Nagatoishi, Satoru; Nojima, Takahiko; Galezowska, Elzbieta; Juskowiak, Bernard; Takenaka, Shigeori
2006-11-01
The dual-labeled oligonucleotide derivative, FAT-0, carrying 6- carboxyfluorescein (FAM) and 6-carboxytetramethylrhodamine (TAMRA) labels at the 5' and 3' termini of the thrombin-binding aptamer (TBA) sequence 5'-GGT TGG TGT GGT TGG-3', and its derivatives, FAT-n (n=3, 5, and 7) with a spacer at the 5'-end of a TBA sequence of T(m)A (m=2, 4, and 6) have been designed and synthesized. These fluorescent probes were developed for monitoring K(+) concentrations in living organisms. Circular dichroism, UV-visible absorption, and fluorescence studies revealed that all FAT-n probes could form intramolecular tetraplex structures after binding K(+). Fluorescence resonance energy transfer and quenching results are discussed taking into account dye-dye contact interactions. The relationship between the fluorescence behavior of the probes and the spacer length in FAT-n was studied in detail and is discussed.
Acute effects of static stretching on peak and end-range hamstring-to-quadriceps functional ratios.
Sekir, Ufuk; Arabaci, Ramiz; Akova, Bedrettin
2015-10-18
To evaluate if static stretching influences peak and end-range functional hamstring-to-quadriceps (H/Q) strength ratios in elite women athletes. Eleven healthy female athletes in an elite competitive level participated to the study. All the participants fulfilled the static stretching or non-stretching (control) intervention protocol in a randomized design on different days. Two static unassisted stretching exercises, one in standing and one in sitting position, were used to stretch both the hamstring and quadriceps muscles during these protocols. The total time for the static stretching was 6 ± 1 min. The isokinetic peak torque measurements for the hamstring and quadriceps muscles in eccentric and concentric modes and the calculations for the functional H/Q strength ratios at angular velocities of 60°/s and 180°/s were made before (pre) and after (post) the control or stretching intervention. The strength measurements and functional strength ratio calculations were based during the entire- and end-range of knee extension. The pre-test scores for quadriceps and hamstring peak torque and end range values were not significantly different between the groups (P > 0.05). Subsequently, although the control group did not exhibit significant changes in quadriceps and hamstring muscle strength (P > 0.05), static stretching decreased eccentric and concentric quadriceps muscle strength at both the 60°/s and 180°/s test speeds (P < 0.01). Similarly, static stretching also decreased eccentric and concentric hamstring muscle strength at both the 60°/s and 180°/s test speeds (P < 0.01). On the other hand, when the functional H/Q strength ratios were taken into consideration, the pre-intervention values were not significant different between the groups both during the entire and end range of knee extension (P > 0.05). Furthermore, the functional H/Q strength ratios exhibited no significant alterations during the entire and end ranges of knee extension both in the static stretching or the control intervention (P > 0.05). According to our results, static stretching routine does not influence functional H/Q ratio. Athletes can confidently perform static stretching during their warm-up routines.
Acute effects of static stretching on peak and end-range hamstring-to-quadriceps functional ratios
Sekir, Ufuk; Arabaci, Ramiz; Akova, Bedrettin
2015-01-01
AIM: To evaluate if static stretching influences peak and end-range functional hamstring-to-quadriceps (H/Q) strength ratios in elite women athletes. METHODS: Eleven healthy female athletes in an elite competitive level participated to the study. All the participants fulfilled the static stretching or non-stretching (control) intervention protocol in a randomized design on different days. Two static unassisted stretching exercises, one in standing and one in sitting position, were used to stretch both the hamstring and quadriceps muscles during these protocols. The total time for the static stretching was 6 ± 1 min. The isokinetic peak torque measurements for the hamstring and quadriceps muscles in eccentric and concentric modes and the calculations for the functional H/Q strength ratios at angular velocities of 60°/s and 180°/s were made before (pre) and after (post) the control or stretching intervention. The strength measurements and functional strength ratio calculations were based during the entire- and end-range of knee extension. RESULTS: The pre-test scores for quadriceps and hamstring peak torque and end range values were not significantly different between the groups (P > 0.05). Subsequently, although the control group did not exhibit significant changes in quadriceps and hamstring muscle strength (P > 0.05), static stretching decreased eccentric and concentric quadriceps muscle strength at both the 60°/s and 180°/s test speeds (P < 0.01). Similarly, static stretching also decreased eccentric and concentric hamstring muscle strength at both the 60°/s and 180°/s test speeds (P < 0.01). On the other hand, when the functional H/Q strength ratios were taken into consideration, the pre-intervention values were not significant different between the groups both during the entire and end range of knee extension (P > 0.05). Furthermore, the functional H/Q strength ratios exhibited no significant alterations during the entire and end ranges of knee extension both in the static stretching or the control intervention (P > 0.05). CONCLUSION: According to our results, static stretching routine does not influence functional H/Q ratio. Athletes can confidently perform static stretching during their warm-up routines. PMID:26495249
NASA Astrophysics Data System (ADS)
Haridharan, M. K.; Bharathi Murugan, R.; Natarajan, C.; Muthukannan, M.
2017-07-01
In this paper, the experimental investigations was carried out to find the compressive strength, static modulus of elasticity and flexural strength of concrete mixtures, in which natural sand was partially replaced with Waste Tyre Crumb Rubber (WTCR). River sand was replaced with five different percentages (5%, 10%, 15%, 20% and 25%) of WTCR by volume. The main objective of the experimental investigation is to find the relationship between static modulus of elasticity and flexural strength with compressive strength of concrete with WTCR. The experimentally obtainedstatic modulus of elasticity and flexural strength results comparing with the theoretical values (various country codes recommendations).
Association of balance, strength, and power measures in young adults.
Muehlbauer, Thomas; Gollhofer, Albert; Granacher, Urs
2013-03-01
The purpose of this study was to investigate the relationship between variables of static/dynamic balance, isometric strength, and power. Twenty-seven young healthy adults (mean age: 23 ± 4 years) performed measurements of static (unperturbed)/dynamic (perturbed) balance, isometric strength (i.e., maximal isometric torque [MIT]; rate of torque development [RTD] of the plantar flexor), and power (i.e., countermovement jump [CMJ] height and power). No significant associations were found between variables of static and dynamic balance (r = -0.090 to +0.329, p > 0.05) and between measures of static/dynamic balance and isometric strength (r = +0.041 to +0.387, p > 0.05) and static/dynamic balance and power (r = -0.076 to +0.218, p > 0.05). Significant positive correlations (r) were detected between variables of power and isometric strength ranging from +0.458 to +0.689 (p < 0.05). Furthermore, simple regression analyses revealed that a 10% increase in mean CMJ height (4.1 cm) was associated with 22.9 N·m and 128.4 N·m·s better MIT and RTD, respectively. The nonsignificant correlation between static and dynamic balance measures and between static/dynamic balance, isometric strength, and power variables implies that these capacities may be independent of each other and may have to be tested and trained complementarily.
2016-08-01
quasi -static mechanical properties, deformation behavior, and damage mechanisms in HSHDC and compare the behavior with VHSC. 2. Develop experimental ...using the experimental setup described in Chapter 6. The quasi -static strain rate was approximately 10-4/s. All panels tested have nominal dimensions...ER D C TR -1 6- 13 Force Protection Basing; TeCD 1a Equipment and Protocols for Quasi -Static and Dynamic Tests of Very-High-Strength
Forte, Roberta; Boreham, Colin A G; De Vito, Giuseppe; Ditroilo, Massimiliano; Pesce, Caterina
2014-12-01
Age-related reductions in strength and power are considered to negatively impact balance control, but the existence of a direct association is still an issue of debate. This is possibly due to the fact that balance assessment is complex, reflects different underlying physiologic mechanisms and involves quantitative measurements of postural sway or timing of performance during balance tasks. The present study evaluated the moderator effect of static postural control on the association of power and strength with dynamic balance tasks. Fifty-seven healthy 65-75 year old individuals performed tests of dynamic functional balance (walking speed under different conditions) and of strength, power and static postural control. Dynamic balance performance (walking speed) was associated with lower limb strength and power, as well as postural control under conditions requiring postural adjustments (narrow surface walking r(2) = 0.31, p < 0.001). An interaction effect between strength and static postural control was found with narrow surface walking and talking while walking (change of β 0.980, p < 0.001 in strength for 1 SD improvements in static postural control for narrow walking, and [Formula: see text] -0.730, p < 0.01 in talking while walking). These results indicate that good static postural control facilitates the utilisation of lower limb strength to better perform complex, dynamic functional balance tasks. Practical implications for assessment and training are discussed.
Estimation of static parameters based on dynamical and physical properties in limestone rocks
NASA Astrophysics Data System (ADS)
Ghafoori, Mohammad; Rastegarnia, Ahmad; Lashkaripour, Gholam Reza
2018-01-01
Due to the importance of uniaxial compressive strength (UCS), static Young's modulus (ES) and shear wave velocity, it is always worth to predict these parameters from empirical relations that suggested for other formations with same lithology. This paper studies the physical, mechanical and dynamical properties of limestone rocks using the results of laboratory tests which carried out on 60 the Jahrum and the Asmari formations core specimens. The core specimens were obtained from the Bazoft dam site, hydroelectric supply and double-curvature arch dam in Iran. The Dynamic Young's modulus (Ed) and dynamic Poisson ratio were calculated using the existing relations. Some empirical relations were presented to estimate uniaxial compressive strength, as well as static Young's modulus and shear wave velocity (Vs). Results showed the static parameters such as uniaxial compressive strength and static Young's modulus represented low correlation with water absorption. It is also found that the uniaxial compressive strength and static Young's modulus had high correlation with compressional wave velocity and dynamic Young's modulus, respectively. Dynamic Young's modulus was 5 times larger than static Young's modulus. Further, the dynamic Poisson ratio was 1.3 times larger than static Poisson ratio. The relationship between shear wave velocity (Vs) and compressional wave velocity (Vp) was power and positive with high correlation coefficient. Prediction of uniaxial compressive strength based on Vp was better than that based on Vs . Generally, both UCS and static Young's modulus (ES) had good correlation with Ed.
NASA Technical Reports Server (NTRS)
Snider, H. L.; Reeder, F. L.; Dirkin, W. J.
1972-01-01
Fourteen C-130 airplane center wings, each containing service-imposed fatigue damage resulting from 4000 to 13,000 accumulated flight hours, were tested to determine their fatigue crack propagation and static residual strength characteristics. Eight wings were subjected to a two-step constant amplitude fatigue test prior to static testing. Cracks up to 30 inches long were generated in these tests. Residual static strengths of these wings ranged from 56 to 87 percent of limit load. The remaining six wings containing cracks up to 4 inches long were statically tested as received from field service. Residual static strengths of these wings ranged from 98 to 117 percent of limit load. Damage-tolerant structural design features such as fastener holes, stringers, doublers around door cutouts, and spanwise panel splices proved to be effective in retarding crack propagation.
The impact of dynamic balance measures on walking performance in multiple sclerosis
Fritz, Nora E.; Marasigan, Rhul Evans R.; Calabresi, Peter A.; Newsome, Scott D.; Zackowski, Kathleen M.
2014-01-01
Background Static posture imbalance and gait dysfunction are common in individuals with multiple sclerosis (MS). Although the impact of strength and static balance on walking has been examined, little is known about the impact of dynamic standing balance on walking in MS. Objective To determine the impact of dynamic balance, static balance, sensation, and strength measures to walking in individuals with MS. Methods 52 individuals with MS (27 females; 26 relapsing-remitting; mean age 45.6±10.3 years; median EDSS 3.5 (range 0-7) participated in testing for dynamic and static posturography (Kistler 9281 force plate), hip flexion, hip extension, and ankle dorsiflexion strength (Microfet2 hand-held dynamometer), sensation (Vibratron II) and walk velocity (Optotrak Motion Analysis System). Mann-Whitney tests, Spearman correlation coefficients, and forward stepwise multiple regression were used to assess statistical significance. Results All measures were significantly abnormal in MS subjects when compared to age and sex-matched norms (p<0.05 for all). Static balance (eyes open, feet together [EOFT]), anterior- posterior (AP) dynamic sway, and hip extension strength were strongly correlated with fast walking velocity (AP sway r=0.68; hip extension strength r=0.73; EOFT r=-0.40). Together, AP dynamic sway (ρr=0.71, p<0.001), hip extension strength (ρr=0.54, p<0.001), and EOFT static balance (ρr=-0.41, p=0.01) explained more than 70% of the variance in fast walking velocity (p<0.001). Conclusions These data suggest that AP dynamic sway impacts walking performance in MS. A combined evaluation of dynamic balance, static balance and strength may lead to a better understanding of walking mechanisms as well as the development of strategies to improve walking. PMID:24795162
Duration Dependent Effect of Static Stretching on Quadriceps and Hamstring Muscle Force.
Alizadeh Ebadi, Leyla; Çetin, Ebru
2018-03-13
The aim of this study was to determine the acute effect of static stretching on hamstring and quadriceps muscles' isokinetic strength when applied for various durations to elite athletes, to investigate the effect of different static stretching durations on isokinetic strength, and finally to determine the optimal stretching duration. Fifteen elite male athletes from two different sport branches (10 football and five basketball) participated in this study. Experimental protocol was designed as 17 repetitive static stretching exercises for hamstring and quadriceps muscle groups according to the indicated experimental protocols; ((A) 5 min jogging; (B) 5 min jogging followed by 15 s static stretching; (C) 5 min jogging followed by 30 s static stretching; (D) 5 min jogging, followed by static stretching for 45 s). Immediately after each protocol, an isokinetic strength test consisting of five repetitions at 60°/s speed and 20 repetitions at 180°/s speed was recorded for the right leg by the Isomed 2000 device. Friedman variance analysis test was employed for data analysis. According to the analyzes, it was observed that 5 min jogging and 15 s stretching exercises increased the isokinetic strength, whereas 30 and 45 s stretching exercises caused a decrease.
Duration Dependent Effect of Static Stretching on Quadriceps and Hamstring Muscle Force
Çetin, Ebru
2018-01-01
The aim of this study was to determine the acute effect of static stretching on hamstring and quadriceps muscles’ isokinetic strength when applied for various durations to elite athletes, to investigate the effect of different static stretching durations on isokinetic strength, and finally to determine the optimal stretching duration. Fifteen elite male athletes from two different sport branches (10 football and five basketball) participated in this study. Experimental protocol was designed as 17 repetitive static stretching exercises for hamstring and quadriceps muscle groups according to the indicated experimental protocols; ((A) 5 min jogging; (B) 5 min jogging followed by 15 s static stretching; (C) 5 min jogging followed by 30 s static stretching; (D) 5 min jogging, followed by static stretching for 45 s). Immediately after each protocol, an isokinetic strength test consisting of five repetitions at 60°/s speed and 20 repetitions at 180°/s speed was recorded for the right leg by the Isomed 2000 device. Friedman variance analysis test was employed for data analysis. According to the analyzes, it was observed that 5 min jogging and 15 s stretching exercises increased the isokinetic strength, whereas 30 and 45 s stretching exercises caused a decrease.
Comparison of Static and Dynamic Elastic Modules of Different Strength Concretes
NASA Astrophysics Data System (ADS)
Uyanık, Osman; Sabbaǧ, Nevbahar
2016-04-01
In this study, the static and dynamic elastic (Young) modules of concrete with different strength was intended to compare. For this purpose 150mm dimensions 9 for each design cubic samples prepared and they were subjected to water cure during 28 days. After Seismic Ultrasonic P and S wave travel time measurements of samples, P and S wave velocities and taking advantage of elasticity theory the dynamic elastic modules were calculated. Concrete strength was obtained from the uniaxial compression tests in order to calculate the static elastic modules of the samples. The static elastic modulus is calculated by using the empirical relationships used in international standards. The obtained static and dynamic elastic modules have been associated. A curve was obtained from this association result that approximately similar to the stress-strain curve of obtaining at failure criterion of the sample. This study was supported with OYP05277-DR-14 Project No. by SDU and State Hydraulic Works 13th Regional/2012-01 Project No. Keywords: Concrete Strength, P and S wave Velocities, Static, Dynamic, Young Modules
Lima, Camila D; Brown, Lee E; Wong, Megan A; Leyva, Whitney D; Pinto, Ronei S; Cadore, Eduardo L; Ruas, Cassio V
2016-11-01
Lima, CD, Brown, LE, Wong, MA, Leyva, WD, Pinto, RS, Cadore, EL, and Ruas, CV. Acute effects of static vs. ballistic stretching on strength and muscular fatigue between ballet dancers and resistance-trained women. J Strength Cond Res 30(11): 3220-3227, 2016-Stretching is used to increase joint range of motion, but the acute effects can decrease muscle strength. However, this may depend on the population or mode of stretching. The purpose of this study was to compare the acute effects of static vs. ballistic stretching on strength and muscular fatigue between ballet dancers and resistance-trained women. Fifteen resistance-trained women (age 23.8 ± 1.80 years, mass 67.47 ± 7.77 kg, height 168.30 ± 5.53 cm) and 12 ballet dancers (age 22.8 ± 3.04 years, mass 58.67 ± 5.65 kg, height 168.00 ± 7.69 cm) performed 5 days of testing. The first day was control (no stretching), whereas the other 4 days were static or ballistic stretching in a counterbalanced order. Range of motion, strength, and fatigue tests were also performed. Both groups demonstrated a significant decrease in hamstrings strength after static (102.71 ± 2.67 N·m) and ballistic stretching (99.49 ± 2.61 N·m) compared with control (113.059 ± 3.25 N·m), with no changes in quadriceps strength. For fatigue, only ballet dancers demonstrated a decrease from control (71.79 ± 4.88%) to ballistic (65.65 ± 8.19%), but no difference with static (65.01 ± 12.29%). These findings suggest that stretching decreases hamstrings strength similarly in ballet dancers and resistance-trained women, with no differences between modes of stretching. However, ballistic stretching only decreased muscular fatigue in ballet dancers, but not in resistance-trained women. Therefore, no stretching should be performed before strength performance. However, ballistic stretching may decrease acute muscular fatigue in ballet dancers.
The impact of dynamic balance measures on walking performance in multiple sclerosis.
Fritz, Nora E; Marasigan, Rhul Evans R; Calabresi, Peter A; Newsome, Scott D; Zackowski, Kathleen M
2015-01-01
Static posture imbalance and gait dysfunction are common in individuals with multiple sclerosis (MS). Although the impact of strength and static balance on walking has been examined, the impact of dynamic standing balance on walking in MS remains unclear. To determine the impact of dynamic balance, static balance, sensation, and strength measures on walking in individuals with MS. Fifty-two individuals with MS (27 women; 26 relapsing-remitting; mean age = 45.6 ± 10.3 years; median Expanded Disability Status Scale score = 3.5) participated in posturography testing (Kistler-9281 force plate), hip flexion, hip extension, ankle dorsiflexion strength (Microfet2 hand-held dynamometer), sensation (Vibratron II), and walk velocity (Optotrak Motion Analysis System). Analyses included, Mann-Whitney, Spearman correlation coefficients, and multiple regression. All measures were abnormal in individuals with MS when compared with norms (P < .05). Static balance (eyes open, feet together [EOFT]), anterior-posterior (AP) dynamic sway, and hip extension strength were strongly correlated with walking velocity (AP sway r = 0.68; hip extension strength r = 0.73; EOFT r = -0.40). Together, AP dynamic sway (ρr = 0.71; P < .001), hip extension strength (ρr = 0.54; P < .001), and EOFT static balance (ρr = -0.41; P = .01) explained more than 70% of the variance in walking velocity (P < .001). AP dynamic sway affects walking performance in MS. A combined evaluation of dynamic balance, static balance, and strength may lead to a better understanding of walking mechanisms and the development of strategies to improve walking. © The Author(s) 2014.
Pisiform excision for pisotriquetral instability and arthritis.
Campion, Heather; Goad, Andrea; Rayan, Ghazi; Porembski, Margaret
2014-07-01
To evaluate wrist strength and kinematics after pisiform excision and preservation of its soft tissue confluence for pisotriquetral instability and arthritis. We evaluated 12 patients, (14 wrists) subjectively and objectively an average of 7.5 years after pisiform excision. Three additional patients were interviewed by phone. Subjective evaluation included inquiry about pain and satisfaction with the treatment. Objective testing included measuring wrist flexion and extension range of motion, grip strength, and static and dynamic flexion and ulnar deviation strengths of the operative hand compared with the nonsurgical normal hand. Four patients had concomitant ulnar nerve decompression at the wrist. All patients were satisfied with the outcome. Wrist flexion averaged 99% and wrist extension averaged 95% of the nonsurgical hand. Mean grip strength of the operative hand was 90% of the nonsurgical hand. Mean static flexion strength of the operative hand was 94% of the nonsurgical hand, whereas mean dynamic flexion strength was 113%. Mean static ulnar deviation strength of the operative hand was 87% of the nonsurgical hand. The mean dynamic ulnar deviation strength of the operative hand was 103% of the nonsurgical hand. Soft tissue confluence-preserving pisiform excision relieved pain and retained wrist motion and static and dynamic strength. Associated ulnar nerve compression was a confounding factor that may have affected outcomes. Therapeutic IV. Copyright © 2014 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.
Dynamic Breaking Tests of Airplane Parts
NASA Technical Reports Server (NTRS)
Hertel, Heinrich
1933-01-01
The static stresses of airplane parts, the magnitude of which can be determined with the aid of static load assumptions, are mostly superposed by dynamic stresses, the magnitude of which has been but little explored. The object of the present investigation is to show how the strength of airplane parts can best be tested with respect to dynamic stresses with and without superposed static loading, and to what extent the dynamic strength of the parts depends on their structural design. Experimental apparatus and evaluation methods were developed and tried for the execution of vibration-strength tests with entire structural parts both with and without superposed static loading. Altogether ten metal spars and spar pieces and two wooden spars were subjected to vibration breaking tests.
Terapascal static pressure generation with ultrahigh yield strength nanodiamond.
Dubrovinskaia, Natalia; Dubrovinsky, Leonid; Solopova, Natalia A; Abakumov, Artem; Turner, Stuart; Hanfland, Michael; Bykova, Elena; Bykov, Maxim; Prescher, Clemens; Prakapenka, Vitali B; Petitgirard, Sylvain; Chuvashova, Irina; Gasharova, Biliana; Mathis, Yves-Laurent; Ershov, Petr; Snigireva, Irina; Snigirev, Anatoly
2016-07-01
Studies of materials' properties at high and ultrahigh pressures lead to discoveries of unique physical and chemical phenomena and a deeper understanding of matter. In high-pressure research, an achievable static pressure limit is imposed by the strength of available strong materials and design of high-pressure devices. Using a high-pressure and high-temperature technique, we synthesized optically transparent microballs of bulk nanocrystalline diamond, which were found to have an exceptional yield strength (~460 GPa at a confining pressure of ~70 GPa) due to the unique microstructure of bulk nanocrystalline diamond. We used the nanodiamond balls in a double-stage diamond anvil cell high-pressure device that allowed us to generate static pressures beyond 1 TPa, as demonstrated by synchrotron x-ray diffraction. Outstanding mechanical properties (strain-dependent elasticity, very high hardness, and unprecedented yield strength) make the nanodiamond balls a unique device for ultrahigh static pressure generation. Structurally isotropic, homogeneous, and made of a low-Z material, they are promising in the field of x-ray optical applications.
Terapascal static pressure generation with ultrahigh yield strength nanodiamond
Dubrovinskaia, Natalia; Dubrovinsky, Leonid; Solopova, Natalia A.; Abakumov, Artem; Turner, Stuart; Hanfland, Michael; Bykova, Elena; Bykov, Maxim; Prescher, Clemens; Prakapenka, Vitali B.; Petitgirard, Sylvain; Chuvashova, Irina; Gasharova, Biliana; Mathis, Yves-Laurent; Ershov, Petr; Snigireva, Irina; Snigirev, Anatoly
2016-01-01
Studies of materials’ properties at high and ultrahigh pressures lead to discoveries of unique physical and chemical phenomena and a deeper understanding of matter. In high-pressure research, an achievable static pressure limit is imposed by the strength of available strong materials and design of high-pressure devices. Using a high-pressure and high-temperature technique, we synthesized optically transparent microballs of bulk nanocrystalline diamond, which were found to have an exceptional yield strength (~460 GPa at a confining pressure of ~70 GPa) due to the unique microstructure of bulk nanocrystalline diamond. We used the nanodiamond balls in a double-stage diamond anvil cell high-pressure device that allowed us to generate static pressures beyond 1 TPa, as demonstrated by synchrotron x-ray diffraction. Outstanding mechanical properties (strain-dependent elasticity, very high hardness, and unprecedented yield strength) make the nanodiamond balls a unique device for ultrahigh static pressure generation. Structurally isotropic, homogeneous, and made of a low-Z material, they are promising in the field of x-ray optical applications. PMID:27453944
Effects of quadriceps strength after static and dynamic whole-body vibration exercise.
Bush, Jill A; Blog, Gabriel L; Kang, Jie; Faigenbaum, Avery D; Ratamess, Nicholas A
2015-05-01
Numerous studies have shown performance benefits including whole-body vibration (WBV) as a training modality or an acute exercise protocol when used as a component of the resistance training program. Some studies have indicated that performing dynamic exercises as compared with static position exercises while exposed to WBV might be beneficial; however, evidence is lacking. Thus, the purpose of this study was to determine if an acute bout of dynamic versus static squats performed during WBV results in increase in quadriceps force production by means of dynamic isokinetic knee extension and flexion exercise. Nonresistance-trained healthy young men and women (N = 21) of 18-25 years participated in 4 protocols with 2-week rest in-between. Protocol 1 consisted of 5 sets of 10 dynamic squats without vibration; Protocol 2: 5 sets of 30-second static squats without vibration; Protocol 3: 5 sets of 10 dynamic squats with 30-Hz WBV for a total of 2.5 minutes; and Protocol 4: 5 sets of 30-second static squats with 30-Hz WBV for a total of 2.5 minutes. Prestrength tests (1 set of 4 repetitions at 100° · s(-1) for the knee extension exercise) was performed within 5 minutes of starting each protocol, and poststrength testing was performed within 1 minute of completing each protocol. Strength outcomes were analyzed by repeated measures analysis of variance with a significance level set at p ≤ 0.05. A significant decrease in strength was observed after dynamic and static squats without WBV (p = 0.002); an increase in strength after dynamic squats with WBV (p = 0.003); and a decrease in strength after static squats with WBV (p = 0.003). The inclusion of WBV to dynamic resistance exercise can be an added modality to increase strength. Whole-body vibration can have varied effects in altering muscle strength in untrained individuals according to the type of resistance training performed. As a dynamic squat with WBV seems to immediately potentiate neuromuscular functioning, the combination of dynamic exercises and WBV could be used as a potential warm-up procedure before resistance exercise.
Kim, Seong-Gil
2018-01-01
Background The purpose of this study was to investigate the effect of ankle ROM and lower-extremity muscle strength on static balance control ability in young adults. Material/Methods This study was conducted with 65 young adults, but 10 young adults dropped out during the measurement, so 55 young adults (male: 19, female: 36) completed the study. Postural sway (length and velocity) was measured with eyes open and closed, and ankle ROM (AROM and PROM of dorsiflexion and plantarflexion) and lower-extremity muscle strength (flexor and extensor of hip, knee, and ankle joint) were measured. Pearson correlation coefficient was used to examine the correlation between variables and static balance ability. Simple linear regression analysis and multiple linear regression analysis were used to examine the effect of variables on static balance ability. Results In correlation analysis, plantarflexion ROM (AROM and PROM) and lower-extremity muscle strength (except hip extensor) were significantly correlated with postural sway (p<0.05). In simple correlation analysis, all variables that passed the correlation analysis procedure had significant influence (p<0.05). In multiple linear regression analysis, plantar flexion PROM with eyes open significantly influenced sway length (B=0.681) and sway velocity (B=0.011). Conclusions Lower-extremity muscle strength and ankle plantarflexion ROM influenced static balance control ability, with ankle plantarflexion PROM showing the greatest influence. Therefore, both contractile structures and non-contractile structures should be of interest when considering static balance control ability improvement. PMID:29760375
Kim, Seong-Gil; Kim, Wan-Soo
2018-05-15
BACKGROUND The purpose of this study was to investigate the effect of ankle ROM and lower-extremity muscle strength on static balance control ability in young adults. MATERIAL AND METHODS This study was conducted with 65 young adults, but 10 young adults dropped out during the measurement, so 55 young adults (male: 19, female: 36) completed the study. Postural sway (length and velocity) was measured with eyes open and closed, and ankle ROM (AROM and PROM of dorsiflexion and plantarflexion) and lower-extremity muscle strength (flexor and extensor of hip, knee, and ankle joint) were measured. Pearson correlation coefficient was used to examine the correlation between variables and static balance ability. Simple linear regression analysis and multiple linear regression analysis were used to examine the effect of variables on static balance ability. RESULTS In correlation analysis, plantarflexion ROM (AROM and PROM) and lower-extremity muscle strength (except hip extensor) were significantly correlated with postural sway (p<0.05). In simple correlation analysis, all variables that passed the correlation analysis procedure had significant influence (p<0.05). In multiple linear regression analysis, plantar flexion PROM with eyes open significantly influenced sway length (B=0.681) and sway velocity (B=0.011). CONCLUSIONS Lower-extremity muscle strength and ankle plantarflexion ROM influenced static balance control ability, with ankle plantarflexion PROM showing the greatest influence. Therefore, both contractile structures and non-contractile structures should be of interest when considering static balance control ability improvement.
University Engineering Design Challenge
2015-01-02
strength its members provide. Trusses are common load - bearing structures, and are found in many modern-day applications due to their simple, strong, and...we ran simulations on was one of the member arms. We applied a bearing load on the surfaces of the holes on one side and tested it for static stress...73.24 ksi yield strength as shown figures 17 below. Figure 17: von Mises stress under static bearing load of 8750 lb. Under the static bearing load
Analysis of the Static Strength and Relative Endurance of Women Athletes
ERIC Educational Resources Information Center
Heyward, Vivian; McCreary, Leslie
1977-01-01
Investigations of static strength and relative endurance of the grip muscles of women athletes revealed that mean endurance time was significantly greater than for men. Results were discussed in light of evidence suggesting possible sex differences in muscle hypertrophy, capillarization of muscle tissue, critical occluding tension level, and…
49 CFR 238.203 - Static end strength.
Code of Federal Regulations, 2014 CFR
2014-10-01
... inches by 24 inches. The alternative specified in this paragraph is not applicable to a cab car or an MU... use of the equipment; and (v) A quantitative risk assessment, incorporating the design information... Equipment § 238.203 Static end strength. (a)(1) Except as further specified in this paragraph or in...
49 CFR 238.203 - Static end strength.
Code of Federal Regulations, 2013 CFR
2013-10-01
... inches by 24 inches. The alternative specified in this paragraph is not applicable to a cab car or an MU... use of the equipment; and (v) A quantitative risk assessment, incorporating the design information... Equipment § 238.203 Static end strength. (a)(1) Except as further specified in this paragraph or in...
49 CFR 238.203 - Static end strength.
Code of Federal Regulations, 2012 CFR
2012-10-01
... inches by 24 inches. The alternative specified in this paragraph is not applicable to a cab car or an MU... use of the equipment; and (v) A quantitative risk assessment, incorporating the design information... Equipment § 238.203 Static end strength. (a)(1) Except as further specified in this paragraph or in...
Fatigue of notched fiber composite laminates. Part 2: Analytical and experimental evaluation
NASA Technical Reports Server (NTRS)
Kulkarni, S. V.; Mclaughlin, P. V., Jr.; Pipes, R. B.
1976-01-01
The analytical/experimental correlation study was performed to develop an understanding of the behavior of notched Boron/epoxy laminates subjected to tension/tension fatigue loading. It is postulated that the fatigue induced property changes (stiffness as well as strength) of the laminate can be obtained from the lamina fatigue properties. To that end, the Boron/epoxy lamina static and fatigue data (lifetime, residual stiffness and strength) were obtained initially. The longitudinal and transverse tension data were determined from the (0) and (90) laminate tests while the in-plane shear data were obtained from the (+ or - 45) sub s laminates. The static tests obtained the notched strength and mode of failure while the fatigue tests determined lifetime, damage propagation and residual strength. The failure in static tension occurred in a transverse crack propagation mode.
Static Dissipative Cable Ties, Such as for Radiation Belt Storm Probes
NASA Technical Reports Server (NTRS)
Langley, Patrick T. (Inventor); Siddique, Fazle E. (Inventor)
2013-01-01
Methods of cyclically heating and cooling an article formed of a static dissipative ETFE resin, such as to reduce an electrical resistivity and/or to increase a tensile strength of the article, and methods of irradiating an article formed of a static dissipative ETFE resin, such as to increase a tensile strength of the article. Also disclosed herein are articles formed of a static dissipative ETFE resin, and processed in accordance with methods disclosed herein. Such an article may include, for example and without limitation, a cable strap to wrap, support, and/or secure one or more wires or cables, such as a cable tie.
Ekşioğlu, Mahmut
2016-01-01
Normative data are of importance in ergonomics and clinical settings. Applying normative data internationally is questionable. To this end, this study aimed to establish gender- and age-specific reference values for static (isometric) hand grip strength of normal population of Turkey with special regard to occupational demand, and compare them with the international norms. The secondary aims were to investigate the effects of gender, age-group, weight-group, job-group, hand and several anthropometric variables on static grip strength. A sample of 211 (128 male and 83 female) volunteers aged between 18 and 69 with various occupations participated in the study. Grip strength data were collected using a Jamar dynamometer with standard testing position, protocol and instructions. The mean and std deviation of maximum voluntary static grip strength values (in N) for dominant and non-dominant hands respectively were 455.2 ± 73.6 and 441.5 ± 72.6 for males, and 258 ± 46.1 and 246.2 ± 49.1 for females. The mean female strength was about 57% of the mean male strength value for both dominant and non-dominant hands. There was a curvilinear relationship of grip strength to age, significant differences between genders, hands, and some age-groups, and a correlation to height, body-mass, BMI and hand dimensions depending on the gender. The comparisons with the norms of other world populations indicate that there are cross-national grip strength variations among some nations but not all. Copyright © 2015 Elsevier Ltd and The Ergonomics Society. All rights reserved.
Jin, Xiaochao; Hou, Cheng; Fan, Xueling; Lu, Chunsheng; Yang, Huawei; Shu, Xuefeng; Wang, Zhihua
2017-11-10
As concrete and mortar materials widely used in structural engineering may suffer dynamic loadings, studies on their mechanical properties under different strain rates are of great importance. In this paper, based on splitting tests of Brazilian discs, the tensile strength and failure pattern of concrete and mortar were investigated under quasi-static and dynamic loadings with a strain rate of 1-200 s -1 . It is shown that the quasi-static tensile strength of mortar is higher than that of concrete since coarse aggregates weaken the interface bonding strength of the latter. Numerical results confirmed that the plane stress hypothesis lead to a lower value tensile strength for the cylindrical specimens. With the increase of strain rates, dynamic tensile strengths of concrete and mortar significantly increase, and their failure patterns change form a single crack to multiple cracks and even fragment. Furthermore, a relationship between the dynamic increase factor and strain rate was established by using a linear fitting algorithm, which can be conveniently used to calculate the dynamic increase factor of concrete-like materials in engineering applications.
Static Strength of Adhesively-bonded Woven Fabric Kenaf Composite Plates
NASA Astrophysics Data System (ADS)
Hilton, Ahmad; Lee, Sim Yee; Supar, Khairi
2017-06-01
Natural fibers are potentially used as reinforcing materials and combined with epoxy resin as matrix system to form a superior specific strength (or stiffness) materials known as composite materials. The advantages of implementing natural fibers such as kenaf fibers are renewable, less hazardous during fabrication and handling process; and relatively cheap compared to synthetic fibers. The aim of current work is to conduct a parametric study on static strength of adhesively bonded woven fabric kenaf composite plates. Fabrication of composite panels were conducted using hand lay-up techniques, with variation of stacking sequence, over-lap length, joint types and lay-up types as identified in testing series. Quasi-static testing was carried out using mechanical testing following code of practice. Load-displacement profiles were analyzed to study its structural response prior to ultimate failures. It was found that cross-ply lay-up demonstrates better static strength compared to quasi-isotropic lay-up counterparts due to larger volume of 0° plies exhibited in cross-ply lay-up. Consequently, larger overlap length gives better joining strength, as expected, however this promotes to weight penalty in the joining structure. Most samples showed failures within adhesive region known as cohesive failure modes, however, few sample demonstrated interface failure. Good correlations of parametric study were found and discussed in the respective section.
Chronic effect of static stretching on strength performance and basal serum IGF-1 levels.
Borges Bastos, Carmen L; Miranda, Humberto; Vale, Rodrigo Gomes de Souza; Portal, Maria de Nazaré; Gomes, M Thiago; Novaes, Jefferson da Silva; Winchester, Jason B
2013-09-01
Improving the process of how physical performance is enhanced is one of the main topics evaluated by physiologists. This process often involves athletes and nonathletic populations. The purpose of this study was to assess the chronic response to 10 weeks of static stretching exercises carried out before and during a strength training program for 8 exercises on an 8 repetition maximum (8RM) test performance, and basal serum insulinlike growth factor (IGF-1) levels. Thirty recreationally trained volunteers were randomly assigned to 1 of 3 training groups: (a) SBST (performed a warm-up with a static stretching protocol before each strength training session); (b) SDST (before each training set, a static stretching exercise was performed); and (c) OST (entire session was performed without any type of stretching exercise). Strength and IGF-1 levels were collected at the beginning (pretest) and end (posttest) of the entire experimental procedure. All the exercises showed a significant increase in muscle strength for the OST group. However, the results revealed a significant increase in the muscle strength for only a few exercises in the SBST (LP, LE) and SDST (LP) experimental conditions. Significant statistical differences were found between SBST and SDST for all the exercises in the OST experimental condition. Furthermore, the IGF-1 expression showed no significant differences in the intragroup analysis. However, the OST group showed higher values (p < 0.05) in the posttest when compared with those of the other groups (increased significantly only in the OST experimental condition). It has been concluded that, although all the groups showed an increase in muscular strength, the strength training performed without any type of stretching exercise, regardless of whether the stretching is performed before or during the lifting session, can more effectively increase muscle strength and basal serum IGF-1 levels. It was concluded that strength training, with or without the use of stretching exercises, increased muscular strength in the studied groups, and can induce an increase in IGF-1 levels.
Su, Hsuan; Chang, Nai-Jen; Wu, Wen-Lan; Guo, Lan-Yuen; Chu, I-Hua
2017-11-01
Foam rolling has been proposed to improve muscle function, performance, and joint range of motion (ROM). However, whether a foam rolling protocol can be adopted as a warm-up to improve flexibility and muscle strength is unclear. To examine and compare the acute effects of foam rolling, static stretching, and dynamic stretching used as part of a warm-up on flexibility and muscle strength of knee flexion and extension. Crossover study. University research laboratory. 15 male and 15 female college students (age 21.43 ± 1.48 y, weight 65.13 ± 12.29 kg, height 166.90 ± 6.99 cm). Isokinetic peak torque was measured during knee extension and flexion at an angular velocity of 60°/second. Flexibility of the quadriceps was assessed by the modified Thomas test, while flexibility of the hamstrings was assessed using the sit-and-reach test. The 3 interventions were performed by all participants in random order on 3 days separated by 48-72 hours. The flexibility test scores improved significantly more after foam rolling as compared with static and dynamic stretching. With regard to muscle strength, only knee extension peak torque (pre vs. postintervention) improved significantly after the dynamic stretching and foam rolling, but not after static stretching. Knee flexion peak torque remained unchanged. Foam rolling is more effective than static and dynamic stretching in acutely increasing flexibility of the quadriceps and hamstrings without hampering muscle strength, and may be recommended as part of a warm-up in healthy young adults.
ERIC Educational Resources Information Center
Giagazoglou, Paraskevi; Arabatzi, Fotini; Dipla, Konstantina; Liga, Maria; Kellis, Eleftherios
2012-01-01
The aim of this study was to assess the effects of a hippotherapy program on static balance and strength in adolescents with intellectual disability (ID). Nineteen adolescents with moderate ID were assigned either an experimental group (n = 10) or a control group (n = 9). The experimental group attended a 10-week hippotherapy program. To assess…
1986-02-01
mechanics Eisenmann (32) established a bolted joint static strength prediction model based on fracture mechanics for composite materials. The failure...34 Composite Materials, Volume 2, Academic Press, 1974, pp. 353-431. 32. Eisenmann , J.R., "Bolted Joint Static Strength Model for Composite Materials," NASA
Kim, Mi-Kyoung; Lee, Jung Chul; Yoo, Kyung-Tae
2018-03-01
[Purpose] The purpose of this study was to analyze the effects of pectoralis minor stretching and shoulder strengthening with an elastic band on balance and maximal shoulder muscle strength in young adults with rounded shoulder posture. [Subjects and Methods] Nineteen subjects with rounded shoulder posture were randomly divided into 2 groups: a shoulder stabilization exercise group and a stretching exercise group. The groups performed each exercise for 40 minutes, 3 times a week, for 4 weeks. Static balance (eyes open and closed), dynamic balance (the limits of stability in 4 directions) and shoulder muscle strength in 5 directions were measure before and after the exercises. [Results] The stretching exercise demonstrated a significant difference between the pre- and post-exercise in the static balance with eyes closed and extension and horizontal abduction strength while the stabilization exercise demonstrated significant difference in the left and right directions between the pre- and post-exercise of the dynamic balance and flexion strength. The stabilization exercise demonstrated significant differences shown in the flexion between the pre- and post-test. [Conclusion] The shoulder stabilization and stretching exercises improved the static balance, dynamic balance, and muscle strength.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Xin; Stephens, Elizabeth V.; Herling, Darrell R.
2004-09-14
In May 2003, ORNL and PNNL began collaboration on a four year research effort focused on developing joining techniques to overcome the technical issues associated with joining lightweight materials in heavy vehicles. The initial focus of research is the development and validation of joint designs for a composite structural member attached to a metal member that satisfy the structural requirements both economically and reliably. Huck-bolting is a common joining method currently used in heavy truck chassis structures. The initial round of testing was conducted to establish a performance benchmark by evaluating the static and fatigue behavior of an existing steel/steelmore » chassis joint at the single huck-bolt level. Both tension and shear loading conditions were considered, and the resulting static and fatigue strengths will be used to guide the joint design for a replacement composite/steel joint. A commercially available, pultruded composite material was chosen to study the generic issues related to composite/steel joints. Extren is produced by STRONGWELL, and it is a combination of fiberglass reinforcement and thermosetting polyester or vinyl ester resin systems. Extren sheets of 3.2 mm thick were joined to 1.4 mm SAE1008 steel sheets with a standard grade 5 bolt with 6.35 mm diameter. Both tension and shear loading modes were considered for the single hybrid joint under static and fatigue loading conditions. Since fiberglass reinforced thermoset polymer composites are a non-homogenous material, their strengths and behavior are dependent upon the design of the composite and reinforcement. The Extren sheet stock was cut along the longitudinal direction to achieve maximum net-section strength. The effects of various manufacturing factors and operational conditions on the static and fatigue strength of the hybrid joint were modeled and experimentally verified. It was found that loading mode and washer size have significant influence on the static and fatigue strength of the hybrid joint. The effect of different fatigue test frequencies on the sample temperature and the resulting fatigue life was also examined.« less
Lamination residual stresses in hybrid composites, part 1
NASA Technical Reports Server (NTRS)
Daniel, I. M.; Liber, T.
1976-01-01
An experimental investigation was conducted to study lamination residual stresses for various material and loading parameters. The effects of hybridization on residual stresses and residual properties after thermal cycling under load were determined in angle-ply graphite/Kevlar/epoxy and graphite/S-glass/epoxy laminates. Residual strains in the graphite plies are not appreciably affected by the type and number of hybridizing plies. Computed residual stresses at room temperature in the S-glass plies reach values up to seventy-five percent of the transverse strength of the material. Computed residual stresses in the graphite plies exceed the static strength by approximately ten percent. In the case of Kevlar plies, computed residual stresses far exceed the static strength indicating possible early failure of these plies. Static testing of the hybrids above indicates that failure is governed by the ultimate strain of the graphite plies. In thermally cycled hybrids, in general, residual moduli were somewhat lower and residual strengths were higher than initial values.
Kim, Dae-Hun; Park, Jin-Kyu; Jeong, Myeong-Kyun
2014-01-01
In patients with chronic low back pain, the center of gravity (COG) is abnormally located posterior to the center in most cases. The purpose of this study was to examine the effects of posterior-located COG on the functions (lumbar extension strength, and static and dynamic balance) and structure (lumbar lordosis angle and lumbosacral angle) of the lumbar spine. In this study, the COG of chronic low back pain patients who complained of only low back pain were examined using dynamic body balance equipment. A total of 164 subjects participated in the study (74 males and 90 females), and they were divided into two groups of 82 patients each. One group (n=82) consisted of patients whose COG was located at the center (C-COG); the other group (n=82) consisted of patients whose COG was located posterior to the center (P-COG). The following measures assessed the lumber functions and structures of the two groups: lumbar extension strength, moving speed of static and dynamic COGs, movement distance of the static and dynamic COGs, lumbar lordosis angle, and lumbosacral angle. The measured values were analyzed using independent t-tests. The group of patients with P-COG showed more decreases in lumbar extension strength, lumbar lordosis angle, and lumbosacral angle compared to the group of patients with C-COG. Also this group showed increases in moving speed and movement distance of the static COG. However, there were no differences in moving speed and movement distance of the dynamic COG between the two groups. These findings suggest that chronic LBP patients with P-COG have some disadvantages to establish lumbar extension strength and static and dynamic balance, which require specific efforts to maintain a neutral position and to control posture.
The strength of polyaxial locking interfaces of distal radius plates.
Hoffmeier, Konrad L; Hofmann, Gunther O; Mückley, Thomas
2009-10-01
Currently available polyaxial locking plates represent the consequent enhancement of fixed-angle, first-generation locking plates. In contrast to fixed-angle locking plates which are sufficiently investigated, the strength of the new polyaxial locking options has not yet been evaluated biomechanically. This study investigates the mechanical strength of single polyaxial interfaces of different volar radius plates. Single screw-plate interfaces of the implants Palmar 2.7 (Königsee Implantate und Instrumente zur Osteosynthese GmbH, Allendorf, Germany), VariAx (Stryker Leibinger GmbH & Co. KG, Freiburg, Germany) und Viper (Integra LifeSciences Corporation, Plainsboro, NJ, USA) were tested by cantilever bending. The strength of 0 degrees, 10 degrees and 20 degrees screw locking angle was obtained during static and dynamic loading. The Palmar 2.7 interfaces showed greater ultimate strength and fatigue strength than the interfaces of the other implants. The strength of the VariAx interfaces was about 60% of Palmar 2.7 in both, static and dynamic loading. No dynamic testing was applied to the Viper plate because of its low ultimate strength. By static loading, an increase in screw locking angle caused a reduction of strength for the Palmar 2.7 and Viper locking interfaces. No influence was observed for the VariAx locking interfaces. During dynamic loading; angulation had no influence on the locking strength of Palmar 2.7. However, reduction of locking strength with increasing screw angulation was observed for VariAx. The strength of the polyaxial locking interfaces differs remarkably between the examined implants. Depending on the implant an increase of the screw locking angle causes a reduction of ultimate or fatigue strength, but not in all cases a significant impact was observed.
Sekir, U; Arabaci, R; Akova, B; Kadagan, S M
2010-04-01
The aim of this study was to explore the effects of static and dynamic stretching of the leg flexors and extensors on concentric and eccentric peak torque (PT) and electromyography (EMG) amplitude of the leg extensors and flexors in women athletes. Ten elite women athletes completed the following intervention protocol in a randomized order on separate days: (a) non-stretching (control), (b) static stretching, and (c) dynamic stretching. Stretched muscles were the quadriceps and hamstring muscles. Before and after the stretching or control intervention, concentric and eccentric isokinetic PT and EMG activity of the leg extensors and flexors were measured at 60 and 180 degrees/s. Concentric and eccentric quadriceps and hamstring muscle strength at both test speeds displayed a significant decrease following static stretching (P<0.01-0.001). In contrast, a significant increase was observed after dynamic stretching for these strength parameters (P<0.05-0.001). Parallel to this, normalized EMG amplitude parameters exhibited significant decreases following static (P<0.05-0.001) and significant increases following dynamic stretching (P<0.05-0.001) during quadriceps and hamstring muscle actions at both concentric and eccentric testing modes. Our findings suggest that dynamic stretching, as opposed to static or no stretching, may be an effective technique for enhancing muscle performance during the pre-competition warm-up routine in elite women athletes.
Effect of microstructure on static and dynamic mechanical properties of high strength steels
NASA Astrophysics Data System (ADS)
Qu, Jinbo
The high speed deformation behavior of a commercially available dual phase (DP) steel was studied by means of split Hopkinson bar apparatus in shear punch (25m/s) and tension (1000s-1) modes with an emphasis on the influence of microstructure. The cold rolled sheet material was subjected to a variety of heat treatment conditions to produce several different microstructures, namely ferrite plus pearlite, ferrite plus bainite and/or acicular ferrite, ferrite plus bainite and martensite, and ferrite plus different fractions of martensite. Static properties (0.01mm/s for shear punch and 0.001s -1 for tension) of all the microstructures were also measured by an MTS hydraulic machine and compared to the dynamic properties. The effects of low temperature tempering and bake hardening were investigated for some ferrite plus martensite microstructures. In addition, two other materials, composition designed as high strength low alloy (HSLA) steel and transformation induced plasticity (TRIP) steel, were heat treated and tested to study the effect of alloy chemistry on the microstructure and property relationship. A strong effect of microstructure on both static and dynamic properties and on the relationship between static and dynamic properties was observed. According to the variation of dynamic factor with static strength, three groups of microstructures with three distinct behaviors were identified, i.e. classic dual phase (ferrite plus less than 50% martensite), martensite-matrix dual phase (ferrite plus more than 50% martensite), and non-dual phase (ferrite plus non-martensite). Under the same static strength level, the dual phase microstructure was found to absorb more dynamic energy than other microstructures. It was also observed that the general dependence of microstructure on static and dynamic property relationship was not strongly influenced by chemical composition, except the ferrite plus martensite microstructures generated by the TRIP chemistry, which exhibited much better dynamic factor values. This may suggest that solid solution strengthening should be more utilized in the design of crashworthy dual phase steels.
NASA Astrophysics Data System (ADS)
Tarasov, A. E.; Badamshina, E. R.; Anokhin, D. V.; Razorenov, S. V.; Vakorina, G. S.
2018-01-01
The results of measurements of the mechanical characteristics of cured epoxy composites containing small and ultrasmall additions of single-walled carbon nanotubes in the concentration range from 0 to 0.133 wt % under static and dynamic loads are presented. Static measurements of strength characteristics have been carried out under standard test conditions. Measurements of the Hugoniot elastic limit and spall strength were performed under a shock wave loading of the samples at a deformation rate of (0.8-1.5) ß 105 s-1 before the fracture using explosive devices by recording and subsequent analyzing the evolution of the full wave profiles. It has been shown that agglomerates of nanotubes present in the structure of the composites after curing cause a significant scatter of the measured strength parameters, both in the static and in the dynamic test modes. However, the effects of carbon nanotube additions in the studied concentration interval on the physical and mechanical characteristics of the parameters were not revealed for both types of loading.
Damage formation, fatigue behavior and strength properties of ZrO{sub 2}-based ceramics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kozulin, A. A., E-mail: kozulyn@ftf.tsu.ru; Kulkov, S. S.; Narikovich, A. S.
It is suggested that a non-destructive testing technique using a three-dimensional X-ray tomography be applied to detecting internal structural defects and monitoring damage formation in a ceramic composite structure subjected to a bending load. Three-point bending tests are used to investigate the fatigue behavior and mechanical and physical properties of medical-grade ZrO{sub 2}-based ceramics. The bending strength and flexural modulus are derived under static conditions at a loading rate of 2 mm/min. The fatigue strength and fatigue limit under dynamic loading are investigated at a frequency of 10 Hz in three stress ranges: 0.91–0.98, 0.8–0.83, and 0.73–0.77 MPa of themore » static bending strength. The average values of the bending strength and flexural modulus of sintered specimens are 43 MPa and 22 GPa, respectively. The mechanical properties of the ceramics are found to be similar to those of bone tissues. The testing results lead us to conclude that the fatigue limit obtained from 10{sup 5} stress cycles is in the range 33–34 MPa, i.e. it accounts for about 75% of the static bending strength for the test material.« less
Jurowski, Krystian; Grzeszczyk, Stefania
2018-01-01
In this paper, the relationship between the static and dynamic elastic modulus of concrete and the relationship between the static elastic modulus and compressive strength of concrete have been formulated. These relationships are based on investigations of different types of concrete and take into account the type and amount of aggregate and binder used. The dynamic elastic modulus of concrete was tested using impulse excitation of vibration and the modal analysis method. This method could be used as a non-destructive way of estimating the compressive strength of concrete. PMID:29565830
Jurowski, Krystian; Grzeszczyk, Stefania
2018-03-22
In this paper, the relationship between the static and dynamic elastic modulus of concrete and the relationship between the static elastic modulus and compressive strength of concrete have been formulated. These relationships are based on investigations of different types of concrete and take into account the type and amount of aggregate and binder used. The dynamic elastic modulus of concrete was tested using impulse excitation of vibration and the modal analysis method. This method could be used as a non-destructive way of estimating the compressive strength of concrete.
Static electric dipole polarizability of lithium atoms in Debye plasmas
NASA Astrophysics Data System (ADS)
Ning, Li-Na; Qi, Yue-Ying
2012-12-01
The static electric dipole polarizabilities of the ground state and n <= 3 excited states of a lithium atom embedded in a weekly coupled plasma environment are investigated as a function of the plasma screening radium. The plasma screening of the Coulomb interaction is described by the Debye—Hückel potential and the interaction between the valence electron and the atomic core is described by a model potential. The electron energies and wave functions for both the bound and continuum states are calculated by solving the Schrödinger equation numerically using the symplectic integrator. The oscillator strengths, partial-wave, and total static dipole polarizabilities of the ground state and n <= 3 excited states of the lithium atom are calculated. Comparison of present results with those of other authors, when available, is made. The results for the 2s ground state demonstrated that the oscillator strengths and the static dipole polarizabilities from np orbitals do not always increase or decrease with the plasma screening effect increasing, unlike that for hydrogen-like ions, especially for 2s→3p transition there is a zero value for both the oscillator strength and the static dipole polarizability for screening length D = 10.3106a0, which is associated with the Cooper minima.
Bond strength of Bis-GMA and glass ionomer pit and fissure sealants using cyclic fatigue.
Dewji, H R; Drummond, J L; Fadavi, S; Punwani, I
1998-02-01
The aim of the study was to determine the bond strength of glass ionomer and resin-modified glass ionomer sealants compared to Bis-GMA sealants using both static and cyclic fatigue shear testing. Four materials were evaluated: D, a Bis-GMA sealant with 10% phosphoric acid etchant; FC, a resin-modified glass ionomer sealant with 20% polyacrylic acid etchant; FD, a resin-modified glass ionomer sealant with 10% polyacrylic acid etchant; and FSC, a self-cured glass ionomer sealant with no etchant. Gelatin capsules filled with the sealant material were bonded to the enamel surfaces of bovine teeth after appropriate surface conditioning and then tested in shear static and cyclic fatigue. Static and cyclic shear bond strengths, respectively, for each group were (MPa): FC: 21.1+/-2.8 and 17.1+/-3.1; FD: 14.6+/-5.9 and 8.5+/-3.1; D: 10.8+/-4.9 and 4.7+/-2.6; FSC: 8.7 (1.0 and 2.9+/-0.6. The resin-modified glass ionomer sealants had better fatigue bond strength than both Bis-GMA and self-cured glass ionomer sealants with the surface conditioning affecting the bond strength of the resin-modified glass ionomer sealants.
ERIC Educational Resources Information Center
Fong, Shirley S. M.; Chung, Joanne W. Y.; Chow, Lina P. Y.; Ma, Ada W. W.; Tsang, William W. N.
2013-01-01
This randomized controlled trial aimed to investigate the effect of short-term intensive TKD training on the isokinetic knee muscle strength and reactive and static balance control of children with developmental coordination disorder (DCD). Among the 44 children with DCD (mean age: 7.6 plus or minus 1.3 years) recruited, 21 were randomly assigned…
Tensile Properties of Under-Matched Weld Joints for 950 MPa Steel.
NASA Astrophysics Data System (ADS)
Yamamoto, Kouji; Arakawa, Toshiaki; Akazawa, Nobuki; Yamamoto, Kousei; Matsuo, Hiroki; Nakagara, Kiyoyuki; Suita, Yoshikazu
In welding of 950 MPa-class high tensile strength steel, preheating is crucial in order to avoid cold cracks, which, however, eventually increases welding deformations. One way to decrease welding deformations is lowering preheating temperature by using under-matched weld metal. Toyota and others clarify that although breaking elongation can decrease due to plastic constraint effect under certain conditions, static tensile of under-matched weld joints is comparable to that of base metal. However, there has still been no report about joint static tensile of under-matched weld joints applied to 950 MPa-class high tensile strength steel. In this study, we aim to research tensile strength and fatigue strength of under-matched weld joints applied to 950 MPa-class high tensile steel.
30 CFR 56.19021 - Minimum rope strength.
Code of Federal Regulations, 2010 CFR
2010-07-01
...=Static Load×4.0 (b) Friction drum ropes. For rope lengths less than 4,000 feet: Minimum Value=Static Load×(7.0-0.0005L) For rope lengths 4,000 feet or greater: Minimum Value=Static Load×5.0 (c) Tail ropes....19021 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL...
30 CFR 57.19021 - Minimum rope strength.
Code of Federal Regulations, 2011 CFR
2011-07-01
...=Static Load×4.0. (b) Friction drum ropes. For rope lengths less than 4,000 feet: Minimum Value=Static Load×(7.0−0.0005L) For rope lengths 4,000 feet or greater: Minimum Value=Static Load×5.0. (c) Tail....19021 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL...
30 CFR 57.19021 - Minimum rope strength.
Code of Federal Regulations, 2010 CFR
2010-07-01
...=Static Load×4.0. (b) Friction drum ropes. For rope lengths less than 4,000 feet: Minimum Value=Static Load×(7.0−0.0005L) For rope lengths 4,000 feet or greater: Minimum Value=Static Load×5.0. (c) Tail....19021 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL...
30 CFR 56.19021 - Minimum rope strength.
Code of Federal Regulations, 2011 CFR
2011-07-01
...=Static Load×4.0 (b) Friction drum ropes. For rope lengths less than 4,000 feet: Minimum Value=Static Load×(7.0-0.0005L) For rope lengths 4,000 feet or greater: Minimum Value=Static Load×5.0 (c) Tail ropes....19021 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL...
Strategy for Alternative Occupant Volume Testing
DOT National Transportation Integrated Search
2009-10-20
This paper describes plans for a series of quasi-static : compression tests of rail passenger equipment. These tests are : designed to evaluate the strength of the occupant volume under : static loading conditions. The research plan includes a detail...
Taechasubamorn, Panada; Nopkesorn, Tawesak; Pannarunothai, Supasit
2010-12-01
To compare physical fitness between rice farmers with chronic low back pain (CLBP) and a healthy control group. Sixty-eight rice farmers with CLBP were matched according to age and sex with healthy farmers. All subjects underwent nine physical fitness tests for body composition, lifting capacity, static back extensor endurance, leg strength, static abdominal endurance, handgrip strength, hamstring flexibility, posterior leg and back muscles flexibility and abdominal flexibility. There was no significant difference between CLBP and healthy groups for all tests, except the static back extensor endurance. The back extensor endurance times of the CLBP group was significantly lower than that of the control group (p = 0.002). Static back extensor endurance is the deficient physical fitness in CLBP rice farmers. Back extensor endurance training should be emphasized in both prevention and rehabilitation programs.
Design and evaluation of a wireless sensor network based aircraft strength testing system.
Wu, Jian; Yuan, Shenfang; Zhou, Genyuan; Ji, Sai; Wang, Zilong; Wang, Yang
2009-01-01
The verification of aerospace structures, including full-scale fatigue and static test programs, is essential for structure strength design and evaluation. However, the current overall ground strength testing systems employ a large number of wires for communication among sensors and data acquisition facilities. The centralized data processing makes test programs lack efficiency and intelligence. Wireless sensor network (WSN) technology might be expected to address the limitations of cable-based aeronautical ground testing systems. This paper presents a wireless sensor network based aircraft strength testing (AST) system design and its evaluation on a real aircraft specimen. In this paper, a miniature, high-precision, and shock-proof wireless sensor node is designed for multi-channel strain gauge signal conditioning and monitoring. A cluster-star network topology protocol and application layer interface are designed in detail. To verify the functionality of the designed wireless sensor network for strength testing capability, a multi-point WSN based AST system is developed for static testing of a real aircraft undercarriage. Based on the designed wireless sensor nodes, the wireless sensor network is deployed to gather, process, and transmit strain gauge signals and monitor results under different static test loads. This paper shows the efficiency of the wireless sensor network based AST system, compared to a conventional AST system.
Design and Evaluation of a Wireless Sensor Network Based Aircraft Strength Testing System
Wu, Jian; Yuan, Shenfang; Zhou, Genyuan; Ji, Sai; Wang, Zilong; Wang, Yang
2009-01-01
The verification of aerospace structures, including full-scale fatigue and static test programs, is essential for structure strength design and evaluation. However, the current overall ground strength testing systems employ a large number of wires for communication among sensors and data acquisition facilities. The centralized data processing makes test programs lack efficiency and intelligence. Wireless sensor network (WSN) technology might be expected to address the limitations of cable-based aeronautical ground testing systems. This paper presents a wireless sensor network based aircraft strength testing (AST) system design and its evaluation on a real aircraft specimen. In this paper, a miniature, high-precision, and shock-proof wireless sensor node is designed for multi-channel strain gauge signal conditioning and monitoring. A cluster-star network topology protocol and application layer interface are designed in detail. To verify the functionality of the designed wireless sensor network for strength testing capability, a multi-point WSN based AST system is developed for static testing of a real aircraft undercarriage. Based on the designed wireless sensor nodes, the wireless sensor network is deployed to gather, process, and transmit strain gauge signals and monitor results under different static test loads. This paper shows the efficiency of the wireless sensor network based AST system, compared to a conventional AST system. PMID:22408521
NASA Astrophysics Data System (ADS)
Long, Nicholas James
This thesis serves to develop a preliminary foundational methodology for evaluating the static complexity of future lunar oxygen production systems when extensive information is not yet available about the various systems under consideration. Evaluating static complexity, as part of a overall system complexity analysis, is an important consideration in ultimately selecting a process to be used in a lunar base. When system complexity is higher, there is generally an overall increase in risk which could impact the safety of astronauts and the economic performance of the mission. To evaluate static complexity in lunar oxygen production, static complexity is simplified and defined into its essential components. First, three essential dimensions of static complexity are investigated, including interconnective complexity, strength of connections, and complexity in variety. Then a set of methods is developed upon which to separately evaluate each dimension. Q-connectivity analysis is proposed as a means to evaluate interconnective complexity and strength of connections. The law of requisite variety originating from cybernetic theory is suggested to interpret complexity in variety. Secondly, a means to aggregate the results of each analysis is proposed to create holistic measurement for static complexity using the Single Multi-Attribute Ranking Technique (SMART). Each method of static complexity analysis and the aggregation technique is demonstrated using notional data for four lunar oxygen production processes.
