properties , Microstructure and Processing ), v 434...Table 7. Tensile properties of the alloys AA2024 or the T3 and T81 temper designations (Kuo et al . 2005...using a powder metallurgy technique, such as a standard cold compacting press and sintering process . However, the fatigue life of the liquid-based

  9. Fatigue Behavior of Porous Ti-6Al-4V Made by Laser-Engineered Net Shaping.

    PubMed

    Razavi, Seyed Mohammad Javad; Bordonaro, Giancarlo G; Ferro, Paolo; Torgersen, Jan; Berto, Filippo

    2018-02-12

    The fatigue behavior and fracture mechanisms of additively manufactured Ti-6Al-4V specimens are investigated in this study. Three sets of testing samples were fabricated for the assessment of fatigue life. The first batch of samples was built by using Laser-Engineered Net Shaping (LENS) technology, a Direct Energy Deposition (DED) method. Internal voids and defects were induced in a second batch of samples by changing LENS machine processing parameters. Fatigue performance of these samples is compared to the wrought Ti-6Al-4V samples. The effects of machine-induced porosity are assessed on mechanical properties and results are presented in the form of SN curves for the three sets of samples. Fracture mechanisms are examined by using Scanning Electron Microscopy (SEM) to characterize the morphological characteristics of the failure surface. Different fracture surface morphologies are observed for porous and non-porous specimens due to the combination of head write speed and laser power. Formation of defects such as pores, unmelted regions, and gas entrapments affect the failure mechanisms in porous specimens. Non-porous specimens exhibit fatigue properties comparable with that of the wrought specimens, but porous specimens are found to show a tremendous reduced fatigue strength.

  10. Psychometric evaluation of the fatigue severity scale for use in chronic hepatitis C.

    PubMed

    Kleinman, L; Zodet, M W; Hakim, Z; Aledort, J; Barker, C; Chan, K; Krupp, L; Revicki, D

    2000-01-01

    Evidence exists demonstrating that infection with hepatitis C virus impairs health-related quality of life, but less is known about the effect of fatigue, a common symptom, on everyday life. The psychometric properties of the fatigue severity scale (FSS) were explored to determine suitability as an outcome measure in clinical trials. The FSS includes nine items developed to measure disabling fatigue and a visual analog scale (VAS) to measure overall fatigue. Using baseline data from three clinical trials (n = 1225) involving chronic hepatitis C patients, scaling and psychometric characteristics of the FSS were assessed. The SF-36 was also used in the trials. Item response theory analysis demonstrated that the FSS items can be placed along a single homogenous domain, fatigue. Internal consistency reliability was 0.94. Test-retest reliability was 0.82 for the total score and 0.80 for the VAS. The total score and the VAS were significantly correlated with the SF-36 vitality subscale (r = -0.76 and r = -0.76 respectively). Correlations with other SF-36 subscales were moderate (r = -0.46 to r = -0.67, all p < 0.0001). In summary, the FSS possesses good psychometric properties.

  11. Fatigue behaviour of NiTi shape memory alloy scaffolds produced by SLM, a unit cell design comparison.

    PubMed

    Speirs, M; Van Hooreweder, B; Van Humbeeck, J; Kruth, J-P

    2017-06-01

    Selective laser melting (SLM) is an additive manufacturing technique able to produce complex functional parts via successively melting layers of metal powder. This process grants the freedom to design highly complex scaffold components to allow bone ingrowth and aid mechanical anchorage. This paper investigates the compression fatigue behaviour of three different unit cells (octahedron, cellular gyroid and sheet gyroid) of SLM nitinol scaffolds. It was found that triply periodic minimal surfaces display superior static mechanical properties in comparison to conventional octahedron beam lattice structures at identical volume fractions. Fatigue resistance was also found to be highly geometry dependent due to the effects of AM processing techniques on the surface topography and notch sensitivity. Geometries minimising nodal points and the staircase effect displayed the greatest fatigue resistance when normalized to yield strength. Furthermore oxygen analysis showed a large oxygen uptake during SLM processing which must be altered to meet ASTM medical grade standards and may significantly reduce fatigue life. These achieved fatigue properties indicate that NiTi scaffolds produced via SLM can provide sufficient mechanical support over an implants lifetime within stress range values experienced in real life. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Fiber Laser Welded AZ31 Magnesium Alloy: The Effect of Welding Speed on Microstructure and Mechanical Properties

    NASA Astrophysics Data System (ADS)

    Chowdhury, S. H.; Chen, D. L.; Bhole, S. D.; Powidajko, E.; Weckman, D. C.; Zhou, Y.

    2012-06-01

    This study was aimed at characterizing microstructural change and evaluating tensile and fatigue properties of fiber laser welded AZ31B-H24 Mg alloy with special attention to the effect of welding speed. Laser welding led to the formation of equiaxed dendrites in the fusion zone and columnar dendrites near the fusion zone boundary along with divorced eutectic Mg17Al12 particles and recrystallized grains in the heat-affected zone. The lowest hardness across the weld appeared in the fusion zone. Although the yield strength, ductility, and fatigue life decreased, the hardening capacity increased after laser welding, with a joint efficiency reaching about 90 pct. A higher welding speed resulted in a narrower fusion zone, smaller grain size, higher yield strength, and longer fatigue life, as well as a slightly lower strain-hardening capacity mainly because of the smaller grain sizes. Tensile fracture occurred in the fusion zone, whereas fatigue failure appeared essentially in between the heat-affected zone and the fusion zone. Fatigue cracks initiated from the near-surface welding defects and propagated by the formation of fatigue striations together with secondary cracks.

  13. Psychometric properties of the Fatigue Severity Scale in obese patients

    PubMed Central

    2013-01-01

    Background The aim of this study was to examine the psychometric properties of the Fatigue Severity Scale (FSS) to verify whether this instrument is a valid tool to measure fatigue in obese patients, and to examine the prevalence of fatigue in obese patients. Methods Before and after a three-week residential multidisciplinary integrated weight reduction program, 220 patients were asked to fill in the questionnaires: FSS, Profile of Mood States (Fatigue-Inertia subscale, POMS-Fatigue, and Vigor-Activity subscale, POMS-Vigor), and the Obesity-Related Well-Being (ORWELL-97). A subsample of 50 patients completed the questionnaire within two days. Results The prevalence of fatigue using a cut-off value of 4 for the FSS score was 59%. Correlations were found between FSS and POMS-Fatigue and -Vigor scores (r = 0.58 and 0.53, respectively). A relation was also found between FSS and ORWELL97 (r = 0.52, 0.42 to 0.61). From the factorial analysis only 1 factor was extracted explaining 63% of variance, with factor loading values ranging from 0.71 (item 7) to 0.87 (item 6). Intraclass Correlation Coefficient was 0.89 (0.82 to 0.94), while the agreement as measured using the Standard Error of Measurement was 0.43 (0.36 to 0.54) corresponding to 13% (11 to 17%). Cronbach’s alpha values ranged from 0.94 to 0.93. The internal responsiveness of FSS was comparable to the ORWELL97 (Standardized Response Mean = 0.50 and 0.44, respectively). Conclusions Fatigue is an important and frequent symptom in obese patients and therefore should be routinely assessed in both research and clinical practice. This can be achieved using the FSS, which is a short, simple, valid and reliable tool for assessing and quantifying fatigue in obese patients. PMID:23496886

  14. Psychometric Properties of the Chinese Version of the Occupational Fatigue Exhaustion/Recovery Scale: A Test in a Nursing Population.

    PubMed

    Fang, Jin-Bo; Zhou, Chun-Fen; Huang, Jing; Qiu, Chang-Jian

    2018-06-01

    The Occupational Fatigue Exhaustion/Recovery Scale (OFER) was designed to assess occupational fatigue in nurses. Although the original English version of this instrument has shown high degrees of reliability and validity, a Chinese version of this scale has yet to be verified. The aim of this study was to evaluate the psychometric properties of the OFER in a population of Chinese nurses. The scale was translated using translation and back-translation. The validities and reliabilities were evaluated on 923 qualified participants using content validity index, concurrent validity, factorial validity, internal consistency reliability, and test-retest reliability. The content validity index for the OFER was .92. The correlation coefficients between the scores of the OFER subscales and the criteria in this study (varying from -.498 to .705) verified that the OFER has acceptable concurrent validity. Principal component analysis and confirmatory factor analysis revealed that three factors correspond to the structure of the original instrument and that recovery mediates the relationship between acute and chronic fatigue. The Cronbach's alpha for the chronic fatigue, acute fatigue, and intershift recovery subscales were .83, .85, and .86, respectively. Test-retest reliabilities with correlation coefficients from .61 to .78 were found in the three subscales. OFER is a reliable and valid instrument for assessing work-related fatigue in Chinese nurses. However, further improvement of the acute fatigue subscale is recommended. The OFER has the potential to elicit information that is useful for assessing fatigue in nurses in China. Furthermore, as it differentiates between acute and chronic fatigue, OFER may be an effective tool for guiding the development and implementation of various, related intervention measures.

  15. Enhanced fatigue endurance of metallic glasses through a staircase-like fracture mechanism.

    PubMed

    Gludovatz, Bernd; Demetriou, Marios D; Floyd, Michael; Hohenwarter, Anton; Johnson, William L; Ritchie, Robert O

    2013-11-12

    Bulk-metallic glasses (BMGs) are now candidate materials for structural applications due to their exceptional strength and toughness. However, their fatigue resistance can be poor and inconsistent, severely limiting their potential as reliable structural materials. As fatigue limits are invariably governed by the local arrest of microscopically small cracks at microstructural features, the lack of microstructure in monolithic glasses, often coupled with other factors, such as the ease of crack formation in shear bands or a high susceptibility to corrosion, can lead to low fatigue limits (some ~1/20 of their tensile strengths) and highly variable fatigue lives. BMG-matrix composites can provide a solution here as their duplex microstructures can arrest shear bands at a second phase to prevent cracks from exceeding critical size; under these conditions, fatigue limits become comparable with those of crystalline alloys. Here, we report on a Pd-based glass that similarly has high fatigue resistance but without a second phase. This monolithic glass displays high intrinsic toughness from extensive shear-band proliferation with cavitation and cracking effectively obstructed. We find that this property can further promote fatigue resistance through extrinsic crack-tip shielding, a mechanism well known in crystalline metals but not previously reported in BMGs, whereby cyclically loaded cracks propagate in a highly "zig-zag" manner, creating a rough "staircase-like" profile. The resulting crack-surface contact (roughness-induced crack closure) elevates fatigue properties to those comparable to crystalline alloys, and the accompanying plasticity helps to reduce flaw sensitivity in the glass, thereby promoting structural reliability.

  16. Enhanced fatigue endurance of metallic glasses through a staircase-like fracture mechanism

    PubMed Central

    Gludovatz, Bernd; Demetriou, Marios D.; Floyd, Michael; Hohenwarter, Anton; Johnson, William L.; Ritchie, Robert O.

    2013-01-01

    Bulk-metallic glasses (BMGs) are now candidate materials for structural applications due to their exceptional strength and toughness. However, their fatigue resistance can be poor and inconsistent, severely limiting their potential as reliable structural materials. As fatigue limits are invariably governed by the local arrest of microscopically small cracks at microstructural features, the lack of microstructure in monolithic glasses, often coupled with other factors, such as the ease of crack formation in shear bands or a high susceptibility to corrosion, can lead to low fatigue limits (some ∼1/20 of their tensile strengths) and highly variable fatigue lives. BMG-matrix composites can provide a solution here as their duplex microstructures can arrest shear bands at a second phase to prevent cracks from exceeding critical size; under these conditions, fatigue limits become comparable with those of crystalline alloys. Here, we report on a Pd-based glass that similarly has high fatigue resistance but without a second phase. This monolithic glass displays high intrinsic toughness from extensive shear-band proliferation with cavitation and cracking effectively obstructed. We find that this property can further promote fatigue resistance through extrinsic crack-tip shielding, a mechanism well known in crystalline metals but not previously reported in BMGs, whereby cyclically loaded cracks propagate in a highly “zig-zag” manner, creating a rough “staircase-like” profile. The resulting crack-surface contact (roughness-induced crack closure) elevates fatigue properties to those comparable to crystalline alloys, and the accompanying plasticity helps to reduce flaw sensitivity in the glass, thereby promoting structural reliability. PMID:24167284

  17. Bioactivity-guided fractionation for anti-fatigue property of Acanthopanax senticosus.

    PubMed

    Huang, Lin-Zhang; Huang, Bao-Kang; Ye, Qi; Qin, Lu-Ping

    2011-01-07

    The root of Acanthopanax senticosus (also called Eleutherococcus senticosus or Siberian ginseng) has been used extensively in China, Russia and Japan as an adaptogen to fight against stress and fatigue. The present study was designed to ascertain the anti-fatigue property of Acanthopanax senticosus by load-weighted swimming test, sleep deprivation test, also to isolate and characterize the active constituents. Animals were orally administered with the extract of Acanthopanax senticosus. The anti-fatigue effects of the four fractions with different polarities from the 80% ethanol extract, and the different eluates collected from D101 macroporous resin chromatography and eleutheroside E, were examined based on the weight-loaded swimming capacity (physical fatigue) and the change of biochemical parameters in ICR mice. Moreover, the active fraction was later submitted to sleep-deprived mice (mental fatigue). The results shown that the n-butanol fraction significant extends the swimming time of mice to exhaustion. Furthermore, the 60% ethanol-water eluate, more purified eleutherosides (including eleutheroside E, E(2) and derivatives), were the exactly active constituents. Two compounds were isolated, which were identified as eleutheroside E, E(2). The eleutherosides possess the potent abilities to alleviate fatigue both in physical and mental fatigue. Eleutheroside E may be responsible for the pharmacological effect of anti-fatigue. Furthermore, the possible mechanisms were reduced the level of TG by increasing fat utilization, delayed the accumulation of blood urea nitrogen (BUN), and increased the LDH to reduce the accumulation of lactic acid in muscle and then protect the muscle tissue. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  18. Patient-reported outcome measures for systemic lupus erythematosus clinical trials: a review of content validity, face validity and psychometric performance.

    PubMed

    Holloway, Laura; Humphrey, Louise; Heron, Louise; Pilling, Claire; Kitchen, Helen; Højbjerre, Lise; Strandberg-Larsen, Martin; Hansen, Brian Bekker

    2014-07-22

    Despite overall progress in treatment of autoimmune diseases, patients with systemic lupus erythematosus (SLE) experience many inflammatory symptoms representing an unmet medical need. This study aimed to create a conceptual model of the humanistic and economic burden of SLE, and review the patient-reported outcomes (PROs) used to measure such concepts in SLE clinical trials. A conceptual model for SLE was developed from structured review of published articles from 2007 to August 2013 identified from literature databases (MEDLINE, EMBASE, PsycINFO, EconLit) plus other sources (PROLabels, FDA/EMA websites, Clinicaltrials.gov). PROs targeting key symptoms/impacts were identified from the literature. They were reviewed in the context of available guidance and assessed for face and content validity and psychometric properties to determine appropriateness for use in SLE trials. The conceptual model identified fatigue, pain, cognition, daily activities, emotional well-being, physical/social functioning and work productivity as key SLE concepts. Of the 68 articles reviewed, 38 reported PRO data. From these and the other sources, 15 PROs were selected for review, including SLE-specific health-related quality of life (HRQoL) measures (n = 5), work productivity (n = 1), and generic measures of fatigue (n = 3), pain (n = 2), depression (n = 2) and HRQoL (n = 2). The Functional Assessment of Chronic Illness Therapy - Fatigue Scale (FACIT-Fatigue), Brief Pain Inventory (BPI-SF) and LupusQoL demonstrated the strongest face validity, conceptual coverage and psychometric properties measuring key concepts in the conceptual model. All PROs reviewed, except for three Lupus-specific measures, lacked qualitative SLE patient involvement during development. The Hospital Anxiety and Depression Scale (HADS), Short Form [36 item] Health Survey version 2 (SF-36v2), EuroQoL 5-dimensions (EQ-5D-3L and EQ-5D-5L) and Work Productivity and Activity Impairment Questionnaire: Lupus (WPAI:Lupus) showed suitability for SLE economic models. Based on the identification of key symptoms and impacts of SLE using a scientifically sound conceptual model, we conclude that SLE is a condition associated with high unmet need and considerable burden to patients. This review highlights the availability and need for disease-specific and generic patient-reported measures of relevant domains of disease signs and symptoms, HRQoL and work productivity, providing useful insight for SLE clinical trial design.

  19. Evaluation of corrosion fatigue and life prediction of lower arm for automotive suspension component

    NASA Astrophysics Data System (ADS)

    Kim, Yong-Sang; Kim, Jung-Gu

    2017-01-01

    Lower arm is one of the suspension components of automobile. It is suffered from driving vibration and corrosive environment, namely corrosion fatigue. In this study, corrosion fatigue property of lower arm was investigated, and a modified model based on Palmgren-Miner rule was developed to predict the lifetimes of corrosion fatigue. The corrosion fatigue life of lower arm was about 1/6 times shorter than fatigue life. Based on the results of corrosion fatigue tests and meteorological data in Seoul and Halifax, the corrosion fatigue life of lower arm was predicted. The satisfaction of 10-year and 300,000 km warranty was dominated by the climate of automobile driving. This prediction indicates that the weather condition or driving condition influences the life of automotive parts. Therefore, to determine the warranty of automotive parts, the driving condition has to be carefully considered.

  20. Enhancement of the fatigue performance of Ti-6Al-4V implant products

    NASA Astrophysics Data System (ADS)

    Wimalasiri, Dematapaksha H. R. J.

    Implants surgery, in particular hip implants, is fast becoming a routine, popular approach for curing diseases such as, osteoarthritis and rheumatic arthritis. However one potential problem with the insertion of a metal implant is that of the risk of fatigue failure. Numerous factors affect the propensity of a metal to fatigue, none more so than the physical and stress state of the surface. This research is focused on an assessment of the role of manufacturing processes on the fatigue performance of hip implants made from a Ti-6Al-4V alloy. The role of surface defects, surface residual stresses and material microstructural properties which influence fatigue performance were examined. Characterization of the implant material and of the processes involved in actual hip implant manufacturing were conducted. Rotating bend fatigue testing using hour glass shaped specimens was conducted to evaluate the fatigue performance at selected manufacturing stages. The surface roughness/defects and residual stresses were measured prior to conducting fatigue tests. A variation of fatigue limit, attributed to variations of surface roughness and surface residual stress was observed. The influence of parameters such as, stress ratio and mean stress effect, variation of fracture mechanics parameters (e.g. DeltaK[th]) and the limiting threshold conditions for different stages of cracks were investigated in the context of Kitagawa-Takahashi (K-T) type diagrams. Experimental data was used to develop models which were used to calculate, (i). fatigue life at respective stress amplitude and, (ii). the fatigue limit of components with known surface roughness/defect size and residual stress. To evaluate material crack growth properties a surface replication method was used. The output from both models showed good correlation with experimental data. Comprehensive fractography was conducted using optical, secondary electron, and infinite focus microscopy to support the results obtained from fatigue testing. Analysis was performed on in-vivo hip implant failure data covering the last 12 years. Fatigue failures occur in two locations on the implant stem, namely the cone area and the neck area. These two locations were investigated separately to identify the factors, such as; the category of implant most vulnerable to failure, service life, design features, fixation with the host bone, crack initiation features and propagation details. An attempt was made to compare in-vivo fatigue features with experimental fatigue results. X-ray diffraction (XRD) was used to investigate the surface residual stresses resulting from different manufacturing processes. The results were confirmed and software and hardware settings were calibrated in accordance with the results obtained from XRD analysis conducted at National Physical Laboratories (NPL), UK. Surface roughness measurements were also conducted using stylus type surface profilometer. The knowledge gained from this research can be used to understand the causes and modes of in-vivo fatigue failure of hip implants made of Ti-6Al-4V. Understanding the fatigue/mechanical properties of the implant material enables recommendations and optimization of good practice in manufacturing to eliminate in-vivo fatigue failures.

  1. Thermal-Mechanical Stress Analysis of PWR Pressure Vessel and Nozzles under Grid Load-Following Mode: Interim Report on the Effect of Cyclic Hardening Material Properties and Pre-existing Cracks on Stress Analysis Results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohanty, Subhasish; Soppet, William; Majumdar, Saurin

    This report provides an update on an assessment of environmentally assisted fatigue for light water reactor components under extended service conditions. This report is a deliverable under the work package for environmentally assisted fatigue as part of DOE’s Light Water Reactor Sustainability Program. In a previous report (September 2015), we presented tensile and fatigue test data and related hardening material properties for 508 low-alloys steel base metal and other reactor metals. In this report, we present thermal-mechanical stress analysis of the reactor pressure vessel and its hot-leg and cold-leg nozzles based on estimated material properties. We also present results frommore » thermal and thermal-mechanical stress analysis under reactor heat-up, cool-down, and grid load-following conditions. Analysis results are given with and without the presence of preexisting cracks in the reactor nozzles (axial or circumferential crack). In addition, results from validation stress analysis based on tensile and fatigue experiments are reported.« less

  2. Numerical prediction of mechanical properties of Pb-Sn solder alloys containing antimony, bismuth and or silver ternary trace elements

    NASA Astrophysics Data System (ADS)

    Gadag, Shiva P.; Patra, Susant

    2000-12-01

    Solder joint interconnects are mechanical means of structural support for bridging the various electronic components and providing electrical contacts and a thermal path for heat dissipation. The functionality of the electronic device often relies on the structural integrity of the solder. The dimensional stability of solder joints is numerically predicted based on their mechanical properties. Algorithms to model the kinetics of dissolution and subsequent growth of intermetallic from the complete knowledge of a single history of time-temperature-reflow profile, by considering equivalent isothermal time intervals, have been developed. The information for dissolution is derived during the heating cycle of reflow and for the growth process from cooling curve of reflow profile. A simple and quick analysis tool to derive tensile stress-strain maps as a function of the reflow temperature of solder and strain rate has been developed by numerical program. The tensile properties are used in modeling thermal strain, thermal fatigue and to predict the overall fatigue life of solder joints. The numerical analysis of the tensile properties as affected by their composition and rate of testing, has been compiled in this paper. A numerical model using constitutive equation has been developed to evaluate the interfacial fatigue crack growth rate. The model can assess the effect of cooling rate, which depends on the level of strain energy release rate. Increasing cooling rate from normalizing to water-quenching, enhanced the fatigue resistance to interfacial crack growth by up to 50% at low strain energy release rate. The increased cooling rates enhanced the fatigue crack growth resistance by surface roughening at the interface of solder joint. This paper highlights salient features of process modeling. Interfacial intermetallic microstructure is affected by cooling rate and thereby affects the mechanical properties.

  3. The Mechanical Property Data Base from an Air Force/Industry Cooperative Test Program on Advanced Aluminum Alloys

    DTIC Science & Technology

    1993-12-01

    Longitudinal) E3 Fatigue Crack Growth Rate Data for Alcan 8090-T8 160 1 " x 4" Extrusion ( L-T Orientation). Grumman E4 Fatigue Crack Growth Rate...Data for Alcan 8090-T8 161 1 " x 4" Extrusion (T-L Orientation). Grumman E5 Fatigue Crack Growth Rate Data for Alcan 8090-T651 162 1 "x 4" Extrusion (L-T...Orientation). Northrop E6 Fatigue Crack Growth Rate for Alcan 8090-T651 163 1 " x 4" Extrusion (T-L Orientation). Northrop E7 Fatigue Crack Growth Rate

  4. Fatigue Behavior of Inconel 718 TIG Welds

    NASA Astrophysics Data System (ADS)

    Alexopoulos, Nikolaos D.; Argyriou, Nikolaos; Stergiou, Vasillis; Kourkoulis, Stavros K.

    2014-08-01

    Mechanical behavior of reference and TIG-welded Inconel 718 specimens was examined in the present work. Tensile, constant amplitude fatigue, and fracture toughness tests were performed in ambient temperature for both, reference and welded specimens. Microstructure revealed the presence of coarse and fine-grained heat-affected zones. It has been shown that without any post-weld heat treatment, welded specimens maintained their tensile strength properties while their ductility decreased by more than 40%. It was found that the welded specimens had lower fatigue life and this decrease was a function of the applied fatigue maximum stress. A 30% fatigue life decrease was noticed in the high cycle fatigue regime for the welded specimens while this decrease exceeded 50% in the low cycle fatigue regime. Cyclic stress-strain curves showed that Inconel 718 experiences a short period of hardening followed by softening for all fatigue lives. Cyclic fatigue response of welded specimens' exhibited cyclically stable behavior. Finally, a marginal decrease was noticed in the Mode I fracture toughness of the welded specimens.

  5. Risk of fatigue in cancer patients receiving anti-EGFR monoclonal antibodies: results from a systematic review and meta-analysis of randomized controlled trial.

    PubMed

    Zhu, Jianhong; Zhao, Wenxia; Liang, Dan; Li, Guocheng; Qiu, Kaifeng; Wu, Junyan; Li, Jianfang

    2018-04-01

    To evaluate the association between fatigue and anti-epidermal growth factor receptor monoclonal antibodies (anti-EGFR MAbs), we conducted the first meta-analysis to access the incidence and risk of fatigue associated with anti-EGFR MAbs. Electronic databases were searched for randomized controlled trials (RCTs) published up to February 2017. Eligible studies were selected according to PRISMA statement. Incidence rates, risk ratio (RRs), and 95% confidence intervals (CIs) were calculated using fixed-effects or random-effects models. Outcomes of quality were summarized in accordance with the GRADE (Grading of Recommendations Assessment, Development, and Evaluation) methodology. Thirty-five RCTs (including 15,622 patients) were included; median follow-up ranged from 8.1 to 71.4 months, and the fatigue events were recorded and graded according to the Common Toxicity Criteria for Adverse Events version 2.0 or 3.0 in most of the included trials. For patients receiving anti-EGFR MAbs, the overall incidence of all-grade and high-grade fatigue was 54.1% and 10.5%, respectively. Compared with control, anti-EGFR MAbs significantly increased the risk of all-grade fatigue (RR 1.10, 95% CI, 1.05-1.14, moderate-quality evidence) and high-grade fatigue (RR 1.31, 95% CI, 1.19-1.45, moderate-quality evidence). No significant differences among subgroup analyses (anti-EGFR MAbs, tumor type, and median follow-up) on high-grade fatigue were observed. No evidence of publication bias was observed. The present study suggested that anti-EGFR MAbs may increase the risk of fatigue in cancer patients.

  6. Risk markers for both chronic fatigue and irritable bowel syndromes: a prospective case-control study in primary care.

    PubMed

    Hamilton, W T; Gallagher, A M; Thomas, J M; White, P D

    2009-11-01

    Fatigue syndromes and irritable bowel syndrome (IBS) often occur together. Explanations include being different manifestations of the same condition and simply sharing some symptoms. A matched case-control study in UK primary care, using data collected prospectively in the General Practice Research Database (GPRD). The main outcome measures were: health-care utilization, specific symptoms and diagnoses. Risk markers were divided into distant (from 3 years to 1 year before diagnosis) and recent (1 year before diagnosis). A total of 4388 patients with any fatigue syndrome were matched to two groups of patients: those attending for IBS and those attending for another reason. Infections were specific risk markers for both syndromes, with viral infections being a risk marker for a fatigue syndrome [odds ratios (ORs) 2.3-6.3], with a higher risk closer to onset, and gastroenteritis a risk for IBS (OR 1.47, compared to a fatigue syndrome). Chronic fatigue syndrome (CFS) shared more distant risk markers with IBS than other fatigue syndromes, particularly other symptom-based disorders (OR 3.8) and depressive disorders (OR 2.3), but depressive disorders were a greater risk for CFS than IBS (OR 2.4). Viral infections were more of a recent risk marker for CFS compared to IBS (OR 2.8), with gastroenteritis a greater risk for IBS (OR 2.4). Both fatigue and irritable bowel syndromes share predisposing risk markers, but triggering risk markers differ. Fatigue syndromes are heterogeneous, with CFS sharing predisposing risks with IBS, suggesting a common predisposing pathophysiology.

  7. Fatigue of survivors following cardiac surgery: positive influences of preoperative prayer coping.

    PubMed

    Ai, Amy L; Wink, Paul; Shearer, Marshall

    2012-11-01

    Fatigue symptoms are common among individuals suffering from cardiac diseases, but few studies have explored longitudinally protective factors in this population. This study examined the effect of preoperative factors, especially the use of prayer for coping, on long-term postoperative fatigue symptoms as one aspect of lack of vitality in middle-aged and older patients who survived cardiac surgery. The analyses capitalized on demographics, faith factors, mental health, and on medical comorbidities previously collected via two-wave preoperative interviews and standardized information from the Society of Thoracic Surgeons' national database. The current participants completed a mailed survey 30 months after surgery. Two hierarchical regressions were performed to evaluate the extent to which religious factors predicted mental and physical fatigue, respectively, after controlling for key demographics, medical indices, and mental health. Preoperative prayer coping, but not other religious factors, predicted less mental fatigue at the 30-month follow-up, after controlling for key demographics, medical comorbidities, cardiac function (previous cardiovascular intervention, congestive heart failure, left ventricular ejection fraction, New York Heart Association Classification), mental health (depression, anxiety), and protectors (optimism, hope, social support). Male gender, preoperative anxiety, and reverence in secular context predicted more mental fatigue. Physical fatigue increased with age, medical comorbidities, and preoperative anxiety. Including health control beliefs in the model did not eliminate this effect. Prayer coping may have independent and positive influences on less fatigue in individuals who survived cardiac surgery. However, future research should investigate mechanisms of this association. ©2012 The British Psychological Society.

  8. Mind-Body Treatments for the Pain-Fatigue-Sleep Disturbance Symptom Cluster in Persons with Cancer

    PubMed Central

    Kwekkeboom, Kristine L.; Cherwin, Catherine H.; Lee, Jun W.; Wanta, Britt

    2011-01-01

    Purpose To synthesize evidence regarding mind-body interventions that have shown efficacy in treating two or more symptoms in the pain-fatigue-sleep disturbance cancer symptom cluster. Design A literature search was conducted using CINAHL, Medline, and PsychInfo databases through March 2009. Methods Studies were categorized based on the type of mind-body intervention (relaxation, imagery / hypnosis, cognitive-behavioral therapy / coping skills training [CBT/CST], meditation, music, and virtual reality), and a preliminary review was conducted with respect to efficacy for pain, fatigue, and sleep disturbance. Mind-body interventions were selected for review if there was evidence of efficacy for at least two of the three symptoms. Forty-three studies, addressing five types of mind-body interventions met criteria and are summarized in this review. Findings Imagery / hypnosis and CBT / CST interventions have produced improvement in all three cancer-related symptoms individually: pain, fatigue, and sleep disturbance. Relaxation has resulted in improvements in pain and sleep disturbance. Meditation interventions have demonstrated beneficial effects on fatigue and sleep disturbance. Music interventions have demonstrated efficacy for pain and fatigue. No trials were found that tested the mind-body interventions specifically for the pain-fatigue-sleep disturbance symptom cluster. Conclusions Efficacy studies are needed to test the impact of relaxation, imagery / hypnosis, CBT / CST, meditation and music interventions in persons with cancer experiencing concurrent pain, fatigue, and sleep disturbance. These mind-body interventions could help patients manage all symptoms in the cluster with a single treatment strategy. PMID:19900778

  9. Determinants of seafarers' fatigue: a systematic review and quality assessment.

    PubMed

    Dohrmann, Solveig Boeggild; Leppin, Anja

    2017-01-01

    Fatigue jeopardizes seafarer's health and safety. Thus, knowledge on determinants of fatigue is of great importance to facilitate its prevention. However, a systematic analysis and quality assessment of all empirical evidence specifically for fatigue are still lacking. The aim of the present article was therefore to systematically detect, analyze and assess the quality of this evidence. Systematic searches in ten databases were performed. Searches considered articles published in scholarly journals from 1980 to April 15, 2016. Nineteen out of 98 eligible studies were included in the review. The main reason for exclusion was fatigue not being the outcome variable. Most evidence was available for work time-related factors suggesting that working nights was most fatiguing, that fatigue levels were higher toward the end of watch or shift, and that the 6-h on-6-h off watch system was the most fatiguing. Specific work demands and particularly the psychosocial work environment have received little attention, but preliminary evidence suggests that stress may be an important factor. A majority of 12 studies were evaluated as potentially having a high risk of bias. Realistic countermeasures ought to be established, e.g., in terms of shared or split night shifts. As internal as well as external validity of many study findings was limited, the range of factors investigated was insufficient and few studies investigated more complex interactions between different factors, knowledge derived from studies of high methodological quality investigating different factors, including psychosocial work environments, are needed to support future preventive programs.

  10. Modeling Creep-Fatigue-Environment Interactions in Steam Turbine Rotor Materials for Advanced Ultra-supercritical Coal Power Plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen, Chen

    2014-04-01

    The goal of this project is to model creep-fatigue-environment interactions in steam turbine rotor materials for advanced ultra-supercritical (A-USC) coal power Alloy 282 plants, to develop and demonstrate computational algorithms for alloy property predictions, and to determine and model key mechanisms that contribute to the damages caused by creep-fatigue-environment interactions.

  11. Fatigue With Systolic Heart Failure

    PubMed Central

    Fink, Anne M.; Sullivan, Shawna L.; Zerwic, Julie J.; Piano, Mariann R.

    2010-01-01

    Background and Research Objective Fatigue is one of the most prevalent symptoms in persons with systolic heart failure (HF). There remains insufficient information about the physiological and psychosocial underpinnings of fatigue in HF. The specific aims of this study were to (1) determine the psychometric properties of 2 fatigue questionnaires in patients with HF, (2) compare fatigue in patients with HF to published scores of healthy adults and patients with cancer undergoing treatment, and (3) identify the physiological (eg, hemoglobin, B-type natriuretic peptide, body mass index, and ejection fraction) and psychosocial (eg, depressed mood) correlates of fatigue in HF. Subjects and Methods A convenience sample of 87 HF outpatients was recruited from 2 urban medical centers. Patients completed the Fatigue Symptom Inventory, Profile of Mood States, and Short Form-36 Health Survey. Results and Conclusions Patients with HF and patients with cancer reported similar levels of fatigue, and both patient groups reported significantly more fatigue than did healthy adults. Physical functioning and hemoglobin categories explained 30% of the variance in Fatigue Symptom Inventory-Interference Scale scores, whereas depressed mood and physical functioning explained 47% of the variance in Profile of Mood States Fatigue subscale scores. Patients with HF experienced substantial fatigue that is comparable with cancer-related fatigue. Low physical functioning, depressed mood, and low hemoglobin level were associated with HF-related fatigue. PMID:19707101

  12. Microstructure, Fatigue Behavior, and Failure Mechanisms of Direct Laser-Deposited Inconel 718

    NASA Astrophysics Data System (ADS)

    Johnson, Alex S.; Shao, Shuai; Shamsaei, Nima; Thompson, Scott M.; Bian, Linkan

    2017-03-01

    Inconel 718 is considered to be a superalloy with a series of superior properties such as high strength, creep resistance, and corrosion resistance at room and elevated temperatures. Additive manufacturing (AM) is particularly appealing to Inconel 718 because of its near-net-shape production capability for circumventing the poor machinability of this superalloy. Nevertheless, AM parts are prone to porosity, which is detrimental to their fatigue resistance. Thus, further understanding of their fatigue behavior is required before their widespread use in load-bearing applications. In this work, the microstructure and fatigue properties of AM Inconel 718, produced in a Laser Engineered Net Shaping (LENS™) system and heat treated with a standard heat treatment schedule, are evaluated at room temperature. Fully reversed strain controlled fatigue tests were performed on cylindrical specimens with straight gage sections at strain amplitudes ranging from 0.001 mm/mm to 0.01 mm/mm. The fracture surfaces of fatigue specimens were inspected with a scanning electron microscope. The results indicate that the employed heat treatment allowed the large, elongated grains and dendritic structure of the as-built material to break down into smaller, equiaxed grains, with some dendritic structures remaining between layers. The AM specimens were found to possess lower fatigue resistance than wrought Inconel 718, and this is primarily attributed to the presence of brittle metal-carbide/oxide inclusions or pores near their surface.

  13. Evaluation of Orientation Dependence of Fracture Toughness and Fatigue Crack Propagation Behavior of As-Deposited ARCAM EBM Ti-6Al-4V

    NASA Astrophysics Data System (ADS)

    Seifi, Mohsen; Dahar, Matthew; Aman, Ron; Harrysson, Ola; Beuth, Jack; Lewandowski, John J.

    2015-03-01

    This preliminary work documents the effects of test orientation with respect to build and beam raster directions on the fracture toughness and fatigue crack growth behavior of as-deposited EBM Ti-6Al-4V. Although ASTM/ISO standards exist for determining the orientation dependence of various mechanical properties in both cast and wrought materials, these standards are evolving for materials produced via additive manufacturing (AM) techniques. The current work was conducted as part of a larger America Makes funded project to begin to examine the effects of process variables on the microstructure and fracture and fatigue behavior of AM Ti-6Al-4V. In the fatigue crack growth tests, the fatigue threshold, Paris law slope, and overload toughness were determined at different load ratios, R, whereas fatigue precracked samples were tested to determine the fracture toughness. The as-deposited material exhibited a fine-scale basket-weave microstructure throughout the build, and although fracture surface examination revealed the presence of unmelted powders, disbonded regions, and isolated porosity, the resulting mechanical properties were in the range of those reported for cast and wrought Ti-6Al-4V. Remote access and control of testing was also developed at Case Western Reserve University to improve efficiency of fatigue crack growth testing.

  14. Vehicle Exposure and Spinal Musculature Fatigue in Military Warfighters: A Meta-Analysis.

    PubMed

    Kollock, Roger O; Games, Kenneth E; Wilson, Alan E; Sefton, JoEllen M

    2016-11-01

     Spinal musculature fatigue from vehicle exposure may place warfighters at risk for spinal injuries and pain. Research on the relationship between vehicle exposure and spinal musculature fatigue is conflicting. A better understanding of the effect of military duty on musculoskeletal function is needed before sports medicine teams can develop injury-prevention programs.  To determine if the literature supports a definite effect of vehicle exposure on spinal musculature fatigue.  We searched the MEDLINE, Military & Government Collection (EBSCO), National Institute for Occupational Safety and Health Technical Information Center, PubMed, and Web of Science databases for articles published between January 1990 and September 2015.  To be included, a study required a clear sampling method, preexposure and postexposure assessments of fatigue, a defined objective measurement of fatigue, a defined exposure time, and a study goal of exposing participants to forces related to vehicle exposure.  Sample size, mean preexposure and postexposure measures of fatigue, vehicle type, and exposure time.  Six studies met the inclusion criteria. We used the Scottish Intercollegiate Guidelines Network algorithm to determine the appropriate tool for quality appraisal of each article. Unweighted random-effects model meta-analyses were conducted, and a natural log response ratio was used as the effect metric. The overall meta-analysis demonstrated that vehicle exposure increased fatigue of the spinal musculature (P = .03; natural log response ratio = -0.22, 95% confidence interval = -0.42, -0.02). Using the spinal region as a moderator, we observed that vehicle ride exposure significantly increased fatigue at the lumbar musculature (P = .02; natural log response ratio = -0.27, 95% confidence interval = -0.50, -0.04) but not at the cervical or thoracic region.  Vehicle exposure increased fatigue at the lumbar region.

  15. Vehicle Exposure and Spinal Musculature Fatigue in Military Warfighters: A Meta-Analysis

    PubMed Central

    Kollock, Roger O.; Games, Kenneth E.; Wilson, Alan E.; Sefton, JoEllen M.

    2016-01-01

    Context: Spinal musculature fatigue from vehicle exposure may place warfighters at risk for spinal injuries and pain. Research on the relationship between vehicle exposure and spinal musculature fatigue is conflicting. A better understanding of the effect of military duty on musculoskeletal function is needed before sports medicine teams can develop injury-prevention programs. Objective: To determine if the literature supports a definite effect of vehicle exposure on spinal musculature fatigue. Data Sources: We searched the MEDLINE, Military & Government Collection (EBSCO), National Institute for Occupational Safety and Health Technical Information Center, PubMed, and Web of Science databases for articles published between January 1990 and September 2015. Study Selection: To be included, a study required a clear sampling method, preexposure and postexposure assessments of fatigue, a defined objective measurement of fatigue, a defined exposure time, and a study goal of exposing participants to forces related to vehicle exposure. Data Extraction: Sample size, mean preexposure and postexposure measures of fatigue, vehicle type, and exposure time. Data Synthesis: Six studies met the inclusion criteria. We used the Scottish Intercollegiate Guidelines Network algorithm to determine the appropriate tool for quality appraisal of each article. Unweighted random-effects model meta-analyses were conducted, and a natural log response ratio was used as the effect metric. The overall meta-analysis demonstrated that vehicle exposure increased fatigue of the spinal musculature (P = .03; natural log response ratio = −0.22, 95% confidence interval = −0.42, −0.02). Using the spinal region as a moderator, we observed that vehicle ride exposure significantly increased fatigue at the lumbar musculature (P = .02; natural log response ratio = −0.27, 95% confidence interval = −0.50, −0.04) but not at the cervical or thoracic region. Conclusions: Vehicle exposure increased fatigue at the lumbar region. PMID:28068167

  16. The Role of Microtexture on the Fatigue Behavior of an alpha + beta Titanium Alloy, Ti-6Al-2Sn-4Zr-6Mo (Preprint)

    DTIC Science & Technology

    2011-03-01

    Hall. Fatigue crack initiation in alpha-beta titanium alloys, International Journal of Fatigue, 31 (Suppl. 1), (1997) S23–S37. [ 4 ] G. Lutjering...Power Research Institute - October 1983. [ 6 ] F. Larson, A. Zarkades. Properties of Textured Titanium Alloys, MCIC Report - MCIC·74- 20 – Metals and...Figure 3 and 4 . Table II. The cycle count and relative rankings of fatigue crack growth rates measured from the cracks shown in Figure 5 and 6

  17. Ultrahigh vacuum, high temperature, low cycle fatigue of coated and uncoated Rene 80

    NASA Technical Reports Server (NTRS)

    Kortovich, C. S.

    1976-01-01

    A study was conducted on the ultrahigh vacuum strain controlled by low cycle fatigue behavior of uncoated and CODEP B-1 aluminide coated Rene' 80 nickel-base superalloy at 1000 C (1832 F) and 871 C (1600 F). The results indicated little effect of coating or temperature on the fatigue properties. There was, however, a significant effect on fatigue life when creep was introduced into the strain cycles. The effect of this creep component was analyzed in terms of the method of strainrange partitioning.

  18. Fatigue Resistant Bioinspired Composite from Synergistic Two-Dimensional Nanocomponents.

    PubMed

    Wan, Sijie; Zhang, Qi; Zhou, Xiaohang; Li, Dechang; Ji, Baohua; Jiang, Lei; Cheng, Qunfeng

    2017-07-25

    Portable and wearable electronics require much more flexible graphene-based electrode with high fatigue life, which could repeatedly bend, fold, or stretch without sacrificing its mechanical properties and electrical conductivity. Herein, a kind of ultrahigh fatigue resistant graphene-based nanocomposite via tungsten disulfide (WS 2 ) nanosheets is synthesized by introducing a synergistic effect with covalently cross-linking inspired by the orderly layered structure and abundant interfacial interactions of nacre. The fatigue life of resultant graphene-based nanocomposites is more than one million times at the stress level of 270 MPa, and the electrical conductivity can be kept as high as 197.1 S/cm after 1.0 × 10 5 tensile testing cycles. These outstanding properties are attributed to the synergistic effect from lubrication of WS 2 nanosheets for deflecting crack propagation, and covalent bonding between adjacent GO nanosheets for bridging crack, which is verified by the molecular dynamics (MD) simulations. The WS 2 induced synergistic effect with covalent bonding offers a guidance for constructing graphene-based nanocomposites with high fatigue life, which have great potential for applications in flexible and wearable electronic devices, etc.

  19. Constant and variable amplitude ultrasonic fatigue of 2024-T351 aluminium alloy at different load ratios.

    PubMed

    Mayer, H; Fitzka, M; Schuller, R

    2013-12-01

    Ultrasonic fatigue testing equipment is presented that is capable of performing constant amplitude (CA) and variable amplitude (VA) experiments at different constant load ratios. This equipment is used to study cyclic properties of aluminium alloy 2024-T351 in the high cycle fatigue (HCF) and very high cycle fatigue (VHCF) regime at load ratios R=-1 and R=0.5. CA loading does not reveal a fatigue limit below 10¹⁰ cycles. Cracks leading to VHCF failure start at broken constituent particles. Specimens that survived more than 10¹⁰ cycles at R=-1 contain non-propagating cracks of lengths below grain size. Resonance frequency and nonlinearity parameter β(rel) show changes of vibration properties of specimens at low fractions of their VHCF lifetime. VA lifetimes are measured in the HCF and VHCF regime and compared with Miner calculations. Damage sums decrease with decreasing load (and increasing mean lifetimes) and are lower for R=0.5 than R=-1. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Pitting and Bending Fatigue Evaluations of a New Case-Carburized Gear Steel

    NASA Technical Reports Server (NTRS)

    Krantz, Timothy; Tufts, Brian

    2007-01-01

    The power density of a gearbox is an important consideration for many applications and is especially important for gearboxes used on aircraft. One approach to improving power density of gearing is to improve the steel properties by design of the alloy. The alloy tested in this work was designed to be case-carburized with surface hardness of Rockwell C66 after hardening. Test gear performance was evaluated using surface fatigue tests and single-tooth bending fatigue tests. The performance of gears made from the new alloy was compared to the performance of gears made from two alloys currently used for aviation gearing. The new alloy exhibited significantly better performance in surface fatigue testing, demonstrating the value of the improved properties in the case layer. However, the alloy exhibited lesser performance in single-tooth bending fatigue testing. The fracture toughness of the tested gears was insufficient for use in aircraft applications as judged by the behavior exhibited during the single tooth bending tests. This study quantified the performance of the new alloy and has provided guidance for the design and development of next generation gear steels.

  1. Fiber reinforced superalloys for rocket engines

    NASA Technical Reports Server (NTRS)

    Petrasek, Donald W.; Stephens, Joseph R.

    1989-01-01

    High pressure turbopumps for advanced reusable liquid propellant rocket engines such as that for the Space Shuttle Main Engine (SSME) require turbine blade materials that operate under extreme conditions of temperature, hydrogen environment, high-cycle fatigue loading, thermal fatigue and thermal shock. Such requirements tax the capabilities of current blade materials. Based on projections of properties for tungsten fiber reinforced superalloy (FRS) composites, it was concluded that FRS turbine blades offer the potential of a several fold increase in life and over a 200 C increase in temperature capability over the current SSME blade material. FRS composites were evaluated with respect to mechanical property requirements for SSME blade applications. Compared to the current blade material, the thermal shock resistance of FRS materials is excellent, two to nine times better, and their thermal fatigue resistance is equal to or higher than the current blade material. FRS materials had excellent low and high-cycle fatigue strengths, and thermal shock-induced surface microcracks had no influence on their fatigue strength. The material also exhibited negligible embrittlement when exposed to a hydrogen environment.

  2. Fiber reinforced superalloys for rocket engines

    NASA Technical Reports Server (NTRS)

    Petrasek, Donald W.; Stephens, Joseph R.

