Sample records for fatty acid availability

  1. Trans-fatty acids in cooking oils in Bogota, Colombia: changes in the food supply from 2008 to 2013.

    PubMed

    Moynihan, Meghan; Villamor, Eduardo; Marin, Constanza; Mora-Plazas, Mercedes; Campos, Hannia; Baylin, Ana

    2015-12-01

    Long-chain n-3 fatty acid intake in Colombia is low because fish consumption is limited. Vegetable oils with high n-3 fatty acid content are recommended, but their concentrations of trans fats were high in previous studies. Thus, regular monitoring of the fatty acid composition of vegetable oils is required. Our objective was to quantify the fatty acid composition in commercially available oils in Bogota, Colombia and determine if composition changed from 2008 to 2013. Cross-sectional study. We obtained samples of all commercially available oils reported in a survey of low- and middle-income families with a child participating in the Bogota School Children Cohort. Bogota, Colombia. Not applicable. Sunflower oil had the highest trans-fatty acid content (2.18%). Canola oil had the lowest proportion of trans-fatty acids (0.40%) and the highest n-3 fatty acid content (9.37%). In terms of percentage reduction from 2008 to 2013 in 18:1 and 18:2 trans-fatty acids, canola oil had 89% and 65% reduction, mixed oils had 44% and 48% reduction, and sunflower oil had 25% and 51 % reduction, respectively. Soyabean oil became widely available in 2013. The content of trans-fatty acids decreased in all oils from 2008 to 2013, suggesting a voluntary reduction by industry. We believe that regular monitoring of the fatty acid composition of oils is warranted.

  2. Effects of exogenous fatty acids and inhibition of de novo fatty acid synthesis on disaturated phosphatidylcholine production by fetal lung cells and adult type II cells.

    PubMed

    Maniscalco, W M; Finkelstein, J N; Parkhurst, A B

    1989-05-01

    De novo fatty acid synthesis may be an important source of saturated fatty acids for fetal lung disaturated phosphatidylcholine (DSPC) production. To investigate the roles of de novo fatty acid synthesis and exogenous fatty acids, we incubated dispersed fetal lung cells and freshly isolated adult type II cells with exogenous palmitate and oleate and measured DSPC synthesis. Unlike adult type II cells, fetal lung cells did not increase DSPC synthesis when exogenous palmitate was available; adult type II cells increased DSPC synthesis by 70% in the presence of palmitate. Exogenous oleate decreased DSPC synthesis by 48% in fetal cells but not in adult type II cells. Incubation of fetal lung cells with TOFA [2-furancarboxylate, 5-(tetradecyloxy)-sodium], a metabolic inhibitor of fatty acid synthesis, decreased fatty acid synthesis by 65%. There was a simultaneous 56% inhibition of DSPC production, but no effect on protein, DNA, or glyceride-glycerol production, measured by precursor incorporation. The inhibition of DSPC synthesis associated with TOFA was partially prevented by exogenous palmitate but not oleate. Fetal cells prepared from explants that had been cultured in dexamethasone also had TOFA-associated inhibition of DSPC synthesis that was similar to non-dexamethasone-exposed cells. These studies suggest that under baseline conditions of low fatty acid availability, such as in the fetus, de novo fatty acid synthesis in fetal cells, but not in adult type II cells, provides sufficient saturated fatty acids to support maximal DSPC production. Inhibition of de novo fatty acid synthesis resulting in decreased DSPC production in fetal lung cells in conditions of low fatty acid availability suggests that fatty acid synthesis may be central to maintain DSPC synthesis in the fetus.

  3. trans Octadecenoic acid and trans octadecadienoic acid are inversely related to long-chain polyunsaturates in human milk: results of a large birth cohort study.

    PubMed

    Szabó, Eva; Boehm, Günther; Beermann, Christopher; Weyermann, Maria; Brenner, Hermann; Rothenbacher, Dietrich; Decsi, Tamás

    2007-05-01

    Several observational studies indicate that trans isomeric fatty acids may interfere with the metabolism of essential fatty acids in the human organism. The objective was to investigate the relation between trans fatty acids and long-chain polyunsaturates in mature human milk. Human milk samples (n=769) were obtained at the 6th week of lactation from mothers participating in a birth cohort study in Germany. The fatty acid composition of the milk samples was measured by high-resolution capillary gas-liquid chromatography. trans Octadecenoic and trans octadecadienoic acids were inversely correlated with linoleic acid (r=-0.32 and -0.33, P<0.0001 for both), alpha-linolenic acid (r=-0.35 and -0.27, P<0.0001), arachidonic acid (r=-0.60 and -0.47, P<0.0001), and docosahexaenoic acid (r=-0.51 and -0.33, P<0.0001). In contrast, no inverse correlations were observed between trans hexadecenoic acid and polyunsaturated fatty acids. The data obtained in the present study suggest that the availability of 18-carbon trans isomeric fatty acids may be inversely related to the availability of long-chain polyunsaturated fatty acids in mature human milk.

  4. Maternal adipose tissue becomes a source of fatty acids for the fetus in fasted pregnant rats given diets with different fatty acid compositions.

    PubMed

    López-Soldado, Iliana; Ortega-Senovilla, Henar; Herrera, Emilio

    2017-11-10

    The utilization of long-chain polyunsaturated fatty acids (LCPUFA) by the fetus may exceed its capacity to synthesize them from essential fatty acids, so they have to come from the mother. Since adipose tissue lipolytic activity is greatly accelerated under fasting conditions during late pregnancy, the aim was to determine how 24 h fasting in late pregnant rats given diets with different fatty acid compositions affects maternal and fetal tissue fatty acid profiles. Pregnant Sprague-Dawley rats were given isoenergetic diets containing 10% palm-, sunflower-, olive- or fish-oil. Half the rats were fasted from day 19 of pregnancy and all were studied on day 20. Triacylglycerols (TAG), glycerol and non-esterified fatty acids (NEFA) were analyzed by enzymatic methods and fatty acid profiles were analyzed by gas chromatography. Fasting caused increments in maternal plasma NEFA, glycerol and TAG, indicating increased adipose tissue lipolytic activity. Maternal adipose fatty acid profiles paralleled the respective diets and, with the exception of animals on the olive oil diet, maternal fasting increased the plasma concentration of most fatty acids. This maintains the availability of LCPUFA to the fetus during brain development. The results show the major role played by maternal adipose tissue in the storage of dietary fatty acids during pregnancy, thus ensuring adequate availability of LCPUFA to the fetus during late pregnancy, even when food supply is restricted.

  5. Macrocyclic lactones: A versatile source for omega radiohalogenated fatty acid analogs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dougan, A.H.; Lyster, D.M.; Robertson, K.A.

    For each omega halogenated fatty acid there exists a potential omega hydroxy fatty acid and the corresponding macrocyclic lactone. The authors have utilized such lactones as starting materials for omega /sup 123/I fatty acid analogs intended for myocardial imaging. Macrocyclic musk lactones are industrially available; 120 analogs are described in the literature. The preparation requires saponification, tosylation, and radio-iodide substitution. Iodo-fatty acids are readily separated from tosylate fatty acids on TLC. While providing a secure source of 16-iodo-hexadecanoic acid and 17-iodo-heptadecanoic acid, the scheme allows ready access to a large number of untried fatty acid analogs. Examples presented are 16-iodo-hexadecanoicmore » acid, 16-iodo-7-hexadecanoic acid, 16-iodo-12-oxa-hexadecanoic acid, 15-iodo-pentadecanoic acid, and 15-iodo-12-keto-pentadecanoic acid. Metabolic studies are in progress in mice and dogs to assess the utility of these analogs for myocardial imaging.« less

  6. Manipulation of culture conditions alters lipid content and fatty acid profiles of a wide variety of known and new oleaginous yeast species.

    PubMed

    Sitepu, Irnayuli R; Sestric, Ryan; Ignatia, Laura; Levin, David; German, J Bruce; Gillies, Laura A; Almada, Luis A G; Boundy-Mills, Kyria L

    2013-09-01

    Oleaginous yeasts have been studied for oleochemical production for over 80 years. Only a few species have been studied intensely. To expand the diversity of oleaginous yeasts available for lipid research, we surveyed a broad diversity of yeasts with indicators of oleaginicity including known oleaginous clades, and buoyancy. Sixty-nine strains representing 17 genera and 50 species were screened for lipid production. Yeasts belonged to Ascomycota families, Basidiomycota orders, and the yeast-like algal genus Prototheca. Total intracellular lipids and fatty acid composition were determined under different incubation times and nitrogen availability. Thirteen new oleaginous yeast species were discovered, representing multiple ascomycete and basidiomycete clades. Nitrogen starvation generally increased intracellular lipid content. The fatty acid profiles varied with the growth conditions regardless of taxonomic affiliation. The dominant fatty acids were oleic acid, palmitic acid, linoleic acid, and stearic acid. Yeasts and culture conditions that produced fatty acids appropriate for biodiesel were identified. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Manipulation of culture conditions alters lipid content and fatty acid profiles of a wide variety of known and new oleaginous yeasts species

    PubMed Central

    Sitepu, Irnayuli R.; Sestric, Ryan; Ignatia, Laura; Levin, David; German, J. Bruce; Gillies, Laura A.; Almada, Luis A.G.; Boundy-Mills, Kyria L.

    2013-01-01

    Oleaginous yeasts have been studied for oleochemical production for over 80 years. Only a few species have been studied intensely. To expand the diversity of oleaginous yeasts available for lipid research, we surveyed a broad diversity of yeasts with indicators of oleaginicity including known oleaginous clades, and buoyancy. Sixty-nine strains representing 17 genera and 50 species were screened for lipid production. Yeasts belonged to Ascomycota families, Basidiomycota orders, and the yeast-like algal genus Prototheca. Total intracellular lipids and fatty acid composition were determined under different incubation times and nitrogen availability. Thirteen new oleaginous yeast species were discovered, representing multiple ascomycete and basidiomycete clades. Nitrogen starvation generally increased intracellular lipid content. The fatty acid profiles varied with the growth conditions regardless of taxonomic affiliation. The dominant fatty acids were oleic acid, palmitic acid, linoleic acid, and stearic acid. Yeasts and culture conditions that produced fatty acids appropriate for biodiesel were identified. PMID:23891835

  8. Lipids as renewable resources: current state of chemical and biotechnological conversion and diversification.

    PubMed

    Metzger, J O; Bornscheuer, U

    2006-06-01

    Oils and fats are the most important renewable raw materials of the chemical industry. They make available fatty acids in such purity that they may be used for chemical conversions and for the synthesis of chemically pure compounds. Oleic acid (1) from "new sunflower," linoleic acid (2) from soybean, linolenic acid (3) from linseed, erucic acid (4) from rape seed, and ricinoleic acid (5) from castor oil are most important for chemical transformations offering in addition to the carboxy group one or more C-C-double bonds. New plant oils containing fatty acids with new and interesting functionalities such as petroselinic acid (6) from Coriandrum sativum, calendic acid (7) from Calendula officinalis, alpha-eleostearic acid (8) from tung oil, santalbic acid (9) from Santalum album (Linn.), and vernolic acid (10) from Vernonia galamensis are becoming industrially available. The basic oleochemicals are free fatty acids, methyl esters, fatty alcohols, and fatty amines as well as glycerol as a by-product. Their interesting new industrial applications are the usage as environmentally friendly industrial fluids and lubricants, insulating fluid for electric utilities such as transformers and additive to asphalt. Modern methods of synthetic organic chemistry including enzymatic and microbial transformations were applied extensively to fatty compounds for the selective functionalization of the alkyl chain. Syntheses of long-chain diacids, omega-hydroxy fatty acids, and omega-unsaturated fatty acids as base chemicals derived from vegetable oils were developed. Interesting applications were opened by the epoxidation of C-C-double bonds giving the possibility of photochemically initiated cationic curing and access to polyetherpolyols. Enantiomerically pure fatty acids as part of the chiral pool of nature can be used for the synthesis of nonracemic building blocks.

  9. Fatty Acid Biosynthesis Pathways in Methylomicrobium buryatense 5G(B1).

    PubMed

    Demidenko, Aleksandr; Akberdin, Ilya R; Allemann, Marco; Allen, Eric E; Kalyuzhnaya, Marina G

    2016-01-01

    Methane utilization by methanotrophic bacteria is an attractive application for biotechnological conversion of natural or biogas into high-added-value products. Haloalcaliphilic methanotrophic bacteria belonging to the genus Methylomicrobium are among the most promising strains for methane-based biotechnology, providing easy and inexpensive cultivation, rapid growth, and the availability of established genetic tools. A number of methane bioconversions using these microbial cultures have been discussed, including the derivation of biodiesel, alkanes, and OMEGA-3 supplements. These compounds are derived from bacterial fatty acid pools. Here, we investigate fatty acid biosynthesis in Methylomicrobium buryatense 5G(B1) . Most of the genes homologous to typical Type II fatty acid biosynthesis pathways could be annotated by bioinformatics analyses, with the exception of fatty acid transport and regulatory elements. Different approaches for improving fatty acid accumulation were investigated. These studies indicated that both fatty acid degradation and acetyl- and malonyl-CoA levels are bottlenecks for higher level fatty acid production. The best strain generated in this study synthesizes 111 ± 2 mg/gDCW of extractable fatty acids, which is ~20% more than the original strain. A candidate gene for fatty acid biosynthesis regulation, farE , was identified and studied. Its deletion resulted in drastic changes to the fatty acid profile, leading to an increased pool of C18-fatty acid methyl ester. The FarE-regulon was further investigated by RNA-seq analysis of gene expression in farE -knockout mutants and farE -overexpressing strains. These gene profiles highlighted a novel set of enzymes and regulators involved in fatty acid biosynthesis. The gene expression and fatty acid profiles of the different farE -strains support the hypothesis that metabolic fluxes upstream of fatty acid biosynthesis restrict fatty acid production in the methanotroph.

  10. Fatty Acid Biosynthesis Pathways in Methylomicrobium buryatense 5G(B1)

    PubMed Central

    Demidenko, Aleksandr; Akberdin, Ilya R.; Allemann, Marco; Allen, Eric E.; Kalyuzhnaya, Marina G.

    2017-01-01

    Methane utilization by methanotrophic bacteria is an attractive application for biotechnological conversion of natural or biogas into high-added-value products. Haloalcaliphilic methanotrophic bacteria belonging to the genus Methylomicrobium are among the most promising strains for methane-based biotechnology, providing easy and inexpensive cultivation, rapid growth, and the availability of established genetic tools. A number of methane bioconversions using these microbial cultures have been discussed, including the derivation of biodiesel, alkanes, and OMEGA-3 supplements. These compounds are derived from bacterial fatty acid pools. Here, we investigate fatty acid biosynthesis in Methylomicrobium buryatense 5G(B1). Most of the genes homologous to typical Type II fatty acid biosynthesis pathways could be annotated by bioinformatics analyses, with the exception of fatty acid transport and regulatory elements. Different approaches for improving fatty acid accumulation were investigated. These studies indicated that both fatty acid degradation and acetyl- and malonyl-CoA levels are bottlenecks for higher level fatty acid production. The best strain generated in this study synthesizes 111 ± 2 mg/gDCW of extractable fatty acids, which is ~20% more than the original strain. A candidate gene for fatty acid biosynthesis regulation, farE, was identified and studied. Its deletion resulted in drastic changes to the fatty acid profile, leading to an increased pool of C18-fatty acid methyl ester. The FarE-regulon was further investigated by RNA-seq analysis of gene expression in farE-knockout mutants and farE-overexpressing strains. These gene profiles highlighted a novel set of enzymes and regulators involved in fatty acid biosynthesis. The gene expression and fatty acid profiles of the different farE-strains support the hypothesis that metabolic fluxes upstream of fatty acid biosynthesis restrict fatty acid production in the methanotroph. PMID:28119683

  11. Update on marine omega-3 fatty acids: management of dyslipidemia and current omega-3 treatment options.

    PubMed

    Weintraub, Howard

    2013-10-01

    Low-density lipoprotein cholesterol (LDL-C) is currently the primary target in the management of dyslipidemia, and statins are first-line pharmacologic interventions. Adjunct therapy such as niacins, fibrates, bile acid sequestrants, or cholesterol absorption inhibitors may be considered to help reduce cardiovascular risk. This review discusses the need for alternative adjunct treatment options and the potential place for omega-3 fatty acids as such. The cardiovascular benefits of fish consumption are attributed to the omega-3 fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), and a variety of omega-3 fatty acid products are available with varied amounts of EPA and DHA. The product types include prescription drugs, food supplements, and medical foods sourced from fish, krill, algal and plant oils or purified from these oils. Two prescription omega-3 fatty acids are currently available, omega-3 fatty acid ethyl esters (contains both EPA and DHA ethyl esters), and icosapent ethyl (IPE; contains high-purity EPA ethyl ester). A pharmaceutical containing free fatty acid forms of omega-3 is currently in development. Omega-3 fatty acid formulations containing EPA and DHA have been shown to increase LDL-C levels while IPE has been shown to lower triglyceride levels without raising LDL-C levels, alone or in combination with statin therapy. In addition, recent studies have not been able to demonstrate reduced cardiovascular risk following treatment with fibrates, niacins, cholesterol absorption inhibitors, or omega-3 fatty acid formulations containing both EPA and DHA in statin-treated patients; thus, there remains a need for further cardiovascular outcomes studies for adjunct therapy. Copyright © 2013 The Author. Published by Elsevier Ireland Ltd.. All rights reserved.

