Science.gov

Sample records for fatigue strength reduction

  1. Fatigue strength reduction model: RANDOM3 and RANDOM4 user manual. Appendix 2: Development of advanced methodologies for probabilistic constitutive relationships of material strength models

    NASA Technical Reports Server (NTRS)

    Boyce, Lola; Lovelace, Thomas B.

    1989-01-01

    FORTRAN programs RANDOM3 and RANDOM4 are documented in the form of a user's manual. Both programs are based on fatigue strength reduction, using a probabilistic constitutive model. The programs predict the random lifetime of an engine component to reach a given fatigue strength. The theoretical backgrounds, input data instructions, and sample problems illustrating the use of the programs are included.

  2. Central fatigue contributes to the greater reductions in explosive than maximal strength with high-intensity fatigue.

    PubMed

    Buckthorpe, Matthew; Pain, Matthew T G; Folland, Jonathan P

    2014-07-01

    The study aimed to assess the influence of fatigue induced by repeated high-force explosive contractions on explosive and maximal isometric strength of the human knee extensors and to examine the neural and contractile mechanisms for the expected decrement. Eleven healthy untrained males completed 10 sets of voluntary maximal explosive contractions (five times 3 s, interspersed with 2 s rest). Sets were separated by 5 s, during which supramaximal twitch and octet contractions [eight pulses at 300 Hz that elicit the contractile peak rate of force development (pRFD)] were evoked. Explosive force, at specific time points, and pRFD were assessed for voluntary and evoked efforts, expressed in absolute terms and normalized to maximal/peak force. Maximal voluntary contraction force (MVCF) and peak evoked forces were also determined. Surface EMG amplitude was measured from three superficial agonists and normalized to maximal compound action potential area. By set 10, explosive force (47-52%, P < 0.001) and MVCF (42%, P < 0.001) had declined markedly. Explosive force declined more rapidly than MVCF, with lower normalized explosive force at 50 ms (29%, P = 0.038) that resulted in reduced normalized explosive force from 0 to 150 ms (11-29%, P ≤ 0.038). Neural efficacy declined by 34%, whilst there was a 15-28% reduction in quadriceps EMG amplitude during voluntary efforts (all P ≤ 0.03). There was demonstrable contractile fatigue (pRFD: octet, 27%; twitch, 66%; both P < 0.001). Fatigue reduced normalized pRFD for the twitch (21%, P = 0.001) but not the octet (P = 0.803). Fatigue exerted a more rapid and pronounced effect on explosive force than on MVCF, particularly during the initial 50 ms of contraction, which may explain the greater incidence of injuries associated with fatigue. Both neural and contractile fatigue mechanisms appeared to contribute to impaired explosive voluntary performance.

  3. An indentation fatigue strength law

    NASA Astrophysics Data System (ADS)

    Xu, Baoxing; Yonezu, Akio; Chen, Xi

    2010-05-01

    Indentation fatigue, where a cyclic load is applied on the sample via an indenter, emerges as an alternative approach for measuring the fatigue properties of materials. We have carried out indentation fatigue tests on a poly(vinyl chloride) (PVC) bulk material, as well as on TiN and NiP films/coatings deposited on SUS304 steel substrates, and demonstrate that a simple power-law relationship can be established between the indentation load amplitude and number of cycles to failure. Such a law is very similar to the conventional fatigue strength law obtained from uniaxial tests. The agreement between the fatigue stress exponents obtained by uniaxial and indentation fatigue tests suggests the potential applicability of the indentation fatigue technique for extracting the fatigue properties of materials.

  4. Corrosion fatigue of high strength fastener materials in seawater

    NASA Technical Reports Server (NTRS)

    Tipton, D. G.

    1983-01-01

    Environmental effects which significantly reduce the fatigue life of metals are discussed. Corrosion fatigue is a major concern in the engineering application of high strength fasteners in marine environments. The corrosion fatigue failure of an AISI 41L4O high strength steel blade to hub attachment bolt at the MOD-OA 200 kW wind turbine generator was investigated. The reduction of fatigue strength of AISI 41L4O in marine environments and to obtain similar corrosion fatigue data for candidate replacement materials was studied. The AISI 4140, PH 13-8Mo stainless steel, alloy 718 and alloy MP-35N were tested in axial fatigue at a frequency of 20 Hz in dry air and natural seawater. The fatigue data are fitted by regression equations to allow determination of fatigue strength for a given number of cycles to failure.

  5. 14 CFR 23.627 - Fatigue strength.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Fatigue strength. 23.627 Section 23.627... Fatigue strength. The structure must be designed, as far as practicable, to avoid points of stress concentration where variable stresses above the fatigue limit are likely to occur in normal service....

  6. 14 CFR 23.627 - Fatigue strength.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Fatigue strength. 23.627 Section 23.627... Fatigue strength. The structure must be designed, as far as practicable, to avoid points of stress concentration where variable stresses above the fatigue limit are likely to occur in normal service....

  7. 14 CFR 23.627 - Fatigue strength.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Fatigue strength. 23.627 Section 23.627... Fatigue strength. The structure must be designed, as far as practicable, to avoid points of stress concentration where variable stresses above the fatigue limit are likely to occur in normal service....

  8. 14 CFR 23.627 - Fatigue strength.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Fatigue strength. 23.627 Section 23.627... Fatigue strength. The structure must be designed, as far as practicable, to avoid points of stress concentration where variable stresses above the fatigue limit are likely to occur in normal service....

  9. 14 CFR 23.627 - Fatigue strength.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fatigue strength. 23.627 Section 23.627 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS... Fatigue strength. The structure must be designed, as far as practicable, to avoid points of...

  10. Reduction of bone strength

    NASA Technical Reports Server (NTRS)

    Bingham, Cindy

    1990-01-01

    Viewgraphs on reduction of bone strength are presented. WEHI 231 B growth rates, experimental chambers used to apply the electric field to the cell cultures, and a mouse suspended by rotating cuff in electromagnetic field are shown.

  11. Fatigue Strength of Airplane and Engine Materials

    NASA Technical Reports Server (NTRS)

    Matthaes, Kurt

    1934-01-01

    This report was undertaken to give a brief summary of the laws governing the fatigue stresses and of the most important strength coefficients necessary for the correct dimensioning of the structural members.

  12. Strength gradient enhances fatigue resistance of steels

    PubMed Central

    Ma, Zhiwei; Liu, Jiabin; Wang, Gang; Wang, Hongtao; Wei, Yujie; Gao, Huajian

    2016-01-01

    Steels are heavily used in infrastructure and the transportation industry, and enhancing their fatigue resistance is a major challenge in materials engineering. In this study, by introducing a gradient microstructure into 304 austenitic steel, which is one of the most widely used types of stainless steel, we show that a strength gradient substantially enhances the fatigue life of the material. Pre-notched samples with negative strength gradients in front of the notch’s tip endure many more fatigue cycles than do samples with positive strength gradients during the crack initiation stage, and samples with either type of gradient perform better than do gradient-free samples with the same average yield strength. However, as a crack grows, samples with positive strength gradients exhibit better resistance to fatigue crack propagation than do samples with negative gradients or no gradient. This study demonstrates a simple and promising strategy for using gradient structures to enhance the fatigue resistance of materials and complements related studies of strength and ductility. PMID:26907708

  13. Dynamic fatigue and strength characterization of three ceramic materials.

    PubMed

    Teixeira, Erica C; Piascik, Jeffrey R; Stoner, Brian R; Thompson, Jeffrey Y

    2007-06-01

    Fracture strength and fatigue parameters of three ceramic materials submitted to dynamic fatigue were evaluated. A machinable leucite-reinforced dental ceramic, aluminum oxide, and yttria-stabilized zirconia (YSZ) were tested. The inert strength of the materials was determined in air (25 degrees C) at stressing rates of 70, 250, 400 MPa/s for Porcelain, Alumina and YSZ respectively. The data was analyzed using a two-parameter Weibull distribution. The Weibull modulus (m) and the characteristic of fracture (sigma0) parameters were determined for each material. Specimens were also tested in 3-point bending at different stressing rates in distilled/deionized water at 37 degrees C (dynamic fatigue) in order to calculate the fatigue parameters n and ln B. The strength for each material was characterized using Strength-Probability-Time (SPT) diagrams for 1 day, 1 year and 10 years. YSZ showed a high-fracture strength sigma0 (1,459 MPa) at a failure probability of 63.2% and high resistance to subcritical crack growth. YSZ and alumina showed better resistance to slow crack growth than porcelain, indicating less susceptibility to strength degradation by stress corrosion. Lifetime predictions after 10 years indicate a reduction of 50%, 36% and 29% in strength for porcelain, alumina and YSZ respectively. YSZ seems to be a very promising material for long-term dental and biomedical applications.

  14. High-Strength Bolt Corrosion Fatigue Life Model and Application

    PubMed Central

    Hui-li, Wang; Si-feng, Qin

    2014-01-01

    The corrosion fatigue performance of high-strength bolt was studied. Based on the fracture mechanics theory and the Gerberich-Chen formula, the high-strength bolt corrosion fracture crack model and the fatigue life model were established. The high-strength bolt crack depth and the fatigue life under corrosion environment were quantitatively analyzed. The factors affecting high-strength bolt corrosion fatigue life were discussed. The result showed that the high-strength bolt corrosion fracture biggest crack depth reduces along with the material yield strength and the applied stress increases. The material yield strength was the major factor. And the high-strength bolt corrosion fatigue life reduced along with the increase of material strength, the applied stress or stress amplitude. The stress amplitude influenced the most, and the material yield strength influenced the least. Low bolt strength and a low stress amplitude level could extend high-strength bolt corrosion fatigue life. PMID:25152916

  15. High-strength bolt corrosion fatigue life model and application.

    PubMed

    Hui-li, Wang; Si-feng, Qin

    2014-01-01

    The corrosion fatigue performance of high-strength bolt was studied. Based on the fracture mechanics theory and the Gerberich-Chen formula, the high-strength bolt corrosion fracture crack model and the fatigue life model were established. The high-strength bolt crack depth and the fatigue life under corrosion environment were quantitatively analyzed. The factors affecting high-strength bolt corrosion fatigue life were discussed. The result showed that the high-strength bolt corrosion fracture biggest crack depth reduces along with the material yield strength and the applied stress increases. The material yield strength was the major factor. And the high-strength bolt corrosion fatigue life reduced along with the increase of material strength, the applied stress or stress amplitude. The stress amplitude influenced the most, and the material yield strength influenced the least. Low bolt strength and a low stress amplitude level could extend high-strength bolt corrosion fatigue life.

  16. Probabilistic analysis for fatigue strength degradation of materials

    NASA Technical Reports Server (NTRS)

    Royce, Lola

    1989-01-01

    This report presents the results of the first year of a research program conducted for NASA-LeRC by the University of Texas at San Antonio. The research included development of methodology that provides a probabilistic treatment of lifetime prediction of structural components of aerospace propulsion systems subjected to fatigue. Material strength degradation models, based on primitive variables, include both a fatigue strength reduction model and a fatigue crack growth model. Linear elastic fracture mechanics is utilized in the latter model. Probabilistic analysis is based on simulation, and both maximum entropy and maximum penalized likelihood methods are used for the generation of probability density functions. The resulting constitutive relationships are included in several computer programs, RANDOM2, RANDOM3, and RANDOM4. These programs determine the random lifetime of an engine component, in mechanical load cycles, to reach a critical fatigue strength or crack size. The material considered was a cast nickel base superalloy, one typical of those used in the Space Shuttle Main Engine.

  17. New Powder Metallurgical Approach to Achieve High Fatigue Strength in Ti-6Al-4V Alloy

    NASA Astrophysics Data System (ADS)

    Cao, Fei; Ravi Chandran, K. S.; Kumar, Pankaj; Sun, Pei; Zak Fang, Z.; Koopman, Mark

    2016-05-01

    Recently, manufacturing of titanium by sintering and dehydrogenation of hydride powders has generated a great deal of interest. An overarching concern regarding powder metallurgy (PM) titanium is that critical mechanical properties, especially the high-cycle fatigue strength, are lower than those of wrought titanium alloys. It is demonstrated here that PM Ti-6Al-4V alloy with mechanical properties comparable (in fatigue strength) and exceeding (in tensile properties) those of wrought Ti-6Al-4V can be produced from titanium hydride powder, through the hydrogen sintering and phase transformation process. Tensile and fatigue behavior, as well as fatigue fracture mechanisms, have been investigated under three processing conditions. It is shown that a reduction in the size of extreme-sized pores by changing the hydride particle size distribution can lead to improved fatigue strength. Further densification by pneumatic isostatic forging leads to a fatigue strength of ~550 MPa, comparable to the best of PM Ti-6Al-4V alloys prepared by other methods and approaching the fatigue strengths of wrought Ti-6Al-4V alloys. The microstructural factors that limit fatigue strength in PM titanium have been investigated, and pathways to achieve greater fatigue strengths in PM Ti-6Al-4V alloys have been identified.

  18. The influence of hole size in static strength and fatigue for CFRP composite materials

    SciTech Connect

    Yip, M.C.; Perng, T.B.

    1993-12-31

    The influence of hole size in static strength and fatigue property will be investigated. Carbon/Epoxy laminate is selected as testing materials which are widely used in aircraft industry. The arrangement of fiber orientation is [0{sup 0}/+45{sup 0}/{minus}45{sup 0}/90{sup 0}]{sub 2s}. The basic mechanical properties of smooth and notched specimens were detected. The strength of notched specimens are applied to compare with Whitney-Nuismer stress criterion. For average stress criteria, the theoretical value is in good agreement with experimental data for the parameter a{sub 0} is chosen 1.5 mm. For point stress criteria, the best choice of parameter do is 2.4 mm, but the agreement of experimental data is poorer than the average stress one. The characteristic curve of tension-tension fatigue for smooth and notched laminate were investigated. The notched specimens has a 1 mm diameter circular hole at the center, the stress ratio of fatigue test is 0.1. It is obvious that the data distribution of smooth specimens is more scatter than notched specimens. On the other hand, the reduction of modulus during fatigue process was inspected. After fatigue damage, the influence of hole size on residual strength for a quasi-isotropic laminate was investigated. It is found that residual strength of damaged specimens are higher than undamaged one in some fatigue damage range. When the maximum applied load of fatigue test is chosen 90 percent of static strength, it is seen that the influence is obviously in residual strength. The increment of strength decreases with hole size increasing. When the maximum applied load of fatigue test is chosen 80 percent of static strength, the influence is less than the previous case. The Whitney-Nuismer Average Stress Criteria is extended to predict the residual strength after fatigue. A good prediction can be shown by using the extended criteria.

  19. Exceptional high fatigue strength in Cu-15at.%Al alloy with moderate grain size

    PubMed Central

    Liu, Rui; Tian, Yanzhong; Zhang, Zhenjun; An, Xianghai; Zhang, Peng; Zhang, Zhefeng

    2016-01-01

    It is commonly proposed that the fatigue strength can be enhanced by increasing the tensile strength, but this conclusion needs to be reconsidered according to our study. Here a recrystallized α-Cu-15at.%Al alloy with moderate grain size of 0.62 μm was fabricated by cold rolling and annealing, and this alloy achieved exceptional high fatigue strength of 280 MPa at 107 cycles. This value is much higher than the fatigue strength of 200 MPa for the nano-crystalline counterpart (0.04 μm in grain size) despite its higher tensile strength. The remarkable improvement of fatigue strength should be mainly attributed to the microstructure optimization, which helps achieve the reduction of initial damage and the dispersion of accumulated damage. A new strategy of “damage reduction” was then proposed for fatigue strength improvement, to supplement the former strengthening principle. The methods and strategies summarized in this work offer a general pathway for further improvement of fatigue strength, in order to ensure the long-term safety of structural materials. PMID:27264347

  20. Exceptional high fatigue strength in Cu-15at.%Al alloy with moderate grain size

    NASA Astrophysics Data System (ADS)

    Liu, Rui; Tian, Yanzhong; Zhang, Zhenjun; An, Xianghai; Zhang, Peng; Zhang, Zhefeng

    2016-06-01

    It is commonly proposed that the fatigue strength can be enhanced by increasing the tensile strength, but this conclusion needs to be reconsidered according to our study. Here a recrystallized α-Cu-15at.%Al alloy with moderate grain size of 0.62 μm was fabricated by cold rolling and annealing, and this alloy achieved exceptional high fatigue strength of 280 MPa at 107 cycles. This value is much higher than the fatigue strength of 200 MPa for the nano-crystalline counterpart (0.04 μm in grain size) despite its higher tensile strength. The remarkable improvement of fatigue strength should be mainly attributed to the microstructure optimization, which helps achieve the reduction of initial damage and the dispersion of accumulated damage. A new strategy of “damage reduction” was then proposed for fatigue strength improvement, to supplement the former strengthening principle. The methods and strategies summarized in this work offer a general pathway for further improvement of fatigue strength, in order to ensure the long-term safety of structural materials.

  1. Relationship among fatigue strength, mean grain size and compressive strength of a rock

    NASA Astrophysics Data System (ADS)

    Singh, S. K.

    1988-10-01

    Fatigue tests carried on three sets of samples having different mean grain sizes revealed that fatigue strength is a function of mean grain size of the rock. Samples having smaller grain size show higher value of fatigue strength. Graywacke samples from Flagstaff formation having mean grain sizes of 1.79 mm, 1.35 mm and 0.93 mm showed fatigue strengths of 87%, 88.25% and 89.1% respectively. Since the mean uniaxial compressive strength also varied with varying grain size, i. e. higher mean strength value for samples having finer grain size; the fatigue strength of a rock also shows a converse relation with mean uniaxial compressive strength.

  2. Effect of adherend steel strength on static and fatigue strength of adhesive/rivet combined joint

    NASA Astrophysics Data System (ADS)

    Imanaka, Makoto; Haraga, Kosuke; Nishikawa, Tetsuya

    1992-02-01

    Adhesive/rivet combined bonding has attracted special interest recently as a joining technique of high-strength steel because of its high joint efficiency. In this study, the effects of steel strength on the tensile and fatigue strength of adhesive/rivet combined and adhesive joints were investigated. In addition, the stress distributions of these joints were analyzed by finite-element methods, taking into consideration the plastic deformation of adherend steels. With the increase of steel strength, the tensile strength of combined and adhesive joints increased and tensile strength was improved by the combination with the rivet. However, irrespective of the steel strength, the fatigue strength of combined and adhesive joints was constant and the fatigue strength of the combined joint was similar to that of the adhesive joint. These findings could be explained from the difference of stress distribution between static and fatigue load conditions.

  3. The fatigue strength of riveted joints and lugs

    NASA Technical Reports Server (NTRS)

    Schijve, J

    1956-01-01

    This report deals with a number of tests on riveted joints and lugs for the primary purpose of comparing the several types of riveted joints and to study the effect of various factors on the fatigue strength of lugs. A check was made to ascertain whether or not an estimate of the fatigue life at a certain loading could be made from the dimensions of the joint and the fatigue data of the unnotched materials. Recommendations are made on the proportioning of joints to obtain better fatigue behavior.

  4. Notch Fatigue Strength of a PM Disk Superalloy

    NASA Technical Reports Server (NTRS)

    Gayda, John; Gabb, Timothy P.; Telesman, Jack

    2007-01-01

    New powder metallurgy (PM) disk superalloys, such as ME3, LSHR, and Alloy 10, have been developed in recent years which enable rim temperatures in turbine disk applications to approach 1300 F. Before these alloys can be utilized at 1300 F their long term durability must be ensured. One of the key requirements for disk rims is notch fatigue strength. This issue is extremely important and is a direct result of the blade attachment geometry employed at the disk rim. Further, the imposition of a dwell at maximum load, associated with take off and landing, can also affect notch fatigue strength. For these reasons a study has been undertaken to assess the notch dwell fatigue strength of a modern PM disk alloy through spin pit evaluation of a prototypical disk. The first element of this program involves screening potential heat treatments with respect to notch fatigue strength at 1300 F utilizing a conventional notch fatigue specimen with a stress concentration factor (K(sub t)) of 2 and a 90 sec dwell at peak load. The results of this effort are reported in this paper including the downselect of an optimal heat treatment, from a notch fatigue standpoint.

  5. Fatigue and Muscle Strength Involving Walking Speed in Parkinson's Disease: Insights for Developing Rehabilitation Strategy for PD

    PubMed Central

    Chang, Fang-Yu; Liu, Wei-Chia; Chuang, Yu-Fen; Chuang, Li-Ling

    2017-01-01

    Background. Problems with gait in Parkinson's disease (PD) are a challenge in neurorehabilitation, partly because the mechanisms causing the walking disability are unclear. Weakness and fatigue, which may significantly influence gait, are commonly reported by patients with PD. Hence, the aim of this study was to investigate the association between weakness and fatigue and walking ability in patients with PD. Methods. We recruited 25 patients with idiopathic PD and 25 age-matched healthy adults. The maximum voluntary contraction (MVC), twitch force, and voluntary activation levels were measured before and after a knee fatigue exercise. General fatigue, central fatigue, and peripheral fatigue were quantified by exercise-induced changes in MVC, twitch force, and activation level. In addition, subjective fatigue was measured using the Multidimensional Fatigue Inventory (MFI) and Fatigue Severity Scale (FSS). Results. The patients with PD had lower activation levels, more central fatigue, and more subjective fatigue than the healthy controls. There were no significant differences in twitch force or peripheral fatigue index between the two groups. The reduction in walking speed was related to the loss of peripheral strength and PD itself. Conclusion. Fatigue and weakness of central origin were related to PD, while peripheral strength was important for walking ability. The results suggest that rehabilitation programs for PD should focus on improving both central and peripheral components of force. PMID:28321339

  6. Fatigue strength of woven kenaf fiber reinforced composites

    NASA Astrophysics Data System (ADS)

    Ismail, A. E.; Aziz, M. A. Che Abdul

    2015-12-01

    Nowadays, green composites provide alternative to synthetic fibers for non-bearing and load-bearing applications. According to literature review, lack of information is available on the fatigue performances especially when the woven fiber is used instead of randomly oriented fibers. In order to overcome this problem, this paper investigates the fatigue strength of different fiber orientations and number of layers of woven kenaf fiber reinforced composites. Four types of fiber orientations are used namely 0°, 15°, 30° and 45°. Additionally, two numbers of layers are also considered. It is revealed that the fatigue life has no strong relationship with the fiber orientations. For identical fiber orientations, the fatigue life can be predicted considerably using the normalized stress. However as expected, the fatigue life enhancement occur when the number of layer is increased.

  7. Factors that affect the fatigue strength of power transmission shafting

    NASA Technical Reports Server (NTRS)

    Loewenthal, S. H.

    1984-01-01

    A long standing objective in the design of power transmission shafting is to eliminate excess shaft material without compromising operational reliability. A shaft design method is presented which accounts for variable amplitude loading histories and their influence on limited life designs. The effects of combined bending and torsional loading are considered along with a number of application factors known to influence the fatigue strength of shafting materials. Among the factors examined are surface condition, size, stress concentration, residual stress and corrosion fatigue.

  8. Human quadriceps strength and fatiguability in patients with post viral fatigue.

    PubMed Central

    Rutherford, O M; White, P D

    1991-01-01

    Quadriceps isometric strength, activation and fatiguability were measured in 11 patients with symptoms of fatigue three months after glandular fever or a glandular fever-like illness. Predicted normal and lower limits of normal muscle strength were calculated from height and age. These measures and the fatigue index were compared with a group of healthy students of similar age. Two of the patients were unable to activate fully their muscles. After allowing for this inhibition the group mean (SD) strength was 104 (22%) of predicted. Although there was no significant difference in the fatigue index between the patients and the control group, there was a trend for the patients to show less fatigue than controls. There was no difference in the muscle results for those patients who were found to have Epstein-Barr virus infections and those who did not. The feelings of weakness and fatigue experienced by the patients could not be explained by either physiological muscle fatigue or lack of effort. PMID:1800667

  9. Fatigue strengths of particulate filler composites reinforced with fibers.

    PubMed

    Bae, Ji-Myung; Kim, Kyoung-Nam; Hattori, Masayuki; Hasegawa, Koji; Yoshinari, Masao; Kawada, Eiji; Oda, Yutaka

    2004-06-01

    The aim of this study was to evaluate the dynamic fatigue strengths at 10(5) cycles and the strains of particulate filler composite resins with and without reinforcing fibers. An UHMWPE (Ribbond), a polyaromatic polyamide fiber (Fibreflex), and three glass fibers (GlasSpan, FibreKor, Vectris Frame) were used to reinforce the particulate filler composite resins. The fatigue properties were measured in three-point bending mode using a servohydraulic universal testing machine at a frequency of 5 Hz, until failure occurred or 10(5) cycles had been completed. The fatigue strengths at 10(5) cycles were determined by the staircase method. The fractured aspects of specimens were evaluated by an optical and scanning electron microscope. The fatigue strengths of particulate filler composite resins were 49-57 MPa, and those of fiber-reinforced were 90-209 MPa. Unidirectional glass fibers showed higher reinforcing effects on the fatigue strengths of composite resins. The strain of UHMWPE-reinforced composite was largest.

  10. Fatigue strength of tubular structural elements at bending vibrations. Communication 2: TSE fatigue strength at programmed load variation

    NASA Astrophysics Data System (ADS)

    Gerasimchuk, O. N.; Gorodetskij, S. S.; Gryaznov, B. A.; Nalimov, Yu. S.

    1994-04-01

    Programs of a block loading with a prescribed and random alternation of stress amplitudes, simulating service load spectra, are presented. The results of fatigue testing of straight and bent tubular structural elements are given. A conclusion is drawn that low fatigue strength of VNS25 steel bent TSEs is due to an unfavorable technological inheritance of the tube bending and deplanation of the section during the test.

  11. Fatigue strength of a single lap joint SPR-bonded

    NASA Astrophysics Data System (ADS)

    Di Franco, G.; Fratini, L.; Pasta, A.

    2011-05-01

    In the last years, hybrid joints, meaning with this the joints which consist in combining a traditional mechanical joint to a layer of adhesive, are gradually attracting the attention of various sectors of the construction of vehicles and transportation industries, for their better performance compared to just mechanical joints (self-piercing riveting SPR, riveting, and so on) or just to bonded joints. The paper investigates the fatigue behavior of a single lap joint self-piercing riveted (SPR) and bonded throughout fatigue tests. The considered geometric configuration allowed the use of two rivets placed longitudinally; an epoxy resin was used as adhesive. In the first part of the work static characterization of the joints was carried out through tensile tests. Then fatigue tests were made with the application of different levels of load. The fatigue curves were also obtained at the varying the distance between the two rivets in order to better assess the joint strength for a given length of overlap.

  12. Effect of Preloading on Fatigue Strength in Dynamic Fatigue Testing of Ceramic Materials at Elevated Temperatures

    NASA Technical Reports Server (NTRS)

    Choi, Sung R.; Salem, Jonathan A.

    1995-01-01

    Previously derived solutions of fatigue strength as a function of preloading were verified by applying preloads to elevated temperature dynamic fatigue tests of 96 wt% alumina at 1000 C and NC 132 silicon nitride at 1100 C. The technique was found very useful in identification and control of the governing failure mechanism when multiple failure mechanisms, such as slow crack growth, creep and oxidation occurred simultaneously at elevated temperatures.

  13. Fatigue strength testing of LTCC and alumina ceramics bonds

    NASA Astrophysics Data System (ADS)

    Dąbrowski, A.; Matkowski, P.; Golonka, L.

    2012-12-01

    In this paper the results of fatigue strength tests of ceramic joints are presented. These tests have been performed on the samples subjected to thermal and vibration fatigue as well as on the reference samples without any additional loads. The main goal of the investigation was to determine the strength of hybrid ceramics joints using tensile testing machine. The experiment enabled evaluation of fatigue effects in the mentioned joints. Geometry of test samples has been designed according to FEM simulations, performed in ANSYS FEM environment. Thermal stress as well as the stress induced by vibrations have been analyzed in the designed model. In the experiments two types of ceramics have been used — LTCC green tape DP951 (DuPont) and alumina ceramic tape. The samples have been prepared by joining two sintered ceramic beams made of different types of material. The bonds have been realized utilizing low temperature glass or a layer of LTCC green tape.

  14. Fatigue Strength Prediction of Drilling Materials Based on the Maximum Non-metallic Inclusion Size

    NASA Astrophysics Data System (ADS)

    Zeng, Dezhi; Tian, Gang; Liu, Fei; Shi, Taihe; Zhang, Zhi; Hu, Junying; Liu, Wanying; Ouyang, Zhiying

    2015-12-01

    In this paper, the statistics of the size distribution of non-metallic inclusions in five drilling materials were performed. Based on the maximum non-metallic inclusion size, the fatigue strength of the drilling material was predicted. The sizes of non-metallic inclusions in drilling materials were observed to follow the inclusion size distribution rule. Then the maximum inclusion size in the fatigue specimens was deduced. According to the prediction equation of the maximum inclusion size and fatigue strength proposed by Murakami, fatigue strength of drilling materials was obtained. Moreover, fatigue strength was also measured through rotating bending tests. The predicted fatigue strength was significantly lower than the measured one. Therefore, according to the comparison results, the coefficients in the prediction equation were revised. The revised equation allowed the satisfactory prediction results of fatigue strength of drilling materials at the fatigue life of 107 rotations and could be used in the fast prediction of fatigue strength of drilling materials.

  15. Stochastic models for the tensile strength, fatigue

    NASA Technical Reports Server (NTRS)

    Phoenix, S. L.

    1976-01-01

    The time-to-failure of a single fiber is modeled as a functional of the fiber load history and reasonable forms for this functional are proposed. Earlier models by Daniels and Coleman are shown to be special cases of the proposed model and apparent disparities in their behavior are discussed. Techniques are presented for determining analytically the asymptotic distributions of the tensile strength and time-to-failure for bundles of a large number of fibers. For smaller bundles, exact results are far too cumbersome to be of use so that efficient Monte Carlo simulation procedures are proposed.

  16. Degradation in the fatigue strength of dentin by diamond bur preparations: Importance of cutting direction.

    PubMed

    Majd, B; Majd, H; Porter, J A; Romberg, E; Arola, D

    2016-01-01

    The objectives of this investigation were to evaluate the degradation in fatigue strength of dentin by diamond bur preparations and to identify the importance of cutting direction. Three groups of coronal dentin specimens were prepared from unrestored third molars, including a flaw free "control," and two groups that received a diamond bur cutting treatment performed parallel or perpendicular to the specimen length. The specimens were subjected to static or cyclic flexural loading to failure and the results were compared with data for carbide bur cutting. Under static loading diamond bur cutting resulted in significantly lower flexure strength (p ≤ 0.05) than the control for both cutting directions (from 154 to ∼124 MPa). However, there was no significant difference in the strength between the control and carbide bur treated specimens. Similarly, the fatigue strength of the diamond bur treated specimens was significantly lower (p ≤ 0.0001) than that of the control for both cutting directions. Cutting in the perpendicular direction resulted in nearly 60% reduction to the endurance limit (from 44 to 19 MPa). Based on the results, diamond bur cutting of cavity preparations causes a reduction in the fatigue strength of dentin, regardless of the cutting direction. To maintain the durability of dentin, cavity preparations introduced using diamond burs must be performed with appropriate cutting direction and followed by a finishing pass.

  17. DEGRADATION IN THE FATIGUE STRENGTH OF DENTIN BY DIAMOND BUR PREPARATIONS: IMPORTANCE OF CUTTING DIRECTION

    PubMed Central

    Majd, B.; Majd, H.; Porter, J.A.; Romberg, E.; Arola, D.

    2014-01-01

    The objectives of this investigation were to evaluate the degradation in fatigue strength of dentin by diamond bur preparations and to identify the importance of cutting direction. Three groups of coronal dentin specimens were prepared from unrestored 3rd molars, including a flaw free “control”, and two groups that received a diamond bur cutting treatment performed parallel or perpendicular to the specimen length. The specimens were subjected to static or cyclic flexural loading to failure and the results were compared with data for carbide bur cutting. Under static loading diamond bur cutting resulted in significantly flexure lower strength (p≤0.05) than the control for both cutting directions (from 154 MPa to approx. 124 MPa). However, there was no significant difference in the strength between the control and carbide bur treated specimens. Similarly, the fatigue strength of the diamond bur treated specimens was significantly lower (p≤0.0001) than that of the control for both cutting directions. Cutting in the perpendicular direction resulted in nearly 60% reduction to the endurance limit (from 44 MPa to 19 MPa). Based on the results, diamond bur cutting of cavity preparations causes a reduction in the fatigue strength of dentin, regardless of the cutting direction. To maintain the durability of dentin, cavity preparations introduced using diamond burs must be performed with appropriate cutting direction and followed by a finishing pass. PMID:25611951

  18. Strength Training Improves Fatigue Resistance and Self-Rated Health in Workers with Chronic Pain: A Randomized Controlled Trial.

    PubMed

    Sundstrup, Emil; Jakobsen, Markus Due; Brandt, Mikkel; Jay, Kenneth; Aagaard, Per; Andersen, Lars Louis

    2016-01-01

    Chronic musculoskeletal pain is widespread in the working population and leads to muscular fatigue, reduced work capacity, and fear of movement. While ergonomic intervention is the traditional approach to the problem, physical exercise may be an alternative strategy. This secondary analysis of a randomized controlled trial investigates the effect of strength training on muscular fatigue resistance and self-rated health among workers with chronic pain. Sixty-six slaughterhouse workers with chronic upper limb pain and work disability were randomly allocated to 10 weeks of strength training or usual care ergonomic training (control). At baseline and follow-up, participants performed a handgrip muscular fatigue test (time above 50% of maximal voluntary contraction force) with simultaneous recording of electromyography. Additionally, participants replied to a questionnaire regarding self-rated health and pain. Time to fatigue, muscle strength, hand/wrist pain, and self-rated health improved significantly more following strength training than usual care (all P < 0.05). Time to fatigue increased by 97% following strength training and this change was correlated to the reduction in fear avoidance (Spearman's rho = -0.40; P = 0.01). In conclusion, specific strength training improves muscular fatigue resistance and self-rated health and reduces pain of the hand/wrist in manual workers with chronic upper limb pain. This trial is registered with ClinicalTrials.gov NCT01671267.

  19. Strength Training Improves Fatigue Resistance and Self-Rated Health in Workers with Chronic Pain: A Randomized Controlled Trial

    PubMed Central

    Jakobsen, Markus Due; Jay, Kenneth

    2016-01-01

    Chronic musculoskeletal pain is widespread in the working population and leads to muscular fatigue, reduced work capacity, and fear of movement. While ergonomic intervention is the traditional approach to the problem, physical exercise may be an alternative strategy. This secondary analysis of a randomized controlled trial investigates the effect of strength training on muscular fatigue resistance and self-rated health among workers with chronic pain. Sixty-six slaughterhouse workers with chronic upper limb pain and work disability were randomly allocated to 10 weeks of strength training or usual care ergonomic training (control). At baseline and follow-up, participants performed a handgrip muscular fatigue test (time above 50% of maximal voluntary contraction force) with simultaneous recording of electromyography. Additionally, participants replied to a questionnaire regarding self-rated health and pain. Time to fatigue, muscle strength, hand/wrist pain, and self-rated health improved significantly more following strength training than usual care (all P < 0.05). Time to fatigue increased by 97% following strength training and this change was correlated to the reduction in fear avoidance (Spearman's rho = −0.40; P = 0.01). In conclusion, specific strength training improves muscular fatigue resistance and self-rated health and reduces pain of the hand/wrist in manual workers with chronic upper limb pain. This trial is registered with ClinicalTrials.gov NCT01671267. PMID:27830144

  20. Anomolous Fatigue Crack Growth Phenomena in High-Strength Steel

    NASA Technical Reports Server (NTRS)

    Forth, Scott C.; James, Mark A.; Johnston, William M., Jr.; Newman, James C., Jr.

    2004-01-01

    The growth of a fatigue crack through a material is the result of a complex interaction between the applied loading, component geometry, three-dimensional constraint, load history, environment, material microstructure and several other factors. Previous studies have developed experimental and computational methods to relate the fatigue crack growth rate to many of the above conditions, with the intent of discovering some fundamental material response, i.e. crack growth rate as a function of something. Currently, the technical community uses the stress intensity factor solution as a simplistic means to relate fatigue crack growth rate to loading, geometry and all other variables. The stress intensity factor solution is a very simple linear-elastic representation of the continuum mechanics portion of crack growth. In this paper, the authors present fatigue crack growth rate data for two different high strength steel alloys generated using standard methods. The steels exhibit behaviour that appears unexplainable, compared to an aluminium alloy presented as a baseline for comparison, using the stress intensity factor solution.

  1. Fatigue strength of a single lap joint SPR-bonded

    SciTech Connect

    Di Franco, G.; Fratini, L.; Pasta, A.

    2011-05-04

    In the last years, hybrid joints, meaning with this the joints which consist in combining a traditional mechanical joint to a layer of adhesive, are gradually attracting the attention of various sectors of the construction of vehicles and transportation industries, for their better performance compared to just mechanical joints (self-piercing riveting SPR, riveting, and so on) or just to bonded joints.The paper investigates the fatigue behavior of a single lap joint self-piercing riveted (SPR) and bonded throughout fatigue tests. The considered geometric configuration allowed the use of two rivets placed longitudinally; an epoxy resin was used as adhesive. In the first part of the work static characterization of the joints was carried out through tensile tests. Then fatigue tests were made with the application of different levels of load. The fatigue curves were also obtained at the varying the distance between the two rivets in order to better assess the joint strength for a given length of overlap.

  2. An EVA Suit Fatigue, Strength, and Reach Model

    NASA Technical Reports Server (NTRS)

    Maida, James C.

    1999-01-01

    The number of Extra-Vehicular Activities (EVAs) performed will increase dramatically with the upcoming Space Station assembly missions. It is estimated that up to 900 EVA hours may be required to assemble the Space Station with an additional 200 hours per year for maintenance requirements. Efficient modeling tools will be essential to assist in planning these EVAS. Important components include strength and fatigue parameters, multi-body dynamics and kinematics. This project is focused on building a model of the EVA crew member encompassing all these capabilities. Phase 1, which is currently underway, involves collecting EMU suited and unsuited fatigue, strength and range of motion data, for all major joints of the body. Phase 2 involves processing the data for model input, formulating comparisons between the EMU suits and deriving generalized relationships between suited and unsuited data. Phase 3 will be formulation of a multi-body dynamics model of the EMU capable of predicting mass handling properties and integration of empirical data into the model. Phase 4 will be validation of the model with collected EMU data from the Neutral Buoyancy Laboratory at NASA/JSC. Engineers and designers will use tie EVA suit database to better understand the capabilities of the suited individuals. This knowledge will lead to better design of tools and planned operations. Mission planners can use the modeling system and view the animations and the visualizations of the various parameters, such as overall fatigue, motion, timelines, reach, and strength to streamline the timing, duration, task arrangement, personnel and overall efficiency of the EVA tasks. Suit designers can use quantifiable data at common biomechanical structure points to better analyze and compare suit performance.

  3. Corrosion Fatigue of High-Strength Titanium Alloys Under Different Stress Gradients

    NASA Astrophysics Data System (ADS)

    Baragetti, Sergio; Villa, Francesco

    2015-05-01

    Ti-6Al-4V is the most widely used high strength-to-mass ratio titanium alloy for advanced engineering components. Its adoption in the aerospace, maritime, automotive, and biomedical sectors is encouraged when highly stressed components with severe fatigue loading are designed. The extents of its applications expose the alloy to several aggressive environments, which can compromise its brilliant mechanical characteristics, leading to potentially catastrophic failures. Ti-6Al-4V stress-corrosion cracking and corrosion-fatigue sensitivity has been known since the material testing for pressurized tanks for Apollo missions, although detailed investigations on the effects of harsh environment in terms of maximum stress reduction have been not carried out until recent times. In the current work, recent experimental results from the authors' research group are presented, quantifying the effects of aggressive environments on Ti-6Al-4V under fatigue loading in terms of maximum stress reduction. R = 0.1 axial fatigue results in laboratory air, 3.5 wt.% NaCl solution, and CH3OH methanol solution at different concentrations are obtained for mild notched specimens ( K t = 1.18) at 2e5 cycles. R = 0.1 tests are also conducted in laboratory air, inert environment, 3.5 wt.% NaCl solution for smooth, mild and sharp notched specimens, with K t ranging from 1 to 18.65, highlighting the environmental effects for the different load conditions induced by the specimen geometry.

  4. The effect of yield strength and ductility to fatigue damage

    NASA Technical Reports Server (NTRS)

    Yeh, H. Y.

    1973-01-01

    The cumulative damage of aluminium alloys with different yield strength and various ductility due to seismic loads was studied. The responses of an idealized beam with a centered mass at one end and fixed at the other end to El Centro's and Taft's earthquakes are computed by assuming that the alloys are perfectly elastoplastic materials and by using numerical technique. Consequently, the corresponding residual plastic strain can be obtained from the stress-strain relationship. The revised Palmgren-Miner cumulative damage theorem is utilized to calculate the fatigue damage. The numerical results show that in certain cases, the high ductility materials are more resistant to seismic loads than the high yield strength materials. The results also show that if a structure collapse during the earthquake, the collapse always occurs in the very early stage.

  5. NDE detectability of fatigue type cracks in high strength alloys

    NASA Technical Reports Server (NTRS)

    Christner, B. K.; Rummel, W. D.

    1983-01-01

    Specimens suitable for investigating the reliability of production nondestructive evaluation (NDE) to detect tightly closed fatigue cracks in high strength alloys representative of those materials used in spacecraft engine/booster construction were produced. Inconel 718 was selected as representative of nickel base alloys and Haynes 188 was selected as representative of cobalt base alloys used in this application. Cleaning procedures were developed to insure the reusability of the test specimens and a flaw detection reliability assessment of the fluorescent penetrant inspection method was performed using the test specimens produced to characterize their use for future reliability assessments and to provide additional NDE flaw detection reliability data for high strength alloys. The statistical analysis of the fluorescent penetrant inspection data was performed to determine the detection reliabilities for each inspection at a 90% probability/95% confidence level.

  6. ZERODUR®: new stress corrosion data improve strength fatigue prediction

    NASA Astrophysics Data System (ADS)

    Hartmann, Peter; Kleer, Günter; Rist, Tobias

    2015-09-01

    The extremely low thermal expansion glass ceramic ZERODUR® finds more and more applications as sophisticated light weight structures with thin ribs or as thin shells. Quite often they will be subject to higher mechanical loads such as rocket launches or modulating wobbling vibrations. Designing such structures requires calculation methods and data taking into account their long term fatigue. With brittle materials fatigue is not only given by the material itself but to a high extent also by its surface condition and the environmental media especially humidity. This work extends the latest data and information gathered on the bending strength of ZERODUR® with new results concerning its long term behavior under tensile stress. The parameter needed for prediction calculations which combines the influences of time and environmental media is the stress corrosion constant n. Results of the past differ significantly from each other. In order to obtain consistent data the stress corrosion constant has been measured with the method comparing the breakage statistical distributions at different stress increase rates. For better significance the stress increase rate was varied over four orders of magnitude from 0.004 MPa/s to 40 MPa/s. Experiments were performed under normal humidity for long term earth bound applications and under nitrogen atmosphere as equivalent to dry environment occurring for example with telescopes in deserts and also equivalent to vacuum for space applications. As shown earlier the bending strength of diamond ground surfaces of ZERODUR® can be represented with a three parameter Weibull distribution. Predictions on the long term strength change of ZERODUR® structures under tensile stress are possible with reduced uncertainty if Weibull threshold strength values are considered and more reliable stress corrosion constant data are applied.

  7. Probabilistic Material Strength Degradation Model for Inconel 718 Components Subjected to High Temperature, Mechanical Fatigue, Creep and Thermal Fatigue Effects

    NASA Technical Reports Server (NTRS)

    Bast, Callie Corinne Scheidt

    1994-01-01

    This thesis presents the on-going development of methodology for a probabilistic material strength degradation model. The probabilistic model, in the form of a postulated randomized multifactor equation, provides for quantification of uncertainty in the lifetime material strength of aerospace propulsion system components subjected to a number of diverse random effects. This model is embodied in the computer program entitled PROMISS, which can include up to eighteen different effects. Presently, the model includes four effects that typically reduce lifetime strength: high temperature, mechanical fatigue, creep, and thermal fatigue. Statistical analysis was conducted on experimental Inconel 718 data obtained from the open literature. This analysis provided regression parameters for use as the model's empirical material constants, thus calibrating the model specifically for Inconel 718. Model calibration was carried out for four variables, namely, high temperature, mechanical fatigue, creep, and thermal fatigue. Methodology to estimate standard deviations of these material constants for input into the probabilistic material strength model was developed. Using the current version of PROMISS, entitled PROMISS93, a sensitivity study for the combined effects of mechanical fatigue, creep, and thermal fatigue was performed. Results, in the form of cumulative distribution functions, illustrated the sensitivity of lifetime strength to any current value of an effect. In addition, verification studies comparing a combination of mechanical fatigue and high temperature effects by model to the combination by experiment were conducted. Thus, for Inconel 718, the basic model assumption of independence between effects was evaluated. Results from this limited verification study strongly supported this assumption.

  8. Fracture strength of all-ceramic restorations after fatigue loading

    NASA Astrophysics Data System (ADS)

    Baladhandayutham, Balasudha

    Fracture strength of monolithic and bilayered LAVA and e. max lower molar crowns after load cycling was measured and compared. The study included three groups (n = 8) from LAVA zirconia and three groups from e. max lithium disilicate to compare influences of different layers, thicknesses and manufacturing techniques. Prefabricated anatomically designed crowns were cemented to dies made from Z 100 composite resin using Rely X Luting Plus resin modified glass ionomer cement. Cemented crowns were stored at 37° C for 24 hours then cyclic loaded to test fatigue properties. The crowns were loaded to 200,000 cycles at 25N at a rate of 40 cycles / minute to simulate oral function. Subsequently, fracture properties for each group were measured using an Instron Universal Testing machine. Microscopic evaluation of the surface of fatigued samples did not reveal micro-cracks at the end of 50,000 cycles but minor wear facets were observed at the site of contact from the steatite ball antagonist. Crowns from LAVA bilayered groups showed step by step fractures while crowns from all other groups fractured as a single event as observed by the high speed camera. Zirconia bilayered crowns showed the highest loads to fracture while lithium disilicate monolithic crowns showed the lowest, within the limitations of the study. The study also showed that monolithic zirconia crowns of 0.6mm thickness resulted in relatively high magnitude for forces at fracture.

  9. Effect of cyclic high loading rates on the fatigue strength of aluminum-based composites

    NASA Astrophysics Data System (ADS)

    Calderon Arteaga, Hermes Eskander

    The study of fatigue under high loading rates is of great interest in the complete characterization of a new series of composites with Al-Cu-Mg matrix reinforced with AlB2 dispersoids. Homogeneous and functionally graded composites were prepared via gravity and centrifugal casting, respectively. Through centrifugal casting a gradual variation of the volume fraction of reinforcing particles along the cross section was obtained. In specific fabrication conditions, even complete segregation of the reinforcement particles was achieved. Charpy impact tests as well as hardness tests were conducted to assess the composite strength as a function of the weight percent of boron. The tensile properties of gravity cast samples were obtained. Then for both casting conditions, simple edge-notched bend SE(B) specimens were tested under fatigue conditions (three-point bending). The results from impact and hardness tests allowed identifying an interaction between the Mg dissolved in the matrix and the diborides. This interaction, which has never been reported before, was responsible for the strength reduction observed. It was assumed that a substitutional diffusion of Al by Mg atoms in the hp3 structure of diboride was causing the strength reduction, and three approaches were developed to estimate the amount of Mg depleted from the matrix by the diborides during the composite processing. Gravity cast samples were more sensitive to monotonic damage due to fatigue loads where compared with functionally-graded composites. Contrary to the centrifugal cast samples, gravity samples were also affected by the loading rate. The Mg-AlB2 interaction was also responsible for the reduction in the fatigue resistance as the weight percent of boron increased in both types of composites; regression models were obtained to predict the crack growth curve slope change as function of the boron level. The particle distribution showed to affect the crack growth behavior of the FGMs, decreasing the

  10. A parametric study of the factors affecting the fatigue strength of porous coated Ti-6A1-4V implant alloy.

    PubMed

    Kohn, D H; Ducheyne, P

    1990-11-01

    The high cycle fatigue strength of porous coated Ti-6A1-4V is approximately 75% less than the fatigue strength of uncoated Ti-6A1-4V. This study separates the effects of three parameters thought to be responsible for this reduction: interfacial geometry, microstructure, and surface alterations brought about by sintering. To achieve the goal of one parameter variations, hydrogen-alloying treatments, which refined the lamellar microstructure of beta-annealed and porous coated Ti-6A1-4V, were formulated. The fatigue strength of smooth-surfaced Ti-6A1-4V subjected to hydrogen-alloying treatments is 643-669 MPa, significantly greater than the fatigue strength of beta-annealed Ti-6A1-4V (497 MPa) and also greater than the fatigue strength of pre-annealed, equiaxed Ti-6A1-4V (590 MPa). The fatigue strength of porous coated Ti-6A1-4V, however, is independent of microstructure. This leads to the conclusion that the notch effect of the surface porosity does not allow the material to take advantage of the superior fatigue crack initiation resistance of a refined alpha-grain size. Thus, sinternecks acts as initiated microcracks and fatigue of porous coated Ti-6A1-4V is propagation controlled.

  11. Conducting High Cycle Fatigue Strength Step Tests on Gamma TiAl

    NASA Technical Reports Server (NTRS)

    Lerch, Brad; Draper, Sue; Pereira, J. Mike

    2002-01-01

    High cycle fatigue strength testing of gamma TiAl by the step test method is investigated. A design of experiments was implemented to determine if the coaxing effect occurred during testing. Since coaxing was not observed, step testing was deemed a suitable method to define the fatigue strength at 106 cycles.

  12. Influence of Fatigue on Tackling Ability in Rugby League Players: Role of Muscular Strength, Endurance, and Aerobic Qualities

    PubMed Central

    Gabbett, Tim J.

    2016-01-01

    This study investigated the influence of repeated high-intensity effort exercise on tackling ability in rugby league players, and determined the relationship between physical qualities and tackling ability under fatigued conditions in these athletes. Eleven semi-professional rugby league players underwent measurements of speed (10 m and 40 m sprint), upper-body strength (4 repetition maximum [RM] bench press and weighted chin-up), upper-body muscular endurance (body mass maximum repetition chin-up, body mass maximum repetition dips), lower-body strength (4RM squat), and estimated maximal aerobic power (multi-stage fitness test). Tackling ability was assessed using a standardized one-on-one tackling test, before, during, and following four bouts of repeated high-intensity effort (RHIE) exercise. The relationship between physical qualities and fatigue-induced decrements in tackling ability were determined using Pearson product moment correlation coefficients. Each cycle of the RHIE protocol induced progressive reductions in tackling ability. A moderate reduction (Effect Size = ~-1.17 ± 0.60, -34.1 ± 24.3%) in tackling ability occurred after the fourth cycle of the RHIE protocol. Players with greater relative lower-body strength (i.e. 4RM squat/kg) had the best tackling ability under fatigued conditions (r = 0.72, p = 0.013). There were no significant relationships between tackling ability under fatigued conditions and any other physical quality. These findings suggest that lower-body strength protects against fatigue-induced decrements in tackling ability. The development of lower-body strength should be a priority to facilitate the development of robust tackling skills that are maintained under fatigue. PMID:27798634

  13. Fatigue Performance of Powder Metallurgy (PM) Ti-6Al-4V Alloy: A Critical Analysis of Current Fatigue Data and Metallurgical Approaches for Improving Fatigue Strength

    NASA Astrophysics Data System (ADS)

    Cao, Fei; Ravi Chandran, K. S.

    2016-03-01

    A comprehensive assessment of fatigue performance of powder metallurgy (PM) Ti-6Al-4V alloy, manufactured using various powder-based processing approaches to-date, is performed in this work. The focus is on PM processes that use either blended element (BE) or pre-alloyed (PA) powder as feedstock. Porosity and the microstructure condition have been found to be the two most dominant material variables that control the fatigue strength. The evaluation reveals that the fatigue performance of PM Ti-6Al-4V, in the as-sintered state, is far lower than that in the wrought condition. This is largely caused by residual porosity, even if it is present in small amounts, or, by the coarse lamellar colony microstructure. The fatigue strength is significantly improved by the closure of pores, and it approaches the levels of wrought Ti-6Al-4V alloys, after hot-isostatic-pressing (HIPing). Further thermo-mechanical and heat treatments lead to additional increases in fatigue strength-in one case, a high fatigue strength level, exceeding that of the mill-annealed condition, was achieved. The work identifies the powder, process and microstructure improvements that are necessary for achieving high fatigue strength in powder metallurgical Ti-6Al-4V alloys in order for them to effectively compete with wrought forms. The present findings, gathered from the traditional titanium powder metallurgy, are also directly applicable to additively manufactured titanium, because of the similarities in pores, defects, and microstructures between the two manufacturing processes.

  14. Strength reduction in electrical and elastic networks

    NASA Astrophysics Data System (ADS)

    Espinoza Ortiz, J. S.; Rajapakse, Chamith S.; Gunaratne, Gemunu H.

    2002-10-01

    Particular aspects of problems ranging from dielectric breakdown to metal-insulator transition can be studied using electrical or elastic networks. We present an expression for the mean breakdown strength of such networks. First, we introduce a method to evaluate the redistribution of current due to the removal of a finite number of elements from a hypercubic network of conductances. It is used to determine the reduction of breakdown strength due to a fracture of size κ. Numerical analysis is used to show that the analogous reduction due to random removal of elements from electrical and elastic networks follow a similar form. One possible application, namely the use of bone density as a diagnostic tool for osteoporosis, is discussed.

  15. Time and temperature dependence on the flexural fatigue strength in the transverse direction of unidirectional CFRP

    NASA Astrophysics Data System (ADS)

    Nakada, Masakazu; Maeda, M.; Hirohata, T.; Morita, M.; Miyano, Y.

    1997-03-01

    A prediction method of fatigue strength of polymer composites for an arbitrary frequency, stress ratio and temperature was proposed. The method is based upon the four hypotheses, (A) same failure mechanism for static, creep and fatigue failure, (b) same time-temperature superposition principle for all failure strengths, (C) linear cumulative damage law for monotone loading and (D) linear dependence of fatigue strength upon stress ratio. Flexural static, creep and fatigue tests at various temperatures were conducted in the transverse direction of two kinds of unidirectional CFRP laminates, which are T300/2500 and T300/PEEK. The validity of the prediction method and the applicability of the hypotheses for the flexural fatigue strength in the transverse direction of unidirectional CFRP laminates were discussed.

  16. Hydrogen-enabled microstructure and fatigue strength engineering of titanium alloys

    NASA Astrophysics Data System (ADS)

    Paramore, James D.; Fang, Zhigang Zak; Dunstan, Matthew; Sun, Pei; Butler, Brady G.

    2017-02-01

    Traditionally, titanium alloys with satisfactory mechanical properties can only be produced via energy-intensive and costly wrought processes, while titanium alloys produced using low-cost powder metallurgy methods consistently result in inferior mechanical properties, especially low fatigue strength. Herein, we demonstrate a new microstructural engineering approach for producing low-cost titanium alloys with exceptional fatigue strength via the hydrogen sintering and phase transformation (HSPT) process. The high fatigue strength presented in this work is achieved by creating wrought-like microstructures without resorting to wrought processing. This is accomplished by generating an ultrafine-grained as-sintered microstructure through hydrogen-enabled phase transformations, facilitating the subsequent creation of fatigue-resistant microstructures via simple heat treatments. The exceptional strength, ductility, and fatigue performance reported in this paper are a breakthrough in the field of low-cost titanium processing.

  17. Hydrogen-enabled microstructure and fatigue strength engineering of titanium alloys

    DOE PAGES

    Paramore, James D.; Fang, Zhigang Zak; Dunstan, Matthew; ...

    2017-02-01

    Traditionally, titanium alloys with satisfactory mechanical properties can only be produced via energy-intensive and costly wrought processes, while titanium alloys produced using low-cost powder metallurgy methods consistently result in inferior mechanical properties, especially low fatigue strength. Herein, we demonstrate a new microstructural engineering approach for producing low-cost titanium alloys with exceptional fatigue strength via the hydrogen sintering and phase transformation (HSPT) process. The high fatigue strength presented in this work is achieved by creating wroughtlike microstructures without resorting to wrought processing. This is accomplished by generating an ultrafine-grained as-sintered microstructure through hydrogen-enabled phase transformations, facilitating the subsequent creation of fatigue-resistantmore » microstructures via simple heat treatments. Finally, the exceptional strength, ductility, and fatigue performance reported in this paper are a breakthrough in the field of low-cost titanium processing.« less

  18. Hydrogen-enabled microstructure and fatigue strength engineering of titanium alloys

    PubMed Central

    Paramore, James D.; Fang, Zhigang Zak; Dunstan, Matthew; Sun, Pei; Butler, Brady G.

    2017-01-01

    Traditionally, titanium alloys with satisfactory mechanical properties can only be produced via energy-intensive and costly wrought processes, while titanium alloys produced using low-cost powder metallurgy methods consistently result in inferior mechanical properties, especially low fatigue strength. Herein, we demonstrate a new microstructural engineering approach for producing low-cost titanium alloys with exceptional fatigue strength via the hydrogen sintering and phase transformation (HSPT) process. The high fatigue strength presented in this work is achieved by creating wrought-like microstructures without resorting to wrought processing. This is accomplished by generating an ultrafine-grained as-sintered microstructure through hydrogen-enabled phase transformations, facilitating the subsequent creation of fatigue-resistant microstructures via simple heat treatments. The exceptional strength, ductility, and fatigue performance reported in this paper are a breakthrough in the field of low-cost titanium processing. PMID:28145527

  19. A New Perspective on Fatigue Performance of Advanced High- Strength Steels (AHSS) GMAW Joints

    SciTech Connect

    Feng, Zhili; Chiang, Dr. John; Kuo, Dr. Min; Jiang, Cindy; Sang, Yan

    2008-01-01

    Weld fatigue performance is a critical aspect for application of advanced high-strength steels (AHSS) in automotive body structures. A comparative study has been conducted to evaluate the fatigue life of AHSS welds. The material studied included seven AHSS of various strength levels - DP 600, DP 780, DP 980, M130, M220, solution annealed boron and fully hardened boron steels. Two conventional steels, HSLA 590 and DR 210, were also included for baseline comparison. Lap fillet welds were made on 2-mm nominal thick sheets by the gas metal arc welding process (GMAW). Fatigue test was conducted under a number of stress levels to obtain the S/N curves of the weld joints. It was found that, unlike in the static and impact loading conditions, the fatigue performance of AHSS is not influenced by the HAZ softening in AHSS. There are appreciable differences in the fatigue lives among different AHSS. Changes in weld parameters can influence the fatigue life of the weld joints, particularly of these of higher strength AHSS. A model is developed to predict the fatigue performance of AHSS welds. The validity of the model is benchmarked with the experimental results. This model is capable to capture the effects of weld geometry and weld microstructure and strength on the fatigue performance experimentally observed. The theoretical basis and application of the newly developed fatigue modeling methodology will be discussed.

  20. Structural strength analysis and fatigue life prediction of traction converter box in high-speed EMU

    NASA Astrophysics Data System (ADS)

    Tan, Qin; Li, Qiang

    2017-01-01

    The method of building the FEA model of traction converter box in high-speed EMU and analyzing the static strength and fatigue strength of traction converter box based on IEC 61373-2010 and EN 12663 standards is presented in this paper. The load-stress correlation coefficients of weak points is obtained by FEA model, applied to transfer the load history of traction converter box to stress history of each point. The fatigue damage is calculated based on Miner's rule and the fatigue life of traction converter box is predicted. According to study, the structural strength of traction converter box meets design requirements.

  1. AISI/DOE Technology Roadmap Program: Characterization of Fatigue and Crash Performance of New Generation High Strength Steels for Automotive Applications

    SciTech Connect

    Brenda Yan; Dennis Urban

    2003-04-21

    A 2-year project (2001-2002) to generate fatigue and high strain data for a new generation of high strength steels (HSS) has been completed in December 2002. The project tested eleven steel grades, including Dual Phase (DP) steels, Transformation-Induced Plasticity (TRIP) steels, Bake Hardenable (BH) steels, and conventional High Strength Low Alloy (HSLA) steels. All of these steels are of great interest in automotive industry due to the potential benefit in weight reduction, improved fuel economy, enhanced crash energy management and total system cost savings. Fatigue behavior includes strain controlled fatigue data notch sensitivity for high strength steels. High strain rate behavior includes stress-strain data for strain rates from 0.001/s to 1000/s, which are considered the important strain rate ranges for crash event. The steels were tested in two phases, seven were tested in Phase 1 and the remaining steels were tested in Phase. In a addition to the fatigue data and high st rain rate data generated for the steels studied in the project, analyses of the testing results revealed that Advanced High Strength Steels (AHSS) exhibit significantly higher fatigue strength and crash energy absorption capability than conventional HSS. TRIP steels exhibit exceptionally better fatigue strength than steels of similar tensile strength but different microstructure, for conditions both with or without notches present

  2. Effects of shear stress component and loading path on fatigue strength under tension/torsion biaxial cyclic loading

    SciTech Connect

    Morita, Y.; Fujii, T.

    1994-12-31

    The material degradation and its mechanism of a plain woven glass fabric under tension/torsion biaxial cyclic loading were investigated. Thin-walled tubular specimens were used. Different types of loading sequence were applied to the specimens in order to estimate the effect of shear stress component on fatigue degradation of the composite under biaxial cyclic loading. All biaxial loads were proportionally applied to the specimens, but the number of torsion loading cycles and its direction (pulsating or alternate) were changed. Various wave forms were also used to estimate the effect of loading path. Loading path was changed but the final stress state (tensile and shear stresses) was the same. Stress-strain relation and stiffness reduction were observed to evaluate the degree of fatigue damage. The experimental results show that the role of shear stress is important when the material degradation is dominated by the shear stress component although the effect of shear stress component on fatigue strength decreases with an increase of tensile stress component under tension/torsion biaxial loading. Loading sequence also affects more or less on the fatigue life. On the other hand, it is well estimated that the fatigue life is little dependent on loading path in the case of high cycle fatigue.

  3. Strength and physiological response to exercise in patients with chronic fatigue syndrome

    PubMed Central

    Fulcher, K.; White, P.

    2000-01-01

    OBJECTIVE—To measure strength, aerobic exercise capacity and efficiency, and functional incapacity in patients with chronic fatigue syndrome (CFS) who do not have a current psychiatric disorder.
METHODS—Sixty six patients with CFS without a current psychiatric disorder, 30 healthy but sedentary controls, and 15 patients with a current major depressive disorder were recruited into the study. Exercise capacity and efficiency were assessed by monitoring peak and submaximal oxygen uptake, heart rate, blood lactate, duration of exercise, and perceived exertion during a treadmill walking test. Strength was measured using twitch interpolated voluntary isometric quadriceps contractions. Symptomatic measures included physical and mental fatigue, mood, sleep, somatic amplification, and functional incapacity.
RESULTS—Compared with sedentary controls, patients with CFS were physically weaker, had a significantly reduced exercise capacity, and perceived greater effort during exercise, but were equally unfit. Compared with depressed controls, patients with CFS had significantly higher submaximal oxygen uptakes during exercise, were weaker, and perceived greater physical fatigue and incapacity. Multiple regression models suggested that exercise incapacity in CFS was related to quadriceps muscle weakness, increased cardiovascular response to exercise, and body mass index. The best model of the increased exercise capacity found after graded exercise therapy consisted of a reduction in submaximal heart rate response to exercise.
CONCLUSIONS—Patients with CFS were weaker than sedentary and depressed controls and as unfit as sedentary controls. Low exercise capacity in patients with CFS was related to quadriceps muscle weakness, low physical fitness, and a high body mass ratio. Improved physical fitness after treatment was associated with increased exercise capacity. These data imply that physical deconditioning helps to maintain physical disability in CFS and that a

  4. Investigation of fatigue strength of multilayer advanced fiber composites

    NASA Technical Reports Server (NTRS)

    Thornton, H. R.; Kozik, T. J.

    1974-01-01

    The analytical characterization of a multilayer fiber composite plate (without hole) was accomplished for both static and dynamic loading conditions using the finite difference technique. Thornel 300/5208 composites with and without holes were subjected to static and tensile fatigue testing. Five (5) fiber orientations were submitted to test. Tensile fatigue testing also included three (3) loading conditions and two (2) frequencies. The low-cycle test specimens demonstrated a shorter tensile fatigue life than the high-cycle test specimens. Failure surfaces demonstrated effect of testing conditions. Secondary failure mechanisms, such as: delamination, fiber breakage, and edge fiber delamination were present. Longitudinal delamination between plies also occurred in these specimens.

  5. Fatigue of Austempered Ductile Iron with Two Strength Grades in Very High Cycle Regime

    NASA Astrophysics Data System (ADS)

    Zhang, Jiwang; Li, Wei; Song, Qingpeng; Zhang, Ning; Lu, Liantao

    2016-03-01

    In this study, Austempered ductile irons (ADIs) with two different strength grades were produced and the fatigue properties were measured at 109 cycles. The results show that the S-N curves give a typical step-wise shape and there is no fatigue limit in the very high cycle fatigue regime. The two grades ADI have the similar fracture behaviors and fatigue failure can initiate from defects at specimen surface and subsurface zone. On the fracture surfaces of some specimens, the `granular-bright-facet' area with rich carbon distribution is observed in the vicinity of the defect. The microstructure affects the crack behaviors at the early propagation stage. The ADI with upper and lower bainite shows higher fatigue strength compared with the ADI with coarse upper bainite.

  6. Notch fatigue behavior: Metallic glass versus ultra-high strength steel

    PubMed Central

    Wang, X. D.; Qu, R. T.; Wu, S. J.; Duan, Q. Q.; Liu, Z. Q.; Zhu, Z. W.; Zhang, H. F.; Zhang, Z. F.

    2016-01-01

    Studying the effect of notch on the fatigue behavior of structural materials is of significance for the reliability and safety designing of engineering structural components. In this work, we conducted notch fatigue experiments of two high-strength materials, i.e. a Ti32.8Zr30.2Ni5.3Cu9Be22.7 metallic glass (MG) and a 00Ni18Co15Mo8Ti ultra-high strength steel (CM400 UHSS), and compared their notch fatigue behavior. Experimental results showed that although both the strength and plasticity of the MG were much lower than those of the UHSS, the fatigue endurance limit of the notched MG approached to that of the notched UHSS, and the fatigue ratio of the notched MG was even higher. This interesting finding can be attributed to the unique shear banding mechanism of MG. It was found that during fatigue process abundant shear bands formed ahead of the notch root and in the vicinity of the crack in the notched MG, while limited plastic deformation was observed in the notched UHSS. The present results may improve the understanding on the fatigue mechanisms of high-strength materials and offer new strategies for structural design and engineering application of MG components with geometrical discontinuities. PMID:27752136

  7. Notch fatigue behavior: Metallic glass versus ultra-high strength steel.

    PubMed

    Wang, X D; Qu, R T; Wu, S J; Duan, Q Q; Liu, Z Q; Zhu, Z W; Zhang, H F; Zhang, Z F

    2016-10-18

    Studying the effect of notch on the fatigue behavior of structural materials is of significance for the reliability and safety designing of engineering structural components. In this work, we conducted notch fatigue experiments of two high-strength materials, i.e. a Ti32.8Zr30.2Ni5.3Cu9Be22.7 metallic glass (MG) and a 00Ni18Co15Mo8Ti ultra-high strength steel (CM400 UHSS), and compared their notch fatigue behavior. Experimental results showed that although both the strength and plasticity of the MG were much lower than those of the UHSS, the fatigue endurance limit of the notched MG approached to that of the notched UHSS, and the fatigue ratio of the notched MG was even higher. This interesting finding can be attributed to the unique shear banding mechanism of MG. It was found that during fatigue process abundant shear bands formed ahead of the notch root and in the vicinity of the crack in the notched MG, while limited plastic deformation was observed in the notched UHSS. The present results may improve the understanding on the fatigue mechanisms of high-strength materials and offer new strategies for structural design and engineering application of MG components with geometrical discontinuities.

  8. Notch fatigue behavior: Metallic glass versus ultra-high strength steel

    NASA Astrophysics Data System (ADS)

    Wang, X. D.; Qu, R. T.; Wu, S. J.; Duan, Q. Q.; Liu, Z. Q.; Zhu, Z. W.; Zhang, H. F.; Zhang, Z. F.