    1988-01-01

    High-pressure turbopumps for advanced reusable liquid-propellant rocket engines such as that for the Space Shuttle Main Engine (SSME) require turbine blade materials that operate under extreme conditions of temperature, hydrogen environment, high-cycle fatigue loading, thermal fatigue and thermal shock. Such requirements tax the capabilities of current blade materials. Based on projections of properties for tungsten fiber reinforced superalloy (FRS) composites, it was concluded that FRS turbine blades offer the potential of a several-fold increase in life and over a 200C increase in temperature capability over current SSME blade material. FRS composites were evaluated with respect to mechanical property requirements for SSME blade applications. Compared to the current blade material, the thermal shock resistance of FRS materials is excellent, two to nine times better, and their thermal fatigue resistance is equal to or higher than the current blade material. FRS materials had excellent low and high-cycle fatigue strengths, and thermal shock-induced surface microcracks had no influence on their fatigue strength. The material also exhibited negligible embrittlement when exposed to a hydrogen environment.

  3. Fatigue Analysis of Notched Laminates: A Time-Efficient Macro-Mechanical Approach

    NASA Technical Reports Server (NTRS)

    Naghipour, P.; Pineda, E. J.; Bednarcyk, B. A.; Arnold, S. M.; Waas, A. M.

    2016-01-01

    A coupled transversely isotropic deformation and damage fatigue model is implemented within the finite element method and was utilized along with a static progressive damage model to predict the fatigue life, stiffness degradation as a function of number of cycles, and post-fatigue tension and compression response of notched, multidirectional laminates. Initially, the material parameters for the fatigue model were obtained utilizing micromechanics simulations and the provided [0], [90] and [plus or minus 45] experimental composite laminate S-N (stress-cycle) data. Within the fatigue damage model, the transverse and shear properties of the plies were degraded with an isotropic scalar damage variable. The damage in the longitudinal (fiber) ply direction was suppressed, and only the strength of the fiber was degraded as a function of fatigue cycles. A maximum strain criterion was used to capture the failure in each element, and once this criterion was satisfied, the longitudinal stiffness of the element was decreased by a factor of 10 (sup 4). The resulting, degraded properties were then used to calculate the new stress state. This procedure was repeated until final failure of the composite laminate was achieved or a specified number of cycles reached. For post-fatigue tension and compression behavior, four internal state variables were used to control the damage and failure. The predictive capability of the above-mentioned approach was assessed by performing blind predictions of the notched multidirectional IM7/977-3 composite laminates response under fatigue and post-fatigue tensile and compressive loading, followed by a recalibration phase. Although three different multidirectional laminates were analyzed in the course of this study, only detailed results (i.e., stiffness degradation and post-fatigue stress-train curves as well as damage evolution states for a single laminate ([30/60/90/minus 30/minus 60] (sub 2s)) are discussed in detail here.

  4. Fascicles and the interfascicular matrix show decreased fatigue life with ageing in energy storing tendons.

    PubMed

    Thorpe, Chavaunne T; Riley, Graham P; Birch, Helen L; Clegg, Peter D; Screen, Hazel R C

    2017-07-01

    Tendon is composed of rope-like fascicles bound together by interfascicular matrix (IFM). The IFM is critical for the function of energy storing tendons, facilitating sliding between fascicles to allow these tendons to cyclically stretch and recoil. This capacity is required to a lesser degree in positional tendons. We have previously demonstrated that both fascicles and IFM in energy storing tendons have superior fatigue resistance compared with positional tendons, but the effect of ageing on the fatigue properties of these different tendon subunits has not been determined. Energy storing tendons become more injury-prone with ageing, indicating reduced fatigue resistance, hence we tested the hypothesis that the decline in fatigue life with ageing in energy storing tendons would be more pronounced in the IFM than in fascicles. We further hypothesised that tendon subunit fatigue resistance would not alter with ageing in positional tendons. Fascicles and IFM from young and old energy storing and positional tendons were subjected to cyclic fatigue testing until failure, and mechanical properties were calculated. The results show that both IFM and fascicles from the SDFT exhibit a similar magnitude of reduced fatigue life with ageing. By contrast, the fatigue life of positional tendon subunits was unaffected by ageing. The age-related decline in fatigue life of tendon subunits in energy storing tendons is likely to contribute to the increased risk of injury in aged tendons. Full understanding of the mechanisms resulting in this reduced fatigue life will aid in the development of treatments and interventions to prevent age-related tendinopathy. Understanding the effect of ageing on tendon-structure function relationships is crucial for the development of effective preventative measures and treatments for age-related tendon injury. In this study, we demonstrate for the first time that the fatigue resistance of the interfascicular matrix decreases with ageing in energy storing tendons. This is likely to contribute to the increased risk of injury in aged tendons. Full understanding of the mechanisms that result in this reduced fatigue resistance will aid in the development of treatments and interventions to prevent age-related tendinopathy. Copyright © 2017. Published by Elsevier Ltd.

  5. EVALUATION OF THE MECHANICAL PROPERTIES OF 9NI-4CO FORGINGS.

    DTIC Science & Technology

    FORGING, MECHANICAL PROPERTIES, STEEL , QUENCHING, SPECIFICATIONS, TENSILE PROPERTIES, COMPRESSIVE PROPERTIES, FATIGUE(MECHANICS), TOUGHNESS, STRESS...CORROSION, THERMAL STABILITY, STRAIN(MECHANICS), BAINITE , TEST METHODS, HEAT TREATMENT, CRACK PROPAGATION.

  6. Failure and fatigue characteristics of adhesive athletic tape.

    PubMed

    Bragg, Richard W; Macmahon, John M; Overom, Erin K; Yerby, Scott A; Matheson, Gordon O; Carter, Dennis R; Andriacchi, Thomas P

    2002-03-01

    Athletic tape has been commonly reported to lose much of its structural support after 20 min of exercise. Although many studies have addressed the functional performance characteristics of athletic tape, its mechanical properties are poorly understood. This study examines the failure and fatigue properties of several commonly used athletic tapes. A Web-based survey of professional sports trainers was used to select the following three tapes for the study: Zonas (Johnson & Johnson), Leukotape (Beiersdorf), and Jaylastic (Jaybird & Mais). Using a hydraulic material testing system (MTS), eight samples of each tape were compared in three different mechanical tests: load-to-failure, fatigue testing under load control, and fatigue testing under displacement control. Differences in tape microstructure were used to interpret the results of the mechanical tests. Significant differences (P < 0.001) in failure load, elongation at failure, and stiffness were found from failure tests. Significant differences were also found (P < 0.001) in fatigue behavior under both modes of control. As a representative example, in one normalized displacement control fatigue test after 20 min of cycling, 21% (Zonas), 29% (Leukotape), and 57% (Jaylastic) of the mechanical support was lost. After cycling, all tapes loaded to failure showed increased stiffness (P < 0.001), indicating significant energy absorption during cycling. Observed differences in the tapes' microstructure were qualitatively consistent with the measured differences in their mechanical properties. In understanding the shortcomings of currently available tapes, the results of these tests can now be used as benchmarks with which to compare and develop future tape designs. Ultimately, these improved tapes should reduce ankle injuries among athletes.

  7. Electrically Induced Strain and Polarization Fatigue in Lead-Free Ceramics

    NASA Astrophysics Data System (ADS)

    Sommer, Daniel

    Piezoelectric ceramics have traditionally been used in commercial applications such as actuators and sensors. By far the most popular piezoceramics currently in use are Pb(Zr,Ti)O3-based (PZT) ceramics. PZT ceramics are able to produce large strain and polarization with the application of an electric field, and this is due to the Morphotropic phase boundary (MPB). A MPB is associated with the boundary between tetragonal and rhombohedral perovskite phases. A disadvantage of PZT ceramics is that they contain ? 60 wt. % of lead. Since lead is toxic, this poses an environmental and health hazard because lead is released into the surroundings during fabrication and disposal. Because of this, there is a push to discover lead-free alternatives that have comparable properties to PZT but none of the health risks. One possibility is Bi 1/2(Na0.8K0.2)1/2Ti0.985 Ta0.015O3 (BNKT-1.5Ta). In addition to comparable electrical properties, any lead-free alternatives must have decent fatigue resistance to be useful for applications. This thesis focuses on the fatigue properties of BNKT-1.5Ta. The composition demonstrates high strain for a given applied electric field. To determine the fatigue resistance of BNKT-1.5Ta, data was gathered on how strain and polarization changed over number of cycles. Furthermore, fatigue tests at different temperatures were performed to ascertain if temperature affected fatigue life. X-ray diffraction (XRD) patterns and dielectric measurements were also collected to further examine any change in crystal structure and relative permittivity, respectively, before and after cycling.

  8. Experimental Study on Fatigue Performance of Foamed Lightweight Soil

    NASA Astrophysics Data System (ADS)

    Qiu, Youqiang; Yang, Ping; Li, Yongliang; Zhang, Liujun

    2017-12-01

    In order to study fatigue performance of foamed lightweight soil and forecast its fatigue life in the supporting project, on the base of preliminary tests, beam fatigue tests on foamed lightweight soil is conducted by using UTM-100 test system. Based on Weibull distribution and lognormal distribution, using the mathematical statistics method, fatigue equations of foamed lightweight soil are obtained. At the same time, according to the traffic load on real road surface of the supporting project, fatigue life of formed lightweight soil is analyzed and compared with the cumulative equivalent axle loads during the design period of the pavement. The results show that even the fatigue life of foamed lightweight soil has discrete property, the linear relationship between logarithmic fatigue life and stress ratio still performs well. Especially, the fatigue life of Weibull distribution is more close to that derived from the lognormal distribution, in the instance of 50% guarantee ratio. In addition, the results demonstrated that foamed lightweight soil as subgrade filler has good anti-fatigue performance, which can be further adopted by other projects in the similar research domain.

  9. Evaluation of fatigue life of CRM-reinforced SMA and its relationship to dynamic stiffness.

    PubMed

    Mashaan, Nuha Salim; Karim, Mohamed Rehan; Abdel Aziz, Mahrez; Ibrahim, Mohd Rasdan; Katman, Herda Yati; Koting, Suhana

    2014-01-01

    Fatigue cracking is an essential problem of asphalt concrete that contributes to pavement damage. Although stone matrix asphalt (SMA) has significantly provided resistance to rutting failure, its resistance to fatigue failure is yet to be fully addressed. The aim of this study is to evaluate the effect of crumb rubber modifier (CRM) on stiffness and fatigue properties of SMA mixtures at optimum binder content, using four different modification levels, namely, 6%, 8%, 10%, and 12% CRM by weight of the bitumen. The testing undertaken on the asphalt mix comprises the dynamic stiffness (indirect tensile test), dynamic creep (repeated load creep), and fatigue test (indirect tensile fatigue test) at temperature of 25°C. The indirect tensile fatigue test was conducted at three different stress levels (200, 300, and 400 kPa). Experimental results indicate that CRM-reinforced SMA mixtures exhibit significantly higher fatigue life compared to the mixtures without CRM. Further, higher correlation coefficient was obtained between the fatigue life and resilient modulus as compared to permanent strain; thus resilient modulus might be a more reliable indicator in evaluating the fatigue life of asphalt mixture.

  10. Fatigue crack initiation of magnesium alloys under elastic stress amplitudes: A review

    NASA Astrophysics Data System (ADS)

    Wang, B. J.; Xu, D. K.; Wang, S. D.; Han, E. H.

    2017-12-01

    The most advantageous property of magnesium (Mg) alloys is their density, which is lower compared with traditional metallic materials. Mg alloys, considered the lightest metallic structural material among others, have great potential for applications as secondary load components in the transportation and aerospace industries. The fatigue evaluation of Mg alloys under elastic stress amplitudes is very important in ensuring their service safety and reliability. Given their hexagonal close packed structure, the fatigue crack initiation of Mg and its alloys is closely related to the deformation mechanisms of twinning and basal slips. However, for Mg alloys with shrinkage porosities and inclusions, fatigue cracks will preferentially initiate at these defects, remarkably reducing the fatigue lifetime. In this paper, some fundamental aspects about the fatigue crack initiation mechanisms of Mg alloys are reviewed, including the 3 followings: 1) Fatigue crack initiation of as-cast Mg alloys, 2) influence of microstructure on fatigue crack initiation of wrought Mg alloys, and 3) the effect of heat treatment on fatigue initiation mechanisms. Moreover, some unresolved issues and future target on the fatigue crack initiation mechanism of Mg alloys are also described.

  11. The effects of temperature gradient and growth rate on the morphology and fatigue properties of MAR-M246(Hf)

    NASA Technical Reports Server (NTRS)

    Schmidt, D. D.; Alter, W. S.; Hamilton, W. D.; Parr, R. A.

    1989-01-01

    MAR-M246(Hf) is a nickel based superalloy used in the turbopump blades of the Space Shuttle main engines. The effects are considered of temperature gradient (G) and growth rate (R) on the microstructure and fatigue properties of this superalloy. The primary dendrite arm spacings were found to be inversely proportional to both temperature gradient and growth rate. Carbide and gamma - gamma prime morphology trends were related to G/R ratios. Weibull analysis of fatigue results shows the characteristic life to be larger by a factor of 10 for the low gradient/fast rate pairing of G and R, while the reliability (beta) was lower.

  12. Damage Tolerance Enhancement of Carbon Fiber Reinforced Polymer Composites by Nanoreinforcement of Matrix

    NASA Astrophysics Data System (ADS)

    Fenner, Joel Stewart

    Nanocomposites are a relatively new class of materials which incorporate exotic, engineered nanoparticles to achieve superior material properties. Because of their extremely small size and well-ordered structure, many nanoparticles possess properties that exceed those offered by a wide range of other known materials, making them attractive candidates for novel materials engineering development. Their small size is also an impediment to their practical use, as they typically cannot be employed by themselves to realize those properties in large structures. Furthermore, nanoparticles typically possess strong self-affinity, rendering them difficult to disperse uniformly into a composite. However, contemporary research has shown that, if well-dispersed, nanoparticles have great capacity to improve the mechanical properties of composites, especially damage tolerance, in the form of fracture toughness, fatigue life, and impact damage mitigation. This research focuses on the development, manufacturing, and testing of hybrid micro/nanocomposites comprised of woven carbon fibers with a carbon nanotube reinforced epoxy matrix. Material processing consisted of dispersant-and-sonication based methods to disperse nanotubes into the matrix, and a vacuum-assisted wet lay-up process to prepare the hybrid composite laminates. Various damage tolerance properties of the hybrid composite were examined, including static strength, fracture toughness, fatigue life, fatigue crack growth rate, and impact damage behavior, and compared with similarly-processed reference material produced without nanoreinforcement. Significant improvements were obtained in interlaminar shear strength (15%), Mode-I fracture toughness (180%), shear fatigue life (order of magnitude), Mode-I fatigue crack growth rate (factor of 2), and effective impact damage toughness (40%). Observations by optical microscopy, scanning electron microscopy, and ultrasonic imaging showed significant differences in failure behavior and fracture morphology between the two materials, related to the differences in properties. Altogether these results provided a means for proposing an explanation of the mechanism of reinforcement (and damage tolerance enhancement) provided by carbon nanotubes in hybrid composite materials.

  13. Performance evaluation of high-strength steel pipelines for high-pressure gaseous hydrogen transportation.

    DOT National Transportation Integrated Search

    2009-01-01

    Pipeline steels suffer significant degradation of their mechanical properties in high-pressure : gaseous hydrogen, including their fatigue cracking resistances to cyclic loading. The current : project work was conducted to produce fatigue crack growt...

  14. Rutting and fatigue properties of plant mixes from AE stone.

    DOT National Transportation Integrated Search

    2006-06-01

    Loose mix from A.E. Stone, Inc. in Egg Harbor Township, NJ was supplied to the : Rutgers Asphalt Pavement Laboratory (RAPL) for evaluation. Three different plant : mixes were supplied for permanent deformation (rutting) and flexural fatigue testing; ...

  15. Evaluation of Strain-Life Fatigue Curve Estimation Methods and Their Application to a Direct-Quenched High-Strength Steel

    NASA Astrophysics Data System (ADS)

    Dabiri, M.; Ghafouri, M.; Rohani Raftar, H. R.; Björk, T.

    2018-03-01

    Methods to estimate the strain-life curve, which were divided into three categories: simple approximations, artificial neural network-based approaches and continuum damage mechanics models, were examined, and their accuracy was assessed in strain-life evaluation of a direct-quenched high-strength steel. All the prediction methods claim to be able to perform low-cycle fatigue analysis using available or easily obtainable material properties, thus eliminating the need for costly and time-consuming fatigue tests. Simple approximations were able to estimate the strain-life curve with satisfactory accuracy using only monotonic properties. The tested neural network-based model, although yielding acceptable results for the material in question, was found to be overly sensitive to the data sets used for training and showed an inconsistency in estimation of the fatigue life and fatigue properties. The studied continuum damage-based model was able to produce a curve detecting early stages of crack initiation. This model requires more experimental data for calibration than approaches using simple approximations. As a result of the different theories underlying the analyzed methods, the different approaches have different strengths and weaknesses. However, it was found that the group of parametric equations categorized as simple approximations are the easiest for practical use, with their applicability having already been verified for a broad range of materials.

  16. Strength, Fracture Toughness, Fatigue, and Standardization Issues of Free-standing Thermal Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Choi, Sung R.; Zhu, Dong-Ming; Miller, Robert A.

    2003-01-01

    Strength, fracture toughness and fatigue behavior of free-standing thick thermal barrier coatings of plasma-sprayed ZrO2-8wt % Y2O3 were determined at ambient and elevated temperatures in an attempt to establish a database for design. Strength, in conjunction with deformation (stress-strain behavior), was evaluated in tension (uniaxial and trans-thickness), compression, and uniaxial and biaxial flexure; fracture toughness was determined in various load conditions including mode I, mode II, and mixed modes I and II; fatigue or slow crack growth behavior was estimated in cyclic tension and dynamic flexure loading. Effect of sintering was quantified through approaches using strength, fracture toughness, and modulus (constitutive relations) measurements. Standardization issues on test methodology also was presented with a special regard to material's unique constitutive relations.

  17. Systematic review of the multidimensional fatigue symptom inventory-short form.

    PubMed

    Donovan, Kristine A; Stein, Kevin D; Lee, Morgan; Leach, Corinne R; Ilozumba, Onaedo; Jacobsen, Paul B

    2015-01-01

    Fatigue is a subjective complaint that is believed to be multifactorial in its etiology and multidimensional in its expression. Fatigue may be experienced by individuals in different dimensions as physical, mental, and emotional tiredness. The purposes of this study were to review and characterize the use of the 30-item Multidimensional Fatigue Symptom Inventory-Short Form (MFSI-SF) in published studies and to evaluate the available evidence for its psychometric properties. A systematic review was conducted to identify published articles reporting results for the MFSI-SF. Data were analyzed to characterize internal consistency reliability of multi-item MFSI-SF scales and test-retest reliability. Correlation coefficients were summarized to characterize concurrent, convergent, and divergent validity. Standardized effect sizes were calculated to characterize the discriminative validity of the MFSI-SF and its sensitivity to change. Seventy articles were identified. Sample sizes reported ranged from 10 to 529 and nearly half consisted exclusively of females. More than half the samples were composed of cancer patients; of those, 59% were breast cancer patients. Mean alpha coefficients for MFSI-SF fatigue subscales ranged from 0.84 for physical fatigue to 0.93 for general fatigue. The MFSI-SF demonstrated moderate test-retest reliability in a small number of studies. Correlations with other fatigue and vitality measures were moderate to large in size and in the expected direction. The MFSI-SF fatigue subscales were positively correlated with measures of distress, depressive, and anxious symptoms. Effect sizes for discriminative validity ranged from medium to large, while effect sizes for sensitivity to change ranged from small to large. Findings demonstrate the positive psychometric properties of the MFSI-SF, provide evidence for its usefulness in medically ill and nonmedically ill individuals, and support its use in future studies.

  18. Effect of old age on human skeletal muscle force-velocity and fatigue properties

    PubMed Central

    Callahan, Damien M.

    2011-01-01

    It is generally accepted that the muscles of aged individuals contract with less force, have slower relaxation rates, and demonstrate a downward shift in their force-velocity relationship. The factors mediating age-related differences in skeletal muscle fatigue are less clear. The present study was designed to test the hypothesis that age-related shifts in the force-velocity relationship impact the fatigue response in a velocity-dependent manner. Three fatigue protocols, consisting of intermittent, maximum voluntary knee extension contractions performed for 4 min, were performed by 11 young (23.5 ± 0.9 yr, mean ± SE) and 10 older (68.9 ± 4.3) women. The older group fatigued less during isometric contractions than the young group (to 71.1 ± 3.7% initial torque and 59.8 ± 2.5%, respectively; P = 0.02), while the opposite was true during contractions performed at a relatively high angular velocity of 270°·s−1 (old: 28.0 ± 3.9% initial power, young: 52.1 ± 6.9%; P < 0.01). Fatigue was not different (P = 0.74) between groups during contractions at an intermediate velocity, which was selected for each participant based on their force-velocity relationship. There was a significant association between force-velocity properties and fatigue induced by the intermediate-velocity fatigue protocol in the older (r = 0.72; P = 0.02) and young (r = 0.63; P = 0.04) groups. These results indicate that contractile velocity has a profound impact on age-related skeletal muscle fatigue resistance and suggest that changes in the force-velocity relationship partially mediate this effect. PMID:21868683

  19. Fatigue behavior of porous biomaterials manufactured using selective laser melting.

    PubMed

    Yavari, S Amin; Wauthle, R; van der Stok, J; Riemslag, A C; Janssen, M; Mulier, M; Kruth, J P; Schrooten, J; Weinans, H; Zadpoor, A A

    2013-12-01

    Porous titanium alloys are considered promising bone-mimicking biomaterials. Additive manufacturing techniques such as selective laser melting allow for manufacturing of porous titanium structures with a precise design of micro-architecture. The mechanical properties of selective laser melted porous titanium alloys with different designs of micro-architecture have been already studied and are shown to be in the range of mechanical properties of bone. However, the fatigue behavior of this biomaterial is not yet well understood. We studied the fatigue behavior of porous structures made of Ti6Al4V ELI powder using selective laser melting. Four different porous structures were manufactured with porosities between 68 and 84% and the fatigue S-N curves of these four porous structures were determined. The three-stage mechanism of fatigue failure of these porous structures is described and studied in detail. It was found that the absolute S-N curves of these four porous structures are very different. In general, given the same absolute stress level, the fatigue life is much shorter for more porous structures. However, the normalized fatigue S-N curves of these four structures were found to be very similar. A power law was fitted to all data points of the normalized S-N curves. It is shown that the measured data points conform to the fitted power law very well, R(2)=0.94. This power law may therefore help in estimating the fatigue life of porous structures for which no fatigue test data is available. It is also observed that the normalized endurance limit of all tested porous structures (<0.2) is lower than that of corresponding solid material (c.a. 0.4). © 2013.

  20. Biologic interventions for fatigue in rheumatoid arthritis.

    PubMed

    Almeida, Celia; Choy, Ernest H S; Hewlett, Sarah; Kirwan, John R; Cramp, Fiona; Chalder, Trudie; Pollock, Jon; Christensen, Robin

    2016-06-06

    Fatigue is a common and potentially distressing symptom for patients with rheumatoid arthritis (RA), with no accepted evidence-based management guidelines. Evidence suggests that biologic interventions improve symptoms and signs in RA as well as reducing joint damage. To evaluate the effect of biologic interventions on fatigue in rheumatoid arthritis. We searched the following electronic databases up to 1 April 2014: Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, EMBASE, Cochrane Database of Systematic Reviews, Current Controlled Trials Register, the National Research Register Archive, The UKCRN Portfolio Database, AMED, CINAHL, PsycINFO, Social Science Citation Index, Web of Science, and Dissertation Abstracts International. In addition, we checked the reference lists of articles identified for inclusion for additional studies and contacted key authors. We included randomised controlled trials if they evaluated a biologic intervention in people with rheumatoid arthritis and had self reported fatigue as an outcome measure. Two reviewers selected relevant trials, assessed methodological quality and extracted data. Where appropriate, we pooled data in meta-analyses using a random-effects model. We identified 32 studies for inclusion in this current review. Twenty studies evaluated five anti-tumour necrosis factor (anti-TNF) biologic agents (adalimumab, certolizumab, etanercept, golimumab and infliximab), and 12 studies focused on five non-anti-TNF biologic agents (abatacept, canakinumab, rituximab, tocilizumab and an anti-interferon gamma monoclonal antibody). All but two of the studies were double-blind randomised placebo-controlled trials. In some trials, patients could receive concomitant disease-modifying anti-rheumatic drugs (DMARDs). These studies added either biologics or placebo to DMARDs. Investigators did not change the dose of the latter from baseline. In total, these studies included 9946 participants in the intervention groups and 4682 participants in the control groups. Overall, quality of randomised controlled trials was moderate with a low to unclear risk of bias in the reporting of the outcome of fatigue. We downgraded the quality of the studies from high to moderate because of potential reporting bias (studies included post hoc analyses favouring reporting of positive result and did not always include all randomised individuals). Some studies recruited only participants with early disease. The studies used five different instruments to assess fatigue in these studies: the Functional Assessment of Chronic Illness Therapy Fatigue Domain (FACIT-F), Short Form-36 Vitality Domain (SF-36 VT), Visual Analogue Scale (VAS) (0 to 100 or 0 to 10) and the Numerical Rating Scale (NRS). We calculated standard mean differences for pooled data in meta-analyses. Overall treatment by biologic agents led to statistically significant reduction in fatigue with a standardised mean difference of -0.43 (95% confidence interval (CI) -0.38 to -0.49). This equates to a difference of 6.45 units (95% CI 5.7 to 7.35) of FACIT-F score (range 0 to 52). Both types of biologic agents achieved a similar level of improvement: for anti-TNF agents, this stood at -0.42 (95% CI -0.35 to -0.49), equivalent to 6.3 units (95% CI 5.3 to 7.4) on the FACIT-F score; and for non-anti-TNF agents, it was -0.46 (95% CI -0.39 to -0.53), equivalent to 6.9 units (95% CI 5.85 to 7.95) on the FACIT-F score. In most studies, the double-blind period was 24 weeks or less. No study assessed long-term changes in fatigue. Treatment with biologic interventions in patients with active RA can lead to a small to moderate improvement in fatigue. The magnitude of improvement is similar for anti-TNF and non-anti-TNF biologics. However, it is unclear whether the improvement results from a direct action of the biologics on fatigue or indirectly through reduction in inflammation, disease activity or some other mechanism.

  1. Examining depletion theories under conditions of within-task transfer.

    PubMed

    Brewer, Gene A; Lau, Kevin K H; Wingert, Kimberly M; Ball, B Hunter; Blais, Chris

    2017-07-01

    In everyday life, mental fatigue can be detrimental across many domains including driving, learning, and working. Given the importance of understanding and accounting for the deleterious effects of mental fatigue on behavior, a growing body of literature has studied the role of motivational and executive control processes in mental fatigue. In typical laboratory paradigms, participants complete a task that places demand on these self-control processes and are later given a subsequent task. Generally speaking, decrements to subsequent task performance are taken as evidence that the initial task created mental fatigue through the continued engagement of motivational and executive functions. Several models have been developed to account for negative transfer resulting from this "ego depletion." In the current study, we provide a brief literature review, specify current theoretical approaches to ego-depletion, and report an empirical test of current models of depletion. Across 4 experiments we found minimal evidence for executive control depletion along with strong evidence for motivation mediated ego depletion. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  2. Fatigue of Austempered Ductile Iron with Two Strength Grades in Very High Cycle Regime

    NASA Astrophysics Data System (ADS)

    Zhang, Jiwang; Li, Wei; Song, Qingpeng; Zhang, Ning; Lu, Liantao

    2016-03-01

    In this study, Austempered ductile irons (ADIs) with two different strength grades were produced and the fatigue properties were measured at 109 cycles. The results show that the S-N curves give a typical step-wise shape and there is no fatigue limit in the very high cycle fatigue regime. The two grades ADI have the similar fracture behaviors and fatigue failure can initiate from defects at specimen surface and subsurface zone. On the fracture surfaces of some specimens, the `granular-bright-facet' area with rich carbon distribution is observed in the vicinity of the defect. The microstructure affects the crack behaviors at the early propagation stage. The ADI with upper and lower bainite shows higher fatigue strength compared with the ADI with coarse upper bainite.

  3. Fatigue Behavior of Porous Ti-6Al-4V Made by Laser-Engineered Net Shaping

    PubMed Central

    Bordonaro, Giancarlo G.; Berto, Filippo

    2018-01-01

    The fatigue behavior and fracture mechanisms of additively manufactured Ti-6Al-4V specimens are investigated in this study. Three sets of testing samples were fabricated for the assessment of fatigue life. The first batch of samples was built by using Laser-Engineered Net Shaping (LENS) technology, a Direct Energy Deposition (DED) method. Internal voids and defects were induced in a second batch of samples by changing LENS machine processing parameters. Fatigue performance of these samples is compared to the wrought Ti-6Al-4V samples. The effects of machine-induced porosity are assessed on mechanical properties and results are presented in the form of SN curves for the three sets of samples. Fracture mechanisms are examined by using Scanning Electron Microscopy (SEM) to characterize the morphological characteristics of the failure surface. Different fracture surface morphologies are observed for porous and non-porous specimens due to the combination of head write speed and laser power. Formation of defects such as pores, unmelted regions, and gas entrapments affect the failure mechanisms in porous specimens. Non-porous specimens exhibit fatigue properties comparable with that of the wrought specimens, but porous specimens are found to show a tremendous reduced fatigue strength. PMID:29439510

  4. The Role of Parvalbumin, Sarcoplasmatic Reticulum Calcium Pump Rate, Rates of Cross-Bridge Dynamics, and Ryanodine Receptor Calcium Current on Peripheral Muscle Fatigue: A Simulation Study

    PubMed Central

    Neumann, Verena

    2016-01-01

    A biophysical model of the excitation-contraction pathway, which has previously been validated for slow-twitch and fast-twitch skeletal muscles, is employed to investigate key biophysical processes leading to peripheral muscle fatigue. Special emphasis hereby is on investigating how the model's original parameter sets can be interpolated such that realistic behaviour with respect to contraction time and fatigue progression can be obtained for a continuous distribution of the model's parameters across the muscle units, as found for the functional properties of muscles. The parameters are divided into 5 groups describing (i) the sarcoplasmatic reticulum calcium pump rate, (ii) the cross-bridge dynamics rates, (iii) the ryanodine receptor calcium current, (iv) the rates of binding of magnesium and calcium ions to parvalbumin and corresponding dissociations, and (v) the remaining processes. The simulations reveal that the first two parameter groups are sensitive to contraction time but not fatigue, the third parameter group affects both considered properties, and the fourth parameter group is only sensitive to fatigue progression. Hence, within the scope of the underlying model, further experimental studies should investigate parvalbumin dynamics and the ryanodine receptor calcium current to enhance the understanding of peripheral muscle fatigue. PMID:27980606

  5. Strainrange partitioning life predictions of the long time metal properties council creep-fatigue tests

    NASA Technical Reports Server (NTRS)

    Saltsman, J. F.; Halford, G. R.

    1979-01-01

    The method of strainrange partitioning is used to predict the cyclic lives of the Metal Properties Council's long time creep-fatigue interspersion tests of several steel alloys. Comparisons are made with predictions based upon the time- and cycle-fraction approach. The method of strainrange partitioning is shown to give consistently more accurate predictions of cyclic life than is given by the time- and cycle-fraction approach.

  6. Review of the Effects of Microstructure on Fatigue in Aluminum Alloys. Ph.D. Thesis - Cincinnati Univ.

    NASA Technical Reports Server (NTRS)

    Telesman, J.

    1984-01-01

    Literature survey was conducted to determine the effects of different microstructural features and different load histories on fatigue crack initiation and propagation of aluminum alloys. Comparison of microstructure and monotonic and cyclic properties between powder metallurgy (P/M) and ingot metallurgy (I/M) alloys is presented. The two alloys that are representative of each process on which the comparison is focused are X7091 and 7050. Included is a detailed description of the microstructure produced through the P/M and I/M proesses. The effect of each pertinent microstructural feature on monotonic and cyclic properties, such as yield strength, toughness, crack initiation and propagation is discussed. Also discussed are the proposed mechanisms for crack initiation and propagation, as well as the effects of aggressive environments on these cyclic properties. The effects of variable amplitude loadin on fatigue crack propagation and the various models proposed to predict load interaction effects are discussed.

  7. Mechanisms of in vivo muscle fatigue in humans: investigating age‐related fatigue resistance with a computational model

    PubMed Central

    Callahan, Damien M.; Umberger, Brian R.

    2016-01-01

    Key points Muscle fatigue can be defined as the transient decrease in maximal force that occurs in response to muscle use. Fatigue develops because of a complex set of changes within the neuromuscular system that are difficult to evaluate simultaneously in humans.The skeletal muscle of older adults fatigues less than that of young adults during static contractions. The potential sources of this difference are multiple and intertwined.To evaluate the individual mechanisms of fatigue, we developed an integrative computational model based on neural, biochemical, morphological and physiological properties of human skeletal muscle.Our results indicate first that the model provides accurate predictions of fatigue and second that the age‐related resistance to fatigue is due largely to a lower reliance on glycolytic metabolism during contraction.This model should prove useful for generating hypotheses for future experimental studies into the mechanisms of muscle fatigue. Abstract During repeated or sustained muscle activation, force‐generating capacity becomes limited in a process referred to as fatigue. Multiple factors, including motor unit activation patterns, muscle fibre contractile properties and bioenergetic function, can impact force‐generating capacity and thus the potential to resist fatigue. Given that neuromuscular fatigue depends on interrelated factors, quantifying their independent effects on force‐generating capacity is not possible in vivo. Computational models can provide insight into complex systems in which multiple inputs determine discrete outputs. However, few computational models to date have investigated neuromuscular fatigue by incorporating the multiple levels of neuromuscular function known to impact human in vivo function. To address this limitation, we present a computational model that predicts neural activation, biomechanical forces, intracellular metabolic perturbations and, ultimately, fatigue during repeated isometric contractions. This model was compared with metabolic and contractile responses to repeated activation using values reported in the literature. Once validated in this way, the model was modified to reflect age‐related changes in neuromuscular function. Comparisons between initial and age‐modified simulations indicated that the age‐modified model predicted less fatigue during repeated isometric contractions, consistent with reports in the literature. Together, our simulations suggest that reduced glycolytic flux is the greatest contributor to the phenomenon of age‐related fatigue resistance. In contrast, oxidative resynthesis of phosphocreatine between intermittent contractions and inherent buffering capacity had minimal impact on predicted fatigue during isometric contractions. The insights gained from these simulations cannot be achieved through traditional in vivo or in vitro experimentation alone. PMID:26824934

  8. Modeling of long-term fatigue damage of soft tissue with stress softening and permanent set effects

    PubMed Central

    Martin, Caitlin; Sun, Wei

    2012-01-01

    One of the major failure modes of bioprosthetic heart valves is non-calcific structural deterioration due to fatigue of the tissue leaflets. Experimental methods to characterize tissue fatigue properties are complex and time-consuming. A constitutive fatigue model that could be calibrated by isolated material tests would be ideal for investigating the effects of more complex loading conditions. However, there is a lack of tissue fatigue damage models in the literature. To address these limitations, in this study, a phenomenological constitutive model was developed to describe the stress softening and permanent set effects of tissue subjected to long-term cyclic loading. The model was used to capture characteristic uniaxial fatigue data for glutaraldehyde-treated bovine pericardium and was then implemented into finite element software. The simulated fatigue response agreed well with the experimental data and thus demonstrates feasibility of this approach. PMID:22945802

  9. Study of cumulative fatigue damage detection for used parts with nonlinear output frequency response functions based on NARMAX modelling

    NASA Astrophysics Data System (ADS)

    Huang, Honglan; Mao, Hanying; Mao, Hanling; Zheng, Weixue; Huang, Zhenfeng; Li, Xinxin; Wang, Xianghong

    2017-12-01

    Cumulative fatigue damage detection for used parts plays a key role in the process of remanufacturing engineering and is related to the service safety of the remanufactured parts. In light of the nonlinear properties of used parts caused by cumulative fatigue damage, the based nonlinear output frequency response functions detection approach offers a breakthrough to solve this key problem. First, a modified PSO-adaptive lasso algorithm is introduced to improve the accuracy of the NARMAX model under impulse hammer excitation, and then, an effective new algorithm is derived to estimate the nonlinear output frequency response functions under rectangular pulse excitation, and a based nonlinear output frequency response functions index is introduced to detect the cumulative fatigue damage in used parts. Then, a novel damage detection approach that integrates the NARMAX model and the rectangular pulse is proposed for nonlinear output frequency response functions identification and cumulative fatigue damage detection of used parts. Finally, experimental studies of fatigued plate specimens and used connecting rod parts are conducted to verify the validity of the novel approach. The obtained results reveal that the new approach can detect cumulative fatigue damages of used parts effectively and efficiently and that the various values of the based nonlinear output frequency response functions index can be used to detect the different fatigue damages or working time. Since the proposed new approach can extract nonlinear properties of systems by only a single excitation of the inspected system, it shows great promise for use in remanufacturing engineering applications.

  10. Vibration fatigue using modal decomposition

    NASA Astrophysics Data System (ADS)

    Mršnik, Matjaž; Slavič, Janko; Boltežar, Miha

    2018-01-01

    Vibration-fatigue analysis deals with the material fatigue of flexible structures operating close to natural frequencies. Based on the uniaxial stress response, calculated in the frequency domain, the high-cycle fatigue model using the S-N curve material data and the Palmgren-Miner hypothesis of damage accumulation is applied. The multiaxial criterion is used to obtain the equivalent uniaxial stress response followed by the spectral moment approach to the cycle-amplitude probability density estimation. The vibration-fatigue analysis relates the fatigue analysis in the frequency domain to the structural dynamics. However, once the stress response within a node is obtained, the physical model of the structure dictating that response is discarded and does not propagate through the fatigue-analysis procedure. The structural model can be used to evaluate how specific dynamic properties (e.g., damping, modal shapes) affect the damage intensity. A new approach based on modal decomposition is presented in this research that directly links the fatigue-damage intensity with the dynamic properties of the system. It thus offers a valuable insight into how different modes of vibration contribute to the total damage to the material. A numerical study was performed showing good agreement between results obtained using the newly presented approach with those obtained using the classical method, especially with regards to the distribution of damage intensity and critical point location. The presented approach also offers orders of magnitude faster calculation in comparison with the conventional procedure. Furthermore, it can be applied in a straightforward way to strain experimental modal analysis results, taking advantage of experimentally measured strains.

  11. Cyclic fatigue analysis of rocket thrust chambers. Volume 1: OFHC copper chamber low cycle fatigue

    NASA Technical Reports Server (NTRS)

    Miller, R. W.

    1974-01-01

    A three-dimensional finite element elasto-plastic strain analysis was performed for the throat section of a regeneratively cooled rocket combustion chamber. The analysis employed the RETSCP finite element computer program. The analysis included thermal and pressure loads, and the effects of temperature dependent material properties, to determine the strain range corresponding to the chamber operating cycle. The analysis was performed for chamber configuration and operating conditions corresponding to a hydrogen-oxygen combustion chamber which was fatigue tested to failure. The computed strain range at typical chamber operating conditions was used in conjunction with oxygen-free, high-conductivity (OHFC) copper isothermal fatigue test data to predict chamber low-cycle fatigue life.

  12. Influences of semiconductor morphology on the mechanical fatigue behavior of flexible organic electronics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Young-Joo; Yeon, Han-Wool; Shin, Hae-A-Seul

    2013-12-09

    The influence of crystalline morphology on the mechanical fatigue of organic semiconductors (OSCs) was investigated using 6,13-bis(triisopropylsilylethynyl)pentacene (TIPS-pentacene) as a crystalline OSC and poly(triarylamine) (PTAA) as an amorphous OSC. During cyclic bending, resistances of the OSCs were monitored using the transmission-line method on a metal-semiconductor-metal structure. The resistance of the TIPS-pentacene increased under fatigue damage in tensile-stress mode, but no such degradation was observed in the PTAA. Both OSCs were stable under compressive bending fatigue. The formation of intergranular cracks at the domain boundaries of the TIPS-pentacene was responsible for the degradation of its electrical properties under tensile bending fatigue.

  13. Effects of exercise training on fitness, mobility, fatigue, and health-related quality of life among adults with multiple sclerosis: a systematic review to inform guideline development.

    PubMed

    Latimer-Cheung, Amy E; Pilutti, Lara A; Hicks, Audrey L; Martin Ginis, Kathleen A; Fenuta, Alyssa M; MacKibbon, K Ann; Motl, Robert W

    2013-09-01

    To conduct a systematic review of evidence surrounding the effects of exercise training on physical fitness, mobility, fatigue, and health-related quality of life in adults with multiple sclerosis (MS). The databases included EMBASE, 1980 to 2011 (wk 12); Ovid MEDLINE and Ovid OLDMEDLINE, 1947 to March (wk 3) 2011; PsycINFO, 1967 to March (wk 4) 2011; CINAHL all-inclusive; SPORTDiscus all-inclusive; Cochrane Library all-inclusive; and Physiotherapy Evidence Database all-inclusive. The review was limited to English-language studies (published before December 2011) of people with MS that evaluated the effects of exercise training on outcomes of physical fitness, mobility, fatigue, and/or health-related quality of life. One research assistant extracted data and rated study quality. A second research assistant verified the extraction and quality assessment. From the 4362 studies identified, 54 studies were included in the review. The extracted data were analyzed using a descriptive approach. There was strong evidence that exercise performed 2 times per week at a moderate intensity increases aerobic capacity and muscular strength. The evidence was not consistent regarding the effects of exercise training on other outcomes. Among those with mild to moderate disability from MS, there is sufficient evidence that exercise training is effective for improving both aerobic capacity and muscular strength. Exercise may improve mobility, fatigue, and health-related quality of life. Copyright © 2013 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  14. Disk Alloy Development

    NASA Technical Reports Server (NTRS)

    Gabb, Tim; Gayda, John; Telesman, Jack

    2001-01-01

    The advanced powder metallurgy disk alloy ME3 was designed using statistical screening and optimization of composition and processing variables in the NASA HSR/EPM disk program to have extended durability at 1150 to 1250 "Fin large disks. Scaled-up disks of this alloy were produced at the conclusion of this program to demonstrate these properties in realistic disk shapes. The objective of the UEET disk program was to assess the mechanical properties of these ME3 disks as functions of temperature, in order to estimate the maximum temperature capabilities of this advanced alloy. Scaled-up disks processed in the HSR/EPM Compressor / Turbine Disk program were sectioned, machined into specimens, and tested in tensile, creep, fatigue, and fatigue crack growth tests by NASA Glenn Research Center, in cooperation with General Electric Engine Company and Pratt & Whitney Aircraft Engines. Additional sub-scale disks and blanks were processed and tested to explore the effects of several processing variations on mechanical properties. Scaled-up disks of an advanced regional disk alloy, Alloy 10, were used to evaluate dual microstructure heat treatments. This allowed demonstration of an improved balance of properties in disks with higher strength and fatigue resistance in the bores and higher creep and dwell fatigue crack growth resistance in the rims. Results indicate the baseline ME3 alloy and process has 1300 to 1350 O F temperature capabilities, dependent on detailed disk and engine design property requirements. Chemistry and process enhancements show promise for further increasing temperature capabilities.

  15. Effects of sour crude oil on fatigue properties of steel plates for shipbuilding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ouchi, H.; Kobayashi, J.; Ishikawa, T.

    1994-12-31

    The concentration of diffusible hydrogen introduced into steel was measured, and fatigue crack growth tests and fatigue life tests were carried out in sour crude oil containing a high concentration of hydrogen sulfide and under electrolytic hydrogen-charging conditions in neutral solution, using a high strength steel produced by the thermo-mechanical control process (TMCP) and a mild steel which are steels for hull plates. Comparison of the results demonstrated that a very small amount of hydrogen such as that introduced into steel from sour crude oil under atmospheric pressure accelerated the fatigue crack growth in the high {Delta}K regime and shortenedmore » the fatigue life in the high stress range region, but did not shorten the fatigue life in the low stress region. The electrolytic hydrogen-charging condition appeared to be appropriate as a fatigue-crack-growth test environment to simulate sour crude oil. The deterioration of fatigue characteristics of the TMCP high strength steel was similar with that of the mild steel.« less

  16. Effect of Heat Exposure on the Fatigue Properties of AA7050 Friction Stir Welds

    NASA Astrophysics Data System (ADS)

    White, B. C.; Rodriguez, R. I.; Cisko, A.; Jordon, J. B.; Allison, P. G.; Rushing, T.; Garcia, L.

    2018-05-01

    This work examines the effect of heat exposure on the subsequent monotonic and fatigue properties of friction stir-welded AA7050. Mechanical characterization tests were conducted on friction stir-welded specimens as-welded (AW) and specimens heated to 315 °C in air for 20 min. Monotonic testing revealed high joint efficiencies of 98% (UTS) in the AW specimens and 60% in the heat-damaged (HD) specimens. Experimental results of strain-controlled fatigue testing revealed shorter fatigue lives for the HD coupons by nearly a factor of four, except for the highest strain amplitude tested. Postmortem fractography analysis found similar crack initiation or propagation behavior between the AW and HD specimens; however, the failure locations for the AW were predominantly in the heat-affected zone, while the HD specimens also failed in the stir zone. Microhardness measurements revealed a relatively uniform strength profile in the HD group, accounting for the variety of failure locations observed. The differences in both monotonic and cyclic properties observed between the AW and HD specimens support the conclusion that the heat damage (315 °C at 20 min) acts as an over-aging and a quasi-annealing treatment.

  17. Improving the fatigue performance of porous metallic biomaterials produced by Selective Laser Melting.

    PubMed

    Van Hooreweder, Brecht; Apers, Yanni; Lietaert, Karel; Kruth, Jean-Pierre

    2017-01-01

    This paper provides new insights into the fatigue properties of porous metallic biomaterials produced by additive manufacturing. Cylindrical porous samples with diamond unit cells were produced from Ti6Al4V powder using Selective Laser Melting (SLM). After measuring all morphological and quasi-static properties, compression-compression fatigue tests were performed to determine fatigue strength and to identify important fatigue influencing factors. In a next step, post-SLM treatments were used to improve the fatigue life of these biomaterials by changing the microstructure and by reducing stress concentrators and surface roughness. In particular, the influence of stress relieving, hot isostatic pressing and chemical etching was studied. Analytical and numerical techniques were developed to calculate the maximum local tensile stress in the struts as function of the strut diameter and load. With this method, the variability in the relative density between all samples was taken into account. The local stress in the struts was then used to quantify the exact influence of the applied post-SLM treatments on the fatigue life. A significant improvement of the fatigue life was achieved. Also, the post-SLM treatments, procedures and calculation methods can be applied to different types of porous metallic structures and hence this paper provides useful tools for improving fatigue performance of metallic biomaterials. Additive Manufacturing (AM) techniques such as Selective Laser Melting (SLM) are increasingly being used for producing customized porous metallic biomaterials. These biomaterials are regularly used for biomedical implants and hence a long lifetime is required. In this paper, a set of post-built surface and heat treatments is presented that can be used to significantly improve the fatigue life of porous SLM-Ti6Al4V samples. In addition, a novel and efficient analytical local stress method was developed to accurately quantify the influence of the post-built treatments on the fatigue life. Also numerical simulation techniques were used for validation. The developed methods and techniques can be applied to other types of porous biomaterials and hence provide new and useful tools for improving and predicting the fatigue life of porous biomaterials. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  18. Influence of He implantation on the fatigue properties of stainless steel under different atmospheric conditions

    NASA Astrophysics Data System (ADS)

    Sonnenberg, K.; Antesberger, G.; Brown, B.