  12. Cellular Fatty Acid Metabolism and Cancer

    PubMed Central

    Currie, Erin; Schulze, Almut; Zechner, Rudolf; Walther, Tobias C.; Farese, Robert V.

    2013-01-01

    Cancer cells commonly have characteristic changes in metabolism. Cellular proliferation, a common feature of all cancers, requires fatty acids for synthesis of membranes and signaling molecules. Here, we provide a view of cancer cell metabolism from a lipid perspective, and we summarize evidence that limiting fatty acid availability can control cancer cell proliferation. PMID:23791484

  13. Starch-lipid complexes: Interesting material and applications from amylose-fatty acid salt inclusion complexes

    USDA-ARS?s Scientific Manuscript database

    Aqueous slurries of high amylose starch can be steam jet cooked and blended with aqueous solutions of fatty acid salts to generate materials that contain inclusion complexes between amylose and the fatty acid salt. These complexes are simply prepared on large scale using commercially available steam...

  14. Understanding the complexity of trans fatty acid reduction in the American diet: American Heart Association Trans Fat Conference 2006: report of the Trans Fat Conference Planning Group.

    PubMed

    Eckel, Robert H; Borra, Susan; Lichtenstein, Alice H; Yin-Piazza, Shirley Y

    2007-04-24

    A 2-day forum was convened to discuss the current status and future implications of reducing trans fatty acids without increasing saturated fats in the food supply while maintaining functionality and consumer acceptance of packaged, processed, and prepared foods. Attendees represented the agriculture and oilseed industry and oil processing, food manufacturing, food service, government, food technology, and health and nutrition disciplines. Presentations included food science behind fatty acid technology, the health science of dietary fatty acids, alternatives to trans fatty acids, and the use of alternatives in food manufacturing and food service. The reduction of trans fatty acids in the food supply is a complex issue involving interdependent and interrelated stakeholders. Actions to reduce trans fatty acids need to carefully consider both intended and unintended consequences related to nutrition and public health. The unintended consequence of greatest concern is that fats and oils high in saturated fats, instead of the healthier unsaturated fats, might be used to replace fats and oils with trans fatty acids. Many different options of alternative oils and fats to replace trans fatty acids are available or in development. Decisions on the use of these alternatives need to consider availability, health effects, research and development investments, reformulated food quality and taste, supply-chain management, operational modifications, consumer acceptance, and cost. The conference demonstrated the value of collaboration between the food industry and health and nutrition professionals, and this conference model should be used to address other food development, processing, and/or technology issues.

  15. Fishy business: effect of omega-3 fatty acids on zinc transporters and free zinc availability in human neuronal cells.

    PubMed

    De Mel, Damitha; Suphioglu, Cenk

    2014-08-15

    Omega-3 (ω-3) fatty acids are one of the two main families of long chain polyunsaturated fatty acids (PUFA). The main omega-3 fatty acids in the mammalian body are α-linolenic acid (ALA), docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA). Central nervous tissues of vertebrates are characterized by a high concentration of omega-3 fatty acids. Moreover, in the human brain, DHA is considered as the main structural omega-3 fatty acid, which comprises about 40% of the PUFAs in total. DHA deficiency may be the cause of many disorders such as depression, inability to concentrate, excessive mood swings, anxiety, cardiovascular disease, type 2 diabetes, dry skin and so on. On the other hand, zinc is the most abundant trace metal in the human brain. There are many scientific studies linking zinc, especially excess amounts of free zinc, to cellular death. Neurodegenerative diseases, such as Alzheimer's disease, are characterized by altered zinc metabolism. Both animal model studies and human cell culture studies have shown a possible link between omega-3 fatty acids, zinc transporter levels and free zinc availability at cellular levels. Many other studies have also suggested a possible omega-3 and zinc effect on neurodegeneration and cellular death. Therefore, in this review, we will examine the effect of omega-3 fatty acids on zinc transporters and the importance of free zinc for human neuronal cells. Moreover, we will evaluate the collective understanding of mechanism(s) for the interaction of these elements in neuronal research and their significance for the diagnosis and treatment of neurodegeneration.

  16. Fatty acid and sn-2 fatty acid composition in human milk from Granada (Spain) and in infant formulas.

    PubMed

    López-López, A; López-Sabater, M C; Campoy-Folgoso, C; Rivero-Urgell, M; Castellote-Bargalló, A I

    2002-12-01

    To investigate differences in fatty acid and sn-2 fatty acid composition in colostrum, transitional and mature human milk, and in term infant formulas. Departament de Nutrició i Bromatologia, University of Barcelona, Spain and University Hospital of Granada, Spain. One-hundred and twenty mothers and 11 available types of infant formulas for term infants. We analysed the fatty acid composition of colostrum (n=40), transitional milk (n=40), mature milk (n=40) and 11 infant formulas. We also analysed the fatty acid composition at sn-2 position in colostrum (n=12), transitional milk (n=12), mature milk (n=12), and the 11 infant formulas. Human milk in Spain had low saturated fatty acids, high monounsaturated fatty acids and high linolenic acid. Infant formulas and mature human milk had similar fatty acid composition. In mature milk, palmitic acid was preferentially esterified at the sn-2 position (86.25%), and oleic and linoleic acids were predominantly esterified at the sn-1,3 positions (12.22 and 22.27%, respectively, in the sn-2 position). In infant formulas, palmitic acid was preferentially esterified at the sn-1,3 positions and oleic and linoleic acids had higher percentages at the sn-2 position than they do in human milk. Fatty acid composition of human milk in Spain seems to reflect the Mediterranean dietary habits of mothers. Infant formulas resemble the fatty acid profile of human milk, but the distribution of fatty acids at the sn-2 position is markedly different.

  17. Fatty acid profiles of Garuga floribunda, Ipomoea pes-caprae, Melanolepis multiglandulosa and Premna odorata seed oils

    USDA-ARS?s Scientific Manuscript database

    The fatty acid profiles of the seed oils of four species from four plant families for which no or only sparse information on the fatty acid profiles is available are reported. The five seed oils are Garuga floribunda of the Burseraceae family, Ipomoea pes-caprae of the Convolvulaceae family, Melanol...

  18. Staphylococcus aureus utilizes host-derived lipoprotein particles as sources of exogenous fatty acids.

    PubMed

    Delekta, Phillip C; Shook, John C; Lydic, Todd A; Mulks, Martha H; Hammer, Neal D

    2018-03-26

    Methicillin-resistant Staphylococcus aureus (MRSA) is a threat to global health. Consequently, much effort has focused on the development of new antimicrobials that target novel aspects of S. aureus physiology. Fatty acids are required to maintain cell viability, and bacteria synthesize fatty acids using the type II fatty acid synthesis pathway (FASII). FASII is significantly different from human fatty acid synthesis, underscoring the therapeutic potential of inhibiting this pathway. However, many Gram-positive pathogens incorporate exogenous fatty acids, bypassing FASII inhibition and leaving the clinical potential of FASII inhibitors uncertain. Importantly, the source(s) of fatty acids available to pathogens within the host environment remains unclear. Fatty acids are transported throughout the body by lipoprotein particles in the form of triglycerides and esterified cholesterol. Thus, lipoproteins, such as low-density lipoprotein (LDL) represent a potentially rich source of exogenous fatty acids for S. aureus during infection. We sought to test the ability of LDLs to serve as a fatty acid source for S. aureus and show that cells cultured in the presence of human LDLs demonstrate increased tolerance to the FASII inhibitor, triclosan. Using mass spectrometry, we observed that host-derived fatty acids present in the LDLs are incorporated into the staphylococcal membrane and that tolerance to triclosan is facilitated by the fatty acid kinase A, FakA, and Geh, a triacylglycerol lipase. Finally, we demonstrate that human LDLs support the growth of S. aureus fatty acid auxotrophs. Together, these results suggest that human lipoprotein particles are a viable source of exogenous fatty acids for S. aureus during infection. IMPORTANCE Inhibition of bacterial fatty acid synthesis is a promising approach to combating infections caused by S. aureus and other human pathogens. However, S. aureus incorporates exogenous fatty acids into its phospholipid bilayer. Therefore, the clinical utility of targeting bacterial fatty acid synthesis is debated. Moreover, the fatty acid reservoir(s) exploited by S. aureus are not well understood. Human low-density lipoprotein particles represent a particularly abundant in vivo source of fatty acids and are present in tissues S. aureus colonizes. Herein, we establish that S. aureus is capable of utilizing the fatty acids present in low-density lipoproteins to bypass both chemical and genetic inhibition of fatty acid synthesis. These findings imply that S. aureus targets LDLs as a source of fatty acids during pathogenesis. Copyright © 2018 American Society for Microbiology.

  19. Pork as a Source of Omega-3 (n-3) Fatty Acids

    PubMed Central

    Dugan, Michael E.R.; Vahmani, Payam; Turner, Tyler D.; Mapiye, Cletos; Juárez, Manuel; Prieto, Nuria; Beaulieu, Angela D.; Zijlstra, Ruurd T.; Patience, John F.; Aalhus, Jennifer L.

    2015-01-01

    Pork is the most widely eaten meat in the world, but typical feeding practices give it a high omega-6 (n-6) to omega-3 (n-3) fatty acid ratio and make it a poor source of n-3 fatty acids. Feeding pigs n-3 fatty acids can increase their contents in pork, and in countries where label claims are permitted, claims can be met with limited feeding of n-3 fatty acid enrich feedstuffs, provided contributions of both fat and muscle are included in pork servings. Pork enriched with n-3 fatty acids is, however, not widely available. Producing and marketing n-3 fatty acid enriched pork requires regulatory approval, development costs, quality control costs, may increase production costs, and enriched pork has to be tracked to retail and sold for a premium. Mandatory labelling of the n-6/n-3 ratio and the n-3 fatty acid content of pork may help drive production of n-3 fatty acid enriched pork, and open the door to population-based disease prevention polices (i.e., food tax to provide incentives to improve production practices). A shift from the status-quo, however, will require stronger signals along the value chain indicating production of n-3 fatty acid enriched pork is an industry priority. PMID:26694475

  20. Pork as a Source of Omega-3 (n-3) Fatty Acids.

    PubMed

    Dugan, Michael E R; Vahmani, Payam; Turner, Tyler D; Mapiye, Cletos; Juárez, Manuel; Prieto, Nuria; Beaulieu, Angela D; Zijlstra, Ruurd T; Patience, John F; Aalhus, Jennifer L

    2015-12-16

    Pork is the most widely eaten meat in the world, but typical feeding practices give it a high omega-6 (n-6) to omega-3 (n-3) fatty acid ratio and make it a poor source of n-3 fatty acids. Feeding pigs n-3 fatty acids can increase their contents in pork, and in countries where label claims are permitted, claims can be met with limited feeding of n-3 fatty acid enrich feedstuffs, provided contributions of both fat and muscle are included in pork servings. Pork enriched with n-3 fatty acids is, however, not widely available. Producing and marketing n-3 fatty acid enriched pork requires regulatory approval, development costs, quality control costs, may increase production costs, and enriched pork has to be tracked to retail and sold for a premium. Mandatory labelling of the n-6/n-3 ratio and the n-3 fatty acid content of pork may help drive production of n-3 fatty acid enriched pork, and open the door to population-based disease prevention polices (i.e., food tax to provide incentives to improve production practices). A shift from the status-quo, however, will require stronger signals along the value chain indicating production of n-3 fatty acid enriched pork is an industry priority.

  1. Effects of dietary vitamin B6 supplementation on fillet fatty acid composition and fatty acid metabolism of rainbow trout fed vegetable oil based diets.

    PubMed

    Senadheera, Shyamalie D; Turchini, Giovanni M; Thanuthong, Thanongsak; Francis, David S

    2012-03-07

    Fish oil replacement in aquaculture feeds results in major modifications to the fatty acid makeup of cultured fish. Therefore, in vivo fatty acid biosynthesis has been a topic of considerable research interest. Evidence suggests that pyridoxine (vitamin B(6)) plays a role in fatty acid metabolism, and in particular, the biosynthesis of LC-PUFA has been demonstrated in mammals. However, there is little information on the effects of dietary pyridoxine availability in fish fed diets lacking LC-PUFA. This study demonstrates a relationship between dietary pyridoxine supplementation and fatty acid metabolism in rainbow trout. In particular, the dietary pyridoxine level was shown to modulate and positively stimulate the activity of the fatty acid elongase and Δ-6 and Δ-5 desaturase enzymes, deduced by the whole-body fatty acid balance method. This activity was insufficient to compensate for a diet lacking in LC-PUFA but does highlight potential strategies to maximize this activity in cultured fish, especially when fish oil is replaced with vegetable oils.

  2. Essential Fatty Acid Deficiency in 2015: The Impact of Novel Intravenous Lipid Emulsions.

    PubMed

    Gramlich, Leah; Meddings, Liisa; Alberda, Cathy; Wichansawakun, Sanit; Robbins, Sarah; Driscoll, David; Bistrian, Bruce

    2015-09-01

    The fatty acids, linoleic acid (18:2ω-6) and α-linolenic acid (18:3ω-3), are essential to the human diet. When these essential fatty acids are not provided in sufficient quantities, essential fatty acid deficiency (EFAD) develops. This can be suggested clinically by abnormal liver function tests or biochemically by an elevated Mead acid and reduced linoleic acid and arachidonic acid level, which is manifested as an elevated triene/tetraene ratio of Mead acid/arachidonic acid. Clinical features of EFAD may present later. With the introduction of novel intravenous (IV) lipid emulsions in North America, the proportion of fatty acids provided, particularly the essential fatty acids, varies substantially. We describe a case series of 3 complicated obese patients who were administered parenteral nutrition (PN), primarily using ClinOleic 20%, an olive oil-based lipid emulsion with reduced amounts of the essential fatty acids, linoleic and α-linolenic, compared with more conventional soybean oil emulsions throughout their hospital admission. Essential fatty acid profiles were obtained for each of these patients to investigate EFAD as a potential cause of abnormal liver enzymes. Although the profiles revealed reduced linoleic acid and elevated Mead acid levels, this was not indicative of the development of essential fatty acid deficiency, as reflected in the more definitive measure of triene/tetraene ratio. Instead, although the serum fatty acid panel reflected the markedly lower but still adequate dietary linoleic acid content and greatly increased oleic acid content in the parenteral lipid emulsion, the triene/tetraene ratio remained well below the level, indicating EFAD in each of these patients. The availability and use of new IV lipid emulsions in PN should encourage the clinician to review lipid metabolism based on the quantity of fatty acids provided in specific parenteral lipid emulsions and the expected impact of these lipid emulsions (with quite different fatty acid composition) on measured fatty acid profiles. © 2015 American Society for Parenteral and Enteral Nutrition.