    2016-10-01

    Studying the effect of notch on the fatigue behavior of structural materials is of significance for the reliability and safety designing of engineering structural components. In this work, we conducted notch fatigue experiments of two high-strength materials, i.e. a Ti32.8Zr30.2Ni5.3Cu9Be22.7 metallic glass (MG) and a 00Ni18Co15Mo8Ti ultra-high strength steel (CM400 UHSS), and compared their notch fatigue behavior. Experimental results showed that although both the strength and plasticity of the MG were much lower than those of the UHSS, the fatigue endurance limit of the notched MG approached to that of the notched UHSS, and the fatigue ratio of the notched MG was even higher. This interesting finding can be attributed to the unique shear banding mechanism of MG. It was found that during fatigue process abundant shear bands formed ahead of the notch root and in the vicinity of the crack in the notched MG, while limited plastic deformation was observed in the notched UHSS. The present results may improve the understanding on the fatigue mechanisms of high-strength materials and offer new strategies for structural design and engineering application of MG components with geometrical discontinuities.

  9. Effect of alloy composition on high-temperature bending fatigue strength of ferritic stainless steels

    NASA Astrophysics Data System (ADS)

    Ahn, Yong-Sik; Song, Jeon-Young

    2011-12-01

    Exhaust manifolds are subjected to an environment in which heating and cooling cycles occur due to the running pattern of automotive engines. This temperature profile results in the repeated bending stress of exhaust pipes. Therefore, among high-temperature characteristics, the bending fatigue strength is an important factor that affects the lifespan of exhaust manifolds. Here, we report on the effect of the alloy composition, namely the weight fraction of the elements Cr, Mo, Nb, and Ti, on the high-temperature bending fatigue strength of the ferritic stainless steel used in exhaust manifolds. Little difference in the tensile strength and bending fatigue strength of the different composition steels was observed below 600 °C, with the exception of the low-Cr steel. However, steels with high Cr, Mo, or Nb fractions showed considerably larger bending fatigue strength at temperatures of 800 °C. After heating, the precipitates from the specimens were extracted electrolytically and analyzed using scanning electron microscopy energy dispersive spectrometry and transmission electron microscopy. Alloying with Cr and Mo was found to increase the bending fatigue strength due to the substitutional solid solution effect, while alloying with Nb enhanced the strength by forming fine intermetallic compounds, including NbC and Fe2Nb.

  10. Effect of polymer coatings on fatigue strength of aluminum alloy 2024 box beams

    NASA Technical Reports Server (NTRS)

    Nordmark, G. E.; Kelsey, R. A.

    1972-01-01

    Previous investigators have shown that polymer coatings raise the fatigue strength of metals tested in air to about the same level as that of uncoated specimens tested in vacuum. The results are given of tests to determine if a polymer coating would improve the fatigue strength of built-up aluminum alloy members simulating aircraft construction. Aluminum alloy 2024-T4 riveted box beams were subjected to constant amplitude fatigue tests in air as well as in salt water fog. The coating did not improve the fatigue strength of beams tested in either environment. This is believed to result from the fact that most failures originated at rivet holes, which were isolated from both the coating and the environment.

  11. Residual strength of five boron/aluminum laminates with crack-like notches after fatigue loading

    NASA Technical Reports Server (NTRS)

    Simonds, R. A.

    1986-01-01

    Boron/aluminum specimens were made with crack-like slits in the center and with various proportions of 0 and + or - 45 deg plies. They were fatigue loaded and then fractured to determine their residual strengths. The fatigue loads were generally in the range of 60 to 80 percent of the static tensile strength of the specimen as determined from a previous study, and the stress ratio was .05. For virtually all of the specimens the fatigue loading was continued for 100,000 cycles. The specimens were radiographed after the fatigue loading to determine the nature of the fatigue damage. A few specimens were sectioned and examined in a scanning electron microscope after being radiographed in order to verify the interpretation of the radiographs and also to get a better insight into the nature of the fatigue damage. The results indicate that the fatiguing does not significantly affect the strength of the specimens tested. The results of the radiography and of the scanning electron microscopy indicate that the 45 deg plies suffer extensive damage in the form of split and broken fibers and matrix cracking in the vicinity of the ends of the split. By contrast, the only significant damage to the 0 deg plies was a single 0 deg matric crack growing from the ends of the slit and between the 0 deg fibers.

  12. Residual strength of five boron/aluminum laminates with crack-like notches after fatigue loading

    NASA Technical Reports Server (NTRS)

    Simonds, R. A.

    1984-01-01

    Boron/aluminum specimens were made with crack-like slits in the center and with various proportions of 0 and + or - 45 deg plies. They were fatigue loaded and then fractured to determine their residual strengths. The fatigue loads were generally in the range of 60 to 80 percent of the static tensile strength of the specimen as determined from a previous study, and the stress ratio was .05. For virtually all of the specimens the fatigue loading was continued for 100,000 cycles. The specimens were radiographed after the fatigue loading to determine the nature of the fatigue damage. A few specimens were sectioned and examined in a scanning electron microscope after being radiographed in order to verify the interpretation of the radiographs and also to get a better insight into the nature of the fatigue damage. The results indicate that the fatiguing does not significantly affect the strength of the specimens tested. The results of the radiography and of the scanning electron microscopy indicate that the 45 deg plies suffer extensive damage in the form of split and broken fibers and matrix cracking in the vicinity of the ends of the split. By contrast, the only significant damage to the 0 deg plies was a single 0 deg matric crack growing from the ends of the slit and between the 0 deg fibers.

  13. Degradation in the Fatigue Strength of Dentin by Cutting, Etching and Adhesive Bonding

    PubMed Central

    Lee, H.-H.; Majd, H.; Orrego, S.; Majd, B.; Romberg, E.; Mutluay, M.M.; Arola, D.

    2014-01-01

    The processes involved in placing resin composite restorations may degrade the fatigue strength of dentin and increase the likelihood of fractures in restored teeth. Objective The objective of this study was to evaluate the relative changes in strength and fatigue behavior of dentin caused by bur preparation, etching and resin bonding procedures using a 3-step system. Methods Specimens of dentin were prepared from the crowns of unrestored 3rd molars and subjected to either quasi-static or cyclic flexural loading to failure. Four treated groups were prepared including dentin beams subjected to a burr treatment only with a conventional straight-sided bur, or etching treatment only. An additional treated group received both bur and etching treatments, and the last was treated by bur treatment and etching, followed by application of a commercial resin adhesive. The control group consisted of “as sectioned” dentin specimens. Results Under quasi-static loading to failure there was no significant difference between the strength of the control group and treated groups. Dentin beams receiving only etching or bur cutting treatments exhibited fatigue strengths that were significantly lower (p≤0.0001) than the control; there was no significant difference in the fatigue resistance of these two groups. Similarly, the dentin receiving bur and etching treatments exhibited significantly lower (p≤0.0001) fatigue strength than that of the control, regardless of whether an adhesive was applied. Significance The individual steps involved in the placement of bonded resin composite restorations significantly decrease the fatigue strength of dentin, and application of a bonding agent does not increase the fatigue strength of dentin. PMID:24985539

  14. Residual strength of a thermomechanically fatigued TIMETAL 21S/SCS-6 composite

    SciTech Connect

    Schmidt, C.G.; Kanazawa, C.H.; Shockey, D.A.

    1995-10-01

    The factors contributing to the residual strength of a thermomechanically-fatigued SiC fiber-reinforced metal matrix composite were assessed based on fracture surface features. The estimated residual strength was found to be in reasonable agreement with the measured value.

  15. Fatigue and tensile strength of dental gallium alloys after artificial saliva immersion.

    PubMed

    Meiana, S; Takahashi, H

    1998-12-01

    Fatigue strength using the stair-case method and tensile strength of dental gallium alloys after artificial saliva immersion were measured for evaluating the effects of corrosive environment storage on the mechanical properties of the gallium alloys. The fatigue and the tensile strengths of both gallium alloys stored in artificial saliva were significantly decreased after 12-month storage, while those stored in air increased with storage period. The fracture surfaces of the specimens in artificial saliva showed not only metallic luster but also dark areas. In the dark area, the matrix might have dissolved during immersion. These results suggested that the concern over corrosion resistance of gallium alloys still remained.

  16. A study of stiffness, residual strength and fatigue life relationships for composite laminates

    NASA Technical Reports Server (NTRS)

    Ryder, J. T.; Crossman, F. W.

    1983-01-01

    Qualitative and quantitative exploration of the relationship between stiffness, strength, fatigue life, residual strength, and damage of unnotched, graphite/epoxy laminates subjected to tension loading. Clarification of the mechanics of the tension loading is intended to explain previous contradictory observations and hypotheses; to develop a simple procedure to anticipate strength, fatigue life, and stiffness changes; and to provide reasons for the study of more complex cases of compression, notches, and spectrum fatigue loading. Mathematical models are developed based upon analysis of the damage states. Mathematical models were based on laminate analysis, free body type modeling or a strain energy release rate. Enough understanding of the tension loaded case is developed to allow development of a proposed, simple procedure for calculating strain to failure, stiffness, strength, data scatter, and shape of the stress-life curve for unnotched laminates subjected to tension load.

  17. Solder fatigue reduction in point focus photovoltaic concentrator modules

    SciTech Connect

    Hund, T.D.; Burchett, S.N.

    1991-01-01

    Solder fatigue tests have been conducted on point focus photovoltaic concentration cell assemblies to identify a baseline fatigue life and to quantify the fatigue life improvements that result using a copper-molybdenum-copper low-expansion insert between the solar cell and copper heat spreader. Solder microstructural changes and fatigue crack growth were identified using cross sections and ultrasonic scans of the fatigue solder joints. The Coffin-Manson and Total Strain fatigue models for low-cycle fatigue were evaluated for use in fatigue life predictions. Since both of these models require strain calculations, two strain calculation methods were compared: hand-calculated shear strain and a finite element method shear strain. At present, the available theoretical models for low-cycle solder fatigue are limited in their ability to predict failure; consequently, extensive thermal cycling is continuing to define the fatigue life for point focus photovoltaic cell assemblies. 9 refs., 9 figs., 2 tabs.

  18. Porous Ti6Al4V alloys with enhanced normalized fatigue strength for biomedical applications.

    PubMed

    Li, Fuping; Li, Jinshan; Kou, Hongchao; Zhou, Lian

    2016-03-01

    In this paper, porous Ti6Al4V alloys for biomedical applications were fabricated by diffusion bonding of alloy meshes. The compression-compression fatigue behavior was studied. It results that porous Ti6Al4V alloys show enhanced normalized fatigue strength which is in the range of 0.5-0.55 at 10(6)cycles. The porosity has some effect on the absolute S-N curves but minor effect on the normalized S-N curves. The relationship between strain per cycle and number of cycles shows three distinct stages and the value of strain per cycle is constant in stage II. The reasons for the higher normalized fatigue strength of porous Ti6Al4V alloys are discussed based on the fatigue crack initiation and propagation.

  19. The effect of upper extremity fatigue on grip strength and passing accuracy in junior basketball players.

    PubMed

    Ahmed, Taghread

    2013-01-01

    Fatigue is an unavoidable part of a basketball game, which may affect an athlete's performance. The aim of this study was to investigate the effect of upper extremity fatigue on grip strength and passing accuracy in basketball, and ascertain if the effects of different fatigue protocols on grip strength and passing accuracy are the same. Twenty-four juniors under 18 years old (age: 16.75 ± 0.62 years; body height: 184.5 ± 3.31 cm; body mass: 77.25 ± 3.22 kg) volunteered to participate in the study, and were divided into two groups. After a warm-up, both groups performed the basketball passing test and grip strength was recorded for each group under three different testing conditions: rest, 70% and 90% exercise intensity. The protocol used for the first group was the chest press, and for the second group the wrist curls. Results show that after the upper extremity fatigue protocol all parameters of the study (grip strength and passing accuracy) showed a significant decrease, and there was no significant difference between both groups regarding grip strength and passing accuracy. The study suggested that in order to avoid upper extremity fatigue, basketball trainers and coaches need to include upper extremity conditioning exercises into their training sessions.

  20. Some remarks on static, creep and fatigue flexural strength of satin woven CFRP laminates

    SciTech Connect

    Miyano, Y.; McMurry, M.K.; Muki, R.

    1995-12-31

    This paper deals with the time-temperature dependent flexural strength of a satin-woven CFRP laminate having a matrix resin with a high glass transition temperature of T{sub g} = 236/C under static, creep and fatigue loading by 3-point bending tests. Static tests were conducted at various points in a wide range of deflection rates and temperatures. The creep and fatigue tests were carried out at various constant temperatures; the fatigue test was conducted at two frequencies. The results of the experimental study are as follows. The flexural strength of the CFRP laminates for all three loading types is time-temperature dependent even near room temperature well below T{sub g}. The time and temperature superposition principle for the matrix resin also holds for the flexural strength of the CFRP laminates. The fracture modes are almost the same for the three loading types under all conditions tested. Finally, we propose a method for predicting the flexural fatigue strength for a given number of cycles to failure at an arbitrary temperature, frequency and stress ratio based on the current experimental findings and considering the relationships among the static, creep and fatigue flexural strengths.

  1. Preliminary Study on Fatigue Strengths of Fretted Ti-48Al-2Cr-2Nb

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa; Lerch, Bradley A.; Draper, Susan L.

    2002-01-01

    The fatigue behavior (stress-life curve) of gamma titanium aluminide (Ti-48Al-2Cr-2Nb, atomic percent) was examined by conducting two tests: first, a fretting wear test with a fatigue specimen in contact with a typical nickel-based superalloy contact pad in air at temperatures of 296 and 823 K and second, a high-cycle fatigue test of the prefretted Ti-48Al-2Cr-2Nb fatigue specimen at 923 K. Reference high-cycle fatigue tests were also conducted with unfretted Ti-48Al-2Cr-2Nb specimens at 923 K. All Ti-48Al-2Cr-2Nb fatigue specimens were machined from cast slabs. The results indicate that the stress-life results for the fretted Ti-48Al-2Cr-2Nb specimens exhibited a behavior similar to those of the unfretted Ti-48Al-2Cr-2Nb specimens. The values of maximum stress and life for the fretted specimens were almost the same as those for the unfretted specimens. The resultant stress-life curve for the unfretted fatigue specimens was very flat. The flat appearance in the stress-life curve of the unfretted specimens is attributed to the presence of a high density of casting pores. The fatigue strengths of both the fretted and unfretted specimens can be significantly affected by the presence of this porosity, which can decrease the fatigue life of Ti-48Al-2Cr-2Nb. The presence of the porosity made discerning the effect of fretting damage on fatigue strength and life of the specimens difficult.

  2. Factors that affect the fatigue strength of power transmission shafting and their impact on design

    NASA Technical Reports Server (NTRS)

    Leowenthal, S. H.

    1986-01-01

    A long standing objective in the design of power transmission shafting is to eliminate excess shaft material without compromising operational reliability. A shaft design method is presented which accounts for variable amplitude loading histories and their influence on limited life designs. The effects of combined bending and torsional loading are considered along with a number of application factors known to influence the fatigue strength of shafting materials. Among the factors examined are surface condition, size, stress concentration, residual stress and corrosion fatigue.

  3. Fatigue Performance of Advanced High-Strength Steels (AHSS) GMAW Joints

    SciTech Connect

    Feng, Zhili; Sang, Yan; Jiang, Cindy; Chiang, Dr. John; Kuo, Dr. Min

    2009-01-01

    The fatigue performance of gas metal arc welding (GMAW) joints of advanced high strength steels (AHSS) are compared and analyzed. The steel studied included a number of different grades of AHSS and baseline mild steels: DP600, DP780, DP980, M130, M220, solution annealed boron steel, fully hardened boron steels, HSLA690 and DR210 (a mild steel). Fatigue testing was conducted under a number of nominal stress ranges to obtain the S/N curves of the weld joints. A two-phase analytical model is developed to predict the fatigue performance of AHSS welds. It was found that there are appreciable differences in the fatigue S/N curves among different AHSS joints made using the same welding practices, suggesting that the local microstructure in the weld toe and root region plays non-negligible role in the fatigue performance of AHSS welds. Changes in weld parameters can influence the joint characteristics which in turn influence fatigue life of the weld joints, particularly of those of higher strength AHSS. The analytical model is capable of reasonably predicting the fatigue performance of welds made with various steel grades in this study.

  4. Fatigue strength of a Ti-6Al-4V alloy produced by selective laser melting

    NASA Astrophysics Data System (ADS)

    Gerov, M. V.; Vladislavskaya, E. Yu.; Terent'ev, V. F.; Prosvirnin, D. V.; Kolmakov, A. G.; Antonova, O. S.

    2016-10-01

    The fatigue properties and the fracture mechanisms of the Ti-6Al-4V alloy produced by selective laser melting (SLM) from a powder of an CL41TiELI titanium alloy have been studied. Cylindrical blanks were grown at angles of 90° and 45° to a platform. The best fatigue strength is observed in the samples the blanks of which were grown at an angle of 45°. It is found that the structure of the SLM material can contain portions with unmelted powder particles, which are the places of initiation of fatigue cracks.

  5. Fatigue Strength of Welded Joints and Fatigue Strength of Welded Joints: A Review of the Literature to July 1, 1936

    DTIC Science & Technology

    1936-12-02

    the fatigue limits (see Appendix B, Tables 2 and 4). Kater also found that welded St 52, in the form of unstiffened I beams, gave a higher fatigue...4" flange, 11" web) which withstood 2 x 10u cycles at 29,400 psi. The welded I-bee.s tested by Kater (133) withstood 3 x i06 cycles at a lorer...using compressed air hammers, impact pendulums , and alternat. ing-bend devices. -79- Thustin (211) showed the value of pulsating tension tests on m

  6. Fatigue strength of common tibial intramedullary nail distal locking screws

    PubMed Central

    Griffin, Lanny V; Harris, Robert M; Zubak, Joseph J

    2009-01-01

    Background Premature failure of either the nail and/or locking screws with unstable fracture patterns may lead to angulation, shortening, malunion, and IM nail migration. Up to thirty percent of all unreamed nail locking screws can break after initial weight bearing is allowed at 8–10 weeks if union has not occurred. The primary problem this presents is hardware removal during revision surgery. The purposes of our study was to evaluate the relative fatigue resistance of distal locking screws and bolts from representative manufacturers of tibial IM nail systems, and develop a relative risk assessment of screws and materials used. Evaluations included quantitative and qualitative measures of the relative performance of these screws. Methods Fatigue tests were conducted to simulate a comminuted fracture that was treated by IM nailing assuming that all load was carried by the screws. Each screw type was tested ten times in a single screw configuration. One screw type was tested an additional ten times in a two-screw parallel configuration. Fatigue tests were performed using a servohydraulic materials testing system and custom fixturing that simulated screws placed in the distal region of an appropriately sized tibial IM nail. Fatigue loads were estimated based on a seventy-five kilogram individual at full weight bearing. The test duration was one million cycles (roughly one year), or screw fracture, whichever occurred first. Failure analysis of a representative sample of titanium alloy and stainless steel screws included scanning electron microscopy (SEM) and quantitative metallography. Results The average fatigue life of a single screw with a diameter of 4.0 mm was 1200 cycles, which would correspond roughly to half a day of full weight bearing. Single screws with a diameter of 4.5 mm or larger have approximately a 50 percent probability of withstanding a week of weight bearing, whereas a single 5.0 mm diameter screw has greater than 90 percent probability of

  7. Navy High-Strength Steel Corrosion-Fatigue Modeling Program

    DTIC Science & Technology

    2006-10-01

    30 4.1.2- 4 AF1410 Room Temperature Poisson’s Ratio Test on Specimen STL414- 6 , Second Loading Sequence...47 4.2.1- 4 Profile of Boeing Fatigue Specimen 100- 6 Scanned from the...68172 12 34859 1 55739 12 38158 2 73444 14 34999 2 82328 14 37463 2 96716 14 45864 4 43390 16 35046 4 44416 16 33487 4 48774 16 28622 6 35724

  8. Comparison of Bending Fatigue Strength among Spur Gears Manufactured by Various Methods

    NASA Astrophysics Data System (ADS)

    Yamanaka, Masashi; Matsushima, Yu; Miwa, Shinji; Narita, Yukihito; Inoue, Katsumi; Kawasaki, Yoshiki

    This paper deals with an experimental evaluation of bending fatigue strengths for hobbed, forged, sintered and austempered ductile iron (ADI) spur gears. The module is 2.5 and the number of teeth is 26 in the test gears. The materials of the test gears are SCr420H for hobbed and forged gears, prealloyed powder metal with 1.5 wt.% Mo for sintered gears, and FCAD 1100-15 for ADI gears. All gears except ADI gears were carburized. The pulsator bending fatigue tests were carried out for the test gears. Then the relationship between the strength and the manufacturing cost is obtained. The forged gear has the high strength of 3% and low cost compared with the hobbed gear. It is the best among the four gears. The sintered and ADI gears have approximately half the strength and cost of the hobbed gear. These gears are effective when cost is a high priority. In the progress of the fatigue tests, comparisons of strength among gears having different tooth-root forms were needed. The nominal stress obtained from actual measured profile data using a noncontact-type measuring machine is suitable for comparing the fatigue strength in gears having different root forms.

  9. Effect of tooth whitening strips on fatigue resistance and flexural strength of bovine dentin in vitro

    PubMed Central

    Kim, Namhee; De Souza, Grace M.

    2017-01-01

    Objective To determine the effects of whitening strips on bovine dentin fatigue resistance and flexural strength in vitro. Materials and methods A total of eighty bovine dentin specimens (2x2x17mm) were treated with either: control glycerine gel on plastic film wrap or whitening strips containing 9.5% hydrogen peroxide. Treatment was applied for 30 minutes, twice a day, for 1- or 4-weeks. After the last treatment, ten specimens per group were randomly selected to undergo fatigue testing (106 cycles, 3Hz, 20N) while the other ten were subjected to flexural strength testing after ten days of storage in artificial saliva. Kaplan-Meier method with a log rank test, Wilcoxon test and Cox regression were used to assess fatigue test results (p<0.05). One-way ANOVA and Tukey’s tests were used to compare the flexural strength results (p<0.05). Results There were significant differences in survival during the fatigue test among the groups (p<0.001). Treatment (control or bleach) was a significant factor for specimen survival (p<0.001, Exp(B) = 33.45). There were significant differences in mean flexural strength (p<0.001). No significant difference was found between “1-wk control” and “4-wk control”. The mean flexural strength and fatigue resistance of the “4-wk bleach” were significantly lower than all the other groups. Conclusions The use of whitening strips reduced the fatigue resistance and flexural strength of bovine dentin in vitro. Until the effect of whitening strips on mechanical properties of human dentin is fully elucidated, it remains prudent to advise patients to avoid excessive direct use of whitening strips on dentin. PMID:28278191

  10. Fatigue life analysis of a turboprop reduction gearbox

    NASA Technical Reports Server (NTRS)

    Lewicki, D. G.; Black, J. D.; Savage, M.; Coy, J. J.

    1985-01-01

    A fatigue life analysis of the Allison T56/501 turboprop reduction gearbox was developed. The life and reliability of the gearbox was based on the lives and reliabilities of the main power train bearings and gears. The bearing and gear lives were determined using the Lundberg-Palmgren theory and a mission profile. The five planet bearing set had the shortest calculated life among the various gearbox components, which agreed with field experience where the planet bearing had the greatest incidences of failure. The analytical predictions of relative lives among the various bearings were in reasonable agreement with field experience. The predicted gearbox life was in excellent agreement with field data when the material life adjustment factors alone were used. The gearbox had a lower predicted life in comparison with field data when no life adjustment factors were used or when lubrication life adjustment factors were used either alone or in combination with the material factors.

  11. Damage formation, fatigue behavior and strength properties of ZrO2-based ceramics

    NASA Astrophysics Data System (ADS)

    Kozulin, A. A.; Narikovich, A. S.; Kulkov, S. N.; Leitsin, V. N.; Kulkov, S. S.

    2016-08-01

    It is suggested that a non-destructive testing technique using a three-dimensional X-ray tomography be applied to detecting internal structural defects and monitoring damage formation in a ceramic composite structure subjected to a bending load. Three-point bending tests are used to investigate the fatigue behavior and mechanical and physical properties of medical-grade ZrO2-based ceramics. The bending strength and flexural modulus are derived under static conditions at a loading rate of 2 mm/min. The fatigue strength and fatigue limit under dynamic loading are investigated at a frequency of 10 Hz in three stress ranges: 0.91-0.98, 0.8-0.83, and 0.73-0.77 MPa of the static bending strength. The average values of the bending strength and flexural modulus of sintered specimens are 43 MPa and 22 GPa, respectively. The mechanical properties of the ceramics are found to be similar to those of bone tissues. The testing results lead us to conclude that the fatigue limit obtained from 105 stress cycles is in the range 33-34 MPa, i.e. it accounts for about 75% of the static bending strength for the test material.

  12. Effect of preload on the fatigue and static strength of composite laminates with defects

    NASA Technical Reports Server (NTRS)

    Porter, T. R.; Smith, G. T.

    1977-01-01

    The effect of a preload cycle on the structural performance of three graphite/epoxy composite laminates was studied. The layups studied were a laminate typical of general purpose structures (L1), a laminate representative of a filament wound tank (L2), and a laminate representative of turboengine fan blades. The effects of three sizes of simulated initial defects were studied. The tests developed static strength data, fatigue to failure data, and residual static data after application of a predetermined number of fatigue cycles. For L1 specimens, there was a slight trend for the static strength to be greater for preloaded specimens. After application of cyclic loading, however, the influence of preloading was insignificant. In L2 and L3 specimens there was no consistent difference in the static or fatigue results between preloaded and nonpreloaded specimens.

  13. Analysis of Fretting Fatigue Strength of Integral Shroud Blade for Steam Turbine

    NASA Astrophysics Data System (ADS)

    Kaneko, Yasutomo; Tomii, Masayuki; Ohyama, Hiroharu; Kurimura, Takayuki

    To improve the reliability and the thermal efficiency of LP (Low Pressure) end blades of steam turbine, new standard series of LP end blades have been developed. The new LP end blades are characterized by the ISB (Integral Shroud Blade) structure. In the ISB structure, blades are continuously coupled by blade untwist due to centrifugal force when the blades rotate at high speed. One of the probable failure modes of the ISB structure seems to be fretting fatigue, because the ISB utilizes friction damping between adjacent shrouds and stubs. Therefore, in order to design a blade with high reliability, the design procedure for evaluating the fretting fatigue strength was established by the model test and the nonlinear contact analysis. This paper presents the practical design method for predicting the fretting fatigue strength of the ISB structure, and the some applications are explained.

  14. Fatigue strength of Co-Cr-Mo alloy clasps prepared by selective laser melting.

    PubMed

    Kajima, Yuka; Takaichi, Atsushi; Nakamoto, Takayuki; Kimura, Takahiro; Yogo, Yoshiaki; Ashida, Maki; Doi, Hisashi; Nomura, Naoyuki; Takahashi, Hidekazu; Hanawa, Takao; Wakabayashi, Noriyuki

    2016-06-01

    We aimed to investigate the fatigue strength of Co-Cr-Mo clasps for removable partial dentures prepared by selective laser melting (SLM). The Co-Cr-Mo alloy specimens for tensile tests (dumbbell specimens) and fatigue tests (clasp specimens) were prepared by SLM with varying angles between the building and longitudinal directions (i.e., 0° (TL0, FL0), 45° (TL45, FL45), and 90° (TL90, FL90)). The clasp specimens were subjected to cyclic deformations of 0.25mm and 0.50mm for 10(6) cycles. The SLM specimens showed no obvious mechanical anisotropy in tensile tests and exhibited significantly higher yield strength and ultimate tensile strength than the cast specimens under all conditions. In contrast, a high degree of anisotropy in fatigue performance associated with the build orientation was found. For specimens under the 0.50mm deflection, FL90 exhibited significantly longer fatigue life (205,418 cycles) than the cast specimens (112,770 cycles). In contrast, the fatigue lives of FL0 (28,484 cycles) and FL45 (43,465 cycles) were significantly shorter. The surface roughnesses of FL0 and FL45 were considerably higher than those of the cast specimens, whereas there were no significant differences between FL90 and the cast specimens. Electron backscatter diffraction (EBSD) analysis indicated the grains of FL0 showed preferential close to <001> orientation of the γ phase along the normal direction to the fracture surface. In contrast, the FL45 and FL90 grains showed no significant preferential orientation. Fatigue strength may therefore be affected by a number of factors, including surface roughness and crystal orientation. The SLM process is a promising candidate for preparing tough removable partial denture frameworks, as long as the appropriate build direction is adopted.

  15. Ductile and Compacted Graphite Iron Casting Skin -- Evaluation, Effect on Fatigue Strength and Elimination

    NASA Astrophysics Data System (ADS)

    Boonmee, Sarum

    Compacted graphite (CG) iron features a good combination of tensile strength, impact resistance, thermal conductivity and damping capacity. This combination makes CG iron a material of choice for various applications, especially for the automobile industry. The mechanical properties of CG iron listed in the standards (i.e. ASTM) are for machined specimens. However, since most iron castings retain the original casting surface (a.k.a. casting skin), the actual performance of the part could be significantly different from that of the machined specimens. Recent studies have shown the negative effect of the casting skin, but little quantification of its effect on mechanical properties is available. Further, the understanding of its mechanism of formation is at best incomplete. In this research, the effect of the casting skin on mechanical properties in CG and ductile irons (DI) is explored. The differences in tensile and fatigue properties between as-cast and machined samples were quantified and correlated to the casting skin features. It was found that the presence of the casting skin was accountable for 9% reduction of tensile strength and up to 32% reduction of fatigue strength (for CG iron with 40% nodularity). Several mechanisms of the casting skin formation are proposed in this research. The formation of ferritic and pearlitic rims is explained by decarburizing/carburizing reactions at the mold/metal interface. Mg depletion and solidification kinetics effect were identified as the formation mechanisms of the graphite degradation. A 2-D thermal diffusion model was formulated based on Mg depletion theory. The model can be used to predict the casting skin thickness when Mg depletion is the dominant mechanism. Furthermore, using the asymmetric Fe-Gr phase diagram, some instances of casting skin formation were explained based on solidification kinetics theory. The experimental microstructural evidence and the theoretical progress were conducive to the development of

  16. Rock strength reductions during incipient weathering

    NASA Astrophysics Data System (ADS)

    Kelly, P. J.; Anderson, S. P.; Blum, A.

    2012-12-01

    Patrick Kelly, Suzanne Anderson, Alex Blum In rock below the surface, temperature swings are damped, water flow is limited, and biota are few. Yet rock weathers, presumably driven by these environmental parameters. We use rock strength as an indicator of rock weathering in Gordon Gulch in the Boulder Creek Critical Zone Observatory, a watershed at 2500 m underlain by Proterozoic gneiss intruded by the Boulder Creek granodiorite. Fresh rock is found at depths of 8-30 m in this area, and the thickness of the weathered rock zone imaged with shallow seismic refraction is greater on N-facing slopes than S-facing slopes (Befus et al., 2011, Vadose Zone J.). We use the Brazilian splitting test to determine tensile strength of cores collected with a portable drilling rig. Spatial variations in rock strength that we measure in the top 2 m of the weathered rock mantle can be connected to two specific environmental variables: slope aspect and the presence of a soil mantle. We find weaker rock on N-facing slopes and under soil. There is no clear correlation between rock strength and the degree of chemical alteration in these minimally weathered rocks. Denudation rates of 20-30 microns/yr imply residence times of 105-106 years within the weathered rock layers of the critical zone. Given these timescales, rock weathering is more likely to have occurred under glacial climate conditions, when periglacial processes prevailed in this non-glaciated watershed. Incipient weathering of rock appears to be controlled by water and frost cracking in Gordon Gulch. Water is more effectively delivered to the subsurface on N-facing slopes, and is more likely held against rock surfaces under soil than on outcrops. These moisture conditions, and the lower surface temperatures that prevail on N-facing slopes also favor frost cracking as an important weathering process.

  17. Probabilistic Material Strength Degradation Model for Inconel 718 Components Subjected to High Temperature, High-Cycle and Low-Cycle Mechanical Fatigue, Creep and Thermal Fatigue Effects

    NASA Technical Reports Server (NTRS)

    Bast, Callie C.; Boyce, Lola

    1995-01-01

    The development of methodology for a probabilistic material strength degradation is described. The probabilistic model, in the form of a postulated randomized multifactor equation, provides for quantification of uncertainty in the lifetime material strength of aerospace propulsion system components subjected to a number of diverse random effects. This model is embodied in the computer program entitled PROMISS, which can include up to eighteen different effects. Presently, the model includes five effects that typically reduce lifetime strength: high temperature, high-cycle mechanical fatigue, low-cycle mechanical fatigue, creep and thermal fatigue. Results, in the form of cumulative distribution functions, illustrated the sensitivity of lifetime strength to any current value of an effect. In addition, verification studies comparing predictions of high-cycle mechanical fatigue and high temperature effects with experiments are presented. Results from this limited verification study strongly supported that material degradation can be represented by randomized multifactor interaction models.

  18. Fatigue

    MedlinePlus

    ... to help you find out what's causing your fatigue and recommend ways to relieve it. Fatigue itself is not a disease. Medical problems, treatments, and personal habits can add to fatigue. These include Taking certain medicines, such as antidepressants, ...

  19. Modeling the Tensile Strength of Carbon Fiber - Reinforced Ceramic - Matrix Composites Under Multiple Fatigue Loading

    NASA Astrophysics Data System (ADS)

    Li, Longbiao

    2016-06-01

    An analytical method has been developed to investigate the effect of interface wear on the tensile strength of carbon fiber - reinforced ceramic - matrix composites (CMCs) under multiple fatigue loading. The Budiansky - Hutchinson - Evans shear - lag model was used to describe the micro stress field of the damaged composite considering fibers failure and the difference existed in the new and original interface debonded region. The statistical matrix multicracking model and fracture mechanics interface debonding criterion were used to determine the matrix crack spacing and interface debonded length. The interface shear stress degradation model and fibers strength degradation model have been adopted to analyze the interface wear effect on the tensile strength of the composite subjected to multiple fatigue loading. Under tensile loading, the fibers failure probabilities were determined by combining the interface wear model and fibers failure model based on the assumption that the fiber strength is subjected to two - parameter Weibull distribution and the loads carried by broken and intact fibers satisfy the Global Load Sharing criterion. The composite can no longer support the applied load when the total loads supported by broken and intact fibers approach its maximum value. The conditions of a single matrix crack and matrix multicrackings for tensile strength corresponding to multiple fatigue peak stress levels and different cycle number have been analyzed.

  20. Strength, Fracture Toughness, Fatigue, and Standardization Issues of Free-standing Thermal Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Choi, Sung R.; Zhu, Dong-Ming; Miller, Robert A.

    2003-01-01

    Strength, fracture toughness and fatigue behavior of free-standing thick thermal barrier coatings of plasma-sprayed ZrO2-8wt % Y2O3 were determined at ambient and elevated temperatures in an attempt to establish a database for design. Strength, in conjunction with deformation (stress-strain behavior), was evaluated in tension (uniaxial and trans-thickness), compression, and uniaxial and biaxial flexure; fracture toughness was determined in various load conditions including mode I, mode II, and mixed modes I and II; fatigue or slow crack growth behavior was estimated in cyclic tension and dynamic flexure loading. Effect of sintering was quantified through approaches using strength, fracture toughness, and modulus (constitutive relations) measurements. Standardization issues on test methodology also was presented with a special regard to material's unique constitutive relations.

  1. Influence Of Holes On The In-Plane Tensile Strength And Fatigue Durability Of A NICALON(Trademark)/Si-N-C Ceramic Matrix Composite

    NASA Technical Reports Server (NTRS)

    Kalluri, Sreeramesh; Verrilli, Michael J.

    2003-01-01

    Effects of different sizes of holes as well as different percentages of open areas on the in-plane tensile strength and fatigue durability of the SiC/Si-N-C composite were investigated in this study. Test specimens with no holes, four different diameters of holes (1.0 to 3.2 mm), and four different open areas (20 to 35%) were machined. All mechanical testing was performed in air at a temperature of 910 C. Fatigue tests were conducted with a load ratio, R = 0.05, and a frequency of 0.33 Hz. In general, both the in-plane tensile strength of the composite and its fatigue durability decreased with an increase in the size of the hole and percentage of the open area. Reductions in the in-plane tensile strength and cyclic fatigue life of the composite were described by empirical equations with the diameter of the hole and the percent open area as the independent variables. The validity of these two empirical equations was verified with additional tensile and fatigue test data generated on the composite specimens.

  2. Computational simulation of probabilistic lifetime strength for aerospace materials subjected to high temperature, mechanical fatigue, creep, and thermal fatigue

    NASA Technical Reports Server (NTRS)

    Boyce, Lola; Bast, Callie C.; Trimble, Greg A.

    1992-01-01

    The results of a fourth year effort of a research program conducted for NASA-LeRC by The University of Texas at San Antonio (UTSA) are presented. The research included on-going development of methodology that provides probabilistic lifetime strength of aerospace materials via computational simulation. A probabilistic material strength degradation model, in the form of a randomized multifactor interaction equation, is postulated for strength degradation of structural components of aerospace propulsion systems subjected to a number of effects or primitive variables. These primitive variables may include high temperature, fatigue, or creep. In most cases, strength is reduced as a result of the action of a variable. This multifactor interaction strength degradation equation was randomized and is included in the computer program, PROMISC. Also included in the research is the development of methodology to calibrate the above-described constitutive equation using actual experimental materials data together with regression analysis of that data, thereby predicting values for the empirical material constants for each effect or primitive variable. This regression methodology is included in the computer program, PROMISC. Actual experimental materials data were obtained from industry and the open literature for materials typically for applications in aerospace propulsion system components. Material data for Inconel 718 was analyzed using the developed methodology.

  3. Computational simulation of probabilistic lifetime strength for aerospace materials subjected to high temperature, mechanical fatigue, creep and thermal fatigue

    NASA Technical Reports Server (NTRS)

    Boyce, Lola; Bast, Callie C.; Trimble, Greg A.

    1992-01-01

    This report presents the results of a fourth year effort of a research program, conducted for NASA-LeRC by the University of Texas at San Antonio (UTSA). The research included on-going development of methodology that provides probabilistic lifetime strength of aerospace materials via computational simulation. A probabilistic material strength degradation model, in the form of a randomized multifactor interaction equation, is postulated for strength degradation of structural components of aerospace propulsion systems subject to a number of effects or primitive variables. These primitive variables may include high temperature, fatigue or creep. In most cases, strength is reduced as a result of the action of a variable. This multifactor interaction strength degradation equation has been randomized and is included in the computer program, PROMISS. Also included in the research is the development of methodology to calibrate the above-described constitutive equation using actual experimental materials data together with regression analysis of that data, thereby predicting values for the empirical material constants for each effect or primitive variable. This regression methodology is included in the computer program, PROMISC. Actual experimental materials data were obtained from industry and the open literature for materials typically for applications in aerospace propulsion system components. Material data for Inconel 718 has been analyzed using the developed methodology.

  4. Variable amplitude corrosion fatigue and fracture mechanics of weldable high strength jack-up steels

    NASA Astrophysics Data System (ADS)

    Etube, Linus Sone

    The tubular welded joints used in the construction of Offshore structures can experience millions of variable amplitude wave induced stress cycles during their operational life. Fatigue has been identified as the main cause of degradation of structural integrity in these structures. As a result, fatigue is an important consideration in their design. Jack-up legs are made from a range of high strength steels with yield strengths up to TOOMPa. These steels are thought to exhibit fatigue resistance properties which are different when compared with conventional fixed platform steels such as BS 4360 50D and BS 7191 355D. The difference in their behaviour was heightened by the discovery, in the late 80s and early 90s, of extensive cracking around the spud can regions of several Jack-ups operating in the North Sea. It was thought that these steels may be more susceptible to hydrogen cracking and embrittlement. There was the additional requirement to study their behaviour under realistic loading conditions typical of the North Sea environment. This thesis contains results of an investigation undertaken to assess the performance of a typical high strength weldable Jack-up steel under realistic loading and environmental conditions. Details of the methodology employed to develop a typical Jack-up Offshore Standard load History (JOSH) are presented. The factors which influence fatigue resistance of structural steels used in the construction of Jack-up structures are highlighted. The methods used to model the relevant factors for inclusion in JOSH are presented with particular emphasis on loading and structural response interaction. Results and details of experimental variable amplitude corrosion fatigue (VACF) tests conducted using JOSH are reported and discussed with respect to crack growth mechanisms in high strength weldable Jack-up steels. Different fracture mechanics models for VACF crack growth prediction are compared and an improved generalised methodology for fast

  5. Static and Fatigue Strength Evaluations for Bolted Composite/Steel Joints for Heavy Vehicle Chassis Components

    SciTech Connect

    Sun, Xin; Stephens, Elizabeth V.; Herling, Darrell R.

    2004-09-14

    In May 2003, ORNL and PNNL began collaboration on a four year research effort focused on developing joining techniques to overcome the technical issues associated with joining lightweight materials in heavy vehicles. The initial focus of research is the development and validation of joint designs for a composite structural member attached to a metal member that satisfy the structural requirements both economically and reliably. Huck-bolting is a common joining method currently used in heavy truck chassis structures. The initial round of testing was conducted to establish a performance benchmark by evaluating the static and fatigue behavior of an existing steel/steel chassis joint at the single huck-bolt level. Both tension and shear loading conditions were considered, and the resulting static and fatigue strengths will be used to guide the joint design for a replacement composite/steel joint. A commercially available, pultruded composite material was chosen to study the generic issues related to composite/steel joints. Extren is produced by STRONGWELL, and it is a combination of fiberglass reinforcement and thermosetting polyester or vinyl ester resin systems. Extren sheets of 3.2 mm thick were joined to 1.4 mm SAE1008 steel sheets with a standard grade 5 bolt with 6.35 mm diameter. Both tension and shear loading modes were considered for the single hybrid joint under static and fatigue loading conditions. Since fiberglass reinforced thermoset polymer composites are a non-homogenous material, their strengths and behavior are dependent upon the design of the composite and reinforcement. The Extren sheet stock was cut along the longitudinal direction to achieve maximum net-section strength. The effects of various manufacturing factors and operational conditions on the static and fatigue strength of the hybrid joint were modeled and experimentally verified. It was found that loading mode and washer size have significant influence on the static and fatigue strength of

  6. Single-cycle and fatigue strengths of adhesively bonded lap joints

    SciTech Connect

    Metzinger, K.E.; Guess, T.R.

    1998-12-31

    This study considers a composite-to-steel tubular lap joint in which failure typically occurs when the adhesive debonds from the steel adherend. The same basic joint was subjected to compressive and tensile axial loads (single-cycle) as well as bending loads (fatigue). The purpose of these tests was to determine whether failure is more dependent on the plastic strain or the peel stress that develops in the adhesive. For the same joint, compressive and tensile loads of the same magnitude will produce similar plastic strains but peel stresses of opposite signs in the adhesive. In the axial tests, the tensile strengths were much greater than the compressive strengths - indicating that the peel stress is key to predicting the single-cycle strengths. To determine the key parameter(s) for predicting high-cycle fatigue strengths, a test technique capable of subjecting a specimen to several million cycles per day was developed. In these bending tests, the initial adhesive debonding always occurred on the compressive side. This result is consistent with the single-cycle tests, although not as conclusive due to the limited number of tests. Nevertheless, a fatigue test method has been established and future tests are planned.

  7. Bond strength of Bis-GMA and glass ionomer pit and fissure sealants using cyclic fatigue.

    PubMed

    Dewji, H R; Drummond, J L; Fadavi, S; Punwani, I

    1998-02-01

    The aim of the study was to determine the bond strength of glass ionomer and resin-modified glass ionomer sealants compared to Bis-GMA sealants using both static and cyclic fatigue shear testing. Four materials were evaluated: D, a Bis-GMA sealant with 10% phosphoric acid etchant; FC, a resin-modified glass ionomer sealant with 20% polyacrylic acid etchant; FD, a resin-modified glass ionomer sealant with 10% polyacrylic acid etchant; and FSC, a self-cured glass ionomer sealant with no etchant. Gelatin capsules filled with the sealant material were bonded to the enamel surfaces of bovine teeth after appropriate surface conditioning and then tested in shear static and cyclic fatigue. Static and cyclic shear bond strengths, respectively, for each group were (MPa): FC: 21.1+/-2.8 and 17.1+/-3.1; FD: 14.6+/-5.9 and 8.5+/-3.1; D: 10.8+/-4.9 and 4.7+/-2.6; FSC: 8.7 (1.0 and 2.9+/-0.6. The resin-modified glass ionomer sealants had better fatigue bond strength than both Bis-GMA and self-cured glass ionomer sealants with the surface conditioning affecting the bond strength of the resin-modified glass ionomer sealants.

  8. Investigation of Contact Fatigue of High Strength Steel Gears Subjected to Surface Treatment

    NASA Astrophysics Data System (ADS)

    Dimitrov, L.; Michalopoulos, D.; Apostolopoulos, Ch. Alk.; Neshkov, T. D.

    2009-10-01

    In this paper the contact fatigue resistance of gearwheel teeth, subjected to shot-peening treatment, was investigated experimentally and analytically. The main objective was the evaluation and prediction of fatigue crack initiation, propagation, direction, and rate. A specially designed experimental rig was used to test a number of spur gears with the following characteristics: (a) unhardened, thermally untreated unpeened surfaces, (b) thermally treated unpeened surfaces, (c) unhardened peened surfaces, and (d) thermally treated peened surfaces. The theoretical model assumed initiation and propagation of surface cracks of gears operating in the elastohydrodynamic lubrication regime while loading was due to simultaneous rolling and sliding. Finite element modeling was used for the calculation of the stress field at the gear teeth. Comparison of the experimental and analytical results showed considerable improvement in the contact fatigue strength of thermally treated gear teeth and especially those that underwent shot peening, which increased surface durability. The residual stresses induced by shot peening are mainly effective in stopping microcrack propagation. When shot peening is applied on thermally untreated gear teeth surface, it increases the contact fatigue life of the material by 17% at 7 × 105 loading cycles. If shot peening is applied on carburized gear teeth surfaces, it increases the surface fatigue life by approximately 8% at 106 cycles. Contact fatigue and eventual pitting are treated as a normal consequence of the operation of machine elements. To study this failure process different types of testing machines have been designed. The purpose of this paper is the presentation and evaluation of a new design experimental rig for studying contact fatigue damage of gear teeth subjected to different load patterns.

  9. Effect of Shot Peening on the High-Cycle Fatigue Behavior of High-Strength Cast Iron with Nodular Graphite

    NASA Astrophysics Data System (ADS)

    Benam, Amir Sadighzadeh

    2017-01-01

    The effect of shot peening treatment on high-cycle fatigue of high-strength cast iron with globular graphite is studied. The fatigue curves are plotted, the microhardness and the surface roughness are measured. An analysis of fracture surfaces is performed, and the thickness of the hardened layer is determined. The shot peening is shown to affect favorably the fatigue resistance of the iron but to worsen the condition of the surface.

  10. Isotretinoin treatment in patients with acne vulgaris: does it impact muscle strength, fatigue, and endurance?

    PubMed

    Yıldızgören, Mustafa Turgut; Rifaioğlu, Emine Nur; Demirkapı, Musa; Ekiz, Timur; Micooğulları, Ahmet; Şen, Tuğba; Turhanoğlu, Ayşe Dicle

    2015-07-01

    The objective of this study was to evaluate the effects of isotretinoin on muscle strength, fatigue, and endurance in patients with acne vulgaris. The study included 27 patients with acne vulgaris who underwent treatment with isotretinoin as well as 26 control patients for comparison. Participants in the treatment group received oral isotretinoin 0.5 mg/kg once daily for 1 month followed by an increased dose of 1 mg/kg once daily for 2 months. Isokinetic measurements were obtained from the hamstrings and quadriceps on the nondominant side of the body at baseline and 3-month follow-up using an isokinetic dynamometer. Results indicated that systemic isotretinoin did not significantly alter muscle strength, fatigue, and endurance.

  11. Effect of bond thickness on fracture and fatigue strength of adhesively bonded composite joints

    NASA Technical Reports Server (NTRS)

    Mall, S.; Ramamurthy, G.

    1989-01-01

    An experimental investigation of composite to composite bonded joints was undertaken to study the effect of bond thickness on debond growth rate under cyclic loading and critical strain energy release rate under static loading. Double cantilever beam specimens of graphite/epoxy adherends bonded with EC 3445 were tested under mode I loading. A different behavior of fracture and fatigue strength was observed with variation of bondline thickness.

  12. Evaluation of fatigue strength of plain and notched specimens of short carbon-fiber reinforced polyetheretherketone in comparison with polyetheretherketone

    NASA Astrophysics Data System (ADS)

    Nisitani, H.; Noguchi, H.; Kim, Y.-H.

    1992-11-01

    Rotating-bending fatigue tests of short carbon-fiber reinforced polyetheretherketone (CFRPEEK) and polyetheretherketone (PEEK) were carried out to investigate the fatigue characteristics of plain and notched specimens at room temperature. The fatigue mechanisms in the matrix and composite were clarified through successive surface observations using the replica method. The results were discussed using linear notch mechanics. In the plain specimen of PEEK, fracture always occurs from defects and the fatigue crack initiation is of the point-initiation type. Furthermore, the fatigue crack growth rate is very high and the fatigue strength is very sensitive to a notch. The fatigue strength of the composite is much more insensitive to a notch than that of PEEK. In general the fatigue crack initiates from near the fiber end, and propagates to the circumferential direction after it grows to some extent along the fiber. The fatigue strength of an arbitrary notched specimen of these two materials will be estimated from the present results rearranged based on 'linear notch mechanics'.

  13. Can acoustic emission detect the initiation of fatigue cracks: Application to high-strength light alloys used in aeronautics

    NASA Technical Reports Server (NTRS)

    Bathias, C.; Brinet, B.; Sertour, G.

    1978-01-01

    Acoustic emission was used for the detection of fatigue cracking in a number of high-strength light alloys used in aeronautical structures. Among the features studied were: the influence of emission frequency, the effect of surface oxidation, and the influence of grains. It was concluded that acoustic emission is an effective nondestructive technique for evaluating the initiation of fatigue cracking in such materials.

  14. Changes in muscle strength, relaxation rate and fatiguability during the human menstrual cycle.

    PubMed Central

    Sarwar, R; Niclos, B B; Rutherford, O M

    1996-01-01

    1. The effect of the different phases of the menstrual cycle on skeletal muscle strength, contractile properties and fatiguability was investigated in ten young, healthy females. Results were compared with a similar group on the combined (non-phasic) oral contraceptive pill (OC). Cycle phases were divided into the early and mid-follicular, mid-cycle (ovulatory) and mid- and late luteal. Cycle phases were estimated from the first day of the menstrual bleed. 2. Subjects were studied weekly through two complete cycles. Measurements included quadriceps and handgrip maximum voluntary isometric force and the relaxation times, force-frequency relationship and fatigue index of the quadriceps during percutaneous stimulation at a range of frequencies from 1 to 100 Hz. 3. In the women not taking the OC there was a significant increase of about 11% in quadriceps and handgrip strength at mid-cycle compared with both the follicular and luteal phases. Accompanying the increases in strength there was a significant slowing of relaxation and increase in fatiguability at mid-cycle. No changes in any parameter were found in the women taking the OC. 4. The changes in muscle function at mid-cycle may be due to the increase in oestrogen that occurs prior to ovulation. PMID:8735711

  15. Mechanisms of Slow Fatigue Crack Growth in High Strength Aluminum Alloys: Role of Microstructure and Environment

    NASA Astrophysics Data System (ADS)

    Suresh, S.; Vasudévan, A. K.; Bretz, P. E.

    1984-02-01

    The role of microstructure and environment in influencing ultra-low fatigue crack propagation rates has been investigated in 7075 aluminum alloy heat-treated to underaged, peak-aged, and overaged conditions and tested over a range of load ratios. Threshold stress intensity range, ΔK0, values were found to decrease monotonically with increasing load ratio for all three heat treatments fatigue tested in 95 pct relative humidity air, with Δ K 0 decreasing at all load ratios with increased extent of aging. Comparison of the near-threshold fatigue behavior obtained in humid air with the data for vacuo, however, showed that the presence of moisture leads to a larger reduction in ΔK0 for the underaged microstructure than the overaged condition, at all load ratios. An examination of the nature of crack morphology and scanning Auger/SIMS analyses of near-threshold fracture surfaces revealed that although the crack path in the underaged structure was highly serrated and nonlinear, crack face oxidation products were much thicker in the overaged condition. The apparent differences in slow fatigue crack growth resistance of the three aging conditions are ascribed to a complex interaction among three mechanisms: the embrittling effect of moisture resulting in conventional corrosion fatigue processes, the role of microstructure and slip mode in inducing crack deflection, and crack closure arising from a combination of environmental and microstructural contributions.

  16. Fatigue

    MedlinePlus

    ... fatigue may be worsened with physical activity or mental stress. It is diagnosed based on the presence of a specific group of symptoms and after all other possible causes of fatigue are ruled out.

  17. Fatigue Life Analysis of a Turboprop Reduction Gearbox.

    DTIC Science & Technology

    1985-01-01

    Bearing fatigue life is a major factor in the evaluation of gearbox life. The fatigue life model proposed by Lundberg and Palmgren (refs. 4 to 6) is the...power train consists of eleven bearings (defined in table I) and nine gears (defined in table II). The lubri- cant for the gearbox conforms to MIL-L...stress cycles of the bearing in which 90 B percent will survive. n10 can be determined from the Lundberg- Palmgren B theory using equation (5) where C8

  18. Combined wind turbine fatigue and ultimate load reduction by individual blade control

    NASA Astrophysics Data System (ADS)

    Han, Y.; Leithead, W. E.

    2014-06-01

    If each blade of the wind turbine has individual pitch actuator, there is possibility of employing the pitch system to mitigate structural loads through advanced control methods. Previously, considerable reduction of blade lifetime equivalent fatigue loads has been achieved by Individual Blade Control (IBC) and in addition, it has also been shown the potential in blade ultimate loads reduction. However, both fatigue and ultimate loads impact on the design and life of wind turbine blades. In this paper, the design and application of IBC that concurrently reduce both blade fatigue and ultimate loads is investigated. The contributions of blade load spectral components, which are 1P, 2P and edgewise mode from blade in-plane and/or out-of-plane bending moments, are firstly explored. Four different control options for reducing various combinations of these load components are compared. In response to the different spectral peaks of both fatigue and ultimate loads, the controller has been designed so that it can act on different frequency components which vary with wind speed. The performance of the IBC controller on fatigue and ultimate load reduction is assessed by simulating a 5MW exemplar wind turbine. Simulation results show that with a proper selection of controlling inputs at different wind speed, the use of a single combined IBC can achieve satisfactory reduction on both fatigue and ultimate loads.

  19. Effects of thermal fatigue on shear punch strength of tooth-colored restoratives

    PubMed Central

    Melody, Fam Mei Shi; U-Jin, Yap Adrian; Natalie, Tan Wei Min; Elizabeth, Tay Wan Ling; Chien, Jessica Yeo Siu

    2016-01-01

    Aims: This study investigated the effect of thermal fatigue on the shear strength of a range of tooth-colored restorative materials including giomers, zirconia-reinforced glass ionomer cement (GIC), nano-particle resin-modified GIC, highly viscous GICs, and composite resin. Materials and Methods: Twenty specimens of each material were fabricated in standardized washers (17 mm outer diameter, 9 mm internal diameter, 1 mm thick). The specimens were cured, stored in 100% humidity at 37.5°C for 24 h, and randomly divided into two groups of 10. Group A specimens were nonthermocycled (NT) and stored in distilled water at 37°C for 168 h. Group B specimens were thermocycled (TC) for 10,000 cycles (168 h) with baths X, Y, and Z adjusted to 35°C, 15°C, and 45°C, respectively. Each cycle had dwell times of 28 s in X, and 2s in Y/Z in the order XYXZ. Specimens then underwent shear punch testing at a crosshead speed of 0.5 mm/min with a 2 kN load cell. Statistical analysis of shear strength was done using t-test and two-way ANOVA/Scheffe's post hoc test at significance level P < 0.05. Results: The effect of thermal fatigue on shear strength was material dependent. Except for the “sculptable” giomer (Beautifil II) and a highly viscous GIC (Fuji IX GP Fast), no significant differences in shear strength were generally observed between the NT and TC groups. For both groups, the composite resin (Filtek Z250XT) had the highest shear strength while the zirconia-reinforced (zirconomer) and a highly viscous GIC (Ketac Molar Quick) had the lowest. Conclusions: The effect of thermocycling on shear strength was material dependent. Thermal fatigue, however, did not significantly influence the shear strength of most materials assessed. The “sculptable” composite and giomer were significantly stronger than the other materials evaluated. Shear strength of the “flowable” injectable hybrid giomer was intermediate between the composite and GICs. PMID:27563182

  20. Effects of fatigue and environment on residual strengths of center-cracked graphite/epoxy buffer strip panels

    NASA Technical Reports Server (NTRS)

    Bigelow, Catherine A.

    1989-01-01

    The effects of fatigue, moisture conditioning, and heating on the residual tension strengths of center-cracked graphite/epoxy buffer strip panels were evaluated using specimens made with T300/5208 graphite epoxy in a 16-ply quasi-isotropic layup, with two different buffer strip materials, Kevlar-49 or S-glass. It was found that, for panels subjected to fatigue loading, the residual strengths were not significantly affected by the fatigue loading, the number of repetitions of the loading spectrum, or the maximum strain level. The moisture conditioning reduced the residual strengths of the S-glass buffer strip panels by 10 to 15 percent below the ambient results, but increased the residual strengths of the Kevlar-49 buffer strip panels slightly. For both buffer strip materials, the heat increased the residual strengths of the buffer strip panels slightly over the ambient results.

  1. Effects of fatigue and environment on residual strengths of center-cracked graphite/epoxy buffer strip panels

    SciTech Connect

    Bigelow, C.A. )

    1989-03-01

    The effects of fatigue, moisture conditioning, and heating on the residual tension strengths of center-cracked graphite/epoxy buffer strip panels were evaluated using specimens made with T300/5208 graphite epoxy in a 16-ply quasi-isotropic layup, with two different buffer strip materials, Kevlar-49 or S-glass. It was found that, for panels subjected to fatigue loading, the residual strengths were not significantly affected by the fatigue loading, the number of repetitions of the loading spectrum, or the maximum strain level. The moisture conditioning reduced the residual strengths of the S-glass buffer strip panels by 10 to 15 percent below the ambient results, but increased the residual strengths of the Kevlar-49 buffer strip panels slightly. For both buffer strip materials, the heat increased the residual strengths of the buffer strip panels slightly over the ambient results. 6 refs.

  2. Fatigue crack initiation life prediction in high strength structural steel welded joints

    NASA Astrophysics Data System (ADS)

    Tricoteaux, A.; Fardoun, F.; Degallaix, S.; Sauvage, F.

    1995-02-01

    The local approach method is used to calculate the fatigue crack initiation/early crack growth lives (N(i)) in high strength structural steel weldments. Weld-toe geometries, welding residual stresses and HAZ (heat affected zone) cyclic mechanical properties are taken into account in the N(i) estimation procedure. Fatigue crack initiation lives are calculated from either a Basquin type or a Manson-Coffin type equation. The local (HAZ) stress and strain amplitudes and the local mean stress are determined from an analysis based on the Neuber rule and the Molski-Glinka energy approach. The accuracy of the different methods is evaluated and discussed. Finally the previous methods are used with HAZ cyclic mechanical properties estimated from hardness measurements.

  3. Cryogenic Tensile Strength and Fatigue Life of Carbon Nanotube Multi-Yarn.

    PubMed

    Misak, H E; Mall, S

    2016-03-01

    Carbon nanotube (CNT) multi-yarns, consisting of 30 yarns, were tested under monotonic tensile load and fatigue at the room temperature (298 K) and two cryogenic temperatures (232 and 123 K). Tensile stiffness increased with the decrease of temperature. The average ultimate tensile strength was higher at 123 K when compared to the higher temperatures (232 and 298 K). Failure mechanism changed from a combination of classical variant and independent fiber breakage at the two higher temperatures to mostly classical variant failure mechanism at the lower temperature. The CNT-yarn's fatigue life also increased with decreasing temperature. CNT-yarns have been shown to function well at lower temperatures making them usable for applications requiring operation at cryogenic temperatures, such as in satellites and high altitude aircraft.

  4. Modelling the Strength and Fatigue Life of a Unidirectional Fibrous Composite by Using Daniels' Sequence and Markov Chains

    NASA Astrophysics Data System (ADS)

    Paramonov, Yu.; Cimanis, V.; Varickis, S.; Kleinhofs, M.

    2013-11-01

    A review of the previous works of the authors dedicated to the use of Daniels' sequence (DS) for analyzing the relation between the distribution of the static strength of components of a unidirectional fibrous composite (UFC) and the distribution of its fatigue life is presented. A generalization of the DS which can be used to analyze the association of distribution of the static strength of composite components with distribution of the static strength of the UFC itself is given. In analyzing the fatigue life of a UFC, unlike in Daniels' model, the loading rate and randomness of the number of still workable components in the weak microvolume in which the destruction process takes place are taken into account. By analyzing the fatigue life, it is possible to explain the existence of the random fatigue strength and to calculate the maximum load at which the probability of absence of fatigue failure is great enough when the number of cycles of fatigue loading tends to infinity. Numerical examples of processing of experimental data are presented, and estimates for parameters of the corresponding nonlinear regression model, which can be interpreted as the strength parameters of UFC, are obtained.

  5. Influence of Fatigue Loading and Bone Turnover on Bone Strength and Pattern of Experimental Fractures of the Tibia in Mice.

    PubMed

    Bonnet, Nicolas; Gerbaix, Maude; Ominsky, Michael; Ammann, Patrick; Kostenuik, Paul J; Ferrari, Serge L

    2016-07-01

    Bone fragility depends on bone mass, structure, and material properties, including damage. The relationship between bone turnover, fatigue damage, and the pattern and location of fractures, however, remains poorly understood. We examined these factors and their integrated effects on fracture strength and patterns in tibia. Adult male mice received RANKL (2 mg/kg/day), OPG-Fc (5 mg/kg 2×/week), or vehicle (Veh) 2 days prior to fatigue loading of one tibia by in vivo axial compression, with treatments continuing up to 28 more days. One day post fatigue, crack density was similarly increased in fatigued tibiae from all treatment groups. After 28 days, the RANKL group exhibited reduced bone mass and increased crack density, resulting in reduced bone strength, while the OPG-Fc group had greater bone mass and bone strength. Injury repair altered the pattern and location of fractures created by ex vivo destructive testing, with fractures occurring more proximally and obliquely relative to non-fatigued tibia. A similar pattern was observed in both non-fatigued and fatigued tibia of RANKL. In contrast, OPG-Fc prevented this fatigue-related shift in fracture pattern by maintaining fractures more distal and transverse. Correlation analysis showed that bone strength was predominantly determined by aBMD with minor contributions from structure and intrinsic strength as measured by nanoindentation and cracks density. In contrast, fracture location was predicted equally by aBMD, crack density and intrinsic modulus. The data suggest that not only bone strength but also the fracture pattern depends on previous damage and the effects of bone turnover on bone mass and structure. These observations may be relevant to further understand the mechanisms contributing to fracture pattern in long bone with different levels of bone remodeling, including atypical femur fracture.

  6. Tensile and fatigue strength properties of Kevlar 29 aramid/epoxy unidirectional composites

    SciTech Connect

    Zweben, C.

    1981-07-22

    Static and fatigue tensile strength properties of filament wound undirectional Kevlar 29/epoxy, typical of filament wound material used in flywheel rotors, were studied. Machining techniques were developed to minimize fiber fuzzing on edges. The static modulus, normalized to 70% fiber volume fraction is 8.87 x 10/sup 6/ psi. The major Poisson's ratio is 0.37. The static composite tensile strength, normalized to 70% fiber volume fraction is 200 x 10/sup 3/ psi, corresponding to a fiber stress at failure of 286 x 10/sup 3/ psi, which is good for materials having a very high fiber volume fraction. The S-N curve for R = 0.7 was found to be quite flat. Although the techniques used in this program had previously been employed successfully to study the fatigue behavior of Kevlar 29/epoxy and Kevlar 49/epoxy unidirectional materials, we were unable to overcome the persistent problem of cohesive material failure in the tab regions. The apparent reason for this is the very low interlaminar shear strength of the filament wound material. 16 figures.

  7. Surface Studies of Ultra Strength Drilling Steel after Corrosion Fatigue in Simulated Sour Environment

    SciTech Connect

    M. Ziomek-Moroz; J.A. Hawk; R. Thodla; F. Gui

    2012-05-06

    The Unites States predicted 60% growth in energy demand by 2030 makes oil and natural gas primary target fuels for energy generation. The fact that the peak of oil production from shallow wells (< 5000 m) is about to be reached, thereby pushing the oil and natural gas industry into deeper wells. However, drilling to depths greater than 5000 m requires increasing the strength-to weight ratio of the drill pipe materials. Grade UD-165 is one of the ultra- high yield strength carbon steels developed for ultra deep drilling (UDD) activities. Drilling UDD wells exposes the drill pipes to Cl{sup -}, HCO{sub 3}{sup -}/CO{sub 3}{sup 2-}, and H{sub 2}S-containig corrosive environments (i.e., sour environments) at higher pressures and temperatures compared to those found in conventional wells. Because of the lack of synergism within the service environment, operational stresses can result in catastrophic brittle failures characteristic for environmentally assisted cracking (EAC). Approximately 75% of all drill string failures are caused by fatigue or corrosion fatigue. Since there is no literature data on the corrosion fatigue performance of UD-165 in sour environments, research was initiated to better clarify the fatigue crack growth (FCGR) behavior of this alloy in UDD environments. The FCGR behavior of ultra-strength carbon steel, grade UD-165, was investigated by monitoring crack growth rate in deaerated 5%NaCl solution buffered with NaHCO{sub 3}/Na{sub 2}CO{sub 3} and in contact with H{sub 2}S. The partial pressure of H{sub 2}S (p{sub H2S}) was 0.83 kPa and pH of the solution was adjusted by NaOH to 12. The fatigue experiments were performed at 20 and 85 C in an autoclave with surface investigations augmented by scanning electron microscopy (SEM) and energy dispersive x-ray (EDX) spectroscopy. In this study, research focused on surface analyses supported by the fatigue crack growth rate measurements. Fig. 1 shows an SEM micrograph of the crack that propagated from the

  8. Probabilistic material strength degradation model for Inconel 718 components subjected to high temperature, high-cycle and low-cycle mechanical fatigue, creep and thermal fatigue effects

    NASA Technical Reports Server (NTRS)

    Bast, Callie C.; Boyce, Lola

    1995-01-01

    This report presents the results of both the fifth and sixth year effort of a research program conducted for NASA-LeRC by The University of Texas at San Antonio (UTSA). The research included on-going development of methodology for a probabilistic material strength degradation model. The probabilistic model, in the form of a postulated randomized multifactor equation, provides for quantification of uncertainty in the lifetime material strength of aerospace propulsion system components subjected to a number of diverse random effects. This model is embodied in the computer program entitled PROMISS, which can include up to eighteen different effects. Presently, the model includes five effects that typically reduce lifetime strength: high temperature, high-cycle mechanical fatigue, low-cycle mechanical fatigue, creep and thermal fatigue. Statistical analysis was conducted on experimental Inconel 718 data obtained from the open literature. This analysis provided regression parameters for use as the model's empirical material constants, thus calibrating the model specifically for Inconel 718. Model calibration was carried out for five variables, namely, high temperature, high-cycle and low-cycle mechanical fatigue, creep and thermal fatigue. Methodology to estimate standard deviations of these material constants for input into the probabilistic material strength model was developed. Using an updated version of PROMISS, entitled PROMISS93, a sensitivity study for the combined effects of high-cycle mechanical fatigue, creep and thermal fatigue was performed. Then using the current version of PROMISS, entitled PROMISS94, a second sensitivity study including the effect of low-cycle mechanical fatigue, as well as, the three previous effects was performed. Results, in the form of cumulative distribution functions, illustrated the sensitivity of lifetime strength to any current value of an effect. In addition, verification studies comparing a combination of high-cycle mechanical

  9. 76 FR 75435 - Fatigue Tolerance Evaluation of Metallic Structures

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-02

    ... evaluating the fatigue strength of transport category rotorcraft metallic primary structural elements. I... 2.9 11.2 56 9 25.4 2.9 22.5 100 03/16/2011 II. Background Rotorcraft fatigue strength reduction or... reduction in strength of any primary structural element can lead to a catastrophic failure, it is...