30 CFR 77.1431 - Minimum rope strength.
Code of Federal Regulations, 2011 CFR
2011-07-01
...=Static Load×4.0 (b) Friction drum ropes. For rope lengths less than 4,000 feet: Minimum Value=Static Load×(7.0−0.0005L) For rope lengths 4,000 feet or greater: Minimum Value=Static Load×5.0 (c) Tail ropes... Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH...
30 CFR 77.1431 - Minimum rope strength.
Code of Federal Regulations, 2010 CFR
2010-07-01
...=Static Load×4.0 (b) Friction drum ropes. For rope lengths less than 4,000 feet: Minimum Value=Static Load×(7.0−0.0005L) For rope lengths 4,000 feet or greater: Minimum Value=Static Load×5.0 (c) Tail ropes... Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH...
Prasitsiriphon, Orawan; Pothisiri, Wiraporn
2018-01-01
Objective: (1) To examine the associations between 3 measures of grip strength: static grip strength, change in grip strength, and the combination of grip strength and its change, with all-cause and cardiovascular mortality, and (2) to determine which measure is the most powerful predictor of all-cause and cardiovascular mortality among the European older population. Method: Data come from the first 4 waves of the Survey of Health, Ageing and Retirement in Europe (SHARE). A Cox proportional hazard model and a competing risk regression model were used to assess the associations. To determine the best predictor, Akaike information criterion was applied. Results: Grip strength and the combination of grip strength and its change were associated with all-cause and cardiovascular mortality. Change in grip strength was correlated with only all-cause mortality. Among the 3 measures, the static measure of grip strength was the best predictor of cardiovascular mortality whereas the combined measure is that of all-cause mortality. Discussion: Grip strength is a significant indicator of all-cause and cardiovascular mortality. The combination of grip strength and its change can be used to increase the accuracy for prediction of all-cause mortality among older persons.
NASA Technical Reports Server (NTRS)
Porter, T. R.
1979-01-01
The effects of initial defects on the fatigue and fracture response of graphite-epoxy composite laminates are presented. The structural laminates investigated were a typical angle ply laminate, a polar/hoop wound pressure vessel laminate, and a typical engine fan blade laminate. Defects investigated were full and half penetration circular holes, full and half penetration slits, and countersink holes. The effects of the defect size and type on the static fracture strength, fatigue performance, and residual static strength are shown as well as the results of loadings on damage propagation in composite laminates. The data obtained were used to define proof test levels as a qualification procedure in composite structure subjected to cyclic loading.
NASA Astrophysics Data System (ADS)
Garkushin, G. V.; Razorenov, S. V.; Krasnoveikin, V. A.; Kozulin, A. A.; Skripnyak, V. A.
2015-02-01
The elastic limit and tensile strength of deformed magnesium alloys Ma2-1 with different structures and textures were measured with the aim of finding a correlation between the spectrum of defects in the material and the resistance to deformation and fracture under quasi-static and dynamic loading conditions. The studies were performed using specimens in the as-received state after high-temperature annealing and specimens subjected to equal-channel angular pressing at a temperature of 250°C. The anisotropy of strength characteristics of the material after shock compression with respect to the direction of rolling of the original alloy was investigated. It was shown that, in contrast to the quasi-static loading conditions, under the shock wave loading conditions, the elastic limit and tensile strength of the magnesium alloy Ma2-1 after equal-channel angular pressing decrease as compared to the specimens in the as-received state.
Walsh, Gregory S
2017-10-01
The importance of warm up procedures prior to athletic performance is well established. A common component of such procedures is muscle stretching. There is conflicting evidence regarding the effect of static stretching (SS) as part of warm up procedures on knee joint position sense (KJPS) and the effect of dynamic stretching (DS) on KJPS is currently unknown. The aim of this study was to determine the effect of dynamic and static stretching as part warm up procedures on KJPS and knee extension and flexion strength. This study had a randomised cross-over design and ten healthy adults (20±1years) attended 3 visits during which baseline KJPS, at target angles of 20° and 45°, and knee extension and flexion strength tests were followed by 15min of cycling and either a rest period (CON), SS, or DS and repeat KJPS and strength tests. All participants performed all conditions, one condition per visit. There were warm up×stretching type interactions for KJPS at 20° (p=0.024) and 45° (p=0.018), and knee flexion (p=0.002) and extension (p<0.001) strength. The SS and DS improved KJPS but CON condition did not and SS decreased strength. No change in strength was present for DS or CON. Both SS and DS improve KJPS as part of pre-exercise warm up procedures. However, the negative impact of SS on muscle strength limits the utility of SS before athletic performance. If stretching is to be performed as part of a warm up, DS should be favoured over SS. Copyright © 2017 Elsevier B.V. All rights reserved.
Kapilevich, Leonid V.; Zakharova, Anna N.; Kabachkova, Anastasia V.; Kironenko, Tatyana A.; Orlov, Sergei N.
2017-01-01
Extensive exercise increases the plasma content of IL-6, IL-8, IL-15, leukemia inhibitory factor (LIF), and several other cytokines via their augmented transcription in skeletal muscle cells. However, the relative impact of aerobic and resistant training interventions on cytokine production remains poorly defined. In this study, we compared effects of dynamic and static load on cytokine plasma content in elite strength- and endurance-trained athletes vs. healthy untrained volunteers. The plasma cytokine content was measured before, immediately after, and 30 min post-exercise using enzyme-linked immunosorbent assay. Pedaling on a bicycle ergometer increased IL-6 and IL-8 content in the plasma of trained athletes by about 4- and 2-fold, respectively. In contrast to dynamic load, weightlifting had negligible impact on these parameters in strength exercise-trained athletes. Unlike IL-6 and IL-8, dynamic exercise had no impact on IL-15 and LIF, whereas static load increases the content of these cytokines by ~50%. Two-fold increment of IL-8 content seen in athletes subjected to dynamic exercise was absent in untrained individuals, whereas the ~50% increase in IL-15 triggered by static load in the plasma of weightlifting athletes was not registered in the control group. Thus, our results show the distinct impact of static and dynamic exercises on cytokine content in the plasma of trained athletes. They also demonstrate that both types of exercises differentially affect cytokine content in plasma of athletes and untrained persons. PMID:28194116
NASA Astrophysics Data System (ADS)
Luterbacher, R.; Trask, R. S.; Bond, I. P.
2016-01-01
The effect of including hollow channels (vascules) within cross-ply laminates on static tensile properties and fatigue performance is investigated. No change in mechanical properties or damage formation is observed when a single vascule is included in the 0/90 interface, representing 0.5% of the cross sectional area within the specimen. During tensile loading, matrix cracks develop in the 90° layers leading to a reduction of stiffness and strength (defined as the loss of linearity) and a healing agent is injected through the vascules in order to heal them and mitigate the caused degradation. Two different healing agents, a commercial low viscosity epoxy resin (RT151, Resintech) and a toughened epoxy blend (bespoke, in-house formulation) have been used to successfully recover stiffness under static loading conditions. The RT151 system recovered 75% of the initial failure strength, whereas the toughened epoxy blend achieved a recovery of 67%. Under fatigue conditions, post healing, a rapid decay of stiffness was observed as the healed damage re-opened within the first 2500 cycles. This was caused by the high fatigue loading intensity, which was near the static failure strength of the healing resin. However, the potential for ameliorating (via self-healing or autonomous repair) more diffuse transverse matrix damage via a vascular network has been shown.
Static Properties of Fibre Metal Laminates
NASA Astrophysics Data System (ADS)
Hagenbeek, M.; van Hengel, C.; Bosker, O. J.; Vermeeren, C. A. J. R.
2003-07-01
In this article a brief overview of the static properties of Fibre Metal Laminates is given. Starting with the stress-strain relation, an effective calculation tool for uniaxial stress-strain curves is given. The method is valid for all Glare types. The Norris failure model is described in combination with a Metal Volume Fraction approach leading to a useful tool to predict allowable blunt notch strength. The Volume Fraction approach is also useful in the case of the shear yield strength of Fibre Metal Laminates. With the use of the Iosipescu test shear yield properties are measured.
Effect of adsorbed chlorine and oxygen on shear strength of iron and copper junctions
NASA Technical Reports Server (NTRS)
Wheeler, D. R.
1975-01-01
Static friction experiments were performed in ultrahigh vacuum at room temperature on copper, iron, and steel contacts selectively contaminated with oxygen and chlorine in submonolayer amounts. The concentration of the adsorbates was determined with Auger electron spectroscopy and was measured relative to the saturation concentration of oxygen on iron (concentration 1.0). The coefficient of static friction decreased with increasing adsorbate concentration. It was independent of the metal and the adsorbate. The results compared satisfactorily with an extension of the junction growth theory to heterogeneous interfaces. The reduction in interfacial shear strength was measured by the ratio sub a/sub m where sub a is the shear strength of the interface with an adsorbate concentration of 1.0, and sub m is the strength of the clean metal interface. This ratio was 0.835 + or - 0.012 for all the systems tested.
Contribution of Hydrogen Bonds to Paper Strength Properties.
Przybysz, Piotr; Dubowik, Marcin; Kucner, Marta Anna; Przybysz, Kazimierz; Przybysz Buzała, Kamila
2016-01-01
The objective of this work was to investigate the influence of hydrogen bonds between fibres on static and dynamic strength properties of paper. A commercial bleached pinewood kraft pulp was soaked in water, refined in a PFI, and used to form paper webs in different solvents, such as water, methanol, ethanol, n-propanol and n-butanol, to determine the effect of their dipole moment on static and dynamic strength properties of resulting paper sheets. Paper which was formed in water, being the solvent of the highest dipole moment among the tested ones, showed the highest breaking length and tear resistance. When paper webs were formed in n-butanol, which was the least polar among the solvents, these parameters were reduced by around 75%. These results provide evidence of the importance of water in paper web formation and strong impact of hydrogen bonds between fibres on strength properties of paper.
Contribution of Hydrogen Bonds to Paper Strength Properties
Przybysz, Piotr; Dubowik, Marcin; Kucner, Marta Anna; Przybysz, Kazimierz; Przybysz Buzała, Kamila
2016-01-01
The objective of this work was to investigate the influence of hydrogen bonds between fibres on static and dynamic strength properties of paper. A commercial bleached pinewood kraft pulp was soaked in water, refined in a PFI, and used to form paper webs in different solvents, such as water, methanol, ethanol, n-propanol and n-butanol, to determine the effect of their dipole moment on static and dynamic strength properties of resulting paper sheets. Paper which was formed in water, being the solvent of the highest dipole moment among the tested ones, showed the highest breaking length and tear resistance. When paper webs were formed in n-butanol, which was the least polar among the solvents, these parameters were reduced by around 75%. These results provide evidence of the importance of water in paper web formation and strong impact of hydrogen bonds between fibres on strength properties of paper. PMID:27228172
NASA Technical Reports Server (NTRS)
Hartmann, E C; Stickley, G W
1942-01-01
Fatigue-test were conducted on six specimens made from 3/4-inch-diameter 17S-T rolled-and-drawn rod for the purpose of obtaining additional data on the fatigue life of the material at stresses up to the static strength. The specimens were tested in direct tension using a stress range from zero to a maximum in tension. A static testing machine was used to apply repeated loads in the case of the first three specimens; the other three specimens were tested in a direct tension-compression fatigue machine. The direct-stress fatigue curve obtained for the material indicates that, in the range of stresses above about two-thirds the tensile strength, the fatigue strength is higher than might be expected by simply extrapolating the ordinary curve of stress plotted against the number of cycles determined at lower stresses.
Effects of mechanical and thermal cycling on composite and hybrid laminates with residual stresses
NASA Technical Reports Server (NTRS)
Daniel, I. M.; Liber, T.
1977-01-01
The effects of tensile load cycling and thermal cycling on residual stiffness and strength properties of the following composite and hybrid angle-ply laminates were studied: boron/epoxy, boron/polyimide, graphite/low-modulus epoxy, graphite/high-modulus epoxy, graphite/polyimide, S-glass/epoxy, graphite/Kevlar 49/epoxy, and graphite/S-glass/epoxy. Specimens of the first six types were mechanically cycled up to 90% of static strength. Those that survived 10 million cycles were tested statically to failure, and no significant changes in residual strength and modulus were noted. Specimens of all types were subjected to thermal cycling between room temperature and 411 K for the epoxy-matrix composites and 533 K for the polyimide-matrix composites. The residual strength and stiffness remained largely unchanged, except for the graphite/low-modulus epoxy, which showed reductions in both of approximately 35%. When low-temperature thermal cycling under tensile load was applied, there was a noticeable reduction in modulus and strength in the graphite/low-modulus epoxy and some strength reduction in the S-glass/epoxy.
Application and Prospects of High-strength Lightweight Materials used in Coal mine
NASA Astrophysics Data System (ADS)
He, Pan
2017-09-01
This paper describes some high-strength lightweight materials used in coal mine, and if their performance can meet the requirements of underground safety for explosion-proof, anti-static, friction sparks mine; and reviewed the species, characteristic, preparation process of high-strength lightweight materials for having inspired lightweight high-strength performance by modifying or changing the synthesis mode used in coal mine equipment.
Static and cyclic loading of fiber-reinforced dental resin.
Drummond, James L; Bapna, Mahendra S
2003-05-01
The aim of this study was to evaluate the flexure strength of unidirectional fiber-reinforced resins under static and cyclic loading with and without thermal cycling. The fiber-reinforced resin materials chosen for this project were commercially available endodontic posts and commercially procured bar samples. For all materials, controls for flexure strength were tested in air and in water using three-point loading. Specimens were thermal cycled between 7 and 63 degrees C for 6000 cycles. A staircase approach was used to determine the flexure fatigue limit and scanning microscopy was used to examine the microstructure. The carbon/graphite fiber-reinforced resin posts and the glass FiberKor posts were significantly stronger than the ceramic (zirconia) and the other glass-reinforced resin materials. Thermal cycling caused a significant lowering (11-24%) of the flexure strength for each resin based post system. The ceramic post system decreased only by 2%. Further, for standard size glass fiber-reinforced resin bars, no significant differences between testing in air and water was observed, but a significant difference between static and cyclic loading was noted. The decreases in the strength property due to thermal cycling and the cyclic loading of these materials indicates that their utilization in the oral environment enhances their degradation, and potentially shortens their clinical life.
Shape effect of ultrafine-grained structure on static fracture toughness in low-alloy steel.
Inoue, Tadanobu; Kimura, Yuuji; Ochiai, Shojiro
2012-06-01
A 0.4C-2Si-1Cr-1Mo steel with an ultrafine elongated grain (UFEG) structure and an ultrafine equiaxed grain (UFG) structure was fabricated by multipass caliber rolling at 773 K and subsequent annealing at 973 K. A static three-point bending test was conducted at ambient temperature and at 77 K. The strength-toughness balance of the developed steels was markedly better than that of conventionally quenched and tempered steel with a martensitic structure. In particular, the static fracture toughness of the UFEG steel, having a yield strength of 1.86 GPa at ambient temperature, was improved by more than 40 times compared with conventional steel having a yield strength of 1.51 GPa. Furthermore, even at 77 K, the fracture toughness of the UFEG steel was about eight times higher than that of the conventional and UFG steels, despite the high strength of the UFEG steel (2.26 GPa). The UFG steel exhibited brittle fracture behavior at 77 K, as did the conventional steel, and no dimple structure was observed on the fracture surface. Therefore, it is difficult to improve the low-temperature toughness of the UFG steel by grain refinement only. The shape of crystal grains plays an important role in delamination toughening, as do their refinement and orientation.
NASA Astrophysics Data System (ADS)
Kim, Min-Kwan; Sim, Jaegun; Lee, Jae-Hyeok; Kim, Miyoung; Kim, Sang-Koog
2018-05-01
We explore robust magnetization-dynamic behaviors in soft magnetic nanoparticles in single-domain states and find their related high-efficiency energy-dissipation mechanism using finite-element micromagnetic simulations. We also make analytical derivations that provide deeper physical insights into the magnetization dynamics associated with Gilbert damping parameters under applications of time-varying rotating magnetic fields of different strengths and frequencies and static magnetic fields. Furthermore, we find that the mass-specific energy-dissipation rate at resonance in the steady-state regime changes remarkably with the strength of rotating fields and static fields for given damping constants. The associated magnetization dynamics are well interpreted with the help of the numerical calculation of analytically derived explicit forms. The high-efficiency energy-loss power can be obtained using soft magnetic nanoparticles in the single-domain state by tuning the frequency of rotating fields to the resonance frequency; what is more, it is controllable via the rotating and static field strengths for a given intrinsic damping constant. We provide a better and more efficient means of achieving specific loss power that can be implemented in magnetic hyperthermia applications.
2011-01-01
blast and weapon fragmentation. A particular cementitious composite of interest is an inorganic polymer cement or “ geopolymer ” cement. The term...www.sciencedirect.com ICM11 Characterization and performance optimization of a cementitious composite for quasi-static and dynamic loads W.F. Hearda,b, P.K. Basub...rapid-set, high-strength geopolymer cement under quasi-static and dynamic loads. Four unique tensile experiments were conducted to characterize and
Fluorescent lamp with static magnetic field generating means
Moskowitz, Philip E.; Maya, Jakob
1987-01-01
A fluorescent lamp wherein magnetic field generating means (e.g., permanent magnets) are utilized to generate a static magnetic field across the respective electrode structures of the lamp such that maximum field strength is located at the electrode's filament. An increase in efficacy during operation has been observed.
Fluorescent lamp with static magnetic field generating means
Moskowitz, P.E.; Maya, J.
1987-09-08
A fluorescent lamp wherein magnetic field generating means (e.g., permanent magnets) are utilized to generate a static magnetic field across the respective electrode structures of the lamp such that maximum field strength is located at the electrode's filament. An increase in efficacy during operation has been observed. 2 figs.
Damage Instability and Transition From Quasi-Static to Dynamic Fracture
NASA Technical Reports Server (NTRS)
Davila, Carlos G.
2015-01-01
In a typical mechanical test, the loading phase is intended to be a quasi-static process, while the failure and collapse is usually a dynamic event. The structural strength and modes of damage can seldom be predicted without accounting for these two aspects of the response. For a proper prediction, it is therefore essential to use tools and methodologies that are capable of addressing both aspects of responses. In some cases, implicit quasi-static models have been shown to be able to predict the entire response of a structure, including the unstable path that leads to fracture. However, is it acceptable to ignore the effect of inertial forces in the formation of damage? In this presentation we examine aspects of the damage processes that must be simulated for an accurate prediction of structural strength and modes of failure.
Failure of a laminated composite under tension-compression fatigue loading
NASA Technical Reports Server (NTRS)
Rotem, A.; Nelson, H. G.
1989-01-01
The fatigue behavior of composite laminates under tension-compression loading is analyzed and compared with behavior under tension-tension and compression-compression loading. It is shown that for meaningful fatigue conditions, the tension-compression case is the dominant one. Both tension and compression failure modes can occur under the reversed loading, and failure is dependent on the specific lay-up of the laminate and the difference between the tensile static strength and the absolute value of the compressive static strength. The use of a fatigue failure envelope for determining the fatigue life and mode of failure is proposed and demonstrated.
The Relationship Between Maximum Unilateral Squat Strength and Balance in Young Adult Men and Women
McCurdy, Kevin; Langford, George
2006-01-01
The purpose of this study was to determine the relationship between unilateral squat strength and measures of static balance to compare balance performance between the dominant and non-dominant leg. Seventeen apparently healthy men (mean mass 90.5 ± 20.9 kg and age 21.7 ± 1.8 yrs) and 25 women (mean mass 62.2 ± 14.5 kg and age 21.9 ± 1.3 yrs) completed the study. Weight bearing unilateral strength was measured with a 1RM modified unilateral squat on the dominant and non-dominant leg. The students completed the stork stand and wobble board tests to determine static balance on the dominant and non-dominant leg. Maximum time maintained in the stork stand position, on the ball of the foot with the uninvolved foot against the involved knee with hands on the hips, was recorded. Balance was measured with a 15 second wobble board test. No significant correlations were found between the measurements of unilateral balance and strength (r values ranged between -0.05 to 0.2) for the men and women. Time off balance was not significantly different between the subjects’ dominant (men 1.1 ± 0.4 s; women 0.3 ± 0.1 s) and non-dominant (men 0.9 ± 0.3 s; women 0.3 ± 0.1 s) leg for the wobble board. Similar results were found for the time balanced during the stork stand test on the dominant (men 26.4 ± 6.3 s; women 24.1 ± 5.6 s) and non-dominant (men 26.0 ± 5.7 s; women 21.3 ± 4.1 s) leg. The data indicate that static balance and strength is unrelated in young adult men and women and gains made in one variable after training may not be associated with a change in performance of the other variable. These results also suggest that differences in static balance performance between legs can not be determined by leg dominance. Similar research is needed to compare contralateral leg balance in populations who participate in work or sport activities requiring repetitive asymmetrical use. A better understanding of contralateral balance performance will help practitioners make evaluative decisions during the rehabilitation process. Key Points 1RM unilateral squat strength is unrelated to measures of unilateral static balance in young adult men and women Static balance is similar between the dominant and non-dominant leg in young adult men and women Side-to-side differences in balance warrant assessment and training to correct imbalances prior to participation in activities that present a high risk for injury. PMID:24260001
Dabadghav, Rachana
2016-04-01
To compare ankle eversion to inversion strength ratio (E/I R) and static balance control between the dominant and non-dominant limbs of basketball players and to correlate ankle E/I R and static balance control in the dominant and non-dominant limbs of basketball players. Twenty-one healthy basketball players in the age-group of 18-25 years participated in this study. Isokinetic ankle eversion and inversion muscle strength was assessed at 30°/s and 120°/s in both dominant and non-dominant limbs using the Biodex isokinetic dynamometer. Similarly balance was assessed on a force platform with eyes open and eyes closed in both dominant and non-dominant limbs. Repeated measure ANOVA for strength measurement, found that there was significant main effect of speed, P=0.001 (P<0.05). However, there was no significant main effect in the sides P=0.099 (P<0.05).There was significant main effect of sides with respect to balance. Balance was affected more in non-dominant limb P=0.000 as compared to dominant limb. However, there was not much of a significant difference with eyes open and eyes closed position. The E/I ratio was >1.0 at the angular velocity of 120°/s increasing the chances of ankle injuries in basketball players. There was no correlation between ankle strength and balance in both dominant and non-dominant limbs.
NASA Technical Reports Server (NTRS)
Russell, H W; Jackson, L R; Grover, H J; Beaver, W W
1944-01-01
Report contains detailed results of a number of fatigue tests on spot-welded joints in aluminum alloys. The tests described include: (1) fatigue tests on spot-welded lap joints in sheets of unequal thickness of alclad 24s-t. These tests indicate that the fatigue strength of a spot-welded joint in sheets of two different gages is slightly higher than that of a similar joint in two sheets of the thinner gage but definitely lower than that of a similar joint in two sheets of the thicker gage. (2) Fatigue tests on spot-welded alclad 75s-t spot-welded lap-joint specimens of alclad 75s-t were not any stronger in fatigue than similar specimens of alclad 24s-t. (3) Fatigue tests on lap-joint specimens spot -welded after various surface preparations--these included ac welding wire-brushed surfaces, dc welding wire-brushed surfaces, and dc welding chemically cleaned surfaces. While the ac welds were strongest statically, the dc welds on wire-brushed surfaces were strongest in fatigue. Specimens prepared in this way were very nearly as strong as the best riveted specimens tested for comparison. (4) Fatigue tests on specimens spot-welded with varying voltage so as to include a wide range of static spot-weld strengths. The fatigue strengths were in the same order as the static strengths but showed less range. (author)
Static and fatigue interlaminar tensile characterization of laminated composites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koudela, K.L.; Strait, L.H.; Caiazzo, A.A.
1997-12-31
Spool and curved-beam specimens were evaluated to determine the viability of using either one or both of these configurations to characterize the static and fatigue interlaminar tensile behavior of carbon/epoxy laminates. Unidirectional curved-beam and quasi-isotropic spool specimens were fabricated, nondestructively inspected, and statically tested to failure. Tension-tension fatigue tests were conducted at 10 Hz and an R-ratio ({sigma}{sub min}/{sigma}{sub max}) equal to 0.1 for each specimen configuration. The interlaminar tensile strength of the spool specimen was 12% larger than the strength obtained using curved-beam specimens. In addition, data scatter associated with spool specimens was significantly less than the scatter associatedmore » with curved-beam specimens. The difference in data scatter was attributed to the influence of the fabrication process on the quality of the laminates tested. The fatigue limit at 0{sup 7} cycles for both specimen types was shown to be at least 40% of the average interlaminar tensile strength. Based on the results of this study, it was concluded that either the spool or the curved-beam specimens can be used to characterize the interlaminar tensile static and fatigue behavior of carbon/epoxy laminates. However, to obtain the most representative results, the test specimen configuration should be selected so that the specimen fabrication process closely simulates the actual component fabrication process.« less
Room Temperature and Elevated Temperature Composite Sandwich Joint Testing
NASA Technical Reports Server (NTRS)
Walker, Sandra P.
1998-01-01
Testing of composite sandwich joint elements has been completed to verify the strength capacity of joints designed to carry specified running loads representative of a high speed civil transport wing. Static tension testing at both room and an elevated temperature of 350 F and fatigue testing at room temperature were conducted to determine strength capacity, fatigue life, and failure modes. Static tension test results yielded failure loads above the design loads for the room temperature tests, confirming the ability of the joint concepts tested to carry their design loads. However, strength reductions as large as 30% were observed at the elevated test temperature, where all failure loads were below the room temperature design loads for the specific joint designs tested. Fatigue testing resulted in lower than predicted fatigue lives.
Evaluation of composite flattened tubular specimen. [fatigue tests
NASA Technical Reports Server (NTRS)
Liber, T.; Daniel, I. M.
1978-01-01
Flattened tubular specimens of graphite/epoxy, S-glass/epoxy, Kevlar-49/epoxy, and graphite/S-glass/epoxy hybrid materials were evaluated under static and cyclic uniaxial tensile loading and compared directly with flat coupon data of the same materials generated under corresponding loading conditions. Additional development for the refinement of the flattened specimen configuration and fabrication was required. Statically tested graphite/epoxy, S-glass/epoxy, and Kevlar 49/epoxy flattened tube specimens exhibit somewhat higher average strengths than their corresponding flat coupons. Flattened tube specimens of the graphite/S-glass/epoxy hybrid and the graphite/epoxy flattened tube specimens failed in parasitic modes with consequential lower strength than the corresponding flat coupons. Fatigue tested flattened tube specimens failed in parasitic modes resulting in lower fatigue strengths than the corresponding flat coupons.
14 CFR 25.305 - Strength and deformation.
Code of Federal Regulations, 2013 CFR
2013-01-01
... strength is shown by dynamic tests simulating actual load conditions, the 3-second limit does not apply. Static tests conducted to ultimate load must include the ultimate deflections and ultimate deformation....305 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT...
14 CFR 25.305 - Strength and deformation.
Code of Federal Regulations, 2012 CFR
2012-01-01
... strength is shown by dynamic tests simulating actual load conditions, the 3-second limit does not apply. Static tests conducted to ultimate load must include the ultimate deflections and ultimate deformation....305 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT...
14 CFR 25.305 - Strength and deformation.
Code of Federal Regulations, 2014 CFR
2014-01-01
... strength is shown by dynamic tests simulating actual load conditions, the 3-second limit does not apply. Static tests conducted to ultimate load must include the ultimate deflections and ultimate deformation....305 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT...
14 CFR 25.305 - Strength and deformation.
Code of Federal Regulations, 2010 CFR
2010-01-01
... strength is shown by dynamic tests simulating actual load conditions, the 3-second limit does not apply. Static tests conducted to ultimate load must include the ultimate deflections and ultimate deformation....305 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT...
14 CFR 25.305 - Strength and deformation.
Code of Federal Regulations, 2011 CFR
2011-01-01
... strength is shown by dynamic tests simulating actual load conditions, the 3-second limit does not apply. Static tests conducted to ultimate load must include the ultimate deflections and ultimate deformation....305 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT...
Some observations on loss of static strength due to fatigue cracks
NASA Technical Reports Server (NTRS)
Illg, Walter; Hardrath, Herbert F
1955-01-01
Static tensile tests were performed on simple notched specimens containing fatigue cracks. Four types of aluminum alloys were investigated: 2024-T3(formerly 24S-T3) and 7075-T6(formerly 75S-T6) in sheet form, and 2024-T4(formerly 24S-T4) and 7075-T6(formerly 75S-T6) in extruded form. The cracked specimens were tested statically under four conditions: unmodified and with reduced eccentricity of loading by three methods. Results of static tests on C-46 wings containing fatigue cracks are also reported.
NASA Technical Reports Server (NTRS)
Padial, N.; Csanak, G.; Mckoy, B. V.; Langhoff, P. W.
1981-01-01
Vertical-electronic static-exchange photoexcitation and ionization cross sections are reported which provide a first approximation to the complete dipole spectrum of CO2. Separated-channel static-exchange calculations of vertical-electronic transition energies and oscillator strengths, and Stieltjes-Chebyshev moment methods were used in the development. Detailed comparisons were made of the static-exchange excitation and ionization spectra with photoabsorption, electron-impact excitation, and quantum-defect estimates of discrete transition energies and intensities, and with partial-channel photoionization cross sections obtained from fluorescence measurements and from tunable-source and (e, 2e) photoelectron spectroscopy. Results show that the separate-channel static-exchange approximation is generally satisfactory in CO2.
NASA Astrophysics Data System (ADS)
Babb, James F.
2015-08-01
The dynamic electric dipole polarizability function for the magnesium atom is formed by assembling the atomic electric dipole oscillator strength distribution from combinations of theoretical and experimental data for resonance oscillator strengths and for photoionization cross sections of valence and inner shell electrons. Consistency with the oscillator strength (Thomas-Reiche-Kuhn) sum rule requires the adopted principal resonance line oscillator strength to be several percent lower than the values given in two critical tabulations, though the value adopted is consistent with a number of theoretical determinations. The static polarizability is evaluated. Comparing the resulting dynamic polarizability as a function of the photon energy with more elaborate calculations reveals the contributions of inner shell electron excitations. The present results are applied to calculate the long-range interactions between two and three magnesium atoms and the interaction between a magnesium atom and a perfectly conducting metallic plate. Extensive comparisons of prior results for the principal resonance line oscillator strength, for the static polarizability, and for the van der Waals coefficient are given in the Appendix.
The Strength of Shell Bodies : Theory and Practice
NASA Technical Reports Server (NTRS)
Ebner, H
1937-01-01
The monocoque form of airplane construction has introduced a number of new problems to the stress calculator and the designer. The problems for the stress calculator fall into two groups: the determination of the stress condition (shell statics) and the determination of the failing strength (shell strength). The present report summarizes the most important theoretical and experimental results on this subject.
Static penetration resistance of soils
NASA Technical Reports Server (NTRS)
Durgunoglu, H. T.; Mitchell, J. K.
1973-01-01
Model test results were used to define the failure mechanism associated with the static penetration resistance of cohesionless and low-cohesion soils. Knowledge of this mechanism has permitted the development of a new analytical method for calculating the ultimate penetration resistance which explicitly accounts for penetrometer base apex angle and roughness, soil friction angle, and the ratio of penetration depth to base width. Curves relating the bearing capacity factors to the soil friction angle are presented for failure in general shear. Strength parameters and penetrometer interaction properties of a fine sand were determined and used as the basis for prediction of the penetration resistance encountered by wedge, cone, and flat-ended penetrometers of different surface roughness using the proposed analytical method. Because of the close agreement between predicted values and values measured in laboratory tests, it appears possible to deduce in-situ soil strength parameters and their variation with depth from the results of static penetration tests.
NASA Technical Reports Server (NTRS)
Hutcheson, Linton; Butler, Todd; Smith, Mike; Cline, Charles; Scruggs, Steve; Zakhia, Nadim
1987-01-01
An experimental procedure was devised to investigate the effects of the lunar environment on the physical properties of simulated lunar soil. The test equipment and materials used consisted of a vacuum chamber, direct shear tester, static penetrometer, and fine grained basalt as the simulant. The vacuum chamber provides a medium for applying the environmental conditions to the soil experiment with the exception of gravity. The shear strength parameters are determined by the direct shear test. Strength parameters and the resistance of soil penetration by static loading will be investigated by the use of a static cone penetrometer. In order to conduct a soil experiment without going to the moon, a suitable lunar simulant must be selected. This simulant must resemble lunar soil in both composition and particle size. The soil that most resembles actual lunar soil is basalt. The soil parameters, as determined by the testing apparatus, will be used as design criteria for lunar soil engagement equipment.
Contemori, Samuele; Biscarini, Andrea; Botti, Fabio Massimo; Busti, Daniele; Panichi, Roberto; Pettorossi, Vito Enrico
2017-06-12
Isolated infraspinatus muscle atrophy (IIMA) only affects the hitting shoulder of overhead-activity athletes, and is caused by suprascapular nerve neuropathy. No study has assessed the static and dynamic stability of the shoulder in overhead professional athletes with IIMA to reveal possible shoulder sensorimotor alterations. To assess the shoulder static stability, dynamic stability, and strength in professional volleyball players with IIMA and in healthy control players. Cross-sectional study. Research laboratory. Twenty-four male professional volleyball players (12 players with diagnosed IIMA and 12 healthy players) recruited from local volleyball teams. Static stability was evaluated with two independent force platforms and dynamic stability was assessed with the "Upper Quarter Y Balance Test". The static stability assessment was conducted in different support (single hand and both hand) and vision (open and closed eyes) conditions. Data from each test were analyzed with ANOVA and paired t-test models, to highlight statistical differences within and between groups. In addition to reduced abduction and external rotation strength, athletes with IIMA consistently demonstrated significant less static (P < 0.001) and dynamic stability (P < 0,001), compared with the contralateral shoulder and with healthy athletes. Closed eyes condition significantly enhanced the static stability deficit of the shoulder with IIMA (P = 0.039 and P = 0.034 for both hand and single hand support, respectively), but had no effect in healthy contralateral and healthy players' shoulders. This study highlights an impairment of the sensorimotor control system of the shoulder with IIMA, which likely results from both proprioceptive and strength deficits. This condition could yield subtle alteration in the functional use of the shoulder and predispose it to acute or overuse injuries. The results of this study may help athletic trainers and physical/physiotherapists to prevent shoulder injuries and create specific proprioceptive and neuromuscular training programs.
NASA Astrophysics Data System (ADS)
Khlusova, E. I.; Zisman, A. A.; Knyazyuk, T. V.; Novoskol'tsev, N. N.
2018-03-01
Dynamic and static recrystallization occurring under hot deformation at a rate of 1 and 100 sec - 1 in high-strength medium-carbon wear-resistant steels developed at CRISM "Prometey" for die forming of parts of driven elements of tillage machines is studied. The critical strain of dynamic recrystallization and the threshold temperatures and times of finish of static recrystallization are determined for the studied deformation rates at various temperatures.
Static and dynamic crush testing and analysis of a rail vehicle corner structural element
DOT National Transportation Integrated Search
1999-11-01
This paper presents the results of an experimental study to establish the strength and energy absorption capability of cab car rail vehicle corner structures built to current strength requirements and for structures modified to carry higher loads and...
Evaluating of NASA-Langley Research Center explosion seam welding
NASA Technical Reports Server (NTRS)
Otto, H. E.; Wittman, R.
1977-01-01
An explosion bonding technique to meet current fabrication requirements was demonstrated. A test program was conducted on explosion bonded joints, compared to fusion joints in 6061-T6 aluminum. The comparison was made in required fixtures, non-destructive testing, static strength and fatigue strength.
Ductile Crack Initiation Criterion with Mismatched Weld Joints Under Dynamic Loading Conditions.
An, Gyubaek; Jeong, Se-Min; Park, Jeongung
2018-03-01
Brittle failure of high toughness steel structures tends to occur after ductile crack initiation/propagation. Damages to steel structures were reported in the Hanshin Great Earthquake. Several brittle failures were observed in beam-to-column connection zones with geometrical discontinuity. It is widely known that triaxial stresses accelerate the ductile fracture of steels. The study examined the effects of geometrical heterogeneity and strength mismatches (both of which elevate plastic constraints due to heterogeneous plastic straining) and loading rate on critical conditions initiating ductile fracture. This involved applying the two-parameter criterion (involving equivalent plastic strain and stress triaxiality) to estimate ductile cracking for strength mismatched specimens under static and dynamic tensile loading conditions. Ductile crack initiation testing was conducted under static and dynamic loading conditions using circumferentially notched specimens (Charpy type) with/without strength mismatches. The results indicated that the condition for ductile crack initiation using the two parameter criterion was a transferable criterion to evaluate ductile crack initiation independent of the existence of strength mismatches and loading rates.
NASA Astrophysics Data System (ADS)
Pandey, Chandan; Mahapatra, M. M.; Kumar, Pradeep; Saini, N.
2018-01-01
Creep strength enhanced ferritic (CSEF) P91 steel were subjected to room temperature tensile test for quasi-static (less than 10-1/s) strain rate by using the Instron Vertical Tensile Testing Machine. Effect of different type of notch geometry, notch depth and angle on mechanical properties were also considered for different strain rate. In quasi-static rates, the P91 steel showed a positive strain rate sensitivity. On the basis of tensile data, fracture toughness of P91 steel was also calculated numerically. For 1 mm notch depth (constant strain rate), notch strength and fracture toughness were found to be increased with increase in notch angle from 45° to 60° while the maximum value attained in U-type notch. Notch angle and notch depth has found a minute effect on P91 steel strength and fracture toughness. The fracture surface morphology was studied by field emission scanning electron microscopy (FESEM).
NASA Technical Reports Server (NTRS)
Poe, C. C., Jr.; Portanova, M. A.; Masters, J. E.; Sankar, B. V.; Jackson, Wade C.
1991-01-01
Static indentation, falling weight, and ballistic impact tests were conducted in clamped plates made of AS4/3501-6 and IM7/8551-7 prepreg tape. The transversely isotropic plates were nominally 7-mm thick. Pendulum and ballistic tests were also conducted on simply supported plates braided with Celion 12000 fibers and 3501-6 epoxy. The 20 degree braided plates were about 5-mm thick. The impactors had spherical or hemispherical shapes with a 12.7 mm diameter. Residual compression strength and damage size were measured. For a given kinetic energy, damage size was least for IM7/8551-7 and greatest for the braided material. Strengths varied inversely with damage size. For a given damage size, strength loss as a fraction of original strength was least for the braided material and greatest for AS4/3501-6 and IM7/8551-7. Strength loss for IM7/8551-7 and AS4/3501-6 was nearly equal. No significant differences were noticed between damage sizes and residual compression strengths for the static indentation, falling weight, and ballistic tests of AS4/3501-6 and IM7/8551-7. For the braided material, sizes of damage were significantly less and compression strengths were significantly more for the falling weight tests than for the ballistic tests.
Rached, Rodrigo Nunes; de Souza, Evelise Machado; Dyer, Scott R; Ferracane, Jack Liborio
2011-11-01
Fractures of overdentures occur in the denture base through the abutments. The purpose of this study was to evaluate the effect of reinforcements and the space available for their placement on the dynamic and static loading capacity of a simulated implant-supported overdenture model. Rhomboidal (6 × 6 × 25 mm) test specimens (n=8), made with an acrylic resin and containing 2 metal O-ring capsules, were reinforced with braided stainless steel bar (BS), stainless steel mesh (SM), unidirectional E-glass fiber (GF), E-glass mesh (GM), woven polyethylene braids (PE), or polyaramid fibers (PA). Two distinct spaces for reinforcement placement were investigated: a 2.5 mm and a 1 mm space. Control groups consisted of nonreinforced specimens. Specimens were thermocycled (5°C and 55°C, 5,000 cycles) and then subjected to a 100,000 cyclic load regime. Unbroken specimens were then loaded until failure. The number of failures under fatigue (f) and static load (s) were compared with the Chi-Square test, while static load means were compared with the Kruskal-Wallis test (α=.05). The number of failures (f:s) of GF (0:16), PE (0:16), and PA (0:16) differed significantly from the control group (8:8) and SM (4:12) (P=.037 and P=.025, respectively). For the 2.5 mm space group, these same reinforcements also exhibited higher static load means than the control (P=.016, P=.003, and P=.003, respectively); under static load, no significant differences were detected between the reinforced groups and the control for the 1.0 mm space group (P=1.0). E-glass fibers, woven polyethylene braids, and polyaramid fibers withstood the fatigue regime and increased the flexural strength of the implant-supported overdenture model. The spaces available for reinforcement did not affect the dynamic strength or the static loading capacity of the implant-supported overdenture model. Copyright © 2011 The Editorial Council of the Journal of Prosthetic Dentistry. Published by Mosby, Inc. All rights reserved.
Static behavior and the effects of thermal cycling in hybrid laminates
NASA Technical Reports Server (NTRS)
Liber, T. M.; Daniel, I. M.; Chamis, C. C.
1977-01-01
Static stiffness, strength and ultimate strain after thermal cycling were investigated for graphite/Kevlar 49/epoxy and graphite/S-glass/epoxy angle-ply laminates. Tensile stress-strain curves to failure and uniaxial tensile properties were determined, and theoretical predictions of modulus, Poisson's ratio and ultimate strain, based on linear lamination theory, constituent ply properties and measured strength, were made. No significant influence on tensile stress properties due to stacking sequence variations was observed. In general, specimens containing two 0-degree Kevlar or S-glass plies were found to behave linearly to failure, while specimens containing 4 0-degree Kevlar or S-glass plies showed some nonlinear behavior.
NASA Technical Reports Server (NTRS)
Sanchez, Christopher M.
2011-01-01
NASA White Sands Test Facility (WSTF) is leading an evaluation effort in advanced destructive and nondestructive testing of composite pressure vessels and structures. WSTF is using progressive finite element analysis methods for test design and for confirmation of composite pressure vessel performance. Using composite finite element analysis models and failure theories tested in the World-Wide Failure Exercise, WSTF is able to estimate the static strength of composite pressure vessels. Additionally, test and evaluation on composites that have been impact damaged is in progress so that models can be developed to estimate damage tolerance and the degradation in static strength.
NASA Astrophysics Data System (ADS)
Tereshchenko, N. A.; Tabatchikova, T. I.; Yakovleva, I. L.; Makovetskii, A. N.; Shander, S. V.
2017-07-01
The static cracking resistance of a number of welded joints made from pipe steels of K60 strength class has been determined. It has been established that the deformation parameter CTOD varies significantly at identical parameters of weldability of steels. The character of fracture has been investigated and the zone of local brittleness of welded joints has been studied. It has been shown that the ability of a metal to resist cracking is determined by the austenite grain size and by the bainite morphology in the region of overheating in the heat-affected zone of a welded joint.
Actuator placement in prestressed adaptive trusses for vibration control
NASA Technical Reports Server (NTRS)
Jalihal, P.; Utku, Senol; Wada, Ben K.
1993-01-01
This paper describes the optimal location selection of actuators for vibration control in prestressed adaptive trusses. Since prestressed adaptive trusses are statically indeterminate, the actuators to be used for vibration control purposes must work against (1) existing static axial prestressing forces, (2) static axial forces caused by the actuation, and (3) dynamic axial forces caused by the motion of the mass. In statically determinate adaptive trusses (1) and (2) are non - existing. The actuator placement problem in statically indeterminate trusses is therefore governed by the actuation energy and the actuator strength requirements. Assuming output feedback type control of selected vibration modes in autonomous systems, a procedure is given for the placement of vibration controlling actuators in prestressed adaptive trusses.
The Influence of Notches Under Static Stress
NASA Technical Reports Server (NTRS)
Matthaes, K
1938-01-01
From the described experiments it is seen that notches are a potential source of strength decrease even under static stress, which the designer must take into consideration. Section I is a general treatment of notch influence under the various types of stresses. Section II treats the influence of notches in thin sheet as is used in airplane construction.
49 CFR 238.405 - Longitudinal static compressive strength.
Code of Federal Regulations, 2012 CFR
2012-10-01
... crash refuge for crewmembers occupying the cab of a power car, the underframe of the cab of a power car... volumes of a power car or a trailer car designed to crush as part of the crash energy management design...) The underframe of the occupied volume of each trailer car shall resist a minimum longitudinal static...
49 CFR 238.405 - Longitudinal static compressive strength.
Code of Federal Regulations, 2014 CFR
2014-10-01
... crash refuge for crewmembers occupying the cab of a power car, the underframe of the cab of a power car... volumes of a power car or a trailer car designed to crush as part of the crash energy management design...) The underframe of the occupied volume of each trailer car shall resist a minimum longitudinal static...
49 CFR 238.405 - Longitudinal static compressive strength.
Code of Federal Regulations, 2013 CFR
2013-10-01
... crash refuge for crewmembers occupying the cab of a power car, the underframe of the cab of a power car... volumes of a power car or a trailer car designed to crush as part of the crash energy management design...) The underframe of the occupied volume of each trailer car shall resist a minimum longitudinal static...
30 CFR 75.1431 - Minimum rope strength.
Code of Federal Regulations, 2011 CFR
2011-07-01
...) For rope lengths 3,000 feet or greater: Minimum Value=Static Load×4.0 (b) Friction drum ropes. For rope lengths less than 4,000 feet: Minimum Value=Static Load×(7.0−0.0005L) For rope lengths 4,000 feet... Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH...
30 CFR 75.1431 - Minimum rope strength.
Code of Federal Regulations, 2010 CFR
2010-07-01
...) For rope lengths 3,000 feet or greater: Minimum Value=Static Load×4.0 (b) Friction drum ropes. For rope lengths less than 4,000 feet: Minimum Value=Static Load×(7.0−0.0005L) For rope lengths 4,000 feet... Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH...
Cyclic fatigue of a high-strength corrosion-resistant sheet TRIP steel
NASA Astrophysics Data System (ADS)
Terent'ev, V. F.; Alekseeva, L. E.; Korableva, S. A.; Prosvirnin, D. V.; Pankova, M. N.; Filippov, G. A.
2014-04-01
The mechanical properties of 0.3- and 0.8-mm-thick high-strength corrosion-resistant TRIP steel having various levels of strength properties are studied during static and cyclic loading in the high-cycle fatigue range. The fatigue fracture surface is analyzed by fractography, and the obtained results demonstrate ductile and quasi-brittle fracture mechanisms of this steel depending on the strength properties of the steel and the content of deformation martensite in it.
Survey of long-term durability of fiberglass reinforced plastic structures
NASA Technical Reports Server (NTRS)
Lieblein, S.
1981-01-01
Included are fluid containment vessels, marine structures, and aircraft components with up to 19 years of service. Correlations were obtained for the variation of static fatigue strength, cyclic fatigue strength, and residual burst strength for pressure vessels. In addition, data are presented for the effects of moisture on strength retention. Data variations were analyzed, and relationships and implications for testing are discussed. Change in strength properties for complete structures was examined for indications of the effects of environmental conditions such as moisture and outdoor exposure (ultraviolet radiation, weathering) on long term durability.
Strength measurement of optical fibers by bending
NASA Astrophysics Data System (ADS)
Srubshchik, Leonid S.
1999-01-01
A two-point bending technique has been used not only to measure the breaking stress of optical fiber but also to predict its static and dynamic fatigue. The present theory of this test is based on elastica theory of rod. However, within the limits of elastica theory the tensile and shear stresses cannot be determined. In this paper we study dynamic and static problems for optical fiber in the two- point bending test on the base of geometrically exact theory in which rod can suffer flexure, extension, and shear. We obtain the governing partial differential equations taking into account the fact that the lateral motion of the fiber is restrained by the presence of flat parallel plates. We develop the computational methods for solving the initial and equilibrium free-boundary nonlinear planar problems. We derive the formulas for predicting of the tensile strength from strength in the bending and calculate one example.
Biaxial tests of flat graphite/epoxy laminates
NASA Technical Reports Server (NTRS)
Liebowitz, H.; Jones, D. L.
1981-01-01
The influence of biaxially applied loads on the strength of composite materials containing holes was analyzed. The analysis was performed through the development of a three dimensional, finite element computer program that is capable of evaluating fiber breakage, delamination, and matrix failure. Realistic failure criteria were established for each of the failure modes, and the influence of biaxial loading on damage accumulation under monotonically increasing loading was examined in detail. Both static and fatigue testing of specially designed biaxial specimens containing central holes were performed. Static tests were performed to obtain an understanding of the influence of biaxial loads on the fracture strength of composite materials and to provide correlation with the analytical predictions. The predicted distributions and types of damage are in reasonable agreement with the experimental results. A number of fatigue tests were performed to determine the influence of cyclic biaxial loads on the fatigue life and residual strength of several composite laminates.
NASA Astrophysics Data System (ADS)
Hamstad, M. A.; Whittaker, J. W.; Brosey, W. D.
1992-01-01
Small, filament-wound, Kevlar/epoxy, biaxial test specimens were subjected to various levels of impact damage. The specimens were pressurized in a proof test cycle to 58 percent of their nominal, undamaged strength and then pressurized to failure. Acoustic emission data were gathered by multiple sensors during a 10 minute hold at peak proof pressure. Post-test filtering of the data was performed to study composite behavior in the damaged region and other areas. The rate and total amount of AE produced depends on the duration of the static load and degree of damage. The concept of the event rate moment is introduced as a method of quantifying a structure's total AE behavior when under static load. Average event rate, total long duration events, and event rate moments provided various degrees of correlation between AE and residual strength.
Static Dissipative Cable Ties, Such as for Radiation Belt Storm Probes
NASA Technical Reports Server (NTRS)
Langley, Patrick T. (Inventor); Siddique, Fazle E. (Inventor)
2015-01-01
An article, such as, but not limited to, a cable strap to wrap, support, or secure one or more wires or cables, is formed by cyclically heating and cooling and/or irradiating an article formed of a static dissipative ethylene tetrafluoroethylen (ETFE) resin, to reduce an electrical resistivity and/or to increase a tensile strength of the article.
Limitation of degree information for analyzing the interaction evolution in online social networks
NASA Astrophysics Data System (ADS)
Shang, Ke-Ke; Yan, Wei-Sheng; Xu, Xiao-Ke
2014-04-01
Previously many studies on online social networks simply analyze the static topology in which the friend relationship once established, then the links and nodes will not disappear, but this kind of static topology may not accurately reflect temporal interactions on online social services. In this study, we define four types of users and interactions in the interaction (dynamic) network. We found that active, disappeared, new and super nodes (users) have obviously different strength distribution properties and this result also can be revealed by the degree characteristics of the unweighted interaction and friendship (static) networks. However, the active, disappeared, new and super links (interactions) only can be reflected by the strength distribution in the weighted interaction network. This result indicates the limitation of the static topology data on analyzing social network evolutions. In addition, our study uncovers the approximately stable statistics for the dynamic social network in which there are a large variation for users and interaction intensity. Our findings not only verify the correctness of our definitions, but also helped to study the customer churn and evaluate the commercial value of valuable customers in online social networks.
Fatigue Behavior of Steel Fiber Reinforced High-Strength Concrete under Different Stress Levels
NASA Astrophysics Data System (ADS)
Zhang, Chong; Gao, Danying; Gu, Zhiqiang
2017-12-01
The investigation was conducted to study the fatigue behavior of steel fiber reinforced high-strength concrete (SFRHSC) beams. A series of 5 SFRHSC beams was conducted flexural fatigue tests at different stress level S of 0.5, 0.55, 0.6, 0.7 and 0.8 respectively. Static test was conducted to determine the ultimate static capacity prior to fatigue tests. Fatigue modes and S-N curves were analyzed. Besides, two fatige life prediction model were analyzed and compared. It was found that stress level S significantly influenced the fatigue life of SFRHSC beams and the fatigue behavior of SFRHSC beams was mainly determined by the tensile reinforcement.
The effect of Nordic hamstring strength training on muscle architecture, stiffness, and strength.
Seymore, Kayla D; Domire, Zachary J; DeVita, Paul; Rider, Patrick M; Kulas, Anthony S
2017-05-01
Hamstring strain injury is a frequent and serious injury in competitive and recreational sports. While Nordic hamstring (NH) eccentric strength training is an effective hamstring injury-prevention method, the protective mechanism of this exercise is not understood. Strength training increases muscle strength, but also alters muscle architecture and stiffness; all three factors may be associated with reducing muscle injuries. The purpose of this study was to examine the effects of NH eccentric strength training on hamstring muscle architecture, stiffness, and strength. Twenty healthy participants were randomly assigned to an eccentric training group or control group. Control participants performed static stretching, while experimental participants performed static stretching and NH training for 6 weeks. Pre- and post-intervention measurements included: hamstring muscle architecture and stiffness using ultrasound imaging and elastography, and maximal hamstring strength measured on a dynamometer. The experimental group, but not the control group, increased volume (131.5 vs. 145.2 cm 3 , p < 0.001) and physiological cross-sectional area (16.1 vs. 18.1 cm 2 , p = 0.032). There were no significant changes to muscle fascicle length, stiffness, or eccentric hamstring strength. The NH intervention was an effective training method for muscle hypertrophy, but, contrary to common literature findings for other modes of eccentric training, did not increase fascicle length. The data suggest that the mechanism behind NH eccentric strength training mitigating hamstring injury risk could be increasing volume rather than increasing muscle length. Future research is, therefore, warranted to determine if muscle hypertrophy induced by NH training lowers future hamstring strain injury risk.
NASA Astrophysics Data System (ADS)
Staszek, M.; Orlecka-Sikora, B.; Leptokaropoulos, K.; Kwiatek, G.; Martínez-Garzón, P.
2017-07-01
We use a high-quality data set from the NW part of The Geysers geothermal field to determine statistical significance of temporal static stress drop variations and their relation to injection rate changes. We use a group of 322 seismic events which occurred in the proximity of Prati-9 and Prati-29 injection wells to examine the influence of parameters such as moment magnitude, focal mechanism, hypocentral depth, and normalized hypocentral distances from open-hole sections of injection wells on static stress drop changes. Our results indicate that (1) static stress drop variations in time are statistically significant, (2) statistically significant static stress drop changes are inversely related to injection rate fluctuations. Therefore, it is highly expected that static stress drop of seismic events is influenced by pore pressure in underground fluid injection conditions and depends on the effective normal stress and strength of the medium.
NASA Astrophysics Data System (ADS)
Kruszka, Leopold; Moćko, Wojciech; Fenu, Luigi; Cadoni, Ezio
2015-09-01
Specimen reinforced with glass and basalt fibers were prepared using Standard Portland cement (CEM I, 52.5 R as prescribed by EN 197-1) and standard sand, in accordance with EN 196-1. From this cementitious mixture, a reference cement mortar without fibers was first prepared. Compressive strength, modulus of elasticity, and mod of fracture were determined for all specimens. Static and dynamic properties were investigated using Instron testing machine and split Hopkinson pressure bar, respectively. Content of the glass fibers in the mortar does not influence the fracture stress at static loading conditions in a clearly observed way. Moreover at dynamic range 5% content of the fiber results in a significant drop of fracture stress. Analysis of the basalt fibers influence on the fracture stress shows that optimal content of this reinforcement is equal to 3% for both static and dynamic loading conditions. Further increase of the fiber share gives the opposite effect, i.e. drop of the fracture stress.
Park, Jaeyeong; Jo, Min Cheol; Jeong, Hyeok Jae; Sohn, Seok Su; Kwak, Jai-Hyun; Kim, Hyoung Seop; Lee, Sunghak
2017-11-16
Phenomena occurring in duplex lightweight steels under dynamic loading are hardly investigated, although its understanding is essentially needed in applications of automotive steels. In this study, quasi-static and dynamic tensile properties of duplex lightweight steels were investigated by focusing on how TRIP and TWIP mechanisms were varied under the quasi-static and dynamic loading conditions. As the annealing temperature increased, the grain size and volume fraction of austenite increased, thereby gradually decreasing austenite stability. The strain-hardening rate curves displayed a multiple-stage strain-hardening behavior, which was closely related with deformation mechanisms. Under the dynamic loading, the temperature rise due to adiabatic heating raised the austenite stability, which resulted in the reduction in the TRIP amount. Though the 950 °C-annealed specimen having the lowest austenite stability showed the very low ductility and strength under the quasi-static loading, it exhibited the tensile elongation up to 54% as well as high strain-hardening rate and tensile strength (1038 MPa) due to appropriate austenite stability under dynamic loading. Since dynamic properties of the present duplex lightweight steels show the excellent strength-ductility combination as well as continuously high strain hardening, they can be sufficiently applied to automotive steel sheets demanded for stronger vehicle bodies and safety enhancement.
Shape effect of ultrafine-grained structure on static fracture toughness in low-alloy steel
Inoue, Tadanobu; Kimura, Yuuji; Ochiai, Shojiro
2012-01-01
A 0.4C-2Si-1Cr-1Mo steel with an ultrafine elongated grain (UFEG) structure and an ultrafine equiaxed grain (UFG) structure was fabricated by multipass caliber rolling at 773 K and subsequent annealing at 973 K. A static three-point bending test was conducted at ambient temperature and at 77 K. The strength–toughness balance of the developed steels was markedly better than that of conventionally quenched and tempered steel with a martensitic structure. In particular, the static fracture toughness of the UFEG steel, having a yield strength of 1.86 GPa at ambient temperature, was improved by more than 40 times compared with conventional steel having a yield strength of 1.51 GPa. Furthermore, even at 77 K, the fracture toughness of the UFEG steel was about eight times higher than that of the conventional and UFG steels, despite the high strength of the UFEG steel (2.26 GPa). The UFG steel exhibited brittle fracture behavior at 77 K, as did the conventional steel, and no dimple structure was observed on the fracture surface. Therefore, it is difficult to improve the low-temperature toughness of the UFG steel by grain refinement only. The shape of crystal grains plays an important role in delamination toughening, as do their refinement and orientation. PMID:27877493
Constitutive Model Constants for Al7075-T651 and Al7075-T6
NASA Astrophysics Data System (ADS)
Brar, N. S.; Joshi, V. S.; Harris, B. W.
2009-12-01
Aluminum 7075-T651 and 7075-T6 are characterized at quasi-static and high strain rates to determine Johnson-Cook (J-C) strength and fracture model constants. Constitutive model constants are required as input to computer codes to simulate projectile (fragment) impact or similar impact events on structural components made of these materials. Although the two tempers show similar elongation at breakage, the ultimate tensile strength of T651 temper is generally lower than the T6 temper. Johnson-Cook strength model constants (A, B, n, C, and m) for the two alloys are determined from high strain rate tension stress-strain data at room and high temperature to 250°C. The Johnson-Cook fracture model constants are determined from quasi-static and medium strain rate as well as high temperature tests on notched and smooth tension specimens. Although the J-C strength model constants are similar, the fracture model constants show wide variations. Details of the experimental method used and the results for the two alloys are presented.
Torque Limit for Bolted Joint For Composites. Part B; Experimentation
NASA Technical Reports Server (NTRS)
Kostreva, Kristian M.
2003-01-01
Today, aerospace quality composite parts are generally made from either a unidirectional tape or a fabric prepreg form depending on the application. The matrix material, typically epoxy because of it dimensional stability, is pre-impregnated onto the fibers to ensure uniform distribution. Both of these composite forms are finding themselves used in applications where a joint is required. Two widely used joint methods are the classic mechanically fastened joint, and the contemporary bonded joint; however, the mechanically fastened joint is most commonly used by design engineers. A major portion of the research up-to-date about bolted composite joints has dealt with the inplane static load capacity. This work has helped to spawn standards dealing with filled-hole static joint strength. Other research has clearly shown that the clamp-up load in the mechanical fastener significantly affects the joint strength in a beneficial manner by reducing the bearing strength dependence of the composite laminate. One author reported a maximum increase in joint strength of 28%. This finding has helped to improve the reliability and efficiency of the joint in a composite structure.
NASA Technical Reports Server (NTRS)
Jackson, A. C.; Dorwald, F.
1982-01-01
The ground tests conducted on the advanced composite vertical fin (ACVF) program are described. The design and fabrication of the test fixture and the transition structure, static test of Ground Test Article (GTA) No. 1, rework of GTA No. 2, and static, damage tolerance, fail-safe and residual strength tests of GTA No. 2 are described.
NASA Technical Reports Server (NTRS)
Jackson, Karen E.
1990-01-01
Scale model technology represents one method of investigating the behavior of advanced, weight-efficient composite structures under a variety of loading conditions. It is necessary, however, to understand the limitations involved in testing scale model structures before the technique can be fully utilized. These limitations, or scaling effects, are characterized. in the large deflection response and failure of composite beams. Scale model beams were loaded with an eccentric axial compressive load designed to produce large bending deflections and global failure. A dimensional analysis was performed on the composite beam-column loading configuration to determine a model law governing the system response. An experimental program was developed to validate the model law under both static and dynamic loading conditions. Laminate stacking sequences including unidirectional, angle ply, cross ply, and quasi-isotropic were tested to examine a diversity of composite response and failure modes. The model beams were loaded under scaled test conditions until catastrophic failure. A large deflection beam solution was developed to compare with the static experimental results and to analyze beam failure. Also, the finite element code DYCAST (DYnamic Crash Analysis of STructure) was used to model both the static and impulsive beam response. Static test results indicate that the unidirectional and cross ply beam responses scale as predicted by the model law, even under severe deformations. In general, failure modes were consistent between scale models within a laminate family; however, a significant scale effect was observed in strength. The scale effect in strength which was evident in the static tests was also observed in the dynamic tests. Scaling of load and strain time histories between the scale model beams and the prototypes was excellent for the unidirectional beams, but inconsistent results were obtained for the angle ply, cross ply, and quasi-isotropic beams. Results show that valuable information can be obtained from testing on scale model composite structures, especially in the linear elastic response region. However, due to scaling effects in the strength behavior of composite laminates, caution must be used in extrapolating data taken from a scale model test when that test involves failure of the structure.
The Effect of Shoulder Plyometric Training on Amortization Time and Upper-Extremity Kinematics.
Swanik, Kathleen A; Thomas, Stephen J; Struminger, Aaron H; Bliven, Kellie C Huxel; Kelly, John D; Swanik, Charles B
2016-12-01
Plyometric training is credited with providing benefits in performance and dynamic restraint. However, limited prospective data exist quantifying kinematic adaptations such as amortization time, glenohumeral rotation, and scapulothoracic position, which may underlie the efficacy of plyometric training for upper-extremity rehabilitation or performance enhancement. To measure upper-extremity kinematics and plyometric phase times before and after an 8-wk upper-extremity strength- and plyometric-training program. Randomized pretest-posttest design. Research laboratory. 40 recreationally active men (plyometric group, age 20.43 ± 1.40 y, height 180.00 ± 8.80 cm, weight 73.07 ± 7.21 kg; strength group, age 21.95 ± 3.40 y, height 173.98 ± 11.91 cm, weight 74.79 ± 13.55 kg). Participants were randomly assigned to either a strength-training group or a strength- and plyometric-training group. Each participant performed the assigned training for 8 wk. Dynamic and static glenohumeral and scapular-rotation measurements were taken before and after the training programs. Dynamic measurement of scapular rotation and time spent in each plyometric phase (concentric, eccentric, and amortization) during a ball-toss exercise were recorded while the subjects were fitted with an electromagnetic tracking system. Static measures included scapular upward rotation at 3 different glenohumeral-abduction angles, glenohumeral internal rotation, and glenohumeral external rotation. Posttesting showed that both groups significantly decreased the time spent in the amortization, concentric, and eccentric phases of a ball-toss exercise (P < .01). Both groups also exhibited significantly decreased static external rotation and increased dynamic scapular upward rotation after the training period (P < .01). The only difference between the training protocols was that the plyometric-training group exhibited an increase in internal rotation that was not present in the strength-training group (P < .01). These findings support the use of both upper-extremity plyometrics and strength training for reducing commonly identified upper-extremity-injury risk factors and improving upper-extremity performance.