  3. Nutritional strategies to improve the lipid composition of meat, with emphasis on Thailand and Asia.

    PubMed

    Jaturasitha, S; Chaiwang, N; Kayan, A; Kreuzer, M

    2016-10-01

    This article reviews opportunities for enriching the lipids of meat with n-3 fatty acids and conjugated linoleic acids (CLAs), both considered beneficial to human health. Special focus is put on feeds available and research carried out in Thailand. A differentiated consideration concerning the value of different n-3 fatty acids and isomers of CLAs is necessary. In ruminants, it is difficult to enrich the meat with n-3 fatty acids due to the extensive ruminal biohydrogenation of unsaturated fatty acids, but several possibilities to enhance the proportion of the most desired CLA isomer, rumenic acid, exist. By contrast, pork and poultry meat can be easily enriched with n-3 fatty acids. With purified CLA sources, CLAs also can be enhanced, but it is difficult to achieve this exclusively for rumenic acid. An interesting approach might consist in supplementing the CLA precursor vaccenic acid instead. Possible constraints for meat quality and in the fatty acid levels achieved are outlined. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Fishy Business: Effect of Omega-3 Fatty Acids on Zinc Transporters and Free Zinc Availability in Human Neuronal Cells

    PubMed Central

    De Mel, Damitha; Suphioglu, Cenk

    2014-01-01

    Omega-3 (ω-3) fatty acids are one of the two main families of long chain polyunsaturated fatty acids (PUFA). The main omega-3 fatty acids in the mammalian body are α-linolenic acid (ALA), docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA). Central nervous tissues of vertebrates are characterized by a high concentration of omega-3 fatty acids. Moreover, in the human brain, DHA is considered as the main structural omega-3 fatty acid, which comprises about 40% of the PUFAs in total. DHA deficiency may be the cause of many disorders such as depression, inability to concentrate, excessive mood swings, anxiety, cardiovascular disease, type 2 diabetes, dry skin and so on. On the other hand, zinc is the most abundant trace metal in the human brain. There are many scientific studies linking zinc, especially excess amounts of free zinc, to cellular death. Neurodegenerative diseases, such as Alzheimer’s disease, are characterized by altered zinc metabolism. Both animal model studies and human cell culture studies have shown a possible link between omega-3 fatty acids, zinc transporter levels and free zinc availability at cellular levels. Many other studies have also suggested a possible omega-3 and zinc effect on neurodegeneration and cellular death. Therefore, in this review, we will examine the effect of omega-3 fatty acids on zinc transporters and the importance of free zinc for human neuronal cells. Moreover, we will evaluate the collective understanding of mechanism(s) for the interaction of these elements in neuronal research and their significance for the diagnosis and treatment of neurodegeneration. PMID:25195602

  5. Spatial Patterns and Temperature Predictions of Tuna Fatty Acids: Tracing Essential Nutrients and Changes in Primary Producers

    PubMed Central

    Pethybridge, Heidi R.; Parrish, Christopher C.; Morrongiello, John; Young, Jock W.; Farley, Jessica H.; Gunasekera, Rasanthi M.; Nichols, Peter D.

    2015-01-01

    Fatty acids are among the least understood nutrients in marine environments, despite their profile as key energy components of food webs and that they are essential to all life forms. Presented here is a novel approach to predict the spatial-temporal distributions of fatty acids in marine resources using generalized additive mixed models. Fatty acid tracers (FAT) of key primary producers, nutritional condition indices and concentrations of two essential long-chain (≥C20) omega-3 fatty acids (EFA) measured in muscle of albacore tuna, Thunnus alalunga, sampled in the south-west Pacific Ocean were response variables. Predictive variables were: location, time, sea surface temperature (SST) and chlorophyll-a (Chla), and phytoplankton biomass at time of catch and curved fork length. The best model fit for all fatty acid parameters included fish length and SST. The first oceanographic contour maps of EFA and FAT (FATscapes) were produced and demonstrated clear geographical gradients in the study region. Predicted changes in all fatty acid parameters reflected shifts in the size-structure of dominant primary producers. Model projections show that the supply and availability of EFA are likely to be negatively affected by increases in SST especially in temperate waters where a 12% reduction in both total fatty acid content and EFA proportions are predicted. Such changes will have large implications for the availability of energy and associated health benefits to high-order consumers. Results convey new concerns on impacts of projected climate change on fish-derived EFA in marine systems. PMID:26135308

  6. Synthesis of racemic 9-methyl-10-hexadecenoic acid.

    PubMed

    Carballeira, N M; Sostre, A; Restituyo, J A

    1999-02-01

    The marine bacterial fatty acid 9-methyl-10-hexadecenoic acid was conveniently prepared in 6 steps and in a 22% overall yield, starting from commercially available methyl 10-hydroxydecanoate. The naturally occurring fatty acid has the E double bond configuration as confirmed by gas chromatographic co-elution experiments.

  7. Fatty acid biosynthesis pathways in Methylomicrobium buryatense 5G(B1)

    DOE PAGES

    Demidenko, Aleksandr; Akberdin, Ilya R.; Allemann, Marco; ...

    2017-01-10

    Methane utilization by methanotrophic bacteria is an attractive application for biotechnological conversion of natural or biogas into high-added-value products. Haloalcaliphilic methanotrophic bacteria belonging to the genus Methylomicrobium are among the most promising strains for methane-based biotechnology, providing easy and inexpensive cultivation, rapid growth, and the availability of established genetic tools. A number of methane bioconversions using these microbial cultures have been discussed, including the derivation of biodiesel, alkanes, and OMEGA-3 supplements. These compounds are derived from bacterial fatty acid pools. Here, we investigate fatty acid biosynthesis in Methylomicrobium buryatense 5G(B1). Most of the genes homologous to typical Type II fattymore » acid biosynthesis pathways could be annotated by bioinformatics analyses, with the exception of FA transport and regulatory elements. Different approaches for improving fatty acid accumulation were investigated. These studies indicated that both fatty acid degradation and acetyl- and malonyl-CoA levels are bottlenecks for higher level fatty acid production. The best strain generated in this study synthesizes 111 ± 2 mg/gDCW of extractable fatty acids, which is ~20% more than the original strain. A candidate gene for FA-biosynthesis regulation, farE, was identified and studied. Its deletion resulted in drastic changes to the FA profile, leading to an increased pool of C18-fatty acid methyl ester. The FarE-regulon was further investigated by RNA-seq analysis of gene expression in farE-knockout mutants and farE-overexpressing strains. These gene profiles highlighted a novel set of enzymes and regulators involved in fatty acid biosynthesis. As a result, the gene expression and fatty acid profiles of the different farE-strains support the hypothesis that metabolic fluxes upstream of fatty acid biosynthesis restrict fatty acid production in the methanotroph.« less

  8. Fatty acid biosynthesis pathways in Methylomicrobium buryatense 5G(B1)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Demidenko, Aleksandr; Akberdin, Ilya R.; Allemann, Marco

    Methane utilization by methanotrophic bacteria is an attractive application for biotechnological conversion of natural or biogas into high-added-value products. Haloalcaliphilic methanotrophic bacteria belonging to the genus Methylomicrobium are among the most promising strains for methane-based biotechnology, providing easy and inexpensive cultivation, rapid growth, and the availability of established genetic tools. A number of methane bioconversions using these microbial cultures have been discussed, including the derivation of biodiesel, alkanes, and OMEGA-3 supplements. These compounds are derived from bacterial fatty acid pools. Here, we investigate fatty acid biosynthesis in Methylomicrobium buryatense 5G(B1). Most of the genes homologous to typical Type II fattymore » acid biosynthesis pathways could be annotated by bioinformatics analyses, with the exception of FA transport and regulatory elements. Different approaches for improving fatty acid accumulation were investigated. These studies indicated that both fatty acid degradation and acetyl- and malonyl-CoA levels are bottlenecks for higher level fatty acid production. The best strain generated in this study synthesizes 111 ± 2 mg/gDCW of extractable fatty acids, which is ~20% more than the original strain. A candidate gene for FA-biosynthesis regulation, farE, was identified and studied. Its deletion resulted in drastic changes to the FA profile, leading to an increased pool of C18-fatty acid methyl ester. The FarE-regulon was further investigated by RNA-seq analysis of gene expression in farE-knockout mutants and farE-overexpressing strains. These gene profiles highlighted a novel set of enzymes and regulators involved in fatty acid biosynthesis. As a result, the gene expression and fatty acid profiles of the different farE-strains support the hypothesis that metabolic fluxes upstream of fatty acid biosynthesis restrict fatty acid production in the methanotroph.« less

  9. Short communication: Estimates of heritabilities and genetic correlations among milk fatty acid unsaturation indices in Canadian Holsteins.

    PubMed

    Bilal, G; Cue, R I; Mustafa, A F; Hayes, J F

    2012-12-01

    The objectives of the present study were to estimate genetic parameters of milk fatty acid unsaturation indices in Canadian Holsteins. Data were available on milk fatty acid composition of 2,573 Canadian Holstein cows from 46 commercial herds enrolled in the Québec Dairy Production Centre of Expertise, Valacta (Sainte-Anne-de-Bellevue, Quebec, Canada). Individual fatty acid percentages (g/100 g of total fatty acids) were determined for each milk sample by gas chromatography. The unsaturation indices were calculated as the ratio of an unsaturated fatty acid to the sum of that unsaturated fatty acid and its corresponding substrate fatty acid, multiplied by 100. A mixed linear model was fitted under REML for the statistical analysis of milk fatty acid unsaturation indices. The statistical model included the fixed effects of parity, age at calving, and stage of lactation, each nested within parity, and the random effects of herd-year-season of calving, animal, and residual. Estimates of heritabilities for the C14, C16, C18, conjugated linoleic acid, and total unsaturation indices were 0.48, 0.25, 0.29, 0.14, and 0.19, respectively. Phenotypic and genetic correlation estimates among unsaturation indices were all positive and ranged from 0.20 to 0.65 and 0.23 to 0.81, respectively. The estimates of heritabilities and genetic correlations for milk fatty acid unsaturation indices suggest that genetic variation exists among cows in milk fatty acid unsaturation, and the proportions of desirable unsaturated fatty acids from a human health point of view may be increased in bovine milk through genetic selection. Copyright © 2012 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  10. Isolation of a furan fatty acid from Hevea brasiliensis latex employing the combined use of pH-zone-refining and conventional countercurrent chromatography.

    PubMed

    Englert, Michael; Ulms, Kerstin; Wendlinger, Christine; Vetter, Walter

    2016-02-01

    Furan fatty acids are valuable and bioactive minor fatty acids that usually contribute <0.1% to the fatty acid content of food samples. Their biological role still remains unclear as authentic furan fatty acid standards are not readily available and thorough experimental studies verifying the relevance of furan fatty acids are thus virtually impossible. An efficient protocol for the isolation of the furan fatty acid 9-(3-methyl-5-pentylfuran-2-yl)-nonanoic acid from hydrolyzed and centrifuged latex of Hevea brasiliensis was developed using countercurrent chromatography. A first run using pH-zone-refining countercurrent chromatography provided 48.4 mg of 9-(3-methyl-5-pentylfuran-2-yl)-nonanoic acid from 210 mg latex extract in a purity of 95%. The purity was increased to 99% by means of one second run in conventional countercurrent chromatography mode. The Structure and purity of 9-(3-methyl-5-pentylfuran-2-yl)-nonanoic acid were determined by gas chromatography coupled to mass spectrometry and (1)H and (13)C NMR spectroscopy. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Importance of medium chain fatty acids in animal nutrition

    NASA Astrophysics Data System (ADS)

    Baltić, B.; Starčević, M.; Đorđević, J.; Mrdović, B.; Marković, R.

    2017-09-01

    Fats in animal and human nutrition are a common subject of research. These studies most often pay attention to particular fat groups (saturated, unsaturated, polyunsaturated fats or fats grouped by the length of their fatty acid chains into short, medium or long chain fatty acids). Medium chain fatty acids (MCFAs) have two main sources: milk and coconut oil. To date, research has shown these acids have positive effects on health, production, feed digestibility and lower body and muscle fats in broilers and swine. MCFAs possess antibacterial, anticoccidial and antiviral effects. Also, it has been proven that these acids act synergistically if they are used together with organic acids, essential oils, or probiotics. Nowadays, commercial MCFA products are available for use in animal nutrition as feed additives.

  12. Production of Fatty Acid-Derived Valuable Chemicals in Synthetic Microbes

    PubMed Central

    Yu, Ai-Qun; Pratomo Juwono, Nina Kurniasih; Leong, Susanna Su Jan; Chang, Matthew Wook

    2014-01-01

    Fatty acid derivatives, such as hydroxy fatty acids, fatty alcohols, fatty acid methyl/ethyl esters, and fatty alka(e)nes, have a wide range of industrial applications including plastics, lubricants, and fuels. Currently, these chemicals are obtained mainly through chemical synthesis, which is complex and costly, and their availability from natural biological sources is extremely limited. Metabolic engineering of microorganisms has provided a platform for effective production of these valuable biochemicals. Notably, synthetic biology-based metabolic engineering strategies have been extensively applied to refactor microorganisms for improved biochemical production. Here, we reviewed: (i) the current status of metabolic engineering of microbes that produce fatty acid-derived valuable chemicals, and (ii) the recent progress of synthetic biology approaches that assist metabolic engineering, such as mRNA secondary structure engineering, sensor-regulator system, regulatable expression system, ultrasensitive input/output control system, and computer science-based design of complex gene circuits. Furthermore, key challenges and strategies were discussed. Finally, we concluded that synthetic biology provides useful metabolic engineering strategies for economically viable production of fatty acid-derived valuable chemicals in engineered microbes. PMID:25566540

  13. Reciprocal effects of 5-(tetradecyloxy)-2-furoic acid on fatty acid oxidation.

    PubMed

    Otto, D A; Chatzidakis, C; Kasziba, E; Cook, G A

    1985-10-01

    Under certain incubation conditions 5-(tetradecyloxy)-2-furoic acid (TOFA) stimulated the oxidation of palmitate by hepatocytes, as observed by others. A decrease in malonyl-CoA concentration accompanied the stimulation of oxidation. Under other conditions, however, TOFA inhibited fatty acid oxidation. The observed effects of TOFA depended on the TOFA and fatty acid concentrations, the cell concentration, the time of TOFA addition relative to the addition of fatty acid, and the nutritional state of the animal (fed or starved). The data indicate that only under limited incubation conditions may TOFA be used as an inhibitor of fatty acid synthesis without inhibition of fatty acid oxidation. When rat liver mitochondria were preincubated with TOFA, ketogenesis from palmitate was slightly inhibited (up to 20%) at TOFA concentrations that were less than that of CoA, but the inhibition became almost complete (up to 90%) when TOFA was greater than or equal to the CoA concentration. TOFA had only slight or no inhibitory effects on the oxidation of palmitoyl-CoA, palmitoyl(-)carnitine, or butyrate. Since TOFA can be converted to TOFyl-CoA, the data suggest that the inhibition of fatty acid oxidation from palmitate results from the decreased availability of CoA for extramitochondrial activation of fatty acids. These data, along with previous data of others, indicate that inhibition of fatty acid oxidation by CoA sequestration is a common mechanism of a group of carboxylic acid inhibitors. A general caution is appropriate with regard to the interpretation of results when using TOFA in studies of fatty acid oxidation.

  14. Safety assessment of myristic acid as a food ingredient.

    PubMed

    Burdock, George A; Carabin, Ioana G

    2007-04-01

    Myristic acid is used in the food industry as a flavor ingredient. It is found widely distributed in fats throughout the plant and animal kingdom, including common human foodstuffs, such as nutmeg. Myristic acid (a 14-carbon, straight-chain saturated fatty acid) has been shown to have a low order of acute oral toxicity in rodents. It may be irritating in pure form to skin and eyes under exaggerated exposure conditions, but is not known or predicted to induce sensitization responses. Myristic acid did not induce a mutagenic response in either bacterial or mammalian systems in vitro. Relevant subchronic toxicity data are available on closely related fatty acid analogs. In particular, a NOEL of >6000mg/kg was reported for lauric acid (a 12-carbon, straight-chain saturated fatty acid) following dietary exposure to male rats for 18 weeks and a NOEL of >5000mg/kg was reported for palmitic acid (a 16-carbon, straight-chain saturated fatty acid) following dietary exposure to rats for 150 days. The data and information that are available indicate that at the current level of intake, food flavoring use of myristic acid does not pose a health risk to humans.

  15. Synthesis and evaluation of odour-active methionyl esters of fatty acids via esterification and transesterification of butter oil.