  10. Microstructure, Mechanical, and Fatigue Strength of Ti-54M Processed by Rotary Swaging

    NASA Astrophysics Data System (ADS)

    Al-Khazraji, Hasan; El-Danaf, Ehab; Wollmann, Manfred; Wagner, Lothar

    2015-05-01

    TIMETAL 54M is a newly developed (α + β) titanium alloy with nominal composition Ti-5Al-4V-0.6Mo-0.4Fe. The alloy can provide a cost benefit over Ti-6Al-4V due to improved machinability and formability. In the present work, evolution of mechanical properties in terms of tensile and hardness values is investigated as a function of deformation degrees imposed via rotary swaging (RS). Microstructure, mechanical properties, and fatigue performance of Ti-54M are investigated after severe plastic deformation by RS conducted at 850 °C and after being subjected to two different post-swaging annealing conditions. Optical microscopy and scanning electron microscopy using electron back scatter diffraction were utilized to document the evolution of the microstructure. Tensile tests were conducted to characterize mechanical properties. RS, to a true strain of 3.0, is found to lead to a marked ultrafine-grained structure of about 1 μm grain size with low content of high angle grain boundaries (HAGBs). Post-swaging heat treatment at 800 °C followed by air cooling did not change the grain size but exhibited high content of HAGBs. Post-swaging heat treatment at 940 °C followed by furnace cooling resulted in a grain size of about 5 μm and enhanced work-hardening capability and ductility, which resulted in less fatigue notch sensitivity, but at the same time lower fatigue strength at 107 cycles.

  11. Impact of Selected Parameters on the Fatigue Strength of Splices on Multiply Textile Conveyor Belts

    NASA Astrophysics Data System (ADS)

    Bajda, Mirosław; Błażej, Ryszard; Hardygóra, Monika

    2016-10-01

    Splices are the weakest points in the conveyor belt loop. The strength of these joints, and thus their design as well as the method and quality of splicing, determine the strength of the whole conveyor belt loop. A special zone in a splice exists, where the stresses in the adjacent plies or cables differ considerably from each other. This results in differences in the elongation of these elements and in additional shearing stresses in the rubber layer. The strength of the joints depends on several factors, among others on the parameters of the joined belt, on the connecting layer and the technology of joining, as well as on the materials used to make the joint. The strength of the joint constitutes a criterion for the selection of a belt suitable for the operating conditions, and therefore methods of testing such joints are of great importance. This paper presents the method of testing fatigue strength of splices made on multi-ply textile conveyor belts and the results of these studies.

  12. Remote laser cutting of CFRP: influence of the edge quality on fatigue strength

    NASA Astrophysics Data System (ADS)

    Stock, Johannes W.; Zaeh, Michael F.; Spaeth, Justinian P.

    2014-02-01

    The additional weight of the batteries in electric cars can be compensated by using carbon fiber reinforced plastics (CFRP) for structural parts of the passenger cell. Various machining processes for CFRP are currently subject to investigations. Milling and abrasive waterjet cutting implicate fiber pull out or delamination and, thus, do not thoroughly meet the requirements for mass production. Despite this, laser beam cutting has a great potential in large scale cutting of CFRP and is a predominant research topic. Remote laser beam cutting especially provides a good cut surface quality. Currently, the correlation between cutting parameters and edge quality is not sufficiently known. In particular, studies on the dynamic strength of remote laser cut parts are missing. Therefore, fatigue testing was performed with specimens cut by laser radiation and the results were compared with others made by milling and abrasive waterjet cutting. With these experiments, a comparable study of the different methods of CFRP cutting was achieved. The influence of both the heat affected zone (HAZ) and of defects like micro-fissures on the fatigue strength were evaluated.

  13. The effect of weld porosity on the cryogenic fatigue strength of ELI grade Ti-5Al-2. 5Sn

    SciTech Connect

    Rogers, P.R.; Lambdin, R.C.; Fox, D.E.

    1992-09-01

    The effect of weld porosity on the fatigue strength of ELI grade Ti-5Al-2.5Sn at cryogenic temperature was determined. A series of high cycle fatigue (HCF) and tensile tests were performed at -320 F on specimens made from welded sheets of the material. All specimens were tested with weld beads intact and some amount of weld offset. Specimens containing porosity and control specimens containing no porosity were tested. Results indicate that for the weld configuration tested, the fatigue life of the material is not affected by the presence of spherical embedded pores.

  14. The effect of weld porosity on the cryogenic fatigue strength of ELI grade Ti-5Al-2.5Sn

    NASA Technical Reports Server (NTRS)

    Rogers, P. R.; Lambdin, R. C.; Fox, D. E.

    1992-01-01

    The effect of weld porosity on the fatigue strength of ELI grade Ti-5Al-2.5Sn at cryogenic temperature was determined. A series of high cycle fatigue (HCF) and tensile tests were performed at -320 F on specimens made from welded sheets of the material. All specimens were tested with weld beads intact and some amount of weld offset. Specimens containing porosity and control specimens containing no porosity were tested. Results indicate that for the weld configuration tested, the fatigue life of the material is not affected by the presence of spherical embedded pores.

  15. Residual strength and crack propagation tests on C-130 airplane center wings with service-imposed fatigue damage

    NASA Technical Reports Server (NTRS)

    Snider, H. L.; Reeder, F. L.; Dirkin, W. J.

    1972-01-01

    Fourteen C-130 airplane center wings, each containing service-imposed fatigue damage resulting from 4000 to 13,000 accumulated flight hours, were tested to determine their fatigue crack propagation and static residual strength characteristics. Eight wings were subjected to a two-step constant amplitude fatigue test prior to static testing. Cracks up to 30 inches long were generated in these tests. Residual static strengths of these wings ranged from 56 to 87 percent of limit load. The remaining six wings containing cracks up to 4 inches long were statically tested as received from field service. Residual static strengths of these wings ranged from 98 to 117 percent of limit load. Damage-tolerant structural design features such as fastener holes, stringers, doublers around door cutouts, and spanwise panel splices proved to be effective in retarding crack propagation.

  16. Residual Stress and Fatigue Strength of Hybrid Laser-MIG-Welded A7N01P-T4

    NASA Astrophysics Data System (ADS)

    Wang, Qiuying; Chen, Hui; Qiu, Peixian; Zhu, Zongtao

    2017-02-01

    A7N01P-T4 aluminum alloy is widely used in some important welded components of high-speed trains. The hybrid laser-metal inert gas (MIG) welding process was studied to solve problems associated with the MIG welding process, such as low welding efficiency, high residual stress and deformation, and serious loss of strength. A high-speed camera, a voltage and current collection system, and NI DAQ were used to acquire arc profiles, welding voltage, and welding current simultaneously. Thermal cycle tests were carried out. Residual stresses induced by the welding process and fatigue strength of the joint were investigated. Large-size fatigue specimens were used in fatigue tests. The results show that the energy of the hybrid welding process is focused, and the power density of hybrid welding process is intense. The heat input per unit of the hybrid welding process is only half of that of the MIG welding process. Compared with the MIG welded joint, the overall residual stress level of the hybrid-welded joint is lower. The peak longitudinal stress of the hybrid-welded joint is reduced by 20 pct. The fatigue strength of hybrid joints is 14 pct higher than that of MIG-welded joints. Narrow weld and HAZ, weak softening behavior, and low residual stress level are the causes of the improvement of fatigue strength.

  17. Timescales for permeability reduction and strength recovery in densifying magma

    NASA Astrophysics Data System (ADS)

    Heap, M. J.; Farquharson, J. I.; Wadsworth, F. B.; Kolzenburg, S.; Russell, J. K.

    2015-11-01

    Transitions between effusive and explosive behaviour are routine for many active volcanoes. The permeability of the system, thought to help regulate eruption style, is likely therefore in a state of constant change. Viscous densification of conduit magma during effusive periods, resulting in physical and textural property modifications, may reduce permeability to that preparatory for an explosive eruption. We present here a study designed to estimate timescales of permeability reduction and strength recovery during viscous magma densification by coupling measurements of permeability and strength (using samples from a suite of variably welded, yet compositionally identical, volcanic deposits) with a rheological model for viscous compaction and a micromechanical model, respectively. Bayesian Information Criterion analysis confirms that our porosity-permeability data are best described by two power laws that intersect at a porosity of 0.155 (the ;changepoint; porosity). Above and below this changepoint, the permeability-porosity relationship has a power law exponent of 8.8 and 1.0, respectively. Quantitative pore size analysis and micromechanical modelling highlight that the high exponent above the changepoint is due to the closure of wide (∼200-300 μm) inter-granular flow channels during viscous densification and that, below the changepoint, the fluid pathway is restricted to narrow (∼50 μm) channels. The large number of such narrow channels allows porosity loss without considerable permeability reduction, explaining the switch to a lower exponent. Using these data, our modelling predicts a permeability reduction of four orders of magnitude (for volcanically relevant temperatures and depths) and a strength increase of a factor of six on the order of days to weeks. This discrepancy suggests that, while the viscous densification of conduit magma will inhibit outgassing efficiency over time, the regions of the conduit prone to fracturing, such as the margins, will

  18. Multi-Mode Excitation and Data Reduction for Fatigue Crack Characterization in Conducting Plates

    NASA Technical Reports Server (NTRS)

    Wincheski, B.; Namkung, M.; Fulton, J. P.; Clendenin, C. G.

    1992-01-01

    Advances in the technique of fatigue crack characterization by resonant modal analysis have been achieved through a new excitation mechanism and data reduction of multiple resonance modes. A non-contacting electromagnetic device is used to apply a time varying Lorentz force to thin conducting sheets. The frequency and direction of the Lorentz force are such that resonance modes are generated in the test sample. By comparing the change in frequency between distinct resonant modes of a sample, detecting and sizing of fatigue cracks are achieved and frequency shifts caused by boundary condition changes can be discriminated against. Finite element modeling has been performed to verify experimental results.

  19. Effectiveness of a tailored neck training program on neck strength, movement, and fatigue in under-19 male rugby players: a randomized controlled pilot study

    PubMed Central

    Barrett, Matthew D; McLoughlin, Terence F; Gallagher, Kieran R; Gatherer, Don; Parratt, Michael TR; Perera, Jonathan R; Briggs, Tim WR

    2015-01-01

    Purpose To investigate the effect of a tailored neck muscle conditioning program on neck muscle strength, neck muscle fatigue, and range of neck movement in 16–18-year-old male rugby players. Materials and methods Thirty-four male rugby players were divided into forward and back playing positions and randomized within these groups. Seventeen players were randomly assigned to each group. The test group was given a tailored 6-week exercise regime based on their baseline measurements to be performed three times a week in addition to their normal training and playing. The control group trained and played as normal. The outcome measures used were cervical spine range of movement, neck strength, and neck muscle fatigability. Results There were no clinically relevant statistically significant differences between the two groups. Trends identified between the two groups suggest that a tailored neck exercise program increases neck strength, particularly neck extension, and increases resistance to fatigue, as well as influencing right- and left-sided neck muscle balance. A reduction in range of movement was also demonstrated in the test group. There was a great deal of variability in range of movement and strength within this age group. No previously undiagnosed neck conditions were detected, and there were no adverse events reported. Conclusion This study has shown that neck strength, range of movement, and susceptibility of the neck muscles to fatigue can be influenced using a focused neck training regime. It forms an important basis for a larger, multicenter study to ensure the neck is given due attention in rugby training and receives the same focus of conditioning as other parts of the body. PMID:25999771

  20. Effects of thermal and mechanical fatigue on the flexural strength of G40-600/PMR-15 cross-ply laminates

    NASA Technical Reports Server (NTRS)

    Roberts, Gary D.; Ho, Barry Ping Hsiao; Wallace, John F.

    1993-01-01

    The effects of thermal and mechanical fatigue on the flexural strength of G40-600/PMR-15 cross-ply laminates with ply orientation of (0(2),90(2))2S and (90(2),0(2))2S are examined. The relative importance of shear and tensile stresses is examined by varying the span-to-depth ratios of flexural test specimens from 8 to 45. Acoustic emission signals are measured during the flexural tests in order to monitor the initiation and growth of damage. Optical microscopy is used to examine specimens for resin cracking, delamination, and fiber breaks after testing. Transverse matrix cracks and delaminations occur in all specimens, regardless of ply orientation, span-to-depth ratio, or previous exposure of specimens to thermal and mechanical fatigue. A small amount of fiber tensile fracture occurs in the outer 0 deg ply of specimens with high span-to-depth ratios. Because of the complex failure modes, the flexural test results represent the 'apparent' strengths rather than the true flexural or shear strengths for these cross-ply laminates. Thermal cycling of specimens prior to flexural testing does not reduce the apparent flexural strength or change the mode of failure. However, fewer acoustic events are recorded at all strains during flexural testing of specimens exposed to prior thermal cycling. High temperature thermal cycling (32 to 260 C, 100 cycles) causes a greater reduction in acoustic events than low temperature thermal cycling (-85 to +85 C, 500 cycles). Mechanical cycling (0 to 50 percent of the flexural strength, 100 cycles) has a similar effect, except that acoustic events are reduced only at strains less than the maximum strain applied during flexural fatigue.

  1. Strength and fatigue properties of three-step sintered dense nanocrystal hydroxyapatite bioceramics

    NASA Astrophysics Data System (ADS)

    Guo, Wen-Guang; Qiu, Zhi-Ye; Cui, Han; Wang, Chang-Ming; Zhang, Xiao-Jun; Lee, In-Seop; Dong, Yu-Qi; Cui, Fu-Zhai

    2013-06-01

    Dense hydroxyapatite (HA) ceramic is a promising material for hard tissue repair due to its unique physical properties and biologic properties. However, the brittleness and low compressive strength of traditional HA ceramics limited their applications, because previous sintering methods produced HA ceramics with crystal sizes greater than nanometer range. In this study, nano-sized HA powder was employed to fabricate dense nanocrystal HA ceramic by high pressure molding, and followed by a three-step sintering process. The phase composition, microstructure, crystal dimension and crystal shape of the sintered ceramic were examined by X-ray diffraction (XRD) and scanning electron microscopy (SEM). Mechanical properties of the HA ceramic were tested, and cytocompatibility was evaluated. The phase of the sintered ceramic was pure HA, and the crystal size was about 200 nm. The compressive strength and elastic modulus of the HA ceramic were comparable to human cortical bone, especially the good fatigue strength overcame brittleness of traditional sintered HA ceramics. Cell attachment experiment also demonstrated that the ceramics had a good cytocompatibility.

  2. Determination of Turboprop Reduction Gearbox System Fatigue Life and Reliability

    NASA Technical Reports Server (NTRS)

    Zaretsky, Erwin V.; Lewicki, David G.; Savage, Michael; Vlcek, Brian L.

    2007-01-01

    Two computational models to determine the fatigue life and reliability of a commercial turboprop gearbox are compared with each other and with field data. These models are (1) Monte Carlo simulation of randomly selected lives of individual bearings and gears comprising the system and (2) two-parameter Weibull distribution function for bearings and gears comprising the system using strict-series system reliability to combine the calculated individual component lives in the gearbox. The Monte Carlo simulation included the virtual testing of 744,450 gearboxes. Two sets of field data were obtained from 64 gearboxes that were first-run to removal for cause, were refurbished and placed back in service, and then were second-run until removal for cause. A series of equations were empirically developed from the Monte Carlo simulation to determine the statistical variation in predicted life and Weibull slope as a function of the number of gearboxes failed. The resultant L(sub 10) life from the field data was 5,627 hr. From strict-series system reliability, the predicted L(sub 10) life was 774 hr. From the Monte Carlo simulation, the median value for the L(sub 10) gearbox lives equaled 757 hr. Half of the gearbox L(sub 10) lives will be less than this value and the other half more. The resultant L(sub 10) life of the second-run (refurbished) gearboxes was 1,334 hr. The apparent load-life exponent p for the roller bearings is 5.2. Were the bearing lives to be recalculated with a load-life exponent p equal to 5.2, the predicted L(sub 10) life of the gearbox would be equal to the actual life obtained in the field. The component failure distribution of the gearbox from the Monte Carlo simulation was nearly identical to that using the strict-series system reliability analysis, proving the compatibility of these methods.

  3. Effect of inclusion size on the high cycle fatigue strength and failure mode of a high V alloyed powder metallurgy tool steel

    NASA Astrophysics Data System (ADS)

    Yao, Jun; Qu, Xuan-hui; He, Xin-bo; Zhang, Lin

    2012-07-01

    The fatigue strength of a high V alloyed powder metallurgy tool steel with two different inclusion size levels, tempered at different temperatures, was investigated by a series of high cycle fatigue tests. It was shown that brittle inclusions with large sizes above 30 μm prompted the occurrence of subsurface crack initiation and the reduction in fatigue strength. The fracture toughness and the stress amplitude both exerted a significant influence on the fish-eye size. A larger fish-eye area would form in the sample with a higher fracture toughness subjected to a lower stress amplitude. The stress intensity factor of the inclusion was found to lie above a typical value of the threshold stress intensity factor of 4 MPa·m1/2. The fracture toughness of the sample with a hardness above HRC 56 could be estimated by the mean value of the stress intensity factor of the fish-eye. According to fractographic evaluation, the critical inclusion size can be calculated by linear fracture mechanics.

  4. Initiation of Massive Landsliding through Progressive Strength Reduction in Volcanoes

    NASA Astrophysics Data System (ADS)

    Reid, M. E.; Keith, T. C.; Kayen, R. E.; Iverson, N. R.; Iverson, R. M.; Brien, D. L.

    2011-12-01

    Landslides that sculpt deeply into volcano edifices can be extremely large. For example, the 1980 collapse of Mount St. Helens (MSH) volcano generated a 2.8 km3 debris-avalanche deposit from a series of massive retrogressive failures. Rock shear strength plays a fundamental role in such landsliding, yet pertinent data from modern volcano collapse surfaces are rare. The collapse crater at MSH affords access to rocks directly from the failure surface of the1980 massive landslide. We used a combination of field observations, laboratory strength tests designed to mimic conditions in the pre-collapse edifice, and quasi-3D slope-stability analyses to investigate the effects of progressive strength reduction, caused by pre-collapse deformation, on the instability of the volcano's edifice. Within the MSH crater, we observed that the basal shear zone from the outermost initial landslide block (Block I) of the 1980 failure formed primarily in pervasively shattered older dacitic dome rocks; shearing was not localized in sloping volcanic strata or in weak, hydrothermally altered rocks. We collected relatively undisturbed tube samples and disturbed bulk samples of the shattered dacite from near the slip surface of Block I. Using a triaxial testing device, equipped with high-pressure components to mimic overburden stresses in the pre-collapse edifice, we determined the quasi-static drained shear strength of the undisturbed samples. These tests indicated a peak angle of internal friction, φ, of 35° and a residual φ (after undergoing axial strain up to 20%) of 29°. We also determined residual shear strength using a specially constructed large-volume ring-shear apparatus that imposed large quasi-static shear strains exceeding 100%. These tests yielded a similar residual strength, with φ of 27°. Prior to its catastrophic collapse in 1980, the MSH edifice was deformed northward tens of meters by an intruding cryptodome, which likely caused shearing along a summit fault and

  5. Fatigue Lives Of Laser-Cut Metals

    NASA Technical Reports Server (NTRS)

    Martin, Michael R.

    1988-01-01

    Fatigue lives made to approach those attainable by traditional grinding methods. Fatigue-test specimens prepared from four metallic alloys, and material removed from specimens by manual grinding, by Nd:glass laser, and by Nd:YAG laser. Results of fatigue tests of all specimens indicated reduction of fatigue strengths of laser-fired specimens. Laser machining holds promise for improved balancing of components of gas turbines.

  6. Acute Effects of Static vs. Ballistic Stretching on Strength and Muscular Fatigue Between Ballet Dancers and Resistance-Trained Women.

    PubMed

    Lima, Camila D; Brown, Lee E; Wong, Megan A; Leyva, Whitney D; Pinto, Ronei S; Cadore, Eduardo L; Ruas, Cassio V

    2016-11-01

    Lima, CD, Brown, LE, Wong, MA, Leyva, WD, Pinto, RS, Cadore, EL, and Ruas, CV. Acute effects of static vs. ballistic stretching on strength and muscular fatigue between ballet dancers and resistance-trained women. J Strength Cond Res 30(11): 3220-3227, 2016-Stretching is used to increase joint range of motion, but the acute effects can decrease muscle strength. However, this may depend on the population or mode of stretching. The purpose of this study was to compare the acute effects of static vs. ballistic stretching on strength and muscular fatigue between ballet dancers and resistance-trained women. Fifteen resistance-trained women (age 23.8 ± 1.80 years, mass 67.47 ± 7.77 kg, height 168.30 ± 5.53 cm) and 12 ballet dancers (age 22.8 ± 3.04 years, mass 58.67 ± 5.65 kg, height 168.00 ± 7.69 cm) performed 5 days of testing. The first day was control (no stretching), whereas the other 4 days were static or ballistic stretching in a counterbalanced order. Range of motion, strength, and fatigue tests were also performed. Both groups demonstrated a significant decrease in hamstrings strength after static (102.71 ± 2.67 N·m) and ballistic stretching (99.49 ± 2.61 N·m) compared with control (113.059 ± 3.25 N·m), with no changes in quadriceps strength. For fatigue, only ballet dancers demonstrated a decrease from control (71.79 ± 4.88%) to ballistic (65.65 ± 8.19%), but no difference with static (65.01 ± 12.29%). These findings suggest that stretching decreases hamstrings strength similarly in ballet dancers and resistance-trained women, with no differences between modes of stretching. However, ballistic stretching only decreased muscular fatigue in ballet dancers, but not in resistance-trained women. Therefore, no stretching should be performed before strength performance. However, ballistic stretching may decrease acute muscular fatigue in ballet dancers.

  7. High-Cycle Fatigue of High-Strength Low Alloy Steel Q345 Subjected to Immersion Corrosion for Mining Wheel Applications

    NASA Astrophysics Data System (ADS)

    Dicecco, Sante; Altenhof, William; Hu, Henry; Banting, Richard

    2017-03-01

    In an effort to better understand the impact of material degradation on the fatigue life of mining wheels made of a high-strength low alloy carbon steel (Q345), this study seeks to evaluate the effect of surface corrosion on the high-cycle fatigue behavior of the Q345 alloy. The fatigue behavior of the polished and corroded alloy was investigated. Following exposure to a 3.5 wt.% NaCl saltwater solution, polished and corroded fatigue specimens were tested using an R.R. Moore rotating-bending fatigue apparatus. Microstructural analyses via both optical microscopy and scanning electron microscopy (SEM) revealed that one major phase, α-iron phase, ferrite, and one minor phase, colony pearlite, existed in the extracted Q345 alloy. The results of the fatigue testing showed that the polished and corroded specimens had an endurance strength of approximately 295 and 222 MPa, respectively, at 5,000,000 cycles. The corroded surface condition resulted in a decrease in the fatigue strength of the Q345 alloy by 24.6%. Scanning electron microscope fractography indicated that failure modes for polished and corroded fatigue specimens were consistent in the high-cycle low loading fatigue regime. Conversely, SEM fractography of low-cycle high-loading fatigue specimens found considerable differences in fracture surfaces between the corroded and polished fatigue specimens.

  8. Low ponderal index is associated with decreased muscle strength and fatigue resistance in college-aged women

    PubMed Central

    Brutsaert, Tom D.; Tamvada, Kelli H.; Kiyamu, Melisa; White, Daniel D.; Gage, Timothy B

    2011-01-01

    Poor fetal growth is associated with decrements in muscle strength likely due to changes during myogenesis. We investigated the association of poor fetal growth with muscle strength, fatigue resistance, and the response to training in the isolated quadriceps femoris. Females (20.6 yrs) born to term but below the 10th percentile of ponderal index (PI)-for-gestational-age (LOWPI, n=14) were compared to controls (HIGHPI, n=14), before and after an 8-week training. Muscle strength was assessed as grip-strength and as the maximal isometric voluntary contraction (MVC) of the quadriceps femoris. Muscle fatigue was assessed during knee extension eercise. Body composition and the maximal oxygen consumption (VO2max) were also measured. Controlling for fat free mass (FFM), LOWPI versus HIGHPI women had ~11% lower grip-strength (P=0.023), 9–24% lower MVC values (P=0.042 pre-trained; P=0.020 post-trained), a higher rate of fatigue (pre- and post-training), and a diminished training response (P=0.016). Statistical control for FFM increased rather than decreased strength differences between PI groups. The PI was not associated with VO2max or measures of body composition. Strength and fatigue decrements strongly suggest that poor fetal growth affects the pathway of muscle force generation. This could be due to neuromotor and/or muscle morphologic changes during development e.g., fiber number, fiber type, etc. Muscle from LOWPI women may also be less responsive to training. Indirectly, results also implicate muscle as a potential mediator between poor fetal growth and adult chronic disease, given muscle’s direct role in determining insulin resistance, type II diabetes, physical activity, and so forth. PMID:21641734

  9. Effects of age and muscle action type on acute strength and power recovery following fatigue of the leg flexors.

    PubMed

    Thompson, Brennan J; Conchola, Eric C; Stock, Matt S

    2015-12-01

    Short-term strength and power recovery patterns following fatigue have received little research attention, particularly as they pertain to age-specific responses, and the leg flexors (i.e., hamstrings) muscle group. Thus, research is warranted addressing these issues because both age-related alterations in the neuromuscular system and mode of muscle action (e.g., eccentric, concentric, isometric) may differentially influence recovery responses from fatigue. The aim of this study was to investigate the strength and power recovery responses for eccentric, concentric, and isometric muscle actions of the leg flexors in young and older men following an isometric, intermittent fatigue-inducing protocol. Nineteen young (age = 25 ± 3 years) and nineteen older (71 ± 4) men performed maximal voluntary contractions (MVCs) for eccentric, concentric, and isometric muscle actions followed by a fatigue protocol of intermittent (0.6 duty cycle) isometric contractions of the leg flexors at 60% of isometric MVC. MVCs of each muscle action were performed at 0, 7, 15, and 30 min following fatigue. Peak torque (PT) and mean power values were calculated from the MVCs and the eccentric/concentric ratio (ECR) was derived. For PT and mean power, young men showed incomplete recovery at all time phases, whereas the older men had recovered by 7 min. Eccentric and isometric muscle actions showed incomplete recovery at all time phases, but concentric recovered by 7 min, independent of age. The ECR was depressed for up to 30 min following fatigue. More rapid and pronounced recovery in older men and concentric contractions may be related to physiological differences specific to aging and muscle action motor unit patterns. Individuals and clinicians may use these time course responses as a guide for recovery following activity-induced fatigue.

  10. Microdamage caused by fatigue loading in human cancellous bone: relationship to reductions in bone biomechanical performance.

    PubMed

    Lambers, Floor M; Bouman, Amanda R; Rimnac, Clare M; Hernandez, Christopher J

    2013-01-01

    Vertebral fractures associated with osteoporosis are often the result of tissue damage accumulated over time. Microscopic tissue damage (microdamage) generated in vivo is believed to be a mechanically relevant aspect of bone quality that may contribute to fracture risk. Although the presence of microdamage in bone tissue has been documented, the relationship between loading, microdamage accumulation and mechanical failure is not well understood. The aim of the current study was to determine how microdamage accumulates in human vertebral cancellous bone subjected to cyclic fatigue loading. Cancellous bone cores (n = 32) from the third lumbar vertebra of 16 donors (10 male, 6 female, age 76 ± 8.8, mean ± SD) were subjected to compressive cyclic loading at σ/E0 = 0.0035 (where σ is stress and E0 is the initial Young's modulus). Cyclic loading was suspended before failure at one of seven different amounts of loading and specimens were stained for microdamage using lead uranyl acetate. Damage volume fraction (DV/BV) varied from 0.8 ± 0.5% (no loading) to 3.4 ± 2.1% (fatigue-loaded to complete failure) and was linearly related to the reductions in Young's modulus caused by fatigue loading (r(2) = 0.60, p<0.01). The relationship between reductions in Young's modulus and proportion of fatigue life was nonlinear and suggests that most microdamage generation occurs late in fatigue loading, during the tertiary phase. Our results indicate that human vertebral cancellous bone tissue with a DV/BV of 1.5% is expected to have, on average, a Young's modulus 31% lower than the same tissue without microdamage and is able to withstand 92% fewer cycles before failure than the same tissue without microdamage. Hence, even small amounts of microscopic tissue damage in human vertebral cancellous bone may have large effects on subsequent biomechanical performance.

  11. Assessment of Musculoskeletal Strength and Levels of Fatigue during Different Phases of Menstrual Cycle in Young Adults

    PubMed Central

    D Souza, Urban John; Shivaprakash, G

    2017-01-01

    Introduction Some of the physiological factors and athletic performance might show variation along the phases of menstrual cycle. The alterations seen in these physiological parameters of various systems relating to oscillations in hormonal levels do affect the autonomic nervous system and metabolic functions. Former studies heave inconclusively about the influence of hormones on exercise performance, predominantly muscle strength and rate of fatigue during different phases of the menstrual cycle. Studies regarding influence of these variations during bleeding phase were not done. Aim To evaluate the muscle strength variations and also the rate of fatigue during various phases of the menstrual cycle in young adults. Materials and Methods This was a prospective study conducted among 100 healthy adult female volunteers aged 18-24 years, with normal regular menstrual cycles persistent between 26- 32 days (average of 28 days), for a minimum of last 6 months. Muscle strength was assessed by calculating the work done and fatigue rate using Mosso’s ergograph and by handgrip dynamometer strength. Each subject was evaluated consecutively for two menstrual cycles in all three phases which were classified as Phase 1- Menstrual phase, Phase 2- Follicular phase and Phase 3- Luteal phase. The data obtained was analysed by statistical tool One-way ANOVA followed by a post-hoc Tukeys test. A p-value of ≤ 0.05 was considered significant. Results The amount of work done and handgrip strength was significantly higher in phase 2 (p<0.001) and relatively reduced in phase 1 and 3 (p<0.001) of menstrual cycle. In terms of fatigue rate percentage, phase 2 showed significantly lesser values (p<0.001) as compared to phase 1 and 3 of menstrual cycle. Conclusion We conclude that the cyclical variation in endogenous reproductive hormones increases the muscle strength in follicular phase of the menstrual cycle. Thus provide support for the influence of these hormones in regulation of these

  12. Benefits of thread rolling process to the stress corrosion cracking and fatigue resistance of high strength fasteners

    NASA Astrophysics Data System (ADS)

    Kephart, A. R.; Hayden, S. Z.

    1993-05-01

    Stress corrosion cracking (SCC) behavior of cut (machined) vice thread rolled Alloy X-750 and Alloy 625 fasteners in a simulated high temperature primary water environment has been evaluated. SCC testing at 360 and 338 C included 157 small and 40 large 60 degree thread studs. Thread rolled fasteners had improved resistance relative to cut fasteners. Tests of fatigue resistance in air at room temperature and both air and primary water at 315 C were conducted on smaller studs with both cut and rolled threads. Results showed rolled threads can have significantly improved fatigue lives over those of cut threads in both air and primary water. Fasteners produced by two different thread rolling methods, in-feed (radial) and through-feed (axial), revealed similar SCC initiation test results. Testing of thread rolled fasteners revealed no significant SCC or fatigue growth of rolling induced thread crest laps typical of the thread rolling process. While fatigue resistance differed between the two rolled thread supplier's studs, neither of the suppliers studs showed SCC initiation at exposure times beyond that of cut threads with SCC. In contrast to rolling at room temperature, warm rolled (427 C) threads showed no improvement over cut threads in terms of fatigue resistance. The observed improved SCC and fatigue performance of rolled threads is postulated to be due to interactive factors, including beneficial residual stresses in critically stressed thread root region, reduction of plastic strains during loading and formation of favorable microstructure.

  13. Benefits of thread rolling process to the stress corrosion cracking and fatigue resistance of high strength fasteners

    SciTech Connect

    Kephart, A.R.; Hayden, S.Z.

    1993-05-01

    Stress corrosion cracking (SCC) behavior of cut (machined) vice thread rolled Alloy X-750 and Alloy 625 fasteners in a simulated high temperature primary water environment has been evaluated. SCC testing at 360 and 338C included 157 small and 40 large 60{degree} Vee thread studs. Thread rolled fasteners had improved resistance relative to cut fasteners. Tests of fatigue resistance in air at room temperature and both air and primary water at 315C were conducted on smaller studs with both cut and rolled threads. Results showed rolled threads can have significantly improved fatigue lives over those of cut threads in both air and primary water. Fasteners produced by two different thread rolling methods, in-feed (radial) and through-feed (axial), revealed similar SCC initiation test results. Testing of thread rolled fasteners revealed no significant SCC or fatigue growth of rolling induced thread crest laps typical of the thread rolling process. While fatigue resistance differed between the two rolled thread supplier`s studs, neither of the suppliers studs showed SCC initiation at exposure times beyond that of cut threads with SCC. In contrast to rolling at room temperature, warm rolled (427C) threads showed no improvement over cut threads in terms of fatigue resistance. The observed improved SCC and fatigue performance of rolled threads is postulated to be due to interactive factors, including beneficial residual stresses in critically stressed thread root region, reduction of plastic strains during loading and formation of favorable microstructure.

  14. Strength, Fatigue, and Fracture Toughness of Ti-6Al-4V Liner from a Composite Over-Wrapped Pressure Vessel

    NASA Technical Reports Server (NTRS)

    Salem, Jonathan A.; Lerch, Brad; Thesken, John C.; Sutter, Jim; Russell, Richard

    2008-01-01

    It was demonstrated by way of experiment that Composite Over-wrapped Pressure Vessel (COPV) Ti-6Al-4V liner material can sustain the expected service loads and cycles. The experiments were performed as part of investigations on the residual life of COPV tanks being used in Space Shuttle Orbiters. Measured properties included tensile strength, compressive strength, reversed loading cycles to simulate liner proof strains, and cyclic fatigue loading to demonstrate the ability to sustain 1000 cycles after liner buckling. The liner material came from a salvaged 40 in. Columbia (orbiter 102) tank (SN029), and tensile strength measurements were made on both boss-transition (thick) and membrane regions (thin). The average measured yield strength was 131 ksi in the boss-transition and membrane regions, in good agreement with measurements made on 1970 s vintage forged plate stock. However, Young s modulus was 17.4+/-0.3 Msi, somewhat higher than typical handbook values (approx.16 Msi). The fracture toughness, as estimated from a failed fatigue specimen, was 74 ksi/sq in, in reasonable agreement with standardized measurements made on 1970 s vintage forged plate stock. Low cycle fatigue of a buckled test specimen implied that as-imprinted liners can sustain over 4000 load cycles.

  15. Small Crack Growth and Fatigue Life Predictions for High-Strength Aluminium Alloys. Part 1; Experimental and Fracture Mechanics Analysis

    NASA Technical Reports Server (NTRS)

    Wu, X. R.; Newman, J. C.; Zhao, W.; Swain, M. H.; Ding, C. F.; Phillips, E. P.

    1998-01-01

    The small crack effect was investigated in two high-strength aluminium alloys: 7075-T6 bare and LC9cs clad alloy. Both experimental and analytical investigations were conducted to study crack initiation and growth of small cracks. In the experimental program, fatigue tests, small crack and large crack tests A,ere conducted under constant amplitude and Mini-TWIST spectrum loading conditions. A pronounced small crack effect was observed in both materials, especially for the negative stress ratios. For all loading conditions, most of the fatigue life of the SENT specimens was shown to be crack propagation from initial material defects or from the cladding layer. In the analysis program, three-dimensional finite element and A weight function methods were used to determine stress intensity factors and to develop SIF equations for surface and corner cracks at the notch in the SENT specimens. A plastisity-induced crack-closure model was used to correlate small and large crack data, and to make fatigue life predictions, Predicted crack-growth rates and fatigue lives agreed well with experiments. A total fatigue life prediction method for the aluminum alloys was developed and demonstrated using the crack-closure model.

  16. Effects of strain-rate and pre-fatigue on tensile properties of laser welded joint of high strength steel plates

    NASA Astrophysics Data System (ADS)

    Kobayashi, H.; Daimaruya, M.; Tsuda, H.; Horikawa, K.

    2006-08-01

    The impact tensile properties of laser welded butt joints of two kinds of high strength steel plates with the tensile strength level of 590 MPa and 780 MPa (denoted by HR590 and HR780, respectively), were investigated using split Hopkinson bar tensile testing apparatus. Impact tension tests for the joint specimens pre-fatigued were also carried out to examine the effect of pre-fatigue. There were no significant effects of strain-rate and pre-fatigue on the dynamic and quasi-static tensile strength of laser welded butt joints. However, the decrease in the elongation of HR780 welded joints subjected high cycle pre-fatigue was observed only at a high strain-rate. From the observation of fracture surface, it was found that the decrease in the elongation may be caused by a number of damages due to the combination of high cycle pre-fatigue and high strain-rate.

  17. Fatigue-Crack Propagation and Residual Static Strength of PH 15-7 Mo (TH 1050) Stainless Steel

    DTIC Science & Technology

    1965-12-01

    section prior to the application of load.) A method of quantitatively predicting fatigue-crack growth rates in aluminum alloys was developed in...section stress. A method of calculating stress-concentration factors based on Neuber’s analysis of stresses around sharp notches (ref. 2) was...developed in the crack-growth analysis. A simple engineering method for predicting the strength of cracked aluminum parts under static loading was

  18. In vitro bond strength and fatigue stress test evaluation of different adhesive cements used for fixed space maintainer cementation

    PubMed Central

    Cantekin, Kenan; Delikan, Ebru; Cetin, Secil

    2014-01-01

    Objective: The purposes of this research were to (1) compare the shear-peel bond strength (SPBS) of a band of a fixed space maintainer (SM) cemented with five different adhesive cements; and (2) compare the survival time of bands of SM with each cement type after simulating mechanical fatigue stress. Materials and Methods: Seventy-five teeth were used to assess retentive strength and another 50 teeth were used to assess the fatigue survival time. SPBS was determined with a universal testing machine. Fatigue testing was conducted in a ball mill device. Results: The mean survival time of bands cemented with R & D series Nova Glass-LC (6.2 h), Transbond Plus (6.7 h), and R & D series Nova Resin (6.8 h) was significantly longer than for bands cemented with Ketac-Cem (5.4 h) and GC Equia (5.2 h) (P < 0.05). Conclusion: Although traditional glass ionomer cement (GIC) cement presented higher retentive strength than resin-based cements (resin, resin modified GIC, and compomer cement), resin based cements, especially dual cure resin cement (nova resin cement) and compomer (Transbond Plus), can be expected to have lower failure rates for band cementation than GIC (Ketac-Cem) in the light of the results of the ball mill test. PMID:25202209

  19. Ultrasonic Spot Welding of Aluminum to High-Strength Low-Alloy Steel: Microstructure, Tensile and Fatigue Properties

    NASA Astrophysics Data System (ADS)

    Patel, V. K.; Bhole, S. D.; Chen, D. L.

    2014-04-01

    The structural applications of lightweight aluminum alloys inevitably involve dissimilar welding with steels and the related durability issues. This study was aimed at evaluating the microstructural change, lap shear tensile load, and fatigue resistance of dissimilar ultrasonic spot-welded joints of aluminum-to-galvanized high-strength low-alloy (HSLA) steel. Two non-uniform layers were identified in between Al and HSLA steel via SEM/EDS and XRD. One was an Al-Zn eutectic layer and the other was a thin (<2 μm) layer of intermetallic compound (IMC) of Al and Fe in the nugget zone. The lap shear tensile testing gave a maximum load of 3.7 kN and the sample failed initially in between the Al-Zn eutectic film and Al-Fe IMC, and afterward from the region containing Al on both matching fracture surfaces. The fatigue test results showed a fatigue limit of about 0.5 kN (at 1 × 107 cycles). The maximum cyclic stress at which transition of the fatigue fracture from transverse through-thickness crack growth mode to the interfacial failure mode occurs increases with increasing energy input.

  20. Fatigue Strength Prediction for Titanium Alloy TiAl6V4 Manufactured by Selective Laser Melting

    NASA Astrophysics Data System (ADS)

    Leuders, Stefan; Vollmer, Malte; Brenne, Florian; Tröster, Thomas; Niendorf, Thomas

    2015-09-01

    Selective laser melting (SLM), as a metalworking additive manufacturing technique, received considerable attention from industry and academia due to unprecedented design freedom and overall balanced material properties. However, the fatigue behavior of SLM-processed materials often suffers from local imperfections such as micron-sized pores. In order to enable robust designs of SLM components used in an industrial environment, further research regarding process-induced porosity and its impact on the fatigue behavior is required. Hence, this study aims at a transfer of fatigue prediction models, established for conventional process-routes, to the field of SLM materials. By using high-resolution computed tomography, load increase tests, and electron microscopy, it is shown that pore-based fatigue strength predictions for a titanium alloy TiAl6V4 have become feasible. However, the obtained accuracies are subjected to scatter, which is probably caused by the high defect density even present in SLM materials manufactured following optimized processing routes. Based on thorough examination of crack surfaces and crack initiation sites, respectively, implications for optimization of prediction accuracy of the models in focus are deduced.

  1. Fatigue strength of Al7075 notched plates based on the local SED averaged over a control volume

    NASA Astrophysics Data System (ADS)

    Berto, Filippo; Lazzarin, Paolo

    2014-01-01

    When pointed V-notches weaken structural components, local stresses are singular and their intensities are expressed in terms of the notch stress intensity factors (NSIFs). These parameters have been widely used for fatigue assessments of welded structures under high cycle fatigue and sharp notches in plates made of brittle materials subjected to static loading. Fine meshes are required to capture the asymptotic stress distributions ahead of the notch tip and evaluate the relevant NSIFs. On the other hand, when the aim is to determine the local Strain Energy Density (SED) averaged in a control volume embracing the point of stress singularity, refined meshes are, not at all, necessary. The SED can be evaluated from nodal displacements and regular coarse meshes provide accurate values for the averaged local SED. In the present contribution, the link between the SED and the NSIFs is discussed by considering some typical welded joints and sharp V-notches. The procedure based on the SED has been also proofed to be useful for determining theoretical stress concentration factors of blunt notches and holes. In the second part of this work an application of the strain energy density to the fatigue assessment of Al7075 notched plates is presented. The experimental data are taken from the recent literature and refer to notched specimens subjected to different shot peening treatments aimed to increase the notch fatigue strength with respect to the parent material.

  2. Fatigue Strength Restoration in Corrosion Pitted 4340 Alloy Steel Via Low Plasticity Burnishing

    DTIC Science & Technology

    2006-01-01

    Bellevue, WA, June 26-29, 2000. 5. A.H. Clauer, “ Laser Shock Peening for Fatigue Resistance ”, Surface Performance of Titanium , J.K. Gregory et...regards compressive residual stress magnitudes and depths to which compression can be achieved. Laser shock peening (LSP) has produced marked fatigue...Page -10- 6. 6. P.R, Smith, M.J. Shepard et al., “Effect of Laser Shock Processing (LSP) Power Density and Shot Repetition on Residual Stress

  3. Role of microstructure in the mean stress dependence of fatigue strength in Ti-6Al-4V alloy

    SciTech Connect

    Ivanova, S.G.; Cohen, F.S.; Biederman, R.R.; Sisson, R.D. Jr.

    1999-07-01

    The high cycle fatigue properties of Ti-6Al-4V alloy with six different microstructure/texture combinations were investigated. Only materials with lamellar and fine bimodal microstructures exhibited linear Goodman relationship on the constant fatigue life diagram. Materials with coarse bimodal and equiaxed microstructures had anomalous mean stress dependency, with HCF strength at intermediate mean stresses being significantly lower than predicted by Goodman relationship, regardless of whether material was forged or cross-rolled. The role of microstructure in mean stress sensitivity behavior of Ti-6Al-4V is studied. Cyclic strain tests were conducted for all microstructures, and the results of strain-controlled and stress-controlled cyclic tests are compared and discussed.

  4. Assessment of Fatigue and Recovery in Male and Female Athletes After 6 Days of Intensified Strength Training.

    PubMed

    Raeder, Christian; Wiewelhove, Thimo; Simola, Rauno Álvaro De Paula; Kellmann, Michael; Meyer, Tim; Pfeiffer, Mark; Ferrauti, Alexander

    2016-12-01

    Raeder, C, Wiewelhove, T, Simola, RÁDP, Kellmann, M, Meyer, T, Pfeiffer, M, and Ferrauti, A. Assessment of fatigue and recovery in male and female athletes after 6 days of intensified strength training. J Strength Cond Res 30(12): 3412-3427, 2016-This study aimed to analyze changes of neuromuscular, physiological, and perceptual markers for routine assessment of fatigue and recovery in high-resistance strength training. Fourteen male and 9 female athletes participated in a 6-day intensified strength training microcycle (STM) designed to purposefully overreach. Maximal dynamic strength (estimated 1 repetition maximum [1RMest]; criterion measure of fatigue and recovery); maximal voluntary isometric strength (MVIC); countermovement jump (CMJ) height; multiple rebound jump (MRJ) height; jump efficiency (reactive strength index, RSI); muscle contractile properties using tensiomyography including muscle displacement (Dm), delay time (Td), contraction time (Tc), and contraction velocity (V90); serum concentration of creatine kinase (CK); perceived muscle soreness (delayed-onset muscle soreness, DOMS) and perceived recovery (physical performance capability, PPC); and stress (MS) were measured before and after the STM and after 3 days of recovery. After completing the STM, there were significant (p ≤ 0.05) performance decreases in 1RMest (%[INCREMENT] ± 90% confidence limits, ES = effect size; -7.5 ± 3.5, ES = -0.21), MVIC (-8.2 ± 4.9, ES = -0.24), CMJ (-6.4 ± 2.1, ES = -0.34), MRJ (-10.5 ± 3.3, ES = -0.66), and RSI (-11.2 ± 3.8, ES = -0.73), as well as significantly reduced muscle contractile properties (Dm, -14.5 ± 5.3, ES = -0.60; V90, -15.5 ± 4.9, ES = -0.62). After days of recovery, a significant return to baseline values could be observed in 1RMest (4.3 ± 2.8, ES = 0.12), CMJ (5.2 ± 2.2, ES = 0.28), and MRJ (4.9 ± 3.8, ES = 0.32), whereas RSI (-7.9 ± 4.5, ES = -0.50), Dm (-14.7 ± 4.8, ES = -0.61), and V90 (-15.3 ± 4.7, ES = -0.66) remained

  5. Hybrid glass coatings for optical fibers: effect of coating thickness on strength and dynamic fatigue characteristics of silica fibers

    NASA Astrophysics Data System (ADS)

    Wojcik, A. B.; Matthewson, M. J.; Castelino, K. T.; Wojcik, J.; Walewski, A.

    2006-04-01

    Specialty optical fibers operating in harsh aerospace environments are typically exposed to high temperatures and elevated humidity. This calls for better performing protective coatings. Recently developed sol-gel derived inorganicorganic hybrid materials called hybrid glass offered improved protective performance as compared to standard dual polymer coated fibers [1]. In this paper we examine the effectiveness of online UV curing for the protective ability of hybrid glass coatings. For this purpose two types of UV-curable hybrid glass candidates representing two different concentrations of acrylate groups were applied online to silica fibers as single and dual coats. Samples of fibers were collected and subjected to dynamic fatigue testing by two-point bending. The stress corrosion parameter, n, as well as the strength of the fibers were determined. Both the strength and n were higher for fibers with two layers of coating as compared to single coatings even when the thickness of both one and two layer coatings was the same. This may be caused by the greater degree of cross linking of the inorganic component when the coating is exposed twice to the heat generated in the UV chamber. Coating materials with reduced acrylate group content had higher values of the fatigue parameter n but at the same time reduced strength.

  6. Low cycle notched fatigue behavior and life predictions of A723 high strength steels

    SciTech Connect

    Troiano, E.; Underwood, J.H.; Crayon, D.

    1995-12-31

    Two types of ASTM A723 steels have been investigated for their low cycle fatigue behavior. Specimens were tested in four-point bending, both with and without notches, and the measured fatigue lives were compared with those predicted by Neubers notch analysis, and standard fracture mechanics life prediction techniques. Comparison of measured and predicted lives indicate that the elastic/plastic Neuber analysis under predicts the measured fatigue life by as much as 67% at large strains, and becomes a better predictor of life as the applied strains decrease. The elastic Neubers analysis also under predicts the measured fatigue lives by 45% at large applied strains, but seems to accurately predict lives at reversals to failure greater than 100. The fracture mechanics approach assumes elastic stresses at the crack tip, and predicts lives within 30% over the full range of strains investigated. The results show that the Neuber notch analysis is not as good an indicator of the low cycle fatigue behavior of A723 steels as is the fracture mechanics life prediction techniques. As the life cycles to failure decreases, the Neubers analysis predicts lives that are two to three times more conservative than those experimentally measured.

  7. Fatigue resistance of teeth restored with fiber posts and different post cementation strengths.

    PubMed

    Valandro, Luiz Felipe; Zardin, Lucas Wadas; de Villa, Marco Antonio; Amaral, Marina; Galhano, Graziela; Baldissara, Paolo; Bottino, Marco Antonio

    2009-01-01

    This study sought to evaluate how different post cementation strategies affected the fatigue resistance of bovine teeth restored with glass fiber posts. The canals of 63 single-rooted bovine teeth (each 16 mm in length) were prepared to 9 mm using a preparation drill from a double-tapered fiber post system. Each specimen was embedded in a PVC cylinder using acrylic resin up to 3 mm of the most coronal portion of the specimen and was allocated into one of seven groups (n = 9) based on the strategies for cementation. After cementation, a standard core build-up was made with composite resin. The specimens were stored for seven days and submitted to mechanical cycling (50 N, 8 Hz, 37 degrees C). After fatigue testing, a score was given to each specimen, based on the number of fatigue cycles required to fracture the specimens; the scores were submitted to statistic analysis (Kruskal-Wallis, alpha = 0.05). The strategy for post cementation did not affect the resistance to fatigue (P = 0.8669). Based on the results, the resistance to fatigue does not appear to depend on the post cementation strategy.

  8. Reduction in Post-Marathon Peak Oxygen Consumption: Sign of Cardiac Fatigue in Amateur Runners?

    PubMed Central

    Sierra, Ana Paula Rennó; da Silveira, Anderson Donelli; Francisco, Ricardo Contesini; Barretto, Rodrigo Bellios de Mattos; Sierra, Carlos Anibal; Meneghelo, Romeu Sergio; Kiss, Maria Augusta Peduti Dal Molin; Ghorayeb, Nabil; Stein, Ricardo

    2016-01-01

    Background Prolonged aerobic exercise, such as running a marathon, produces supraphysiological stress that can affect the athlete's homeostasis. Some degree of transient myocardial dysfunction ("cardiac fatigue") can be observed for several days after the race. Objective To verify if there are changes in the cardiopulmonary capacity, and cardiac inotropy and lusitropy in amateur marathoners after running a marathon. Methods The sample comprised 6 male amateur runners. All of them underwent cardiopulmonary exercise testing (CPET) one week before the São Paulo Marathon, and 3 to 4 days after that race. They underwent echocardiography 24 hours prior to and immediately after the marathon. All subjects were instructed not to exercise, to maintain their regular diet, ingest the same usual amount of liquids, and rest at least 8 hours a day in the period preceding the CPET. Results The athletes completed the marathon in 221.5 (207; 250) minutes. In the post-marathon CPET, there was a significant reduction in peak oxygen consumption and peak oxygen pulse compared to the results obtained before the race (50.75 and 46.35 mL.kg-1 .min-1; 19.4 and 18.1 mL.btm, respectively). The echocardiography showed a significant reduction in the s' wave (inotropic marker), but no significant change in the E/e' ratio (lusitropic marker). Conclusions In amateur runners, the marathon seems to promote changes in the cardiopulmonary capacity identified within 4 days after the race, with a reduction in the cardiac contractility. Such changes suggest that some degree of "cardiac fatigue" can occur. PMID:26760783

  9. Effects of environmental variables on the crack initiation stages of corrosion fatigue of high strength aluminum alloys

    NASA Technical Reports Server (NTRS)

    Poteat, L. E.

    1981-01-01

    Fatigue initiation in six aluminum alloys used in the aircraft industry was investigated. Cyclic loading superimposed on a constant stress was alternated with atmospheric corrosion. Tests made at different stress levels revealed that a residual stress as low as 39% of the yield strength caused stress corrosion cracking in some of the alloys. An atmospheric corrosion rate meter developed to measure the corrosivity of the atmosphere is described. An easily duplicated hole in the square test specimen with a self-induced residual stress was developed.

  10. Fatigue Fracture Behavior of High-Strength Steel in Super Long Life Range

    NASA Astrophysics Data System (ADS)

    Murakami, Ri-Ichi; Yonekura, Daisuke; Ni, Zhengdong

    Long term cantilever-type rotational bending fatigue tests of up to 109 cycles were carried out on high carbon chromium bearing steel, SUJ2. The fatigue fracture behavior of SUJ2 in the super long life range was discussed based on scanning electron microscope observations and fracture mechanics. Fatigue failure occurred when the number of cycles exceeded 107. In the super long life range, the fish-eye-type fracture and the subsurface-type fracture were observed. In the fish-eye-type fracture, the stress intensity factor calculated from the area of the facet region was independent of the number of cycles to failure and was almost constant at 5.4MPa• m1/2. In the subsurface-type fracture, high carbon segregation was observed at the crack initiation area. The stress intensity factor for the carbon segregation area was close to 5.0MPam1/2. Pure fatigue crack was initiated from the area outside the facet region or the high carbon segregation area.

  11. Fatigue and corrosion fatigue of beryllium-copper spring materials

    SciTech Connect

    Bagheri, R.; Miller, G.A. )

    1993-03-01

    Fine gage, 0.006-in. d(0.15-mm) thick, beryllium-copper (Be-Cu) spring materials with tensile strength in the range of 70 to 145 ksi were subjected to cyclic loading in air and salt water environments. Plain and notched (center hole) hour glass specimens were subjected to sinusoidal loading with R = (minimum/maximum) stress = 0.1 at cyclic frequencies of 50 Hz in air and 1 Hz in salt water. Fatigue life was typically from 10[sup 4] to 10[sup 6] cycles with crack initiation as the dominant fatigue process. The excellence fatigue performance of Be-Cu alloys in salt water is well-known, however, current findings demonstrate 10 to 37% reduction in fatigue strength of unnotched specimens in this environment for a life of 3 x 10[sup 5] cycles. This strength degradation is attributed to the use of a lower cyclic frequency for present than for previous tests, i.e., 1 versus about 20 Hz. There was no effect of salt water on crack initiation in notched specimens. The ratios of the fatigue strengths, namely (cold-rolled/annealed) and (aged/annealed), for plain and notched specimens tested in air, decreased from 2 to about 1.4 as fatigue life increased from 10[sup 4] to 10[sup 6] cycles. This effect is attributed to cyclic hardening of the annealed material. The fatigue stress concentration factor, K[sub f] = (plain/notched) fatigue strength, increased by about 30% as fatigue cycles increased from 10[sup 4] to 10[sup 6]. The ranking of K[sub f] values of the various material conditions from highest to lowest was: cold-rolled, aged, and annealed.

  12. Strategies for Rapid Muscle Fatigue Reduction during FES Exercise in Individuals with Spinal Cord Injury: A Systematic Review

    PubMed Central

    Ibitoye, Morufu Olusola; Hamzaid, Nur Azah; Hasnan, Nazirah; Abdul Wahab, Ahmad Khairi; Davis, Glen M.

    2016-01-01

    Background Rapid muscle fatigue during functional electrical stimulation (FES)-evoked muscle contractions in individuals with spinal cord injury (SCI) is a significant limitation to attaining health benefits of FES-exercise. Delaying the onset of muscle fatigue is often cited as an important goal linked to FES clinical efficacy. Although the basic concept of fatigue-resistance has a long history, recent advances in biomedical engineering, physiotherapy and clinical exercise science have achieved improved clinical benefits, especially for reducing muscle fatigue during FES-exercise. This review evaluated the methodological quality of strategies underlying muscle fatigue-resistance that have been used to optimize FES therapeutic approaches. The review also sought to synthesize the effectiveness of these strategies for persons with SCI in order to establish their functional impacts and clinical relevance. Methods Published scientific literature pertaining to the reduction of FES-induced muscle fatigue was identified through searches of the following databases: Science Direct, Medline, IEEE Xplore, SpringerLink, PubMed and Nature, from the earliest returned record until June 2015. Titles and abstracts were screened to obtain 35 studies that met the inclusion criteria for this systematic review. Results Following the evaluation of methodological quality (mean (SD), 50 (6) %) of the reviewed studies using the Downs and Black scale, the largest treatment effects reported to reduce muscle fatigue mainly investigated isometric contractions of limited functional and clinical relevance (n = 28). Some investigations (n = 13) lacked randomisation, while others were characterised by small sample sizes with low statistical power. Nevertheless, the clinical significance of emerging trends to improve fatigue-resistance during FES included (i) optimizing electrode positioning, (ii) fine-tuning of stimulation patterns and other FES parameters, (iii) adjustments to the mode and

  13. Fatigue strength of low-activation ferritic-martensitic high-chromium EK-181 steel

    NASA Astrophysics Data System (ADS)

    Kolmakov, A. G.; Terent'ev, V. F.; Prosvirnin, D. V.; Chernov, V. M.; Leont'eva-Smirnova, M. V.

    2016-04-01

    The static and cyclic mechanical properties of low-activation ferritic-martensitic EK-181 (Fe‒12Cr-2W-V-Ta-B-C) steel are studied in the temperature range 20-920°C (static tests) and at 20°C (cyclic tests). The fracture mechanisms of the steel under static tension and fatigue fracture conditions are analyzed by scanning electron microscopy.

  14. Fatigue strength testing employed for evaluation and acceptance of jet-engine instrumentation probes

    NASA Astrophysics Data System (ADS)

    Armentrout, E. C.

    1980-03-01

    This report outlines the fatigue type testing performed on instrumentation rakes and probes intended for use in the air flow passages of jet-engines during full-scale engine tests at Lewis Research Center. Included is a discussion of each type of test performed, the results that may be derived and means of inspection. A design and testing sequence outlines the procedures and considerations involved in the generation of suitable instrument probes.

  15. In-Situ Welding Carbon Nanotubes into a Porous Solid with Super-High Compressive Strength and Fatigue Resistance

    PubMed Central

    Lin, Zhiqiang; Gui, Xuchun; Gan, Qiming; Chen, Wenjun; Cheng, Xiaoping; Liu, Ming; Zhu, Yuan; Yang, Yanbing; Cao, Anyuan; Tang, Zikang

    2015-01-01

    Carbon nanotube (CNT) and graphene-based sponges and aerogels have an isotropic porous structure and their mechanical strength and stability are relatively lower. Here, we present a junction-welding approach to fabricate porous CNT solids in which all CNTs are coated and welded in situ by an amorphous carbon layer, forming an integral three-dimensional scaffold with fixed joints. The resulting CNT solids are robust, yet still highly porous and compressible, with compressive strengths up to 72 MPa, flexural strengths up to 33 MPa, and fatigue resistance (recovery after 100,000 large-strain compression cycles at high frequency). Significant enhancement of mechanical properties is attributed to the welding-induced interconnection and reinforcement of structural units, and synergistic effects stemming from the core-shell microstructures consisting of a flexible CNT framework and a rigid amorphous carbon shell. Our results provide a simple and effective method to manufacture high-strength porous materials by nanoscale welding. PMID:26067176

  16. Mechanism of strength reduction along the graphenization pathway

    PubMed Central

    Gamboa, Antonio; Farbos, Baptiste; Aurel, Philippe; Vignoles, Gérard L.; Leyssale, Jean-Marc

    2015-01-01

    Even though polycrystalline graphene has shown a surprisingly high tensile strength, the influence of inherent grain boundaries on such property remains unclear. We study the fracture properties of a series of polycrystalline graphene models of increasing thermodynamic stability, as obtained from a long molecular dynamics simulation at an elevated temperature. All of the models show the typical and well-documented brittle fracture behavior of polycrystalline graphene; however, a clear decrease in all fracture properties is observed with increasing annealing time. The remarkably high fracture properties obtained for the most disordered (less annealed) structures arise from the formation of many nonpropagating prefracture cracks, significantly retarding failure. The stability of these reversible cracks is due to the nonlocal character of load transfer after a bond rupture in very disordered systems. It results in an insufficient strain level on neighboring bonds to promote fracture propagation. Although polycrystallinity seems to be an unavoidable feature of chemically synthesized graphenes, these results suggest that targeting highly disordered states might be a convenient way to obtain improved mechanical properties. PMID:26702443

  17. Fatigue Strength and Related Characteristics of Joints in 24s-t Alclad Sheet

    NASA Technical Reports Server (NTRS)

    Russell, H W; Jackson, L R; Grover, H J; Beaver, W W

    1944-01-01

    Report includes tension fatigue test results on the following types of samples of 0.040-inch alclad 24s-t: (1) monoblock sheet samples as received and after a post-aging heat treatment, (2) "sheet efficiency" samples (two equally stressed sheets joined by a single transverse row of spot welds) both as received and after post-aging, (3) spot-welded lap-joint samples as received and after post-aging, and (4) roll-welded lap-joint samples. (author)

  18. Early reduction in toe flexor strength is associated with physical activity in elderly men

    PubMed Central

    Suwa, Masataka; Imoto, Takayuki; Kida, Akira; Yokochi, Takashi

    2016-01-01

    [Purpose] To compare the toe flexor, hand grip and knee extensor strengths of young and elderly men, and to examine the association between toe flexor strength and physical activity or inactivity levels. [Subjects and Methods] Young (n=155, 18–23 years) and elderly (n=60, 65–88 years) men participated in this study. Toe flexor, hand grip, and knee extensor strength were measured. Physical activity (time spent standing/walking per day) and inactivity (time spent sitting per day) were assessed using a self-administered questionnaire. [Results] Toe flexor, hand grip, and knee extensor strength of the elderly men were significantly lower than those of the young men. Standing/walking and sitting times of the elderly men were lower than those of the young men. Toe flexor strength correlated with hand grip and knee extensor strength in both groups. In elderly men, toe flexor strength correlated with standing/walking time. In comparison to the young men’s mean values, toe flexor strength was significantly lower than knee extensor and hand grip strength in the elderly group. [Conclusion] The results suggest that age-related reduction in toe flexor strength is greater than those of hand grip and knee extensor strengths. An early loss of toe flexor strength is likely associated with reduced physical activity in elderly men. PMID:27313353

  19. Fatigue Strength of Diamond Coating-Substrate Interface Quantified by a Dynamic Simulation of the Inclined Impact Test

    NASA Astrophysics Data System (ADS)

    Skordaris, G.

    2014-10-01

    Fatigue damage of the nanocrystalline diamond coating (NCD) bonding to the cemented carbide substrate develops when repetitive impact loads are applied onto the film. Thus, the highly compressive residual stresses of a NCD film are released leading to its lifting from the substrate (bulge formation). The present paper deals with the analytical description of the progressive failure of the NCD coating-substrate interface under repetitive impacts. In this context, an advanced 3D-finite element analysis model was developed for the dynamic simulation of the inclined impact test, using the LS-DYNA software. This model considers the high thermal compressive residual stresses developed in the NCD coating structure during cooling from chemical vapour deposition process temperature to ambient one. The fatigue failure of the NCD coating-substrate interface is associated with a critical shear failure stress (SFLS). The determined SFLS represents the maximum operational stress permitted in the NCD film-substrate interface in order to avoid the coating detachment initiation. According to the results obtained, the successive impacts lead to a progressive weakening of the initial film-substrate interface strength depending upon the pretreatments prior to the NCD coating deposition.

  20. NDE detectability of fatigue-type cracks in high-strength alloys: NDI reliability assessments

    NASA Technical Reports Server (NTRS)

    Christner, Brent K.; Long, Donald L.; Rummel, Ward D.

    1988-01-01

    This program was conducted to generate quantitative flaw detection capability data for the nondestructive evaluation (NDE) techniques typically practiced by aerospace contractors. Inconel 718 and Haynes 188 alloy test specimens containing fatigue flaws with a wide distribution of sizes were used to assess the flaw detection capabilities at a number of contractor and government facilities. During this program 85 inspection sequences were completed presenting a total of 20,994 fatigue cracks to 53 different inspectors. The inspection sequences completed included 78 liquid penetrant, 4 eddy current, and 3 ultrasonic evaluations. The results of the assessment inspections are presented and discussed. In generating the flaw detection capability data base, procedures for data collection, data analysis, and specimen care and maintenance were developed, demonstrated, and validated. The data collection procedures and methods that evolved during this program for the measurement of flaw detection capabilities and the effects of inspection variables on performance are discussed. The Inconel 718 and Haynes 188 test specimens that were used in conducting this program and the NDE assessment procedures that were demonstrated, provide NASA with the capability to accurately assess the flaw detection capabilities of specific inspection procedures being applied or proposed for use on current and future fracture control hardware program.

  1. Fatigue Strengths of Aircraft Materials: Axial-Load Fatigue Tests on Edge-Notched Sheet Specimens of 2024-T3 and 7075-T6 Aluminum Alloys and of SAE 4130 Steel with Notch Radii of 0.004 and 0.070 inch

    NASA Technical Reports Server (NTRS)

    Grover, H. J.; Hyler, W. S.; Jackson, L. R.

    1959-01-01

    The present report gives results of axial-load fatigue tests on notched specimens of three sheet materials: 2024-T3 and 7075-T6 aluminum alloys and normalized SAE 4130 steel. Two edge-notched specimens were designed and tested, each having a theoretical stress-concentration factor K(sub t) = 4.0. The radii of the notches were 0.004 and 0.070 inch. Tests of these specimens were run at two levels of nominal mean stress: 0 and 20,000 psi. Results of these studies extended information previously reported on tests of specimens with varying notch severity. They afford data on the variation of fatigue-strength reduction with notch radius and on the potential usefulness of Neuber's technical stress-concentration factor K(sub n).

  2. Probabilistic constitutive relationships for cyclic material strength models

    NASA Technical Reports Server (NTRS)

    Boyce, L.; Chamis, C. C.

    1988-01-01

    A methodology is developed that provides a probabilistic treatment for the lifetime of structural components of aerospace propulsion systems subjected to fatigue. Material strength degradation models, based on primitive variables, include both a fatigue strength reduction model and a fatigue crack growth model. Probabilistic analysis is based on simulation, and both maximum entropy and maximum penalized likelihood methods are used for the generation of probability density functions. The resulting constitutive relationships are included in several computer programs.

  3. Effect of internal nitriding on the fatigue strength of ferritic corrosion-resistant steel

    NASA Astrophysics Data System (ADS)

    Rogachev, S. O.; Nikulin, S. A.; Terent'ev, V. F.; Khatkevich, V. M.; Prosvirnin, D. V.; Savicheva, R. O.

    2015-04-01

    The effect of internal nitriding and subsequent annealing on the mechanical properties of ferritic corrosion-resistance 08Kh17T steel has been studied during static and cyclic loading. Nitriding was shown to increase the static and cyclic strength of ferritic steel substantially and to decrease its plasticity slightly. These changes are confirmed by results of fractographic studies.

  4. High-Strength, Tough, Fatigue Resistant, and Self-Healing Hydrogel Based on Dual Physically Cross-Linked Network.

    PubMed

    Gong, Zhengyu; Zhang, Guoping; Zeng, Xiaoliang; Li, Jinhui; Li, Gang; Huang, Wangping; Sun, Rong; Wong, Chingping

    2016-09-14

    Hydrogels usually suffer from low mechanical strength, which largely limit their application in many fields. In this Research Article, we prepared a dual physically cross-linked hydrogel composed of poly(acrylamide-co-acrylic acid) (PAM-co-PAA) and poly(vinyl alcohol) (PVA) by simple two-steps methods of copolymerization and freezing/thawing. The hydrogen bond-associated entanglement of copolymer chains formed as cross-linking points to construct the first network. After being subjected to the freezing/thawing treatment, PVA crystalline domains were formed to serve as knots of the second network. The hydrogels were demonstrated to integrate strength and toughness (1230 ± 90 kPa and 1250 ± 50 kJ/m(3)) by the introduction of second physically cross-linked network. What̀s more, the hydrogels exhibited rapid recovery, excellent fatigue resistance, and self-healing property. The dynamic property of the dual physically cross-linked network contributes to the excellent energy dissipation and self-healing property. Therefore, this work provides a new route to understand the toughness mechanism of dual physically cross-linked hydrogels, hopefully promoting current hydrogel research and expanding their applications.

  5. Ductility and Strength Reduction Factors for Degrading Structures Considering Cumulative Damage

    PubMed Central

    Bojórquez, Edén; Ruiz, Sonia E.; Reyes-Salazar, Alfredo; Bojórquez, Juan

    2014-01-01

    The effect of cumulative damage on the strength requirements of degrading structures is assessed through the evaluation of the target ductility and corresponding strength reduction factors of simple degrading structures. While the reduction on ductility is established through the use of Park and Ang index, the suggestions given by Bojórquez and Rivera are used to model the degradation of the structural properties of the simple systems. Target ductilities and their corresponding reduced strength reduction factors are established for five sets of ground motions; most of them are recorded in California. The results given in this paper provide insight into all relevant parameters that should be considered during seismic design of earthquake-resistant structures. Finally, some recommendations to evaluate the effect of cumulative damage on seismic design are suggested. PMID:24883410

  6. Ductility and strength reduction factors for degrading structures considering cumulative damage.

    PubMed

    Bojórquez, Edén; Ruiz, Sonia E; Reyes-Salazar, Alfredo; Bojórquez, Juan

    2014-01-01

    The effect of cumulative damage on the strength requirements of degrading structures is assessed through the evaluation of the target ductility and corresponding strength reduction factors of simple degrading structures. While the reduction on ductility is established through the use of Park and Ang index, the suggestions given by Bojórquez and Rivera are used to model the degradation of the structural properties of the simple systems. Target ductilities and their corresponding reduced strength reduction factors are established for five sets of ground motions; most of them are recorded in California. The results given in this paper provide insight into all relevant parameters that should be considered during seismic design of earthquake-resistant structures. Finally, some recommendations to evaluate the effect of cumulative damage on seismic design are suggested.