    1981-12-01

    The influence of He on the fatigue properties of stainless steel was investigated using α-particle implantation. The He influence was compared for different external atmospheres (inert, corrosive), various fatigue temperatures (400-750°C), implantation temperatures (400-950°C), He doses (5-3000 ppm), strain amplitudes (0.5-3%) and fatigue frequencies (0.02-8 Hz). In situ and post-implantation fatigue testing showed that the effect of He implantation is very similar in both cases. The effect of He is small if the fatigue temperature is ≤ 600°C. In these cases the fracture mode remains transgranular and only small reductions of the fatigue life (less than a factor of 2) are observed upon He implantation. For higher fatigue temperatures the He causes a transition from a transgranular to an intergranular fracture mode associated with rather dramatic reductions of the fatigue life. It was shown that this fracture mode must be attributed to a growth of He bubbles at the grain boundaries. The growth is probably achieved by condensation of thermal vacancies, the flux of which is controlled by the external stresses and by grain-boundary diffusion. It was found that the size of the lifetime reduction increases with the He dose and the implantation temperature, because more He reaches the grain boundaries. The lifetime depends more strongly on the strain amplitude for irradiated samples. The lifetime for irradiated samples does not depend on the external atmosphere, in contrast to unirradiated samples which have an order of magnitude longer life in the clean atmosphere. In contrast to failure in a transgranular mode, the number of fatigue cycles until feature, N ƒ, is found to decrease with the fatigue frequency in the case of intergranular mode. The temperature above which intergranular fracture occurs (usually above 700°C) is affected by the He dose and the fatigue frequency. For high doses of ≈ 1000 ppm He and small frequencies of ≈0.02 Hz, the intergranular mode is observed as low as 600°C.

  19. Gamma Radiation Sterilization Reduces the High-cycle Fatigue Life of Allograft Bone.

    PubMed

    Islam, Anowarul; Chapin, Katherine; Moore, Emily; Ford, Joel; Rimnac, Clare; Akkus, Ozan

    2016-03-01

    Sterilization by gamma radiation impairs the mechanical properties of bone allografts. Previous work related to radiation-induced embrittlement of bone tissue has been limited mostly to monotonic testing which does not necessarily predict the high-cycle fatigue life of allografts in vivo. We designed a custom rotating-bending fatigue device to answer the following questions: (1) Does gamma radiation sterilization affect the high-cycle fatigue behavior of cortical bone; and (2) how does the fatigue life change with cyclic stress level? The high-cycle fatigue behavior of human cortical bone specimens was examined at stress levels related to physiologic levels using a custom-designed rotating-bending fatigue device. Test specimens were distributed among two treatment groups (n = 6/group); control and irradiated. Samples were tested until failure at stress levels of 25, 35, and 45 MPa. At 25 MPa, 83% of control samples survived 30 million cycles (run-out) whereas 83% of irradiated samples survived only 0.5 million cycles. At 35 MPa, irradiated samples showed an approximately 19-fold reduction in fatigue life compared with control samples (12.2 × 10(6) ± 12.3 × 10(6) versus 6.38 × 10(5) ± 6.81 × 10(5); p = 0.046), and in the case of 45 MPa, this reduction was approximately 17.5-fold (7.31 × 10(5) ± 6.39 × 10(5) versus 4.17 × 10(4) ± 1.91 × 10(4); p = 0.025). Equations to estimate high-cycle fatigue life of irradiated and control cortical bone allograft at a certain stress level were derived. Gamma radiation sterilization severely impairs the high cycle fatigue life of structural allograft bone tissues, more so than the decline that has been reported for monotonic mechanical properties. Therefore, clinicians need to be conservative in the expectation of the fatigue life of structural allograft bone tissues. Methods to preserve the fatigue strength of nonirradiated allograft bone tissue are needed. As opposed to what monotonic tests might suggest, the cyclic fatigue life of radiation-sterilized structural allografts is likely severely compromised relative to the nonirradiated condition and therefore should be taken into consideration. Methods to reduce the effect of irradiation or to recover structural allograft bone tissue fatigue strength are important to pursue.

  20. The Psychometric Properties of an Arabic version of the PedsQL Multidimensional Fatigue Scale Tested for Children with Cancer.

    PubMed

    Al-Gamal, Ekhlas; Long, Tony

    2017-09-01

    Fatigue is considered to be one of the most reported symptoms experienced by children with cancer. A major aim of this study was to develop an Arabic version of the Pediatric Quality of Life (PedsQL) Multidimensional Fatigue Scale (child report) and to test its psychometric proprieties for the assessment of fatigue in Arabic children with cancer. The PedsQL Multidimensional Fatigue Scale (Arabic version) and the PedsQL TM 4.0 Generic Core scale (existing Arabic version) were completed by 70 Jordanian children with cancer. Cronbach's alpha coefficients were found to be 0.90 for the total PedsQL Multidimensional Fatigue Scale (Arabic version), 0.94 for the general fatigue subscale, 0.67 for the sleep/rest fatigue subscale, and 0.87 for the cognitive fatigue subscale. The PedsQL Multidimensional Fatigue Scale scores correlated significantly with the PedsQL TM 4.0 Generic Core scale and demonstrated good construct validity. The results demonstrate excellent reliability and good validity of the PedsQL Multidimensional Fatigue Scale (Arabic version) for children with cancer. This is the first validated scale that assesses fatigue in Arabic children with cancer. The English scale has been used with several pediatric clinical populations, so this Arabic version may be equally useful beyond the field of cancer.

  1. Development of an Image-based Multi-Scale Finite Element Approach to Predict Fatigue Damage in Asphalt Mixtures

    NASA Astrophysics Data System (ADS)

    Arshadi, Amir

    Image-based simulation of complex materials is a very important tool for understanding their mechanical behavior and an effective tool for successful design of composite materials. In this thesis an image-based multi-scale finite element approach is developed to predict the mechanical properties of asphalt mixtures. In this approach the "up-scaling" and homogenization of each scale to the next is critically designed to improve accuracy. In addition to this multi-scale efficiency, this study introduces an approach for consideration of particle contacts at each of the scales in which mineral particles exist. One of the most important pavement distresses which seriously affects the pavement performance is fatigue cracking. As this cracking generally takes place in the binder phase of the asphalt mixture, the binder fatigue behavior is assumed to be one of the main factors influencing the overall pavement fatigue performance. It is also known that aggregate gradation, mixture volumetric properties, and filler type and concentration can affect damage initiation and progression in the asphalt mixtures. This study was conducted to develop a tool to characterize the damage properties of the asphalt mixtures at all scales. In the present study the Viscoelastic continuum damage model is implemented into the well-known finite element software ABAQUS via the user material subroutine (UMAT) in order to simulate the state of damage in the binder phase under the repeated uniaxial sinusoidal loading. The inputs are based on the experimentally derived measurements for the binder properties. For the scales of mastic and mortar, the artificially 2-Dimensional images of mastic and mortar scales were generated and used to characterize the properties of those scales. Finally, the 2D scanned images of asphalt mixtures are used to study the asphalt mixture fatigue behavior under loading. In order to validate the proposed model, the experimental test results and the simulation results were compared. Indirect tensile fatigue tests were conducted on asphalt mixture samples. A comparison between experimental results and the results from simulation shows that the model developed in this study is capable of predicting the effect of asphalt binder properties and aggregate micro-structure on mechanical behavior of asphalt concrete under loading.

  2. Fatigue acceptance test limit criterion for larger diameter rolled thread fasteners

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kephart, A.R.

    1997-05-01

    This document describes a fatigue lifetime acceptance test criterion by which studs having rolled threads, larger than 1.0 inches in diameter, can be assured to meet minimum quality attributes associated with a controlled rolling process. This criterion is derived from a stress dependent, room temperature air fatigue database for test studs having a 0.625 inch diameter threads of Alloys X-750 HTH and direct aged 625. Anticipated fatigue lives of larger threads are based on thread root elastic stress concentration factors which increase with increasing thread diameters. Over the thread size range of interest, a 30% increase in notch stress ismore » equivalent to a factor of five (5X) reduction in fatigue life. The resulting diameter dependent fatigue acceptance criterion is normalized to the aerospace rolled thread acceptance standards for a 1.0 inch diameter, 0.125 inch pitch, Unified National thread with a controlled Root radius (UNR). Testing was conducted at a stress of 50% of the minimum specified material ultimate strength, 80 Ksi, and at a stress ratio (R) of 0.10. Limited test data for fastener diameters of 1.00 to 2.25 inches are compared to the acceptance criterion. Sensitivity of fatigue life of threads to test nut geometry variables was also shown to be dependent on notch stress conditions. Bearing surface concavity of the compression nuts and thread flank contact mismatch conditions can significantly affect the fastener fatigue life. Without improved controls these conditions could potentially provide misleading acceptance data. Alternate test nut geometry features are described and implemented in the rolled thread stud specification, MIL-DTL-24789(SH), to mitigate the potential effects on fatigue acceptance data.« less

  3. Mind-body treatments for the pain-fatigue-sleep disturbance symptom cluster in persons with cancer.

    PubMed

    Kwekkeboom, Kristine L; Cherwin, Catherine H; Lee, Jun W; Wanta, Britt

    2010-01-01

    Co-occurring pain, fatigue, and sleep disturbance comprise a common symptom cluster in patients with cancer. Treatment approaches that target the cluster of symptoms rather than just a single symptom need to be identified and tested. To synthesize evidence regarding mind-body interventions that have shown efficacy in treating two or more symptoms in the pain-fatigue-sleep disturbance cancer symptom cluster. A literature search was conducted using CINAHL, Medline, and PsychInfo databases through March 2009. Studies were categorized based on the type of mind-body intervention (relaxation, imagery/hypnosis, cognitive-behavioral therapy/coping skills training [CBT/CST], meditation, music, and virtual reality), and a preliminary review was conducted with respect to efficacy for pain, fatigue, and sleep disturbance. Mind-body interventions were selected for review if there was evidence of efficacy for at least two of the three symptoms. Forty-three studies addressing five types of mind-body interventions met criteria and are summarized in this review. Imagery/hypnosis and CBT/CST interventions have produced improvement in all the three cancer-related symptoms individually: pain, fatigue, and sleep disturbance. Relaxation has resulted in improvements in pain and sleep disturbance. Meditation interventions have demonstrated beneficial effects on fatigue and sleep disturbance. Music interventions have demonstrated efficacy for pain and fatigue. No trials were found that tested the mind-body interventions specifically for the pain-fatigue-sleep disturbance symptom cluster. Efficacy studies are needed to test the impact of relaxation, imagery/hypnosis, CBT/CST, meditation, and music interventions in persons with cancer experiencing concurrent pain, fatigue, and sleep disturbance. These mind-body interventions could help patients manage all the symptoms in the cluster with a single treatment strategy. Copyright 2010 U.S. Cancer Pain Relief Committee. Published by Elsevier Inc. All rights reserved.

  4. Hydrogen effects on Ni-Ti fatigue performance by self -heating method

    NASA Astrophysics Data System (ADS)

    Rokbani, M.; Saint-Sulpice, L.; Arbab Chirani, S.; Bouraoui, T.

    2017-10-01

    Ni-Ti superelastic alloys are extensively used in manufacturing biomedical devices because of their high mechanical performance, good fatigue durability and biocompatibility compared to traditional metallic materials. During clinical use, most of these devices are intended to work under cyclic or repetitive loadings and may be in contact with corrosive environments leading to unexpected failures. It is however recognized that the fatigue-environment interaction, especially fatigue-hydrogen absorption, can be the main cause of these failures. The aim of this work is to investigate the fatigue behavior of superelastic Ni-Ti intended for manufacturing medical devices at high number of cycles (HCF) with a particular emphasis to the effect of hydrogen on fatigue properties. Fatigue tests were analyzed using self-heating measurements based on observing thermal effects during cyclic loadings. The results obtained with self-heating approach showed a trend of a decrease in the fatigue life of Ni-Ti alloys after hydrogen absorption and the fatigue limit extrapolated will be compared with the results obtained with the classical S-N curves method.

  5. Validation of an Arabic version of Fatigue Severity Scale

    PubMed Central

    Al-Sobayel, Hana I.; Al-Hugail, Hind A.; AlSaif, Ranyah M.; Albawardi, Nada M.; Alnahdi, Ali H.; Daif, Abdulkader M.; Al-Arfaj, Hussein F.

    2016-01-01

    Objectives: To develop and test the psychometric properties of an Arabic version of Fatigue Severity Scale (FSS-Ar) that can be used to measure fatigue in Arabic patients with disorders where fatigue is a major symptom. Methods: Forward and backward translations of FSS were undertaken to develop an Arabic version. The validity and reliability of the FSS-Ar was then tested on 28 patients with systemic lupus erythematosus (SLE), 24 patients with multiple sclerosis (MS), and 31 healthy subjects. Exploratory factor analysis and hypothesis testing methods were used to examine construct validity. The correlation between FSS-Ar and the vitality domain of the RAND 36-Item Health was examined to test construct validity. The study was conducted at the King Khalid University Hospital, Riyadh, Kingdom of Saudi Arabia between February and June 2012. Results: Using a score of ≥4.05 to define fatigue, 39 of 52 (75%) participants were fatigued compared with 10 out of 31 (32%) healthy participants. The correlation between the FSS-Ar and the vitality domain of the RAND-36 was acceptable (r = -0.46). Factor analysis showed that items of the FSS-Ar measured one underlying construct, namely, fatigue. Test-retest reliability and internal consistency of the FSS-Ar was acceptable (intraclass correlation coefficient model 2,1 = 0.80; Cronbach’s alpha = 0.84). Conclusion: The Arabic version of the FSS demonstrated acceptable psychometric properties and was able to differentiate between patients with SLE or MS, and healthy subjects. PMID:26739978

  6. Characterization of Pore Defects and Fatigue Cracks in Die Cast AM60 Using 3D X-ray Computed Tomography

    NASA Astrophysics Data System (ADS)

    Yang, Zhuofei; Kang, Jidong; Wilkinson, David S.

    2015-08-01

    AM60 high pressure die castings have been used in automobile applications to reduce the weight of vehicles. However, the pore defects that are inherent in die casting may negatively affect mechanical properties, especially the fatigue properties. Here we have studied damage ( e.g., pore defects, fatigue cracks) during strained-controlled fatigue using 3-dimensional X-ray computed tomography (XCT). The fatigue test was interrupted every 2000 cycles and the specimen was removed to be scanned using a desktop micro-CT system. XCT reveals pore defects, cracks, and fracture surfaces. The results show that pores can be accurately measured and modeled in 3D. Defect bands are found to be made of pores under 50 µm (based on volume-equivalent sphere diameter). Larger pores are randomly distributed in the region between the defect bands. Observation of fatigue cracks by XCT is performed in three ways such that the 3D model gives the best illustration of crack-porosity interaction while the other two methods, with the cracks being viewed on transverse or longitudinal cross sections, have better detectability on crack initiation and crack tip observation. XCT is also of value in failure analysis on fracture surfaces. By assessing XCT data during fatigue testing and observing fracture surfaces on a 3D model, a better understanding on the crack initiation, crack-porosity interaction, and the morphology of fracture surface is achieved.

  7. Role of dietary modification in alleviating chronic fatigue syndrome symptoms: a systematic review.

    PubMed

    Jones, Kathryn; Probst, Yasmine

    2017-08-01

    To review the evidence for the role of dietary modifications in alleviating chronic fatigue syndrome symptoms. A systematic literature review was guided by PRISMA and conducted using Scopus, CINAHL Plus, Web of Science and PsycINFO scientific databases (1994-2016) to identify relevant studies. Twenty-two studies met the inclusion criteria, the quality of each paper was assessed and data extracted into a standardised tabular format. Positive outcomes were highlighted in some included studies for polyphenol intakes in animal studies, D-ribose supplementation in humans and aspects of symptom alleviation for one of three polynutrient supplement studies. Omega three fatty acid blood levels and supplementation with an omega three fatty acid supplement also displayed positive outcomes in relation to chronic fatigue syndrome symptom alleviation. Limited dietary modifications were found useful in alleviating chronic fatigue syndrome symptoms, with overall evidence narrow and inconsistent across studies. Implications for public health: Due to the individual and community impairment chronic fatigue syndrome causes the population, it is vital that awareness and further focused research on this topic is undertaken to clarify and consolidate recommendations and ensure accurate, useful distribution of information at a population level. © 2017 The Authors.

  8. Low-cycle fatigue analysis of a cooled copper combustion chamber

    NASA Technical Reports Server (NTRS)

    Miller, R. W.

    1974-01-01

    A three-dimensional finite element elastoplastic strain analysis was performed for the throat section of regeneratively cooled rocket engine combustion chamber. The analysis included thermal and pressure loads, and the effects of temperature dependent material properties, to determine the strain range corresponding to the engine operating cycle. The strain range was used in conjunction with OFHC copper isothermal fatigue test data to predict engine low-cycle fatigue life. The analysis was performed for chamber configuration and operating conditions corresponding to a hydrogen-oxygen chamber which was fatigue tested to failure at the NASA Lewis Research Center.

  9. Relationship between fatigue of generation II image intensifier and input illumination

    NASA Astrophysics Data System (ADS)

    Chen, Qingyou

    1995-09-01

    If there is fatigue for an image intesifier, then it has an effect on the imaging property of the night vision system. In this paper, using the principle of Joule Heat, we derive a mathematical formula for the generated heat of semiconductor photocathode. We describe the relationship among the various parameters in the formula. We also discuss reasons for the fatigue of Generation II image intensifier caused by bigger input illumination.

  10. Failure models for textile composites

    NASA Technical Reports Server (NTRS)

    Cox, Brian

    1995-01-01

    The goals of this investigation were to: (1) identify mechanisms of failure and determine how the architecture of reinforcing fibers in 3D woven composites controlled stiffness, strength, strain to failure, work of fracture, notch sensitivity, and fatigue life; and (2) to model composite stiffness, strength, and fatigue life. A total of 11 different angle and orthogonal interlock woven composites were examined. Composite properties depended on the weave architecture, the tow size, and the spatial distributions and strength of geometrical flaws. Simple models were developed for elastic properties, strength, and fatigue life. A more complicated stochastic model, called the 'Binary Model,' was developed for damage tolerance and ultimate failure. These 3D woven composites possessed an extraordinary combination of strength, damage tolerance, and notch insensitivity.

  11. Provision of wear resistance and fatigue strength of surfaces during electroerosive processing

    NASA Astrophysics Data System (ADS)

    Fedonin, O. N.; Syanov, S. Yu; Papikyan, A. M.

    2018-03-01

    This article is a generalization of the results of theoretical studies of the effect of erosion control regimes on the operational properties of mold-forming parts of molds. The main problem is the provision of wear resistance and fatigue strength in the electroerosion processing of these types of products. The analysis showed that the fatigue strength is affected by the processing regimes and the coefficient after the erosion treatment. The index of wear resistance is determined both by the treatment modes and by the physical-mechanical properties of the billet materials. To ensure the operational performance of products, it is necessary to establish the physical picture of the processing of complex profile parts by finding the optimum eroding regime.

  12. Rotary science and its impact on instrument separation: A focused review

    PubMed Central

    Khasnis, Sandhya Anand; Kar, Prem Prakash; Kamal, Apoorva; Patil, Jayaprakash D.

    2018-01-01

    Efficient endodontic treatment demands thorough debridement of the root canal system with minimal procedural errors. The inherent weakness of nickel–titanium alloys is their unexpected breakage. Modifications in the design, manufacturing, thermomechanical and surface treatment of alloys and advancements in movement kinetics have shown to improve the fatigue properties of the alloys, reducing the incidence of separation. This review enlightens the impact of these factors on fatigue properties of the alloy. PMID:29674810

  13. Fatigue of a 3D Orthogonal Non-crimp Woven Polymer Matrix Composite at Elevated Temperature

    NASA Astrophysics Data System (ADS)

    Wilkinson, M. P.; Ruggles-Wrenn, M. B.

    2017-12-01

    Tension-tension fatigue behavior of two polymer matrix composites (PMCs) was studied at elevated temperature. The two PMCs consist of the NRPE polyimide matrix reinforced with carbon fibers, but have different fiber architectures: the 3D PMC is a singly-ply non-crimp 3D orthogonal weave composite and the 2D PMC, a laminated composite reinforced with 15 plies of an eight harness satin weave (8HSW) fabric. In order to assess the performance and suitability of the two composites for use in aerospace components designed to contain high-temperature environments, mechanical tests were performed under temperature conditions simulating the actual operating conditions. In all elevated temperature tests performed in this work, one side of the test specimen was at 329 °C while the other side was open to ambient laboratory air. The tensile stress-strain behavior of the two composites was investigated and the tensile properties measured for both on-axis (0/90) and off-axis (±45) fiber orientations. Elevated temperature had little effect on the on-axis tensile properties of the two composites. The off-axis tensile strength of both PMCs decreased slightly at elevated temperature. Tension-tension fatigue tests were conducted at elevated temperature at a frequency of 1.0 Hz with a ratio of minimum stress to maximum stress of R = 0.05. Fatigue run-out was defined as 2 × 105 cycles. Both strain accumulation and modulus evolution during cycling were analyzed for each fatigue test. The laminated 2D PMC exhibited better fatigue resistance than the 3D composite. Specimens that achieved fatigue run-out were subjected to tensile tests to failure to characterize the retained tensile properties. Post-test examination under optical microscope revealed severe delamination in the laminated 2D PMC. The non-crimp 3D orthogonal weave composite offered improved delamination resistance.

  14. The PedsQL multidimensional fatigue scale in pediatric obesity: feasibility, reliability and validity.

    PubMed

    Varni, James W; Limbers, Christine A; Bryant, William P; Wilson, Don P

    2010-01-01

    The PedsQL (Pediatric Quality of Life Inventory) is a modular instrument designed to measure health-related quality of life (HRQOL) and disease-specific symptoms in children and adolescents. The PedsQL Multidimensional Fatigue Scale was designed as a child self-report and parent proxy-report generic symptom-specific instrument to measure fatigue in pediatric patients. The objective of the present study was to determine the feasibility, reliability, and validity of the PedsQL Multidimensional Fatigue Scale in pediatric obesity. The 18-item PedsQL Multidimensional Fatigue Scale (General Fatigue, Sleep/Rest Fatigue, and Cognitive Fatigue domains) and the PedsQL 4.0 Generic Core Scales were completed by 41 pediatric patients with a physician-diagnosis of obesity and 43 parents from a hospital-based Pediatric Endocrinology Clinic. The PedsQL Multidimensional Fatigue Scale evidenced minimal missing responses (1.6%, child report; 0.5%, parent report), achieved excellent reliability for the Total Fatigue Scale Score (alpha = 0.90 child report, 0.90 parent report), distinguished between pediatric patients with obesity and healthy children, and was significantly correlated with the PedsQL 4.0 Generic Core Scales supporting construct validity. Pediatric patients with obesity experienced fatigue comparable with pediatric patients receiving cancer treatment, demonstrating the relative severity of their fatigue symptoms. The results demonstrate the measurement properties of the PedsQL Multidimensional Fatigue Scale in pediatric obesity. The findings suggest that the PedsQL Multidimensional Fatigue Scale may be utilized in the standardized evaluation of fatigue in pediatric patients with obesity.

  15. Fatigue Behavior of AM60B Subjected to Variable Amplitude Loading

    NASA Astrophysics Data System (ADS)

    Kang, H.; Kari, K.; Khosrovaneh, A. K.; Nayaki, R.; Su, X.; Zhang, L.; Lee, Y.-L.

    Magnesium alloys are considered as an alternative material to reduce vehicle weight due to their weight which are 33% lighter than aluminum alloys. There has been a significant expansion in the applications of magnesium alloys in automotives components in an effort to improve fuel efficiency through vehicle mass reduction. In this project, a simple front shock tower of passenger vehicle is constructed with various magnesium alloys. To predict the fatigue behavior of the structure, fatigue properties of the magnesium alloy (AM60B) were determined from strain controlled fatigue tests. Notched specimens were also tested with three different variable amplitude loading profiles obtained from the shock tower of the similar size of vehicle. The test results were compared with various fatigue prediction results. The effect of mean stress and fatigue prediction method were discussed.

  16. Evaluation of Fatigue Life of CRM-Reinforced SMA and Its Relationship to Dynamic Stiffness

    PubMed Central

    Mashaan, Nuha Salim; Karim, Mohamed Rehan; Abdel Aziz, Mahrez; Ibrahim, Mohd Rasdan; Katman, Herda Yati

    2014-01-01

    Fatigue cracking is an essential problem of asphalt concrete that contributes to pavement damage. Although stone matrix asphalt (SMA) has significantly provided resistance to rutting failure, its resistance to fatigue failure is yet to be fully addressed. The aim of this study is to evaluate the effect of crumb rubber modifier (CRM) on stiffness and fatigue properties of SMA mixtures at optimum binder content, using four different modification levels, namely, 6%, 8%, 10%, and 12% CRM by weight of the bitumen. The testing undertaken on the asphalt mix comprises the dynamic stiffness (indirect tensile test), dynamic creep (repeated load creep), and fatigue test (indirect tensile fatigue test) at temperature of 25°C. The indirect tensile fatigue test was conducted at three different stress levels (200, 300, and 400 kPa). Experimental results indicate that CRM-reinforced SMA mixtures exhibit significantly higher fatigue life compared to the mixtures without CRM. Further, higher correlation coefficient was obtained between the fatigue life and resilient modulus as compared to permanent strain; thus resilient modulus might be a more reliable indicator in evaluating the fatigue life of asphalt mixture. PMID:25050406

  17. Fatigue and biological properties of Ti-6Al-4V ELI cellular structures with variously arranged cubic cells made by selective laser melting.

    PubMed

    Dallago, M; Fontanari, V; Torresani, E; Leoni, M; Pederzolli, C; Potrich, C; Benedetti, M

    2018-02-01

    Traditional implants made of bulk titanium are much stiffer than human bone and this mismatch can induce stress shielding. Although more complex to produce and with less predictable properties compared to bulk implants, implants with a highly porous structure can be produced to match the bone stiffness and at the same time favor bone ingrowth and regeneration. This paper presents the results of the mechanical and dimensional characterization of different regular cubic open-cell cellular structures produced by Selective Laser Melting (SLM) of Ti6Al4V alloy, all with the same nominal elastic modulus of 3GPa that matches that of human trabecular bone. The main objective of this research was to determine which structure has the best fatigue resistance through fully reversed fatigue tests on cellular specimens. The quality of the manufacturing process and the discrepancy between the actual measured cell parameters and the nominal CAD values were assessed through an extensive metrological analysis. The results of the metrological assessment allowed us to discuss the effect of manufacturing defects (porosity, surface roughness and geometrical inaccuracies) on the mechanical properties. Half of the specimens was subjected to a stress relief thermal treatment while the other half to Hot Isostatic Pressing (HIP), and we compared the effect of the treatments on porosity and on the mechanical properties. Fatigue strength seems to be highly dependent on the surface irregularities and notches introduced during the manufacturing process. In fully reversed fatigue tests, the high performances of stretching dominated structures compared to bending dominated structures are not found. In fact, with thicker struts, such structures proved to be more resistant, even if bending actions were present. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. The effects of novel surface treatments on the wear and fatigue properties of steel and chilled cast iron

    NASA Astrophysics Data System (ADS)

    Carroll, Jason William

    Contact fatigue driven wear is a principal design concern for gear and camshaft engineering of power systems. To better understand how to engineer contact fatigue resistant surfaces, the effects of electroless nickel and hydrogenated diamond-like-carbon (DLC) coatings on the fatigue life at 108 cycles of SAE 52100 steel were studied using ultrasonic fatigue methods. The addition of DLC and electroless nickel coatings to SAE 52100 bearing steel had no effect on the fatigue life. Different inclusion types were found to affect the stress intensity value beyond just the inclusion size, as theorized by Murakami. The difference in stress intensity values necessary to propagate a crack for Ti (C,N) and alumina inclusions was due to the higher driving force for crack extension at the Ti (C,N) inclusions and was attributed to differences in the shape of the inclusion: rhombohedral for the Ti (C,N) versus spherical for the oxides. A correction factor was added to the Murakami equation to account for inclusion type. The wear properties of DLC coated SAE 52100 and chilled cast iron were studied using pin-on-disk tribometry and very high cycle ultrasonic tribometry. A wear model that includes sliding thermal effects as well as thermodynamics consistent with the wear mechanism for DLCs was developed based on empirical results from ultrasonic wear testing to 108 cycles. The model fit both ultrasonic and classic tribometer data for wear of DLCs. Finally, the wear properties of laser hardened steels - SAE 8620, 4140, and 52100 - were studied at high contact pressures and low numbers of cycles. A design of experiments was conducted to understand how the laser processing parameters of power, speed, and beam size, as well as carbon content of the steel, affected surface hardness. A hardness maximum was found at approximately 0.7 wt% carbon most likely resulting from increased amounts of retained austenite. The ratcheting contact fatigue model of Kapoor was found to be useful in predicting the wear results. The empirical model of Clayton and Su and extended by Afferente and Ciavarella, also provided reasonable semi-quantitative contact fatigue life models for these steels.

  19. Protocol for a systematic review of psychological interventions for cancer-related fatigue in post-treatment cancer survivors.

    PubMed

    Corbett, Teresa; Devane, Declan; Walsh, Jane C; Groarke, AnnMarie; McGuire, Brian E

    2015-12-04

    Fatigue is a common symptom in cancer patients that can persist beyond the curative treatment phase. Some evidence has been reported for interventions for fatigue during active treatment. However, to date, there is no systematic review on psychological interventions for fatigue after the completion of curative treatment for cancer. This is a protocol for a systematic review that aims to evaluate the effectiveness of psychological interventions for cancer-related fatigue in post-treatment cancer survivors. This systematic review protocol was registered with the International Prospective Register of Systematic Reviews (PROSPERO) database. We will search the Cochrane Central Register of Controlled Trials (CENTRAL; The Cochrane Library), PubMed, MEDLINE, EMBASE, CINAHL, PsycINFO, and relevant sources of grey literature. Randomised controlled trials (RCTs) which have evaluated psychological interventions in adult cancer patients after the completion of treatment, with fatigue as an outcome measure, will be included. Two review authors will independently extract data from the selected studies and assess the methodological quality using the Cochrane Collaboration Risk of Bias Tool. Most existing evidence on cancer-related fatigue is from those in active cancer treatment. This systematic review and meta-analysis will build upon previous evaluations of psychological interventions in people during and after cancer treatment. With the growing need for stage-specific research in cancer, this review seeks to highlight a gap in current practice and to strengthen the evidence base of randomised controlled trials in the area. PROSPERO CRD42014015219.

  20. Mechanical properties and microstructure of copper alloys and copper alloy-stainless steel laminates for fusion reactor high heat flux applications

    NASA Astrophysics Data System (ADS)

    Leedy, Kevin Daniel

    A select group of copper alloys and bonded copper alloy-stainless steel panels are under consideration for heat sink applications in first wall and divertor structures of a planned thermonuclear fusion reactor. Because these materials must retain high strengths and withstand high heat fluxes, their material properties and microstructures must be well understood. Candidate copper alloys include precipitate strengthened CuNiBe and CuCrZr and dispersion strengthened Cu-Alsb2Osb3 (CuAl25). In this study, uniaxial mechanical fatigue tests were conducted on bulk copper alloy materials at temperatures up to 500sp°C in air and vacuum environments. Based on standardized mechanical properties measurement techniques, a series of tests were also implemented to characterize copper alloy-316L stainless steel joints produced by hot isostatic pressing or by explosive bonding. The correlation between mechanical properties and the microstructure of fatigued copper alloys and the interface of copper alloy-stainless steel laminates was examined. Commercial grades of these alloys were used to maintain a degree of standardization in the materials testing. The commercial alloys used were OMG Americas Glidcop CuAl25 and CuAl15; Brush Wellman Hycon 3HP and Trefimetaux CuNiBe; and Kabelmetal Elbrodur and Trefimetaux CuCrZr. CuAl25 and CuNiBe alloys possessed the best combination of fatigue resistance and microstructural stability. The CuAl25 alloy showed only minimal microstructural changes following fatigue while the CuNiBe alloy consistently exhibited the highest fatigue strength. Transmission electron microscopy observations revealed that small matrix grain sizes and high densities of submicron strengthening phases promoted homogeneous slip deformation in the copper alloys. Thus, highly organized fatigue dislocation structure formation, as commonly found in oxygen-free high conductivity Cu, was inhibited. A solid plate of CuAl25 alloy hot isostatically pressed to a 316L stainless steel plate showed the best overall mechanical properties of the studied bi-metallic bonded panels. Bond properties were nominally inferior to constituent bulk material properties and fracture toughness values, in particular, were quite low for all bonded laminates. Delamination near the copper alloy-stainless steel interface was the dominate failure mode in the bi-metallic panels. The joining processes caused microstructural alterations in the bond interfacial regions including: microporosity, new precipitate formation, existing precipitate morphology changes and interdiffusion of constituent elements.

  1. NASA - easyJet Collaboration on the Human Factors Monitoring Program (HFMP) Study

    NASA Technical Reports Server (NTRS)

    Srivistava, Ashok N.; Barton, Phil

    2012-01-01

    This is the first annual report jointly prepared by NASA and easyJet on the work performed under the agreement to collaborate on a study of the many factors entailed in flight - and cabin-crew fatigue and documenting the decreases in performance associated with fatigue. The objective of this Agreement is to generate reliable, automated procedures that improve understanding of the levels and characteristics of flight - and cabin-crew fatigue factors, both latent and proximate, whose confluence will likely result in unacceptable flight crew performance. This study entails the analyses of numerical and textual data collected during operational flights. NASA and easyJet are both interested in assessing and testing NASA s automated capabilities for extracting operationally significant information from very large, diverse (textual and numerical) databases, much larger than can be handled practically by human experts.

  2. Second Interim Report NASA - easyJet Collaboration on the Human Factors Monitoring Program (HFMP) Study

    NASA Technical Reports Server (NTRS)

    Srivistava, Ashok N.; Barton, Phil

    2012-01-01

    This is the second interim report jointly prepared by NASA and easyJet on the work performed under the agreement to collaborate on a study of the factors entailed in flight and cabin-crew fatigue, and decreases in performance associated with fatigue. The objective of this Agreement is to generate reliable procedures that aid in understanding the levels and characteristics of flight and cabin-crew fatigue factors, both latent and proximate, whose confluence will likely result in unacceptable crew performance. This study entails the analyses of numerical and textual data collected during operational flights. NASA and easyJet are both interested in assessing and testing NASA s automated capabilities for extracting operationally significant information from very large, diverse (textual and numerical) databases; much larger than can be handled practically by human experts.

  3. Biomarkers of Fatigue: Metabolomics Profiles Predictive of Cognitive Performance

    DTIC Science & Technology

    2013-05-01

    metabolites. The latest version of the Human Metabolome Database (v. 2.5; released August , 2009) includes approximately 8,000 identified mammalian...monoamine oxidase; COMT , catechol-O-methyl transferase. (Modiefied from Rubí and Maechler, 2010). Ovals indicate metabolites found to be significantly

  4. Electrophysiological, histochemical, and hormonal adaptation of rat muscle after prolonged hindlimb suspension

    NASA Astrophysics Data System (ADS)

    Kourtidou-Papadeli, Chrysoula; Kyparos, Antonios; Albani, Maria; Frossinis, Athanasios; Papadelis, Christos L.; Bamidis, Panagiotis; Vivas, Ana; Guiba-Tziampiri, Olympia

    2004-05-01

    The perspective of long-duration flights for future exploration, imply more research in the field of human adaptation. Previous studies in rat muscles hindlimb suspension (HLS), indicated muscle atrophy and a change of fibre composition from slow-to-fast twitch types. However, the contractile responses to long-term unloading is still unclear. Fifteen adult Wistar rats were studied in 45 and 70 days of muscle unweighting and soleus (SOL) muscle as well as extensor digitorum longus (EDL) were prepared for electrophysiological recordings (single, twitch, tetanic contraction and fatigue) and histochemical stainings. The loss of muscle mass observed was greater in the soleus muscle. The analysis of electrophysiological properties of both EDL and SOL showed significant main effects of group, of number of unweighting days and fatigue properties. Single contraction for soleus muscle remained unchanged but there was statistically significant difference for tetanic contraction and fatigue. Fatigue index showed a decrease for the control rats, but increase for the HLS rats. According to the histochemical findings there was a shift from oxidative to glycolytic metabolism during HLS. The data suggested that muscles atrophied, but they presented an adaptation pattern, while their endurance in fatigue was decreased.

  5. Viscoelastic and fatigue properties of model methacrylate-based dentin adhesives

    PubMed Central

    Singh, Viraj; Misra, Anil; Marangos, Orestes; Park, Jonggu; Ye, Qiang; Kieweg, Sarah L.; Spencer, Paulette

    2013-01-01

    The objective of the current study is to characterize the viscoelastic and fatigue properties of model methacrylate-based dentin adhesives under dry and wet conditions. Static, creep, and fatigue tests were performed on cylindrical samples in a 3-point bending clamp. Static results showed that the apparent elastic modulus of the model adhesive varied from 2.56 to 3.53 GPa in the dry condition, and from 1.04 to 1.62 GPa in the wet condition, depending upon the rate of loading. Significant differences were also found for the creep behavior of the model adhesive under dry and wet conditions. A linear viscoelastic model was developed by fitting the adhesive creep behavior. The developed model with 5 Kelvin Voigt elements predicted the apparent elastic moduli measured in the static tests. The model was then utilized to interpret the fatigue test results. It was found that the failure under cyclic loading can be due to creep or fatigue, which has implications for the failure criterion that are applied for these types of tests. Finally, it was found that the adhesive samples tested under dry conditions were more durable than those tested under wet conditions. PMID:20848661

  6. Computational Modeling to Predict Fatigue Behavior of NiTi Stents: What Do We Need?

    PubMed Central

    Dordoni, Elena; Petrini, Lorenza; Wu, Wei; Migliavacca, Francesco; Dubini, Gabriele; Pennati, Giancarlo

    2015-01-01

    NiTi (nickel-titanium) stents are nowadays commonly used for the percutaneous treatment of peripheral arterial disease. However, their effectiveness is still debated in the clinical field. In fact a peculiar cyclic biomechanical environment is created before and after stent implantation, with the risk of device fatigue failure. An accurate study of the device fatigue behavior is of primary importance to ensure a successful stenting procedure. Regulatory authorities recognize the possibility of performing computational analyses instead of experimental tests for the assessment of medical devices. However, confidence in numerical methods is only possible after verification and validation of the models used. For the case of NiTi stents, mechanical properties are strongly dependent on the device dimensions and the whole treatments undergone during manufacturing process. Hence, special attention should be paid to the accuracy of the description of the device geometry and the material properties implementation into the numerical code, as well as to the definition of the fatigue limit. In this paper, a path for setting up an effective numerical model for NiTi stent fatigue assessment is proposed and the results of its application in a specific case study are illustrated. PMID:26011245

  7. Fatigue crack growth behavior of pressure vessel steels and submerged arc weldments in a high-temperature pressurized water environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liaw, P.K.; Logsdon, W.A.; Begley, J.A.

    1989-10-01

    The fatigue crack growth rate (FCGR) properties of SA508 Cl 2a and SA533 Gr A Cl 2 pressure vessel steels and the corresponding automatic submerged arc weldments were developed in a high-temperature pressurized water (HPW) environment at 288{degrees} C (550{degrees} F) and 7.2 MPa (1044 psi) at load ratios of 0.20 and 0.50. The properties were generally conservative compared to American Society of Mechanical Engineers Section XI water environment reference curve. The growth rate of fatigue cracks in the base materials, however, was faster in the HPW environment than in a 288{degrees} C (550{degrees} F) base line air environment. Themore » growth rate of fatigue cracks in the two submerged arc weldments was also accelerated in the HPW environment but to a lesser degree than that demonstrated by the base materials. In the air environment, fatigue striations were observed, independent of material and load ratio, while in the HPW environment, some intergranular facets were present. The greater environmental effect on crack growth rates displayed by the base materials compared the weldments attributed to a different sulfide composition and morphology.« less

  8. Tension-Compression Fatigue of a Nextel™720/alumina Composite at 1200 °C in Air and in Steam

    NASA Astrophysics Data System (ADS)

    Lanser, R. L.; Ruggles-Wrenn, M. B.

    2016-08-01

    Tension-compression fatigue behavior of an oxide-oxide ceramic-matrix composite was investigated at 1200 °C in air and in steam. The composite is comprised of an alumina matrix reinforced with Nextel™720 alumina-mullite fibers woven in an eight harness satin weave (8HSW). The composite has no interface between the fiber and matrix, and relies on the porous matrix for flaw tolerance. Tension-compression fatigue behavior was studied for cyclical stresses ranging from 60 to 120 MPa at a frequency of 1.0 Hz. The R ratio (minimum stress to maximum stress) was -1.0. Fatigue run-out was defined as 105 cycles and was achieved at 80 MPa in air and at 70 MPa in steam. Steam reduced cyclic lives by an order of magnitude. Specimens that achieved fatigue run-out were subjected to tensile tests to failure to characterize the retained tensile properties. Specimens subjected to prior cyclic loading in air retained 100 % of their tensile strength. The steam environment severely degraded tensile properties. Tension-compression cyclic loading was considerably more damaging than tension-tension cyclic loading. Composite microstructure, as well as damage and failure mechanisms were investigated.

  9. Design solutions for the solar cell interconnect fatigue fracture problem

    NASA Technical Reports Server (NTRS)

    Mon, G. R.; Ross, R. G., Jr.

    1982-01-01

    Mechanical fatigue of solar cell interconnects is a major failure mechanism in photovoltaic arrays. A comprehensive approach to the reliability design of interconnects, together with extensive design data for the fatigue properties of copper interconnects, has been published. This paper extends the previous work, developing failure prediction (fatigue) data for additional interconnect material choices, including aluminum and a variety of copper-Invar and copper-steel claddings. An improved global fatigue function is used to model the probability-of-failure statistics of each material as a function of level and number of cycles of applied strain. Life-cycle economic analyses are used to evaluate the relative merits of each material choce. The copper-Invar clad composites demonstrate superior performance over pure copper. Aluminum results are disappointing.

  10. Influence of neutron irradiation at 430$deg;C on the fatigue properties of SA 316L steel

    NASA Astrophysics Data System (ADS)

    Vandermeulen, W.; Hendrix, W.; Massaut, V.; Van de Velde, J.

    1988-07-01

    Fatigue tests have been carried out at 430°C on hour-glass shaped specimens of the CEC reference heat of SA 316L stainless steel. The tests were performed under constant total axial strain control with a triangular fully reversed wave shape at frequencies of 0.5, 0.05 and 0.005 Hz. Specimens irradiated at 430°C to doses of 9-12 dpa and helium contents of 80 to 145 appm showed a fatigue life reduction by about a factor of two, compared to unirradiated specimens. The cyclic stress is found to be strongly increased by the irradiation. The test frequency influences the fatigue hardening slightly but it does not affect the fatigue life.

  11. Fatigue behavior of AAR Class A railroad wheel steel at ambient and elevated temperatures.

    DOT National Transportation Integrated Search

    2006-12-01

    This report documents a test program to determine the material properties (chemical composition, tensile, and fatigue) at ambient and elevated temperatures of a Class A wheel steel as designated by the Association of American Railroads. The 3 tempera...

  12. Fatigue Resistance of Al-Cu-Li and Comparison with 7xxx Aerospace Alloys

    NASA Astrophysics Data System (ADS)

    Daniélou, A.; Ronxin, J. P.; Nardin, C.; Ehrström, J. C.

    Al-Cu-Li alloys are of great interest for aerospace applications due to their good mechanical property balance, excellent corrosion resistance and reduced density. These alloys exhibit an increased resistance to fatigue in particular when compared to 7xxx alloys.

  13. A modified PMMA cement (Sub-cement) for accelerated fatigue testing of cemented implant constructs using cadaveric bone.

    PubMed

    Race, Amos; Miller, Mark A; Mann, Kenneth A

    2008-10-20

    Pre-clinical screening of cemented implant systems could be improved by modeling the longer-term response of the implant/cement/bone construct to cyclic loading. We formulated bone cement with degraded fatigue fracture properties (Sub-cement) such that long-term fatigue could be simulated in short-term cadaver tests. Sub-cement was made by adding a chain-transfer agent to standard polymethylmethacrylate (PMMA) cement. This reduced the molecular weight of the inter-bead matrix without changing reaction-rate or handling characteristics. Static mechanical properties were approximately equivalent to normal cement. Over a physiologically reasonable range of stress-intensity factor, fatigue crack propagation rates for Sub-cement were higher by a factor of 25+/-19. When tested in a simplified 2 1/2-D physical model of a stem-cement-bone system, crack growth from the stem was accelerated by a factor of 100. Sub-cement accelerated both crack initiation and growth rate. Sub-cement is now being evaluated in full stem/cement/femur models.

  14. Fatigue Failure Modes of the Grain Size Transition Zone in a Dual Microstructure Disk

    NASA Technical Reports Server (NTRS)

    Gabb, Timothy P.; Kantzos, Pete T.; Palsa, Bonnie; Telesman, Jack; Gayda, John; Sudbrack, Chantal K.

    2012-01-01

    Mechanical property requirements vary with location in nickel-based superalloy disks. In order to maximize the associated mechanical properties, heat treatment methods have been developed for producing tailored grain microstructures. In this study, fatigue failure modes of a grain size transition zone in a dual microstructure disk were evaluated. A specialized heat treatment method was applied to produce varying grain microstructure in the bore to rim portions of a powder metallurgy processed nickel-based superalloy disk. The transition in grain size was concentrated in a zone of the disk web, between the bore and rim. Specimens were extracted parallel and transversely across this transition zone, and multiple fatigue tests were performed at 427 C and 704 C. Grain size distributions were characterized in the specimens, and related to operative failure initiation modes. Mean fatigue life decreased with increasing maximum grain size, going out through the transition zone. The scatter in limited tests of replicates was comparable for failures of uniform gage specimens in all transition zone locations examined.

  15. Oxidation, Creep And Fatigue Properties of Bare and Coated 31V alloy

    DOE PAGES

    Dryepondt, Sebastien N.; Jones, Samuel J.; Zhang, Ying; ...

    2014-12-06

    Increasing the efficiency of natural gas reciprocating engines will require materials with better mechanical and corrosion resistance at high temperatures. One solution to increase the lifetime of exhaust valves is to apply an aluminide coating to prevent corrosion assisted fatigue cracking, but the impact of the coating on the valve material mechanical properties needs to be assessed. Creep and high cycle fatigue (HCF) testing were conducted at 816°C on bare and slurry or pack-coated 31V alloy. After annealing according to the 31V standard heat treatment, the coated and bare creep specimens exhibited very similar creep rupture lives. The HCF behaviormore » of the pack-coated alloy was close to the behavior of the bar alloy, but fatigue lifetimes of slurry-coated 31V specimens had higher variability. Aluminide coatings have the potential to improve the valve performance at high temperature, but the coating deposition process needs to be tailored for the substrate standard heat treatment.« less

  16. Development and characterization of fatigue resistant Aramid reinforced aluminium laminates (ARALL) for fatigue Critical aircraft components

    NASA Astrophysics Data System (ADS)

    Qaiser, M. H.; Umar, S.; Nauman, S.

    2014-06-01

    The structural weight of an aircraft has always been a controlling parameter that governs its fuel efficiency and transport capacity. In pursuit of achieving light-weight aircraft structures, high design stress levels have to be adopted and materials with high specific strength such as Aluminum etc. are to be deployed. However, an extensive spectrum of fatigue load exists at the aircraft wings and other aerodynamic components that may cause initiation and propagation of fatigue cracks and concludes in a catastrophic rupture. Fatigue is therefore the limiting design parameter in such cases and materials with high fatigue resistance are then required. A major improvement in the fatigue behavior was observed by laminating Kevlar fibers with Aluminum using epoxy. ARALL (Aramid Reinforced ALuminum Laminates) is a fatigue resistant hybrid composite that consists of layers of thin high strength aluminum alloy sheets surface bonded with aramid fibers. The intact aramid fibers tie up the fatigue cracks, thus reducing the stress intensity factor at the crack tip as a result of which the fatigue properties of can be enhanced with orders of magnitude as compared to monolithic high strength Aluminum alloy sheets. Significant amount of weight savings can be achieved in fatigue critical components in comparison with the traditional materials used in aircraft.