Shear strength of metal - SiO2 contacts
NASA Technical Reports Server (NTRS)
Pepper, S. V.
1978-01-01
The strength of the bond between metals and SiO2 is studied by measuring the static coefficient of friction of metals contacting alpha-quartz in ultrahigh vacuum. It was found that copper with either chemisorbed oxygen, nitrogen or sulphur exhibited higher contact strength on stoichiometric SiO2 than did clean copper. Since the surface density of states induced by these species on copper is similar, it appears that the strength of the interfacial bond can be related to the density of states on the metal surface.
Shear strength of metal - SiO2 contacts
NASA Technical Reports Server (NTRS)
Pepper, S. V.
1978-01-01
The strength of the bond between metals and SiO2 was studied by measuring the static coefficient of friction of metals contacting alpha-quartz in ultrahigh vacuum. It was found that copper with either chemisorbed oxygen, nitrogen, or sulphur exhibited higher contact strength on stoichiometric SiO2 than did clean copper. Since the surface density of states induced by these species on copper is similar, it appears that the strength of the interfacial bond can be related to the density of states on the metal surface.
Reproducibility of structural strength and stiffness for graphite-epoxy aircraft spoilers
NASA Technical Reports Server (NTRS)
Howell, W. E.; Reese, C. D.
1978-01-01
Structural strength reproducibility of graphite epoxy composite spoilers for the Boeing 737 aircraft was evaluated by statically loading fifteen spoilers to failure at conditions simulating aerodynamic loads. Spoiler strength and stiffness data were statistically modeled using a two parameter Weibull distribution function. Shape parameter values calculated for the composite spoiler strength and stiffness were within the range of corresponding shape parameter values calculated for material property data of composite laminates. This agreement showed that reproducibility of full scale component structural properties was within the reproducibility range of data from material property tests.
Emilio, Emilio J. Martínez-López; Hita-Contreras, Fidel; Jiménez-Lara, Pilar M.; Latorre-Román, Pedro; Martínez-Amat, Antonio
2014-01-01
The purpose of the present study was to determine the effects of a proprioceptive training program on older adults, as well as to analyze the association between flexibility, balance and lumbar strength (physical fitness test) with balance ability and fall risk (functional balance tests). This study was a controlled, longitudinal trial with a 12-week follow-up period. Subjects from a population of older adults were allocated to the intervention group (n = 28) or to the usual care (control) group (n = 26). Subjects performed proprioceptive training twice weekly (6 specific exercises with Swiss ball and BOSU). Each session included 50 minutes (10 minutes of warm-up with slow walk, 10 minutes of mobility and stretching exercises, 30 minutes of proprioceptive exercises). The outcome variables were physical fitness (lower-body flexibility, hip-joint mobility, dynamic balance, static balance, and lumbar strength) and functional balance (Berg scale and Tinetti test). The experimental group obtained significantly higher values than the control group in lower-body flexibility, dynamic balance, and lumbar strength (p = 0.019, p < 0.001, and p = 0.034 respectively). Hip-joint mobility, dynamic balance, and lumbar strength were positively associated with balance ability (p < 0.001, p < 0.001, and p = 0.014, respectively) and the prevention of falls (p = 0.001, p < 0.001, and p = 0.017 respectively). These findings suggest that a 12-week proprioception program intervention (twice a week) significantly improves flexibility, balance, and lumbar strength in older adults. Hip-joint mobility, dynamic balance and lumbar strength are positively associated to balance ability and the risk of falls in older adults. This proprioceptive training does not show a significant improvement in hip-joint mobility or static balance. Key points A 12-week proprioceptive intervention program (two times per week) significantly improves flexibility, balance, and lumbar strength in older adults. The risk of falls and balance ability are significantly improved after a training program with Bosu and Swiss ball in older adults. An improvement in joint mobility, dynamic balance and lumbar strength is positively associated with balance ability and improved fall risk in older adults. A 12-week proprioceptive intervention program (two times per week) does not show a significant improvement in hip-joint mobility and static balance. PMID:24790489
Side-alternating vibration training for balance and ankle muscle strength in untrained women.
Spiliopoulou, Styliani I; Amiridis, Ioannis G; Tsigganos, Georgios; Hatzitaki, Vassilia
2013-01-01
Side-alternating vibration (SAV) may help reduce the risk of falling by improving body balance control. Such training has been promoted as a strength-training intervention because it can increase muscle activation through an augmented excitatory input from the muscle spindles. To determine the effect of SAV training on static balance during 3 postural tasks of increasing difficulty and lower limb strength. Randomized controlled clinical trial. Laboratory. A total of 21 healthy women were divided into training (n = 11; age = 43.35 ± 4.12 years, height = 169 ± 6.60 cm, mass = 68.33 ± 11.90 kg) and control (n = 10; age = 42.31 ± 3.73 years, height = 167 ± 4.32 cm, mass = 66.29 ± 10.74 kg) groups. The training group completed a 9-week program during which participants performed 3 sessions per week of ten 15-second isometric contractions with a 30-second active rest of 3 exercises (half-squat, wide-stance squat, 1-legged half-squat) on an SAV plate (acceleration = 0.91-16.3g). The control group did not participate in any form of exercise over the 9-week period. We evaluated isokinetic and isometric strength of the knee extensors and flexors and ankle plantar flexors, dorsiflexors, and evertors. Static balance was assessed using 3 tasks of increasing difficulty (quiet bipedal stance, tandem stance, 1-legged stance). The electromyographic activity of the vastus lateralis, semitendinosus, medial gastrocnemius, tibialis anterior, and peroneus longus was recorded during postural task performance, baseline and pretraining, immediately posttraining, and 15 days posttraining. After training in the training group, ankle muscle strength improved (P = .03), whereas knee muscle strength remained unaltered (P = .13). Improved ankle-evertor strength was observed at all angular velocities (P = .001). Postural sway decreased in both directions but was greater in the mediolateral (P < .001) than anteroposterior (P = .02) direction. The electromyographic activity of the peroneus longus increased during the sharpened tandem (P = .001) and 1-legged tasks (P = .007). No changes were seen in the control group for any measures. The SAV training could enhance ankle muscle strength and reduce postural sway during static balance performance. The reduction in mediolateral sway could be associated with the greater use of ankle evertors due to their strength improvement.
Structural testing for static failure, flutter and other scary things
NASA Technical Reports Server (NTRS)
Ricketts, R. H.
1983-01-01
Ground test and flight test methods are described that may be used to highlight potential structural problems that occur on aircraft. Primary interest is focused on light-weight general aviation airplanes. The structural problems described include static strength failure, aileron reversal, static divergence, and flutter. An example of each of the problems is discussed to illustrate how the data acquired during the tests may be used to predict the occurrence of the structural problem. While some rules of thumb for the prediction of structural problems are given the report is not intended to be used explicitly as a structural analysis handbook.
Fatigue crack tip deformation and fatigue crack propagation
NASA Technical Reports Server (NTRS)
Kang, T. S.; Liu, H. W.
1972-01-01
The effects of stress ratio, prestress cycling and plate thickness on the fatigue crack propagation rate are studied on 2024-T351 aluminum alloy. Fatigue crack propagation rate increases with the plate thickness and the stress ratio. Prestress cycling below the static yield strength has no noticeable effect on the fatigue crack propagation rate. However, prestress cycling above the static yield strength causes the material to strain harden and increases the fatigue crack propagation rate. Crack tip deformation is used to study the fatigue crack propagation. The crack tip strains and the crack opening displacements were measured from moire fringe patterns. The moire fringe patterns were obtained by a double exposure technique, using a very high density master grille (13,400 lines per inch).
A Model for Predicting Integrated Man-Machine System Reliability: Model Logic and Description
1974-11-01
3. Fatigue buildup curve. The common requirement of all tests on the Dynamic Strength factor is for the muscles involved to propel, support, or...move the body repeatedly or to support it continuously over time. The tests of our Static Strength factor emphasize the lifting power of the muscles ...or the pounds of pressure which the muscles can exert. ... In contrast to Dynamic Strength the force exerted is against external objects, rather
Evaluation of engineering plastic for rollover protective structure (ROPS) mounting.
Comer, R S; Ayers, P D; Liu, J
2007-04-01
Agriculture has one of the highest fatality rates of any industry in America. Tractor rollovers are a significant contributor to the high death rate. Rollover protective structures (ROPS) have helped lower these high fatality rates on full-size tractors. However, a large number of older tractors still do not use ROPS due to the difficulty of designing and creating a mounting structure. To help reduce this difficulty, engineering plastics were evaluated for use in a ROPS mounting structure on older tractors. The use of engineering plastics around axle housings could provide a uniform mounting configuration as well as lower costs for aftermarket ROPS. Various plastics were examined through shear testing, scale model testing, and compressive strength testing. Once a material was chosen based upon strength and cost, full-scale testing of the plastic's strength on axle housings was conducted. Finally, a mounting structure was tested in static ROPS tests, and field upset tests were performed in accordance with SAE Standard J2194. Initial tests revealed that the ROPS mounting structure and axle housing combination had higher torsional strength with less twisting than the axle housing alone. An engineering plastic ROPS mounting structure was easily successful in withstanding the forces applied during the static longitudinal and lateral ROPS tests. Field upset testing revealed that the mounting structure could withstand the impact loads seen during actual upsets without a failure. During both static testing and field upset testing, no permanent twisting of the mounting structure was found. Engineering plastic could therefore be a viable option for a universal ROPS mounting structure for older tractors.
Majd, B.; Majd, H.; Porter, J.A.; Romberg, E.; Arola, D.
2014-01-01
The objectives of this investigation were to evaluate the degradation in fatigue strength of dentin by diamond bur preparations and to identify the importance of cutting direction. Three groups of coronal dentin specimens were prepared from unrestored 3rd molars, including a flaw free “control”, and two groups that received a diamond bur cutting treatment performed parallel or perpendicular to the specimen length. The specimens were subjected to static or cyclic flexural loading to failure and the results were compared with data for carbide bur cutting. Under static loading diamond bur cutting resulted in significantly flexure lower strength (p≤0.05) than the control for both cutting directions (from 154 MPa to approx. 124 MPa). However, there was no significant difference in the strength between the control and carbide bur treated specimens. Similarly, the fatigue strength of the diamond bur treated specimens was significantly lower (p≤0.0001) than that of the control for both cutting directions. Cutting in the perpendicular direction resulted in nearly 60% reduction to the endurance limit (from 44 MPa to 19 MPa). Based on the results, diamond bur cutting of cavity preparations causes a reduction in the fatigue strength of dentin, regardless of the cutting direction. To maintain the durability of dentin, cavity preparations introduced using diamond burs must be performed with appropriate cutting direction and followed by a finishing pass. PMID:25611951
Spall fracture in aluminium alloy at high strain rates
NASA Astrophysics Data System (ADS)
Joshi, K. D.; Rav, Amit; Sur, Amit; Kaushik, T. C.; Gupta, Satish C.
2016-05-01
Spall fracture strength and dynamic yield strength has been measured in 8mm thick target plates of aluminium alloy Al2024-T4 at high strain rates generated in three plate impact experiments carried out at impact velocities of 180 m/s, 370 m/s and 560m/s, respectively, using single stage gas gun facility. In each experiment, the free surface velocity history of the Al2024-T4 sample plate measured employing velocity interferometer system for any reflector (VISAR) is used to determine the spall strength and dynamic yield strength of this material. The spall strength of 1.11 GPa, 1.16 GPa and 1.43 GPa, determined from measured free surface velocity history of sample material in three experiments performed at impact velocity of 180 m/s, 370 m/s and 560 m/s, respectively, are higher than the quasi static value of 0.469 GPa and display almost linearly increasing trend with increasing impact velocity or equivalently with increasing strain rates. The average strain rates just ahead of the spall fracture are determined to be 1.9×10 4/s, 2.0×104/s and 2.5×104/s, respectively. The dynamic yield strength determined in the three experiments range from 0.383 GPa to 0.407 GPa, which is higher than the quasi static value of 0.324GPa.
Majd, B; Majd, H; Porter, J A; Romberg, E; Arola, D
2016-01-01
The objectives of this investigation were to evaluate the degradation in fatigue strength of dentin by diamond bur preparations and to identify the importance of cutting direction. Three groups of coronal dentin specimens were prepared from unrestored third molars, including a flaw free "control," and two groups that received a diamond bur cutting treatment performed parallel or perpendicular to the specimen length. The specimens were subjected to static or cyclic flexural loading to failure and the results were compared with data for carbide bur cutting. Under static loading diamond bur cutting resulted in significantly lower flexure strength (p ≤ 0.05) than the control for both cutting directions (from 154 to ∼124 MPa). However, there was no significant difference in the strength between the control and carbide bur treated specimens. Similarly, the fatigue strength of the diamond bur treated specimens was significantly lower (p ≤ 0.0001) than that of the control for both cutting directions. Cutting in the perpendicular direction resulted in nearly 60% reduction to the endurance limit (from 44 to 19 MPa). Based on the results, diamond bur cutting of cavity preparations causes a reduction in the fatigue strength of dentin, regardless of the cutting direction. To maintain the durability of dentin, cavity preparations introduced using diamond burs must be performed with appropriate cutting direction and followed by a finishing pass. © 2014 Wiley Periodicals, Inc.
Earthquake stress drop and laboratory-inferred interseismic strength recovery
Beeler, N.M.; Hickman, S.H.; Wong, T.-F.
2001-01-01
We determine the scaling relationships between earthquake stress drop and recurrence interval tr that are implied by laboratory-measured fault strength. We assume that repeating earthquakes can be simulated by stick-slip sliding using a spring and slider block model. Simulations with static/kinetic strength, time-dependent strength, and rate- and state-variable-dependent strength indicate that the relationship between loading velocity and recurrence interval can be adequately described by the power law VL ??? trn, where n=-1. Deviations from n=-1 arise from second order effects on strength, with n>-1 corresponding to apparent time-dependent strengthening and n<-1 corresponding to weakening. Simulations with rate and state-variable equations show that dynamic shear stress drop ????d scales with recurrence as d????d/dlntr ??? ??e(b-a), where ??e is the effective normal stress, ??=??/??e, and (a-b)=d??ss/dlnV is the steady-state slip rate dependence of strength. In addition, accounting for seismic energy radiation, we suggest that the static shear stress drop ????s scales as d????s/dlntr ??? ??e(1+??)(b-a), where ?? is the fractional overshoot. The variation of ????s with lntr for earthquake stress drops is somewhat larger than implied by room temperature laboratory values of ?? and b-a. However, the uncertainty associated with the seismic data is large and the discrepancy between the seismic observations and the rate of strengthening predicted by room temperature experiments is less than an order of magnitude. Copyright 2001 by the American Geophysical Union.
High temperature ceramic interface study
NASA Technical Reports Server (NTRS)
Lindberg, L. J.
1984-01-01
Monolithic SiC and Si3N4 are susceptible to contact stress damage at static and sliding interfaces. Transformation-toughened zirconia (TTZ) was evaluated under sliding contact conditions to determine if the higher material fracture toughness would reduce the susceptibility to contact stress damage. Contact stress tests were conducted on four commercially available TTZ materials at normal loads ranging from 0.455 to 22.7 kg (1 to 50 pounds) at temperatures ranging from room temperature to 1204C (2200 F). Static and dynamic friction were measured as a function of temperature. Flexural strength measurements after these tests determined that the contact stress exposure did not reduce the strength of TTZ at contact loads of 0.455, 4.55, and 11.3 kg (1, 10, and 25 pounds). Prior testing with the lower toughness SiC and Si3N4 materials resulted in a substantial strength reduction at loads of only 4.55 and 11.3 kg (10 and 25 pounds). An increase in material toughness appears to improve ceramic material resistance to contact stress damage. Baseline material flexure strength was established and the stress rupture capability of TTZ was evaluated. Stress rupture tests determined that TTZ materials are susceptible to deformation due to creep and that aging of TTZ materials at elevated temperatures results in a reduction of material strength.
Prevention of distal extension cantilever fracture in mandibular overdentures.
Quirynen, Thomas; Quirynen, Marc; Duyck, Joke
2015-09-01
Fractures of distal bar extensions, supporting a mandibular overdenture, do occur with significant functional and economic consequences for the patient. This study therefore aims to evaluate the effect of different bar cross-sectional shapes and surfaces, bar extension lengths and the placement of a support rib under the distal bar extension on fracture resistance. The 2nd moment area and static strength were calculated for 11 frequently used bar designs using finite element analysis (FEA). For two specific designs (Ackermann round Ø 1.8mm and Dolder-Y macro, the former with and without a support rib) additional physical static and fatigue strength tests were included. The FEA static strength data corresponded well to the 2nd moment area (a similar ranking when maximum allowed force was considered). The application of a rib support (Ackermann Ø 1.8mm) and limitations of the bar extension length (6mm for the Ackermann Ø 1.8mm, 8mm for the Dolder-Y macro) allowed the bars to exceed 5 × 10(6) cycles of 120 and 250N, respectively, before fracture. The region of highest stresses in FEA corresponded well with the locations of the fractures observed in static- and fatigue-testing. With some simple guidelines/modifications, the number of bar extension fractures can be reduced significantly. This study focusses on distal bar extensions which improve the positioning of an implant supported overdenture. By combining laboratory testing and finite element simulations we aim to: (1) explain why fractures occur (dependent on physical characteristics of the bar), and (2) give clinical guidelines on how to prevent such fractures. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Muschol, Martin; Rosenberger, Franz
1995-01-01
We have performed multiangle static and dynamic light scattering studies of lysozyme solutions at pH=4.7. The Rayleigh ratio R(sub g) and the collective diffusion coefficient D(sub c) were determined as function of both protein concentration c(sub p) and salt concentration c(sub s) with two different salts. At low salt concentrations, the scattering ratio K(sub c)(sub p)/R(sub theta) and diffusivity increased with protein concentration above the values for a monomeric, ideal solution. With increasing salt concentration this trend was eventually reversed. The hydrodynamic interactions of lysozyme in solution, extracted from the combination of static and dynamic scattering data, decreased significantly with increasing salt concentration. These observations reflect changes in protein interactions, in response to increased salt screening, from net repulsion to net attraction. Both salts had the same qualitative effect, but the quantitative behavior did not scale with the ionic strength of the solution. This indicates the presence of salt specific effects. At low protein concentrations, the slopes of K(sub c)(sub p)/R(sub theta) and D(sub c) vs c(sub p) were obtained. The dependence of the slopes on ionic strength was modeled using a DLVO potential for colloidal interactions of two spheres, with the net protein charge Z(sub e) and Hamaker constant A(sub H) as fitting parameters. The model reproduces the observed variations with ionic strength quite well. Independent fits to the static and dynamic data, however, led to different values of the fitting parameters. These and other shortcomings suggest that colloidal interaction models alone are insufficient to explain protein interactions in solutions.
Probabilistic Composite Design
NASA Technical Reports Server (NTRS)
Chamis, Christos C.
1997-01-01
Probabilistic composite design is described in terms of a computational simulation. This simulation tracks probabilistically the composite design evolution from constituent materials, fabrication process, through composite mechanics and structural components. Comparisons with experimental data are provided to illustrate selection of probabilistic design allowables, test methods/specimen guidelines, and identification of in situ versus pristine strength, For example, results show that: in situ fiber tensile strength is 90% of its pristine strength; flat-wise long-tapered specimens are most suitable for setting ply tensile strength allowables: a composite radome can be designed with a reliability of 0.999999; and laminate fatigue exhibits wide-spread scatter at 90% cyclic-stress to static-strength ratios.
The Impact of Adopting Physical Fitness Standards on Army Personnel Assignment: A Preliminary Study
1981-01-01
changes will also have the side benefit of reducing the number of job-related injuries . The changes will also provide wider and more effi- cient...be clear that the popular conception of a strength test, weightlifting , involves both force and work, and therefore, is not a pure measure of strength...measure. It also involves risk of injury from overexertion. A second method is the isometric or static strength test in which the individual is required to
NASA Astrophysics Data System (ADS)
Belyakov, L. N.; Petrakov, A. F.; Pokrovskaya, N. G.; Shal'kevich, A. B.
1998-08-01
Steels have found wide application in modern aircraft and are the profile materials in some structures. They are used when a high specific strength, rigidity, fatigue limit, and high-temperature strength are required, for example, in the production of wing bars, longerons, ribs, landing gear parts, and gear transmission mechanisms. Steels used in the aircraft industry should possess high parameters of fracture toughness, crack resistance under static and cyclic loads, and corrosion resistance (for the all-climatic variant) with preservation of a high adaptability to manufacturing (weldability, forgeability, processability).
Static Strength Characteristics of Mechanically Fastened Composite Joints
NASA Technical Reports Server (NTRS)
Fox, D. E.; Swaim, K. W.
1999-01-01
The analysis of mechanically fastened composite joints presents a great challenge to structural analysts because of the large number of parameters that influence strength. These parameters include edge distance, width, bolt diameter, laminate thickness, ply orientation, and bolt torque. The research presented in this report investigates the influence of some of these parameters through testing and analysis. A methodology is presented for estimating the strength of the bolt-hole based on classical lamination theory using the Tsai-Hill failure criteria and typical bolthole bearing analytical methods.
Bending strength of shallow glued-laminated beams of a uniform grade
Catherine M. Marx; Russell C. Moody
1981-01-01
Ninety glued-laminated Douglas-fir or southern pine beams of a uniform grade with 2-, 4-, or 6-laminations were evaluated in static bending tests. No specially graded tension laminations or end joints were used. The purpose of the tests was to determine which of three present design criteria best predict near minimum bending strength values for shallow glued-laminated...
Damage tolerance certification of a fighter horizontal stabilizer
NASA Astrophysics Data System (ADS)
Huang, Jia-Yen; Tsai, Ming-Yang; Chen, Jong-Sheng; Ong, Ching-Long
1995-05-01
A review of the program for the damage tolerance certification test of a composite horizontal stabilizer (HS) of a fighter is presented. The object of this program is to certify that the fatigue life and damage tolerance strength of a damaged composite horizontal stabilizer meets the design requirements. According to the specification for damage tolerance certification, a test article should be subjected to two design lifetimes of flight-by-flight load spectra simulating the in-service fatigue loading condition for the aircraft. However, considering the effect of environmental change on the composite structure, one additional lifetime test was performed. In addition, to evaluate the possibilities for extending the service life of the structure, one more lifetime test was carried out with the spectrum increased by a factor of 1.4. To assess the feasibility and reliability of repair technology on a composite structure, two damaged areas were repaired after two lifetimes of damage tolerance test. On completion of four lifetimes of the damage tolerance test, the static residual strength was measured to check whether structural strength after repair met the requirements. Stiffness and static strength of the composite HS with and without damage were evaluated and compared.
Creep rupture testing of carbon fiber-reinforced epoxy composites
NASA Astrophysics Data System (ADS)
Burton, Kathryn Anne
Carbon fiber is becoming more prevalent in everyday life. As such, it is necessary to have a thorough understanding of, not solely general mechanical properties, but of long-term material behavior. Creep rupture testing of carbon fiber is very difficult due to high strength and low strain to rupture properties. Past efforts have included testing upon strands, single tows and overwrapped pressure vessels. In this study, 1 inch wide, [0°/90°]s laminated composite specimens were constructed from fabric supplied by T.D. Williamson Inc. Specimen fabrication methods and gripping techniques were investigated and a method was developed to collect long term creep rupture behavior data. An Instron 1321 servo-hydraulic material testing machine was used to execute static strength and short term creep rupture tests. A hanging dead-weight apparatus was designed to perform long-term creep rupture testing. The testing apparatus, specimens, and specimen grips functioned well. Collected data exhibited a power law distribution and therefore, a linear trend upon a log strength-log time plot. Statistical analysis indicated the material exhibited slow degradation behavior, similar to previous studies, and could maintain a 50 year carrying capacity at 62% of static strength, approximately 45.7 ksi.
Small static electric field strength promotes aggregation-prone structures in amyloid-β(29-42)
NASA Astrophysics Data System (ADS)
Lu, Yan; Shi, Xiao-Feng; Salsbury, Freddie R.; Derreumaux, Philippe
2017-04-01
The formation of senile plaques in central neural system resulting from the aggregation of the amyloid β (Aβ) of 40 and 42 residues is one of the two hallmarks of Alzheimer's disease. Numerous experiments and computational studies have shown that the aggregation of Aβ peptides in vitro is very complex and depends on many factors such as pH, agitation, temperature, and peptide concentration. The impact of a static electric field (EF) on amyloid peptide aggregation has been much less studied, although EFs may have some applications to treat Parkinson's disease symptoms. Here, we study the influence of an EF strength of 20 mV/nm, present in the human brains, on the conformation of the Aβ29-42 dimer. Our 7 μs non-equilibrium atomistic simulations in aqueous solution show that this field-strength promotes substantially the formation of β-hairpins, believed to be a very important intermediate state during aggregation. This work also suggests that structural biology experiments conducted under appropriate EF strengths may help reduce the conformational heterogeneity of Aβ1-40/Aβ1-42 dimers and provide significant insights into their structures that may be disease-causing.
NASA Astrophysics Data System (ADS)
Akbari, Edris; Karimi Taheri, Kourosh; Karimi Taheri, Ali
2018-05-01
In this research, the samples of a low carbon steel sheet were rolled up to a thickness prestrain of 67% at three different temperatures consisted of room, blue brittleness, and subzero temperature. Microhardness, SEM, and tensile tests were carried out to evaluate the static recrystallization kinetics defined by the Avrami equation, microstructural evolution, and mechanical properties. It was found that the Avrami exponent is altered with change in prestrain temperature and it achieves the value of 1 to 1. 5. Moreover, it was indicated that prestraining at subzero temperature followed by annealing at 600 °C leads to considerable enhancement in tensile properties and kinetics of static recrystallization compared to room and blue brittleness temperatures. The prestraining at blue brittleness temperature followed by annealing treatment caused, however, a higher strength and faster kinetics compared with that at room temperature. It was concluded that although from the steel ductility point of view, the blue brittleness temperature is called an unsuitable temperature, but it can be used as prestraining temperature to develop noticeable combination of strength and ductility in low carbon steel.
High-speed imaging on static tensile test for unidirectional CFRP
NASA Astrophysics Data System (ADS)
Kusano, Hideaki; Aoki, Yuichiro; Hirano, Yoshiyasu; Kondo, Yasushi; Nagao, Yosuke
2008-11-01
The objective of this study is to clarify the fracture mechanism of unidirectional CFRP (Carbon Fiber Reinforced Plastics) under static tensile loading. The advantages of CFRP are higher specific stiffness and strength than the metal material. The use of CFRP is increasing in not only the aerospace and rapid transit railway industries but also the sports, leisure and automotive industries. The tensile fracture mechanism of unidirectional CFRP has not been experimentally made clear because the fracture speed of unidirectional CFRP is quite high. We selected the intermediate modulus and high strength unidirectional CFRP laminate which is a typical material used in the aerospace field. The fracture process under static tensile loading was captured by a conventional high-speed camera and a new type High-Speed Video Camera HPV-1. It was found that the duration of fracture is 200 microseconds or less, then images taken by a conventional camera doesn't have enough temporal-resolution. On the other hand, results obtained by HPV-1 have higher quality where the fracture process can be clearly observed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tang, X. C.; Jian, W. R.; Huang, J. Y.
We investigate deformation and damage of a Zr-based bulk metallic glass (BMG) and its Ta particle-reinforced composite (MGMC) under impact loading, as well as quasi-static tension for comparison. Yield strength, spall strength, and damage accumulation rate are obtained from free-surface velocity histories, and MGMC appears to be more damage-resistant. Scanning electron microscopy, electron back scattering diffraction and x-ray computed tomography, are utilized for characterizing microstructures, which show features consistent with macroscopic measurements. Different damage and fracture modes are observed for BMG and MGMC. Multiple well-defined spall planes are observed in BMG, while isolated and scattered cracking around reinforced particles dominatesmore » fracture of MGMC. Particle–matrix interface serves as the source and barrier to crack nucleation and propagation under both quasi-static and impact loading. Finally, deformation twinning and grain refinement play a key role in plastic deformation during shock loading but not in quasi-static loading. In addition, 3D cup-cone structures are resolved in BMG, but not in MGMC due to its heterogeneous stress field.« less
Varga, Peter; Schwiedrzik, Jakob; Zysset, Philippe K; Fliri-Hofmann, Ladina; Widmer, Daniel; Gueorguiev, Boyko; Blauth, Michael; Windolf, Markus
2016-04-01
Osteoporotic proximal femur fractures are caused by low energy trauma, typically when falling on the hip from standing height. Finite element simulations, widely used to predict the fracture load of femora in fall, usually include neither mass-related inertial effects, nor the viscous part of bone׳s material behavior. The aim of this study was to elucidate if quasi-static non-linear homogenized finite element analyses can predict in vitro mechanical properties of proximal femora assessed in dynamic drop tower experiments. The case-specific numerical models of 13 femora predicted the strength (R(2)=0.84, SEE=540N, 16.2%), stiffness (R(2)=0.82, SEE=233N/mm, 18.0%) and fracture energy (R(2)=0.72, SEE=3.85J, 39.6%); and provided fair qualitative matches with the fracture patterns. The influence of material anisotropy was negligible for all predictions. These results suggest that quasi-static homogenized finite element analysis may be used to predict mechanical properties of proximal femora in the dynamic sideways fall situation. Copyright © 2015 Elsevier Ltd. All rights reserved.
Tang, X. C.; Jian, W. R.; Huang, J. Y.; ...
2017-11-11
We investigate deformation and damage of a Zr-based bulk metallic glass (BMG) and its Ta particle-reinforced composite (MGMC) under impact loading, as well as quasi-static tension for comparison. Yield strength, spall strength, and damage accumulation rate are obtained from free-surface velocity histories, and MGMC appears to be more damage-resistant. Scanning electron microscopy, electron back scattering diffraction and x-ray computed tomography, are utilized for characterizing microstructures, which show features consistent with macroscopic measurements. Different damage and fracture modes are observed for BMG and MGMC. Multiple well-defined spall planes are observed in BMG, while isolated and scattered cracking around reinforced particles dominatesmore » fracture of MGMC. Particle–matrix interface serves as the source and barrier to crack nucleation and propagation under both quasi-static and impact loading. Finally, deformation twinning and grain refinement play a key role in plastic deformation during shock loading but not in quasi-static loading. In addition, 3D cup-cone structures are resolved in BMG, but not in MGMC due to its heterogeneous stress field.« less
Development of a Female Atlas of Strengths
1982-02-01
the maximum in water at 2%. The post- exercise hyperaemic response was greater for a given duration of contraction in water at 34 and 42% than at lower...references. 226 STUDY: Duncan, G., Lambie, D.G. and Johnson, R.H. Ventilatory responses to sustained static forearm exercise in man. New Zealand Med. Journal...1978, 88(618), 169. KEYWORDS: Static exercise , ventilatory responses . METHODS: Five healthy subjects were used to study the stimulus for
Experimental data of the static behavior of reinforced concrete beams at room and low temperature.
Mirzazadeh, M Mehdi; Noël, Martin; Green, Mark F
2016-06-01
This article provides data on the static behavior of reinforced concrete at room and low temperature including, strength, ductility, and crack widths of the reinforced concrete. The experimental data on the application of digital image correlation (DIC) or particle image velocimetry (PIV) in measuring crack widths and the accuracy and precision of DIC/PIV method with temperature variations when is used for measuring strains is provided as well.
NASA Technical Reports Server (NTRS)
Botvina, L. R.; Ivanova, V. S.; Kopev, I. M.
1982-01-01
The theoretical and experimental strength of aluminum reinforced with stainless steel wire is analyzed. Various methods of producing the composite material and it's static and cyclical strengths are considered. The reinforcement of aluminum with stainless steel wire was accomplished from the perspective of increasing the specific strength of aluminum and it's alloys, increasing the strength of the material with respect to high and low temperatures, as well as increasing the cyclical strength. The production of the composite aluminum-stainless steel wire material with approximated or calculated strengthening is possible by any of the considered methods. The selection of the proper production technology depends on precise details and conditions of application of the material.
Lee, Seung-Mi; Cynn, Heon-Seock; Yoon, Tae-Lim; Lee, Ji-Hyun
2017-09-01
The objective of this study was to investigate the effects of Heel-Raise-Lower Exercise (HRLE) interventions on the strength of plantarflexion, balance, and gait parameters in people with stroke. Specifically, this study compared the two different HRLEs to identify whether heels raise-lower with forefoot on a block (HRB) is more effective or ineffective to enhance strength and functional capacities than heels raise-lower on a level floor (HRL) exercise in people with stroke. Repetitive heel raise-lower is a common exercise for improving the strength and power of ankle plantarflexors. It is a simple movement, requires no equipment, and can be performed at home. Each group of 10 people with stroke was given either HRB training or HRL training. The subjects performed the exercise 100 times per day, 5 days per week for 6 weeks. The strength of plantarflexors, static/dynamic balance, and gait parameters were measured using the manual muscle test (MMT), a Biodex Balance System (BBS) SD, and the GAITRite system. After 6 weeks of treatment, there were significant increases in the plantarflexors strength in both groups: by 34% in the HRB group and by 21% in the HRL group. Static and dynamic balance and gait speed also increased significantly in both groups. However, cadence, the paretic side single limb support period (SLSP), paretic side step length, and paretic side stride length significantly increased only in the HRB group. The HRB improved significantly the plantar flexor strength of the paretic side, gait speed, and cadence compared to the HRL.
Frankel, A.
1991-01-01
The high-frequency falloff ??-y of earthquake displacement spectra and the b value of aftershock sequences are attributed to the character of spatially varying strength along fault zones. I assume that the high frequency energy of a main shock is produced by a self-similar distribution of subevents, where the number of subevents with radii greater than R is proportional to R-D, D being the fractal dimension. In the model, an earthquake is composed of a hierarchical set of smaller earthquakes. The static stress drop is parameterized to be proportional to R??, and strength is assumed to be proportional to static stress drop. I find that a distribution of subevents with D = 2 and stress drop independent of seismic moment (?? = 0) produces a main shock with an ??-2 falloff, if the subevent areas fill the rupture area of the main shock. By equating subevents to "islands' of high stress of a random, self-similar stress field on a fault, I relate D to the scaling of strength on a fault, such that D = 2 - ??. Thus D = 2 corresponds to constant stress drop scaling (?? = 0) and scale-invariant fault strength. A self-similar model of aftershock rupture zones on a fault is used to determine the relationship between the b value, the size distribution of aftershock rupture zones, and the scaling of strength on a fault. -from Author
Stretching Safely and Effectively
... shown that stretching immediately before an event weakens hamstring strength. Instead of static stretching, try performing a " ... If you play soccer, for instance, stretch your hamstrings as you're more vulnerable to hamstring strains. ...
Investigation of strength characteristics of aluminum alloy under dynamic tension
NASA Astrophysics Data System (ADS)
Evstifeev, A. D.
2018-04-01
The study presents the results of experimental-theoretical analysis for aluminum alloy subjected to static and dynamic tension on samples of different types. The material was tested under initial coarse-grained (CG) and in ultrafine-grained (UFG) condition. The time dependence of the tensile strength is calculated using an incubation time fracture criterion based on a set of fixed constants of the material.
Development of an Atlas of Strengths and Establishment of an Appropriate Model Structure
1981-11-01
exercise hyperaemic response was greater for a given duration of contraction in water at 34 and 42*C than at lower temperatures. The rate of blood flow...Lambie, D.G. and Johnson, R.H. Ventilatory responses to sustained static forearm exercise in man. New Zealand Med. Journal; 1978, 88(618), 169...KEYWORDS: Static exercise , ventilatory responses . METHODS: Five healthy subjects were used to study the stimulus for hyperventilation which occurs during
Experimental data of the static behavior of reinforced concrete beams at room and low temperature
Mirzazadeh, M. Mehdi; Noël, Martin; Green, Mark F.
2016-01-01
This article provides data on the static behavior of reinforced concrete at room and low temperature including, strength, ductility, and crack widths of the reinforced concrete. The experimental data on the application of digital image correlation (DIC) or particle image velocimetry (PIV) in measuring crack widths and the accuracy and precision of DIC/PIV method with temperature variations when is used for measuring strains is provided as well. PMID:27158650
A viscoplastic shear-zone model for episodic slow slip events in oceanic subduction zones
NASA Astrophysics Data System (ADS)
Yin, A.; Meng, L.
2016-12-01
Episodic slow slip events occur widely along oceanic subduction zones at the brittle-ductile transition depths ( 20-50 km). Although efforts have been devoted to unravel their mechanical origins, it remains unclear about the physical controls on the wide range of their recurrence intervals and slip durations. In this study we present a simple mechanical model that attempts to account for the observed temporal evolution of slow slip events. In our model we assume that slow slip events occur in a viscoplastic shear zone (i.e., Bingham material), which has an upper static and a lower dynamic plastic yield strength. We further assume that the hanging wall deformation is approximated as an elastic spring. We envision the shear zone to be initially locked during forward/landward motion but is subsequently unlocked when the elastic and gravity-induced stress exceeds the static yield strength of the shear zone. This leads to backward/trenchward motion damped by viscous shear-zone deformation. As the elastic spring progressively loosens, the hanging wall velocity evolves with time and the viscous shear stress eventually reaches the dynamic yield strength. This is followed by the termination of the trenchward motion when the elastic stress is balanced by the dynamic yield strength of the shear zone and the gravity. In order to account for the zig-saw slip-history pattern of typical repeated slow slip events, we assume that the shear zone progressively strengthens after each slow slip cycle, possibly caused by dilatancy as commonly assumed or by progressive fault healing through solution-transport mechanisms. We quantify our conceptual model by obtaining simple analytical solutions. Our model results suggest that the duration of the landward motion increases with the down-dip length and the static yield strength of the shear zone, but decreases with the ambient loading velocity and the elastic modulus of the hanging wall. The duration of the backward/trenchward motion depends on the thickness, viscosity, and dynamic yield strength of the shear zone. Our model predicts a linear increase in slip with time during the landward motion and an exponential decrease in slip magnitude during the trenchward motion.
NASA Astrophysics Data System (ADS)
Belov, Nikolay; Yugov, Nikolay; Kopanitsa, Dmitry; Kopanitsa, Georgy; Yugov, Alexey; Kaparulin, Sergey; Plyaskin, Andrey; Kalichkina, Anna; Ustinov, Artyom
2016-01-01
When designing buildings with reinforced concrete that are planned to resist dynamic loads it is necessary to calculate this structural behavior under operational static and emergency impact and blast loads. Calculations of the structures under shock-wave loads can be performed by solving dynamic equations that do not consider static loads. Due to this fact the calculation of reinforced concrete frame under a simultaneous static and dynamic load in full 3d settings becomes a very non trivial and resource consuming problem. This problem can be split into two tasks. The first one is a shock-wave problem that can be solved using software package RANET-3, which allows solving the problem using finite elements method adapted for dynamic task. This method calculates strain-stress state of the material and its dynamic destruction, which is considered as growth and consolidation of micro defects under loading. On the second step the results of the first step are taken as input parameters for quasi static calculation of simultaneous static and dynamic load using finite elements method in AMP Civil Engineering-11.
Ivancevich, Nikolas M.; Dahl, Jeremy J.; Smith, Stephen W.
2010-01-01
Phase correction has the potential to increase the image quality of 3-D ultrasound, especially transcranial ultrasound. We implemented and compared 2 algorithms for aberration correction, multi-lag cross-correlation and speckle brightness, using static and moving targets. We corrected three 75-ns rms electronic aberrators with full-width at half-maximum (FWHM) auto-correlation lengths of 1.35, 2.7, and 5.4 mm. Cross-correlation proved the better algorithm at 2.7 and 5.4 mm correlation lengths (P < 0.05). Static cross-correlation performed better than moving-target cross-correlation at the 2.7 mm correlation length (P < 0.05). Finally, we compared the static and moving-target cross-correlation on a flow phantom with a skull casting aberrator. Using signal from static targets, the correction resulted in an average contrast increase of 22.2%, compared with 13.2% using signal from moving targets. The contrast-to-noise ratio (CNR) increased by 20.5% and 12.8% using static and moving targets, respectively. Doppler signal strength increased by 5.6% and 4.9% for the static and moving-targets methods, respectively. PMID:19942503
Ivancevich, Nikolas M; Dahl, Jeremy J; Smith, Stephen W
2009-10-01
Phase correction has the potential to increase the image quality of 3-D ultrasound, especially transcranial ultrasound. We implemented and compared 2 algorithms for aberration correction, multi-lag cross-correlation and speckle brightness, using static and moving targets. We corrected three 75-ns rms electronic aberrators with full-width at half-maximum (FWHM) auto-correlation lengths of 1.35, 2.7, and 5.4 mm. Cross-correlation proved the better algorithm at 2.7 and 5.4 mm correlation lengths (P < 0.05). Static cross-correlation performed better than moving-target cross-correlation at the 2.7 mm correlation length (P < 0.05). Finally, we compared the static and moving-target cross-correlation on a flow phantom with a skull casting aberrator. Using signal from static targets, the correction resulted in an average contrast increase of 22.2%, compared with 13.2% using signal from moving targets. The contrast-to-noise ratio (CNR) increased by 20.5% and 12.8% using static and moving targets, respectively. Doppler signal strength increased by 5.6% and 4.9% for the static and moving-targets methods, respectively.
49 CFR 238.201 - Scope/alternative compliance.
Code of Federal Regulations, 2012 CFR
2012-10-01
... structural standards of this subpart (§ 238.203—static end strength; § 238.205—anti-climbing mechanism; § 238... by § 238.21(c); (ii) Information, including detailed drawings and materials specifications...
49 CFR 238.201 - Scope/alternative compliance.
Code of Federal Regulations, 2013 CFR
2013-10-01
... structural standards of this subpart (§ 238.203—static end strength; § 238.205—anti-climbing mechanism; § 238... by § 238.21(c); (ii) Information, including detailed drawings and materials specifications...
49 CFR 238.201 - Scope/alternative compliance.
Code of Federal Regulations, 2014 CFR
2014-10-01
... structural standards of this subpart (§ 238.203—static end strength; § 238.205—anti-climbing mechanism; § 238... by § 238.21(c); (ii) Information, including detailed drawings and materials specifications...
49 CFR 238.201 - Scope/alternative compliance.
Code of Federal Regulations, 2011 CFR
2011-10-01
... structural standards of this subpart (§ 238.203—static end strength; § 238.205—anti-climbing mechanism; § 238... by § 238.21(c); (ii) Information, including detailed drawings and materials specifications...
Strength and stability of microbial plugs in porous media
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sarkar, A.K.; Sharma, M.M.; Georgiou, G.
1995-12-31
Mobility reduction induced by the growth and metabolism of bacteria in high-permeability layers of heterogeneous reservoirs is an economically attractive technique to improve sweep efficiency. This paper describes an experimental study conducted in sandpacks using an injected bacterium to investigate the strength and stability of microbial plugs in porous media. Successful convective transport of bacteria is important for achieving sufficient initial bacteria distribution. The chemotactic and diffusive fluxes are probably not significant even under static conditions. Mobility reduction depends upon the initial cell concentrations and increase in cell mass. For single or multiple static or dynamic growth techniques, permeability reductionmore » was approximately 70% of the original permeability. The stability of these microbial plugs to increases in pressure gradient and changes in cell physiology in a nutrient-depleted environment needs to be improved.« less
High Static Stability in the Mixed Layer Above the Extratropical Tropopause
NASA Astrophysics Data System (ADS)
Kunz, A.; Konopka, P.; Müller, R.; Schiller, C.
2008-12-01
A strong relationship between the static stability N2 and the strength of mixing in the mixed layer above the extratropical tropopause is evident from in-situ data observed during the SPURT aircraft campaigns. We present a method for quantifying the strength of mixing from O3/CO tracer correlations and we find that N2 is positively correlated with the strength of mixing. Age of air simulations with the CLaMS model reveal two different types of mixed regions. One type consisting of older airmasses with higher values of N2 which are created by radiative adjustment after a mixing event. These airmasses are within the TIL (Tropopause Inversion Layer), considering the TIL as part of the mixing layer. The second type comprises younger airmasses with somehow lower stratospheric N2 values within the mixing layer, because of recent intrusion processes due to the permeability or so-called mid-latitude-breaks associated with the jet stream. With the help of radiative transfer calculations we simulate the influence of trace gases such as O3 and H2O on the temperature gradient and thus on the static stability above the tropopause in the idealized case of non-mixing (L-shape) O3 and H2O profiles and in the reference case of mixed profiles. Within the altitude range of the SPURT campaigns the mean vertical SPURT profiles are used as reference, which are fitted to the HALOE climatological profiles above the UT/LS.
NASA Technical Reports Server (NTRS)
Littell, Justin D.; Binienda, Wieslaw K.; Arnold, William A.; Roberts, Gary D.; Goldberg, Robert K.
2010-01-01
The reliability of impact simulations for aircraft components made with triaxial-braided carbon-fiber composites is currently limited by inadequate material property data and lack of validated material models for analysis. Methods to characterize the material properties used in the analytical models from a systematically obtained set of test data are also lacking. A macroscopic finite element based analytical model to analyze the impact response of these materials has been developed. The stiffness and strength properties utilized in the material model are obtained from a set of quasi-static in-plane tension, compression and shear coupon level tests. Full-field optical strain measurement techniques are applied in the testing, and the results are used to help in characterizing the model. The unit cell of the braided composite is modeled as a series of shell elements, where each element is modeled as a laminated composite. The braided architecture can thus be approximated within the analytical model. The transient dynamic finite element code LS-DYNA is utilized to conduct the finite element simulations, and an internal LS-DYNA constitutive model is utilized in the analysis. Methods to obtain the stiffness and strength properties required by the constitutive model from the available test data are developed. Simulations of quasi-static coupon tests and impact tests of a represented braided composite are conducted. Overall, the developed method shows promise, but improvements that are needed in test and analysis methods for better predictive capability are examined.
Serefoglu, Abdullah; Sekir, Ufuk; Gür, Hakan; Akova, Bedrettin
2017-01-01
The aim of this study was to investigate if static and dynamic stretching exercises of the knee muscles (quadriceps and hamstring muscles) have any effects on concentric and eccentric isokinetic peak torques and electromyographic amplitudes (EMG) of the antagonist muscles. Twenty healthy male athletes (age between 18-30 years) voluntarily participated in this study. All of the subjects visited the laboratory to complete the following intervention in a randomized order on 5 separate days; (a) non-stretching (control), (b) static stretching of the quadriceps muscles, (c) static stretching of the hamstring muscles, (d) dynamic stretching of the quadriceps muscles, and (e) dynamic stretching of the hamstring muscles. Static stretching exercises either for the quadriceps or the hamstring muscles were carried out at the standing and sitting positions. Subjects performed four successive repetitions of each stretching exercises for 30 seconds in both stretching positions. Similar to static stretching exercises two different stretching modes were designed for dynamic stretching exercises. Concentric and eccentric isokinetic peak torque for the non-stretched antagonist quadriceps or hamstring muscles at angular velocities of 60°/sec and 240°/sec and their concurrent electromyographic (EMG) activities were measured before and immediately after the intervention. Isokinetic peak torques of the non-stretched agonist hamstring and quadriceps muscles did not represent any significant (p > 0.05) differences following static and dynamic stretching of the antagonist quadriceps and hamstring muscles, respectively. Similarly, the EMG activities of the agonist muscles exhibited no significant alterations (p > 0.05) following both stretching exercises of the antagonist muscles. According to the results of the present study it is possible to state that antagonist stretching exercises either in the static or dynamic modes do not affect the isokinetic peak torques and the EMG activities of the non-stretched agonist quadriceps or hamstring muscles. Key points The effects of dynamic stretching of the antagonist muscles on strength performance are unknown. We showed that both static and dynamic stretching of the antagonist muscle does not influence strength and EMG activities in the agonist muscles. Further research should focus on the effects of antagonist stretching using other techniques like PNF or ballistic stretching and/or different volumes of stretching. PMID:28344445
NASA Astrophysics Data System (ADS)
Le, Jia-Liang; Bažant, Zdeněk P.; Bazant, Martin Z.
2011-07-01
Engineering structures must be designed for an extremely low failure probability such as 10 -6, which is beyond the means of direct verification by histogram testing. This is not a problem for brittle or ductile materials because the type of probability distribution of structural strength is fixed and known, making it possible to predict the tail probabilities from the mean and variance. It is a problem, though, for quasibrittle materials for which the type of strength distribution transitions from Gaussian to Weibullian as the structure size increases. These are heterogeneous materials with brittle constituents, characterized by material inhomogeneities that are not negligible compared to the structure size. Examples include concrete, fiber composites, coarse-grained or toughened ceramics, rocks, sea ice, rigid foams and bone, as well as many materials used in nano- and microscale devices. This study presents a unified theory of strength and lifetime for such materials, based on activation energy controlled random jumps of the nano-crack front, and on the nano-macro multiscale transition of tail probabilities. Part I of this study deals with the case of monotonic and sustained (or creep) loading, and Part II with fatigue (or cyclic) loading. On the scale of the representative volume element of material, the probability distribution of strength has a Gaussian core onto which a remote Weibull tail is grafted at failure probability of the order of 10 -3. With increasing structure size, the Weibull tail penetrates into the Gaussian core. The probability distribution of static (creep) lifetime is related to the strength distribution by the power law for the static crack growth rate, for which a physical justification is given. The present theory yields a simple relation between the exponent of this law and the Weibull moduli for strength and lifetime. The benefit is that the lifetime distribution can be predicted from short-time tests of the mean size effect on strength and tests of the power law for the crack growth rate. The theory is shown to match closely numerous test data on strength and static lifetime of ceramics and concrete, and explains why their histograms deviate systematically from the straight line in Weibull scale. Although the present unified theory is built on several previous advances, new contributions are here made to address: (i) a crack in a disordered nano-structure (such as that of hydrated Portland cement), (ii) tail probability of a fiber bundle (or parallel coupling) model with softening elements, (iii) convergence of this model to the Gaussian distribution, (iv) the stress-life curve under constant load, and (v) a detailed random walk analysis of crack front jumps in an atomic lattice. The nonlocal behavior is captured in the present theory through the finiteness of the number of links in the weakest-link model, which explains why the mean size effect coincides with that of the previously formulated nonlocal Weibull theory. Brittle structures correspond to the large-size limit of the present theory. An important practical conclusion is that the safety factors for strength and tolerable minimum lifetime for large quasibrittle structures (e.g., concrete structures and composite airframes or ship hulls, as well as various micro-devices) should be calculated as a function of structure size and geometry.
Solid State Joining of Magnesium to Steel
NASA Astrophysics Data System (ADS)
Jana, Saumyadeep; Hovanski, Yuri; Pilli, Siva P.; Field, David P.; Yu, Hao; Pan, Tsung-Yu; Santella, M. L.
Friction stir welding and ultrasonic welding techniques were applied to join automotive magnesium alloys to steel sheet. The effect of tooling and process parameters on the post-weld microstructure, texture and mechanical properties was investigated. Static and dynamic loading were utilized to investigate the joint strength of both cast and wrought magnesium alloys including their susceptibility and degradation under corrosive media. The conditions required to produce joint strengths in excess of 75% of the base metal strength were determined, and the effects of surface coatings, tooling and weld parameters on weld properties are presented.
On collisional disruption - Experimental results and scaling laws
NASA Technical Reports Server (NTRS)
Davis, Donald R.; Ryan, Eileen V.
1990-01-01
Both homogeneous and inhomogeneous targets have been addressed by the present experimental consideration of the impact strengths, fragment sizes, and fragment velocities generated by cement mortar targets whose crushing strengths vary by an order of magnitude, upon impact of projectiles in the velocity range of 50-5700 m/sec. When combined with additional published data, dynamic impact strength is found to correlate with quasi-static material strengths for materials ranging in character from basalt to ice; two materials not following this trend, however, are weak mortar and clay targets. Values consistent with experimental results are obtainable with a simple scaling algorithm based on impact energy, material properties, and collisional strain rate.
Failure analysis of blots for diesel engine intercooler
NASA Astrophysics Data System (ADS)
Ren, Ping; Li, Zongquan; Wu, Jiangfei; Guo, Yibin; Li, Wanyou
2017-05-01
In diesel generating sets, it will lead to the abominable working condition if the fault couldn’t be recovered when the bolt of intercooler cracks. This paper aims at the fault of the blots of diesel generator intercooler and completes the analysis of the static strength and fatigue strength. Static intensity is checked considering blot preload and thermal stress. In order to obtain the thermal stress of the blot, thermodynamic of intercooler is calculated according to the measured temperature. Based on the measured vibration response and the finite element model, using dynamic load identification technique, equivalent excitation force of unit was solved. In order to obtain the force of bolt, the excitation force is loaded into the finite element model. By considering the thermal stress and preload as the average stress while the mechanical stress as the wave stress, fatigue strength analysis has been accomplished. Procedure of diagnosis is proposed in this paper. Finally, according to the result of intensity verification the fatigue failure is validation. Thereby, further studies are necessary to verification the result of the intensity analysis and put forward some improvement suggestion.
NASA Astrophysics Data System (ADS)
Nevskii, A. V.; Baldin, I. V.; Kudyakov, K. L.
2015-01-01
Adoption of modern building materials based on non-metallic fibers and their application in concrete structures represent one of the important issues in construction industry. This paper presents results of investigation of several types of raw materials selected: basalt fiber, carbon fiber and composite fiber rods based on glass and carbon. Preliminary testing has shown the possibility of raw materials to be effectively used in compressed concrete elements. Experimental program to define strength and deformability of compressed concrete elements with non-metallic fiber reinforcement and rod composite reinforcement included design, manufacture and testing of several types of concrete samples with different types of fiber and longitudinal rod reinforcement. The samples were tested under compressive static load. The results demonstrated that fiber reinforcement of concrete allows increasing carrying capacity of compressed concrete elements and reducing their deformability. Using composite longitudinal reinforcement instead of steel longitudinal reinforcement in compressed concrete elements insignificantly influences bearing capacity. Combined use of composite rod reinforcement and fiber reinforcement in compressed concrete elements enables to achieve maximum strength and minimum deformability.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gorynin, I.V.; Filatov, V.M.; Ignatov, V.A.
1986-07-01
The authors examine data on the effect of defects on the fracture resistance of high-pressure vessels and their models obtained within the framework of the HSST program. Results of internal-pressure tests of two types of vessels with a wall thickness of 152 mm made from forgings of steels SA508 and SA533, as well as small vessels with a wall thickness of 11.5 and 23mm made of steel SA533 are shown. The authors state that testing thick-walled welded high-pressure vessels and thin-walled vessels with surface defects of different sizes has demonstrated that there are substantial static-strength reserves in structures designed bymore » existing domestic and foreign standards on the strength of power-plant equipment. A correction was proposed for the presently used method of calculating the resistance of highpressure vessels to brittle fracture that allows for the dimensions of the defects in relation to the type of vessel, the manufacturing technology, and the method of inspection.« less
NASA Astrophysics Data System (ADS)
Pal, Suvajit; Ghosh, Manas
2014-07-01
We investigate the profiles of diagonal components of static and frequency-dependent third nonlinear (γxxxx and γyyyy) polarizability of repulsive impurity doped quantum dots. The dopant impurity potential takes a GAUSSIAN form. We have considered propagation of the dopant within an environment that damps the motion. The study focuses on role of damping strength on the diagonal components of both static and frequency-dependent third nonlinear polarizability of the doped system. The doped system is further exposed to an external electric field of given intensity. Damping subtly modulates the dot-impurity interaction and fabricates the polarizability components in a noticeable manner.
NASA Astrophysics Data System (ADS)
Nakamura, Yuki; Takahashi, Ryuji; Shoji, Eita; Kubo, Masaki; Tsukada, Takao; Uchikoshi, Masahito; Fukuyama, Hiroyuki
2017-12-01
The thermal conductivity of molten Cu-Co alloy with different compositions around the liquidus line temperature was measured by the periodic laser-heating method using an electromagnetic levitator superimposed with a static magnetic field to suppress convection in a levitated droplet sample. During the measurement, a static magnetic field of 10 T was applied to the levitated droplet. To confirm that the strength of the static magnetic field was sufficient to suppress convection in the droplet, numerical simulations were performed for the flow and thermal fields in an electromagnetically levitated droplet under a static magnetic field, and moreover, for the periodic laser-heating method to determine the thermal conductivity. It was found that the thermal conductivity of molten Cu-Co alloy increased gradually with increasing Cu composition up to 80 at. pct, beyond which it increased markedly and reached that of pure Cu. In addition, it was found that the composition dependence of the thermal conductivity can be explainable by the Wiedemann-Franz law.
Mechanical properties of a nitrogen-bearing austenitic steel during static and cycle deformation
NASA Astrophysics Data System (ADS)
Blinov, E. V.; Terent'ev, V. F.; Prosvirnin, D. V.
2016-09-01
The mechanical properties of a nitrogen-bearing corrosion-resistant austenitic steel containing 0.311% nitrogen have been studied during static and cyclic deformation. It is found that the steel having an ultimate strength of 930 MPa exhibits a plasticity of 33%. The endurance limit under repeated tension at 106 loading cycles is 400 MPa. The propagation of a fatigue crack at low and high amplitudes of cyclic deformation follows a ductile fracture mechanism with the presence of fatigue grooves.
Fatigue tests on big structure assemblies of concorde aircraft
NASA Technical Reports Server (NTRS)
Nguyen, V. P.; Perrais, J. P.
1972-01-01
Fatigue tests on structural assemblies of the Concorde supersonic transport aircraft are reported. Two main sections of the aircraft were subjected to pressure, mechanical load, and thermal static tests. The types of fatigue tests conducted and the results obtained are discussed. It was concluded that on a supersonic aircraft whose structural weight is a significant part of the weight analysis, many fatigue and static strength development tests should be made and fatigue and thermal tests of the structures are absolutely necessary.
Fatigue criterion for the design of rotating shafts under combined stress
NASA Technical Reports Server (NTRS)
Loewenthal, S. H.
1977-01-01
A revised approach to the design of transmission shafting which considers the flexure fatigue characteristics of the shaft material under combined cyclic bending and static torsion stress is presented. A fatigue failure relation, corroborated by published combined stress test data, is presented which shows an elliptical variation of reversed bending endurance strength with static torsional stress. From this elliptical failure relations, a design formula for computing the diameter of rotating solid shafts under the most common condition of loading is developed.
Effect of interfacial species on shear strength of metal-sapphire contacts
NASA Technical Reports Server (NTRS)
Pepper, S. V.
1979-01-01
The interfacial shear strength of the metal-insulator system has been studied by means of the coefficient of static friction of copper, nickel, or gold contacts on sapphire in ultrahigh vacuum. The effect on contact strength of adsorbed oxygen, nitrogen, chlorine, and carbon monoxide on the metal surfaces is reported. It was found that exposures as low as 1 L of O2 on Ni produced observable increases in contact strength, whereas exposures of 3 L of Cl2 lead to a decrease in contact strength. These results imply that submonolayer concentrations of these species at the interface of a thin Ni film on Al2O3 should affect film adhesion similarly. The atomic mechanism by which these surface or interface phases affect interfacial strength is not yet understood.
Fatigue strength of a magnesium MA2-1 alloy after equal-channel angular pressing
NASA Astrophysics Data System (ADS)
Terent'ev, V. F.; Dobatkin, S. V.; Prosvirnin, D. V.; Bannykh, I. O.; Kopylov, V. I.; Serebryany, V. N.
2010-09-01
The fatigue strength of a magnesium MA2-1 alloy is studied after annealing and equal-channel angular pressing (ECAP). The ultrafine-grained structure formed upon ECAP is shown to increase the plasticity of the material during static tension, to decrease the cyclic life to failure, and not to decrease the fatigue limit. The mechanisms of crack nucleation and growth during cyclic deformation are investigated.
Automated predesign of aircraft
NASA Technical Reports Server (NTRS)
Poe, C. C., Jr.; Kruse, G. S.; Tanner, C. J.; Wilson, P. J.
1978-01-01
Program uses multistation structural-synthesis to size and design box-beam structures for transport aircraft. Program optimizes static strength and scales up to satisfy fatigue and fracture criteria. It has multimaterial capability and library of materials properties, including advanced composites. Program can be used to evaluate impact on weight of variables such as materials, types of construction, structural configurations, minimum gage limits, applied loads, fatigue lives, crack-growth lives, initial crack sizes, and residual strengths.
Factors Influencing the Fatigue Strength of Materials
NASA Technical Reports Server (NTRS)
Bollenrath, F
1941-01-01
A number of factors are considered which influence the static and fatigue strength of materials under practical operating conditions as contrasted with the relations obtaining under conditions of the usual testing procedure. Such factors are interruptions in operation, periodically fluctuating stress limits and mean stresses with periodic succession of several groups and stress states, statistical changes and succession of stress limits and mean stresses, frictional corrosion at junctures, and notch effects.
Lindström, Paula J; Suni, Jaana H; Nygård, Clas-Håkan
2009-07-01
The importance of neuromuscular-type exercise (NME) has been recognized in recent recommendations for public health. However, the knowledge on associations and dose response of different types of leisure-time physical activity (LTPA) with musculoskeletal fitness and health is incomplete. This study evaluated the validity of the NME recommendation for public health introduced by the Physical Activity Pie. Engagement in LTPA and health-related fitness were assessed in 2 consecutive studies with the same adult population age 30 to 69 years (n = 575). Cross-sectional associations between different LTPA types and motor and musculoskeletal fitness were examined by logistic-regression models. Engagement in NME was associated with good static and dynamic balance and lower extremity strength. The highest odds ratios (OR) were found between brisk NME and static balance (most vs least fit OR = 2.39, moderate vs least fit OR = 1.94) and brisk NME and leg strength (more vs least fit OR = 2.10). Some associations were also found between brisk aerobic exercise and good balance. This cross-sectional study suggests that the recommendation for NME in the Physical Activity Pie is valid in terms of balance and leg strength, the 2 major fitness factors related to mobility functioning, especially among aging adults.
Ma, Yingfang; Acosta, Diana M; Whitney, Jon R; Podgornik, Rudolf; Steinmetz, Nicole F; French, Roger H; Parsegian, V Adrian
2015-01-01
Composition-gradient multi-angle static light scattering (CG-MALS) is an emerging technique for the determination of intermolecular interactions via the second virial coefficient B22. With CG-MALS, detailed studies of the second virial coefficient can be carried out more accurately and effectively than with traditional methods. In addition, automated mixing, delivery and measurement enable high speed, continuous, fluctuation-free sample delivery and accurate results. Using CG-MALS we measure the second virial coefficient of bovine serum albumin (BSA) in aqueous solutions at various values of pH and ionic strength of a univalent salt (NaCl). The systematic variation of the second virial coefficient as a function of pH and NaCl strength reveals the net charge change and the isoelectric point of BSA under different solution conditions. The magnitude of the second virial coefficient decreases to 1.13 x 10(-5) ml*mol/g(2) near the isoelectric point of pH 4.6 and 25 mM NaCl. These results illuminate the role of fundamental long-range electrostatic and van der Waals forces in protein-protein interactions, specifically their dependence on pH and ionic strength.
NASA Astrophysics Data System (ADS)
Hamrick, Joseph L., II
Thin rectangular samples of Ti-6Al-4V were damaged by four methods to represent foreign object damage found in turbine engine blades: (1) impact with 2 mm. and 5 mm diameter glass spheres at 305 m/s, (2) impact with 2 mm and 4 mm diameter steel spheres at 305 m/s, (3) quasi-static displacement controlled indentation using steel chisels with 1 mm, 2 nun and 5 mm diameter tips and (4) shearing notches with a 2 mm. diameter chisel point under a quasi-static loading condition. Finite element analysis was used to study the relationship between the stress state created by the plastic damage and the fatigue strength. A new method of quantifying the amount of plastic damage from multiple methods was developed. The fatigue strength required for crack initiation at 10E7 cycles was found to be a function of the total depth from the edge of the undeformed specimen up to the end of the plastically deformed zone. For damage depths less than 1750 mum, the reduction in fatigue strength is proportional to the depth of total damage. For depths > 1750 mum, there appears to be a threshold value of fatigue strength.