  7. Fatigue Strength of BGA Type Solder Joints between Package and Printed Wiring Board of Portable Device

    NASA Astrophysics Data System (ADS)

    Nagano, Kohta; Yaguchi, Akihiro; Terasaki, Takeshi; Yamamoto, Kenichi

    Solder joints between a package and a printed wiring board (PWB) of a portable electronic device sustain heat cycling as a result of power on-off operations, cyclic bending by key pad operation, and impact bending by dropping. Therefore, heat cycling, cyclic bending, and cyclic impact bending tests were conducted on the ball grid array solder joints between a chip scale package and a PWB. The evaluated solders were Sn-3Ag-0.5Cu and Sn-37Pb. The tests showed that the life cycles of the Sn-3Ag-0.5Cu solder joints for the heat cycling and cyclic bending tests were approximately twice those of the Sn-37Pb solder joints. For the cyclic impact bending test, however, the life cycle of the Sn-3Ag-0.5Cu joint under large strain was smaller than that of the Sn-37Pb solder joint because of interfacial crack growth between the solder and the PWB. Finally, fatigue lives of the joints were compared with crack initiation and failure lives of plain specimens by calculating local strain ranges in the joints by elastic-plastic finite element analysis.

  8. Residual Strength and Fatigue Characterization of SCS-6/Ti-6-4

    DTIC Science & Technology

    1996-12-01

    192.2 GPa) and the moduli of the 0.01 Hz tests (196.8 GPa) is well within plate to plate and specimen to specimen variation. Deviation from linear- elastic ...within 45MPa Table 4.2 and Figure 4.4 show the elastic moduli , ultimate tensile strength and strain-to- failure of the composite. The composite exhibited...Materials and Technology - ASME. 28. Pernot, Capt John J., Crack Growth Rate Modelina of A Titanium - Aluminide Alloy Under Thermal-Mechanical Cycling

  9. Fatigue Strength and Related Characteristics of Aircraft Joints I : Comparison of Spot-Weld and Rivet Patterns in 24s-t Alclad and 75s-t Alclad

    NASA Technical Reports Server (NTRS)

    Russell, H W; Jackson, L R; Grover, H J; Beaver, W W

    1944-01-01

    Report contains detailed results of a number of fatigue tests on spot-welded joints in aluminum alloys. The tests described include: (1) fatigue tests on spot-welded lap joints in sheets of unequal thickness of alclad 24s-t. These tests indicate that the fatigue strength of a spot-welded joint in sheets of two different gages is slightly higher than that of a similar joint in two sheets of the thinner gage but definitely lower than that of a similar joint in two sheets of the thicker gage. (2) Fatigue tests on spot-welded alclad 75s-t spot-welded lap-joint specimens of alclad 75s-t were not any stronger in fatigue than similar specimens of alclad 24s-t. (3) Fatigue tests on lap-joint specimens spot -welded after various surface preparations--these included ac welding wire-brushed surfaces, dc welding wire-brushed surfaces, and dc welding chemically cleaned surfaces. While the ac welds were strongest statically, the dc welds on wire-brushed surfaces were strongest in fatigue. Specimens prepared in this way were very nearly as strong as the best riveted specimens tested for comparison. (4) Fatigue tests on specimens spot-welded with varying voltage so as to include a wide range of static spot-weld strengths. The fatigue strengths were in the same order as the static strengths but showed less range. (author)

  10. The Effect of Weight Reduction on Body Composition and Strength in High School Wrestlers.

    ERIC Educational Resources Information Center

    Hejna, William F.; And Others

    A study assessed the relationship of weight reduction to the strength of various muscle groups in conjunction with a pre-season and in-season training and conditioning program. Twenty-nine high school wrestlers, with an average age of 16 years 4 months, significantly reduced their body weight. In the process, there were losses in lean body weight.…

  11. Fatigue handbook: Offshore steel structures

    SciTech Connect

    Almarnaess, A.

    1985-01-01

    The contents of this book are: Overview of Offshore Steel Structures; Loads on Ocean Structures; Fracture Mechanics As a Tool in Fatigue Analysis; Basic Fatigue Properties of Welded Joints; Significance of Defects; Improving the Fatigue Strength of Welded Joints; Effects of Marine Environment and Cathodic Protection on Fatigue of Structural Steels Fatigue of Tubular Joints; Unstable Fracture; Fatigue Life Calculations; and Fatigue in Building Codes Background and Applications.

  12. Volcano collapse promoted by progressive strength reduction: New data from Mount St. Helens

    USGS Publications Warehouse

    Reid, Mark E.; Keith, Terry E.C.; Kayen, Robert; Iverson, Neal R.; Iverson, Richard M.; Brien, Dianne

    2010-01-01

    Rock shear strength plays a fundamental role in volcano flank collapse, yet pertinent data from modern collapse surfaces are rare. Using samples collected from the inferred failure surface of the massive 1980 collapse of Mount St. Helens (MSH), we determined rock shear strength via laboratory tests designed to mimic conditions in the pre-collapse edifice. We observed that the 1980 failure shear surfaces formed primarily in pervasively shattered older dome rocks; failure was not localized in sloping volcanic strata or in weak, hydrothermally altered rocks. Our test results show that rock shear strength under large confining stresses is reduced ∼20% as a result of large quasi-static shear strain, as preceded the 1980 collapse of MSH. Using quasi-3D slope-stability modeling, we demonstrate that this mechanical weakening could have provoked edifice collapse, even in the absence of transiently elevated pore-fluid pressures or earthquake ground shaking. Progressive strength reduction could promote collapses at other volcanic edifices.

  13. Corrosion resistance, mechanical properties, corrosion fatigue strength and cytocompatibility of new Ti alloys without Al and V.

    PubMed

    Okazaki, Y; Rao, S; Ito, Y; Tateishi, T

    1998-07-01

    The effects of various metallic ions using various metallic powders on the relative growth ratio of fibroblasts L929 and osteoblasts MC3T3-E1 cells were carried out. Ti, Zr, Sn, Nb and Ta had evidently no effect on the relative growth ratios of cells. Otherwise, Al and V ions exhibit cytotoxicity from a concentration of > or = 0.2 ppm. This Al effect on cells tend to be stronger in medium containing small quantity of V ions (< or = 0.03 ppm). The new Ti-15%Zr-4%Nb-4%Ta-0.2%Pd alloy exhibited a higher corrosion resistance in physiological saline solution. The addition of 0.02%O and 0.05%N to Ti-Zr alloy improved the mechanical properties at room temperature and corrosion fatigue strength. The relative growth ratios for the new Ti alloy plate and the alloy block extraction were unity. Further, the relative growth ratios were almost unity for the new Ti alloy against apatite ceramic pins up to 10(5) wear cycles in Eagle's MEM solution. However, there was a sharp decrease for Ti-6%Al-4%V ELI alloy from 3 x 10(4) wear cycles as V ion was released during wear into the wear test solution since the pH of the Eagle's MEM increases with increasing wear cycles.

  14. Stiffness reductions during tensile fatigue testing of graphite/epoxy angle-ply laminates

    NASA Technical Reports Server (NTRS)

    Odom, E. M.; Adams, D. F.

    1982-01-01

    Tensile fatigue data was generated under carefully controlled test conditions. A computerized data acquisition system was used to permit the measurement of dynamic modulus without interrupting the fatigue cycling. Two different 8-ply laminate configurations, viz, + or - 45 (2s) and + or - 67.5 (2s), of a T300/5208 graphite/epoxy composite were tested. The + or - 45 (2s) laminate did exhibit some modulus decay, although there was no well-defined correlation with applied stress level or number of cycles. The + or - 67.5 (2s) laminate did not exhibit any measurable modulus decay. Secondary effects observed included a small but distinct difference between modulus as measured statically and dynamically, a slight recovery of the modulus decay after a test interruption, and a significant viscoelastic (creep) response of the + or - 45 (2s) laminate during fatigue testing.

  15. Analytical and experimental investigation of aircraft metal structures reinforced with filamentary composites. Phase 2: Structural fatigue, thermal cycling, creep, and residual strength

    NASA Technical Reports Server (NTRS)

    Blichfeldt, B.; Mccarty, J. E.

    1972-01-01

    Specimens representative of metal aircraft structural components reinforced with boron filamentary composites were manufactured and tested under cyclic loading, cyclic temperature, or continuously applied loading to evaluate some of the factors that affect structural integrity under cyclic conditions. Bonded, stepped joints were used throughout to provide composite-to-metal transition regions at load introduction points. Honeycomb panels with titanium or aluminum faces reinforced with unidirectional boron composite were fatigue tested at constant amplitude under completely reversed loading. Results indicated that the matrix material was the most fatigue-sensitive part of the design, with debonding initiating in the stepped joints. However, comparisons with equal weight all-metal specimens show a 10 to 50 times improved fatigue life. Fatigue crack propagation and residual strength were studied for several different stiffened panel concepts, and were found to vary considerably depending on the configuration. Composite-reinforced metal specimens were also subjected to creep and thermal cycling tests. Thermal cycling of stepped joint tensile specimens resulted in a ten percent decrease in residual strength after 4000 cycles.

  16. High strength-high conductivity Cu--Fe composites produced by powder compaction/mechanical reduction

    DOEpatents

    Verhoeven, John D.; Spitzig, William A.; Gibson, Edwin D.; Anderson, Iver E.

    1991-08-27

    A particulate mixture of Cu and Fe is compacted and mechanically reduced to form an "in-situ" Cu-Fe composite having high strength and high conductivity. Compaction and mechanical reduction of the particulate mixture are carried out at a temperature and time at temperature selected to avoid dissolution of Fe into the Cu matrix particulates to a harmful extent that substantially degrades the conductivity of the Cu-Fe composite.

  17. High strength-high conductivity Cu-Fe composites produced by powder compaction/mechanical reduction

    DOEpatents

    Verhoeven, J.D.; Spitzig, W.A.; Gibson, E.D.; Anderson, I.E.

    1991-08-27

    A particulate mixture of Cu and Fe is compacted and mechanically reduced to form an ''in-situ'' Cu-Fe composite having high strength and high conductivity. Compaction and mechanical reduction of the particulate mixture are carried out at a temperature and time at temperature selected to avoid dissolution of Fe into the Cu matrix particulates to a harmful extent that substantially degrades the conductivity of the Cu-Fe composite. 5 figures.

  18. Real-Time Fatigue Reduction in Emergency Care Clinicians: The SleepTrackTXT Randomized Trial

    PubMed Central

    Patterson, P. Daniel; Buysse, Daniel J.; Weaver, Matthew D.; Doman, Jack M.; Moore, Charity G.; Suffoletto, Brian P.; McManigle, Kyle L.; Callaway, Clifton W.; Yealy, Donald M.

    2015-01-01

    Background We assessed performance characteristics and impact of a mobile phone text-message intervention for reducing intra-shift fatigue among emergency clinician shift workers. Methods We used a randomized controlled trial of 100 participants. All participants received text-message assessments at the start, every 4-hours during, and at end of scheduled shifts over a 90-day period. Text-message queries measured self-rated sleepiness, fatigue, and difficulty with concentration. Additional text-messages were sent to intervention participants to promote alertness. A performance measure of interest was compliance with answering text-messages. Results Ninety-nine participants documented 2,621 shifts and responded to 36,073 of 40,947 text-messages (88% compliance rate). Intervention participants reported lower mean fatigue and sleepiness at 4 hours, 8 hours, and at the end of 12-hour shifts compared to controls (p<0.05). Intervention participants reported better sleep quality at 90-days compared to baseline (p=0.01). Conclusions We showed feasibility and short-term efficacy of a text-message based assessment and intervention tool. PMID:26305869

  19. Experience in resistance training does not prevent reduction in muscle strength evoked by passive static stretching.

    PubMed

    Serra, Andrey J; Silva, José A; Marcolongo, Alessandra A; Manchini, Martha T; Oliveira, João V A; Santos, Luis F N; Rica, Roberta L; Bocalini, Danilo S

    2013-08-01

    This study examined whether passive static stretching reduces the maximum muscle strength achieved by different body segments in untrained and resistance-trained subjects. Twenty adult men were assigned to 1 of the following groups: untrained (UT, N = 9) and resistance-trained (RT, N = 11) groups. The subjects performed six 1 repetition maximum (1RM) load tests of the following exercises: horizontal bench press, lat pull-downs, bicep curls, and 45° leg press. The results achieved in the last two 1RM tests were used for statistical analyses. A passive static stretching program was incorporated before the sixth 1RM test. The body fat content was significantly higher in the UT group compared with the RT group (p < 0.0001). Moreover, the RT group showed significantly higher proportion of lean body mass compared with the UT group (p < 0.0001). Maximum muscle strength on all 4 exercises was significantly reduced in both groups after stretching (p < 0.01). Furthermore, the magnitude of muscle strength reduction was similar for the UT and the RT groups. The exception was for barbell curls, in which the muscle strength depression was significantly higher in the UT group compared with the RT group (p < 0.0001). In conclusion, the passive static stretching program was detrimental to upper- and lower-body maximal muscle strength performance in several body segments. The negative effects of stretching were similar for subjects participating in resistance training regimens.

  20. Analysis of Methods for Determining High Cycle Fatigue Strength of a Material With Investigation of Ti-6Al-4V Gigacycle Fatigue Behavior

    DTIC Science & Technology

    2005-10-01

    re ss L ev el (M Pa ) Failure Runout Figure 19. Notional staircase data for illustration of the Dixon-Mood method. Table 2. Summations for...of multiple runouts . 150 Table 20. Fatigue data for beta annealed Ti-6Al-4V tests at R = -1. Specimen Stress (MPa) 10 9 Result Cycles 1 400...thank my wife for her unlimited patience and understanding throughout this research and my program. Ty Pollak iv TABLE

  1. Preferential reduction of quadriceps over respiratory muscle strength and bulk after lung transplantation for cystic fibrosis

    PubMed Central

    Pinet, C; Scillia, P; Cassart, M; Lamotte, M; Knoop, C; Melot, C; Estenne, M

    2004-01-01

    Background: In the absence of complications, recipients of lung transplants for cystic fibrosis have normal pulmonary function but the impact of the procedure on the strength and bulk of respiratory and limb muscles has not been studied. Methods: Twelve stable patients who had undergone lung transplantation for cystic fibrosis 48 months earlier (range 8–95) and 12 normal subjects matched for age, height, and sex were studied. The following parameters were measured: standard lung function, peak oxygen uptake by cycle ergometry, diaphragm surface area by computed tomographic (CT) scanning, diaphragm and abdominal muscle thickness by ultrasonography, twitch transdiaphragmatic and gastric pressures, quadriceps isokinetic strength, and quadriceps cross section by CT scanning, and lean body mass. Diaphragm mass was computed from diaphragm surface area and thickness. Results: Twitch transdiaphragmatic and gastric pressures, diaphragm mass, and abdominal muscle thickness were similar in the two groups but quadriceps strength and cross section were decreased by nearly 30% in the patients. Patients had preserved quadriceps strength per unit cross section but reduced quadriceps cross section per unit lean body mass. The cumulative dose of corticosteroids was an independent predictor of quadriceps atrophy. Peak oxygen uptake showed positive correlations with quadriceps strength and cross section in the two groups, but peak oxygen uptake per unit quadriceps strength or cross section was reduced in the patient group. Conclusions: The diaphragm and abdominal muscles have preserved strength and bulk in patients transplanted for cystic fibrosis but the quadriceps is weak due to muscle atrophy. This atrophy is caused in part by corticosteroid therapy and correlates with the reduction in exercise capacity. PMID:15333856

  2. Influence of HVOF sprayed WC/Co coatings on the high-cycle fatigue strength of mild steel

    SciTech Connect

    Steffens, H.D.; Wilden, J.; Nassenstein, K.; Moebus, S.

    1995-12-31

    HVOF thermally sprayed WC/Co coatings are applied onto components which are exposed to wear caused by abrasion, erosion, fretting and sliding. Beside wear attacks and static stresses in lots of cases alternating mechanical stresses caused by dynamic loads occur additionally. Therefore, the fatigue resistance of WC/Co 88/12 and WC/Co 83/17 coated specimens was investigated by high-cycle fatigue tests (HCF). The results of the fatigue tests were documented in statistically ascertained Woehler-diagrams (S-N-curves). Furthermore, the mechanisms of failure are discussed.

  3. Effects of conventional machining on the high cycle fatigue strength and crack initiation sites of the gamma titanium aluminide alloy Ti-47Al-2Nb-2Cr (at%) at 23 and 760 C

    SciTech Connect

    Jones, P.E.; Eylon, D.

    1999-07-01

    Effects of a deformed surface layer, created by conventional machining, on the high cycle fatigue strength (10e6 cycles) and fatigue initiation sites of Ti-48Al-2Nb-2Cr (at%) were examined above and below the ductile-to-brittle transition temperature. All samples were tested to failure under the same step loading profile. Comparisons were made between samples having the same load history. At room temperature, fatigue strength and initiation sites were equivalent for turned and electropolished surface conditions. At the anticipated service temperature, 760 C, the work hardened layer created by turning quickly recrystallized. This fine recrystallized surface enhanced the fatigue crack initiation resistance of turned specimens when compared to coarse grained electropolished samples which did not recrystallize during the test. The severe surface deformation resulting from conventional machining did not impair the high cycle fatigue behavior of this intermetallic alloy under the conditions evaluated.

  4. Fatigue properties of shuttle thermal protection system

    NASA Technical Reports Server (NTRS)

    Sawyer, J. W.; Cooper, P. A.

    1980-01-01

    Static and cyclic load tests were conducted to determine the static and fatigue strength of the RIS tile/SIP thermal protection system used on the orbiter of the space shuttle. The material systems investigated include the densified and undensified LI-900 tile system on the .40 cm thick SIP and the densified and undensified LI-2200 tile system on the .23 cm (.090 inch) thick SIP. The tests were conducted at room temperature with a fully reversed uniform cyclic loading at 1 Hertz. Cyclic loading causes a relatively large reduction in the stress level that each of the SIP/tile systems can withstand for a small number of cycles. For example, the average static strength of the .40 cm thick SIP/LI-900 tile system is reduced from 86 kPa to 62 kPa for a thousand cycles. Although the .23 cm thick SIP/LI-2200 tile system has a higher static strength, similar reductions in the fatigue strength are noted. Densifying the faying surface of the RSI tile changes the failure mode from the SIP/tile interface to the parent RSI or the SIP and thus greatly increases the static strength of the system. Fatigue failure for the densified tile system, however, occurs due to complete separation or excessive elongation of the SIP and the fatigue strength is only slightly greater than that for the undensified tile system.

  5. The reduction in human motoneurone responsiveness during muscle fatigue is not prevented by increased muscle spindle discharge.

    PubMed

    McNeil, Chris J; Giesebrecht, Sabine; Khan, Serajul I; Gandevia, Simon C; Taylor, Janet L

    2011-08-01

    Motoneurone excitability is rapidly and profoundly reduced during a sustained maximal voluntary contraction (MVC) when tested in the transient silent period which follows transcranial magnetic stimulation (TMS) of the motor cortex. One possible cause of this reduction in excitability is a fatigue-induced withdrawal of excitatory input to motoneurones from muscle spindle afferents. We aimed to test if muscle spindle input produced by tendon vibration would ameliorate suppression of the cervicomedullary motor-evoked potential (CMEP) in the silent period during a sustained MVC. Seven subjects performed a 2 min MVC of the elbow flexors. Stimulation of the corticospinal tract at the level of the mastoids was preceded 100 ms earlier by TMS. These stimulus pairs were delivered every 10 s during the 2 min MVC. Stimulus pairs at 30, 50, 70, 90 and 110 s were delivered while vibration (-80 Hz) was applied to the distal tendon of biceps. On a separate day, the protocol was repeated with both stimuli delivered to the motor cortex. The CMEP in the silent period decreased rapidly with fatigue (to -9% of control) and was not affected by tendon vibration (P = 0.766). The motor-evoked potential in the silent period also declined rapidly (to -5% of control) and was similarly unaffected by tendon vibration (P = 0.075). These data suggest motoneurone disfacilitation due to a fatigue-related decrease of muscle spindle discharge does not contribute significantly to the profound suppression of motoneurone excitability during the silent period. Therefore, a change to intrinsic motoneurone properties caused by repetitive discharge is most probably responsible.

  6. Approaches for springback reduction when forming ultra high-strength sheet metals

    NASA Astrophysics Data System (ADS)

    Radonjic, R.; Liewald, M.

    2016-11-01

    Nowadays, the automotive industry is challenged constantly by increasing environmental regulations and the continuous enhancement of standards with regard to passenger's safety (NCAP, Part 1). In order to fulfil the aforementioned requirements, the use of ultra high-strength steels in research and industrial applications is of high interest. When forming such materials, the main problem results from the large amount of springback which occurs after the release of the part. This paper shows the applicability of several approaches for the reduction of springback amount by forming of one hat channel shaped component. A novel approach for springack reduction which is based on forming with an alternating blank draw-in is presented as well. In this investigation an ultra high-strength steel of the grade DP 980 was used. The part's measurements were taken at significant cross-sections in order to provide a qualitative comparison between the reference geometry and the part's released shape. The obtained results were analysed and used in order to quantify the success of particular approaches for springback reduction. When taking a curved hat channel shaped component as an example, the results achieved in the investigations showed that it is possible to reduce part shape deviations significantly when using DP 980 as workpiece material.

  7. Fatigue behavior and recommended design rules for an automotive composite

    SciTech Connect

    Corum, J.M.; Battiste, R.L.; Ruggles, M.B.

    1998-11-01

    Fatigue curves (stress vs cycles to failure) were generated under a variety of conditions (temperatures, fluid environments, mean stresses, block loadings) for a candidate automotive structural composite. The results were used to (1) develop observations regarding basic fatigue behavioral characteristics and (2) establish fatigue design rules. The composite was a structural reaction injection-molded polyurethane reinforced with continuous strand, swirl-mat E-glass fibers. Tensile fatigue tests on specimens from a single plaque at {minus}40 F, room temperature, and 250 F provided the basic behavioral characteristics. It was found that when stress was normalized by the at-temperature ultimate tensile strength, the fatigue curves at the three temperatures collapsed into a single master curve. An assessment of the individual stress-strain loops throughout each test showed a progressive loss in stiffness and an increase in permanent strain, both of which are indicative of increasing damage. Fatigue tests on specimens from several plaques were used to develop a design fatigue curve, which was established by using a reduction factor of 20 on average cycles to failure. This factor assures that the stiffness loss during the design life is no greater than 10 percent. Fatigue reduction factors were established to account for various fluids. Reversed stress fatigue tests allowed a mean stress rule to be validated, and block loading tests were used to demonstrate the adequacy of Miner`s rule for cumulative fatigue damage.

  8. A Critical Analysis of Grain-Size and Yield-Strength Dependence of Near-Threshold Fatigue-Crack Growth in Steels.

    DTIC Science & Technology

    1981-07-15

    strength (ays) or grain size ( ) -- as is the case, for example, with a low-carbon ferritic steel -- it is unmistakably clear that for the gamut of...steels examined (15 cases), the transition points do not order on the basis of £ either cy, or k alone. Rather, values of AKT for the gamut of steels...the search for a systematic ordering of near-threshold fatigue crack growth rates that pertains to the whole gamut of steels. SURVEY AND ANALYSIS A

  9. Flexor tenorrhaphy tensile strength: reduction by cyclic loading: in vitro and ex vivo porcine study.

    PubMed

    Gibbons, C E R; Thompson, D; Sandow, M J

    2009-06-01

    The integrity of the repair is critical to maintain coaptation of the severed flexor tendon end until healing has advanced sufficiently. In our hospital, we use a modified Savage repair (four-strand Adelaide technique) using 3-0 Ethibond (Ethicon, Somerville, NJ, USA) for acute flexor tenorrhaphy and an active postrepair mobilization protocol. To explain the apparent differences between the theoretical and actual repair strength of a multistrand repair in a single tension test and the reduced strength of a repair subjected to cyclic loading, we compared single and cyclical tensile loading with different suture in vitro configurations of 3-0 Ethibond (Ethicon, Somerville, NJ, USA; one, two, and four strands) and an ex vivo four-strand repair of freshly divided porcine tendon to calculate the ultimate tensile strength (UTS). Mechanical testing was repeated 15 times with both single tensile and cyclical loading for each suture configuration and porcine repair. In the in vitro model, the presence of a knot in a single strand reduced the UTS by 50%. The stiffness of a knotted strand was substantially less than the unknotted strand but became identical after cyclical loading. There was no statistical significance of the UTS between single and cyclical loading with different numbers of strands in this model. In the ex vivo four-strand porcine repair model, there was a significant reduction in UTS with cyclical loading, which equated to the number of strands times the strength of the knotted strand. This discrepancy can be explained by the change in stiffness of the knotted strand after cyclical loading and has important implications for previous studies of suture tendon repair using single tensile loading where the UTS may have been overestimated. We believe that cyclical loading is more representative of physiological loading after acute flexor tendon repair and should be the testing model of choice in suture tenorrhaphy studies.

  10. Effects of dose reduction on bone strength prediction using finite element analysis

    NASA Astrophysics Data System (ADS)

    Anitha, D.; Subburaj, Karupppasamy; Mei, Kai; Kopp, Felix K.; Foehr, Peter; Noel, Peter B.; Kirschke, Jan S.; Baum, Thomas

    2016-12-01

    This study aimed to evaluate the effect of dose reduction, by means of tube exposure reduction, on bone strength prediction from finite-element (FE) analysis. Fresh thoracic mid-vertebrae specimens (n = 11) were imaged, using multi-detector computed tomography (MDCT), at different intensities of X-ray tube exposures (80, 150, 220 and 500 mAs). Bone mineral density (BMD) was estimated from the mid-slice of each specimen from MDCT images. Differences in image quality and geometry of each specimen were measured. FE analysis was performed on all specimens to predict fracture load. Paired t-tests were used to compare the results obtained, using the highest CT dose (500 mAs) as reference. Dose reduction had no significant impact on FE-predicted fracture loads, with significant correlations obtained with reference to 500 mAs, for 80 mAs (R2  = 0.997, p < 0.001), 150 mAs (R2 = 0.998, p < 0.001) and 220 mAs (R2 = 0.987, p < 0.001). There were no significant differences in volume quantification between the different doses examined. CT imaging radiation dose could be reduced substantially to 64% with no impact on strength estimates obtained from FE analysis. Reduced CT dose will enable early diagnosis and advanced monitoring of osteoporosis and associated fracture risk.

  11. Effects of dose reduction on bone strength prediction using finite element analysis

    PubMed Central

    Anitha, D.; Subburaj, Karupppasamy; Mei, Kai; Kopp, Felix K.; Foehr, Peter; Noel, Peter B.; Kirschke, Jan S.; Baum, Thomas

    2016-01-01

    This study aimed to evaluate the effect of dose reduction, by means of tube exposure reduction, on bone strength prediction from finite-element (FE) analysis. Fresh thoracic mid-vertebrae specimens (n = 11) were imaged, using multi-detector computed tomography (MDCT), at different intensities of X-ray tube exposures (80, 150, 220 and 500 mAs). Bone mineral density (BMD) was estimated from the mid-slice of each specimen from MDCT images. Differences in image quality and geometry of each specimen were measured. FE analysis was performed on all specimens to predict fracture load. Paired t-tests were used to compare the results obtained, using the highest CT dose (500 mAs) as reference. Dose reduction had no significant impact on FE-predicted fracture loads, with significant correlations obtained with reference to 500 mAs, for 80 mAs (R2  = 0.997, p < 0.001), 150 mAs (R2 = 0.998, p < 0.001) and 220 mAs (R2 = 0.987, p < 0.001). There were no significant differences in volume quantification between the different doses examined. CT imaging radiation dose could be reduced substantially to 64% with no impact on strength estimates obtained from FE analysis. Reduced CT dose will enable early diagnosis and advanced monitoring of osteoporosis and associated fracture risk. PMID:27934902

  12. Mechanisms of Corrosion Fatigue in High Strength I/M (Ingot Metallurgy) and P/M (Powder Metallurgy) Aluminum Alloys.

    DTIC Science & Technology

    1983-02-01

    second year effort was devoted to the study of 7075 -T651 (I/Il) alloy, and X7091-T7E69 and X7091-T7E70 (P/M) alloys. The kinetics of fatigue crack...Qualification and Microstructural Characterization 6 3.2 Kinetics of Fatigue Crack Growth 7 3.2.1 7075 -T651 (I/M) Aluminum Alloy 8 3.2.2 X7091-T7E69...and X7091-T7E70 (P/M) Aluminum Alloys 10 3.2.3 Comparison between I/M and P/M Alloys and Discussions 12 3.3 Fractographic Analysis 14 3.3.1 7075 -T651

  13. Investigating Differences in Preferred Noise Reduction Strength Among Hearing Aid Users

    PubMed Central

    Wagener, Kirsten C.

    2016-01-01

    Even though hearing aid (HA) users can respond very differently to noise reduction (NR) processing, knowledge about possible drivers of this variability (and thus ways of addressing it in HA fittings) is sparse. The current study investigated differences in preferred NR strength among HA users. Participants were groups of experienced users with clear preferences (“NR lovers”; N = 14) or dislikes (“NR haters”; N = 13) for strong NR processing, as determined in two earlier studies. Maximally acceptable background noise levels, detection thresholds for speech distortions caused by NR processing, and self-reported “sound personality” traits were considered as candidate measures for explaining group membership. Participants also adjusted the strength of the (binaural coherence-based) NR algorithm to their preferred level. Consistent with previous findings, NR lovers favored stronger processing than NR haters, although there also was some overlap. While maximally acceptable noise levels and detection thresholds for speech distortions tended to be higher for NR lovers than for NR haters, group differences were only marginally significant. No clear group differences were observed in the self-report data. Taken together, these results indicate that preferred NR strength is an individual trait that is fairly stable across time and that is not easily captured by psychoacoustic, audiological, or self-report measures aimed at indexing susceptibility to background noise and processing artifacts. To achieve more personalized NR processing, an effective approach may be to let HA users determine the optimal setting themselves during the fitting process. PMID:27604781

  14. Modeling the Progressive Failure of Jointed Rock Slope Using Fracture Mechanics and the Strength Reduction Method

    NASA Astrophysics Data System (ADS)

    Zhang, Ke; Cao, Ping; Meng, Jingjing; Li, Kaihui; Fan, Wenchen

    2015-03-01

    The fracturing process during the progressive failure of a jointed rock slope is numerically investigated by using fracture mechanics and the strength reduction method (SRM). A displacement discontinuity method containing frictional elements is developed for the calculation of the stress intensity factor (SIF). The failure initiation of the jointed rock slope is analyzed by evaluating the SIF. A new joint model is proposed by combining solid elements with interface elements in the commercial software FLAC3D. These represent the discontinuous planes in a rock mass on which sliding or separation can occur. The progressive failure process is simulated by reducing the shear strength of the rock mass, which includes the process of stress concentration, crack initiation, crack propagation, slip weakening, and coalescence of failure surfaces. The factor of safety (FS) and location of the critical failure surface are determined by the SRM. The influence of the joint inclination is investigated using the FS and the SIF. Laboratory experiments on specimens containing an inclined flaw under compression-shear stress are also conducted to investigate the effect of the angle between the shear direction and the flaw inclination, which provides an experimental explanation for the shear behavior of jointed rock. The results show that the joint inclination dominates the failure behavior of jointed rock slope, and two failure patterns have been classified.

  15. Movement-Related Cortical Potential Amplitude Reduction after Cycling Exercise Relates to the Extent of Neuromuscular Fatigue

    PubMed Central

    Spring, Jérôme Nicolas; Place, Nicolas; Borrani, Fabio; Kayser, Bengt; Barral, Jérôme

    2016-01-01

    Exercise-induced fatigue affects the motor control and the ability to generate a given force or power. Surface electroencephalography allows researchers to investigate movement-related cortical potentials (MRCP), which reflect preparatory brain activity 1.5 s before movement onset. Although the MRCP amplitude appears to increase after repetitive single-joint contractions, the effects of large-muscle group dynamic exercise on such pre-motor potential remain to be described. Sixteen volunteers exercised 30 min at 60% of the maximal aerobic power on a cycle ergometer, followed by a 10-km all-out time trial. Before and after each of these tasks, knee extensor neuromuscular function was investigated using maximal voluntary contractions (MVC) combined with electrical stimulations of the femoral nerve. MRCP was recorded during 60 knee extensions after each neuromuscular sequence. The exercise resulted in a significant decrease in the knee extensor MVC force after the 30-min exercise (−10 ± 8%) and the time trial (−21 ± 9%). The voluntary activation level (VAL; −6 ± 8 and −12 ± 10%), peak twitch (Pt; −21 ± 16 and −32 ± 17%), and paired stimuli (P100 Hz; −7 ± 11 and −12 ± 13%) were also significantly reduced after the 30-min exercise and the time trial. The first exercise was followed by a decrease in the MRCP, mainly above the mean activity measured at electrodes FC1-FC2, whereas the reduction observed after the time trial was related to the FC1-FC2 and C2 electrodes. After both exercises, the reduction in the late MRCP component above FC1-FC2 was significantly correlated with the reduction in P100 Hz (r = 0.61), and the reduction in the same component above C2 was significantly correlated with the reduction in VAL (r = 0.64). In conclusion, large-muscle group exercise induced a reduction in pre-motor potential, which was related to muscle alterations and resulted in the inability to produce a maximal voluntary contraction. PMID:27313522

  16. Movement-Related Cortical Potential Amplitude Reduction after Cycling Exercise Relates to the Extent of Neuromuscular Fatigue.

    PubMed

    Spring, Jérôme Nicolas; Place, Nicolas; Borrani, Fabio; Kayser, Bengt; Barral, Jérôme

    2016-01-01

    Exercise-induced fatigue affects the motor control and the ability to generate a given force or power. Surface electroencephalography allows researchers to investigate movement-related cortical potentials (MRCP), which reflect preparatory brain activity 1.5 s before movement onset. Although the MRCP amplitude appears to increase after repetitive single-joint contractions, the effects of large-muscle group dynamic exercise on such pre-motor potential remain to be described. Sixteen volunteers exercised 30 min at 60% of the maximal aerobic power on a cycle ergometer, followed by a 10-km all-out time trial. Before and after each of these tasks, knee extensor neuromuscular function was investigated using maximal voluntary contractions (MVC) combined with electrical stimulations of the femoral nerve. MRCP was recorded during 60 knee extensions after each neuromuscular sequence. The exercise resulted in a significant decrease in the knee extensor MVC force after the 30-min exercise (-10 ± 8%) and the time trial (-21 ± 9%). The voluntary activation level (VAL; -6 ± 8 and -12 ± 10%), peak twitch (Pt; -21 ± 16 and -32 ± 17%), and paired stimuli (P100 Hz; -7 ± 11 and -12 ± 13%) were also significantly reduced after the 30-min exercise and the time trial. The first exercise was followed by a decrease in the MRCP, mainly above the mean activity measured at electrodes FC1-FC2, whereas the reduction observed after the time trial was related to the FC1-FC2 and C2 electrodes. After both exercises, the reduction in the late MRCP component above FC1-FC2 was significantly correlated with the reduction in P100 Hz (r = 0.61), and the reduction in the same component above C2 was significantly correlated with the reduction in VAL (r = 0.64). In conclusion, large-muscle group exercise induced a reduction in pre-motor potential, which was related to muscle alterations and resulted in the inability to produce a maximal voluntary contraction.

  17. The Effect of Group Mindfulness-based Stress Reduction and Consciousness Yoga Program on Quality of Life and Fatigue Severity in Patients with MS

    PubMed Central

    Nejati, Somayeh; Rajezi Esfahani, Sepideh; Rahmani, Soheila; Afrookhteh, Gita; Hoveida, Shahrzad

    2016-01-01

    Introduction: The chronic nature of Multiple Sclerosis (MS), have can leave devastating effects on quality of life and fatigue. The present research aimed to study the effect of group Mindfulness-based Stress Reduction (MBSR) and conscious yoga program on the quality of life and fatigue severity among patients with MS. Methods: This study was quasi-experimental with intervention and control groups. The statistical population included all members to MS Society of Tehran Province, 24 of whom diagnosed with MS were selected as the sample based on the inclusion criteria. The subjects were randomly assigned into the test group (12 patients) and the control group (12 patients). MS Quality of Life-54 (MSQOL-54) and Fatigue Severity Scale (FSS) were used for data collection. Subjects in the test group underwent a MBSR and conscious yoga program in 8 two-hour sessions. The data were analyzed using the SPSS ver.13 software. Results: The study findings showed that there was a significant difference between subjects in the experimental and control groups in terms of mean score of some subscales of quality of life including physical health, role limitations due to physical and emotional problems, energy, emotional well-being, health distress, health perception, and satisfaction with sexual function, overall quality of life, and fatigue severity. Conclusion: The results show that the program is effective in reduction of fatigue severity and improving some subscales of quality of life in MS patients. Hence, this supportive method can be used as an effective way for improving quality of life and relieving fatigue in MS patients. PMID:28032077

  18. The Effect of Group Mindfulness-based Stress Reduction and Consciousness Yoga Program on Quality of Life and Fatigue Severity in Patients with MS.

    PubMed

    Nejati, Somayeh; Rajezi Esfahani, Sepideh; Rahmani, Soheila; Afrookhteh, Gita; Hoveida, Shahrzad

    2016-12-01

    Introduction: The chronic nature of Multiple Sclerosis (MS), have can leave devastating effects on quality of life and fatigue. The present research aimed to study the effect of group Mindfulness-based Stress Reduction (MBSR) and conscious yoga program on the quality of life and fatigue severity among patients with MS. Methods: This study was quasi-experimental with intervention and control groups. The statistical population included all members to MS Society of Tehran Province, 24 of whom diagnosed with MS were selected as the sample based on the inclusion criteria. The subjects were randomly assigned into the test group (12 patients) and the control group (12 patients). MS Quality of Life-54 (MSQOL-54) and Fatigue Severity Scale (FSS) were used for data collection. Subjects in the test group underwent a MBSR and conscious yoga program in 8 two-hour sessions. The data were analyzed using the SPSS ver.13 software. Results: The study findings showed that there was a significant difference between subjects in the experimental and control groups in terms of mean score of some subscales of quality of life including physical health, role limitations due to physical and emotional problems, energy, emotional well-being, health distress, health perception, and satisfaction with sexual function, overall quality of life, and fatigue severity. Conclusion: The results show that the program is effective in reduction of fatigue severity and improving some subscales of quality of life in MS patients. Hence, this supportive method can be used as an effective way for improving quality of life and relieving fatigue in MS patients.

  19. Improving Fatigue Performance of AHSS Welds

    SciTech Connect

    Feng, Zhili; Yu, Xinghua; Erdman, III, Donald L.; Wang, Yanli; Kelly, Steve; Hou, Wenkao; Yan, Benda; Wang, Zhifeng; Yu, Zhenzhen; Liu, Stephen

    2015-03-01

    Reported herein is technical progress on a U.S. Department of Energy CRADA project with industry cost-share aimed at developing the technical basis and demonstrate the viability of innovative in-situ weld residual stresses mitigation technology that can substantially improve the weld fatigue performance and durability of auto-body structures. The developed technology would be costeffective and practical in high-volume vehicle production environment. Enhancing weld fatigue performance would address a critical technology gap that impedes the widespread use of advanced high-strength steels (AHSS) and other lightweight materials for auto body structure light-weighting. This means that the automotive industry can take full advantage of the AHSS in strength, durability and crashworthiness without the concern of the relatively weak weld fatigue performance. The project comprises both technological innovations in weld residual stress mitigation and due-diligence residual stress measurement and fatigue performance evaluation. Two approaches were investigated. The first one was the use of low temperature phase transformation (LTPT) weld filler wire, and the second focused on novel thermo-mechanical stress management technique. Both technical approaches have resulted in considerable improvement in fatigue lives of welded joints made of high-strength steels. Synchrotron diffraction measurement confirmed the reduction of high tensile weld residual stresses by the two weld residual stress mitigation techniques.

  20. Reduction of Residual Stress and Distortion in HY100 and HY130 High Strength Steels During Welding

    DTIC Science & Technology

    1989-06-01

    High Yields) Steels for pressure hulls and special applications like flight decks where aluminum is impractical to use. HY80 is the most famous and...most widely used of the HYQ & T steels developed. Interest waned in widely using the steels with strengths above HY80 because of cracking problems...Reduction of Residual Stress and Distortion in HYI00 and HYI30 High Strength Steels During Welding CY) by _RICHARD ALLEN BASS B.S. Electrical

  1. Fatigue strength of a wire passing through a cannulated screw: implications for closure of the sternum following cardiac surgery.

    PubMed

    Jutley, R S; Shepherd, D E T; Hukins, D W L

    2003-01-01

    It has been proposed that the incidence of sternal dehiscence can be decreased by passing the wires used for sternotomy closure through cannulated screws. However, there is a potential risk of fatigue failure as a result of the wire moving against the screw, e.g. during coughing and sneezing. The system of cannulated screws and wire was subjected to static tensile testing to failure. Five tests were performed and failure occurred at 388 +/- 34 N (mean +/- SD). Ten cyclic tests were then performed. Sinusoidal loading was applied at 10 Hz with peak forces in the range 10-90 per cent of the static failure force, at a constant load ratio R = 10. The test with the lowest peak force reached run-out at 6 x 10(6) cycles. The others failed by the ends of the wire closures becoming untwisted (one test), the wire fracturing at the twist (three tests) or the wire fracturing at the screw (five tests). However, calculations based on these results suggest that fatigue failure is unlikely to occur as a result of regular breathing or continuous coughing or sneezing.

  2. The influence of fatigue loading on the quality of the cement layer and retention strength of carbon fiber post-resin composite core restorations.

    PubMed

    Bolhuis, Peter; de Gee, Anton; Feilzer, Albert

    2005-01-01

    Clinical studies have shown that endodontically treated teeth restored with short posts or deficient ferrules show a high failure risk. This study. evaluated the influence of fatigue loading on the quality of the cement layer between prefabricated quartz coated carbon fiber posts with restricted length and the root canal wall in maxillary pre-molars. Two adhesive resin composite cements, chemical-cured Panavia 21 (Group 1) and dual-cured RelyX-ARC (Group 2), and one resin-modified glass-ionomer cement, chemical-cured RelyX (Group 3), delta were selected for this study. Post- and-core restorations were made on single-rooted human maxillary premolars from which the coronal sections were removed at the level of the proximal cemento-enamel junction (CEJ). Following endodontic treatment, a post-and-core restoration with 6-mm post length was prepared for each tooth. The posts were directly cemented into the root canal and, after applying an adhesive (Clearfil Photo Bond), they were built up with a core build-up composite (Clearfil Photo Core). For each group (n=8), half of the specimens were exposed to fatigue loading (10(6) load cycles) almost perpendicular to the axial axis (85 degrees), while the other half were used as the control. Three parallel, transverse root sections, 1.5-mm thick, were cut from each specimen at the apical, medial and coronal location. These sections were examined by Scanning Electron Microscopy (SEM) to evaluate the integrity of the cement layer, while the retention strength of the cemented post sections was determined with the push-out test. The multivariate results of MANOVA showed that the condition main effect (fatigue or control) was not significant (p=0.059); the two other main effects, type of cement and section location, were significant (p=0.001 and p=0.008). For both the push-out strength and SEM evaluation of the cement layer integrity, the results significantly improved from RelyX to RelyX-ARC to Panavia 21 and also from apical to

  3. A case study of multi-seam coal mine entry stability analysis with strength reduction method

    PubMed Central

    Tulu, Ihsan Berk; Esterhuizen, Gabriel S; Klemetti, Ted; Murphy, Michael M.; Sumner, James; Sloan, Michael

    2017-01-01

    In this paper, the advantage of using numerical models with the strength reduction method (SRM) to evaluate entry stability in complex multiple-seam conditions is demonstrated. A coal mine under variable topography from the Central Appalachian region is used as a case study. At this mine, unexpected roof conditions were encountered during development below previously mined panels. Stress mapping and observation of ground conditions were used to quantify the success of entry support systems in three room-and-pillar panels. Numerical model analyses were initially conducted to estimate the stresses induced by the multiple-seam mining at the locations of the affected entries. The SRM was used to quantify the stability factor of the supported roof of the entries at selected locations. The SRM-calculated stability factors were compared with observations made during the site visits, and the results demonstrate that the SRM adequately identifies the unexpected roof conditions in this complex case. It is concluded that the SRM can be used to effectively evaluate the likely success of roof supports and the stability condition of entries in coal mines. PMID:28239503

  4. Effect of Impact Damage on the Fatigue Response of TiAl Alloy-ABB-2

    NASA Technical Reports Server (NTRS)

    Draper, S. L.; Lerch, B. A.; Pereira, J. M.; Nathal, M. V.; Nazmy, M. Y.; Staubli, M.; Clemens, D. R.

    2001-01-01

    The ability of gamma-TiAl to withstand potential foreign or domestic object damage is a technical risk to the implementation of gamma-TiAl in low pressure turbine (LPT) blade applications. In the present study, the impact resistance of TiAl alloy ABB-2 was determined and compared to the impact resistance of Ti(48)Al(2)Nb(2)Cr. Specimens were impacted with four different impact conditions with impact energies ranging from 0.22 to 6.09 J. After impacting, the impact damage was characterized by crack lengths on both the front and backside of the impact. Due to the flat nature of gamma-TiAl's S-N (stress vs. cycles to failure) curve, step fatigue tests were used to determine the fatigue strength after impacting. Impact damage increased with increasing impact energy and led to a reduction in the fatigue strength of the alloy. For similar crack lengths, the fatigue strength of impacted ABB-2 was similar to the fatigue strength of impacted Ti(48)Al(2)Nb(2)Cr, even though the tensile properties of the two alloys are significantly different. Similar to Ti(48)Al(2)Nb(2)Cr, ABB-2 showed a classical mean stress dependence on fatigue strength. The fatigue strength of impacted ABB-2 could be accurately predicted using a threshold analysis.

  5. Ionic Strength Effect on the Rate of Reduction of Hexacyanoferrate (III) by Ascorbic Acid: A Physical Chemistry Laboratory Experiment.

    ERIC Educational Resources Information Center

    Watkins, Kenneth W.; Olson, June A.

    1980-01-01

    Describes a physical chemistry experiment that allows students to test the effect of ionic strength on the rates of a reaction between ions. The reduction of hexacyanoferrate III by ascorbic acid is detailed. Comparisons with the iodine clock reaction are made. (CS)

  6. 77 FR 4890 - Damage Tolerance and Fatigue Evaluation for Composite Rotorcraft Structures, and Damage Tolerance...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-01

    ... static strength of composite rotorcraft structures using a damage tolerance evaluation, or a fatigue... regulations to require evaluation of fatigue and residual static strength of composite rotorcraft...

  7. Flexural Fatigue Behavior of ARALL (Tradename) Laminates

    DTIC Science & Technology

    1990-08-01

    Unlimited Prepared for Airborne Materials Block (Code 60C) NAVAL AIR DEVELOPMENT CENTER Warminster, PA 18974-5000 NOTICES REPORT NUMBERING SYSTEM - The...PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER ORGANIZATION Airborne (if applicable) Materials Block I 60C 8c. ADDRESS (City, State, and ZIP Code) 10... materials . There is, therfore, only a slight reduction in tensile strength upon exposure to moist and corrosive environments78. The flexural fatigue tests

  8. Fatigue behaviour of composites

    NASA Astrophysics Data System (ADS)

    Hartwig, G.; Hübner, R.; Knaak, S.; Pannkoke, C.

    An important design parameter for cyclically loaded structures (e.g. transport vessels) is the fatigue endurance limit. The cryogenic fatigue behaviour with different types of fibres and matrices has been investigated. The main emphasis it put on the behaviour of fibre dominated properties. It is surprising that the fatigue strength even of unidirectional fibre composites is strongly influenced by the matrix type. This will be discussed for carbon fibre composites with thermoplastic and duroplastic matrices under tensile and shear loading. For crossplies (with non-woven fabrics) the interaction between laminates controls the fatigue behaviour. The interaction depends on the matrix type and is different for tensile and shear loading.

  9. Reduction of fatigue loads on jacket substructure through blade design optimization for multi-megawatt wind turbines at 50 m water depths

    NASA Astrophysics Data System (ADS)

    Njomo Wandji, W.; Pavese, C.; Natarajan, A.; Zahle, F.

    2016-09-01

    This paper addresses the reduction of the fore-aft damage equivalent moment at the tower base for multi-megawatt offshore wind turbines mounted on jacket type substructures at 50 m water depths. The study investigates blade design optimization of a reference 10 MW wind turbine under standard wind conditions of onshore sites. The blade geometry and structure is optimized to yield a design that minimizes tower base fatigue loads without significant loss of power production compared to that of the reference setup. The resulting blade design is then mounted on a turbine supported by a jacket and placed under specific offshore site conditions. The new design achieves alleviate fatigue damage equivalent loads also in the jacket members, showing the possibility to prolong its design lifetime or to save material in comparison to the reference jacket. Finally, the results suggest additional benefit on the efficient design of other components such as the constituents of the nacelle.

  10. A mathematical approach regarding a better geometry of the root fillet of symmetric and asymmetric gears with the main scope of increasing the fatigue strength of gear teeth and avoiding the occurrence of cracks

    NASA Astrophysics Data System (ADS)

    Cazan, S.; Plesu, G.

    2016-08-01

    The main topic of the present paper consists of two main ideas: on one side, there is presented a mathematical approach on fatigue strength of a gear tooth and, on the other side, there is applied this mathematical approach on a particular case regarding a better fillet geometry of symmetric and asymmetric gears. In this mathematical approach, there is illustrated the planar curves theory and their planar contact. Then, there will be presented some theory regarding the gear failure and the appearance of cracks that generates tooth base fatigue. In the end, there will be presented some graphical results using Matlab programming language.

  11. Effect of recovery from muscle strength imbalance in lower limb using four point weight bearing reduction system.

    PubMed

    Yu, Chang Ho; Kang, Seung Rok; Jeong, Ho Choon; Kim, Kyung; Kwon, Tae Kyu

    2014-01-01

    This study was performed to assess the improvement of muscle strength imbalance in the lower limbs using a four point weight bearing reduction system with a two-belt treadmill. Participants, each having differences in muscle function of the left and right legs of over 20%, were divided into two groups of ten. The participants were involved in experiments progressing 40 minutes per day, 3 days per week, during a period of 4 weeks. The maximal peak torque and average power were measured for testing joint torque in the hip, knee and ankle. The results showed the improvement of muscle imbalance as assessed by the maximal muscle strength was the most effective in the hip joint, while the improvement of muscular reaction was the most effective in the knee joint. We suggest that the method of weight bearing reduction could be sufficient to reduce muscle imbalance in the lower limbs.

  12. Effects of Aging Structures and Humidity on Fatigue Properties of Maraging Steel

    NASA Astrophysics Data System (ADS)

    Hayashi, Kousuke; Nagano, Takanori; Moriyama, Michihiko; Wang, Xishu; Kawagoishi, Norio

    Effects of aging structures and humidity on fatigue properties of 350 grade 18% Ni maraging steel were investigated under rotating bending in relative humidity of 25% and 85%. Aging conditions tested were a conventional single aging and a double one which was aged at low temperature after the conventional aging. In each aging, under and peak aged steels were prepared. Tensile strength was increased by the double aging without reduction of the ductility. Proportional relation between fatigue limit and Vickers hardness held until 750HV in low humidity. However fatigue strength was largely decreased by high humidity, especially in the peak aged steel at the single aging. The decrease in fatigue strength by high humidity was mainly caused by the acceleration of a crack initiation due to the anodic dissolution. The acceleration of a crack initiation was larger in the steel peak aged at the single aging with larger precipitated particles.

  13. Accelerated fatigue of dentin with exposure to lactic acid.

    PubMed

    Do, Dominic; Orrego, Santiago; Majd, Hessam; Ryou, Heonjune; Mutluay, Mustafa M; Xu, Hockin H K; Arola, Dwayne D

    2013-11-01

    Composite restorations accumulate more biofilm than other dental materials. This increases the likelihood for the hard tissues supporting a restoration (i.e. dentin and enamel) to be exposed to acidic conditions beyond that resulting from dietary variations. In this investigation the fatigue strength and fatigue crack growth resistance of human coronal dentin were characterized within a lactic acid solution (with pH = 5) and compared to that of controls evaluated in neutral conditions (pH = 7). A comparison of the fatigue life distributions showed that the lactic acid exposure resulted in a significant reduction in the fatigue strength (p ≤ 0.001), and nearly 30% reduction in the apparent endurance limit (from 44 MPa to 32 MPa). The reduction in pH also caused a significant decrease (p ≤ 0.05) in the threshold stress intensity range required for the initiation of cyclic crack growth, and significant increase in the incremental rate of crack extension. Exposure of tooth structure to lactic acid may cause demineralization, but it also increases the likelihood of restored tooth failures via fatigue, and after short time periods.

  14. Effect of shot peening and grain refinement on the fatigue life and strength of commercially pure Al and two of its alloys: Al-2024-T3 and Al-7075-T6

    NASA Astrophysics Data System (ADS)

    Qandil, A.; Zaid, Adnan I. O.

    2016-08-01

    Aluminum and its alloys are widely used materials in automobile, aircraft and space craft industries due to their high strength- to- weight ratio and corrosion resistance beside their other useful properties. They are the second materials in use after steel alloys. Most of the failures in parts of aircrafts and space vehicles are mainly caused by fatigue and stress corrosion cracking. In this paper, the effect of shot peening on the fatigue life of commercially pure aluminumand two of its alloys namely:Al-2024 and Al-7075-T6 is presented and discussed. Furthermore, the effect of addition of vanadium to Al and Al grain refined by Ti and Ti+Bon Its fatigue life and strengthis also presented and discussed using scanning electron microscope, SEM. It was that shot peening and the addition of V toAl and Al onAl grain refined by Ti and Ti+B have resulted in enhancement of the fatigue life and strength. Ffinally, the effect of shot peening on the surface quality of the peened parts is also presented and discussed.

  15. Child and Adolescent Inpatient Restraint Reduction: A State Initiative to Promote Strength-Based Care.

    ERIC Educational Resources Information Center

    LeBel, Janice; Stromberg, Nan; Duckworth, Ken; Kerzner, Joan; Goldstein, Robert; Weeks, Michael; Harper, Gordon; LaFlair, Lareina; Sudders, Marylou

    2004-01-01

    Objective: To reduce the use of restraint and seclusion with children and adolescents in psychiatric inpatient units by promoting a preventive, strength-based model of care. Method: The State Mental Health Authority used data analysis, quality improvement strategies, regulatory oversight, and technical assistance to develop and implement system…

  16. Fatigue life estimation for different notched specimens based on the volumetric approach

    NASA Astrophysics Data System (ADS)

    Zehsaz, M.; Hassanifard, S.; Esmaeili, F.

    2010-06-01

    In this paper, the effects of notch radius for different notched specimens has been studied on the values of stress concentration factor, notch strength reduction factor, and fatigue life duration of the specimens. The material which has been selected for this investigation is Al 2024T3 . Volumetric approach has been applied to obtain the values of notch strength reduction factor and results have been compared with those obtained from the Neuber and Peterson methods. Load controlled fatigue tests of mentioned specimens have been conducted on the 250kN servo-hydraulic Zwick/Amsler fatigue testing machine with the frequency of 10Hz. The fatigue lives of the specimens have also been predicted based on the available smooth S-N curve of Al2024-T3 and also the amounts of notch strength reduction factor which have been obtained from volumetric, Neuber and Peterson methods. The values of stress and strain around the notch roots are required to predict the fatigue life of notched specimens, so Ansys finite element code has been used and non-linear analyses have been performed to obtain the stress and strain distributions around the notches. The plastic deformations of the material have been simulated using multi-linear kinematic hardening and cyclic stress-strain relation. The work here shows that the volumetric approach does a very good job for predicting the fatigue life of the notched specimens.

  17. Present Situation of the Anti-Fatigue Processing of High-Strength Steel Internal Thread Based on Cold Extrusion Technology: A Review

    NASA Astrophysics Data System (ADS)

    Miao, Hong; Jiang, Cheng; Liu, Sixing; Zhang, Shanwen; Zhang, Yanjun

    2017-03-01

    The adoption of cold-extrusion forming for internal thread net forming becomes an important component of anti-fatigue processing with the development of internal thread processing towards high performance, low cost and low energy consumption. It has vast application foreground in the field of aviation, spaceflight, high speed train and etc. The internal thread processing and anti-fatigue manufacture technology are summarized. In terms of the perspective of processing quality and fatigue serving life, the advantages and disadvantages of the processing methods from are compared. The internal thread cold-extrusion processing technology is investigated for the purpose of improving the anti-fatigue serving life of internal thread. The superiorities of the plastic deformation law and surface integrity of the metal layer in the course of cold extrusion for improving its stability and economy are summed up. The proposed research forecasts the development tendency of the internal thread anti-fatigue manufacturing technology.

  18. Fatigue and fatigue crack growth processes in hard tissues: The importance of age and surface integrity

    NASA Astrophysics Data System (ADS)

    Majd, Hessam

    With the progressive increase in partially and fully dentate seniors, fracture has become an increasingly common form of restored tooth failure. Dentin undergoes progressive changes in microstructure with patient age, and studies are now suggesting that there is a reduction in fatigue strength and fatigue crack growth resistance of this tissue. This dissertation explores aging of dentin, the influence of flaws that are introduced during restorative processes on the fatigue properties of dentin, and proposes models for characterizing the damage initiation and growth process during fatigue of dentin. Results from this investigation show that the fatigue crack growth properties (Paris Law parameters (C, m) andDeltaKth) of human dentin undergo the most significant changes at a patient age of 42 years. Based on the fatigue crack growth responses, three age groups were established including young (age≤33), aged (34≤age ≤49) and old (50≤age) patients for further analysis. There were significant differences in the initiation and growth behavior between the tissues of patients from the three age groups. With regards to the influence of restorative processes, there was no influence on the quasi-static responses of dentin. However, the endurance limit of dentin treated with the dental burs (28 MPa) and abrasive air jet (35 MPa) were approximately 36% and 20% lower than that of the control (44 MPa), respectively. Both cutting processes caused a significant reduction (p≤0.0001) in fatigue strength. An accumulative damage model was developed to characterize fatigue of the control and bur treated dentin as well as provide a model for fatigue life prediction. The damage models were derived as a function of number of loading cycles (N), and ratio of applied stress to ultimate strength (r). The developed models provide estimations for the initial state of damage, the state of damage during the life, as well as the damage accumulation rate for cyclic loading of dentin

  19. A temperature dependent fatigue failure criterion for graphite/epoxy laminates

    NASA Technical Reports Server (NTRS)

    Rotem, A.; Nelson, H. G.

    1979-01-01

    A fatigue failure criterion applicable to composite materials is developed and applied to predict the fatigue behavior of graphite/epoxy laminates with particular emphasis on the influence of temperature. Tensile stress-strain curves and tension-tension fatigue curves for various unidirectional, angle-ply and symmetrically balanced laminates were developed at test temperatures of 25 C, 74 C and 114 C. In general for most laminates a reduction in both static strength and fatigue strength is observed with increasing temperature. This reduction appeared more severe in fatigue loading than in static tensile loading and most severe where the shear stress in the lamina is the dominant failure mode. Through an analytical formulation of shifting functions for the influences of temperature, all fatigue data are shown to be capable of being reduced to a single reference curve at some temperature. Additionally, examples are given which demonstrate the capability of the fatigue failure criterion to predict failure of complex symmetrically balanced laminates from relevant parameters obtained from the observed behavior of unidirectional and angle-ply laminates.

  20. A temperature dependent fatigue failure criterion for graphite/epoxy laminates

    NASA Technical Reports Server (NTRS)

    Rotem, A.; Nelson, H. G.

    1978-01-01

    A fatigue failure criterion applicable to composite materials is developed and applied to predict the fatigue behavior of graphite/epoxy laminates with particular emphasis on the influence of temperature. Tensile stress-strain curves and tension-tension fatigue curves for various unidirectional, angle-ply and symmetrically balanced laminates were developed at test temperatures of 25 C, 74 C, and 114 C. For most laminates a reduction in both static strength and fatigue strength is observed with increasing temperature. This reduction appeared more severe in fatigue loading than in static tensile loading and most severe where the shear stress in the lamina is the dominate failure mode. Through an analytical formulation of shifting functions for the influences of temperature, all fatigue data are shown to be capable of being reduced to a single reference curve at some temperature. Examples are given which demonstrate the capability of the fatigue failure criterion to predict failure of complex symmetrically balanced laminates from relevant parameters obtained from the observed behavior of unidirectional and angle-ply laminates.

  1. Muscle Deoxygenation Causes Muscle Fatigue

    NASA Technical Reports Server (NTRS)

    Murthy, G.; Hargens, A. R.; Lehman, S.; Rempel, D.

    1999-01-01

    Muscle fatigue is a common musculoskeletal disorder in the work place, and may be a harbinger for more disabling cumulative trauma disorders. Although the cause of fatigue is multifactorial, reduced blood flow and muscle oxygenation may be the primary factor in causing muscle fatigue during low intensity muscle exertion. Muscle fatigue is defined as a reduction in muscle force production, and also occurs among astronauts who are subjected to postural constraints while performing lengthy, repetitive tasks. The objectives of this research are to: 1) develop an objective tool to study the role of decreased muscle oxygenation on muscle force production, and 2) to evaluate muscle fatigue during prolonged glovebox work.

  2. Method for Estimating Thread Strength Reduction of Damaged Parent Holes with Inserts

    NASA Technical Reports Server (NTRS)

    Johnson, David L.; Stratton, Troy C.

    2005-01-01

    During normal assembly and disassembly of bolted-joint components, thread damage and/or deformation may occur. If threads are overloaded, thread damage/deformation can also be anticipated. Typical inspection techniques (e.g. using GO-NO GO gages) may not provide adequate visibility of the extent of thread damage. More detailed inspection techniques have provided actual pitch-diameter profiles of damaged-hardware holes. A method to predict the reduction in thread shear-out capacity of damaged threaded holes has been developed. This method was based on testing and analytical modeling. Test samples were machined to simulate damaged holes in the hardware of interest. Test samples containing pristine parent-holes were also manufactured from the same bar-stock material to provide baseline results for comparison purposes. After the particular parent-hole thread profile was machined into each sample a helical insert was installed into the threaded hole. These samples were tested in a specially designed fixture to determine the maximum load required to shear out the parent threads. It was determined from the pristine-hole samples that, for the specific material tested, each individual thread could resist an average load of 3980 pounds. The shear-out loads of the holes having modified pitch diameters were compared to the ultimate loads of the specimens with pristine holes. An equivalent number of missing helical coil threads was then determined based on the ratio of shear-out loads for each thread configuration. These data were compared with the results from a finite element model (FEM). The model gave insights into the ability of the thread loads to redistribute for both pristine and simulated damage configurations. In this case, it was determined that the overall potential reduction in thread load-carrying capability in the hardware of interest was equal to having up to three fewer threads in the hole that bolt threads could engage. One- half of this potential reduction

  3. Feasibility of normal tissue dose reduction in radiotherapy using low strength magnetic field

    PubMed Central

    Shin, Youngseob; Jung, In-Hye; Kwak, Jungwon

    2015-01-01

    Purpose Toxicity of mucosa is one of the major concerns of radiotherapy (RT), when a target tumor is located near a mucosal lined organ. Energy of photon RT is transferred primarily by secondary electrons. If these secondary electrons could be removed in an internal cavity of mucosal lined organ, the mucosa will be spared without compromising the target tumor dose. The purpose of this study was to present a RT dose reduction in near target inner-surface (NTIS) of internal cavity, using Lorentz force of magnetic field. Materials and Methods Tissue equivalent phantoms, composed with a cylinder shaped internal cavity, and adjacent a target tumor part, were developed. The phantoms were irradiated using 6 MV photon beam, with or without 0.3 T of perpendicular magnetic field. Two experimental models were developed: single beam model (SBM) to analyze central axis dose distributions and multiple beam model (MBM) to simulate a clinical case of prostate cancer with rectum. RT dose of NTIS of internal cavity and target tumor area (TTA) were measured. Results With magnetic field applied, bending effect of dose distribution was visualized. The depth dose distribution of SBM showed 28.1% dose reduction of NTIS and little difference in dose of TTA with magnetic field. In MBM, cross-sectional dose of NTIS was reduced by 33.1% with magnetic field, while TTA dose were the same, irrespective of magnetic field. Conclusion RT dose of mucosal lined organ, located near treatment target, could be modulated by perpendicular magnetic field. PMID:26484306

  4. Reduction in Torsional Stiffness and Strength at the Proximal Tibia as a Function of Time Since Spinal Cord Injury.

    PubMed

    Edwards, W Brent; Simonian, Narina; Troy, Karen L; Schnitzer, Thomas J

    2015-08-01

    Spinal cord injury (SCI) is characterized by marked bone loss and a high rate of low-energy fracture around regions of the knee. Changes in the mechanical integrity of bone after SCI are poorly defined, and a better understanding may inform approaches to prevent fractures. The purpose of this study was to quantify reductions in torsional stiffness and strength at the proximal tibia as a function of time since SCI. Sixty adults with SCI ranging from 0 to 50 years of duration and a reference group of 10 able-bodied controls received a CT scan of the proximal tibia. Measures of integral bone mineral were calculated for the total proximal tibia, and localized measures of cortical and trabecular bone mineral were calculated for the epiphysis, metaphysis, and diaphysis. Torsional stiffness (K) and strength (T(ult)) for the total proximal tibia were quantified using validated subject-specific finite element models. Total proximal tibia measures of integral bone mineral, K, and T(ult) decreased exponentially (r(2)  = 0.52 to 0.70) and reached a new steady state within 2.1 to 2.7 years after SCI. Whereas new steady-state values for integral bone mineral and K were 52% to 56% (p < 0.001) lower than the reference group, the new steady state for T(ult) was 69% (p < 0.001) lower than the reference group. Reductions in total proximal tibia measures occurred through a combination of trabecular and endocortical resorption, leaving a bone comprised primarily of marrow fat rather than hydroxyapatite. These findings illustrate that a short therapeutic window exists early (ie, 2 years) after SCI, during which bone-specific intervention may attenuate reductions in mechanical integrity and ultimately prevent SCI-related fragility fracture.

  5. The magnitude and rate of reduction in strength, dexterity and sensation in the human hand vary with ageing.

    PubMed

    Bowden, Jocelyn L; McNulty, Penelope A

    2013-08-01

    Cutaneous sensation and motor performance of the hand decline with age. It is not known if motor performance declines are influenced by reductions in cutaneous sensation, or if motor performance deteriorates at a consistent rate across motor tasks. Handgrip strength, finger-tapping frequency and grooved-pegboard performance were assessed for both hands of 70 subjects (20-88 years), 10 per decade. Motor declines were compared to reductions in perceptual cutaneous sensation tested at 10 hand sites using calibrated von Frey filaments. Motor performance decreased with age for all motor tasks (p<0.001). Handgrip strength (mean±SEM) decreased from 42.6±9.5 kg (in the 30s), to 23.7±7.6 kg (80s) or 44%; finger-tapping frequency from 6.4±0.8 Hz to 4.2±0.9 Hz, 34%; and grooved-pegboard (median [IQR]) increased from 59 s [57-66 s] to 111.5 s [101-125 s], 47%. The onset of the deterioration in motor performance varied with sex and task. Cutaneous sensation also decreased with age, measured as increased von Frey thresholds of 0.04 g [0.02-0.07] to 0.16 g [0.04-0.4] (p<0.001) between the 20s and the 80s, or 73%. Cutaneous sensation varied with sex, side-tested and site. Reductions in grip-based tasks were associated with sensory declines in the palm, but elsewhere there was little correlation among motor tasks and cutaneous sensation in the hand. Grooved-pegboard performance was the best predictor of age-related declines in motor performance regardless of sex or side-tested. Our results suggest age-related declines in motor function cannot be inferred from, or provide information about, changes in cutaneous sensation.

  6. Fatigue life of laser cut metals

    NASA Technical Reports Server (NTRS)

    Martin, M. R.