  17. Cross-cultural adaptation and psychometric evaluations of the Turkish version of Parkinson Fatigue Scale.

    PubMed

    Ozturk, Erhan Arif; Kocer, Bilge Gonenli; Umay, Ebru; Cakci, Aytul

    2018-06-07

    The objectives of the present study were to translate and cross-culturally adapt the English version of the Parkinson Fatigue Scale into Turkish, to evaluate its psychometric properties, and to compare them with that of other language versions. A total of 144 patients with idiopathic Parkinson disease were included in the study. The Turkish version of Parkinson Fatigue Scale was evaluated for data quality, scaling assumptions, acceptability, reliability, and validity. The questionnaire response rate was 100% for both test and retest. The percentage of missing data was zero for items, and the percentage of computable scores was full. Floor and ceiling effects were absent. The Parkinson Fatigue Scale provides an acceptable internal consistency (Cronbach's alpha was 0.974 for 1st test and 0.964 for a retest, and corrected item-to-total correlations were ranged from 0.715 to 0.906) and test-retest reliability (Cohen's kappa coefficients were ranged from 0.632 to 0.786 for individuals items, and intraclass correlation coefficient was 0.887 for the overall Parkinson Fatigue Scale Score). An exploratory factor analysis of the items revealed a single factor explaining 71.7% of variance. The goodness-of-fit statistics for the one-factorial confirmatory factor analysis were Tucker Lewis index = 0.961, comparative fit index = 0.971 and root mean square error of approximation = 0.077 for a single factor. The average Parkinson Fatigue Scale Score was correlated significantly with sociodemographic data, clinical characteristics and scores of rating scales. The Turkish version of the Parkinson Fatigue Scale seems to be culturally well adapted and have good psychometric properties. The scale can be used in further studies to assess the fatigue in patients with Parkinson's disease.

  18. Effects of stress ratio on the temperature-dependent high-cycle fatigue properties of alloy steels

    NASA Astrophysics Data System (ADS)

    Lü, Zhi-yang; Wan, Ao-shuang; Xiong, Jun-jiang; Li, Kuang; Liu, Jian-zhong

    2016-12-01

    This paper addresses the effects of stress ratio on the temperature-dependent high-cycle fatigue (HCF) properties of alloy steels 2CrMo and 9CrCo, which suffer from substantial vibrational loading at small stress amplitude, high stress ratio, and high frequency in the high-temperature environments in which they function as blade and rotor spindle materials in advanced gas or steam turbine engines. Fatigue tests were performed on alloy steels 2CrMo and 9CrCo subjected to constant-amplitude loading at four stress ratios and at four and three temperatures, respectively, to determine their temperature-dependent HCF properties. The interaction mechanisms between high temperature and stress ratio were deduced and compared with each other on the basis of the results of fractographic analysis. A phenomenological model was developed to evaluate the effects of stress ratio on the temperature-dependent HCF properties of alloy steels 2CrMo and 9CrCo. Good correlation was achieved between the predictions and actual experiments, demonstrating the practical and effective use of the proposed method.

  19. SLM processing-microstructure-mechanical property correlation in an aluminum alloy produced by additive manufacturing

    NASA Astrophysics Data System (ADS)

    Alejos, Martin Fernando

    Additive manufacturing has become a highly researched topic in recent years all over the world. The current research evaluates the merits of additive manufacturing based on the mechanical, microstructural, and fracture properties of additive manufactured AlSi10Mg test specimens. The additive manufactured build plates consisted of tensile and fatigue test specimens. They were printed in the 0°, 30°, 60°, and 90° orientations relative to the build platform. Tensile and dynamic fatigue tests were conducted followed by microstructural characterization and fracture analysis. A wrought 6061 T6 aluminum alloy was also tested for comparison. Tensile tests revealed similar ultimate tensile strengths for all aluminum tensile specimens (350-380 MPa). Fatigue strength was greatest for wrought 6061 T6 aluminum (175 MPa). The fatigue behavior was a strong function of build orientation for the additive manufactured specimens. The 0°, 30°, and 60° orientations had fatigue strengths close to 104 MPa while the 90° orientation had a fatigue strength of 125 MPa. All test specimens failed primarily in a ductile manner. The effect of laser power, hatch spacing, and scan speed were also studied using microstructural analysis. Increasing laser power decreased grain size and void size. Increasing scan speed led to the formation of columnar grains. Increasing hatch spacing decreased grain size and the amount of voids present in the microstructure.

  20. Probabilistic Simulation of Combined Thermo-Mechanical Cyclic Fatigue in Composites

    NASA Technical Reports Server (NTRS)

    Chamis, Christos C.

    2011-01-01

    A methodology to compute probabilistically-combined thermo-mechanical fatigue life of polymer matrix laminated composites has been developed and is demonstrated. Matrix degradation effects caused by long-term environmental exposure and mechanical/thermal cyclic loads are accounted for in the simulation process. A unified time-temperature-stress-dependent multifactor-interaction relationship developed at NASA Glenn Research Center has been used to model the degradation/aging of material properties due to cyclic loads. The fast probability-integration method is used to compute probabilistic distribution of response. Sensitivities of fatigue life reliability to uncertainties in the primitive random variables (e.g., constituent properties, fiber volume ratio, void volume ratio, ply thickness, etc.) computed and their significance in the reliability-based design for maximum life is discussed. The effect of variation in the thermal cyclic loads on the fatigue reliability for a (0/+/-45/90)s graphite/epoxy laminate with a ply thickness of 0.127 mm, with respect to impending failure modes has been studied. The results show that, at low mechanical-cyclic loads and low thermal-cyclic amplitudes, fatigue life for 0.999 reliability is most sensitive to matrix compressive strength, matrix modulus, thermal expansion coefficient, and ply thickness. Whereas at high mechanical-cyclic loads and high thermal-cyclic amplitudes, fatigue life at 0.999 reliability is more sensitive to the shear strength of matrix, longitudinal fiber modulus, matrix modulus, and ply thickness.

  1. Probabilistic Simulation for Combined Cycle Fatigue in Composites

    NASA Technical Reports Server (NTRS)

    Chamis, Christos C.

    2010-01-01

    A methodology to compute probabilistic fatigue life of polymer matrix laminated composites has been developed and demonstrated. Matrix degradation effects caused by long term environmental exposure and mechanical/thermal cyclic loads are accounted for in the simulation process. A unified time-temperature-stress dependent multifactor interaction relationship developed at NASA Glenn Research Center has been used to model the degradation/aging of material properties due to cyclic loads. The fast probability integration method is used to compute probabilistic distribution of response. Sensitivities of fatigue life reliability to uncertainties in the primitive random variables (e.g., constituent properties, fiber volume ratio, void volume ratio, ply thickness, etc.) computed and their significance in the reliability-based design for maximum life is discussed. The effect of variation in the thermal cyclic loads on the fatigue reliability for a (0/+/- 45/90)s graphite/epoxy laminate with a ply thickness of 0.127 mm, with respect to impending failure modes has been studied. The results show that, at low mechanical cyclic loads and low thermal cyclic amplitudes, fatigue life for 0.999 reliability is most sensitive to matrix compressive strength, matrix modulus, thermal expansion coefficient, and ply thickness. Whereas at high mechanical cyclic loads and high thermal cyclic amplitudes, fatigue life at 0.999 reliability is more sensitive to the shear strength of matrix, longitudinal fiber modulus, matrix modulus, and ply thickness.

  2. Probabilistic Simulation of Combined Thermo-Mechanical Cyclic Fatigue in Composites

    NASA Technical Reports Server (NTRS)

    Chamis, Christos C.

    2010-01-01

    A methodology to compute probabilistically-combined thermo-mechanical fatigue life of polymer matrix laminated composites has been developed and is demonstrated. Matrix degradation effects caused by long-term environmental exposure and mechanical/thermal cyclic loads are accounted for in the simulation process. A unified time-temperature-stress-dependent multifactor-interaction relationship developed at NASA Glenn Research Center has been used to model the degradation/aging of material properties due to cyclic loads. The fast probability-integration method is used to compute probabilistic distribution of response. Sensitivities of fatigue life reliability to uncertainties in the primitive random variables (e.g., constituent properties, fiber volume ratio, void volume ratio, ply thickness, etc.) computed and their significance in the reliability-based design for maximum life is discussed. The effect of variation in the thermal cyclic loads on the fatigue reliability for a (0/+/-45/90)s graphite/epoxy laminate with a ply thickness of 0.127 mm, with respect to impending failure modes has been studied. The results show that, at low mechanical-cyclic loads and low thermal-cyclic amplitudes, fatigue life for 0.999 reliability is most sensitive to matrix compressive strength, matrix modulus, thermal expansion coefficient, and ply thickness. Whereas at high mechanical-cyclic loads and high thermal-cyclic amplitudes, fatigue life at 0.999 reliability is more sensitive to the shear strength of matrix, longitudinal fiber modulus, matrix modulus, and ply thickness.

  3. Effect of Cyclic Thermo-Mechanical Loads on Fatigue Reliability in Polymer Matrix Composites

    NASA Technical Reports Server (NTRS)

    Shah, A. R.; Murthy, P. L. N.; Chamis, C. C.

    1996-01-01

    A methodology to compute probabilistic fatigue life of polymer matrix laminated composites has been developed and demonstrated. Matrix degradation effects caused by long term environmental exposure and mechanical/thermal cyclic loads are accounted for in the simulation process. A unified time-temperature-stress dependent multi-factor interaction relationship developed at NASA Lewis Research Center has been used to model the degradation/aging of material properties due to cyclic loads. The fast probability integration method is used to compute probabilistic distribution of response. Sensitivities of fatigue life reliability to uncertainties in the primitive random variables (e.g., constituent properties, fiber volume ratio, void volume ratio, ply thickness, etc.) computed and their significance in the reliability- based design for maximum life is discussed. The effect of variation in the thermal cyclic loads on the fatigue reliability for a (0/+/- 45/90)(sub s) graphite/epoxy laminate with a ply thickness of 0.127 mm, with respect to impending failure modes has been studied. The results show that, at low mechanical cyclic loads and low thermal cyclic amplitudes, fatigue life for 0.999 reliability is most sensitive to matrix compressive strength, matrix modulus, thermal expansion coefficient, and ply thickness. Whereas at high mechanical cyclic loads and high thermal cyclic amplitudes, fatigue life at 0.999 reliability is more sensitive to the shear strength of matrix, longitudinal fiber modulus, matrix modulus, and ply thickness.

  4. Mechanical properties of a nitrogen-bearing austenitic steel during static and cycle deformation

    NASA Astrophysics Data System (ADS)

    Blinov, E. V.; Terent'ev, V. F.; Prosvirnin, D. V.

    2016-09-01

    The mechanical properties of a nitrogen-bearing corrosion-resistant austenitic steel containing 0.311% nitrogen have been studied during static and cyclic deformation. It is found that the steel having an ultimate strength of 930 MPa exhibits a plasticity of 33%. The endurance limit under repeated tension at 106 loading cycles is 400 MPa. The propagation of a fatigue crack at low and high amplitudes of cyclic deformation follows a ductile fracture mechanism with the presence of fatigue grooves.

  5. Influence of pelvic floor muscle fatigue on stress urinary incontinence: a systematic review.

    PubMed

    Thomaz, Rafaela Prusch; Colla, Cássia; Darski, Caroline; Paiva, Luciana Laureano

    2018-02-01

    Stress urinary incontinence (SUI) is the most common urinary complaint among women and is defined by the International Continence Society as any involuntary loss of urine due to physical effort, sneezing or coughing. Many women with SUI state that the loss of urine occurs after performing repetitive movements, which may suggest that it is the result of fatigue of the pelvic floor muscles (PFM). Thus, we performed the systematic review of the literature on the influence of PFM fatigue on the development or worsening of the symptoms of SUI in women. The PubMed, Scopus, EMBASE, PEDro, LILACS, SciELO, Cochrane Library, Google Scholar, CINAHL and Periódicos CAPES databases were searched for articles using the keywords "fatigue", "pelvic floor", "stress urinary incontinence" and "women", in Portuguese and in English. Methodological quality was assessed using the Downs and Black scale, and the data collected from the studies were analyzed descriptively. Of the 2,010 articles found, five met the inclusion criteria and were analyzed. They were published between 2004 and 2015, and included a total of 30,320 women with ages ranging from 24 to 53.6 years. Of the studies analyzed, three showed an association between fatigue and SUI, and two did not show such an association. This study confirmed that PFM fatigue can influence the development and/or worsening of SUI.

  6. Fatigue behavior of railcar wheel steel at ambient and elevated temperature

    DOT National Transportation Integrated Search

    2003-08-01

    This report presents the results of a material property test program undertaken on a Class B railcar wheel steel. This work was performed to obtain relevant fatigue data that may be used in support of a larger effort exploring the applicability of fa...

  7. Bundles of Spider Silk, Braided into Sutures, Resist Basic Cyclic Tests: Potential Use for Flexor Tendon Repair

    PubMed Central

    Hennecke, Kathleen; Redeker, Joern; Kuhbier, Joern W.; Strauss, Sarah; Allmeling, Christina; Kasper, Cornelia; Reimers, Kerstin; Vogt, Peter M.

    2013-01-01

    Repair success for injuries to the flexor tendon in the hand is often limited by the in vivo behaviour of the suture used for repair. Common problems associated with the choice of suture material include increased risk of infection, foreign body reactions, and inappropriate mechanical responses, particularly decreases in mechanical properties over time. Improved suture materials are therefore needed. As high-performance materials with excellent tensile strength, spider silk fibres are an extremely promising candidate for use in surgical sutures. However, the mechanical behaviour of sutures comprised of individual silk fibres braided together has not been thoroughly investigated. In the present study, we characterise the maximum tensile strength, stress, strain, elastic modulus, and fatigue response of silk sutures produced using different braiding methods to investigate the influence of braiding on the tensile properties of the sutures. The mechanical properties of conventional surgical sutures are also characterised to assess whether silk offers any advantages over conventional suture materials. The results demonstrate that braiding single spider silk fibres together produces strong sutures with excellent fatigue behaviour; the braided silk sutures exhibited tensile strengths comparable to those of conventional sutures and no loss of strength over 1000 fatigue cycles. In addition, the braiding technique had a significant influence on the tensile properties of the braided silk sutures. These results suggest that braided spider silk could be suitable for use as sutures in flexor tendon repair, providing similar tensile behaviour and improved fatigue properties compared with conventional suture materials. PMID:23613793

  8. An experimental method to quantify the impact fatigue behavior of rocks

    NASA Astrophysics Data System (ADS)

    Wu, Bangbiao; Kanopoulos, Patrick; Luo, Xuedong; Xia, Kaiwen

    2014-07-01

    Fatigue failure is an important failure mode of engineering materials. The fatigue behavior of both ductile and brittle materials has been under investigation for many years. While the fatigue failure of ductile materials is well established, only a few studies have been carried out on brittle materials. In addition, most fatigue studies on rocks are conducted under quasi-static loading conditions. To address engineering applications involving repeated blasting, this paper proposes a method to quantify the impact fatigue properties of rocks. In this method, a split Hopkinson pressure bar system is adopted to exert impact load on the sample, which is placed in a specially designed steel sleeve to limit the displacement of the sample and thus to enable the recovery of the rock after each impact. The method is then applied to Laurentian granite, which is fine-grained and isotropic material. The results demonstrate that this is a practicable means to conduct impact fatigue tests on rocks and other brittle solids.

  9. Fatigue stress concentration and notch sensitivity in nanocrystalline metals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Furnish, Timothy A.; Boyce, Brad L.; Sharon, John A.

    Recent studies have shown the potential for nanocrystalline metals to possess excellent fatigue resistance compared to their coarse-grained counterparts. Although the mechanical properties of nanocrystalline metals are believed to be particularly susceptible to material defects, a systematic study of the effects of geometric discontinuities on their fatigue performance has not yet been performed. In the present work, nanocrystalline Ni–40 wt%Fe containing both intrinsic and extrinsic defects were tested in tension–tension fatigue. The defects were found to dramatically reduce the fatigue resistance, which was attributed to the relatively high notch sensitivity in the nanocrystalline material. Microstructural analysis within the crack-initiation zonesmore » underneath the defects revealed cyclically-induced abnormal grain growth (AGG) as a predominant deformation and crack initiation mechanism during high-cycle fatigue. Furthermore, the onset of AGG and the ensuing fracture is likely accelerated by the stress concentrations, resulting in the reduced fatigue resistance compared to the relatively defect-free counterparts.« less

  10. Microstructure and Fatigue Properties of Ultrasonic Spot Welded Joints of Aluminum 5754 Alloy

    NASA Astrophysics Data System (ADS)

    Mirza, F. A.; Macwan, A.; Bhole, S. D.; Chen, D. L.

    2016-05-01

    The purpose of this investigation was to evaluate the microstructural change, lap shear tensile load, and fatigue resistance of ultrasonic spot welded joints of aluminum 5754 alloy for automotive applications. A unique "necklace"-type structure with very fine equiaxed grains was observed to form along the weld line due to the mechanical interlocking coupled with the occurrence of dynamic recrystallization. The maximum lap shear tensile strength of 85 MPa and the fatigue limit of about 0.5 kN (at 1 × 107 cycles) were achieved. The tensile fracture occurred at the Al/Al interface in the case of lower energy inputs, and at the edge of nugget zone in the case of higher energy inputs. The maximum cyclic stress for the transition of fatigue fracture mode from the transverse through-thickness crack growth to the interfacial failure increased with increasing energy input. Fatigue crack propagation was mainly characterized by the formation of fatigue striations, which usually appeared perpendicular to the fatigue crack propagation.

  11. Fatigue stress concentration and notch sensitivity in nanocrystalline metals

    DOE PAGES

    Furnish, Timothy A.; Boyce, Brad L.; Sharon, John A.; ...

    2016-03-11

    Recent studies have shown the potential for nanocrystalline metals to possess excellent fatigue resistance compared to their coarse-grained counterparts. Although the mechanical properties of nanocrystalline metals are believed to be particularly susceptible to material defects, a systematic study of the effects of geometric discontinuities on their fatigue performance has not yet been performed. In the present work, nanocrystalline Ni–40 wt%Fe containing both intrinsic and extrinsic defects were tested in tension–tension fatigue. The defects were found to dramatically reduce the fatigue resistance, which was attributed to the relatively high notch sensitivity in the nanocrystalline material. Microstructural analysis within the crack-initiation zonesmore » underneath the defects revealed cyclically-induced abnormal grain growth (AGG) as a predominant deformation and crack initiation mechanism during high-cycle fatigue. Furthermore, the onset of AGG and the ensuing fracture is likely accelerated by the stress concentrations, resulting in the reduced fatigue resistance compared to the relatively defect-free counterparts.« less

  12. The Effect of Nutrition Therapy and Exercise on Cancer-Related Fatigue and Quality of Life in Men with Prostate Cancer: A Systematic Review

    PubMed Central

    Baguley, Brenton J.; Bolam, Kate A.; Wright, Olivia R. L.

    2017-01-01

    Background: Improvements in diet and/or exercise are often advocated during prostate cancer treatment, yet the efficacy of, and optimal nutrition and exercise prescription for managing cancer-related fatigue and quality of life remains elusive. The aim of this study is to systematically review the effects of nutrition and/or exercise on cancer-related fatigue and/or quality of life. Methods: A literature search was conducted in six electronic databases. The Delphi quality assessment list was used to evaluate the methodological quality of the literature. The study characteristics and results were summarized in accordance with the review’s Population, Intervention, Control, Outcome (PICO) criteria. Results: A total of 20 articles (one diet only, two combined diet and exercise, and seventeen exercise only studies) were included in the review. Soy supplementation improved quality of life, but resulted in several adverse effects. Prescribing healthy eating guidelines with combined resistance training and aerobic exercise improved cancer-related fatigue, yet its effect on quality of life was inconclusive. Combined resistance training with aerobic exercise showed improvements in cancer-related fatigue and quality of life. In isolation, resistance training appears to be more effective in improving cancer-related fatigue and quality of life than aerobic exercise. Studies that utilised an exercise professional to supervise the exercise sessions were more likely to report improvements in both cancer-related fatigue and quality of life than those prescribing unsupervised or partially supervised sessions. Neither exercise frequency nor duration appeared to influence cancer-related fatigue or quality of life, with further research required to explore the potential dose-response effect of exercise intensity. Conclusion: Supervised moderate-hard resistance training with or without moderate-vigorous aerobic exercise appears to improve cancer-related fatigue and quality of life. Targeted physiological pathways suggest dietary intervention may alleviate cancer-related fatigue and improve quality of life, however the efficacy of nutrition management with or without exercise prescription requires further exploration. PMID:28895922

  13. The Effect of Nutrition Therapy and Exercise on Cancer-Related Fatigue and Quality of Life in Men with Prostate Cancer: A Systematic Review.

    PubMed

    Baguley, Brenton J; Bolam, Kate A; Wright, Olivia R L; Skinner, Tina L

    2017-09-12

    Improvements in diet and/or exercise are often advocated during prostate cancer treatment, yet the efficacy of, and optimal nutrition and exercise prescription for managing cancer-related fatigue and quality of life remains elusive. The aim of this study is to systematically review the effects of nutrition and/or exercise on cancer-related fatigue and/or quality of life. A literature search was conducted in six electronic databases. The Delphi quality assessment list was used to evaluate the methodological quality of the literature. The study characteristics and results were summarized in accordance with the review's Population, Intervention, Control, Outcome (PICO) criteria. A total of 20 articles (one diet only, two combined diet and exercise, and seventeen exercise only studies) were included in the review. Soy supplementation improved quality of life, but resulted in several adverse effects. Prescribing healthy eating guidelines with combined resistance training and aerobic exercise improved cancer-related fatigue, yet its effect on quality of life was inconclusive. Combined resistance training with aerobic exercise showed improvements in cancer-related fatigue and quality of life. In isolation, resistance training appears to be more effective in improving cancer-related fatigue and quality of life than aerobic exercise. Studies that utilised an exercise professional to supervise the exercise sessions were more likely to report improvements in both cancer-related fatigue and quality of life than those prescribing unsupervised or partially supervised sessions. Neither exercise frequency nor duration appeared to influence cancer-related fatigue or quality of life, with further research required to explore the potential dose-response effect of exercise intensity. Supervised moderate-hard resistance training with or without moderate-vigorous aerobic exercise appears to improve cancer-related fatigue and quality of life. Targeted physiological pathways suggest dietary intervention may alleviate cancer-related fatigue and improve quality of life, however the efficacy of nutrition management with or without exercise prescription requires further exploration.

  14. Fatigue Strength Estimation Based on Local Mechanical Properties for Aluminum Alloy FSW Joints

    PubMed Central

    Sillapasa, Kittima; Mutoh, Yoshiharu; Miyashita, Yukio; Seo, Nobushiro

    2017-01-01

    Overall fatigue strengths and hardness distributions of the aluminum alloy similar and dissimilar friction stir welding (FSW) joints were determined. The local fatigue strengths as well as local tensile strengths were also obtained by using small round bar specimens extracted from specific locations, such as the stir zone, heat affected zone, and base metal. It was found from the results that fatigue fracture of the FSW joint plate specimen occurred at the location of the lowest local fatigue strength as well as the lowest hardness, regardless of microstructural evolution. To estimate the fatigue strengths of aluminum alloy FSW joints from the hardness measurements, the relationship between fatigue strength and hardness for aluminum alloys was investigated based on the present experimental results and the available wide range of data from the references. It was found as: σa (R = −1) = 1.68 HV (σa is in MPa and HV has no unit). It was also confirmed that the estimated fatigue strengths were in good agreement with the experimental results for aluminum alloy FSW joints. PMID:28772543

  15. Fatigue Strength Estimation Based on Local Mechanical Properties for Aluminum Alloy FSW Joints.

    PubMed

    Sillapasa, Kittima; Mutoh, Yoshiharu; Miyashita, Yukio; Seo, Nobushiro

    2017-02-15

    Overall fatigue strengths and hardness distributions of the aluminum alloy similar and dissimilar friction stir welding (FSW) joints were determined. The local fatigue strengths as well as local tensile strengths were also obtained by using small round bar specimens extracted from specific locations, such as the stir zone, heat affected zone, and base metal. It was found from the results that fatigue fracture of the FSW joint plate specimen occurred at the location of the lowest local fatigue strength as well as the lowest hardness, regardless of microstructural evolution. To estimate the fatigue strengths of aluminum alloy FSW joints from the hardness measurements, the relationship between fatigue strength and hardness for aluminum alloys was investigated based on the present experimental results and the available wide range of data from the references. It was found as: σ a ( R = -1) = 1.68 HV ( σ a is in MPa and HV has no unit). It was also confirmed that the estimated fatigue strengths were in good agreement with the experimental results for aluminum alloy FSW joints.

  16. Fatigue testing and damage development in continuous fiber reinforced metal matrix composites

    NASA Technical Reports Server (NTRS)

    Johnson, W. S.

    1988-01-01

    A general overview of the fatigue behavior of metal matrix composites (MMC) is presented. The first objective is to present experimental procedures and techniques for conducting a meaningful fatigue test to detect and quantify fatigue damage in MMC. These techniques include interpretation of stress-strain responses, acid etching of the matrix, edge replicas of the specimen under load, radiography, and micrographs of the failure surfaces. In addition, the paper will show how stiffness loss in continuous fiber reinforced metal matrix composites can be a useful parameter for detecting fatigue damage initiation and accumulation. Second, numerous examples of how fatigue damage can initiate and grow in various MMC are given. Depending on the relative fatigue behavior of the fiber and matrix, and the interface properties, the failure modes of MMC can be grouped into four categories: (1) matrix dominated, (2) fiber dominated, (3) self-similar damage growth, and (4) fiber/matrix interfacial failures. These four types of damage will be discussed and illustrated by examples with the emphasis on the fatigue of unnotched laminates.

  17. Fatigue testing and damage development in continuous fiber reinforced metal matrix composites

    NASA Technical Reports Server (NTRS)

    Johnson, W. S.

    1989-01-01

    A general overview of the fatigue behavior of metal matrix composites (MMC) is presented. The first objective is to present experimental procedures and techniques for conducting a meaningful fatigue test to detect and quantify fatigue damage in MMC. These techniques include interpretation of stress-strain responses, acid etching of the matrix, edge replicas of the specimen under load, radiography, and micrographs of the failure surfaces. In addition, the paper will show how stiffness loss in continuous fiber reinforced metal matrix composites can be a useful parameter for detecting fatigue damage initiation and accumulation. Second, numerous examples of how fatigue damage can initiate and grow in various MMC are given. Depending on the relative fatigue behavior of the fiber and matrix, and the interface properties, the failure modes of MMC can be grouped into four categories: (1) matrix dominated, (2) fiber dominated, (3) self-similar damage growth, and (4) fiber/matrix interfacial failures. These four types of damage will be discussed and illustrated by examples with the emphasis on the fatigue of unnotched laminates.

  18. Fatigue Behavior and Modeling of Additively Manufactured Ti-6Al-4V Including Interlayer Time Interval Effects

    NASA Astrophysics Data System (ADS)

    Torries, Brian; Shamsaei, Nima

    2017-12-01

    The effects of different cooling rates, as achieved by varying the interlayer time interval, on the fatigue behavior of additively manufactured Ti-6Al-4V specimens were investigated and modeled via a microstructure-sensitive fatigue model. Comparisons are made between two sets of specimens fabricated via Laser Engineered Net Shaping (LENS™), with variance in interlayer time interval accomplished by depositing either one or two specimens per print operation. Fully reversed, strain-controlled fatigue tests were conducted, with fractography following specimen failure. A microstructure-sensitive fatigue model was calibrated to model the fatigue behavior of both sets of specimens and was found to be capable of correctly predicting the longer fatigue lives of the single-built specimens and the reduced scatter of the double-built specimens; all data points fell within the predicted upper and lower bounds of fatigue life. The time interval effects and the ability to be modeled are important to consider when producing test specimens that are smaller than the production part (i.e., property-performance relationships).

  19. Discrete Dislocation Modeling of Fatigue

    NASA Astrophysics Data System (ADS)

    Needleman, Alan

    2004-03-01

    In joint work with V.S. Deshpande of Cambridge University and E. Van der Giessen of the University of Groningen a framework has been developed for the analysis of crack growth under cyclic loading conditions where plastic flow arises from the motion of large numbers of discrete dislocations and the fracture properties are embedded in a cohesive surface constitutive relation. The material model is independent of the presence of a crack and the only distinction between an analysis of monotonic crack growth and fatigue crack growth is that in fatigue the remote loading is specified to be an oscillating function of time. Thus, a basic question is: within this framework, do cracks grow at a lower driving force under cyclic loading than under monotonic loading, and if so, what features of fatigue crack growth emerge? Fatigue does emerge from the calculations as a consequence of the evolution of internal stresses associated with the irreversibility of the dislocation motion. A fatigue threshold, Paris law behavior, striations and the accelerated growth of short cracks are outcomes of the simulations. Also, scaling predictions obtained for the fatigue threshold and the fatigue crack growth rate are discussed.

  20. Fretting Fatigue of Single Crystal/Polycrystalline Nickel Subjected to Blade/Disk Contact Loading

    NASA Astrophysics Data System (ADS)

    Matlik, J. F.; Murthy, H.; Farris, T. N.

    2002-01-01

    Fretting fatigue describes the formation and growth of cracks at the edge-of-contact of nominally clamped components subjected to cyclic loading. Components that are known to be subject to fretting fatigue include riveted lap joints and blade/disk contacts in launch vehicle turbomachinery. Recent efforts have shown that conventional mechanics tools, both fatigue and fracture based, can be used to model fretting fatigue experiments leading to successful life predictions. In particular, experiments involving contact load configurations similar to those that occur in the blade/disk connection of gas turbine engines have been performed extensively. Predictions of fretting fatigue life have been compared favorably to experimental observations [1]. Recent efforts are aimed at performing experiments at higher temperatures as shown in the photograph below along with a sample fracture surface. The talk will describe the status of these experiments as will as model developments relevant to the single crystal material properties.

  1. The Regularities of Fatigue Crack Growth in Airframes Elements at Real Operation Conditions

    NASA Astrophysics Data System (ADS)

    Pavelko, Igors; Pavelko, Vitalijs

    The results of analytical and experimental researches concerning predicting of fatigue crack growth in the operating conditions are presented. First of all the main factors causing a fatigue damage initiation and growth are analyzed and divided to two groups. Common conditions of fatigue damage precise predicting are established. The problem of fatigue crack growth at the stresses of variable amplitude was analyzed and an approach of description of this process is performed. Two examples present the efficiency of this approach. Theory of fatigue crack growth indication and the crack growth indicator (CGI) are developed. There is planned and executed a flight experiment using CGI located on two aircraft An-24 and An-26. Results of crack growth in CGI at operational load allowed to evaluate the parameters of generalized Paris-Erdogan law and statistical properties of crack increment per flight.

  2. Roughness Effects on Fretting Fatigue

    NASA Astrophysics Data System (ADS)

    Yue, Tongyan; Abdel Wahab, Magd

    2017-05-01

    Fretting is a small oscillatory relative motion between two normal loaded contact surfaces. It may cause fretting fatigue, fretting wear and/or fretting corrosion damage depending on various fretting couples and working conditions. Fretting fatigue usually occurs at partial slip condition, and results in catastrophic failure at the stress levels below the fatigue limit of the material. Many parameters may affect fretting behaviour, including the applied normal load and displacement, material properties, roughness of the contact surfaces, frequency, etc. Since fretting damage is undesirable due to contacting, the effect of rough contact surfaces on fretting damage has been studied by many researchers. Experimental method on this topic is usually focusing on rough surface effects by finishing treatment and random rough surface effects in order to increase fretting fatigue life. However, most of numerical models on roughness are based on random surface. This paper reviewed both experimental and numerical methodology on the rough surface effects on fretting fatigue.

  3. Low-Cycle Fatigue Properties of P92 Ferritic-Martensitic Steel at Elevated Temperature

    NASA Astrophysics Data System (ADS)

    Zhang, Zhen; Hu, ZhengFei; Schmauder, Siegfried; Mlikota, Marijo; Fan, KangLe

    2016-04-01

    The low-cycle fatigue behavior of P92 ferritic-martensitic steel and the corresponding microstructure evolution at 873 K has been extensively studied. The test results of fatigue lifetime are consistent with the Coffin-Manson relationship over a range of controlled total strain amplitudes from 0.15 to 0.6%. The influence of strain amplitude on the fatigue crack initiation and growth has been observed using optical microscopy and scanning electron microscopy. The formation mechanism of secondary cracks is established according to the observation of fracture after fatigue process and there is an intrinsic relationship between striation spacing, current crack length, and strain amplitude. Transmission electron microscopy has been employed to investigate the microstructure evolution after fatigue process. It indicates the interaction between carbides and dislocations together with the formation of cell structure inhibits the cyclic softening. The low-angle sub-boundary elimination in the martensite is mainly caused by the cyclic stress.

  4. The PedsQL Multidimensional Fatigue Scale in type 1 diabetes: feasibility, reliability, and validity.

    PubMed

    Varni, James W; Limbers, Christine A; Bryant, William P; Wilson, Don P

    2009-08-01

    The Pediatric Quality of Life Inventory (PedsQL, Mapi Research Trust, Lyon, France; www.pedsql.org) is a modular instrument designed to measure health-related quality of life and disease-specific symptoms in children and adolescents. The PedsQL Multidimensional Fatigue Scale was designed as a child self-report and parent proxy-report generic symptom-specific instrument to measure fatigue in pediatric patients. The objective of the present study was to determine the feasibility, reliability, and validity of the PedsQL Multidimensional Fatigue Scale in type 1 diabetes. The 18-item PedsQL Multidimensional Fatigue Scale (General Fatigue, Sleep/Rest Fatigue, and Cognitive Fatigue domains) and the PedsQL 4.0 Generic Core Scales were administered to 83 pediatric patients with type 1 diabetes and 84 parents. The PedsQL Multidimensional Fatigue Scale evidenced minimal missing responses (0.3% child report and 0.3% parent report), achieved excellent reliability for the Total Fatigue Scale score (alpha= 0.92 child report, 0.94 parent report), distinguished between pediatric patients with diabetes and healthy children, and was significantly correlated with the PedsQL 4.0 Generic Core Scales supporting construct validity. Pediatric patients with diabetes experienced fatigue that was comparable to pediatric patients with cancer on treatment, demonstrating the relative severity of their fatigue symptoms. The results demonstrate the measurement properties of the PedsQL Multidimensional Fatigue Scale in type 1 diabetes. The findings suggest that the PedsQL Multidimensional Fatigue Scale may be utilized in the standardized evaluation of fatigue in pediatric patients with type 1 diabetes.

  5. Fatigue limits of titanium-bar joints made with the laser and the electric resistance welding techniques: microstructural characterization and hardness properties.

    PubMed

    Degidi, Marco; Nardi, Diego; Morri, Alessandro; Sighinolfi, Gianluca; Tebbel, Florian; Marchetti, Claudio

    2017-09-01

    Fatigue behavior of the titanium bars is of utmost importance for the safe and reliable operation of dental implants and prosthetic constructions based on these implants. To date, however, only few data are available on the fatigue strength of dental prostheses made with electric resistance welding and laser welding techniques. This in-vitro study highlighted that although the joints made with the laser welding approach are credited of a superior tensile strength, joints made with electric resistance welding exhibited double the minimum fatigue strength with respect to the joints made with laser welding (120 vs 60 N).

  6. Effect of polarization fatigue on the Rayleigh coefficients of ferroelectric lead zirconate titanate thin films: Experimental evidence and implications

    NASA Astrophysics Data System (ADS)

    Lou, X. J.; Zhang, H. J.; Luo, Z. D.; Zhang, F. P.; Liu, Y.; Liu, Q. D.; Fang, A. P.; Dkhil, B.; Zhang, M.; Ren, X. B.; He, H. L.

    2014-09-01

    The effect of polarization fatigue on the Rayleigh coefficients of ferroelectric lead zirconate titanate (PZT) thin film was systematically investigated. It was found that electrical fatigue strongly affects the Rayleigh behaviour of the PZT film. Both the reversible and irreversible Rayleigh coefficients decrease with increasing the number of switching cycles. This phenomenon is attributed to the growth of an interfacial degraded layer between the electrode and the film during electrical cycling. The methodology used in this work could serve as an alternative way for evaluating the fatigue endurance and degradation in dielectric properties of ferroelectric thin-film devices during applications.

  7. Simulated Data for High Temperature Composite Design

    NASA Technical Reports Server (NTRS)

    Chamis, Christos C.; Abumeri, Galib H.

    2006-01-01

    The paper describes an effective formal method that can be used to simulate design properties for composites that is inclusive of all the effects that influence those properties. This effective simulation method is integrated computer codes that include composite micromechanics, composite macromechanics, laminate theory, structural analysis, and multi-factor interaction model. Demonstration of the method includes sample examples for static, thermal, and fracture reliability for a unidirectional metal matrix composite as well as rupture strength and fatigue strength for a high temperature super alloy. Typical results obtained for a unidirectional composite show that the thermal properties are more sensitive to internal local damage, the longitudinal properties degrade slowly with temperature, the transverse and shear properties degrade rapidly with temperature as do rupture strength and fatigue strength for super alloys.

  8. Experimental Investigation of the Effect of Burnishing Force on Service Properties of AISI 1010 Steel Plates

    NASA Astrophysics Data System (ADS)

    Gharbi, F.; Sghaier, S.; Morel, F.; Benameur, T.

    2015-02-01

    This paper presents the results obtained with a new ball burnishing tool developed for the mechanical treatment of large flat surfaces. Several parameters can affect the mechanical behavior and fatigue of workpiece. Our study focused on the effect of the burnishing force on the surface quality and on the service properties (mechanical behavior, fatigue) of AISI 1010 steel hot-rolled plates. Experimental results assert that burnishing force not exceeding 300 N causes an increase in the ductility. In addition, results indicated that the effect of the burnishing force on the residual surface stress was greater in the direction of advance than in the cross-feed direction. Furthermore, the flat burnishing surfaces did not improve the fatigue strength of AISI 1010 steel flat specimens.

  9. Construct validity of the Swedish version of the revised piper fatigue scale in an oncology sample--a Rasch analysis.

    PubMed

    Lundgren-Nilsson, Asa; Dencker, Anna; Jakobsson, Sofie; Taft, Charles; Tennant, Alan

    2014-06-01

    Fatigue is a common and distressing symptom in cancer patients due to both the disease and its treatments. The concept of fatigue is multidimensional and includes both physical and mental components. The 22-item Revised Piper Fatigue Scale (RPFS) is a multidimensional instrument developed to assess cancer-related fatigue. This study reports on the construct validity of the Swedish version of the RPFS from the perspective of Rasch measurement. The Swedish version of the RPFS was answered by 196 cancer patients fatigued after 4 to 5 weeks of curative radiation therapy. Data from the scale were fitted to the Rasch measurement model. This involved testing a series of assumptions, including the stochastic ordering of items, local response dependency, and unidimensionality. A series of fit statistics were computed, differential item functioning (DIF) was tested, and local response dependency was accommodated through testlets. The Behavioral, Affective and Sensory domains all satisfied the Rasch model expectations. No DIF was observed, and all domains were found to be unidimensional. The Mood/Cognitive scale failed to fit the model, and substantial multidimensionality was found. Splitting the scale between Mood and Cognitive items resolved fit to the Rasch model, and new domains were unidimensional without DIF. The current Rasch analyses add to the evidence of measurement properties of the scale and show that the RPFS has good psychometric properties and works well to measure fatigue. The original four-factor structure, however, was not supported. Copyright © 2014 International Society for Pharmacoeconomics and Outcomes Research (ISPOR). Published by Elsevier Inc. All rights reserved.

  10. Fatigue Resistance of the Grain Size Transition Zone in a Dual Microstructure Superalloy Disk

    NASA Technical Reports Server (NTRS)

    Gabb, T. P.; Kantzos, P. T.; Telesman, J.; Gayda, J.; Sudbrack, C. K.; Palsa, B. S.

    2010-01-01

    Mechanical property requirements vary with location in nickel-based superalloy disks. To maximize the associated mechanical properties, heat treatment methods have been developed for producing tailored microstructures. In this study, a specialized heat treatment method was applied to produce varying grain microstructures from the bore to the rim portions of a powder metallurgy processed nickel-based superalloy disk. The bore of the contoured disk consisted of fine grains to maximize strength and fatigue resistance at lower temperatures. The rim microstructure of the disk consisted of coarse grains for maximum resistance to creep and dwell crack growth at high temperatures up to 704 C. However, the fatigue resistance of the grain size transition zone was unclear, and needed to be evaluated. This zone was located as a band in the disk web between the bore and rim. Specimens were extracted parallel and transverse to the transition zone, and multiple fatigue tests were performed at 427 and 704 C. Mean fatigue lives were lower at 427 C than for 704 C. Specimen failures often initiated at relatively large grains, which failed on crystallographic facets. Grain size distributions were characterized in the specimens, and related to the grains initiating failures as well as location within the transition zone. Fatigue life decreased with increasing maximum grain size. Correspondingly, mean fatigue resistance of the transition zone was slightly higher than that of the rim, but lower than that of the bore. The scatter in limited tests of replicates was comparable for all transition zone locations examined.

  11. Fatigue strength degradation of metals in corrosive environments

    NASA Astrophysics Data System (ADS)

    Adasooriya, N. D.; Hemmingsen, T.; Pavlou, D.

    2017-12-01

    Structures exposed to aggressive environmental conditions are often subjected to time-dependent loss of coating and loss of material due to corrosion; this causes reduction in the cross-sectional properties of the members, increased surface roughness, surface irregularities and corrosion pits, and degradation of material strengths. These effects have been identified and simulated in different research studies. However, time and corrosive media dependent fatigue strength curves for materials have not been discussed in the design or assessment guidelines for structures. This paper attempts to review the corrosion degradation process and available approaches/models used to determine the fatigue strength of corroded materials and to interpolate corrosion deterioration data. High cycle fatigue and full range fatigue life formulae for fatigue strength of corroded materials are proposed. The above formulae depend on the endurance limit of corroded material, in addition to the stress-life fatigue curve parameters of the uncorroded material. The endurance limit of corroded material can either be determined by a limited number of tests in the very high-cycle fatigue region or predicted by an analytical approach. Comparison with experimentally measured corrosion fatigue behavior of several materials is provided and discussed.

  12. Lee Fatigue and Energy Scales: Exploring aspects of validity in a sample of women with HIV using an application of a Rasch model

    PubMed Central

    Lerdal, Anners; Kottorp, Anders; Gay, Caryl L.; Lee, Kathryn A.

    2012-01-01

    This study examines the psychometric properties of the Lee Fatigue and Energy Scales (visual analog version) using a Rasch model application. The relationship between fatigue and energy is also described for a convenience sample of 102 women with HIV/AIDS who completed the Lee Fatigue and Energy Scales in the morning and evening. Both scales were assessed for internal scale validity, unidimensionality, and uniform differential item functioning in relation to morning and evening ratings. Analyses confirmed that both the Fatigue and Energy Scales demonstrated evidence of internal scale validity and unidimensionality. Mean fatigue measures were also higher in the evening than in the morning and mean energy measures were higher in the morning than in the evening (both p<0.001), indicating that time of day is an important consideration. Fatigue and energy measures were moderately correlated with each other in the morning but not in the evening. The concepts of energy and fatigue were inversely related, but not polar opposites in this sample. Fatigue and energy may therefore be distinct constructs that should not be used interchangeably, either in measurement or when interpreting outcomes for research or clinical purposes. PMID:22985544

  13. Very High Cycle Fatigue Behavior of a Directionally Solidified Ni-Base Superalloy DZ4

    PubMed Central

    Nie, Baohua; Zhao, Zihua; Liu, Shu; Chen, Dongchu; Ouyang, Yongzhong; Hu, Zhudong; Fan, Touwen; Sun, Haibo

    2018-01-01

    The effect of casting pores on the very high cycle fatigue (VHCF) behavior of a directionally solidified (DS) Ni-base superalloy DZ4 is investigated. Casting and hot isostatic pressing (HIP) specimens were subjected to very high cycle fatigue loading in an ambient atmosphere. The results demonstrated that the continuously descending S-N curves were exhibited for both the casting and HIP specimens. Due to the elimination of the casting pores, the HIP samples had better fatigue properties than the casting samples. The subsurface crack initiated from the casting pore in the casting specimens at low stress amplitudes, whereas fatigue crack initiated from crystallographic facet decohesion for the HIP specimens. When considering the casting pores as initial cracks, there exists a critical stress intensity threshold ranged from 1.1 to 1.3 MPam, below which fatigue cracks may not initiate from the casting pores. Furthermore, the effect of the casting pores on the fatigue limit is estimated based on a modified El Haddad model, which is in good agreement with the experimental results. Fatigue life for both the casting and HIP specimens is well predicted using the Fatigue Indicator Parameter (FIP) model. PMID:29320429

  14. Evaluation of Giga-cycle Fatigue Properties of Austenitic Stainless Steels Using Ultrasonic Fatigue Test

    NASA Astrophysics Data System (ADS)

    Takahashi, Kyouhei; Ogawa, Takeshi

    Ultrasonic fatigue tests have been performed in austenitic stainless steel, SUS316NG, in order to investigate giga-cycle fatigue strength of pre-strained materials, i.e. 5, 10 and 20% tensile pre-strains and -20% compressive pre-strain. The pre-strains were applied before specimen machining. The austenitic stainless steels are known to exhibit remarkable self-heating during the fatigue experiment. Therefore, heat radiation method was established by setting fatigue specimens in a low temperature chamber at about -100°C. The self-heating was controlled by intermittent loading condition, which enabled us to maintain the test section of the specimens at about room temperature. The results revealed that the fatigue strength increased with increasing pre-strain levels. Fish-eye fracture was observed for -20% pre-strained specimen fractured at 4.11×107 cycles, while the other specimens exhibited ordinary fatigue fracture surface originated from stage I facet on the specimen surface. The increase in fatigue limit was predicted by Vickers hardness, HV, which depended on the size of indented region. The prediction was successful using HV values obtained by the size of the indented region similar to those of the stage I facets.

  15. A Comparative Study of Fracture Toughness at Cryogenic Temperature of Austenitic Stainless Steel Welds

    NASA Astrophysics Data System (ADS)

    Aviles Santillana, I.; Boyer, C.; Fernandez Pison, P.; Foussat, A.; Langeslag, S. A. E.; Perez Fontenla, A. T.; Ruiz Navas, E. M.; Sgobba, S.

    2018-03-01

    The ITER magnet system is based on the "cable-in-conduit" conductor (CICC) concept, which consists of stainless steel jackets filled with superconducting strands. The jackets provide high strength, limited fatigue crack growth rate and fracture toughness properties to counteract the high stress imposed by, among others, electromagnetic loads at cryogenic temperature. Austenitic nitrogen-strengthened stainless steels have been chosen as base material for the jackets of the central solenoid and the toroidal field system, for which an extensive set of cryogenic mechanical property data are readily available. However, little is published for their welded joints, and their specific performance when considering different combinations of parent and filler metals. Moreover, the impact of post-weld heat treatments that are required for Nb3Sn formation is not extensively treated. Welds are frequently responsible for cracks initiated and propagated by fatigue during service, causing structural failure. It becomes thus essential to select the most suitable combination of parent and filler material and to assess their performance in terms of strength and crack propagation at operation conditions. An extensive test campaign has been conducted at 7 K comparing tungsten inert gas (TIG) welds using two fillers adapted to cryogenic service, EN 1.4453 and JK2LB, applied to two different base metals, AISI 316L and 316LN. A large set of fracture toughness data are presented, and the detrimental effect on fracture toughness of post-weld heat treatments (unavoidable for some of the components) is demonstrated. In this study, austenitic stainless steel TIG welds with various filler metals have undergone a comprehensive fracture mechanics characterization at 7 K. These results are directly exploitable and contribute to the cryogenic fracture mechanics properties database of the ITER magnet system. Additionally, a correlation between the impact in fracture toughness and microstructure resulting from the above treatment is provided.