    PubMed

    Li, Cheng; Sun, Jingcan; Fu, Caili; Yu, Bin; Liu, Shao Quan; Li, Tianhu; Huang, Dejian

    2014-02-15

    Methionol-derived fatty acid esters were synthesised by both chemical and lipase catalysed esterification between fatty acids and methionol. Beneficial effects of both methods were compared qualitatively and quantitatively by GC-MS/GC-FID results. And the high acid and heat stability of our designed methionyl esters meet the requirement of the food industry. Most importantly, the sensory test showed that fatty acid carbon-chain length had an important effect on the flavour attributes of methionyl esters. Moreover, through Lipozyme TL IM-mediated transesterification, valuable methionol-derived esters were synthesised from the readily available natural material butter oil as the fatty acid source. The conversion of methionol and yield of each methionyl ester were also elucidated by GC-MS-FID. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Hypoxic and Ras-transformed cells support growth by scavenging unsaturated fatty acids from lysophospholipids

    PubMed Central

    Kamphorst, Jurre J.; Cross, Justin R.; Fan, Jing; de Stanchina, Elisa; Mathew, Robin; White, Eileen P.; Thompson, Craig B.; Rabinowitz, Joshua D.

    2013-01-01

    Cancer cell growth requires fatty acids to replicate cellular membranes. The kinase Akt is known to up-regulate fatty acid synthesis and desaturation, which is carried out by the oxygen-consuming enzyme stearoyl-CoA desaturase (SCD)1. We used 13C tracers and lipidomics to probe fatty acid metabolism, including desaturation, as a function of oncogene expression and oxygen availability. During hypoxia, flux from glucose to acetyl-CoA decreases, and the fractional contribution of glutamine to fatty acid synthesis increases. In addition, we find that hypoxic cells bypass de novo lipogenesis, and thus, both the need for acetyl-CoA and the oxygen-dependent SCD1-reaction, by scavenging serum fatty acids. The preferred substrates for scavenging are phospholipids with one fatty acid tail (lysophospholipids). Hypoxic reprogramming of de novo lipogenesis can be reproduced in normoxic cells by Ras activation. This renders Ras-driven cells, both in culture and in allografts, resistant to SCD1 inhibition. Thus, a mechanism by which oncogenic Ras confers metabolic robustness is through lipid scavenging. PMID:23671091

  17. Fatty acid profile comparisons in human milk sampled from the same mothers at the sixth week and the sixth month of lactation.

    PubMed

    Szabó, Eva; Boehm, Günther; Beermann, Christopher; Weyermann, Maria; Brenner, Hermann; Rothenbacher, Dietrich; Decsi, Tamás

    2010-03-01

    To compare fatty acid composition of human milk at 2 different stages of lactation and investigate the relation between trans isomeric and long-chain polyunsaturated fatty acids (LCPUFAs) in human milk at the sixth month of lactation. We investigated human milk samples obtained at the sixth week and sixth month of lactation from 462 mothers who participated in a large birth cohort study. Fatty acid composition of human milk lipids was determined by high-resolution capillary gas-liquid chromatography. Fat contents of human milk increased significantly between the sixth week and sixth month of lactation (1.63 [2.06] and 3.19 [3.14], g/100 mL; median [interquartile range], P < 0.001). Percentage contributions to human milk fatty acid composition of nearly all polyunsaturated fatty acids also increased significantly (linoleic acid: 10.09 [4.41] and 11.01 [4.53], arachidonic acid: 0.46 [0.32] and 0.48 [0.23], alpha-linolenic acid: 0.69 [0.42] and 0.75 [0.41], and docosahexaenoic acid: 0.17 [0.23] and 0.23 [0.15], % wt/wt, P < 0.001). Values of the 18-carbon trans octadecenoic acid (C18:1n-7/9t) significantly inversely correlated to linoleic acid (r = -0.24, P < 0.001), alpha-linolenic acid (r = -0.19, P < 0.001), and arachidonic acid (r = -0.43, P < 0.001). In contrast, we found no correlation between the 16-carbon trans hexadecenoic acid (C16:1n-7t) and the same LCPUFAs. Data obtained in the present study indicate increasing fat contents with stable or increasing percentage contribution of LCPUFAs in human milk samples between the sixth week and at the sixth month of lactation, and the availability of 18-carbon trans isomeric fatty acids is inversely associated to the availability of several LCPUFAs in human milk at the sixth month of lactation.

  18. Improving Fatty Acid Availability for Bio-Hydrocarbon Production in Escherichia coli by Metabolic Engineering

    PubMed Central

    Lin, Fengming; Chen, Yu; Levine, Robert; Lee, Kilho; Yuan, Yingjin; Lin, Xiaoxia Nina

    2013-01-01

    Previous studies have demonstrated the feasibility of producing fatty-acid-derived hydrocarbons in Escherichia coli. However, product titers and yields remain low. In this work, we demonstrate new methods for improving fatty acid production by modifying central carbon metabolism and storing fatty acids in triacylglycerol. Based on suggestions from a computational model, we deleted seven genes involved in aerobic respiration, mixed-acid fermentation, and glyoxylate bypass (in the order of cyoA, nuoA, ndh, adhE, dld, pta, and iclR) to modify the central carbon metabolic/regulatory networks. These gene deletions led to increased total fatty acids, which were the highest in the mutants containing five or six gene knockouts. Additionally, when two key enzymes in the fatty acid biosynthesis pathway were over-expressed, we observed further increase in strain △cyoA△adhE△nuoA△ndh△pta△dld, leading to 202 mg/g dry cell weight of total fatty acids, ~250% of that in the wild-type strain. Meanwhile, we successfully introduced a triacylglycerol biosynthesis pathway into E. coli through heterologous expression of wax ester synthase/acyl-coenzyme:diacylglycerol acyltransferase (WS/DGAT) enzymes. The added pathway improved both the amount and fuel quality of the fatty acids. These new metabolic engineering strategies are providing promising directions for future investigation. PMID:24147139

  19. Genetic correlations of mid-infrared-predicted milk fatty acid groups with milk production traits.

    PubMed

    Fleming, A; Schenkel, F S; Malchiodi, F; Ali, R A; Mallard, B; Sargolzaei, M; Jamrozik, J; Johnston, J; Miglior, F

    2018-05-01

    The objective of this research was to estimate the genetic correlations between milk mid-infrared-predicted fatty acid groups and production traits in first-parity Canadian Holsteins. Contents of short-chain, medium-chain, long-chain, saturated, and unsaturated fatty acid groupings in milk samples can be predicted using mid-infrared spectral data for cows enrolled in milk recording programs. Predicted fatty acid group contents were obtained for 49,127 test-day milk samples from 10,029 first-parity Holstein cows in 810 herds. Milk yield, fat and protein yield, fat and protein percentage, fat-to-protein ratio, and somatic cell score were also available for these test days. Genetic parameters were estimated for the fatty acid groups and production traits using multiple-trait random regression test day models by Bayesian methods via Gibbs sampling. Three separate 8- or 9-trait analyses were performed, including the 5 fatty acid groups with different combinations of the production traits. Posterior standard deviations ranged from <0.001 to 0.01. Average daily genetic correlations were negative and similar to each other for the fatty acid groups with milk yield (-0.62 to -0.59) and with protein yield (-0.32 to -0.25). Weak and positive average daily genetic correlations were found between somatic cell score and the fatty acid groups (from 0.25 to 0.36). Stronger genetic correlations with fat yield, fat and protein percentage, and fat-to-protein ratio were found with medium-chain and saturated fatty acid groups compared with those with long-chain and unsaturated fatty acid groups. Genetic correlations were very strong between the fatty acid groups and fat percentage, ranging between 0.88 for unsaturated and 0.99 for saturated fatty acids. Daily genetic correlations from 5 to 305 d in milk with milk, protein yield and percentage, and somatic cell score traits showed similar patterns for all fatty acid groups. The daily genetic correlations with fat yield at the beginning of lactation were decreasing for long-chain and unsaturated fatty acid groups and increasing for short-chain fatty acids. Genetic correlations between fat percentage and fatty acids were increasing at the beginning of lactation for short- and medium-chain and saturated fatty acids, but slightly decreasing for long-chain and unsaturated fatty acid groups. These results can be used in defining fatty acid traits and breeding objectives. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  20. Annual cycle and spatial trends in fatty acid composition of suspended particulate organic matter across the Beaufort Sea shelf

    NASA Astrophysics Data System (ADS)

    Connelly, Tara L.; Businski, Tara N.; Deibel, Don; Parrish, Christopher C.; Trela, Piotr

    2016-11-01

    Fatty acid profiles of suspended particulate organic matter (POM) were determined over an annual cycle (September 2003 to August 2004) on the Beaufort Sea shelf, Canadian Arctic. Special emphasis was placed on the nutritional quality of the fatty acid pool available to zooplankton by examining spatial and temporal patterns in the proportions of total polyunsaturated fatty acids (PUFA) and the essential fatty acids 22:6n-3 (DHA) and 20:5n-3 (EPA). EPA and DHA were the two most abundant PUFA throughout the study period. A log-ratio multivariate (LRA) analysis revealed strong structure in fatty acid profiles related to season and depth. Dominant fatty acids accounting for the observed trend included 18:5n-3, 18:4n-3, 16:1n-7, 20:5n-3, 18:0 and 20:3n-3. We observed a shift in fatty acid profiles from summer to autumn (e.g., from 16:1n-7 and EPA to 18:5n-3 and 18:4n-3) that likely corresponded to a shift in the relative importance of diatoms versus dinoflagellates, prymnesiophytes and/or prasinophytes to the POM pool. Fatty acid composition during winter was dominated by more refractory saturated fatty acids. A surprising finding was the depth and seasonal trend of 20:3n-3, which was higher in winter, aligned with 18:0 in the LRA, but behaved differently than other n-3 PUFA. We interpret fatty acid profiles during summer to be predominantly driven by phytoplankton inputs, whereas fatty acid profiles in winter were dominated by fatty acids that were left over after consumption and/or were generated by heterotrophs. The highest diatom inputs (EPA, the diatom fatty acid marker), n-3/n-6 ratios, and C16 PUFA index were located in an upwelling region off Cape Bathurst. This study is the first annual time series of fatty acid profiles of POM in Arctic seas, expanding our knowledge of the composition of POM throughout the dark season.

  1. Trends in linoleic acid intake in the United States adult population: NHANES 1999-2014

    USDA-ARS?s Scientific Manuscript database

    Linoleic acid (LA), the primary polyunsaturated fatty acid (PUFA) in the US diet, is an essential fatty acid. LA is available from a wide variety of foods, although it is primarily sourced from plant seed oils. Individual-level data on demography and food and nutrient intake were acquired from the N...

  2. 76 FR 80871 - Monsanto Co.; Availability of Petition, Plant Pest Risk Assessment, and Environmental Assessment...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-27

    ... genetically engineered to produce stearidonic acid, an omega-3 fatty acid not found in conventional soybean... genetically engineered to produce stearidonic acid, an omega-3 fatty acid not found in conventional soybean... parts 1500-1508), (3) USDA regulations implementing NEPA (7 CFR part 1b), and (4) APHIS' NEPA...

  3. Fatty Acid and Phytosterol Content of Commercial Saw Palmetto Supplements

    PubMed Central

    Penugonda, Kavitha; Lindshield, Brian L.

    2013-01-01

    Saw palmetto supplements are one of the most commonly consumed supplements by men with prostate cancer and/or benign prostatic hyperplasia (BPH). Some studies have found significant improvements in BPH and lower urinary tract symptoms (LUTS) with saw palmetto supplementation, whereas others found no benefits. The variation in the efficacy in these trials may be a result of differences in the putative active components, fatty acids and phytosterols, of the saw palmetto supplements. To this end, we quantified the major fatty acids (laurate, myristate, palmitate, stearate, oleate, linoleate) and phytosterols (campesterol, stigmasterol, β-sitosterol) in 20 commercially available saw palmetto supplements using GC-FID and GC-MS, respectively. Samples were classified into liquids, powders, dried berries, and tinctures. Liquid saw palmetto supplements contained significantly higher (p < 0.05) concentrations of total fatty acids (908.5 mg/g), individual fatty acids, total phytosterols (2.04 mg/g), and individual phytosterols, than the other supplement categories. Powders contained significantly higher (p < 0.05) concentrations of total fatty acids than tinctures, which contain negligible amounts of fatty acids (46.3 mg/g) and phytosterols (0.10 mg/g). Our findings suggest that liquid saw palmetto supplements may be the best choice for individuals who want to take a saw palmetto supplement with the highest concentrations of both fatty acids and phytosterols. PMID:24067389

  4. Fatty acid and phytosterol content of commercial saw palmetto supplements.

    PubMed

    Penugonda, Kavitha; Lindshield, Brian L

    2013-09-13

    Saw palmetto supplements are one of the most commonly consumed supplements by men with prostate cancer and/or benign prostatic hyperplasia (BPH). Some studies have found significant improvements in BPH and lower urinary tract symptoms (LUTS) with saw palmetto supplementation, whereas others found no benefits. The variation in the efficacy in these trials may be a result of differences in the putative active components, fatty acids and phytosterols, of the saw palmetto supplements. To this end, we quantified the major fatty acids (laurate, myristate, palmitate, stearate, oleate, linoleate) and phytosterols (campesterol, stigmasterol, β-sitosterol) in 20 commercially available saw palmetto supplements using GC-FID and GC-MS, respectively. Samples were classified into liquids, powders, dried berries, and tinctures. Liquid saw palmetto supplements contained significantly higher (p < 0.05) concentrations of total fatty acids (908.5 mg/g), individual fatty acids, total phytosterols (2.04 mg/g), and individual phytosterols, than the other supplement categories. Powders contained significantly higher (p < 0.05) concentrations of total fatty acids than tinctures, which contain negligible amounts of fatty acids (46.3 mg/g) and phytosterols (0.10 mg/g). Our findings suggest that liquid saw palmetto supplements may be the best choice for individuals who want to take a saw palmetto supplement with the highest concentrations of both fatty acids and phytosterols.

  5. Phase behavior of stratum corneum lipids in mixed Langmuir-Blodgett monolayers.

    PubMed Central

    ten Grotenhuis, E; Demel, R A; Ponec, M; Boer, D R; van Miltenburg, J C; Bouwstra, J A

    1996-01-01

    The lipids found in the bilayers of the stratum corneum fulfill the vital barrier role of mammalian bodies. The main classes of lipids found in stratum corneum are ceramides, cholesterol, and free fatty acids. For an investigation of their phase behavior, mixed Langmuir-Blodgett monolayers of these lipids were prepared. Atomic force microscopy was used to investigate the structure of the monolayers as a function of the monolayer composition. Three different types of ceramide were used: ceramide extracted from pigskin, a commercially available ceramide with several fatty acid chain lengths, and two synthetic ceramides that have only one fatty acid chain length. In pigskin ceramide-cholesterol mixed monolayers phase separation was observed. This phase separation was also found for the commercially available type III Sigma ceramide-cholesterol mixed monolayers with molar ratios ranging from 1:0.1 to 1:1. These monolayers separated into two phases, one composed of the long fatty acid chain fraction of Sigma ceramide III and the other of the short fatty acid chain fraction of Sigma ceramide III mixed with cholesterol. Mixtures with a higher cholesterol content consisted of only one phase. These observations were confirmed by the results obtained with synthetic ceramides, which have only one fatty acid chain length. The synthetic ceramide with a palmitic acid (16:0) chain mixed with cholesterol, and the synthetic ceramide with a lignoceric acid (24:0) chain did not. Free fatty acids showed a preference to mix with one of these phases, depending on their fatty acid chain lengths. The results of this investigation suggest that the model system used in this study is in good agreement with those of other studies concerning the phase behavior of the stratum corneum lipids. By varying the composition of the monolayers one can study the role of each lipid class in detail. Images FIGURE 2 FIGURE 3 FIGURE 4 FIGURE 5 FIGURE 6 PMID:8874014

  6. Food sources and intake of n-6 and n-3 fatty acids in low-income countries with emphasis on infants, young children (6-24 months), and pregnant and lactating women.