    1986-01-01

    Fatigue tests were conducted to determine the actual reduction in fatigue life due to weight removal for balancing by: hand grinding, low power (20 watt) Nd:glass laser, and high power (400 watt) Nd:YAG laser.

  7. Effect of Rolling on High-Cycle Fatigue and Fracture of an Al - Mg - Sc Alloy

    NASA Astrophysics Data System (ADS)

    Zhemchuzhnikova, D. A.; Petrov, A. P.; Eremeev, N. V.; Eremeev, V. V.; Kaibyshev, R. O.

    2016-07-01

    The tensile strength and fatigue properties of alloy 1575 of the Al - Mg - Sc system are studied after hot deformation (at 360°C) and subsequent cold rolling with different reduction ratios. The effect of the deformed structure on the properties and mechanisms of fracture of the alloy under cyclic tests is determined.

  8. Effect of formoterol, a long-acting β2-adrenergic agonist, on muscle strength and power output, metabolism, and fatigue during maximal sprinting in men.

    PubMed

    Kalsen, Anders; Hostrup, Morten; Backer, Vibeke; Bangsbo, Jens

    2016-06-01

    The aim was to investigate the effect of the long-acting β2-adrenergic agonist formoterol on muscle strength and power output, muscle metabolism, and phosphorylation of CaMKII Thr(287) and FXYD1 during maximal sprinting. In a double-blind crossover study, 13 males [V̇o2 max: 45.0 ± 0.2 (means ± SE) ml·min(-1)·kg(-1)] performed a 30-s cycle ergometer sprint after inhalation of either 54 μg of formoterol (FOR) or placebo (PLA). Before and after the sprint, muscle biopsies were collected from vastus lateralis and maximal voluntary contraction (MVC), and contractile properties of quadriceps were measured. Oxygen uptake was measured during the sprint. During the sprint, peak power, mean power, and end power were 4.6 ± 0.8, 3.9 ± 1.1, and 9.5 ± 3.2% higher (P < 0.05) in FOR than in PLA, respectively. Net rates of glycogenolysis and glycolysis were 45.7 ± 21.0 and 28.5 ± 13.4% higher (P < 0.05) in FOR than in PLA, respectively, and the decrease in ATP content was lower (P < 0.05) in FOR than in PLA (3.7 ± 1.5 vs. 8.0 ± 1.6 mmol/kg dry weight). There was no difference in breakdown of phosphocreatine and oxygen uptake between treatments. Before and after the sprint, MVC and peak twitch force were higher (P < 0.05) in FOR than in PLA. No differences were observed in phosphorylation of CaMKII Thr(287) and FXYD1 between treatments before the sprint, whereas phosphorylation of CaMKII Thr(287) and FXYD1 was greater (P < 0.05) in FOR than in PLA after the sprint. In conclusion, formoterol-induced enhancement in power output during maximal sprinting is associated with increased rates of glycogenolysis and glycolysis that may counteract development of fatigue.

  9. Effect of Environment on Fatigue Behavior of a Nicalon(TM)/Si-N-C Ceramic Matrix Composite

    NASA Technical Reports Server (NTRS)

    Kalluri, Sreeramesh; Ojard, Greg C.; Verrilli, Michael J.; Kiraly, Louis J. (Technical Monitor)

    2002-01-01

    The effect of environmental exposure on the fatigue life of Nicalon(TM) /Si-N-C composite was investigated in this study. Test specimens with arrays of 1.8 mm diameter holes and two different open areas, 25 and 35%, were machined. Three environmental conditions were studied: 1) continuous fatigue cycling in air, 2) fatigue cycling in air alternating with humidity exposure, and 3) fatigue cycling in air alternating with exposure to a salt-fog environment. All fatigue testing on specimens with holes was performed with a load ratio, R = 0.05, and at a temperature of 910 C. In general, fatigue lives were shortest for specimens subjected to salt-fog exposure and longest for specimens subjected to continuous fatigue cycling in air. The fatigue data generated on the specimens with holes were compared with fatigue data generated in air on specimens with no holes. Fatigue strength reduction factors for different environmental conditions and open areas investigated in the study were calculated for the Nicalon(TM) /Si-N-C composite.

  10. Degradation in the Fatigue Resistance of Dentin by Bur and Abrasive Air-jet Preparations

    PubMed Central

    Majd, H.; Viray, J.; Porter, J.A.; Romberg, E.; Arola, D.

    2012-01-01

    The objective of this investigation was to distinguish whether the instruments commonly used for cutting dentin cause degradation in strength or fatigue behavior. Beams of coronal dentin were obtained from unrestored 3rd molars and subjected to either quasi-static or cyclic flexural loading to failure. The surfaces of selected beams were treated with a conventional straight-sided bur or with an abrasive air jet laden with glass particles. Under monotonic loading, there was no difference in the strength or Weibull parameters obtained for the control or treated beams. However, the fatigue strength of dentin receiving bur and air-jet treatments was significantly lower (p ≤ 0.0001) than that of the control. The bur treatment resulted in the largest overall degree of degradation, with nearly 40% reduction in the endurance limit and even more substantial decrease in the fatigue life. The methods currently used for cavity preparations substantially degrade the durability of dentin. PMID:22851284

  11. Fatigue-Resistance Enhancements by Glass-Forming Metallic Films

    SciTech Connect

    Liu, F. X.; Liaw, Peter K; Jiang, W. H.; Chiang, C L; Gao, Yanfei; Guan, Y F; Chu, J. P.; Rack, P. D.

    2007-01-01

    Zr-based glass-forming metallic films were coated on a 316L stainless steel and a Ni-based alloy by the magnetron-sputter deposition. Four-point-bending fatigue tests were conducted on those coated materials with the film surface on the tensile side. Results showed that the fatigue life and fatigue-endurance limit of the materials could be considerably improved, and the enhancements vary with the maximum applied stress and the substrate material. Fractographs showed that the film remained well adhered to the substrate even after the severe plastic deformation. Surface-roughness measurements indicated the improvement of the surface finishes due to the deposition of the glass-forming film. Nanoindentation test results suggested that the thin film exhibited both high yield strength and good ductility. The reduction of the surface roughness, good adhesion between the film and the substrate, and the excellent strength and ductility of the glass-forming metallic film are the major factors for the fatigue-resistance enhancements of the coated material. A micromechanical model is developed to illustrate the mechanisms of fatigue-resistance enhancements through the interaction between the amorphous film and the substrate slip bands.

  12. Reduction of [11C](+)3-MPB Binding in Brain of Chronic Fatigue Syndrome with Serum Autoantibody against Muscarinic Cholinergic Receptor

    PubMed Central

    Yamamoto, Shigeyuki; Ouchi, Yasuomi; Nakatsuka, Daisaku; Tahara, Tsuyoshi; Mizuno, Kei; Tajima, Seiki; Onoe, Hirotaka; Yoshikawa, Etsuji; Tsukada, Hideo; Iwase, Masao; Yamaguti, Kouzi; Kuratsune, Hirohiko; Watanabe, Yasuyoshi

    2012-01-01

    Background Numerous associations between brain-reactive antibodies and neurological or psychiatric symptoms have been proposed. Serum autoantibody against the muscarinic cholinergic receptor (mAChR) was increased in some patients with chronic fatigue syndrome (CFS) or psychiatric disease. We examined whether serum autoantibody against mAChR affected the central cholinergic system by measuring brain mAChR binding and acetylcholinesterase activity using positron emission tomography (PET) in CFS patients with positive [CFS(+)] and negative [CFS(−)] autoantibodies. Methodology Five CFS(+) and six CFS(−) patients, as well as 11 normal control subjects underwent a series of PET measurements with N-[11C]methyl-3-piperidyl benzilate [11C](+)3-MPB for the mAChR binding and N-[11C]methyl-4-piperidyl acetate [11C]MP4A for acetylcholinesterase activity. Cognitive function of all subjects was assessed by neuropsychological tests. Although the brain [11C](+)3-MPB binding in CFS(−) patients did not differ from normal controls, CFS(+) patients showed significantly lower [11C](+)3-MPB binding than CFS(−) patients and normal controls. In contrast, the [11C]MP4A index showed no significant differences among these three groups. Neuropsychological measures were similar among groups. Conclusion The present results demonstrate that serum autoantibody against the mAChR can affect the brain mAChR without altering acetylcholinesterase activity and cognitive functions in CFS patients. PMID:23240035

  13. Effect of Rivet Pitch upon the Fatigue Strength of Single-row Riveted Joints of 0.025- to 0.025-inch 24S-T Alclad

    NASA Technical Reports Server (NTRS)

    Seliger, Victor

    1943-01-01

    S-N curves at the range ratio of 0.2 were experimentally obtained for each of the following values of rivet pitch P as used in a single-row lap joint of 0.025- to 0.025-inch 24S-T alclad with one-eight AN430 round-head rivets: p=0.5, 0.75, 1.0, 1.5. Families of constant rivet pitch curves, which define the fatigue life for specimens studied, were developed. Curves showing the variation of the effective stress concentration factor in fatigue with rivet pitch and maximum load per rivet were also established.

  14. Experimental Investigations on Fatigue Damage and Residual Properties of Interacting Notched Woven E-Glass/Epoxy Composite

    NASA Astrophysics Data System (ADS)

    Bhaskara Rao, Pathakokila; Rama Krishna, Avasarala; Ramji, Koona; Satya Devi, Ambadipudi

    2015-10-01

    The interacting notched laminates of plain weave E-glass fiber reinforced with epoxy were fatigued at predetermined frequency in tension-tension to investigate the fatigue damage and residual properties. The results from stress-life curves summarize that damage growing around the notches due to stress concentration is the underlying cause for the variation in fatigue strengths among the geometrically different specimens considered. The residual strength and modulus decay with respect to cycle number at 50 % of the ultimate tensile strength were investigated. It is evident from the experimental data that the residual strength decreases with cycle number and increases due to redistribution of stress around the notches. The detailed study of the damage development under cyclic loads also explains the causes of modulus reduction for all the laminate geometries.

  15. Effect of the Content of Retained Austenite and Grain Size on the Fatigue Bending Strength of Steels Carburized in a Low-Pressure Atmosphere

    NASA Astrophysics Data System (ADS)

    Kula, P.; Dybowski, K.; Lipa, S.; Januszewicz, B.; Pietrasik, R.; Atraszkiewicz, R.; Wołowiec, E.

    2014-11-01

    The effect of the content of retained austenite and of the initial austenite grain size on high-cycle fatigue of two low-alloy steels 16MnCr5 and 17CrNi6-6 after carburizing in a low-pressure atmosphere (acetylene, ethylene and hydrogen) and subsequent high-pressure gas quenching is investigated.

  16. Strain gage attachment by spot welding reduces the fatigue strength of Ti-6Al-4V, Rene 41, and Inconel X

    NASA Technical Reports Server (NTRS)

    Imig, L. A.

    1972-01-01

    Fatigue tests were conducted with constant-amplitude axial stresses in the ratio of minimum to maximum stress of 0.05 (R=0.05). Specimens with and without strain gages were tested at 21 C, and superalloy specimens with and without strain gages were tested at 21 C and 815 C.

  17. Fatigue crack growth model RANDOM2 user manual. Appendix 1: Development of advanced methodologies for probabilistic constitutive relationships of material strength models

    NASA Technical Reports Server (NTRS)

    Boyce, Lola; Lovelace, Thomas B.

    1989-01-01

    FORTRAN program RANDOM2 is presented in the form of a user's manual. RANDOM2 is based on fracture mechanics using a probabilistic fatigue crack growth model. It predicts the random lifetime of an engine component to reach a given crack size. Details of the theoretical background, input data instructions, and a sample problem illustrating the use of the program are included.

  18. Effect of fabric orientation on the monotonic and fatigue behavior of a Nicalon{trademark}/alumina composite

    SciTech Connect

    Miriyala, N.; Liaw, P.K.; McHargue, C.J.

    1996-12-31

    Monotonic and cyclic fatigue tests were performed on a Nicalon{trademark} fiber reinforced alumina composite fabricated by the direct metal oxidation (DIMOX{trademark}) process, using four-point bend specimens at ambient temperature. It was observed that both monotonic flexural strength and fatigue threshold of the composite were higher when the load was applied parallel to the fabric plane, compared to loading normal to the fabric plane. The modulus reduction during the fatigue tests was also monitored. Fracture surfaces were examined to gain an insight into the composite failure modes.

  19. In vitro assessment of strength, fatigue durability, and disassembly of Ti6Al4V and CoCrMo necks in modular total hip replacements.

    PubMed

    Nganbe, Michel; Khan, Usman; Louati, Hakim; Speirs, Andrew; Beaulé, Paul E

    2011-04-01

    Modularity in total hip replacement offers advantages with regard to biomechanical adjustments and leg lengths. Recently, modular femoral necks were introduced as an added advantage to head modularity permitting further adjustments in femoral version as well as offset and ease of revision. Currently, most necks are made of Ti6Al4V for which cases of in vivo fractures and inseparable neck-stem junctions have been reported. Therefore, we investigated CoCrMo head-Ti6Al4V stem hip replacements with necks made of CoCrMo as an alternative to Ti6Al4V. We compared the two materials with respect to (1) compressive load bearing capacity; (2) fatigue durability; and (3) component distraction. We performed in vitro fatigue-pull-off, microscopy, fatigue durability and compression investigations. The CoCrMo neck showed a load bearing capacity of 18 kN, 38% higher than 13 kN for the Ti6Al4V neck. A fatigue load of 11.2 kN for 1 million cycle failure was achieved with CoCrMo translating into nearly 1000 times longer fatigue life compared to Ti6Al4V necks. The neck-stem distraction force showed large statistical variation and was similar for both neck materials. Overall, the results suggest a superiority of CoCrMo over Ti6Al4V as neck material with regard to mechanical behavior. However, the corrosion behavior was not appropriately assessed and necessitates additional investigations.

  20. High-Cycle Fatigue Properties at Cryogenic Temperatures in INCONEL 718

    NASA Astrophysics Data System (ADS)

    Ono, Y.; Yuri, T.; Sumiyoshi, H.; Takeuchi, E.; Matsuoka, S.; Ogata, T.

    2006-03-01

    High-cycle fatigue properties at 4 K, 20 K, 77 K and 293 K were investigated in forged-INCONEL 718 nickel-based superalloy with a mean gamma (γ) grain size of 25 μm. In the present material, plate-like delta phase precipitated at γ grain boundaries and niobium (Nb)-enriched MC type carbides precipitated coarsely throughout the specimens. The 0.2% proof stress and the tensile strength of this alloy increased with decreasing temperature, without decreasing elongation or reduction of area. High-cycle fatigue strengths also increased with decreasing temperature although the fatigue limit at each temperature didn't appear even around 107 cycles. Fatigue cracks initiated near the specimen surface and formed faceted structures around crack initiation sites. Fatigue cracks predominantly initiated from coarse Nb-enriched carbides and faceted structures mainly corresponded to these carbides. In lower stress amplitude tests, however, facets were formed through transgranular crack initiation and growth. These kinds of distinctive crack initiation behavior seem to lower the high-cycle fatigue strength below room temperature in the present material.

  1. An Investigation into Impacting Techniques for Simulating Foreign Object Damage and Their Influence on the Fatigue Limit Strength of Ti-6Al-4V

    DTIC Science & Technology

    2005-10-01

    G.Y., Scholtes, B. and Ritchie, R.O., "On the Influence of Mechanical Surface Treatments - Deep Rolling and Laser Shock Peening - on the Fatigue...has been handled in this and previous investigations through the use of stress relief annealing of a portion of the titanium specimens [5,6]. By...treated to the STOA condition. The result was an alpha-beta titanium alloy microstructure with acicular Widmanstätten structures. It is identical

  2. Postdialysis fatigue.

    PubMed

    Sklar, A H; Riesenberg, L A; Silber, A K; Ahmed, W; Ali, A

    1996-11-01

    To clarify the demographic and clinicolaboratory features of postdialysis fatigue (PDF), we enrolled 85 patients on maintenance hemodialysis in a cross-sectional study using validated questionnaires and chart review. Forty-three patients complained of fatigue after dialysis. On formal testing using the Kidney Disease Questionnaire, the PDF group had statistically greater severity of fatigue and somatic complaints than the group of patients without subjective fatigue (P = 0.03 and 0.04, respectively). On a scale measuring intensity of fatigue (1 = least to 5 = worst), the PDF group average was 3.4 +/- 1.2. PDF subjects reported that 80% +/- 25% of dialysis treatments were followed by fatigue symptoms. In 28 (65%) of patients, the symptoms started with the first dialysis treatment. They reported needing an average of 4.8 hours of rest or sleep to overcome the fatigue symptoms (range, 0 to 24 hours). There were no significant differences between patients with and without PDF in the following parameters: age; sex; type of renal disease; presence of diabetes mellitus, heart disease (congestive, ischemic), or chronic obstructive lung disease; blood pressure response to dialysis; type or adequacy of dialysis regimen; hematocrit; electrolytes; blood urea nitrogen; creatinine; cholesterol; albumin; parathyroid hormone; ejection fraction; and use of antihistamines, benzodiazepines, and narcotics. In the fatigue group, there was significantly greater use of antihypertensive medications known to have fatigue as a side effect (P = 0.007). Depression was more common in the fatigue group by Beck Depression score (11.6 +/- 8.0 v 7.8 +/- 6.3; P = 0.02). We conclude that (1) postdialysis fatigue is a common, often incapacitating symptom in patients on chronic extracorporeal dialysis; (2) no routinely measured parameter of clinical or dialytic function appears to predict postdialysis fatigue; and (3) depression is highly associated with postdialysis fatigue, but the cause

  3. Corrosion fatigue of surgical stainless steel in synthetic physiological solution.

    PubMed

    Cahoon, J R; Holte, R N

    1981-03-01

    Fatigue tests conducted both in air and synthetic physiological solution show that the fatigue strength of surgical stainless steel in synthetic physiological solution is about 10% lower than the strength in air for a given endurance level. It is proposed that surgical stainless steel which is normally passive in physiological solution suffers corrosion fatigue because of susceptibility to crevice corrosion which occurs at extrusions and intrusions (crevices) on the surface thereby shortening the crack initiation time and the fatigue life.

  4. Preliminary Fatigue Studies on Aluminum Alloy Aircraft Engines

    NASA Technical Reports Server (NTRS)

    1938-01-01

    Preliminary information on the complex subject of the fatigue strength of fabricated structural members for aircraft is presented in the test results obtained on several different types of airship girders subjected to axial tension and compression in a resonance fatigue machine. A description of this machine as well as numerous photographs of the fatigue failures are given. There is also presented an extended bibliography on the subject of fatigue strength.

  5. The Effect of Fatigue on Electromyographic Characteristics during Obstacle Crossing of Different Heights in Young Adults

    PubMed Central

    Antonopoulos, Christos; Patikas, Dimitrios; Koutlianos, Nikolaos; Papadopoulou, Sofia D.; Chatzopoulos, Dimitrios; Hatzikotoulas, Konstantinos; Bassa, Eleni; Kotzamanidis, Christos

    2014-01-01

    The aim of this study was to investigate the effect of fatigue on electromyographic (EMG) parameters of healthy young adults during obstacle crossing of two different heights. Twelve untrained male adults (23 ± 5 years of age) were fatigued running on a treadmill with increasing speed and inclination and walked over an obstacle with a height set at 10% and 20% of each individual’s lower limb length. Maximal plantar flexor torque and EMG of the medial gastrocnemius, soleus, and tibialis anterior muscles of the trailing limb were assessed during obstacle crossing. Data were captured before, immediately after and 5 minutes after a fatigue session. Fatigue induced significant reduction on the plantar flexor torque output immediately after and 5 minutes after exhaustion. After fatigue gait speed was not affected, the minimum distance between the obstacle and the trailing or leading foot remained unchanged, and the trailing foot contacted the ground closer to the obstacle immediately after fatigue. Regarding the EMG, medial gastrocnemius became after fatigue more active during swing phase when increasing the obstacle height, whereas this was not the case before or 5 minutes after fatigue. No other significant difference was observed for any of the examined muscles. It is concluded that the assessed fatigue protocol induced only minimal changes in the EMG activity of the examined muscles during obstacle crossing. Therefore, it is suggested that the neuromuscular system of healthy young individuals is able to respond to the decreased force capacity after fatigue during obstacle crossing of heights up to the 20% of the limb length. Key Points Exhaustion after running on a treadmill induces significant reduction in plantar flexion strength and changes in the positioning of the feet relative to the obstacle during obstacle crossing. EMG activity of the calf muscles of the trailing limb does not change significantly after fatigue during the stance phase During swing phase

  6. Fatigue crack initiation and damage evolution of unnotched titanium matrix composites

    NASA Astrophysics Data System (ADS)

    Her, Yung-Chiun

    Fatigue crack initiation, multiplication, matrix crack density evolution, and stiffness reduction of several unnotched SCS-6 silicon carbide fiber-reinforced titanium and titanium aluminide matrix composites have been investigated experimentally and analytically. The effects of the thickness of the interfacial reaction layer and fiber coating on fatigue crack initiation life, crack growth rate, and fatigue damage evolution of the composites were examined. Growth behavior of small fatigue cracks in TMCs was also studied carefully. It was found that fatigue crack initiation and multiplication of TMCs are strongly influenced by the thickness of the interfacial reaction layer. Fatigue crack will not develop from the micro-notches in the interfacial reaction layer until the thickness of the reaction layer exceeds a critical value. Matrix crack growth rate is affected by the applied stress level, however, it appears to be independent of the matrix material and heat treatment. The combined effects of fatigue crack multiplication and propagation result in stiffness degradation of the composites. The Ag/Ta duplex fiber coating significantly improves the transverse tensile and flexural creep resistance of the SCS-6/Ti-25-10 composite. However, the Ag/Ta-coated composite exhibits a shorter crack initiation life, higher number of matrix cracks, and higher crack growth rate than the uncoated composite. The embrittlement of the residual Ag/Ta layer suggests that Ag is not an effective diffusion barrier to prevent the interdiffusion of atomic species across the interface. The high interfacial cracking density and high interfacial bond strength in the Ag/Ta-coated SCS-6/Tisb3Al composite are believed to be responsible for its poor fatigue damage tolerance. For titanium alloys, the threshold intensity factor range, Delta Ksbth, for small fatigue cracks in the matrix alloys of TMCs has been determined to be between 0.9 ˜ 1.0 MPa*msp{1/2} which is much lower than that for long

  7. High Speed Research Program Sonic Fatigue

    NASA Technical Reports Server (NTRS)

    Rizzi, Stephen A. (Technical Monitor); Beier, Theodor H.; Heaton, Paul

    2005-01-01

    The objective of this sonic fatigue summary is to provide major findings and technical results of studies, initiated in 1994, to assess sonic fatigue behavior of structure that is being considered for the High Speed Civil Transport (HSCT). High Speed Research (HSR) program objectives in the area of sonic fatigue were to predict inlet, exhaust and boundary layer acoustic loads; measure high cycle fatigue data for materials developed during the HSR program; develop advanced sonic fatigue calculation methods to reduce required conservatism in airframe designs; develop damping techniques for sonic fatigue reduction where weight effective; develop wing and fuselage sonic fatigue design requirements; and perform sonic fatigue analyses on HSCT structural concepts to provide guidance to design teams. All goals were partially achieved, but none were completed due to the premature conclusion of the HSR program. A summary of major program findings and recommendations for continued effort are included in the report.

  8. Cyclic Hardening Behaviors and Reduction in Fatigue Life of Type 316LN Austenitic Stainless Steel in 310 deg. C Low Oxygen-Containing Water

    SciTech Connect

    Hyunchul Cho; Byoung Koo Kim; Changheuil Jang; In Sup Kim; Seung Mo Hong

    2006-07-01

    Low cycle fatigue tests were conducted to investigate the cyclic behavior and the fatigue life of type 316LN stainless steel (SS) at various strain rates in 310 deg. C low oxygen-containing water. The strain rates were 0.008, 0.04, and 0.4%/s, and the applied strain amplitude was varied from 0.4 to 1.0%. The dissolved oxygen concentration of the test water was maintained below 1 ppb. The test material in 310 deg. C low oxygen-containing water experienced a primary hardening, followed by a softening. From our data, we confirm the occurrence of the dynamic strain aging (DSA), and finally it can be considered that the primary hardening was brought about by the DSA. The secondary hardening was observed distinctly for 0.4%/s and 0.4%. The improvement of fatigue resistance and the secondary hardening occurred under the same loading condition. Therefore, the improvement of fatigue resistance may be related to the occurrence of the secondary hardening. When the secondary hardening occurs, intense slip bands are replaced by the corduroy structure. The corduroy structure can induce retardation of crack initiation, and ultimately the fatigue resistance is improved. Comparative study between the fatigue life generated in the current study and some prediction models was performed to evaluate the reliability of our data. (authors)

  9. Composite materials: Fatigue and fracture. Vol. 3

    NASA Technical Reports Server (NTRS)

    O'Brien, T. K. (Editor)

    1991-01-01

    The present volume discusses topics in the fields of matrix cracking and delamination, interlaminar fracture toughness, delamination analysis, strength and impact characteristics, and fatigue and fracture behavior. Attention is given to cooling rate effects in carbon-reinforced PEEK, the effect of porosity on flange-web corner strength, mode II delamination in toughened composites, the combined effect of matrix cracking and free edge delamination, and a 3D stress analysis of plain weave composites. Also discussed are the compression behavior of composites, damage-based notched-strength modeling, fatigue failure processes in aligned carbon-epoxy laminates, and the thermomechanical fatigue of a quasi-isotropic metal-matrix composite.

  10. 76 FR 74655 - Damage Tolerance and Fatigue Evaluation of Composite Rotorcraft Structures

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-01

    ... complex materials that have unique advantages in fatigue strength, weight, and tolerance to damage. The... static strength of composite rotorcraft structures using a damage tolerance evaluation, or a fatigue... also harmonize this standard with international standards for evaluating the fatigue strength of...

  11. Development of the asperity-matrix structure in fault zones: a model for strength reduction and generation of earthquakes

    NASA Astrophysics Data System (ADS)

    Takeshita, T.

    2014-12-01

    Seismologists have now believed that the fault interface is characterized by the asperity-matrix structure, where the upper and lower plates are strongly coupled at the asperity, and the matrix, which surrounds the asperity, is deformed by creeping. Earthquakes are generated by dynamic rupture only in the non-creeping hard asperity, where the strain energy is accumulated if the asperity and matrix are mechanically coupled to a certain degree. In this presentation, we will argue that this structure is developed as brittle fracturing proceeds aided by dissolution-precipitation creep in particular at the brittle-ductile transition zone, which leads to the strength reduction and seimogenesis in both crust and subduction zones. We have been studying deformation processes and mechanisms in rocks at brittle-ductile transition conditions, based on microstructural analyses in naturally deformed rocks. For example, we reported that pervasive micro-faulting in the high-P/T Sambagawa quartz schist at brittle-ductile transition conditions, where a volume fraction of micro-shear zones consisting of both very-fine grained dynamically recrystallized quartz and white mica increased with increasing deformation (Takeshita and El-Fakharani, 2013). We believe that the resultant structure, "undeformed lenses surrounded by microshear zones" can be correlated with the asperity-matrix structure in the thin section scale, which could have occurred in the mesoscopic to macroscopic scales (cf. Schrank et al., 2008). It is inferred that the rocks became softened with increasing volume fraction of micro-shear zones, because dissolution-precipitation creep could have occurred at low differential stresses in the sheared zones. Further, cataclasites were formed along the Median Tectonic Line in the Cretaceous to Paleogene, where new minerals precipitated from fluids in the space created by fracturing at the conditions of brittle-ductile transition. The fracturing was accompanied by element

  12. Neural Mechanism of Chronic Fatigue Syndrome

    DTIC Science & Technology

    2004-04-01

    Chronic fatigue syndrome, Gulf War Syndrome, functional MRI, 44 electroencephalogram(EEG) Electromyogram( EMG ), brain motor activity, 16. PRICE CODE...analysis. We have developed two software packages for the analysis of electroencephalogram (EEG) and electromyogram ( EMG ) data. We used these software...electromyography ( EMG ); voluntary muscle contraction; muscle fatigue; muscle strength. Siernionow et a]. Page 2 Motor-Related Cortical Potential in Chronic Fatigue

  13. Probabilistic fatigue methodology for six nines reliability

    NASA Technical Reports Server (NTRS)

    Everett, R. A., Jr.; Bartlett, F. D., Jr.; Elber, Wolf

    1990-01-01

    Fleet readiness and flight safety strongly depend on the degree of reliability that can be designed into rotorcraft flight critical components. The current U.S. Army fatigue life specification for new rotorcraft is the so-called six nines reliability, or a probability of failure of one in a million. The progress of a round robin which was established by the American Helicopter Society (AHS) Subcommittee for Fatigue and Damage Tolerance is reviewed to investigate reliability-based fatigue methodology. The participants in this cooperative effort are in the U.S. Army Aviation Systems Command (AVSCOM) and the rotorcraft industry. One phase of the joint activity examined fatigue reliability under uniquely defined conditions for which only one answer was correct. The other phases were set up to learn how the different industry methods in defining fatigue strength affected the mean fatigue life and reliability calculations. Hence, constant amplitude and spectrum fatigue test data were provided so that each participant could perform their standard fatigue life analysis. As a result of this round robin, the probabilistic logic which includes both fatigue strength and spectrum loading variability in developing a consistant reliability analysis was established. In this first study, the reliability analysis was limited to the linear cumulative damage approach. However, it is expected that superior fatigue life prediction methods will ultimately be developed through this open AHS forum. To that end, these preliminary results were useful in identifying some topics for additional study.

  14. Effects of Hot Rolling on Low-Cycle Fatigue Properties of Zn-22 wt.% Al Alloy at Room Temperature

    NASA Astrophysics Data System (ADS)

    Dong, X. H.; Cao, Q. D.; Ma, S. J.; Han, S. H.; Tang, W.; Zhang, X. P.

    2016-09-01

    The effects of the reduction ratio (RR) on the low-cycle fatigue (LCF) properties of the Zn-22 wt.% Al (Zn-22Al) alloy were investigated. Various grain sizes from 0.68 to 1.13 μm were obtained by controlled RRs. Tensile and LCF tests were carried out at room temperature. Superplasticity and cyclic softening were observed. Strength and ductility of the rolled Zn-22Al alloy increased with the RR, owing to the decrease in its grain size. The RR did not affect the cyclic softening behavior of the alloy. The fatigue life of the alloy decreased with increasing strain amplitude, while the fatigue life first decreased and then increased with increasing RR. The longest fatigue life was observed for the alloy rolled at a RR of 60%. A bilinear Coffin-Manson relationship was observed to hold true for this alloy.

  15. 14 CFR 27.571 - Fatigue evaluation of flight structure.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fatigue evaluation of flight structure. 27... AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Strength Requirements Fatigue Evaluation § 27.571 Fatigue evaluation of flight structure. (a) General. Each portion of the flight structure...

  16. 14 CFR 27.571 - Fatigue evaluation of flight structure.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Fatigue evaluation of flight structure. 27... AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Strength Requirements Fatigue Evaluation § 27.571 Fatigue evaluation of flight structure. (a) General. Each portion of the flight structure...

  17. 14 CFR 27.571 - Fatigue evaluation of flight structure.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Fatigue evaluation of flight structure. 27... AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Strength Requirements Fatigue Evaluation § 27.571 Fatigue evaluation of flight structure. (a) General. Each portion of the flight structure...

  18. 14 CFR 27.571 - Fatigue evaluation of flight structure.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Fatigue evaluation of flight structure. 27... AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Strength Requirements Fatigue Evaluation § 27.571 Fatigue evaluation of flight structure. (a) General. Each portion of the flight structure...

  19. 14 CFR 27.571 - Fatigue evaluation of flight structure.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Fatigue evaluation of flight structure. 27... AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Strength Requirements Fatigue Evaluation § 27.571 Fatigue evaluation of flight structure. (a) General. Each portion of the flight structure...

  20. Strength of Rewelded Inconel 718

    NASA Technical Reports Server (NTRS)

    Bayless, E.; Lovoy, C. V.; Mcllwain, M. C.; Munafo, P.

    1982-01-01

    Inconel 718, nickel-based alloy used extensively for high-temperature structural service, welded repeatedly without detriment to its strength. According to NASA report, tests show 12 repairs on same weld joint do not adversely affect ultimate tensile strenth, yield strength, fatigue strength, metallurgical grain structures, or ability of weld joint to respond to post weld heat treatments.

  1. Comparison of the Fatigue Behavior of Copper Alloys

    NASA Technical Reports Server (NTRS)

    Lerch, Brad; Ellis, David

    2006-01-01

    This presentation is about the development of advanced copper alloys with high thermal conductivity, good creep strength, and adequate fatigue strength for rocket engine applications. It also focuses on the commercial availability of the advanced alloy-GRCop-84 developed at NASA-GRC. The presentation's conclusions are that GRCop-84 has equivalent or better isothermal fatigue lives compared to other commercially available copper alloys, that GRCop-84 can be fabricated in various forms with minimal change in the fatigue lives, that it is equivalent in sothermal, fatigue to AMZIRC at moderate temperatures, and that Narloy-Z is equivalent in fatigue capabilities to GRCop-84 at 400C and below.

  2. Chronic Fatigue Syndrome

    MedlinePlus

    Chronic fatigue syndrome (CFS) is a disorder that causes extreme fatigue. This fatigue is not the kind of tired feeling that ... activities. The main symptom of CFS is severe fatigue that lasts for 6 months or more. You ...

  3. Fatigue behavior and encrustation characteristics of nanocrystalline metals

    NASA Astrophysics Data System (ADS)

    Lai, Li-Chung

    The nanocrstalline (NC) metals have been reported to have high mechanical performance owing to it's small grain interior and a large volume fraction of grain boundary (GB) atoms. Small grain leads to the forbidden dislocation activities in grain interior while GB activities become dominant due to a higher volume fraction of GB atoms. Regarding the fatigue response to nanocrstalline metals, it has been reported that decreasing grain led to both significantly improvement on the fatigue-endurance limit and deleterious effect on the resistance to subcritical fatigue crack propagation. The increases endurance limit has been attributed to the greater resistance to fatigue crack initiation at near-surface regions. On the other hand, the less resistance to fatigue crack growth were resulted from less tortuous fatigue crack profiles supported by the deflection/closure theory. However, it has never been studied the influence of proceeding and pre-existing defects on the fatigue performance considering the difference response of NC structure from than coarse grain (CG) structure. In the present work, the influence of electrical discharge machining (EDM) and surface defects on the fatigue behavior of both conventional cold-rolled CG and electro-deposited (ED) NC Ni were investigated. The experimental results revealed considerable influence by EDM on the fatigue strength of NC Ni, while it has little or no affect on that for CG Ni. Specifically, EDM led to a 50 to 75% reduction in fatigue strength for NC Ni despite a relatively small depth of EDM affected material (˜ 1% of width). Rationale for this effect can be attributed to grain growth, microcracks, and a higher sulfur content at the GBs in the EDM affected zone. In addition, the pre-existing surface defects that appear to be due to impurity segregation near the electro-deposition substrate significantly reduced the fatigue resistance of ED NC Ni. In order to understand the fatigued behavior in NC Ni, crack tip grain

  4. Association between respiratory muscle strength and reduction of arterial blood pressure levels after aerobic training in hypertensive subjects

    PubMed Central

    Galdino, Giovane; Silva, Andreia Maria; Bogão, José Angelo; Braz de Oliveira, Marcos Paulo; Araújo, Hayslenne Andressa Gonçalves de Oliveira; Oliveira, Maísa Sodoco; Maldonado, Ana Clara Desiderio; Ulisses de Oliveira, Herick; Borges, Juliana Bassalobre Carvalho

    2016-01-01

    [Purpose] The purpose of present study was associate the increase of respiratory muscle strength with blood pressure levels in hypertensive subjects who underwent an aerobic exercise program. [Subjects and Methods] 90 hypertensive subjects were divided in two groups: intervention and control. All participants had an interview with a physiotherapist and were evaluated by 6-minute walk test, maximal inspiratory pressure, maximal expiratory pressure, heart rate, systolic blood pressure and diastolic blood pressure, before and after the 8 weeks. In the intervention group, the subjects underwent aerobic exercise program, 2 times a week for 8 weeks [Results] After the program, the levels of blood pressure were significantly reduced and the distance walked in the 6-minute walk test and the respiratory muscle strength were increased, compared to pre intervention and control group values. However, there was no correlation between the results provided by 6-minute walk test, maximal inspiratory pressure and maximal expiratory pressure with systolic arterial blood pressure levels. Nonetheless, the distance walked correlated with respiratory muscle strength values, in the intervention group. [Conclusion] The present study demonstrated that the aerobic training was effective in reducing the arterial blood pressure in hypertensive subjects associated with an improvement of physical conditioning and respiratory muscle strength. PMID:28174465

  5. Fatigue reliability based optimal design of planar compliant micropositioning stages

    NASA Astrophysics Data System (ADS)

    Wang, Qiliang; Zhang, Xianmin

    2015-10-01

    Conventional compliant micropositioning stages are usually developed based on static strength and deterministic methods, which may lead to either unsafe or excessive designs. This paper presents a fatigue reliability analysis and optimal design of a three-degree-of-freedom (3 DOF) flexure-based micropositioning stage. Kinematic, modal, static, and fatigue stress modelling of the stage were conducted using the finite element method. The maximum equivalent fatigue stress in the hinges was derived using sequential quadratic programming. The fatigue strength of the hinges was obtained by considering various influencing factors. On this basis, the fatigue reliability of the hinges was analysed using the stress-strength interference method. Fatigue-reliability-based optimal design of the stage was then conducted using the genetic algorithm and MATLAB. To make fatigue life testing easier, a 1 DOF stage was then optimized and manufactured. Experimental results demonstrate the validity of the approach.

  6. Fatigue performance of metastable β titanium alloys: Effects of microstructure and surface finish

    NASA Astrophysics Data System (ADS)

    Kocan, Marcin; Wagner, Lothar; Rack, H. J.

    2005-12-01

    This investigation examined the role of microstructure and surface finish on the high cycle fatigue (HCF) performance of TIMETAL LCB (Ti-6.8Mo-4.5Fe-1.5Al). The as-received microstructure of LCB consisted of elongated β grains with a semicontinuous grain boundary α layer. In contrast, a fine equiaxed β + spheroidized α LCB microstructure was achieved by hot swaging and solution (recrystallization) anneal. The latter modification of the prior β grain structure, together with the size, morphology, and distribution of the primary α phase, resulted in a significant enhancement in the tensile and HCF properties. Furthermore, prestraining (PS), as would be expected during the fabrication of an automotive coil spring, and prior to aging for 30 min at temperatures between 500 and 550 °C, led to additional increases in tensile strength. In contrast, the HCF performance was always reduced when PS prior to aging was included in the overall processing procedure. Finally, shot-peening and roller-burnishing both resulted in an increased fatigue life in the finite life regimen; however, significant reductions in the 107 cycle fatigue strengths were observed when these procedures were used. These observations have been explained by including the effect of process-induced residual tensile stresses in the fatigue analysis, resulting in subsurface fatigue crack nucleation.

  7. Association among functional-movement ability, fatigue, sedentary time, and fitness in 40 years and older active duty military personnel.

    PubMed

    Kennedy-Armbruster, Carol; Evans, Ellen M; Sexauer, Lisa; Peterson, James; Wyatt, William

    2013-12-01

    Identifying potential modifiable determinants of functional movement ability and fatigue may inform efforts to maintain constant physical readiness, especially in active duty military over 40 years of age, who are largely sedentary throughout their work day. The primary aim of this study was to determine the associations among conventional fitness measures (body composition, flexibility, and strength), sedentary behavior (sitting time), functional movement ability, and fatigue in military personnel. Volunteer active duty personnel 40 years of age and older (n = 569 males; n = 121 females; mean ± SD for total sample = 44.5 ± 4.1 years) were assessed for adiposity (%Fat), strength, flexibility, self-reported sitting time, perceived fatigue using the fatigue severity scale, and functional movement ability using the functional movement screening criteria. Greater flexibility was associated with better functional movement screening scores (r = 0.34, p < 0.05), and waist circumference and %Fat were inversely related to function (r = -0.26 and -0.21, p < 0.05). Furthermore, less sitting time (p < 0.001) was associated with less fatigue. Our data suggest that exercise training, reductions in daily sitting time, and weight management may be viable intervention targets to enhance functional movement ability and reduce fatigue in 40+ year old active duty military personnel.

  8. Methods for the assessment of peripheral muscle fatigue and its energy and metabolic determinants in COPD.

    PubMed

    Rondelli, Rafaella Rezende; Dal Corso, Simone; Simões, Alexandre; Malaguti, Carla

    2009-11-01

    It has been well established that, in addition to the pulmonary involvement, COPD has systemic consequences that can lead to peripheral muscle dysfunction, with greater muscle fatigue, lower exercise tolerance and lower survival in these patients. In view of the negative repercussions of early muscle fatigue in COPD, the objective of this review was to discuss the principal findings in the literature on the metabolic and bioenergy determinants of muscle fatigue, its functional repercussions, as well as the methods for its identification and quantification. The anatomical and functional substrate of higher muscle fatigue in COPD appears to include lower levels of high-energy phosphates, lower mitochondrial density, early lactacidemia, higher serum ammonia and reduced muscle perfusion. These alterations can be revealed by contraction failure, decreased firing rates of motor units and increased recruitment of motor units in a given activity, which can be functionally detected by a reduction in muscle strength, power and endurance. This review article also shows that various types of muscle contraction regimens and protocols have been used in order to detect muscle fatigue in this population. With this understanding, rehabilitation strategies can be developed in order to improve the resistance to muscle fatigue in this population.

  9. The tensile fatigue of wire rope: A new approach

    SciTech Connect

    Thorpe, T.W.; Rance, A.

    1983-05-01

    The fatigue behaviour in air and seawater of zinc coated steel wire taken from a 40 mm diameter wire rope has been studied. Seawater had little effect on short term tensile strength but it reduced fatigue life by an amount which increased with increasing mean stress and decreasing test frequency. The application of fretting during fatigue testing resulted in very low endurances, which were similar to those measured in fatigue tests on wire ropes.

  10. Fatigue tests on big structure assemblies of concorde aircraft

    NASA Technical Reports Server (NTRS)

    Nguyen, V. P.; Perrais, J. P.

    1972-01-01

    Fatigue tests on structural assemblies of the Concorde supersonic transport aircraft are reported. Two main sections of the aircraft were subjected to pressure, mechanical load, and thermal static tests. The types of fatigue tests conducted and the results obtained are discussed. It was concluded that on a supersonic aircraft whose structural weight is a significant part of the weight analysis, many fatigue and static strength development tests should be made and fatigue and thermal tests of the structures are absolutely necessary.

  11. Thermal Fatigue and Fracture Behavior of Ceramic Thermal Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Zhu, Dong-Ming; Choi, Sung R.; Miller, Robert A.

    2001-01-01

    Thermal fatigue and fracture behavior of plasma-sprayed ceramic thermal barrier coatings has been investigated under high heat flux and thermal cyclic conditions. The coating crack propagation is studied under laser heat flux cyclic thermal loading, and is correlated with dynamic fatigue and strength test results. The coating stress response and inelasticity, fatigue and creep interactions, and interface damage mechanisms during dynamic thermal fatigue processes are emphasized.

  12. Chronic Fatigue Syndrome (CFS): Managing Activities and Exercise

    MedlinePlus

    ... Fatigue Syndrome (CFS) Share Compartir Managing Activities and Exercise On this Page Avoiding Extremes Developing an Activity ... recent manageable level of activity. Strength and Conditioning Exercises Strength and conditioning exercises are an important component ...

  13. 75 FR 793 - Damage Tolerance and Fatigue Evaluation of Composite Rotorcraft Structures

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-06

    ... amendment would require evaluation of fatigue and residual static strength of composite rotorcraft... static or fatigue loads. The proposal would require consideration of the effects of fatigue damage on... applicant must show that catastrophic failure due to static and fatigue loads, considering the intrinsic...

  14. 14 CFR 29.571 - Fatigue Tolerance Evaluation of Metallic Structure.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Fatigue Tolerance Evaluation of Metallic... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Strength Requirements Fatigue Evaluation § 29.571 Fatigue Tolerance Evaluation of Metallic Structure. (a) A fatigue tolerance evaluation...

  15. Isothermal fatigue of an aluminide-coated single-crystal superalloy: Part I

    NASA Astrophysics Data System (ADS)

    Totemeier, T. C.; King, J. E.

    1996-02-01

    The isothermal fatigue behavior of a high-activity aluminide-coated single-crystal superalloy was studied in air at test temperatures of 600 °, 800 °, and 1000 °. Tests were performed using cylindrical specimens under strain control at ≈0.25 Hz; total strain ranges from 0.5 to 1.6 pct were investigated. At 600 °, crack initiation occurred at brittle coating cracks, which led to a significant reduction in fatigue life compared to the uncoated alloy. Fatigue cracks grew from the brittle coating cracks initially in a stage II manner with a subsequent transition to crystallographic stage I fatigue. At 800 ° and 1000 °, the coating failed quickly by a fatigue process due to the drastic reduction in strength above 750 °, the ductile-brittle transition temperature. These cracks were arrested or slowed by oxidation at the coating-substrate interface and only led to a detriment in life relative to the uncoated material for total strain ranges of 1.2 pct and above 800 °. The presence of the coating was beneficial at 800 ° for total strain ranges less than 1.2 pct. No effect of the coating was observed at 1000 °. Crack growth in the substrate at 800 ° was similar to 600 °; at 1000 °, greater plasticity and oxidation were observed and cracks grew exclusively in a stage II manner.

  16. Isothermal fatigue of an aluminide-coated single-crystal superalloy. Part 1

    SciTech Connect

    Totemeier, T.C.; King, J.E.

    1996-02-01

    The isothermal fatigue behavior of a high-activity aluminide-coated single-crystal superalloy was studied in air at test temperatures of 600 C, 800 C, and 1,000 C. Tests were performed using cylindrical specimens under strain control at {approximately}0.25 Hz; total strain ranges from 0.5 to 1.6% were investigated. At 600 C, crack initiation occurred at brittle coating cracks, which led to a significant reduction in fatigue life compared to the uncoated alloy. Fatigue cracks grew from the brittle coating cracks initially in a stage 2 manner with a subsequent transition to crystallographic stage 1 fatigue. At 800 C and 1,000 C, the coating failed quickly by a fatigue process due to the drastic reduction in strength above 750 C, the ductile-brittle transition temperature. These cracks were arrested or slowed by oxidation at the coating-substrate interface and only led to a detriment in life relative to the uncoated material for total strain ranges of 1.2% and above 800 C. The presence of the coating was beneficial at 800 C for total strain ranges less than 1.2%. No effect of the coating was observed at 1,000 C. Crack growth in the substrate at 800 C was similar to 600 C; at 1,000 C, greater plasticity and oxidation were observed and cracks grew exclusively in a stage 2 manner.

  17. Development and characterization of fatigue resistant Aramid reinforced aluminium laminates (ARALL) for fatigue Critical aircraft components

    NASA Astrophysics Data System (ADS)

    Qaiser, M. H.; Umar, S.; Nauman, S.

    2014-06-01

    The structural weight of an aircraft has always been a controlling parameter that governs its fuel efficiency and transport capacity. In pursuit of achieving light-weight aircraft structures, high design stress levels have to be adopted and materials with high specific strength such as Aluminum etc. are to be deployed. However, an extensive spectrum of fatigue load exists at the aircraft wings and other aerodynamic components that may cause initiation and propagation of fatigue cracks and concludes in a catastrophic rupture. Fatigue is therefore the limiting design parameter in such cases and materials with high fatigue resistance are then required. A major improvement in the fatigue behavior was observed by laminating Kevlar fibers with Aluminum using epoxy. ARALL (Aramid Reinforced ALuminum Laminates) is a fatigue resistant hybrid composite that consists of layers of thin high strength aluminum alloy sheets surface bonded with aramid fibers. The intact aramid fibers tie up the fatigue cracks, thus reducing the stress intensity factor at the crack tip as a result of which the fatigue properties of can be enhanced with orders of magnitude as compared to monolithic high strength Aluminum alloy sheets. Significant amount of weight savings can be achieved in fatigue critical components in comparison with the traditional materials used in aircraft.

  18. Acoustic fatigue of carbon fibre structures

    NASA Astrophysics Data System (ADS)

    Mueller, G.; Gruenewald, M.

    1994-09-01

    Based on the acoustic fatigue endurance curve of CFRP-probes (Carbon Fibre Reinforced Plastic) obtained within the BRITE EURAM PROGRAMME - ACOUFAT further investigations have been carried out with respect to (1) nonlinearities in the measurements for the calibration of the different transducers; (2) effects of residual strength for the coupons; (3) effects of moisture and temperature in the material due to storage and testing in humid environment. For one chosen coupon type, the sum of these effects leads to a reduction of the allowable strain in the range of high cycles by a factor of approximately 4 compared to the value obtained originally for the coupon using the 2 percent failure criterion and tested at room temperature. The modifications are considered step by step and the resulting curve is given in this paper.

  19. Isothermal Fatigue, Damage Accumulation, and Life Prediction of a Woven PMC

    NASA Technical Reports Server (NTRS)

    Gyekenyesi, Andrew L.

    1998-01-01

    This dissertation focuses on the characterization of the fully reversed fatigue behavior exhibited by a carbon fiber/polyimide resin, woven laminate at room and elevated temperatures. Nondestructive video edge view microscopy and destructive sectioning techniques were used to study the microscopic damage mechanisms that evolved. The residual elastic stiffness was monitored and recorded throughout the fatigue life of the coupon. In addition, residual compressive strength tests were conducted on fatigue coupons with various degrees of damage as quantified by stiffness reduction. Experimental results indicated that the monotonic tensile properties were only minimally influenced by temperature, while the monotonic compressive and fully reversed fatigue properties displayed noticeable reductions due to the elevated temperature. The stiffness degradation, as a function of cycles, consisted of three stages; a short-lived high degradation period, a constant degradation rate segment composing the majority of the life, and a final stage demonstrating an increasing rate of degradation up to failure. Concerning the residual compressive strength tests at room and elevated temperatures, the elevated temperature coupons appeared much more sensitive to damage. At elevated temperatures, coupons experienced a much larger loss in compressive strength when compared to room temperature coupons with equivalent damage. The fatigue damage accumulation law proposed for the model incorporates a scalar representation for damage, but admits a multiaxial, anisotropic evolutionary law. The model predicts the current damage (as quantified by residual stiffness) and remnant life of a composite that has undergone a known load at temperature. The damage/life model is dependent on the applied multiaxial stress state as well as temperature. Comparisons between the model and data showed good predictive capabilities concerning stiffness degradation and cycles to failure.

  20. State of degradation in archeological oak from the 17th century Vasa ship: substantial strength loss correlates with reduction in (holo)cellulose molecular weight.

    PubMed

    Bjurhager, Ingela; Halonen, Helena; Lindfors, Eva-Lisa; Iversen, Tommy; Almkvist, Gunnar; Gamstedt, E Kristofer; Berglund, Lars A

    2012-08-13

    In 1628, the Swedish warship Vasa capsized on her maiden voyage and sank in the Stockholm harbor. The ship was recovered in 1961 and, after polyethylene glycol (PEG) impregnation, it was displayed in the Vasa museum. Chemical investigations of the Vasa were undertaken in 2000, and extensive holocellulose degradation was reported at numerous locations in the hull. We have now studied the longitudinal tensile strength of Vasa oak as a function of distance from the surface. The PEG-content, wood density, and cellulose microfibril angle were determined. The molar mass distribution of holocellulose was determined as well as the acid and iron content. A good correlation was found between the tensile strength of the Vasa oak and the average molecular weight of the holocellulose, where the load-bearing cellulose microfibril is the critical constituent. The mean tensile strength is reduced by approximately 40%, and the most affected areas show a reduction of up to 80%. A methodology is developed where variations in density, cellulose microfibril angle, and PEG content are taken into account, so that cell wall effects can be evaluated in wood samples with different rate of impregnation and morphologies.

  1. Strength Modeling Report

    NASA Technical Reports Server (NTRS)

    Badler, N. I.; Lee, P.; Wong, S.

    1985-01-01

    Strength modeling is a complex and multi-dimensional issue. There are numerous parameters to the problem of characterizing human strength, most notably: (1) position and orientation of body joints; (2) isometric versus dynamic strength; (3) effector force versus joint torque; (4) instantaneous versus steady force; (5) active force versus reactive force; (6) presence or absence of gravity; (7) body somatotype and composition; (8) body (segment) masses; (9) muscle group envolvement; (10) muscle size; (11) fatigue; and (12) practice (training) or familiarity. In surveying the available literature on strength measurement and modeling an attempt was made to examine as many of these parameters as possible. The conclusions reached at this point toward the feasibility of implementing computationally reasonable human strength models. The assessment of accuracy of any model against a specific individual, however, will probably not be possible on any realistic scale. Taken statistically, strength modeling may be an effective tool for general questions of task feasibility and strength requirements.

  2. An experimental study on fatigue performance of cryogenic metallic materials for IMO type B tank

    NASA Astrophysics Data System (ADS)

    Lee, Jin-Sung; You, Won-Hyo; Yoo, Chang-Hyuk; Kim, Kyung-Su; Kim, Yooil

    2013-12-01

    Three materials SUS304, 9% Ni steel and Al 5083-O alloy, which are considered possible candidate for International Maritime Organization (IMO) type B Cargo Containment System, were studied. Monotonic tensile, fatigue, fatigue crack growth rate and Crack Tip Opening Displacement tests were carried out at room, intermediate low (-100 °C) and cryogenic (-163 °C) temperatures. The initial yield and tensile strengths of all materials tended to increase with decreasing temperature, whereas the change in elastic modulus was not as remarkable. The largest and smallest improvement ratio of the initial yield strengths due to a temperature reduction were observed in the SUS304 and Al 5083- O alloy, respectively. The fatigue strengths of the three materials increased with decreasing temperature. The largest increase in fatigue strength was observed in the Al 5083-O alloy, whereas the 9% Ni steel sample showed the smallest increase. In the fatigue crack growth rate test, SUS304 and Al 5083-O alloy showed a decrease in the crack propagation rate, due to decrease in temperature, but no visible improvement in da/dN was observed in the case of 9% Ni steel. In the Crack Tip Opening Displacement (CTOD) test, CTOD values were converted to critical crack length for the comparison with different thickness specimens. The critical crack length tended to decrease in the case of SUS304 and increase for the Al 5083-O alloy with decreasing temperature. In case of 9% Ni steel, change of critical crack length was not observed due to temperature decrease. In addition, the changing material properties according to the temperature of the LNG tank were analyzed according to the international code for the construction and equipment of ships carrying liquefied gases in bulk (IGC code) and the rules of classifications.

  3. Bending Fatigue of Carburized Steel at Very Long Lives

    NASA Astrophysics Data System (ADS)

    Nelson, D. V.; Long, Z.

    2016-01-01

    The bending fatigue behavior of two carburized steels is investigated for lives between approximately 105 and 108 cycles. Cracks are observed to start at sub-surface inclusions and develop features on fracture surfaces resembling "fish eyes" in appearance. This type of sub-surface cracking tends to govern fatigue strength at long lives. Previous studies of "fish eye" fatigue in carburized steel have been relatively few and have mainly considered failures originating at depths beneath a carburized case, where compressive residual stresses are minimal and hardness values approach those in the core. This study provides fatigue data for cracks originating within cases at various depths where compressive residual stresses are substantial and hardness is much higher than in the core. Fatigue strength is predicted by a simple model, accounting for the influence of residual stresses and hardness values at the different depths at which cracks started. Predictions of fatigue strength are compared with data generated in this study.

  4. S-N Fatigue and Fatigue Crack Propagation Behaviors of X80 Steel at Room and Low Temperatures

    NASA Astrophysics Data System (ADS)

    Jung, Dae-Ho; Kwon, Jae-Ki; Woo, Nam-Sub; Kim, Young-Ju; Goto, Masahiro; Kim, Sangshik

    2014-02-01

    In the present study, the S-N fatigue and the fatigue crack propagation (FCP) behaviors of American Petroleum Institute X80 steel were examined in the different locations of the base metal (BM), weld metal (WM), and heat-affected zone (HAZ) at 298 K, 223 K, and 193 K (25 °C, -50 °C, and -80 °C). The resistance to S-N fatigue of X80 BM specimen increased greatly with decreasing temperature from 298 K to 193 K (25 °C to -80 °C) and showed a strong dependency on the flow strength (½(yield strength + tensile strength)). The FCP rates of X80 BM specimen were substantially reduced with decreasing temperature from 298 K to 223 K (25 °C to -50 °C) over the entire ∆ K regime, while further reduction in FCP rates was not significant with temperature from 223 K to 193 K (-50 °C to -80 °C). The FCP rates of the X80 BM and the WM specimens were comparable with each other, while the HAZ specimen showed slightly better FCP resistance than the BM and the WM specimens over the entire ∆K regime at 298 K (25 °C). Despite the varying microstructural characteristics of each weld location, the residual stress appeared to be a controlling factor to determine the FCP behavior. The FCP behaviors of high strength X80 steel were discussed based on the microstructural and the fractographic observations.

  5. Reduction of grain size and exchange coupling strength of Nd2Fe14B thin films by Al addition

    NASA Astrophysics Data System (ADS)

    Ma, Y. G.; Yang, Z.; Wei, F. L.; Matsumoto, M.; Morisako, A.; Takei, S.

    2004-07-01

    NdFeB thin films of good perpendicular magnetic anisotropy have been successfully deposited on W underlayer by DC magnetron sputtering. Cu and Al elements are introduced to improve the structural and magnetic properties of the NdFeB films. The deposition temperature is lowered to 400 °C by the addition of 1.0 at.% Cu. The average grain size is reduced to 10 nm by the introduction of 10.0 at.% Al. With the reduction of the grain size, the exchange coupling interaction between the grains is weakened. The magnetization reversal process of the grains directly depends on the grain size and shape. Before Al addition, most of the grains are demagnetized by magnetization incoherent rotation but in the film doped with 5.0 at.% Al, the magnetization is coherently reversed, as demonstrated by the comparison of the physical grain volume and the thermal switching volume.

  6. Role of plasticity on fretting fatigue behavior of titanium-aluminum-vanadium

    NASA Astrophysics Data System (ADS)

    Shin, Kisu

    Fretting fatigue leads to the degradation of the fatigue strength of a material due to cyclic micro-slip between two contacting materials. Since fatigue life reduction caused by fretting fatigue occurs in various mechanical components, such as bolted connections and blade/disk dovetail joints etc., fretting fatigue is regarded as an important issue in the design of aerospace structures. Consequently, a number of studies have been performed to predict the behavior of fretting fatigue. However, while many studies have evaluated fretting fatigue behavior under elastic deformation conditions, few studies have focused on fretting fatigue behavior under elastic-plastic deformation conditions. Due to the fact that plastic deformation is an integral part of crack nucleation, the role of plastic deformation in crack initiation should be considered, especially when a large plastic zone is presented. The primary goal of this study was to characterize the fretting fatigue crack initiation behavior in the presence of plasticity. Experimental tests were performed using pad configurations involving elastic-plastic deformations. A total of eight different configurations of fretting pads were used for this dissertation. Five of the eight geometries were intended to generate the elastic deformation, i.e. 50.8 mm, 101.6 mm and 304.8 mm radius pads with normal contact load of 1.334 N, 2.224, and 4.003 kN respectively and two flat with rounded edge pads with normal contact load of 1.334 and 4.003 kN. In order to replicate the elastic-plastic deformation conditions, the smaller radii of the cylindrical pads, i.e. 5.08 mm radius pads, and flat pad type3 (FP3) with smaller edge radius, were included in this study. Two different contact loads were applied with the 5.08 mm radius cylindrical pad, i.e. 1.334 and 1.779 kN, while one contact load was applied with the flat pad type3, i.e. 4.003 kN. The crack initiation location was found near the trailing edge under both elastic and elastic

  7. Low cycle fatigue behavior of Ti-Mn alloys: Fatigue life

    NASA Astrophysics Data System (ADS)

    Saleh, Y.; Margolin, H.

    1982-07-01

    The effect of morphology, particle size, β grain size and volume fraction of β, from 0.025 to 1.0, on the low cycle fatigue life of α -β Ti-Mn alloys, have been studied under total strain control. In general, Widmanstätten plus grain boundary (W+GB) α structures show shorter fatigue lives than equiaxed (E) α structures, and this has been ascribed to the formation of much larger surface cracks and ease of transfer of slip from α to β. For Eα structures, fatigue life increases with decreasing α particle size and when the alloy is single phase β fatigue life increases with decreasing grain size. At high total strains the nearly all α alloy had the longest fatigue life and at lower strains the β alloy, with the higher yield strength, had the longest fatigue life. Fatigue life was correlated with strain hardening. The nearly all α alloy which had the highest strain hardening, over the plastic strains encountered, had the highest fatigue life, while the β alloy, with the lowest strain hardening, had the lowest fatigue life. For a portion of the fatigue life curves, it was found that as the average Baushinger strain (ABS) increased, the Coffin-Manson exponent c decreased. The results are discussed.

  8. Anomalous Fatigue Behavior and Fatigue-Induced Grain Growth in Nanocrystalline Nickel Alloys

    NASA Astrophysics Data System (ADS)

    Boyce, Brad L.; Padilla, Henry A.

    2011-07-01

    Fatigue failure due to repetitive loading of metallic devices is a pervasive engineering concern. The present work reveals extraordinary fatigue resistance in nanocrystalline (NC) alloys, which appears to be associated with the small (<100 nm) grain size inhibiting traditional cyclic damage processes. In this study, we examine the fatigue performance of three electrodeposited NC Ni-based metals: Ni, Ni-0.5Mn, and Ni-22Fe (PERMALLOY). When subjected to fatigue stresses at and above the tensile yield strength where conventional coarse-grained (CG) counterparts undergo low-cycle fatigue failure (<104 cycles to failure), these alloys exhibit exceptional fatigue lives (in some cases, >107 cycles to failure). Postmortem examinations show that failed samples contain an aggregate of coarsened grains at the crack initiation site. The experimental data and accompanying microscopy suggest that the NC matrix undergoes abnormal grain growth during cyclic loading, allowing dislocation activity to persist over length scales necessary to initiate a fatigue crack by traditional fatigue mechanisms. Thus, the present observations demonstrate anomalous fatigue behavior in two regards: (1) quantitatively anomalous when considering the extremely high stress levels needed to drive fatigue failure and (2) mechanistically anomalous in light of the grain growth process that appears to be a necessary precursor to crack initiation.

  9. Effect of microstructure on low cycle fatigue properties of ODS steels

    NASA Astrophysics Data System (ADS)

    Kubena, Ivo; Fournier, Benjamin; Kruml, Tomas

    2012-05-01

    Low cycle fatigue properties at room temperature, 650 °C and 750 °C of three high chromium steels (9%Cr ferritic-martensitic and two 14%Cr ferritic steels) strengthened by oxide dispersion were studied and compared. Cyclic softening/hardening curves, cyclic deformation curves, S-N curves and Coffin-Manson curves are presented together with microstructural observations. Differences in cyclic response, stress level and fatigue life are attributed to differences in the matrix microstructure. The oxide particles stabilize the cyclic response, even if cyclic softening is detected for some experimental conditions. The strength of these steels is discussed in terms of strengthening mechanisms such as grain size effect, particle-dislocations interaction and dislocation density. Comparing three different ODS steels offers an opportunity to tests the contribution of individual mechanisms to the cyclic strength. The reduction of fatigue life in one of the ferritic steels is explained by the presence of large grains, facilitating the fatigue crack nucleation and the early growth.

  10. Ultrasonic Waves and Strength Reduction Indexes for the Assessment of the Advancement of Deterioration Processes in Travertines from Pamukkale and Hierapolis (Turkey)

    NASA Astrophysics Data System (ADS)

    Bobrowska, Alicja; Domonik, Andrzej

    2015-09-01

    In constructions, the usefulness of modern technical diagnostics of stone as a raw material requires predicting the effects of long-term environmental impact of its qualities and geomechanical properties. The paper presents geomechanical research enabling presentation of the factors for strength loss of the stone and forecasting the rate of development of destructive phenomena on the stone structure on a long-time basis. As research material Turkish travertines were selected from the Denizli-Kaklık Basin (Pamukkale and Hierapolis quarries), which have been commonly used for centuries in global architecture. The rock material was subjected to testing of the impact of various environmental factors, as well as European standards recommended by the author of the research program. Their resistance to the crystallization of salts from aqueous solutions and the effects of SO2, as well as the effect of frost and high temperatures are presented. The studies allowed establishing the following quantitative indicators: the ultrasonic waves index (IVp) and the strength reduction index (IRc). Reflections on the assessment of deterioration effects indicate that the most active factors decreasing travertine resistance in the aging process include frost and sulphur dioxide (SO2). Their negative influence is particularly intense when the stone material is already strongly weathered.

  11. Fatigue Properties of Cast Magnesium Wheels

    NASA Astrophysics Data System (ADS)

    Li, Zhenming; Luo, Alan A.; Wang, Qigui; Peng, Liming; Zhang, Peng

    2016-08-01

    This paper investigates the fatigue properties and deformation behavior of a newly developed Mg-2.96Nd-0.21Zn-0.39Zr magnesium alloy wheel in both as-cast and T6 conditions. Compared with the as-cast alloy, the T6-treated alloy shows a significant increase in fatigue strength and cyclic stress amplitude. This is believed to be attributed to the change of defect type from porosity to oxides and the increased matrix strength in the T6 (peak-aged) condition. For the as-cast alloy wheel, fatigue failure mainly originated from the cast defects including porosity, oxide film, and inclusion at or near the sample surface. In the T6-treated alloy, however, oxides and inclusions or slip bands initiate the fatigue cracks. Solution treatment appears to reduce or eliminate the shrinkage porosity because of grain growth and dissolution of as-cast eutectic phases in the grain boundaries. The cyclic stress amplitude of the as-cast alloy increases with increasing the number of cycles, while the T6-treated alloy shows cyclic softening after the stress reaches a maximum value. The Coffin-Manson law and Basquin equation can be used to evaluate the life of low cycle fatigue. The developed long crack model and multi-scale fatigue (MSF) models can be used to predict high-cycle fatigue life of the Mg-2.96Nd-0.21Zn-0.39Zr alloys with or without casting defects.

  12. Behavior of gamma TiAl subjected to impact damage and elevated temperature fatigue

    SciTech Connect

    Harding, T.S.; Jones, J.W.

    1999-12-31

    Gamma titanium aluminide has received significant attention in recent years as a candidate material for use in aerospace and industrial gas turbine engine applications. It is well known that fatigue crack growth rates in {gamma}-TiAl alloys are very sensitive to stress intensity range and that there is a small difference between threshold stress intensity range and apparent fracture toughness in these materials. The result is limited damage tolerance and dramatic reductions in fatigue lifetime in the presence of extrinsic damage, such as that produced from an impact event. To apply a damage tolerance approach to this situation would require improved crack detection techniques and would increase the life cycle cost of the engine by decreasing the inspection interval. Using a threshold-based approach, on the other hand, would ensure that pre-existing or service indices cracks would not grow and that failure by fatigue would not occur. The present study investigates the feasibility of using a threshold calculation to estimate the fatigue strength reduction caused by impact damage at elevated temperatures (600 C). The results are part of a larger investigation into the feasibility of using {gamma}-TiAl for low-pressure turbine blades.

  13. Isothermal fatigue, damage accumulation, and life prediction of a woven PMC

    NASA Astrophysics Data System (ADS)

    Gyekenyesi, Andrew Laszlo

    This dissertation focuses on the characterization of the fully reversed fatigue behavior exhibited by a carbon fiber/polyimide resin, woven laminate at room and elevated temperatures. Nondestructive video edge view microscopy and destructive sectioning techniques were used to study the microscopic damage mechanisms that evolved. The elastic stiffness was monitored and recorded throughout the fatigue life of the coupon and later utilized as a damage variable for a phenomenological model. In addition, residual compressive strength tests were conducted on fatigue coupons with various degrees of damage as quantified by stiffness reduction. Experimental results indicated that the monotonic tensile properties were only minimally influenced by temperature, while the monotonic compressive and fully reversed fatigue properties displayed noticeable reductions due to the elevated temperature. The stiffness degradation, as a function of cycles, consisted of three stages: a short-lived high degradation period, a constant degradation rate segment composing the majority of life, and a final stage demonstrating an increasing rate of degradation up to failure. Concerning the residual compressive strength tests at room and elevated temperatures, the elevated temperature coupons appeared much more sensitive to damage. At elevated temperatures, coupons experienced a much larger loss in compressive strength when compared to room temperature coupons with equivalent damage. The fatigue damage accumulation law proposed for the model incorporates a scalar representation for damage, but admits a multiaxial, anisotropic evolutionary law. The model predicts the current damage (as quantified by current stiffness) and remnant life of a composite that has undergone a known load at temperature. The damage/life model is dependent on the applied multiaxial stress state and temperature. Comparisons between the damage/life model and data showed good predictive capabilities concerning stiffness

  14. Fatigue Behavior of Inconel 718 TIG Welds

    NASA Astrophysics Data System (ADS)

    Alexopoulos, Nikolaos D.; Argyriou, Nikolaos; Stergiou, Vasillis; Kourkoulis, Stavros K.