  16. Heart failure symptom relationships: a systematic review.

    PubMed

    Herr, Janet K; Salyer, Jeanne; Lyon, Debra E; Goodloe, Lauren; Schubert, Christine; Clement, Dolores G

    2014-01-01

    Heart failure is a prevalent chronic health condition in the United States. Individuals who have heart failure experience as many as 2 to 9 symptoms. The examination of relationships among heart failure symptoms may benefit patients and clinicians who are charged with managing heart failure symptoms. The purpose of this systematic review was to summarize what is known about relationships among heart failure symptoms, a precursor to the identification of heart failure symptom clusters, as well as to examine studies specifically addressing symptom clusters described in this population. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines were followed in the conduct of this systematic review. PubMed, PsychINFO, Cumulative Index of Nursing and Allied Health Literature, and the Cochrane Database were searched using the search term heart failure in combination with a pair of symptoms. Of a total of 1316 studies identified from database searches, 34 were included in this systematic review. More than 1 investigator found a moderate level of correlation between depression and fatigue, depression and anxiety, depression and sleep, depression and pain, anxiety and fatigue, and dyspnea and fatigue. The findings of this systematic review provide support for the presence of heart failure symptom clusters. Depression was related to several of the symptoms, providing an indication to clinicians that individuals with heart failure who experience depression may have other concurrent symptoms. Some symptom relationships such as the relationships between fatigue and anxiety or sleep or pain were dependent on the symptom characteristics studied. Symptom prevalence in the sample and restricted sampling may influence the robustness of the symptom relationships. These findings suggest that studies defining the phenotype of individual heart failure symptoms may be a beneficial step in the study of heart failure symptom clusters.

  17. Static and fatigue tensile properties of cross-ply laminates containing vascules for self-healing applications

    NASA Astrophysics Data System (ADS)

    Luterbacher, R.; Trask, R. S.; Bond, I. P.

    2016-01-01

    The effect of including hollow channels (vascules) within cross-ply laminates on static tensile properties and fatigue performance is investigated. No change in mechanical properties or damage formation is observed when a single vascule is included in the 0/90 interface, representing 0.5% of the cross sectional area within the specimen. During tensile loading, matrix cracks develop in the 90° layers leading to a reduction of stiffness and strength (defined as the loss of linearity) and a healing agent is injected through the vascules in order to heal them and mitigate the caused degradation. Two different healing agents, a commercial low viscosity epoxy resin (RT151, Resintech) and a toughened epoxy blend (bespoke, in-house formulation) have been used to successfully recover stiffness under static loading conditions. The RT151 system recovered 75% of the initial failure strength, whereas the toughened epoxy blend achieved a recovery of 67%. Under fatigue conditions, post healing, a rapid decay of stiffness was observed as the healed damage re-opened within the first 2500 cycles. This was caused by the high fatigue loading intensity, which was near the static failure strength of the healing resin. However, the potential for ameliorating (via self-healing or autonomous repair) more diffuse transverse matrix damage via a vascular network has been shown.

  18. Teenage and Young Adult Cancer-Related Fatigue Is Prevalent, Distressing, and Neglected: It Is Time to Intervene. A Systematic Literature Review and Narrative Synthesis

    PubMed Central

    Booth, Sara; Grove, Sarah; Hatcher, Helen; Kuhn, Isla; Barclay, Stephen

    2015-01-01

    Purpose: Cancer-related fatigue in adults has been the subject of considerable recent research, confirming its importance as a common and debilitating symptom, and establishing a number of evidence-based interventions. There has, however, been limited focus on the fatigue suffered by teenagers and young adults with cancer, a group recognized as having unique experiences and developmental needs. We have undertaken a systematic review of the literature to provide a comprehensive overview of studies evaluating fatigue in this younger patient group in order to guide clinical practice and future research. Method: We searched MEDLINE, EMBASE, PsycINFO, and CINAHL databases for literature containing data relating to any aspect of fatigue in patients aged 13–24 at cancer diagnosis or treatment. Results: Sixty articles were identified, of which five described interventional clinical trials. Cancer-related fatigue was consistently one of the most prevalent, severe, and distressing symptoms, and it persisted long-term in survivors. It was associated with a number of factors, including poor sleep, depression, and chemotherapy. There was little evidence for the effectiveness of any intervention, although exercise appears to be the most promising. Importantly, fatigue was itself a significant barrier to physical and social activities. Conclusion: Cancer-related fatigue is a major and disabling problem in young cancer patients. Effective management strategies are needed to avoid compounding the dependence and social isolation of this vulnerable patient group. Future research should focus on providing evidence for the effectiveness of interventions, of which activity promotion and management of concurrent symptoms are the most promising. PMID:25852970

  19. How shift scheduling practices contribute to fatigue amongst freight rail operating employees: Findings from Canadian accident investigations.

    PubMed

    Rudin-Brown, Christina M; Harris, Sarah; Rosberg, Ari

    2018-02-01

    Canada's freight rail system moves 70% of the country's surface goods and almost half of all exports (RAC, 2016). These include dangerous goods. Anonymous survey of freight rail operating employees conducted by the Teamsters Canada Rail Conference (TCRC, 2014) revealed that many do not report getting enough sleep because of their work schedules, and that fatigue may be affecting their performance at work. Besides general impairments in attention and cognitive functioning, fatigue in railway operating employees slows reaction time to safety alarms and impairs conformance to train operating requirements. Shift scheduling practices can contribute to sleep-related fatigue by restricting sleep opportunities, requiring extended periods of wakefulness and by disrupting daily (circadian) rhythms. The primary goal of accident investigation is to identify causal and contributing factors so that similar occurrences can be prevented. A database search of Transportation Safety Board (TSB) rail investigation reports published in the 21-year period from 1995 to 2015 identified 18 that cited sleep-related fatigue of freight rail operating employees as a causal, contributing, or risk finding. This number represents about 20% of TSB rail investigations from the same period in which a human factors aspect of freight train activities was a primary cause. Exploration of accident themes suggests that management of fatigue and shift scheduling in the freight rail industry is a complex issue that is often not conducive to employee circadian rhythms and sleep requirements. It also suggests that current shift scheduling and fatigue management practices may be insufficient to mitigate the associated safety risk. Railway fatigue management systems that are based on the principles of modern sleep science are needed to improve scheduling practices and mitigate the ongoing safety risk. Crown Copyright © 2018. Published by Elsevier Ltd. All rights reserved.

  20. Compassion fatigue in nurses: A metasynthesis.

    PubMed

    Nolte, Anna Gw; Downing, Charlene; Temane, Annie; Hastings-Tolsma, Marie

    2017-12-01

    To interpret the body of qualitative work focusing on compassion fatigue to distil a common understanding that could then be applied to nursing care. Complex demands place extraordinary stress on nurses struggling to work in overburdened healthcare systems. The result can be the inability to care well for others, leading to compassion fatigue, burnout and increased numbers leaving the profession. Metasynthesis offers a means of more fully illuminating compassion fatigue and further understanding of practices which might reduce its negative consequences. Metasynthesis. As a method designed to facilitate knowledge development, metasynthesis allowed for integration of qualitative study findings conducted between 1992-2016 using defined search terms. Six databases were searched for articles published in English. Nine papers met the criteria for review and metasynthesis was conducted using the meta-ethnographic approach detailed by Noblit and Hare. Four themes related to compassion fatigue were found by consensus discussion. The themes included: physical ("just plain worn out") and emotional symptoms ("walking on a tightrope"), triggering factors ("an unbearable weight on shoulders" and "alone in a crowded room"), and measures to overcome/prevent ("who has my back?"). Compassion fatigue is a concept of documented relevance to those in nursing and represents a basic inability to nurture others and engenders a temporal component. Synthesis of studies provides evidence of the veracity of the concept for application to clinical practice and research related to nursing care. Findings provide insight into the clinical milieu needed to prevent compassion fatigue. A theoretical model is presented which can be used to guide future research, as well as the creation of clinical practice policies which might mitigate the development of compassion fatigue and its potential consequences. © 2017 The Authors. Journal of Clinical Nursing Published by John Wiley & Sons Ltd.

  1. Physical activity and the association with fatigue and sleep in Danish patients with rheumatoid arthritis.

    PubMed

    Løppenthin, K; Esbensen, B A; Østergaard, M; Jennum, P; Tolver, A; Aadahl, M; Thomsen, T; Midtgaard, J

    2015-10-01

    The aim of this study was to examine physical activity behavior in patients with rheumatoid arthritis and to identify potential correlates of regular physical activity including fatigue, sleep, pain, physical function and disease activity. A total of 443 patients were recruited from a rheumatology outpatient clinic and included in this cross-sectional study. Physical activity was assessed by a four-class questionnaire, in addition to the Physical Activity Scale. Other instruments included the Multidimensional Fatigue Inventory (MFI), the Pittsburgh Sleep Quality Index and the Health Assessment Questionnaire. Disease activity was obtained from a nationwide clinical database. Of the included patients, 80 % were female and mean age was 60 (range 21-88 years). Hereof, 22 % (n = 96) were regularly physically active, and 78 % (n = 349) were mainly sedentary or having a low level of physical activity. An inverse univariate association was found between moderate to vigorous physical activity, and fatigue (MFI mental, MFI activity, MFI physical and MFI general), sleep, diabetes, depression, pain, patient global assessment, HAQ and disease activity. The multivariate prediction model demonstrated that fatigue-related reduced activity and physical fatigue were selected in >95 % of the bootstrap samples with median odds ratio 0.89 (2.5-97.5 % quantiles: 0.78-1.00) and 0.91 (2.5-97.5 % quantiles: 0.81-0.97), respectively, while disease activity was selected in 82 % of the bootstrap samples with median odds ratio 0.90. Moderate to vigorous physical activity in patients with rheumatoid arthritis is associated with the absence of several RA-related factors with the most important correlates being reduced activity due to fatigue, physical fatigue and disease activity.

  2. Patient-reported outcome measures for systemic lupus erythematosus clinical trials: a review of content validity, face validity and psychometric performance

    PubMed Central

    2014-01-01

    Background Despite overall progress in treatment of autoimmune diseases, patients with systemic lupus erythematosus (SLE) experience many inflammatory symptoms representing an unmet medical need. This study aimed to create a conceptual model of the humanistic and economic burden of SLE, and review the patient-reported outcomes (PROs) used to measure such concepts in SLE clinical trials. Methods A conceptual model for SLE was developed from structured review of published articles from 2007 to August 2013 identified from literature databases (MEDLINE, EMBASE, PsycINFO, EconLit) plus other sources (PROLabels, FDA/EMA websites, Clinicaltrials.gov). PROs targeting key symptoms/impacts were identified from the literature. They were reviewed in the context of available guidance and assessed for face and content validity and psychometric properties to determine appropriateness for use in SLE trials. Results The conceptual model identified fatigue, pain, cognition, daily activities, emotional well-being, physical/social functioning and work productivity as key SLE concepts. Of the 68 articles reviewed, 38 reported PRO data. From these and the other sources, 15 PROs were selected for review, including SLE-specific health-related quality of life (HRQoL) measures (n = 5), work productivity (n = 1), and generic measures of fatigue (n = 3), pain (n = 2), depression (n = 2) and HRQoL (n = 2). The Functional Assessment of Chronic Illness Therapy - Fatigue Scale (FACIT-Fatigue), Brief Pain Inventory (BPI-SF) and LupusQoL demonstrated the strongest face validity, conceptual coverage and psychometric properties measuring key concepts in the conceptual model. All PROs reviewed, except for three Lupus-specific measures, lacked qualitative SLE patient involvement during development. The Hospital Anxiety and Depression Scale (HADS), Short Form [36 item] Health Survey version 2 (SF-36v2), EuroQoL 5-dimensions (EQ-5D-3L and EQ-5D-5L) and Work Productivity and Activity Impairment Questionnaire: Lupus (WPAI:Lupus) showed suitability for SLE economic models. Conclusions Based on the identification of key symptoms and impacts of SLE using a scientifically sound conceptual model, we conclude that SLE is a condition associated with high unmet need and considerable burden to patients. This review highlights the availability and need for disease-specific and generic patient-reported measures of relevant domains of disease signs and symptoms, HRQoL and work productivity, providing useful insight for SLE clinical trial design. PMID:25048687

  3. Collaborative University Research on Corrosion OSD Education Initiative

    DTIC Science & Technology

    2012-11-30

    Al alloys . Here, the effects of an ionic inhibitor (molybdate) on the corrosion fatigue properties of an Al - Cu -Li alloy are reported (1.10...Diffraction characterization of microstructure scale fatigue crack growth in modern Al -Zn-Mg- Cu alloy , Int J Fatigue, in review (2011). 77 1.6...crystallography as a function of water vapor exposure for the lot of Al - Cu -Li alloy used in the present study 299 xx •r^T" 1.1 Front Matter

  4. Application of strainrange partitioning to the prediction of MPC creep-fatigue data for 2 1/4 Cr-1Mo steel

    NASA Technical Reports Server (NTRS)

    Saltsman, J. F.; Halford, G. R.

    1976-01-01

    Strainrange partitioning is used to predict the long time cyclic lives of the metal properties council (MPC) creep-fatigue interspersion and cyclic creep-rupture tests conducted with annealed 2 1/4 Cr-1Mo steel. Observed lives agree with predicted lives within factors of two. The strainrange partitioning life relations used for the long time predictions were established from short time creep-fatigue data generated at NASA-Lewis on the same heat of material.

  5. Non-pharmacological interventions to manage fatigue and psychological stress in children and adolescents with cancer: an integrative review.

    PubMed

    Lopes-Júnior, L C; Bomfim, E O; Nascimento, L C; Nunes, M D R; Pereira-da-Silva, G; Lima, R A G

    2016-11-01

    Cancer-related fatigue (CRF) is the most stressful and prevalent symptom in paediatric oncology patients. This integrative review aimed to identify, analyse and synthesise the evidence of non-pharmacological intervention studies to manage fatigue and psychological stress in a paediatric population with cancer. Eight electronic databases were used for the search: PubMed, Web of Science, CINAHL, LILACS, EMBASE, SCOPUS, PsycINFO and the Cochrane Library. Initially, 273 articles were found; after the exclusion of repeated articles, reading of the titles, abstracts and the full articles, a final sample of nine articles was obtained. The articles were grouped into five categories: physical exercise, healing touch, music therapy, therapeutic massage, nursing interventions and health education. Among the nine studies, six showed statistical significance regarding the fatigue and/or stress levels, showing that the use of the interventions led to symptoms decrease. The most frequently tested intervention was programmed physical exercises. It is suggested that these interventions are complementary to conventional treatment and that their use can indicate an improvement in CRF and psychological stress. © 2015 John Wiley & Sons Ltd.

  6. Fatigue damage characterization of braided and woven fiber reinforced polymer matrix composites at room and elevated temperatures

    NASA Astrophysics Data System (ADS)

    Montesano, John

    The use of polymer matrix composites (PMC) for manufacturing primary load-bearing structural components has significantly increased in many industrial applications. Specifically in the aerospace industry, PMCs are also being considered for elevated temperature applications. Current aerospace-grade composite components subjected to fatigue loading are over-designed due to insufficient understanding of the material failure processes, and due to the lack of available generic fatigue prediction models. A comprehensive literature survey reveals that there are few fatigue studies conducted on woven and braided fabric reinforced PMC materials, and even fewer at elevated temperatures. It is therefore the objective of this study to characterize and subsequently model the elevated temperature fatigue behaviour of a triaxial braided PMC, and to investigate the elevated temperature fatigue properties of two additional woven PMCs. An extensive experimental program is conducted using a unique test protocol on the braided and woven composites, which consists of static and fatigue testing at various test temperatures. The development of mechanically-induced damage is monitored using a combination of non-destructive techniques which included infrared thermography, fiber optic sensors and edge replication. The observed microscopic damage development is quantified and correlated to the exhibited macroscopic material behaviour at all test temperatures. The fiber-dominated PMC materials considered in this study did not exhibit notable time- or temperature-dependent static properties. However, fatigue tests reveal that the local damage development is in fact notably influenced by temperature. The elevated temperature environment increases the toughness of the thermosetting polymers, which results in consistently slower fatigue crack propagation rates for the respective composite materials. This has a direct impact on the stiffness degradation rate and the fatigue lives for the braided and woven composites under investigation. The developed analytical fatigue damage prediction model, which is based on actual observed damage mechanisms, accurately predicted the development of damage and the corresponding stiffness degradation for the braided PMC, for all test temperatures. An excellent correlation was found between the experimental and the predicted results to within a 2% accuracy. The prediction model adequately captured the local temperature-induced phenomenon exhibited by the braided PMC material. The results presented in this study are novel for a braided composite material subjected to elevated temperature fatigue.

  7. Microstructure and Mechanical Properties of Extruded Gamma Met PX

    NASA Technical Reports Server (NTRS)

    Draper, S. L.; Das, G.; Locci, I.; Whittenberger, J. D.; Lerch, B. A.; Kestler, H.

    2003-01-01

    A gamma TiAl alloy with a high Nb content is being assessed as a compressor blade material. The microstructure and mechanical properties of extruded Ti-45Al-X(Nb,B,C) (at %) were evaluated in both an as-extruded condition and after a lamellar heat treatment. Tensile behavior of both as-extruded and lamellar heat treated specimens was studied in the temperature range of RT to 926 C. In general, the yield stress and ultimate tensile strength reached relatively high values at room temperature and decreased with increasing deformation temperature. The fatigue strength of both microstructures was characterized at 650 C and compared to a baseline TiAl alloy and to a Ni-base superalloy. Tensile and fatigue specimens were also exposed to 800 C for 200 h in air to evaluate the alloy's environmental resistance. A decrease in ductility was observed at room temperature due to the 800 C exposure but the 650 C fatigue properties were unaffected. Compressive and tensile creep testing between 727 and 1027 C revealed that the creep deformation was reproducible and predictable. Creep strengths reached superalloy-like levels at fast strain rates and lower temperatures but deformation at slower strain rates and/or higher temperature indicated significant weakening for the as-extruded condition. At high temperatures and low stresses, the lamellar microstructure had improved creep properties when compared to the as-extruded material. Microstructural evolution during heat treatment, identification of various phases, and the effect of microstructure on the tensile, fatigue, and creep behaviors is discussed.

  8. Static and dynamic fatigue behavior of topology designed and conventional 3D printed bioresorbable PCL cervical interbody fusion devices.

    PubMed

    Knutsen, Ashleen R; Borkowski, Sean L; Ebramzadeh, Edward; Flanagan, Colleen L; Hollister, Scott J; Sangiorgio, Sophia N

    2015-09-01

    Recently, as an alternative to metal spinal fusion cages, 3D printed bioresorbable materials have been explored; however, the static and fatigue properties of these novel cages are not well known. Unfortunately, current ASTM testing standards used to determine these properties were designed prior to the advent of bioresorbable materials for cages. Therefore, the applicability of these standards for bioresorbable materials is unknown. In this study, an image-based topology and a conventional 3D printed bioresorbable poly(ε)-caprolactone (PCL) cervical cage design were tested in compression, compression-shear, and torsion, to establish their static and fatigue properties. Difficulties were in fact identified in establishing failure criteria and in particular determining compressive failure load. Given these limitations, under static loads, both designs withstood loads of over 650 N in compression, 395 N in compression-shear, and 0.25 Nm in torsion, prior to yielding. Under dynamic testing, both designs withstood 5 million (5M) cycles of compression at 125% of their respective yield forces. Geometry significantly affected both the static and fatigue properties of the cages. The measured compressive yield loads fall within the reported physiological ranges; consequently, these PCL bioresorbable cages would likely require supplemental fixation. Most importantly, supplemental testing methods may be necessary beyond the current ASTM standards, to provide more accurate and reliable results, ultimately improving preclinical evaluation of these devices. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Microstructure and Mechanical Properties of Extruded Gamma Microstructure Met PX

    NASA Technical Reports Server (NTRS)

    Draper, S. L.; Das, G.; Locci, J.; Whittenberger, J. D.; Lerch, B. A.; Kestler, H.

    2003-01-01

    A gamma TiAl alloy with a high Nb content is being assessed as a compressor blade material. The microstructure and mechanical properties of extruded Ti-45Al-X(Nb,B,C) (at.%) were evaluated in both an as-extruded condition and after a lamellar heat treatment. Tensile behavior of both as-extruded and lamellar heat treated specimens was studied in the temperature range of RT to 926 C. In general, the yield stress and ultimate tensile strength reached relatively high values at room temperature and decreased with increasing deformation temperature. The fatigue strength of both microstructures was characterized at 650 C and compared to a baseline TiAl alloy and to a Ni-base superalloy. Tensile and fatigue specimens were also exposed to 800 C for 200 h in air to evaluate the alloy's environmental resistance. A decrease in ductility was observed at room temperature due to the 800 C. exposure but the 650 C fatigue properties were unaffected. Compressive and tensile creep testing between 727 and 1027 C revealed that the creep deformation was reproducible and predictable. Creep strengths reached superalloy-like levels at fast strain rates and lower temperatures but deformation at slower strain rates and/or higher temperature indicated significant weakening for the as-extruded condition. At high temperatures and low stresses, the lamellar microstructure had improved creep properties when compared to the as-extruded material. Microstructural evolution during heat treatment, identification of various phases, and the effect of microstructure on the tensile, fatigue, and creep behaviors is discussed.

  10. Myoelectrical Manifestation of Fatigue Less Prominent in Patients with Cancer Related Fatigue

    PubMed Central

    Kisiel-Sajewicz, Katarzyna; Siemionow, Vlodek; Seyidova-Khoshknabi, Dilara; Davis, Mellar P.; Wyant, Alexandria; Ranganathan, Vinoth K.; Walsh, Declan; Yan, Jin H.; Hou, Juliet; Yue, Guang H.

    2013-01-01

    Purpose A lack of fatigue-related muscle contractile property changes at time of perceived physical exhaustion and greater central than peripheral fatigue detected by twitch interpolation technique have recently been reported in cancer survivors with fatigue symptoms. Based on these observations, it was hypothesized that compared to healthy people, myoelectrical manifestation of fatigue in the performing muscles would be less significant in these individuals while sustaining a prolonged motor task to self-perceived exhaustion (SPE) since their central fatigue was more prominent. The purpose of this study was to test this hypothesis by examining electromyographic (EMG) signal changes during fatiguing muscle performance. Methods Twelve individuals who had advanced solid cancer and cancer-related fatigue (CRF), and 12 age- and gender-matched healthy controls performed a sustained elbow flexion at 30% maximal voluntary contraction till SPE. Amplitude and mean power frequency (MPF) of EMG signals of the biceps brachii, brachioradialis, and triceps brachii muscles were evaluated when the individuals experienced minimal, moderate, and severe fatigue. Results CRF patients perceived physical “exhaustion” significantly sooner than the controls. The myoelectrical manifestation of muscular fatigue assessed by EMG amplitude and MPF was less significant in CRF than controls. The lower MPF even at minimal fatigue stage in CRF may indicate pathophysiologic condition of the muscle. Conclusions CRF patients experience less myoelectrical manifestation of muscle fatigue than healthy individuals near the time of SPE. The data suggest that central nervous system fatigue plays a more important role in limiting endurance-type of motor performance in patients with CRF. PMID:24391800

  11. The effect of relaxation therapy on autonomic functioning, symptoms and daily functioning, in patients with chronic fatigue syndrome or fibromyalgia: a systematic review.

    PubMed

    Meeus, Mira; Nijs, Jo; Vanderheiden, Tanja; Baert, Isabel; Descheemaeker, Filip; Struyf, Filip

    2015-03-01

    To establish the effects of relaxation therapy on autonomic function, pain, fatigue and daily functioning in patients with chronic fatigue syndrome or fibromyalgia. A systematic literature study was performed. Using specific keywords related to fibromyalgia or chronic fatigue syndrome and relaxation therapy, the electronic databases PubMed and Web of Science were searched. Included articles were assessed for their risk of bias and relevant information regarding relaxation was extracted. The review was conducted and reported according to the PRISMA-statement. Thirteen randomized clinical trials of sufficient quality were included, resulting in a total of 650 fibromyalgia patients (11 studies) and 88 chronic fatigue syndrome patients (3 studies). None of the studies reported effects on autonomic function. Six studies reported the effect of guided imagery on pain and daily functioning in fibromyalgia. The acute effect of a single session of guided imagery was studied in two studies and seems beneficial for pain relief. For other relaxation techniques (eg. muscle relaxation, autogenic training) no conclusive evidence was found for the effect on pain and functioning in fibromyalgia patients comparison to multimodal treatment programs. For fatigue a multimodal approach seemed better than relaxation, as shown in the sole three studies on chronic fatigue syndrome patients. There is moderate evidence for the acute effect of guided imagery on pain, although the content of the visualization is a matter of debate. Other relaxation formats and the effects on functionality and autonomic function require further study. © The Author(s) 2014.

  12. Assessment of Low Cycle Fatigue Behavior of Powder Metallurgy Alloy U720

    NASA Technical Reports Server (NTRS)

    Gabb, Tomothy P.; Bonacuse, Peter J.; Ghosn, Louis J.; Sweeney, Joseph W.; Chatterjee, Amit; Green, Kenneth A.

    2000-01-01

    The fatigue lives of modem powder metallurgy disk alloys are influenced by variabilities in alloy microstructure and mechanical properties. These properties can vary as functions of variables the different steps of materials/component processing: powder atomization, consolidation, extrusion, forging, heat treating, and machining. It is important to understand the relationship between the statistical variations in life and these variables, as well as the change in life distribution due to changes in fatigue loading conditions. The objective of this study was to investigate these relationships in a nickel-base disk superalloy, U720, produced using powder metallurgy processing. Multiple strain-controlled fatigue tests were performed at 538 C (1000 F) at limited sets of test conditions. Analyses were performed to: (1) assess variations of microstructure, mechanical properties, and LCF failure initiation sites as functions of disk processing and loading conditions; and (2) compare mean and minimum fatigue life predictions using different approaches for modeling the data from assorted test conditions. Significant variations in life were observed as functions of the disk processing variables evaluated. However, the lives of all specimens could still be combined and modeled together. The failure initiation sites for tests performed at a strain ratio R(sub epsilon) = epsilon(sub min)/epsilon(sub max) of 0 were different from those in tests at a strain ratio of -1. An approach could still be applied to account for the differences in mean and maximum stresses and strains. This allowed the data in tests of various conditions to be combined for more robust statistical estimates of mean and minimum lives.

  13. Influence of Severe Shot Peening on the Surface State and Ultra-High-Cycle Fatigue Behavior of an AW 7075 Aluminum Alloy

    NASA Astrophysics Data System (ADS)

    Trško, Libor; Guagliano, Mario; Bokůvka, Otakar; Nový, František; Jambor, Michal; Florková, Zuzana

    2017-04-01

    The ever more pressing and concurrent requirements of light design, increased performances and reliability, energy savings together with acceptable costs, is always pushing researchers and engineers toward the definition and application of new materials and treatments, able to guarantee superior properties and adequate repeatability and reliability. This means that one step beyond the definition of a potentially successful solution, a complete characterization of the new materials is needed, in order to get the right data and use them in the design process. A promising severe plastic deformation surface treatment to improve the fatigue properties of materials and metal parts is considered in this paper. The used treatment is called the severe shot peening, and it is derived from the conventional shot peening but with use of unusually high peening parameters. It was proven that it is able to generate a nanostructured surface layer of material, which results in superior fatigue properties when applied to many structural materials. The severe shot peening is applied to an AW 7075 Al alloy, widely used in mechanical and aeronautic constructions and the effects of such a treatment on this material are investigated in this paper, with particular emphasis on the ultra-high-cycle fatigue behavior. The results address the choice of the correct treatment parameters for getting an evaluable advantage of this treatment and are critically discussed for a complete understanding of the mechanisms leading to the modified fatigue behavior, in view of the future developments and research in the field.

  14. Functional characterization of muscle fibres from patients with chronic fatigue syndrome: case-control study.

    PubMed

    Pietrangelo, T; Toniolo, L; Paoli, A; Fulle, S; Puglielli, C; Fanò, G; Reggiani, C

    2009-01-01

    Chronic fatigue syndrome (CFS) is a disabling condition characterized by unexplained chronic fatigue that impairs normal activities. Although immunological and psychological aspects are present, symptoms related to skeletal muscles, such as muscle soreness, fatigability and increased lactate accumulation, are prominent in CFS patients. In this case-control study, the phenotype of the same biopsy samples was analyzed by determining i) fibre-type proportion using myosin isoforms as fibre type molecular marker and gel electrophoresis as a tool to separate and quantify myosin isoforms, and ii) contractile properties of manually dissected, chemically made permeable and calcium-activated single muscle fibres. The results showed that fibre-type proportion was significantly altered in CSF samples, which showed a shift from the slow- to the fast-twitch phenotype. Cross sectional area, force, maximum shortening velocity and calcium sensitivity were not significantly changed in single muscle fibres from CSF samples. Thus, the contractile properties of muscle fibres were preserved but their proportion was changed, with an increase in the more fatigue-prone, energetically expensive fast fibre type. Taken together, these results support the view that muscle tissue is directly involved in the pathogenesis of CSF and it might contribute to the early onset of fatigue typical of the skeletal muscles of CFS patients.

  15. Very High Cycle Fatigue Failure Analysis and Life Prediction of Cr-Ni-W Gear Steel Based on Crack Initiation and Growth Behaviors.

    PubMed

    Deng, Hailong; Li, Wei; Sakai, Tatsuo; Sun, Zhenduo

    2015-12-02

    The unexpected failures of structural materials in very high cycle fatigue (VHCF) regime have been a critical issue in modern engineering design. In this study, the VHCF property of a Cr-Ni-W gear steel was experimentally investigated under axial loading with the stress ratio of R = -1, and a life prediction model associated with crack initiation and growth behaviors was proposed. Results show that the Cr-Ni-W gear steel exhibits the constantly decreasing S-N property without traditional fatigue limit, and the fatigue strength corresponding to 10⁸ cycles is around 485 MPa. The inclusion-fine granular area (FGA)-fisheye induced failure becomes the main failure mechanism in the VHCF regime, and the local stress around the inclusion play a key role. By using the finite element analysis of representative volume element, the local stress tends to increase with the increase of elastic modulus difference between inclusion and matrix. The predicted crack initiation life occupies the majority of total fatigue life, while the predicted crack growth life is only accounts for a tiny fraction. In view of the good agreement between the predicted and experimental results, the proposed VHCF life prediction model involving crack initiation and growth can be acceptable for inclusion-FGA-fisheye induced failure.

  16. Electromechanical fatigue in IPMC under dynamic energy harvesting conditions

    NASA Astrophysics Data System (ADS)

    Krishnaswamy, Arvind; Roy Mahapatra, D.

    2011-04-01

    Ionic polymer-metal composites (IPMCs) are an interesting subset of smart, multi-functional materials that have shown promises in energy conversion technologies. Being electromechanically coupled, IPMCs can function as dynamic actuators and sensors, transducers for energy conversion and harvesting, as well as artificial muscles for medical and industrial applications. Like all natural materials, even IPMCs undergo fatigue under dynamic load conditions. Here, we investigate the electromechanical fatigue induced in the IPMCs due to the application of cyclic mechanical bending deformation under hydrodynamic energy harvesting condition. Considering the viscoelastic nature of the IPMC, we employ an analytical approach to modeling electromechanical fatigue primarily under the cyclic stresses induced in the membrane. The polymer-metal composite undergoes cyclic softening throughout the fatigue life without attaining a saturated state of charge migration. However, it results in (1) degradation of electromechanical performance; (2) nucleation and growth of microscopic cracks in the metal electrodes; (3) delamination of metal electrodes at the polymer-electrode interface. To understand these processes, we employ a phenomenological approach based on experimentally measured relaxation properties of the IPMC membrane. Electromechanical performance improves significantly with self-healing like properties for a certain range of relaxation time. This is due to reorientation of the backbone polymer chains which eventually leads to a regenerative process with increased charge transport.

  17. Effect of initial contact surface condition on the friction and wear properties of bearing steel in cyclic reciprocating sliding contact

    NASA Astrophysics Data System (ADS)

    Tanaka, Y.; Endo, M.; Moriyama, S.

    2017-05-01

    Delamination failure is one of the most important engineering problems. This failure can frequently be detrimental to rolling contact machine elements such as bearings, gear wheels, etc. This phenomenon, called rolling contact fatigue, has a close relationship not only with opening-mode but also with shear-mode fatigue crack growth. The crack face interference is known to significantly affect the shear-mode fatigue crack propagation and its threshold behavior. Quantitative investigation on friction and wear at fatigue crack faces in the material is essentially impossible. Previously, thus, a novel ring-on-ring test by making use of fatigue testing machine was proposed to simulate a cyclic reciprocating sliding contact of crack surfaces. However, this test procedure had some problems. For instance, in order to achieve the uniform contact at the start of test, the rubbing of specimens must be conducted in advance. By this treatment, the specimen surfaces were already damaged before the test. In this study, an improvement of experimental method was made to perform the test using the damage-free specimens. The friction and wear properties for heat-treated high carbon-chromium bearing steel were investigated with this new method and the results were compared to the results obtained by using the initially damaged specimens.

  18. Influence of High Mn-Cu-Mo on Microstructure and Fatigue characteristics of Austempered Ductile Iron

    NASA Astrophysics Data System (ADS)

    Banavasi Shashidhar, M.; Ravishankar, K. S.; Naik Padmayya, S.

    2018-03-01

    The impacts of high Mn content on microstructure and fatigue characteristics of ADI at 300, 350 and 400 °C for 120 min have been examined. Optical microscopy images reveals bainite morphology only at 300°C. Higher Mn contents hinders bainite transformation in the locales of Mn and Mo segregation, where in stage II reaction initiates near the graphite nodules before stage I reaction ends away from the nodules which creates more unreacted austenite volume after cooling forming martensite around the periphery creating austenite-martensite zone at 350 °C and tremendously articulated at 400°C. Feathery ferrite laths, stable retained austenite and uniform density hardness in the matrix, promotes higher toughness and fatigue properties (250 MPa @ 106 cycles) at 300 °C. Presence of stage II carbides in the eutectic cell and austenite-martensite zone in the intercellular regions, due to their embrittlement in the matrix, makes easy crack path for initiation and propagation deteriorating properties at 350°C and above. SEM images of fatigue fractured surface revealed that at 300°C, showed a regular crack interconnecting graphite nodule, fatigue striation and quazi-cleavage fracture mode, and at 350 & 400°C reveals the carbide, austenite-martensite and porosity/defect final fracture region.

  19. Microstructure and Mechanical Properties of Fiber-Laser-Welded and Diode-Laser-Welded AZ31 Magnesium Alloy

    NASA Astrophysics Data System (ADS)

    Chowdhury, S. M.; Chen, D. L.; Bhole, S. D.; Powidajko, E.; Weckman, D. C.; Zhou, Y.

    2011-07-01

    The microstructures, tensile properties, strain hardening, and fatigue strength of fiber-laser-welded (FLW) and diode-laser-welded (DLW) AZ31B-H24 magnesium alloys were studied. Columnar dendrites near the fusion zone (FZ) boundary and equiaxed dendrites at the center of FZ, with divorced eutectic β-Mg17Al12 particles, were observed. The FLW joints had smaller dendrite cell sizes with a narrower FZ than the DLW joints. The heat-affected zone consisted of recrystallized grains. Although the DLW joints fractured at the center of FZ and exhibited lower yield strength (YS), ultimate tensile strength (UTS), and fatigue strength, the FLW joints failed at the fusion boundary and displayed only moderate reduction in the YS, UTS, and fatigue strength with a joint efficiency of ~91 pct. After welding, the strain rate sensitivity basically vanished, and the DLW joints exhibited higher strain-hardening capacity. Stage III hardening occurred after yielding in both base metal (BM) and welded samples. Dimple-like ductile fracture characteristics appeared in the BM, whereas some cleavage-like flat facets together with dimples and river marking were observed in the welded samples. Fatigue crack initiated from the specimen surface or near-surface defects, and crack propagation was characterized by the formation of fatigue striations along with secondary cracks.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brickstad, B.; Bergman, M.

    A computerized procedure has been developed that predicts the growth of an initial circumferential surface crack through a pipe and further on to failure. The crack growth mechanism can either be fatigue or stress corrosion. Consideration is taken to complex crack shapes and for the through-wall cracks, crack opening areas and leak rates are also calculated. The procedure is based on a large number of three-dimensional finite element calculations of cracked pipes. The results from these calculations are stored in a database from which the PC-program, denoted LBBPIPE, reads all necessary information. In this paper, a sensitivity analysis is presentedmore » for cracked pipes subjected to both stress corrosion and vibration fatigue.« less

  1. Reliability and Validity of the Persian Version of the Fatigue Severity Scale in Idiopathic Parkinson's Disease Patients

    PubMed Central

    Hadizadeh, Hasti; Farhadi, Farzaneh; Delbari, Ahmad; Lökk, Johan

    2013-01-01

    As one of the most frequent symptoms, measurement of fatigue is an issue of interest in Parkinson's disease (PD). The fatigue severity scale (FSS) is one of the recommended questionnaires for this purpose. The aim of our study was to evaluate psychometric properties of the Persian version of the FSS (FSS-Per) to assess fatigue in PD patients. Ninety nondemented idiopathic Parkinson's disease (IPD) patients were consecutively recruited from an outpatient referral movement disorder clinic. In addition to the disease severity scales, the FSS-Per was used for fatigue measurement. The internal consistency coefficient was larger than 0.8 for all of the items with a total Cronbach's alpha of 0.96 (95% CI: 0.95–0.97). The FSS-Per score correlated with the UPDRS score (r = 0.55, P < 0.001) and the “Hoehn and Yahr” (HY) stage (r = 0.48, P < 0.001). The total score of the FSS-Per significantly discriminated IPD patients with more severe disability (HY stage > 2) versus those with less severe disease (HY stage ≤2) (AUC = 0.81 (95% CI: 0.72–0.90)). The FSS-Per fulfilled a high internal consistency and construct validity to measure the severity of fatigue in Iranian IPD patients. These acceptable psychometric properties were reproducible in subgroups of IPD patients regarding different levels of education, disease severity, sex and age groups. PMID:24089644

  2. Compassion fatigue: A meta-narrative review of the healthcare literature.

    PubMed

    Sinclair, Shane; Raffin-Bouchal, Shelley; Venturato, Lorraine; Mijovic-Kondejewski, Jane; Smith-MacDonald, Lorraine

    2017-04-01

    Compassion fatigue describes a work-related stress response in healthcare providers that is considered a 'cost of caring' and a key contributor to the loss of compassion in healthcare. The purpose of this review was to critically examine the construct of compassion fatigue and to determine if it is an accurate descriptor of work-related stress in healthcare providers and a valid target variable for intervention. Meta-narrative review. PubMed, Medline, CINAHL, PsycINFO, and Web of Science databases, Google Scholar, the grey literature, and manual searches of bibliographies. Seminal articles and theoretical and empirical studies on compassion fatigue in the healthcare literature were identified and appraised for their validity and relevance to our review. Sources were mapped according to the following criteria: 1) definitions; 2) conceptual analyses; 3) signs and symptoms; 4) measures; 5) prevalence and associated risk factors; and 6) interventions. A narrative account of included studies that critically examines the concept of compassion fatigue in healthcare was employed, and recommendations for practice, policy and further research were made. 90 studies from the nursing literature and healthcare in general were included in the review. Findings emphasized that the physical, emotional, social and spiritual health of healthcare providers is impaired by cumulative stress related to their work, which can impact the delivery of healthcare services; however, the precise nature of compassion fatigue and that it is predicated on the provision of compassionate care is associated with significant limitations. The conceptualization of compassion fatigue was expropriated from crisis counseling and psychotherapy and focuses on limited facets of compassion. Empirical studies primarily measure compassion fatigue using the Professional Quality of Life Scale, which does not assess any of the elements of compassion. Reported risk factors for compassion fatigue include job-related factors, fewer healthcare qualifications and less years experience; however, there is no research demonstrating that exemplary compassionate carers are more susceptible to 'compassion fatigue'. In the last two decades, compassion fatigue has become a contemporary and iconic euphemism that should be critically reexamined in favour of a new discourse on healthcare provider work-related stress. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Reduced Fluorescent Protein Switching Fatigue by Binding-Induced Emissive State Stabilization

    PubMed Central

    Dedecker, Peter

    2017-01-01

    Reversibly switchable fluorescent proteins (RSFPs) enable advanced fluorescence imaging, though the performance of this imaging crucially depends on the properties of the labels. We report on the use of an existing small binding peptide, named Enhancer, to modulate the spectroscopic properties of the recently developed rsGreen series of RSFPs. Fusion constructs of Enhancer with rsGreen1 and rsGreenF revealed an increased molecular brightness and pH stability, although expression in living E. coli or HeLa cells resulted in a decrease of the overall emission. Surprisingly, Enhancer binding also increased off-switching speed and resistance to switching fatigue. Further investigation suggested that the RSFPs can interconvert between fast- and slow-switching emissive states, with the overall protein population gradually converting to the slow-switching state through irradiation. The Enhancer modulates the spectroscopic properties of both states, but also preferentially stabilizes the fast-switching state, supporting the increased fatigue resistance. This work demonstrates how the photo-physical properties of RSFPs can be influenced by their binding to other small proteins, which opens up new horizons for applications that may require such modulation. Furthermore, we provide new insights into the photoswitching kinetics that should be of general consideration when developing new RSFPs with improved or different photochromic properties. PMID:28930199

  4. LH2 on-orbit storage tank support trunnion design and verification

    NASA Technical Reports Server (NTRS)

    Bailey, W. J.; Fester, D. A.; Toth, J. M., Jr.

    1985-01-01

    A detailed fatigue analysis was conducted to provide verification of the trunnion design in the reusable Cryogenic Fluid Management Facility for Shuttle flights and to assess the performance capability of the trunnion E-glass/S-glass epoxy composite material. Basic material property data at ambient and liquid hydrogen temperatures support the adequacy of the epoxy composite for seven-mission requirement. Testing of trunnions fabricated to the flight design has verified adequate strength and fatigue properties of the design to meet the requirements of seven Shuttle flights.

  5. Residual Stress, Micro- and Macrotexture in Surface-Enhanced Titanium Alloys: Their Nondestructive Inspection and Effects on High-Cycle Fatigue Properties

    DTIC Science & Technology

    2006-05-01

    Titanium 5b. GRANT NUMBER Alloys: Their Nondestructive Inspection and Effects on High-Cycle Fatigue Properties 5c. PROGRAM ELEMENT NUMBER 6 . AUTHOR(S) 5d...was relatively inaccurate in our measurements Table 1. Parameters of Eqs. ( 4 ) and (5) fitted to the experimental results of Fig. 6 . The statistical...jgm below the surface. Depth (X 10𔃽mm) 0 50 100 IS0 200 250 300 -25. 0. -2 .... .. ....... oo ... ........... 2,.0 . ... o -1000 -- 80 0 2 4 6 8 10 12

  6. Quick Reaction Evaluation of Materials and Processes. Delivery Order 0011: Engineering Properties, Fatigue, and Crack Growth Data on SCS-6/Ti-6Al-4V Titanium Matrix Composite (16 Ply) Panels

    DTIC Science & Technology

    2009-05-01

    tabs were bonded to the specimen using a TIG welding process to ensure adhesion of the tabs throughout the experiment. The shear specimens and the...AFRL-RX-WP-TR-2010-4175 QUICK REACTION EVALUATION OF MATERIALS AND PROCESSES Delivery Order 0011: Engineering Properties, Fatigue, and Crack...From - To) May 2009 Final 03 April 2006 – 29 May 2009 4. TITLE AND SUBTITLE QUICK REACTION EVALUATION OF MATERIALS AND PROCESSES Delivery Order

  7. Maintainability Improvement Through Corrosion Prediction

    DTIC Science & Technology

    1997-12-01

    Aluminum base alloys - Mechanical properties; Lithium- Alloying elements; Crack propagation- Corrosion effects ; Fatigue life - Corrosion... effects on the corrosion fatigue life of 7075-T6 aluminum alloy . Ma,L CORPORATE SOURCE: University of Utah JOURNAL: Dissertation Abstracts International...Diffusion effects ; Hydrogen- Diffusion SECTION HEADINGS: 64 (Corrosion) 52. 715866 87-640094 The Life Prediction for 2024

  8. Interactive Effects of High- and Low-Frequency Loading on Fatigue.

    DTIC Science & Technology

    1985-05-01

    were observed for an air environment between frequencies of 100 and 375 Hz . In dry argon, however, the results for 100 Hz were slightly higher than...those at 375 Hz . A very extensive study of fatigue crack growth properties of titanium alloys usPd in aircraft engine compressors was performed by

  9. Nonsurgical treatment and early return to activity leads to improved Achilles tendon fatigue mechanics and functional outcomes during early healing in an animal model.

    PubMed

    Freedman, Benjamin R; Gordon, Joshua A; Bhatt, Pankti R; Pardes, Adam M; Thomas, Stephen J; Sarver, Joseph J; Riggin, Corinne N; Tucker, Jennica J; Williams, Alexis W; Zanes, Robert C; Hast, Michael W; Farber, Daniel C; Silbernagel, Karin G; Soslowsky, Louis J

    2016-12-01

    Achilles tendon ruptures are common and devastating injuries; however, an optimized treatment and rehabilitation protocol has yet to be defined. Therefore, the objective of this study was to investigate the effects of surgical repair and return to activity on joint function and Achilles tendon properties after 3 weeks of healing. Sprague-Dawley rats (N = 100) received unilateral blunt transection of their Achilles tendon. Animals were then randomized into repaired or non-repaired treatments, and further randomized into groups that returned to activity after 1 week (RTA1) or after 3 weeks (RTA3) of limb casting in plantarflexion. Limb function, passive joint mechanics, and tendon properties (mechanical, organizational using high frequency ultrasound, histological, and compositional) were evaluated. Results showed that both treatment and return to activity collectively affected limb function, passive joint mechanics, and tendon properties. Functionally, RTA1 animals had increased dorsiflexion ROM and weight bearing of the injured limb compared to RTA3 animals 3-weeks post-injury. Such functional improvements in RTA1 tendons were evidenced in their mechanical fatigue properties and increased cross sectional area compared to RTA3 tendons. When RTA1 was coupled with nonsurgical treatment, superior fatigue properties were achieved compared to repaired tendons. No differences in cell shape, cellularity, GAG, collagen type I, or TGF-β staining were identified between groups, but collagen type III was elevated in RTA3 repaired tendons. The larger tissue area and increased fatigue resistance created in RTA1 tendons may prove critical for optimized outcomes in early Achilles tendon healing following complete rupture. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:2172-2180, 2016. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  10. Nonsurgical treatment and early return to activity leads to improved Achilles tendon fatigue mechanics and functional outcomes during early healing in an animal model

    PubMed Central

    Freedman, BR; Gordon, JA; Bhatt, PB; Pardes, AM; Thomas, SJ; Sarver, JJ; Riggin, CN; Tucker, JJ; Williams, AW; Zanes, RC; Hast, MW; Farber, DC; Silbernagel, KG; Soslowsky, LJ

    2016-01-01

    Achilles tendon ruptures are common and devastating injuries; however, an optimized treatment and rehabilitation protocol has yet to be defined. Therefore, the objective of this study was to investigate the effects of surgical repair and return to activity on joint function and Achilles tendon properties after 3-weeks of healing. Sprague Dawley rats (N=100) received unilateral blunt transection of their Achilles tendon. Animals were then randomized into repaired or non-repaired treatments, and further randomized into groups that returned to activity after 1-week (RTA1) or after 3-weeks (RTA3) of limb casting in plantarflexion. Limb function, passive joint mechanics, and tendon properties (mechanical, organizational using high frequency ultrasound, histological, and compositional) were evaluated. Results showed that both treatment and return to activity collectively affected limb function, passive joint mechanics, and tendon properties. Functionally, RTA1 animals had increased dorsiflexion ROM and weight bearing of the injured limb compared to RTA3 animals 3-weeks post injury. Such functional improvements in RTA1 tendons were evidenced in their mechanical fatigue properties and increased cross sectional area compared to RTA3 tendons. When RTA1 was coupled with nonsurgical treatment, superior fatigue properties were achieved compared to repaired tendons. No differences in cell shape, cellularity, GAG, collagen type I, or TGF-β staining were identified between groups, but collagen type III was elevated in RTA3 repaired tendons. The larger tissue area and increased fatigue resistance created in RTA1 tendons may prove critical for optimized outcomes in early Achilles tendon healing following complete rupture. PMID:27038306

  11. Fatigue life prediction of bonded primary joints

    NASA Technical Reports Server (NTRS)

    Knauss, J. F.