    PubMed

    Michaelsen, Kim F; Dewey, Kathryn G; Perez-Exposito, Ana B; Nurhasan, Mulia; Lauritzen, Lotte; Roos, Nanna

    2011-04-01

    With increasing interest in the potential effects of n-6 and n-3 fatty acids in early life, there is a need for data on the dietary intake of polyunsaturated fatty acids (PUFA) in low-income countries. This review compiles information on the content in breast milk and in foods that are important in the diets of low-income countries from the few studies available. We also estimate the availability of fat and fatty acids in 13 low-income and middle-income countries based on national food balance sheets from the United Nations' Food and Agriculture Organization Statistical Database (FOASTAT). Breast milk docosahexaenoic acid content is very low in populations living mainly on a plant-based diet, but higher in fish-eating countries. Per capita supply of fat and n-3 fatty acids increases markedly with increasing gross domestic product (GDP). In most of the 13 countries, 70-80% of the supply of PUFA comes from cereals and vegetable oils, some of which have very low α-linolenic acid (ALA) content. The total n-3 fatty acid supply is below or close to the lower end of the recommended intake range [0.4%E (percentage of energy supply)] for infants and young children, and below the minimum recommended level (0.5%E) for pregnant and lactating women in the nine countries with the lowest GDP. Fish is important as a source of long-chain n-3 fatty acids, but intake is low in many countries. The supply of n-3 fatty acids can be increased by using vegetable oils with higher ALA content (e.g. soybean or rapeseed oil) and by increasing fish production (e.g. through fish farming). © 2011 Blackwell Publishing Ltd.

  7. Fatty acid kinetic responses to running above or below lactate threshold.

    PubMed

    Kanaley, J A; Mottram, C D; Scanlon, P D; Jensen, M D

    1995-08-01

    During running exercise above the lactate threshold (LT), it is unknown whether free fatty acid (FFA) mobilization can meet the energy demands for fatty acid oxidation. This study was performed to determine whether FFA availability is reduced during running exercise above compared with below the LT and to assess whether the level of endurance training influences FFA mobilization. Twelve marathon runners and 12 moderately trained runners ran at a workload that was either above or below their individual LT. Fatty acid oxidation (indirect calorimetry) and FFA release ([1-14C]palmitate) were measured at baseline, throughout exercise, and at recovery. The plasma FFA rate of appearance increased during exercise in both groups; running above or below the LT, but the total FFA availability for 30 min of exercise was greater (P < 0.01) in the below LT group (marathon, 23 +/- 2 mmol; moderate, 21 +/- 2 mmol) than in the above LT group (18 +/- 3 and 13 +/- 3 mmol, respectively). Total fatty acid oxidation (indirect calorimetry) greatly exceeded circulating FFA availability, regardless of training or exercise group (P < 0.01). No statistically significant exercise intensity or training differences in fatty acid oxidation were found (above LT: marathon, 71 +/- 12, moderate, 64 +/- 17 mmol/30 min; below LT: marathon 91 +/- 12, moderate, 60 +/- 5 mmol/30 min). In conclusion, during exercise above or below LT, circulating FFA cannot meet the oxidative needs and intramuscular triglyceride stores must be utilized. Further marathon training does not enhance effective adipose tissue lipolysis during exercise compared with moderate endurance training.

  8. Demonstration of diet-induced decoupling of fatty acid and cholesterol synthesis by combining gene expression array and 2H2O quantification.

    PubMed

    Jensen, Kristian K; Previs, Stephen F; Zhu, Lei; Herath, Kithsiri; Wang, Sheng-Ping; Bhat, Gowri; Hu, Guanghui; Miller, Paul L; McLaren, David G; Shin, Myung K; Vogt, Thomas F; Wang, Liangsu; Wong, Kenny K; Roddy, Thomas P; Johns, Douglas G; Hubbard, Brian K

    2012-01-15

    The liver is a crossroad for metabolism of lipid and carbohydrates, with acetyl-CoA serving as an important metabolic intermediate and a precursor for fatty acid and cholesterol biosynthesis pathways. A better understanding of the regulation of these pathways requires an experimental approach that provides both quantitative metabolic flux measurements and mechanistic insight. Under conditions of high carbohydrate availability, excess carbon is converted into free fatty acids and triglyceride for storage, but it is not clear how excessive carbohydrate availability affects cholesterol biosynthesis. To address this, C57BL/6J mice were fed either a low-fat, high-carbohydrate diet or a high-fat, carbohydrate-free diet. At the end of the dietary intervention, the two groups received (2)H(2)O to trace de novo fatty acid and cholesterol synthesis, and livers were collected for gene expression analysis. Expression of lipid and glucose metabolism genes was determined using a custom-designed pathway focused PCR-based gene expression array. The expression analysis showed downregulation of cholesterol biosynthesis genes and upregulation of fatty acid synthesis genes in mice receiving the high-carbohydrate diet compared with the carbohydrate-free diet. In support of these findings, (2)H(2)O tracer data showed that fatty acid synthesis was increased 10-fold and cholesterol synthesis was reduced by 1.6-fold in mice fed the respective diets. In conclusion, by applying gene expression analysis and tracer methodology, we show that fatty acid and cholesterol synthesis are differentially regulated when the carbohydrate intake in mice is altered.

  9. Lipomobilization in periparturient dairy cows influences the composition of plasma nonesterified fatty acids and leukocyte phospholipid fatty acids.

    PubMed

    Contreras, G A; O'Boyle, N J; Herdt, T H; Sordillo, L M

    2010-06-01

    The periparturient period is characterized by sudden changes in metabolic and immune cell functions that predispose dairy cows to increased incidence of disease. Metabolic changes include alterations in the energy balance that lead to increased lipomobilization with consequent elevation of plasma nonesterified fatty acids (NEFA) concentrations. The objective of this study was to establish the influence of lipomobilization on fatty acid profiles within plasma lipid fractions and leukocyte phospholipid composition. Blood samples from 10 dairy cows were collected at 14 and 7 d before due date, at calving, and at 7, 14, and 30 d after calving. Total lipids and lipid fractions were extracted from plasma and peripheral blood mononuclear cells. The degree of lipomobilization was characterized by measurement of plasma NEFA concentrations. The fatty acid profile of plasma NEFA, plasma phospholipids, and leukocyte phospholipids differed from the composition of total lipids in plasma, where linoleic acid was the most common fatty acid. Around parturition and during early lactation, the proportion of palmitic acid significantly increased in the plasma NEFA and phospholipid fractions with a concomitant increase in the phospholipid fatty acid profile of leukocytes. In contrast, the phospholipid fraction of long-chain polyunsaturated fatty acids in leukocytes was diminished during the periparturient period, especially during the first 2 wk following parturition. This study showed that the composition of total plasma lipids does not necessarily reflect the NEFA and phospholipid fractions in periparturient dairy cows. These findings are significant because it is the plasma phospholipid fraction that contributes to fatty acid composition of membrane phospholipids. Increased availability of certain saturated fatty acids in the NEFA phospholipid fractions may contribute to altered leukocyte functions during the periparturient period. 2010 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  10. The natural diyne-furan fatty acid EV-086 is an inhibitor of fungal delta-9 fatty acid desaturation with efficacy in a model of skin dermatophytosis.

    PubMed

    Knechtle, Philipp; Diefenbacher, Melanie; Greve, Katrine B V; Brianza, Federico; Folly, Christophe; Heider, Harald; Lone, Museer A; Long, Lisa; Meyer, Jean-Philippe; Roussel, Patrick; Ghannoum, Mahmoud A; Schneiter, Roger; Sorensen, Alexandra S

    2014-01-01

    Human fungal infections represent a therapeutic challenge. Although effective strategies for treatment are available, resistance is spreading, and many therapies have unacceptable side effects. A clear need for novel antifungal targets and molecules is thus emerging. Here, we present the identification and characterization of the plant-derived diyne-furan fatty acid EV-086 as a novel antifungal compound. EV-086 has potent and broad-spectrum activity in vitro against Candida, Aspergillus, and Trichophyton spp., whereas activities against bacteria and human cell lines are very low. Chemical-genetic profiling of Saccharomyces cerevisiae deletion mutants identified lipid metabolic processes and organelle organization and biogenesis as targets of EV-086. Pathway modeling suggested that EV-086 inhibits delta-9 fatty acid desaturation, an essential process in S. cerevisiae, depending on the delta-9 fatty acid desaturase OLE1. Delta-9 unsaturated fatty acids-but not saturated fatty acids-antagonized the EV-086-mediated growth inhibition, and transcription of the OLE1 gene was strongly upregulated in the presence of EV-086. EV-086 increased the ratio of saturated to unsaturated free fatty acids and phosphatidylethanolamine fatty acyl chains, respectively. Furthermore, EV-086 was rapidly taken up into the lipid fraction of the cell and incorporated into phospholipids. Together, these findings demonstrate that EV-086 is an inhibitor of delta-9 fatty acid desaturation and that the mechanism of inhibition might involve an EV-086-phospholipid. Finally, EV-086 showed efficacy in a guinea pig skin dermatophytosis model of topical Trichophyton infection, which demonstrates that delta-9 fatty acid desaturation is a valid antifungal target, at least for dermatophytoses.

  11. Characterization of Fatty Acids in Crenarchaeota by GC-MS and NMR

    PubMed Central

    Hamerly, Timothy; Tripet, Brian; Wurch, Louie; Hettich, Robert L.; Podar, Mircea; Bothner, Brian; Copié, Valérie

    2015-01-01

    Lipids composed of condensed isoprenyl units connected to glycerol backbones by ether linkages are a distinguishing feature of Archaea. Data suggesting that fatty acids with linear hydrocarbon chains are present in some Archaea have been available for decades. However, lack of genomic and biochemical evidence for the metabolic machinery required to synthesize and degrade fatty acids has left the field unclear on this potentially significant biochemical aspect. Because lipids are energy currency and cell signaling molecules, their presence in Archaea is significant for understanding archaeal biology. A recent large-scale bioinformatics analysis reignited the debate as to the importance of fatty acids in Archaea by presenting genetic evidence for the presence of enzymes required for anabolic and catabolic fatty acid metabolism across the archaeal domain. Here, we present direct biochemical evidence from gas chromatography-mass spectrometry (GC-MS) and nuclear magnetic resonance (NMR) spectroscopy for the presence of fatty acids in two members of the Crenarchaeota, Sulfolobus solfataricus and Ignicoccus hospitalis. This is the first report providing biochemical data for the existence of fatty acids in these Crenarchaeota, opening new discussions on energy balance and the potential for the discovery of new thermostable enzymes for industry. PMID:26880868

  12. Omega-6 fatty acid biomarkers and incident type 2 diabetes: Pooled analysis of individual-level data for 39740 adults from 20 prospective cohort studies

    USDA-ARS?s Scientific Manuscript database

    The metabolic effects of omega-6 polyunsaturated fatty acids (PUFAs) remain contentious, and little evidence is available regarding their potential role in primary prevention of type 2 diabetes. We aimed to assess the associations of linoleic acid and arachidonic acid biomarkers with incident type 2...

  13. A Thermoacidophile-Specific Protein Family, DUF3211, Functions as a Fatty Acid Carrier with Novel Binding Mode

    PubMed Central

    Miyakawa, Takuya; Sawano, Yoriko; Miyazono, Ken-ichi; Miyauchi, Yumiko; Hatano, Ken-ichi

    2013-01-01

    STK_08120 is a member of the thermoacidophile-specific DUF3211 protein family from Sulfolobus tokodaii strain 7. Its molecular function remains obscure, and sequence similarities for obtaining functional remarks are not available. In this study, the crystal structure of STK_08120 was determined at 1.79-Å resolution to predict its probable function using structure similarity searches. The structure adopts an α/β structure of a helix-grip fold, which is found in the START domain proteins with cavities for hydrophobic substrates or ligands. The detailed structural features implied that fatty acids are the primary ligand candidates for STK_08120, and binding assays revealed that the protein bound long-chain saturated fatty acids (>C14) and their trans-unsaturated types with an affinity equal to that for major fatty acid binding proteins in mammals and plants. Moreover, the structure of an STK_08120-myristic acid complex revealed a unique binding mode among fatty acid binding proteins. These results suggest that the thermoacidophile-specific protein family DUF3211 functions as a fatty acid carrier with a novel binding mode. PMID:23836863

  14. Changes in consumption of omega-3 and omega-6 fatty acids in the United States during the 20th century123

    PubMed Central

    Blasbalg, Tanya L; Hibbeln, Joseph R; Ramsden, Christopher E; Majchrzak, Sharon F; Rawlings, Robert R

    2011-01-01

    Background: The consumption of omega-3 (n–3) and omega-6 (n–6) essential fatty acids in Western diets is thought to have changed markedly during the 20th century. Objective: We sought to quantify changes in the apparent consumption of essential fatty acids in the United States from 1909 to 1999. Design: We calculated the estimated per capita consumption of food commodities and availability of essential fatty acids from 373 food commodities by using economic disappearance data for each year from 1909 to 1999. Nutrient compositions for 1909 were modeled by using current foods (1909-C) and foods produced by traditional early 20th century practices (1909-T). Results: The estimated per capita consumption of soybean oil increased >1000-fold from 1909 to 1999. The availability of linoleic acid (LA) increased from 2.79% to 7.21% of energy (P < 0.000001), whereas the availability of α-linolenic acid (ALA) increased from 0.39% to 0.72% of energy by using 1909-C modeling. By using 1909-T modeling, LA was 2.23% of energy, and ALA was 0.35% of energy. The ratio of LA to ALA increased from 6.4 in 1909 to 10.0 in 1999. The 1909-T but not the 1909-C data showed substantial declines in dietary availability (percentage of energy) of n−6 arachidonic acid, eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA). Predicted net effects of these dietary changes included declines in tissue n--3 highly unsaturated fatty acid status (36.81%, 1909-T; 31.28%, 1909-C; 22.95%, 1999) and declines in the estimated omega-3 index (8.28, 1909-T; 6.51, 1909-C; 3.84, 1999). Conclusion: The apparent increased consumption of LA, which was primarily from soybean oil, has likely decreased tissue concentrations of EPA and DHA during the 20th century. PMID:21367944

  15. Development of saw palmetto (Serenoa repens) fruit and extract standard reference materials.

    PubMed

    Schantz, Michele M; Bedner, Mary; Long, Stephen E; Molloy, John L; Murphy, Karen E; Porter, Barbara J; Putzbach, Karsten; Rimmer, Catherine A; Sander, Lane C; Sharpless, Katherine E; Thomas, Jeanice B; Wise, Stephen A; Wood, Laura J; Yen, James H; Yarita, Takashi; NguyenPho, Agnes; Sorenson, Wendy R; Betz, Joseph M

    2008-10-01

    As part of a collaboration with the National Institutes of Health's Office of Dietary Supplements and the Food and Drug Administration's Center for Drug Evaluation and Research, the National Institute of Standards and Technology has developed two standard reference materials (SRMs) representing different forms of saw palmetto (Serenoa repens), SRM 3250 Serenoa repens fruit and SRM 3251 Serenoa repens extract. Both of these SRMs have been characterized for their fatty acid and phytosterol content. The fatty acid concentration values are based on results from gas chromatography with flame ionization detection (GC-FID) and mass spectrometry (GC/MS) analysis while the sterol concentration values are based on results from GC-FID and liquid chromatography with mass spectrometry analysis. In addition, SRM 3250 has been characterized for lead content, and SRM 3251 has been characterized for the content of beta-carotene and tocopherols. SRM 3250 (fruit) has certified concentration values for three phytosterols, 14 fatty acids as triglycerides, and lead along with reference concentration values for four fatty acids as triglycerides and 16 free fatty acids. SRM 3251 (extract) has certified concentration values for three phytosterols, 17 fatty acids as triglycerides, beta-carotene, and gamma-tocopherol along with reference concentration values for three fatty acids as triglycerides, 17 fatty acids as free fatty acids, beta-carotene isomers, and delta-tocopherol and information values for two phytosterols. These SRMs will complement other reference materials currently available with concentrations for similar analytes and are part of a series of SRMs being developed for dietary supplements.

  16. Etomoxir-induced increase in UCP3 supports a role of uncoupling protein 3 as a mitochondrial fatty acid anion exporter.