Lopes, Paula Born; Pereira, Gleber; Lodovico, Angélica; Bento, Paulo C B; Rodacki, André L F
2016-03-03
It has been proposed that muscle power is more effective to prevent falls than muscle force production capacity, as rapid reactions are required to allow the postural control. This study aimed to compare the effects of strength and power training on lower limb force, functional capacity, and static and dynamic balance in older female adults. Thirty-seven volunteered healthy women had been allocated into the strength-training group (n = 14; 69 ± 7.3 years, 155 ± 5.6 cm, 72 ± 9.7 kg), the power-training group (n = 12; 67 ± 7.4 years, 153 ± 5.5 cm, 67.2 ± 7 kg), and control group (n = 11; 65 ± 3.1 years, 154 ± 5.6 cm, 70.9 ± 3 kg). After 12 weeks of training, the strength-training and power-training groups increased significantly maximum dynamic strength (29% and 27%), isometric strength (26% and 37%), and step total time (13% and 14%, dynamic balance), respectively. However, only the power-training group increased the rate of torque development (55%) and the functional capacity in 30-second chair stand (22%) and in time up and go tests (-10%). Empirically, power training may reduce the risk of injuries due to lower loads compared to strength training, and consequently, the physical effort demand during the training session is lower. Therefore, power training should be recommended as attractive training stimuli to improve lower limb force, functional capacity, and postural control of older female adults.
Hatano, Genki; Suzuki, Shigeyuki; Matsuo, Shingo; Kataura, Satoshi; Yokoi, Kazuaki; Fukaya, Taizan; Fujiwara, Mitsuhiro; Asai, Yuji; Iwata, Masahiro
2017-12-18
Hamstring injuries are common, and lack of hamstring flexibility may predispose to injury. Static stretching increases range of motion (ROM) but also results in reduced muscle strength after stretching. The effects of stretching on the hamstring muscles and the duration of these effects remain unclear. To determine the effects of static stretching on the hamstrings and the duration of these effects. Randomized crossover study. University laboratory. Twenty-four healthy volunteers. We measured the torque-angle relationship (ROM, passive torque (PT) at the onset of pain, and passive stiffness) and isometric muscle force using an isokinetic dynamometer. After a 60-minute rest, the ROM of the dynamometer was set at maximum tolerable intensity; this position was maintained for 300 seconds while static passive torque (SPT) was measured continuously. We remeasured the torque-angle relationship and isometric muscle force after rest periods of 10, 20, and 30 minutes. Change in SPT during stretching; changes in ROM, PT at the onset of pain, passive stiffness, and isometric muscle force before stretching compared with 10, 20, and 30 minutes after stretching. SPT decreased significantly during stretching. Passive stiffness decreased significantly 10 and 20 minutes after stretching, but there was no significant pre- vs. post-stretching difference after 30 minutes. PT at the onset of pain and ROM increased significantly after stretching at all rest intervals, while isometric muscle force decreased significantly after all rest intervals. The effect of static stretching on passive stiffness of the hamstrings was not maintained as long as the changes in ROM, stretch tolerance, and isometric muscle force. Therefore, frequent stretching is necessary to improve the viscoelasticity of the muscle-tendon unit. Muscle force was decreased for 30 minutes after stretching; this should be considered prior to activities requiring maximal muscle strength.
Coagulation of grains in static and collapsing protostellar clouds
NASA Technical Reports Server (NTRS)
Weidenschilling, S. J.; Ruzmaikina, T. V.
1994-01-01
We simulate collisional evolution of grains in dense turbulent molecular cloud cores (or Bok globules) in static equilibrium and free-fall collapse, assuming spherical symmetry. Relative velocities are due to thermal motions, differential settling, and turbulence, with the latter dominant for sonic turbulence with an assumed Kolmogorov spectrum. Realistic criteria are used to determine outcomes of collisions (coagulation vs. destruction) as functions of particle size and velocity. Results are presented for a variety of cloud parameters (radial density profile, turbulent velocity) and particle properties (density, impact strength). Results are sensitive to the assumed mechanical properties (density and impact strength) of grain aggregates. Particle growth is enhanced if aggregates have low density or fractal structures. On a timescale of a few Myr, an initial population of 0.1 micrometers grains may produce dense compact particles approximately 1 micrometer in size, or fluffy aggregates approximately 100 micrometers. For impact strengths less than or equal to 10(exp 6) ergs/g, a steady state is reached between coagulation of small grains and collisional disruption of larger aggregates. Formation of macroscopic aggregates requires high mechanical strengths and low aggregate densities. We assume sonic turbulence during collapse, with varied eddy size scales determining the dissipation rate or turbulence strength. The degree of collisional evolution during collapse is sensitive to the assumed small-scale structure (inner sc ale) of the turbulence. Weak turbulence results in few collisions and preserves the precollapse particle size distribution with little change. Strong turbulence tends to produce net destruction, rather than particle growth, during infall, unless inpact strengths are greater than 10(exp 6)ergs/g.
NASA Astrophysics Data System (ADS)
Kendrick, Jackie Evan; Smith, Rosanna; Sammonds, Peter; Meredith, Philip G.; Dainty, Matthew; Pallister, John S.
2013-07-01
Stratovolcanoes and lava domes are particularly susceptible to sector collapse resulting from wholesale rock failure as a consequence of decreasing rock strength. Here, we provide insights into the influence of thermal and cyclic stressing on the strength and mechanical properties of volcanic rocks. Specifically, this laboratory study examines the properties of samples from Mount St. Helens; chosen because its strength and stability have played a key role in its history, influencing the character of the infamous 1980 eruption. We find that thermal stressing exerts different effects on the strengths of different volcanic units; increasing the heterogeneity of rocks in situ. Increasing the uniaxial compressive stress generates cracking, the timing and magnitude of which was monitored via acoustic emission (AE) output during our experiments. AEs accelerated in the approach to failure, sometimes following the pattern predicted by the failure forecast method (Kilburn 2003). Crack damage during the experiments was tracked using the evolving static Young's modulus and Poisson's ratio, which represent the quasi-static deformation in volcanic edifices more accurately than dynamic elastic moduli which are usually implemented in volcanic models. Cyclic loading of these rocks resulted in a lower failure strength, confirming that volcanic rocks may be weakened by repeated inflation and deflation of the volcanic edifice. Additionally, volcanic rocks in this study undergo significant elastic hysteresis; in some instances, a material may fail at a stress lower than the peak stress which has previously been endured. Thus, a volcanic dome repeatedly inflated and deflated may progressively weaken, possibly inducing failure without necessarily exceeding earlier conditions.
Construct validity of functional capacity tests in healthy workers
2013-01-01
Background Functional Capacity (FC) is a multidimensional construct within the activity domain of the International Classification of Functioning, Disability and Health framework (ICF). Functional capacity evaluations (FCEs) are assessments of work-related FC. The extent to which these work-related FC tests are associated to bio-, psycho-, or social factors is unknown. The aims of this study were to test relationships between FC tests and other ICF factors in a sample of healthy workers, and to determine the amount of statistical variance in FC tests that can be explained by these factors. Methods A cross sectional study. The sample was comprised of 403 healthy workers who completed material handling FC tests (lifting low, overhead lifting, and carrying) and static work FC tests (overhead working and standing forward bend). The explainable variables were; six muscle strength tests; aerobic capacity test; and questionnaires regarding personal factors (age, gender, body height, body weight, and education), psychological factors (mental health, vitality, and general health perceptions), and social factors (perception of work, physical workloads, sport-, leisure time-, and work-index). A priori construct validity hypotheses were formulated and analyzed by means of correlation coefficients and regression analyses. Results Moderate correlations were detected between material handling FC tests and muscle strength, gender, body weight, and body height. As for static work FC tests; overhead working correlated fair with aerobic capacity and handgrip strength, and low with the sport-index and perception of work. For standing forward bend FC test, all hypotheses were rejected. The regression model revealed that 61% to 62% of material handling FC tests were explained by physical factors. Five to 15% of static work FC tests were explained by physical and social factors. Conclusions The current study revealed that, in a sample of healthy workers, material handling FC tests were related to physical factors but not to the psychosocial factors measured in this study. The construct of static work FC tests remained largely unexplained. PMID:23758870
Evaluation of conductive concrete for anti-static flooring applications
NASA Astrophysics Data System (ADS)
Yehia, Sherif; Qaddoumi, Nasser; Hassan, Mohamed; Swaked, Bassam
2015-04-01
Static electricity, exchange of electrons, and retention of charge between any two materials due to contact and separation are affected by the condition of the materials being nonconductive or insulated from ground. Several work environments, such as electronics industry, hospitals, offices, and computer rooms all require electro-static discharge (ESD) mitigation. Carpet Tile, Carpet Broadloom, Vinyl Tile, Vinyl sheet, Epoxy and Rubber are examples of existing flooring systems in the market. However, each system has its advantages and limitations. Conductive concrete is a relatively new material technology developed to achieve high electrical conductivity and high mechanical strength. The conductive concrete material can be an economical alternative for these ESD flooring systems. In this paper, the effectiveness of conductive concrete as an anti-static flooring system was evaluated. The initial results indicated that the proposed conductive concrete flooring and ground system met the acceptance criteria stated by ASTM F150.
NASA Astrophysics Data System (ADS)
Kannan, Manigandan
The history of steel dates back to the 17th century and has been instrumental in the betterment of every aspect of our lives ever since, from the pin that holds the paper together to the Automobile that takes us to our destination steel touches everyone every day. Path breaking improvements in manufacturing techniques, access to advanced machinery and understanding of factors like heat treatment, corrosion resistance have aided in the advancement in the properties of steel in the last few years. In this dissertation document, the results of a study aimed at the influence of alloy chemistry, processing and influence of the quasi static and fatigue behavior of seven alloy steels is discussed. The microstructure of the as-received steel was examined and characterized for the nature and morphology of the grains and the presence of other intrinsic features in the microstructure. The tensile, cyclic fatigue and bending fatigue tests were done on a fully automated closed-loop servo-hydraulic test machine at room temperature. The failed samples of high strength steels were examined in a scanning electron microscope for understanding the fracture behavior, especially the nature of loading be it quasi static, cyclic fatigue or bending fatigue . The quasi static and cyclic fatigue fracture behavior of the steels examined coupled with various factors contributing to failure are briefly discussed in light of the conjoint and mutually interactive influences of intrinsic microstructural effects, nature of loading, and stress (load)-deformation-microstructural interactions.
Laboratory tests for hot-mix asphalt characterization in Virginia.
DOT National Transportation Integrated Search
2005-01-01
This project reviewed existing laboratory methods for accurately describing the constitutive behavior of the mixes used in the Commonwealth of Virginia. Indirect tensile (IDT) strength, resilient modulus, static creep in the IDT and uniaxial modes, f...
NASA Astrophysics Data System (ADS)
Shao, Yi; Liu, Chenxi; Yue, Tengxiao; Liu, Yongchang; Yan, Zesheng; Li, Huijun
2018-05-01
The 00Cr12 ferritic stainless steel samples were isothermally held at different temperatures in the range of 700 °C to 1000 °C to investigate the effect of static recrystallization and precipitation on mechanical properties, such as microhardness, tensile strength, and yield strength. The results show that the formation of the fine recrystallized grain, as well as precipitation, coarsening, and dissolution of the second-phase particles, influences the mechanical properties remarkably. The fine recrystallized grain can provide a positive grain boundary-strengthening effect in the sample under a relatively high holding temperature. Coarsening and dissolution of M23C6 result in partial depletion of precipitate hardening. In contrast, the size and number density of MX particles are almost constant, regardless of the holding temperature; therefore, it can provide a better precipitation-hardening effect.
Relationships between microstructure and mechanical properties of Ti-5Al-5Mo-5V-3Cr-1Zr alloy
NASA Astrophysics Data System (ADS)
Li, Z. Y.; Wu, G. Q.; Huang, Z.
2018-03-01
Through a statistical, quantitative analysis on microstructure of Ti-5Al-5Mo-5V-3Cr-1Zr (Ti55531) alloy, the relationships between microstructure and mechanical properties and heat treatment temperatures were investigated. The results show that in Widmanstätten structure, the size of β grain is greatly increased with increasing annealing temperature. Static toughness is related to grain boundary alpha phase discontinuity, the tensile strength is related to acicular alpha phase interface length and acicular alpha phase proportion. In duplex microstructure, the tensile strength is related to the equiaxed alpha proportion. Elongation, static toughness and crack forming work are related to the equiaxed alpha proportion and negatively related to secondary phase proportion. The microstructure can be described quantitatively and the mechanical properties can be predicted by analysis of microstructure.
High strain rate properties of off-axis composite laminates, part 2
NASA Technical Reports Server (NTRS)
Daniel, I. M.
1991-01-01
Unidirectional off-axis graphite/epoxy and graphite/S-glass/epoxy laminates were characterized in uniaxial tension at strain rates ranging from quasi-static to over 500 s(sup -1). Laminate ring specimens were loaded by internal pressure with the tensile stress at 22.5, 30, and 45 degrees relative to the fiber direction. Results were presented in the form of stress-strain curves to failure. Properties determined included moduli, Poisson's ratios, strength, and ultimate strain. In all three laminates of both materials the modulus and strength increase sharply with strain rate, reaching values roughly 100, 150, and 200 percent higher than corresponding static values for the 22.5(sub 8), 30(sub 8), and 45(sub 8) degree laminates, respectively. In the case of ultimate strain no definite trends could be established, but the maximum deviation from the average of any value for any strain rate was less than 18 percent.
NASA Technical Reports Server (NTRS)
1981-01-01
The development of several types of graphite/polyimide (GR/PI) bonded and bolted joints is reported. The program consists of two concurrent tasks: (1) design and test of specific built up attachments; and (2) evaluation of standard advanced bonded joint concepts. A data base for the design and analysis of advanced composite joints for use at elevated temperatures (561K (550 deg F)) to design concepts for specific joining applications, and the fundamental parameters controlling the static strength characteristics of such joints are evaluated. Data for design and build GR/PI of lightly loaded flight components for advanced space transportation systems and high speed aircraft are presented. Results for compression and interlaminar shear strengths of Celion 6000/PMR-15 laminates are given. Static discriminator test results for type 3 and type 4 bonded and bolted joints and final joint designs for TASK 1.4 scale up fabrication and testing are presented.
Fatigue Lifetime of Ceramic Matrix Composites at Intermediate Temperature by Acoustic Emission
Racle, Elie; Godin, Nathalie; Reynaud, Pascal; Fantozzi, Gilbert
2017-01-01
The fatigue behavior of a Ceramic Matrix Composite (CMC) at intermediate temperature under air is investigated. Because of the low density and the high tensile strength of CMC, they offer a good technical solution to design aeronautical structural components. The aim of the present study is to compare the behavior of this composite under static and cyclic loading. Comparison between incremental static and cyclic tests shows that cyclic loading with an amplitude higher than 30% of the ultimate tensile strength has significant effects on damage and material lifetimes. In order to evaluate the remaining lifetime, several damage indicators, mainly based on the investigation of the liberated energy, are introduced. These indicators highlight critical times or characteristic times, allowing an evaluation of the remaining lifetime. A link is established with the characteristic time around 25% of the total test duration and the beginning of the matrix cracking during cyclic fatigue. PMID:28773019
NASA Astrophysics Data System (ADS)
Shirko, A. V.; Kamlyuk, A. N.; Drobysh, A. S.; Spiglazov, A. V.
2017-05-01
A strength and stiffness comparative analysis has been made of a concrete slab reinforced with composite-reinforcement rods and a slab reinforced with steel rods. The stress-strain state has been assessed for both versions of reinforcement of the slab. The stress-strain state was determined under the action of only static load and with subsequent application of temperature fields, i.e., under standard-fire conditions. It has been shown that the fire resistance of the slab with a composite reinforcement turns out to be 1.6 higher as far as the bearing capacity is concerned, than the fire resistance of the slab with a steel reinforcement, although the initial deflection due to the action of only static load for the slab reinforced with composite rods exceeds six to seven times the deflection of the slab reinforced with steel rods.
Paillard, Thierry
2017-01-01
Although motor output of the postural function clearly influences postural performance in young and older subjects, no relationship has been formally established between them. However, the relationship between lower-extremity muscle strength/power and postural performance is often pointed out, especially in older subjects. In fact, the influence of motor output may vary according to the postural condition considered (e.g., static, dynamic, challenging, disturbing). In static postural condition, there may be a relationship between lower-extremity muscle strength and postural performance when the value of muscle strength is below a certain threshold in older subjects. Above this threshold of muscle strength, this relationship may disappear. In dynamic postural condition, lower-extremity muscle power could facilitate compensatory postural actions, limiting induced body imbalance likely to generate falls in older subjects. In young subjects, there could be a relationship between very early rapid torque of the leg extensor muscles and postural performance. In the case of postural reaction to (external) perturbations, a high percentage of type II muscle fibers could be associated with the ability to react quickly to postural perturbations in young subjects, while it may enable a reduction in the risk of falls in older subjects. In practice, in older subjects, muscle strength and/or power training contributes to reducing the risk of falls, as well as slowing down the involution of muscle typology regarding type II muscle fibers. PMID:28861000
Paillard, Thierry
2017-01-01
Although motor output of the postural function clearly influences postural performance in young and older subjects, no relationship has been formally established between them. However, the relationship between lower-extremity muscle strength/power and postural performance is often pointed out, especially in older subjects. In fact, the influence of motor output may vary according to the postural condition considered (e.g., static, dynamic, challenging, disturbing). In static postural condition, there may be a relationship between lower-extremity muscle strength and postural performance when the value of muscle strength is below a certain threshold in older subjects. Above this threshold of muscle strength, this relationship may disappear. In dynamic postural condition, lower-extremity muscle power could facilitate compensatory postural actions, limiting induced body imbalance likely to generate falls in older subjects. In young subjects, there could be a relationship between very early rapid torque of the leg extensor muscles and postural performance. In the case of postural reaction to (external) perturbations, a high percentage of type II muscle fibers could be associated with the ability to react quickly to postural perturbations in young subjects, while it may enable a reduction in the risk of falls in older subjects. In practice, in older subjects, muscle strength and/or power training contributes to reducing the risk of falls, as well as slowing down the involution of muscle typology regarding type II muscle fibers.
Plastics as structural materials for aircraft
NASA Technical Reports Server (NTRS)
Kline, G M
1937-01-01
The purpose here is to consider the mechanical characteristics of reinforced phenol-formaldehyde resin as related to its use as structural material for aircraft. Data and graphs that have appeared in the literature are reproduced to illustrate the comparative behavior of plastics and materials commonly used in aircraft construction. Materials are characterized as to density, static strength, modulus of elasticity, resistance to long-time loading, strength under repeated impact, energy absorption, corrosion resistance, and ease of fabrication.
Limiting electric fields of HVDC overhead power lines.
Leitgeb, N
2014-05-01
As a consequence of the increased use of renewable energy and the now long distances between energy generation and consumption, in Europe, electric power transfer by high-voltage (HV) direct current (DC) overhead power lines gains increasing importance. Thousands of kilometers of them are going to be built within the next years. However, existing guidelines and regulations do not yet contain recommendations to limit static electric fields, which are one of the most important criteria for HVDC overhead power lines in terms of tower design, span width and ground clearance. Based on theoretical and experimental data, in this article, static electric fields associated with adverse health effects are analysed and various criteria are derived for limiting static electric field strengths.
NASA Technical Reports Server (NTRS)
Lopez, O. F.
1984-01-01
Part of the NASA/ACEE Program was to determine the effect of long-term durability testing on the residual strength of graphite-epoxy cover panel and spar components of the Lockheed L-1011 aircraft vertical stabilizer. The results of these residual strength tests are presented herein. The structural behavior and failure mode of both cover panel and spar components were addressed, and the test results obtained were compared with the static test results generated by Lockheed. The effect of damage on one of the spar specimens was described.
NASA Astrophysics Data System (ADS)
Kumar, Ashok; Thakkar, Ajit J.
2017-03-01
Dipole oscillator strength distributions for Br2 and BrCN are constructed from photoabsorption cross-sections combined with constraints provided by the Kuhn-Reiche-Thomas sum rule, the high-energy behavior of the dipole-oscillator-strength density and molar refractivity data when available. The distributions are used to predict dipole sum rules S (k) , mean excitation energies I (k) , and van der Waals C6 coefficients. Coupled-cluster calculations of the static dipole polarizabilities of Br2 and BrCN are reported for comparison with the values of S (- 2) extracted from the distributions.
Practical approach to subject-specific estimation of knee joint contact force.
Knarr, Brian A; Higginson, Jill S
2015-08-20
Compressive forces experienced at the knee can significantly contribute to cartilage degeneration. Musculoskeletal models enable predictions of the internal forces experienced at the knee, but validation is often not possible, as experimental data detailing loading at the knee joint is limited. Recently available data reporting compressive knee force through direct measurement using instrumented total knee replacements offer a unique opportunity to evaluate the accuracy of models. Previous studies have highlighted the importance of subject-specificity in increasing the accuracy of model predictions; however, these techniques may be unrealistic outside of a research setting. Therefore, the goal of our work was to identify a practical approach for accurate prediction of tibiofemoral knee contact force (KCF). Four methods for prediction of knee contact force were compared: (1) standard static optimization, (2) uniform muscle coordination weighting, (3) subject-specific muscle coordination weighting and (4) subject-specific strength adjustments. Walking trials for three subjects with instrumented knee replacements were used to evaluate the accuracy of model predictions. Predictions utilizing subject-specific muscle coordination weighting yielded the best agreement with experimental data; however this method required in vivo data for weighting factor calibration. Including subject-specific strength adjustments improved models' predictions compared to standard static optimization, with errors in peak KCF less than 0.5 body weight for all subjects. Overall, combining clinical assessments of muscle strength with standard tools available in the OpenSim software package, such as inverse kinematics and static optimization, appears to be a practical method for predicting joint contact force that can be implemented for many applications. Copyright © 2015 Elsevier Ltd. All rights reserved.
Practical approach to subject-specific estimation of knee joint contact force
Knarr, Brian A.; Higginson, Jill S.
2015-01-01
Compressive forces experienced at the knee can significantly contribute to cartilage degeneration. Musculoskeletal models enable predictions of the internal forces experienced at the knee, but validation is often not possible, as experimental data detailing loading at the knee joint is limited. Recently available data reporting compressive knee force through direct measurement using instrumented total knee replacements offer a unique opportunity to evaluate the accuracy of models. Previous studies have highlighted the importance of subject-specificity in increasing the accuracy of model predictions; however, these techniques may be unrealistic outside of a research setting. Therefore, the goal of our work was to identify a practical approach for accurate prediction of tibiofemoral knee contact force (KCF). Four methods for prediction of knee contact force were compared: (1) standard static optimization, (2) uniform muscle coordination weighting, (3) subject-specific muscle coordination weighting and (4) subject-specific strength adjustments. Walking trials for three subjects with instrumented knee replacements were used to evaluate the accuracy of model predictions. Predictions utilizing subject-specific muscle coordination weighting yielded the best agreement with experimental data, however this method required in vivo data for weighting factor calibration. Including subject-specific strength adjustments improved models’ predictions compared to standard static optimization, with errors in peak KCF less than 0.5 body weight for all subjects. Overall, combining clinical assessments of muscle strength with standard tools available in the OpenSim software package, such as inverse kinematics and static optimization, appears to be a practical method for predicting joint contact force that can be implemented for many applications. PMID:25952546
NASA Astrophysics Data System (ADS)
Ren, Yu; Zhou, Shimeng; Luo, Wenbo; Xue, Zhiyong; Zhang, Yajing
2018-03-01
Bimodal microstructures with primary α-phase volume fractions ranging from 14.3% to 57.1% were gained in Ti-6Al-4V (Ti-64) alloy through annealed in two-phase region at various temperatures below the β-transus point. Then the influence of the primary α-phase volume fraction on the mechanical properties of Ti-64 were studied. The results show that, at room temperature and a strain rate of 10‑3 s‑1, the yield stress decreases but the fracture strain augments with added primary α-phase volume fraction. The equiaxed primary α-phase possesses stronger ability to coordinate plastic deformation, leading to the improvement of the ductile as well as degradation of the strength of Ti-64 with higher primary α-phase volume fraction. As the temperature goes up to 473 K, the quasi-static yield stress and ultimate strength decrease first and then increase with the incremental primary α-phase volume fraction, due to the interaction between the work hardening and the softening caused by the DRX and the growth of the primary α-phase. At room temperature and a strain rate of 3×103 s‑1, the varying pattern of strength with the primary α-phase volume fraction resembles that at a quasi-static strain rate. However, the flow stress significantly increases but the strain-hardening rate decreases compared to those at quasi-static strain rate due to the competition between the strain rate hardening and the thermal softening during dynamic compression process.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Belov, Nikolay, E-mail: n.n.belov@mail.ru; Kopanitsa, Dmitry, E-mail: kopanitsa@mail.ru; Yugov, Alexey, E-mail: yugalex@mail.ru
When designing buildings with reinforced concrete that are planned to resist dynamic loads it is necessary to calculate this structural behavior under operational static and emergency impact and blast loads. Calculations of the structures under shock-wave loads can be performed by solving dynamic equations that do not consider static loads. Due to this fact the calculation of reinforced concrete frame under a simultaneous static and dynamic load in full 3d settings becomes a very non trivial and resource consuming problem. This problem can be split into two tasks. The first one is a shock-wave problem that can be solved usingmore » software package RANET-3, which allows solving the problem using finite elements method adapted for dynamic task. This method calculates strain-stress state of the material and its dynamic destruction, which is considered as growth and consolidation of micro defects under loading. On the second step the results of the first step are taken as input parameters for quasi static calculation of simultaneous static and dynamic load using finite elements method in AMP Civil Engineering-11.« less
NASA Astrophysics Data System (ADS)
Park, Y.; Ree, J. H.; Hirose, T.
2016-12-01
Mirror-like fault surfaces (or fault mirror: FM) have recently been suggested as a precursor of unstable slip (thus indicative of seismic slip). Frictional aging of fault surfaces (increase in static friction during interseismic period) is a common phenomenon of fault surfaces, resulting from increase in contact area or in bond strength between asperities with time. Despite the importance of FM in earthquake faulting, the frictional-aging behavior of FM has never been studied. To understand the frictional-aging behavior of FM, slide-hold-slide friction experiments were done on carbonate FM and powdered gouge of former carbonate FM (PG hereafter) using low-to-high-velocity-rotary-shear apparatus, at a slip rate of 1 μm s-1 a normal stress of 1.5 MPa, room temperature and room humidity condition. The sheared PG specimens showed a logarithmic positive relationship between static friction and holding time, consistent with Dieterich-type healing behavior. In contrast, the sheared FM specimens showed little effect of holding time on static friction. The slip surface of FM specimens consists of densely-packed and sintered nano-particles while that of PG specimens is composed of loose nano-particles. It has been known that yield strength of a material increases dramatically with size-decreasing grains being nano-particles. Since FM is a layer of densely-packed and sintered nanoparticles, enhanced strength of FM may inhibit growth of real contact area of fault surfaces during hold time. Furthermore, sintered particles composing FM have less pore space than loose gouge layer, and thus there would be a less chance of strengthening by pore space reduction, inter-particle meniscus formation or water adsorption onto the particles surface in the FM layer. Our preliminary result suggests that carbonate FM's may impede the recovery of fault strength during interseismic period, resulting in less possibility of earthquake nucleation. Reduced frictional healing may be a common phenomenon of FM's in other materials too once they are composed of sintered nano-particles.
NASA Astrophysics Data System (ADS)
Kruszka, L.; Magier, M.
2012-08-01
The main aim of studies on dynamic behaviour of construction materials at high strain rates is to determine the variation of mechanical properties (strength, plasticity) in function of the strain rate and temperature. On the basis of results of dynamic tests on the properties of constructional materials the constitutive models are formulated to create numerical codes applied to solve constructional problems with computer simulation methods. In the case of military applications connected with the phenomena of gunshot and terminal ballistics it's particularly important to develop a model of strength and armour penetration with KE projectile founded on reliable results of dynamic experiments and constituting the base for further analyses and optimization of projectile designs in order to achieve required penetration depth. Static and dynamic results of strength investigations of the EN AW-7012 aluminium alloy (sabot) and tungsten alloy (penetrator) are discussed in this paper. Static testing was carried out with the INSTRON testing machine. Dynamic tests have been conducted using the split Hopkinson pressure bars technique at strain rates up to 1,2 ṡ 104s-1 (for aluminium alloy) and 6 ṡ 103s-1 (for tungsten alloy).
NASA Astrophysics Data System (ADS)
Lefebvre, L. P.; Baril, E.
2010-05-01
Porous metals have been used in various orthopedic applications as coating to promote implant fixation or as scaffolds for bone reconstruction. Since these materials were up to recently only used as thin coating (i.e. sintered beads or mesh) and not available into shapes adequate for detailed characterization, the effect of the structure on the static and dynamic properties of these materials has not been widely reported in the literature. This paper presents the effect of the porosity (49.3-66.7%) on the static and dynamic properties of titanium foams produced with a powder metallurgy process. All materials exhibited compression curves with three stages, typical of ductile porous materials. When the porosity level increases, the materials become more brittle. The compression yield strength increases while the modulus is more or less unaffected when the porosity increases from 49.3 to 66.7% and does not follow the power law model accepted for porous medium. The shear strength/adhesion with dense substrates increases with density and is proportional to the compression yield strength. The fatigue limit is not directly link with the porosity. The discrepancies observed are attributed to differences in the structure as the porosity increases.
Strong Magnetic Field Characterisation
2012-04-01
an advertised surface field of approximately 0.5 T were used to supply the static magnetic field source. The disc magnet had a diameter of 50 mm and... colour bar indicates the magnetic field strength set to an arbitrary 0.25 T. The white area has a field >0.25 T. The size of the arrow is proportional...9 shows the magnetic field strength along a slice in the XZ plane. The colours represent the total UNCLASSIFIED 10 UNCLASSIFIED DSTO-TR-2699
Preliminary results from fatigue tests with reference to operational statistics
NASA Technical Reports Server (NTRS)
Gassner, E
1950-01-01
Simple elements were subjected to repeated loads of variable ampliture, chosen in such a way that they may be regarded as approximations to the operational loads (gust and maneuver) experienced by an airplane. The effect of varying some parameters was investigated briefly. Some discussion is given of the question whether a design according to current (1938 German) requirements for static strength is adequate from the fatigue point of view, and existing requirements on fatigue strength are compared,
Dynamic and Quasi Static Mechanical Properties of Comp B and TNT.
1985-11-01
strains Explosives RDX pArticle size TNT puriety TNT puriety Wax Brittle Voids Poroaity Artillery launch Young’s modulus Polsson’s ratio Cracks...the yield strength under the confined condition of the triaxial test Is larger than the uniaxial coapres- sive strength as expected for brittle ...TNT both for a reference for Coup B and because TNT is an Important explisive itself. SComposition B and TNT are very brittle materials and are much
Correlation between strength properties in standard test specimens and molded phenolic parts
NASA Technical Reports Server (NTRS)
Turner, P S; Thomason, R H
1946-01-01
This report describes an investigation of the tensile, flexural, and impact properties of 10 selected types of phenolic molding materials. The materials were studied to see in what ways and to what extent their properties satisfy some assumptions on which the theory of strength of materials is based: namely, (a) isotropy, (b) linear stress-strain relationship for small strains, and (c) homogeneity. The effect of changing the dimensions of tensile and flexural specimens and the span-depth ratio in flexural tests were studied. The strengths of molded boxes and flexural specimens cut from the boxes were compared with results of tests on standard test specimens molded from the respective materials. The nonuniformity of a material, which is indicated by the coefficient of variation, affects the results of tests made with specimens of different sizes and tests with different methods of loading. The strength values were found to depend on the relationship between size and shape of the molded specimen and size and shape of the fillers. The most significant variations observed within a diversified group of materials were found to depend on the orientation of fibrous fillers. Of secondary importance was the dependence of the variability of test results on the pieces of filler incorporated into the molding powder as well as on the size of the piece. Static breaking strength tests on boxes molded from six representative phenolic materials correlated well with falling-ball impact tests on specimens cut from molded flat sheets. Good correlation was obtained with Izod impact tests on standard test specimens prepared from the molding materials. The static breaking strengths of the boxes do not correlate with the results of tensile or flexural tests on standard specimens.
Update on alternative occupant volume testing
DOT National Transportation Integrated Search
2010-04-27
This paper describes the conduct of the first of a series of quasi-static compression tests of rail passenger equipment being done to examine occupant volume strength. Budd Pioneer car 244 has been chosen as the test article for examination of altern...
Evaluation of Occupant Volume Strength in Conventional Passenger Railroad Equipment
DOT National Transportation Integrated Search
2008-09-24
To ensure a level of occupant volume protection, passenger : railway equipment operating on mainline railroads in the : United States must be designed to resist an 800,000-lb : compressive load applied statically along the line of draft. An : alterna...
Imaging shear strength along subduction faults
Bletery, Quentin; Thomas, Amanda M.; Rempel, Alan W.; Hardebeck, Jeanne L.
2017-01-01
Subduction faults accumulate stress during long periods of time and release this stress suddenly, during earthquakes, when it reaches a threshold. This threshold, the shear strength, controls the occurrence and magnitude of earthquakes. We consider a 3-D model to derive an analytical expression for how the shear strength depends on the fault geometry, the convergence obliquity, frictional properties, and the stress field orientation. We then use estimates of these different parameters in Japan to infer the distribution of shear strength along a subduction fault. We show that the 2011 Mw9.0 Tohoku earthquake ruptured a fault portion characterized by unusually small variations in static shear strength. This observation is consistent with the hypothesis that large earthquakes preferentially rupture regions with relatively homogeneous shear strength. With increasing constraints on the different parameters at play, our approach could, in the future, help identify favorable locations for large earthquakes.
NASA Astrophysics Data System (ADS)
Ducousso, M.; Bardy, S.; Rouchausse, Y.; Bergara, T.; Jenson, F.; Berthe, L.; Videau, L.; Cuvillier, N.
2018-03-01
Intense acoustic shock waves were applied to evaluate the mechanical strength of structural epoxy bonds between a TA6V4 titanium alloy and a 3D woven carbon/epoxy composite material. Two bond types with different mechanical strengths were obtained from two different adhesive reticulations, at 50% and 90% of conversion, resulting in longitudinal static strengths of 10 and 39 MPa and transverse strengths of 15 and 35 MPa, respectively. The GPa shock waves were generated using ns-scale intense laser pulses and reaction principles to a confined plasma expansion. Simulations taking into account the laser-matter interaction, plasma relaxation, and non-linear shock wave propagation were conducted to aid interpretation of the experiments. Good correlations were obtained between the experiments and the simulation and between different measurement methods of the mechanical strength (normalized tests vs laser-generated shock waves). Such results open the door toward certification of structural bonding.
Product Design and Production Practice of 700MPa High Strength Hot Rolled Strip for Auto Axle Tube
NASA Astrophysics Data System (ADS)
Hui, Pan; Zhao-dong, Wang; Ya-jun, Hui; Yang, Cui; Xiang-tao, Deng; Chun-lin, Bao
According to the technical specifications of 700MPa high strength automotive axle tube steel, a low cost of 0.07%C+1.5%Mn+0.05%Nb+0.10%Ti was designed. The high strength mainly relies on grain refinement strengthening and precipitation strengthening. The recrystallization, precipitation, and CCT curves of the 700MPa grade axle tube steel were studied in order to determine a reasonable TMCP process. By controlling the low level segregation band, low level of C and N content, 700MPa grade high strength automotive axle tube steel is successfully developed with excellent mechanical property, welding property, flattening and flaring property, torsion fatigue property, static torsional property and surface quality.
The development of test methodology for testing glassy materials
NASA Technical Reports Server (NTRS)
Tucker, Dennis S.
1987-01-01
The inherent brittleness of glass invariably leads to a large variability in strength data and a time dependence in strength (i.e., static fatigue). Loading rate plays a large role in strength values. Glass is found to be weaker when supporting loads over long periods as compared to glass which undergoes rapid loading. In this instance the purpose of rapid loading is to fail the glass before any significant crack growth occurs. However, a decrease in strength occurs with a decrease in loading rate, pursuant to substantial crack extension. These properties complicate the structural design allowable for the utilization of glass components in applications such as mirrors for the Space Telescope and AXAF for Spacelab and the space station.
Static analysis of the hull plate using the finite element method
NASA Astrophysics Data System (ADS)
Ion, A.
2015-11-01
This paper aims at presenting the static analysis for two levels of a container ship's construction as follows: the first level is at the girder / hull plate and the second level is conducted at the entire strength hull of the vessel. This article will describe the work for the static analysis of a hull plate. We shall use the software package ANSYS Mechanical 14.5. The program is run on a computer with four Intel Xeon X5260 CPU processors at 3.33 GHz, 32 GB memory installed. In terms of software, the shared memory parallel version of ANSYS refers to running ANSYS across multiple cores on a SMP system. The distributed memory parallel version of ANSYS (Distributed ANSYS) refers to running ANSYS across multiple processors on SMP systems or DMP systems.
Static magnetotherapy for the treatment of insomnia.
Shieh, Yao Y; Tsai, Fong Y
2008-01-01
Magnets have been used for centuries to treat a number of physical disorders. The vast majority of research, however, on static magnet therapy for insomnia has been confined to the auricular type of therapy, with publications limited to Chinese journals. Most of these studies have depended on the subjective self-assessment of participants rather than objective scientific measurements. In this study, the authors report the positive preliminary results of insomnia treatment using pillows with embedded magnets, magnetic insoles and TriPhase bracelets. The analysis is based on objective actigraphic and polysomnographic data. A theory of accelerated transition from wakefulness to sleep is proposed to explain the process of insomnia relief through low-strength static magnetic fields. Analysis by functional Magnetic Resonance Imaging (fMRI) is used to further investigate the theory.
Subcortical Plasticity Following Perceptual Learning in a Pitch Discrimination Task
Plack, Christopher J.
2010-01-01
Practice can lead to dramatic improvements in the discrimination of auditory stimuli. In this study, we investigated changes of the frequency-following response (FFR), a subcortical component of the auditory evoked potentials, after a period of pitch discrimination training. Twenty-seven adult listeners were trained for 10 h on a pitch discrimination task using one of three different complex tone stimuli. One had a static pitch contour, one had a rising pitch contour, and one had a falling pitch contour. Behavioral measures of pitch discrimination and FFRs for all the stimuli were measured before and after the training phase for these participants, as well as for an untrained control group (n = 12). Trained participants showed significant improvements in pitch discrimination compared to the control group for all three trained stimuli. These improvements were partly specific for stimuli with the same pitch modulation (dynamic vs. static) and with the same pitch trajectory (rising vs. falling) as the trained stimulus. Also, the robustness of FFR neural phase locking to the sound envelope increased significantly more in trained participants compared to the control group for the static and rising contour, but not for the falling contour. Changes in FFR strength were partly specific for stimuli with the same pitch modulation (dynamic vs. static) of the trained stimulus. Changes in FFR strength, however, were not specific for stimuli with the same pitch trajectory (rising vs. falling) as the trained stimulus. These findings indicate that even relatively low-level processes in the mature auditory system are subject to experience-related change. PMID:20878201
Subcortical plasticity following perceptual learning in a pitch discrimination task.
Carcagno, Samuele; Plack, Christopher J
2011-02-01
Practice can lead to dramatic improvements in the discrimination of auditory stimuli. In this study, we investigated changes of the frequency-following response (FFR), a subcortical component of the auditory evoked potentials, after a period of pitch discrimination training. Twenty-seven adult listeners were trained for 10 h on a pitch discrimination task using one of three different complex tone stimuli. One had a static pitch contour, one had a rising pitch contour, and one had a falling pitch contour. Behavioral measures of pitch discrimination and FFRs for all the stimuli were measured before and after the training phase for these participants, as well as for an untrained control group (n = 12). Trained participants showed significant improvements in pitch discrimination compared to the control group for all three trained stimuli. These improvements were partly specific for stimuli with the same pitch modulation (dynamic vs. static) and with the same pitch trajectory (rising vs. falling) as the trained stimulus. Also, the robustness of FFR neural phase locking to the sound envelope increased significantly more in trained participants compared to the control group for the static and rising contour, but not for the falling contour. Changes in FFR strength were partly specific for stimuli with the same pitch modulation (dynamic vs. static) of the trained stimulus. Changes in FFR strength, however, were not specific for stimuli with the same pitch trajectory (rising vs. falling) as the trained stimulus. These findings indicate that even relatively low-level processes in the mature auditory system are subject to experience-related change.
Comparison of the compressive strength of 3 different implant design systems.
Pedroza, Jose E; Torrealba, Ysidora; Elias, Augusto; Psoter, Walter
2007-01-01
The aims of this study were twofold: to compare the static compressive strength at the implant-abutment interface of 3 design systems and to describe the implant abutment connection failure mode. A stainless steel holding device was designed to align the implants at 30 degrees with respect to the y-axis. Sixty-nine specimens were used, 23 for each system. A computer-controlled universal testing machine (MTS 810) applied static compression loading by a unidirectional vertical piston until failure. Specimens were evaluated macroscopically for longitudinal displacement, abutment looseness, and screw and implant fracture. Data were analyzed by analysis of variance (ANOVA). The mean compressive strength for the Unipost system was 392.5 psi (SD +/-40.9), for the Spline system 342.8 psi (SD+/-25.8), and for the Screw-Vent system 269.1 psi (SD+/-30.7). The Unipost implant-abutment connection demonstrated a statistically significant superior mechanical stability (P < or = .009) compared with the Spline implant system. The Spline implant system showed a statistically significant higher compressive strength than the Screw-Vent implant system (P < or =.009). Regarding failure mode, the Unipost system consistently broke at the same site, while the other systems failed at different points of the connection. The Unipost system demonstrated excellent fracture resistance to compressive forces; this resistance may be attributed primarily to the diameter of the abutment screw and the 2.5 mm counter bore, representing the same and a unique piece of the implant. The Unipost implant system demonstrated a statistically significant superior compressive strength value compared with the Spline and Screw-Vent systems, at a 30 degrees angulation.
Combined Intercritical Annealing and Q&P Processing of Medium Mn Steel
NASA Astrophysics Data System (ADS)
De Cooman, Bruno C.; Lee, Seon Jong; Shin, Sunmi; Seo, Eun Jung; Speer, John G.
2017-01-01
The microstructure and mechanical properties of intercritically annealed medium Mn steel are dependent on the selection of the intercritical annealing (IA) temperature. While the yield strength (YS) decreases with increasing IA temperature, the ultimate tensile strength increases with increasing IA temperature. Strain aging phenomena, both static and dynamic, are also often observed. The present contribution shows that, by combining IA with the quench and partitioning processing of the intercritical austenite, it is possible to obtain non-aging mechanical properties which combine a high YS with an ultra-high tensile strength. These properties are particularly suitable for automotive parts related to passenger safety.
Mechanical Properties of Copper Processed by Equal Channel Angular Pressing
NASA Astrophysics Data System (ADS)
Sülleiová, K.; Ballóková, B.; Besterci, M.; Kvačkaj, T.
2017-12-01
The development of the nanostructure in commercial pure copper and the strength and ductility after severe plastic deformation (SPD) with the technology of equal channel angular pressing (ECAP) are analysed. Experimental results and analyses showed that both strength and ductility can be increased simultaneously by SPD. The final grain size decreased from the initial 50μm by SPD to 100-300 nm after 10 passes. An increase of the ductility together with an increase of strength caused by SPD are explained by a strong grain refinement and by a dynamic equilibrium of weakening and strengthening, and it is visible on the final static tensile test stress-strain charts.
Kim, Kyungmok; Ko, Joon Soo
2016-01-01
This article investigates the effect of contact ageing on fretting damage of an epoxy-based cathodic electro-deposited coating for use on automotive seat slide tracks (made of cold-rolled high strength steel). Static normal load was induced at the contact between the coating and an AISI52100 ball for a certain duration. It was identified that plastically deformed contact area increased logarithmically as a function of time when the contact was under static normal load. Fretting tests after various durations of static contact were conducted using a ball-on-flat plate apparatus. All fretting tests were halted when the friction coefficient reached a critical value of 0.5, indicating complete coating failure. The total number of fretting cycles to the critical friction coefficient was found to vary with the duration of static contact before fretting. It was identified that the number of cycles to the critical friction coefficient decreased with the increased duration of static contact. Meanwhile, the friction coefficient at steady-state sliding was not greatly affected by the duration of static contact before fretting. Finally, the relation between coating thickness after indentation creep and the number of cycles to the critical friction coefficient was found to be linear. Obtained results show that the duration of static contact before fretting has an influence on the fretting lifetime of an electro-deposited coating. PMID:28773873
Kim, Kyungmok; Ko, Joon Soo
2016-09-03
This article investigates the effect of contact ageing on fretting damage of an epoxy-based cathodic electro-deposited coating for use on automotive seat slide tracks (made of cold-rolled high strength steel). Static normal load was induced at the contact between the coating and an AISI52100 ball for a certain duration. It was identified that plastically deformed contact area increased logarithmically as a function of time when the contact was under static normal load. Fretting tests after various durations of static contact were conducted using a ball-on-flat plate apparatus. All fretting tests were halted when the friction coefficient reached a critical value of 0.5, indicating complete coating failure. The total number of fretting cycles to the critical friction coefficient was found to vary with the duration of static contact before fretting. It was identified that the number of cycles to the critical friction coefficient decreased with the increased duration of static contact. Meanwhile, the friction coefficient at steady-state sliding was not greatly affected by the duration of static contact before fretting. Finally, the relation between coating thickness after indentation creep and the number of cycles to the critical friction coefficient was found to be linear. Obtained results show that the duration of static contact before fretting has an influence on the fretting lifetime of an electro-deposited coating.
The oxidative stability of carbon fibre reinforced glass-matrix composites
NASA Technical Reports Server (NTRS)
Prewo, K. M.; Batt, J. A.
1988-01-01
The environmental stability of carbon fibre reinforced glass-matrix composites is assessed. Loss of composite strength due to oxidative exposure at elevated temperatures under no load, static load and cyclic fatigue as well as due to thermal cycling are all examined. It is determined that strength loss is gradual and predictable based on the oxidation of carbon fibres. The glass matrix was not found to prevent this degradation but simply to limit it to a gradual process progressing from the composite surfaces inward.
Driven, underdamped Frenkel-Kontorova model on a quasiperiodic substrate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vanossi, A.; Ro''der, J.; Bishop, A. R.
2001-01-01
We consider the underdamped dynamics of a chain of atoms subject to a dc driving force and a quasiperiodic substrate potential. The system has three inherent length scales which we take to be mutually incommensurate. We find that when the length scales are related by the spiral mean (a cubic irrational) there exists a value of the interparticle interaction strength above which the static friction is zero. When the length scales are related by the golden mean (a quadratic irrational) the static friction is always nonzero. >From considerations based on the connection of this problem to standard map theory, wemore » postulate that zero static friction is generally possible for incommensurate ratios of the length scales involved. However, when the length scales are quadratic irrationals, or have some commensurability with each other, the static friction will be nonzero for all choices of interaction parameters. We also comment on the nature of the depinning mechanisms and the steady states achieved by the moving chain.« less
Behm, David G; Muehlbauer, Thomas; Kibele, Armin; Granacher, Urs
2015-12-01
The effectiveness of strength training on unstable surfaces (STU) versus stable surfaces (STS) or a control condition (CON; i.e., no training or regular training only) for strength, power and balance performance across the lifespan has not yet been investigated in a systematic review and meta-analysis. The aims of this systematic review and meta-analysis were to determine the general effects of STU versus STS or CON on muscle strength, power and balance in healthy individuals across the lifespan and to investigate whether performance changes following STU are age specific. A computerized systematic literature search was performed in the electronic databases PubMed and Web of Science from January 1984 up to February 2015. Initially, 209 articles were identified for review. Only controlled trials were included if they investigated STU in healthy individuals and tested at least one measure of maximal strength, strength endurance, muscle power, or static/dynamic balance. In total, 22 studies met the inclusion criteria. The included studies were coded for the following criteria: age, sex, training status, training modality, exercise and test modality. Effect size measures included within-subject standardized mean differences (SMDw) and weighted between-subject standardized mean differences (SMDb). Heterogeneity between studies was assessed using I2 and χ2 statistics. The methodological quality of each study was assessed using the Physiotherapy Evidence Database (PEDro) Scale. Our search failed to identify studies that examined the effects of STU versus STS or CON in children and middle-aged adults. However, four studies were identified that investigated the effects of STU versus CON or STS in adolescents, 15 studies were identified in young adults and three studies were identified in old adults. Compared with CON, STU produced medium effects on maximal strength in young adults and no effects to medium effects in old adults. In addition, large effects were detected on strength endurance in adolescents and in young adults; in old adults, a small effect was found. With regard to muscle power, medium effects were observed in young adults and small effects were observed in old adults. Further, large effects were found for static and dynamic balance in old adults, but only a small effect was found for dynamic balance in young adults. The comparison of STU and STS revealed inconsistent results as indicated by training-induced changes in favour of STU, as well as STS. Small to medium effects were found for maximal strength in adolescents in favour of STS, and small effects were found in young adults in favour of STU. With regard to strength endurance, large effects were found in adolescents in favour of STS and small effects were found in favour of STU. Additionally, we detected small effects in young adults in favour of STU. In terms of muscle power, no effects were observed in adolescents but medium effects were found in favour of STS in young adults. With regard to balance, small effects were detected in adolescents for static and dynamic balance in favour of STU. In young adults, small effects were found for static balance in favour of STS. With regard to dynamic balance, the analysis revealed small effects in young adults in favour of STU. The quality of the included studies was rather low, with mean PEDro scores of 5.8, 4.0 and 5.0 for studies including adolescents, young adults and old adults, respectively. Further, trivial to considerable heterogeneity between studies (i.e., 0% ≤ I2 ≤ 96%) was detected. Compared with CON, STU is effective in improving muscle strength, power and balance in adolescents, young adults and old adults. However, inconsistent results were particularly found in adolescents and young adults when the specific effects of STU were compared with those of STS. We conclude that the performance of STU compared with STS has limited extra effects on muscle strength, power and balance performance in healthy adolescents and young adults. Given that our systematic search did not identify studies that examined the effects of STU versus STS in children, middle-aged adults and old adults, further research of high methodological quality is needed to determine whether there are additive effects of STU as compared with STS in those age groups.
NASA Technical Reports Server (NTRS)
Peck, Ann W.
1998-01-01
As composites are introduced into more complex structures with out-of-plane loadings, a better understanding is needed of the out-of-plane, matrix-dominated failure mechanisms. This work investigates the transverse tension fatigue characteristics of IM6/3501 composite materials. To test the 90 degree laminae, a three-point bend test was chosen, potentially minimizing handling and gripping issues associated with tension tests. A finite element analysis was performed of a particular specimen configuration to investigate the influence of specimen size on the stress distribution for a three-point bend test. Static testing of 50 specimens of 9 different sized configurations produced a mean transverse tensile strength of 61.3 Mpa (8.0 ksi). The smallest configuration (10.2 mm wide, Span-to-thickness ratio of 3) consistently exhibited transverse tensile failures. A volume scale effect was difficult to discern due to the large scatter of the data. Static testing of 10 different specimens taken from a second panel produced a mean transverse tensile strength of 82.7 Mpa (12.0 ksi). Weibull parameterization of the data was possible, but due to variability in raw material and/or manufacturing, more replicates are needed for greater confidence. Three-point flex fatigue testing of the smallest configuration was performed on 59 specimens at various levels of the mean static transverse tensile strength using an R ratio of 0.1 and a frequency of 20 Hz. A great deal of scatter was seen in the data. The majority of specimens failed near the center loading roller. To determine whether the scatter in the fatigue data is due to variability in raw material and/or the manufacturing process, additional testing should be performed on panels manufactured from different sources.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mahfuz, H.; Maniruzzaman, M.; Vaidya, U.
1997-04-01
Monotonic tensile and fatigue response of continuous silicon carbide fiber reinforced silicon nitride (SiC{sub f}/Si{sub 3}N{sub 4}) composites has been investigated. The monotonic tensile tests have been performed at room and elevated temperatures. Fatigue tests have been conducted at room temperature (RT), at a stress ratio, R = 0.1 and a frequency of 5 Hz. It is observed during the monotonic tests that the composites retain only 30% of its room temperature strength at 1,600 C suggesting a substantial chemical degradation of the matrix at that temperature. The softening of the matrix at elevated temperature also causes reduction in tensilemore » modulus, and the total reduction in modulus is around 45%. Fatigue data have been generated at three load levels and the fatigue strength of the composite has been found to be considerably high; about 75% of its ultimate room temperature strength. Extensive statistical analysis has been performed to understand the degree of scatter in the fatigue as well as in the static test data. Weibull shape factors and characteristic values have been determined for each set of tests and their relationship with the response of the composites has been discussed. A statistical fatigue life prediction method developed from the Weibull distribution is also presented. Maximum Likelihood Estimator with censoring techniques and data pooling schemes has been employed to determine the distribution parameters for the statistical analysis. These parameters have been used to generate the S-N diagram with desired level of reliability. Details of the statistical analysis and the discussion of the static and fatigue behavior of the composites are presented in this paper.« less
Hadley circulation extent and strength in a wide range of simulated climates
NASA Astrophysics Data System (ADS)
D'Agostino, Roberta; Adam, Ori; Lionello, Piero; Schneider, Tapio
2017-04-01
Understanding the Hadley circulation (HC) dynamics is crucial because its changes affect the seasonal migration of the ITCZ, the extent of subtropical arid regions and the strength of the monsoons. Despite decades of study, the factors controlling its strength and extent have remained unclear. Here we analyse how HC strength and extent change over a wide range of climate conditions from the Last Glacial Maximum to future projections. The large climate change between paleoclimate simulations and future scenarios offers the chance to analyse robust HC changes and their link to large-scale factors. The HC shrinks and strengthens in the coldest simulation relative to the warmest. A progressive poleward shift of its edges is evident as the climate warms (at a rate of 0.35°lat./K in each hemisphere). The HC extent and strength both depend on the isentropic slope, which in turn is related to the meridional temperature gradient, subtropical static stability and tropopause height. In multiple robust regression analysis using these as predictors, we find that the tropical tropopause height does not add relevant information to the model beyond surface temperature. Therefore, primarily the static stability and secondarily the meridional temperature contrast together account for the bulk of the almost the total HC variance. However, the regressions leave some of the northern HC edge and southern HC strength variance unexplained. The effectiveness of this analysis is limited by the correlation among the predictors and their relationship with mean temperature. In fact, for all simulations, the tropical temperature explains well the variations of HC except its southern hemisphere intensity. Hence, it can be used as the sole predictor to diagnose the HC response to greenhouse-induced global warming. How to account for the evolution of the southern HC strength remains unclear, because of the large inter-model spread in this quantity.
49 CFR 238.203 - Static end strength.
Code of Federal Regulations, 2011 CFR
2011-10-01
..., sufficient to describe the actual construction of the equipment; (iii) Engineering analysis sufficient to..., engineering analysis, and risk mitigation measures described in this paragraph, demonstrating that the use of... the Federal Docket Management System and posted on its web site at http://www.regulations.gov. (h...
49 CFR 238.203 - Static end strength.
Code of Federal Regulations, 2010 CFR
2010-10-01
..., sufficient to describe the actual construction of the equipment; (iii) Engineering analysis sufficient to..., engineering analysis, and risk mitigation measures described in this paragraph, demonstrating that the use of... the Federal Docket Management System and posted on its web site at http://www.regulations.gov. (h...
Lamination residual stresses in fiber composites
NASA Technical Reports Server (NTRS)
Daniel, I. M.; Liber, T.
1975-01-01
An experimental investigation was conducted to determine the magnitude of lamination residual stresses in angle-ply composites and to evaluate their effects on composite structural integrity. The materials investigated were boron/epoxy, boron/polyimide, graphite/low modulus epoxy, graphite/high modulus epoxy, graphite/polyimide and s-glass/epoxy. These materials were fully characterized. Static properties of laminates were also determined. Experimental techniques using embedded strain gages were developed and used to measure residual strains during curing. The extent of relaxation of lamination residual stresses was investigated. It was concluded that the degree of such relaxation is low. The behavior of angle-ply laminates subjected to thermal cycling, tensile load cycling, and combined thermal cycling with tensile load was investigated. In most cases these cycling programs did not have any measurable influence on residual strength and stiffness of the laminates. In the tensile load cycling tests, the graphite/polyimide shows the highest endurance with 10 million cycle runouts at loads up to 90 percent of the static strength.
New Polylactic Acid Composites Reinforced with Artichoke Fibers
Botta, Luigi; Fiore, Vincenzo; Scalici, Tommaso; Valenza, Antonino; Scaffaro, Roberto
2015-01-01
In this work, artichoke fibers were used for the first time to prepare poly(lactic acid) (PLA)-based biocomposites. In particular, two PLA/artichoke composites with the same fiber loading (10% w/w) were prepared by the film-stacking method: the first one (UNID) reinforced with unidirectional long artichoke fibers, the second one (RANDOM) reinforced by randomly-oriented long artichoke fibers. Both composites were mechanically characterized in tensile mode by quasi-static and dynamic mechanical tests. The morphology of the fracture surfaces was analyzed through scanning electron microscopy (SEM). Moreover, a theoretical model, i.e., Hill’s method, was used to fit the experimental Young’s modulus of the biocomposites. The quasi-static tensile tests revealed that the modulus of UNID composites is significantly higher than that of the neat PLA (i.e., ~40%). Moreover, the tensile strength is slightly higher than that of the neat matrix. The other way around, the stiffness of RANDOM composites is not significantly improved, and the tensile strength decreases in comparison to the neat PLA.
The effect of matrix properties and fiber properties on impact failure mechanics
NASA Technical Reports Server (NTRS)
Elber, W.
1983-01-01
The low-velocity impact problem in graphite/epoxy composite sheets must be solved before large amounts of that material can be used in commercial aircraft. Many of the low-velocity impacts that affect aircraft parts occur during normal ground operations and maintenance. Service equipment and tools have masses above 1 kg, and at velocities of less than 3 m/s can impact structural parts with energies higher than composites can endure without degradation of stiffness or strength. Simple solutions were developed for large-mass, low-velocity impacts which can be modeled as quasi-static events. Static test data and impact data show that the fiber properties control the impact energy which can be absorbed before penetration. Matrix shear strength and peel resistance control the extent of delamination. Comparison of results from tough matrix and brittle matrix composites show that although tough matrices reduce the extent of delamination, they lead to more fiber damage in the contact area.
Balancing Dynamic Strength of Spur Gears Operated at Extended Center Distance
NASA Technical Reports Server (NTRS)
Lin, Hsiang Hsi; Liou, Chuen-Huei; Oswald, Fred B.; Townsend, Dennis P.
1996-01-01
This paper presents an analytical study on using hob offset to balance the dynamic tooth strength of spur gears operated at a center distance greater than the standard value. This study is an extension of a static study by Mabie and others. The study was limited to the offset values that assure the pinion and gear teeth will neither be undercut nor become pointed. The analysis presented in this paper was performed using DANST-PC, a new version of the NASA gear dynamics code. The operating speed of the transmission influences the amount of hob offset required to equalize the dynamic stresses in the pinion and gear. The optimum hob offset for the pinion was found to vary within a small range as the speed changes. The optimum value is generally greater than the optimum value found by static procedures. For gears that must operate over a wide range of speeds, an average offset value may be used.
Papatheodorou, Loukia K; Williams, Benjamin G; Sotereanos, Dean G
2015-05-01
To evaluate the clinical results of revision neurolysis and wrapping with porcine extracellular matrix (AxoGuard Nerve Protector, AxoGen Inc., Alachua, FL) for cubital tunnel syndrome after one previous surgical decompression. Twelve patients with recurrent cubital tunnel syndrome were treated with decompression, porcine extracellular matrix nerve wrap, and minimal medial epicondylectomy (if not previously performed). The average follow-up period was 41 months (range, 24-61 mo). All patients had recurrent symptoms after having previously undergone one surgical decompression. The mean patient age was 45 years (range, 30-58 y). All patients were evaluated subjectively and objectively (pain, satisfaction, static 2-point discrimination, grip strength, and pinch strength). A significant improvement was demonstrated in postoperative pain levels (from 8.5 to 1.7), grip strength (from 41% to 86% of the unaffected side), and pinch strength (from 64% to 83% of the unaffected side). Static 2-point discrimination improved from an average 10.4 mm preoperatively to 7.6 mm postoperatively. Eleven of 12 patients demonstrated 2 mm or more improvement in 2-point discrimination postoperatively. There were no complications related to the use of the porcine extracellular matrix for nerve wrapping. This study found that secondary decompression combined with porcine extracellular matrix nerve wrapping was an effective and safe treatment for patients with recurrent cubital tunnel syndrome. Therapeutic IV. Copyright © 2015 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.
Mehta, Ranjana K; Agnew, Michael J
2012-08-01
Most occupational tasks involve some level of mental/cognitive processing in addition to physical work; however, the etiology of work-related musculoskeletal disorders (WMSDs) due to these demands remains unclear. The aim of this study was to quantify the interactive effects of physical and mental workload on muscle endurance, fatigue, and recovery during intermittent work. Twelve participants, balanced by gender, performed intermittent static shoulder abductions to exhaustion at 15, 35, and 55% of individual maximal voluntary contraction (MVC), in the absence (control) and presence (concurrent) of a mental arithmetic task. Changes in muscular capacity were determined using endurance time, strength decline, electromyographic (EMG) fatigue indicators, muscle oxygenation, and heart rate measures. Muscular recovery was quantified through changes in strength and physiological responses. Mental workload was associated with shorter endurance times, specifically at 35% MVC, and greater strength decline. EMG and oxygenation measures showed similar changes during fatigue manifestation during concurrent conditions compared to the control, despite shorter endurance times. Moreover, decreased heart rate variability during concurrent demand conditions indicated increased mental stress. Although strength recovery was not influenced by mental workload, a slower heart rate recovery was observed after concurrent demand conditions. The findings from this study provide fundamental evidence that physical capacity (fatigability and recovery) is adversely affected by mental workload. Thus, it is critical to determine or evaluate occupational demands based on modified muscular capacity (due to mental workload) to reduce risk of WMSD development.
NASA Astrophysics Data System (ADS)
Sedov, A. V.; Kalinchuk, V. V.; Bocharova, O. V.
2018-01-01
The evaluation of static stresses and strength of units and components is a crucial task for increasing reliability in the operation of vehicles and equipment, to prevent emergencies, especially in structures made of metal and composite materials. At the stage of creation and commissioning of structures to control the quality of manufacturing of individual elements and components, diagnostic control methods are widely used. They are acoustic, ultrasonic, X-ray, radiation methods and others. The using of these methods to control the residual life and the degree of static stresses of units and parts during operation is fraught with great difficulties both in methodology and in instrumentation. In this paper, the authors propose an effective approach of operative control of the degree of static stresses of units and parts of mechanical structures which are in working condition, based on recording the changing in the surface wave properties of a system consisting of a sensor and a controlled environment (unit, part). The proposed approach of low-frequency diagnostics of static stresses presupposes a new adaptive-spectral analysis of a surface wave created by external action (impact). It is possible to estimate implicit stresses of structures in the experiment due to this approach.