    1979-01-01

    The validation of a proposed fatigue life prediction methodology was sought through the use of aluminum butt and scarf joint and graphite/epoxy butt joint specimens in a constant amplitude fatigue environment. The structural properties of the HYSOL 9313 adhesive system were obtained by mechanical test of molded heat adhesive specimens. Aluminum contoured double cantilever beam specimens were used to generate crack velocity versus stress intensity factor data. The specific objectives were: (1) to ascertain the feasibility of predicting fatigue failure of an adhesive in a primary bonded composite structure by incorporating linear elastic crack growth behavior; and (2) to ascertain if acoustic emission and/or compliance measurement techniques can be used to detect flaws.

  12. Evaluation of Fatigue Crack Growth and Fracture Properties of Cryogenic Model Materials

    NASA Technical Reports Server (NTRS)

    Newman, John A.; Forth, Scott C.; Everett, Richard A., Jr.; Newman, James C., Jr.; Kimmel, William M.

    2002-01-01

    The criteria used to prevent failure of wind-tunnel models and support hardware were revised as part of a project to enhance the capabilities of cryogenic wind tunnel testing at NASA Langley Research Center. Specifically, damage-tolerance fatigue life prediction methods are now required for critical components, and material selection criteria are more general and based on laboratory test data. The suitability of two candidate model alloys (AerMet 100 and C-250 steel) was investigated by obtaining the fatigue crack growth and fracture data required for a damage-tolerance fatigue life analysis. Finally, an example is presented to illustrate the newly implemented damage tolerance analyses required of wind-tunnel model system components.

  13. Relationship between fatigue life in the creep-fatigue region and stress-strain response

    NASA Technical Reports Server (NTRS)

    Berkovits, A.; Nadiv, S.

    1988-01-01

    On the basis of mechanical tests and metallographic studies, strainrange partitioned lives were predicted by introducing stress-strain materials parameters into the Universal Slopes Equation. This was the result of correlating fatigue damage mechanisms and deformation mechanisms operating at elevated temperatures on the basis of observed mechanical and microstructural behavior. Correlation between high temperature fatigue and stress strain properties for nickel base superalloys and stainless steel substantiated the method. Parameters which must be evaluated for PP- and CC- life are the maximum stress achievable under entirely plastic and creep conditions respectively and corresponding inelastic strains, and the two more pairs of stress strain parameters must be ascertained.

  14. Review of specimen heating in mechanical tests at cryogenic temperatures

    NASA Astrophysics Data System (ADS)

    Ogata, T.; Yuri, T.; Ono, Y.

    2014-01-01

    At cryogenic temperatures near 4 K, a discontinuous deformation produces a large amount of specimen temperature rise that might bring significant changes in mechanical properties. The authors measured the specimen heating in tensile tests, fatigue test, and other tests in liquid helium for stainless steels and other materials. In this paper, we have measured the specimen temperature in high-cycle and low-cycle fatigue tests for stainless steels at various frequencies and stress levels and evaluated the testing conditions to keep the specimen at a specified temperature. We proposed maximum frequency in load-controlled fatigue tests for specified loading variables and a maximum strain rate in strain-controlled fatigue tests.

  15. Enhanced fatigue performance of porous coated Ti6Al4V biomedical alloy

    NASA Astrophysics Data System (ADS)

    Apachitei, I.; Leoni, A.; Riemslag, A. C.; Fratila-Apachitei, L. E.; Duszczyk, J.

    2011-05-01

    Biofunctional coatings are necessary to improve integration of titanium implants in the host tissue but they may be detrimental for the implant fatigue properties. This study presents an attempt towards enhancement of the in vitro fatigue strength of plasma electrolytic oxidation coated Ti6Al4V alloy by applying shot peening process prior to coating. The electrolytic oxidation was performed in calcium acetate and calcium glycerophosphate electrolytes that allowed formation of porous oxide coatings with high surface free energy and apatite like ability. A deformed surface layer coupled with induced residual compressive stresses seem to affect oxide growth rate and fatigue behavior of the titanium alloy.

  16. The Effects of Fiber Orientation and Volume Fraction of Fiber on Mechanical Properties of Additively Manufactured Composite Material

    NASA Astrophysics Data System (ADS)

    Kuchipudi, Suresh Chandra

    Additive manufacturing (AM) also known as 3D printing has tremendous advancements in recent days with a vast number of applications in industrial, automotive, architecture, consumer projects, fashion, toys, food, art, etc. Composite materials are widely used in structures with weight as a critical factor especially in aerospace industry. Recently, additive manufacturing technology, a rapidly growing innovative technology, has gained lot of importance in making composite materials. The properties of composite materials depend upon the properties of constituent's matrix and fiber. There is lot of research on effect of fiber orientation on mechanical properties of composite materials made using conventional manufacturing methods. It will be interesting and relevant to study the relationship between the fiber orientation and fiber volume with mechanical properties of additively manufactured composite materials. This thesis work presents experimental investigation of mechanical behavior like tensile strength and fatigue life with variation in fiber orientation and fiber volume fraction of 3D printed composite materials. The aim is to study the best combination of volume fraction of fiber and fiber orientation that has better fatigue strength for additive manufactured composite materials. Using this study, we can decide the type of orientation and volume percent for desired properties. This study also finds the range of fatigue limits of 3d printed composite materials.

  17. Treatment outcome in adults with chronic fatigue syndrome: a prospective study in England based on the CFS/ME National Outcomes Database.

    PubMed

    Crawley, E; Collin, S M; White, P D; Rimes, K; Sterne, J A C; May, M T

    2013-06-01

    Chronic fatigue syndrome (CFS) is relatively common and disabling. Over 8000 patients attend adult services each year, yet little is known about the outcome of patients attending NHS services. Investigate the outcome of patients with CFS and what factors predict outcome. Longitudinal patient cohort. We used data from six CFS/ME (myalgic encephalomyelitis) specialist services to measure changes in fatigue (Chalder Fatigue Scale), physical function (SF-36), anxiety and depression (Hospital Anxiety and Depression Scale) and pain (visual analogue pain rating scale) between clinical assessment and 8-20 months of follow-up. We used multivariable linear regression to investigate baseline factors associated with outcomes at follow-up. Baseline data obtained at clinical assessment were available for 1643 patients, of whom 834 (51%) had complete follow-up data. There were improvements in fatigue [mean difference from assessment to outcome: -6.8; 95% confidence interval (CI) -7.4 to -6.2; P < 0.001]; physical function (4.4; 95% CI 3.0-5.8; P < 0.001), anxiety (-0.6; 95% CI -0.9 to -0.3; P < 0.001), depression (-1.6; 95% CI -1.9 to -1.4; P < 0.001) and pain (-5.3; 95% CI -7.0 to -3.6; P < 0.001). Worse fatigue, physical function and pain at clinical assessment predicted a worse outcome for fatigue at follow-up. Older age, increased pain and physical function at assessment were associated with poorer physical function at follow-up. Patients who attend NHS specialist CFS/ME services can expect similar improvements in fatigue, anxiety and depression to participants receiving cognitive behavioural therapy and graded exercise therapy in a recent trial, but are likely to experience less improvement in physical function. Outcomes were predicted by fatigue, disability and pain at assessment.

  18. Fatigue analysis and testing of wind turbine blades

    NASA Astrophysics Data System (ADS)

    Greaves, Peter Robert

    This thesis focuses on fatigue analysis and testing of large, multi MW wind turbine blades. The blades are one of the most expensive components of a wind turbine, and their mass has cost implications for the hub, nacelle, tower and foundations of the turbine so it is important that they are not unnecessarily strong. Fatigue is often an important design driver, but fatigue of composites is poorly understood and so large safety factors are often applied to the loads. This has implications for the weight of the blade. Full scale fatigue testing of blades is required by the design standards, and provides manufacturers with confidence that the blade will be able to survive its service life. This testing is usually performed by resonating the blade in the flapwise and edgewise directions separately, but in service these two loads occur at the same time.. A fatigue testing method developed at Narec (the National Renewable Energy Centre) in the UK in which the flapwise and edgewise directions are excited simultaneously has been evaluated by comparing the Palmgren-Miner damage sum around the blade cross section after testing with the damage distribution caused by the service life. A method to obtain the resonant test configuration that will result in the optimum mode shapes for the flapwise and edgewise directions was then developed, and simulation software was designed to allow the blade test to be simulated so that realistic comparisons between the damage distributions after different test types could be obtained. During the course of this work the shortcomings with conventional fatigue analysis methods became apparent, and a novel method of fatigue analysis based on multi-continuum theory and the kinetic theory of fracture was developed. This method was benchmarked using physical test data from the OPTIDAT database and was applied to the analysis of a complete blade. A full scale fatigue test method based on this new analysis approach is also discussed..

  19. Enhancement of fatigue endurance in ferroelectric PZT ceramic by the addition of bismuth layered SBT

    NASA Astrophysics Data System (ADS)

    Namsar, O.; Pojprapai, S.; Watcharapasorn, A.; Jiansirisomboon, S.

    2014-10-01

    Electrical fatigue properties of (1-x)PZT-xSBT ceramics (x = 0-1.0 weight fraction) were characterized. It was found that pure PZT ceramic had severe polarization fatigue. This was mainly attributed to an occurrence of the macroscopic cracks at near-electrode regions. On the contrary, pure SBT ceramic exhibited excellent fatigue resistance, which was attributed primarily to weak domain wall pinning. As small amount of SBT (0.1 ≤ x ≤ 0.3) was added into PZT, a small reduction of remanent polarization after fatigue process was observed. This demonstrated that these ceramics had high stability during the repeated domain switching due to their low oxygen vacancy concentration. Therefore, these results suggested that this new ceramic PZT-SBT system seemed to be an alternative material for replacing pure PZT in ferroelectric memory applications.

  20. Fatigue behavior of SiC reinforced titanium composites

    NASA Technical Reports Server (NTRS)

    Bhatt, R. T.; Grimes, H. H.

    1979-01-01

    The low cycle axial fatigue properties of 25 and 44 fiber volume percent SiC/Ti(6Al-4V) composites were measured at room temperature and at 650 deg C. The S-N curves for the composites showed no anticipated improvement over bulk matrix behavior at room temperature. Although axial and transverse tensile strength results suggest a degradation in SiC fiber strength during composite fabrication, it appears that the poor fatigue life of the composites was caused by a reduced fatigue resistance of the reinforced Ti(6Al-4V) matrix. The reduced matrix behavior was due, to the presence of flawed and fractured fibers created near the specimen surfaces by preparation techniques and to the large residual tensile stresses that can exist in fiber reinforced matrices. The effects of fatigue testing at high temperature are discussed.

  1. Fibromyalgia is Associated With Altered Skeletal Muscle Characteristics Which May Contribute to Post-Exertional Fatigue in Post-Menopausal Women

    PubMed Central

    Srikuea, Ratchakrit; Symons, T. Brock; Long, Douglas E.; Lee, Jonah D.; Shang, Yu; Chomentowski, Peter J.; Yu, Guoqiang; Crofford, Leslie J.; Peterson, Charlotte A.

    2012-01-01

    Objective To identify muscle physiological properties that may contribute to post-exertional fatigue and malaise in women with fibromyalgia (FM). Methods Healthy postmenopausal women with (n=11) and without (n=11) fibromyalgia, age 51–70 years, participated in this study. Physical characteristics along with self-reported questionnaires were evaluated. Strength loss and tissue oxygenation in response to a fatiguing exercise protocol were used to quantify fatigability and the local muscle hemodynamic profile. Muscle biopsies were obtained to assess between-group differences in baseline muscle properties using histochemical, immunohistochemical and electron microscopic analyses. Results No significant difference in muscle fatigue in response to exercise was apparent between healthy controls and subjects with FM. However, self-reported fatigue and pain were correlated to prolonged loss of strength following 12-min of recovery in subjects with FM. Although there was no difference in percent SDH positive (type I) and SDH negative (type II) fibers or in mean fiber cross-sectional area between groups, subjects with FM showed greater size variability and altered fiber size distribution. Only in healthy controls, fatigue-resistance was strongly correlated with the size of SDH positive fibers and hemoglobin oxygenation. By contrast, subjects with FM with the highest percentage of SDH positive fibers recovered strength most effectively, which was correlated to capillary density. However, overall, capillary density was lower in subjects with FM. Conclusion Peripheral mechanisms i.e. altered muscle fiber size distribution and decreased capillary density may contribute to post-exertional fatigue in subjects with FM. Understanding these defects in fibromyalgic muscle may provide valuable insight for treatment. PMID:23124535

  2. Initial Assessment of the Effects of Nonmetallic Inclusions on Fatigue Life of Powder-Metallurgy-Processed Udimet(TM) 720

    NASA Technical Reports Server (NTRS)

    Gabb, T. P.; Telesman, J.; Kantzos, P. T.; Bonacuse, P. J.; Barrie, R. L.

    2002-01-01

    The fatigue lives of modern powder metallurgy (PM) disk alloys are influenced by variabilities in alloy microstructure and mechanical properties. These properties can vary due to the different steps of materials/component processing and machining. One of these variables, the presence of nonmetallic inclusions, has been shown to significantly degrade low-cycle fatigue (LCF) life. Nonmetallic inclusions are inherent defects in powder alloys that are a by-product of powder-processing techniques. Contamination of the powder can occur in the melt, during powder atomization, or during any of the various handling processes through consolidation. In modern nickel disk powder processing facilities, the levels of inclusion contamination have been reduced to less than 1 part per million by weight. Despite the efforts of manufacturers to ensure the cleanliness of their powder production processes, the presence of inclusions remains a source of great concern for the designer. the objective of this study was to investigate the effects on fatigue life of these inclusions. Since natural inclusions occur so infrequently, elevated levels of inclusions were carefully introduced in a nickel-based disk superalloy, Udimet 720 (registered trademark of Special Metals Corporation), produced using PM processing. Multiple strain-controlled fatigue tests were then performed on this material at 650 C. Analyses were performed to compare the LCF lives and failure initiation sites as functions of inclusion content and fatigue conditions. A large majority of the failures in specimens with introduced inclusions occurred at cracks initiating from inclusions at the specimen surface. The inclusions could reduce fatigue life by up to 100 times. These effects were found to be dependent on strain range and strain ratio. Tests at lower strain ranges and higher strain ratios produced larger effects of inclusions on life.

  3. Effect of Applied Potential on Fatigue Life of Electropolished Nitinol Wires

    NASA Astrophysics Data System (ADS)

    Sivan, Shiril; Di Prima, Matthew; Weaver, Jason D.

    2017-09-01

    Nitinol is used as a metallic biomaterial in medical devices due to its shape memory and pseudoelastic properties. The clinical performance of nitinol depends on factors which include the surface finish, the local environment, and the mechanical loads to which the device is subjected. Preclinical evaluations of device durability are performed with fatigue tests while electrochemical characterization methods such as ASTM F2129 are employed to evaluate corrosion susceptibility by determining the rest potential and breakdown potential. However, it is well established that the rest potential of a metal surface can vary with the local environment. Very little is known regarding the influence of voltage on fatigue life of nitinol. In this study, we developed a fatigue testing method in which an electrochemical system was integrated with a rotary bend wire fatigue tester. Samples were fatigued at various strain levels at electropotentials anodic and cathodic to the rest potential to determine if it could influence fatigue life. Wires at potentials negative to the rest potential had a significantly higher number of cycles to fracture than wires held at potentials above the breakdown potential. For wires for which no potential was applied, they had fatigue life similar to wires at negative potentials.

  4. Uniaxial and Multiaxial Fatigue Life Prediction of the Trabecular Bone Based on Physiological Loading: A Comparative Study.

    PubMed

    Fatihhi, S J; Harun, M N; Abdul Kadir, Mohammed Rafiq; Abdullah, Jaafar; Kamarul, T; Öchsner, Andreas; Syahrom, Ardiyansyah

    2015-10-01

    Fatigue assessment of the trabecular bone has been developed to give a better understanding of bone properties. While most fatigue studies are relying on uniaxial compressive load as the method of assessment, in various cases details are missing, or the uniaxial results are not very realistic. In this paper, the effect of three different load histories from physiological loading applied on the trabecular bone were studied in order to predict the first failure surface and the fatigue lifetime. The fatigue behaviour of the trabecular bone under uniaxial load was compared to that of multiaxial load using a finite element simulation. The plastic strain was found localized at the trabecular structure under multiaxial load. On average, applying multiaxial loads reduced more than five times the fatigue life of the trabecular bone. The results provide evidence that multiaxial loading is dominated in the low cycle fatigue in contrast to the uniaxial one. Both bone volume fraction and structural model index were best predictors of failure (p < 0.05) in fatigue for both types of loading, whilst uniaxial loading has indicated better values in most cases.

  5. Analysis of the Mechanical Behavior, Creep Resistance and Uniaxial Fatigue Strength of Martensitic Steel X46Cr13

    PubMed Central

    Brnic, Josip; Krscanski, Sanjin; Lanc, Domagoj; Brcic, Marino; Turkalj, Goran; Canadija, Marko; Niu, Jitai

    2017-01-01

    The article deals with the analysis of the mechanical behavior at different temperatures, uniaxial creep and uniaxial fatigue of martensitic steel X46Cr13 (1.4034, AISI 420). For the purpose of considering the aforementioned mechanical behavior, as well as determining the appropriate resistance to creep and fatigue strength levels, numerous uniaxial tests were carried out. Tests related to mechanical properties performed at different temperatures are presented in the form of engineering stress-strain diagrams. Short-time creep tests performed at different temperatures and different stress levels are presented in the form of creep curves. Fatigue tests carried out at stress ratios R=0.25 and R=−1 are shown in the form of S–N (fatigue) diagrams. The finite fatigue regime for each of the mentioned stress ratios is modeled by an inclined log line, while the infinite fatigue regime is modeled by a horizontal line, which represents the fatigue limit of the material and previously was calculated by the modified staircase method. Finally, the fracture toughness has been calculated based on the Charpy V-notch impact energy. PMID:28772749

  6. Low-cycle fatigue of Fe-20%Cr alloy processed by equal- channel angular pressing

    NASA Astrophysics Data System (ADS)

    Kaneko, Yoshihisa; Tomita, Ryuji; Vinogradov, Alexei

    2014-08-01

    Low-cycle fatigue properties were investigated on Fe-20%Cr ferritic stainless steel processed by equal channel angular pressing (ECAP). The Fe-20%Cr alloy bullets were processed for one to four passes via Route-Bc. The ECAPed samples were cyclically deformed at the constant plastic strain amplitude ɛpl of 5x10-4 at room temperature in air. After the 1-pass ECAP, low-angle grain boundaries were dominantly formed. During the low-cycle fatigue test, the 1-pass sample revealed the rapid softening which continued until fatigue fracture. Fatigue life of the 1-pass sample was shorter than that of a coarse-grained sample. After the 4-pass ECAP, the average grain size reduced down to about 1.5 μm. At initial stage of the low-cycle fatigue tests, the stress amplitude increased with increasing ECAP passes. At the samples processed for more than 2 passes, the cyclic softening was relatively moderate. It was found that fatigue life of the ECAPed Fe-20%Cr alloy excepting the 1-pass sample was improved as compared to the coarse-grained sample, even under the strain controlled fatigue condition.

  7. Chinese herbal medicine for cancer-related fatigue: a systematic review of randomized clinical trials.

    PubMed

    Su, Chun-Xiang; Wang, Li-Qiong; Grant, Suzanne J; Liu, Jian-Ping

    2014-06-01

    To assess the effectiveness and safety of Chinese herbal medicine for the treatment of cancer-related fatigue. We systematically searched seven electronic databases and two trial registries for randomized clinical trials of Chinese herbal medicine for cancer-related fatigue. Two authors independently extracted data and assessed the methodological quality of the included trials using the Cochrane risk of bias tool. Data were synthesized using RevMan 5.2 software. A total of 10 trials involving 751 participants with cancer-related fatigue were identified and the methodological quality of the included trials was generally poor. Chinese herbal medicine used alone or in combination with chemotherapy or supportive care showed significant relief in cancer-related fatigue compared to placebo, chemotherapy or supportive care based on single trials. Chinese herbal medicine plus chemotherapy or supportive care was superior to chemotherapy or supportive care in improving quality of life. Data from one trial demonstrated Chinese herbal medicine exerted a greater beneficial effect on relieving anxiety but no difference in alleviating depression. Seven trials reported adverse events and no severe adverse effects were found in Chinese herbal medicine groups. The findings from limited number of trials suggest that Chinese herbal medicine seems to be effective and safe in the treatment of cancer-related fatigue. However, the current evidence is insufficient to draw a confirmative conclusion due to the poor methodological quality of included trials. Thus, conducting rigorously designed trials on potential Chinese herbal medicine is warranted. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Defining recovery in chronic fatigue syndrome: a critical review.

    PubMed

    Adamowicz, Jenna L; Caikauskaite, Indre; Friedberg, Fred

    2014-11-01

    In chronic fatigue syndrome (CFS), the lack of consensus on how recovery should be defined or interpreted has generated controversy and confusion. The purpose of this paper was to systematically review, compare, and evaluate the definitions of recovery reported in the CFS literature and to make recommendations about the scope of recovery assessments. A search was done using the MEDLINE, PubMed, PsycINFO, CINAHL, and Cochrane databases for peer review papers that contained the search terms "chronic fatigue syndrome" and "recovery," "reversal," "remission," and/or "treatment response." From the 22 extracted studies, recovery was operationally defined by reference with one or more of these domains: (1) pre-morbid functioning; (2) both fatigue and function; (3) fatigue (or related symptoms) alone; (4) function alone; and/or (5) brief global assessment. Almost all of the studies measuring recovery in CFS did so differently. The brief global assessment was the most common outcome measure used to define recovery. Estimates of recovery ranged from 0 to 66 % in intervention studies and 2.6 to 62 % in naturalistic studies. Given that the term "recovery" was often based on limited assessments and less than full restoration of health, other more precise and accurate labels (e.g., clinically significant improvement) may be more appropriate and informative. In keeping with common understandings of the term recovery, we recommend a consistent definition that captures a broad-based return to health with assessments of both fatigue and function as well as the patient's perceptions of his/her recovery status.

  9. Integrative Review of Facility Interventions to Manage Compassion Fatigue in Oncology Nurses.

    PubMed

    Wentzel, Dorien; Brysiewicz, Petra

    2017-05-01

    Oncology nurses are regularly exposed to high-stress situations that may lead to compassion fatigue, and many institutions have implemented interventions to reduce burnout in nurses, but knowledge on the feasiblity, effectiveness, and nurses' experience of interventions is lacking.
. Electronic search of literature published from 1992-2015 was performed to evaluate in-facility interventions to manage compassion fatigue in oncology nurses. Databases used included CINAHL®, PubMed, Web of Science, Google Scholar, and PsycINFO®. 
. The goal was to evaluate the effectiveness, feasibility, and nurses' experience of interventions to manage compassion fatigue. The study designs, methods, and limitations were independently screened by the authors. 
. Of 164 studies, 31 met eligibility criteria. 
. The majority of the studies were conducted in Western countries, which suggests the need for additional research in other settings to determine effective interventions that address compassion fatigue and stress cross-culturally. Quantitative and qualitative studies failed to gain high scores in terms of quality. Limited conclusions can be drawn from small studies that report on outcomes with many confounding variables, such as turnover rate or general health of nurses, from a single institution. 
. Lack of empirical precision in evaluating the effectiveness, feasibility, and nurses' experiences of interventions indicates a need for future, more rigorously designed experimental studies. Because of the global increase in the number of patients being diagnosed and living with cancer, oncology nurses should be able to recognize and manage compassion fatigue.

  10. Effect of Cryorolling and Aging on Fatigue Behavior of Ultrafine-grained Al6061

    NASA Astrophysics Data System (ADS)

    Yadollahpour, M.; Hosseini-Toudeshky, H.; Karimzadeh, F.

    2016-05-01

    The effects of cryorolling (rolling at liquid nitrogen temperature) and heat treatment on tensile and high-cycle fatigue properties and fatigue crack growth rate of Al6061 alloy have been investigated in the present work. First, the solid solution-treated bulk Al6061 alloy was subjected to cryorolling with 90% total thickness reduction and subsequent short annealing at 205°C for 5 min and peak aging at 148°C for 39 h to achieve grain refinement and simultaneous improvement of the strength and ductility. Then, hardness measurements, tensile tests, fatigue life, and fatigue crack growth rate tests including fractography analyses using scanning electron microscopy were performed on bulk Al6061 alloy, cryorolled (CR), and cryorolled material followed by peak aging (PA). The PA specimen showed improved yield strength by 24%, ultimate tensile strength by 20%, and ductility by 12% as compared with the bulk Al6061 alloy. It is shown that the fatigue strength of both CR and PA specimens under a high-cycle fatigue regime are larger than that of the bulk Al6061 alloy. Also, fatigue crack growth rates of the CR and PA specimens show significant enhancement in fatigue crack growth resistances as compared with the bulk Al6061 alloy, as a result of grain refinement.

  11. Application of the multidimensional fatigue inventory (MFI-20) in cancer patients receiving radiotherapy.

    PubMed Central

    Smets, E. M.; Garssen, B.; Cull, A.; de Haes, J. C.

    1996-01-01

    In this paper the psychometric properties of the multidimensional fatigue inventory (MFI-20) are established further in cancer patients. The MFI is a 20-item self-report instrument designed to measure fatigue. It covers the following dimensions: general fatigue, physical fatigue, reduced activity, reduced motivation and mental fatigue. The instrument was used in a Dutch and Scottish sample of cancer patients receiving radiotherapy. The dimensional structure was assessed using confirmatory factor analyses (Lisrel's unweighted least-squares method). The hypothesised five-factor model appeared to fit the data in both samples (adjusted goodness of fit; AGFI: 0.97 and 0.98). Internal consistency of the separate scales was good in both the Dutch and Scottish samples with Cronbach's alpha coefficients ranging from 0.79 to 0.93. Construct validity was assessed by correlating the MFI-20 to activities of daily living, anxiety and depression. Significant relations were assumed. Convergent validity was investigated by correlating the MFI scales with a visual analogue scale measuring fatigue and with a fatigue-scale derived from the Rotterdam Symptom Checklist. Results support the validity of the MFI-20. The highly similar results in the Dutch and Scottish sample suggest that the portrayal of fatigue using the MFI-20 is quite robust. PMID:8546913

  12. Numerical simulation of the fatigue behavior of additive manufactured titanium porous lattice structures.

    PubMed

    Zargarian, A; Esfahanian, M; Kadkhodapour, J; Ziaei-Rad, S

    2016-03-01

    In this paper, the effects of cell geometry and relative density on the high-cycle fatigue behavior of Titanium scaffolds produced by selective laser melting and electron beam melting techniques were numerically investigated by finite element analysis. The regular titanium lattice samples with three different unit cell geometries, namely, diamond, rhombic dodecahedron and truncated cuboctahedron, and the relative density range of 0.1-0.3 were analyzed under uniaxial cyclic compressive loading. A failure event based algorithm was employed to simulate fatigue failure in the cellular material. Stress-life approach was used to model fatigue failure of both bulk (struts) and cellular material. The predicted fatigue life and the damage pattern of all three structures were found to be in good agreement with the experimental fatigue investigations published in the literature. The results also showed that the relationship between fatigue strength and cycles to failure obeyed the power law. The coefficient of power function was shown to depend on relative density, geometry and fatigue properties of the bulk material while the exponent was only dependent on the fatigue behavior of the bulk material. The results also indicated the failure surface at an angle of 45° to the loading direction. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Effect of fatigue loading on critical current in stainless steel-laminated DI-BSCCO superconducting composite tape

    NASA Astrophysics Data System (ADS)

    Hojo, M.; Osawa, K.; Adachi, T.; Inoue, Y.; Osamura, K.; Ochiai, S.; Ayai, N.; Hayashi, K.

    2010-11-01

    Tensile strain tolerance of the critical current in (Bi,Pb)2Sr2Ca2Cu3Ox (Bi2223) composite superconductor is dramatically improved when the tape is laminated with stainless steel. For practical applications, it is important to understand whether this reinforcement by lamination is effective under fatigue loading. In the present study, we carried out fatigue tests in LN2 and measured the critical current at the specific fatigue cycles to clarify the strain tolerance of the critical current in stainless steel-laminated drastically innovative Bi2223 (DI-BSCCO®) tapes. The fatigue tests were carried out using a computer-controlled 10 kN servo-hydraulic fatigue testing machine with a load cell capacity of 2.5 kN. Tests under static loading showed that the irreversible stress at which the critical current is reduced by 1% from the original value (tensile stress at Ic/Ic0 = 0.99) was 315 MPa when measured at unloading state. The present fatigue tests results indicated that the critical current was maintained at over 98% of the original value at unloading state after stress cycles of 106 when the static irreversible stress was selected as the maximum stress under fatigue loading. Thus, laminated DI-BSCCO tapes showed excellent mechanical properties even under fatigue loading.

  14. Changes in interhemispheric motor connectivity after muscle fatigue

    NASA Astrophysics Data System (ADS)

    Peltier, Scott; LaConte, Stephen M.; Niyazov, Dmitriy; Liu, Jing; Sahgal, Vinod; Yue, Guang; Hu, Xiaoping

    2005-04-01

    Synchronized oscillations in resting state timecourses have been detected in recent fMRI studies. These oscillations are low frequency in nature (< 0.08 Hz), and seem to be a property of symmetric cortices. These fluctuations are important as a potential signal of interest, which could indicate connectivity between functionally related areas of the brain. It has also been shown that the synchronized oscillations decrease in some spontaneous pathological states. Thus, detection of these functional connectivity patterns may help to serve as a gauge of normal brain activity. The cognitive effects of muscle fatigue are not well characterized. Sustained fatigue has the potential to dynamically alter activity in brain networks. In this work, we examined the interhemispheric correlations in the left and right primary motor cortices and how they change with muscle fatigue. Resting-state functional MRI imaging was done before and after a repetitive unilateral fatigue task. We find that the number of significant correlations in the bilateral motor network decreases with fatigue. These results suggest that resting-state interhemispheric motor cortex functional connectivity is affected by muscle fatigue.

  15. The thermal fatigue resistance of H-13 Die Steel for aluminum die casting dies

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The effects of welding, five selected surface coatings, and stress relieving on the thermal fatigue resistance of H-13 Die Steel for aluminum die casting dies were studied using eleven thermal fatigue specimens. Stress relieving was conducted after each 5,000 cycle interval at 1050 F for three hours. Four thermal fatigue specimens were welded with H-13 or maraging steel welding rods at ambient and elevated temperatures and subsequently, subjected to different post-weld heat treatments. Crack patterns were examined at 5,000, 10,000, and 15,000 cycles. The thermal fatigue resistance is expressed by two crack parameters which are the average maximum crack and the average cracked area. The results indicate that a significant improvement in thermal fatigue resistance over the control was obtained from the stress-relieving treatment. Small improvements were obtained from the H-13 welded specimens and from a salt bath nitrogen and carbon-surface treatment. The other surface treatments and welded specimens either did not affect or had a detrimental influence on the thermal fatigue properties of the H-13 die steel.

  16. Effectiveness of the Wavelet Transform on the Surface EMG to Understand the Muscle Fatigue During Walk

    NASA Astrophysics Data System (ADS)

    Hussain, M. S.; Mamun, Md.

    2012-01-01

    Muscle fatigue is the decline in ability of a muscle to create force. Electromyography (EMG) is a medical technique for measuring muscle response to nervous stimulation. During a sustained muscle contraction, the power spectrum of the EMG shifts towards lower frequencies. These effects are due to muscle fatigue. Muscle fatigue is often a result of unhealthy work practice. In this research, the effectiveness of the wavelet transform applied to the surface EMG (SEMG) signal as a means of understanding muscle fatigue during walk is presented. Power spectrum and bispectrum analysis on the EMG signal getting from right rectus femoris muscle is executed utilizing various wavelet functions (WFs). It is possible to recognize muscle fatigue appreciably with the proper choice of the WF. The outcome proves that the most momentous changes in the EMG power spectrum are symbolized by WF Daubechies45. Moreover, this research has compared bispectrum properties to the other WFs. To determine muscle fatigue during gait, Daubechies45 is used in this research to analyze the SEMG signal.

  17. Validation of the Modified Fatigue Impact Scale in mild to moderate traumatic brain injury.

    PubMed

    Schiehser, Dawn M; Delano-Wood, Lisa; Jak, Amy J; Matthews, Scott C; Simmons, Alan N; Jacobson, Mark W; Filoteo, J Vincent; Bondi, Mark W; Orff, Henry J; Liu, Lin

    2015-01-01

    To evaluate the validity of the Modified Fatigue Impact Scale (MFIS) in veterans with a history of mild to moderate traumatic brain injury (TBI). Veterans (N = 106) with mild (92%) or moderate (8%) TBI. Veterans Administration Health System. Factor structure, internal consistency, convergent validity, sensitivity, and specificity of the MFIS were examined. Principal component analysis identified 2 viable MFIS factors: a Cognitive subscale and a Physical/Activities subscale. Item analysis revealed high internal consistency of the MFIS Total scale and subscale items. Strong convergent validity of the MFIS scales was established with 2 Beck Depression Inventory II fatigue items. Receiver operating characteristic curve analysis revealed good to excellent accuracy of the MFIS in classifying fatigued versus nonfatigued individuals. The MFIS is a valid multidimensional measure that can be used to evaluate the impact of fatigue on cognitive and physical functioning in individuals with mild to moderate TBI. The psychometric properties of the MFIS make it useful for evaluating fatigue and provide the potential for improving research on fatigue in this population.

  18. Fatigue Characterization of Fire Resistant Syntactic Foam Core Material

    NASA Astrophysics Data System (ADS)

    Hossain, Mohammad Mynul

    Eco-Core is a fire resistant material for sandwich structural application; it was developed at NC A&T State University. The Eco-Core is made of very small amount of phenolic resin and large volume of flyash by a syntactic process. The process development, static mechanical and fracture, fire and toxicity safety and water absorption properties and the design of sandwich structural panels with Eco-Core material was established and published in the literature. One of the important properties that is needed for application in transportation vehicles is the fatigue performance under different stress states. Fatigue data are not available even for general syntactic foams. The objective of this research is to investigate the fatigue performance of Eco-Core under three types of stress states, namely, cyclic compression, shear and flexure, then document failure modes, and develop empherical equations for predicting fatigue life of Eco-Core under three stress states. Compression-Compression fatigue was performed directly on Eco-Core cylindrical specimen, whereas shear and flexure fatigue tests were performed using sandwich beam made of E glass-Vinyl Ester face sheet and Eco-Core material. Compression-compression fatigue test study was conducted at two values of stress ratios (R=10 and 5), for the maximum compression stress (sigmamin) range of 60% to 90% of compression strength (sigmac = 19.6 +/- 0.25 MPa) for R=10 and 95% to 80% of compression strength for R=5. The failure modes were characterized by the material compliance change: On-set (2% compliance change), propagation (5%) and ultimate failure (7%). The number of load cycles correspond to each of these three damages were characterized as on-set, propagation and total lives. A similar approach was used in shear and flexure fatigue tests with stress ratio of R=0.1. The fatigue stress-number of load cycles data followed the standard power law equation for all three stress states. The constant of the equation were established for the three stress states and three types of the failure modes. This equation was used to estimate endurance limit (106 cycles) of the material. Like metallic materials, the compression fatigue life of Eco-Core was found to be dependent on the stress range instead of maximum or mean cyclic stress. Furthermore shear and flexural ultimate failure of the core material was found to be due to a combination of shear and tensile stress.

  19. Fatigue and durability of Nitinol stents.

    PubMed

    Pelton, A R; Schroeder, V; Mitchell, M R; Gong, Xiao-Yan; Barney, M; Robertson, S W

    2008-04-01

    Nitinol self-expanding stents are effective in treating peripheral artery disease, including the superficial femoral, carotid, and renal arteries. However, fracture occurrences of up to 50% have been reported in some stents after one year. These stent fractures are likely due to in vivo cyclic displacements. As such, the cyclic fatigue and durability properties of Nitinol-based endovascular stents are discussed in terms of an engineering-based experimental testing program. In this paper, the combined effects of cardiac pulsatile fatigue and stent-vessel oversizing are evaluated for application to both stents and stent subcomponents. In particular, displacement-controlled fatigue tests were performed on stent-like specimens processed from Nitinol microtubing. Fatigue data were collected with combinations of simulated oversizing conditions and pulsatile cycles that were identified by computer modeling of the stent that mimic in vivo deformation conditions. These data are analyzed with non-linear finite element computations and are illustrated with strain-life and strain-based constant-life diagrams. The utility of this approach is demonstrated in conjunction with 10 million cycle pulsatile fatigue tests of Cordis SMART Control((R)) Nitinol self-expanding stents to calculate fatigue safety factors and thereby predict in vivo fatigue resistance. These results demonstrate the non-linear constant fatigue-life response of Nitinol stents, whereby, contrary to conventional engineering materials, the fatigue life of Nitinol is observed to increase with increasing mean strain.

  20. Effect of La and W dopants on dielectric and ferroelectric properties of PZT thin films prepared by sol-gel process

    NASA Astrophysics Data System (ADS)

    Xiao, Mi; Zhang, Zebin; Zhang, Weikang; Zhang, Ping

    2018-01-01

    La or W-doped lead zirconate titanate thin films (PLZT or PZTW) were prepared on platinized silicon substrates by sol-gel process. The effects of La or W dopant on the phase development, microstructure, dielectric and ferroelectric characteristics of films were studied. For PLZT films, the optimum doping concentration was found to be 2 mol%. While for PZTW films, the dielectric and ferroelectric properties were found to be improved as the doping concentration increased. The fatigue properties of PLZT and PZTW thin films were also investigated, the results showed that A- or B-site donor doping could improve the fatigue properties of PZT thin films. The theory of oxygen vacancy was used to explain the performance improvement caused by donor doping.

  1. Computational simulation of acoustic fatigue for hot composite structures

    NASA Technical Reports Server (NTRS)

    Singhal, S. N.; Nagpal, V. K.; Murthy, P. L. N.; Chamis, C. C.

    1991-01-01

    This paper presents predictive methods/codes for computational simulation of acoustic fatigue resistance of hot composite structures subjected to acoustic excitation emanating from an adjacent vibrating component. Select codes developed over the past two decades at the NASA Lewis Research Center are used. The codes include computation of (1) acoustic noise generated from a vibrating component, (2) degradation in material properties of the composite laminate at use temperature, (3) dynamic response of acoustically excited hot multilayered composite structure, (4) degradation in the first-ply strength of the excited structure due to acoustic loading, and (5) acoustic fatigue resistance of the excited structure, including propulsion environment. Effects of the laminate lay-up and environment on the acoustic fatigue life are evaluated. The results show that, by keeping the angled plies on the outer surface of the laminate, a substantial increase in the acoustic fatigue life is obtained. The effect of environment (temperature and moisure) is to relieve the residual stresses leading to an increase in the acoustic fatigue life of the excited panel.

  2. Computational simulation of acoustic fatigue for hot composite structures

    NASA Technical Reports Server (NTRS)

    Singhal, Surendra N.; Murthy, Pappu L. N.; Chamis, Christos C.; Nagpal, Vinod K.; Sutjahjo, Edhi

    1991-01-01

    Predictive methods/computer codes for the computational simulation of acoustic fatigue resistance of hot composite structures subjected to acoustic excitation emanating from an adjacent vibrating component are discussed. Select codes developed over the past two decades at the NASA Lewis Research Center are used. The codes include computation of acoustic noise generated from a vibrating component, degradation in material properties of a composite laminate at use temperature, dynamic response of acoustically excited hot multilayered composite structure, degradation in the first ply strength of the excited structure due to acoustic loading, and acoustic fatigue resistance of the excited structure, including the propulsion environment. Effects of the laminate lay-up and environment on the acoustic fatigue life are evaluated. The results show that, by keeping the angled plies on the outer surface of the laminate, a substantial increase in the acoustic fatigue life is obtained. The effect of environment (temperature and moisture) is to relieve the residual stresses leading to an increase in the acoustic fatigue life of the excited panel.

  3. Fatigue after stroke: the development and evaluation of a case definition.

    PubMed

    Lynch, Joanna; Mead, Gillian; Greig, Carolyn; Young, Archie; Lewis, Susan; Sharpe, Michael

    2007-11-01

    While fatigue after stroke is a common problem, it has no generally accepted definition. Our aim was to develop a case definition for post-stroke fatigue and to test its psychometric properties. A case definition with face validity and an associated structured interview was constructed. After initial piloting, the feasibility, reliability (test-retest and inter-rater) and concurrent validity (in relation to four fatigue severity scales) were determined in 55 patients with stroke. All participating patients provided satisfactory answers to all the case definition probe questions demonstrating its feasibility For test-retest reliability, kappa was 0.78 (95% CI, 0.57-0.94, P<.01) and for inter-rater reliability kappa was 0.80 (95% CI, 0.62-0.99, P<.01). Patients fulfilling the case definition also had substantially higher fatigue scores on four fatigue severity scales (P<.001) indicating concurrent validity. The proposed case definition is feasible to administer and reliable in practice, and there is evidence of concurrent validity. It requires further evaluation in different settings.

  4. Effect of burdock extract on physical performance and physiological fatigue in mice

    PubMed Central

    CHEN, Wen-Chyuan; HSU, Yi-Ju; LEE, Mon-Chien; LI, Hua Shuai; HO, Chun-Sheng; HUANG, Chi-Chang; CHEN, Fu-An

    2017-01-01

    Burdock (BD) is a common vegetable with many pharmacological properties. However, few studies have examined the effect of BD on exercise performance and physical fatigue. We aimed to evaluate the potential beneficial effects of BD on fatigue and ergogenic functions following physical challenge in mice. Methods: Male ICR mice were divided into four groups to receive either vehicle, or BD at 348.5, 697 or 1,742.5 mg/kg/day, by daily oral gavage for 4 weeks. Exercise performance and fatigue were evaluated from forelimb grip strength, exhaustive swimming time, and post-exercise levels of physical fatigue-related biomarkers serum lactate, ammonia, glucose, and creatine kinase (CK). Results: BD supplementation elevated endurance and grip strength in a dose-dependent manner. It also significantly decreased lactate, ammonia, and CK levels after physical challenge. In addition, BD supplementation had few subchronic toxic effects. Conclusions: Supplementation with BD has a wide spectrum of bioactive effects, including health promotion, performance improvement, and fatigue reduction. PMID:28890521

  5. Predictive model of muscle fatigue after spinal cord injury in humans.

    PubMed

    Shields, Richard K; Chang, Ya-Ju; Dudley-Javoroski, Shauna; Lin, Cheng-Hsiang

    2006-07-01

    The fatigability of paralyzed muscle limits its ability to deliver physiological loads to paralyzed extremities during repetitive electrical stimulation. The purposes of this study were to determine the reliability of measuring paralyzed muscle fatigue and to develop a model to predict the temporal changes in muscle fatigue that occur after spinal cord injury (SCI). Thirty-four subjects underwent soleus fatigue testing with a modified Burke electrical stimulation fatigue protocol. The between-day reliability of this protocol was high (intraclass correlation, 0.96). We fit the fatigue index (FI) data to a quadratic-linear segmental polynomial model. FI declined rapidly (0.3854 per year) for the first 1.7 years, and more slowly (0.01 per year) thereafter. The rapid decline of FI immediately after SCI implies that a "window of opportunity" exists for the clinician if the goal is to prevent these changes. Understanding the timing of change in muscle endurance properties (and, therefore, load-generating capacity) after SCI may assist clinicians when developing therapeutic interventions to maintain musculoskeletal integrity.

  6. Prediction of Multidimensional Fatigue After Childhood Brain Injury.

    PubMed

    Crichton, Alison J; Babl, Franz; Oakley, Ed; Greenham, Mardee; Hearps, Stephen; Delzoppo, Carmel; Hutchison, Jamie; Beauchamp, Miriam; Anderson, Vicki A

    To determine (1) the presence of fatigue symptoms and predictors of fatigue after childhood brain injury and examine (2) the feasibility, reliability, and validity of a multidimensional fatigue measure (PedsQL Multidimensional Fatigue Scale [MFS]) obtained from parent and child perspectives. Emergency and intensive care units of a hospital in Melbourne, Australia. Thirty-five families (34 parent-proxies and 32 children) aged 8 to 18 years (mean child age = 13.29 years) with traumatic brain injury (TBI) of all severities (27 mild, 5 moderate, and 3 severe) admitted to the Royal Children's Hospital. Longitudinal prospective study. Fatigue data collected at 6-week follow-up (mean = 6.9 weeks). Postinjury child- and parent-rated fatigue (PedsQL MFS), mood, sleep, and pain based on questionnaire report: TBI severity (mild vs moderate/severe TBI). A score greater than 2 standard deviations below healthy control data indicated the presence of abnormal fatigue, rates of which were higher compared with normative data for both parent and child reports (47% and 29%). Fatigue was predicted by postinjury depression and sleep disturbance for parent, but not child ratings. Fatigue, as rated by children, was not significantly predicted by TBI severity or other symptoms. The PedsQL MFS demonstrated acceptable measurement properties in child TBI participants, evidenced by good feasibility and reliability (Cronbach α values >0.90). Interrater reliability between parent and child reports was poor to moderate. Results underscore the need to assess fatigue and associated sleep-wake disturbance and depression after child TBI from both parent and child perspectives.

  7. Fatigue behavior of thin-walled grade 2 titanium samples processed by selective laser melting. Application to life prediction of porous titanium implants.

    PubMed

    Lipinski, P; Barbas, A; Bonnet, A-S

    2013-12-01

    Because of its biocompatibility and high mechanical properties, the commercially pure grade 2 titanium (CPG2Ti) is largely used for fabrication of patient specific implants or hard tissue substitutes with complex shape. To avoid the stress-shielding and help their colonization by bone, prostheses with a controlled porosity are designed. The selective laser melting (SLM) is well adapted to manufacture such geometrically complicated structures constituted by struts with rough surfaces and relatively small diameters. Few studies were dedicated to characterize the fatigue properties of SLM processed samples and bulk parts. They followed conventional or standard protocols. The fatigue behavior of standard samples is very different from the one of porous raw structures. In this study, the SLM made "as built" (AB) and "heat treated" (HT) tubular samples were tested in fatigue. Wöhler curves were determined in both cases. The obtained endurance limits were equal to σD(AB)=74.5MPa and σD(HT)=65.7MPa, respectively. The heat treatment worsened the endurance limit by relaxation of negative residual stresses measured on the external surface of the samples. Modified Goodman diagram was established for raw specimens. Porous samples, based on the pattern developed by Barbas et al. (2012), were manufactured by SLM. Fatigue tests and finite element simulations performed on these samples enabled the determination of a simple rule of fatigue assessment. The method based on the stress gradient appeared as the best approach to take into account the notch influence on the fatigue life of CPG2Ti structures with a controlled porosity. The direction dependent apparent fatigue strength was found. A criterion based on the effective, or global, nominal stress was proposed taking into account the anisotropy of the porous structures. Thanks to this criterion, the usual calculation methods can be used to design bone substitutes, without a precise modelling of their internal fine porosity. © 2013 Elsevier Ltd. All rights reserved.