    2014-08-01

    Mechanical behavior of reference and TIG-welded Inconel 718 specimens was examined in the present work. Tensile, constant amplitude fatigue, and fracture toughness tests were performed in ambient temperature for both, reference and welded specimens. Microstructure revealed the presence of coarse and fine-grained heat-affected zones. It has been shown that without any post-weld heat treatment, welded specimens maintained their tensile strength properties while their ductility decreased by more than 40%. It was found that the welded specimens had lower fatigue life and this decrease was a function of the applied fatigue maximum stress. A 30% fatigue life decrease was noticed in the high cycle fatigue regime for the welded specimens while this decrease exceeded 50% in the low cycle fatigue regime. Cyclic stress-strain curves showed that Inconel 718 experiences a short period of hardening followed by softening for all fatigue lives. Cyclic fatigue response of welded specimens' exhibited cyclically stable behavior. Finally, a marginal decrease was noticed in the Mode I fracture toughness of the welded specimens.

  15. Improved resistance to wear and fatigue fracture in high pressure crystallized vitamin E-containing ultra-high molecular weight polyethylene

    PubMed Central

    Oral, Ebru; Beckos, Christine A. Godleski; Lozynsky, Andrew J.; Malhi, Arnaz S.; Muratoglu, Orhun K.

    2013-01-01

    Higher crystallinity and extended chain morphology are induced in ultra-high molecular weight polyethylene (UHMWPE) in the hexagonal phase at temperatures and pressures above the triple point, resulting in improved mechanical properties. In this study, we report the effects of the presence of a plasticizing agent, namely vitamin E (α-tocopherol), in UHMWPE during high pressure crystallization. We found that this new vitamin E-blended and high pressure crystallized UHMWPE (VEHPE) has improved fatigue strength and wear resistance compared to virgin high pressure crystallized (HP) UHMWPE. This suggested different mechanisms of wear reduction and fatigue crack propagation resistance in UHMWPE. PMID:19135247

  16. Improved resistance to wear and fatigue fracture in high pressure crystallized vitamin E-containing ultra-high molecular weight polyethylene.

    PubMed

    Oral, Ebru; Godleski Beckos, Christine A; Lozynsky, Andrew J; Malhi, Arnaz S; Muratoglu, Orhun K

    2009-04-01

    Higher crystallinity and extended chain morphology are induced in ultra-high molecular weight polyethylene (UHMWPE) in the hexagonal phase at temperatures and pressures above the triple point, resulting in improved mechanical properties. In this study, we report the effects of the presence of a plasticizing agent, namely vitamin E (alpha-tocopherol), in UHMWPE during high pressure crystallization. We found that this new vitamin E-blended and high pressure crystallized UHMWPE (VEHPE) has improved fatigue strength and wear resistance compared to virgin high pressure crystallized (HP) UHMWPE. This suggested different mechanisms of wear reduction and fatigue crack propagation resistance in UHMWPE.

  17. Kynurenine Pathway Pathologies: do Nicotinamide and Other Pathway Co-Factors have a Therapeutic Role in Reduction of Symptom Severity, Including Chronic Fatigue Syndrome (CFS) and Fibromyalgia (FM)

    PubMed Central

    Blankfield, Adele

    2013-01-01

    The definition of dual tryptophan pathways has increased the understanding of the mind-body, body-mind dichotomy. The serotonergic pathway highlights the primary (endogenous) psychiatric disorders. The up-regulation of the kynurenine pathway by physical illnesses can cause neuropathic and immunological disorders1 associated with secondary neuropsychiatric symptoms. Tryptophan and nicotinamide deficiencies fall within the protein energy malnutrition (PEM) spectrum. They can arise if the kynurenine pathway is stressed by primary or secondary inflammatory conditions and the consequent imbalance of available catabolic/anabolic substrates may adversely influence convalescent phase efficiency. The replacement of depleted or reduced NAD+ levels and other cofactors can perhaps improve the clinical management of these disorders. Chronic fatigue syndrome (CFS) and fibromyalgia (FM) appear to meet the criteria of a tryptophan-kynurenine pathway disorder with potential neuroimmunological sequelae. Aspects of some of the putative precipitating factors have been previously outlined.2,3 An analysis of the areas of metabolic dysfunction will focus on future directions for research and management. PMID:23922501

  18. Fatigue Behaviors of Self-Piercing Rivets Joining Similar and Dissimilar Sheet Metals

    SciTech Connect

    Sun, Xin; Stephens, Elizabeth V.; Khaleel, Mohammad A.

    2007-01-01

    This paper summarizes the fatigue test results of self-piercing rivet (SPR) joints between similar and dissimilar sheet metals. The influences of material grades, material thickness, piercing direction and the use of structural adhesive on the rivet samples’ fatigue behaviors were investigated. Fatigue test results indicate that SPR joints have superior fatigue strength than resistance spot weld (RSW) joints for the same material combinations. The application of structure adhesive also significantly enhances the fatigue strength of the joint samples; this is particularly true for the lap shear loading configuration. In addition, different piercing directions for SPR joints have a noticeable effect on the static and fatigue strength of the joints. The joint fatigue results presented in this paper can offer design engineers with the durability data for SPR joints with these material combinations. Moreover, it will provide manufacturing engineers with some insights on the effects of different manufacturing parameters on the strength and durability of these joints.

  19. Fatigue life extension

    NASA Technical Reports Server (NTRS)

    Matejczyk, D. E.; Lin, J.

    1985-01-01

    Potential fatigue rejuvenation processes were carried out on fatigue-damaged material both with and without observable surface-connected fatigue cracks. The fatigue life of fatigue-damaged MAR-M246(Hf)(DS), a directionally solidified nickel-base superalloy used in turbine airfoils, was extended by reheat treatment. The fatigue life of fatigue-cracked Inconel 718, a wrought nickel-base superalloy used in a wide variety of advanced rocket engine components, was extended by electron-beam welding to close off the surface-connected crack, followed by hot isostatic pressing and reheat treatment.

  20. Gender Difference in Fatigue Index and its Related Physiology.

    PubMed

    Hanjabam, Barun; Kailashiya, Jyotsna

    2015-01-01

    Fatigue index exhibits gender difference. This study was carried out to compare fatigue index of young, national level male and female field hockey players; and to explore physiological variables contributing to this difference. We measured running-based anaerobic sprint fatigue index and selected physiological parameters in male and female players matched for age, duration of training, diet, habitual physical activity, body weight and BMI. The male hockey players showed lower resistance to repeated sprints fatigue than the female players. Body weight, BMI and power variables positively correlated to fatigue index in both sexes; while lean body mass and age in males only, and body fat % in females only were found to be correlated to fatigue index. Difference in lean body mass, body fat %, strength and anaerobic power might be responsible for gender difference in intermittent & repeated sprints fatigue index observed in studied players.

  1. Study of fatigue behavior of longitudinal welded pipes

    NASA Astrophysics Data System (ADS)

    Simion, P.; Dia, V.; Istrate, B.; Hrituleac, G.; Hrituleac, I.; Munteanu, C.

    2016-08-01

    During transport and storage of the various fluids, welded pipes are subjected to cyclic loading due to pressure fluctuations that often exceed the prescribed values for normal operation. These cyclic loading can significantly reduce the life of the pipes; as a result the design should be based on the fatigue strength not only on static resistance. In general the fatigue strength of pipes is dependent by strength, pipe geometry and surface quality. In case of the electric longitudinal welded pipes, the fatigue strength is significantly limited by concentration of residual stress and the size of existing defects in the weld seam. This paper presents the fatigue behaviour of the electric welded pipes by high frequency, under conditions that simulate real operating conditions pipes. Fatigue testing was performed on welded pipes made of micro alloyed carbon steels. Some of these pipes were previously subjected to a heat treatment of normalization, in order to also determine the influence of heat treatment on the fatigue strength of welded pipes. To determine and correlate the different factors affecting the fatigue strength, welded pipes were also subjected to various tests: tensile tests, impact tests, measurement of micro hardness, microstructural analysis by optical microscopy and scanning electron microscopy.

  2. Atlas of fatigue curves

    SciTech Connect

    Boyer, H.E.

    1986-01-01

    This Atlas was developed to serve engineers who are looking for fatigue data on a particular metal or alloy. Having these curves compiled in a single book will also facilitate the computerization of the involved data. It is pointed out that plans are under way to make the data in this book available in ASCII files for analysis by computer programs. S-N curves which typify effects of major variables are considered along with low-carbon steels, medium-carbon steels, alloy steels, HSLA steels, high-strength alloy steels, heat-resisting steels, stainless steels, maraging steels, cast irons, and heat-resisting alloys. Attention is also given to aluminum alloys, copper alloys, magnesium alloys, molybdenum, tin alloys, titanium and titanium alloys, zirconium, steel castings, closed-die forgings, powder metallurgy parts, composites, effects of surface treatments, and test results for component parts.

  3. Change in manipulation with muscle fatigue.

    PubMed

    Todd, Gabrielle; Gandevia, Simon C; Taylor, Janet L

    2010-11-01

    Muscle fatigue is defined as an exercise-induced reduction in the force-generating capacity of muscle. Here, we investigated the effect of muscle fatigue on hand dexterity. Healthy adults (n = 17) gripped and lifted an object (0.342 kg) five times before and after two interventions. The interventions, performed on separate days, involved 2 min of rest (control) or sustained maximal pinch grip that reduced maximal force by 60% (fatigue). Horizontal grip force (GF), vertical lift force (LF) and first dorsal interosseous electromyographic activity (EMG) were measured. The lift (dynamic) and hold (stationary) phase of the task were analysed. Before the intervention, there was no significant difference between the control and fatigue conditions for the 15 measured parameters. However, post-intervention GF was reduced with fatigue compared with the control condition (hold phase), whereas GF coefficient of variation (hold phase) and root mean square EMG (lift phase) increased with fatigue. Fatigue also disrupted the temporal relationship between GF and LF (assessed by cross-correlation of the derivative of GF and LF). The maximum cross-correlation coefficient was significantly reduced with fatigue compared with the control condition. Grip strategy and the kinetics of the lifting movement (minimum LF, maximum LF, maximum derivative of LF, and maximum acceleration) were unchanged with fatigue. Our results suggest that fatigued subjects generate more EMG to lift and hold an object but produce less force and are less able to match changes in LF with changes in GF. Fatigued subjects also exhibit greater fluctuation in GF while holding objects.

  4. Tensile and fatigue properties of Inconel 718 at cryogenic temperatures

    NASA Technical Reports Server (NTRS)

    Malin, C. O.; Schmidt, E. H.

    1969-01-01

    Tests to determine the tensile and fatigue properties of Inconel 718 at cryogenic temperatures show that the alloy increases in strength at low temperatures, with very little change in toughness. The effect of surface finish and grain size on the fatigue properties was also determined.

  5. 14 CFR 23.574 - Metallic damage tolerance and fatigue evaluation of commuter category airplanes.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Metallic damage tolerance and fatigue... COMMUTER CATEGORY AIRPLANES Structure Fatigue Evaluation § 23.574 Metallic damage tolerance and fatigue... evaluation of the strength, detail design, and fabrication must show that catastrophic failure due to...

  6. 14 CFR 23.574 - Metallic damage tolerance and fatigue evaluation of commuter category airplanes.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Metallic damage tolerance and fatigue... COMMUTER CATEGORY AIRPLANES Structure Fatigue Evaluation § 23.574 Metallic damage tolerance and fatigue... evaluation of the strength, detail design, and fabrication must show that catastrophic failure due to...

  7. 14 CFR 23.574 - Metallic damage tolerance and fatigue evaluation of commuter category airplanes.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Metallic damage tolerance and fatigue... COMMUTER CATEGORY AIRPLANES Structure Fatigue Evaluation § 23.574 Metallic damage tolerance and fatigue... evaluation of the strength, detail design, and fabrication must show that catastrophic failure due to...

  8. 14 CFR 23.574 - Metallic damage tolerance and fatigue evaluation of commuter category airplanes.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Metallic damage tolerance and fatigue... COMMUTER CATEGORY AIRPLANES Structure Fatigue Evaluation § 23.574 Metallic damage tolerance and fatigue... evaluation of the strength, detail design, and fabrication must show that catastrophic failure due to...

  9. 14 CFR 23.574 - Metallic damage tolerance and fatigue evaluation of commuter category airplanes.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Metallic damage tolerance and fatigue... COMMUTER CATEGORY AIRPLANES Structure Fatigue Evaluation § 23.574 Metallic damage tolerance and fatigue... evaluation of the strength, detail design, and fabrication must show that catastrophic failure due to...

  10. Effects of multi-joint muscular fatigue on biomechanics of slips.

    PubMed

    Lew, Fui Ling; Qu, Xingda

    2014-01-03

    The objective of the present study was to investigate the effects of multi-joint muscular fatigue on biomechanics of slips. Both lower-limb fatigue and upper-limb fatigue were examined, and the fatiguing exercises involved multi-joint movements to replicate muscular fatigue in realistic scenarios. Sixty healthy young adults participated in the study, and were evenly categorized into three groups: no fatigue, lower-limb fatigue, and upper-limb fatigue. These participants were instructed to walk on a linear walkway, and slips were induced unexpectedly during walking. The results showed that multi-joint muscular fatigue affects biomechanics of slips in all three phases of slips (i.e. initiation, detection, and recovery). In particular, adaptive safer postural control strategies were adopted with the application of both lower-limb fatigue and upper-limb fatigue to maintain the likelihood of slip initiation as in the no fatigue condition. In the phases of detection and recovery, lower-limb fatigue was found to compromise biomechanics of slips while upper-limb fatigue did not show any effects. Based on these findings, minimizing exposures to lower-limb fatigue should be given higher priority compared to upper-limb fatigue when developing interventions to prevent slip-induced falls. In addition, these findings also suggest that interventions aimed at enhancing proprioceptive acuity and increasing muscular strength in the lower limb could also be effective in slip-induced fall prevention.

  11. Fatigue of boron-aluminum composites bonds and joints

    NASA Technical Reports Server (NTRS)

    Hersh, M. S.

    1973-01-01

    Study examines effects of boron filament diameter on bonds and joints in boron-aluminum composite. Data include static strength, fatigue, and dynamic moduli of elasticity. Manson-Coffin analyses and metallurgical and fracture surface evaluation were also performed.

  12. Periostin deficiency increases bone damage and impairs injury response to fatigue loading in adult mice.

    PubMed

    Bonnet, Nicolas; Gineyts, Evelyne; Ammann, Patrick; Conway, Simon J; Garnero, Patrick; Ferrari, Serge

    2013-01-01

    Bone damage removal and callus formation in response to fatigue loading are essential to prevent fractures. Periostin (Postn) is a matricellular protein that mediates adaptive response of cortical bone to loading. Whether and how periostin influences damage and the injury response to fatigue remains unknown. We investigated the skeletal response of Postn(-/-) and Postn(+/+) mice after fatigue stimulus by axial compression of their tibia. In Postn(+/+) mice, cracks number and surface (CsNb, CsS) increased 1h after fatigue, with a decrease in strength compared to non-fatigued tibia. At 15 days, CsNb had started to decline, while CtTV and CtBV increased in fatigued vs non-fatigued tibia, reflecting a woven bone response that was present in 75% of the fatigued bones. Cortical porosity and remodelling also prominently increased in the fatigued tibia of Postn(+/+) mice. At 30 days, paralleling a continuous removal of cortical damage, strength of the fatigued tibia was similar to the non-fatigue tibia. In Postn(-/-) mice, cracks were detectable even in the absence of fatigue, while the amount of collagen crosslinks and tissue hardness was decreased compared to Postn(+/+). Fatigue significantly increased CsNb and CsS in Postn(-/-), but was not associated with changes in CtTV and CtBV, as only 16% of the fatigued bones formed some woven bone. Cortical porosity and remodelling did not increase either after fatigue in Postn(-/-), and the level of damage remained high even after 30 days. As a result, strength remained compromised in Postn(-/-) mice. Contrary to Postn(+/+), which osteocytic lacunae showed a change in the degree of anisotropy (DA) after fatigue, Postn(-/-) showed no DA change. Hence periostin appears to influence bone materials properties, damage accumulation and repair, including local modeling/remodeling processes in response to fatigue. These observations suggest that the level of periostin expression could influence the propensity to fatigue fractures.

  13. Strength of inorganic glass

    SciTech Connect

    Kurkjian, C.R.

    1985-01-01

    This book presents information on the following topics: a look at the history of glass strength; atomistic theory of fracture; surface chemistry in relation to the strength and fracture of silicate glasses; high-speed photographic investigations of the dynamic localized loading of some oxide glasses; a correction for measurements of contact area using Newton's rings; envionmentally enhanced crack growth; fatigue in glass; behavior of flaws in fused silica fibers; fracture toughness of chalcogenide glasses and glass-ceramics; fracture analysis of glass surfaces; and fracture mechanics parameters for glasses - a compilation and correlation.

  14. High temperature fatigue behavior of Haynes 188

    NASA Technical Reports Server (NTRS)

    Halford, Gary R.; Saltsman, James F.; Kalluri, Sreeramesh

    1988-01-01

    The high temperature, creep-fatigue behavior of Haynes 188 was investigated as an element in a broader thermomechanical fatigue life prediction model development program at the NASA-Lewis. The models are still in the development stage, but the data that were generated possess intrinsic value on their own. Results generated to date is reported. Data were generated to characterize isothermal low cycle fatigue resistance at temperatures of 316, 704, and 927 C with cyclic failure lives ranging from 10 to more than 20,000. These results follow trends that would be predicted from a knowledge of tensile properties, i.e., as the tensile ductility varies with temperature, so varies the cyclic inelastic straining capacity. Likewise, as the tensile strength decreases, so does the high cyclic fatigue resistance. A few two-minute hold-time cycles at peak compressive strain were included in tests at 760 C. These results were obtained in support of a redesign effort for the Orbital Maneuverable System engine. No detrimental effects on cyclic life were noted despite the added exposure time for creep and oxidation. Finally, a series of simulated thermal fatigue tests, referred to as bithermal fatigue tests, were conducted using 316 C as the minimum and 760 C as the maximum temperature. Only out-of-phase bithermal tests were conducted to date. These test results are intended for use as input to a more general thermomechanical fatigue life prediction model based on the concepts of the total strain version of Strainrange Partitioning.

  15. Fatigue and fracture research in metals

    NASA Technical Reports Server (NTRS)

    Newman, J. C., Jr.; Davidson, J. R.

    1982-01-01

    Fatigue and fracture research on monolithic and laminated metals is discussed. The research concentrated on three areas: stress analyses of two and three dimensional cracked bodies, fatigue crack growth, and fracture toughness. Analytical methods were developed to predict fatigue crack growth and fracture strengths of cracked specimens. Such specimens represent typical aircraft structural details (such as cracks from holes). These specimens were subjected to simple constant amplitude loading and to more complex flight load histories. Test data from both in house tests and from the literature are used to substantiate the analytical methods. These analyses extended the theory of fracture mechanics to deal with fatigue crack growth and fracture of complex crack configurations that are typical of aircraft materials and structural details.

  16. Fatigue - corrosion of endoprosthesis titanium alloys.

    PubMed

    Cornet, A; Muster, D; Jaeger, J H

    1979-01-01

    Commercial total hip prostheses often show certain metallurgical faults (porosities, coarse grains, growth dendrites, carbide networks). In order to investigate more accurately the role played by these different parameters in prostheses failure we performed a large number of systematic corrosion, fatigue and fatigue - corrosion tests on these materials and on commercial total hip prostheses. Ultimate strengthes seem to be reached for cast cobalt alloys, whereas titanium alloys, such as Ta 6 V, present very high fatigue limit under corrosion. Thus, rotative bending fatigue - corrosion tests in biological environment provide values about 50 DaN/mm2. This value, is nevertheless appreciably higher than those obtained with stellites and stainless steel. Titanium alloys, because of their mechanical performances, their weak Young's modulus (11000 DaN/mm2) and their relative lightness (4.5. g/cm3), which are associated with a good biocompatibility, seem very promising for permanent implants realisation.

  17. A combined mode fatigue model for glass reinforced nylon as applied to molded engine cooling fans

    SciTech Connect

    Smith, J.D.; Bennet, M.L.

    1985-01-01

    The use of glass reinforced nylon in fatigue inducing environments calls for a new method of stress analysis. With an engine cooling fan, both mean and vibratory stresses need to be examined. Speed cycling can cause tensile fatigue, while vibration can cause flexural fatigue. Since tensile and flexural stresses exist in the fan simultaneously, a combined mode fatigue model is needed. The proposed model is based on high cycle flexural and tensile fatigue strengths, and tensile strength. It relates measurable strain to stress using temperature dependent flexural and tensile moduli, and treats underhood temperature and desired product life as variables.

  18. Preliminary results from fatigue tests with reference to operational statistics

    NASA Technical Reports Server (NTRS)

    Gassner, E

    1950-01-01

    Simple elements were subjected to repeated loads of variable ampliture, chosen in such a way that they may be regarded as approximations to the operational loads (gust and maneuver) experienced by an airplane. The effect of varying some parameters was investigated briefly. Some discussion is given of the question whether a design according to current (1938 German) requirements for static strength is adequate from the fatigue point of view, and existing requirements on fatigue strength are compared,

  19. Fatigue during high-intensity intermittent exercise: application to bodybuilding.

    PubMed

    Lambert, Charles P; Flynn, Michael G

    2002-01-01

    Resistance exercise is an activity performed by individuals interested in competition, those who wish to improve muscle mass and strength for other sports, and for individuals interested in improving their strength and physical appearance. In this review we present information suggesting that phosphocreatine depletion, intramuscular acidosis and carbohydrate depletion are all potential causes of the fatigue during resistance exercise. In addition, recommendations are provided for nutritional interventions, which might delay muscle fatigue during this type of activity.

  20. Proposed design procedure for transmission shafting under fatigue loading

    NASA Technical Reports Server (NTRS)

    Loewenthal, S. H.

    1978-01-01

    A new standard for the design of transmission shafting is reported. Computed was the diameter of rotating solid steel shafts under combined cyclic bending and steady torsion is presented. The formula is based on an elliptical variation of endurance strength with torque exhibited by combined stress fatigue data. Fatigue factors are cited to correct specimen bending endurance strength data for use in the shaft formula. A design example illustrates how the method is to be applied.

  1. Modeling Fatigue Damage in Long-Fiber Thermoplastics

    SciTech Connect

    Nguyen, Ba Nghiep; Kunc, Vlastimil; Bapanapalli, Satish K.

    2009-10-30

    This paper applies a fatigue damage model recently developed for injection-molded long-fiber thermoplastics (LFTs) to predict the modulus reduction and fatigue lifetime of glass/polyamide 6,6 (PA6,6) specimens. The fatigue model uses a multiscale mechanistic approach to describe fatigue damage accumulation in these materials subjected to cyclic loading. Micromechanical modeling using a modified Eshelby-Mori-Tanaka approach combined with averaging techniques for fiber length and orientation distributions is performed to establish the stiffness reduction relation for the composite as a function of the microcrack volume fraction. Next, continuum damage mechanics and a thermodynamic formulation are used to derive the constitutive relations and the damage evolution law. The fatigue damage model has been implemented in the ABAQUS finite element code and has been applied to analyze fatigue of the studied glass/PA6,6 specimens. The predictions agree well with the experimental results.

  2. Fatigue damage evolution and property degradation of a SCS-6/Ti-22Al-23Nb orthorhombic titanium aluminide composite

    SciTech Connect

    Wang, P.C.; Jeng, S.M.; Yang, J.M.; Russ, S.M.

    1996-08-01

    The fatigue damage evolution and property degradation of a SCS-6/Ti-22Al-23Nb orthorhombic titanium aluminide composite under low cycle fatigue loading at room temperature was investigated. The fatigue test was conducted under a load-controlled mode with a load ratio (R) of 0.1, a frequency of 10 Hz, and a maximum applied stress ranging from 600 to 945 MPa. The stiffness reduction as well as the evolution of microstructural damage which includes matrix crack length, matrix crack density and interfacial debonding length as a function of fatigue cycles, and applied stresses were measured. An analytical model and a computer simulation were also developed to predict the residual stiffness and the post-fatigued tensile strength as a function of microstructural damage. Finally, a steady-state crack growth model proposed by Marshall et al. was used to predict the interfacial frictional stress and the critical crack length. Correlation between the theoretical predictions and experimental results were also discussed.

  3. Subtask 12D6: Fatigue behavior of unirradiated V-5Cr-5Ti

    SciTech Connect

    Gieseke, B.G.; Stevens, C.O.; Grossbeck, M.L.

    1995-03-01

    The objective of this research is to determine the low cycle fatigue behavior of V-5Cr-5Ti alloys for a range of temperatures and the extent of environmental effects at ambient temperatures. The results of in-vacuum low cycle fatigue tests are presented for unirradiated V-5Cr-5Ti tested at room temperature (25, 250, and 400{degrees}C). A comparison of the fatigue data generated in rough and high vacuums shows that a pronounced environmental degradation of the fatigue properties exists in the alloy at room temperature. Fatigue life was reduced by as much as 84%. Cyclic stress range data and SEM observations suggest that this reduction is due to a combination of increases in rates of crack initiation and subsequent growth. The relative contribution of each difference is dependent upon the strain range. In high vacuum, the fatigue results also show a trend of increasing cyclic life with increasing temperature between 25 and 400{degrees}C. From the limited data available, life at 25{degrees}C averages 1.7 times that at 25{degrees}C, and at 400{degrees}C, life averages 3.2 times that at room temperature. Like the environmental effects at 25{degrees}C, the effect of temperature seems to be a function of strain range at each temperature. The total strain range and cycles to failure were correlated using a power law relationship and compared to 20% cold-worked 316 stainless steel and several vanadium-base alloys. The results suggest that V-SCr-5Ti has better resistance to fatigue than 316-SS in the temperature range of 25 to 400{degrees}C. At 400{degrees}C, the data also show that V-5Cr-5Ti out performs Vanstar alloys 7 and 8 over the entire range of strains investigated. Furthermore, the fatigue properties of the V-5Cr-5Ti alloy compare favorably to V-15Cr-57i (at 25{degrees}C) and Vanstar 9 (at 400{degrees}C) at strains greater than 1%. At lower strains, the lower fatigue resistance of V-5Cr-5Ti is attributed to the higher strengths of the V-15Cr-5Ti and Vanstar 9 alloys.

  4. Analysis of electrical and magnetic bio-signals associated with motor performance and fatigue

    NASA Astrophysics Data System (ADS)

    Yao, Bing

    progressed. On the other hand, the fMRI results only exhibited insignificant fatigue-related reductions of brain activation volume and no significant change of dipole strength derived from multi-channel EEG data. These results have been interpreted by a hypothetical neurophysiological model, in which two groups of cortical neurons (phasic and tonic) are preferentially activated in each physiological phase of the voluntary motor action.

  5. The Rehbinder effect in iron during giga-cycle fatigue loading

    SciTech Connect

    Bannikov, M. V. Naimark, O. B.

    2015-10-27

    The influence of the adsorptive strength reduction effect (the Rehbinder effect) on the fatigue life of pure iron under the giga-cycle loading regime was investigated. Specimens were loaded by an ultrasonic testing machine with a frequency of 20 kHz in air and in contact with eutectic alloy of gallium with tin and indium. A significant (by several orders of magnitude) worsening of the life-time of iron in contact with a molten metal as compared with tests in air was established. The liquid metal penetrates into the material to a depth of 200 μm to the center of a fatigue crack. The mechanism of the fatigue crack initiation in the giga-cycle regime of loading in contact with a surfactant is differing: the crack is formed on the surface of the specimen rather than within it as is the case for air. Based on the electron and optical microscopy data for the fracture surface, it can be concluded that exactly the change in the crack initiation mechanism reduces the fatigue life of iron in contact with a liquid metal because the initiated crack propagates regardless of the surfactant.

  6. Effect of equal channel angular extrusion on Al-6063 bending fatigue characteristics

    NASA Astrophysics Data System (ADS)

    Nemati, J.; Majzoobi, G. H.; Sulaiman, S.; Baharudin, B. T. H. T.; Azmah Hanim, M. A.

    2015-04-01

    The purpose of this investigation was to refine the grains of annealed 6063 aluminum alloy and to improve its yield stress and ultimate strength. This was accomplished via the equal channel angular extrusion (ECAE) process at a temperature of 200°C using route A, with a constant ram speed of 30 mm/min through a die angle of 90° between the die channels for as many as 6 passes. The experiments were conducted on an Avery universal testing machine. The results showed that the grain diameter decreased from 45 μm to 2.8 μm after 6 extrusion passes. The results also indicated that the major improvement in fatigue resistance occurred after the first pass. The subsequent passes improved the fatigue life but at a considerably lower rate. A maximum increase of 1100% in the case of low applied stresses and an approximately 2200% increase in fatigue resistance in the case of high applied stresses were observed after 5 passes. The improvement of fatigue resistance is presumed to be due to (1) a reduction in the size and the number of Si crystals with increasing number of ECAE passes, (2) the aggregation of Cu during the ECAE process, (3) the formation and growth of CuAl2 grains, and (4) grain refinement of the Al-6063 alloy during the ECAE process.

  7. Effects of high-intensity blood flow restriction exercise on muscle fatigue.

    PubMed

    Neto, Gabriel R; Santos, Heleodório H; Sousa, Juliana B C; Júnior, Adenilson T A; Araújo, Joamira P; Aniceto, Rodrigo R; Sousa, Maria S C

    2014-06-28

    Strength training combined with blood flow restriction (BFR) have been used to improve the levels of muscle adaptation. The aim of this paper was to investigate the acute effect of high intensity squats with and without blood flow restriction on muscular fatigue levels. Twelve athletes (aged 25.95 ± 0.84 years) were randomized into two groups: without Blood Flow Restriction (NFR, n = 6) and With Blood Flow Restriction (WFR, n = 6) that performed a series of free weight squats with 80% 1-RM until concentric failure. The strength of the quadriceps extensors was assessed in a maximum voluntary isometric contraction integrated to signals from the surface electromyogram. The average frequency showed significant reductions in the WFR group for the vastus lateralis and vastus medialis muscles, and intergroup only for the vastus medialis. In conclusion, a set of squats at high intensity with BFR could compromise muscle strength immediately after exercise, however, differences were not significant between groups.

  8. Effect of the Aging Temperature of Steel on the Parameters of Fatigue Resistance and Microstrain

    NASA Astrophysics Data System (ADS)

    Myl'nikov, V. V.; Romanov, A. D.; Shetulov, D. I.; Khlybov, A. A.

    2016-07-01

    The interrelation of the parameters of microplastic strain, the slope of the left-hand branch of the fatigue curve, and the fatigue limit of a maraging steel is studied. The growth in the microplastic strain is shown to match the growth in the fatigue limit and the decrease in the slope of the left-hand branch of the fatigue curve. The strength of the steel decreases with decrease in the temperature of post-quenching aging.

  9. Mechanical fatigue of thin copper foil

    SciTech Connect

    Merchant, H.D.; Minor, M.G.; Liu, Y.L.

    1999-09-01

    The electrodeposited and the rolled 12 to 35 {micro}m thick copper foils are subjected to the bending/unbending strain-controlled flex fatigue over a wide range of strain amplitudes. The fatigue life is associated with an increase in electrical resistance of the specimen beyond a preassigned threshold. For each foil type, in the rolled or as-deposited as well as in the (recrystallization-like) annealed conditions, the inverse Coffin-Manson (C-M) relationship between strain amplitude ({Delta}{epsilon}/2) and fatigue life (N{sub f}) is established in the high {Delta}{epsilon}/2 (low N{sub f}) and the low {Delta}{epsilon}/2 (high N{sub f}) regimes. The N{sub f}, {Delta}{epsilon}/2, and C-M slopes (c,b) are utilized to calculate the cyclic strain hardening (n{prime}) and fatigue ductility (D{sub f}) parameters. It is shown that for a given foil thickness, an universal relationship exists between D{sub f} and the strength ({sigma}) normalized fatigue life (N{sub f}/{sigma}). The propagation of fatigue crack through the foil thickness and across the sample width is related to the unique fine grain structure for each foil type: pancaked grains for the rolled foil and equiaxed grains for the electrodeposited foil. The fatal failure corresponds to convergence of the through-thickness and the across-the-width fatigue cracks. The variations in (i) electrical resistance, (ii) mid-thickness microhardness and grain structure and (iii) dislocation configurations with fatigue are monitored. Except for a small but significant fatigue induced softening (or hardening), nonconvincing evidence of strain localization (and the associated dislocation configurations generally observed for the bulk samples) has been found.

  10. Statistical summaries of fatigue data for design purposes

    NASA Technical Reports Server (NTRS)

    Wirsching, P. H.

    1983-01-01

    Two methods are discussed for constructing a design curve on the safe side of fatigue data. Both the tolerance interval and equivalent prediction interval (EPI) concepts provide such a curve while accounting for both the distribution of the estimators in small samples and the data scatter. The EPI is also useful as a mechanism for providing necessary statistics on S-N data for a full reliability analysis which includes uncertainty in all fatigue design factors. Examples of statistical analyses of the general strain life relationship are presented. The tolerance limit and EPI techniques for defining a design curve are demonstrated. Examples usng WASPALOY B and RQC-100 data demonstrate that a reliability model could be constructed by considering the fatigue strength and fatigue ductility coefficients as two independent random variables. A technique given for establishing the fatigue strength for high cycle lives relies on an extrapolation technique and also accounts for "runners." A reliability model or design value can be specified.

  11. Mechanism of corrosion fatigue cracking of automotive coil spring steel

    NASA Astrophysics Data System (ADS)

    Nam, Tae-Heum; Kwon, Min-Seok; Kim, Jung-Gu

    2015-11-01

    The AISI 300M ultra-high strength steel was applied for the automotive suspension coil spring. Recently, some premature failures were reported, which caused by synergistic effect of cyclic mechanical stress and corrosion, namely corrosion fatigue cracking. In this study, the accurate mechanism of corrosion fatigue cracking for coil spring steel was studied for the proper prevention method against the catastrophic failure. Fatigue life was evaluated in 5 wt% NaCl solution under the anodic dissolution and hydrogen embrittlement conditions, which is simulated by applying constant potentials. Scanning electron microscopy and energy dispersive X-ray spectroscopy analysis indicated that the corrosion fatigue cracking was initiated at the MnS inclusion of the pit initiation site. The calculation of hydrogen production corresponding to each corrosion fatigue test condition revealed the two operating mechanisms of the cracking process. The corrosion fatigue cracking failure of coil spring steel was mainly caused by the anodic dissolution combined with hydrogen embrittlement.

  12. Fatigue of composites

    NASA Technical Reports Server (NTRS)

    Salkind, M. J.

    1972-01-01

    The failure mechanisms in the fatigue of composite materials are analyzed in terms of the requirements for designing fatigue-critical composite structures. Fiber reinforced polymers, fiber reinforced metals, fatigue of composite structures, and composite design considerations are discussed. It is concluded that composite materials offer the engineer the opportunity for tailoring stiffness in different directions for designing dynamic components.

  13. Improvement of fatigue behavior of mechanically surface treated materials by annealing

    SciTech Connect

    Altenberger, I.; Scholtes, B.

    1999-09-10

    The positive effects of mechanical surface optimization methods for fatigue lifetime and strength are generally attributed to the formation of compressive residual stresses and strain hardening in near surface layers. This work concentrates on the cyclic deformation behavior of three different commercial, widely used alloys (steels SAE 1045 and AISI 304, magnesium wrought alloy AZ31) subjected to thermal treatment after mechanical surface optimization. In the case of SAE 1045 fatigue lifetime as well as fatigue endurance strength were shown to be affected positively by different heat treatments in spite of residual macro and micro stress relaxation. Macroscopically according to Manson-Coffin`s law this improvement can be explained by the reduction of plastic strain amplitude. Microscopically, strain ageing can be identified as the responsible process. For all three materials, optimum heat treatment temperatures and times are suggested, derived from hysteresis measurements and cyclic lifetimes. Finally, it will be shown that further surface optimization can be achieved by simultaneously applying mechanical and thermal treatments (thermomechanical rolling or peening).

  14. Cyclic deformation fatigue behaviour of Ti6Al4V thermochemically nitrided for articular prostheses.

    PubMed

    Gil, F J; Manero, J M; Rodriguez, D; Planell, J A

    2003-01-01

    Titanium and its alloys have many attractive properties including high specific strength, low density, and excellent corrosion resistance. Titanium and the Ti6Al4V alloy have long been recognized as materials with high biocompatibility. These properties have led to the use of these materials in biomedical applications. Despite these advantages, the lack of good wear resistance makes the use of titanium and Ti6Al4V difficult in some biomedical applications, for example, articulating components of prostheses. To overcome this limitation, nitriding has been investigated as a surface-hardening method for titanium. Although nitriding greatly improves the wear resistance, this method reduces the fatigue strength. Low cycle fatigue performance in air of nitrided Ti6Al4V at different deformation amplitudes has been studied. Results show a reduction of low cycle fatigue life of up to 10% compared to the non-treated material. Studies suggest it is not related to the titanium nitride surface layer, but to microstructural changes caused by the high temperature treatment. (Journal of Applied Biomaterial & Biomechanics 2003; 1: 43-7).

  15. Retrograde intramedullary nails with distal screws locked to the nail have higher fatigue strength than locking plates in the treatment of supracondylar femoral fractures: A cadaver-based laboratory investigation.

    PubMed

    Pekmezci, M; McDonald, E; Buckley, J; Kandemir, U

    2014-01-01

    We investigated a new intramedullary locking nail that allows the distal interlocking screws to be locked to the nail. We compared fixation using this new implant with fixation using either a conventional nail or a locking plate in a laboratory simulation of an osteoporotic fracture of the distal femur. A total of 15 human cadaver femora were used to simulate an AO 33-A3 fracture pattern. Paired specimens compared fixation using either a locking or non-locking retrograde nail, and using either a locking retrograde nail or a locking plate. The constructs underwent cyclical loading to simulate single-leg stance up to 125,000 cycles. Axial and torsional stiffness and displacement, cycles to failure and modes of failure were recorded for each specimen. When compared with locking plate constructs, locking nail constructs had significantly longer mean fatigue life (75,800 cycles (SD 33,900) vs 12,800 cycles (SD 6100); p = 0.007) and mean axial stiffness (220 N/mm (SD 80) vs 70 N/mm (SD 18); p = 0.005), but lower mean torsional stiffness (2.5 Nm/° (SD 0.9) vs 5.1 Nm/° (SD 1.5); p = 0.008). In addition, in the nail group the mode of failure was either cut-out of the distal screws or breakage of nails, and in the locking plate group breakage of the plate was always the mode of failure. Locking nail constructs had significantly longer mean fatigue life than non-locking nail constructs (78,900 cycles (SD 25,600) vs 52,400 cycles (SD 22,500); p = 0.04). The new locking retrograde femoral nail showed better stiffness and fatigue life than locking plates, and superior fatigue life to non-locking nails, which may be advantageous in elderly patients.

  16. Compression and compression fatigue testing of composite laminates

    NASA Technical Reports Server (NTRS)

    Porter, T. R.

    1982-01-01

    The effects of moisture and temperature on the fatigue and fracture response of composite laminates under compression loads were investigated. The structural laminates studied were an intermediate stiffness graphite-epoxy composite (a typical angle ply laimna liminate had a typical fan blade laminate). Full and half penetration slits and impact delaminations were the defects examined. Results are presented which show the effects of moisture on the fracture and fatigue strength at room temperature, 394 K (250 F), and 422 K (300 F). Static tests results show the effects of defect size and type on the compression-fracture strength under moisture and thermal environments. The cyclic tests results compare the fatigue lives and residual compression strength under compression only and under tension-compression fatigue loading.

  17. Fatigue characterization of advanced carbon-carbon composites

    NASA Technical Reports Server (NTRS)

    Mahfuz, Hassan; Das, Partha S.; Jeelani, Shaik; Baker, Dean M.; Johnson, Sigured A.

    1992-01-01

    Response of quasi-isotropic laminates of SiC coated Carbon-Carbon (C/C) composites under flexural fatigue are investigated at room temperature. Virgin as well as mission cycled specimens are tested to study the effects of thermal and pressure cycling on the fatigue performance of C/C. Tests were conducted in three point bending with a stress ratio of 0.2 and frequency of 1 Hz. Fatigue strength of C/C has been found to be considerably high - approximately above 85 percent of the ultimate flexural strength. The fatigue strength appears to be decreasing with the increase in the number of mission cycling of the specimens. This lower strength with the mission cycled specimens is attributed to the loss of interfacial bond strength due to thermal and pressure cycling of the material. C/C is also found to be highly sensitive to the applied stress level during cyclic loading, and this sensitivity is observed to increase with the mission cycling. Weibull characterization on the fatigue data has been performed, and the wide scatter in the Weibull distribution is discussed. Fractured as well as untested specimens were C-scanned, and the progressive damage growth during fatigue is presented.

  18. Chronic fatigue syndrome: aetiology, diagnosis and treatment

    PubMed Central

    Avellaneda Fernández, Alfredo; Pérez Martín, Álvaro; Izquierdo Martínez, Maravillas; Arruti Bustillo, Mar; Barbado Hernández, Francisco Javier; de la Cruz Labrado, Javier; Díaz-Delgado Peñas, Rafael; Gutiérrez Rivas, Eduardo; Palacín Delgado, Cecilia; Rivera Redondo, Javier; Ramón Giménez, José Ramón

    2009-01-01

    Chronic fatigue syndrome is characterised by intense fatigue, with duration of over six months and associated to other related symptoms. The latter include asthenia and easily induced tiredness that is not recovered after a night's sleep. The fatigue becomes so severe that it forces a 50% reduction in daily activities. Given its unknown aetiology, different hypotheses have been considered to explain the origin of the condition (from immunological disorders to the presence of post-traumatic oxidative stress), although there are no conclusive diagnostic tests. Diagnosis is established through the exclusion of other diseases causing fatigue. This syndrome is rare in childhood and adolescence, although the fatigue symptom per se is quite common in paediatric patients. Currently, no curative treatment exists for patients with chronic fatigue syndrome. The therapeutic approach to this syndrome requires a combination of different therapeutic modalities. The specific characteristics of the symptomatology of patients with chronic fatigue require a rapid adaptation of the educational, healthcare and social systems to prevent the problems derived from current systems. Such patients require multidisciplinary management due to the multiple and different issues affecting them. This document was realized by one of the Interdisciplinary Work Groups from the Institute for Rare Diseases, and its aim is to point out the main social and care needs for people affected with Chronic Fatigue Syndrome. For this, it includes not only the view of representatives for different scientific societies, but also the patient associations view, because they know the true history of their social and sanitary needs. In an interdisciplinary approach, this work also reviews the principal scientific, medical, socio-sanitary and psychological aspects of Chronic Fatigue Syndrome. PMID:19857242

  19. Static and fatigue tensile properties of cross-ply laminates containing vascules for self-healing applications

    NASA Astrophysics Data System (ADS)

    Luterbacher, R.; Trask, R. S.; Bond, I. P.

    2016-01-01

    The effect of including hollow channels (vascules) within cross-ply laminates on static tensile properties and fatigue performance is investigated. No change in mechanical properties or damage formation is observed when a single vascule is included in the 0/90 interface, representing 0.5% of the cross sectional area within the specimen. During tensile loading, matrix cracks develop in the 90° layers leading to a reduction of stiffness and strength (defined as the loss of linearity) and a healing agent is injected through the vascules in order to heal them and mitigate the caused degradation. Two different healing agents, a commercial low viscosity epoxy resin (RT151, Resintech) and a toughened epoxy blend (bespoke, in-house formulation) have been used to successfully recover stiffness under static loading conditions. The RT151 system recovered 75% of the initial failure strength, whereas the toughened epoxy blend achieved a recovery of 67%. Under fatigue conditions, post healing, a rapid decay of stiffness was observed as the healed damage re-opened within the first 2500 cycles. This was caused by the high fatigue loading intensity, which was near the static failure strength of the healing resin. However, the potential for ameliorating (via self-healing or autonomous repair) more diffuse transverse matrix damage via a vascular network has been shown.

  20. Intermittent minodronic acid treatment with sufficient bone resorption inhibition prevents reduction in bone mass and strength in ovariectomized rats with established osteopenia comparable with daily treatment.

    PubMed

    Kimoto, Aishi; Tanaka, Makoto; Nozaki, Kazutoshi; Mori, Masamichi; Fukushima, Shinji; Mori, Hiroshi; Shiroya, Tsutomu; Nakamura, Toshitaka

    2013-07-01

    This study examined and compared the effects of four-week intermittent and daily administrations of minodronic acid, a highly potent nitrogen-containing bisphosphonate, on bone mineral density (BMD), bone strength, bone turnover, and histomorphometry on established osteopenia in ovariectomized (OVX) rats. Fourteen-week-old female F344 rats were OVX or sham-operated. At 12 weeks post surgery, minodronic acid was orally administered once every 4 weeks at 0.2, 1, and 5 mg/kg and once daily at 0.006, 0.03, and 0.15 mg/kg for 12 months. The total dosing amount was comparable between the two dosing regimens. The levels of urinary deoxypyridinoline and serum osteocalcin were measured to assess bone turnover. BMD as assessed via dual-energy X-ray absorptiometry, bone structure and dynamical changes in vertebral trabecula and biomechanical properties were measured ex vivo at 12 months to assess bone content and material properties. Minodronic acid dose-dependently ameliorated the decrease in BMD of lumbar vertebrae and the femur in both treatment regimens similarly. Minodronic acid suppressed elevated urinary levels of deoxypyridinoline, a bone resorption marker, and reduced the serum levels of osteocalcin, a bone formation marker. In the mechanical test at 12 months of treatment, minodronic acid dose-dependently ameliorated the reduction in bone strength in femur and vertebral body. There is no significant difference in parameters between the two regimens except maximal load of lower doses in lumbar vertebral body and absorption energy of middle doses in femur. With these parameters with significant differences, values of the intermittent regimen were significantly lower than that of daily repeated regimen. Bone histomorphometric analysis of the lumbar vertebral body showed that minodronic acid significantly ameliorated the decrease in bone mass, trabecular thickness and number, and the increase in trabecular separation, bone resorption indices (Oc.S/BS and N.Oc/BS), and

  1. Statistical optimisation techniques in fatigue signal editing problem

    SciTech Connect

    Nopiah, Z. M.; Osman, M. H.; Baharin, N.; Abdullah, S.

    2015-02-03

    Success in fatigue signal editing is determined by the level of length reduction without compromising statistical constraints. A great reduction rate can be achieved by removing small amplitude cycles from the recorded signal. The long recorded signal sometimes renders the cycle-to-cycle editing process daunting. This has encouraged researchers to focus on the segment-based approach. This paper discusses joint application of the Running Damage Extraction (RDE) technique and single constrained Genetic Algorithm (GA) in fatigue signal editing optimisation.. In the first section, the RDE technique is used to restructure and summarise the fatigue strain. This technique combines the overlapping window and fatigue strain-life models. It is designed to identify and isolate the fatigue events that exist in the variable amplitude strain data into different segments whereby the retention of statistical parameters and the vibration energy are considered. In the second section, the fatigue data editing problem is formulated as a constrained single optimisation problem that can be solved using GA method. The GA produces the shortest edited fatigue signal by selecting appropriate segments from a pool of labelling segments. Challenges arise due to constraints on the segment selection by deviation level over three signal properties, namely cumulative fatigue damage, root mean square and kurtosis values. Experimental results over several case studies show that the idea of solving fatigue signal editing within a framework of optimisation is effective and automatic, and that the GA is robust for constrained segment selection.

  2. Decrease of muscle fiber conduction velocity correlates with strength loss after an endurance run.

    PubMed

    Boccia, Gennaro; Dardanello, Davide; Tarperi, Cantor; Rosso, Valeria; Festa, Luca; La Torre, Antonio; Pellegrini, Barbara; Schena, Federico; Rainoldi, Alberto

    2017-02-01

    Monitoring surface electromyographic (EMG) signals can provide useful insights for characterizing muscle fatigue, which is defined as an exercise-induced strength loss. This experiment investigated the muscle fiber conduction velocity (CV) changes induced by an endurance run. The day before and immediately after a half-marathon run (21.097 km) 11 amateur runners performed maximum voluntary contractions (MVCs) of knee extensor muscles. During the MVC, multichannel EMG was recorded from the vastus lateralis and EMG amplitude and CV were calculated. After the run, knee extensors showed a decreased strength (-13  ±  9%, p  =  0.001) together with a reduction in EMG amplitude (-13  ±  10%, p  =  0.003) and in CV (-6  ±  8%, p  =  0.032). Knee extensor strength loss positively correlated with vastus lateralis CV differences (r  =  0.76, p  =  0.006). Thus, the exercises-induced muscle fatigue was associated not only with a decrease in EMG amplitude, but also with a reduction in CV. This finding suggests that muscle fibers with higher CV (i.e. those with greater fiber size) were the most impaired during strength production after an endurance run.

  3. Effects of gluteal kinesio-taping on performance with respect to fatigue in rugby players.

    PubMed

    Strutzenberger, Gerda; Moore, Joseph; Griffiths, Hywel; Schwameder, Hermann; Irwin, Gareth

    2016-01-01

    Kinesio-tape(®) has been suggested to increase blood circulation and lymph flow and might influence the muscle's ability to maintain strength during fatigue. Therefore, the aim of this study was to investigate the influence of gluteal Kinesio-tape(®) on lower limb muscle strength in non-fatigued and fatigued conditions. A total of 10 male rugby union players performed 20-m sprint and vertical jump tests before and after a rugby-specific fatigue protocol. The 20-m sprint time was collected using light gates (SMARTSPEED). A 9-camera motion analysis system (VICON, 100 Hz) and a force plate (Kistler, 1000 Hz) measured the kinematics and kinetics during a counter movement jump and drop-jump. The effect of tape and fatigue on jump height, maximal vertical ground reaction force, reactivity strength index as well as lower limb joint work were analysed via a two-way analysis of variance. The fatigue protocol resulted in significantly decreased performance of sprint time, jump heights and alterations in joint work. No statistical differences were found between the taped and un-taped conditions in non-fatigued and fatigued situation as well as in the interaction with fatigue. Therefore, taping the gluteal muscle does not influence the leg explosive strength after fatiguing in healthy rugby players.

  4. [Effect of respiratory muscle fatigue on their function during exercise].

    PubMed

    Sliwiński, P; Yan, S; Gauthier, A P; Macklem, P T

    1996-01-01

    We evaluated the effect of global inspiratory muscle fatigue (GF) on respiratory muscle control during exercise at 30%, 60%, and 90% of maximal power output in normal subjects. Fatigue was induced by breathing against a high inspiratory resistance until exhaustion. Respiratory pressures, breathing pattern, and perceived breathlessness were measured. Induction of GF had no effect on the ventilatory parameters during mild and moderate exercise. It altered, however, ventilatory response to heavy exercise by increasing breathing frequency and minute ventilation, with minor changes in tidal volume. This was accompanied by an increase in perceived breathlessness. GF significantly increased both the tonic and phasic activities of abdominal muscles that allowed 1) the diaphragm to maintain its function while developing less pressure, 2) the same tidal volume with lesser shortening of the rib cage inspiratory muscles, and 3) relaxation of the abdominal muscles to contribute to lung inflation. The increased work performed by the abdominal muscles may, however, lead to a reduction in their strength. GF may impair exercise performance in some healthy subjects that is probably not related to excessive breathlessness or other ventilatory factors. The respiratory system is remarkably adaptable in maintaining ventilation during exercise even with impaired inspiratory muscle contractility.

  5. Dynamic Fatigue of ULE Glass

    NASA Technical Reports Server (NTRS)

    Tucker, Dennis S.; Nettles, Alan T.; Brantley, Lott W. (Technical Monitor)

    2001-01-01

    Ultra Low Expansion (ULE) glass is used in a number of applications which require a low thermal expansion coefficient. One such application is telescope mirror elements. An allowable stress can be calculated for this material based upon modulus of rupture data; however, this does not take into account the problem of delayed failure. Delayed failure, due to stress corrosion can significantly shorten the lifetime of a glass article. Knowledge of the factors governing the rate of subcritical flaw growth in a given environment enables the development of relations between lifetime, applied stress and failure probability for the material under study. Dynamic fatigue is one method of obtaining the necessary information to develop these relationships. In this study, the dynamic fatigue method was used to construct time-to-failure diagrams for both 230/270 ground and optically polished samples. The grinding and polishing process reduces the surface flaw size and subsurface damage, and relieves residual stress by removing materials with successively smaller grinding media. This resulted in an increase in the strength of the optic during the grinding and polishing sequence. There was also an increase in the lifetime due to grinding and polishing. It was found that using the fatigue parameters determined from the 230/270 grit surface are not significantly different from the optically polished values. Although the lower bound of the polished samples is more conservative, neither time-to-failure curves lie beyond the upper or lower bound of the confidence limits. Therefore, designers preferring conservative limits could use samples without residual stress present (polished samples) to determine the fatigue parameters and inert Weibull parameters from samples with the service condition surface, to determine time-to-failure of the optical element.

  6. Clinical neurophysiology of fatigue.

    PubMed

    Zwarts, M J; Bleijenberg, G; van Engelen, B G M

    2008-01-01

    Fatigue is a multidimensional concept covering both physiological and psychological aspects. Chronic fatigue is a typical symptom of diseases such as cancer, multiple sclerosis (MS), Parkinson's disease (PD) and cerebrovascular disorders but is also presented by people in whom no defined somatic disease has been established. If certain criteria are met, chronic fatigue syndrome can be diagnosed. The 4-item Abbreviated Fatigue Questionnaire allows the extent of the experienced fatigue to be assessed with a high degree of reliability and validity. Physiological fatigue has been well defined and originates in both the peripheral and central nervous system. The condition can be assessed by combining force and surface-EMG measurements (including frequency analyses and muscle-fibre conduction estimations), twitch interpolation, magnetic stimulation of the motor cortex and analysis of changes in the readiness potential. Fatigue is a well-known phenomenon in both central and peripheral neurological disorders. Examples of the former conditions are multiple sclerosis, Parkinson's disease and stroke. Although it seems to be a universal symptom of many brain disorders, the unique characteristics of the concomitant fatigue also point to a specific relationship with several of these syndromes. As regards neuromuscular disorders, fatigue has been reported in patients with post-polio syndrome, myasthenia gravis, Guillain-Barré syndrome, facioscapulohumeral dystrophy, myotonic dystrophy and hereditary motor and sensory neuropathy type-I. More than 60% of all neuromuscular patients suffer from severe fatigue, a prevalence resembling that of patients with MS. Except for several rare myopathies with specific metabolic derangements leading to exercise-induced muscle fatigue, most studies have not identified a prominent peripheral cause for the fatigue in this population. In contrast, the central activation of the diseased neuromuscular system is generally found to be suboptimal. The

  7. Damage assessment in CFRP laminates exposed to impact fatigue loading

    NASA Astrophysics Data System (ADS)

    Tsigkourakos, George; Silberschmidt, Vadim V.; Ashcroft, I. A.

    2011-07-01

    Demand for advanced engineering composites in the aerospace industry is increasing continuously. Lately, carbon fibre reinforced polymers (CFRPs) became one of the most important structural materials in the industry due to a combination of characteristics such as: excellent stiffness, high strength-to-weight ratio, and ease of manufacture according to application. In service, aerospace composite components and structures are exposed to various transient loads, some of which can propagate in them as cyclic impacts. A typical example is an effect of the wind gusts during flight. This type of loading is known as impact fatigue (IF); it is a repetition of low-energy impacts. Such loads can cause various types of damage in composites: fibre breaking, transverse matrix cracking, de-bonding between fibres and matrix and delamination resulting in reduction of residual stiffness and loss of functionality. Furthermore, this damage is often sub-surface, which reinforces the need for more regular inspection. The effects of IF are of major importance due its detrimental effect on the structural integrity of components that can be generated after relatively few impacts at low force levels compared to those in a standard fatigue regime. This study utilises an innovative testing system with the capability of subjecting specimens to a series of repetitive impacts. The primary subject of this paper is to assess the damaging effect of IF on the behaviour of drilled CFRP specimens, exposed to such loading. A detailed damage analysis is implemented utilising an X-ray micro computed tomography system. The main findings suggested that at early stages of life damage is governed by o degree splits along the length of the specimens resulting in a 20% reduction of stiffness. The final failure damage scenario indicated that transverse crasks in the 90 degree plies are the main reason for complete delamination which can be translated to a 50% stiffness reduction.

  8. Fatigue performance and cyclic softening of F82H, a ferritic martensic steel

    SciTech Connect

    Stubbins, J.F.; Gelles, D.S.

    1996-04-01

    The room temperature fatigue performance of F82H has been examined. The fatigue life was determined in a series of strain-controlled tests where the stress level was monitored as a function of the number of accrued cycles. Fatigue lives in the range of 10{sup 3} to 10{sup 6} cycles to failure were examined. The fatigue performance was found to be controlled primarily by the elastic strain range over most of the range of fatigue lives examined. Only at low fatigue lives did the plastic strain range contribute to the response. However, when the significant plastic strain did contribute, the material showed a tendency to cyclically soften. That is the load carrying capability of the material degrades with accumulated fatigue cycles. The overall fatigue performance of the F82H alloy was found to be similiar to other advanced martensitic steels, but lower than more common low alloy steels which possess lower yield strengths.

  9. Fatigue in Multiple Sclerosis: Misconceptions and Future Research Directions

    PubMed Central

    Rudroff, Thorsten; Kindred, John H.; Ketelhut, Nathaniel B.

    2016-01-01

    Fatigue is one of the most disabling side effects in people with multiple sclerosis. While this fact is well known, there has been a remarkable lack of progress in determining the pathophysiological mechanisms behind fatigue and the establishment of effective treatments. The main barrier has been the lack of a unified definition of fatigue that can be objectively tested with validated experimental models. In this “perspective article” we propose the use of the following model and definition of fatigue: the decrease in physical and/or mental performance that results from changes in central, psychological, and/or peripheral factors. These changes depend on the task being performed, the environmental conditions it is performed in, and the physical and mental capacity of the individual. Our definition and model of fatigue outlines specific causes of fatigue and how it affects task performance. We also outline the strengths and weaknesses of commonly used measures of fatigue and suggest, based on our model and definition, new research strategies, which should include multiple measures. These studies should be mechanistic with validated experimental models to determine changes in central, psychological, and/or peripheral factors that explain fatigue. The proposed new research strategies may lead to the identification of the origins of MS related fatigue and the development of new, more effective treatments. PMID:27531990

  10. Effect of anisotropy on fatigue properties of notched CFRP laminates

    NASA Astrophysics Data System (ADS)

    Murakami, Ri-Ichi; Yamanaka, Keisi; Inaba, Tatsuichi; Takaichi, Hiroshi; Shibayama, Muneaki

    1993-04-01

    The effect of anisotropy on fatigue properties of notched carbon fiber reinforced plastic laminates has been studied. The off-axis angle of carbon fiber was varied from 0 to 45 deg. The ultimate tensile strength and the tensile elastic modulus drastically decreased when the off-axis angle of carbon fiber increased to 30 deg. When the-off axis angle of carbon fiber increased over 30 deg, these values approached approximately constant values. The maximum tensile strain also increased and saturated to a constant value when the off-axis angle of the carbon fiber increased. The fatigue strength of notched CFRP laminates showed a similar dependence of ultimate tensile strength on the off-axis angle. The decrease of fatigue strength results from the fatigue damage in relation to the off-axis angle. The fatigue damage process was analyzed in terms of AE measurement and fractography. These results indicate that the fatigue damage process of CFRP laminates was significantly affected by the off-axis angle of carbon fiber.

  11. Final report on low-cycle fatigue and creep-fatigue testing of salt-filled alloy 800 specimens

    SciTech Connect

    Kaae, J L

    1982-05-01

    Uniaxial low-cycle fatigue and creep-fatigue tests have been carried out on hollow alloy 800 specimens that were either filled with air or with a molten mixture of sodium nitrate, potassium nitrate and an oxidizer. Low-cycle fatigue tests were carried out at 1200/sup 0/F and 650/sup 0/F by cycling the strain continuously between equal mangitude of tensile and compressive values at a rate of 4 x 10/sup -3/sec/sup -1/ until failure. The creep-fatigue tests were carried out at 1200/sup 0/F. The loading cycle differed from that of low-cycle fatigue testing only in the imposition of a hold at the peak compressive strain in each cycle. Cracks always initiated on the inner surface of the hollow specimen, and therefore, corrosive effects on crack propagation and initiation were controlled by the environment within the specimen cavity. In common with tests carried out earlier on steam-filled alloy 800 specimens, at 1200/sup 0/F in the presence of molten salt the heat of alloy 800 with the lower carbon content had a higher fatigue strength than the heat with the higher carbon content even though different heats were used in the two testing programs. The fatigue strength of the two heats of material in the presence of molten salt at 650/sup 0/F were about the same. Tests with air-filled specimens indicated that the presence of the molten salt degraded the fatigue life at 1200/sup 0/F but did not affect the creep fatigue life, while the presence of steam enhanced both the fatigue life and the creep-fatigue life.

  12. Cancer-related fatigue.

    PubMed

    Visovsky, Constance; Schneider, Susan M

    2003-01-01

    Approximately 1.3 million people in the United States will be diagnosed with cancer in 2003 and millions of other individuals are already living with the disease. Fatigue continues to be the most prevalent and disruptive symptom of cancer and its treatment regimens. Fatigue was the most frequent and distressing cancer-related symptom occurring in women with lung cancer, two times greater than the next symptom, pain, and remains one of the most common symptoms in newly diagnosed lung cancer patients at any stage of the disease. There are many causes of cancer-related fatigue including preexisting conditions, physical and psychological symptoms caused by cancer, and the consequences of cancer treatment. High levels of fatigue decrease quality of life, physical functional status, and symptom management. This article presents an evidenced-base review of cancer-related fatigue, strategies for the management of cancer-related fatigue, and recommendations for clinical practice.

  13. Fatigue of cellular materials

    SciTech Connect

    Huang, J.S.; Lin, J.Y.

    1996-01-01

    The fatigue of cellular materials is analyzed using dimensional arguments. When the first unbroken cell wall ahead of the macrocrack tip fails after some cycles of loading, the macrocrack advances one cell diameter, giving the macrocrack growth rate of cellular materials. Paris law for microcrack propagation, Basquin law for high cycle fatigue and Coffin-Manson law for low cycle fatigue are employed in calculating the number of cycles to failure of the first unbroken cell wall ahead of the macrocrack tip. It is found that fatigue of cellular materials depends on cyclic stress intensity range, cell size, relative density and the fatigue parameters of the solid from which they are made. Theoretical modelling of fatigue of foams is compared to data in polymer foams; agreement is good.

  14. Effects of porosity on the fatigue performance of polymethyl methacrylate bone cement: an analytical investigation.

    PubMed

    Evans, S L

    2006-01-01

    Porosity has been shown to affect the fatigue life of bone cements, but, although vacuum mixing is widely used to reduce porosity in the clinical setting, results have been mixed and the effects of porosity are not well understood. The aim of this study was to investigate the effects of porosity using stress analysis and fracture mechanics techniques. The stress concentrations arising at voids in test specimens were found using analytical solutions and boundary element methods. The fatigue life of specimens containing voids of various sizes was predicted using fracture mechanics techniques. For spherical voids that do not occupy a significant proportion of the cross-section, the resulting stress concentration is independent of void size and too small to account for the observed crack initiation. Cracks must therefore initiate at additional stress raisers such as radiopacifier particles or additional voids. For large voids, the stress increases as the remaining cross-section of the specimen decreases, and this may account for much of the observed reduction in fatigue strength in hand-mixed cement. Although crack initiation may be largely independent of void size, there is an effect on crack growth rate. Cracks are predicted to grow faster around larger voids, since they remain in the stress concentration around the void for longer. This effect may account for the relationship between porosity and fatigue life that has been observed in samples without large voids. Since porosity appears to affect crack growth more than initiation, it may be less damaging in high-cycle clinical fatigue, which may be predominantly initiation controlled, than in short laboratory tests.

  15. Accelerated Fatigue Test Rationale,

    DTIC Science & Technology

    1980-03-01

    stress cycles. The high cycle fatigue (i.e. elastic stress-strain) typically extends beyond 104 cycles. The Coffin - Manson low cycle fatigue expression...g "Engineering strain is usually more convenient to use than "true" strain. The Coffin - Manson can be modified 12J to give -1/B .- Cu (2 Nf) (21...Mowbray Ci03 has shown that this relationship also reduces to the Coffin - Manson low cycle fatigue expression. An important aspect of the Dowling and

  16. Fatigue Crack Growth and Crack Bridging in SCS-6/Ti-24-11

    NASA Technical Reports Server (NTRS)

    Ghosn, Louis J.; Kantzos, Pete; Telesman, Jack

    1995-01-01

    Interfacial damage induced by relative fiber/matrix sliding was found to occur in the bridged zone of unidirectional SCS-6/Ti-24Al-11Nb intermetallic matrix composite specimens subjected to fatigue crack growth conditions. The degree of interfacial damage was not uniform along the bridged crack wake. Higher damage zones were observed near the machined notch in comparison to the crack tip. The interfacial friction shear strength tau(sub f) measured in the crack wake using pushout testing revealed lower values than the as-received interface. Interfacial wear also reduced the strength of the bridging fibers. The reduction in fiber strength is thought to be a function of the magnitude of relative fiber/matrix displacements ind the degree of interfacial damage. Furthermore, two different fiber bridging models were used to predict the influence of bridging on the fatigue crack driving force. The shear lag model required a variable tau(sub f) in the crack wake (reflecting the degradation of the interface) before its predictions agreed with trends exhibited by the experimental data. The fiber pressure model did an excellent job in predicting both the FCG data and the DeltaCOD in the bridged zone even though it does not require a knowledge of tau(sub f).

  17. A paradigm for skeletal strength homeostasis.

    PubMed

    Kimmel, D B

    1993-12-01

    This article integrates engineering principles with skeletal biology to describe skeletal strength homeostasis. Skeletal strength revolves around its perceived mechanical usage. Mass, geometric properties, and fatigue damage burden are the principle determinants of structural strength. Bone cells form sensor and effector systems that monitor usage and adjust strength and stiffness by changing mass, geometric properties, and fatigue damage burden. The bone lining cell-osteocyte complex is the sensor; the bone modeling and remodeling systems are the effectors. Deformation and fatigue damage in bone are the signals received by the sensor. Accumulated energy in the sensor's cytoskeleton determines the rate at which the sensor sends messages to the effectors. The activity of both effector systems is proportional to the rate of incoming messages. Modeling raises bone strength and stiffness by improving geometric properties as it adds bone where customary deformation is greatest. Remodeling improves bone strength by replacing fatigue-damaged areas without mass changes. Bone removed during modeling and remodeling comes from sites where the impact on bone strength and stiffness is least. Hormones and agents alter the rigidity of the cytoskeleton and, thus, its capacity to deform and store energy. Osteopenic agents make it more rigid, causing detection of fewer deformations and transmission of fewer loading signals to the effector. Osteotropic agents decrease the rigidity of the cytoskeleton, causing detection of more strain events and transmission of more loading signals to the effector. Agent treatment thus establishes false conditions of disuse or hyperuse.

  18. Phototherapy with combination of super-pulsed laser and light-emitting diodes is beneficial in improvement of muscular performance (strength and muscular endurance), dyspnea, and fatigue sensation in patients with chronic obstructive pulmonary disease.

    PubMed

    Miranda, Eduardo Foschini; de Oliveira, Luís Vicente Franco; Antonialli, Fernanda Colella; Vanin, Adriane Aver; de Carvalho, Paulo de Tarso Camillo; Leal-Junior, Ernesto Cesar Pinto

    2015-01-01

    Phototherapy is an electrophysical intervention being considered for the retardation of peripheral muscular fatigue usually observed in chronic obstructive pulmonary disease (COPD). The objective of this study was to evaluate the acute effects of combination of super-pulsed laser and light-emitting diodes phototherapy on isokinetic performance in patients with COPD. Thirteen patients performed muscular endurance tests in an isokinetic dynamometer. The maximum voluntary isometric contraction (MVIC), peak torque (PT), and total work (TW) of the non-dominant lower limb were measured in two visits. The application of phototherapy or placebo (PL) was conducted randomly in six locations of femoral quadriceps muscle by using a cluster of 12 diodes (4 of 905 nm super-pulsed lasers, 0.3125 mW each; 4 of 875 nm LEDs, 17.5 mW each; and 4 of 640 nm LEDs, 15 mW each, manufactured by Multi Radiance Medical™). We found statistically significant increases for PT (174.7 ± 35.7 N · m vs. 155.8 ± 23.3 N · m, p = 0.003) and TW after application of phototherapy when compared to placebo (778.0 ± 221.1 J vs. 696.3 ± 146.8 J, p = 0.005). Significant differences were also found for MVIC (104.8 ± 26.0 N · m vs. 87.2 ± 24.0 N · m, p = 0.000), sensation of dyspnea (1 [0-4] vs. 3 [0-6], p = 0.003), and fatigue in the lower limbs (2 [0-5] vs. 5 [0.5-9], p = 0.002) in favor of phototherapy. We conclude that the combination of super-pulsed lasers and LEDs administered to the femoral quadriceps muscle of patients with COPD increased the PT by 20.2% and the TW by 12%. Phototherapy with a combination of super-pulsed lasers and LEDs prior to exercise also led to decreased sensation of dyspnea and fatigue in the lower limbs in patients with COPD.