Investigation of defect rate of lap laser welding of stainless steel railway vehicles car body
NASA Astrophysics Data System (ADS)
Wang, Hongxiao
2015-02-01
In order to resolve the disadvantages such as poor appearance quality, poor tightness, low efficiency of resistance spot welding of stainless steel rail vehicles, partial penetration lap laser welding process was investigated widely. But due to the limitation of processing technology, there will be local incomplete fusion in the lap laser welding seam. Defect rate is the ratio of the local incomplete fusion length to the weld seam length. The tensile shear strength under different defect rate and its effect on the car body static strength are not clear. It is necessary to find the biggest defect rate by numerical analysis of effects of different defect rates on the laser welding stainless steel rail vehicle body structure strength ,and tests of laser welding shear tensile strength.
Simulated Data for High Temperature Composite Design
NASA Technical Reports Server (NTRS)
Chamis, Christos C.; Abumeri, Galib H.
2006-01-01
The paper describes an effective formal method that can be used to simulate design properties for composites that is inclusive of all the effects that influence those properties. This effective simulation method is integrated computer codes that include composite micromechanics, composite macromechanics, laminate theory, structural analysis, and multi-factor interaction model. Demonstration of the method includes sample examples for static, thermal, and fracture reliability for a unidirectional metal matrix composite as well as rupture strength and fatigue strength for a high temperature super alloy. Typical results obtained for a unidirectional composite show that the thermal properties are more sensitive to internal local damage, the longitudinal properties degrade slowly with temperature, the transverse and shear properties degrade rapidly with temperature as do rupture strength and fatigue strength for super alloys.
Strain rate sensitivity of autoclaved aerated concrete from quasi-static regime to shock loading
NASA Astrophysics Data System (ADS)
Mespoulet, Jérôme; Plassard, Fabien; Hereil, Pierre Louis
2015-09-01
The quasi-static mechanical behavior of autoclaved aerated concrete is well-known and can be expressed as a function of its density. There are however not much studies dealing with its dynamic behavior and its damping ability when subjected to a mechanical shock or a blast. This study presents experimental results obtained at the Shock Physics Laboratory of THIOT INGENIERIE company. The test specimens are made of YTONG(TM ) cellular concrete with porosity in the range of 75 to 80%. Experimental tests cover a large strain rate amplitude (higher than 104 s-1) for specimens up to 250 mm. They were carried out with a small compression press and with two facilities dedicated to dynamic material characterization: JUPITER dynamic large press (2 MN, 3 ms rising time) and TITAN multi-caliber single-stage gas gun. Results in un-confined conditions show an increase of the compressive strength when strain rate increases (45% increase at 5.102 s-1) but dynamic tests induce damage early in the experiment. This competition between dynamic strength raise and specimen fracture makes the complete compaction curve determination not to be done in unconfined dynamic condition. A 25% increase of the compressive strength has been observed between unconfined and confined condition in Q.S. regime.
Strength and fatigue life evaluation of composite laminate with embedded sensors
NASA Astrophysics Data System (ADS)
Rathod, Vivek T.; Hiremath, S. R.; Roy Mahapatra, D.
2014-04-01
Prognosis regarding durability of composite structures using various Structural Health Monitoring (SHM) techniques is an important and challenging topic of research. Ultrasonic SHM systems with embedded transducers have potential application here due to their instant monitoring capability, compact packaging potential toward unobtrusiveness and noninvasiveness as compared to non-contact ultrasonic and eddy current techniques which require disassembly of the structure. However, embedded sensors pose a risk to the structure by acting as a flaw thereby reducing life. The present paper focuses on the determination of strength and fatigue life of the composite laminate with embedded film sensors like CNT nanocomposite, PVDF thin films and piezoceramic films. First, the techniques of embedding these sensors in composite laminates is described followed by the determination of static strength and fatigue life at coupon level testing in Universal Testing Machine (UTM). Failure mechanisms of the composite laminate with embedded sensors are studied for static and dynamic loading cases. The coupons are monitored for loading and failure using the embedded sensors. A comparison of the performance of these three types of embedded sensors is made to study their suitability in various applications. These three types of embedded sensors cover a wide variety of applications, and prove to be viable in embedded sensor based SHM of composite structures.
Constitutive Model Constants for Al7075-T651 and Al7075-T6
NASA Astrophysics Data System (ADS)
Brar, Nachhatter; Joshi, Vasant; Harris, Bryan
2009-06-01
Aluminum 7075-T651 and 7075-T6 are characterized at quasi-static and high strain rates to determine Johnson-Cook (J-C) strength and fracture model constants. Constitutive model constants are required as input to computer codes to simulate projectile (fragment) impact or similar impact events on structural components made of these material. J-C strength model constants (A, B, n, C, and m) for the two alloys are determined from tension stress-strain data at room and high temperature to 250^oC. J-C strength model constants for Al7075-T651 are: A=527 MPa, B=676 MPa, n=0.71, C=0.017, and m=1.61 and for Al7075-T6: A = 546 MPa, B = 674 MPa, n = 0.72, C = 0.059, and m =1.56. J-C fracture model constants are determined form quasi-static and high strain rate/high temperature tests on notched and smooth tension specimens. J-C fracture model constants for the two alloys are: Al7075-T651; D1 = 0.110, D2 = 0.573, D3= -3.4446, D4 = 0.016, and D 5= 1.099 and Al7075-T6; D1= 0.451 D2= -0.952 D3= -.068, D4 =0.036, and D5 = 0.697.
14 CFR 23.572 - Metallic wing, empennage, and associated structures.
Code of Federal Regulations, 2012 CFR
2012-01-01
... principal structural element, and that the remaining structure is able to withstand a static ultimate load... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES... experience: (1) A fatigue strength investigation in which the structure is shown by tests, or by analysis...
14 CFR 23.572 - Metallic wing, empennage, and associated structures.
Code of Federal Regulations, 2013 CFR
2013-01-01
... principal structural element, and that the remaining structure is able to withstand a static ultimate load... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES... experience: (1) A fatigue strength investigation in which the structure is shown by tests, or by analysis...
14 CFR 23.572 - Metallic wing, empennage, and associated structures.
Code of Federal Regulations, 2014 CFR
2014-01-01
... principal structural element, and that the remaining structure is able to withstand a static ultimate load... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES... experience: (1) A fatigue strength investigation in which the structure is shown by tests, or by analysis...
14 CFR 23.572 - Metallic wing, empennage, and associated structures.
Code of Federal Regulations, 2011 CFR
2011-01-01
... principal structural element, and that the remaining structure is able to withstand a static ultimate load... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES... experience: (1) A fatigue strength investigation in which the structure is shown by tests, or by analysis...
14 CFR 23.572 - Metallic wing, empennage, and associated structures.
Code of Federal Regulations, 2010 CFR
2010-01-01
... principal structural element, and that the remaining structure is able to withstand a static ultimate load... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES... experience: (1) A fatigue strength investigation in which the structure is shown by tests, or by analysis...
DOT National Transportation Integrated Search
2008-05-31
To ensure a level of occupant volume protection, passenger railway : equipment operating on mainline railroads in the United States must currently be : designed to resist an 800,000 pound compressive load applied statically to the : underframe. An al...
Understanding Regulated Learning in Situative and Contextual Frameworks
ERIC Educational Resources Information Center
Järvenoja, Hanna; Järvelä, Sanna; Malmberg, Jonna
2015-01-01
Research on self-regulated learning has focused predominantly on a static individual level to explain various strengths and weaknesses of learners. However, much learning today is highly interactive and technologically enhanced, which an individually oriented perspective to regulated learning does not consider. In this article we discuss…
Fatigue and shear behavior of HPC bulb-tee girders: final report.
DOT National Transportation Integrated Search
2005-02-01
Five 96-ft. (29.3-m) long, 72-in. (1.83-m) deep, precast, pretensioned bulb-tee girders were tested to evaluate their behavior under flexural fatigue. Three of the girders were also tested to measure their static shear strength. One girder was tested...
Fatigue and shear behavior of HPC bulb-tee girders : interim report.
DOT National Transportation Integrated Search
2003-10-01
Three 96-ft (29.3-m) long, 72-in. (1.83-m) deep, precast, pretensioned bulb-tee girders were tested to evaluate behavior under flexural fatigue and static shear loadings. The three girders had a design concrete compressive strength of 10,000 psi (69....
Long-term strength determination for cooled blades made of monocrystalline superalloys
NASA Astrophysics Data System (ADS)
Getsov, L. B.; Semenov, A. S.; Besschetnov, V. A.; Grishchenko, A. I.; Semenov, S. G.
2017-04-01
For the manufacture of blades for modern gas-turbine installations, monocrystalline alloys are used. Traditional methods for the calculation of stressed-deformed state and safety factors for these alloys developed and verified for polycrystalline materials need to be adjusted. This paper deals with methodological principles for an approach to the solving of the problem concerning a finite-element determination of the long-term static strength for cooled monocrystalline blades employed in gas-turbine installations based on the use of two different models (phenomenological and micromechanical) considering the inelastic deformation of monocrystalline superalloys. An analysis has been performed for the distribution of Schmid factors in the spherical triangle for primary and secondary octahedral and cubic slip systems. Calculations are performed using Larson-Miller's parametric dependences taking into account the crystallographic orientation of the material. A determination procedure for the anisotropy coefficients of long-term strength is described based on data for different orientations. A comparative analysis of the results of finite-element calculations made using phenomenological and micromechanical (crystallographic) creep models for the long-term static strength of cooled monocrystalline blades used in a gas-turbine engine has been performed. It is shown that the location of the most loaded sections of such a blade coincide with the results of calculations according to these models. It has been found that the micromechanical deformation model results in the obtaining of the most conservative estimate for the long-term strength of turbine blades made of monocrystalline alloys. It is shown that the calculations using models for materials with isotropic properties can produce considerable errors in determining the durability of the blades. The possibility is considered for using 1D-, 2D-, and 3D-models for turbine monocrystalline blades in the determination of their durability parameters.
Lee, Kyoungjin; Lee, Seungwon; Song, Changho
2013-12-01
Elderly patients with diabetes and peripheral neuropathy are more likely to experience falls. However, the information available on how such falls can be prevented is scarce. We investigated the effects of whole-body vibration (WBV) combined with a balance exercise program on balance, muscle strength, and glycosylated hemoglobin (HbA1c) in elderly patients with diabetic peripheral neuropathy. Fifty-five elderly patients with diabetic neuropathy were randomly assigned to WBV with balance exercise group, balance exercise (BE) group, and control group. The WBV and BE groups performed the balance exercise program for 60 min per day, 2 times per week, for 6 weeks. Further, the WBV group performed WBV training (up to 3 × 3 min, 3 times per week, for 6 weeks). The control group did not participate in any training. The main outcome measures were assessed at baseline and after 6 weeks of training; namely, we assessed the postural sway and one leg stance (OLS) for static balance; Berg balance scale (BBS), timed up-and-go (TUG) test, and functional reach test (FRT) for dynamic balance; five-times-sit-to-stand (FTSTS) test for muscle strength; and HbA1c for predicting the progression of diabetes. Significant improvements were noted in the static balance, dynamic balance, muscle strength, and HbA1c in the WBV group, compared to the BE and control groups (P < 0.05). Thus, in combination with the balance exercise program, the short-term WBV therapy is beneficial in improving balance, muscle strength and HbA1c, in elderly patients with diabetic neuropathy who are at high risk for suffering falls.
Peeters, Maarten W; Van Aken, Katrijn; Claessens, Albrecht L
2013-01-01
The second to fourth-digit-ratio (2D:4D), a putative marker of prenatal androgen action and a sexually dimorphic trait, has been suggested to be related with fitness and sports performance, although results are not univocal. Most studies however focus on a single aspect of physical fitness or one sports discipline. In this study the 2D:4D ratio of 178 adolescent girls (age 13.5-18 y) was measured on X-rays of the left hand. The relation between 2D:4D digit ratio and multiple aspects of physical fitness (balance, speed of limb movement, flexibility, explosive strength, static strength, trunk strength, functional strength, running speed/agility, and endurance) was studied by correlation analyses and stepwise multiple regression. For comparison the relation between these physical fitness components and a selected number of objectively measured anthropometric traits (stature, mass, BMI, somatotype components and the Bayer & Bailey androgyny index) are presented alongside the results of 2D:4D digit ratio. Left hand 2D:4D digit ratio (0.925±0.019) was not significantly correlated with any of the physical fitness components nor any of the anthropometric variables included in the present study. 2D:4D did not enter the multiple stepwise regression for any of the physical fitness components in which other anthropometric traits explained between 9.2% (flexibility) and 33.9% (static strength) of variance. Unlike other anthropometric traits the 2D:4D digit ratio does not seem to be related to any physical fitness component in adolescent girls and therefore most likely should not be considered in talent detection programs for sporting ability in girls.
Schaap, Kristel; Christopher-de Vries, Yvette; Mason, Catherine K; de Vocht, Frank; Portengen, Lützen; Kromhout, Hans
2014-01-01
Objectives Limited data is available about incidence of acute transient symptoms associated with occupational exposure to static magnetic stray fields from MRI scanners. We aimed to assess the incidence of these symptoms among healthcare and research staff working with MRI scanners, and their association with static magnetic field exposure. Methods We performed an observational study among 361 employees of 14 clinical and research MRI facilities in The Netherlands. Each participant completed a diary during one or more work shifts inside and/or outside the MRI facility, reporting work activities and symptoms (from a list of potentially MRI-related symptoms, complemented with unrelated symptoms) experienced during a working day. We analysed 633 diaries. Exposure categories were defined by strength and type of MRI scanner, using non-MRI shifts as the reference category for statistical analysis. Non-MRI shifts originated from MRI staff who also participated on MRI days, as well as CT radiographers who never worked with MRI. Results Varying per exposure category, symptoms were reported during 16–39% of the MRI work shifts. We observed a positive association between scanner strength and reported symptoms among healthcare and research staff working with closed-bore MRI scanners of 1.5 Tesla (T) and higher (1.5 T OR=1.88; 3.0 T OR=2.14; 7.0 T OR=4.17). This finding was mainly driven by reporting of vertigo and metallic taste. Conclusions The results suggest an exposure-response association between exposure to strong static magnetic fields (and associated motion-induced time-varying magnetic fields) and reporting of transient symptoms on the same day of exposure. Trial registration number 11-032/C PMID:24714654
Impact compressive and bending behaviour of rocks accompanied by electromagnetic phenomena.
Kobayashi, Hidetoshi; Horikawa, Keitaro; Ogawa, Kinya; Watanabe, Keiko
2014-08-28
It is well known that electromagnetic phenomena are often observed preceding earthquakes. However, the mechanism by which these electromagnetic waves are generated during the fracture and deformation of rocks has not been fully identified. Therefore, in order to examine the relationship between the electromagnetic phenomena and the mechanical properties of rocks, uniaxial compression and three-point bending tests for two kinds of rocks with different quartz content, granite and gabbro, have been carried out at quasi-static and dynamic rates. Especially, in the bending tests, pre-cracked specimens of granite were also tested. Using a split Hopkinson pressure bar and a ferrite-core antenna in close proximity to the specimens, both the stress-strain (load-displacement) curve and simultaneous electromagnetic wave magnitude were measured. It was found that the dynamic compressive and bending strengths and the stress increase slope of both rocks were higher than those observed in static tests; therefore, there is a strain-rate dependence in their strength and stress increase rate. It was found from the tests using the pre-cracked bending specimens that the intensity of electromagnetic waves measured during crack extension increased almost proportionally to the increase of the maximum stress intensity factor of specimens. This tendency was observed in both the dynamic and quasi-static three-point bending tests for granite. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhang, Meng; Sun, Chen-Nan; Zhang, Xiang; Goh, Phoi Chin; Wei, Jun; Li, Hua; Hardacre, David
2018-03-01
The laser powder bed fusion (L-PBF) technique builds parts with higher static strength than the conventional manufacturing processes through the formation of ultrafine grains. However, its fatigue endurance strength σ f does not match the increased monotonic tensile strength σ b. This work examines the monotonic and fatigue properties of as-built and heat-treated L-PBF stainless steel 316L. It was found that the general linear relation σ f = mσ b for describing conventional ferrous materials is not applicable to L-PBF parts because of the influence of porosity. Instead, the ductility parameter correlated linearly with fatigue strength and was proposed as the new fatigue assessment criterion for porous L-PBF parts. Annealed parts conformed to the strength-ductility trade-off. Fatigue resistance was reduced at short lives, but the effect was partially offset by the higher ductility such that comparing with an as-built part of equivalent monotonic strength, the heat-treated parts were more fatigue resistant.
DOT National Transportation Integrated Search
2009-09-01
This report summarizes the analysis of laser welded steel sandwich panels for use in bridge structures and : static testing of laser stake welded lap shear coupons. Steel sandwich panels consist of two face sheets : connected by a relatively low-dens...
NASA Astrophysics Data System (ADS)
Pelekh, B. L.; Marchuk, M. V.; Kogut, I. S.
1992-06-01
The stress-strain state of an adhesive joint between cylindrical components made of a metal (steel) and a cross-reinforced filament-wound composite (glass/polymer or basalt/polymer) was investigated under static axial loading using newly proposed experimental techniques and a refined mathematical model. Analytical expressions are obtained for contact stresses in the adhesive joint. The maximum permissible load and the ultimate shear strength of the joint are determined. The experimental results are found to be in satisfactory agreement with model predictions.
NASA Astrophysics Data System (ADS)
Kimura, N.; Iwashita, N.; Masuda, T.
2009-04-01
1. Introduction Previous studies have compiled yield-strength profiles of continental lithosphere based on the results of laboratory measurements and numerical calculations; however, yield-strength values remain poorly constrained, especially at depths below the brittle-plastic transition zone. Recent studies by the authors have refined the microboudin technique for estimating palaeostress magnitude in the deep crust (> 10 km depth). This technique has the potential to provide important information on stress levels in the deep continental crust, an environment to which available in situ stress measurements and palaeopiezometric methods cannot be applied. In applying the microboudinage technique, obtaining an estimate of the palaeostress magnitude requires knowledge of the fracture strength of columnar accessory minerals (e.g., tourmaline, amphibole, and epidote) that are subjected to brittle fracturing during plastic deformation of the surrounding matrix minerals. The absolute magnitude of fracture strength is known to show a marked reduction in the case of fatigue fracture. Fatigue fracture falls into two categories: static fatigue and cyclic fatigue. In the field of experimental rock deformation, stress corrosion by water molecules (static fatigue) is commonly invoked as the mechanism of fatigue fracture; however, evidence of both static and cyclic fatigue has been reported from studies of natural geological samples. The present study focused on the fatigue properties of columnar accessory minerals at high temperatures, with the aim of improving the accuracy of estimates of natural palaeostress magnitude at depth in the crust. 2. Constant stress-rate test A constant stress-rate test was performed to determine the influence of static fatigue on the strength of columnar accessory minerals. The test was conducted under three-point bending with a span distance of 10 mm. Temperature conditions and the crosshead speed were set in the ranges of ambient to 600°C, and 0.0005 to 0.2 mm/min, respectively. Pressure and relative humidity were set to room conditions. Tourmaline was chosen for testing (as representative of columnar accessory minerals embedded within metamorphic tectonites) because this is the only mineral for which crystals are available of sufficient size and quality. A total of 120 prism-shaped tourmaline test pieces (dimensions, 2×2×12 mm) were prepared from a single tourmaline block collected from Minas Gerais, Brazil. The flexural strength of tourmaline shows a clear decrease with decreasing crosshead speed at ambient temperature (with n ≈ 15 as the static fatigue parameter); however, this trend weakens with increasing temperature (n > 50); that is, the influence of static fatigue on the strength of tourmaline decreases with increasing temperature. A comparable result has been reported for glass materials because of difficulties in the absorption of moisture on sample surfaces under high-temperature conditions. The fabric pattern of fracture planes developed in tourmaline specimens in the present study, which show rectilinear scratches, arrests, or Wallner lines on smooth surfaces, is similar to that observed for glass materials. 3. Fractography of naturally deformed minerals A ‘striation-like' pattern resulting from cyclic fatigue fracture was observed by scanning electron microscope (SEM) analysis of a natural fracture plane developed within marble-hosted amphibole. The sample was collected from the eastern flank of the Red River shear zone (Luc Yen district), northern Vietnam. The brittle fracturing of amphibole (open fractures were filled by calcite, which deforms plastically) is considered to have occurred at 6 km depth at 25 Ma, based on geological criteria. 4. Order of stress magnitude in continental crust at the depth of the brittle-plastic transition zone Assuming that the fracture behaviour of columnar accessory minerals during the development of microboudinage is independent of the mineral species, the above results raise the possibility that the fracturing of columnar accessory minerals at deep crustal levels is governed by cyclic fatigue, possibly attributed to mechanical degradation rather than stress corrosion associated with water molecules, and that the fracture behaviour of columnar accessory minerals is similar to that of glass materials. Thus, cyclic fatigue studies of glass materials are expected to provide a good reference for approximate estimates of the fatigue limit of columnar accessory minerals. According to the literature, the fatigue limit for many glass materials is approximately 10% of the ultimate tensile strength. Taking into account the influence of fatigue fracture, the obtained magnitudes of palaeodifferential stress at crustal depths of 10-20 km, as estimated using the microboudinage technique, are in the low tens of megapascals (e.g., 10 MPa at 9 km depth, as obtained from metacherts within high-pressure rocks in Japan; 25 MPa at 12 km depth, as obtained from metachert within a metamorphic sole in the UAE; 9 MPa at 18 km depth, as obtained from metachert within high-pressure rocks in China; and 14 MPa at 18 km depth, as obtained from metachert within high-pressure rocks in Turkey). These values are much lower than those obtained from laboratory measurements.
Jorgensen, Martin G; Laessoe, Uffe; Hendriksen, Carsten; Nielsen, Ole Bruno Faurholt; Aagaard, Per
2013-07-01
Older adults show increased risk of falling and major risk factors include impaired lower extremity muscle strength and postural balance. However, the potential positive effect of biofeedback-based Nintendo Wii training on muscle strength and postural balance in older adults is unknown. This randomized controlled trial examined postural balance and muscle strength in community-dwelling older adults (75±6 years) pre- and post-10 weeks of biofeedback-based Nintendo Wii training (WII, n = 28) or daily use of ethylene vinyl acetate copolymer insoles (controls [CON], n = 30). Primary end points were maximal muscle strength (maximal voluntary contraction) and center of pressure velocity moment during bilateral static stance. Intention-to-treat analysis with adjustment for age, sex, and baseline level showed that the WII group had higher maximal voluntary contraction strength (18%) than the control group at follow up (between-group difference = 269 N, 95% CI = 122; 416, and p = .001). In contrast, the center of pressure velocity moment did not differ (1%) between WII and CON at follow-up (between-group difference = 0.23 mm(2)/s, 95% CI = -4.1; 4.6, and p = .92). For secondary end points, pre-to-post changes favoring the WII group were evident in the rate of force development (p = .03), Timed Up and Go test (p = .01), short Falls Efficacy Scale-International (p = .03), and 30-second repeated Chair Stand Test (p = .01). Finally, participants rated the Wii training highly motivating at 5 and 10 weeks into the intervention. Biofeedback-based Wii training led to marked improvements in maximal leg muscle strength (maximal voluntary contraction; rate of force development) and overall functional performance in community-dwelling older adults. Unexpectedly, static bilateral postural balance remained unaltered with Wii training. The high level of participant motivation suggests that biofeedback-based Wii exercise may ensure a high degree of compliance to home- and/or community-based training in community-dwelling older adults.
Luijkx, Tim; Velthuis, Birgitta K; Backx, Frank J G; Buckens, Constantinus F M; Prakken, Niek H J; Rienks, Rienk; Mali, Willem P Th M; Cramer, Maarten J
2013-08-10
Uncertainty remains about possible cardiac adaptation to resistance training. Androgenic anabolic steroids (AAS) use plays a potential role and may have adverse cardiovascular effects. To elucidate the effect of resistance training and of AAS-use on cardiac dimensions and function. Cardiac magnetic resonance (CMR) were performed in 156 male subjects aged 18-40 years: 52 non-athletes (maximum of 3 exercise hours/week), 52 strength-endurance (high dynamic-high static, HD-HS) athletes and 52 strength (low dynamic-high static, LD-HS) trained athletes (athletes ≥ 6 exercise hours/week). 28 LD-HS athletes denied and 24 admitted to AAS use for an average duration of 5 years (range 3 months-20 years). No significant differences were found between non-athletes and non-AAS-using LD-HS athletes. AAS-using LD-HS athletes had significantly larger LV and RV volumes and LV wall mass than non-AAS-using LD-HS athletes, but lower than HD-HS athletes. In comparison to all other groups AAS-using LD-HS athletes showed lower ejection fractions of both ventricles (LV/RV EF 51/48% versus 55-57/51-52%) and lower E/A ratios (LV/RV 1.5/1.2 versus 1.9-2.0/1.4-1.5) as an indirect measure of diastolic function. Linear regression models demonstrated a significant effect of AAS-use on LV EDV, LV EDM, systolic function and mitral valve E/A ratio (all ANOVA-tests p<0.05). Strength athletes who use AAS show significantly different cardiac dimensions and biventricular systolic dysfunction and impaired ventricular inflow as compared to non-athletes and non-AAS-using strength athletes. Increased ventricular volume and mass did not exceed that of strength-endurance athletes. These findings may help raise awareness of the consequences of AAS use. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Slow crack growth in spinel in water
NASA Technical Reports Server (NTRS)
Schwantes, S.; Elber, W.
1983-01-01
Magnesium aluminate spinel was tested in a water environment at room temperature to establish its slow crack-growth behavior. Ring specimens with artificial flaws on the outside surface were loaded hydraulically on the inside surface. The time to failure was measured. Various precracking techniques were evaluated and multiple precracks were used to minimize the scatter in the static fatigue tests. Statistical analysis techniques were developed to determine the strength and crack velocities for a single flaw. Slow crack-growth rupture was observed at stress intensities as low as 70 percent of K sub c. A strengthening effect was observed in specimens that had survived long-time static fatigue tests.
Hill, Kristian J; Robinson, Kendall P; Cuchna, Jennifer W; Hoch, Matthew C
2017-11-01
Clinical Scenario: Increasing hamstring flexibility through clinical stretching interventions may be an effective means to prevent hamstring injuries. However the most effective method to increase hamstring flexibility has yet to be determined. For a healthy individual, are proprioceptive neuromuscular facilitation (PNF) stretching programs more effective in immediately improving hamstring flexibility when compared with static stretching programs? Summary of Key Findings: A thorough literature search returned 195 possible studies; 5 studies met the inclusion criteria and were included. Current evidence supports the use of PNF stretching or static stretching programs for increasing hamstring flexibility. However, neither program demonstrated superior effectiveness when examining immediate increases in hamstring flexibility. Clinical Bottom Line: There were consistent findings from multiple low-quality studies that indicate there is no difference in the immediate improvements in hamstring flexibility when comparing PNF stretching programs to static stretching programs in physically active adults. Strength of Recommendation: Grade B evidence exists that PNF and static stretching programs equally increase hamstring flexibility immediately following the stretching program.
Deep flaws in weldments of aluminum and titanium
NASA Technical Reports Server (NTRS)
Masters, J. N.; Engstrom, W. L.; Bixler, W. D.
1974-01-01
Surface flawed specimens of 2219-T87 and 6Al-4V STA titanium weldments were tested to determine static failure modes, failure strength, and fatigue flaw growth characteristics. Thicknesses selected for this study were purposely set at values where, for most test conditions, abrupt instability of the flaw at fracture would not be expected. Static tests for the aluminum weldments were performed at room, LN2 and LH2 temperatures. Titanium static tests for tests were performed at room and LH2 temperatures. Results of the static tests were used to plot curves relating initial flaw size to leakage- or failure-stresses (i.e. "failure" locus curves). Cyclic tests, for both materials, were then performed at room temperature, using initial flaws only slightly below the previously established failure locus for typical proof stress levels. Cyclic testing was performed on pairs of specimens, one with and one without a simulated proof test cycle. Comparisons were made then to determine the value and effect of proof testing as affected by the various variables of proof and operating stress, flaw shape, material thickness, and alloy.
Damage development in titanium metal matrix composites subjected to cyclic loading
NASA Technical Reports Server (NTRS)
Johnson, W. S.
1992-01-01
Several layups of SCS-6/Ti-15-3 composites were investigated. Fatigue tests were conducted and analyzed for both notched and unnotched specimens at room temperature and elevated temperatures. Thermo-mechanical fatigue results were analyzed. Test results indicated that the stress in the 0 degree fibers is the controlling factor in fatigue life. The static and fatigue strength of these materials is shown to be strongly dependent on the level of residual stresses and the fiber/matrix interfacial strength. Fatigue tests of notched specimens showed that cracks can initiate and grow many fiber spacings in the matrix materials without breaking fibers. Fiber bridging models were applied to characterize the crack growth behavior. The matrix cracks are shown to significantly reduce the residual strength of notched composites. The notch strength of these composites was accurately predicted using a micromechanics based methodology.
Damage development in titanium metal-matrix composites subjected to cyclic loading
NASA Technical Reports Server (NTRS)
Johnson, W. S.
1993-01-01
Several layups of SCS-6/Ti-15-3 composites were investigated. Fatigue tests were conducted and analyzed for both notched and unnotched specimens at room temperature and elevated temperatures. Thermo-mechanical fatigue results were analyzed. Test results indicated that the stress in the 0 degree fibers is the controlling factor in fatigue life. The static and fatigue strength of these materials is shown to be strongly dependent on the level of residual stresses and the fiber/matrix interfacial strength. Fatigue tests of notched specimens showed that cracks can initiate and grow many fiber spacings in the matrix materials without breaking fibers. Fiber bridging models were applied to characterize the crack growth behavior. The matrix cracks are shown to significantly reduce the residual strength of notched composites. The notch strength of these composites was accurately predicted using a micromechanics based methodology.
TRIP effect in austenitic-martensitic VNS9-Sh steel at various strain rates
NASA Astrophysics Data System (ADS)
Terent'ev, V. F.; Slizov, A. K.; Prosvirnin, D. V.
2016-10-01
The mechanical properties of austenitic-martensitic VNS9-Sh (23Kh15N5AM3-Sh) steel are studied at a static strain rate from 4.1 × 10-5 to 17 × 10-3 s-1 (0.05-20 mm/min). It is found that, as the strain rate increases, the ultimate tensile strength decreases and the physical yield strength remains unchanged (≈1400 MPa). As the strain rate increases, the yield plateau remains almost unchanged and the relative elongation decreases continuously. Because of high microplastic deformation, the conventional yield strength is lower than the physical yield strength over the entire strain rate range under study. The influence of the TRIP effect on the changes in the mechanical properties of VNS9-Sh steel at various strain rates is discussed.
NASA Astrophysics Data System (ADS)
Jiang, Feng-Jian; Ye, Jian-Feng; Jiao, Zheng; Jiang, Jun; Ma, Kun; Yan, Xin-Hu; Lv, Hai-Jiang
2018-05-01
We perform a proof-of-principle experiment that uses a single negatively charged nitrogen–vacancy (NV) color center with a nearest neighbor 13C nuclear spin in diamond to detect the strength and direction (including both polar and azimuth angles) of a static vector magnetic field by optical detection magnetic resonance (ODMR) technique. With the known hyperfine coupling tensor between an NV center and a nearest neighbor 13C nuclear spin, we show that the information of static vector magnetic field could be extracted by observing the pulsed continuous wave (CW) spectrum. Project supported by the National Natural Science Foundation of China (Grant Nos. 11305074, 11135002, and 11275083), the Key Program of the Education Department Outstanding Youth Foundation of Anhui Province, China (Grant No. gxyqZD2017080), and the Education Department Natural Science Foundation of Anhui Province, China (Grant No. KJHS2015B09).
NASA Astrophysics Data System (ADS)
Ganguly, Jayanta; Ghosh, Manas
2015-07-01
We investigate the modulation of diagonal components of static linear (αxx, αyy) and first nonlinear (βxxx, βyyy) polarizabilities of quantum dots by Gaussian white noise. Quantum dot is doped with impurity represented by a Gaussian potential and repulsive in nature. The study reveals the importance of mode of application of noise (additive/multiplicative) on the polarizability components. The doped system is further exposed to a static external electric field of given intensity. As important observation we have found that the strength of additive noise becomes unable to influence the polarizability components. However, the multiplicative noise influences them conspicuously and gives rise to additional interesting features. Multiplicative noise even enhances the magnitude of the polarizability components immensely. The present investigation deems importance in view of the fact that noise seriously affects the optical properties of doped quantum dot devices.
Static electric fields modify the locomotory behaviour of cockroaches.
Jackson, Christopher W; Hunt, Edmund; Sharkh, Suleiman; Newland, Philip L
2011-06-15
Static electric fields are found throughout the environment and there is growing interest in how electric fields influence insect behaviour. Here we have analysed the locomotory behaviour of cockroaches (Periplaneta americana) in response to static electric fields at levels equal to and above those found in the natural environment. Walking behaviour (including velocity, distance moved, turn angle and time spent walking) were analysed as cockroaches approached an electric field boundary in an open arena, and also when continuously exposed to an electric field. On approaching an electric field boundary, the greater the electric field strength the more likely a cockroach would be to turn away from, or be repulsed by, the electric field. Cockroaches completely exposed to electric fields showed significant changes in locomotion by covering less distance, walking slowly and turning more often. This study highlights the importance of electric fields on the normal locomotory behaviour of insects.
Contrasting Causal Effects of Workplace Interventions.
Izano, Monika A; Brown, Daniel M; Neophytou, Andreas M; Garcia, Erika; Eisen, Ellen A
2018-07-01
Occupational exposure guidelines are ideally based on estimated effects of static interventions that assign constant exposure over a working lifetime. Static effects are difficult to estimate when follow-up extends beyond employment because their identifiability requires additional assumptions. Effects of dynamic interventions that assign exposure while at work, allowing subjects to leave and become unexposed thereafter, are more easily identifiable but result in different estimates. Given the practical implications of exposure limits, we explored the drivers of the differences between static and dynamic interventions in a simulation study where workers could terminate employment because of an intermediate adverse health event that functions as a time-varying confounder. The two effect estimates became more similar with increasing strength of the health event and outcome relationship and with increasing time between health event and employment termination. Estimates were most dissimilar when the intermediate health event occurred early in employment, providing an effective screening mechanism.
NASA Astrophysics Data System (ADS)
Bittner-Rohrhofer, K.; Humer, K.; Weber, H. W.; Hamada, K.; Sugimoto, M.; Okuno, K.
2002-12-01
The insulation system proposed by the Japanese Home Team for the ITER Toroidal Field coil (TF coil) is a T-glass-fiber/Kapton reinforced epoxy prepreg system. In order to assess the material performance under the actual operating conditions of the coils, the insulation system was irradiated in the TRIGA reactor (Vienna) to a fast neutron fluence of 2×10 22 m -2 ( E>0.1 MeV). After measurements of swelling, all mechanical tests were carried out at 77 K. Tensile and short-beam-shear (SBS) tests were performed under static loading conditions. In addition, tension-tension fatigue experiments up to about 10 6 cycles were made. The laminate swells in the through-thickness direction by 0.86% at the highest dose level. The fatigue tests as well as the static tests do not show significant influences of the irradiation on the mechanical behavior of this composite.
Modeling the Residual Strength of a Fibrous Composite Using the Residual Daniels Function
NASA Astrophysics Data System (ADS)
Paramonov, Yu.; Cimanis, V.; Varickis, S.; Kleinhofs, M.
2016-09-01
The concept of a residual Daniels function (RDF) is introduced. Together with the concept of Daniels sequence, the RDF is used for estimating the residual (after some preliminary fatigue loading) static strength of a unidirectional fibrous composite (UFC) and its S-N curve on the bases of test data. Usually, the residual strength is analyzed on the basis of a known S-N curve. In our work, an inverse approach is used: the S-N curve is derived from an analysis of the residual strength. This approach gives a good qualitive description of the process of decreasing residual strength and explanes the existence of the fatigue limit. The estimates of parameters of the corresponding regression model can be interpreted as estimates of parameters of the local strength of components of the UFC. In order to approach the quantitative experimental estimates of the fatigue life, some ideas based on the mathematics of the semiMarkovian process are employed. Satisfactory results in processing experimental data on the fatigue life and residual strength of glass/epoxy laminates are obtained.
NASA Astrophysics Data System (ADS)
Grise, K. M.; Thompson, D. W.; Birner, T.
2009-12-01
Static stability is a fundamental dynamical quantity that measures the vertical temperature stratification of the atmosphere. The long-term mean static stability field is characterized by the well-known transition from low values in the troposphere to high values in the stratosphere. However, the magnitude and structure of fine-scale static stability features near the tropopause are difficult to discern in temperature data with low vertical resolution. In this study, the authors apply over six years of high vertical resolution Global Positioning System radio occultation temperature profiles to document the long-term mean structure and variability of static stability in the global upper troposphere and lower stratosphere (UTLS). The results of this study demonstrate that a shallow but pronounced maximum in static stability exists just above the tropopause at all latitudes (i.e., the “tropopause inversion layer,” or TIL). This study also uncovers two novel aspects of static stability in the global UTLS. In the tropical lower stratosphere, the results reveal a unique vertically and horizontally varying static stability structure, with maxima located at ~17 km and ~19 km. The upper feature peaks during the NH cold season and has its largest magnitude between 10 and 15 degrees latitude in both hemispheres; the lower feature exhibits a weaker seasonal cycle and is centered at the Equator. The results also demonstrate that the strength of the TIL is closely tied to stratospheric dynamic variability. The magnitude of the TIL is enhanced following sudden stratospheric warmings in the polar regions and the easterly phase of the quasi-biennial oscillation in the tropics.
NASA Astrophysics Data System (ADS)
Grise, Kevin M.; Thompson, David W. J.; Birner, Thomas
2010-05-01
Static stability is a fundamental dynamical quantity that measures the vertical temperature stratification of the atmosphere. The long-term mean static stability field is characterized by the well-known transition from low values in the troposphere to high values in the stratosphere. However, the magnitude and structure of fine-scale static stability features near the tropopause are difficult to discern in temperature data with low vertical resolution. In this study, the authors apply over six years of high vertical resolution Global Positioning System radio occultation temperature profiles to document the long-term mean structure and variability of static stability in the global upper troposphere and lower stratosphere (UTLS). The results of this study demonstrate that a shallow but pronounced maximum in static stability exists just above the tropopause at all latitudes (i.e., the "tropopause inversion layer," or TIL). This study also uncovers two novel aspects of static stability in the global UTLS. In the tropical lower stratosphere, the results reveal a unique vertically and horizontally varying static stability structure, with maxima located at ~17 km and ~19 km. The upper feature peaks during the NH cold season and has its largest magnitude between 10 and 15 degrees latitude in both hemispheres; the lower feature exhibits a weaker seasonal cycle and is centered at the Equator. The results also demonstrate that the strength of the TIL is closely tied to stratospheric dynamic variability. The magnitude of the TIL is enhanced following sudden stratospheric warmings in the polar regions and the easterly phase of the quasi-biennial oscillation in the tropics.
Synoptic-Scale Behavior of the Extratropical Tropopause Inversion Layer
NASA Astrophysics Data System (ADS)
Pilch Kedzierski, Robin; Matthes, Katja; Bumke, Karl
2015-04-01
The Tropopause Inversion Layer (TIL) is a climatological feature of the tropopause region, characterized by enhanced static stability and strong temperature inversion in a thin layer (about 1km deep) right above the tropopause. It was discovered recently via tropopause-based averaging [Birner 2002]. The sharp static stability, temperature and wind shear gradients of the TIL theoretically shall inhibit stratosphere-troposphere exchange and influence the vertical propagation of planetary scale Rossby and small-scale gravity waves. High vertically resolved radiosonde and GPS radio occultation measurements show that the strength of the TIL is positively correlated with the tropopause height and anticyclonic conditions, and that it reaches its maximum strength in polar regions during summer [Birner 2006] [Randel and Wu, 2007 and 2010]. Our study takes advantage of the high density of vertical profiles (~2000 measurements per day, globally) measured by the COSMIC satellites (2007-present), in order to describe the synoptic-scale structures of the TIL and the differences between the seasonal climatologies from earlier studies and the real-time TIL. Also, using ERA-Interim reanalysis wind fields, we split relative vorticity into shear and curl terms and study separately their relation to TIL strength in cyclonic-anticyclonic conditions. We find that the TIL has a rich zonal structure, especially in midlatitude winter, and that its strength is instantly adjusted to the synoptic situation at near-tropopause level. The peaks of strongest TIL at midlatitude ridges in winter are stronger and much more frequent than any peaks found in polar summer. The roles of shear and curl vorticity differ substantially towards higher values of relative vorticity (both cyclonic and anticyclonic).
Static and Dynamic Moduli of Malm Carbonate: A Poroelastic Correlation
NASA Astrophysics Data System (ADS)
Hassanzadegan, Alireza; Guérizec, Romain; Reinsch, Thomas; Blöcher, Guido; Zimmermann, Günter; Milsch, Harald
2016-08-01
The static and poroelastic moduli of a porous rock, e.g., the drained bulk modulus, can be derived from stress-strain curves in rock mechanical tests, and the dynamic moduli, e.g., dynamic Poisson's ratio, can be determined by acoustic velocity and bulk density measurements. As static and dynamic elastic moduli are different, a correlation is often required to populate geomechanical models. A novel poroelastic approach is introduced to correlate static and dynamic bulk moduli of outcrop analogues samples, representative of Upper-Malm reservoir rock in the Molasse basin, southwestern Germany. Drained and unjacketed poroelastic experiments were performed at two different temperature levels (30 and 60°C). For correlating the static and dynamic elastic moduli, a drained acoustic velocity ratio is introduced, corresponding to the drained Poisson's ratio in poroelasticity. The strength of poroelastic coupling, i.e., the product of Biot and Skempton coefficients here, was the key parameter. The value of this parameter decreased with increasing effective pressure by about 56 ~% from 0.51 at 3 MPa to 0.22 at 73 MPa. In contrast, the maximum change in P- and S-wave velocities was only 3 % in this pressure range. This correlation approach can be used in characterizing underground reservoirs, and can be employed to relate seismicity and geomechanics (seismo-mechanics).
Root-sum-square structural strength verification approach
NASA Technical Reports Server (NTRS)
Lee, Henry M.
1994-01-01
Utilizing a proposed fixture design or some variation thereof, this report presents a verification approach to strength test space flight payload components, electronics boxes, mechanisms, lines, fittings, etc., which traditionally do not lend themselves to classical static loading. The fixture, through use of ordered Euler rotation angles derived herein, can be mounted on existing vibration shakers and can provide an innovative method of applying single axis flight load vectors. The versatile fixture effectively loads protoflight or prototype components in all three axes simultaneously by use of a sinusoidal burst of desired magnitude at less than one-third the first resonant frequency. Cost savings along with improved hardware confidence are shown. The end product is an efficient way to verify experiment hardware for both random vibration and strength.
Dynamic brain connectivity is a better predictor of PTSD than static connectivity.
Jin, Changfeng; Jia, Hao; Lanka, Pradyumna; Rangaprakash, D; Li, Lingjiang; Liu, Tianming; Hu, Xiaoping; Deshpande, Gopikrishna
2017-09-01
Using resting-state functional magnetic resonance imaging, we test the hypothesis that subjects with post-traumatic stress disorder (PTSD) are characterized by reduced temporal variability of brain connectivity compared to matched healthy controls. Specifically, we test whether PTSD is characterized by elevated static connectivity, coupled with decreased temporal variability of those connections, with the latter providing greater sensitivity toward the pathology than the former. Static functional connectivity (FC; nondirectional zero-lag correlation) and static effective connectivity (EC; directional time-lagged relationships) were obtained over the entire brain using conventional models. Dynamic FC and dynamic EC were estimated by letting the conventional models to vary as a function of time. Statistical separation and discriminability of these metrics between the groups and their ability to accurately predict the diagnostic label of a novel subject were ascertained using separate support vector machine classifiers. Our findings support our hypothesis that PTSD subjects have stronger static connectivity, but reduced temporal variability of connectivity. Further, machine learning classification accuracy obtained with dynamic FC and dynamic EC was significantly higher than that obtained with static FC and static EC, respectively. Furthermore, results also indicate that the ease with which brain regions engage or disengage with other regions may be more sensitive to underlying pathology than the strength with which they are engaged. Future studies must examine whether this is true only in the case of PTSD or is a general organizing principle in the human brain. Hum Brain Mapp 38:4479-4496, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
ERIC Educational Resources Information Center
Scoones, Carwyn D.; Willis, Gwenda M.; Grace, Randolph C.
2012-01-01
Both desistance research and strengths-based approaches to offender rehabilitation suggest that attempts to reduce sex offender recidivism should attend to an offender's release environment. Recent research has demonstrated that better quality release planning is associated with reduced recidivism; however, whether release planning contributes…
49 CFR 238.405 - Longitudinal static compressive strength.
Code of Federal Regulations, 2010 CFR
2010-10-01
... volumes of a power car or a trailer car designed to crush as part of the crash energy management design... deformation to the cab, unless equivalent protection to crewmembers is provided under an alternate design approach, validated through analysis and testing, and approved by FRA under the provisions of § 238.21. (b...
49 CFR 238.405 - Longitudinal static compressive strength.
Code of Federal Regulations, 2011 CFR
2011-10-01
... volumes of a power car or a trailer car designed to crush as part of the crash energy management design... deformation to the cab, unless equivalent protection to crewmembers is provided under an alternate design approach, validated through analysis and testing, and approved by FRA under the provisions of § 238.21. (b...
Workshop on the Mechanics of Ice and Its Applications
1993-10-01
Academy of Sciences Institute Moscow, USSR Leningrad, USSR V.P. Epifanov B.G. Korenev Institute for Problems in Mechanics Moscow Civil Engineering...Related to the Static Strength of Ice Cover Speakers: B.G. Korenev and E.B. Koreneva 10:30 - 11:00 The Mechanics of Pressure Ridge Building from a Wide
A classical treatment of the quadratic Zeeman effect in atomic hydrogen
NASA Astrophysics Data System (ADS)
Al-Laithy, M. A.; Farmer, C. M.; McDowell, M. R. C.
1985-03-01
A description of the non-relativistic classical motion of the electron of a hydrogen atom in the presence of a static magnetic field of arbitrary (non-relativistic) strength is given for arbitrary angular momentum. Applications are given to m = 0 and m = 3 at B = 26.877 kG.
Testing of Replacement Bag Material
DOE Office of Scientific and Technical Information (OSTI.GOV)
Laurinat, J.E.
1998-11-03
Recently, the FB-Line bagout material was changed to simplify the processing of sand, slag, and crucible.The results of the strength tests and the outgassing measurements and calculations demonstrate that the proposed replacement nylon bag materials (HRMP and orange anti-static material) are acceptable substitutes for LDPE and the original nylon with respect to mechanical properties.
Relationship between notch strengthening threshold and mechanical property for ductile cast iron
NASA Astrophysics Data System (ADS)
Ikeda, T.; Noda, N.-A.; Sano, Y.; Umetani, T.; Kai, N.
2018-06-01
In this study, dynamic tensile tests were conducted at the various strain rates and temperatures for traditional ductile cast iron. Then, the notch strength {σ }{{B}}{{noth}} and the static tensile strength at room temperature {σ }{{B,}\\quad {{RT}}}{{smooth}} were discussed in terms of the strain rate- temperature parameter R, which is known to be useful for evaluating the combined influence of strain rate and temperature. This study focuses on the notch strengthening threshold R ≧ R th where {σ }{{B}}{{noth}} is larger than {σ }{{B,}\\quad {{RT}}}{{smooth}} and therefore notched components can be used safely. In other words, if R ≧ R th, {σ }{{B,}\\quad {{RT}}}{{smooth}} can be used to evaluate notched components in mechanical design to prevent the instantaneous fracture. In this study, it was found that the R th value can be predicted from the static tensile property and Brinell hardness. Since the traditional ductile cast iron considered in this paper has a broad range of mechanical properties, the present approach and discussion can be applied to evaluate other materials under various temperature and strain rate.
Long-term stability and properties of zirconia ceramics for heavy duty diesel engine components
NASA Technical Reports Server (NTRS)
Larsen, D. C.; Adams, J. W.
1985-01-01
Physical, mechanical, and thermal properties of commercially available transformation-toughened zirconia are measured. Behavior is related to the material microstructure and phase assemblage. The stability of the materials is assessed after long-term exposure appropriate for diesel engine application. Properties measured included flexure strength, elastic modulus, fracture toughness, creep, thermal shock, thermal expansion, internal friction, and thermal diffusivity. Stability is assessed by measuring the residual property after 1000 hr/1000C static exposure. Additionally static fatigue and thermal fatigue testing is performed. Both yttria-stabilized and magnesia-stabilized materials are compared and contrasted. The major limitations of these materials are short term loss of properties with increasing temperature as the metastable tetragonal phase becomes more stable. Fine grain yttria-stabilized material (TZP) is higher strength and has a more stable microstructure with respect to overaging phenomena. The long-term limitation of Y-TZP is excessive creep deformation. Magnesia-stabilized PSZ has relatively poor stability at elevated temperature. Overaging, decomposition, and/or destabilization effects are observed. The major limitation of Mg-PSZ is controlling unwanted phase changes at elevated temperature.
Hygrothermomechanical evaluation of transverse filament tape epoxy/polyester fiberglass composites
NASA Technical Reports Server (NTRS)
Lark, R. L.; Chamis, C. C.
1983-01-01
The static and cyclic load behavior of transverse filament tape (TFT) fiberglass/epoxy and TFY fiberglass/polyester composites, intended for use in the design of low-cost wind turbine blades, are presented. The data behavior is also evaluated with respect to predicted properties based on an integrated hygrothermomechanical response theory. Experimental TFT composite data were developed by the testing of laminates made by using composite layups typical of those used for the fabrication of TFT fiberglass wind turbine blades. Static properties include tension, compression, and interlaminar shear strengths at ambient conditions and at high humidity/elevated temperature conditions after a 500 hour exposure. Cyclic fatigue data were obtained using similar environmental conditions and a range of cyclic stresses. The environmental (temperature and moisture) and cyclic load effects on composite strength degradation are subsequently compared with the predictions obtained by using the composite life/durability theory. The results obtained show that the predicted hygrothermomechanical environmental effects on TFT composites are in good agreement with measured data for various properties including fatigue at different cyclic stresses.
NASA Technical Reports Server (NTRS)
Choi, Sung R.; Racz, Zsolt; Bhatt, Ramakrishna T.; Brewer, David N.
2006-01-01
Assessments of foreign object damage (FOD) of a commercial, gas-turbine grade, in situ toughened silicon nitride ceramic (AS800, Honeywell Ceramics Components) were made using four different projectile materials at ambient temperature. AS800 flexure target specimens rigidly supported were impacted at their centers in a velocity range from 50 to 450 m/s by spherical projectiles with a diameter of 1.59 mm. Four different projectile materials were used including hardened steel, annealed steel, silicon nitride ceramic, and brass. Post-impact strength of each target specimen impacted was determined as a function of impact velocity to appraise the severity of local impact damage. For a given impact velocity, the degree of strength degradation was greatest for ceramic balls, least for brass balls, and intermediate for annealed and hardened steel balls. For steel balls, hardened projectiles yielded more significant impact damage than annealed counterparts. The most important material parameter affecting FOD was identified as hardness of projectiles. Impact load as a function of impact velocity was quasi-statically estimated based on both impact and static indentation associated data.
Development of the Main Wing Structure of a High Altitude Long Endurance UAV
NASA Astrophysics Data System (ADS)
Park, Sang Wook; Shin, Jeong Woo; Kim, Tae-Uk
2018-04-01
To enhance the flight endurance of a HALE UAV, the main wing of the UAV should have a high aspect ratio and low structural weight. Since a main wing constructed with the thin walled and slender components needed for low structural weight can suffer catastrophic failure during flight, it is important to develop a light-weight airframe without sacrificing structural integrity. In this paper, the design of the main wing of the HALE UAV was conducted using spars which were composed of a carbon-epoxy cylindrical tube and bulkheads to achieve both the weight reduction and structural integrity. The spars were sized using numerical analysis considering non-linear deformation under bending moment. Static strength testing of the wing was conducted under the most critical load condition. Then, the experimental results obtained for the wing were compared to the analytical result from the non-linear finite-element analysis. It was found that the developed main wing reduced its structural weight without any failure under the ultimate load condition of the static strength testing.
Supersonic flow gradients at an overexpanded nozzle lip
NASA Astrophysics Data System (ADS)
Silnikov, M. V.; Chernyshov, M. V.
2018-07-01
The flowfield of a planar, overexpanded jet flow and an axisymmetric one are analyzed theoretically for a wide range of governing flow parameters (such as the nozzle divergence angle, the initial flow Mach number, the jet expansion ratio, and the ratio of specific heats). Significant differences are discovered between these parameters of the incident shock and the downstream flow for a planar jet and for an axisymmetric overexpanded jet flow. Incident shock curvature, shock strength variation, the geometrical curvature of the jet boundary, gradients of total and static pressure and Mach number, and flow vorticity parameters in post-shock flow are studied theoretically for non-separated nozzle flows. Flow parameters indicating zero and extrema values of these gradients are reported. Some theoretical results (such as concavities of incident shock and jet boundary, local decreases in the incident shock strength, increases and decreases in the static pressure, and the Mach number downstream of the incident shock) seem rather specific and non-evident at first sight. The theoretical results, achieved while using an inviscid flow model, are compared and confirmed with experimental data obtained by other authors.
Flight service evaluation of composite helicopter components
NASA Technical Reports Server (NTRS)
Mardoian, George H.; Ezzo, Maureen B.
1990-01-01
An assessment is presented of ten composite tail rotor spars and four horizontal stabilizers exposed to the effects of in-flight commercial service for up to nine years to establish realistic environmental factors for use in future designs. This evaluation is supported by test results of helicopter components and panels which have been exposed to outdoor environmental effects since 1979. Full scale static and fatigue tests were conducted on graphite/epoxy and Kevlar/epoxy composite components removed from Sikorsky Model S-76 helicopters in commercial operations off the Gulf Coast of Louisiana. Small scale static and fatigue tests were conducted on coupons obtained from panels exposed to outdoor conditions in Stratford, CT and West Palm Beach, Florida. The panel materials and ply configurations were representative of the S-76 components. The results are discussed of moisture analyses and strength tests on both the S-76 components and composite panels after up to nine years of outdoor exposure. Full scale tests performed on the helicopter components did not disclose any significant reductions from the baseline strengths. The results increased confidence in the long term durability of advanced composite materials in helicopter structural applications.
Effects of Strain Rate on Compressive Properties in Bimodal 7075 Al-SiCp Composite
NASA Astrophysics Data System (ADS)
Lee, Hyungsoo; Choi, Jin Hyeok; Jo, Min Chul; Jo, Ilguk; Lee, Sang-Kwan; Lee, Sunghak
2018-07-01
A 7075 Al alloy matrix composite reinforced with SiC particulates (SiCps) whose sizes were 10 and 30 μm, i.e., a bimodal Al-SiCp composite, was made by a liquid pressing process, and its quasi-static and dynamic compressive properties were evaluated by using a universal testing machine and a split Hopkinson pressure bar, respectively. Mg-Si-, Al-Fe-, and Cu-rich intermetallic compounds existed inside the Al matrix, but might not deteriorate compressive properties because of their low volume fraction (about 2.6%) which was much lower than that of SiCp. The dynamic compressive strength was higher than the quasi-static strength, and was higher in the specimen tested at 2800 s-1 than in the specimen tested at 1400 s-1 according to the strain-rate hardening. For explaining the strain data, the blocking extent of crack propagation by the Al matrix was quantitatively examined. The melting of Al matrix occurred by adiabatic heating was favorable for the improvement in compressive strain because it favorably worked for activating the shear band formation and for blocking the crack propagation, thereby leading to the excellent compressive strain (10.9-11.6%) as well as maximum compressive strength (1057-1147 MPa). Thus, the present bimodal 7075 Al-SiCp composite provides a promise for new applications to high-performance armor plates.
Jeon, Mi Yang; Jeong, HyeonCheol; Petrofsky, Jerrold; Lee, Haneul; Yim, JongEun
2014-11-14
Falling can lead to severe health issues in the elderly and importantly contributes to morbidity, death, immobility, hospitalization, and early entry to long-term care facilities. The aim of this study was to devise a recurrent fall prevention program for elderly women in rural areas. This study adopted an assessor-blinded, randomized, controlled trial methodology. Subjects were enrolled in a 12-week recurrent fall prevention program, which comprised strength training, balance training, and patient education. Muscle strength and endurance of the ankles and the lower extremities, static balance, dynamic balance, depression, compliance with preventive behavior related to falls, fear of falling, and fall self-efficacy at baseline and immediately after the program were assessed. Sixty-two subjects (mean age 69.2±4.3 years old) completed the program--31 subjects in the experimental group and 31 subjects in the control group. When the results of the program in the 2 groups were compared, significant differences were found in ankle heel rise test, lower extremity heel rise test, dynamic balance, depression, compliance with fall preventative behavior, fear of falling, and fall self-efficacy (p<0.05), but no significant difference was found in static balance. This study shows that the fall prevention program described effectively improves muscle strength and endurance, balance, and psychological aspects in elderly women with a fall history.
Effects of Strain Rate on Compressive Properties in Bimodal 7075 Al-SiCp Composite
NASA Astrophysics Data System (ADS)
Lee, Hyungsoo; Choi, Jin Hyeok; Jo, Min Chul; Jo, Ilguk; Lee, Sang-Kwan; Lee, Sunghak
2018-03-01
A 7075 Al alloy matrix composite reinforced with SiC particulates (SiCps) whose sizes were 10 and 30 μm, i.e., a bimodal Al-SiCp composite, was made by a liquid pressing process, and its quasi-static and dynamic compressive properties were evaluated by using a universal testing machine and a split Hopkinson pressure bar, respectively. Mg-Si-, Al-Fe-, and Cu-rich intermetallic compounds existed inside the Al matrix, but might not deteriorate compressive properties because of their low volume fraction (about 2.6%) which was much lower than that of SiCp. The dynamic compressive strength was higher than the quasi-static strength, and was higher in the specimen tested at 2800 s-1 than in the specimen tested at 1400 s-1 according to the strain-rate hardening. For explaining the strain data, the blocking extent of crack propagation by the Al matrix was quantitatively examined. The melting of Al matrix occurred by adiabatic heating was favorable for the improvement in compressive strain because it favorably worked for activating the shear band formation and for blocking the crack propagation, thereby leading to the excellent compressive strain (10.9-11.6%) as well as maximum compressive strength (1057-1147 MPa). Thus, the present bimodal 7075 Al-SiCp composite provides a promise for new applications to high-performance armor plates.
NASA Astrophysics Data System (ADS)
Farooq, A.; Jeffries, J. B.; Hanson, R. K.
2008-03-01
A new tunable diode-laser sensor based on CO2 absorption near 2.7 μm is developed for high-resolution absorption measurements of CO2 concentration and temperature. The sensor probes the R(28) and P(70) transitions of the ν1+ν3 combination band of CO2 that has stronger absorption line-strengths than the bands near 1.5 μm and 2.0 μm used previously to sense CO2 in combustion gases. The increased absorption strength of transitions in this new wavelength range provides greatly enhanced sensitivity and the potential for accurate measurements in combustion gases with short optical path lengths. Simulated high-temperature spectra are surveyed to find candidate CO2 transitions isolated from water vapor interference. Measurements of line-strength, line position, and collisional broadening parameters are carried out for candidate CO2 transitions in a heated static cell as a function of temperature and compared to literature values. The accuracy of a fixed-wavelength CO2 absorption sensor is determined via measurement of known temperature and CO2 mole fraction in a static cell and shock-tube. Absorption measurements of CO2 are then made in a laboratory flat-flame burner and in ignition experiments of shock-heated n-heptane/O2/argon mixtures to illustrate the potential of this sensor for combustion and reacting-flow applications.
Gehrke, Sergio Alexandre; Pérez-Díaz, Leticia; Dedavid, Berenice Anina
2018-06-01
New manufacturing methods was developed to improve the tissues integration with the titanium alloy pieces. The present in vitro study was to assess the resistance and fracture mode after applied a quasi-static compressive force on the two dental implants manufactured by direct metal laser sintering. Twenty dental implants manufactured by direct metal laser sintering, using titanium alloy (Ti-6Al-4V) granules in two designs (n = 10 per group): Conventional dental implant (group Imp1) two-piece implant design, where the surgical implant and prosthetic abutment are two separate components and, the one-piece implant (group Imp2), where the surgical implant and prosthetic abutment are one integral piece. All samples were subjected to quasi-static loading at a 30° angle to the implant axis in a universal testing machine. The mean fracture strengths were 1269.2 ± 128.8 N for the group Imp1 and, 1259.5 ± 115.1 N for the group Imp2, without statistical differences (P = .8722). In both groups, the fracture surface does not present crack between the compact core and the superficial (less dense and porous) part of the implants. Based on the measured resistance data for the two implant models manufactured by direct metal laser sintering tested in the present study, we can suggest that they have adequate capacity to withstand the masticatory loads. © 2018 Wiley Periodicals, Inc.
[Effect of static magnetic field on deep wound healing of SD rats].
Shen, Jian-Guo; Chen, Wei-Shan; Wang, Chang-Xing; Jiang, Tao; Dong, Li-Qiang
2009-05-01
To investigate the effect of static magnetic field on deep wound healing of SD rats and VEGF during the wound healing and different strength static magnetic field on deep wound healing of SD rats. Divided forty-eight SD rats into three groups: 0.16 T magnetic disk treatment (0.16 T group), 0.32 T magnetic disk treatment (0.32 T group), control group. General wounds healing situation was observated on the 3, 6, 9, 12 day. The area of every wound was calculated. The tissue of granulation was dyeing by immune tissue chemical decoration method, in which VEGF protein content with its range in tissue was measured. The healing index of 0.16 T magnetic group wounds were larger than that of control group on 6th and 9th day, there were statistical difference. The healing index of 0.32 T magnetic group wounds were larger than that of control group on 3rd, 6th, 9th and 12th day, there were statistical difference. The healing index of 0.32 T group wounds contrasted to that of 0.16 T group wounds had no statistical significance. Observation of VEGF at the course of wound healing:the expressing of VEGF in magnetic group wounds on 3rd and 6th was stronger than in control group wounds, there were statistical difference. While there were no obvious difference between them on 9th and 12th day (P>0.05). But the contrast between that in 0.32 T group and in 0.16 T group had no statistical difference. The expressing strength of VEGF in magnetic group reached the peak amplitude on the 6th day, and that in control group reached peak amplitude on 9th day. And the peak amplitude of magnetic group was stronger than that of control group. Static magnetic disc of 0.16T and 0.32 T can promote deep wound of SD rats heal. The mechanism of static magnetic field promoting wound heal may be relative to the expressing highly of VEGF during early and middle time.
Coseismic Damage Generation in Fault Zones by Successive High Strain Rate Loading Experiments
NASA Astrophysics Data System (ADS)
Aben, F. M.; Doan, M. L.; Renard, F.; Toussaint, R.; Reuschlé, T.; Gratier, J. P.