  8. Comparison of Microstructure and Mechanical Properties of Scalmalloy® Produced by Selective Laser Melting and Laser Metal Deposition.

    PubMed

    Awd, Mustafa; Tenkamp, Jochen; Hirtler, Markus; Siddique, Shafaqat; Bambach, Markus; Walther, Frank

    2017-12-23

    The second-generation aluminum-magnesium-scandium (Al-Mg-Sc) alloy, which is often referred to as Scalmalloy ® , has been developed as a high-strength aluminum alloy for selective laser melting (SLM). The high-cooling rates of melt pools during SLM establishes the thermodynamic conditions for a fine-grained crack-free aluminum structure saturated with fine precipitates of the ceramic phase Al₃-Sc. The precipitation allows tensile and fatigue strength of Scalmalloy ® to exceed those of AlSi10Mg by ~70%. Knowledge about properties of other additive manufacturing processes with slower cooling rates is currently not available. In this study, two batches of Scalmalloy ® processed by SLM and laser metal deposition (LMD) are compared regarding microstructure-induced properties. Microstructural strengthening mechanisms behind enhanced strength and ductility are investigated by scanning electron microscopy (SEM). Fatigue damage mechanisms in low-cycle (LCF) to high-cycle fatigue (HCF) are a subject of study in a combined strategy of experimental and statistical modeling for calculation of Woehler curves in the respective regimes. Modeling efforts are supported by non-destructive defect characterization in an X-ray computed tomography (µ-CT) platform. The investigations show that Scalmalloy ® specimens produced by LMD are prone to extensive porosity, contrary to SLM specimens, which is translated to ~30% lower fatigue strength.

  9. Comparison of Microstructure and Mechanical Properties of Scalmalloy® Produced by Selective Laser Melting and Laser Metal Deposition

    PubMed Central

    Awd, Mustafa; Tenkamp, Jochen; Hirtler, Markus; Siddique, Shafaqat; Bambach, Markus; Walther, Frank

    2017-01-01

    The second-generation aluminum-magnesium-scandium (Al-Mg-Sc) alloy, which is often referred to as Scalmalloy®, has been developed as a high-strength aluminum alloy for selective laser melting (SLM). The high-cooling rates of melt pools during SLM establishes the thermodynamic conditions for a fine-grained crack-free aluminum structure saturated with fine precipitates of the ceramic phase Al3-Sc. The precipitation allows tensile and fatigue strength of Scalmalloy® to exceed those of AlSi10Mg by ~70%. Knowledge about properties of other additive manufacturing processes with slower cooling rates is currently not available. In this study, two batches of Scalmalloy® processed by SLM and laser metal deposition (LMD) are compared regarding microstructure-induced properties. Microstructural strengthening mechanisms behind enhanced strength and ductility are investigated by scanning electron microscopy (SEM). Fatigue damage mechanisms in low-cycle (LCF) to high-cycle fatigue (HCF) are a subject of study in a combined strategy of experimental and statistical modeling for calculation of Woehler curves in the respective regimes. Modeling efforts are supported by non-destructive defect characterization in an X-ray computed tomography (µ-CT) platform. The investigations show that Scalmalloy® specimens produced by LMD are prone to extensive porosity, contrary to SLM specimens, which is translated to ~30% lower fatigue strength. PMID:29295528

  10. Reduced Radial Displacement of the Gastrocnemius Medialis Muscle After Electrically Elicited Fatigue.

    PubMed

    Macgregor, Lewis J; Ditroilo, Massimiliano; Smith, Iain J; Fairweather, Malcolm M; Hunter, Angus M

    2016-08-01

    Assessments of skeletal-muscle functional capacity often necessitate maximal contractile effort, which exacerbates muscle fatigue or injury. Tensiomyography (TMG) has been investigated as a means to assess muscle contractile function after fatigue; however, observations have not been contextualized by concurrent physiological measures. To measure peripheral-fatigue-induced alterations in mechanical and contractile properties of the plantar-flexor muscles through noninvasive TMG concurrently with maximal voluntary contraction (MVC) and passive muscle tension (PMT) to validate TMG as a gauge of peripheral fatigue. Pre- and posttest intervention with control. University laboratory. 21 healthy male volunteers. Subjects' plantar flexors were tested for TMG parameters, along with MVC and PMT, before and after either a 5-min rest period (control) or a 5-min electrical-stimulation intervention (fatigue). Temporal (contraction velocity) and spatial (radial displacement) contractile parameters of the gastrocnemius medialis were recorded through TMG. MVC was measured as an indicator of muscle fatigue, and PMT was measured to assess muscle stiffness. Radial displacement demonstrated a fatigue-associated reduction (3.3 ± 1.2 vs 4.0 ± 1.4 mm, P = .031), while contraction velocity remained unaltered. In addition, MVC significantly declined by 122.6 ± 104 N (P < .001) after stimulation (fatigue). PMT was significantly increased after fatigue (139.8 ± 54.3 vs 111.3 ± 44.6 N, P = .007). TMG successfully detected fatigue, evident from reduced MVC, by displaying impaired muscle displacement accompanied by elevated PMT. TMG could be useful in establishing skeletal-muscle fatigue status without exacerbating the functional decrement of the muscle.

  11. The PedsQL Multidimensional Fatigue Scale in young adults: feasibility, reliability and validity in a University student population.

    PubMed

    Varni, James W; Limbers, Christine A

    2008-02-01

    The PedsQL (Pediatric Quality of Life Inventory) is a modular instrument designed to measure health-related quality of life (HRQOL) and disease-specific symptoms in children and adolescents ages 2-18. The PedsQL Multidimensional Fatigue Scale was designed as a generic symptom-specific instrument to measure fatigue in pediatric patients ages 2-18. Since a sizeable number of pediatric patients prefer to remain with their pediatric providers after age 18, the objective of the present study was to determine the feasibility, reliability, and validity of the PedsQL Multidimensional Fatigue Scale in young adults. The 18-item PedsQL Multidimensional Fatigue Scale (General Fatigue, Sleep/Rest Fatigue, and Cognitive Fatigue domains), the PedsQL 4.0 Generic Core Scales Young Adult Version, and the SF-8 Health Survey were completed by 423 university students ages 18-25. The PedsQL Multidimensional Fatigue Scale evidenced minimal missing responses, achieved excellent reliability for the Total Scale Score (alpha = 0.90), distinguished between healthy young adults and young adults with chronic health conditions, was significantly correlated with the relevant PedsQL 4.0 Generic Core Scales and the SF-8 standardized scores, and demonstrated a factor-derived structure largely consistent with the a priori conceptual model. The results demonstrate the measurement properties of the PedsQL Multidimensional Fatigue Scale in a convenience sample of young adult university students. The findings suggest that the PedsQL Multidimensional Fatigue Scale may be utilized in the evaluation of fatigue for a broad age range.

  12. Low-cycle fatigue testing methods

    NASA Technical Reports Server (NTRS)

    Lieurade, H. P.

    1978-01-01

    The good design of highly stressed mechanical components requires accurate knowledge of the service behavior of materials. The main methods for solving the problems of designers are: determination of the mechanical properties of the material after cyclic stabilization; plotting of resistance to plastic deformation curves; effect of temperature on the life on low cycle fatigue; and simulation of notched parts behavior.

  13. Aircraft Corrosion

    DTIC Science & Technology

    1981-08-01

    protective coating between the plates, the reduction in frictional effects caused by the fluid did cause a significant reduction in fatigue life ... surface treatments for aluminum alloys , there has been a return to anodizing for new weapons systems rather than chromate conversion coatings . Both sulfuric...good alternate coating material in many applications requiring good corrosion resistance and minimal effect on fatigue properties. Only two aluminum

  14. Effect of Multi-Pass Ultrasonic Surface Rolling on the Mechanical and Fatigue Properties of HIP Ti-6Al-4V Alloy

    PubMed Central

    Li, Gang; Qu, Shengguan; Xie, Mingxin; Ren, Zhaojun; Li, Xiaoqiang

    2017-01-01

    The main purpose of this paper was to investigate the effect of a surface plastic deformation layer introduced by multi-pass ultrasonic surface rolling (MUSR) on the mechanical and fatigue properties of HIP Ti-6Al-4V alloys. Some microscopic analysis methods (SEM, TEM and XRD) were used to characterize the modified microstructure in the material surface layer. The results indicated that the material surface layer experienced a certain extent plastic deformation, accompanied by some dense dislocations and twin generation. Moreover, surface microhardness, residual stress and roughness values of samples treated by MUSR were also greatly improved compared with that of untreated samples. Surface microhardness and compressive residual stress were increased to 435 HV and −1173 MPa, respectively. The minimum surface roughness was reduced to 0.13 μm. The maximum depth of the surface hardening layer was about 55 μm. However, the practical influence depth was about 450 μm judging from the tensile and fatigue fracture surfaces. The ultimate tensile strength of the MUSR-treated sample increased to 990 MPa from the initial 963 MPa. The fatigue strength of the MUSR-treated sample was increased by about 25% on the base of 107 cycles, and the lifetime was prolonged from two times to two orders of magnitude at the applied stress amplitudes of 650–560 MPa. The improved mechanical and fatigue properties of MUSR-treated samples should be attributed to the combined effects of the increased microhardness and compressive residual stress, low surface roughness, grain refinement and micro-pore healing in the material surface-modified layer. PMID:28772494

  15. Experimental and theoretical investigation of temperature-dependent electrical fatigue studies on 1-3 type piezocomposites

    NASA Astrophysics Data System (ADS)

    Mohan, Y.; Arockiarajan, A.

    2016-03-01

    1-3 type piezocomposites are very attractive materials for transducers and biomedical application, due to its high electromechanical coupling effects. Reliability study on 1-3 piezocomposites subjected to cyclic loading condition in transducer application is one of the primary concern. Hence, this study focuses on 1-3 piezocomposites for various PZT5A1 fiber volume fraction subjected to electrical fatigue loading up-to 106 cycles and at various elevated temperature. Initially experiments are performed on 1-3 piezocomposites, in order to understand the degradation phenomena due to various range in amplitude of electric fields (unipolar & bipolar), frequency of applied electric field and for various ambient temperature. Performing experiments for high cycle fatigue and for different fiber volume fraction of PZT5A1 is a time consuming process. Hence, a simplified macroscopic uni-axial model based on physical mechanisms of domain switching and continuum damage mechanics has been developed to predict the non-linear fatigue behaviour of 1-3 piezocomposites for temperature dependent electrical fatigue loading conditions. In this model, damage effects namely domain pinning, frozen domains and micro cracks, are considered as a damage variable (ω). Remnant variables and material properties are considered as a function of internal damage variable and the growth of the damage is derived empirically based on the experimental observation to predict the macroscopic changes in the properties. The measured material properties and dielectric hysteresis (electric displacement vs. electric field) as well as butterfly curves (longitudinal strain vs. electric field) are compared with the simulated results. It is observed that variation in amplitude of bipolar electric field and temperature has a strong influence on the response of 1-3 piezocomposites.

  16. Cryogenic Fluid Management Experiment (CFME) trunnion verification testing

    NASA Technical Reports Server (NTRS)

    Bailey, W. J.; Fester, D. A.

    1983-01-01

    The Cryogenic Fluid Management Experiment (CFME) was designed to characterize subcritical liquid hydrogen storage and expulsion in the low-g space environment. The CFME has now become the storage and supply tank for the Cryogenic Fluid Management Facility, which includes transfer line and receiver tanks, as well. The liquid hydrogen storage and supply vessel is supported within a vacuum jacket to two fiberglass/epoxy composite trunnions which were analyzed and designed. Analysis using the limited available data indicated the trunnion was the most fatigue critical component in the storage vessel. Before committing the complete storage tank assembly to environmental testing, an experimental assessment was performed to verify the capability of the trunnion design to withstand expected vibration and loading conditions. Three tasks were conducted to evaluate trunnion integrity. The first determined the fatigue properties of the trunnion composite laminate materials. Tests at both ambient and liquid hydrogen temperatures showed composite material fatigue properties far in excess of those expected. Next, an assessment of the adequacy of the trunnion designs was performed (based on the tested material properties).

  17. Research on Microstructure and Properties of Welded Joint of High Strength Steel

    NASA Astrophysics Data System (ADS)

    Zhu, Pengxiao; Li, Yi; Chen, Bo; Ma, Xuejiao; Zhang, Dongya; Tang, Cai

    2018-01-01

    BS960 steel plates were welded by Laser-MAG and MAG. The microstructure and properties of the welded joints were investigated by optical microscope, micro-hardness tester, universal tensile testing machine, impact tester, scanning electron microscope (SEM) and fatigue tester. By a series of experiments, the following results were obtained: The grain size of the coarse grain zone with Laser-MAG welded joint is 20μm, and that with MAG welded joint is about 32μm, both of the fine grain region are composed of fine lath martensite and granular bainite; the width of the heat affected region with Laser-MAG is lower than that with MAG. The strength and impact energy of welded joints with Laser-MAG is higher than that with MAG. The conditioned fatigue limit of welded joint with Laser-MAG is 280MPa; however, the conditioned fatigue limit of welded joint with MAG is 250MPa.

  18. Measurement and analysis of critical crack tip processes during fatigue crack growth

    NASA Technical Reports Server (NTRS)

    Davidson, D. L.; Hudak, S. J.; Dexter, R. J.

    1985-01-01

    The mechanics of fatigue crack growth under constant-amplitudes and variable-amplitude loading were examined. Critical loading histories involving relatively simple overload and overload/underload cycles were studied to provide a basic understanding of the underlying physical processes controlling crack growth. The material used for this study was 7091-T7E69, a powder metallurgy aluminum alloy. Local crack-tip parameters were measured at various times before, during, and after the overloads, these include crack-tip opening loads and displacements, and crack-tip strain fields. The latter were useed, in combination with the materials cyclic and monotonic stress-strain properties, to compute crack-tip residual stresses. The experimental results are also compared with analytical predictions obtained using the FAST-2 computer code. The sensitivity of the analytical model to constant-amplitude fatigue crack growth rate properties and to through-thickness constrain are studied.

  19. The Effect of Ultrasonic Peening on Service Life of the Butt-Welded High-Temperature Steel Pipes

    NASA Astrophysics Data System (ADS)

    Daavari, Morteza; Vanini, Seyed Ali Sadough

    2015-09-01

    Residual stresses introduced by manufacturing processes such as casting, forming, machining, and welding have harmful effects on the mechanical behavior of the structures. In addition to the residual stresses, weld toe stress concentration can play a determining effect. There are several methods to improve the mechanical properties such as fatigue behavior of the welded structures. In this paper, the effects of ultrasonic peening on the fatigue life of the high-temperature seamless steel pipes, used in the petrochemical environment, have been investigated. These welded pipes are fatigued due to thermal and mechanical loads caused by the cycle of cooling, heating, and internal pressure fluctuations. Residual stress measurements, weld geometry estimation, electrochemical evaluations, and metallography investigations were done as supplementary examinations. Results showed that application of ultrasonic impact treatment has led to increased fatigue life, fatigue strength, and corrosion resistance of A106-B welded steel pipes in petrochemical corrosive environment.

  20. Fatigue damage monitoring for basalt fiber reinforced polymer composites using acoustic emission technique

    NASA Astrophysics Data System (ADS)

    Wang, Wentao; Li, Hui; Qu, Zhi

    2012-04-01

    Basalt fiber reinforced polymer (BFRP) is a structural material with superior mechanical properties. In this study, unidirectional BFRP laminates with 14 layers are made with the hand lay-up method. Then, the acoustic emission technique (AE) combined with the scanning electronic microscope (SEM) technique is employed to monitor the fatigue damage evolution of the BFRP plates in the fatigue loading tests. Time-frequency analysis using the wavelet transform technique is proposed to analyze the received AE signal instead of the peak frequency method. A comparison between AE signals and SEM images indicates that the multi-frequency peaks picked from the time-frequency curves of AE signals reflect the accumulated fatigue damage evolution and fatigue damage patterns. Furthermore, seven damage patterns, that is, matrix cracking, delamination, fiber fracture and their combinations, are identified from the time-frequency curves of the AE signals.

  1. Fatigue of Nitinol: The state-of-the-art and ongoing challenges.

    PubMed

    Mahtabi, M J; Shamsaei, Nima; Mitchell, M R

    2015-10-01

    Nitinol, a nearly equiatomic alloy of nickel and titanium, has been considered for a wide range of applications including medical and dental devices and implants as well as aerospace and automotive components and structures. The realistic loading condition in many of these applications is cyclic; therefore, fatigue is often the main failure mode for such components and structures. The fatigue behavior of Nitinol involves many more complexities compared with traditional metal alloys arising from its uniqueness in material properties such as superelasticity and shape memory effects. In this paper, a review of the present state-of-the-art on the fatigue behavior of superelastic Nitinol is presented. Various aspects of fatigue of Nitinol are discussed and microstructural effects are explained. Effects of material preparation and testing conditions are also reviewed. Finally, several conclusions are made and recommendations for future works are offered. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. The effect of advanced ultrasonic forging on fatigue fracture mechanisms of welded Ti-6A1-4V alloy

    NASA Astrophysics Data System (ADS)

    Smirnova, A.; Pochivalov, Yu.; Panin, V.; Panin, S.; Eremin, A.; Gorbunov, A.

    2017-12-01

    The current study is devoted to application of advanced postwelding ultrasonic forging to joints formed by laser welding of Ti-6A1-4V alloy in order to enhance their mechanical properties and fatigue durability. Low cycle fatigue tests were performed via digital image correlation technique used to obtain strain fields and in situ characterization of deformation, crack growth and fracture. Fracture surfaces were studied by SEM analysis accompanied with calculation of fracture patterns percentage. The fatigue tests demonstrate the high increase in the number of cycles until fracture (from 17 000 to 32 000 cycles) which could be explained by high ductility of welded material after treatment. This leads to lower fatigue crack growth rate due to higher energy dissipation. The obtained effect is attributable only for small cracks on micro-/mesoscales and fails to play a significant role for macro cracks.

  3. Fatigue of die cast zinc alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schrems, K.K.; Dogan, O.N.; Goodwin, F.E.

    2006-04-01

    The rotating bending fatigue limit of die cast zinc alloy 2, alloy 3, alloy 5, AcuZinc 5, and ZA-8 were determined as a part of an on-going program by ILZRO into the mechanical properties of die cast zinc. The stress-life (S-N) curves of alloys 3, 5, AcuZinc 5, and ZA-8 were determined previously. This presentation reports the results of the S-N curve for Alloy 2 and the calculated fatigue limits for all five alloys. During the previous stress-life testing, the samples were stopped at 10 million cycles and the fatigue limit for alloy 3, alloy 5, and AcuZinc 5 appearedmore » to be higher and the fatigue limit for ZA-8 appeared to be lower than the values reported in the literature. This was further investigated in alloy 5 and ZA-8 by testing continuous cast bulk alloy 5 and ZA-8.« less

  4. A study of elevated temperature testing techniques for the fatigue behavior of PMCS: Application to T650-35/AMB21

    NASA Technical Reports Server (NTRS)

    Gyekenyesi, Andrew L.; Gastelli, Michael G.; Ellis, John R.; Burke, Christopher S.

    1995-01-01

    An experimental study was conducted to investigate the mechanical behavior of a T650-35/AMB21 eight-harness satin weave polymer composite system. Emphasis was placed on the development and refinement of techniques used in elevated temperature uniaxial PMC testing. Issues such as specimen design, gripping, strain measurement, and temperature control and measurement were addressed. Quasi-static tensile and fatigue properties (R(sub sigma) = 0.1) were examined at room and elevated temperatures. Stiffness degradation and strain accumulation during fatigue cycling were recorded to monitor damage progression and provide insight for future analytical modeling efforts. Accomplishments included an untabbed dog-bone specimen design which consistently failed in the gage section, accurate temperature control and assessment, and continuous in-situ strain measurement capability during fatigue loading at elevated temperatures. Finally, strain accumulation and stiffness degradation during fatigue cycling appeared to be good indicators of damage progression.

  5. Fracture resistance and fatigue crack growth characteristics of two Al-Cu-Mg-Zr alloys

    NASA Technical Reports Server (NTRS)

    Sarkar, Bhaskar; Lisagor, W. B.

    1992-01-01

    The dependence of strength, fracture resistance, and fatigue crack growth rate on the aging conditions of two alloy compositions based on Al-3.7Cu-1.85Mg-0.2Mn is investigated. Mechanical properties were evaluated in two heat treatment conditions and in two orientations (longitudinal and transverse). Compact tension specimens were used to determine fatigue crack growth characteristics and fracture resistance. The aging response was monitored on coupons using hardness measurements determined with a standard Rockwell hardness tester. Fracture resistance is found to increase with increasing yield strength during artificial aging of age-hardenable 2124-Zr alloys processed by powder metallurgy techniques. Fatigue crack growth rate increases with increasing strength. It is argued that these changes are related to deformation modes of the alloys; a homogeneous deformation mode tends to increase fracture resistance and to decrease the resistance to the fatigue crack propagation rate.

  6. Relationship between fatigue life in the creep-fatigue region and stress-strain response

    NASA Technical Reports Server (NTRS)

    Berkovits, A.; Nadiv, S.

    1988-01-01

    On the basis of mechanical tests and metallographic studies, strainrange partitioned lives were predicted by introducing stress-strain materials parameters into the Universal Slopes Equation. This was the result of correlating fatigue damage mechanisms and deformation mechanisms operating at elevated temperatures on the basis of observed mechanical and microstructural behavior. Correlation between high temperature fatigue and stress strain properties for nickel base superalloys and stainless steel substantiated the method. Parameters which must be evaluated for PP- and CC- life are the maximum stress achievable under entirely plastic and creep conditions respectively and corresponding inelastic strains, and the elastic modulus. For plasticity/creep interaction conditions (PC and CP) two more pairs of stress strain parameters must be ascertained.

  7. Low cycle fatigue properties of type 316 stainless steel in vacuum

    NASA Astrophysics Data System (ADS)

    Furuya, Kazuo; Nagata, Norio; Watanabe, Ryoji

    1980-04-01

    Low cycle fatigue tests in vacuum were carried out on Type 316 stainless steel under the push-pull type, strain-controlled, continuous cycling mode in the temperature range from room temperature to 1073 K and strain rate from 5 × 10 -3 to 5 × 10 -5/s . Little temperature dependence of the fatigue life at a given plastic strain range is observed. The fatigue life decreases with decreasing strain rate at room temperature and 823 K, but shows little change at 973 and 1073 K. The fracture mode is transgranular in most cases, but an indication of intergranular cracking is observed in the specimens tested at 1073 K and at the lowest strain rate. The results are treated by the general adsorption model.

  8. Differences in the Microstructure and Fatigue Properties of Dentin Between Residents of North and South America

    PubMed Central

    Ivancik, J.; Naranjo, M.; Correa, S.; Ossa, A.; Tay, F.R.; Pashley, D.H.; Arola, D.

    2014-01-01

    Spatial variations in the microstructure of dentin contribute to its mechanical behavior. Objective The objective of this investigation was to compare the microstructure and fatigue behavior of dentin from donors of two different countries. Methods Caries-free third molars were obtained from dental practices in Colombia, South America and the US to assemble two age-matched samples. The microstructure of the coronal dentin was evaluated at three characteristic depths (i.e. deep, middle and superficial dentin) using scanning electron microscopy and image processing techniques. The mechanical behavior of dentin in these three regions was evaluated by the fatigue crack growth resistance. Cyclic crack growth was achieved in-plane with the dentin tubules and the fatigue crack growth behavior was characterized in terms of the stress intensity threshold and the Paris Law parameters. Results There was no difference in the tubule density between the dentin of patients from the two countries. However, there were significant differences (p≤0.05) in the tubule lumen diameters between the two groups in the deep and peripheral regions. In regards to the fatigue resistance, there was a significant increase (p≤0.05) in threshold stress intensity range, and a significant decrease in fatigue crack growth coefficient with increasing distance from the pulp in teeth from the US donors. In contrast, these properties were independent of location for the dentin of teeth from the Colombian donors. Conclusions The microstructure of dentin and its mechanical behavior appear to be a function of patient background, which may include environmental factors and/or ethnicity. PMID:24960115

  9. Several submaximal exercise tests are reliable, valid and acceptable in people with chronic pain, fibromyalgia or chronic fatigue: a systematic review.

    PubMed

    Ratter, Julia; Radlinger, Lorenz; Lucas, Cees

    2014-09-01

    Are submaximal and maximal exercise tests reliable, valid and acceptable in people with chronic pain, fibromyalgia and fatigue disorders? Systematic review of studies of the psychometric properties of exercise tests. People older than 18 years with chronic pain, fibromyalgia and chronic fatigue disorders. Studies of the measurement properties of tests of physical capacity in people with chronic pain, fibromyalgia or chronic fatigue disorders were included. Studies were required to report: reliability coefficients (intraclass correlation coefficient, alpha reliability coefficient, limits of agreements and Bland-Altman plots); validity coefficients (intraclass correlation coefficient, Spearman's correlation, Kendal T coefficient, Pearson's correlation); or dropout rates. Fourteen studies were eligible: none had low risk of bias, 10 had unclear risk of bias and four had high risk of bias. The included studies evaluated: Åstrand test; modified Åstrand test; Lean body mass-based Åstrand test; submaximal bicycle ergometer test following another protocol other than Åstrand test; 2-km walk test; 5-minute, 6-minute and 10-minute walk tests; shuttle walk test; and modified symptom-limited Bruce treadmill test. None of the studies assessed maximal exercise tests. Where they had been tested, reliability and validity were generally high. Dropout rates were generally acceptable. The 2-km walk test was not recommended in fibromyalgia. Moderate evidence was found for reliability, validity and acceptability of submaximal exercise tests in patients with chronic pain, fibromyalgia or chronic fatigue. There is no evidence about maximal exercise tests in patients with chronic pain, fibromyalgia and chronic fatigue. Copyright © 2014. Published by Elsevier B.V.

  10. Psychometric properties of the Polish version of the Multidimensional Fatigue Inventory-20 in cancer patients.

    PubMed

    Buss, Tomasz; Kruk, Agnieszka; Wiśniewski, Piotr; Modlinska, Aleksandra; Janiszewska, Justyna; Lichodziejewska-Niemierko, Monika

    2014-10-01

    Multidimensional questionnaires estimating cancer-related fatigue (CRF) as a symptom cluster or a clinical syndrome primarily have been used and validated in English-speaking populations. However, cultural issues and language peculiarities can affect CRF assessment The main aims of this study were to evaluate the psychometric properties of the Polish version of the Multidimensional Fatigue Inventory-20 (MFI-20) and to deliver to clinicians a multidimensional tool for CRF assessment in Polish-speaking patients with cancer. After forward-backward translation procedures, the Polish version of MFI-20 was administered to 340 cancer patients. The Polish MFI-20 was appraised in terms of acceptability, reliability, and validity. Internal consistency was assessed by calculating Cronbach's alpha coefficients. Structural validity was evaluated with confirmatory factor analysis. The translated MFI-20 was well accepted; 90% of subjects fully completed the questionnaire. The overall Cronbach's alpha coefficient was 0.9, ranging from 0.57 to 0.81. All correlation coefficients among Numeric Rating Scale-fatigue, fatigue-related items from the European Organization for Research and Treatment of Cancer Quality of Life Core-30 questionnaire, and the MFI--20 were statistically significant (P < 0.001). Confirmatory factor analysis demonstrated good structural validity and revealed only three dimensions in the Polish version of the MFI-20-physical and mental fatigue as well as reduced motivation. The Polish version of the MFI-20 is well accepted by patients, reliable, and a valid instrument to assess CRF in Polish cancer patients. Copyright © 2014 American Academy of Hospice and Palliative Medicine. Published by Elsevier Inc. All rights reserved.

  11. Fatigue crack growth behavior of pressure vessel steels and submerged arc weldments in a high-temperature pressurized water environment

    NASA Astrophysics Data System (ADS)

    Liaw, P. K.; Logsdon, W. A.; Begley, J. A.

    1989-10-01

    The fatigue crack growth rate (FCGR) properties of SA508 C1 2a and SA533 Gr A C1 2 pressure vessel steels and the corresponding automatic submerged are weldments were developed in a high-temperature pressurized water (HPW) environment at 288 °C (550°F) and 7.2 MPa (1044 psi) at load ratios of 0.02 and 0.50. The HPW enviromment FCGR properties of these pressure vessel steels and submerged arc weldments were generally conservative, compared with the approrpriate American Society of Mechanical Engineers (ASME) Section XI water environmental reference curve. The growth rate of fatigue cracks in the base materials, however, was considerably faster in the HPW environment than in a corresponding 288°C (550°F) base line air environment. The growth rate of fatigue cracks in the two submerged are weldments was also accelerated in the HPW environment but to a significantly lesser degree than that demonstrated by the corresponding base materials. In the air environment, fatigue striations were observed, independent of material and load ratio, while in the HPW environment, some intergranular facets were present. The greater environmental effect on crack growth rates displayed by the base materials, as compared with the weldments, was attributed to a different sulfide composition and morphology.

  12. PMMA-hydroxyapatite composite material retards fatigue failure of augmented bone compared to augmentation with plain PMMA: in vivo study using a sheep model.

    PubMed

    Arabmotlagh, Mohammad; Bachmaier, Samuel; Geiger, Florian; Rauschmann, Michael

    2014-11-01

    Polymethylmethacrylate (PMMA) is the most commonly used void filler for augmentation of osteoporotic vertebral fracture, but the differing mechanical features of PMMA and osteoporotic bone result in overload and failure of adjacent bone. The aim of this study was to compare fatigue failure of bone after augmentation with PMMA-nanocrystalline hydroxyapatite (HA) composite material or with plain PMMA in a sheep model. After characterization of the mechanical properties of a composite material consisting of PMMA and defined amounts (10, 20, and 30% volume fraction) of HA, the composite material with 30% volume fraction HA was implanted in one distal femur of sheep; plain PMMA was implanted in the other femur. Native non-augmented bone served as control. Three and 6 months after implantation, the augmented bone samples were exposed to cyclic loading and the evolution of damage was investigated. The fatigue life was highest for the ovine native bone and lowest for bone-PMMA specimens. Bone-composite specimens showed significantly higher fatigue life than the respective bone-PMMA specimens in both 3- and 6-month follow-up groups. These results suggest that modification of mechanical properties of PMMA by addition of HA to approximate those of cancellous bone retards fatigue failure of the surrounding bone compared to augmented bone with plain PMMA. © 2014 Wiley Periodicals, Inc.

  13. Physical Exercise and Cancer-Related Fatigue in Hospitalized Patients: Role of the Clinical Nurse Leader in Implementation of Interventions.

    PubMed

    McGowan, Katrina

    2016-02-01

    Guidelines suggest that aerobic endurance training and moderate resistance training lessen the effects of cancer-related fatigue (CRF). However, specifics regarding frequency, intensity, and type of physical activity required to alleviate fatigue are less specific. In addition, outcomes of these interventions during the initial stages of active treatment are not well documented. The purpose of this article is to review the current evidence-based literature regarding the effects of physical exercise on CRF and the role that the clinical nurse leader (CNL) can play in implementing interventions to address CRF and promote physical exercise to improve patient outcomes. A literature review of the effect of physical exercise on CRF was conducted using the CINAHL®, PubMed, and Google Scholar databases. As leaders in health care, CNLs have the knowledge and skill to take an active role in managing CRF and to develop evidence-based interventions to address fatigue in this patient population. Interventions may include creating and evaluating individualized exercise plans for inpatients with cancer and/or developing educational programs for the inpatient setting that may be continued after discharge and during outpatient treatment.

  14. Synthesis of arborescent model polymer structures by living carbocationic polymerization for structure-property studies

    NASA Astrophysics Data System (ADS)

    Dos Santos Freire, Lucas

    Polyisobutylene is fully saturated, therefore exhibits outstanding chemical, oxidative and thermal stability,1 which makes it ideally suitable as a model to study mechanical and viscoelastic properties of elastomers, and to correlate properties with structure. The main objective of this dissertation was to develop a fundamental understanding of the mechanism of the synthesis of arborescent (hyperbranched) polyisobutylene (arbPIB) by inimer-type (initiator-monomer) living carbocationic polymerization. The strategy for the effective synthesis of arbPIBs consists of copolymerizing the 4-(2-methoxyisopropyl)styrene (IUPAC name: p-vinylcumyl methyl ether) (IB) via controlled/living carbocationic polymerization using TiCl4 coinitiator. In situ FTIR monitoring showed that the self-condensing vinyl polymerization (SCVP) of MeOIM is possible, and that when copolymerizing MeOIM and IB, a nearly alternating structure and multiple end groups are obtained. arbPIB was synthesized and the repeatability of the polymerization was demonstrated. It was found that higher branching was obtained with increasing [MeOIM] and that branching did not further increase if additional IB was added after the MeOIM had reacted completely. No evident changes were observed when switching solvents from Hx/MeCl to a MeCHx/MeCl mixture. Branching parameters showed that arbPIBs have a behavior between polydisperse stars and polycondensates with the number of branches increasing linearly with molecular weight. Novel arbPIB-based block copolymers (TPEs) were synthesized and it was found that copolymers with low Tg short end blocks and less than 5 mol% of a second monomer exhibit thermoplastic elastomeric properties. The materials were strongly reinforced when compounded with carbon black. arbPIB-b-PS are prospective biomaterials and the establishment of reliable methods for evaluating their short and long term properties is a subject of great importance. A dynamic fatigue testing methodology was developed for small, soft rubbery specimens that can be implanted into small animals and re-tested after explantation. Higher ultimate tensile strength and lower elongation at break were measured on microdumbbells than on standard dumbbells. Fatigue testing microdumbbells induced higher stresses at the same strain rate, thus presenting the worst case scenario and being appropriate for fatigue tests. The fatigue limit of linear polystyrene-b-polyisobutylene- b-polystyrene (SIBS) and analogous arbPIB- b-PS samples were determined by using stepwise increasing strain tests developed for fatigue analysis. The presence of branching and a broader molecular weight distribution arbPIB-b-PS led to better mechanical stability and higher fatigue limit than in analogous linear SIBS samples.

  15. Surface modification and fatigue behavior of nitinol for load bearing implants

    NASA Astrophysics Data System (ADS)

    Bernard, Sheldon A.

    Musculoskeletal disorders are recognized amongst the most significant human health problems that exist today. Even though considerable research and development has gone towards understanding musculoskeletal disorders, there is still lack of bone replacement materials that are appropriate for restoring lost structures and functions, particularly for load-bearing applications. Many materials on the market today, such as titanium and stainless steel, suffer from significantly higher modulus than natural bone and low bioactivity leading to stress shielding and implant loosening over longer time use. Nitinol (NiTi) is an equiatomic intermetallic compound of nickel and titanium whose unique biomechanical and biological properties contributed to its increasing use as a biomaterial. An innovative method for creating dense and porous net shape NiTi alloy parts has been developed to improve biological properties while maintaining comparable or better mechanical properties than commercial materials that are currently in use. Laser engineered net shaping (LENS(TM)) and surface electrochemistry modification was used to create dense/porous samples and micro textured surfaces on NiTi parts, respectively. Porous implants are known to promote cell adhesion and have a low elastic modulus, a combination that can significantly increase the life of an implant. However, porosity can significantly reduce the fatigue life of an implant, and very little work has been reported on the fatigue behavior of bulk porous metals, specifically on porous nitinol alloy. High-cycle rotating bending and compression-compression fatigue behavior of porous NiTi fabricated using LENS(TM) were studied. In cyclic compression loading, plastic strain increased with increasing porosity and it was evident that maximum strain was achieved during the first 50000 cycles and remained constant throughout the remaining loading. No failures were observed due to loading up to 150% of the yield strength. When subjected to rotary bending fatigue, samples demonstrated a high tolerance to failure, up to 50% of the yield stress. Using anodization, improvements to the surface wettability were made by lowering the contact angle from 32° to less than 5°, which prove to enhance the bioactivity of the nitinol surface in the cell study. The surface free energy was also calculated to show comparable properties to that of cpTi. Ni ion release was studied over a 8 week duration and found that anodization not only reduces the amount of metal ion release but also decreases the rate of release as well. This work was aimed at understanding the effects of porosity characteristics, microstructure, surface morphology and fatigue behavior of nitinol on its mechanical and biological properties.

  16. Reliability of surface electromyography in the assessment of paraspinal muscle fatigue: an updated systematic review.

    PubMed

    Mohseni Bandpei, Mohammad A; Rahmani, Nahid; Majdoleslam, Basir; Abdollahi, Iraj; Ali, Shabnam Shah; Ahmad, Ashfaq

    2014-09-01

    The purpose of this study was to review the literature to determine whether surface electromyography (EMG) is a reliable tool to assess paraspinal muscle fatigue in healthy subjects and in patients with low back pain (LBP). A literature search for the period of 2000 to 2012 was performed, using PubMed, ProQuest, Science Direct, EMBASE, OVID, CINAHL, and MEDLINE databases. Electromyography, reliability, median frequency, paraspinal muscle, endurance, low back pain, and muscle fatigue were used as keywords. The literature search yielded 178 studies using the above keywords. Twelve articles were selected according to the inclusion criteria of the study. In 7 of the 12 studies, the surface EMG was only applied in healthy subjects, and in 5 studies, the reliability of surface EMG was investigated in patients with LBP or a comparison with a control group. In all of these studies, median frequency was shown to be a reliable EMG parameter to assess paraspinal muscles fatigue. There was a wide variation among studies in terms of methodology, surface EMG parameters, electrode location, procedure, and homogeneity of the study population. The results suggest that there seems to be a convincing body of evidence to support the merit of surface EMG in the assessment of paraspinal muscle fatigue in healthy subject and in patients with LBP. Copyright © 2014 National University of Health Sciences. Published by Elsevier Inc. All rights reserved.

  17. Modafinil for the Improvement of Patient Outcomes Following Traumatic Brain Injury.

    PubMed

    Borghol, Amne; Aucoin, Michael; Onor, Ifeanyichukwu; Jamero, Dana; Hawawini, Fadi

    2018-04-01

    Objective : The authors sought to assess the literature evidence on the efficacy of modafinil use in patients with fatigue or excessive daytime sleepiness (EDS) secondary to traumatic brain injury (TBI). Method of Research : A literature search of Medline and PubMed was performed using the EBSCOhost database. Primary literature, observational studies, meta-analyses, case reports, and systematic reviews were assessed for content regarding modafinil and psychostimulant use in patients with TBI. Of the 23 articles collected, three randomized, controlled studies, three observational studies, one case report, and two systematic reviews gave a description of modafinil use in TBI patients. Results and Conclusion : Modafinil is a central nervous system stimulant with well-established effectiveness in the treatment of narcolepsy and shift-work sleep disorder. There is conflicting evidence about the benefits of modafinil in the treatment of fatigue and EDS secondary to TBI. One randomized, controlled study states that modafinil does not significantly improve patient wakefulness, while another concludes that modafinil corrects EDS but not fatigue. An observational study provides evidence that modafinil increases alertness in fatigued patients with past medical history of brainstem diencephalic stroke or multiple sclerosis. Modafinil appears to have the potential to improve wakefulness in patients with TBI. A prospective, double-blinded, randomized, crossover trial of modafinil for the management of fatigue in ischemic stroke patients is currently being conducted, and further studies demonstrating consistent results are needed before making a conclusive decision.

  18. Low cycle fatigue properties of MAR-M-246 Hf in hydrogen. [a cast nickel-base alloy

    NASA Technical Reports Server (NTRS)

    Warren, J. R.

    1979-01-01

    The transverse, low cycle fatigue properties were determined for directionally solidified and single crystal samples of a cast nickel-base alloy proposed for use in space propulsion systems in pure or partial high pressure hydrogen environments at elevated temperatures. The test temperature was 760 C (1400F) and the pressure of the gaseous hydrogen was 34.5 MPa (5000 psig). Low cycle fatique life was established by strain controlled testing using smooth specimens and a servohydraulic closed-loop test machine modified with a high pressure environmental chamber. Results and conclusions are discussed.

  19. Effect of Creep and Oxidation on Reduced Creep-Fatigue life of Ni-based Alloy 617 at 850 C

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Xiang; Yang, Zhiqing; Sokolov, Mikhail A

    Low cycle fatigue (LCF) and creep fatigue testing of Ni-based alloy 617 was carried out at 850 C. Compared with its LCF life, the material s creep fatigue life decreases to different extents depending on test conditions. To elucidate the microstructure-fatigue property relationship for alloy 617 and the effect of creep and oxidation on its fatigue life, systematic microstructural investigations were carried out using scanning electron microscopy, energy-dispersive X-ray spectroscopy, and electron backscatter diffraction (EBSD). In LCF tests, as the total strain range increased, deformations concentrated near high angle grain boundaries (HAGBs). The strain hold period in the creep fatiguemore » tests introduced additional creep damage to the material, which revealed the detrimental effect of the strain hold time on the material fatigue life in two ways. First, the strain hold time enhanced the localized deformation near HAGBs, resulting in the promotion of intergranular cracking of alloy 617. Second, the strain hold time encouraged grain boundary sliding, which resulted in interior intergranular cracking of the material. Oxidation accelerated the initiation of intergranular cracking in alloy 617. In the crack propagation stage, if oxidation was promoted and the cyclic oxidation damage was greater than the fatigue damage, oxidation-assisted intergranular crack growth resulted in a significant reduction in the material s fatigue life.« less

  20. Ultrasonic Fatigue Endurance of Thin Carbon Fiber Sheets

    NASA Astrophysics Data System (ADS)

    Domínguez Almaraz, Gonzalo M.; Ruiz Vilchez, Julio A.; Dominguez, Aymeric; Meyer, Yann

    2016-04-01

    Ultrasonic fatigue tests were carried out on thin carbon fiber sheets (0.3 mm of thickness) to determine the fatigue endurance under very high-frequency loading (20 kHz). This material, called the gas diffusion layer (GDL), plays a major role in the overall performances of proton exchange membrane fuel cells (PEMFCs). The study of its physical-chemical properties is an on-going subject in the literature; nevertheless, no knowledge is available concerning the high-frequency fatigue endurance. A principal difficulty in carrying out ultrasonic fatigue tests on this material was to determine the dimensions of testing specimen to fit the resonance condition. This aspect was solved by modal numerical simulation: The testing specimen has been a combination of a low-strength steel frame (to facilitate the attachment to the ultrasonic machine and to increase the mass of the specimen), and the carbon fiber hourglass-shape profile. Under resonance condition, a stationary elastic wave is generated along the specimen that induces high stress at the neck section and high displacements at the ends. Results show that fatigue life was close to 3 × 108 cycles when the high Von Misses stress at the neck section was 170 MPa, whereas fatigue life attains the 4.5 × 109 cycles when stress decreases to 117 MPa. Crack initiation and propagation were analyzed, and conclusions were drawn concerning the fatigue endurance of these fiber carbon sheets under ultrasonic fatigue testing.

  1. ON THE DURABILITY OF RESIN-DENTIN BONDS: IDENTIFYING THE WEAKEST LINKS

    PubMed Central

    Zhang, Zihou; Beitzel, Dylan; Mutluay, Mustafa; Tay, Franklin R.; Pashley, David H.; Arola, Dwayne

    2015-01-01

    Fatigue of resin-dentin adhesive bonds is critical to the longevity of resin composite restorations. Objectives The objectives were to characterize the fatigue and fatigue crack growth resistance of resin-dentin bonds achieved using two different commercial adhesives and to identify apparent “weak-links”. Methods Bonded interface specimens were prepared using Adper Single Bond Plus (SB) or Adper Scotchbond Multi-Purpose (SBMP) adhesives and 3M Z100 resin composite according to the manufacturers instructions. The stress-life fatigue behavior was evaluated using the twin bonded interface approach and the fatigue crack growth resistance was examined using bonded interface Compact Tension (CT) specimens. Fatigue properties of the interfaces were compared to those of the resin-adhesive, resin composite and coronal dentin. Results The fatigue strength of the SBMP interface was significantly greater than that achieved by SB (p≤0.01). Both bonded interfaces exhibited significantly lower fatigue strength than that of the Z100 and dentin. Regarding the fatigue crack growth resistance, the stress intensity threshold (ΔKth) of the SB interface was significantly greater (p≤0.01) than that of the SBMP, whereas the ΔKth of the interfaces was more than twice that of the parent adhesives. Significance Collagen fibril reinforcement of the resin adhesive is essential to the fatigue crack growth resistance of resin-dentin bonds. Resin tags that are not well hybridized into the surrounding intertubular dentin and/or poor collagen integrity are detrimental to the bonded interface durability. PMID:26169318

  2. Statistical optimisation techniques in fatigue signal editing problem

    NASA Astrophysics Data System (ADS)

    Nopiah, Z. M.; Osman, M. H.; Baharin, N.; Abdullah, S.

    2015-02-01

    Success in fatigue signal editing is determined by the level of length reduction without compromising statistical constraints. A great reduction rate can be achieved by removing small amplitude cycles from the recorded signal. The long recorded signal sometimes renders the cycle-to-cycle editing process daunting. This has encouraged researchers to focus on the segment-based approach. This paper discusses joint application of the Running Damage Extraction (RDE) technique and single constrained Genetic Algorithm (GA) in fatigue signal editing optimisation.. In the first section, the RDE technique is used to restructure and summarise the fatigue strain. This technique combines the overlapping window and fatigue strain-life models. It is designed to identify and isolate the fatigue events that exist in the variable amplitude strain data into different segments whereby the retention of statistical parameters and the vibration energy are considered. In the second section, the fatigue data editing problem is formulated as a constrained single optimisation problem that can be solved using GA method. The GA produces the shortest edited fatigue signal by selecting appropriate segments from a pool of labelling segments. Challenges arise due to constraints on the segment selection by deviation level over three signal properties, namely cumulative fatigue damage, root mean square and kurtosis values. Experimental results over several case studies show that the idea of solving fatigue signal editing within a framework of optimisation is effective and automatic, and that the GA is robust for constrained segment selection.

  3. The influence of cell morphology on the compressive fatigue behavior of Ti-6Al-4V meshes fabricated by electron beam melting.

    PubMed

    Zhao, S; Li, S J; Hou, W T; Hao, Y L; Yang, R; Misra, R D K

    2016-06-01

    Additive manufacturing technique is a promising approach for fabricating cellular bone substitutes such as trabecular and cortical bones because of the ability to adjust process parameters to fabricate different shapes and inner structures. Considering the long term safe application in human body, the metallic cellular implants are expected to exhibit superior fatigue property. The objective of the study was to study the influence of cell shape on the compressive fatigue behavior of Ti-6Al-4V mesh arrays fabricated by electron beam melting. The results indicated that the underlying fatigue mechanism for the three kinds of meshes (cubic, G7 and rhombic dodecahedron) is the interaction of cyclic ratcheting and fatigue crack growth on the struts, which is closely related to cumulative effect of buckling and bending deformation of the strut. By increasing the buckling deformation on the struts through cell shape design, the cyclic ratcheting rate of the meshes during cyclic deformation was decreased and accordingly, the compressive fatigue strength was increased. With increasing bending deformation of struts, fatigue crack growth in struts contributed more to the fatigue damage of meshes. Rough surface and pores contained in the struts significantly deteriorated the compressive fatigue strength of the struts. By optimizing the buckling and bending deformation through cell shape design, Ti-6Al-4V alloy cellular solids with high fatigue strength and low modulus can be fabricated by the EBM technique. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Statistical optimisation techniques in fatigue signal editing problem

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nopiah, Z. M.; Osman, M. H.; Baharin, N.