  19. Fatigue of notched fiber composite laminates. Part 2: Analytical and experimental evaluation

    NASA Technical Reports Server (NTRS)

    Kulkarni, S. V.; Mclaughlin, P. V., Jr.; Pipes, R. B.

    1976-01-01

    The analytical/experimental correlation study was performed to develop an understanding of the behavior of notched Boron/epoxy laminates subjected to tension/tension fatigue loading. It is postulated that the fatigue induced property changes (stiffness as well as strength) of the laminate can be obtained from the lamina fatigue properties. To that end, the Boron/epoxy lamina static and fatigue data (lifetime, residual stiffness and strength) were obtained initially. The longitudinal and transverse tension data were determined from the (0) and (90) laminate tests while the in-plane shear data were obtained from the (+ or - 45) sub s laminates. The static tests obtained the notched strength and mode of failure while the fatigue tests determined lifetime, damage propagation and residual strength. The failure in static tension occurred in a transverse crack propagation mode.

  20. Fatigue Crack Growth of Age-Hardened Al Alloy Under Ultrasonic Loading

    NASA Astrophysics Data System (ADS)

    Chen, Q.; Kawagoishi, N.; Kariya, K.; Nu, Y.; Goto, M.

    An age-hardened and extruded Al alloy 7075-T6 was fatigued under both ultrasonic loading (20kHz) and rotating bending (50Hz) in the environments of controlled humidity, distilled water and oxygen gas respectively, to investigate the availability of ultrasonic fatigue test as a time-saving tool for the reliability evaluation of materials subjected to conventional frequency loading. Although fatigue strength decreased slightly at relative humidity below 60-70%, it degraded significantly when the humidity was increased beyond that level, irrespective of the loading frequency. However, the mechanisms of strength degradation involved in high humidity are quite different. Under rotating bending, fatigue strength decreased because crack growth was accelerated due to brittle fracture, whileas the decrease in fatigue strength under ultrasonic loading was caused by crack propagation transition from tensile mode to shear mode cracking.

  1. Literature survey on oxidations and fatigue lives at elevated temperatures

    NASA Technical Reports Server (NTRS)

    Liu, H. W.; Oshida, Y.

    1984-01-01

    Nickel-base superalloys are the most complex and the most widely used for high temperature applications such as aircraft engine components. The desirable properties of nickel-base superalloys at high temperatures are tensile strength, thermomechanical fatigue resistance, low thermal expansion, as well as oxidation resistance. At elevated temperature, fatigue cracks are often initiated by grain boundary oxidation, and fatigue cracks often propagate along grain boundaries, where the oxidation rate is higher. Oxidation takes place at the interface between metal and gas. Properties of the metal substrate, the gaseous environment, as well as the oxides formed all interact to make the oxidation behavior of nickel-base superalloys extremely complicated. The important topics include general oxidation, selective oxidation, internal oxidation, grain boundary oxidation, multilayer oxide structure, accelerated oxidation under stress, stress-generation during oxidation, composition and substrate microstructural changes due to prolonged oxidation, fatigue crack initiation at oxidized grain boundaries and the oxidation accelerated fatigue crack propagation along grain boundaries.

  2. Development of a Female Atlas of Strengths

    DTIC Science & Technology

    1982-02-01

    Physiotherapy ; 1977, 63(2), 51-55. 31. Falkel, .3. Planter flexor strength testing using the cybex isokinetic dynanometer. Phys. Ther.; 1978, 58(7), 847...instances "heart attacks," or "cardiac arrest," strokes ,or pulmonary embolism. If this research project causes any physical injury to you, treatment...STUDY: Edwards, R.H.T. and Hyde, S. Methods of measuring muscle strength and fatigue. Physiotherapy ; 1977, 63(2), 51-55. KEYWORDS: Muscle strength tests

  3. Wheelchair armrest strength testing.

    PubMed

    Cooper, R A; Rentschler, A J; O'Connor, T J; Ster, J F

    2000-01-01

    There are about 1.4 million manual wheelchair users, 100,000 electric-powered wheelchair users, and 60,000 electric-powered scooter users. The current study was undertaken to determine if the fasteners of a clamp-type armrest receiver were prone to failure. The first test was used to examine the potential misalignment of the armrest receiver components that attach it to the frame. The second test was to evaluate the entire armrest using the American National Standards Institute/Rehabilitation Engineering and Assistive Technology Society of North America armrest static strength standard. Finally, we conducted three fatigue tests. The first fatigue test was performed by repeating the static stability tests multiple times. The last two tests were a modified version of the double-drum wheelchair fatigue test used to apply repeated loading and vibration simultaneously. A paired t-test showed that there is no statistically significant difference (p = 0.08), with a confidence of 95%, between critical alignment measurements. The armrest including the receiver passed the standard requirement of a force of 760 N being applied outward at 15 degrees. During fatigue testing, we found that armrests did not exhibit any visible or functional damage. Upon completion of the tests, the armrests and receivers functioned properly. At about 100,289 cycles on a double-drum test machine, three bolts failed on each armrest receiver when the screws were loosened to have only five threads engaged prior to commencing the test. The design of the armrest tested was in compliance with existing national and international standards. Currently, both International Standards Organization and American National Standards Institute/Rehabilitation Engineering and Assistive Technology Society committees are developing standards for seating systems that will include static, impact, and fatigue strength testing of devices like lateral torso supports, lateral hip support, etc. Methods similar to those

  4. High-temperature, low-cycle fatigue of advanced copper-base alloys for rocket nozzles. Part 2: NASA 1.1, Glidcop, and sputtered copper alloys

    NASA Technical Reports Server (NTRS)

    Conway, J. B.; Stentz, R. H.; Berling, J. T.

    1974-01-01

    Short-term tensile and low-cycle fatigue data are reported for five advance copper-base alloys: Sputtered Zr-Cu as received, sputtered Zr-Cu heat-treated, Glidcop AL-10, and NASA alloys 1-1A and 1-1B. Tensile tests were performed in argon at 538 C using an axial strain rate of 0.002/sec. Yield strength and ultimate tensile strength data are reported along with reduction in area values. Axial strain controlled low-cycle fatigue tests were performed in argon at 538C using an axial strain rate of 0.002/sec to define the fatigue life over the range from 100 to 3000 cycles for the five materials studied. It was found that the fatigue characteristics of the NASA 1-1A and NASA 1-1B compositions are identical and represent fatique life values which are much greater than those for the other materials tested. The effect of temperature on NASA 1-1B alloy at a strain rate of 0.002/sec was evaluated along with the effect of strain rates of 0.0004 and 0.01/sec at 538 C. Hold-time data are reported for the NASA 1-1B alloy at 538 C using 5 minute hold periods in tension only and compression only at two different strain range values. Hold periods in tension were much more detrimental than hold periods in compression.

  5. Effect of dislocation hardening on monotonic and cyclic strength of severely deformed copper

    NASA Astrophysics Data System (ADS)

    Vinogradov, A.; Maruyama, M.; Kaneko, Y.; Hashimoto, S.

    2012-02-01

    The present study aims at clarifying the role of dislocation strengthening in fatigue of materials manufactured by severe plastic deformation (SPD) techniques. Employment of single crystals hardened via equal channel angular pressing (ECAP) helps to minimise or completely eliminate the effect of high angle boundaries on strengthening and fatigue behaviour. Both monotonic strength and high cycle fatigue (HCF) resistance were improved significantly after the first ECAP pressing, when low-angle dislocation configurations dominate in the microstructure. The essential role of dislocation accumulation during severe plastic deformation is highlighted for both tensile and fatigue strength (SPD). Dilute alloying of copper by silver stabilises the deformation microstructure and further improves the fatigue properties considerably.

  6. Gamma irradiation alters fatigue-crack behavior and fracture toughness in 1900H and GUR 1050 UHMWPE.

    PubMed

    Cole, Jantzen C; Lemons, Jack E; Eberhardt, Alan W

    2002-01-01

    Pitting and delamination remain causative factors of polyethylene failure in total knee replacement. Gamma irradiation induces cross linking in ultra-high-molecular-weight polyethylene, which has been shown to improve wear resistance. Irradiation may reduce fracture toughness and fatigue strength, however, and the effects of irradiation are dependent upon the resin, processing technique, and radiation dose. The effects of varying levels of gamma irradiation (0, 33, 66, and 100 kGy) on the fracture toughness and fatigue-crack resistance of UHMWPE, isostatically molded from 1900H and GUR 1050 resins, were examined. Paris law regressions were performed to quantify fatigue-crack propagation rates as functions of change in stress intensity, and J-integral methods were used to quantify the elastic-plastic fracture toughness. The results indicated that gamma irradiation reduced the resistance of both materials to fatigue-crack growth, and that the reductions were radiation dosage and resin dependent. Irradiation at any level was detrimental to the fracture toughness of the 1900H specimens. Irradiation at 33 kGy increased fracture toughness for the GUR 1050 specimens, and substantial reductions were observed only at the highest irradiation level. Scanning electron microscopy of the fracture surface revealed diamond-like fracture patterns of the nonirradiated specimens indicative of ductile, multilevel fracture. Pronounced striations were apparent on these fracture surfaces, oriented perpendicular to the direction of crack growth. The striations appeared as folds in surface layers of the GUR 1050 specimens. At the highest irradiation levels, the striations were nearly eliminated on the fracture surfaces of the 1900H specimens, and were markedly less severe for the GUR 1050. These results demonstrated that at higher irradiation levels the materials became more brittle in fatigue, with less ductile folding and tearing of the fracture surfaces.

  7. The competing roles of microstructure and flaw size on the fatigue limit of metals

    NASA Astrophysics Data System (ADS)

    McGreevy, Timothy Edward

    1998-12-01

    Slip band and crack formation, propagation, and arrest are the active mechanisms in the fatigue process as was first observed in 1903. However, engineers relied on macroscopic properties such as hardness and tensile strength to predict fatigue limits since analytical tools to model the process did not exist. Many empirical modifications to the fatigue limit have since been made to account for variables such as surface roughness, state of stress, inclusion content, environmental effects, etc. A method is proposed to qualitatively and quantitatively predict the effects of several of these parameters on the fatigue limit of metals, specifically steels. Research includes the development and verification of an analytical model that addresses the fatigue process, namely the threshold condition of non-propagating cracks. Two parameters are identified to govern the fatigue resistance: non-propagating crack size and crack barrier strength. The concept of three defect types associated with three different flaw dominated fatigue regimes is introduced. Furthermore, application of the model to fatigue mechanisms in high strength steels, synergistic effects of surface finish and intergranular cracks, competition between surface and subsurface fatigue nucleation, and unexplained observations and scatter in fatigue behavior is demonstrated. Overall, the model is proven as a simple and robust tool for qualifying and statistically quantifying material behavior. In addition, the model can be implemented in material screening, selection, and processing as well as a guide for future material research and design.

  8. Fatigue crack propagation in dual-phase steels: Effects of ferritic-martensitic microstructures on crack path morphology

    NASA Astrophysics Data System (ADS)

    Dutta, V. B.; Suresh, S.; Ritchie, R. O.

    1984-06-01

    microstructures with maximum resistance to fatigue crack extension while maintaining high strength levels. A wide range of crack growth rates has been examined, from ~10-8 to 10-3 mm per cycle, in a series of duplex microstructures of comparable yield strength and prior austenite grain size where intercritical heat treatments were used to vary the proportion, morphology, and distribution of the ferrite and martensite phases. Results of fatigue crack propagation tests, conducted on “long cracks” in room temperature moist air environments, revealed a very large influence of microstructure over the entire spectrum of growth rates at low load ratios. Similar trends were observed at high load ratio, although the extent of the microstructural effects on crack growth behavior was significantly less marked. Specifically, microstructures containing fine globular or coarse martensite in a coarse-grained ferritic matrix demonstrated exceptionally high resistance to crack growth without loss in strength properties. To our knowledge, these microstructures yielded the highest ambient temperature fatigue threshold stress intensity range ΔK0 values reported to date, and certainly the highest combination of strength and ΔK0 for steels ( i.e., ΔK0 values above 19 MPa√m with yield strengths in excess of 600 MPa). Such unusually high crack growth resistance is attributed primarily to a tortuous morphology of crack path which results in a reduction in the crack driving force from crack deflection and roughness-induced crack closure mechanisms. Quantitative metallography and experimental crack closure measurements, applied to currently available analytical models for the deflection and closure processes, are presented to substantiate such interpretations.

  9. Influence of Fatigue in Neuromuscular Control of Spinal Stability

    PubMed Central

    Granata, Kevin P.; Slota, Greg P.; Wilson, Sara E.

    2006-01-01

    Lifting-induced fatigue may influence neuromuscular control of spinal stability. Stability is primarily controlled by muscle recruitment, active muscle stiffness, and reflex response. Fatigue has been observed to affect each of these neuromuscular parameters and may therefore affect spinal stability. A biomechanical model of spinal stability was implemented to evaluate the effects of fatigue on spinal stability. The model included a 6-degree-of-freedom representation of the spine controlled by 12 deformable muscles from which muscle recruitment was determined to simultaneously achieve equilibrium and stability. Fatigue-induced reduction in active muscle stiffness necessitated increased antagonistic cocontraction to maintain stability resulting in increased spinal compression with fatigue. Fatigueinduced reduction in force-generating capacity limited the feasible set of muscle recruitment patterns, thereby restricting the estimated stability of the spine. Electromyographic and trunk kinematics from 21 healthy participants were recorded during sudden-load trials in fatigued and unfatigued states. Empirical data supported the model predictions, demonstrating increased antagonistic cocontraction during fatigued exertions. Results suggest that biomechanical factors including spinal load and stability should be considered when performing ergonomic assessments of fatiguing lifting tasks. Potential applications of this research include a biomechanical tool for the design of administrative ergonomic controls in manual materials handling industries. PMID:15151156

  10. Aerodynamic Heating and Fatigue

    NASA Technical Reports Server (NTRS)

    Kroll, Wilhelmina D.

    1959-01-01

    A review of the physical condition's under which future airplanes will operate has been made and the necessity for considering fatigue in the design has been established. A survey of the literature shows what phases of elevated-temperature fatigue have been investigated. Other studies that would yield data of particular interest to the designer of aircraft structures are indicated.

  11. Quantitative acoustic emission from localized sources in material fatigue processes

    NASA Astrophysics Data System (ADS)

    Shi, Zhiqiang; Jarzynski, Jacek; Jacobs, Laurence

    2000-05-01

    Fretting fatigue is the phenomenon where two contacting bodies undergoing a cyclic fatigue loading experience small amplitude oscillatory motion. Fretting fatigue is characterized by crack nucleation and the subsequent propagation of these cracks. The coupling of fatigue with fretting leads to the premature nucleation and acceleration of the early growth of fatigue cracks, resulting in a significant reduction in a structure's service life. A better understanding of the mechanics of fretting fatigue is needed to prevent and reduce the severe consequences of such damage. This research uses quantitative acoustic emission (AE) techniques to study the fretting fatigue of PH 13-8 stainless steel under different loading conditions. Specifically, this work correlates AE signals to specific fretting characteristics such as frictional force history and frictional force-displacement hysteresis loops. These results indicate a close correlation between the various stages of fretting fatigue with the frequency of AE events. For example, AE waveform characteristics (such as amplitude, energy, and frequency spectrum) enable the identification and characterization of the different stages of fatigue. As a result, it is possible to establish a relationship between AE observations and fretting crack initiation and growth.

  12. Ischemia causes muscle fatigue

    NASA Technical Reports Server (NTRS)

    Murthy, G.; Hargens, A. R.; Lehman, S.; Rempel, D. M.

    2001-01-01

    The purpose of this investigation was to determine whether ischemia, which reduces oxygenation in the extensor carpi radialis (ECR) muscle, causes a reduction in muscle force production. In eight subjects, muscle oxygenation (TO2) of the right ECR was measured noninvasively and continuously using near infrared spectroscopy (NIRS) while muscle twitch force was elicited by transcutaneous electrical stimulation (1 Hz, 0.1 ms). Baseline measurements of blood volume, muscle oxygenation and twitch force were recorded continuously, then a tourniquet on the upper arm was inflated to one of five different pressure levels: 20, 40, 60 mm Hg (randomized order) and diastolic (69 +/- 9.8 mm Hg) and systolic (106 +/- 12.8 mm Hg) blood pressures. Each pressure level was maintained for 3-5 min, and was followed by a recovery period sufficient to allow measurements to return to baseline. For each respective tourniquet pressure level, mean TO2 decreased from resting baseline (100% TO2) to 99 +/- 1.2% (SEM), 96 +/- 1.9%, 93 +/- 2.8%, 90 +/- 2.5%, and 86 +/- 2.7%, and mean twitch force decreased from resting baseline (100% force) to 99 +/- 0.7% (SEM), 96 +/- 2.7%, 93 +/- 3.1%, 88 +/- 3.2%, and 86 +/- 2.6%. Muscle oxygenation and twitch force at 60 mm Hg tourniquet compression and above were significantly lower (P < 0.05) than baseline value. Reduced twitch force was correlated in a dose-dependent manner with reduced muscle oxygenation (r = 0.78, P < 0.001). Although the correlation does not prove causation, the results indicate that ischemia leading to a 7% or greater reduction in muscle oxygenation causes decreased muscle force production in the forearm extensor muscle. Thus, ischemia associated with a modest decline in TO2 causes muscle fatigue.

  13. Fretting Fatigue Behavior of Nickel Alloy IN-100

    DTIC Science & Technology

    2006-03-01

    system 20 τb resolved shear stress related to ultimate tensile strength . 20 N the number of cycles . . . . . . . . . . . . . . . . . . . . . 21 SCN...size was about 100 µm. The material at hand has a modulus of elasticity of 126 GPa and ultimate tensile strength of up to 1520 MPa (at room...different pad geometries was also explored. It was observed that fretting reduced the fatigue strength of IN-100, and that increasing cylindrical pad

  14. Elevated temperature biaxial fatigue

    NASA Technical Reports Server (NTRS)

    Jordan, E. H.

    1984-01-01

    A three year experimental program for studying elevated temperature biaxial fatigue of a nickel based alloy Hastelloy-X has been completed. A new high temperature fatigue test facility with unique capabilities has been developed. Effort was directed toward understanding multiaxial fatigue and correlating the experimental data to the existing theories of fatigue failure. The difficult task of predicting fatigue lives for non-proportional loading was used as an ultimate test for various life prediction methods being considered. The primary means of reaching improved undertanding were through several critical non-proportional loading experiments. It was discovered that the cracking mode switched from primarily cracking on the maximum shear planes at room temperature to cracking on the maximum normal strain planes at 649 C.

  15. Understanding Bone Strength Is Not Enough.

    PubMed

    Hernandez, Christopher J; van der Meulen, Marjolein Ch

    2017-01-09

    Increases in fracture risk beyond what are expected from bone mineral density (BMD) are often attributed to poor "bone quality," such as impaired bone tissue strength. Recent studies, however, have highlighted the importance of tissue material properties other than strength, such as fracture toughness. Here we review the concepts behind failure properties other than strength and the physical mechanisms through which they cause mechanical failure: strength describes failure from a single overload; fracture toughness describes failure from a modest load combined with a preexisting flaw or damage; and fatigue strength describes failure from thousands to millions of cycles of small loads. In bone, these distinct failure mechanisms appear to be more common in some clinical fractures than others. For example, wrist fractures are usually the result of a single overload, the failure mechanism dominated by bone strength, whereas spinal fractures are rarely the result of a single overload, implicating multiple loading cycles and increased importance of fatigue strength. The combination of tissue material properties and failure mechanisms that lead to fracture represent distinct mechanistic pathways, analogous to molecular pathways used to describe cell signaling. Understanding these distinct mechanistic pathways is necessary because some characteristics of bone tissue can increase fracture risk by impairing fracture toughness or fatigue strength without impairing bone tissue strength. Additionally, mechanistic pathways to failure associated with fracture toughness and fatigue involve multiple loading events over time, raising the possibility that a developing fracture could be detected and interrupted before overt failure of a bone. Over the past two decades there have been substantial advancements in fracture prevention by understanding bone strength and fractures caused by a single load, but if we are to improve fracture risk prevention beyond what is possible now, we must

  16. An empirical modified fatigue damage model for impacted GFRP laminates

    NASA Astrophysics Data System (ADS)

    Naderi, S.; Hassan, M. A.; Bushroa, A. R.

    2014-10-01

    The aim of the present paper is to evaluate the residual strength of GFRP laminates following a low-velocity impact event under cyclic loading. The residual strength is calculated using a linear fatigue damage model. According to an investigation into the effect of low-velocity impact on the fatigue behavior of laminates, it seems laminate fatigue life decreases after impact. By normalizing the fatigue stress against undamaged static strength, the Fatigue Damage parameter “FD” is presented with a linear relationship as its slope which is a linear function of the initial impact energy; meanwhile, the constants were attained from experimental data. FD is implemented into a plane-stress continuum damage mechanics based model for GFRP composite laminates, in order to predict damage threshold in composite structures. An S-N curve is implemented to indicate the fatigue behavior for 2 mm thickness encompassing both undamaged and impacted samples. A decline in lifespan is evident when the impact energy level increases. Finally, the FD is intended to capture the unique GFRP composite characteristics.

  17. Fatigue countermeasures in aviation.

    PubMed

    Caldwell, John A; Mallis, Melissa M; Caldwell, J Lynn; Paul, Michel A; Miller, James C; Neri, David F

    2009-01-01

    Pilot fatigue is a significant problem in modern aviation operations, largely because of the unpredictable work hours, long duty periods, circadian disruptions, and insufficient sleep that are commonplace in both civilian and military flight operations. The full impact of fatigue is often underappreciated, but many of its deleterious effects have long been known. Compared to people who are well-rested, people who are sleep deprived think and move more slowly, make more mistakes, and have memory difficulties. These negative effects may and do lead to aviation errors and accidents. In the 1930s, flight time limitations, suggested layover durations, and aircrew sleep recommendations were developed in an attempt to mitigate aircrew fatigue. Unfortunately, there have been few changes to aircrew scheduling provisions and flight time limitations since the time they were first introduced, despite evidence that updates are needed. Although the scientific understanding of fatigue, sleep, shift work, and circadian physiology has advanced significantly over the past several decades, current regulations and industry practices have in large part failed to adequately incorporate the new knowledge. Thus, the problem of pilot fatigue has steadily increased along with fatigue-related concerns over air safety. Accident statistics, reports from pilots themselves, and operational flight studies all show that fatigue is a growing concern within aviation operations. This position paper reviews the relevant scientific literature, summarizes applicable U.S. civilian and military flight regulations, evaluates various in-flight and pre-/postflight fatigue countermeasures, and describes emerging technologies for detecting and countering fatigue. Following the discussion of each major issue, position statements address ways to deal with fatigue in specific contexts with the goal of using current scientific knowledge to update policy and provide tools and techniques for improving air safety.

  18. The Effect of Boron on the Low Cycle Fatigue Behavior of Disk Alloy KM4

    NASA Technical Reports Server (NTRS)

    Gabb, Timothy; Gayda, John; Sweeney, Joseph

    2000-01-01

    The durability of powder metallurgy nickel base superalloys employed as compressor and turbine disks is often limited by low cycle fatigue (LCF) crack initiation and crack growth from highly stressed surface locations (corners, holes, etc.). Crack growth induced by dwells at high stresses during aerospace engine operation can be particularly severe. Supersolvus solution heat treatments can be used to produce coarse grain sizes approaching ASTM 6 for improved resistance to dwell fatigue crack growth. However, the coarse grain sizes reduce yield strength, which can lower LCF initiation life. These high temperature heat treatments also can encourage pores to form. In the advanced General Electric disk superalloy KM4, such pores can initiate fatigue cracks that limit LCF initiation life. Hot isostatic pressing (HIP) during the supersolvus solution heat treatment has been shown to improve LCF initiation life in KM4, as the HIP pressure minimizes formation of the pores. Reduction of boron levels in KM4 has also been shown to increase LCF initiation life after a conventional supersolvus heat treatment, again possibly due to effects on the formation tendencies of these pores. However, the effects of reduced boron levels on microstructure, pore characteristics, and LCF failure modes in KM4 still need to be fully quantified. The objective of this study was to determine the effect of boron level on the microstructure, porosity, LCF behavior, and failure modes of supersolvus heat treated KM4.

  19. Changes in normal speech after fatiguing the tongue.

    PubMed

    Solomon, N P

    2000-12-01

    Detrimental effects of tongue fatigue on speech have been assumed to exist based on neuromotor speech disorders. However, to address whether fatigue is a contributing cause to impaired speech requires an experimental protocol with an uncomplicated population. This study induced tongue fatigue in eight neurologically normal persons and examined changes in speech perceptually and acoustically. The fatigue task consisted of repeated cycles of 6 s of sustained maximum voluntary contraction and 4 s of rest until 50% of maximum strength could not be achieved for three consecutive cycles. Participants then produced speech that was weighted heavily with lingual-palatal consonants. Perceptual analyses of the speech revealed a statistically significant deleterious effect of induced tongue fatigue on speech precision and an incomplete reversal of this effect after a recovery period. Acoustically, the first and third spectral moments (mean and skewness) of the spectral energy for /see text/, /see text/, and /see text/ differed significantly after fatigue but in directions opposite to a priori predictions. Tendencies were found for decreased stop-closure duration and increased voice onset time for /see text/ after fatigue. Supplemental analyses revealed decreased second formant (F2) frequency for /see text/ and /see text/ and flattened F2 transition for the diphthong /see text/ after fatigue. These results indicate disruption of tongue positioning and transitioning for lingual-palatal consonants during speech after prolonged strenuous tongue exercises.

  20. Fatigue and material response in rolling contact

    SciTech Connect

    Voskamp, A.P.

    1998-12-31

    Metal softening, induced during the so-called third stage of material response to rolling contact loading, increases the probability of spalling fatigue failure. Metal softening in the most heavily loaded subsurface region leads to micro-plastic deformation noticeable from the occurrence of microstructural change. The probability of crack initiation increases with the growth of the plastically deformed subsurface region. Subsequent crack growth in that region is stimulated by the induced residual stress and texture. Fatigue failure in modern clean bearing steel develops only when the material has reached the third stage. The threshold to the third stage can be determined, and thus fatigue life can be assessed from observations of microstructural change. Examples are discussed of observed reduction of the ferrite (211) diffraction-line width in relation to observed endurance.

  1. Delayed pubertal development by hypothalamic suppression causes an increase in periosteal modeling but a reduction in bone strength in growing female rats.

    PubMed

    Yingling, Vanessa R; Taylor, Garvin

    2008-06-01

    The timing of the pubertal growth is a critical event in skeletal development. A delay in the onset of puberty has been correlated with increased stress fracture incidence in young women and as a result, suboptimal skeletal development may affect long-term bone strength. Gonadotropin releasing hormone antagonist (GnRH-a) injections were used to delay the onset of puberty in growing female rats. 23-day-old female rats were injected with a GnRH-antagonist at 2 dosage levels (n=15/group). The Low Dose group (1.25 mg/kg/dose) received daily injections for 27 days (sacrifice 49 days). The High Dose group received (5.0 mg/kg/dose) only 5 days per week over a 26 day period (sacrifice 48 days). Calcein injections measured bone formation activity on the periosteal and endocortical surfaces. Standard histomorphometric and biomechanical analyses were performed on the femora and ash content was measured on the tibiae of all animals. Serum estradiol and insulin-like growth factor (IGF)-1 levels were assayed. Significant delays in pubertal development occurred in the two GnRH-a groups as evidenced by delayed vaginal openings, decreased uterine and ovarian weights and suppressed estradiol levels compared to control. Femoral lengths were significantly shorter in the experimental groups and serum IGF-1 levels were higher than control. Bone strength and stiffness were significantly lower in the GnRH-a groups. Cortical bone area was decreased and total area was not different between groups. There was a significant decrease in % Ct.Ar/T.Ar. The decreased bone strength may have resulted from a decrease in the amount and distribution of bone, however, stress and Young's modulus were also decreased. There was a different response between endocortical formation indices and periosteal formation indices to the GnRH-a protocol. Endocortical bone formation rates decreased and there was an increase in periosteal labeled surface. A dose response between bone strength and GnRH-a dosage was found

  2. Mechanisms of peripheral fatigue.

    PubMed

    Kirkendall, D T

    1990-08-01

    Fatigue can be defined as the failure to maintain an expected power output. This is often an antecedent to some sports-related injury. It is important for those involved in physical performance to be familiar with the variety of mechanisms which can lead to fatigue. All too often, a single factor is described as the cause of fatigue when actually fatigue may be a combination of factors that contribute to the sequence of events that results in decreased performance. It may be suggested that every step in the chain of events that leads to voluntary contraction of skeletal muscle could be a culprit in fatigue. Peripheral sites and processes include the motor neuron, neuromuscular junction, sarcolemmal membrane, excitation-contraction coupling, accumulation of metabolites, or depletion of fuels. Physical training is frequently designed to delay the onset of fatigue. The actual mechanism(s) add to the specificity concept, that is, a "specificity of fatigue". To the performer, the end result is the same, the inability to maintain his or her expected level of performance or power output.

  3. Elevated temperature biaxial fatigue

    NASA Technical Reports Server (NTRS)

    Jordan, E. H.

    1985-01-01

    A 3 year experimental program for studying elevated temperature biaxial fatigue of a nickel based alloy Hastelloy-X has been completed. A new high temperature fatigue test facility with unique capabilities has been developed. Effort was directed toward understanding multiaxial fatigue and correlating the experimental data to the existing theories of fatigue failure. The difficult task of predicting fatigue lives for nonproportional loading was used as an ultimate test for various life prediction methods being considered. The primary means of reaching improved understanding were through several critical nonproportional loading experiments. The direction of cracking observed on failed specimens was also recorded and used to guide the development of the theory. Cyclic deformation responses were permanently recorded digitally during each test. It was discovered that the cracking mode switched from primarily cracking on the maximum shear planes at room temperature to cracking on the maximum normal strain planes at 649 C. In contrast to some other metals, loading path in nonproportional loading had little effect on fatigue lives. Strain rate had a small effect on fatigue lives at 649 C. Of the various correlating parameters the modified plastic work and octahedral shear stress were the most successful.

  4. Effects of fatigue on golf performance.

    PubMed

    Higdon, Nicholas R; Finch, W Holmes; Leib, Daniel; Dugan, Eric L

    2012-06-01

    The purpose of this study was to determine if body position, weight transfer, and/or pelvis/trunk rotations changed as a result of a golf specific fatiguing protocol and whether these changes affected resultant club head velocity at impact and shot consistency. Six male golfers and one female golfer participated in the study, who had a mean age, height, and body mass of 23.9 +/- 3.9 years, 177.4 +/- 4.9 cm, and 75.3 +/- 9.9 kg, respectively. Path analysis was used to determine the relationships between fatigue, biomechanical variables, and resultant club head velocity at impact and shot consistency. In the statistical models representing the effects of biomechanical variables calculated at the top of the swing and ball contact, golf specific fatigue was associated with a 2.0% and 2.5% reduction in the club head velocity and a 7.1% and 9.4% improvement in the shot consistency, respectively. These data suggest that golf specific fatigue was not related to the initial lower body sagittal plane angles at address nor was simulated golf specific fatigue related to peak transverse plane pelvis and trunk rotational velocities (or their timings) in a manner that indicates a relationship to resultant club head velocity and shot consistency.

  5. Fatiguing upper body aerobic exercise impairs balance.

    PubMed

    Douris, Peter C; Handrakis, John P; Gendy, Joseph; Salama, Mina; Kwon, Dae; Brooks, Richard; Salama, Nardine; Southard, Veronica

    2011-12-01

    Douris, PC, Handrakis, JP, Gendy, J, Salama, M, Kwon, D, Brooks, R, Salama, N, and Southard, V. Fatiguing upper body aerobic exercise impairs balance. J Strength Cond Res 25(12): 3299-3305, 2011-There are many studies that have examined the effects of selectively fatiguing lower extremity muscle groups with various protocols, and they have all shown to impair balance. There is limited research regarding the effect of fatiguing upper extremity exercise on balance. Muscle fiber-type recruitment patterns may be responsible for the difference between balance impairments because of fatiguing aerobic and anaerobic exercise. The purpose of our study was to investigate the effect that aerobic vs. anaerobic fatigue, upper vs. lower body fatigue will have on balance, and if so, which combination will affect balance to a greater degree. Fourteen healthy subjects, 7 men and 7 women (mean age 23.5 ± 1.7 years) took part in this study. Their mean body mass index was 23.6 ± 3.2. The study used a repeated-measures design. The effect on balance was documented after the 4 fatiguing conditions: aerobic lower body (ALB), aerobic upper body (AUB), anaerobic lower body, anaerobic upper body (WUB). The aerobic conditions used an incremental protocol performed to fatigue, and the anaerobic used the Wingate protocol. Balance was measured as a single-leg stance stability score using the Biodex Balance System. A stability score for each subject was recorded immediately after each of the 4 conditions. A repeated-measures analysis of variance with the pretest score as a covariate was used to analyze the effects of the 4 fatiguing conditions on balance. There were significant differences between the 4 conditions (p = 0.001). Post hoc analysis revealed that there were significant differences between the AUB, mean score 4.98 ± 1.83, and the WUB, mean score 4.09 ± 1.42 (p = 0.014) and between AUB and ALB mean scores 4.33 ± 1.40 (p = 0.029). Normative data for single-leg stability testing for

  6. Piezoelectric Bolt Breakers and Bolt Fatigue Testers

    NASA Technical Reports Server (NTRS)

    Sherrit, Stewart; Badescu, Mircea; Bar-Cohen, Yoseph; Barengoltz, Jack; Heckman, Vanessa

    2008-01-01

    A proposed family of devices for inducing fatigue in bolts in order to break the bolts would incorporate piezoelectric actuators into resonant fixtures as in ultrasonic/ sonic drills/corers and similar devices described in numerous prior NASA Tech Briefs articles. These devices were originally intended primarily for use as safer, more-reliable, more-versatile alternatives to explosive bolts heretofore used to fasten spacecraft structures that must subsequently be separated from each other quickly on command during flight. On Earth, these devices could be used for accelerated fatigue testing of bolts. Fatigue theory suggests that a bolt subjected to both a constant-amplitude dynamic (that is, oscillatory) stress and a static tensile stress below the ultimate strength of the bolt material will fail faster than will a bolt subjected to only the dynamic stress. This suggestion would be applied in a device of the proposed type. The device would be designed so that the device and the bolt to be fatigue-tested or broken would be integral parts of an assembly (see figure). The static tension in the tightened bolt would apply not only the clamping force to hold the joined structures (if any) together but also the compression necessary for proper operation of the piezoelectric actuators as parts of a resonant structural assembly. The constant-amplitude dynamic stress would be applied to the bolt by driving the piezoelectric actuators with a sinusoidal voltage at the resonance frequency of longitudinal vibration of the assembly. The amplitude of the excitation would be made large enough so that the vibration would induce fatigue in the bolt within an acceptably short time. In the spacecraft applications or in similar terrestrial structural-separation applications, devices of the proposed type would offer several advantages over explosive bolts: Unlike explosive bolts, the proposed devices would be reusable, could be tested before final use, and would not be subject to

  7. Ratcheting fatigue behavior of Zircaloy-2 at room temperature

    NASA Astrophysics Data System (ADS)

    Rajpurohit, R. S.; Sudhakar Rao, G.; Chattopadhyay, K.; Santhi Srinivas, N. C.; Singh, Vakil

    2016-08-01

    Nuclear core components of zirconium alloys experience asymmetric stress or strain cycling during service which leads to plastic strain accumulation and drastic reduction in fatigue life as well as dimensional instability of the component. Variables like loading rate, mean stress, and stress amplitude affect the influence of asymmetric loading. In the present investigation asymmetric stress controlled fatigue tests were conducted with mean stress from 80 to 150 MPa, stress amplitude from 270 to 340 MPa and stress rate from 30 to 750 MPa/s to study the process of plastic strain accumulation and its effect on fatigue life of Zircaloy-2 at room temperature. It was observed that with increase in mean stress and stress amplitude accumulation of ratcheting strain was increased and fatigue life was reduced. However, increase in stress rate led to improvement in fatigue life due to less accumulation of ratcheting strain.

  8. The Effect of Structural Quality on Fatigue Life in 319 Aluminum Alloy Castings

    NASA Astrophysics Data System (ADS)

    Özdeş, Hüseyin; Tiryakioğlu, Murat

    2016-12-01

    Tensile and fatigue life data for 319 aluminum alloy from seventeen datasets reported in four independent studies from the literature have been reanalyzed. Analysis of fatigue life data involved mean stress correction for different R ratios used in fatigue testing, inclusion of survival (runout) data along with failure data, as well as volumetric correction for Weibull distributions for different specimen sizes used in these studies. Tensile data have been transformed into the structural quality index, Q T, which is used as a measure of the structural quality of castings. A distinct relationship has been observed between the expected fatigue life and mean quality index. Moreover, fatigue strengths at 104 and 106 cycles have been found increase with quality index, providing further evidence about the relationship observed between structural quality and fatigue performance. Empirical equations between Basquin parameters and structural quality index have been developed. The use of the comprehensive methodology to estimate fatigue life is demonstrated with an example.

  9. The Effect of Structural Quality on Fatigue Life in 319 Aluminum Alloy Castings

    NASA Astrophysics Data System (ADS)

    Özdeş, Hüseyin; Tiryakioğlu, Murat

    2017-02-01

    Tensile and fatigue life data for 319 aluminum alloy from seventeen datasets reported in four independent studies from the literature have been reanalyzed. Analysis of fatigue life data involved mean stress correction for different R ratios used in fatigue testing, inclusion of survival (runout) data along with failure data, as well as volumetric correction for Weibull distributions for different specimen sizes used in these studies. Tensile data have been transformed into the structural quality index, Q T, which is used as a measure of the structural quality of castings. A distinct relationship has been observed between the expected fatigue life and mean quality index. Moreover, fatigue strengths at 104 and 106 cycles have been found increase with quality index, providing further evidence about the relationship observed between structural quality and fatigue performance. Empirical equations between Basquin parameters and structural quality index have been developed. The use of the comprehensive methodology to estimate fatigue life is demonstrated with an example.

  10. Overview of Low Plasticity Burnishing for Mitigation of Fatigue Damage Mechanisms

    DTIC Science & Technology

    2005-09-01

    cycle fatigue strength for electropolished base-line Ti- 6 - 4 is nominally 538 MPa (78 ksi), which decreased drastically to 172 MPa (25 ksi) with...in IN718, improved damage tolerance in Ti- 6 - 4 fan blades, mitigation of fretting fatigue damage in Ti- 6 - 4 , and improved corrosion fatigue in 17...of LE of 17-4PH compressor blade with caliper tool. Figure 3 Single point tool LPB processing of the dovetail of Ti - 6 - 4 compressor blade

  11. Application of Weakest Link Probabilistic Framework for Fatigue Notch Factor to Aero Engine Materials

    DTIC Science & Technology

    2014-08-25

    Inlet Air Filtration Systems," Gas Machinery Research Council, no. 1, 2010. [13] Robert Anthony Kupkovits, " THERMOMECHANICAL FATIGUE BEHAVIOR OF THE...and Neu R W , " Thermomechanical fatigue behavior of a directionally solidified Ni-base superallloy," Journal of engineering materials and...engine due to its high strength and good creep, fatigue , and corrosion resistance at high temperature. The microstructure features of these alloys

  12. Fatigue 󈨛. Volume 2,

    DTIC Science & Technology

    1987-06-01

    fatigue cracks grown in a nominally elastic field. EXPERIMENTAL DETAILS A low alloy steel (QIN) with a composition closely similar to HY80 , i.e. 2.5...Prediction of Steel Cords - A. PRAKASH, 645 G.A. COSTELLO, R.M. SHEMENSKI AND D.K. KIM Effect of Hold Time on Fatigue of Lead Rich 655 PbSn Solder...S. VAYNMAN, M.E. FINE AND D.A. JEANNOTTE On Cleavage in Fatigue for Rail Steels - 667 ZHU DONG, CAI QIGONG and YAO HENG Influence of Cleavage on

  13. Mind-Body Interventions to Reduce Risk for Health Disparities Related to Stress and Strength Among African American Women: The Potential of Mindfulness-Based Stress Reduction, Loving-Kindness, and the NTU Therapeutic Framework.

    PubMed

    Woods-Giscombé, Cheryl L; Black, Angela R

    2010-12-14

    In the current article, the authors examine the potential role of mind-body interventions for preventing or reducing health disparities in a specific group-African American women. The authors first discuss how health disparities affect this group, including empirical evidence regarding the influence of biopsychosocial processes (e.g., psychological stress and social context) on disparate health outcomes. They also detail how African American women's unique stress experiences as a result of distinct sociohistorical and cultural experiences related to race and gender potentially widen exposure to stressors and influence stress responses and coping behaviors. Using two independent, but related, frameworks (Superwoman Schema [SWS] and the Strong Black Woman Script [SBW-S]), they discuss how, for African American women, stress is affected by "strength" (vis-à-vis resilience, fortitude, and self-sufficiency) and the emergent health-compromising behaviors related to strength (e.g., emotional suppression, extraordinary caregiving, and self-care postponement). The authors then describe the potential utility of three mind-body interventions-mindfulness-based stress reduction (MBSR), loving-kindness meditation (LKM), and NTU psychotherapy-for specifically targeting the stress-, strength-, and contextually related factors that are thought to influence disparate outcomes for African American women. Self-awareness, self-care, inter- and intrapersonal restorative healing and a redefinition of inner strength may manifest through developing a mindfulness practice to decrease stress-related responses; using LKM to cultivate compassion and forgiveness for self and others; and the balance of independence and interdependence as a grounding NTU principle for redefining strength. The authors conclude with a discussion of potential benefits for integrating key aspects of the interventions with recommendations for future research.

  14. Nondestructive Evaluation of Metal Fatigue.

    DTIC Science & Technology

    1977-02-01

    Magnetic perturbation signatures and Barkhausen noise results have been obtained from an AISI 4340 steel fatigue specimen stress-cycled at 180ksi...vicinity of the fatigue crack. Barkhausen noise signals were obtained on a grid pattern in the vicinity of several fatigue cracks with a Barkhausen ...fatigue specimens are being fabricated for magnetic perturbation and Barkhausen noise analysis measurements. Fatigue cracks in Ti-6Al-4V specimens were investigated with the electric current injection technique.

  15. Some aspects of thermomechanical fatigue of AISI 304L stainless steel; Part 1: Creep-fatigue damage

    SciTech Connect

    Zauter, R. ); Christ, H.J. . Inst. of Materials Technology); Mughrabi, H. . Inst. for Materials Science)

    1994-02-01

    Thermomechanical fatigue (TMF) tests on the austenitic stainless steel AISI 304L have been conducted under true' plastic-strain control in vacuum. This report considers the damage occurring during TMF loading. It is shown how the temperature interval and the phasing (in phase, out-of-phase) determine the mechanical response and the lifetime of the specimens. If creep-fatigue interaction takes place during in-phase cycling, the damage occurs inside the material, leading creep-induced damage, and no lifetime reduction occurs, even if the material is exposed periodically to temperature in the creep regime. A formula is proposed which allows prediction of the failure mode, depending on whether creep-fatigue damage occurs or not. At a given strain rate, the formula is able to estimate the temperature of transition between pure fatigue and creep-fatigue damage.

  16. Biomechanical fatigue analysis of an advanced new carbon fiber/flax/epoxy plate for bone fracture repair using conventional fatigue tests and thermography.

    PubMed

    Bagheri, Zahra S; El Sawi, Ihab; Bougherara, Habiba; Zdero, Radovan

    2014-07-01

    The current study is part of an ongoing research program to develop an advanced new carbon fiber/flax/epoxy (CF/flax/epoxy) hybrid composite with a “sandwich structure” as a substitute for metallic materials for orthopedic long bone fracture plate applications. The purpose of this study was to assess the fatigue properties of this composite, since cyclic loading is one of the main types of loads carried by a femur fracture plate during normal daily activities. Conventional fatigue testing, thermographic analysis, and scanning electron microscopy (SEM) were used to analyze the damage progress that occurred during fatigue loading. Fatigue strength obtained using thermography analysis (51% of ultimate tensile strength) was confirmed using the conventional fatigue test (50–55% of ultimate tensile strength). The dynamic modulus (E⁎) was found to stay almost constant at 47 GPa versus the number of cycles, which can be related to the contribution of both flax/epoxy and CF/epoxy laminae to the stiffness of the composite. SEM images showed solid bonding at the CF/epoxy and flax/epoxy laminae, with a crack density of only 0.48% for the plate loaded for 2 million cycles. The current composite plate showed much higher fatigue strength than the main loads experienced by a typical patient during cyclic activities; thus, it may be a potential candidate for bone fracture plate applications. Moreover, the fatigue strength from thermographic analysis was the same as that obtained by the conventional fatigue tests, thus demonstrating its potential use as an alternate tool to rapidly evaluate fatigue strength of composite biomaterials.

  17. Biomechanical fatigue analysis of an advanced new carbon fiber/flax/epoxy plate for bone fracture repair using conventional fatigue tests and thermography.

    PubMed

    Bagheri, Zahra S; El Sawi, Ihab; Bougherara, Habiba; Zdero, Radovan

    2014-07-01

    The current study is part of an ongoing research program to develop an advanced new carbon fiber/flax/epoxy (CF/flax/epoxy) hybrid composite with a "sandwich structure" as a substitute for metallic materials for orthopedic long bone fracture plate applications. The purpose of this study was to assess the fatigue properties of this composite, since cyclic loading is one of the main types of loads carried by a femur fracture plate during normal daily activities. Conventional fatigue testing, thermographic analysis, and scanning electron microscopy (SEM) were used to analyze the damage progress that occurred during fatigue loading. Fatigue strength obtained using thermography analysis (51% of ultimate tensile strength) was confirmed using the conventional fatigue test (50-55% of ultimate tensile strength). The dynamic modulus (E(⁎)) was found to stay almost constant at 47GPa versus the number of cycles, which can be related to the contribution of both flax/epoxy and CF/epoxy laminae to the stiffness of the composite. SEM images showed solid bonding at the CF/epoxy and flax/epoxy laminae, with a crack density of only 0.48% for the plate loaded for 2 million cycles. The current composite plate showed much higher fatigue strength than the main loads experienced by a typical patient during cyclic activities; thus, it may be a potential candidate for bone fracture plate applications. Moreover, the fatigue strength from thermographic analysis was the same as that obtained by the conventional fatigue tests, thus demonstrating its potential use as an alternate tool to rapidly evaluate fatigue strength of composite biomaterials.

  18. Recovery from supraspinal fatigue is slowed in old adults after fatiguing maximal isometric contractions.

    PubMed

    Hunter, Sandra K; Todd, Gabrielle; Butler, Jane E; Gandevia, Simon C; Taylor, Janet L

    2008-10-01

    This study compared the contribution of supraspinal fatigue to muscle fatigue in old and young adults. Transcranial magnetic stimulation (TMS) of motor cortex was used to assess voluntary activation during maximal voluntary contractions (MVCs) of elbow flexor muscles in 17 young adults (25.5 +/- 3.6 yr; mean +/- SD) and 7 old adults (73.0 +/- 3.3 yr). Subjects performed a fatigue task involving six sustained MVCs (22-s duration, separated by 10 s). Young adults exhibited greater reductions in maximal voluntary torque (67 +/- 15% of baseline) than the old (37 +/- 6%; P < 0.001). Increments in torque (superimposed twitch) generated by TMS during sustained MVCs increased for the young and old (P < 0.001) but were larger for the old adults at the start of the sustained contractions and during recovery (P < 0.05). Voluntary activation was less for the old adults at the start of some sustained contractions and during recovery (P = 0.02). Motor-evoked potential area increased similarly with age during the fatiguing task but was greater for the old adults than young during recovery. Silent period duration lengthened less for the old adults during the fatigue task. At the end of the fatiguing task, peak relaxation rate of muscle fibers had declined more in the young than the old adults. The greater endurance with age is largely due to a difference in mechanisms located within the muscle. However, recovery from the fatiguing exercise is impaired for old adults because of greater supraspinal fatigue than in the young.

  19. Fatigue damage development of various CFRP-laminates

    NASA Technical Reports Server (NTRS)

    Schulte, K.; Baron, CH.

    1988-01-01

    The chronic strength and fatigue behavior of a woven carbon-fiber reinforced laminate in a balanced eight-shaft satin weave style was compared to nonwoven laminates with an equivalent cross-ply layup. Half the fibers were arranged in the direction of the load and the other half perpendicular to it. Two types of nonwoven laminates consisting of continuous fibers and aligned discontinuous fibers, both produced from carbon fiber prepregs, were studied. The cross-ply laminate with continuous fiber showed the best characteristics with regard to both static strength and fatigue. The similarities and differences in damage mechanisms in the laminates are described.

  20. Adaptations to isolated shoulder fatigue during simulated repetitive work. Part II: Recovery.

    PubMed

    McDonald, Alison C; Tse, Calvin T F; Keir, Peter J

    2016-08-01

    The shoulder allows kinematic and muscular changes to facilitate continued task performance during prolonged repetitive work. The purpose of this work was to examine changes during simulated repetitive work in response to a fatigue protocol. Participants performed 20 one-minute work cycles comprised of 4 shoulder centric tasks, a fatigue protocol, followed by 60 additional cycles. The fatigue protocol targeted the anterior deltoid and cycled between static and dynamic actions. EMG was collected from 14 upper extremity and back muscles and three-dimensional motion was captured during each work cycle. Participants completed post-fatigue work despite EMG manifestations of muscle fatigue, reduced flexion strength (by 28%), and increased perceived exertion (∼3 times). Throughout the post-fatigue work cycles, participants maintained performance via kinematic and muscular adaptations, such as reduced glenohumeral flexion and scapular rotation which were task specific and varied throughout the hour of simulated work. By the end of 60 post-fatigue work cycles, signs of fatigue persisted in the anterior deltoid and developed in the middle deltoid, yet perceived exertion and strength returned to pre-fatigue levels. Recovery from fatigue elicits changes in muscle activity and movement patterns that may not be perceived by the worker which has important implications for injury risk.

  1. Chronic Fatigue Syndrome

    MedlinePlus

    ... Do you recommend that I also see a mental health provider? Don't hesitate to ask other questions ... for evidence of some of the top suspects. Mental health issues. Fatigue is also a symptom of a ...

  2. Chronic Fatigue Syndrome

    MedlinePlus

    ... of fatigue. Think "alternative." Acupuncture, reiki, massage, stretching, yoga, and t'ai chi seem to help many ... not beginning therapy — and therapies like the stress-management techniques and graded exercise previously mentioned have been ...

  3. Fatigue studies of high-palladium dental casting alloys: Part I. Fatigue limits and fracture characteristics.

    PubMed

    Li, D; Brantley, W A; Mitchell, J C; Daehn, G S; Monaghan, P; Papazoglou, E

    2002-04-01

    The fatigue limits and fracture characteristics for a Pd-Cu-Ga alloy and a Pd-Ga alloy were studied. The alloys were cast into tensile test bars with gauge diameter of 3 mm and gauge length of 15 mm, and the surfaces of the castings were neither air-abraded nor polished after removal from the investment. Specimens were prepared from all-new metal (not previously melted), a combination of 50% new metal and 50% old metal (previously melted one time) and 100% old metal. The cast bars were subjected to heat treatment simulating the complete firing cycles for dental porcelain, and fatigued in air at room temperature under uniaxial tension-compression stress at 10 Hz and a ratio of tensile stress amplitude to compressive stress amplitude (R-ratio) of -1. The alloy microstructures and fracture surfaces were examined with a scanning electron microscope (SEM). Results showed that the fatigue limits at 2 x 10(6)cycles of the Pd-Cu-Ga and Pd-Ga alloys were approximately 0.20 and 0.15 of their 0.1% yield strength (YS) in tension, respectively. The fatigue resistance for specimens from both alloys containing 50% old metal and 50% new metal was comparable to that of specimens containing all-new metal, although this decreased dramatically for Pd-Cu-Ga alloy specimens containing all-old metal. The fatigue resistance of the Pd-Cu-Ga alloy subjected to heat treatment simulating the porcelain firing cycles was not adversely affected by remnants of the original as-cast dendritic microstructure that remained in the relatively large test specimens. A longer heat treatment than recommended by the manufacturer for the porcelain firing cycles is needed to completely eliminate the as-cast dendritic structure in these specimens. The Pd-Cu-Ga alloy exhibited superior fatigue resistance to the Pd-Ga alloy, which has an equiaxed-grain microstructure and lower yield strength.

  4. Effect of electrostimulation training-detraining on neuromuscular fatigue mechanisms.

    PubMed

    Jubeau, Marc; Zory, Raphaël; Gondin, Julien; Martin, Alain; Maffiuletti, Nicola A

    2007-08-31

    The aim of this study was to evaluate the effects of neuromuscular electrical stimulation (NMES) training and subsequent detraining on neuromuscular fatigue mechanisms. Ten young healthy men completed one NMES fatigue protocol before and after a NMES training program of 4 weeks and again after 4 weeks of detraining. Muscle fatigue (maximal voluntary torque loss), central fatigue (activation failure), and peripheral fatigue (transmission failure and contractile failure) of the plantar flexor muscles were assessed by using a series of electrically evoked and voluntary contractions with concomitant electromyographic and torque recordings. At baseline, maximal voluntary torque decreased significantly with fatigue (P<0.001), due to both activation and transmission failure. After detraining, maximal voluntary torque loss was significantly reduced (P<0.05). In the same way, the relative decrease in muscle activation after training and detraining was significantly lower compared to baseline values (P<0.05). Short-term NMES training-detraining of the plantar flexor muscles significantly reduced the muscle fatigue associated to one single NMES exercise session. This was mainly attributable to a reduction in activation failure, i.e., lower central fatigue, probably as a result of subject's accommodation to pain and discomfort during NMES.

  5. Traffic accidents involving fatigue driving and their extent of casualties.

    PubMed

    Zhang, Guangnan; Yau, Kelvin K W; Zhang, Xun; Li, Yanyan

    2016-02-01

    The rapid progress of motorization has increased the number of traffic-related casualties. Although fatigue driving is a major cause of traffic accidents, the public remains not rather aware of its potential harmfulness. Fatigue driving has been termed as a "silent killer." Thus, a thorough study of traffic accidents and the risk factors associated with fatigue-related casualties is of utmost importance. In this study, we analyze traffic accident data for the period 2006-2010 in Guangdong Province, China. The study data were extracted from the traffic accident database of China's Public Security Department. A logistic regression model is used to assess the effect of driver characteristics, type of vehicles, road conditions, and environmental factors on fatigue-related traffic accident occurrence and severity. On the one hand, male drivers, trucks, driving during midnight to dawn, and morning rush hours are identified as risk factors of fatigue-related crashes but do not necessarily result in severe casualties. Driving at night without street-lights contributes to fatigue-related crashes and severe casualties. On the other hand, while factors such as less experienced drivers, unsafe vehicle status, slippery roads, driving at night with street-lights, and weekends do not have significant effect on fatigue-related crashes, yet accidents associated with these factors are likely to have severe casualties. The empirical results of the present study have important policy implications on the reduction of fatigue-related crashes as well as their severity.

  6. Bending fatigue tests on SiC-Al tapes under alternating stress at room temperature

    NASA Technical Reports Server (NTRS)

    Herzog, J. A.

    1981-01-01

    The development of a testing method for fatigue tests on SiC-Al tapes containing a small amount of SiC filaments under alternating stress is reported. The fatigue strength curves resulting for this composite are discussed. They permit an estimate of its behavior under continuous stress and in combination with various other matrices, especially metal matrices.

  7. The effect of plasma-sprayed coatings on the fatigue of titanium alloy implants

    NASA Astrophysics Data System (ADS)

    Smith, Todd

    1994-02-01

    The application of titanium plasma-spray coatings to Ti-6Al-4V orthopedic implants results in a dramatic decrease in high-cycle fatigue performance. The better bonding of the plasma sprayed and heat-treated implants results in a lower high-cycle fatigue strength. Therefore, the use of plasma-spray textured coatings on implants must be considered with caution.

  8. Micromechanics of Fatigue.

    DTIC Science & Technology

    1992-06-01

    recalled. Application of the derived tools to Apha-Two- Titanium Aluminide Aliov is made with a first series of strain controlled fatigue tests the locally...accumulation, and, multiaxial fatigue. In section 6, application is performed on the Alpha-Two- Titanium Alum:Aide Alloy.With a first serie of strain controlled ...tests needed for the identification of the model are described in the following figures. Test n’l is a classical tensile test strain controlled 1 = 0

  9. Fracture and Fatigue

    DTIC Science & Technology

    1988-04-01

    fracture. The main additional categories of crack growth are elastic-plastic crack growth, fatigue crack growth, and crack growth as affected by...FRACTURE AND FATIGUE R. 0. RITCHIE W. W. GERBERICH J. H. UNDERWOOD DTIC AM ELECTE JUL 1 11988 APRIL 1988 FH US ARMY ARMAMENT RESEARCH, DEVELOPMENT AND...other authorized documents. N The use of trade name(s) and/or manufacturer (s) does not constitute an official indorsement or approval. DESTRUCTION NOTICE

  10. Wind-driven mixing causes a reduction in the strength of the continental shelf carbon pump in the Chukchi Sea (Invited)

    NASA Astrophysics Data System (ADS)

    Hauri, C.

    2013-12-01

    Dynamic and complex physical and biological processes drive the carbonate system chemistry of the Chukchi Sea. The inflow of nutrient-rich Pacific water through the Bering Straight and sustained periods of solar radiation in summer turn this polar shelf into one of the most productive ecosystems in the world. High rates of primary production (~ 470 g C m-2 y-1) and low pelagic grazing rates draw down pCO2 at the surface and support large fluxes of organic carbon to a rich benthic ecosystem. Much of this carbon is remineralized, leading to elevated pCO2 in bottom and subsurface waters, which are thought to be isolated from the atmosphere by strong stratification. Subsequent shelf to basin transport of remineralized carbon and organic matter into the interior Arctic Ocean are believed to support a globally important CO2 sink, as well as maintain high pCO2 levels in bottom waters along their circulation-driven northward journey. Here, I document a new mechanism of carbon cycling in the Chukchi Sea that substantially reduces the net strength of this globally significant carbon sink. Surface pCO2 measurements and wind analysis suggest that annually occurring storm-induced mixing events during autumn months disrupt water column stratification and mix remineralized carbon from subsurface waters to the surface, leading to strong outgassing of CO2 to the atmosphere. This newly observed physical driver weakens the estimated strength of the continental shelf carbon pump in the Chukchi Sea from an uptake of 38 Tg C y-1 to 18-27 Tg C y-1 and revises our knowledge of the dynamics of carbon cycling on this polar shelf. An improved understanding of the distribution and transport of carbon on the shelf is crucial to elucidate how the Chukchi Sea will respond to ongoing ocean acidification and climate change.

  11. Fatigue and multiple sclerosis.

    PubMed

    Béthoux, F

    2006-07-01

    Even if the definition and pathophysiology of fatigue in multiple sclerosis (MS) are still debated, and despite the scarcity of objective markers correlated with the subjective sensation of fatigue, a review of the literature shows the importance of its detection and management, and allows one to propose therapeutic strategies. Fatigue is not only the most frequently reported symptom in MS, but also a frequent source of activity and participation limitations, psychological distress, and impairment of quality of life. Its management, which must be initiated early, is based on a comprehensive evaluation of its characteristics and consequences (sometimes with the use of scales such as the Fatigue Severity Scale and the Modified Fatigue Impact Scale), and on the identification of many potential contributing factors (psychological disorders, sleep disturbances, pain, infections and other comorbidities, medications, and deconditioning). Rehabilitative interventions are essential to the treatment of fatigue. Beyond the traditional energy conservation strategies and cooling techniques, several randomized controlled studies have demonstrated the positive impact of aerobic exercise. Medications are partially beneficial, and with the exception of amantadine, their efficacy has not been confirmed by randomized double-blind trials.

  12. BIOMARKERS for CHRONIC FATIGUE

    PubMed Central

    Broderick, Gordon; Fletcher, Mary Ann

    2012-01-01

    Fatigue that persists for 6 months or more is termed chronic fatigue. Chronic fatigue (CF) in combination with a minimum of 4 of 8 symptoms and the absence of diseases that could explain these symptoms, constitute the case definition for chronic fatigue syndrome/myalgic encephalomyelitis (CFS/ME). Inflammation, immune system activation, autonomic dysfunction, impaired functioning in the hypothalamic-pituitary-adrenal axis, and neuroendocrine dysregulation have all been suggested as root causes of fatigue. The identification of objective markers consistently associated with CFS/ME is an important goal in relation to diagnosis and treatment, as the current case definitions are based entirely on physical signs and symptoms. This review is focused on the recent literature related to biomarkers for fatigue associated with CFS/ME and, for comparison, those associated with other diseases. These markers are distributed across several of the body’s core regulatory systems. A complex construct of symptoms emerges from alterations and/or dysfunctions in the nervous, endocrine and immune systems. We propose that new insight will depend on our ability to develop and deploy an integrative profiling of CFS/ME pathogenesis at the molecular level. Until such a molecular signature is obtained efforts to develop effective treatments will continue to be severely limited. PMID:22732129

  13. A Nonlinear Reduced Order Method for Prediction of Acoustic Fatigue

    NASA Technical Reports Server (NTRS)

    Przekop, Adam; Rizzi, Stephen A.

    2006-01-01

    The goal of this investigation is to assess the quality of high-cycle-fatigue life estimation via a reduced order method, for structures undergoing geometrically nonlinear random vibrations. Modal reduction is performed with several different suites of basis functions. After numerically solving the reduced order system equations of motion, the physical displacement time history is obtained by an inverse transformation and stresses are recovered. Stress ranges obtained through the rainflow counting procedure are used in a linear damage accumulation method to yield fatigue estimates. Fatigue life estimates obtained using various basis functions in the reduced order method are compared with those obtained from numerical simulation in physical degrees-of-freedom.

  14. Fatigue of alumina-based ceramics and chrome carbide composites

    NASA Astrophysics Data System (ADS)

    Kireitseu, Maksim V.; Yerakhavets, Liudmila; Nemerenco, Ion; Basenuk, Vladimir L.

    2003-10-01

    The paper was revealed a fatigue in the alumina-chrome carbide composite. The trapped crack front resembles a collinear array of microcracks interspersed by grains rich in transformable precipitates. This micromechanical model provides a reasonable explanation for the observed fatigue crack growth. A numerical procedure similar to the one used in the analysis of the array of collinear cracks, based on complex potentials and dislocation formalism is also used to simulate fatigue of composite coatings based on oxide ceramics and chrome carbide. Assuming power-law crack growth, it is found that the crack growth rate decreases with the applied stress intensity factor in the initial stage of fatigue crack growth. Depending on the applied load and the amount of transformation, the growth rate either goes through a minimum before increasing to the normal crack regime, or the rate continues to decrease until the crack is arrested. A detailed parametric study of the phenomenon of fatigue crack arrest in composite coatings based on oxide ceramics and chrome carbide reveals that the combination of transformation strength parameter and applied load determines whether or not crack arrest will occur, irrespective of the initial crack length. Based on the parametric study a simple linear relationship between the applied load and the minimum transformation strength parameter necessary to cause crack arrest has been developed. it will be found useful in the design against fatigue by predicting the maximum toad at which crack arrest can be expected.

  15. Chicken essence improves exercise performance and ameliorates physical fatigue.

    PubMed

    Huang, Wen-Ching; Lin, Ching-I; Chiu, Chien-Chao; Lin, Yi-Ting; Huang, Wei-Kai; Huang, Hui-Yu; Huang, Chi-Chang

    2014-07-18

    Chicken essence (CE) is a liquid nutritional supplement made from cooking whole chickens. In traditional Chinese medicine, CE is used to support health, promote healing, increase metabolism, and relieve fatigue. However, few studies have examined the effect of CE on exercise performance and physical fatigue. We aimed to evaluate the potential beneficial effects of CE on fatigue and ergogenic functions following physical challenge in mice. Male ICR mice were divided into four groups to receive vehicle or CE by oral gavage at 0, 845, 1690, or 4225 mg/kg/day for 4 weeks. Exercise performance and anti-fatigue function were evaluated by forelimb grip strength, exhaustive swimming time, and levels of physical fatigue-related biomarkers serum lactate, ammonia, glucose, and creatine kinase (CK) after physical challenge. CE supplementation dose-dependently elevated endurance and grip strength. CE supplementation significantly decreased lactate, ammonia, and CK levels after physical challenge. Tissue glycogen content, an important energy source for exercise, was significantly increased with CE supplementation. In addition, CE supplementation had few subchronic toxic effects. The supplementation with CE can have a wide spectrum of bioactivities on health promotion, performance improvement and anti-fatigue.

  16. Computer simulation of fatigue under diametrical compression

    SciTech Connect

    Carmona, H. A.; Kun, F.; Andrade, J. S. Jr.; Herrmann, H. J.

    2007-04-15

    We study the fatigue fracture of disordered materials by means of computer simulations of a discrete element model. We extend a two-dimensional fracture model to capture the microscopic mechanisms relevant for fatigue and we simulate the diametric compression of a disc shape specimen under a constant external force. The model allows us to follow the development of the fracture process on the macrolevel and microlevel varying the relative influence of the mechanisms of damage accumulation over the load history and healing of microcracks. As a specific example we consider recent experimental results on the fatigue fracture of asphalt. Our numerical simulations show that for intermediate applied loads the lifetime of the specimen presents a power law behavior. Under the effect of healing, more prominent for small loads compared to the tensile strength of the material, the lifetime of the sample increases and a fatigue limit emerges below which no macroscopic failure occurs. The numerical results are in a good qualitative agreement with the experimental findings.

  17. Reduction of Polarization Field Strength in Fully Strained c-Plane InGaN/(In)GaN Multiple Quantum Wells Grown by MOCVD

    NASA Astrophysics Data System (ADS)

    Zhang, Feng; Ikeda, Masao; Zhang, Shu-Ming; Liu, Jian-Ping; Tian, Ai-Qin; Wen, Peng-Yan; Cheng, Yang; Yang, Hui

    2016-11-01

    The polarization fields in c-plane InGaN/(In)GaN multiple quantum well (MQW) structures grown on sapphire substrate by metal-organic chemical vapor deposition are investigated in this paper. The indium composition in the quantum wells varies from 14.8 to 26.5% for different samples. The photoluminescence wavelengths are calculated theoretically by fully considering the related effects and compared with the measured wavelengths. It is found that when the indium content is lower than 17.3%, the measured wavelengths agree well with the theoretical values. However, when the indium content is higher than 17.3%, the measured ones are much shorter than the calculation results. This discrepancy is attributed to the reduced polarization field in the MQWs. For the MQWs with lower indium content, 100% theoretical polarization can be maintained, while, when the indium content is higher, the polarization field decreases significantly. The polarization field can be weakened down to 23% of the theoretical value when the indium content is 26.5%. Strain relaxation is excluded as the origin of the polarization reduction because there is no sign of lattice relaxation in the structures, judging by the X-ray diffraction reciprocal space mapping. The possible causes of the polarization reduction are discussed.

  18. Reduction of Polarization Field Strength in Fully Strained c-Plane InGaN/(In)GaN Multiple Quantum Wells Grown by MOCVD.

    PubMed

    Zhang, Feng; Ikeda, Masao; Zhang, Shu-Ming; Liu, Jian-Ping; Tian, Ai-Qin; Wen, Peng-Yan; Cheng, Yang; Yang, Hui

    2016-12-01

    The polarization fields in c-plane InGaN/(In)GaN multiple quantum well (MQW) structures grown on sapphire substrate by metal-organic chemical vapor deposition are investigated in this paper. The indium composition in the quantum wells varies from 14.8 to 26.5% for different samples. The photoluminescence wavelengths are calculated theoretically by fully considering the related effects and compared with the measured wavelengths. It is found that when the indium content is lower than 17.3%, the measured wavelengths agree well with the theoretical values. However, when the indium content is higher than 17.3%, the measured ones are much shorter than the calculation results. This discrepancy is attributed to the reduced polarization field in the MQWs. For the MQWs with lower indium content, 100% theoretical polarization can be maintained, while, when the indium content is higher, the polarization field decreases significantly. The polarization field can be weakened down to 23% of the theoretical value when the indium content is 26.5%. Strain relaxation is excluded as the origin of the polarization reduction because there is no sign of lattice relaxation in the structures, judging by the X-ray diffraction reciprocal space mapping. The possible causes of the polarization reduction are discussed.