2014-12-01
Damage zones of active faults control both resistance to rupture and transport properties of the fault. Hence, knowing the rock damage's origin is important to constrain its properties. Here we study experimentally the damage generated by a succession of dynamic loadings, a process mimicking the stress history of a rock sample located next to an active fault. A propagating rupture generates high frequency stress perturbations next to its tip. This dynamic loading creates pervasive damage (pulverization), as multiple fractures initiate and grow simultaneously. Previous single loading experiments have shown a strain rate threshold for pulverization. Here, we focus on conditions below this threshold and the dynamic peak stress to constrain: 1) if there is dynamic fracturing at these conditions and 2) if successive loadings (cumulative seismic events) result in pervasive fracturing, effectively reducing the pulverization threshold to milder conditions. Monzonite samples were dynamically loaded (strain rate > 50 s-1) several times below the dynamic peak strength, using a Split Hopkinson Pressure Bar apparatus. Several quasi-static experiments were conducted as well (strain rate < 10-5-s). Samples loaded up to stresses above the quasi-static uniaxial compressive strength (qsUCS) systematically fragmented or pulverized after four successive loadings. We measured several damage proxies (P-wave velocity, porosity), that show a systematic increase in damage with each load. In addition, micro-computed tomography acquisition on several damage samples revealed the growth of a pervasive fracture network between ensuing loadings. Samples loaded dynamically below the qsUCS failed along one fracture after a variable amount of loadings and damage proxies do not show any a systematic trend. Our conclusions is that milder dynamic loading conditions, below the dynamic peak strength, result in pervasive dynamic fracturing. Also, successive loadings effectively lower the pulverization threshold of the rock. However, the peak loading stress must exceed the qsUCS of the rock, otherwise quasi-static fracturing occurs. Pulverized rocks found in the field are therefore witnesses of previous large earthquakes.
Pedersen, D M; Clark, J A; Johns, R E; White, G L; Hoffman, S
1989-01-01
In this study the authors investigate the percentage of mismatch between job demands and worker physical capacity in Utah National Guard mechanics. This population had demonstrated a higher incidence of low back trouble than other job descriptions reviewed. The authors utilized onsite still and videotape photography and a computerized biomechanical strength prediction model to assess loads on the lumbosacral spine due to various job tasks. Job demands were then compared to the actual physical capacity of the individual workers based on static strength testing in job-related positions. A load cell on the testing apparatus entered the force generated into a computer which averaged the force of the last three seconds of a five-second lift. It was determined that as much as a 38% mismatch existed within this population for some job tasks which these workers were exposed to. Suggestions for preventing job-related low back cumulative trauma disorders are presented, including: engineering redesign, worker selection programs, work hardening, and others.
Volcano collapse promoted by progressive strength reduction: New data from Mount St. Helens
Reid, Mark E.; Keith, Terry E.C.; Kayen, Robert E.; Iverson, Neal R.; Iverson, Richard M.; Brien, Dianne
2010-01-01
Rock shear strength plays a fundamental role in volcano flank collapse, yet pertinent data from modern collapse surfaces are rare. Using samples collected from the inferred failure surface of the massive 1980 collapse of Mount St. Helens (MSH), we determined rock shear strength via laboratory tests designed to mimic conditions in the pre-collapse edifice. We observed that the 1980 failure shear surfaces formed primarily in pervasively shattered older dome rocks; failure was not localized in sloping volcanic strata or in weak, hydrothermally altered rocks. Our test results show that rock shear strength under large confining stresses is reduced ∼20% as a result of large quasi-static shear strain, as preceded the 1980 collapse of MSH. Using quasi-3D slope-stability modeling, we demonstrate that this mechanical weakening could have provoked edifice collapse, even in the absence of transiently elevated pore-fluid pressures or earthquake ground shaking. Progressive strength reduction could promote collapses at other volcanic edifices.
Iijima, Toshihiko; Homma, Shinya; Sekine, Hideshi; Sasaki, Hodaka; Yajima, Yasutomo; Yoshinari, Masao
2013-01-01
Hot isostatic pressing processed yttria-stabilized tetragonal zirconia polycrystal (HIP Y-TZP) has the potential for application to implants due to its high mechanical performance. The aim of this study was to investigate the influence of surface treatment of HIP Y-TZP on cyclic fatigue strength. HIP Y-TZP specimens were subjected to different surface treatments. Biaxial flexural strength was determined by both static and cyclic fatigue testing. In the cyclic fatigue test, the load was applied at a frequency of 10 Hz for 10(6) cycles in distilled water at 37°C. The surface morphology, roughness, and crystal phase of the surfaces were also evaluated. The cyclic fatigue strength (888 MPa) of HIP Y-TZP with sandblasting and acid-etching was more than twice that of Y-TZP as specified in ISO 13356 for surgical implants (320 MPa), indicating the clinical potential of this material.
Fatigue damage development of various CFRP-laminates
NASA Technical Reports Server (NTRS)
Schulte, K.; Baron, CH.
1988-01-01
The chronic strength and fatigue behavior of a woven carbon-fiber reinforced laminate in a balanced eight-shaft satin weave style was compared to nonwoven laminates with an equivalent cross-ply layup. Half the fibers were arranged in the direction of the load and the other half perpendicular to it. Two types of nonwoven laminates consisting of continuous fibers and aligned discontinuous fibers, both produced from carbon fiber prepregs, were studied. The cross-ply laminate with continuous fiber showed the best characteristics with regard to both static strength and fatigue. The similarities and differences in damage mechanisms in the laminates are described.
Functional ankle control of rock climbers
Schweizer, A; Bircher, H; Kaelin, X; Ochsner, P
2005-01-01
Objective: To evaluate whether rock climbing type exercise would be of value in rehabilitating ankle injuries to improve ankle stability and coordination. Results: The rock climbers showed significantly better results in the stabilometry and greater absolute and relative maximum strength of flexion in the ankle. The soccer players showed greater absolute but not relative strength in extension. Conclusion: Rock climbing, because of its slow and controlled near static movements, may be of value in the treatment of functional ankle instability. However, it has still to be confirmed whether it is superior to the usual rehabilitation exercises such as use of the wobble board. PMID:15976164
Rausch, S; Hoffmeier, K; Gueorguiev, B G; Klos, K; Gras, F; Hofmann, G O; Mückley, T
2011-12-01
Polyaxial angle-stable plating is thought to be particularly beneficial in the management of complex intra-articular fractures of the distal radius. The present study was performed to investigate the strength of polyaxial locking interfaces of distal radius plates. We tested the polyaxial interfaces of 3 different distal radius plates (2.4 mm Variable Angle LCP Two-Column Volar Distal Radius Plate, Synthes, Palmar Classic, Königsee Implantate and VariAx Plate Stryker). The strength of 0° and 10° screw locking angle was obtained during static loading. The strength of Palmar Classic with a 0° locking angle is significantly the best of all tested systems. With a 10° locking angle there is no significant difference between Palmar Classic, Two column Plate and VariAx Plate. The strength of polyaxial interfaces differs between the tested systems. A reduction of ultimate strength is due to increases of screw locking angle. The design of polyaxial locking interfaces should be investigated in human bone models. © Georg Thieme Verlag KG Stuttgart · New York.
Petri, Anne-Kathrin; Schmiedchen, Kristina; Stunder, Dominik; Dechent, Dagmar; Kraus, Thomas; Bailey, William H; Driessen, Sarah
2017-04-17
High-voltage direct current (HVDC) lines are the technology of choice for the transport of large amounts of energy over long distances. The operation of these lines produces static electric fields (EF), but the data reviewed in previous assessments were not sufficient to assess the need for any environmental limit. The aim of this systematic review was to update the current state of research and to evaluate biological effects of static EF. Using the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-analyses) recommendations, we collected and evaluated experimental and epidemiological studies examining biological effects of exposure to static EF in humans (n = 8) and vertebrates (n = 40). There is good evidence that humans and animals are able to perceive the presence of static EF at sufficiently high levels. Hair movements caused by electrostatic forces may play a major role in this perception. A large number of studies reported responses of animals (e.g., altered metabolic, immunologic or developmental parameters) to a broad range of static EF strengths as well, but these responses are likely secondary physiological responses to sensory stimulation. Furthermore, the quality of many of the studies reporting physiological responses is poor, which raises concerns about confounding. The weight of the evidence from the literature reviewed did not indicate that static EF have adverse biological effects in humans or animals. The evidence strongly supported the role of superficial sensory stimulation of hair and skin as the basis for perception of the field, as well as reported indirect behavioral and physiological responses. Physical considerations also preclude any direct effect of static EF on internal physiology, and reports that some physiological processes are affected in minor ways may be explained by other factors. While this literature does not support a level of concern about biological effects of exposure to static EF, the conditions that affect thresholds for human detection and possible annoyance at suprathreshold levels should be investigated.
The European Spacelab structural design evolution
NASA Technical Reports Server (NTRS)
Thirkettle, A. J.
1982-01-01
Spacelab is a manned, reusable laboratory which is being developed for the European Space Agency (ESA). In its working mode it will fly in low earth orbit in the cargo bay of the Shuttle Transportation System (STS) Orbiter. A description is presented of the structural development of the various features of Spacelab. System requirements are considered along with structural requirements, quasi-static loads, acoustic loads, pressure loads, crash loads, ground loads, and the fatigue profile. Aspects of thermal environment generation are discussed, and questions regarding the design evolution of the pallet structure are examined. Details of pallet structure testing are reported, taking into account static strength tests, acoustic tests, the modal survey test, crash tests, and fatigue/fracture mechanics testing.
Crashworthy airframe design concepts: Fabrication and testing
NASA Technical Reports Server (NTRS)
Cronkhite, J. D.; Berry, V. L.
1982-01-01
Crashworthy floor concepts applicable to general aviation aircraft metal airframe structures were investigated. Initially several energy absorbing lower fuselage structure concepts were evaluated. Full scale floor sections representative of a twin engine, general aviation airplane lower fuselage structure were designed and fabricated. The floors featured an upper high strength platform with an energy absorbing, crushable structure underneath. Eighteen floors were fabricated that incorporated five different crushable subfloor concepts. The floors were then evaluated through static and dynamic testing. Computer programs NASTRAN and KRASH were used for the static and dynamic analysis of the floor section designs. Two twin engine airplane fuselages were modified to incorporate the most promising crashworthy floor sections for test evaluation.
Adhesive-bonded double-lap joints. [analytical solutions for static load carrying capacity
NASA Technical Reports Server (NTRS)
Hart-Smith, L. J.
1973-01-01
Explicit analytical solutions are derived for the static load carrying capacity of double-lap adhesive-bonded joints. The analyses extend the elastic solution Volkersen and cover adhesive plasticity, adherend stiffness imbalance and thermal mismatch between the adherends. Both elastic-plastic and bi-elastic adhesive representations lead to the explicit result that the influence of the adhesive on the maximum potential bond strength is defined uniquely by the strain energy in shear per unit area of bond. Failures induced by peel stresses at the ends of the joint are examined. This failure mode is particularly important for composite adherends. The explicit solutions are sufficiently simple to be used for design purposes
Hammami, Raouf; Chaouachi, Anis; Makhlouf, Issam; Granacher, Urs; Behm, David G
2016-11-01
Balance, strength and power relationships may contain important information at various maturational stages to determine training priorities. The objective was to examine maturity-specific relationships of static/dynamic balance with strength and power measures in young male athletes. Soccer players (N = 130) aged 10-16 were assessed with the Stork and Y balance (YBT) tests. Strength/power measures included back extensor muscle strength, standing long jump (SLJ), countermovement jump (CMJ), and 3-hop jump tests. Associations between balance with strength/power variables were calculated according to peak-height-velocity (PHV). There were significant medium-large sized correlations between all balance measures with back extensor strength (r = .486-.791) and large associations with power (r = .511-.827). These correlation coefficients were significantly different between pre-PHV and circa PHV as well as pre-PHV and post-PHV with larger associations in the more mature groups. Irrespective of maturity-status, SLJ was the best strength/power predictor with the highest proportion of variance (12-47%) for balance (i.e., Stork eyes opened) and the YBT was the best balance predictor with the highest proportion of variance (43-78%) for all strength/power variables. The associations between balance and muscle strength/power measures in youth athletes that increase with maturity may imply transfer effects from balance to strength/power training and vice versa in youth athletes.
AGARD Flight Test Techniques Series. Volume 2. Identification of Dynamic Systems
1985-01-01
should not depend upon it to solve the problem autonomously. The analyst’s strong point is in formulating the problem; the computer’s strength is in...of derivation for the output-error method is to reduce the problem to the static form of Chapter 5. We will see that the dinamic system make- the
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-05
... CFR 39.19 to make your request. (h) Related Information For more information about this AD, contact... August 29, 2012. This AD requires removing the affected turbochargers from service before further flight. This AD was prompted by a report of a turbocharger turbine wheel that failed a static strength test at...
10 CFR 71.45 - Lifting and tie-down standards for all packages.
Code of Federal Regulations, 2011 CFR
2011-01-01
... that failure of any lifting device under excessive load would not impair the ability of the package to... its yield strength, a static force applied to the center of gravity of the package having a vertical... package must be designed so that failure of the device under excessive load would not impair the ability...
10 CFR 71.45 - Lifting and tie-down standards for all packages.
Code of Federal Regulations, 2014 CFR
2014-01-01
... that failure of any lifting device under excessive load would not impair the ability of the package to... its yield strength, a static force applied to the center of gravity of the package having a vertical... package must be designed so that failure of the device under excessive load would not impair the ability...
10 CFR 71.45 - Lifting and tie-down standards for all packages.
Code of Federal Regulations, 2012 CFR
2012-01-01
... that failure of any lifting device under excessive load would not impair the ability of the package to... its yield strength, a static force applied to the center of gravity of the package having a vertical... package must be designed so that failure of the device under excessive load would not impair the ability...
10 CFR 71.45 - Lifting and tie-down standards for all packages.
Code of Federal Regulations, 2013 CFR
2013-01-01
... that failure of any lifting device under excessive load would not impair the ability of the package to... its yield strength, a static force applied to the center of gravity of the package having a vertical... package must be designed so that failure of the device under excessive load would not impair the ability...
10 CFR 71.45 - Lifting and tie-down standards for all packages.
Code of Federal Regulations, 2010 CFR
2010-01-01
... that failure of any lifting device under excessive load would not impair the ability of the package to... its yield strength, a static force applied to the center of gravity of the package having a vertical... package must be designed so that failure of the device under excessive load would not impair the ability...
A comparison of parallel and diverging screw angles in the stability of locked plate constructs.
Wähnert, D; Windolf, M; Brianza, S; Rothstock, S; Radtke, R; Brighenti, V; Schwieger, K
2011-09-01
We investigated the static and cyclical strength of parallel and angulated locking plate screws using rigid polyurethane foam (0.32 g/cm(3)) and bovine cancellous bone blocks. Custom-made stainless steel plates with two conically threaded screw holes with different angulations (parallel, 10° and 20° divergent) and 5 mm self-tapping locking screws underwent pull-out and cyclical pull and bending tests. The bovine cancellous blocks were only subjected to static pull-out testing. We also performed finite element analysis for the static pull-out test of the parallel and 20° configurations. In both the foam model and the bovine cancellous bone we found the significantly highest pull-out force for the parallel constructs. In the finite element analysis there was a 47% more damage in the 20° divergent constructs than in the parallel configuration. Under cyclical loading, the mean number of cycles to failure was significantly higher for the parallel group, followed by the 10° and 20° divergent configurations. In our laboratory setting we clearly showed the biomechanical disadvantage of a diverging locking screw angle under static and cyclical loading.
NASA Technical Reports Server (NTRS)
Miller, Sandi G.; Roberts, Gary D.; Kohlman, Lee W.; Heimann, Paula J.; Pereira, J. Michael; Ruggeri, Charles R.; Martin, Richard E.; McCorkle, Linda S.
2015-01-01
Impact damage tolerance and damage resistance is a critical metric for application of polymer matrix composites where failure caused by impact damage could compromise structural performance and safety. As a result, several materials and/or design approaches to improve impact damage tolerance have been investigated over the past several decades. Many composite toughening methodologies impart a trade-off between increased fracture toughness and compromised in-plane strength and modulus. In large part, mechanical tests to evaluate composite damage tolerance include static methods such as Mode I, Mode II, and mixed mode failures. However, ballistic impact damage resistance does not always correlate with static properties. The intent of this paper is to evaluate the influence of a thermoplastic polyurethane veil interleave on the static and dynamic performance of composite test articles. Static coupon tests included tension, compression, double cantilever beam, and end notch flexure. Measurement of the resistance to ballistic impact damage were made to evaluate the composites response to high speed impact. The interlayer material showed a decrease of in-plane performance with only a moderate improvement to Mode I and Mode II fracture toughness. However, significant benefit to impact damage tolerance was observed through ballistic tests.
Nagai, Takashi; Lovalekar, Mita; Wohleber, Meleesa F; Perlsweig, Katherine A; Wirt, Michael D; Beals, Kim
2017-11-01
Musculoskeletal injuries have negatively impacted tactical readiness. The identification of prospective and modifiable risk factors of preventable musculoskeletal injuries can guide specific injury prevention strategies for Soldiers and health care providers. To analyze physiological and neuromuscular characteristics as predictors of preventable musculoskeletal injuries. Prospective-cohort study. A total of 491 Soldiers were enrolled and participated in the baseline laboratory testing, including body composition, aerobic capacity, anaerobic power/capacity, muscular strength, flexibility, static balance, and landing biomechanics. After reviewing their medical charts, 275 male Soldiers who met the criteria were divided into two groups: with injuries (INJ) and no injuries (NOI). Simple and multiple logistic regression analyses were used to calculate the odds ratio (OR) and significant predictors of musculoskeletal injuries (p<0.05). The final multiple logistic regression model included the static balance with eyes-closed and peak anaerobic power as predictors of future injuries (p<0.001). The current results highlighted the importance of anaerobic power/capacity and static balance. High intensity training and balance exercise should be incorporated in their physical training as countermeasures. Copyright © 2017 Sports Medicine Australia. All rights reserved.
Time-dependent reliability analysis of ceramic engine components
NASA Technical Reports Server (NTRS)
Nemeth, Noel N.
1993-01-01
The computer program CARES/LIFE calculates the time-dependent reliability of monolithic ceramic components subjected to thermomechanical and/or proof test loading. This program is an extension of the CARES (Ceramics Analysis and Reliability Evaluation of Structures) computer program. CARES/LIFE accounts for the phenomenon of subcritical crack growth (SCG) by utilizing either the power or Paris law relations. The two-parameter Weibull cumulative distribution function is used to characterize the variation in component strength. The effects of multiaxial stresses are modeled using either the principle of independent action (PIA), the Weibull normal stress averaging method (NSA), or the Batdorf theory. Inert strength and fatigue parameters are estimated from rupture strength data of naturally flawed specimens loaded in static, dynamic, or cyclic fatigue. Two example problems demonstrating proof testing and fatigue parameter estimation are given.
Static strength of molybdenum to 92 GPa under radial X-ray diffraction
NASA Astrophysics Data System (ADS)
Xiong, L.; Tu, P.; Li, B.; Wu, S. Y.; Hao, J. B.; Bai, L. G.; Li, X. D.; Liu, J.
2018-06-01
The high-pressure strength of molybdenum (Mo) to 92 GPa has been studied by radial X-ray diffraction (RXRD) technique. The ratio of t/G is found to decrease above ˜24 GPa, showing the yield of Mo which is caused by plastic deformation at this pressure. Combined with high-pressure shear modulus, it was found that the differential stress corresponding to the yield of Mo at 24 GPa due to plastic deformation is 1.73 GPa. The second increase of t values occurs after ˜66 GPa, suggesting the strength of Mo with a differential stress of ˜1.93 GPa. In addition, the maximum difference stress of molybdenum at 87 GPa is 3.01 GPa.
Elasticity and Strength of Biomacromolecular Crystals: Lysozyme
NASA Technical Reports Server (NTRS)
Holmes, A. M.; Witherow, W. K.; Chen, L. Q.; Chernov, A. A.
2003-01-01
The static Young modulus, E = 0.1 to 0.5 GPa, the crystal critical strength (sigma(sub c)) and its ratio to E,sigma(sub c)/E is approximately 10(exp 3), were measured for the first time for non cross-linked lysozyme crystals in solution. By using a triple point bending apparatus, we also demonstrated that the crystals were purely elastic. Softness of protein crystals built of hard macromolecules (26 GPa for lysozyme) is explained by the large size of the macromolecules as compared to the range of intermolecular forces and by the weakness of intermolecular bonds as compared to the peptide bond strength. The relatively large reported dynamic elastic moduli (approximately 8 GPa) from resonance light scattering should come from averaging over the moduli of intracrystalline water and intra- and intermolecular bonding.
The 737 graphite composite flight spoiler flight service evaluation
NASA Technical Reports Server (NTRS)
Coggeshall, R. L.
1982-01-01
A flight service report was prepared which covers the flight service experience of 111 graphite epoxy spoilers on 737 transport aircraft and related ground based environmental exposure of graphite epoxy material specimens. Spoilers were installed on 28 aircraft representing seven major airlines operating throughout the world. Tests of removed spoilers after the seventh year of service continue to indicate modest changes in composite strength properties. Two spoilers were tested, one with 6 and one with 7 years of service, and both had residual strengths that fall within the original static strength scatter band. Both these units had typical service included discrepancies when tested. Based on visual, ultrasonic, and destructive inspection there continues to be no evidence of moisture migration into the honeycomb core and no core corrosion in the deployed units.
Keogh, Justin W L; Aickin, Sam E; Oldham, Anthony R H
2010-02-01
The primary purpose of this study was to determine whether a range of static core stability (CS) measures could distinguish shoulder press performance in unstable vs. stable conditions. Thirty resistance-trained men gave informed consent to participate in this study. One-repetition maximum strength (from < 6 repetitions) was predicted in the seated shoulder dumbbell press performed in unstable (Swiss ball[SB]) and stable (back-support bench) environments. Three CS muscle endurance tests were performed, with 4 CS ratios also calculated. The degree of strength decrement, referred to as the instability strength level (ISL), was calculated by dividing the predicted 1RM Unstable score by the 1RM Stable score. All subjects were categorized as high (ISL > 0.90), moderate (0.85 < or = ISL < or = 0.90), or low (ISL < 0.85). Between-group differences for the high- and low-ISL groups were assessed using analysis of variance and effect sizes. Pearson product moment correlations were then performed to examine the relationships between the CS measures and the ISL for the entire group. No significant between-group differences (p = 0.132-0.999) or large effect sizes were observed for any of the CS measures. Trunk flexion endurance was the only CS measure significantly correlated to the ISL (r = 0.477). In line with muscular strength research, these results suggest that CS exhibits relatively high levels of task specificity and that CS performance in static single-joint exercises may not be highly related to that in more dynamic multijoint activities. Core stability training (with or without a SB) may therefore only lead to significant improvements in functional dynamic performance if the postures, mode and velocity of contraction performed in training, are similar to the competitive tasks.
Khosroshahi, M E; Nourbakhsh, M S; Saremi, S; Hooshyar, A; Rabbani, Sh; Tabatabai, F; Anvari, M Sotudeh
2010-12-01
We sought to examine the impact of different parameters of laser soldering on the thermophysical properties of the skin and to optimize these parameters for sealing a full-thickness incision in the rat skin under closed feedback control under in vivo conditions. Laser tissue soldering based on protein as biologic glues and other compounds can provide greater bond strength and less collateral damage. Endogenous and exogenous materials such as indocyanine green (ICG) are often added to solders to enhance light absorption. In ex vivo study, the temperature increase, number of scan (Ns), and scan velocity (Vs) were investigated. In ex vivo studies, four skin incisions were made over rat dorsa and were closed by using two different methods: (a) wound closure by suture and (b) closure by using an automated temperature-controlled system. An automated soldering system was developed based on a diode laser, IR detector, photodiode, digital thermocouple, and camera. The true temperature of heated tissue was determined by using a calibration software method. The results showed that at each laser irradiance (I), the tensile strength (σ) of incisions repaired in the static mode is higher than in the dynamic mode. It must also be noted that the tensile strength of the repaired skin wound was increased by increasing the irradiance in both static and dynamic modes. However, in parallel, an increase in the corresponding temperature was observed. The tensile strength was measured for sutured and laser-soldered tissue after 2 to 10 postoperative days. Histopathologic studies showed a better healing and less inflammatory reactions than with those caused by standard sutures after day 7. It is demonstrated that automated laser soldering technique can be practical provided the optothermal properties of tissue is carefully optimized.
Magnetic-Field Density-Functional Theory (BDFT): Lessons from the Adiabatic Connection.
Reimann, Sarah; Borgoo, Alex; Tellgren, Erik I; Teale, Andrew M; Helgaker, Trygve
2017-09-12
We study the effects of magnetic fields in the context of magnetic field density-functional theory (BDFT), where the energy is a functional of the electron density ρ and the magnetic field B. We show that this approach is a worthwhile alternative to current-density functional theory (CDFT) and may provide a viable route to the study of many magnetic phenomena using density-functional theory (DFT). The relationship between BDFT and CDFT is developed and clarified within the framework of the four-way correspondence of saddle functions and their convex and concave parents in convex analysis. By decomposing the energy into its Kohn-Sham components, we demonstrate that the magnetizability is mainly determined by those energy components that are related to the density. For existing density functional approximations, this implies that, for the magnetizability, improvements of the density will be more beneficial than introducing a magnetic-field dependence in the correlation functional. However, once a good charge density is achieved, we show that high accuracy is likely only obtainable by including magnetic-field dependence. We demonstrate that adiabatic-connection (AC) curves at different field strengths resemble one another closely provided each curve is calculated at the equilibrium geometry of that field strength. In contrast, if all AC curves are calculated at the equilibrium geometry of the field-free system, then the curves change strongly with increasing field strength due to the increasing importance of static correlation. This holds also for density functional approximations, for which we demonstrate that the main error encountered in the presence of a field is already present at zero field strength, indicating that density-functional approximations may be applied to systems in strong fields, without the need to treat additional static correlation.
Semiconductor Crystal Growth in Static and Rotating Magnetic fields
NASA Technical Reports Server (NTRS)
Volz, Martin
2004-01-01
Magnetic fields have been applied during the growth of bulk semiconductor crystals to control the convective flow behavior of the melt. A static magnetic field established Lorentz forces which tend to reduce the convective intensity in the melt. At sufficiently high magnetic field strengths, a boundary layer is established ahead of the solid-liquid interface where mass transport is dominated by diffusion. This can have a significant effect on segregation behavior and can eliminate striations in grown crystals resulting from convective instabilities. Experiments on dilute (Ge:Ga) and solid solution (Ge-Si) semiconductor systems show a transition from a completely mixed convective state to a diffusion-controlled state between 0 and 5 Tesla. In HgCdTe, radial segregation approached the diffusion limited regime and the curvature of the solid-liquid interface was reduced by a factor of 3 during growth in magnetic fields in excess of 0.5 Tesla. Convection can also be controlled during growth at reduced gravitational levels. However, the direction of the residual steady-state acceleration vector can compromise this effect if it cannot be controlled. A magnetic field in reduced gravity can suppress disturbances caused by residual transverse accelerations and by random non-steady accelerations. Indeed, a joint program between NASA and the NHMFL resulted in the construction of a prototype spaceflight magnet for crystal growth applications. An alternative to the suppression of convection by static magnetic fields and reduced gravity is the imposition of controlled steady flow generated by rotating magnetic fields (RMF)'s. The potential benefits of an RMF include homogenization of the melt temperature and concentration distribution, and control of the solid-liquid interface shape. Adjusting the strength and frequency of the applied magnetic field allows tailoring of the resultant flow field. A limitation of RMF's is that they introduce deleterious instabilities above a critical magnetic field value. Growth conditions in which static magnetic fields rotational magnetic fields, and reduced gravitational levels can have a beneficial role will be described.
NASA Astrophysics Data System (ADS)
Hakim, Issa; Laquai, Rene; Walter, David; Mueller, Bernd; Graja, Paul; Meyendorf, Norbert; Donaldson, Steven
2017-02-01
Carbon fiber composites have been increasingly used in aerospace, military, sports, automotive and other fields due to their excellent properties, including high specific strength, high specific modulus, corrosion resistance, fatigue resistance, and low thermal expansion coefficient. Interlaminar fracture is a serious failure mode leading to a loss in composite stiffness and strength. Discontinuities formed during manufacturing process degrade the fatigue life and interlaminar fracture resistance of the composite. In his study, three approaches were implemented and their results were correlated to quantify discontinuities effecting static and fatigue interlaminar fracture behavior of carbon fiber composites. Samples were fabricated by hand layup vacuum bagging manufacturing process under three different vacuum levels, indicated High (-686 mmHg), Moderate (-330 mmHg) and Poor (0 mmHg). Discontinuity content was quantified through-thickness by destructive and nondestructive techniques. Eight different NDE methods were conducted including imaging NDE methods: X-Ray laminography, ultrasonic, high frequency eddy current, pulse thermography, pulse phase thermography and lock-in-thermography, and averaging NDE techniques: X-Ray refraction and thermal conductivity measurements. Samples were subsequently destructively serial sectioned through-thickness into several layers. Both static and fatigue interlaminar fracture behavior under Mode I were conducted. The results of several imaging NDE methods revealed the trend in percentages of discontinuity. However, the results of averaging NDE methods showed a clear correlation since they gave specific values of discontinuity through-thickness. Serial sectioning exposed the composite's internal structure and provided a very clear idea about the type, shape, size, distribution and location of most discontinuities included. The results of mechanical testing showed that discontinuities lead to a decrease in Mode I static interlaminar fracture toughness and a decrease in Mode I cyclic strain energy release rates fatigue life. Finally, all approaches were correlated: the resulted NDE percentages and parameters were correlated with the features revealed by the destructive test of serial sectioning and static and fatigue values in order to quantify discontinuities such as delamination and voids.
Study on static and dynamic characteristics of moving magnet linear compressors
NASA Astrophysics Data System (ADS)
Chen, N.; Tang, Y. J.; Wu, Y. N.; Chen, X.; Xu, L.
2007-09-01
With the development of high-strength NdFeB magnetic material, moving magnet linear compressors have been gradually introduced in the fields of refrigeration and cryogenic engineering, especially in Stirling and pulse tube cryocoolers. This paper presents simulation and experimental investigations on the static and dynamic characteristics of a moving magnet linear motor and a moving magnet linear compressor. Both equivalent magnetic circuits and finite element approaches have been used to model the moving magnet linear motor. Subsequently, the force and equilibrium characteristics of the linear motor have been predicted and verified by detailed static experimental analyses. In combination with a harmonic analysis, experimental investigations were conducted on a prototype of a moving magnet linear compressor. A voltage-stroke relationship, the effect of charging pressure on the performance and dynamic frequency response characteristics are investigated. Finally, the method to identify optimal points of the linear compressor has been described, which is indispensable to the design and operation of moving magnet linear compressors.
OCCUPATIONAL EXPOSURE OF NMR SPECTROMETRISTS TO STATIC AND RADIOFREQUENCY FIELDS.
Berlana, Tania; Úbeda, Alejandro
2017-12-01
Occupational exposure to static and radiofrequency fields emitted by nuclear magnetic resonance spectrometers was assessed through systematic field metering during operation of 19 devices in nine research centers. Whereas no measurable levels of radiofrequency radiation were registered outside the spectrometers, significant exposure to static field was detected, with maximum values recorded at the user's hand (B = 683.00 mT) and head-thorax (B = 135.70 mT) during spectrometer manipulation. All values were well below the exposure limits set by the European standard for workers protection against the effects of acute field exposure only. As for potential effects of chronic exposure, waiting for more complete knowledge, adoption of technical and operational strategies for exposure minimizing is advisable. In this respect, the data revealed that compared with standard magnetic shielding, ultrashield technology allows a 20-65-fold reduction of the field strength received by the operator. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Sun, Li; Wang, Deyu
2011-09-01
A new multi-level analysis method of introducing the super-element modeling method, derived from the multi-level analysis method first proposed by O. F. Hughes, has been proposed in this paper to solve the problem of high time cost in adopting a rational-based optimal design method for ship structural design. Furthermore, the method was verified by its effective application in optimization of the mid-ship section of a container ship. A full 3-D FEM model of a ship, suffering static and quasi-static loads, was used as the analyzing object for evaluating the structural performance of the mid-ship module, including static strength and buckling performance. Research results reveal that this new method could substantially reduce the computational cost of the rational-based optimization problem without decreasing its accuracy, which increases the feasibility and economic efficiency of using a rational-based optimal design method in ship structural design.
Understanding and modulating opalescence and viscosity in a monoclonal antibody formulation
Salinas, Branden A; Sathish, Hasige A; Bishop, Steven M; Harn, Nick; Carpenter, John F; Randolph, Theodore W
2014-01-01
Opalescence and high viscosities can pose challenges for high concentration formulation of antibodies. Both phenomena result from protein-protein intermolecular interactions that can be modulated with solution ionic strength. We studied a therapeutic monoclonal antibody that exhibits high viscosity in solutions at low ionic strength (~20 centipoise (cP) at 90 mg/mL and 23°C) and significant opalescence at isotonic ionic strength (approximately 100 nephelometric turbidity units at 90 mg/mL and 23°C). The intermolecular interactions responsible for these effects were characterized using membrane osmometry, static light scattering and zeta potential measurements. The net protein-protein interactions were repulsive at low ionic strength (~4 mM) and attractive at isotonic ionic strengths. The high viscosities are attributed to electroviscous forces at low ionic strength and the significant opalescence at isotonic ionic strength is correlated with attractive antibody interactions. Furthermore there appears to be a connection to critical phenomena and it is suggested that the extent of opalescence is dependent on the proximity to the critical point. We demonstrate that by balancing the repulsive and attractive forces via intermediate ionic strengths and by increasing the mAb concentration above the apparent critical concentration both opalescence and viscosity can be simultaneously minimized. PMID:19475558
Dantas, Filipe Fernandes Oliveira; Batista, Rafael Marinho Falcão; do Nascimento, Leone Severino; Castellano, Lúcio Roberto Cançado; Ritti-Dias, Raphael Mendes; Lima, Kenio Costa
2016-01-01
The aim of the study was to evaluate the effect of strength training on oxidative stress and the correlation of the same with forearm vasodilatation and mean blood pressure of hypertensive elderly women, at rest (basal) and during a static handgrip exercise. Insufficiently active hypertensive elderly women (N = 25; mean age = 66.1 years) were randomized into a 10 week strength training group (n = 13) or control (n = 12) group. Plasma malondialdehyde (MDA), total antioxidant capacity (TAC), plasma nitrite (NO2-), forearm blood flow (FBF), mean blood pressure (MBP) and vascular conductance ([FBF / MBP] x 100) were evaluated before and after the completion of the interventions. The strength training group increased the TAC (pre: Median = 39.0; Interquartile range = 34.0–41.5% vs post: Median = 44.0; Interquartile range = 38.0–51.5%; p = 0.006) and reduced the MDA (pre: 4.94 ± 1.10 μM vs post: 3.90 ± 1.35 μM; p = 0.025; CI-95%: -1.92 –-0.16 μM). The strength training group increased basal vascular conductance (VC) (pre: 3.56 ±0.88 units vs post: 5.21 ±1.28 units; p = 0.001; CI-95%: 0.93–2.38 units) and decreased basal MBP (pre: 93.1 ±6.3 mmHg vs post: 88.9 ±5.4 mmHg; p = 0.035; CI-95%: -8.0 –-0.4 mmHg). Such changes were also observed during static handgrip exercise. A moderate correlation was observed between changes in basal VC and MBP with changes in NO2- (ΔVC → r = -0.56, p = 0.047; ΔMBP → r = -0.41, p = 0.168) and MDA (ΔVC → r = 0.64, p = 0.019; ΔMBP → r = 0.31, p = 0.305). The strength training program reduced the oxidative stress of the hypertensive elderly women and this reduction was moderately correlated with their cardiovascular benefits. Trial Registration: ensaiosclinicos.gov.br RBR-48c29w PMID:27529625
Muscle fiber type, Achilles tendon length, potentiation, and running economy.
Hunter, Gary R; McCarthy, John P; Carter, Stephen J; Bamman, Marcas M; Gaddy, Emily S; Fisher, Gordon; Katsoulis, Kostantina; Plaisance, Eric P; Newcomer, Bradley R
2015-05-01
The purpose of this investigation was to develop a potential model for how muscle fiber type, Achilles tendon length, stretch-shortening cycle potentiation (SSCP), and leg strength interact with running economy. Twenty trained male distance runners 24-40 years of age served as subjects. Running economy (net oxygen uptake) was measured while running on a treadmill. Leg press SSCP(force) and SSCP(velocity) were determined by measuring the difference in velocity between a static leg press throw and a countermovement leg press throw. Vertical jump SSCP was determined by measuring the difference in jump height between a static jump and a drop jump from a 20.3-cm bench. Tendon length was measured by magnetic resonance imaging, and muscle fiber type was made from a vastus lateralis muscle biopsy. Type IIx muscle fiber percent (r = 0.70, p < 0.001) and leg strength (r = 0.95, p < 0.001) were positively and independently related to late eccentric force development. Achilles tendon length (r = 0.42, p ≤ 0.05) and late eccentric force during stretch-shortening cycle (r = 0.76, p < 0.001) were independently related to SSCP(force). SSCP(force) was related to SSCP(velocity), which in turn was related to running economy (r = 0.61, p < 0.01). These results suggest that longer Achilles tendon length, type II fiber, and muscular leg strength may enhance the potential for SSCP, running economy, and physiological effort while running.
Growth characteristics of maize seeds exposed to magnetic field.
Vashisth, Ananta; Joshi, Devendra Kumar
2017-02-01
Standardization of magnetic field was done for maximum enhancement in germination characteristics of maize seeds. Seeds of maize were exposed to static magnetic fields of strength 50, 100, 150, 200, and 250 for 1, 2, 3, and 4 h for all field strengths. Results indicate that magnetic field application enhanced seed performance in terms of percentage germination, speed of germination, seedling length, and seedling dry weight significantly compared to unexposed control. Among the various combinations of field strength and duration, 200 mT for 1 h exposure gave best results. Exposure of seeds to magnetic fields improved seed coat membrane integrity as it reduced cellular leakage and, consequently, electrical conductivity. Experiments conducted at a research farm as well as farmer's field showed that plants raised from seeds exposed to 200 mT for 1 h had higher values of leaf area index, shoot length, number of leaves, chlorophyll content, shoot/root dry weight, and root characteristics as compared to corresponding values in untreated control. From the studies, it may be concluded that exposure of dry seeds to static magnetic field of 200 mT for 1 h improved shoot and root growth. Improved root system and biomass led to increased seed yield. Improved functional root parameters suggested that magnetically treated maize seeds could be used under moisture stress conditions. Bioelectromagnetics. 38:151-157, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Jeon, Mi Yang; Jeong, HyeonCheol; Petrofsky, Jerrold; Lee, Haneul; Yim, JongEun
2014-01-01
Background Falling can lead to severe health issues in the elderly and importantly contributes to morbidity, death, immobility, hospitalization, and early entry to long-term care facilities. The aim of this study was to devise a recurrent fall prevention program for elderly women in rural areas. Material/Methods This study adopted an assessor-blinded, randomized, controlled trial methodology. Subjects were enrolled in a 12-week recurrent fall prevention program, which comprised strength training, balance training, and patient education. Muscle strength and endurance of the ankles and the lower extremities, static balance, dynamic balance, depression, compliance with preventive behavior related to falls, fear of falling, and fall self-efficacy at baseline and immediately after the program were assessed. Sixty-two subjects (mean age 69.2±4.3 years old) completed the program – 31 subjects in the experimental group and 31 subjects in the control group. Results When the results of the program in the 2 groups were compared, significant differences were found in ankle heel rise test, lower extremity heel rise test, dynamic balance, depression, compliance with fall preventative behavior, fear of falling, and fall self-efficacy (p<0.05), but no significant difference was found in static balance. Conclusions This study shows that the fall prevention program described effectively improves muscle strength and endurance, balance, and psychological aspects in elderly women with a fall history. PMID:25394805
The Effectiveness of PNF Versus Static Stretching on Increasing Hip-Flexion Range of Motion.
Lempke, Landon; Wilkinson, Rebecca; Murray, Caitlin; Stanek, Justin
2018-05-22
Clinical Scenario: Stretching is applied for the purposes of injury prevention, increasing joint range of motion (ROM), and increasing muscle extensibility. Many researchers have investigated various methods and techniques to determine the most effective way to increase joint ROM and muscle extensibility. Despite the numerous studies conducted, controversy still remains within clinical practice and the literature regarding the best methods and techniques for stretching. Focused Clinical Question: Is proprioceptive neuromuscular facilitation (PNF) stretching more effective than static stretching for increasing hamstring muscle extensibility through increased hip ROM or increased knee extension angle (KEA) in a physically active population? Summary of Key Findings: Five studies met the inclusion criteria and were included. All 5 studies were randomized control trials examining mobility of the hamstring group. The studies measured hamstring ROM in a variety of ways. Three studies measured active KEA, 1 study measured passive KEA, and 1 study measured hip ROM via the single-leg raise test. Of the 5 studies, 1 study found greater improvements using PNF over static stretching for increasing hip flexion, and the remaining 4 studies found no significant difference between PNF stretching and static stretching in increasing muscle extensibility, active KEA, or hip ROM. Clinical Bottom Line: PNF stretching was not demonstrated to be more effective at increasing hamstring extensibility compared to static stretching. The literature reviewed suggests both are effective methods for increasing hip-flexion ROM. Strength of Recommendation: Using level 2 evidence and higher, the results show both static and PNF stretching effectively increase ROM; however, one does not appear to be more effective than the other.
Climatology of the winter Red Sea Trough
NASA Astrophysics Data System (ADS)
Awad, Adel M.; Almazroui, Mansour
2016-12-01
In this study, a new and objective method for detecting the Red Sea Trough (RST) was developed using mean sea level pressure (SLP) data from NCEP/NCAR reanalysis dataset from the winters of 1956 to 2015 to identify the Sudan Low and its trough. Approximately 96% of the winter RSTs were generated near two main sources, South Sudan and southeastern Sudan, and approximately 85% of these troughs were in four of the most outer areas surrounding the northern Red Sea. Moreover, from west to east of the Red Sea, the RST was affected by the relationships between the Siberian High and Azores High. The RST was oriented to the west when the strength of the Siberian High increased and to the east when the strength of the Azores High increased. Furthermore, the synoptic features of the upper level of the RST emphasize the impacts of subtropical anticyclones at 850 hPa on the orientation of the RST, the impacts of the northern cyclone trough and the maximum wind at a pressure level of 250 hPa. The average static stability between 1000 hPa and 500 hPa demonstrated that the RST followed the northern areas of low static stability. The results from previous studies were confirmed by a detailed case study of the RST that extended to its central outermost area. The results of a detailed case study of the short RST indicated that the trough becomes shorter with increasing static stability and that the Azores and Siberian high-pressure systems influence the northern region of the trough while the maximum upper wind shifts south of the climate position.
Characteristics of Volcanic Soils in Landslide during the 2016 Kumamoto Earthquake, Japan
NASA Astrophysics Data System (ADS)
Hazarika, H.; Fukuoka, H.; Kokusho, T.; Sumartini, O.; Bhoopendra, D.
2017-12-01
There were many seismic subsidence, debris flows, landslides and slope failures, which occurred in Aso area due to the 2016 Kumamoto earthquake, Japan. This research aims to determine the failure mechanism of many mild slopes, and elucidate the strength characteristics of volcanic soils collected from the sites. A series of undrained static and cyclic triaxial tests, ring shear tests and direct shear tests were performed. Also, for further understanding of volcanic soils' material strength, X-ray powder diffraction analysis (XRD), X-ray fluorescence analysis (XRF), and Scanning electron microscope analysis (SEM) were performed. In this paper, preliminary results of the experimental testing program are discussed.
NASA Astrophysics Data System (ADS)
Dash, S.; Satish, S.; Parida, B.; Satapathy, S.; Ipsita, N. S.; Joshi, R. S.
2018-04-01
We demonstrate the tailoring of anisotropy in magnetic nano-wire element using finite element method based micromagnetic simulation. We calculate the magentostatic properties for the structure by simulating hysteresis for these nano wire elements. The angular variation of remanence for the structures of different dimensions is used as the depiction to establish fourfold magnetic anisotropy. The change of anisotropy strength, which is the ratio of squareness of hysteresis loop in hard axis to easy axis, is demonstrated in this study which is one of the most important parameters to utilize these nanowire elements in multi state magnetic memory application.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-01-08
... Dynamic and Quasi-Static Testing in 2008 a. Test Article Design b. Dynamic Testing of a Collision Post c... requirements concerning structural deformation and energy absorption by collision posts and corner posts at the... Testing in 2002 a. Test Article Designs b. Dynamic Impact Testing c. Analysis 2. Industry-Sponsored Quasi...
Investigating the use of small-diameter softwood as guardrail posts: static test results
David E. Kretschmann; Ron Faller; Jason Hascall; John Reid; Dean Sicking; John Rohde; Dick Shilts; Tim Nelson
2007-01-01
Round guardrail posts may provide an important value added option for small-diameter thinnings. Such posts require minimum processing and have been shown to have higher strength compared to the equivalent rectangular volume. The resulting value-added product may bring a higher return compared to lumber. The obstacles to immediate utilization of ponderosa pine and...
2008-04-29
under a quasi-static condition. The duration of the impact is relatively long compared with the period of the fundamental natural frequency of the...Y, Katano, Y, and Matoba, K, 1989, “Spherical-Impact Damage and Strength Degradation in Silicon Nitrides for Automobile Turbocharger Rotors,” J. Am
Structural Performance of COM-Ply Studs Made with Hardwood Veneers
Robert H. McAlister
1979-01-01
COM-PLY 2 x 4 studs made with veneers of yellow-poplar, sweetgum, and white oak were tested for strength and stiffness, nail-holding properties, modulus of elasticity of component parts, static bending, and compression parallel and perpendicular to the grain. All tests were conducted according to performance standards for composite studs used in exterior walls or ASTM...
Solution landscapes in nematic microfluidics
NASA Astrophysics Data System (ADS)
Crespo, M.; Majumdar, A.; Ramos, A. M.; Griffiths, I. M.
2017-08-01
We study the static equilibria of a simplified Leslie-Ericksen model for a unidirectional uniaxial nematic flow in a prototype microfluidic channel, as a function of the pressure gradient G and inverse anchoring strength, B. We numerically find multiple static equilibria for admissible pairs (G , B) and classify them according to their winding numbers and stability. The case G = 0 is analytically tractable and we numerically study how the solution landscape is transformed as G increases. We study the one-dimensional dynamical model, the sensitivity of the dynamic solutions to initial conditions and the rate of change of G and B. We provide a physically interesting example of how the time delay between the applications of G and B can determine the selection of the final steady state.
NASA Astrophysics Data System (ADS)
Walton, Otis R.
2007-04-01
This paper reviews the physical characteristics of lunar dust and the effects of various fundamental forces acting on dust particles on surfaces in a lunar environment. There are transport forces and adhesion forces after contact. Mechanical forces (i.e., from rover wheels, astronaut boots and rocket engine blast) and static electric effects (from UV photo-ionization and/or tribo-electric charging) are likely to be the major contributors to the transport of dust particles. If fine regolith particles are deposited on a surface, then surface energy-related (e.g., van der Walls) adhesion forces and static-electric-image forces are likely to be the strongest contributors to adhesion. Some measurement techniques are offered to quantify the strength of adhesion forces. And finally some dust removal techniques are discussed.
NASA Technical Reports Server (NTRS)
Walton, Otis R.
2007-01-01
This paper reviews the physical characteristics of lunar dust and the effects of various fundamental forces acting on dust particles on surfaces in a lunar environment. There are transport forces and adhesion forces after contact. Mechanical forces (i.e., from rover wheels, astronaut boots and rocket engine blast) and static electric effects (from UV photo-ionization and/or tribo-electric charging) are likely to be the major contributors to the transport of dust particles. If fine regolith particles are deposited on a surface, then surface energy-related (e.g., van der Walls) adhesion forces and static-electric-image forces are likely to be the strongest contributors to adhesion. Some measurement techniques are offered to quantify the strength of adhesion forces. And finally some dust removal techniques are discussed.
Synaptic dynamics regulation in response to high frequency stimulation in neuronal networks
NASA Astrophysics Data System (ADS)
Su, Fei; Wang, Jiang; Li, Huiyan; Wei, Xile; Yu, Haitao; Deng, Bin
2018-02-01
High frequency stimulation (HFS) has confirmed its ability in modulating the pathological neural activities. However its detailed mechanism is unclear. This study aims to explore the effects of HFS on neuronal networks dynamics. First, the two-neuron FitzHugh-Nagumo (FHN) networks with static coupling strength and the small-world FHN networks with spike-time-dependent plasticity (STDP) modulated synaptic coupling strength are constructed. Then, the multi-scale method is used to transform the network models into equivalent averaged models, where the HFS intensity is modeled as the ratio between stimulation amplitude and frequency. Results show that in static two-neuron networks, there is still synaptic current projected to the postsynaptic neuron even if the presynaptic neuron is blocked by the HFS. In the small-world networks, the effects of the STDP adjusting rate parameter on the inactivation ratio and synchrony degree increase with the increase of HFS intensity. However, only when the HFS intensity becomes very large can the STDP time window parameter affect the inactivation ratio and synchrony index. Both simulation and numerical analysis demonstrate that the effects of HFS on neuronal network dynamics are realized through the adjustment of synaptic variable and conductance.
NASA Astrophysics Data System (ADS)
Ren, Yiru; Zhang, Songjun; Jiang, Hongyong; Xiang, Jinwu
2018-04-01
Based on continuum damage mechanics (CDM), a sophisticated 3D meso-scale finite element (FE) model is proposed to characterize the progressive damage behavior of 2D Triaxial Braided Composites (2DTBC) with 60° braiding angle under quasi-static tensile load. The modified Von Mises strength criterion and 3D Hashin failure criterion are used to predict the damage initiation of the pure matrix and fiber tows. A combining interface damage and friction constitutive model is applied to predict the interface damage behavior. Murakami-Ohno stiffness degradation scheme is employed to predict the damage evolution process of each constituent. Coupling with the ordinary and translational symmetry boundary conditions, the tensile elastic response including tensile strength and failure strain of 2DTBC are in good agreement with the available experiment data. The numerical results show that the main failure modes of the composites under axial tensile load are pure matrix cracking, fiber and matrix tension failure in bias fiber tows, matrix tension failure in axial fiber tows and interface debonding; the main failure modes of the composites subjected to transverse tensile load are free-edge effect, matrix tension failure in bias fiber tows and interface debonding.
NASA Technical Reports Server (NTRS)
Herring, Gregory C.; Meyers, James F.
2011-01-01
A nonintrusive technique Doppler global velocimetry (DGV) was used to determine conical shock strengths on a supersonic-cruise low-boom aircraft model. The work was performed at approximately Mach 2 in the Unitary Plan Wind Tunnel. Water is added to the wind tunnel flow circuit, generating small ice particles used as seed particles for the laser-based velocimetry. DGV generates two-dimensional (2-D) maps of three components of velocity that span the oblique shock. Shock strength (i.e. fractional pressure increase) is determined from observation of the flow deflection angle across the shock in combination with the standard shock relations. Although DGV had conveniently and accurately determined shock strengths from the homogenous velocity fields behind 2-D planar shocks, the inhomogeneous 3-D velocity fields behind the conical shocks presented additional challenges. Shock strength measurements for the near-field conical nose shock were demonstrated and compared with previously-published static pressure probe data for the same model in the same wind tunnel. Fair agreement was found between the two sets of results.
Tensile strength of 67P/Churyumov-Gerasimenko nucleus material from overhangs
NASA Astrophysics Data System (ADS)
Attree, N.; Groussin, O.; Jorda, L.; Nébouy, D.; Thomas, N.; Brouet, Y.; Kührt, E.; Preusker, F.; Scholten, F.; Knollenberg, J.; Hartogh, P.; Sierks, H.; Barbieri, C.; Lamy, P.; Rodrigo, R.; Koschny, D.; Rickman, H.; Keller, H. U.; A'Hearn, M. F.; Auger, A.-T.; Barucci, M. A.; Bertaux, J.-L.; Bertini, I.; Bodewits, D.; Boudreault, S.; Cremonese, G.; Da Deppo, V.; Davidsson, B.; Debei, S.; De Cecco, M.; Deller, J.; El-Maarry, M. R.; Fornasier, S.; Fulle, M.; Gutiérrez, P. J.; Güttler, C.; Hviid, S.; Ip, W.-H.; Kovacs, G.; Kramm, J. R.; Küppers, M.; Lara, L. M.; Lazzarin, M.; Lopez Moreno, J. J.; Lowry, S.; Marchi, S.; Marzari, F.; Mottola, S.; Naletto, G.; Oklay, N.; Pajola, M.; Toth, I.; Tubiana, C.; Vincent, J.-B.; Shi, X.
2018-03-01
We directly measured twenty overhanging cliffs on the surface of comet 67P/Churyumov-Gerasimenko extracted from the latest shape model and estimated the minimum tensile strengths needed to support them against collapse under the comet's gravity. We find extremely low strengths of around 1 Pa or less (1 to 5 Pa, when scaled to a metre length). The presence of eroded material at the base of most overhangs, as well as the observed collapse of two features andthe implied previous collapse of another, suggests that they are prone to failure and that the true material strengths are close to these lower limits (although we only consider static stresses and not dynamic stress from, for example, cometary activity). Thus, a tensile strength of a few pascals is a good approximation for the tensile strength of the 67P nucleus material, which is in agreement with previous work. We find no particular trends in overhang properties either with size over the 10-100 m range studied here or location on the nucleus. There are no obvious differences, in terms of strength, height or evidence of collapse, between the populations of overhangs on the two cometary lobes, suggesting that 67P is relatively homogenous in terms of tensile strength. Low material strengths are supportive of cometary formation as a primordial rubble pile or by collisional fragmentation of a small body (tens of km).
A Report on the Validation of Beryllium Strength Models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Armstrong, Derek Elswick
2016-02-05
This report discusses work on validating beryllium strength models with flyer plate and Taylor rod experimental data. Strength models are calibrated with Hopkinson bar and quasi-static data. The Hopkinson bar data for beryllium provides strain rates up to about 4000 per second. A limitation of the Hopkinson bar data for beryllium is that it only provides information on strain up to about 0.15. The lack of high strain data at high strain rates makes it difficult to distinguish between various strength model settings. The PTW model has been calibrated many different times over the last 12 years. The lack ofmore » high strain data for high strain rates has resulted in these calibrated PTW models for beryllium exhibiting significantly different behavior when extrapolated to high strain. For beryllium, the α parameter of PTW has recently been calibrated to high precision shear modulus data. In the past the α value for beryllium was set based on expert judgment. The new α value for beryllium was used in a calibration of the beryllium PTW model by Sky Sjue. The calibration by Sjue used EOS table information to model the temperature dependence of the heat capacity. Also, the calibration by Sjue used EOS table information to model the density changes of the beryllium sample during the Hopkinson bar and quasi-static experiments. In this paper, the calibrated PTW model by Sjue is compared against experimental data and other strength models. The other strength models being considered are a PTW model calibrated by Shuh- Rong Chen and a Steinberg-Guinan type model by John Pedicini. The three strength models are used in a comparison against flyer plate and Taylor rod data. The results show that the Chen PTW model provides better agreement to this data. The Chen PTW model settings have been previously adjusted to provide a better fit to flyer plate data, whereas the Sjue PTW model has not been changed based on flyer plate data. However, the Sjue model provides a reasonable fit to flyer plate and Taylor rod data, and also gives a better match to recently analyzed Z-machine data which has a strain of about 0.35 and a strain rate of 3e5 s -1.« less
Study of fatigue behavior of longitudinal welded pipes
NASA Astrophysics Data System (ADS)
Simion, P.; Dia, V.; Istrate, B.; Hrituleac, G.; Hrituleac, I.; Munteanu, C.
2016-08-01
During transport and storage of the various fluids, welded pipes are subjected to cyclic loading due to pressure fluctuations that often exceed the prescribed values for normal operation. These cyclic loading can significantly reduce the life of the pipes; as a result the design should be based on the fatigue strength not only on static resistance. In general the fatigue strength of pipes is dependent by strength, pipe geometry and surface quality. In case of the electric longitudinal welded pipes, the fatigue strength is significantly limited by concentration of residual stress and the size of existing defects in the weld seam. This paper presents the fatigue behaviour of the electric welded pipes by high frequency, under conditions that simulate real operating conditions pipes. Fatigue testing was performed on welded pipes made of micro alloyed carbon steels. Some of these pipes were previously subjected to a heat treatment of normalization, in order to also determine the influence of heat treatment on the fatigue strength of welded pipes. To determine and correlate the different factors affecting the fatigue strength, welded pipes were also subjected to various tests: tensile tests, impact tests, measurement of micro hardness, microstructural analysis by optical microscopy and scanning electron microscopy.
A micromechanics-based strength prediction methodology for notched metal matrix composites
NASA Technical Reports Server (NTRS)
Bigelow, C. A.
1992-01-01
An analytical micromechanics based strength prediction methodology was developed to predict failure of notched metal matrix composites. The stress-strain behavior and notched strength of two metal matrix composites, boron/aluminum (B/Al) and silicon-carbide/titanium (SCS-6/Ti-15-3), were predicted. The prediction methodology combines analytical techniques ranging from a three dimensional finite element analysis of a notched specimen to a micromechanical model of a single fiber. In the B/Al laminates, a fiber failure criteria based on the axial and shear stress in the fiber accurately predicted laminate failure for a variety of layups and notch-length to specimen-width ratios with both circular holes and sharp notches when matrix plasticity was included in the analysis. For the SCS-6/Ti-15-3 laminates, a fiber failure based on the axial stress in the fiber correlated well with experimental results for static and post fatigue residual strengths when fiber matrix debonding and matrix cracking were included in the analysis. The micromechanics based strength prediction methodology offers a direct approach to strength prediction by modeling behavior and damage on a constituent level, thus, explicitly including matrix nonlinearity, fiber matrix debonding, and matrix cracking.
A micromechanics-based strength prediction methodology for notched metal-matrix composites
NASA Technical Reports Server (NTRS)
Bigelow, C. A.
1993-01-01
An analytical micromechanics-based strength prediction methodology was developed to predict failure of notched metal matrix composites. The stress-strain behavior and notched strength of two metal matrix composites, boron/aluminum (B/Al) and silicon-carbide/titanium (SCS-6/Ti-15-3), were predicted. The prediction methodology combines analytical techniques ranging from a three-dimensional finite element analysis of a notched specimen to a micromechanical model of a single fiber. In the B/Al laminates, a fiber failure criteria based on the axial and shear stress in the fiber accurately predicted laminate failure for a variety of layups and notch-length to specimen-width ratios with both circular holes and sharp notches when matrix plasticity was included in the analysis. For the SCS-6/Ti-15-3 laminates, a fiber failure based on the axial stress in the fiber correlated well with experimental results for static and postfatigue residual strengths when fiber matrix debonding and matrix cracking were included in the analysis. The micromechanics-based strength prediction methodology offers a direct approach to strength prediction by modeling behavior and damage on a constituent level, thus, explicitly including matrix nonlinearity, fiber matrix debonding, and matrix cracking.
The dynamic properties behavior of high strength concrete under different strain rate
NASA Astrophysics Data System (ADS)
Abdullah, Hasballah; Husin, Saiful; Umar, Hamdani; Rizal, Samsul
2005-04-01
This paper present a number experimental data and numerical technique used in the dynamic behavior of high strength concrete. A testing device is presented for the experimental study of dynamic behavior material under high strain rates. The specimen is loaded by means of a high carbon steel Hopkinson pressure bar (40 mm diameter, 3000 mm long input bar and 1500 mm long out put bar) allowing for the testing of specimen diameter is large enough in relation to the size of aggregates. The other method also proposed for measuring tensile strength, the measurement method based on the superposition and concentration of tensile stress wave reflected both from the free-free ends of striking bar and the specimen bar. The compression Hopkinson bar test, the impact tensile test of high strength concrete bars are performed, together with compression static strength test. In addition, the relation between break position under finite element simulation and impact tensile strength are examined. The three-dimensional simulation of the specimen under transient loading are presented and comparisons between the experimental and numerical simulation on strain rate effects of constitutive law use in experimental are study.
NASA Technical Reports Server (NTRS)
Wunder, Charles C.; Cook, Kenneth M.; Watkins, Stanley R.; Moressi, William J.
1987-01-01
The dependence of gravitationally related changes in femur bone strength on the comparable changes in calcium content was investigated in rats exposed to chronic simulations of altered gravity from the 28th to 42nd day of age. Zero G was simulated by harness suspension and 3 G by centrifugation. Bone strength (S) was determined by bending (using modified quasi-static cantilever bending methods and equipment described by Wunder et al., 1977 and 1979) and Ca content (C, by mass pct) determined by atomic absorption spectrometry; results were compared with data obtained on both normal and harnessed control animals at 1 G. Multiple regression showed significant dependence of S upon earth's gravity, independent from C, for which there was no significant coefficient of partial regression. It is suggested that the lack of S/C correlation might have been due to the fact that considerable fraction of the calcium in these young, developing bones has not yet crystallized into the hydroxyapatite which provides strength.
Lee, Yongwoo; Choi, Wonjae; Lee, Kyeongjin; Song, Changho; Lee, Seungwon
2017-10-01
Avatar-based three-dimensional technology is a new approach to improve physical function in older adults. The aim of this study was to use three-dimensional video gaming technology in virtual reality training to improve postural balance and lower extremity strength in a population of community-dwelling older adults. The experimental group participated in the virtual reality training program for 60 min, twice a week, for 6 weeks. Both experimental and control groups were given three times for falls prevention education at the first, third, and fifth weeks. The experimental group showed significant improvements not only in static and dynamic postural balance but also lower extremity strength (p < .05). Furthermore, the experimental group was improved to overall parameters compared with the control group (p < .05). Therefore, three-dimensional video gaming technology might be beneficial for improving postural balance and lower extremity strength in community-dwelling older adults.
Influence of water immersion on the mechanical properties of fiber posts.
Komada, Wataru; Inagaki, Tasuku; Ueda, Yoji; Omori, Satoshi; Hosaka, Keiichi; Tagami, Junji; Miura, Hiroyuki
2017-01-01
The purpose of this study was to evaluate the influence of water immersion on the mechanical properties of three kinds of glass fiber posts and the fracture resistance of structures using resin composites with glass fiber posts. Each post was divided into three groups; a control group and two water immersion groups (30 and 90 days). Flexural strength was determined by three-point bending test. Each structure was divided into two groups; a control group and a water immersion group for 30 days. The fracture strength of structures was determined by a static loading test. In the flexural strength, two kinds of post in water immersion groups showed lower values than control groups. In the fracture strength, two kinds of structures in water immersion group showed lower values than control groups. The prefabricated glass fiber posts and structures using resin composites with glass fiber posts were affected by water immersion. Copyright © 2016 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.
Relationship between magnetic field strength and magnetic-resonance-related acoustic noise levels.
Moelker, Adriaan; Wielopolski, Piotr A; Pattynama, Peter M T
2003-02-01
The need for better signal-to-noise ratios and resolution has pushed magnetic resonance imaging (MRI) towards high-field MR-scanners for which only little data on MR-related acoustic noise production have been published. The purpose of this study was to validate the theoretical relationship of sound pressure level (SPL) and static magnetic field strength. This is relevant for allowing adequate comparisons of acoustic data of MR systems at various magnetic field strengths. Acoustic data were acquired during various pulse sequences at field strengths of 0.5, 1.0, 1.5 and 2.0 Tesla using the same MRI unit by means of a Helicon rampable magnet. Continuous-equivalent, i.e. time-averaged, linear SPLs and 1/3-octave band frequencies were recorded. Ramping from 0.5 to 1.0 Tesla and from 1.0 to 2.0 Tesla resulted in an SPL increase of 5.7 and 5.2 dB(L), respectively, when averaged over the various pulse sequences. Most of the acoustic energy was in the 1-kHz frequency band, irrespective of magnetic field strength. The relation between field strength and SPL was slightly non-linear, i.e. a slightly less increase at higher field strengths, presumably caused by the elastic properties of the gradient coil encasings.