    Success in fatigue signal editing is determined by the level of length reduction without compromising statistical constraints. A great reduction rate can be achieved by removing small amplitude cycles from the recorded signal. The long recorded signal sometimes renders the cycle-to-cycle editing process daunting. This has encouraged researchers to focus on the segment-based approach. This paper discusses joint application of the Running Damage Extraction (RDE) technique and single constrained Genetic Algorithm (GA) in fatigue signal editing optimisation.. In the first section, the RDE technique is used to restructure and summarise the fatigue strain. This technique combines the overlapping window andmore » fatigue strain-life models. It is designed to identify and isolate the fatigue events that exist in the variable amplitude strain data into different segments whereby the retention of statistical parameters and the vibration energy are considered. In the second section, the fatigue data editing problem is formulated as a constrained single optimisation problem that can be solved using GA method. The GA produces the shortest edited fatigue signal by selecting appropriate segments from a pool of labelling segments. Challenges arise due to constraints on the segment selection by deviation level over three signal properties, namely cumulative fatigue damage, root mean square and kurtosis values. Experimental results over several case studies show that the idea of solving fatigue signal editing within a framework of optimisation is effective and automatic, and that the GA is robust for constrained segment selection.« less

  5. Multilayer Pressure Vessel Materials Testing and Analysis Phase 2

    NASA Technical Reports Server (NTRS)

    Popelar, Carl F.; Cardinal, Joseph W.

    2014-01-01

    To provide NASA with a suite of materials strength, fracture toughness and crack growth rate test results for use in remaining life calculations for the vessels described above, Southwest Research Institute® (SwRI®) was contracted in two phases to obtain relevant material property data from a representative vessel. An initial characterization of the strength, fracture and fatigue crack growth properties was performed in Phase 1. Based on the results and recommendations of Phase 1, a more extensive material property characterization effort was developed in this Phase 2 effort. This Phase 2 characterization included additional strength, fracture and fatigue crack growth of the multilayer vessel and head materials. In addition, some more limited characterization of the welds and heat affected zones (HAZs) were performed. This report

  6. A method for predicting the fatigue life of pre-corroded 2024-T3 aluminum from breaking load tests

    NASA Astrophysics Data System (ADS)

    Gruenberg, Karl Martin

    Characterization of material properties is necessary for design purposes and has been a topic of research for many years. Over the last several decades, much progress has been made in identifying metrics to describe fracture mechanics properties and developing procedures to measure the appropriate values. However, in the context of design, there has not been as much success in quantifying the susceptibility of a material to corrosion damage and its subsequent impact on material behavior in the framework of fracture mechanics. A natural next step in understanding the effects of corrosion damage was to develop a link between standard material test procedures and fatigue life in the presence of corrosion. Simply stated, the goal of this investigation was to formulate a cheaper and quicker method for assessing the consequences of corrosion on remaining fatigue life. For this study, breaking load specimens and fatigue specimens of a single nominal gage (0.063″) of aluminum alloy 2024-T3 were exposed to three levels of corrosion. The breaking load specimens were taken from three different material lots, and the fatigue tests were carried out at three stress levels. All failed specimens, both breaking load and fatigue specimens, were examined to characterize the damage state(s) and failure mechanism(s). Correlations between breaking load results and fatigue life results in the presence of corrosion damage were developed using a fracture mechanics foundation and the observed mechanisms of failure. Where breaking load tests showed a decrease in strength due to increased corrosion exposure, the corresponding set of fatigue tests showed a decrease in life. And where breaking load tests from different specimen orientations exhibited similar levels of strength, the corresponding set of fatigue specimens showed similar lives. The spread from shortest to longest fatigue lives among the different corrosion conditions decreased at the higher stress levels. Life predictions based on breaking load data were generally shorter than the experimental lives by an average of 20%. The life prediction methodology developed from this investigation is a very valuable tool for the purpose of assessing material substitution for aircraft designers, alloy differentiation for manufacturers, or inspection intervals and aircraft retirement schedules for aircraft in service.

  7. Real-time monitoring of acoustic linear and nonlinear behavior of titanium alloys during low-cycle fatigue and high-cycle fatigue

    NASA Astrophysics Data System (ADS)

    Frouin, Jerome; Sathish, Shamachary; Na, Jeong K.

    2000-05-01

    An in-situ technique to measure sound velocity, ultrasonic attenuation and acoustic nonlinear property has been developed for characterization and early detection of fatigue damage in aerospace materials. For this purpose we have developed a computer software and measurement technique including hardware for the automation of the measurement. New transducer holder and special grips are designed. The automation has allowed us to test the long-term stability of the electronics over a period of time and so proof of the linearity of the system. Real-time monitoring of the material nonlinearity has been performed on dog-bone specimens from zero fatigue all the way to the final fracture under low-cycle fatigue test condition (LCF) and high-cycle test condition (HCF). Real-time health monitoring of the material can greatly contribute to the understanding of material behavior under cyclic loading. Interpretation of the results show that correlation exist between the slope of the curve described by the material nonlinearity and the life of the component. This new methodology was developed with an objective to predict the initiation of fatigue microcracks, and to detect, in-situ fatigue crack initiation as well as to quantify early stages of fatigue damage.

  8. Usage of Parameterized Fatigue Spectra and Physics-Based Systems Engineering Models for Wind Turbine Component Sizing: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parsons, Taylor; Guo, Yi; Veers, Paul

    Software models that use design-level input variables and physics-based engineering analysis for estimating the mass and geometrical properties of components in large-scale machinery can be very useful for analyzing design trade-offs in complex systems. This study uses DriveSE, an OpenMDAO-based drivetrain model that uses stress and deflection criteria to size drivetrain components within a geared, upwind wind turbine. Because a full lifetime fatigue load spectrum can only be defined using computationally-expensive simulations in programs such as FAST, a parameterized fatigue loads spectrum that depends on wind conditions, rotor diameter, and turbine design life has been implemented. The parameterized fatigue spectrummore » is only used in this paper to demonstrate the proposed fatigue analysis approach. This paper details a three-part investigation of the parameterized approach and a comparison of the DriveSE model with and without fatigue analysis on the main shaft system. It compares loads from three turbines of varying size and determines if and when fatigue governs drivetrain sizing compared to extreme load-driven design. It also investigates the model's sensitivity to shaft material parameters. The intent of this paper is to demonstrate how fatigue considerations in addition to extreme loads can be brought into a system engineering optimization.« less

  9. A motor unit-based model of muscle fatigue

    PubMed Central

    2017-01-01

    Muscle fatigue is a temporary decline in the force and power capacity of skeletal muscle resulting from muscle activity. Because control of muscle is realized at the level of the motor unit (MU), it seems important to consider the physiological properties of motor units when attempting to understand and predict muscle fatigue. Therefore, we developed a phenomenological model of motor unit fatigue as a tractable means to predict muscle fatigue for a variety of tasks and to illustrate the individual contractile responses of MUs whose collective action determines the trajectory of changes in muscle force capacity during prolonged activity. An existing MU population model was used to simulate MU firing rates and isometric muscle forces and, to that model, we added fatigue-related changes in MU force, contraction time, and firing rate associated with sustained voluntary contractions. The model accurately estimated endurance times for sustained isometric contractions across a wide range of target levels. In addition, simulations were run for situations that have little experimental precedent to demonstrate the potential utility of the model to predict motor unit fatigue for more complicated, real-world applications. Moreover, the model provided insight into the complex orchestration of MU force contributions during fatigue, that would be unattainable with current experimental approaches. PMID:28574981

  10. Fatigue properties on the failure mode of a dental implant in a simulated body environment

    NASA Astrophysics Data System (ADS)

    Kim, Min Gun

    2011-10-01

    This study undertook a fatigue test in a simulated body environment that has reflected the conditions (such as the body fluid conditions, the micro-current of cell membranes, and the chewing force) within a living body. First, the study sought to evaluate the fatigue limit under normal conditions and in a simulated body environment, looking into the governing factors of implant fatigue strength through an observation of the fracture mode. In addition, the crack initiation behavior of a tungsten-carbide-coated abutment screw was examined. The fatigue limit of an implant within the simulated body environment decreased by 19 % compared to the limit noted under normal conditions. Several corrosion pits were observed on the abutment screw after the fatigue test in the simulated body environment. For the model used in this study, the implant fracture was mostly governed by the fatigue failure of the abutment screw; accordingly, the influence by the fixture on the fatigue strength of the implant was noted to be low. For the abutment screw coated with tungsten carbide, several times the normal amount of stress was found to be concentrated on the contact part due to the elastic interaction between the coating material and the base material.

  11. Metallurgical characterization of M-Wire nickel-titanium shape memory alloy used for endodontic rotary instruments during low-cycle fatigue.

    PubMed

    Ye, Jia; Gao, Yong

    2012-01-01

    Rotary instruments made of a new nickel-titanium (NiTi) alloy (M-Wire) have shown improved cyclic fatigue resistance and mechanical properties compared with those made of conventional superelastic NiTi wires. The objective of this study was to characterize microstructural changes of M-Wire throughout the cyclic fatigue process under controlled strain amplitude. The average fatigue life was calculated from 30 M-Wire samples that were subjected to a strain-controlled (≈ 4%) rotating bend fatigue test at room temperature and rotational speed of 300 rpm. Microstructural evolution of M-Wire has been investigated by different metallurgical characterization techniques, including differential scanning calorimetry, Vickers microhardness, and transmission electron microscopy at 4 different stages (as-received state, 30%, 60%, and 90% of average fatigue life). During rotating bend fatigue test, no statistically significant difference (P > .05) was found on austenite finish temperatures between as-received M-Wire and fatigued samples. However, significant differences (P < .05) were observed on Vickers microhardness for samples with 60% and 90% fatigue life compared with as-received and 30% fatigue life. Coincidentally, substantial growth of martensite grains and martensite twins was observed in microstructure under transmission electron microscopy after 60% fatigue life. The results of the present study suggested that endodontic instruments manufactured with M-Wire are expected to have higher strength and wear resistance than similar instruments made of conventional superelastic NiTi wires because of its unique nano-crystalline martensitic microstructure. Copyright © 2012 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  12. Probabilistic fatigue life prediction of metallic and composite materials

    NASA Astrophysics Data System (ADS)

    Xiang, Yibing

    Fatigue is one of the most common failure modes for engineering structures, such as aircrafts, rotorcrafts and aviation transports. Both metallic materials and composite materials are widely used and affected by fatigue damage. Huge uncertainties arise from material properties, measurement noise, imperfect models, future anticipated loads and environmental conditions. These uncertainties are critical issues for accurate remaining useful life (RUL) prediction for engineering structures in service. Probabilistic fatigue prognosis considering various uncertainties is of great importance for structural safety. The objective of this study is to develop probabilistic fatigue life prediction models for metallic materials and composite materials. A fatigue model based on crack growth analysis and equivalent initial flaw size concept is proposed for metallic materials. Following this, the developed model is extended to include structural geometry effects (notch effect), environmental effects (corroded specimens) and manufacturing effects (shot peening effects). Due to the inhomogeneity and anisotropy, the fatigue model suitable for metallic materials cannot be directly applied to composite materials. A composite fatigue model life prediction is proposed based on a mixed-mode delamination growth model and a stiffness degradation law. After the development of deterministic fatigue models of metallic and composite materials, a general probabilistic life prediction methodology is developed. The proposed methodology combines an efficient Inverse First-Order Reliability Method (IFORM) for the uncertainty propogation in fatigue life prediction. An equivalent stresstransformation has been developed to enhance the computational efficiency under realistic random amplitude loading. A systematical reliability-based maintenance optimization framework is proposed for fatigue risk management and mitigation of engineering structures.

  13. Behavior of Fatigue Crack Tip Opening in Air and Corrosive Atmosphere

    NASA Astrophysics Data System (ADS)

    Hayashi, Morihito; Toeda, Kazunori

    In the study, a formula for predicting fatigue crack tip opening displacement is deduced firstly. And then, due to comparing actual crack growth rate with the deduced formula, the crack tip configuration factor is defined to figure out the crack tip opening configuration that is useful to clarify the behavior of fatigue crack tip formation apparently. Applying the concept, the crack growth of 7/3 brass and 6/4 brass is predicted from the formula, by replacing material properties such as plastic flow resistance, Young modulus, the Poisson ratio, and fatigue toughness, and fatigue test conditions such as the stress intensity factor range, the load ratio, and cycle frequency. Furthermore, the theoretically expected results are verified with the fatigue tests which were carried out on CT specimens under different load conditions of load ratio, cycle frequency, and cyclic peak load, in different environments of air or corrosive ammonia atmosphere, for various brasses. And by comparing and discussing the calculated crack growth rate with attained experimental results, the apparent configuration factor at the crack tip is determined. And through the attained factor which changes along with crack growth, the behaviors of fatigue crack tip formation under different test conditions have been found out.

  14. An Investigation on the Wear Resistance and Fatigue Behaviour of Ti-6Al-4V Notched Members Coated with Hydroxyapatite Coatings

    PubMed Central

    Oskouei, Reza H; Fallahnezhad, Khosro; Kuppusami, Sushmitha

    2016-01-01

    In this study, surface properties of Ti-6Al-4V alloy coated with hydroxyapatite coatings were investigated. Wear resistance and fatigue behaviour of samples with coating thicknesses of 10 and 50 µm as well as uncoated samples were examined. Wear experiments demonstrated that the friction factor of the uncoated titanium decreased from 0.31 to 0.06, through a fluctuating trend, after 50 cycles of wear tests. However, the friction factor of both the coated samples (10 and 50 µm) gradually decreased from 0.20 to 0.12 after 50 cycles. At the end of the 50th cycle, the penetration depth of the 10 and 50 µm coated samples were 7.69 and 6.06 µm, respectively. Fatigue tests showed that hydroxyapatite coatings could improve fatigue life of a notched Ti-6Al-4V member in both low and high cycle fatigue zones. It was understood, from fractography of the fracture surfaces, that the fatigue zone of the uncoated specimens was generally smaller in comparison with that of the coated specimens. No significant difference was observed between the fatigue life of coated specimens with 10 and 50 µm thicknesses. PMID:28787911

  15. Microstructural Features Controlling the Variability in Low-Cycle Fatigue Properties of Alloy Inconel 718DA at Intermediate Temperature

    NASA Astrophysics Data System (ADS)

    Texier, Damien; Gómez, Ana Casanova; Pierret, Stéphane; Franchet, Jean-Michel; Pollock, Tresa M.; Villechaise, Patrick; Cormier, Jonathan

    2016-03-01

    The low-cycle fatigue behavior of two direct-aged versions of the nickel-based superalloy Inconel 718 (IN718DA) was examined in the low-strain amplitude regime at intermediate temperature. High variability in fatigue life was observed, and abnormally short lifetimes were systematically observed to be due to crack initiation at (sub)-surface non-metallic inclusions. However, crack initiation within (sub)-surface non-metallic inclusions did not necessarily lead to short fatigue life. The macro- to micro-mechanical mechanisms of deformation and damage have been examined by means of detailed microstructural characterization, tensile and fatigue mechanical tests, and in situ tensile testing. The initial stages of crack micro-propagation from cracked non-metallic particles into the surrounding metallic matrix occupies a large fraction of the fatigue life and requires extensive local plastic straining in the matrix adjacent to the cracked inclusions. Differences in microstructure that influence local plastic straining, i.e., the δ-phase content and the grain size, coupled with the presence of non-metallic inclusions at the high end of the size distribution contribute strongly to the fatigue life variability.

  16. A comparison of the fatigue behavior of cast Ti-7.5Mo with c.p. titanium, Ti-6Al-4V and Ti-13Nb-13Zr alloys.

    PubMed

    Lin, Chia-Wei; Ju, Chien-Ping; Chern Lin, Jiin-Huey

    2005-06-01

    The purpose of the present study is to compare the high-cycle fatigue behavior of newly developed Ti-7.5Mo alloy with that of c.p. Ti, Ti-13Nb-13Zr and Ti-6Al-4V alloys in their as-cast state. Experimental results indicate that Ti-6Al-4V and c.p. Ti have higher stress-controlled fatigue resistance but lower strain-controlled fatigue resistance than Ti-7.5Mo and Ti-13Nb-13Zr. Among four materials Ti-7.5Mo demonstrates the best strain-controlled fatigue performance. The fracture surfaces of the present materials are comprised of three morphologically distinct zones: crack initiation zone, crack propagation zone, and the final-stage overload zone. The fatigue cracks almost always initiate from casting-induced surface/subsurface pores. A river pattern is observed in the propagation zone. In the overload zone dimples are typically observed. Three factors most significantly affecting the fatigue performance of the present materials are the presence of the casting-induced surface/subsurface pores; the location of the pores; and the inherent mechanical properties of the materials.

  17. Effects of bionic units on the fatigue wear of gray cast iron surface with different shapes and distributions

    NASA Astrophysics Data System (ADS)

    Chen, Zhi-kai; Lu, Shu-chao; Song, Xi-bin; Zhang, Haifeng; Yang, Wan-shi; Zhou, Hong

    2015-03-01

    To improve the fatigue wear resistance of gray cast iron (GCI), GCI samples were modified by a laser to imitate the unique structure of some soil animals alternating between soft and hard phases; the hard phase resists the deformation and the soft phase releases the deformation. Using the self-controlled fatigue wear test method, the fatigue wear behaviors of treated and untreated samples were investigated and compared experimentally. The results show that the bionic non-smooth surface obtains a beneficial effect on improving the fatigue wear resistance of a sample, and the fatigue wear resistance of the bionic sample assembled with reticulate units (60°+0°), whose mass loss was reduced by 62%, was superior to the others. Meanwhile, a finite element (FE) was used to simulate the compression and the distributions of strain and stress on the non-smooth surface was inferred. From these results, we understood that the functions of the bionic unit such as reducing strain and stress, and also obstructing the closure and propagation of cracks were the main reasons for improving the fatigue wear property of GCI.

  18. A Study on Fretting Behavior in Room Temperature for Inconel Alloy 690

    NASA Astrophysics Data System (ADS)

    Kwon, Jae Do; Chai, Young Suck; Bae, Yong Tak; Choi, Sung Jong

    The initial crack under fretting condition occurs at lower stress amplitude and lower cycles of cyclic loading than that under plain fatigue condition. The fretting damage, for example, can be observed in fossil and nuclear power plant, aircraft, automobile and petroleum chemical plants etc. INCONEL alloy 690 is a high-chromium nickel alloy having excellent resistance to many corrosive aqueous media and high-temperature atmospheres. This alloy is used extensively in the industries of nuclear power, chemicals, heat-treatment and electronics. In this paper, the effect of fretting damage on fatigue behavior for INCONEL alloy 690 was studied. Also, various kinds of tests on mechanical properties such as hardness, tension and plain fatigue tests are performed. Fretting fatigue tests were carried out with flat-flat contact configuration using a bridge type contact pad and plate type specimen. Through these experiments, it is found that the fretting fatigue strength decreased about 43% compared to the plain fatigue strength. In fretting fatigue, the wear debris is observed on the contact surface, and the oblique micro-cracks are initiated at an earlier stage. These results can be used as the basic data in a structural integrity evaluation of heat and corrosion resistant alloy considering fretting damages.

  19. Environmental Effects on Graphite-Epoxy Fatigue Properties

    NASA Technical Reports Server (NTRS)

    Sumsion, H. T.

    1976-01-01

    Effects of torsional and flexural fatigue on the long-time Integrity of advanced graphite-epoxy structural composites have been investigated. Torsional fatigue tests were run at stress ratios of R = 0 (zero to maximum, repeated) and R = -1 (zero mean stress) on unidirectional, angleply, and woven graphite fiber materials in air and water at room temperature and at 74 C. Flexural fatigue tests (four-point bending) with R = -1 were run in air and water at room temperature, and with R = 0 in air. Results show that, in torsional cycling, both water environment and higher test temperature contribute to significant degradation of torsional stiffness. The degradation of stiffness from torsional stress cycling was observed to be much greater with R = -1 than with simple R = 0 cycling. The effect of environment also is greater in the fully reversed cycling. Flexural fatigue results on +/- 30 deg material show a large fatigue effect, with fatigue limits of less than 50% and 30% of the static failure strength for specimens tested under stress ratios of R = 0 and R = -1, respectively. Compliance measurements indicate that the final failures are preceded by damage initiation and accumulation, which begins at about 1% of the specimen life.

  20. Measuring Parent Time Scarcity and Fatigue as Barriers to Meal Planning and Preparation: Quantitative Scale Development

    ERIC Educational Resources Information Center

    Storfer-Isser, Amy; Musher-Eizenman, Dara

    2013-01-01

    Objective: To examine the psychometric properties of 9 quantitative items that assess time scarcity and fatigue as parent barriers to planning and preparing meals for their children. Methods: A convenience sample of 342 parents of children aged 2-6 years completed a 20-minute online survey. Exploratory factor analysis was used to examine the…

  1. Design, development, and testing of a hybrid in situ testing device for building joint sealant

    Treesearch

    C. White; N. Embree; C. Buch; R.S. Williams

    2005-01-01

    The testing of sealant samples has been restricted to devices that either focus on fatiguing multiple samples or quantifying the mechanical properties of a single sample. This manuscript describes a device that combines these two instrumental designs: the ability to both fatigue and characterize multiple sealant samples at the same time. This device employs precise...

  2. Improved fatigue performance for wood-based structural panels using slot and tab construction

    Treesearch

    Jinghao Li; John F. Hunt; Shaoqin Gong; Zhiyong Cai

    2016-01-01

    This paper presents static and fatigue bending behavior for a wood-based structural panel having a slot and tab (S/T) construction technique. Comparisons were made with similarly fabricated panels without the S/T construction technique. Experimental results showed that both types of panels had similar bending properties in the static tests. However, the panels with S/T...

  3. Advanced single crystal for SSME turbopumps

    NASA Technical Reports Server (NTRS)

    Fritzemeier, L. G.

    1989-01-01

    The objective of this program was to evaluate the influence of high thermal gradient casting, hot isostatic pressing (HIP) and alternate heat treatments on the microstructure and mechanical properties of a single crystal nickel base superalloy. The alloy chosen for the study was PWA 1480, a well characterized, commercial alloy which had previously been chosen as a candidate for the Space Shuttle Main Engine high pressure turbopump turbine blades. Microstructural characterization evaluated the influence of casting thermal gradient on dendrite arm spacing, casting porosity distribution and alloy homogeneity. Hot isostatic pressing was evaluated as a means of eliminating porosity as a preferred fatigue crack initiation site. The alternate heat treatment was chosen to improve hydrogen environment embrittlement resistance and for potential fatigue life improvement. Mechanical property evaluation was aimed primarily at determining improvements in low cycle and high cycle fatigue life due to the advanced processing methods. Statistically significant numbers of tests were conducted to quantitatively demonstrate life differences. High thermal gradient casting improves as-cast homogeneity, which facilitates solution heat treatment of PWA 1480 and provides a decrease in internal pore size, leading to increases in low cycle and high cycle fatigue lives.

  4. Effect of Forging Parameters on Low Cycle Fatigue Behaviour of Al/Basalt Short Fiber Metal Matrix Composites

    PubMed Central

    Karthigeyan, R.; Ranganath, G.

    2013-01-01

    This paper deals with metal matrix composites (MMCs) of Al 7075 alloy containing different weight percentage (2.5, 5, 7.5, and 10) basalt short fiber reinforcement and unreinforced matrix alloy. The samples were produced by the permanent stir casting technique. The casting ingots were cut into blanks to be forged in single stage and double stage, using MN press and graphite-based lubricant. The microstructures and fatigue properties of the matrix alloy and MMC samples were investigated in the as cast state and in the single and double stage forging operations. The microstructure results showed that the forged sample had a uniform distribution of the basalt short fiber throughout the specimens. Evaluation of the fatigue properties showed that the forged samples had higher values than those of the as cast counterparts. After forging, the enhancement of the fatigue strength of the matrix alloy was so significant and high in the case of 2.5 and 5.0 wt. percentage basalt short fiber reinforced MMC, and there was no enhancement in 7.5 and 10 weight percentages short fiber reinforced MMCs. The fracture damage was mainly due to decohesion at the matrix-fiber interface. PMID:24298207

  5. Effect of forging parameters on low cycle fatigue behaviour of Al/basalt short fiber metal matrix composites.

    PubMed

    Karthigeyan, R; Ranganath, G

    2013-01-01

    This paper deals with metal matrix composites (MMCs) of Al 7075 alloy containing different weight percentage (2.5, 5, 7.5, and 10) basalt short fiber reinforcement and unreinforced matrix alloy. The samples were produced by the permanent stir casting technique. The casting ingots were cut into blanks to be forged in single stage and double stage, using MN press and graphite-based lubricant. The microstructures and fatigue properties of the matrix alloy and MMC samples were investigated in the as cast state and in the single and double stage forging operations. The microstructure results showed that the forged sample had a uniform distribution of the basalt short fiber throughout the specimens. Evaluation of the fatigue properties showed that the forged samples had higher values than those of the as cast counterparts. After forging, the enhancement of the fatigue strength of the matrix alloy was so significant and high in the case of 2.5 and 5.0 wt. percentage basalt short fiber reinforced MMC, and there was no enhancement in 7.5 and 10 weight percentages short fiber reinforced MMCs. The fracture damage was mainly due to decohesion at the matrix-fiber interface.

  6. Role of surfaces and interfaces in controlling the mechanical properties of metallic alloys.

    PubMed

    Lee, Won-Jong; Chia, Wen-Jui; Wang, Jinliu; Chen, Yanfeng; Vaynman, Semyon; Fine, Morris E; Chung, Yip-Wah

    2010-11-02

    This article explores the subtle effects of surfaces and interfaces on the mechanical properties of bulk metallic alloys using three examples: environmental effects on fatigue life, hydrogen embrittlement effects on the ductility of intermetallics, and the role of coherent precipitates in the toughness of steels. It is demonstrated that the marked degradation of the fatigue life of metals is due to the strong chemisorption of adsorbates on exposed slip steps that are formed during fatigue deformation. These adsorbates reduce the reversibility of slip, thus accelerating fatigue damage in a chemically active gas environment. For certain intermetallic alloys such as Ni(3)Al and Ni(3)Fe, the ductility depends on the ambient gas composition and the atomic ordering in these alloys, both of which govern the complex surface chemical reactions taking place in the vicinity of crack tips. Finally, it is shown that local stresses at a coherent precipitate-matrix interface can activate dislocation motion at low temperatures, thus improving the fracture toughness of bulk alloys such as steels at cryogenic temperatures. These examples illustrate the complex interplay between surface chemistry and mechanics, often yielding unexpected results.

  7. The Spanish version of the Fatigue Assessment Scale: reliability and validity assessment in postpartum women

    PubMed Central

    Cano-Climent, Antoni; de Vries, Jolanda

    2017-01-01

    Background Fatigue is the most widely reported symptom by women during pregnancy, labour, the postpartum period, and early parenting. The objective was to translate the Fatigue Assessment Scale (FAS) into Spanish and assess its psychometric properties. Methods Instrumental Design. The FAS was translated into Spanish (FAS-e) using forward and back translation. A convenience sample was constituted with 870 postpartum women recruited at discharge from 17 public hospitals in Eastern Spain. Data was obtained from clinical records and self-administered questionnaires at discharge. Internal consistency, factor structure, comparisons between known groups and correlations with other variables were assessed. Results Cronbach’s alpha coefficient was .80. Findings on the dimensionality of the FAS-e scale indicated that it was sufficiently unidimensional. FAS-e scores were higher among women who had undergone caesarean births (p < .05), had a higher level of postpartum pain (p < .01), experienced difficulties during breastfeeding (p < .01) and had lower levels of self-efficacy for breastfeeding (p < .01). Conclusions An equivalent Spanish version of the FAS was obtained with good reliability and validity properties. FAS-e is an appropriate tool to measure postpartum fatigue. PMID:28970968

  8. Comportement en fatigue et influence de la temperature sur les proprietes en traction du PLA

    NASA Astrophysics Data System (ADS)

    Menard, Claire

    Current environmental issues reduce the use of materials obtained from fossil resources. The usual plastics therefore tend to be replaced by more green polymers such as polylactic acid (PLA), a bio-based and biodegradable polymer. Knowledge on the properties of this material is essential, especially in terms of fatigue strength and influence of temperature on tensile stiffness and strength. In this study, the PLA samples are submitted to monotonic tensile tests, according to ASTM D638-10, at various temperatures between room temperature (23°C) and the glass transition temperature of the material (55-60°C). The results show a decrease of 30% of the modulus of elasticity and 60% of the tensile strength between these two temperatures. This decrease is mainly due to a significant drop in the mechanical properties beyond 50°C. In addition, tensile fatigue tests were conducted at loads rate between 40 and 80% of tensile strength, at room temperature in order to plot the Wohler curve of PLA. The ruptured specimens were finally observed with a scanning electron microscope (SEM) to analyze the failure mechanisms in fatigue of PLA.

  9. The effect of shift rotation on employee cortisol profile, sleep quality, fatigue, and attention level: a systematic review.

    PubMed

    Niu, Shu-Fen; Chung, Min-Huey; Chen, Chiung-Hua; Hegney, Desley; O'Brien, Anthony; Chou, Kuei-Ru

    2011-03-01

    Disrupted circadian rhythm, especially working night duty together with irregular sleep patterns, sleep deprivation, and fatigue, creates an occupational health risk associated with diminished vigilance and work performance. This study reviewed the effect of shift rotations on employee cortisol profile, sleep quality, fatigue, and attention level. Researchers conducted a systematic review of relevant articles published between 1996 and 2008 that were listed on the following databases: SCOPUS, OVID, Blackwell Science, EBSCO Host, PsycINFO, Cochrane Controlled Trials Register, and CEPS. A total of 28 articles were included in the review. Previous research into the effects of shift work on cortisol profiles, sleep quality, fatigue, and attention used data assessed at evidence Levels II to IV. Our systematic review confirmed a conflict between sleep-wake cycle and light-dark cycle in night work. Consequences of circadian rhythm disturbance include disruption of sleep, decreased vigilance, general feeling of malaise, and decreased mental efficiency. Shift workers who sleep during the day (day sleepers) experience cortisol secretion increases, which diminish the healing power of sleep and enjoy 1 to 4 hours less sleep on average than night sleepers. Sleep debt accumulation results in chronic fatigue. Prolonged fatigue and inadequate recovery result in decreased work performance and more incidents. Rotation from day shift to night shift and its effect on shift workers was a special focus of the articles retained for review. Disturbed circadian rhythm in humans has been associated with a variety of mental and physical disorders and may negatively impact on work safety, performance, and productivity.

  10. Fatigue, alopecia and stomatitis among patients with breast cancer receiving cyclin-dependent kinase 4 and 6 inhibitors: a systematic review and meta-analysis.

    PubMed

    Lasheen, Shaimaa; Shohdy, Kyrillus S; Kassem, Loay; Abdel-Rahman, Omar

    2017-09-01

    Cyclin-dependent kinase (CDK) inhibitors emerge as efficacious agents in hormone positive metastatic breast cancer with more acceptable toxicity profiles than cytotoxic chemotherapy. However, some adverse effects such as fatigue, alopecia and stomatitis, vastly concern patients. The search was conducted in PubMed, American Society of Clinical Oncology meeting library, European Society for Medical Oncology meeting abstract, and the San Antonio meeting abstract databases. We identified phase 2 or 3 trials recruiting patients with breast cancer, randomized to receive hormonal treatment plus either CDK4/6 inhibitors or placebo. We considered studies providing incidence of fatigue, alopecia and stomatitis relevant. One thousand records were screened. 34 studies were considered relevant. Four studies were found to be eligible for meta-analysis with a total of 2007 patients. The relative risk for all grade fatigue was 1.34 [95% CI: 1.17-1.54, p < 0.0001], for all grade alopecia was 2.14 [95% CI: 1.23-3.73, p = 0.007], and for all grade stomatitis 4.87 [95% CI: 2.11-11.24, p = 0.0002]. In addition, the relative risk for high grade fatigue was 2.40 [95% CI: 1.10-5.26, p = 0.03]. CDK4/6 inhibitors were associated with an increased risk of fatigue, alopecia and stomatitis. Further studies with self-reported questionnaires may elucidate the impact of the increased risk of these selected adverse effects on the patients' quality of life.

  11. Phase and electrical properties of PZT thin films embedded with CuO nano-particles by a hybrid sol-gel route

    NASA Astrophysics Data System (ADS)

    Sreesattabud, Tharathip; Gibbons, Brady J.; Watcharapasorn, Anucha; Jiansirisomboon, Sukanda

    2013-07-01

    Pb(Zr0.52Ti0.48)O3 or PZT thin films embedded with CuO nano-particles were successfully prepared by a hybrid sol-gel process. In this process, CuO (0, 0.1, 0.2, 0.3, 0.4, 0.5 and 1 wt. %) nanopowder was suspended in an organometallic solution of PZT, and then coated on platinised silicon substrate using a spin-coating technique. The influence of CuO nano-particles' dispersion on the phase of PZT thin films was investigated. XRD results showed a perovskite phase in all films. At the CuO concentration of 0.4-1 wt. %, a second phase was observed. The addition of CuO nano-particles affected the orientation of PZT thin films. The addition was also found to reduce the ferroelectric properties of PZT thin films. However, at 0.2 wt. % CuO concentration, the film exhibited good ferroelectric properties similar to those of PZT films. In addition, the fatigue retention properties of the PZT/CuO system was observed, and it showed 14% fatigue at 108 switching bipolar pulse cycles while the fatigue in PZT thin films was found to be 17% at the same switching bipolar pulse cycles.

  12. Comparison of Fatigue Properties and Fatigue Crack Growth Rates of Various Implantable Metals

    PubMed Central

    Okazaki, Yoshimitsu

    2012-01-01

    The fatigue strength, effects of a notch on the fatigue strength, and fatigue crack growth rate of Ti-15Zr-4Nb-4Ta alloy were compared with those of other implantable metals. Zr, Nb, and Ta are important alloying elements for Ti alloys for attaining superior long-term corrosion resistance and biocompatibility. The highly biocompatible Ti-15Zr-4Nb-4Ta alloy exhibited an excellent balance between strength and ductility. Its notched tensile strength was much higher than that of a smooth specimen. The strength of 20% cold-worked commercially pure (C.P.) grade 4 Ti was close to that of Ti alloy. The tension-to-tension fatigue strength of an annealed Ti-15Zr-4Nb-4Ta rod at 107 cycles was approximately 740 MPa. The fatigue strength of this alloy was much improved by aging treatment after solution treatment. The fatigue strengths of C.P. grade 4 Ti and stainless steel were markedly improved by 20% cold working. The fatigue strength of Co-Cr-Mo alloy was markedly increased by hot forging. The notch fatigue strengths of 20% cold-worked C.P. grade 4 Ti, and annealed and aged Ti-15Zr-4Nb-4Ta, and annealed Ti-6Al-4V alloys were less than those of the smooth specimens. The fatigue crack growth rate of Ti-15Zr-4Nb-4Ta was the same as that of Ti-6Al-4V. The fatigue crack growth rate in 0.9% NaCl was the same as that in air. Stainless steel and Co-Cr-Mo-Ni-Fe alloy had a larger stress-intensity factor range (ΔK) than Ti alloy.

  13. The theoretical and experimental study of a material structure evolution in gigacyclic fatigue regime

    NASA Astrophysics Data System (ADS)

    Plekhov, Oleg; Naimark, Oleg; Narykova, Maria; Kadomtsev, Andrey; Betekhtin, Vladimir

    2015-10-01

    The work is devoted to the study of the metal structure evolution under gigacyclic fatigue (VHCF) regime. The study of the mechanical properties of the samples (Armco iron) with different state of life time existing was carried out on the base of the acoustic resonance method. The damage accumulation (porosity of the samples) was studied by the hydrostatic weighing method. A statistical model of damage accumulation was proposed in order to describe the damage accumulation process. The model describes the influence of the sample surface on the location of fatigue crack initiation.

  14. Effects of Oxygen Content on Tensile and Fatigue Performance of Ti-6Al-4 V Manufactured by Selective Laser Melting

    NASA Astrophysics Data System (ADS)

    Quintana, Oscar A.; Tong, Weidong

    2017-12-01

    We investigated the selective laser melting (SLM) process for development of Ti-6Al-4 V solid material with oxygen content corresponding to the extra low interstitial (ELI) and non-ELI conditions. The microstructure, chemistry, and tensile properties of samples in as-built and hot isostatically pressed (HIPed) condition were evaluated for both material types, while fatigue performance was evaluated by rotating bending fatigue tests on both smooth and notched SLM ELI and non-ELI Ti-6Al-4 V samples in HIPed condition.

  15. Multitask protocols to evaluate activities of daily living performance in people with COPD: a systematic review.

    PubMed

    Paes, Thaís; Machado, Felipe Vilaça Cavallari; Cavalheri, Vinícius; Pitta, Fabio; Hernandes, Nidia Aparecida

    2017-07-01

    People with chronic obstructive pulmonary disease (COPD) present symptoms such as dyspnea and fatigue, which hinder their performance in activities of daily living (ADL). A few multitask protocols have been developed to assess ADL performance in this population, although measurement properties of such protocols were not yet systematically reviewed. Areas covered: Studies were included if an assessment of the ability to perform ADL was conducted in people with COPD using a (objective) performance-based protocol. The search was conducted in the following databases: Pubmed, EMBASE, Cochrane Library, PEDro, CINAHL and LILACS. Furthermore, hand searches were conducted. Expert commentary: Up to this moment, only three protocols had measurement properties described: the Glittre ADL Test, the Monitored Functional Task Evaluation and the Londrina ADL Protocol were shown to be valid and reliable whereas only the Glittre ADL Test was shown to be responsive to change after pulmonary rehabilitation. These protocols can be used in laboratory settings and clinical practice to evaluate ADL performance in people with COPD, although there is need for more in-depth information on their validity, reliability and especially responsiveness due to the growing interest in the accurate assessment of ADL performance in this population.

  16. Development, Characterization and Piezoelectric Fatigue Behavior of Lead-Free Perovskite Piezoelectric Ceramics

    NASA Astrophysics Data System (ADS)

    Patterson, Eric Andrew

    Much recent research has focused on the development lead-free perovskite piezoelectrics as environmentally compatible alternatives to lead zirconate titanate (PZT). Two main categories of lead free perovskite piezoelectric ceramic systems were investigated as potential replacements to lead zirconate titanate (PZT) for actuator devices. First, solid solutions based on Li, Ta, and Sb modified (K0.5Na0.5)NbO3 (KNN) lead-free perovskite systems were created using standard solid state methods. Secondly, Bi-based materials a variety of compositions were explored for (1-x)(Bi 0.5Na0.5)TiO3-xBi(Zn0.5Ti0.5)O 3 (BNT-BZT) and Bi(Zn0.5Ti0.5)O3-(Bi 0.5K0.5)TiO3-(Bi0.5Na0.5)TiO 3 (BZT-BKT-BNT). It was shown that when BNT-BKT is combined with increasing concentrations of Bi(Zn1/2i1/2)O3 (BZT), a transition from normal ferroelectric behavior to a material with large electric field induced strains was observed. The higher BZT containing compositions are characterized by large hysteretic strains(> 0.3%) with no negative strains that might indicate domain switching. This work summarizes and analyzes the fatigue behavior of the new generation of Pb-free piezoelectric materials. In piezoelectric materials, fatigue is observed as a degradation in the electromechanical properties under the application of a bipolar or unipolar cyclic electrical load. In Pb-based materials such as lead zirconate titanate (PZT), fatigue has been studied in great depth for both bulk and thin film applications. In PZT, fatigue can result from microcracking or electrode effects (especially in thin films). Ultimately, however, it is electronic and ionic point defects that are the most influential mechanism. Therefore, this work also analyzes the fatigue characteristics of bulk polycrystalline ceramics of the modified-KNN and BNT-BKT-BZT compositions developed. The defect chemistry that underpins the fatigue behavior will be examined and the results will be compared to the existing body of work on PZT. It will be demonstrated that while some Pb-free materials show severe property degradation under cyclic loading, other materials such as BNT-BKT-BZT essentially exhibit fatigue- free piezoelectric properties with chemical doping or other modifications. Based on these results, these new Pb-free materials have great potential for use in piezoelectric applications requiring a large number of drive cycles such as MEMS devices or high frequency actuators.

  17. Strategies for Rapid Muscle Fatigue Reduction during FES Exercise in Individuals with Spinal Cord Injury: A Systematic Review.

    PubMed

    Ibitoye, Morufu Olusola; Hamzaid, Nur Azah; Hasnan, Nazirah; Abdul Wahab, Ahmad Khairi; Davis, Glen M

    2016-01-01

    Rapid muscle fatigue during functional electrical stimulation (FES)-evoked muscle contractions in individuals with spinal cord injury (SCI) is a significant limitation to attaining health benefits of FES-exercise. Delaying the onset of muscle fatigue is often cited as an important goal linked to FES clinical efficacy. Although the basic concept of fatigue-resistance has a long history, recent advances in biomedical engineering, physiotherapy and clinical exercise science have achieved improved clinical benefits, especially for reducing muscle fatigue during FES-exercise. This review evaluated the methodological quality of strategies underlying muscle fatigue-resistance that have been used to optimize FES therapeutic approaches. The review also sought to synthesize the effectiveness of these strategies for persons with SCI in order to establish their functional impacts and clinical relevance. Published scientific literature pertaining to the reduction of FES-induced muscle fatigue was identified through searches of the following databases: Science Direct, Medline, IEEE Xplore, SpringerLink, PubMed and Nature, from the earliest returned record until June 2015. Titles and abstracts were screened to obtain 35 studies that met the inclusion criteria for this systematic review. Following the evaluation of methodological quality (mean (SD), 50 (6) %) of the reviewed studies using the Downs and Black scale, the largest treatment effects reported to reduce muscle fatigue mainly investigated isometric contractions of limited functional and clinical relevance (n = 28). Some investigations (n = 13) lacked randomisation, while others were characterised by small sample sizes with low statistical power. Nevertheless, the clinical significance of emerging trends to improve fatigue-resistance during FES included (i) optimizing electrode positioning, (ii) fine-tuning of stimulation patterns and other FES parameters, (iii) adjustments to the mode and frequency of exercise training, and (iv) biofeedback-assisted FES-exercise to promote selective recruitment of fatigue-resistant motor units. Although the need for further in-depth clinical trials (especially RCTs) was clearly warranted to establish external validity of outcomes, current evidence was sufficient to support the validity of certain techniques for rapid fatigue-reduction in order to promote FES therapy as an integral part of SCI rehabilitation. It is anticipated that this information will be valuable to clinicians and other allied health professionals administering FES as a treatment option in rehabilitation and aid the development of effective rehabilitation interventions.

  18. Strategies for Rapid Muscle Fatigue Reduction during FES Exercise in Individuals with Spinal Cord Injury: A Systematic Review

    PubMed Central

    Ibitoye, Morufu Olusola; Hamzaid, Nur Azah; Hasnan, Nazirah; Abdul Wahab, Ahmad Khairi; Davis, Glen M.

    2016-01-01

    Background Rapid muscle fatigue during functional electrical stimulation (FES)-evoked muscle contractions in individuals with spinal cord injury (SCI) is a significant limitation to attaining health benefits of FES-exercise. Delaying the onset of muscle fatigue is often cited as an important goal linked to FES clinical efficacy. Although the basic concept of fatigue-resistance has a long history, recent advances in biomedical engineering, physiotherapy and clinical exercise science have achieved improved clinical benefits, especially for reducing muscle fatigue during FES-exercise. This review evaluated the methodological quality of strategies underlying muscle fatigue-resistance that have been used to optimize FES therapeutic approaches. The review also sought to synthesize the effectiveness of these strategies for persons with SCI in order to establish their functional impacts and clinical relevance. Methods Published scientific literature pertaining to the reduction of FES-induced muscle fatigue was identified through searches of the following databases: Science Direct, Medline, IEEE Xplore, SpringerLink, PubMed and Nature, from the earliest returned record until June 2015. Titles and abstracts were screened to obtain 35 studies that met the inclusion criteria for this systematic review. Results Following the evaluation of methodological quality (mean (SD), 50 (6) %) of the reviewed studies using the Downs and Black scale, the largest treatment effects reported to reduce muscle fatigue mainly investigated isometric contractions of limited functional and clinical relevance (n = 28). Some investigations (n = 13) lacked randomisation, while others were characterised by small sample sizes with low statistical power. Nevertheless, the clinical significance of emerging trends to improve fatigue-resistance during FES included (i) optimizing electrode positioning, (ii) fine-tuning of stimulation patterns and other FES parameters, (iii) adjustments to the mode and frequency of exercise training, and (iv) biofeedback-assisted FES-exercise to promote selective recruitment of fatigue-resistant motor units. Conclusion Although the need for further in-depth clinical trials (especially RCTs) was clearly warranted to establish external validity of outcomes, current evidence was sufficient to support the validity of certain techniques for rapid fatigue-reduction in order to promote FES therapy as an integral part of SCI rehabilitation. It is anticipated that this information will be valuable to clinicians and other allied health professionals administering FES as a treatment option in rehabilitation and aid the development of effective rehabilitation interventions. PMID:26859296

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Hong; Wang, Jy-An John

    We studied behavior of surrogate nuclear fuel rods made of Zircaloy-4 (Zry-4) cladding with alumina pellets under reversed cyclic bending. Tests were performed under load or moment control at 5 Hz, and an empirical correlation was established between rod fatigue life and amplitude of the applied moment. Fatigue response of Zry-4 cladding was further characterized by using flexural rigidity. Degradation of flexural rigidity was shown to depend on the moment applied and the prefatigue condition of specimens. Pellet-to-pellet interface (PPI), pellet-to-cladding interface (PCI), and pellet condition all affect surrogate rod failure. Bonding/debonding of PPI/PCI and pellet fracturing contribute to surrogatemore » rod bending fatigue. Also, the effect of sensor spacing on curvature measurement using three-point deflections was studied; the method based on effective specimen gauge length is effective in sensor spacing correction. Finally, we developed the database and gained understanding in this study such that it will serve as input to analysis of SNF vibration integrity.« less

  20. Microstructure, Mechanical, and Fatigue Strength of Ti-54M Processed by Rotary Swaging

    NASA Astrophysics Data System (ADS)

    Al-Khazraji, Hasan; El-Danaf, Ehab; Wollmann, Manfred; Wagner, Lothar

    2015-05-01

    TIMETAL 54M is a newly developed (α + β) titanium alloy with nominal composition Ti-5Al-4V-0.6Mo-0.4Fe. The alloy can provide a cost benefit over Ti-6Al-4V due to improved machinability and formability. In the present work, evolution of mechanical properties in terms of tensile and hardness values is investigated as a function of deformation degrees imposed via rotary swaging (RS). Microstructure, mechanical properties, and fatigue performance of Ti-54M are investigated after severe plastic deformation by RS conducted at 850 °C and after being subjected to two different post-swaging annealing conditions. Optical microscopy and scanning electron microscopy using electron back scatter diffraction were utilized to document the evolution of the microstructure. Tensile tests were conducted to characterize mechanical properties. RS, to a true strain of 3.0, is found to lead to a marked ultrafine-grained structure of about 1 μm grain size with low content of high angle grain boundaries (HAGBs). Post-swaging heat treatment at 800 °C followed by air cooling did not change the grain size but exhibited high content of HAGBs. Post-swaging heat treatment at 940 °C followed by furnace cooling resulted in a grain size of about 5 μm and enhanced work-hardening capability and ductility, which resulted in less fatigue notch sensitivity, but at the same time lower fatigue strength at 107 cycles.

Top