    PubMed

    Schrauwen, Patrick; Hinderling, Vera; Hesselink, Matthijs K C; Schaart, Gert; Kornips, Esther; Saris, Wim H M; Westerterp-Plantenga, Margriet; Langhans, Wolfgang

    2002-10-01

    The physiological function of human uncoupling protein-3 is still unknown. Uncoupling protein-3 is increased during fasting and high-fat feeding. In these situations the availability of fatty acids to the mitochondria exceeds the capacity to metabolize fatty acids, suggesting a role for uncoupling protein-3 in handling of non-metabolizable fatty acids. To test the hypothesis that uncoupling protein-3 acts as a mitochondrial exporter of non-metabolizable fatty acids from the mitochondrial matrix, we gave human subjects Etomoxir (which blocks mitochondrial entry of fatty acids) or placebo in a cross-over design during a 36-h stay in a respiration chamber. Etomoxir inhibited 24-h fat oxidation and fat oxidation during exercise by approximately 14-19%. Surprisingly, uncoupling protein-3 content in human vastus lateralis muscle was markedly up-regulated within 36 h of Etomoxir administration. Up-regulation of uncoupling protein-3 was accompanied by lowered fasting blood glucose and increased translocation of glucose transporter-4. These data support the hypothesis that the physiological function of uncoupling protein-3 is to facilitate the outward transport of non-metabolizable fatty acids from the mitochondrial matrix and thus prevents mitochondria from the potential deleterious effects of high fatty acid levels. In addition our data show that up-regulation of uncoupling protein-3 can be beneficial in the treatment of type 2 diabetes.

  17. Omega-3 fatty acids: cardiovascular benefits, sources and sustainability.

    PubMed

    Lee, John H; O'Keefe, James H; Lavie, Carl J; Harris, William S

    2009-12-01

    The evidence for the cardioprotective nature of omega-3 fatty acids is abundant, and currently available data indicate that patients with known coronary heart disease should consume at least 1 g daily of long-chain omega-3 fatty acids from either oily fish or fish-oil supplements, and that individuals without disease should consume at least 250-500 mg daily. However, this area of research poses two questions. Firstly, which is the best source of omega-3 fatty acids-fish or fish-oil supplements? Secondly, are recommendations for omega-3 supplementation warranted in view of the rapid depletion of world fish stocks? The argument that eating fish is better than taking fish-oil supplements stems from the fact that several important nutrients, such as vitamin D, selenium, and antioxidants, are missing from the supplements. However, three major prevention trials have clearly indicated that omega-3 fatty acid capsules confer cardiovascular benefits and, therefore, that both are cardioprotective. Sustainable sources of omega-3 fatty acids will need to be identified if long-term cardiovascular risk reduction is to be achieved at the population level.

  18. Feeding ecology of Ammothella longipes (Arthropoda: Pycnogonida) in the Mediterranean Sea: A fatty acid biomarker approach

    NASA Astrophysics Data System (ADS)

    Soler-Membrives, Anna; Rossi, Sergio; Munilla, Tomás

    2011-05-01

    Fatty acid analysis has proved valuable in determining seasonal trophic links and the feeding behavior in organisms in which these diet and trophic links cannot be inferred from stomach content analyses. Seasonal variations in total free fatty acid content (TFFA) and fatty acid composition of seston (<250 μm), the brown macroalgae Stypocaulon spp., polychaetes (Nereididae) and the pycnogonid Ammothella longipes have been used to establish their trophic links, with particular focus on seasonality and feeding ecology of A. longipes. Samples were collected in a coastal environment (NW Mediterranean Sea) at 7-10 m depth, in five different periods (August and October 2008, February, June and September 2009). Seston and Stypocaulon spp. samples did not show significant seasonal variations in TFFA content, while nereids showed a significant variation. Analysis of fatty acid profile showed high similarities of fatty acid composition between seston and Stypocaulon spp. Nereids were closer to seston and Stypocaulon spp. than A. longipes, which seemed to follow a seasonal trend. The results of this study reveal that A. longipes may change its feeding behavior depending on the season and available food. This pycnogonid species appears to be carnivore during spring and early summer but seems to feed on detritus when availability of prey diminishes during winter. Notable high amounts of odd-chain fatty acids are found in summer-autumn for this species, which may come from bacteria acquired from the detrital diet or from de novo biosynthesis from propionate. The results obtained provide new and valuable data on the understudied feeding biology of pycnogonids in general, and contribute to the understanding of their functioning of Mediterranean shallow oligotrophic systems and their trophic links.

  19. Lipid profiling of the soybean pathogen Phytophthora sojae using Fatty Acid Methyl Esters (FAMEs).

    PubMed

    Yousef, Lina Fayez; Wojno, Michal; Dick, Warren A; Dick, Richard P

    2012-05-01

    Phytophthora sojae is a destructive soilborne pathogen of soybean, but currently there is no rapid or commercially available testing for its infestation level in soil. For growers, such information would greatly improve their ability to make management decisions to minimize disease damage to soybean crops. Fatty acid profiling of P. sojae holds potential for determining the prevalence of this pathogen in soil. In this study, the Fatty Acid Methyl Ester (FAME) profile of P. sojae was determined in pure culture, and the profile was subsequently evaluated for its potential use in detecting the pathogen in soil. The predominant fatty acids in the FAME profile of P. sojae are the unsaturated 18C fatty acids (18:1ω9 and 18:2ω6) followed by the saturated and unsaturated 16C fatty acids (16:0 and 16:1ω7). FAME analysis of P. sojae zoospores showed two additional long-chain saturated fatty acids (20:0 and 22:0) that were not detected in the mycelium of this organism. Addition of a known number of zoospores of P. sojae to soil demonstrated that fatty acids such as 18:1ω9, 18:2ω6, 20:1ω9, 20:4ω6, and 22:1ω9 could be detected and quantified against the background levels of fatty acids present in soil. These results show the potential for using selected FAMEs of P. sojae as a marker for detecting this pathogen in soybean fields. Copyright © 2012 British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  20. Omega-3 fatty acids (ῳ-3 fatty acids) in epilepsy: animal models and human clinical trials.

    PubMed

    DeGiorgio, Christopher M; Taha, Ameer Y

    2016-10-01

    There is growing interest in alternative and nutritional therapies for drug resistant epilepsy. ῳ-3 fatty acids such as fish or krill oil are widely available supplements used to lower triglycerides and enhance cardiovascular health. ῳ-3 fatty acids have been studied extensively in animal models of epilepsy. Yet, evidence from randomized controlled clinical trials in epilepsy is at an early stage. This report focuses on the key ῳ-3 fatty acids DHA and EPA, their incorporation into the lipid bilayer, modulation of ion channels, and mechanisms of action in reducing excitability within the central nervous system. This paper presents pre-clinical evidence from mouse, rat, and canine models, and reports the efficacy of n-3 fatty acids in randomized controlled clinical trials. An English language search of PubMed and Google scholar for the years 1981-2016 was performed for animal studies and human randomized controlled clinical trials. Expert commentary: Basic science and animal models provide a cogent rationale and substantial evidence for a role of ῳ-3 fatty acids in reducing seizures. Results in humans are limited. Recent Phase II RCT evidence suggests that low to moderate dose of ῳ-3 fatty acids reduce seizures; however, larger multicenter randomized trials are needed to confirm or refute the evidence. The safety, health effects, low cost and ease of use make ῳ-3 fatty acids an intriguing alternative therapy for drug resistant epilepsy. Though safety of profile is excellent, the human data is not yet sufficient to support efficacy in drug resistant epilepsy at this time.

  1. The Natural Diyne-Furan Fatty Acid EV-086 Is an Inhibitor of Fungal Delta-9 Fatty Acid Desaturation with Efficacy in a Model of Skin Dermatophytosis

    PubMed Central

    Diefenbacher, Melanie; Greve, Katrine B. V.; Brianza, Federico; Folly, Christophe; Heider, Harald; Lone, Museer A.; Long, Lisa; Meyer, Jean-Philippe; Roussel, Patrick; Ghannoum, Mahmoud A.; Schneiter, Roger; Sorensen, Alexandra S.

    2014-01-01

    Human fungal infections represent a therapeutic challenge. Although effective strategies for treatment are available, resistance is spreading, and many therapies have unacceptable side effects. A clear need for novel antifungal targets and molecules is thus emerging. Here, we present the identification and characterization of the plant-derived diyne-furan fatty acid EV-086 as a novel antifungal compound. EV-086 has potent and broad-spectrum activity in vitro against Candida, Aspergillus, and Trichophyton spp., whereas activities against bacteria and human cell lines are very low. Chemical-genetic profiling of Saccharomyces cerevisiae deletion mutants identified lipid metabolic processes and organelle organization and biogenesis as targets of EV-086. Pathway modeling suggested that EV-086 inhibits delta-9 fatty acid desaturation, an essential process in S. cerevisiae, depending on the delta-9 fatty acid desaturase OLE1. Delta-9 unsaturated fatty acids—but not saturated fatty acids—antagonized the EV-086-mediated growth inhibition, and transcription of the OLE1 gene was strongly upregulated in the presence of EV-086. EV-086 increased the ratio of saturated to unsaturated free fatty acids and phosphatidylethanolamine fatty acyl chains, respectively. Furthermore, EV-086 was rapidly taken up into the lipid fraction of the cell and incorporated into phospholipids. Together, these findings demonstrate that EV-086 is an inhibitor of delta-9 fatty acid desaturation and that the mechanism of inhibition might involve an EV-086–phospholipid. Finally, EV-086 showed efficacy in a guinea pig skin dermatophytosis model of topical Trichophyton infection, which demonstrates that delta-9 fatty acid desaturation is a valid antifungal target, at least for dermatophytoses. PMID:24189258

  2. Assessment of myocardial metabolic flexibility and work efficiency in human type 2 diabetes using 16-[18F]fluoro-4-thiapalmitate, a novel PET fatty acid tracer

    PubMed Central

    Hutchins, G. D.; Perry, K.; Territo, W.; Chisholm, R.; Acton, A.; Glick-Wilson, B.; Considine, R. V.; Moberly, S.; DeGrado, T. R.

    2015-01-01

    Altered myocardial fuel selection likely underlies cardiac disease risk in diabetes, affecting oxygen demand and myocardial metabolic flexibility. We investigated myocardial fuel selection and metabolic flexibility in human type 2 diabetes mellitus (T2DM), using positron emission tomography to measure rates of myocardial fatty acid oxidation {16-[18F]fluoro-4-thia-palmitate (FTP)} and myocardial perfusion and total oxidation ([11C]acetate). Participants underwent paired studies under fasting conditions, comparing 3-h insulin + glucose euglycemic clamp conditions (120 mU·m−2·min−1) to 3-h saline infusion. Lean controls (n = 10) were compared with glycemically controlled volunteers with T2DM (n = 8). Insulin augmented heart rate, blood pressure, and stroke index in both groups (all P < 0.01) and significantly increased myocardial oxygen consumption (P = 0.04) and perfusion (P = 0.01) in both groups. Insulin suppressed available nonesterified fatty acids (P < 0.0001), but fatty acid concentrations were higher in T2DM under both conditions (P < 0.001). Insulin-induced suppression of fatty acid oxidation was seen in both groups (P < 0.0001). However, fatty acid oxidation rates were higher under both conditions in T2DM (P = 0.003). Myocardial work efficiency was lower in T2DM (P = 0.006) and decreased in both groups with the insulin-induced increase in work and shift in fuel utilization (P = 0.01). Augmented fatty acid oxidation is present under baseline and insulin-treated conditions in T2DM, with impaired insulin-induced shifts away from fatty acid oxidation. This is accompanied by reduced work efficiency, possibly due to greater oxygen consumption with fatty acid metabolism. These observations suggest that improved fatty acid suppression, or reductions in myocardial fatty acid uptake and retention, could be therapeutic targets to improve myocardial ischemia tolerance in T2DM. PMID:26732686

  3. Assessment of myocardial metabolic flexibility and work efficiency in human type 2 diabetes using 16-[18F]fluoro-4-thiapalmitate, a novel PET fatty acid tracer.

    PubMed

    Mather, K J; Hutchins, G D; Perry, K; Territo, W; Chisholm, R; Acton, A; Glick-Wilson, B; Considine, R V; Moberly, S; DeGrado, T R

    2016-03-15

    Altered myocardial fuel selection likely underlies cardiac disease risk in diabetes, affecting oxygen demand and myocardial metabolic flexibility. We investigated myocardial fuel selection and metabolic flexibility in human type 2 diabetes mellitus (T2DM), using positron emission tomography to measure rates of myocardial fatty acid oxidation {16-[(18)F]fluoro-4-thia-palmitate (FTP)} and myocardial perfusion and total oxidation ([(11)C]acetate). Participants underwent paired studies under fasting conditions, comparing 3-h insulin + glucose euglycemic clamp conditions (120 mU·m(-2)·min(-1)) to 3-h saline infusion. Lean controls (n = 10) were compared with glycemically controlled volunteers with T2DM (n = 8). Insulin augmented heart rate, blood pressure, and stroke index in both groups (all P < 0.01) and significantly increased myocardial oxygen consumption (P = 0.04) and perfusion (P = 0.01) in both groups. Insulin suppressed available nonesterified fatty acids (P < 0.0001), but fatty acid concentrations were higher in T2DM under both conditions (P < 0.001). Insulin-induced suppression of fatty acid oxidation was seen in both groups (P < 0.0001). However, fatty acid oxidation rates were higher under both conditions in T2DM (P = 0.003). Myocardial work efficiency was lower in T2DM (P = 0.006) and decreased in both groups with the insulin-induced increase in work and shift in fuel utilization (P = 0.01). Augmented fatty acid oxidation is present under baseline and insulin-treated conditions in T2DM, with impaired insulin-induced shifts away from fatty acid oxidation. This is accompanied by reduced work efficiency, possibly due to greater oxygen consumption with fatty acid metabolism. These observations suggest that improved fatty acid suppression, or reductions in myocardial fatty acid uptake and retention, could be therapeutic targets to improve myocardial ischemia tolerance in T2DM. Copyright © 2016 the American Physiological Society.

  4. Comparing the Impact of Prescription Omega-3 Fatty Acid Products on Low-Density Lipoprotein Cholesterol.

    PubMed

    Sharp, Randall P; Gales, Barry J; Sirajuddin, Riaz

    2018-04-01

    Elevated levels of triglycerides are associated with pancreatitis and an increased risk of coronary heart disease. Numerous pharmacologic therapies are available to treat hypertriglyceridemia, including prescription omega-3 fatty acids, which reduce triglyceride levels by 20-50%. Available data indicate the omega-3 fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) may be beneficial for secondary prevention of coronary heart disease. Products containing DHA may increase low-density lipoprotein cholesterol (LDL-C) and, subsequently, coronary heart disease risk. We reviewed prescription omega-3 fatty acid products, of which two-omega-3 acid ethyl esters (OM3EE) and omega-3 carboxylic acid (OM3CA)-contain both DHA and EPA, whereas the other-icosapent ethyl (IPE)-contains EPA only. We identified three retrospective chart reviews and three case reports comparing IPE with OM3EE, whereas two studies compared IPE with placebo. We also reviewed the major studies of OM3EE versus placebo used to gain US FDA approval. LDL-C levels decreased or did not increase significantly in all available studies and case reports in patients receiving the IPE product, with the best data supporting a dose of 4 g per day. The majority of studies only included patients taking IPE concomitantly with statins, but limited data from one study using IPE monotherapy showed a small reduction in LDL-C. Many questions remain regarding IPE, including whether the product reduces cardiovascular events and mortality.

  5. Effect of changes in fat availability on exercise capacity in McArdle disease.

    PubMed

    Andersen, Susanne T; Jeppesen, Tina D; Taivassalo, Tanja; Sveen, Marie-Louise; Heinicke, Katja; Haller, Ronald G; Vissing, John

    2009-06-01

    The major fuel for exercising muscle at low exercise intensities is fat. To investigate the role of fat metabolism in McArdle disease (also known as glycogen storage disease type V), an inborn error of muscle glycogenolysis, by manipulating free fatty acid availability for oxidation during exercise. Randomized, placebo-controlled, crossover trial. Hospitalized care. Ten patients (8 men and 2 women) with McArdle disease. Patients cycled at a constant workload corresponding to 70% of their maximum oxygen consumption. In random order and on separate days, patients received nicotinic acid (a known blocker of lipolysis) to decrease the availability of free fatty acids or 20% Intralipid infusion to increase free fatty acid availability during exercise. Results were compared with placebo (isotonic sodium chloride solution infusion) and glucose infusion trials. Exercise tolerance was assessed by heart rate response to exercise during different infusions. Free fatty acid levels more than tripled by Intralipid infusion and were halved by nicotinic acid administration. Heart rate was significantly higher during exercise in the Intralipid infusion and nicotinic acid trials compared with the placebo and glucose infusion trials, an effect that was observed before and after the patients had experienced the second wind phenomenon. Lipids are an important source of fuel for exercising muscle in McArdle disease, but maximal rates of fat oxidation seem limited and cannot be increased above physiologically normal rates during exercise. This limitation is probably caused by a metabolic bottleneck in the tricarboxylic acid cycle due to impaired glycolytic flux in McArdle disease. Therapies aimed at enhancing fat use in McArdle disease should be combined with interventions targeting expansion of the tricarboxylic acid cycle.