Bartnikowski, Michal; Klein, Travis J; Melchels, Ferry P W; Woodruff, Maria A
2014-07-01
Tissue engineering focuses on the repair and regeneration of tissues through the use of biodegradable scaffold systems that structurally support regions of injury while recruiting and/or stimulating cell populations to rebuild the target tissue. Within bone tissue engineering, the effects of scaffold architecture on cellular response have not been conclusively characterized in a controlled-density environment. We present a theoretical and practical assessment of the effects of polycaprolactone (PCL) scaffold architectural modifications on mechanical and flow characteristics as well as MC3T3-E1 preosteoblast cellular response in an in vitro static plate and custom-designed perfusion bioreactor model. Four scaffold architectures were contrasted, which varied in inter-layer lay-down angle and offset between layers, while maintaining a structural porosity of 60 ± 5%. We established that as layer angle was decreased (90° vs. 60°) and offset was introduced (0 vs. 0.5 between layers), structural stiffness, yield stress, strength, pore size, and permeability decreased, while computational fluid dynamics-modeled wall shear stress was increased. Most significant effects were noted with layer offset. Seeding efficiencies in static culture were also dramatically increased due to offset (∼ 45% to ∼ 86%), with static culture exhibiting a much higher seeding efficiency than perfusion culture. Scaffold architecture had minimal effect on cell response in static culture. However, architecture influenced osteogenic differentiation in perfusion culture, likely by modifying the microfluidic environment. © 2014 Wiley Periodicals, Inc.
Sirmatel, O; Sert, C; Sirmatel, F; Selek, S; Yokus, B
2007-06-01
The aim of this study was to investigate the effects of a high-strength magnetic field produced by a magnetic resonance imaging (MRI) apparatus on oxidative stress. The effects of a 1.5 T static magnetic field on the total antioxidant capacity (TAC), total oxidant status (TOS) and oxidative stress index (OSI) in male subjects were investigated. In this study, 33 male volunteers were exposed to a 1.5 T static magnetic field for a short time and the TAC, TOS and OSI of each subject were determined. Magnetic field exposure was provided using a magnetic resonance apparatus; radiofrequency was not applied. Blood samples were taken from subjects and TAC, TOS and OSI values were measured using the methods of Erel. TAC showed a significant increase in post-exposures compared to pre-exposures to the magnetic field (p < 0.05). OSI and TOS showed a significant decrease in post-exposures compared to pre-exposures to a 1.5 T magnetic field (for each of two, p < 0.01). The 1.5 T static magnetic field used in the MRI apparatus did not yield a negative effect; on the contrary, it produced the positive effect of decreasing oxidative stress in men following short-term exposure.
Penetration Resistance of Armor Ceramics: Dimensional Analysis and Property Correlations
2015-08-01
been reported in experimental studies. Particular ceramics analyzed here are low- and high-purity alumina, aluminum nitride, boron carbide, silicon...analyzed here are low- and high-purity alumina, aluminum nitride, boron carbide, silicon carbide, and titanium diboride. Data for penetration depth...include high hardness, high elastic stiffness, high strengths (static/dynamic compressive, shear, and bending), and low density relative to armor steels
Relationships between Perceptual-Motor Skills and Postural Balance in Nine Years Old Boys
ERIC Educational Resources Information Center
Atilgan, Oya Erkut
2012-01-01
The aim of this study is to investigate relationship between static-dynamic balance performance and two-hand coordination, reaction time, anthropometric measurements and leg strength. Fifty voluntary male children (age: 9.29 plus or minus 1.11 years, height: 138.86 plus or minus 7.86 cm, weight: 35.20 plus or minus 9.2 kg) who did not exercise…
Damage Tolerance Characterisitics of Composite Sandwich Structures
2000-02-01
requirements impose strict test program is devised and carried out, with hundreds of tests at constraints on the design of composite aircraft... design A particular effort was dedicated to the study of delamination methodologies, as well as static and fatigue strength and growth under...partition according to the theoretical tools, the industries are more or less forced, for the fundamental modes. design of primary composite structures
Design and Optimization of an Austenitic TRIP Steel for Blast and Fragment Protection
NASA Astrophysics Data System (ADS)
Feinberg, Zechariah Daniel
In light of the pervasive nature of terrorist attacks, there is a pressing need for the design and optimization of next generation materials for blast and fragment protection applications. Sadhukhan used computational tools and a systems-based approach to design TRIP-120---a fully austenitic transformation-induced plasticity (TRIP) steel. Current work more completely evaluates the mechanical properties of the prototype, optimizes the processing for high performance in tension and shear, and builds models for more predictive power of the mechanical behavior and austenite stability. Under quasi-static and dynamic tension and shear, the design exhibits high strength and high uniform ductility as a result of a strain hardening effect that arises with martensitic transformation. Significantly more martensitic transformation occurred under quasi-static loading conditions (69% in tension and 52% in shear) compared to dynamic loading conditions (13% tension and 5% in shear). Nonetheless, significant transformation occurs at high-strain rates which increases strain hardening, delays the onset of necking instability, and increases total energy absorption under adiabatic conditions. Although TRIP-120 effectively utilizes a TRIP effect to delay necking instability, a common trend of abrupt failure with limited fracture ductility was observed in tension and shear at all strain rates. Further characterization of the structure of TRIP-120 showed that an undesired grain boundary cellular reaction (η phase formation) consumed the fine dispersion of the metastable gamma' phase and limited the fracture ductility. A warm working procedure was added to the processing of TRIP-120 in order to eliminate the grain boundary cellular reaction from the structure. By eliminating η formation at the grain boundaries, warm-worked TRIP-120 exhibits a drastic improvement in the mechanical properties in tension and shear. In quasi-static tension, the optimized warm-worked TRIP-120 with an Mssigma( u.t.) of -13°C has a yield strength of 180 ksi (1241 MPa), uniform ductility of 0.303, and fracture ductility of 0.95, which corresponds to a 48% increase in yield strength, a 43% increase in uniform ductility, and a 254% increase in fracture ductility relative to the designed processing of TRIP-120. The highest performing condition of warm-worked TRIP-120 in quasi-static shear with an Mssigma( sh) of 58°C exhibits a shear yield strength of 95.1 ksi (656 MPa), shear fracture strain of 144%, and energy dissipation density of 1099 MJ/m3, which corresponds to a shear yield strength increase of 61%, a shear fracture strain increase of 55%, and an energy dissipation density increase of 76%. A wide range of austenite stabilities can be achieved by altering the heat treatment times and temperatures, which significantly alters the mechanical properties. Although performance cannot be optimized for tension and shear simultaneously, different heat treatments can be applied to warm-worked TRIP-120 to achieve high performance in tension or shear. Parametric models calibrated with three-dimensional atom probe data played a crucial role in guiding the predictive process optimization of TRIP-120. Such models have been built to provide the predictive capability of inputting warm working and aging conditions and outputting the resulting structure, austenite stability, and mechanical properties. The predictive power of computational models has helped identify processing conditions that have improved the performance of TRIP-120 in tension and shear and can be applied to future designs that optimize for adiabatic conditions.
NASA Astrophysics Data System (ADS)
Sudan Acharya, Madhu
2010-05-01
The crib retaining structures made of wooden/bamboo logs with live plants inside are called vegetative crib walls which are now becoming popular due to their advantages over conventional civil engineering walls. Conventionally, wooden crib walls were dimensioned based on past experiences. At present, there are several guidelines and design standards for machine finished wooden crib walls, but only few guidelines for the design and construction of vegetative log crib walls are available which are generally not sufficient for an economic engineering design of such walls. Analytical methods are generally used to determine the strength of vegetated crib retaining walls. The crib construction is analysed statically by satisfying the condition of static equilibrium with acceptable level of safety. The crib wall system is checked for internal and external stability using conventional monolithic and silo theories. Due to limitations of available theories, the exact calculation of the strength of vegetated wooden/bamboo crib wall cannot be made in static calculation. Therefore, experimental measurements are generally done to verify the static analysis. In this work, a model crib construction (1:20) made of bamboo elements is tested in the centrifuge machine to determine the strength behaviour of the slope supported by vegetated crib retaining wall. A geotechnical centrifuge is used to conduct model tests to study geotechnical problems such as the strength, stiffness and bearing capacity of different structures, settlement of embankments, stability of slopes, earth retaining structures etc. Centrifuge model testing is particularly well suited to modelling geotechnical events because the increase in gravitational force creates stresses in the model that are equivalent to the much larger prototype and hence ensures that the mechanisms of ground movements observed in the tests are realistic. Centrifuge model testing provides data to improve our understanding of basic mechanisms of deformation and failure and provides benchmarks useful for verification of numerical models. In this case this test is mainly carried out to verify the stability analysis and deformation characteristics of a bamboo crib wall. Models of crib wall of dimensions 37x13x10 cm and 37x13x14cm were placed inside a Plexiglas box of internal dimensions of 42.5x42.5x30 cm and slope was formed leaving a space about 10 cm in the front. The model crib wall tests were all performed at 40-70 times earth's gravity. This means that the 5 mm diameters bamboo rods in model used represents a prototype diameter of 20-35 cm. The horizontal and vertical displacements were measured with the help of three displacements sensor fixed horizontally and one sensor fixed vertically at the top of the model crib wall. All together nine tests were carried out with varying model parameters. Standard medium sand and coarse sand were used as fill material in the testing. Two wall heights variations and three slopes variations were used in the testing. The test model was constructed either compacted or uncompacted. The compaction in the model was carried out by hand to about 90% of the Proctor density. Three slopes inclinations were used. For flat slope the slope angle was less than 25° , and for steep slope it was 25° -35° and for extremely steep slope it was > 35° . The test results and conclusions are presented in this paper.
Kumar, Neelesh
2014-10-01
Finite element analysis has been universally employed for the stress and strain analysis in lower extremity prosthetics. The socket adapter was the principal subject of interest due to its importance in deciding the knee motion range. This article focused on the static and dynamic stress analysis of the designed hybrid adapter developed by the authors. A standard mechanical design validation approach using von Mises was followed. Four materials were considered for the analysis, namely, carbon fiber, oil-filled nylon, Al-6061, and mild steel. The paper analyses the static and dynamic stress on designed hybrid adapter which incorporates features of conventional male and female socket adapters. The finite element analysis was carried out for possible different angles of knee flexion simulating static and dynamic gait situation. Research was carried out on available design of socket adapter. Mechanical design of hybrid adapter was conceptualized and a CAD model was generated using Inventor modelling software. Static and dynamic stress analysis was carried out on different materials for optimization. The finite element analysis was carried out on the software Autodesk Inventor Professional Ver. 2011. The peak value of von Mises stress occurred in the neck region of the adapter and in the lower face region at rod eye-adapter junction in static and dynamic analyses, respectively. Oil-filled nylon was found to be the best material among the four with respect to strength, weight, and cost. Research investigations on newer materials for development of improved prosthesis will immensely benefit the amputees. The study analyze the static and dynamic stress on the knee joint adapter to provide better material used for hybrid design of adapter. © The International Society for Prosthetics and Orthotics 2013.
Prosperini, Luca; Kouleridou, Anna; Petsas, Nikolaos; Leonardi, Laura; Tona, Francesca; Pantano, Patrizia; Pozzilli, Carlo
2011-05-15
The role of static posturography and magnetic resonance imaging (MRI) in identifying patients at high risk of falls was investigated. Relationships between static posturography measures and MRI metrics were also investigated. A total of 31 ambulatory MS patients (EDSS ranging from 2.0 to 5.0) with a predominant balance disorder were recruited. Each patient underwent a static posturography with a monoaxial platform and a conventional 1.5 T brain MRI scan. Measurements of T1-hypointense and T2-hyperintense lesion volumes (LVs), focusing on lesions selectively located at infratentorial levels, were performed by two operators unaware of clinical data. The self-reported number of falls in the previous 6 months was considered as the main outcome measure. Fourteen (45%) patients reported 1 or more falls over the past 6 months. When compared to non-faller patients, they had a higher EDSS score, poorer static standing balance, and greater brainstem and middle cerebellar peduncle (MCP) T2-LVs. A strength correlation between brainstem T2-LV and impaired static standing balance in an open eye condition was also found. In the multivariate analysis, the variables more strictly associated with recurrent falls were greater T2-LV at the MCP (beta: 6.2; p=0.01) and brainstem (beta: 5.8; p=0.001) levels, and a wider displacement of the body center of pressure in the closed eye condition (beta: 0.02; p=0.03). Our data suggests that the damage of specific infratentorial areas negatively affect the static standing balance and may predispose MS patients to accidental falls. These findings might contribute in selecting patients requiring a proper rehabilitation intervention program. Copyright © 2011 Elsevier B.V. All rights reserved.
The Dynamic Tensile Behavior of Railway Wheel Steel at High Strain Rates
NASA Astrophysics Data System (ADS)
Jing, Lin; Han, Liangliang; Zhao, Longmao; Zhang, Ying
2016-11-01
The dynamic tensile tests on D1 railway wheel steel at high strain rates were conducted using a split Hopkinson tensile bar (SHTB) apparatus, compared to quasi-static tests. Three different types of specimens, which were machined from three different positions (i.e., the rim, web and hub) of a railway wheel, were prepared and examined. The rim specimens were checked to have a higher yield stress and ultimate tensile strength than those web and hub specimens under both quasi-static and dynamic loadings, and the railway wheel steel was demonstrated to be strain rate dependent in dynamic tension. The dynamic tensile fracture surfaces of all the wheel steel specimens are cup-cone-shaped morphology on a macroscopic scale and with the quasi-ductile fracture features on the microscopic scale.
Strength of Rocks Affected by Deformation Enhanced Grain Growth
NASA Astrophysics Data System (ADS)
Kellermann Slotemaker, A.; de Bresser, H.; Spiers, C.
2005-12-01
One way of looking into the possibility of long-term strength changes in the lithosphere is to study transient effects resulting from modifications of the microstructure of rocks. It is generally accepted that mechanical weakening may occur due to progressive grain size refinement resulting from dynamic recrystallization. A decrease in grain size may induce a switch from creep controlled by grain size insensitive dislocation mechanisms to creep governed by grain size sensitive (GSS) mechanisms involving diffusion and grain boundary sliding processes. This switch forms a well-known scenario to explain localization in the lithosphere. However, fine-grained rocks in localized deformation zones are prone to grain coarsening due to surface energy driven grain boundary migration (SED-GBM). This might harden the rock, affecting its role in localizing strain in the long term. The question has arisen if grain growth by SED-GBM in a rock deforming in the GSS creep field can be significantly affected by strain. The broad aim of this study is to shed more light onto this. We have experimentally investigated the microstructural and strength evolution of fine-grained (~0.6 μm) synthetic forsterite and Fe-bearing olivine aggregates that coarsen in grain size while deforming by GSS creep at elevated pressure (600 MPa) and temperature (850-1000 °C). The materials were prepared by `sol-gel' method and contained 0.3-0.5 wt% water and 5-10 vol% enstatite. We performed i) static heat treatment tests of various time durations involving hot isostatic pressing (HIP), and ii) heat treatment tests starting with HIP and continuing with deformation up to 45% axial strain at strain rates in the range 4x10-7 - 1x10-4 s-1. Microstructures were characterized by analyzing full grain size distributions and textures using SEM/EBSD. In addition to the experiments, we studied microstructural evolution in simple two-dimensional numerical models, combining deformation and SED-GBM by means of the modeling package ELLE. Synthetic olivine samples that were heat treated without straining showed only minor grain growth. Presumably, the second phase (enstatite) and/or porosity remaining in the starting material after densification slowed down or inhibited SED-GBM in the static situation. In contrast, samples heat treated and deformed for time durations similar to those of the static tests demonstrated, at identical temperature, an increase in grain size with increasing strain up to a value twice that of the static counterpart. This grain coarsening was associated with continuous hardening of the material, witnessed by the stress-strain curves. A random lattice preferred orientation combined with a low stress sensitivity (n~2) suggested dominant GSS creep controlled by grain boundary sliding. A dynamic grain growth model involving an increase in the fraction of non-hexagonal grains, related to grain neighbor switching, appears applicable to the observed grain growth that is held responsible for the hardening. The ELLE numerical modeling demonstrated that a combination of SED-GBM and geometrical deformation of a 2D grain aggregate can indeed result in enhanced grain growth compared to static grain growth tests. The fraction of non-hexagonal grains was found to remain more or less constant during static grain growth but increased during deformation. We suggest that the application of the dynamic grain growth model to the long-term microstructural evolution of fine-grained lithospheric shear zones can further improve our understanding of the transient or permanent character of strain localizations and related rheological behavior.
Development of a Thin Gauge Metallic Seal for Gas Turbine Engine Applications to 1700 F
NASA Technical Reports Server (NTRS)
England, Raymond O.
2006-01-01
The goal of doubling thrust-to-weight ratio for gas turbine engines has placed significant demands on engine component materials. Operating temperatures for static seals in the transition duct and turbine sections for instance, may well reach 2000 F within the next ten years. At these temperatures conventional age-hardenable superalloys lose their high strength via overaging and eventual dissolution of the gamma precipitate, and are well above their oxidation stability limit. Conventional solid-solution-strengthened alloys offer metallurgical stability, but suffer from rapid oxidation and little useful load bearing strength. Ceramic materials can theoretically be used at these temperatures, but manufacturing processes are in the developmental stages.
Centaur Standard Shroud (CSS) static limit load structural tests
NASA Technical Reports Server (NTRS)
Eastwood, C.
1975-01-01
The structural capabilities of the jettisonable metal shroud were tested and the interaction of the shroud with the Centaur stage was evaluated. A flight-configured shroud and the assemblies of the associated Centaur stage were tested for applied axial and shear loads to flight limit values. The tests included various thermal, pressure, and load conditions to verify localized strength capabilities, to evaluate subsystem performance, and to determine the aging effect on insulation system properties. The tests series verified the strength capabilities of the shroud and of all associated flight assembles. Shroud deflections were shown to remain within allowable limits so long as load sharing members were connected between the shroud and the Centaur stage.
Spatial electron density and electric field strength measurements in microwave cavity experiments
NASA Technical Reports Server (NTRS)
Peters, M.; Rogers, J.; Whitehair, S.; Asmussen, J.; Kerber, R.
1984-01-01
Measurements of electron density and electric field strength have been made in an argon plasma contained in a resonant microwave cavity at 2.45 GHz. Spatial measurements of electron density, n sub e, are correlated with fluorescence observations of the discharge. Measurements of n sub e were made with Stark broadening and compared with n sub 3 calculated from measured plasma conductivity. Additional measurements of n sub 3 as a function of pressure and in mixtures of argon and oxygen are presented for pressures from 10 Torr to 1 atm. Measurements in flowing gases and in static systems are presented. In addition, limitations of these measurements are identified.
Thermophysical properties of N, N-dimethylacetamide mixtures with n-butanol
NASA Astrophysics Data System (ADS)
Maharolkar, Aruna P.; Murugkar, A. G.; Khirade, P. W.; Mehrotra, S. C.
2017-09-01
The refraction, dielectric, viscosity, density, data of the binary mixtures of N, N-dimethylacetamide (DMA) with n-butanol at 308.15 and 313.15 K. The measured parameters used to obtain derived properties like Bruggeman factor, molar refraction and excess static dielectric constant, excess inverse relaxation time, excess molar volume and excess viscosity, excess molar refraction. The variation in magnitude with composition and temperature of these quantities has been used to discuss the type, strength and nature of binary interactions. Results confirm that there are strong hydrogen-bond interactions between unlike molecules of DMA+ n-butanol mixtures and that 1: 1 complexes are formed and strength of intermolecular interaction increases with temperature.
Consideration of the oxide particle-dislocation interaction in 9Cr-ODS steel
NASA Astrophysics Data System (ADS)
Ijiri, Yuta; Oono, N.; Ukai, S.; Yu, Hao; Ohtsuka, S.; Abe, Y.; Matsukawa, Y.
2017-05-01
The interaction between oxide particles and dislocations in a 9Cr-ODS ferritic steel is investigated by both static and in situ TEM observation under dynamic straining conditions and room temperature. The measured obstacle strength (?) of the oxide particles was no greater than 0.80 and the average was 0.63. The dislocation loops around some coarsened particles were also observed. The calculated obstacle strength by a stress formula of the Orowan interaction is nearly equaled to the average experimental value. Not only cross-slip system but also the Orowan interaction should be considered as the main interaction mechanism between oxide particles and dislocation in 9CrODS ferritic steel.
NASA Astrophysics Data System (ADS)
Greenwood, W. G.; Tang, K. T.
1987-03-01
The R-6, R-8, and R-10 terms in the long-range expansion for the hyperfine frequency shift are calculated for hydrogen in the presence of He, Ne, Ar, Kr, and Xe. The R-6 terms are based on the dipole oscillator strength sums. For helium, the R-8 and R-10 terms are based on quadrupole and octupole oscillator strength sums. For the heavier inert gases, the results for the R-8 and R-10 terms are obtained from the sum rules and the static polarizabilities. Upper bounds are also determined for the R-8 and R-10 terms.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holt, Adam P.; Bocharova, Vera; Cheng, Shiwang
It is generally believed that the strength of the polymer nanoparticle interaction controls the modification of near-interface segmental mobility in polymer nanocomposites (PNCs). However, little is known about the effect of covalent bonding on the segmental dynamics and glass transition of matrix-free polymer-grafted nanoparticles (PGNs), especially when compared to PNCs. In this article, we directly compare the static and dynamic properties of poly(2-vinylpyridine)/silica-based nanocomposites with polymer chains either physically adsorbed (PNCs) or covalently bonded (PGNs) to identical silica nanoparticles (RNP = 12.5 nm) for three different molecular weight (MW) systems. Interestingly, when the MW of the matrix is as lowmore » as 6 kg/mol (RNP/Rg = 5.4) or as high as 140 kg/mol (RNP/Rg= 1.13), both small-angle X-ray scattering and broadband dielectric spectroscopy show similar static and dynamic properties for PNCs and PGNs. However, for the intermediate MW of 18 kg/mol (RNP/Rg = 3.16), the difference between physical adsorption and covalent bonding can be clearly identified in the static and dynamic properties of the interfacial layer. We ascribe the differences in the interfacial properties of PNCs and PGNs to changes in chain stretching, as quantified by self-consistent field theory calculations. These results demonstrate that the dynamic suppression at the interface is affected by the chain stretching; that is, it depends on the anisotropy of the segmental conformations, more so than the strength of the interaction, which suggests that the interfacial dynamics can be effectively tuned by the degree of stretching a parameter accessible from the MW or grafting density.« less
NASA Astrophysics Data System (ADS)
Zhang, Yun; Richardson, Derek C.; Barnouin, Olivier S.; Maurel, Clara; Michel, Patrick; Schwartz, Stephen R.; Ballouz, Ronald-Louis; Benner, Lance A. M.; Naidu, Shantanu P.; Li, Junfeng
2017-09-01
As the target of the proposed Asteroid Impact & Deflection Assessment (AIDA) mission, the near-Earth binary asteroid 65803 Didymos represents a special class of binary asteroids, those whose primaries are at risk of rotational disruption. To gain a better understanding of these binary systems and to support the AIDA mission, this paper investigates the creep stability of the Didymos primary by representing it as a cohesionless self-gravitating granular aggregate subject to rotational acceleration. To achieve this goal, a soft-sphere discrete element model (SSDEM) capable of simulating granular systems in quasi-static states is implemented and a quasi-static spin-up procedure is carried out. We devise three critical spin limits for the simulated aggregates to indicate their critical states triggered by reshaping and surface shedding, internal structural deformation, and shear failure, respectively. The failure condition and mode, and shear strength of an aggregate can all be inferred from the three critical spin limits. The effects of arrangement and size distribution of constituent particles, bulk density, spin-up path, and interparticle friction are numerically explored. The results show that the shear strength of a spinning self-gravitating aggregate depends strongly on both its internal configuration and material parameters, while its failure mode and mechanism are mainly affected by its internal configuration. Additionally, this study provides some constraints on the possible physical properties of the Didymos primary based on observational data and proposes a plausible formation mechanism for this binary system. With a bulk density consistent with observational uncertainty and close to the maximum density allowed for the asteroid, the Didymos primary in certain configurations can remain geo-statically stable without requiring cohesion.
Holt, Adam P.; Bocharova, Vera; Cheng, Shiwang; ...
2016-06-23
It is generally believed that the strength of the polymer nanoparticle interaction controls the modification of near-interface segmental mobility in polymer nanocomposites (PNCs). However, little is known about the effect of covalent bonding on the segmental dynamics and glass transition of matrix-free polymer-grafted nanoparticles (PGNs), especially when compared to PNCs. In this article, we directly compare the static and dynamic properties of poly(2-vinylpyridine)/silica-based nanocomposites with polymer chains either physically adsorbed (PNCs) or covalently bonded (PGNs) to identical silica nanoparticles (RNP = 12.5 nm) for three different molecular weight (MW) systems. Interestingly, when the MW of the matrix is as lowmore » as 6 kg/mol (RNP/Rg = 5.4) or as high as 140 kg/mol (RNP/Rg= 1.13), both small-angle X-ray scattering and broadband dielectric spectroscopy show similar static and dynamic properties for PNCs and PGNs. However, for the intermediate MW of 18 kg/mol (RNP/Rg = 3.16), the difference between physical adsorption and covalent bonding can be clearly identified in the static and dynamic properties of the interfacial layer. We ascribe the differences in the interfacial properties of PNCs and PGNs to changes in chain stretching, as quantified by self-consistent field theory calculations. These results demonstrate that the dynamic suppression at the interface is affected by the chain stretching; that is, it depends on the anisotropy of the segmental conformations, more so than the strength of the interaction, which suggests that the interfacial dynamics can be effectively tuned by the degree of stretching a parameter accessible from the MW or grafting density.« less
Wave modeling in a cylindrical non-uniform helicon discharge
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, L.; Hole, M. J.; Caneses, J. F.
2012-08-15
A radio frequency field solver based on Maxwell's equations and a cold plasma dielectric tensor is employed to describe wave phenomena observed in a cylindrical non-uniform helicon discharge. The experiment is carried out on a recently built linear plasma-material interaction machine: The magnetized plasma interaction experiment [Blackwell et al., Plasma Sources Sci. Technol. (submitted)], in which both plasma density and static magnetic field are functions of axial position. The field strength increases by a factor of 15 from source to target plate, and the plasma density and electron temperature are radially non-uniform. With an enhancement factor of 9.5 to themore » electron-ion Coulomb collision frequency, a 12% reduction in the antenna radius, and the same other conditions as employed in the experiment, the solver produces axial and radial profiles of wave amplitude and phase that are consistent with measurements. A numerical study on the effects of axial gradient in plasma density and static magnetic field on wave propagations is performed, revealing that the helicon wave has weaker attenuation away from the antenna in a focused field compared to a uniform field. This may be consistent with observations of increased ionization efficiency and plasma production in a non-uniform field. We find that the relationship between plasma density, static magnetic field strength, and axial wavelength agrees well with a simple theory developed previously. A numerical scan of the enhancement factor to the electron-ion Coulomb collision frequency from 1 to 15 shows that the wave amplitude is lowered and the power deposited into the core plasma decreases as the enhancement factor increases, possibly due to the stronger edge heating for higher collision frequencies.« less
Relationships of bone characteristics in MYO9B deficient femurs.
Kim, Do-Gyoon; Jeong, Yong-Hoon; McMichael, Brooke K; Bähler, Martin; Bodnyk, Kyle; Sedlar, Ryan; Lee, Beth S
2018-08-01
The objective of this study was to examine relationships among a variety of bone characteristics, including volumetric, mineral density, geometric, dynamic mechanical analysis, and static fracture mechanical properties. As MYO9B is an unconventional myosin in bone cells responsible for normal skeletal growth, bone characteristics of wild-type (WT), heterozygous (HET), and MYO9B knockout (KO) mice groups were compared as an animal model to express different bone quantity and quality. Forty-five sex-matched 12-week-old mice were used in this study. After euthanization, femurs were isolated and scanned using microcomputed tomography (micro-CT) to assess bone volumetric, tissue mineral density (TMD), and geometric parameters. Then, a non-destructive dynamic mechanical analysis (DMA) was performed by applying oscillatory bending displacement on the femur. Finally, the same femur was subject to static fracture testing. KO group had significantly lower length, bone mineral density (BMD), bone mass and volume, dynamic and static stiffness, and strength than WT and HET groups (p < 0.019). On the other hand, TMD parameters of KO group were comparable with those of WT group. HET group showed volumetric, geometric, and mechanical properties similar to WT group, but had lower TMD (p < 0.014). Non-destructive micro-CT and DMA parameters had significant positive correlations with strength (p < 0.015) without combined effect of groups and sex on the correlations (p > 0.077). This comprehensive characterization provides a better understanding of interactive behavior between the tissue- and organ-level of the same femur. The current findings elucidate that MYO9B is responsible for controlling bone volume to determine the growth rate and fracture risk of bone. Copyright © 2018 Elsevier Ltd. All rights reserved.
Judge, Lawrence W; Craig, Bruce; Baudendistal, Steve; Bodey, Kimberly J
2009-07-01
Research supports the use of preactivity warm-up and stretching, and the purpose of this study was to determine whether college football programs follow these guidelines. Questionnaires designed to gather demographic, professional, and educational information, as well as specific pre- and postactivity practices, were distributed via e-mail to midwestern collegiate programs from NCAA Division I and III conferences. Twenty-three male coaches (12 from Division IA schools and 11 from Division III schools) participated in the study. Division I schools employed certified strength coaches (CSCS; 100%), whereas Division III schools used mainly strength coordinators (73%), with only 25% CSCS. All programs used preactivity warm-up, with the majority employing 2-5 minutes of sport-specific jogging/running drills. Pre stretching (5-10 minutes) was performed in 19 programs (91%), with 2 (9%) performing no pre stretching. Thirteen respondents used a combination of static/proprioceptive neuromuscular facilitation/ballistic and dynamic flexibility, 5 used only dynamic flexibility, and 1 used only static stretching. All 12 Division I coaches used stretching, whereas only 9 of the 11 Division III coaches did (p = 0.22). The results indicate that younger coaches did not use pre stretching (p = 0.30). The majority of the coaches indicated that they did use post stretching, with 11 of the 12 Division I coaches using stretching, whereas only 5 of the 11 Division III coaches used stretching postactivity (p = 0.027). Divisional results show that the majority of Division I coaches use static-style stretching (p = 0.049). The results of this study indicate that divisional status, age, and certification may influence how well research guidelines are followed. Further research is needed to delineate how these factors affect coaching decisions.
Sung, Kiwol
2009-01-01
The purpose of this study was to compare the effects of 16-week group exercise program on the physical function (ie, strength, flexibility, and balance) and mental health (ie, self-esteem and depression) of older elderlyl women (>or=75 years old) compared with younger elderly women (<75 years old). Exercise is crucial in maintaining older women's health and well-being. However, because most elders have at least one chronic disease, their physical function declines, so their dependence on others for instrumental daily living activities often increases. Older women typically have multiple barriers to participation in physical activities including higher disability rates. Of the total of 40 older women (older than 65 years) enrolled, 21 were older elders and 16 were younger elders. Lower body strength (using 30-second chair test), flexibility (sit-and-reach test), and static balance (ability to balance on one leg with open and closed eyes) were assessed. Self-esteem (using Rosenberg's Self-esteem Questionnaire) and depressive symptoms (using Yesavage's Geriatric Depression Scale) were assessed. Two-way analysis of variance was used to examine the differences between the 2 age groups. The intervention program was effective in improving body strength, flexibility, static balance, and self-esteem, regardless of age. Furthermore, older elders receiving the intervention program demonstrated greater improvement in self-esteem than younger elders did, although there were intervention effects in both age groups. Elderly women can realize benefits from a group exercise program that can improve their functional ability and self-esteem, both important to cardiovascular health.
Earthquake Nucleation on Faults With Heterogeneous Frictional Properties, Normal Stress
NASA Astrophysics Data System (ADS)
Ray, Sohom; Viesca, Robert C.
2017-10-01
We examine the development of an instability of fault slip rate. We consider a slip rate and state dependence of fault frictional strength, in which frictional properties and normal stress are functions of position. We pose the problem for a slip rate distribution that diverges quasi-statically within finite time in a self-similar fashion. Scenarios of property variations are considered and the corresponding self-similar solutions found. We focus on variations of coefficients, a and b, respectively, controlling the magnitude of a direct effect on strength due to instantaneous changes in slip rate and of strength evolution due to changes in a state variable. These results readily extend to variations in fault-normal stress, σ, or the characteristic slip distance for state evolution, Dc. We find that heterogeneous properties lead to a finite number of self-similar solutions, located about critical points of the distributions: maxima, minima, and between them. We examine the stability of these solutions and find that only a subset is asymptotically stable, occurring at just one of the critical point types. Such stability implies that during instability development, slip rate and state evolution can be attracted to develop in the manner of the self-similar solution, which is also confirmed by solutions to initial value problems for slip rate and state. A quasi-static slip rate divergence is ultimately limited by inertia, leading to the nucleation of an outward expanding dynamic rupture: asymptotic stability of self-similar solutions then implies preferential sites for earthquake nucleation, which are determined by distribution of frictional properties.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morgan, M J; Tosten, M H
1989-01-01
Rising-load J-integral measurements and falling-load threshold stress intensity measurements were used to characterize hydrogen and tritium induced cracking in high-energy-rate-forged (HERF) 21-6-9 stainless steel. Samples having yield strengths in the range 517--930 MPa were thermally charged with either hydrogen or tritium and tested at room temperature in either air or high-pressure hydrogen gas. In general, the hydrogen isotopes reduced the fracture toughness by affecting the fracture process. Static recrystallization in the HERF microstructures affected the material's fracture toughness and its relative susceptibility to hydrogen and tritium induced fracture. In hydrogen-exposed samples, the reduction in fracture toughness was primarily dependent onmore » the susceptibility of the microstructure to intergranular fracture and only secondarily affected by strength in the range of 660 to 930 MPa. Transmission-electron microscopy observations revealed that the microstructures least susceptible to hydrogen-induced intergranular cracking contained patches of fully recrystallized grains. These grains are surrounded by highly deformed regions containing a high number density of dislocations. The microstructure can best be characterized as duplex'', with soft recrystallized grains embedded in a hard, deformed matrix. The microstructures most susceptible to hydrogen-induced intergranular fracture showed no well-developed recrystallized grains. The patches of recrystallized grains seemed to act as crack barriers to hydrogen-induced intergranular fracture. In tritium-exposed-and-aged samples, the amount of static recrystallization also affected the fracture toughness properties but to a lesser degree. 7 refs., 25 figs.« less
Frevel, D; Mäurer, M
2015-02-01
Balance disorders are common in multiple sclerosis. Aim of the study is to investigate the effectiveness of an Internet-based home training program (e-Training) to improve balance in patients with multiple sclerosis. A randomized, controlled study. Academic teaching hospital in cooperation with the therapeutic riding center Gut Üttingshof, Bad Mergentheim. Eighteen multiple sclerosis patients (mean EDSS 3,5) took part in the trial. Outcome of patients using e-Training (N.=9) was compared to the outcome of patients receiving hippotherapy (N.=9), which can be considered as an advanced concept for the improvement of balance and postural control in multiple sclerosis. After simple random allocation patients received hippotherapy or Internet-based home training (balance, postural control and strength training) twice a week for 12 weeks. Assessments were done before and after the intervention and included static and dynamic balance (primary outcome). Isometric muscle strength of the knee and trunk extension/flexion (dynamometer), walking capacity, fatigue and quality of life served as secondary outcome parameters. Both intervention groups showed comparable and highly significant improvement in static and dynamic balance capacity, no difference was seen between the both intervention groups. However looking at fatigue and quality of life only the group receiving hippotherapy improved significantly. Since e-Training shows even comparable effects to hippotherapy to improve balance, we believe that the established Internet-based home training program, specialized on balance and postural control training, is feasible for a balance and strength training in persons with multiple sclerosis. We demonstrated that Internet-based home training is possible in patients with multiple sclerosis.
Strain rate effects on the mechanical behavior of two Dual Phase steels in tension
NASA Astrophysics Data System (ADS)
Cadoni, E.; Singh, N. K.; Forni, D.; Singha, M. K.; Gupta, N. K.
2016-05-01
This paper presents an experimental investigation on the strain rate sensitivity of Dual Phase steel 1200 (DP1200) and Dual Phase steel 1400 (DP1400) under uni-axial tensile loads in the strain rate range from 0.001 s-1 to 600 s-1. These materials are advanced high strength steels (AHSS) having high strength, high capacity to dissipate crash energy and high formability. Flat sheet specimens of the materials having gauge length 10 mm, width 4 mm and thickness 2 mm (DP1200) and 1.25 mm (DP1400), are tested at room temperature (20∘C) on electromechanical universal testing machine to obtain their stress-strain relation under quasi-static condition (0.001 s-1), and on Hydro-Pneumatic machine and modified Hopkinson bar to study their mechanical behavior at medium (3 s-1, and 18 s-1) and high strain rates (200 s-1, 400 s-1, and 600 s-1) respectively. Tests under quasi-static condition are performed at high temperature (200∘C) also, and found that tensile flow stress is a increasing function of temperature. The stress-strain data has been analysed to determine the material parameters of the Cowper-Symonds and the Johnson-Cook models. A simple modification of the Johnson-Cook model has been proposed in order to obtain a better fit of tests at high temperatures. Finally, the fractographs of the broken specimens are taken by scanning electron microscope (SEM) to understand the fracture mechanism of these advanced high strength steels at different strain rates.
Acute effect of passive static stretching on lower-body strength in moderately trained men.
Gergley, Jeffrey C
2013-04-01
The purpose of this investigation was conducted to determine the acute effect of passive static stretching (PSS) of the lower-body musculature on lower-body strength in a 1 repetition maximum (1RM) squat exercise in young (18-24 years.) moderately trained men (n = 17). Two supervised warm-up treatments were applied before each performance testing session using a counterbalanced design on nonconsecutive days. The first treatment consisted of an active dynamic warm-up (AD) with resistance machines (i.e., leg extension/leg flexion) and free weights (i.e., barbell squat), whereas the second treatment added PSS of the lower body plus the AD treatment. One repetition maximum was determined using the maximum barbell squat following a progressive loading protocol. Subjects were also asked to subjectively evaluate their lower-body stability during 1RM testing sessions for both the AD and PSS treatments. A significant decrease in 1RM (8.36%) and lower-body stability (22.68%) was observed after the PSS treatment. Plausible explanations for this observation may be related to a more compliant muscle tendon unit and/or altered or impaired neurologic function in the active musculature. It is also possible that strength was impaired by the PSS because of joint instability. The findings of this study suggest that intensive stretching such as lower-body PSS should be avoided before training the lower body or performing the 1RM in the squat exercise in favor of an AD dynamic warm-up using resistance training equipment in the lower-body musculature.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Issa, T. T., E-mail: alazbrh@yahoo.com; Hasan, J. M.; Abdullah, E. T.
2016-04-21
Compacted samples of Y{sub 2}O{sub 3}-V{sub 2}O{sub 5} – MgO Nano – particles wt. % sintered at different sintering temperature (700, 900, 1100, 1300) ) C° for 2 hours under static air were investigated by x-ray diffraction and differential thermal analysis(DTA), to identify the phase present .Microstructure examination achieved by scanning electron microscopy .Sintered density and porosity were measured for all sintered samples .Compression was tested too and the Brake down voltage and dielectric strength were measure for all sintered samples .The clear improvement were noticed in both microstructure and damage characterization respectively after existing the MgO Nano-particles, by increasingmore » in about 30% in sintered density and 25% for the compressive strength .The improvement also noticed on both brake down voltage and dielectric strength.« less
Fatigue and fracture properties of a super-austenitic stainless steel at 295 K and 4 K
NASA Astrophysics Data System (ADS)
McRae, D. M.; Walsh, R. P.; Dalder, E. N. C.; Litherland, S.; Trosen, M.; Kuhlmann, D. J.
2014-01-01
The tie plate structure for the ITER Central Solenoid (CS) is required to have high strength and good fatigue and fracture behavior at both room temperature and 4 K. A super-austenitic stainless steel - UNS 20910, commonly referred to by its trade name, Nitronic 50 (N50) - has been chosen for consideration to fulfill this task, due to its good room temperature and cryogenic yield strengths and weldability. Although N50 is often considered for cryogenic applications, little published data exists at 4 K. Here, a full series of tests have been conducted at 295 K and 4 K, and static tensile properties of four forgings of commercially-available N50 are reported along with fatigue life, fatigue crack growth rate (FCGR), and fracture toughness data. This study makes a significant contribution to the cryogenic mechanical properties database of high strength, paramagnetic alloys with potential for superconducting magnet applications.
Spall behaviour of single crystal aluminium at three principal orientations
NASA Astrophysics Data System (ADS)
Owen, G. D.; Chapman, D. J.; Whiteman, G.; Stirk, S. M.; Millett, J. C. F.; Johnson, S.
2017-10-01
A series of plate impact experiments have been conducted to study the spall strength of the three principal crystallographic orientations of single crystal aluminium ([100], [110] and, [111]) and ultra-pure polycrystalline aluminium. The samples have been shock loaded at two impact stresses (4 GPa and 10 GPa). Significant differences have been observed in the elastic behaviour, the pullback velocities, and the general shape of the wave profiles, which can be accounted for by considerations of the microscale homogeneity, the dislocation density, and the absence of grain boundaries in the single crystal materials. The data have shown that there is a consistent order of spall strength measured for the four sample materials. The [111] orientation has the largest spall strength and elastic limit, followed closely by [110], [100], and then the polycrystalline material. This order is consistent with both quasi-static data and geometrical consideration of Schmid factors.
What holds paper together: Nanometre scale exploration of bonding between paper fibres
Schmied, Franz J.; Teichert, Christian; Kappel, Lisbeth; Hirn, Ulrich; Bauer, Wolfgang; Schennach, Robert
2013-01-01
Paper, a man-made material that has been used for hundreds of years, is a network of natural cellulosic fibres. To a large extent, it is the strength of bonding between these individual fibres that controls the strength of paper. Using atomic force microscopy, we explore here the mechanical properties of individual fibre-fibre bonds on the nanometre scale. A single fibre-fibre bond is loaded with a calibrated cantilever statically and dynamically until the bond breaks. Besides the calculation of the total energy input, time dependent processes such as creep and relaxation are studied. Through the nanometre scale investigation of the formerly bonded area, we show that fibrils or fibril bundles play a crucial role in fibre-fibre bonding because they act as bridging elements. With this knowledge, new fabrication routes can be deduced to increase the strength of an ancient product that is in fact an overlooked high-tech material. PMID:23969946
NASA Astrophysics Data System (ADS)
Zanuttini, David; Blum, Ivan; Rigutti, Lorenzo; Vurpillot, François; Douady, Julie; Jacquet, Emmanuelle; Anglade, Pierre-Matthieu; Gervais, Benoit
2017-06-01
We investigate the dynamics of dicationic metal-oxide molecules under large electric-field conditions, on the basis of ab initio calculations coupled to molecular dynamics. Applied to the case of ZnO2 + in the field of atom probe tomography (APT), our simulation reveals the dissociation into three distinct exit channels. The proportions of these channels depend critically on the field strength and on the initial molecular orientation with respect to the field. For typical field strength used in APT experiments, an efficient dissociation channel leads to emission of neutral oxygen atoms, which escape detection. The calculated composition biases and their dependence on the field strength show remarkable consistency with recent APT experiments on ZnO crystals. Our work shows that bond breaking in strong static fields may lead to significant neutral atom production, and therefore to severe elemental composition biases in measurements.
Human strength simulations for one and two-handed tasks in zero gravity
NASA Technical Reports Server (NTRS)
1972-01-01
A description is given of a three dimensional hand force capability model for the seated operator and a biomechanical model for analysis of symmetric sagittal plane activities. The models are used to simulate and study human strengths for one and two handed tasks in zero gravity. Specific conditions considered include: (1) one hand active, (2) both hands active but with different force directions on each, (3) body bracing situations provided by portable foot restraint when standing and lap belt when seated, (4) static or slow movement tasks with maximum length of 4 seconds and a minimum rest of 5 minutes between exertions, and (5) wide range of hand positions relative to either the feet or bisection of a line connecting the hip centers. Simulations were also made for shirt sleeved individuals and for the male population strengths with anthropometry matching that of astronauts.
Durability evaluation of ceramic components using CARES/LIFE
NASA Technical Reports Server (NTRS)
Nemeth, Noel N.; Powers, Lynn M.; Janosik, Lesley A.; Gyekenyesi, John P.
1994-01-01
The computer program CARES/LIFE calculates the time-dependent reliability of monolithic ceramic components subjected to thermomechanical and/or proof test loading. This program is an extension of the CARES (Ceramics Analysis and Reliability Evaluation of Structures) computer program. CARES/LIFE accounts for the phenomenon of subcritical crack growth (SCG) by utilizing the power law, Paris law, or Walker equation. The two-parameter Weibull cumulative distribution function is used to characterize the variation in component strength. The effects of multiaxial stresses are modeled using either the principle of independent action (PIA), the Weibull normal stress averaging method (NSA), or the Batdorf theory. Inert strength and fatigue parameters are estimated from rupture strength data of naturally flawed specimens loaded in static, dynamic, or cyclic fatigue. Application of this design methodology is demonstrated using experimental data from alumina bar and disk flexure specimens which exhibit SCG when exposed to water.
Durability evaluation of ceramic components using CARES/LIFE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nemeth, N.N.; Janosik, L.A.; Gyekenyesi, J.P.
1996-01-01
The computer program CARES/LIFE calculates the time-dependent reliability of monolithic ceramic components subjected to thermomechanical and/or proof test loading. This program is an extension of the CARES (Ceramics Analysis and Reliability Evaluation of Structures) computer program. CARES/LIFE accounts for the phenomenon of subcritical crack growth (SCG) by utilizing the power law, Paris law, or Walker equation. The two-parameter Weibull cumulative distribution function is used to characterize the variation in component strength. The effects of multiaxial stresses are modeled using either the principle of independent action (PIA), the Weibull normal stress averaging method (NSA), or the Batdorf theory. Inert strength andmore » fatigue parameters are estimated from rupture strength data of naturally flawed specimens loaded in static, dynamic, or cyclic fatigue. Application of this design methodology is demonstrated using experimental data from alumina bar and disk flexure specimens, which exhibit SCG when exposed to water.« less
Lifetime Reliability Evaluation of Structural Ceramic Parts with the CARES/LIFE Computer Program
NASA Technical Reports Server (NTRS)
Nemeth, Noel N.; Powers, Lynn M.; Janosik, Lesley A.; Gyekenyesi, John P.
1993-01-01
The computer program CARES/LIFE calculates the time-dependent reliability of monolithic ceramic components subjected to thermomechanical and/or proof test loading. This program is an extension of the CARES (Ceramics Analysis and Reliability Evaluation of Structures) computer program. CARES/LIFE accounts for the phenomenon of subcritical crack growth (SCG) by utilizing the power law, Paris law, or Walker equation. The two-parameter Weibull cumulative distribution function is used to characterize the variation in component strength. The effects of multiaxial stresses are modeled using either the principle of independent action (PIA), Weibull's normal stress averaging method (NSA), or Batdorf's theory. Inert strength and fatigue parameters are estimated from rupture strength data of naturally flawed specimens loaded in static, dynamic, or cyclic fatigue. Two example problems demonstrating cyclic fatigue parameter estimation and component reliability analysis with proof testing are included.
Tungsten wire-nickel base alloy composite development
NASA Technical Reports Server (NTRS)
Brentnall, W. D.; Moracz, D. J.
1976-01-01
Further development and evaluation of refractory wire reinforced nickel-base alloy composites is described. Emphasis was placed on evaluating thermal fatigue resistance as a function of matrix alloy composition, fabrication variables and reinforcement level and distribution. Tests for up to 1,000 cycles were performed and the best system identified in this current work was 50v/o W/NiCrAlY. Improved resistance to thermal fatigue damage would be anticipated for specimens fabricated via optimized processing schedules. Other properties investigated included 1,093 C (2,000 F) stress rupture strength, impact resistance and static air oxidation. A composite consisting of 30v/o W-Hf-C alloy fibers in a NiCrAlY alloy matrix was shown to have a 100-hour stress rupture strength at 1,093 C (2,000 F) of 365 MN/square meters (53 ksi) or a specific strength advantage of about 3:1 over typical D.S. eutectics.
Experimental study on beam for composite CES structural system
NASA Astrophysics Data System (ADS)
Matsui, Tomoya
2017-10-01
Development study on Concrete Encase Steel (CES) composite structure system has been continuously conducted toward the practical use. CES structure is composed of steel and fiber reinforced concrete. In previous study, it was found that CES structure has good seismic performance from experimental study of columns, beam - column joints, shear walls and a two story two span frame. However, as fundamental study on CES beam could be lacking, it is necessary to understand the structural performance of CES beam. In this study, static loading tests of CES beams were conducted with experimental valuable of steel size, the presence or absence of slab and thickness of slab. And restoring characteristics, failure behavior, deformation behavior, and strength evaluation method of CES beam were investigated. As the results, it was found that CES beam showed stable hysteresis behavior. Furthermore it was found that the flexural strength of the CES beam could be evaluated by superposition strength theory.
Effects of Water-Based Training on Static and Dynamic Balance of Older Women.
Bento, Paulo Cesar Barauce; Lopes, Maria de Fátima A; Cebolla, Elaine Cristine; Wolf, Renata; Rodacki, André L F
2015-08-01
The aim of this study was to evaluate the effects of a water-based exercise program on static and dynamic balance. Thirty-six older women were randomly assigned to a water-based training (3 days/week for 12 weeks) or control group. Water level was kept at the level of the xiphoid process and temperature at ∼28-30°C. Each session included aerobic activities and lower limb strength exercises. The medial-lateral, the anterior-posterior amplitude, and displacement of the center of pressure (CP-D) were measured in a quiet standing position (60 sec eyes opened and closed). The dynamic balance and 8-Foot Up-and-Go tests were also applied. Group comparisons were made using two-way analysis of variance (ANOVA) with repeated measures. No differences were found in the center of pressure variables; however, the WBT group showed better performance in the 8 Foot Up-and-Go Test after training (5.61±0.76 vs. 5.18±0.42; p<0.01). The water-based training was effective in improving dynamic balance, but not static balance.
Experimental and Numerical Analysis of Notched Composites Under Tension Loading
NASA Astrophysics Data System (ADS)
Aidi, Bilel; Case, Scott W.
2015-12-01
Experimental quasi-static tests were performed on center notched carbon fiber reinforced polymer (CFRP) composites having different stacking sequences made of G40-600/5245C prepreg. The three-dimensional Digital Image Correlation (DIC) technique was used during quasi-static tests conducted on quasi-isotropic notched samples to obtain the distribution of strains as a function of applied stress. A finite element model was built within Abaqus to predict the notched strength and the strain profiles for comparison with measured results. A user-material subroutine using the multi-continuum theory (MCT) as a failure initiation criterion and an energy-based damage evolution law as implemented by Autodesk Simulation Composite Analysis (ASCA) was used to conduct a quantitative comparison of strain components predicted by the analysis and obtained in the experiments. Good agreement between experimental data and numerical analyses results are observed. Modal analysis was carried out to investigate the effect of static damage on the dominant frequencies of the notched structure using the resulted degraded material elements. The first in-plane mode was found to be a good candidate for tracking the level of damage.
Response of resin transfer molded (RTM) composites under reversed cyclic loading
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mahfuz, H.; Haque, A.; Yu, D.
1996-01-01
Compressive behavior and the tension-compression fatigue response of resin transfer molded IM7 PW/PR 500 composite laminate with a circular notch have been studied. Fatigue damage characteristics have been investigated through the changes in the laminate strength and stiffness by gradually incrementing the fatigue cycles at a preselected load level. Progressive damage in the surface of the laminate during fatigue has been investigated using cellulose replicas. Failure mechanisms during static and cyclic tests have been identified and presented in detail. Extensive debonding of filaments and complete fiber bundle fracture accompanied by delamination were found to be responsible for fatigue failures, whilemore » fiber buckling, partial fiber fracture and delamination were characterized as the failure modes during static tests. Weibull analysis of the static, cyclic and residual tests have been performed and described in detail. Fractured as well as untested specimens were C-scanned, and the progressive damage growth during fatigue is presented. Optical Microscopy (OM) and Scanning Electron Microscopy (SEM) for the fractured specimen were also performed and the analysis of the failure behavior is presented.« less
Romero-Franco, Natalia; Párraga-Montilla, Juan Antonio; Molina-Flores, Enrique M; Jiménez-Reyes, Pedro
2018-06-01
Romero-Franco, N, Párraga-Montilla, JA, Molina-Flores, EM, and Jiménez-Reyes, P. Effects of combining running and practical duration stretching on proprioceptive skills of national sprinters. J Strength Cond Res XX(X): 000-000, 2018-Practical duration stretching after aerobic activities is a recommended component of the first part of warm-up because of its effects on performance. However, its effects on proprioceptive skills are unknown. This study aimed to analyze the effects of running and practical duration static stretching (SS) and dynamic stretching (DS) on postural balance and the joint position sense (JPS) of national sprinters. Thirty-two national sprinters were randomly classified into a SS group (n = 11), DS group (n = 11), or control group (n = 10). Static stretching performed 5 minutes of running and short-duration (20 seconds) static stretches; DS performed 5 minutes of running and short-duration dynamic (20 seconds) stretches; and the control group performed 5 minutes of running. Before and after the intervention, unipedal static postural balance and knee JPS were evaluated. Static stretching exhibited a more centralized center of pressure in the medial-lateral plane for unipedal static postural balance in right-leg support after stretching (p = 0.005, d = 1.24), whereas DS showed values further from the center after stretching for the same unipedal support compared with baseline (p = 0.042, d = 0.49), and the control group remained stable (p > 0.05). Joint position sense did not show significant differences in any group (p > 0.05). In conclusion, combining running and practical duration SS may be beneficial for right-leg postural stabilization, whereas DS may be partly and slightly deleterious. Both SS and DS combined with running and running alone have neutral effects on knee JPS. Sports professionals should consider running and practical duration SS as part of the warm-up of sprinters to partly improve unipedal static postural balance.
Kataura, Satoshi; Suzuki, Shigeyuki; Matsuo, Shingo; Hatano, Genki; Iwata, Masahiro; Yokoi, Kazuaki; Tsuchida, Wakako; Banno, Yasuhiro; Asai, Yuji
2017-12-01
Kataura, S, Suzuki, S, Matsuo, S, Hatano, G, Iwata, M, Yokoi, K, Tsuchida, W, Banno, Y, and Asai, Y. Acute effects of the different intensity of static stretching on flexibility and isometric muscle force. J Strength Cond Res 31(12): 3403-3410, 2017-In various fields, static stretching is commonly performed to improve flexibility, whereas the acute effects of different stretch intensities are unclear. Therefore, we investigated the acute effects of different stretch intensities on flexibility and muscle force. Eighteen healthy participants (9 men and 9 women) performed 180-second static stretches of the right hamstrings at 80, 100, and 120% of maximum tolerable intensity without stretching pain, in random order. The following outcomes were assessed as markers of lower limb function and flexibility: static passive torque (SPT), range of motion (ROM), passive joint (muscle-tendon) stiffness, passive torque (PT) at onset of pain, and isometric muscle force. Static passive torque was significantly decreased after all stretching intensities (p ≤ 0.05). Compared with before stretching at 100 and 120% intensities, ROM and PT were significantly increased after stretching (p ≤ 0.05), and passive stiffness (p = 0.05) and isometric muscle force (p ≤ 0.05) were significantly decreased. In addition, ROM was significantly greater after stretching at 100 and 120% than at 80%, and passive stiffness was significantly lower after 120% than after 80% (p ≤ 0.05). However, all measurements except SPT were unchanged after 80% intensity. There was a weak positive correlation between the intensities of stretching and the relative change for SPT (p ≤ 0.05), a moderate positive correlation with ROM (p ≤ 0.05), and a moderate positive correlation with passive stiffness (p ≤ 0.05). These results indicate that static stretching at greater intensity is more effective for increasing ROM and decreasing passive muscle-tendon stiffness.
1933-05-11
copper alloys which have good static properties are disa:cinting in their endurance properties. The silicide allo~rs that are given high tensile strength...works satisfactorily, but the best welds 4 have been obtained by using a flux cdmposed of 905 fused borax and i0. sodium fluoride., The flux is...properties re- main almost the same. Grain size increases with sil- icon. III A study of hardening copper by heat treating its alloys with silicides
Postbuckling delamination of a stiffened composite panel using finite element methods
NASA Technical Reports Server (NTRS)
Natsiavas, S.; Babcock, C. D.; Knauss, W. G.
1987-01-01
A combined numerical and experimental study is carried out for the postbuckling behavior of a stiffened composite panel. The panel is rectangular and is subjected to static in-plane compression on two opposite edges to the collapse level. Nonlinear (large deflection) plate theory is employed, together with an experimentally based failure criterion. It is found that the stiffened composite panel can exhibit significant postbuckling strength.
Wind pressure testing of tornado safe room components made from wood
Robert Falk; Deepak Shrestha
2016-01-01
To evaluate the ability of a wood tornado safe room to resist wind pressures produced by a tornado, two safe room com-ponents were tested for wind pressure strength. A tornado safe room ceiling panel and door were static-pressure-tested according to ASTM E 330 using a vacuum test system. Re-sults indicate that the panels had load capacities from 2.4 to 3.5 times that...
Welding of Aluminum Alloys to Steels: An Overview
2013-08-01
and deformations are a few examples of the unwanted consequences which somehow would lead to brittle fracture, fatigue fracture, shape instability...was made under the copper tips of the spot welding machine. The fatigue results showed higher fatigue strength of the joints with transition layer...kHz ultrasonic butt welding system with a vibration source applying eight bolt-clamped Langevin type PZT transducers and a 50 kW static induction
NASA Technical Reports Server (NTRS)
Harvill, W. E.; Duhig, J. J.; Spencer, B. R.
1973-01-01
The design, fabrication, and evaluation of boron-epoxy reinforced C-130 center wing boxes are discussed. Design drawings, static strength, fatigue endurance, flutter, and weight analyses required for the wing box fabrication are presented. Additional component testing to verify the design for panel buckling and to evaluate specific local design areas are reported.
REVIEW OF THE STABILITY ANALYSIS FOR THE LANL BSL-3 BUILDING FOUNDATION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heuze, F E; Wagoner, J L
2006-11-30
This work was performed upon request from Dr. Richard Thorpe from NNSA after his review of the LANL report on BSL-3 seismic stability [1]. The authors also reviewed report [1] and concluded, as did Dr. Thorpe, that the stability analysis was inappropriate. There are several reasons for that conclusion: (1) the assumption of a circular failure surface through the combined fill-and-rock foundation does not recognize the geologic structure involved. (2) the assumption of an equivalent static force to an earthquake loading does not represent the multiple cycles of shear loads created by a seismic event that can engender a substantialmore » degradation of shear modulus and shear strength of the soil under the building [2]. (3) there was no credible in-situ strength of the foundation materials (fill and rock mass) available for input into the stability analysis. Following that review, on September 26 the authors made a site visit and held discussions with LANL personnel connected to the BSL-3 building project. No information or evidence was presented to the authors indicating that the static stability of BSL-3 could be an issue. Accordingly, this report focuses on the topic of the BSL-3 site stability under seismic loading.« less
Accelerated fatigue durability of a high performance composite
NASA Technical Reports Server (NTRS)
Rotem, A.
1982-01-01
The fatigue behavior of multidirectional graphite-epoxy laminates was analyzed theoretically and experimentally in an effort to establish an accelerated testing methodology. Analysis of the failure mechanism in fatigue of the laminates led to the determination of the failure mode governing fracture. The nonlinear, cyclic-dependent shear modulus was used to calculate the changing stress field in the laminate during the fatigue loading. Fatigue tests were performed at three different temperatures: 25 C, 74 C, and 114 C. The prediction of the S-N curves was made based on the artificial static strength artificial static strength at a reference temperature and the fatigue functions associated with them. The prediction of an S-N curve at other temperatures was performed using shifting factors determined for the specific failure mode. For multidirectional laminates, different S-N curves at different temperatures could be predicted using these shifting factors. Different S-N curves at different temperatures occur only when the fatigue failure mode is matrix dominated. It was found that whenever the fatigue failure mode is fiber dominated, temperature, over the range investigated, had no influence on the fatigue life. These results permit the prediction of long-time, low temperature fatigue behavior from data obtained in short time, high temperature testing, for laminates governed by a matrix failure mode.
Physical and mechanical properties of spinach for whole-surface online imaging inspection
NASA Astrophysics Data System (ADS)
Tang, Xiuying; Mo, Chang Y.; Chan, Diane E.; Peng, Yankun; Qin, Jianwei; Yang, Chun-Chieh; Kim, Moon S.; Chao, Kuanglin
2011-06-01
The physical and mechanical properties of baby spinach were investigated, including density, Young's modulus, fracture strength, and friction coefficient. The average apparent density of baby spinach leaves was 0.5666 g/mm3. The tensile tests were performed using parallel, perpendicular, and diagonal directions with respect to the midrib of each leaf. The test results showed that the mechanical properties of spinach are anisotropic. For the parallel, diagonal, and perpendicular test directions, the average values for the Young's modulus values were found to be 2.137MPa, 1.0841 MPa, and 0.3914 MPa, respectively, and the average fracture strength values were 0.2429 MPa, 0.1396 MPa, and 0.1113 MPa, respectively. The static and kinetic friction coefficient between the baby spinach and conveyor belt were researched, whose test results showed that the average coefficients of kinetic and maximum static friction between the adaxial (front side) spinach leaf surface and conveyor belt were 1.2737 and 1.3635, respectively, and between the abaxial (back side) spinach leaf surface and conveyor belt were 1.1780 and 1.2451 respectively. These works provide the basis for future development of a whole-surface online imaging inspection system that can be used by the commercial vegetable processing industry to reduce food safety risks.
NASA Astrophysics Data System (ADS)
Zhuang, Weimin; Ao, Wenhong
2018-03-01
Damage propagation induced failure is a predominant damage mechanism. This study is aimed at assessing the damage state and damage propagation induced failure with different stacking angles, of woven carbon fiber/epoxy laminates subjected to quasi-static tensile and bending load. Different stages of damage processing and damage behavior under the bending load are investigated by Scanning Electron Microscopy (SEM). The woven carbon fiber/epoxy laminates which are stacked at six different angles (0°, 15°, 30°, 45°, 60°, 75°) with eight plies have been analyzed: [0]8, [15]8, [30]8, [45]8, [60]8, [75]8. Three-point bending test and quasi-static tensile test are used in validating the woven carbon fiber/epoxy laminates’ mechanical properties. Furthermore, the damage propagation and failure modes observed under flexural loading is correlated with flexural force and load-displacement behaviour respectively for the laminates. The experimental results have indicated that [45]8 laminate exhibits the best flexural performance in terms of energy absorption duo to its pseudo-ductile behaviour but the tensile strength and flexural strength drastically decreased compared to [0]8 laminate. Finally, SEM micrographs of specimens and fracture surfaces are used to reveal the different types of damage of the laminates with different stacking angles.
High strain rate properties of angle-ply composite laminates, part 3
NASA Technical Reports Server (NTRS)
Daniel, I. M.
1991-01-01
Angle-ply graphite/epoxy and graphite/S-glass/epoxy laminates were characterized in uniaxial tension at strain rates ranging from quasi-static to over 500 s(sup -1). Laminate ring specimens of +/-15(sub 2s), +/-22.5(sub 2s), +/-30(sub 2s), +/-45(sub 2s), +/-60(sub 2s), +/-67.5(sub 2s), and +/-75(sub 2s) degree layups were loaded under internal pressure. Results were presented in the form of stress-strain curves to failure. Properties determined included moduli, Poisson's ratios, strength, and ultimate strain. In all seven laminates for the two materials tested the modulus and strength increase with strain rate. The effect of strain rate varies with layup, being lowest for the fiber dominated +/-15(sub 2s) degree laminates and highest for the matrix dominated +/-75(sub 2s) degree laminates. The highest increments over the static values are 10 to 25 percent for the +/-15(sub 2s) degree layup and 200 to 275 percent for the +/-75(sub 2s) degree layup. Ultimate strains do not show any significant trends with strain rate. In almost all cases the ultimate strain values are within +/-20 percent of the mean value and in half of the cases the deviation from the mean are less than 10 percent.