  19. Mind-Body Interventions to Reduce Risk for Health Disparities Related to Stress and Strength Among African American Women: The Potential of Mindfulness-Based Stress Reduction, Loving-Kindness, and the NTU Therapeutic Framework

    PubMed Central

    Woods-Giscombé, Cheryl L.; Black, Angela R.

    2011-01-01

    In the current article, the authors examine the potential role of mind-body interventions for preventing or reducing health disparities in a specific group—African American women. The authors first discuss how health disparities affect this group, including empirical evidence regarding the influence of biopsychosocial processes (e.g., psychological stress and social context) on disparate health outcomes. They also detail how African American women's unique stress experiences as a result of distinct sociohistorical and cultural experiences related to race and gender potentially widen exposure to stressors and influence stress responses and coping behaviors. Using two independent, but related, frameworks (Superwoman Schema [SWS] and the Strong Black Woman Script [SBW-S]), they discuss how, for African American women, stress is affected by “strength” (vis-à-vis resilience, fortitude, and self-sufficiency) and the emergent health-compromising behaviors related to strength (e.g., emotional suppression, extraordinary caregiving, and self-care postponement). The authors then describe the potential utility of three mind-body interventions—mindfulness-based stress reduction (MBSR), loving-kindness meditation (LKM), and NTU psychotherapy—for specifically targeting the stress-, strength-, and contextually related factors that are thought to influence disparate outcomes for African American women. Self-awareness, self-care, inter- and intrapersonal restorative healing and a redefinition of inner strength may manifest through developing a mindfulness practice to decrease stress-related responses; using LKM to cultivate compassion and forgiveness for self and others; and the balance of independence and interdependence as a grounding NTU principle for redefining strength. The authors conclude with a discussion of potential benefits for integrating key aspects of the interventions with recommendations for future research. PMID:21479157

  20. Al-Li alloy AA2198's very high cycle fatigue crack initiation mechanism and its fatigue thermal effect

    NASA Astrophysics Data System (ADS)

    Xu, Luopeng; Cao, Xiaojian; Chen, Yu; Wang, Qingyuan

    2015-10-01

    AA2198 alloy is one of the third generation Al-Li alloys which have low density, high elastic modulus, high specific strength and specific stiffness. Compared With the previous two generation Al-Li alloys, the third generation alloys have much improved in alloys strength, corrosion resistance and weldable characteristic. For these advantages, the third generation Al-Li alloys are used as aircraft structures, such as C919 aviation airplane manufactured by China and Russia next generation aviation airplane--MS-21. As we know, the aircraft structures are usually subjected to more than 108 cycles fatigue life during 20-30 years of service, however, there is few reported paper about the third generation Al-Li alloys' very high cycle fatigue(VHCF) which is more than 108 cycles fatigue. The VHCF experiment of AA2198 have been carried out. The two different initiation mechanisms of fatigue fracture have been found in VHCF. The cracks can initiate from the interior of the testing material with lower stress amplitude and more than 108 cycles fatigue life, or from the surface or subsurface of material which is the dominant reason of fatigue failures. During the experiment, the infrared technology is used to monitor the VHCF thermal effect. With the increase of the stress, the temperature of sample is also rising up, increasing about 15 °C for every 10Mpa. The theoretical thermal analysis is also carried out.

  1. Corrosion fatigue of Inconel 718 and Incoloy 903

    NASA Technical Reports Server (NTRS)

    Franklin, D. B.; Nelson, E. E.

    1981-01-01

    Corrosion fatigue tests were conducted on Inconel 718 and Incoloy 903 in distilled water, 500 ppm NaCl, and 3.5% NaCl. Results were compared to the endurance limit in air. For Inconel 718, the corrosion fatigue strength (CFS) IN 3.5% NaCl WAS 328 MPa or 75 percent of the endurance limit. For Incoloy 903, the CFS ranged from 234 MPa in distilled water (68 percent of the endurance limit) to 103 MPa in 3.5% NaCl (30 percent of the endurance limit). Results indicate that, for components which have limited fatigue life, an evaluation of the combined effects of fatigue and the corrosive atmosphere must be considered in projecting useful lifetimes.

  2. Microstructure and strength analysis of ultrasonically shaped ceramics.

    PubMed

    Hahn, R; Löst, C

    1993-01-01

    In this study, the influence of a new ultrasonic shaping procedure on the surface quality, microstructure, bending strength and fatigue behaviour of a feldspathic porcelain was investigated. A total of 120 standardized (ISO 6872) autoglazed, ground, lapped and ultrasonically machined porcelain test bars were analyzed. Another 24 equiformat experimental alumina ceramics, which were ultrasonically machined, as well as 24 nontreated fload glass specimen served as controls. It could be shown that the porcelain removal process with diamond grinding wheels yielded a rough surface microrelief and lead to structural subsurface damage, decreasing bending strength and fatigue behaviour. In contrast, ultrasonic shaping resulted in a smoother surface and prevented damage to the subsurface layer of the machined brittle porcelain, although, the smoothest surfaces were achieved by lapping. Both bending strength and fatigue behaviour of the conventional dental porcelain were increased by ultrasonic machining. However, the fracture toughness of the experimental alumina was substantially higher and was not subjected to a decrease in fatigue.

  3. Probabilistic Fatigue: Computational Simulation

    NASA Technical Reports Server (NTRS)

    Chamis, Christos C.

    2002-01-01

    Fatigue is a primary consideration in the design of aerospace structures for long term durability and reliability. There are several types of fatigue that must be considered in the design. These include low cycle, high cycle, combined for different cyclic loading conditions - for example, mechanical, thermal, erosion, etc. The traditional approach to evaluate fatigue has been to conduct many tests in the various service-environment conditions that the component will be subjected to in a specific design. This approach is reasonable and robust for that specific design. However, it is time consuming, costly and needs to be repeated for designs in different operating conditions in general. Recent research has demonstrated that fatigue of structural components/structures can be evaluated by computational simulation based on a novel paradigm. Main features in this novel paradigm are progressive telescoping scale mechanics, progressive scale substructuring and progressive structural fracture, encompassed with probabilistic simulation. These generic features of this approach are to probabilistically telescope scale local material point damage all the way up to the structural component and to probabilistically scale decompose structural loads and boundary conditions all the way down to material point. Additional features include a multifactor interaction model that probabilistically describes material properties evolution, any changes due to various cyclic load and other mutually interacting effects. The objective of the proposed paper is to describe this novel paradigm of computational simulation and present typical fatigue results for structural components. Additionally, advantages, versatility and inclusiveness of computational simulation versus testing are discussed. Guidelines for complementing simulated results with strategic testing are outlined. Typical results are shown for computational simulation of fatigue in metallic composite structures to demonstrate the

  4. On the Notch Effect in Low Temperature Carburized Stainless Steel under Fatigue

    NASA Astrophysics Data System (ADS)

    Minak, G.

    2010-06-01

    The present paper describes the fatigue behaviour of carburized notched AISI 316 austenitic stainless steel specimens. Rotary four point bending fatigue tests have been performed using carburized smooth specimens with two different values of surface rugosity and notched specimen with two different stress concentration factors Kt, of 3.55 and 6.50 and the effects of carburizing on fatigue strength and notch sensitivity were discussed. Results show a general improvement of the fatigue life due to the treatment for all the series with an apparent notch sensitivity lower than one in the case of blunt notches due to secondary effects that were singled out.

  5. Modeling the anaerobic digestion of cane-molasses vinasse: extension of the Anaerobic Digestion Model No. 1 (ADM1) with sulfate reduction for a very high strength and sulfate rich wastewater.

    PubMed

    Barrera, Ernesto L; Spanjers, Henri; Solon, Kimberly; Amerlinck, Youri; Nopens, Ingmar; Dewulf, Jo

    2015-03-15

    This research presents the modeling of the anaerobic digestion of cane-molasses vinasse, hereby extending the Anaerobic Digestion Model No. 1 with sulfate reduction for a very high strength and sulfate rich wastewater. Based on a sensitivity analysis, four parameters of the original ADM1 and all sulfate reduction parameters were calibrated. Although some deviations were observed between model predictions and experimental values, it was shown that sulfates, total aqueous sulfide, free sulfides, methane, carbon dioxide and sulfide in the gas phase, gas flow, propionic and acetic acids, chemical oxygen demand (COD), and pH were accurately predicted during model validation. The model showed high (±10%) to medium (10%-30%) accuracy predictions with a mean absolute relative error ranging from 1% to 26%, and was able to predict failure of methanogenesis and sulfidogenesis when the sulfate loading rate increased. Therefore, the kinetic parameters and the model structure proposed in this work can be considered as valid for the sulfate reduction process in the anaerobic digestion of cane-molasses vinasse when sulfate and organic loading rates range from 0.36 to 1.57 kg [Formula: see text]  m(-3) d(-1) and from 7.66 to 12 kg COD m(-3) d(-1), respectively.

  6. Recovery Effect of the Muscle Fatigue by the Magnetic Stimulation

    NASA Astrophysics Data System (ADS)

    Uchida, Kousuke; Nuruki, Atsuo; Tsujimura, Sei-Ichi; Tamari, Youzou; Yunokuchi, Kazutomo

    The purpose of this study is to investigate the effect of magnetic stimulation for muscle fatigue. The six healthy subjects participated in the experiment with the repetition grasp using a hand dynamometer. The measurement of EMG (electromyography) and MMG (mechanomyography) is performed on the left forearm. All subjects performed MVC (maximum voluntary contraction), and repeated exercise in 80%MVC after the MVC measurement. The repetition task was entered when display muscular strength deteriorated. We used an EMG and MMG for the measurement of the muscle fatigue. Provided EMG and MMG waves were calculated integral calculus value (iEMG, and iMMG). The result of iEMG and iMMG were divided by muscular strength, because we calculate integral calculus value per the unit display muscular strength. The result of our study, we found recovery effect by the magnetic stimulation in voluntarily muscular strength and iEMG. However, we can not found in a figure of iMMG.

  7. Effect of characterization on fatigue crack growth in a SiC-reinforced silicon nitride composite at 1200{degree}C

    SciTech Connect

    Zhang, Y.H.; Edwards, L.; Plumbridge, W.J.

    1998-02-13

    Subcritical crack growth in a high strength, SiC-reinforced Si{sub 3}N{sub 4} under sustained and cyclic loads at high temperature has been investigated to determine the influence of crystallization on crack growth velocity. Crystallization of the grain boundary glass phase did not produce an observable increase in fracture toughness but did produce increased fatigue crack growth resistance at high temperature. TEM study indicated that this improvement resulted from an observed reduction in glass flow and crack tip cavitation due to the significantly reduced glass phase content after crystallization. It is shown that high temperature fatigue crack growth is predominantly loading time dependent with a weak effect of stress cycles. An influence of loading frequency on crack growth rates occurred only at high loading rates in uncrystallized (high glass phase content) specimens where the crack tip stress intensity was reduced due to viscous bonding of the glass phase at the crack surfaces.

  8. Match analysis and temporal patterns of fatigue in rugby sevens.

    PubMed

    Granatelli, Giampietro; Gabbett, Tim J; Briotti, Gianluca; Padulo, Johnny; Buglione, Antonio; D'Ottavio, Stefano; Ruscello, Bruno M

    2014-03-01

    Rugby sevens is a rapidly growing sport. Match analysis is increasingly being used by sport scientists and coaches to improve the understanding of the physical demands of this sport. This study investigated the physical and physiological demands of elite men's rugby sevens, with special reference to the temporal patterns of fatigue during match play. Nine players, 4 backs and 5 forwards (age 25.1 ± 3.1 years) participated during 2 "Roma 7" international tournaments (2010 and 2011). All the players were at the professional level in the highest Italian rugby union, and 5 of these players also competed at the international level. During the matches (n = 15), the players were filmed to assess game performance. Global positioning system, heart rate (HR), and blood lactate (BLa) concentration data were measured and analyzed. The mean total distance covered throughout matches was 1,221 ± 118 m (first half = 643 ± 70 m and second half = 578 ± 77 m; with a decrease of 11.2%, p > 0.05, Effect Size [ES] = 0.29). The players achieved 88.3 ± 4.2 and 87.7 ± 3.4% of the HRmax during the first and second halves, respectively. The BLa for the first and second halves was 3.9 ± 0.9 and 11.2 ± 1.4 mmol·L, respectively. The decreases in performance occurred consistently in the final 3 minutes of the matches (-40.5% in the distance covered per minute). The difference found in relation to the playing position, although not statistically significant (p = 0.11), showed a large ES (η = 0.20), suggesting possible practical implications. These results demonstrate that rugby sevens is a demanding sport that places stress on both the anaerobic glycolytic and aerobic oxidative energy systems. Strength and conditioning programs designed to train these energy pathways may prevent fatigue-induced reductions in physical performance.

  9. Influence of Laser Reconditioning on Fatigue Properties of Crankshafts

    NASA Astrophysics Data System (ADS)

    Koehler, Henry; Partes, Knut; Seefeld, Thomas; Vollertsen, Frank

    Expensive machine parts often are repaired by additive processes to limit costs and increase productivity. However, repairing marine diesel engine crankshafts for these aims is not yet approved by the classification societies since the influence on mechanical properties can neither be predicted nor has been investigated sufficiently. A method for testing the influence of laser cladding on fatigue properties of marine crankshafts is presented. Tests on flat specimen indicated a drop in fatigue strength in consequence of laser cladding. The number of bearable load cycles of cladded crankshaft segments at 100% fatigue strength calculated according to CIMAC standards dropped. Origins of cracks could be traced back to cladded areas as well as to crankshaft fillets.

  10. Thermal fatigue of beryllium

    SciTech Connect

    Deksnis, E.; Ciric, D.; Falter, H.

    1995-09-01

    Thermal fatigue life of S65c beryllium castellated to a geometry 6 x 6 x (8-10)mm deep has been tested for steady heat fluxes of 3 MW/m{sup 2} to 5 MW/m{sup 2} and under pulsed heat fluxes (10-20 MW/m{sup 2}) for which the time averaged heat flux is 5 MW/m{sup 2}. These tests were carried out in the JET neutral beam test facility A test sequence with peak surface temperatures {le} 600{degrees}C produced no visible fatigue cracks. In the second series of tests, with T{sub max} {le} 750{degrees}C evidence for fatigue appeared after a minimum of 1350 stress cycles. These fatigue data are discussed in view of the observed lack of thermal fatigue in JET plasma operations with beryllium PFC. JET experience with S65b and S65c is reviewed; recent operations with {Phi} = 25 MW/m{sup 2} and sustained melting/resolidification are also presented. The need for a failure criterion for finite element analyses of Be PFC lifetimes is discussed.

  11. Strength Testing.

    ERIC Educational Resources Information Center

    Londeree, Ben R.

    1981-01-01

    Postural deviations resulting from strength and flexibility imbalances include swayback, scoliosis, and rounded shoulders. Screening tests are one method for identifying strength problems. Tests for the evaluation of postural problems are described, and exercises are presented for the strengthening of muscles. (JN)

  12. Fatigue of the cement/bone interface: the surface texture of bone and loosening.

    PubMed

    Arola, D; Stoffel, K A; Yang, D T

    2006-02-01

    Loosening is recognized as one of the primary sources of total hip replacement (THR) failure. In this study the influence of the bone surface texture on loosening of the cement/bone interface was studied. Model cemented hip replacements were prepared and subjected to cyclic loads that induced pure shear fatigue of the cement/bone interface. The femoral canals were textured with the use of specific cutting tools to achieve a desired surface topography. Loosening of the implant with cyclic loading was characterized in terms of the initial migration (Region I), steady-state loosening (Region II), and unstable loosening (Region III). Results from the experiments showed that the initial migration and rate of steady-state loosening were dependent upon the bone surface topography. The apparent fatigue strength ranged from 0.8 to 5.1 MPa, and denotes the cyclic shear stress required for loosening of 1 mm within 10 million cycles. Regardless of the bone surface topography the ratio of apparent fatigue strength and ultimate shear strength of the interfaces was approximately 0.24. In general, the apparent fatigue strength increased proportional to the average surface roughness of the femoral canal and the corresponding volume available for cement interdigitation. In addition, there was a strong correlation between the normalized initial migration and the apparent fatigue strength (i.e., specimens with the highest initial migration exhibited the lowest fatigue strength).

  13. Control on molecular weight reduction of poly(ε-caprolactone) during melt spinning--a way to produce high strength biodegradable fibers.

    PubMed

    Pal, Jit; Kankariya, Nimesh; Sanwaria, Sunita; Nandan, Bhanu; Srivastava, Rajiv K

    2013-10-01

    Poly(ε-caprolactone) (PCL) is known for its biocompatibility and biodegradability. These features of PCL have resulted into significant academic as well as industrial research interests for use of this polymer in various areas including biomedical and tissue engineering. Three-dimensional porous scaffolds, controlled drug release systems and nerve guides are some of the forms in which this polymer has been used. Despite these forms, fibers made of PCL have not gained much attention due to PCL's low melting point (57-60 °C) and relatively inferior mechanical properties as compared to poly(L-lactide) (PLA). Also the polymer is sensitive to the process conditions of melt spinning which leads to degradation of PCL when subjected to high temperatures in the presence of air or moisture. Here we present an approach in which addition of a bilactone, bis-(ε-caprolactone-4-yl) (BCY), during melt spinning of PCL resulted into monofilament fibers having tenacity as high as 2500 MPa. The cross-linking of PCL which occurred due to BCY transesterification compensated for molecular weight reduction of the polymer under melt spinning conditions. PCL monofilament fibers thus developed have enhanced thermo-mechanical properties and therefore have high potential to be used in tissue engineering applications in the form of sutures, a mesh or a non-woven.

  14. Bending fatigue tests on flattened strand wire rope at high working loads

    SciTech Connect

    Wang, R.C.; Shapiro, D.E.

    1995-09-01

    The US Bureau of Mines established a wire rope research laboratory to examine the factors that affect the safety and the useful life of wire rope. In the most recent work, two 32-mm 6x27H flattened strand ropes were degraded on a bending fatigue machine. The two tests were run at constant loads of 285 and 347 kN or safety factors of 2.5 and 2. Nondestructive and tensile strength tests were performed on samples of the ropes to determine the relationship between rope deterioration and rope breaking strength. Neither the area loss nor the number of broken wires measured from nondestructive tests could be used as clear indicators of the loss of strength. However, it was found from the tensile tests for both rope specimens that the strength loss was associated with the reduction of breaking strain. This suggests that measuring the strain of many short sections of a rope in the elastic region may locate the high stress sections and thus determine the condition of the rope.

  15. Increasing the Strength of Adhesively Bonded Joints by Tapering the Adherends

    SciTech Connect

    GUESS,TOMMY R.; METZINGER,KURT E.

    1999-09-09

    Wind turbine blades are often fabricated with composite materials. These composite blades are frequently attached to a metallic structure with an adhesive bond. For the baseline composite-to-steel joint considered in this study, failure typically occurs when the adhesive debonds from the steel adherend. Previous efforts established that the adhesive peel stresses strongly influence the strength of these joints for both single-cycle and fatigue loading. This study focused on reducing the adhesive peel stresses present in these joints by tapering the steel adherends. Several different tapers were evaluated using finite element analysis before arriving at a final design. To confirm that the selected taper was an improvement to the existing design, the baseline joint and the modified joint were tested in both compression and tension. In these axial tests, the compressive strengths of the joints with tapered adherends were greater than those of the baseline joints for both single-cycle and low-cycle fatigue. In addition, only a minor reduction in tensile strength was observed for the joints with tapered adherends when compared to the baseline joints. Thus, the modification would be expected to enhance the overall performance of this joint.

  16. Low-cycle thermal fatigue

    NASA Technical Reports Server (NTRS)

    Halford, G. R.

    1986-01-01

    A state-of-the-art review is presented of the field of thermal fatigue. Following a brief historical review, the concept is developed that thermal fatigue can be viewed as processes of unbalanced deformation and cracking. The unbalances refer to dissimilar mechanisms occurring in opposing halves of thermal fatigue loading and unloading cycles. Extensive data summaries are presented and results are interpreted in terms of the unbalanced processes involved. Both crack initiation and crack propagation results are summarized. Testing techniques are reviewed, and considerable discussion is given to a technique for thermal fatigue simulation, known as the bithermal fatigue test. Attention is given to the use of isothermal life prediction methods for the prediction of thermal fatigue lives. Shortcomings of isothermally-based life prediction methods are pointed out. Several examples of analyses and thermal fatigue life predictions of high technology structural components are presented. Finally, numerous dos and don'ts relative to design against thermal fatigue are presented.

  17. Chronic Fatigue Syndrome (CFS): Symptoms

    MedlinePlus

    ... please visit this page: About CDC.gov . Chronic Fatigue Syndrome (CFS) Share Compartir Symptoms On this Page ... Symptoms What's the Clinical Course of CFS? Chronic fatigue syndrome can be misdiagnosed or overlooked because its ...

  18. Some aspects of thermomechanical fatigue of AISI 304L stainless steel: Part I. creep- fatigue damage

    NASA Astrophysics Data System (ADS)

    Zauter, R.; Christ, H. J.; Mughrabi, H.

    1994-02-01

    Thermomechanical fatigue (TMF) tests on the austenitic stainless steel AISI 304L have been conducted under “true≓ plastic-strain control in vacuum. This report considers the damage oc-curring during TMF loading. It is shown how the temperature interval and the phasing (in-phase, out-of-phase) determine the mechanical response and the lifetime of the specimens. If creep-fatigue interaction takes place during in-phase cycling, the damage occurs inside the ma-terial, leading to intergranular cracks which reduce the lifetime considerably. Out-of-phase cy-cling inhibits creep-induced damage, and no lifetime reduction occurs, even if the material is exposed periodically to temperatures in the creep regime. A formula is proposed which allows prediction of the failure mode, depending on whether creep-fatigue damage occurs or not. At a given strain rate, the formula is able to estimate the temperature of transition between pure fatigue and creep-fatigue damage.

  19. Impact of visual fatigue on observer performance

    NASA Astrophysics Data System (ADS)

    Krupinski, Elizabeth A.; Berbaum, Kevin S.; Caldwell, Robert

    2009-02-01

    Our overall hypothesis is that current radiology practice produces oculomotor fatigue reducing diagnostic accuracy. The goal of this study is to determine whether accommodative stability and diagnostic accuracy are reduced following digital radiology interpretation. We are collecting data at two points in time - once in the morning prior to diagnostic reading and once in the afternoon after reading. Subjects are completing surveys about their current physical status and number of hours spent reading that day along and the type of images read. We are measuring accommodation using the WAM- 5500 Auto Refkeratometer. Subjects view bone images with subtle fractures and dislocations to determine if a fracture is present, locate it, and provide rating of their decision confidence to be used in a ROC analysis of the data. Preliminary results confirm our previous findings that we can measure visual fatigue. Radiologists are less able to focus on a distinct point, especially at near distances, after a day of reading images on digital displays as opposed to before any reading takes place. The SOFI and SSQ measures also indicate that radiologists are more fatigued at the end of a day's reading as compared to before. The confidence ratings are being evaluated using ROC techniques. The results so far suggest a reduction in diagnostic accuracy with tired eyes. Preliminary data from measuring visual accommodation and observer performance support our hypothesis that radiologists suffer visual fatigue after a day reading diagnostic images from digital displays reducing interpretation accuracy.

  20. Fatigue and fracture overview

    NASA Technical Reports Server (NTRS)

    Halford, Gary R.

    1986-01-01

    The accomplishments achieved under the isotropic creep-fatigue crack initiation life prediction program are summarized. A sizeable creep-fatigue crack initiation data base was generated on the nickel-base superalloy, B-1900. Companion constitutive modeling programs have also generated extensive data bases on the same heat of material. The crack initiation results have formed the basis of a new approach to creep-fatigue life prediction. The term Cyclic Damage Accumulation (CDA) was coined for the method, which was evaluated under isothermal, uniaxial conditions. Stringent laboratory verification experiments were used to test the accuracy of the method. Considering the quite limited material property data needed to evaluate the constants in the approach, the prediction accuracy is acceptable. At the expense of the larger data base required, Lewis developed total strain- strainrange partitioning method (TS-SRP) is capable of a higher degree of accuracy.

  1. Fatigue and Barkhausen effect

    NASA Astrophysics Data System (ADS)

    Tong, Wei

    Piezomagnetism designates a change in the magnetization of materials induced by mechanical actions such as tension or compression. The type of Barkhausen effect that occurs in this work consists of sudden, discontinuous jumps in a material's magnetization that appear in response to smooth (continuous) stress variations. A series of strain controlled fatigue tests with an alternating sinusoidal waveform were carried out to study the relationship between the endurance limit and the Barkhausen effect. Results of fatigue tests on steel specimens exhibiting Barkhausen pulses at various stages are reported and a threshold-crossing analysis is applied to the test results. These studies show that when the fatigue limit is approached, the Barkhausen pulses become, in general, more intense in amplitude and quantity than at other stress levels. A hypothetical mechanism is proposed that relates the intensity of the Barkhausen response to the inception of micro-cracking and rearrangements of the mechanical lattice at the microscopic level.

  2. Effect of Multi-repair Welding on Fatigue Performance of Aluminum Alloy Profile Welded Joint

    NASA Astrophysics Data System (ADS)

    Diao, You-De; Shi, Chun-Yuan; Tian, Hong-Lei

    2016-05-01

    Aluminum alloy profile has been widely used in the manufacture of the rail vehicles. But it's necessary for the repair welding of the welded joints to be conducted because some defects exist in the weld such as porosity, inclusions and incomplete penetrations in the welding processes. In this paper, the influence of the multi-repair welding of 6005A aluminum alloy profile butt welded joints on the fatigue performance are investigated based on the results of fatigue tests. The parameters of curves and the fatigue strength of the welded joints are calculated, and Goodman fatigue limit diagram is also obtained. The results show that fatigue strength of aluminum alloy profile butt welded joints, in condition of 107 cycle life, meet the standard requirement for the as-welded, repair welded state one time or two times respectively.

  3. Fatigue damage in cross-ply titanium metal matrix composites containing center holes

    NASA Technical Reports Server (NTRS)

    Bakuckas, J. G., Jr.; Johnson, W. S.; Bigelow, C. A.

    1992-01-01

    The development of fatigue damage in (0/90) sub SCS-6/TI-15-3 laminates containing center holes was studied. Stress levels required for crack initiation in the matrix were predicted using an effective strain parameter and compared to experimental results. Damage progression was monitored at various stages of fatigue loading. In general, a saturated state of damage consisting of matrix cracks and fiber matrix debonding was obtained which reduced the composite modulus. Matrix cracks were bridged by the 0 deg fibers. The fatigue limit (stress causing catastrophic fracture of the laminates) was also determined. The static and post fatigue residual strengths were accurately predicted using a three dimensional elastic-plastic finite element analysis. The matrix damage that occurred during fatigue loading significantly reduced the notched strength.

  4. Fatigue crack growth spectrum simplification: Facilitation of on-board damage prognosis systems

    NASA Astrophysics Data System (ADS)

    Adler, Matthew Adam

    2009-12-01

    monitoring and management of aircraft. A spectrum reduction method was proposed and experimentally validated that reduces a variable-amplitude spectrum to a constant-amplitude equivalent. The reduction from a variable-amplitude (VA) spectrum to a constant-amplitude equivalent (CAE) was proposed as a two-part process. Preliminary spectrum reduction is first performed by elimination of those loading events shown to be too negligible to significantly contribute to fatigue crack growth. This is accomplished by rainflow counting. The next step is to calculate the appropriate, equivalent maximum and minimum loads by means of a root-mean-square average. This reduced spectrum defines the CAE and replaces the original spectrum. The simplified model was experimentally shown to provide the approximately same fatigue crack growth as the original spectrum. Fatigue crack growth experiments for two dissimilar aircraft spectra across a wide-range of stress-intensity levels validated the proposed spectrum reduction procedure. Irrespective of the initial K-level, the constant-amplitude equivalent spectra were always conservative in crack growth rate, and were so by an average of 50% over the full range tested. This corresponds to a maximum 15% overestimation in driving force Delta K. Given other typical sources of scatter that occur during fatigue crack growth, a consistent 50% conservative prediction on crack growth rate is very satisfying. This is especially attractive given the reduction in cost gained by the simplification. We now have a seamless system that gives an acceptably good approximation of damage occurring in the aircraft. This contribution is significant because in a very simple way we now have given a path to bypass the current infrastructure and ground-support requirements. The decision-making is now a lot simpler. In managing an entire fleet we now have a workable system where the strength is in no need for a massive, isolated computational center. The fidelity of the model

  5. The Effects of Mechanical Properties on Fatigue Behavior of ECAPed AA7075

    NASA Astrophysics Data System (ADS)

    Kaya, Hasan; Uçar, Mehmet

    2016-03-01

    In this study, the effects of equal channel angular pressing (ECAP) on high-cycle fatigue and fatigue surface morphology of AA7075 have been investigated at a constant temperature (483 K) and the "C" route for four passes at ECAP process. ECAPed and as-received specimens were tested by four-point bending fatigue device. Fatigue tests were carried out by using 100, 120 and 140 MPa strength values. ECAPed specimens were characterized for each pass with optical microscope (OM), scanning electron microscope (SEM), energy-dispersive spectroscope (EDS), transmission electron microscope (TEM), selected area electron diffraction (SAED) and hardness measurements. Fracture surfaces of the specimens were also characterized with SEM. The results show that the highest hardness values (137 HV) and the best fatigue life (5.4 × 107 for 100 MPa) were measured in ECAPed four-pass sample. For this reason hardness values and fatigue life were increased with increasing number of severe plastic deformation (SPD) process.

  6. Evaluation of Pressurization Fatigue Life of 1441 Al-li Fuselage Panel

    NASA Technical Reports Server (NTRS)

    Bird, R. Keith; Dicus, Dennis I.; Fridlyander, Joseph; Davydov, Valentin

    1999-01-01

    A study was conducted to evaluate the pressurization fatigue life of fuselage panels with skins fabricated from 1441 Al-Li, an attractive new Russian alloy. The study indicated that 1441 Al-Li has several advantages over conventional aluminum fuselage skin alloy with respect to fatigue behavior. Smooth 1441 Al-Li sheet specimens exhibited a fatigue endurance limit similar to that for 1163 Al (Russian version of 2024 Al) sheet. Notched 1441 Al-Li sheet specimens exhibited greater fatigue strength and longer fatigue life than 1163 Al. In addition, Tu-204 fuselage panels fabricated by Tupolev Design Bureau using Al-Li skin and ring frames with riveted 7000-series aluminum stiffeners had longer pressurization fatigue lives than did panels constructed from conventional aluminum alloys. Taking into account the lower density of this alloy, the results suggest that 1441 Al-Li has the potential to improve fuselage performance while decreasing structural weight.

  7. Effect of antagonist muscle fatigue on knee extension torque.

    PubMed

    Beltman, J G M; Sargeant, A J; Ball, D; Maganaris, C N; de Haan, A

    2003-09-01

    The effect of hamstring fatigue on knee extension torque was examined at different knee angles for seven male subjects. Before and after a dynamic flexion fatigue protocol (180 degrees s(-1), until dynamic torque had declined by 50%), maximal voluntary contraction extension torque was measured at four knee flexion angles (90 degrees, 70 degrees, 50 degrees and 30 degrees ). Maximal torque generating capacity and voluntary activation of the quadriceps muscle were determined using electrical stimulation. Average rectified EMG of the biceps femoris was determined. Mean dynamic flexion torque declined by 48+/-11%. Extensor maximal voluntary contraction torque, maximal torque generating capacity, voluntary activation and average rectified EMG at the four knee angles were unaffected by the hamstring fatigue protocol. Only at 50 degrees knee angle was voluntary activation significantly lower (15.7%) after fatigue ( P<0.05). In addition, average rectified EMG before fatigue was not significantly influenced by knee angle. It was concluded that a fatigued hamstring muscle did not increase the maximal voluntary contraction extension torque and knee angle did not change coactivation. Three possible mechanisms may explain the results: a potential difference in recruited fibre populations in antagonist activity compared with the fibres which were fatigued in the protocol, a smaller loss in isometric torque generating capacity of the hamstring muscle than was expected from the dynamic measurements and/or a reduction in voluntary activation.

  8. Is the notion of central fatigue based on a solid foundation?

    PubMed

    Contessa, Paola; Puleo, Alessio; De Luca, Carlo J

    2016-02-01

    Exercise-induced muscle fatigue has been shown to be the consequence of peripheral factors that impair muscle fiber contractile mechanisms. Central factors arising within the central nervous system have also been hypothesized to induce muscle fatigue, but no direct empirical evidence that is causally associated to reduction of muscle force-generating capability has yet been reported. We developed a simulation model to investigate whether peripheral factors of muscle fatigue are sufficient to explain the muscle force behavior observed during empirical studies of fatiguing voluntary contractions, which is commonly attributed to central factors. Peripheral factors of muscle fatigue were included in the model as a time-dependent decrease in the amplitude of the motor unit force twitches. Our simulation study indicated that the force behavior commonly attributed to central fatigue could be explained solely by peripheral factors during simulated fatiguing submaximal voluntary contractions. It also revealed important flaws regarding the use of the interpolated twitch response from electrical stimulation of the muscle as a means for assessing central fatigue. Our analysis does not directly refute the concept of central fatigue. However, it raises important concerns about the manner in which it is measured and about the interpretation of the commonly accepted causes of central fatigue and questions the very need for the existence of central fatigue.

  9. Exercise training manages cardiopulmonary function and fatigue during and following cancer treatment in male cancer survivors.

    PubMed

    Schneider, Carole M; Hsieh, City C; Sprod, Lisa K; Carter, Susan D; Hayward, Reid

    2007-09-01

    This investigation determined the cardiopulmonary function and fatigue alterations in male cancer survivors during treatment as well as following treatment utilizing similar exercise assessment protocols and individualized, prescriptive exercise interventions. The study included 45 male cancer survivors that were referred by local oncologists. Following a comprehensive screening and physical examination, cardiovascular endurance, pulmonary function, and fatigue were assessed leading to the development of 12-week individualized exercise prescriptions and exercise interventions. The cancer survivors were divided into during treatment (DTm) and following treatment (FTm) groups. Repeated-measures analysis of variance and analyses of covariance were used to compare pre- versus postintervention and between groups. Cardiopulmonary function was maintained in the DTm, whereas the FTm showed significant reductions in resting heart rate (P < .05) with concurrent increases in predicted VO2max and time on treadmill ( P < .05) postexercise intervention. Fatigue levels did not increase in the DTm group, whereas the FTm group showed significant reductions in behavioral fatigue, affective fatigue, sensory fatigue, cognitive/mood fatigue, and total fatigue (P < .05) after the exercise intervention. The results of the current study suggest that moderate intensity, individualized, prescriptive exercise intervention maintains or improves cardiovascular and pulmonary function with concomitant reductions in fatigue in cancer survivors during and following cancer treatment. Exercise appears to be a safe, efficacious strategy for improving physical fitness in cancer survivors during and following treatment.

  10. Lamb Wave Response of Fatigued Composite Samples

    NASA Technical Reports Server (NTRS)

    Seale, Michael; Smith, Barry T.; Prosser, William H.; Masters, John E.

    1994-01-01

    Composite materials are being more widely used today by aerospace, automotive, sports equipment, and a number of other commercial industries because of their advantages over conventional metals. Composites have a high strength-to-weight ratio and can be constructed to meet specific design needs. Composite structures are already in use in secondary parts of the Douglas MD-11 and are planned to be used in the new MD-12X. Plans also exist for their use in primary and secondary structures on the Boeing 777. Douglas proposed MD-XX may also incorporate composite materials into primary structures such as the wings and tail. Use of composites in these structures offers weight savings, corrosion resistance, and improved aerodynamics. Additionally, composites have been used to repair cracks in many B-1Bs where traditional repair techniques were not very effective. Plans have also been made to reinforce all of the remaining B-1s with composite materials. Verification of the structural integrity of composite components is needed to insure safe operation of these aerospace vehicles. One aspect of the use of these composites is their response to fatigue. To track this progression of fatigue in aerospace structures, a convenient method to nondestructively monitor this damage needs to be developed. Traditional NDE techniques used on metals are not easily adaptable to composites due to the inhomogeneous and anisotropic nature of these materials. Finding an effective means of nondestructively monitoring fatigue damage is extremely important to the safety and reliability of such structures. Lamb waves offer one method of evaluating these composite materials. As a material is fatigued, the modulus degrades. Since the Lamb wave velocity can be related to the modulus of the material, an effective tool can be developed to monitor fatigue damage in composites by measuring the velocity of these waves. In this work, preliminary studies have been conducted which monitor fatigue damage in

  11. Development of an Atlas of Strengths and Establishment of an Appropriate Model Structure

    DTIC Science & Technology

    1981-11-01

    30. Edwards, R. H. T. and Hyde, S. Methods of measuring muscle strength and fatigue. Physiotherapy ; 1977, 63(2), 51-55. 31. Falkel, J. Planter flexor...34 and in rare instances "heart attacks," or "cardiac arrest," strokes , or pulmonary embolism. If this research project causes any physical injury to you...and Hyde, S. Methods of measuring muscle strength and fatigue. Physiotherapy ; 1977, 63(2), 51-55. KEYWORDS: Muscle strength tests, male and female

  12. Evaluation of the Effect of Surface Finish on High-Cycle Fatigue of SLM-IN718

    NASA Technical Reports Server (NTRS)

    Lambert, D. M.

    2016-01-01

    The surface finish of parts produced by additive manufacturing processes is much rougher than the surface finish generated by machining processes, and a rougher surface can reduce the fatigue strength of a part. This paper discusses an effort to quantify that reduction of strength in high-cycle fatigue for selective laser melt (SLM) coupons. A high-cycle fatigue (HCF) knockdown factor was estimated for Inconel 718, manufactured with the SLM process. This factor is the percentage reduction from the maximum stress in fatigue for low-stress ground (LSG) specimens to the maximum stress of those left with the original surface condition at the same fatigue life. Specimens were provided by a number of vendors, free to use their "best practice"; only one heat treat condition was considered; and several test temperatures were characterized, including room temperature, 800F, 1000F, and 1200F. The 1000F data had a large variance, and was omitted from consideration in this document. A first method used linear approximations extracted from the graphs, and only where data was available for both. A recommended knockdown factor of the as-built surface condition (average roughness of approximately 245 micro-inches/inch) versus low-stress ground condition (roughness no more than 4 micro-inches/inch) was established at approximately 1/3 or 33%. This is to say that for the as-built surface condition, a maximum stress of 2/3 of the stress for LSG can be expected to produce a similar life in the as-built surface condition. In this first evaluation, the knockdown factor did not appear to be a function of temperature. A second approach, the "KP method", incorporated the surface finish measure into a new parameter termed the pseudo-stress intensity factor, Kp, which was formulated to be similar to the fracture mechanics stress intensity factor. Using Kp, the variance seemed to be reduced across all sources, and knockdown factors were estimated using Kp over the range where data occurred. A

  13. [Chronic fatigue syndrome: more than fatigue].

    PubMed

    Royes, Badía; Alvarez, Carballo; Lalinde, Sevillano; Vidal, Llinas; Martín, Alegre

    2010-12-01

    Chronic fatigue syndrome (CFS) is a disease recognized by all international medical organizations and WHO, and is classified under the code G93.3 of the International Classification of Diseases. Its prevalence is estimated around 2.54% being more common in women than in men (8/2) aged between 20 and 40 Is defined as a chronic new description characterized by the presence of subjective feeling of fatigue and exhaustion long disabling of more than 6 months duration that is not relieved by rest. It is a multisystem disorder that often presents a significant number of comorbid phenomena. Not known until specific tests to confirm the diagnosis, nor is there a cure to solve this health problem definitively The strongest evidence is based on the multidisciplinary approach for the symptomatic treatment of pain, sleep disorders, neurocognitive dysfunction, autonomic and control of depression and anxiety. The specific contribution of nursing to care for the person who lives and live with the SFC should be developed primarily in the field of health education and supportive care, support and assistance to help the patient and their relatives are an adaptive response to changes in health.

  14. The Nature of Fatigue in Chronic Fatigue Syndrome.

    PubMed

    Olson, Karin; Zimka, Oksana; Stein, Eleanor

    2015-10-01

    In this article, we report the findings of our study on the nature of fatigue in patients diagnosed with chronic fatigue syndrome. Using ethnoscience as a design, we conducted a series of unstructured interviews and card sorts to learn more about how people with chronic fatigue syndrome describe fatigue. Participants (N = 14) described three distinct domains: tiredness, fatigue, and exhaustion. Most participants experienced tiredness prior to diagnosis, fatigue during daily life, and exhaustion after overexertion. We also discuss participants' ability to adapt to a variety of stressors and prevent shifts to exhaustion, and relate our findings to stress theory and other current research. Primary strategies that promoted adaptation to stressors included pacing and extended rest periods. These findings can aid health care professionals in detecting impending shifts between tiredness, fatigue, and exhaustion and in improving adaptive strategies, thereby improving quality of life.

  15. A rapid estimation method of structural fatigue analysis for a 17k ton DWT oil tanker

    NASA Astrophysics Data System (ADS)

    Chen, Tuohan; Zheng, Jianli; Bae, Dong-Myung

    2012-06-01

    Fatigue cracks and fatigue damage have been important issues for ships and offshore structures for a long time. However, in the last decade, with the introduction of higher tensile steel in hull structures and increasingly large ship dimensions, the greater attention should be paid to fatigue problems. Most research focuses on how to more easily access the fatigue strength of ships. Also, the major classification societies have already released their fatigue assessment notes. However, due to the complexity of factors influencing fatigue performances, such as wave load and pressure from cargo, the combination of different stress components, stress on concentration of local structure details, means stress, and the corrosive environments, there are different specifications with varying classification societies, leading to the different results from different fatigue assessment methods. This paper established the Det Norske Veritas(DNV) classification notes "fatigue assessment of ship structures" that explains the process of fatigue assessment and simplified methods. Finally, a fatigue analysis was performed by use data of a real ship and the reliability of the result was assessed.

  16. Fatigue behavior of unirradiated V-5Cr-5Ti

    SciTech Connect

    Gieseke, B.G.; Stevens, C.O.; Grossbeck, M.L.

    1995-04-01

    The objective of this research is to determine the low cycle fatigue behavior of V-5Cr-5Ti alloys for a range of temperatures and the extent of environmental effects at ambient temperatures. The results of in-vacuum low cycle fatigue tests are presented for unirradiated V-5Cr-5Ti tested at room temperature, 240, and 400{degree}C. A comparison of the fatigue data generated in rough and high vacuums shows that a pronounced environmental degradation of the fatiuge properties exists in this alloy at room temperature. Fatigue life was reduced by as much as 84%. Cyclic stress range data and SEM observations suggest that this reduction is due to a combination of increases in rates of crack initiation and subsequent growth. The relative contribution of each difference is dependent upon the strain range.

  17. Nonpharmacologic approach to fatigue in patients with cancer.

    PubMed

    Pachman, Deirdre R; Price, Katharine A; Carey, Elise C

    2014-01-01

    Cancer-related fatigue is a common yet underappreciated problem with a significant impact on functional ability and quality of life. Practice guidelines mandate that all cancer patients and survivors be screened for cancer-related fatigue (CRF) at regular intervals. Comorbidities that could contribute to fatigue should be treated, and patients with moderate to severe fatigue should undergo a comprehensive evaluation. Nonpharmacologic interventions are important tools to combat CRF and should be incorporated into routine practice. Physical activity, educational interventions, and cognitive-behavioral therapy have the most supportive data and can be recommended to patients with confidence. From a practical standpoint, general education on CRF is something that most care providers can readily offer patients as part of routine care. Other interventions that appear promising but are as yet lacking convincing evidence include mindfulness-based stress reduction, yoga, and acupuncture. Reiki, Qigong, hypnosis, and music therapy may be worthy of further investigation.

  18. Fatigue Crack Closure Analysis Using Digital Image Correlation

    NASA Technical Reports Server (NTRS)

    Leser, William P.; Newman, John A.; Johnston, William M.

    2010-01-01

    Fatigue crack closure during crack growth testing is analyzed in order to evaluate the critieria of ASTM Standard E647 for measurement of fatigue crack growth rates. Of specific concern is remote closure, which occurs away from the crack tip and is a product of the load history during crack-driving-force-reduction fatigue crack growth testing. Crack closure behavior is characterized using relative displacements determined from a series of high-magnification digital images acquired as the crack is loaded. Changes in the relative displacements of features on opposite sides of the crack are used to generate crack closure data as a function of crack wake position. For the results presented in this paper, remote closure did not affect fatigue crack growth rate measurements when ASTM Standard E647 was strictly followed and only became a problem when testing parameters (e.g., load shed rate, initial crack driving force, etc.) greatly exceeded the guidelines of the accepted standard.

  19. Strength Training

    MedlinePlus

    ... strengthens your heart and lungs. When you strength train with weights, you're using your muscles to ... see there are lots of different ways to train with weights. Try a few good basic routines ...

  20. High-cycle fatigue behavior of Ti-5Al-2.5Sn ELI alloy forging at low temperatures

    NASA Astrophysics Data System (ADS)

    Ono, Yoshinori; Yuri, Tetsumi; Ogata, Toshio; Demura, Masahiko; Matsuoka, Saburo; Sunakawa, Hideo

    2014-01-01

    High-cycle fatigue properties of Ti-5Al-2.5Sn Extra Low Interstitial (ELI) alloy forging were investigated at low temperatures. The high-cycle fatigue strength at low temperatures of this alloy was relatively low compared with that at ambient temperature. The crystallographic orientation of a facet formed at a fatigue crack initiation site was determined by electron backscatter diffraction (EBSD) method in scanning electron microscope (SEM) to understand the fatigue crack initiation mechanism and discuss on the low fatigue strength at low temperature. Furthermore, in terms of the practical use of this alloy, the effect of the stress ratio (or mean stress) on the high-cycle fatigue properties was evaluated using the modified Goodman diagram.

  1. High-cycle fatigue behavior of Ti-5Al-2.5Sn ELI alloy forging at low temperatures

    SciTech Connect

    Ono, Yoshinori; Yuri, Tetsumi; Ogata, Toshio; Demura, Masahiko; Matsuoka, Saburo; Sunakawa, Hideo

    2014-01-27

    High-cycle fatigue properties of Ti-5Al-2.5Sn Extra Low Interstitial (ELI) alloy forging were investigated at low temperatures. The high-cycle fatigue strength at low temperatures of this alloy was relatively low compared with that at ambient temperature. The crystallographic orientation of a facet formed at a fatigue crack initiation site was determined by electron backscatter diffraction (EBSD) method in scanning electron microscope (SEM) to understand the fatigue crack initiation mechanism and discuss on the low fatigue strength at low temperature. Furthermore, in terms of the practical use of this alloy, the effect of the stress ratio (or mean stress) on the high-cycle fatigue properties was evaluated using the modified Goodman diagram.

  2. Fracture resistance and fatigue crack growth characteristics of two Al-Cu-Mg-Zr alloys

    NASA Technical Reports Server (NTRS)

    Sarkar, Bhaskar; Lisagor, W. B.

    1992-01-01

    The dependence of strength, fracture resistance, and fatigue crack growth rate on the aging conditions of two alloy compositions based on Al-3.7Cu-1.85Mg-0.2Mn is investigated. Mechanical properties were evaluated in two heat treatment conditions and in two orientations (longitudinal and transverse). Compact tension specimens were used to determine fatigue crack growth characteristics and fracture resistance. The aging response was monitored on coupons using hardness measurements determined with a standard Rockwell hardness tester. Fracture resistance is found to increase with increasing yield strength during artificial aging of age-hardenable 2124-Zr alloys processed by powder metallurgy techniques. Fatigue crack growth rate increases with increasing strength. It is argued that these changes are related to deformation modes of the alloys; a homogeneous deformation mode tends to increase fracture resistance and to decrease the resistance to the fatigue crack propagation rate.

  3. Local fatigue behavior in tapered areas of large offshore wind turbine blades

    NASA Astrophysics Data System (ADS)

    Aydin Raeis Hosseiny, Seyed; Jakobsen, Johnny

    2016-07-01

    Thickness transitions in load carrying elements lead to improved geometries and efficient material utilization. However, these transitions may introduce localized areas with high stress concentrations and may act as crack initiators that could potentially cause delamination and further catastrophic failure of an entire blade structure. The local strength degradation under an ultimate static loading, subsequent to several years of fatigue, is predicted for an offshore wind turbine blade. Fatigue failure indexes of different damage modes are calculated using a sub-modeling approach. Multi axial stresses are accounted for using a developed failure criterion with residual strengths instead of the virgin strengths. Damage initiation is predicted by including available Wohler curve data of E-Glass fabrics and epoxy matrix into multi-axial fatigue failure criteria. As a result of this study, proper knock-down factors for ply-drop effects in wind turbine blades under multi-axial static and fatigue loadings can be obtained.

  4. Fracture resistance and fatigue crack growth characteristics of two Al-Cu-Mg-Zr alloys

    SciTech Connect

    Sarkar, B.; Lisagor, W.B. NASA, Langley Research Center, Hampton, VI )

    1992-01-01

    The dependence of strength, fracture resistance, and fatigue crack growth rate on the aging conditions of two alloy compositions based on Al-3.7Cu-1.85Mg-0.2Mn is investigated. Mechanical properties were evaluated in two heat treatment conditions and in two orientations (longitudinal and transverse). Compact tension specimens were used to determine fatigue crack growth characteristics and fracture resistance. The aging response was monitored on coupons using hardness measurements determined with a standard Rockwell hardness tester. Fracture resistance is found to increase with increasing yield strength during artificial aging of age-hardenable 2124-Zr alloys processed by powder metallurgy techniques. Fatigue crack growth rate increases with increasing strength. It is argued that these changes are related to deformation modes of the alloys; a homogeneous deformation mode tends to increase fracture resistance and to decrease the resistance to the fatigue crack propagation rate. 12 refs.

  5. Mathematical Model of Load Pass and Prediction of Fatigue Life on Bolt Threads with Reduced Lead

    NASA Astrophysics Data System (ADS)

    Asayama, Yukiteru

    A mathematical model is proposed in order to elucidate the mechanism that the fatigue strength of external threads increases by reducing the lead on a thread system such as a bolt and nut. The model is constructed from the concept that a local strain proportional to the reducing degree of the lead, although the local strain is at first produced in the bolt thread farthest from the bearing surface of the nut, is induced in each thread root with an increase of applied load. The fatigue life predicted from the mathematical model shows good agreement with the experimental fatigue life of cadmium-plated external threads with the reduced lead on the material having strength as high as 1270MPa. The model can provide useful suggestions for the design of fasteners for aerospace, which are required to satisfy severe requirements of fatigue strengths and dimensions.

  6. Hysteresis and Fatigue

    NASA Astrophysics Data System (ADS)

    Erber, T.; Guralnick, S. A.; Michels, S. C.

    1993-06-01

    Fatigue in materials is the result of cumulative damage processes that are usually induced be repeated loading cycles. Since the energy dissipation associated with damage is irreversible, and the loading cycles are accompanied by the evolution of heat, the corresponding relation between stress and strain is not single-valued; but rather exhibits a memory dependence, or hysteresis. Conversely, sustained hysteresis is a necessary condition for fatigue and is related to the rate of damage accumulation. Engineering design and safety standards for estimating fatigue life are based in part on the Manson-Coffin relations between the width of stress-strain hysteresis loops and the number of loading cycles required to produce failure in test pieces. Experimental and theoretical results show that this relation can be extended into a simple phenomenological description of fatigue that directly links total hysteresis energy dissipation, the cumulation of material damage, and the average number of loading cycles leading to failure. Detailed features of the hysteresis can be understood with the help of analogies between the incremental collapse of structures and the inception and organization of damage in materials. In particular, scanning tunneling microscope measurements of the threshold of mechanical irreversibility and acoustic emission patterns may be used to check on the evolution of hysteresis at the microscopic level.

  7. FATIGUE OF DENTAL CERAMICS

    PubMed Central

    Zhang, Yu; Sailer, Irena; Lawn, Brian R

    2013-01-01

    Objectives Clinical data on survival rates reveal that all-ceramic dental prostheses are susceptible to fracture from repetitive occlusal loading. The objective of this review is to examine the underlying mechanisms of fatigue in current and future dental ceramics. Data/sources The nature of various fatigue modes is elucidated using fracture test data on ceramic layer specimens from the dental and biomechanics literature. Conclusions Failure modes can change over a lifetime, depending on restoration geometry, loading conditions and material properties. Modes that operate in single-cycle loading may be dominated by alternative modes in multi-cycle loading. While post-mortem examination of failed prostheses can determine the sources of certain fractures, the evolution of these fractures en route to failure remains poorly understood. Whereas it is commonly held that loss of load-bearing capacity of dental ceramics in repetitive loading is attributable to chemically-assisted 'slow crack growth' in the presence of water, we demonstrate the existence of more deleterious fatigue mechanisms, mechanical rather than chemical in nature. Neglecting to account for mechanical fatigue can lead to gross overestimates in predicted survival rates. Clinical significance Strategies for prolonging the clinical lifetimes of ceramic restorations are proposed based on a crack-containment philosophy. PMID:24135295

  8. Incompatibility and Mental Fatigue

    ERIC Educational Resources Information Center

    Herzog, Thomas R.; Hayes, Lauren J.; Applin, Rebecca C.; Weatherly, Anna M.

    2011-01-01

    A straightforward prediction from attention restoration theory is that the level of incompatibility in a person's life should be positively correlated with that person's level of mental (or directed attention) fatigue. The authors tested this prediction by developing a new self-report measure of incompatibility in which they attempted to isolate…

  9. Probabilistic Simulation for Combined Cycle Fatigue in Composites

    NASA Technical Reports Server (NTRS)

    Chamis, Christos C.

    2010-01-01

    A methodology to compute probabilistic fatigue life of polymer matrix laminated composites has been developed and demonstrated. Matrix degradation effects caused by long term environmental exposure and mechanical/thermal cyclic loads are accounted for in the simulation process. A unified time-temperature-stress dependent multifactor interaction relationship developed at NASA Glenn Research Center has been used to model the degradation/aging of material properties due to cyclic loads. The fast probability integration method is used to compute probabilistic distribution of response. Sensitivities of fatigue life reliability to uncertainties in the primitive random variables (e.g., constituent properties, fiber volume ratio, void volume ratio, ply thickness, etc.) computed and their significance in the reliability-based design for maximum life is discussed. The effect of variation in the thermal cyclic loads on the fatigue reliability for a (0/+/- 45/90)s graphite/epoxy laminate with a ply thickness of 0.127 mm, with respect to impending failure modes has been studied. The results show that, at low mechanical cyclic loads and low thermal cyclic amplitudes, fatigue life for 0.999 reliability is most sensitive to matrix compressive strength, matrix modulus, thermal expansion coefficient, and ply thickness. Whereas at high mechanical cyclic loads and high thermal cyclic amplitudes, fatigue life at 0.999 reliability is more sensitive to the shear strength of matrix, longitudinal fiber modulus, matrix modulus, and ply thickness.

  10. Literature Review and Preliminary Studies of Fretting and Fretting Fatigue Including Special Applications to Aircraft Joints.

    DTIC Science & Technology

    1994-04-01

    interfay sealant appeared to be porous. There was a small fatigue reduction. Hot bonded joints ( hot cured interfay) had no cracking at rivet holes. A...Base, Ohio,1973, 11 pp. 1 05 F. E. Kiddie , Fatigue behavior of bolted joints in RR58 aluminum alloy with and without interfay sealant, Procurement

  11. Environmental Effects on Graphite-Epoxy Fatigue Properties

    NASA Technical Reports Server (NTRS)

    Sumsion, H. T.

    1976-01-01

    Effects of torsional and flexural fatigue on the long-time Integrity of advanced graphite-epoxy structural composites have been investigated. Torsional fatigue tests were run at stress ratios of R = 0 (zero to maximum, repeated) and R = -1 (zero mean stress) on unidirectional, angleply, and woven graphite fiber materials in air and water at room temperature and at 74 C. Flexural fatigue tests (four-point bending) with R = -1 were run in air and water at room temperature, and with R = 0 in air. Results show that, in torsional cycling, both water environment and higher test temperature contribute to significant degradation of torsional stiffness. The degradation of stiffness from torsional stress cycling was observed to be much greater with R = -1 than with simple R = 0 cycling. The effect of environment also is greater in the fully reversed cycling. Flexural fatigue results on +/- 30 deg material show a large fatigue effect, with fatigue limits of less than 50% and 30% of the static failure strength for specimens tested under stress ratios of R = 0 and R = -1, respectively. Compliance measurements indicate that the final failures are preceded by damage initiation and accumulation, which begins at about 1% of the specimen life.

  12. The growth of small corrosion fatigue cracks in alloy 2024

    NASA Technical Reports Server (NTRS)

    Piascik, Robert S.; Willard, Scott A.

    1993-01-01

    The corrosion fatigue crack growth characteristics of small surface and corner cracks in aluminum alloy 2024 is established. The damaging effect of salt water on the early stages of small crack growth is characterized by crack initiation at constituent particle pits, intergranular microcracking for a less than 100 micrometers, and transgranular small crack growth for a micrometer. In aqueous 1 percent NaCl and at a constant anodic potential of -700 mV(sub SCE), small cracks exhibit a factor of three increase in fatigue crack growth rates compared to laboratory air. Small cracks exhibit accelerated corrosion fatigue crack growth rates at low levels of delta-K (less than 1 MPa square root of m) below long crack delta-K (sub th). When exposed to Paris regime levels of crack tip stress intensity, small corrosion fatigue cracks exhibit growth rates similar to that observed for long cracks. Results suggest that crack closure effects influence the corrosion fatigue crack growth rates of small cracks (a less than or equal to 100 micrometers). This is evidenced by similar small and long crack growth behavior at various levels of R. Contrary to the corrosion fatigue characteristics of small cracks in high strength steels, no pronounced chemical crack length effect is observed for Al by 2024 exposed to salt water.

  13. Cryogenic fluid management experiment trunnion fatigue verification

    NASA Technical Reports Server (NTRS)

    Bailey, W. J.; Fester, D. A.; Toth, J. M., Jr.; Kasper, H. J.

    1983-01-01

    A subcritical liquid hydrogen orbital storage and transfer experiment was designed for flight in the Shuttle cargo bay. The Cryogenic Fluid Management Experiment (CFME) includes a liquid hydrogen tank supported in a vacuum jacket by two fiberglass epoxy trunnion mounts. This composite material was selected for the trunnions since it provides desirable strength, weight and thermal characteristics for supporting cryogenic tankage. An experimental program was conducted to provide material property and fatigue data for S-glass epoxy composite materials at ambient and liquid hydrogen temperatures and to verify structural integrity of the CFME trunnion supports.

  14. Muscle fatigue induced by a soccer match-play simulation in amateur Black South African players.

    PubMed

    Jones, Robert I; Ryan, Bennett; Todd, Andrew I

    2015-01-01

    The purpose of the current study was to investigate the effects of a soccer-specific fatigue protocol on the temporal changes in torque producing abilities of the thigh within African soccer players. Twenty amateur Black South African soccer players performed the SAFT(90) soccer match-play simulation protocol, while isokinetic measurements were obtained pre-exercise (T0), after the 1st half (T45), after half time (T60) and after the 2nd half (T105). During SAFT(90) performance, significant overall concentric quadriceps peak torque changes were observed (1.05 rad · s(-1) = 16.6%, 3.14 rad · s(-1) = 9.5%). Eccentric hamstring peak torque also decreased significantly over time (1.05 rad · s(-1) = 17.4%, 3.14 rad · s(-1) = 18.5%), with significant reductions occurring during both halves. The functional strength ratio (eccH:conQ) at 3.14 rad · s(-1) was observed to significantly decrease by 10.1% overall. The indicated time-dependent changes in Black South African players have implications for competitive performance and increased predisposition to hamstring muscle injuries. Because of muscle fatigue, the hamstrings may have insufficient eccentric strength during the late swing phase when sprinting, resulting in eccentric overload and damage to the muscle. The changes in strength found in the current study help explain the increased predisposition to hamstring strains during the latter stages of both halves of match-play as reported by epidemiological studies.

  15. Elastic?plastic FEM analysis on low cycle fatigue behavior for alumina dispersion-strengthened copper/stainless steel joint

    NASA Astrophysics Data System (ADS)

    Nishi, H.

    2004-08-01

    Since the first wall and divertor components of fusion power plants are subjected to severe stresses caused by thermal expansion and electromagnetic forces, it is important to evaluate the fatigue strength of joints. In this study, elastic-plastic finite element analysis was performed for low cycle fatigue behavior of stainless steel/alumina dispersion-strengthened copper (DS Cu) joint in order to investigate the fatigue life and the fracture behavior of the joint. The results showed that a strain concentration occurred at the interface during low cycle fatigue, but as the strain range increased the strain concentration shifted away from the interface and into the DS Cu. The fatigue life and fracture location were evaluated taking into account of the strain concentration. Predictions of the fatigue life and fracture location were consistent with those measured by the low cycle fatigue test.

  16. Time and temperature dependence on flexural fatigue behavior of unidirectional CFRP laminates using pitch-based carbon fibers

    SciTech Connect

    Miyano, Yasushi; Daichou, Noboru; Nakada, Masayuki; Mohri, Michihiro

    1996-12-31

    The flexural fatigue behavior of two kinds of unidirectional pitch-based CFRP laminates, which have different types of matrix resin, were evaluated at several levels of frequency and temperature. The fatigue behavior of both CFRPs was found to be remarkably dependent on time and temperature. The time-temperature superposition principle for the viscoelastic behavior of the matrix resin holds for the fatigue strength as well as the static strength of the CFRPs. The master curves of fatigue strength for the CFRPs can be divided into three distinct groups of curves, each corresponding to a different mode of fracture. The time and temperature dependence of the fatigue behavior of the CFRP laminates is not only controlled by the viscoelastic behavior of the matrix resin, even though the static behavior is dominated by the viscoelastic behavior of matrix resin.

  17. Compressive fatigue limit of four types of dental restorative materials.

    PubMed

    Chen, Song; Öhman, Caroline; Jefferies, Steven R; Gray, Holly; Xia, Wei; Engqvist, Håkan

    2016-08-01

    The purpose of this study was to evaluate the quasi-static compressive strength and the compressive fatigue limit of four different dental restorative materials, before and after aging in distilled water for 30 days. A conventional glass ionomer cement (Fuji IX GP; IG), a zinc-reinforced glass ionomer cement (Chemfil rock; CF), a light curable resin-reinforced glass ionomer cement (Fuji II LC; LC) and a resin-based composite (Quixfil; QF) were investigated. Cylindrical specimens (4mm in diameter and 6mm in height) were prepared according to the manufacturer׳s instructions. The compressive fatigue limit was obtained using the staircase method. Samples were tested in distilled water at 37°C, at a frequency of 10Hz with 10(5) cycles set as run-out. 17 fatigue samples were tested for each group. Two-way ANOVA and one-way ANOVA followed by Tukey׳s post-hoc test were used to analyze the results. Among the four types of materials, the resin-based composite exhibited the highest compressive strength (244±13.0MPa) and compressive fatigue limit (134±7.8MPa), followed by the light-cured resin reinforced glass ionomer cement (168±8.5MPa and 92±6.6MPa, respectively) after one day of storage in distilled water. After being stored for 30 days, all specimens showed an increase in compressive strength. Aging showed no effect on the compressive fatigue limit of the resin-based composite and the light-cured resin reinforced glass ionomer cement, however, the conventional glass ionomer cements showed a drastic decrease (37% for IG, 31% for CF) in compressive fatigue limit. In conclusion, in the present study, resin modified GIC and resin-based composite were found to have superior mechanical properties to conventional GIC.

  18. Quantifying fatigue risk in model-based fatigue risk management.

    PubMed

    Rangan, Suresh; Van Dongen, Hans P A

    2013-02-01

    The question of what is a maximally acceptable level of fatigue risk is hotly debated in model-based fatigue risk management in commercial aviation and other transportation modes. A quantitative approach to addressing this issue, referred to by the Federal Aviation Administration with regard to its final rule for commercial aviation "Flightcrew Member Duty and Rest Requirements," is to compare predictions from a mathematical fatigue model against a fatigue threshold. While this accounts for duty time spent at elevated fatigue risk, it does not account for the degree of fatigue risk and may, therefore, result in misleading schedule assessments. We propose an alternative approach based on the first-order approximation that fatigue risk is proportional to both the duty time spent below the fatigue threshold and the distance of the fatigue predictions to the threshold--that is, the area under the curve (AUC). The AUC approach is straightforward to implement for schedule assessments in commercial aviation and also provides a useful fatigue metric for evaluating thousands of scheduling options in industrial schedule optimization tools.

  19. Laser surface melting of aluminium alloy 6013 for improving stress corrosion and corrosion fatigue resistance

    NASA Astrophysics Data System (ADS)

    Xu, Wen-Long

    that of the excimer laser formed surface film. When comparing the stress corrosion cracking resistance of the excimer laser and YAG laser treated specimens in terms of elongation reduction, the latter was found to be superior. This is considered to be caused by the tortuous fracture path which occurred in the YAG laser re-melted layer. This has the advantage of reducing the effective stress intensity at the crack front, and thus delays the fracture process. However, it must be recognised that a drop in tensile strength occurred after YAG laser treatment. This drop is primarily considered to be the result of the formation of a relatively thick and soft re-melted and heat affected layer. Considering the pitting corrosion fatigue, though, similar to the case of excimer laser melting, the initiation of fatigue cracks can be effectively retarded after YAG laser treatment, the mode of crack propagation was different for the two situations. Crack propagation within the YAG laser re-melt layer primarily followed interdendritic boundaries, and resulted in a rough fracture surface. A tortuous interdendritic crack path may result in a relatively low fatigue growth rate. By contrast, a relatively flat fracture surface was produced when excimer laser treatment was used. Finally, it was found that the electrochemical noise method is a promising means for in-situ monitoring of pitting corrosion fatigue damage of the laser-melted layer both for excimer and Nd:YAG laser treatments. The results showed that fatigue crack initiation and propagation phenomena could be correlated to the patterns of electrochemical potential and current noise.

  20. Blood-Borne Markers of Fatigue in Competitive Athletes – Results from Simulated Training Camps

    PubMed Central

    Hecksteden, Anne; Skorski, Sabrina; Schwindling, Sascha; Hammes, Daniel; Pfeiffer, Mark; Kellmann, Michael; Ferrauti, Alexander; Meyer, Tim

    2016-01-01

    Assessing current fatigue of athletes to fine-tune training prescriptions is a critical task in competitive sports. Blood-borne surrogate markers are widely used despite the scarcity of validation trials with representative subjects and interventions. Moreover, differences between training modes and disciplines (e.g. due to differences in eccentric force production or calorie turnover) have rarely been studied within a consistent design. Therefore, we investigated blood-borne fatigue markers during and after discipline-specific simulated training camps. A comprehensive panel of blood-born indicators was measured in 73 competitive athletes (28 cyclists, 22 team sports, 23 strength) at 3 time-points: after a run-in resting phase (d 1), after a 6-day induction of fatigue (d 8) and following a subsequent 2-day recovery period (d 11). Venous blood samples were collected between 8 and 10 a.m. Courses of blood-borne indicators are considered as fatigue dependent if a significant deviation from baseline is present at day 8 (Δfatigue) which significantly regresses towards baseline until day 11 (Δrecovery). With cycling, a fatigue dependent course was observed for creatine kinase (CK; Δfatigue 54±84 U/l; Δrecovery -60±83 U/l), urea (Δfatigue 11±9 mg/dl; Δrecovery -10±10 mg/dl), free testosterone (Δfatigue -1.3±2.1 pg/ml; Δrecovery 0.8±1.5 pg/ml) and insulin linke growth factor 1 (IGF-1; Δfatigue -56±28 ng/ml; Δrecovery 53±29 ng/ml). For urea and IGF-1 95% confidence intervals for days 1 and 11 did not overlap with day 8. With strength and high-intensity interval training, respectively, fatigue-dependent courses and separated 95% confidence intervals were present for CK (strength: Δfatigue 582±649 U/l; Δrecovery -618±419 U/l; HIIT: Δfatigue 863±952 U/l; Δrecovery -741±842 U/l) only. These results indicate that, within a comprehensive panel of blood-borne markers, changes in fatigue are most accurately reflected by urea and IGF-1 for cycling and by CK