  6. Proximate composition, amino acid and fatty acid profiles of marine snail Rapana venosa meat, visceral mass and operculum.

    PubMed

    Luo, Fenglei; Xing, Ronge; Wang, Xueqin; Peng, Quancai; Li, Pengcheng

    2017-12-01

    Rapana venosa (Rv), an important marine snail, demonstrates an increasing nutritional and economic importance. However, there is still limited information available on their nutritional composition. The present study highlights and provides new information on the proximate composition, amino acid and fatty acid profiles of different body parts of Rv, aiming for its better application and research. The operculum contained a high amount of protein and flavor amino acids. The edible tissues, including meat and visceral mass, were valuable sources of essential amino acids (EAA) apart from methionine and cysteine. In addition, the meat contained high amount of taurine. Fatty acid analysis indicated that the edible tissues contained high amounts of ω3 fatty acids, especially eicosapentaenoic acid (EPA) (C20:5ω3) and docosahexaenoic acid (DHA) (C22:6ω3), and had a low ω6/ω3 fatty acid ratio. Interestingly, significantly higher concentrations of most nutritional elements such as fat, EAA, EPA and DHA, were found in the visceral mass compared to those in the meat. The operculum of Rv may became a very interesting source for some protein and flavor peptide development, and the edible parts of Rv may be utilized for special dietary applications requiring high amounts of taurine, EPA, DHA and a lower ω6/ω3 fatty acid ratio. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  7. Characterization of Fatty Acids in Crenarchaeota by GC-MS and NMR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamerly, Timothy; Tripet, Brian; Wurch, Louie

    Lipids composed of condensed isoprenyl units connected to glycerol backbones by ether linkages are a distinguishing feature of Archaea. Data suggesting that fatty acids with linear hydrocarbon chains are present in some Archaea have been available for decades. However, lack of genomic and biochemical evidence for the metabolic machinery required to synthesize and degrade fatty acids has left the field unclear on this potentially significant biochemical aspect. Because lipids are energy currency and cell signaling molecules, their presence in Archaea is significant for understanding archaeal biology. A recent large-scale bioinformatics analysis reignited the debate as to the importance of fattymore » acids in Archaea by presenting genetic evidence for the presence of enzymes required for anabolic and catabolic fatty acid metabolism across the archaeal domain. Here, we present direct biochemical evidence from gas chromatography-mass spectrometry (GC-MS) and nuclear magnetic resonance (NMR) spectroscopy for the presence of fatty acids in two members of the Crenarchaeota,Sulfolobus solfataricusandIgnicoccus hospitalis. Lastly, this is the first report providing biochemical data for the existence of fatty acids in these Crenarchaeota, opening new discussions on energy balance and the potential for the discovery of new thermostable enzymes for industry.« less

  8. Characterization of Fatty Acids in Crenarchaeota by GC-MS and NMR

    DOE PAGES

    Hamerly, Timothy; Tripet, Brian; Wurch, Louie; ...

    2015-01-01

    Lipids composed of condensed isoprenyl units connected to glycerol backbones by ether linkages are a distinguishing feature of Archaea. Data suggesting that fatty acids with linear hydrocarbon chains are present in some Archaea have been available for decades. However, lack of genomic and biochemical evidence for the metabolic machinery required to synthesize and degrade fatty acids has left the field unclear on this potentially significant biochemical aspect. Because lipids are energy currency and cell signaling molecules, their presence in Archaea is significant for understanding archaeal biology. A recent large-scale bioinformatics analysis reignited the debate as to the importance of fattymore » acids in Archaea by presenting genetic evidence for the presence of enzymes required for anabolic and catabolic fatty acid metabolism across the archaeal domain. Here, we present direct biochemical evidence from gas chromatography-mass spectrometry (GC-MS) and nuclear magnetic resonance (NMR) spectroscopy for the presence of fatty acids in two members of the Crenarchaeota,Sulfolobus solfataricusandIgnicoccus hospitalis. Lastly, this is the first report providing biochemical data for the existence of fatty acids in these Crenarchaeota, opening new discussions on energy balance and the potential for the discovery of new thermostable enzymes for industry.« less

  9. Starch-lipid inclusion complexes for aerogel formation

    USDA-ARS?s Scientific Manuscript database

    Recently we reported that aqueous slurries of starch can be excess steam jet-cooked and blended with aqueous solutions of fatty acid salts to produce inclusion complexes between amylose and the fatty acid salt. These complexes can be simply prepared on large scale using commercially available steam ...

  10. Seasonal variations in the fatty acid profile of milk from yaks grazing on the Qinghai-Tibetan plateau.

    PubMed

    Ding, Luming; Wang, Yupeng; Kreuzer, Michael; Guo, Xusheng; Mi, Jiandui; Gou, Yujiao; Shang, Zhanhuan; Zhang, Ying; Zhou, Jianwei; Wang, Hucheng; Long, Ruijun

    2013-11-01

    An experiment was conducted to study the seasonal changes in the fatty acid profile of milk from yaks (Bos grunniens) when kept at altitudes of 3000 m above sea level (a.s.l.) and higher. Data and samples were collected in summer (July), autumn (September), winter (November) and spring (March) from ten lactating yaks (four in spring). The yaks grazed pastures adjacent to the farm building throughout the year. In spring only they received 0·6 kg crop by-products per day (dry matter basis). Fresh alpine grasses, available in summer and autumn, showed high concentrations of α-linolenic acid (46-51 g/100 g lipids) compared with the dry, yellow vegetation of winter and spring (16 g/100 g lipids). In autumn and summer, the milk fat had higher concentrations of polyunsaturated fatty acids than in winter. These polyunsaturated fatty acids were comprised of vaccenic acid, rumenic acid and α-linolenic acid, which are all considered beneficial to human health. The rare fatty acid, γ-linolenic acid, was also detected in yak milk, especially in the milk obtained in spring. The results suggest that yak milk, which is the most important basic food of the Tibetan herders, has the most favourable fatty acid profile when yaks grazed green pasture, which also corresponds to the period of highest milk production.

  11. A rapid screening for adulterants in olive oil using DNA barcodes

    USDA-ARS?s Scientific Manuscript database

    A distinctive methodology is developed to trace out the mixing into olive oil, which is marketed every year with 20% or more fraudulent oils. Such adulteration has been difficult to differentiate using fatty acid analysis and other available current techniques, as chemically fatty acids are the same...

  12. 76 FR 37771 - Monsanto Co.; Availability of Petition, Plant Pest Risk Assessment, and Environmental Assessment...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-28

    ... Determination of Nonregulated Status for Soybean Genetically Engineered To Have a Modified Fatty Acid Profile... soybean designated as MON 87705, which has been genetically engineered to have a modified fatty acid... our regulations concerning the introduction of certain genetically engineered organisms and products...

  13. Quantification of Phytochemicals from Commercial Spirulina Products and Their Antioxidant Activities

    PubMed Central

    Al-Dhabi, Naif Abdullah; Valan Arasu, Mariadhas

    2016-01-01

    The present study aimed to profile the polyunsaturated fatty acids, sugars, free amino acids, and polyphenols in 37 varieties of Spirulina commonly available in the market using gas chromatography and high performance liquid chromatography. In addition, the biological potentials of the Spirulina samples were evaluated by analysing the in vitro antioxidant activities using various analytical techniques. The analyses revealed the presence of 13 polyunsaturated fatty acids, 18 amino acids, 7 sugars, and polyphenols. The polyunsaturated fatty acids contents were varied between Spirulina samples. The total polyunsaturated fatty acids amount was 4.25 mg/100 g, and the average among of sapienic acid detected was 2.25 mg/100 g, which was followed by linoleic acid (16.7%) and γ-linolenic acid (14%). Among the 7 sugars, the hexose levels were the highest (73.85%). The total amino acids contents ranged from 11.49 to 56.14 mg/100 g, and the individual essential amino acids accounted for 17% to 39.18%. The “natural” tablets exhibited the highest polyphenols levels (24 mg/g). All of the Spirulina samples expressed dose-dependent antioxidant activities. The polyunsaturated fatty acids, sugars, free amino acids, and polyphenols contents varied widely, and the variations in these compounds between the Spirulina samples were significant. PMID:26933442

  14. Stimulation by unsaturated fatty acid of squalene uptake in rat liver microsomes.

    PubMed

    Chin, J; Bloch, K

    1985-07-01

    Supernatant protein factor (SPF) and anionic phospholipids such as phosphatidylglycerol (PG) stimulate squalene epoxidase activity in rat liver microsomes by promoting [3H]squalene uptake as well as substrate translocation (Chin, J., and K. Bloch. 1984. J. Biol. Chem. 259: 11735-11738). This process is postulated to be membrane-mediated and not carrier-mediated. Here we show that treatment of PG with phospholipase A2 in the presence of bovine serum albumin abolishes the stimulatory effect of SPF on epoxidase activity. Disaturated fatty acyl-PGs are not as effective as egg yolk lecithin PG in the SPF effect. These findings suggest an important role for the unsaturated fatty acid moiety of PG. We also show that at submicellar concentrations, cis-unsaturated fatty acids stimulate microsomal epoxidase activity whereas saturated fatty acids do not. This effect is due to an increase in substrate uptake which in turn may facilitate substrate availability to the enzyme.

  15. Short communication: Association of milk fatty acids with early lactation hyperketonemia and elevated concentration of nonesterified fatty acids.

    PubMed

    Mann, S; Nydam, D V; Lock, A L; Overton, T R; McArt, J A A

    2016-07-01

    The objective of our study was to extend the limited research available on the association between concentrations of milk fatty acids and elevated nonesterified fatty acids (NEFA) and β-hydroxybutyrate (BHB) concentrations in early lactation dairy cattle. Measurement of milk fatty acids for detection of cows in excessive negative energy balance has the potential to be incorporated in routine in-line monitoring systems. Blood samples were taken from 84 cows in second or greater lactation 3 times per week between 3 to 14 d in milk. Cows were characterized as hyperketonemic (HYK) if blood BHB concentration was ≥1.2mmol/L at least once and characterized as having elevated concentrations of NEFA (NEFAH) if serum NEFA concentration was ≥1mmol/L at least once. Composition of colostrum and milk fatty acids at wk 2 postpartum was used to investigate the potential diagnostic value of individual fatty acids and fatty acid ratios for the correct classification of cows with NEFA and BHB concentrations above these thresholds, respectively. Receiver operating characteristic (ROC) curves were used to identify thresholds of fatty acid concentration and fatty acid ratios when ROC area under the curve was ≥0.70. Correct classification rate (CCR, %) was calculated as {[(number of true positives + number of true negatives)/total number tested] × 100}. None of the colostrum fatty acids yielded a sufficiently high area under the curve in ROC analysis for the association with HYK and NEFAH. The following fatty acids and fatty acid ratios were identified for an association with NEFAH (threshold, CCR): C15:0 (≤0.65g/100g, 68.3%); cis-9 C16:1 (≥1.85g/100g, 70.7%); cis-9 C18:1 (≥26g/100g, 69.5%), cis-9 C18:1 to C15:0 ratio (≥45, 69.5%); cis-9 C16:1 to C15:0 (≥2.50, 73.2%). Several fatty acids were associated with HYK (threshold, CCR): C6:0 (≤1.68g/100g, 80.5%), C8:0 (≤0.80g/100g, 80.5%), C10:0 (≤1.6g/100g, 79.3%); C12:0 (≤1.42g/100g, 82.9%); C14:0 (≤6.10g/100g, 84.1%); C15:0 (≤0.50g/100g, 82.9%), cis-9 C18:1 (≥30g/100g, 81.7%). The use of fatty acid ratios did not improve CCR over using individual fatty acids for the classification of HYK. Colostrum fatty acid composition was not useful in predicting NEFAH or HYK between 3 to 14 d in milk. Accuracy of milk fatty acids and fatty acid ratios to correctly classify cows with elevated concentrations of NEFA and BHB between 3 to 14 d in milk was moderate and overall higher for HYK. Determining changes in the fatty acid composition of milk fat from milk samples at wk 2 postpartum for the detection of cows with elevated concentrations of BHB and NEFA can currently not be recommended to replace direct measurement. Future applications should target repeated milk sampling between 3 to 14 d in milk to identify the best sampling for determination of milk fatty acid composition within the first 2 wk postpartum. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Ai-Qun; Pratomo Juwono, Nina Kurniasih; Synthetic Biology Research Program, National University of Singapore, Singapore

    Fatty acid derivatives, such as hydroxy fatty acids, fatty alcohols, fatty acid methyl/ethyl esters, and fatty alka(e)nes, have a wide range of industrial applications including plastics, lubricants, and fuels. Currently, these chemicals are obtained mainly through chemical synthesis, which is complex and costly, and their availability from natural biological sources is extremely limited. Metabolic engineering of microorganisms has provided a platform for effective production of these valuable biochemicals. Notably, synthetic biology-based metabolic engineering strategies have been extensively applied to refactor microorganisms for improved biochemical production. Here, we reviewed: (i) the current status of metabolic engineering of microbes that produce fattymore » acid-derived valuable chemicals, and (ii) the recent progress of synthetic biology approaches that assist metabolic engineering, such as mRNA secondary structure engineering, sensor-regulator system, regulatable expression system, ultrasensitive input/output control system, and computer science-based design of complex gene circuits. Furthermore, key challenges and strategies were discussed. Finally, we concluded that synthetic biology provides useful metabolic engineering strategies for economically viable production of fatty acid-derived valuable chemicals in engineered microbes.« less

  17. Umbilical venous-arterial plasma composition differences suggest differential incorporation of fatty acids in NEFA and cholesteryl ester pools.

    PubMed

    Lewis, Rohan M; Hanson, Mark A; Burdge, Graham C

    2011-08-01

    The developing fetus requires an adequate supply of fatty acids, in particular PUFA, for optimal growth and development. Little is known about the transfer of fatty acids by the placenta into the fetal circulation. However, the molecular form in which fatty acids are transferred into the fetal circulation may influence their metabolism and hence their availability to specific tissues. The aim of the present study was to determine which lipid pools in the fetal circulation become enriched in fatty acids from the placenta by comparing the fatty acid compositions of individual lipid pools between umbilical venous (UV) and umbilical arterial (UA) plasma. Plasma from the UV and UA was collected after delivery from ten uncomplicated pregnancies, and the fatty acid composition of each lipid class was determined by GC. Total NEFA concentration in the UV was twofold higher than in the UA (P < 0·05) due to enrichment in 16 : 0, 16 : 1n-7, 18 : 1n-9, 18 : 1n-7, 18 : 2n-6, 20 : 3n-6, 20 : 4n-6, 24 : 0 and 22 : 6n-3. Total cholesteryl ester concentration was twofold higher in the UV than in the UA (P < 0·05) due to enrichment in 16 : 0, 16 : 1n-7, 18 : 0, 18 : 1n-9, 18 : 1n-7, 18 : 2n-6 and 20 : 4n-6. There were no significant UV-UA differences in the total concentration or composition of TAG or phosphatidylcholine. The present study demonstrates differential enrichment across the placenta of fatty acids into specific lipid pools in the fetal circulation. Such partitioning may facilitate supply of individual fatty acids to specific fetal tissues.

  18. Evaluation of in-situ fatty acid extraction protocols for the analysis of staphylococcal cell membrane associated fatty acids by gas chromatography.