Physical self-concept and physical fitness in elderly individuals.
Amesberger, G; Finkenzeller, T; Würth, S; Müller, E
2011-08-01
This investigation examined the relations between physical self-concept and physical fitness (endurance, balance, muscle strength, muscle power) for gaining knowledge about the interrelationship between subjective ratings and objective fitness scores in the elderly in three steps: (1) detecting correlations and changes in time, (2) clarifying the influence of gender, and (3) of a skiing intervention lasting 12 weeks. Physical self-concept was assessed using a modified version of the Physical Self-Concepts (PSK) scales (Stiller et al., 2004) reflecting three first-order factors (endurance, strength, general sportiness) and one second-order factor (global fitness). Objective fitness scores were obtained by VO(2 max), counter movement jump, concentric muscle strength, and static balance. The results reveal that elderly individuals' global physical self and general sportiness are mainly linked to VO(2 max) and concentric muscle strength. Global physical self is predicted by VO(2 max) in females and by physical strength (concentric muscle strength) in males, indicating gender differences. Over time, correlations between subjective ratings and objective fitness scores become stronger in the sense of convergent validity in the skiing intervention group, whereas convergent and divergent validity cannot be supported by data of the control group. In sum, physical self-concept is an important factor in the context of physical intervention programs in the elderly. © 2011 John Wiley & Sons A/S.
Usa, Hideyuki; Matsumura, Masashi; Ichikawa, Kazuna; Takei, Hitoshi
2017-01-01
This study attempted to develop a formula for predicting maximum muscle strength value for young, middle-aged, and elderly adults using theoretical Grade 3 muscle strength value (moment fair: M f )-the static muscular moment to support a limb segment against gravity-from the manual muscle test by Daniels et al. A total of 130 healthy Japanese individuals divided by age group performed isometric muscle contractions at maximum effort for various movements of hip joint flexion and extension and knee joint flexion and extension, and the accompanying resisting force was measured and maximum muscle strength value (moment max, M m ) was calculated. Body weight and limb segment length (thigh and lower leg length) were measured, and M f was calculated using anthropometric measures and theoretical calculation. There was a linear correlation between M f and M m in each of the four movement types in all groups, excepting knee flexion in elderly. However, the formula for predicting maximum muscle strength was not sufficiently compatible in middle-aged and elderly adults, suggesting that the formula obtained in this study is applicable in young adults only.
Matsumura, Masashi; Ichikawa, Kazuna; Takei, Hitoshi
2017-01-01
This study attempted to develop a formula for predicting maximum muscle strength value for young, middle-aged, and elderly adults using theoretical Grade 3 muscle strength value (moment fair: Mf)—the static muscular moment to support a limb segment against gravity—from the manual muscle test by Daniels et al. A total of 130 healthy Japanese individuals divided by age group performed isometric muscle contractions at maximum effort for various movements of hip joint flexion and extension and knee joint flexion and extension, and the accompanying resisting force was measured and maximum muscle strength value (moment max, Mm) was calculated. Body weight and limb segment length (thigh and lower leg length) were measured, and Mf was calculated using anthropometric measures and theoretical calculation. There was a linear correlation between Mf and Mm in each of the four movement types in all groups, excepting knee flexion in elderly. However, the formula for predicting maximum muscle strength was not sufficiently compatible in middle-aged and elderly adults, suggesting that the formula obtained in this study is applicable in young adults only. PMID:28133549
Flexure fatigue testing of 90 deg graphite/epoxy composites
NASA Technical Reports Server (NTRS)
Peck, Ann Nancy W.
1995-01-01
A great deal of research has been performed characterizing the in-plane fiber-dominated properties, under both static and fatigue loading, of advanced composite materials. To the author's knowledge, no study has been performed to date investigating fatigue characteristics in the transverse direction. This information is important in the design of bonded composite airframe structure where repeated, cyclic out-of-plane bending may occur. Recent tests characterizing skin/stringer debond failures in reinforced composite panels where the dominant loading in the skin is flexure along the edge of the frame indicate failure initiated either in the skin or else the flange, near the flange tip. When failure initiated in the skin, transverse matrix cracks formed in the surface skin ply closest to the flange and either initiated delaminations or created matrix cracks in the next lower ply, which in turn initiated delaminations. When failure initiated in the flanges, transverse cracks formed in the flange angle ply closest to the skin and initiated delamination. In no configuration did failure propagate through the adhesive bond layer. For the examined skin/flange configurations, the maximum transverse tension stress at failure correlates very well with the transverse tension strength of the composites. Transverse tension strength (static) data of graphite epoxy composites have been shown to vary with the volume of material stressed. As the volume of material stressed increased, the strength decreased. A volumetric scaling law based on Weibull statistics can be used to predict the transverse strength measurements. The volume dependence reflects the presence of inherent flaws in the microstructure of the lamina. A similar approach may be taken to determine a volume scale effect on the transverse tension fatigue behavior of graphite/epoxy composites. The objective of this work is to generate transverse tension strength and fatigue S-N characteristics for composite materials using 3-point flexure tests of 90 deg graphite/epoxy specimens. Investigations will include the volume scale effect as well as frequency and span-to-thickness ratio effects. Prior to the start of the experimental study, an analytical study using finite element modeling will be performed to investigate the span-to-thickness effect. The ratio of transverse flexure stress to shear stress will be monitored and its values predicted by the FEM analysis compared with the value obtained using a 'strength of materials' based approach.
Tankisheva, Ekaterina; Bogaerts, An; Boonen, Steven; Feys, Hilde; Verschueren, Sabine
2014-03-01
To investigate the effects of a 6-week whole body vibration (WBV) training program in patients with chronic stroke. Randomized controlled pilot trial with 6 weeks' follow-up. University hospital. Adults with chronic stroke (N=15) were randomly assigned to an intervention (n=7) or a control group (n=8). Supervised, intensive WBV training. The vibration group performed a variety of static and dynamic squat exercises on a vibration platform with vibration amplitudes of 1.7 and 2.5mm and frequencies of 35 and 40Hz. The vibration lasted 30 to 60 seconds, with 5 to 17 repetitions per exercise 3 times weekly for 6 weeks. Participants in the control group continued their usual activities and were not involved in any additional training program. The primary outcome variable was the isometric and isokinetic muscle strength of the quadriceps (isokinetic dynamometer). Additionally, hamstrings muscle strength, static and dynamic postural control (dynamic posturography), and muscle spasticity (Ashworth Scale) were assessed. Compliance with the vibration intervention was excellent, and the participants completed all 18 training sessions. Vibration frequencies of both 35 and 40Hz were well tolerated by the patients, and no adverse effects resulting from the vibration were noted. Overall, the effect of intensive WBV intervention resulted in significant between-group differences in favor of the vibration group only in isometric knee extension strength (knee angle, 60°) (P=.022) after 6 weeks of intervention and in isokinetic knee extension strength (velocity, 240°/s) after a 6-week follow-up period (P=.005), both for the paretic leg. Postural control improved after 6 weeks of vibration in the intervention group when the patients had normal vision and a sway-referenced support surface (P<.05). Muscle spasticity was not affected by vibration (P>.05). These preliminary results suggest that intensive WBV might potentially be a safe and feasible way to increase some aspect of lower limb muscle strength and postural control in adults with chronic stroke. Further studies should focus on evaluating how the training protocol should be administered to achieve the best possible outcome, as well as comparing this training protocol to other interventions. Copyright © 2014 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Hadley circulation strength and width in a wide range of simulated climates
NASA Astrophysics Data System (ADS)
D'Agostino, R.; Adam, O.; Lionello, P.; Schneider, T.
2016-12-01
Understanding how the Hadley circulation (HC) responds to global warming is crucial because it determines climatic features such as the seasonal migration of the ITCZ, the extent of subtropical arid regions and the strength of the monsoons. Here we analyse changes in the HC strength and width in the set of PMIP3 and CMIP5 simulations, spanning a wide range of climate conditions from Last Glacial Maximum to future RCP projections. The large climate change signal emerging from comparing paleoclimate simulations to future scenarios offers the possibility to analyse the corresponding HC change and to investigate its response to large variations of the factors controlling it. The results confirm that the HC generally expands and weakens as the global mean temperature increases, consistent with results from other studies. Furthermore, we find an asymmetric HC response between the northern and southern hemisphere in the rate at which the HC edges shift poleward with global warming. The mid-latitude static stability and meridional temperature gradients affect the HC edges to different degrees in the two hemispheres. In the southern hemisphere the increase in the mid-latitude static stability is associated with a poleward shift of the southern HC edge, while in the northern hemisphere, the reduction in the meridional temperature gradient plays the dominant role in the poleward shift of the northern HC edge. The two hemispheres also exhibit very different changes of HC strength. The HC weakening with global warming occurs primarily in the northern hemisphere, while there is no change, or even a slighter weakening in the southern hemisphere. The HC changes also have pronounced seasonal signatures. The maximum poleward shift of the northern HC edge occurs one month later (from August to September) in future global warming scenarios than when comparing pre-industrial simulations with the Last Glacial Maximum.
The engineering of construction specifications for externally bonded FRP composites
NASA Astrophysics Data System (ADS)
Yang, Xinbao
This dissertation, consisting of six technical papers, presents the results of research on the theme of developing engineering and the construction specifications for externally bonded FRP composites. For particular, the work focuses on three critical aspects of the performance of FRP systems: fiber misalignment, corner radius, and lap splice length. Based on both experimental and theoretical investigations, the main contribution of this work is the development of recommendations on fiber misalignment limit, minimum corner radius, lap splice length to be used as guidance in the construction practice of FRP strengthening of concrete structures. The first three papers focus on the strength and stiffness degradation of CFRP laminates from fiber misalignment. It was concluded that misalignment affects strength more than stiffness. In practice, when all fibers in a laminate can be regarded as through fibers, it is recommended to use a reduction factor for strength and no reduction factor for stiffness to account for fiber misalignment. Findings from concrete beams strengthened with misaligned CFRP laminates verified these recommendations. The fourth and fifth papers investigate the effect of corner radius on the mechanical properties of CFRP laminates wrapped around a rectangular cross section. A unique reusable test device was fabricated to determine fiber stress and radial stress of CFRP laminates with different corner radii. Comparison performed with finite element analyses shows that the test method and the reusable device were viable and the stress concentration needs to be considered in FRP laminate wrapped corners. A minimum of 1.0 in. corner radius was recommended for practice. The sixth paper summarizes the research on the lap splice length of FRP laminates under static and repeated loads. Although a lap splice length of 1.5 in. is sufficient for CFRP laminates to develop the ultimate static tensile strength, a minimum of 4.0 in. is recommended in order to account for repeated loads.
Investigation of the strength of shielded and unshielded underwater electrical cables
NASA Astrophysics Data System (ADS)
Glowe, D. E.; Arnett, S. L.
1981-09-01
The mechanical properties of shielded and unshielded submarine cables (MIL-C-915/8E) were investigated to determine the effect of shielding on cable life, performance, and reliability. Ten cables (five shielded and five unshielded) were selected for laboratory evaluation. A mission profile was developed to establish the mechanical stress limits that cables must endure in service and a test sequence designed to measure tensile strength, flexural abrasion endurance, crush resistance, creep under static tension, and performance in a hull-stuffing tube. The results of this program showed that: (1) DSS-2 cable does not have adequate tensile strength and should have a strength member added. DSS-3 and larger cables have adequate tensile strength with or without the shield; (2) Unshielded DSS-3 type cable does not perform satisfactorily in hull-stuffing tubes; (3) Shielding is not required to meet mission profile specifications for cable crush or flexural abrasion resistance; (4) Construction parameters other than shielding can significantly affect mechanical performance of cable; (5) Unshielded cable construction can result in increased reliability since it permits a thicker single-jacket construction; and (6) Unshielded cable construction can reduce the cost of cable by 8 to 20 percent.
Analysis of muscle activation in lower extremity for static balance.
Chakravarty, Kingshuk; Chatterjee, Debatri; Das, Rajat Kumar; Tripathy, Soumya Ranjan; Sinha, Aniruddha
2017-07-01
Balance plays an important role for human bipedal locomotion. Degeneration of balance control is prominent in stroke patients, elderly adults and even for majority of obese people. Design of personalized balance training program, in order to strengthen muscles, requires the analysis of muscle activation during an activity. In this paper we have proposed an affordable and portable approach to analyze the relationship between the static balance strategy and activation of various lower extremity muscles. To do that we have considered Microsoft Kinect XBox 360 as a motion sensing device and Wii balance board for measuring external force information. For analyzing the muscle activation pattern related to static balance, participants are asked to do the single limb stance (SLS) exercise on the balance board and in front of the Kinect. Static optimization to minimize the overall muscle activation pattern is carried out using OpenSim, which is an open-source musculoskeletal simulation software. The study is done on ten normal and ten obese people, grouped according to body mass index (BMI). Results suggest that the lower extremity muscles like biceps femoris, psoas major, sartorius, iliacus play the major role for both maintaining the balance using one limb as well as maintaining the flexion of the other limb during SLS. Further investigations reveal that the higher muscle activations of the flexed leg for normal group demonstrate higher strength. Moreover, the lower muscle activation of the standing leg for normal group demonstrate more headroom for the biceps femoris-short-head and psoas major to withstand the load and hence have better static balance control.
Dynamic mechanical characterization of aluminum: analysis of strain-rate-dependent behavior
NASA Astrophysics Data System (ADS)
Rahmat, Meysam
2018-05-01
A significant number of materials show different mechanical behavior under dynamic loads compared to quasi-static (Salvado et al. in Prog. Mater. Sci. 88:186-231, 2017). Therefore, a comprehensive study of material dynamic behavior is essential for applications in which dynamic loads are dominant (Li et al. in J. Mater. Process. Technol. 255:373-386, 2018). In this work, aluminum 6061-T6, as an example of ductile alloys with numerous applications including in the aerospace industry, has been studied under quasi-static and dynamic tensile tests with strain rates of up to 156 s^{-1}. Dogbone specimens were designed, instrumented and tested with a high speed servo-hydraulic load frame, and the results were validated with the literature. It was observed that at a strain rate of 156 s^{-1} the yield and ultimate strength increased by 31% and 33% from their quasi-static values, respectively. Moreover, the failure elongation and fracture energy per unit volume also increased by 18% and 52%, respectively. A Johnson-Cook model was used to capture the behavior of the material at different strain rates, and a modified version of this model was presented to enhance the capabilities of the original model, especially in predicting material properties close to the failure point. Finally, the fracture surfaces of specimens tested under quasi-static and dynamic loads were compared and conclusions about the differences were drawn.
NASA Astrophysics Data System (ADS)
Lokoshchenko, A. M.
2014-01-01
Basic results of experimental and theoretical research of creep processes and long-term strength of metals obtained by researchers of the Institute of Mechanics at the Lomonosov Moscow State University are presented. These results further develop and refine the kinetic theory of creep and long-duration strength proposed by Yu. N. Rabotnov. Some problems arising in formulating various types of kinetic equations and describing experimental data for materials that can be considered as statically homogeneous materials (in studying the process of deformation and rupture of such materials, there is no need to study the evolution of individual cracks) are considered. The main specific features of metal creep models at constant and variable stresses, in uniaxial and complex stress states, and with allowance for one or two damage parameters are described. Criterial and kinetic approaches used to determine long-term strength under conditions of a complex stress state are considered. Methods of modeling the metal behavior in an aggressive medium are described. A possibility of using these models for solving engineering problems is demonstrated.
Hugoniot-measurements of room- and high-temperature metals for study of EOS and strength
NASA Astrophysics Data System (ADS)
Mashimo, Tsutomu; Gomoto, Yuya; Takashima, Hideyuki; Murai, Mitsuru; Yoshiasa, Akira
2011-06-01
Pressure calibration in static high-pressure experiments has been undertaken on the basis of the EOS derived from the Hugoniot compression curves of metals (Au, Pt, Cu, W, etc.), MgO, etc. To obtain the strict EOS at room- and high-temperatures, we need to precisely measure the Hugoniot data, and access the strength and Grüneisen parameter under shock compression. If the Hugoniot data of elevated temperature samples are measured, the high-temperature EOS can be accurately derived, and the Grüneisen parameter can be directly discussed. The strength might decrease at high temperature. The Hugoniot-measurement experiments have been performed on single crystal Au, oxygen-free Cu, forged Ta and W by a streak photographic system equipped with a powder gun and two-stage light gas gun in the pressure range up to >200 GPa. In addition, the Hugoniot-measurement experiment of the elevated temperature samples was started using high-frequency heating on W, Au, etc. Some of the results will be presented, and the EOS and strength are discussed.
Macro Scale Independently Homogenized Subcells for Modeling Braided Composites
NASA Technical Reports Server (NTRS)
Blinzler, Brina J.; Goldberg, Robert K.; Binienda, Wieslaw K.
2012-01-01
An analytical method has been developed to analyze the impact response of triaxially braided carbon fiber composites, including the penetration velocity and impact damage patterns. In the analytical model, the triaxial braid architecture is simulated by using four parallel shell elements, each of which is modeled as a laminated composite. Currently, each shell element is considered to be a smeared homogeneous material. The commercial transient dynamic finite element code LS-DYNA is used to conduct the simulations, and a continuum damage mechanics model internal to LS-DYNA is used as the material constitutive model. To determine the stiffness and strength properties required for the constitutive model, a top-down approach for determining the strength properties is merged with a bottom-up approach for determining the stiffness properties. The top-down portion uses global strengths obtained from macro-scale coupon level testing to characterize the material strengths for each subcell. The bottom-up portion uses micro-scale fiber and matrix stiffness properties to characterize the material stiffness for each subcell. Simulations of quasi-static coupon level tests for several representative composites are conducted along with impact simulations.
Compressive strength of damaged and repaired composite plates
NASA Technical Reports Server (NTRS)
Finn, Scott R.; He, Yi-Fei; Springer, George S.; Lee, Hung-Joo
1992-01-01
Tests were performed assessing the effectiveness of repair in restoring the mechanical properties of damaged, solid composite plates made either of Fiberite T300/976 graphite-epoxy, Fiberite IM7/977-2 graphite-toughened epoxy, or ICI APC-2 graphite-PEEK. The plate length, the layup and the amount of damage were also varied. Damage was introduced in the plates either by impacting them with a solid projectile or by applying a transverse static load. Some (75 percent) or all (100 percent) of the damaged zone was then cut out, and the plate was repaired by plugging and patching the hole. The effectiveness of the repair was evaluated by measuring the compressive strengths of undamaged plates, damaged plates with no cutout, damaged plates with a cutout, and repaired plates. The data at an intermediate stage of repair provide information on the effect of each repair step on the compressive strength. The results indicated that for the solid plates used in these tests, the repair methods used herein did not improve the compressive strength of already damaged plates.
Citaker, Seyit; Guclu-Gunduz, Arzu; Yazici, Gokhan; Bayraktar, Deniz; Nazliel, Bijen; Irkec, Ceyla
2013-01-01
Muscle strength and standing balance decrease in patients with Multiple Sclerosis (MS). The aim of the present study was to investigate the relationship between the lower extremity isometric muscle strength and standing balance in patients with MS. Forty-seven patients with MS and 10 healthy volunteers were included. Neurological disability level was assessed using Expanded Disability Status Scale (EDSS). Isometric strength of seven lower extremity muscles (hip flexor-extensor-abductor-adductor, knee flexor-extensor, and ankle dorsal flexor) was assessed using hand-held dynamometer. Duration of static one-leg standing balance was measured using digital chronometer. Hip flexor-extensor-abductor-adductor, knee flexor-extensor, and ankle dorsal flexor isometric muscle strength, and duration of one-leg standing balance were decreased in patients with MS when compared with controls (p < 0.05). All assessed lower extremity isometric muscle strength and EDSS level was related duration of one-leg standing balance in patients with MS. All assessed lower extremity isometric muscle strength (except ankle dorsal flexor) was related with EDSS. Hip flexor-extensor-abductor-adductor, knee flexor-extensor, and ankle dorsal flexor isometric muscle strength decreases in ambulatory MS patients. Lower extremity muscle weakness and neurological disability level are related with imbalance in MS population. Hip and knee region muscles weakness increases the neurological disability level. For the better balance and decrease neurological disability level whole lower extremity muscle strengthening should be included in rehabilitation programs.
NASA Astrophysics Data System (ADS)
Dielforder, Armin
2017-09-01
Using Coulomb wedge solutions, we show that the effective strength of megathrusts (μb‧) can be determined from the geometry of out-of-sequence thrusts cutting through an accretionary or orogenic wedge. The method is first tested on central Chilean margin for which it yields a frictional strength of μb‧ = 0.053 (+ 0.043 / - 0.024). The inferred value agrees well with previous strength estimates and with the tectonic response of the central Chilean wedge to 2010 Mw 8.8 Maule earthquake. We then use the approach to constrain the strength of the collision megathrust of the central European Alps ∼30-20 million years ago. We find that the collision megathrust had a strength of μb‧ = 0.065 (+ 0.035 / - 0.026), which is similarly low than the strength of subduction megathrusts. The result is integrated into a static force balance model to examine potential implications of a weak megathrust for the Alpine orogeny. The model results suggest that the Alpine megathrust supported a mean maximum elevation of ∼2,000 m and that growth of the wedge up to this elevation supported a switch from contractional to extensional tectonics in the interior of the Alps around 20 Ma. Finally, using the example of the Himalayas, we show how the strength of megathrusts may be also derived from the geometry of crustal ramps, which provides a valuable alternative if details on out-of-sequence thrusts are missing.
Billing, Beant Kaur; Dhar, Purbarun; Singh, Narinder; Agnihotri, Prabhat K
2018-01-03
A detailed experimental investigation was carried out to establish the relationship between CNT purification and functionalization routes and the average response of CNT/epoxy nanocomposites under static and dynamic loading. It was shown that the relative improvement in the mechanical properties of the epoxy matrix due to the addition of CNTs depends on the choice of purification and functionalization steps. A better dispersion of CNTs was recorded for the functionalized CNTs as compared to the oxidized and CVD grown CNTs. Moreover, tensile, 3-point bending and nanoDMA testing performed on nanocomposites processed with CVD-grown, oxidized and functionalized CNTs revealed that COOH functionalization after the oxidation of CNTs at 350 °C is the optimized processing route to harness the excellent properties of CNTs in CNT/epoxy nanocomposites.
Non Linear Analyses for the Evaluation of Seismic Behavior of Mixed R.C.-Masonry Structures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liberatore, Laura; Tocci, Cesare; Masiani, Renato
2008-07-08
In this work the seismic behavior of masonry buildings with mixed structural system, consisting of perimeter masonry walls and internal r.c. frames, is studied by means of non linear static (pushover) analyses. Several aspects, like the distribution of seismic action between masonry and r.c. elements, the local and global behavior of the structure, the crisis of the connections and the attainment of the ultimate strength of the whole structure are examined. The influence of some parameters, such as the masonry compressive and tensile strength, on the structural behavior is investigated. The numerical analyses are also repeated on a building inmore » which the r.c. internal frames are replaced with masonry walls.« less
Wave propagation characteristics of a magnetic granular chain
NASA Astrophysics Data System (ADS)
Leng, Dingxin; Liu, Guijie; Sun, Lingyu; Wang, Xiaojie
2017-10-01
We investigate the wave propagation characteristics of a horizontal alignment of magnetic grains under a non-uniform magnetic field. The magnetic force of each grain is obtained using Maxwell's principle. The contact interaction of grains is based on Hertz potential. The effects of magnetic field strength on the dynamic responses of a granular chain under strong, intermediate, and weak amplitudes of incident impulses in comparison with static precompression force are studied. Different wave propagation modes induced by the magnetic field are observed. The applied field strength demonstrably reinforces the granular-position-dependent behaviors of decreasing amplitude and increasing wave propagation velocity. The magnetic field-induced features of a magnetic granular chain have potential applications in adaptive structures for shock attenuation.
NASA Technical Reports Server (NTRS)
Tanner, C. J.; Kruse, G. S.; Oman, B. H.
1975-01-01
A preliminary design analysis tool for rapidly performing trade-off studies involving fatigue, fracture, static strength, weight, and cost is presented. Analysis subprograms were developed for fatigue life, crack growth life, and residual strength; and linked to a structural synthesis module which in turn was integrated into a computer program. The part definition module of a cost and weight analysis program was expanded to be compatible with the upgraded structural synthesis capability. The resultant vehicle design and evaluation program is named VDEP-2. It is an accurate and useful tool for estimating purposes at the preliminary design stage of airframe development. A sample case along with an explanation of program applications and input preparation is presented.
The mechanical behavior of GLARE laminates for aircraft structures
NASA Astrophysics Data System (ADS)
Wu, Guocai; Yang, J.-M.
2005-01-01
GLARE (glass-reinforced aluminum laminate) is a new class of fiber metal laminates for advanced aerospace structural applications. It consists of thin aluminum sheets bonded together with unidirectional or biaxially reinforced adhesive prepreg of high-strength glass fibers. GLARE laminates offer a unique combination of properties such as outstanding fatigue resistance, high specific static properties, excellent impact resistance, good residual and blunt notch strength, flame resistance and corrosion properties, and ease of manufacture and repair. GLARE laminates can be tailored to suit a wide variety of applications by varying the fiber/resin system, the alloy type and thickness, stacking sequence, fiber orientation, surface pretreatment technique, etc. This article presents a comprehensive overview of the mechanical properties of various GLARE laminates under different loading conditions.
Mechanical Properties of Ceramics for High Temperature Applications
1976-12-01
difficult so far. Also torsion creep tests have been performed /2 /, not considered in this figure. The data show a relatively consistent picture...mittent creep test. Corrosion effects are claimed to be operative during fatigue : The lifetime of a fa- tigue specimen, being controlled by the slow...of plot at extremely low rates of loading. The static fatigue limit on this type of plot is the strength below which there is no effect of loading
Acceleration Testing: A Better, Faster, Cheaper Alternative for Strength Qualification Testing
NASA Technical Reports Server (NTRS)
Mattiello, Carmine F.
1997-01-01
This paper addresses the advantages of utilizing a centrifuge test over the conventional static load test methods to structurally qualify aerospace structures. Three recent test cases are reviewed and used as examples to highlight these benefits. In addition, the overall capability of Goddard's High Capacity Centrifuge (HCC) is outlined along with some unique features that were designed specifically to reduce costs, test turn around time, and increase test item safety.
NASA Astrophysics Data System (ADS)
Volosukhin, V. A.; Bandurin, M. A.; Vanzha, V. V.; Mikheev, A. V.; Volosukhin, Y. V.
2018-05-01
The results of finite element state simulation of stressed and strained changes under different damages of hydraulic structures are presented. As a result of the experiment, a solidstate model of bearing elements was built. Stressed and strained state of reinforced concrete bearing elements under different load combinations is considered. Intensive threshold of danger to form longitudinal cracks and defects in reinforced concrete elements is determined.
Composite Materials Characterization and Development at AFWAL
NASA Technical Reports Server (NTRS)
Browning, C. E.
1984-01-01
The development of test methodology for characterizing matrix dominated failure modes is discussed emphasizing issues of matrix cracking, delamination under static loading, and the relationship of composite properties to matrix properties. Both strength characterization and classical techniques of linear elastic fracture mechanics were examined. Materials development studies are also discussed. Major areas of interest include acetylene-terminated and bismaleimide resins for 350 to 450 deg use, thermoplastics development, and failure resistant composite concepts.
Improved Sensitivity and Specificity for Detection of Prostate Cancer
2007-11-01
potential energy of the system at static equilibrium is purely the strain energy U, as defined in the following expression ( Ugural and Fenster...xzyzxyzyx )( 2 1 )( 222222 γγγεεεµ (2) Based on the strain–displacement relationship ( Ugural and Fenster, 1995), this equation can be rewritten in terms of...Classical Dynamics, Dover, Mineola, NY: Dover Publications, 1997. [22] Ugural AC, Fenster SK: Advanced Strength and Applied Elasticity, 3 rd ed
Accelerated Stress-Corrosion Testing
NASA Technical Reports Server (NTRS)
1986-01-01
Test procedures for accelerated stress-corrosion testing of high-strength aluminum alloys faster and provide more quantitative information than traditional pass/fail tests. Method uses data from tests on specimen sets exposed to corrosive environment at several levels of applied static tensile stress for selected exposure times then subsequently tensile tested to failure. Method potentially applicable to other degrading phenomena (such as fatigue, corrosion fatigue, fretting, wear, and creep) that promote development and growth of cracklike flaws within material.
NASA Astrophysics Data System (ADS)
Protsenko, A. E.; Telesh, V. V.
2015-11-01
The possibility of increasing the static flexural strength of polymer composite materials and reducing their anisotropy by vacuum autoclave curing, during which gelation across the whole thickness of prepregs is carried out in a narrow time range, is shown. This is achieved by introducing a preset concentration of catalysts into the less heated layers or inhibitors in the more heated ones of the prepreg.
The use of photogrammetric and stereophotogrammetric methods in aerodynamic experiments
NASA Astrophysics Data System (ADS)
Shmyreva, V. N.; Iakovlev, V. A.
The possibilities afforded by photogrammetry and stereophotogrammetry in current aerodynamic experiments, methods of image recording, and observation data processing are briefly reviewed. Some specific experiments illustrating the application of stereophotogrammetry are described. The applications discussed include the monitoring of model position in wind tunnels, determination of model deformations and displacements, determination of the deformations of real structural elements in static strength tests, and solution of a variety of problems in hydrodynamics.
Physical Ability-Task Performance Models: Assessing the Risk of Omitted Variable Bias
2008-09-15
association was evaluated in a study of simulated job performance in men and women. The study measured four major abilities, Static Strength (SS), Dynamic...ability- performance interface for physical tasks. Methods Sample Participants were active-duty naval personnel (64 men , 38 women) between ages 20...bench with feet flat on the floor. Position was adjusted so the bar was between the shoulder and nipple line. Handles were gripped at a comfortable
Effect of a commercial housing system on egg quality during extended storage.
Jones, D R; Karcher, D M; Abdo, Z
2014-05-01
Egg producers in the United States are utilizing a variety of commercial egg production systems to provide consumer choice and meet legislative requirements. Consumer egg grades in the United States were developed for conventional cage production, and it is unclear what effect alternative production systems might have on egg quality during retail and consumer home storage. The current study was undertaken to determine what changes in egg quality characteristics occur during extended cold storage for commercially produced conventional cage, enriched colony cage, and cage-free aviary eggs. During 12 wk of cold storage, egg weight, albumen height, Haugh unit, static compression shell strength, vitelline membrane strength and deformation, yolk index, shell dynamic stiffness, and whole egg total solids were monitored. Overall, aviary and enriched eggs were significantly (P < 0.05) heavier than conventional cage. Albumen height and Haugh unit (P < 0.05) were significantly greater for conventional cage than enriched eggs. Static compression shell strength was greatest (P < 0.05) for enriched eggs compared with aviary. No overall housing system effects for yolk measurements, shell dynamic stiffness, or whole egg total solids were observed. Albumen height, Haugh unit, and yolk quality measurements were all greatest at 0 and lowest at 12 wk of storage (P < 0.05). The rate of quality change among the housing systems for each measured attribute at 4, 6, and 12 wk was determined. Other than differences in the change of egg weight at 4 wk, no significant differences in the rate of quality decline were found among the housing systems. The results of the current study indicate that current US egg quality standards should effectively define quality for commercially produced conventional cage, enriched colony cage, and cage-free aviary eggs.
Body MR Imaging: Artifacts, k-Space, and Solutions
Seethamraju, Ravi T.; Patel, Pritesh; Hahn, Peter F.; Kirsch, John E.; Guimaraes, Alexander R.
2015-01-01
Body magnetic resonance (MR) imaging is challenging because of the complex interaction of multiple factors, including motion arising from respiration and bowel peristalsis, susceptibility effects secondary to bowel gas, and the need to cover a large field of view. The combination of these factors makes body MR imaging more prone to artifacts, compared with imaging of other anatomic regions. Understanding the basic MR physics underlying artifacts is crucial to recognizing the trade-offs involved in mitigating artifacts and improving image quality. Artifacts can be classified into three main groups: (a) artifacts related to magnetic field imperfections, including the static magnetic field, the radiofrequency (RF) field, and gradient fields; (b) artifacts related to motion; and (c) artifacts arising from methods used to sample the MR signal. Static magnetic field homogeneity is essential for many MR techniques, such as fat saturation and balanced steady-state free precession. Susceptibility effects become more pronounced at higher field strengths and can be ameliorated by using spin-echo sequences when possible, increasing the receiver bandwidth, and aligning the phase-encoding gradient with the strongest susceptibility gradients, among other strategies. Nonuniformities in the RF transmit field, including dielectric effects, can be minimized by applying dielectric pads or imaging at lower field strength. Motion artifacts can be overcome through respiratory synchronization, alternative k-space sampling schemes, and parallel imaging. Aliasing and truncation artifacts derive from limitations in digital sampling of the MR signal and can be rectified by adjusting the sampling parameters. Understanding the causes of artifacts and their possible solutions will enable practitioners of body MR imaging to meet the challenges of novel pulse sequence design, parallel imaging, and increasing field strength. ©RSNA, 2015 PMID:26207581
[Health-related strength and power training in seniors: Purpose and recommendations].
Donath, Lars; Faude, Oliver; Bopp, Micha; Zahner, Lukas
2015-05-01
The proportion of older people in western societies rapidly increases. Aging-induced disease conditions accompanied with declines in cardiocirculatory and neuromuscular performance constitute a major individual and economic health burden. Besides decreasing vascular and cardiac function during the process of aging, a loss of skeletal muscle mass, muscle structure and function seem to mainly account for decreasing maximal strength, strength development and strength endurance. These findings adversely interfer with static and dynamic postural control and may lead to an increased risk of falling with impairments of autonomy and quality of life. Traditional strength training recommendations basing on health-related exercise prescriptions for elderly people have been proven to counteract or at least attenuate aging-induced declines of neuromuscular muscular function. Multimodal and combined strength and balance training deliver additional improvements of neuromuscular capacity. Recent evidence additionally underpin the need of trunk muscle training and claimed for regimes considering explosive and high-velocity strength training in seniors. High quality RCTs revealed notable strength training effects on mobility, autonomy, quality of life and the reduction of the risk of falling (up to 50%). Available evidence also indicates that various strength training regimes elicit preventive and therapeutic effects on osteoporosis, diabetes type 2 and other chronic diseases, with effect sizes comparable to medication intake. Thus, health care providers, health insurances, Employers' Liability Insurance Associations and politicians should promote infrastructural developments that enable feasible and cost-effective access to health-related fitness centers or other sport facilities (e. g. sport clubs). These environmental requirements should be embedded in multi-centric education programs and campaigns that might enable regularly conducted strength and endurance training perceived as beneficial and valuable from an individual health care perspective.
Bending strength of delaminated aerospace composites.
Kinawy, Moustafa; Butler, Richard; Hunt, Giles W
2012-04-28
Buckling-driven delamination is considered among the most critical failure modes in composite laminates. This paper examines the propagation of delaminations in a beam under pure bending. A pre-developed analytical model to predict the critical buckling moment of a thin sub-laminate is extended to account for propagation prediction, using mixed-mode fracture analysis. Fractography analysis is performed to distinguish between mode I and mode II contributions to the final failure of specimens. Comparison between experimental results and analysis shows agreement to within 5 per cent in static propagation moment for two different materials. It is concluded that static fracture is almost entirely driven by mode II effects. This result was unexpected because it arises from a buckling mode that opens the delamination. For this reason, and because of the excellent repeatability of the experiments, the method of testing may be a promising means of establishing the critical value of mode II fracture toughness, G(IIC), of the material. Fatigue testing on similar samples showed that buckled delamination resulted in a fatigue threshold that was over 80 per cent lower than the static propagation moment. Such an outcome highlights the significance of predicting snap-buckling moment and subsequent propagation for design purposes.
Structural diagnostics of the tropopause inversion layer and its evolution
NASA Astrophysics Data System (ADS)
Gettelman, A.; Wang, T.
2015-01-01
The Tropopause Inversion Layer (TIL) is marked by a peak in static stability directly above the tropopause. The TIL is quantitatively defined with new diagnostics using Global Positioning System Radio Occultation temperature soundings and reanalysis data. A climatology of the TIL is developed from reanalysis data (1980-2011) using diagnostics for the position, depth, and strength of the TIL based on the TIL peak in static stability. TIL diagnostics have defined relationships to the synoptic situation in the Upper Troposphere and Lower Stratosphere. The TIL is present nearly all the time. The TIL becomes hard to define in the subtropics where tropical air overlies midlatitude air, in a region of complex static stability profiles. The mean position of the subtropical TIL gradient is sharp and is co-located with the subtropical tropopause break. Over the period 1980-2011 the TIL depth below the tropopause has decreased by 5% per decade and increased above the tropical tropopause by a similar percentage. Furthermore, the latitude of the abrupt change in the TIL from tropical to extratropical in the lower stratosphere appears to have shifted poleward in each hemisphere by ˜1° latitude per decade, depending on the diagnostic examined. Reanalysis trends should be treated with caution.
NASA Astrophysics Data System (ADS)
Xu, Yuan; Dai, Feng
2018-03-01
A novel method is developed for characterizing the mechanical response and failure mechanism of brittle rocks under dynamic compression-shear loading: an inclined cylinder specimen using a modified split Hopkinson pressure bar (SHPB) system. With the specimen axis inclining to the loading direction of SHPB, a shear component can be introduced into the specimen. Both static and dynamic experiments are conducted on sandstone specimens. Given carefully pulse shaping, the dynamic equilibrium of the inclined specimens can be satisfied, and thus the quasi-static data reduction is employed. The normal and shear stress-strain relationships of specimens are subsequently established. The progressive failure process of the specimen illustrated via high-speed photographs manifests a mixed failure mode accommodating both the shear-dominated failure and the localized tensile damage. The elastic and shear moduli exhibit certain loading-path dependence under quasi-static loading but loading-path insensitivity under high loading rates. Loading rate dependence is evidently demonstrated through the failure characteristics involving fragmentation, compression and shear strength and failure surfaces based on Drucker-Prager criterion. Our proposed method is convenient and reliable to study the dynamic response and failure mechanism of rocks under combined compression-shear loading.
Tatsukawa DE Freitas, Sérgio Takeshi; DE Carvalho Abreu, Elizângela Márcia; Dos Reis, Mariane Cecilia; DE Souza Cunha, Bruna; Souza Moreira Prianti, Tamires; Pupio Silva Lima, Fernanda; Oliveira Lima, Mário
2016-01-01
Spasticity is one of the main causes of contracture, muscle weakness and subsequent functional incapacity. The passive static stretching can be included as having the purpose of increasing musculoskeletal flexibility, however, it also can influence the muscle torque. The objective is to verify the immediate effect of passive static stretching in the muscle strength of healthy and those who present spastic hemiparesis. There were assessed 20 subjects, 10 spastic hemiparetic (EG) and 10 healthy individuals (CG), including both sexes, aged between 22 and 78 years. The torque of extensor muscles of the knee was analyzed using isokinetic dynamometer. Results have shown that EG has less muscle torque compared to CG ( p < 0.01). In addition, EG presented a decrease in significance of muscle torque after stretching ( p < 0.05), however, it has not shown significant alteration in muscle torque of CG after performing the program that was prescribed. Immediately after the passive stretch, a significant torque decrease can be seen in hypertonic muscle; it is believed that this reduction may be associated with the physiological overlap between actin and myosin filaments and so preventing the muscle to develop a maximum contraction.
Dynamic Dilational Strengthening During Earthquakes in Saturated Gouge-Filled Fault Zones
NASA Astrophysics Data System (ADS)
Sparks, D. W.; Higby, K.
2016-12-01
The effect of fluid pressure in saturated fault zones has been cited as an important factor in the strength and slip-stability of faults. Fluid pressure controls the effective normal stress across the fault and therefore controls the faults strength. In a fault core consisting of granular fault gouge, local transient dilations and compactions occur during slip that dynamically change the fluid pressure. We use a grain-scale numerical model to investigate the effect of these fluid effects in fault gouge during an earthquake. We use a coupled finite difference-discrete element model (Goren et al, 2011), in which the pore space is filled with a fluid. Local changes in grain packing generate local deviations in fluid pressure, which can be relieved by fluid flow through the permeable gouge. Fluid pressure gradients exert drag forces on the grains that couple the grain motion and fluid flow. We simulated 39 granular gouge zones that were slowly loaded in shear stress to near the failure point, and then conducted two different simulations starting from each grain packing: one with a high enough mean permeability (> 10-11 m2) that pressure remains everywhere equilibrated ("fully drained"), and one with a lower permeability ( 10-14 m2) in which flow is not fast enough to prevent significant pressure variations from developing ("undrained"). The static strength of the fault, the size of the event and the evolution of slip velocity are not imposed, but arise naturally from the granular packing. In our particular granular model, all fully drained slip events are well-modeled by a rapid drop in the frictional resistance of the granular packing from a static value to a dynamic value that remains roughly constant during slip. Undrained events show more complex behavior. In some cases, slip occurs via a slow creep with resistance near the static value. When rapid slip events do occur, the dynamic resistance is typically larger than in drained events, and highly variable. Frictional resistance is not correlated with the mean fluid pressure in the layer, but is instead controlled by local regions undergoing dilational strengthening. We find that (in the absence of pressure-generating effects like thermal pressurization or fluid-releasing reactions), the overall effect of fluid is to strengthen the fault.
Verdan, Princess J R; Marzilli, Thomas S; Barna, Geanina I; Roquemore, Anntionette N; Fenter, Brad A; Blujus, Brittany; Gosselin, Kevin P
2012-08-01
The purpose of this study was to determine the effect of Power Balance® bands on strength, flexibility, and balance. Strength and flexibility were measured using the MicroFit system. Strength was measured via a bicep curl and flexibility via the sit-and-reach method. Balance was measured by the BIODEX System SD. There were 4 different conditions for the balance test: eyes open on a firm surface (EOFS), eyes closed on a firm surface (ECFS), eyes open on a foam surface (EOFoS), and eyes closed on a foam surface (ECFoS). There were 24 subjects in the study (10 men and 14 women). A counterbalance, double-blind, placebo, controlled within-subject design was used. Each of the subjects participated in 3 treatment sessions, consisting of Power Balance®, placebo band, and no band. An alpha level of p ≤ 0.05 was set a priori. There were no significant differences in strength, flexibility, or balance with regard to the treatments used. There was a significant difference between the conditions in the balance test (p = 0.000): EOFS (0.51), ECFS (0.68), EOFoS (0.99), and ECFoS (2.18); however, these were independent of the treatment conditions. The results indicate that the Power Balance® bands did not have an effect on strength, flexibility, or balance.
Effects of functional training on pain, leg strength, and balance in women with fibromyalgia.
Latorre Román, Pedro Ángel; Santos E Campos, María Aparecida; García-Pinillos, Felipe
2015-01-01
The aim of this study was to analyze the effect of 18-week functional training (FT) program consisting in two sessions a week of in-water exercise and one of on-land exercise on pain, strength, and balance in women with fibromyalgia. A sample consisting of 36 fibromyalgia patients was included in the study. The patients were allocated randomly into the experimental group (EG, n = 20), and control group (CG, n = 16). Standardized field-based fitness tests were used to assess muscle strength (30-s chair stand and handgrip strength) and agility/dynamic balance and static balance. Fibromyalgia impact and pain were analyzed by Fibromyalgia Impact Questionnaire (FIQ), tender points (TPs), visual analog scale (VAS). We observed a significant reduction in the FIQ (p = 0.042), the algometer scale of TP (p = 0.008), TP (p < 0.001), and VAS (p < 0.001) in the EG. The EG shows better results in leg strength (p < 0.001), handgrip strength (p = 0.025), agility/dynamic balance (p = 0.032) and balance (p = 0.006). An 18-week intervention consisting in two sessions of in-water exercise and one session of on-land exercise of FT reduces pain and improves functional capacity in FM patients. These results suggested that FT could play an important role in maintaining an independent lifestyle in patients with FM.
Toulotte, Claire; Thevenon, Andre; Fabre, Claudine
2006-01-30
The aim of this study was to evaluate the effects of training based on static and dynamic balance in single and dual task conditions in order to analyse the effects of detraining on static and dynamic balance in healthy elderly fallers and non-fallers. A group of 16 subjects were trained: eight fallers aged 71.1 +/- 5.0 years and eight non-fallers aged 68.4 +/- 4.5 years. The subjects were evaluated 3 months before the training period, 2 days before the training period, 2 days after the end of the training period and 3 months after the training period. All subjects performed a unipedal test with eyes open and eyes closed. Gait parameters were analysed under single-task and dual motor-task conditions. This study demonstrated a loss of physical capacities over 3 months for stride time, single support time for fallers in both conditions. Physical training significantly improves static and dynamic balance under single and dual task conditions. Lastly, after 3 months of detraining, a loss of the physical training effects were measured for fallers and non-fallers on the different walking parameters in the two conditions and on the unipedal tests. The absence of stimulation before the trained period shows a negative effect of ageing on walking and falls whereas training permits an improvement in static balance and the pattern of walking under single and dual task conditions, which could be due to an increase in muscular strength and a better division of attention. On the other hand, 3 months of detraining inhibited the effects of training, which showed the speed of the decline caused by 'natural' ageing.
Effects of a salsa dance training on balance and strength performance in older adults.
Granacher, Urs; Muehlbauer, Thomas; Bridenbaugh, Stephanie A; Wolf, Madeleine; Roth, Ralf; Gschwind, Yves; Wolf, Irene; Mata, Rui; Kressig, Reto W
2012-01-01
Deficits in static and particularly dynamic postural control and force production have frequently been associated with an increased risk of falling in older adults. The objectives of this study were to investigate the effects of salsa dancing on measures of static/dynamic postural control and leg extensor power in seniors. Twenty-eight healthy older adults were randomly assigned to an intervention group (INT, n = 14, age 71.6 ± 5.3 years) to conduct an 8-week progressive salsa dancing programme or a control group (CON, n = 14, age 68.9 ± 4.7 years). Static postural control was measured during one-legged stance on a balance platform and dynamic postural control was obtained while walking on an instrumented walkway. Leg extensor power was assessed during a countermovement jump on a force plate. Programme compliance was excellent with participants of the INT group completing 92.5% of the dancing sessions. A tendency towards an improvement in the selected measures of static postural control was observed in the INT group as compared to the CON group. Significant group × test interactions were found for stride velocity, length and time. Post hoc analyses revealed significant increases in stride velocity and length, and concomitant decreases in stride time. However, salsa dancing did not have significant effects on various measures of gait variability and leg extensor power. Salsa proved to be a safe and feasible exercise programme for older adults accompanied with a high adherence rate. Age-related deficits in measures of static and particularly dynamic postural control can be mitigated by salsa dancing in older adults. High physical activity and fitness/mobility levels of our participants could be responsible for the nonsignificant findings in gait variability and leg extensor power. Copyright © 2012 S. Karger AG, Basel.
Miki, Kensaku; Takeshima, Yasuyuki; Watanabe, Shoko; Honda, Yukiko; Kakigi, Ryusuke
2011-04-06
We investigated the effects of inverting facial contour (hair and chin) and features (eyes, nose and mouth) on processing for static and dynamic face perception using magnetoencephalography (MEG). We used apparent motion, in which the first stimulus (S1) was replaced by a second stimulus (S2) with no interstimulus interval and subjects perceived visual motion, and presented three conditions as follows: (1) U&U: Upright contour and Upright features, (2) U&I: Upright contour and Inverted features, and (3) I&I: Inverted contour and Inverted features. In static face perception (S1 onset), the peak latency of the fusiform area's activity, which was related to static face perception, was significantly longer for U&I and I&I than for U&U in the right hemisphere and for U&I than for U&U and I&I in the left. In dynamic face perception (S2 onset), the strength (moment) of the occipitotemporal area's activity, which was related to dynamic face perception, was significantly larger for I&I than for U&U and U&I in the right hemisphere, but not the left. These results can be summarized as follows: (1) in static face perception, the activity of the right fusiform area was more affected by the inversion of features while that of the left fusiform area was more affected by the disruption of the spatial relation between the contour and features, and (2) in dynamic face perception, the activity of the right occipitotemporal area was affected by the inversion of the facial contour. Copyright © 2011 Elsevier B.V. All rights reserved.
Modeling the effect of laser heating on the strength and failure of 7075-T6 aluminum
Florando, J. N.; Margraf, J. D.; Reus, J. F.; ...
2015-06-06
The effect of rapid laser heating on the response of 7075-T6 aluminum has been characterized using 3-D digital image correlation and a series of thermocouples. The experimental results indicate that as the samples are held under a constant load, the heating from the laser profile causes non-uniform temperature and strain fields, and the strain-rate increases dramatically as the sample nears failure. Simulations have been conducted using the LLNL multi-physics code ALE3D, and compared to the experiments. The strength and failure of the material was modeled using the Johnson–Cook strength and damage models. Here, in order to capture the response, amore » dual-condition criterion was utilized which calibrated one set of parameters to low temperature quasi-static strain rate data, while the other parameter set is calibrated to high temperature high strain rate data. The thermal effects were captured using temperature dependent thermal constants and invoking thermal transport with conduction, convection, and thermal radiation.« less
The effect of varying Mach number on crossing, glancing shocks/turbulent boundary-layer interactions
NASA Technical Reports Server (NTRS)
Hingst, W. R.; Williams, K. E.
1991-01-01
Two crossing side-wall shocks interacting with a supersonic tunnel wall boundary layer have been investigated over a Mach number range of 2.5 to 4.0. The investigation included a range of equal shock strengths produced by shock generators at angles from 4.0 to 12.0 degrees. Results of flow visualization show that the interaction is unseparated at the low shock generator angles. With increasing shock strength, the flow begins to form a separated region that grows in size and moves forward and eventually the model unstarts. The wall static pressures show a symmetrical compression that merges on the centerline upstream of the inviscid shock locations and becomes more 1D downstream. The region of the 1D pressure gradient moves upstream with increasing shock strengths until it coincides with the leading edge of the shock generators at the limit before model unstart. At the limiting conditions the wall pressure gradients are primarily in the axial direction throughout.
Vertical bending strength and torsional rigidity analysis of formula student car chassis
NASA Astrophysics Data System (ADS)
Hazimi, Hashfi; Ubaidillah, Setiyawan, Adi Eka Putra; Ramdhani, Hanief Cahya; Saputra, Murnanda Zaesy; Imaduddin, Fitrian
2018-02-01
Formula Society of Automotive Engineers (FSAE) is a competition for students to construct formula student car. One of an essential part of a formula student car is its chassis. Chassis is an internal vehicle frame which holds all another part of the vehicle and secures the driver. The team have to design their chassis and tests their design to achieve the best chassis that fulfill the regulation. This paper contains chassis design from Bengawan FSAE Team and some FEA tests to find out the Tensile Strength, Torsional Rigidity, and Von Misses Stress of Formula SAE car. Torsional rigidity was found by applying the static torsional test. The results from torsional rigidity test are a maximum deformation of 9.9512 mm with 1.7064 safety factor, and 35.935 MPa maximum Von Misses Stress. Moreover, then the result of the vertical bending strength test is 8.1214 mm max deformation with safety factor 4.2717, and 29.226 MPa maximum Von Misses Stress.
NASA Astrophysics Data System (ADS)
Skripnyak, Vladimir
2012-03-01
Features of mechanical behavior of nanostructured and ultrafine-grained metals under quasistatic and shock wave loadings are discussed. Features of mechanical behavior of nanostructured and ultrafine grained metals over a wide range of strain rates are discussed. A constitutive model for mechanical behavior of metal alloys under shock wave loading including a grain size distribution, a precipitate hardening, and physical mechanisms of shear stress relaxation is presented. Strain rate sensitivity of the yield stress of face-centered-cubic, hexagonal close-packed metal alloys depends on grain size, whereas the Hugoniot elastic limits of ultrafine-grained copper, aluminum, and titanium alloys are close to values of coarse-grained counterparts. At quasi-static loading the yield strength and the tensile strength of titanium alloys with grain size from 300 to 500 nm are twice higher than at coarse-grained counterparts. But the spall strength of the UFG titanium alloys exceeds the value of coarse-grained counterparts only for 10 percents.
Magnetic field deformation due to electron drift in a Hall thruster
NASA Astrophysics Data System (ADS)
Liang, Han; Yongjie, Ding; Xu, Zhang; Liqiu, Wei; Daren, Yu
2017-01-01
The strength and shape of the magnetic field are the core factors in the design of the Hall thruster. However, Hall current can affect the distribution of static magnetic field. In this paper, the Particle-In-Cell (PIC) method is used to obtain the distribution of Hall current in the discharge channel. The Hall current is separated into a direct and an alternating part to calculate the induced magnetic field using Finite Element Method Magnetics (FEMM). The results show that the direct Hall current decreases the magnetic field strength in the acceleration region and also changes the shape of the magnetic field. The maximum reduction in radial magnetic field strength in the exit plane is 10.8 G for an anode flow rate of 15 mg/s and the maximum angle change of the magnetic field line is close to 3° in the acceleration region. The alternating Hall current induces an oscillating magnetic field in the whole discharge channel. The actual magnetic deformation is shown to contain these two parts.
NASA Technical Reports Server (NTRS)
Sprowls, D. O.; Bucci, R. J.; Ponchel, B. M.; Brazill, R. L.; Bretz, P. E.
1984-01-01
A technique is demonstrated for accelerated stress corrosion testing of high strength aluminum alloys. The method offers better precision and shorter exposure times than traditional pass fail procedures. The approach uses data from tension tests performed on replicate groups of smooth specimens after various lengths of exposure to static stress. The breaking strength measures degradation in the test specimen load carrying ability due to the environmental attack. Analysis of breaking load data by extreme value statistics enables the calculation of survival probabilities and a statistically defined threshold stress applicable to the specific test conditions. A fracture mechanics model is given which quantifies depth of attack in the stress corroded specimen by an effective flaw size calculated from the breaking stress and the material strength and fracture toughness properties. Comparisons are made with experimental results from three tempers of 7075 alloy plate tested by the breaking load method and by traditional tests of statistically loaded smooth tension bars and conventional precracked specimens.
Investigation of a Macromechanical Approach to Analyzing Triaxially-Braided Polymer Composites
NASA Technical Reports Server (NTRS)
Goldberg, Robert K.; Blinzler, Brina J.; Binienda, Wieslaw K.
2010-01-01
A macro level finite element-based model has been developed to simulate the mechanical and impact response of triaxially-braided polymer matrix composites. In the analytical model, the triaxial braid architecture is simulated by using four parallel shell elements, each of which is modeled as a laminated composite. The commercial transient dynamic finite element code LS-DYNA is used to conduct the simulations, and a continuum damage mechanics model internal to LS-DYNA is used as the material constitutive model. The material stiffness and strength values required for the constitutive model are determined based on coupon level tests on the braided composite. Simulations of quasi-static coupon tests of a representative braided composite are conducted. Varying the strength values that are input to the material model is found to have a significant influence on the effective material response predicted by the finite element analysis, sometimes in ways that at first glance appear non-intuitive. A parametric study involving the input strength parameters provides guidance on how the analysis model can be improved.
An investigation on the deicing of helicopter blades using shear horizontal guided waves
NASA Astrophysics Data System (ADS)
Ramanathan, Srinivasan
Despite all the advances that have made air travel safer than ever, the accumulation of ice on airplane and rotorcraft wings continues to be one of aviation's most challenging problems. Hence the presence of a reliable and efficient deicing or anti-icing system is imperative for their safe operation. The current method used to deice helicopter blades is similar to that available in automobile rear windows. These electro-thermal systems consist of heating coils that run along the span or chord of the rotor-blade. A current source connected via a slip ring configuration heats the coils, which in turn melt the ice on the surface. Due to their enormous power consumption, electro-thermal systems are generally configured to deice one foot of one blade at a time. This makes it hazardous to fly the helicopters under severe icing conditions. Even with the energy saving deicing procedure the electrical power required substantially exceeds the normal helicopter electrical system capacity, necessitating a large secondary electrical system with redundant, dual alternator features. The electro-thermal system for the Bell 412 helicopter weighed 162 lbs and required 26 kW of power for 2 blades! Various types of deicing systems were compared in chapter 1 and electromechanical systems were found to be the most energy efficient and practical for in-flight conditions. A novel approach of breaking the ice-substrate bonds by exceeding their adhesive strength using guided shear horizontal waves was chosen as the deicing mechanism. A comparison of the different electro-mechanical actuation systems pointed towards monolithic shear mode piezoelectric actuators as the choice that would satisfy the energy and dimensional requirements. A survey of literature on the mechanics of ice adhesion, in chapter 2, led to the selection of 1.42MPa as the target adhesive bond strength for the refrigerated icealuminum interface. The static adhesive strength of naturally occurring forms of ice such as rime ice and glaze ice to aluminum (0.12MPa and 0.4MPa respectively) is much lower than that of the refrigerated ice-aluminum adhesive strength (1.42MPa). Therefore, selecting the static adhesive strength of the refrigerated ice-aluminum interface as the bond strength to overcome would enable the system to deice rotor-blades under natural icing conditions. Equivalent circuit analysis was applied to the actuator, aluminum plate and ice layer system to determine an expression for the shear stress at the ice aluminum interface per unit excitation voltage supplied to the actuator and the corresponding electrical power consumed. All the parameters that affected the stress at the ice-aluminum interface were identified from the equivalent circuit model of the system. The parameters were split into control (can be actively changed by user) parameters and material (no user control over the variation of these parameter due to temperature and electric field) parameters. A statistical approach (Design of Experiments) was used to determine the control parameter settings that resulted in the maximum shear stress at the ice aluminum interface per unit actuator excitation voltage. A material parameter design of experiments was carried out to determine the effect of the deviation in the variable parameters on the stress at the ice-aluminum interface and actuator power consumption. A simplified approach to calculate the shear piezoelectric actuator losses under high excitation fields was presented. The experimental results indicated that the adhesive shear strength of the ice-aluminum bond under high frequency dynamic loads is much lower that its static adhesive strength. This was proved by the fact that the ice-aluminum interface bonds were broken at stress values of 0.73MPa as opposed to the target 1.42Mpa. This can be attributed to inherently stochastic nature of ice and the fact that the ice-aluminum bond fails at a much lower stress under dynamic loading as opposed to static loading. The shear mode actuator has a projected power consumption of 0.6kW for the twin bladed Bell 412 (assuming 6 actuators per foot per blade each consuming 50W) if deiced by station as opposed to 26kW for a corresponding electro-thermal system. The shear mode actuator has a projected power consumption of 3.6kW if both blades are deiced simultaneously over the desired length (1/3 rd span from the root) as required in severe icing conditions. The piezoelectric shear mode actuation system (estimated weight of 50 lbs with the actuators themselves accounting for less than 1 lb.) has the potential of delivering this performance while being 70% lighter than a comparable electro-thermal system (weight of 162 lbs). (Abstract shortened by UMI.)
Schellenberg, Florian; Oberhofer, Katja; Taylor, William R.
2015-01-01
Background. Knowledge of the musculoskeletal loading conditions during strength training is essential for performance monitoring, injury prevention, rehabilitation, and training design. However, measuring muscle forces during exercise performance as a primary determinant of training efficacy and safety has remained challenging. Methods. In this paper we review existing computational techniques to determine muscle forces in the lower limbs during strength exercises in vivo and discuss their potential for uptake into sports training and rehabilitation. Results. Muscle forces during exercise performance have almost exclusively been analysed using so-called forward dynamics simulations, inverse dynamics techniques, or alternative methods. Musculoskeletal models based on forward dynamics analyses have led to considerable new insights into muscular coordination, strength, and power during dynamic ballistic movement activities, resulting in, for example, improved techniques for optimal performance of the squat jump, while quasi-static inverse dynamics optimisation and EMG-driven modelling have helped to provide an understanding of low-speed exercises. Conclusion. The present review introduces the different computational techniques and outlines their advantages and disadvantages for the informed usage by nonexperts. With sufficient validation and widespread application, muscle force calculations during strength exercises in vivo are expected to provide biomechanically based evidence for clinicians and therapists to evaluate and improve training guidelines. PMID:26417378
Failure analysis of thick composite cylinders under external pressure
NASA Technical Reports Server (NTRS)
Caiazzo, A.; Rosen, B. W.
1992-01-01
Failure of thick section composites due to local compression strength and overall structural instability is treated. Effects of material nonlinearity, imperfect fiber architecture, and structural imperfections upon anticipated failure stresses are determined. Comparisons with experimental data for a series of test cylinders are described. Predicting the failure strength of composite structures requires consideration of stability and material strength modes of failure using linear and nonlinear analysis techniques. Material strength prediction requires the accurate definition of the local multiaxial stress state in the material. An elasticity solution for the linear static analysis of thick anisotropic cylinders and rings is used herein to predict the axisymmetric stress state in the cylinders. Asymmetric nonlinear behavior due to initial cylinder out of roundness and the effects of end closure structure are treated using finite element methods. It is assumed that local fiber or ply waviness is an important factor in the initiation of material failure. An analytical model for the prediction of compression failure of fiber composites, which includes the effects of fiber misalignments, matrix inelasticity, and multiaxial applied stresses is used for material strength calculations. Analytical results are compared to experimental data for a series of glass and carbon fiber reinforced epoxy cylinders subjected to external pressure. Recommendations for pretest characterization and other experimental issues are presented. Implications for material and structural design are discussed.
Schellenberg, Florian; Oberhofer, Katja; Taylor, William R; Lorenzetti, Silvio
2015-01-01
Knowledge of the musculoskeletal loading conditions during strength training is essential for performance monitoring, injury prevention, rehabilitation, and training design. However, measuring muscle forces during exercise performance as a primary determinant of training efficacy and safety has remained challenging. In this paper we review existing computational techniques to determine muscle forces in the lower limbs during strength exercises in vivo and discuss their potential for uptake into sports training and rehabilitation. Muscle forces during exercise performance have almost exclusively been analysed using so-called forward dynamics simulations, inverse dynamics techniques, or alternative methods. Musculoskeletal models based on forward dynamics analyses have led to considerable new insights into muscular coordination, strength, and power during dynamic ballistic movement activities, resulting in, for example, improved techniques for optimal performance of the squat jump, while quasi-static inverse dynamics optimisation and EMG-driven modelling have helped to provide an understanding of low-speed exercises. The present review introduces the different computational techniques and outlines their advantages and disadvantages for the informed usage by nonexperts. With sufficient validation and widespread application, muscle force calculations during strength exercises in vivo are expected to provide biomechanically based evidence for clinicians and therapists to evaluate and improve training guidelines.
Ion beam sputter etching and deposition of fluoropolymers
NASA Technical Reports Server (NTRS)
Banks, B. A.; Sovey, J. S.; Miller, T. B.; Crandall, K. S.
1978-01-01
Fluoropolymer etching and deposition techniques including thermal evaporation, RF sputtering, plasma polymerization, and ion beam sputtering are reviewed. Etching and deposition mechanism and material characteristics are discussed. Ion beam sputter etch rates for polytetrafluoroethylene (PTFE) were determined as a function of ion energy, current density and ion beam power density. Peel strengths were measured for epoxy bonds to various ion beam sputtered fluoropolymers. Coefficients of static and dynamic friction were measured for fluoropolymers deposited from ion bombarded PTFE.