    PubMed

    Crompton, Marcus J; Dunstan, R Hugh

    2018-05-01

    The composition and integrity of the bacterial cytoplasmic membrane is critical to the survival of staphylococci in dynamic environments and it is important to investigate how the cell membrane responds to changes in the environmental conditions. The staphylococcal membrane differs from eukaryotic and many other bacterial cell membranes by having a high abundance of branch fatty acids and relatively few unsaturated fatty acids. The range of available methods for extraction and efficient analyses of staphylococcal fatty acids was initially appraised to identify the best potential procedures for appraisal. Staphylococcus aureus subsp. aureus Rosenbach (ATCC® 29213) was grown under optimal conditions to generate a cell biomass to compare the efficiencies of three approaches to extract and prepare methyl esters of the membrane fatty acids: (1) acidic direct transesterification of lipids, (2) modified basic direct transesterification of membrane lipids with adjusted reaction times and temperatures, and (3) base catalysed hydrolysis followed by acid catalysed esterification in two separate chemical reactions (MIDI process). All methods were able to extract fatty acids from the cell mass effectively where these lipids represented approximately 5% of the cellular dry mass. The acidic transesterification method had the least number of steps, the lowest coefficient of variation at 6.7% and good resistance to tolerating water. Basic transesterification was the least accurate method showing the highest coefficient of variation (26%). The MIDI method showed good recoveries, but had twice the number of steps and a coefficient of variation of 16%. It was also found that there was no need to use an anti-oxidant such as BHT for the protection of polyunsaturated fatty acids when the GC-MS injection liner was clean. It was concluded that the acidic transesterification procedures formed the most efficient and reproducible method for the analyses of staphylococcal membrane fatty acids. Crown Copyright © 2018. Published by Elsevier B.V. All rights reserved.

  19. Biomass process handbook

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1983-01-01

    Descriptions are given of 42 processes which use biomass to produce chemical products. Marketing and economic background, process description, flow sheets, costs, major equipment, and availability of technology are given for each of the 42 processes. Some of the chemicals discussed are: ethanol, ethylene, acetaldehyde, butanol, butadiene, acetone, citric acid, gluconates, itaconic acid, lactic acid, xanthan gum, sorbitol, starch polymers, fatty acids, fatty alcohols, glycerol, soap, azelaic acid, perlargonic acid, nylon-11, jojoba oil, furfural, furfural alcohol, tetrahydrofuran, cellulose polymers, products from pulping wastes, and methane. Processes include acid hydrolysis, enzymatic hydrolysis, fermentation, distillation, Purox process, and anaerobic digestion.

  20. Combined thin layer chromatography and gas chromatography with mass spectrometric analysis of lipid classes and fatty acids in malnourished polar bears (Ursus maritimus) which swam to Iceland.

    PubMed

    Eibler, Dorothee; Krüger, Sabine; Skírnisson, Karl; Vetter, Walter

    2017-03-01

    Between 2008 and 2011, four polar bears (Ursus maritimus) from the Greenland population swam and/or drifted on ice to Iceland where they arrived in very poor body condition. Body fat resources in these animals were only between 0% and 10% of the body weight (usually 25%). Here we studied the lipid composition in different tissues (adipose tissue if available, liver, kidney and muscle). Lipid classes were determined by thin layer chromatography (TLC) and on-column gas chromatography with mass spectrometry (GC/MS). The fatty acid pattern of total lipids and free fatty acids was analyzed by GC/MS in selected ion monitoring (SIM) mode. Additionally, cholesteryl esters and native fatty acid methyl esters, initially detected as zones in thin layer chromatograms, were enriched by solid phase extraction and quantified by GC/MS. The ratio of free fatty acids to native fatty acid methyl esters could be correlated with the remained body lipids in the polar bears and thus may also serve as a marker for other starving animals or even for humans. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. [Dietary supplementation of obese children with 1000 mg alpha-linolenic acid per day: a placebo-controlled double blind study].

    PubMed

    Lohner, Szimonetta; Marosvölgyi, Tamás; Burus, István; Schmidt, János; Molnár, Dénes; Decsi, Tamás

    2007-08-12

    Enhanced dietary intake of omega-3 fatty acids may benefit persons with increased cardiovascular risk, among them obese subjects. Incorporation of omega-3 fatty acids into the plasma lipids is a prerequisite to achieve the favorable effects; however, only very few data are available on the dose of omega-3 fatty acid supplementation in children. The aim of our study was to examine the effects of the consumption of a diet supplemented with 1000 mg alpha-linolenic acid daily on plasma lipids in obese children. In this two times six-week-long, placebo-controlled, crossover study, 9 obese children (age: 13.1 [2.5] years, body mass index: 31.2 [6.2] kg/m 2 ), median [IQR]) incorporated into their diet one egg and one meatball (50 g) per day from hens fed diets containing flaxseed oil, i.e. supplementary dietary intake of 1000 mg alpha-linolenic acid per day was provided. The fatty acid composition of plasma lipids was determined by high-resolution gas-liquid chromatography. Tendencies of increase were observed in the alpha-linolenic acid content of plasma lipids in the phospholipid, triacyl-glycerine and sterol-ester fractions after the supplementation with alpha-linolenic acid. In the non-esterified fatty acid fraction, the values of alpha-linolenic acid were significantly higher after the supplementation (0.11 [0.08] versus 0.14 [0.20], % weight/weight, p < 0.05), indicating the beginning of the accumulation of alpha-linolenic acid in plasma lipids. In obese children a six-week-long supplementation of the diet with 1000 mg alpha-linolenic acid per day increased significantly the contribution of omega-3 fatty acids only to the non-esterified fatty acids of plasma lipids, but had no significant effect on the esterified fractions. Increase of the dose of supplementation may be needed to influence omega-3 fatty acid status in obese children.

  2. Assessment of oil content and fatty acid composition variability in two economically important Hibiscus species.

    PubMed

    Wang, Ming Li; Morris, Brad; Tonnis, Brandon; Davis, Jerry; Pederson, Gary A

    2012-07-04

    The Hibiscus genus encompasses more than 300 species, but kenaf (Hibiscus cannabinus L.) and roselle (Hibiscus sabdariffa L.) are the two most economically important species within the genus. Seeds from these two Hibiscus species contain a relatively high amount of oil with two unusual fatty acids: dihydrosterculic and vernolic acids. The fatty acid composition in the oil can directly affect oil quality and its utilization. However, the variability in oil content and fatty acid composition for these two species is unclear. For these two species, 329 available accessions were acquired from the USDA germplasm collection. Their oil content and fatty acid composition were determined by nuclear magnetic resonance (NMR) and gas chromatography (GC), respectively. Using NMR and GC analyses, we found that Hibiscus seeds on average contained 18% oil and seed oil was composed of six major fatty acids (each >1%) and seven minor fatty acids (each <1%). Hibiscus cannabinus seeds contained significantly higher amounts of oil (18.14%), palmitic (20.75%), oleic (28.91%), vernolic acids (VA, 4.16%), and significantly lower amounts of stearic (3.96%), linoleic (39.49%), and dihydrosterculic acids (DHSA, 1.08%) than H. sabdariffa seeds (17.35%, 18.52%, 25.16%, 3.52%, 4.31%, 44.72%, and 1.57%, respectively). For edible oils, a higher oleic/linoleic (O/L) ratio and lower level of DHSA are preferred, and for industrial oils a high level of VA is preferred. Our results indicate that seeds from H. cannabinus may be of higher quality than H. sabdariffa seeds for these reasons. Significant variability in oil content and major fatty acids was also detected within both species. The variability in oil content and fatty acid composition revealed from this study will be useful for exploring seed utilization and developing new cultivars in these Hibiscus species.

  3. Curcumin improves alcoholic fatty liver by inhibiting fatty acid biosynthesis.

    PubMed

    Guo, Chang; Ma, Jingfan; Zhong, Qionghong; Zhao, Mengyuan; Hu, Tianxing; Chen, Tong; Qiu, Longxin; Wen, Longping

    2017-08-01

    Alcoholic fatty liver is a threat to human health. It has been long known that abstinence from alcohol is the most effective therapy, other effective therapies are not available for the treatment in humans. Curcumin has a great potential for anti-oxidation and anti-inflammation, but the effect on metabolic reconstruction remains little known. Here we performed metabolomic analysis by gas chromatography/mass spectrometry and explored ethanol pathogenic insight as well as curcumin action pattern. We identified seventy-one metabolites in mouse liver. Carbohydrates and lipids were characteristic categories. Pathway analysis results revealed that ethanol-induced pathways including biosynthesis of unsaturated fatty acids, fatty acid biosynthesis and pentose and glucuronate interconversions were suppressed by curcumin. Additionally, ethanol enhanced galactose metabolism and pentose phosphate pathway. Glyoxylate and dicarboxylate metabolism and pyruvate metabolism were inhibited in mice fed ethanol diet plus curcumin. Stearic acid, oleic acid and linoleic acid were disease biomarkers and therapical biomarkers. These results reflect the landscape of hepatic metabolism regulation. Our findings illustrate ethanol pathological pathway and metabolic mechanism of curcumin therapy. Copyright © 2017. Published by Elsevier Inc.

  4. Systems metabolic engineering design: Fatty acid production as an emerging case study

    PubMed Central

    Tee, Ting Wei; Chowdhury, Anupam; Maranas, Costas D; Shanks, Jacqueline V

    2014-01-01

    Increasing demand for petroleum has stimulated industry to develop sustainable production of chemicals and biofuels using microbial cell factories. Fatty acids of chain lengths from C6 to C16 are propitious intermediates for the catalytic synthesis of industrial chemicals and diesel-like biofuels. The abundance of genetic information available for Escherichia coli and specifically, fatty acid metabolism in E. coli, supports this bacterium as a promising host for engineering a biocatalyst for the microbial production of fatty acids. Recent successes rooted in different features of systems metabolic engineering in the strain design of high-yielding medium chain fatty acid producing E. coli strains provide an emerging case study of design methods for effective strain design. Classical metabolic engineering and synthetic biology approaches enabled different and distinct design paths towards a high-yielding strain. Here we highlight a rational strain design process in systems biology, an integrated computational and experimental approach for carboxylic acid production, as an alternative method. Additional challenges inherent in achieving an optimal strain for commercialization of medium chain-length fatty acids will likely require a collection of strategies from systems metabolic engineering. Not only will the continued advancement in systems metabolic engineering result in these highly productive strains more quickly, this knowledge will extend more rapidly the carboxylic acid platform to the microbial production of carboxylic acids with alternate chain-lengths and functionalities. PMID:24481660

  5. Systems metabolic engineering design: fatty acid production as an emerging case study.

    PubMed

    Tee, Ting Wei; Chowdhury, Anupam; Maranas, Costas D; Shanks, Jacqueline V

    2014-05-01

    Increasing demand for petroleum has stimulated industry to develop sustainable production of chemicals and biofuels using microbial cell factories. Fatty acids of chain lengths from C6 to C16 are propitious intermediates for the catalytic synthesis of industrial chemicals and diesel-like biofuels. The abundance of genetic information available for Escherichia coli and specifically, fatty acid metabolism in E. coli, supports this bacterium as a promising host for engineering a biocatalyst for the microbial production of fatty acids. Recent successes rooted in different features of systems metabolic engineering in the strain design of high-yielding medium chain fatty acid producing E. coli strains provide an emerging case study of design methods for effective strain design. Classical metabolic engineering and synthetic biology approaches enabled different and distinct design paths towards a high-yielding strain. Here we highlight a rational strain design process in systems biology, an integrated computational and experimental approach for carboxylic acid production, as an alternative method. Additional challenges inherent in achieving an optimal strain for commercialization of medium chain-length fatty acids will likely require a collection of strategies from systems metabolic engineering. Not only will the continued advancement in systems metabolic engineering result in these highly productive strains more quickly, this knowledge will extend more rapidly the carboxylic acid platform to the microbial production of carboxylic acids with alternate chain-lengths and functionalities. © 2014 Wiley Periodicals, Inc.

  6. Trans fatty acids and cholesterol levels: an evidence map of the available science

    USDA-ARS?s Scientific Manuscript database

    High intakes of industrial trans fatty acids (iTFA) increase circulating low density lipoprotein cholesterol (LDL-C) levels, which has implicated iTFA in coronary heart disease (CHD) risk. Published data on iTFA and LDL-C, however, represent higher intake levels than the U.S. population currently co...

  7. Circulating concentrations of non-esterified fatty acids (NEFA) as mediators of the innate immune response in cattle

    USDA-ARS?s Scientific Manuscript database

    We previously reported that temperamental cattle have greater non-esterified fatty acid (NEFA) concentrations and an altered innate immune response compared to calm cattle. Therefore, this trial was designed to determine if increasing energy availability via a lipid infusion or bolus dextrose inject...

  8. Terrestrial carbohydrates support freshwater zooplankton during phytoplankton deficiency.

    PubMed

    Taipale, Sami J; Galloway, Aaron W E; Aalto, Sanni L; Kahilainen, Kimmo K; Strandberg, Ursula; Kankaala, Paula

    2016-08-11

    Freshwater food webs can be partly supported by terrestrial primary production, often deriving from plant litter of surrounding catchment vegetation. Although consisting mainly of poorly bioavailable lignin, with low protein and lipid content, the carbohydrates from fallen tree leaves and shoreline vegetation may be utilized by aquatic consumers. Here we show that during phytoplankton deficiency, zooplankton (Daphnia magna) can benefit from terrestrial particulate organic matter by using terrestrial-origin carbohydrates for energy and sparing essential fatty acids and amino acids for somatic growth and reproduction. Assimilated terrestrial-origin fatty acids from shoreline reed particles exceeded available diet, indicating that Daphnia may convert a part of their dietary carbohydrates to saturated fatty acids. This conversion was not observed with birch leaf diets, which had lower carbohydrate content. Subsequent analysis of 21 boreal and subarctic lakes showed that diet of herbivorous zooplankton is mainly based on high-quality phytoplankton rich in essential polyunsaturated fatty acids. The proportion of low-quality diets (bacteria and terrestrial particulate organic matter) was <28% of the assimilated carbon. Taken collectively, the incorporation of terrestrial carbon into zooplankton was not directly related to the concentration of terrestrial organic matter in experiments or lakes, but rather to the low availability of phytoplankton.

  9. Terrestrial carbohydrates support freshwater zooplankton during phytoplankton deficiency

    PubMed Central

    Taipale, Sami J.; Galloway, Aaron W. E.; Aalto, Sanni L.; Kahilainen, Kimmo K.; Strandberg, Ursula; Kankaala, Paula

    2016-01-01

    Freshwater food webs can be partly supported by terrestrial primary production, often deriving from plant litter of surrounding catchment vegetation. Although consisting mainly of poorly bioavailable lignin, with low protein and lipid content, the carbohydrates from fallen tree leaves and shoreline vegetation may be utilized by aquatic consumers. Here we show that during phytoplankton deficiency, zooplankton (Daphnia magna) can benefit from terrestrial particulate organic matter by using terrestrial-origin carbohydrates for energy and sparing essential fatty acids and amino acids for somatic growth and reproduction. Assimilated terrestrial-origin fatty acids from shoreline reed particles exceeded available diet, indicating that Daphnia may convert a part of their dietary carbohydrates to saturated fatty acids. This conversion was not observed with birch leaf diets, which had lower carbohydrate content. Subsequent analysis of 21 boreal and subarctic lakes showed that diet of herbivorous zooplankton is mainly based on high-quality phytoplankton rich in essential polyunsaturated fatty acids. The proportion of low-quality diets (bacteria and terrestrial particulate organic matter) was <28% of the assimilated carbon. Taken collectively, the incorporation of terrestrial carbon into zooplankton was not directly related to the concentration of terrestrial organic matter in experiments or lakes, but rather to the low availability of phytoplankton. PMID:27510848

  10. An assessment of the fatty acid composition of horse-meat available at the retail level in northern Spain.

    PubMed

    Belaunzaran, Xabier; Lavín, Paz; Barron, Luis J R; Mantecón, Angel R; Kramer, John K G; Aldai, Noelia

    2017-02-01

    The objective of the present study was to assess the fatty acid composition of horse-meat available at the retail market in northern Spain. Horse steaks (Longissimus thoracis et lumborum muscle; n=82) were purchased from butcher-shops and large grocery stores throughout six northern regions of Spain in two different seasons. Fat content differed significantly among regions (1.12 to 2.77%). Samples with higher intramuscular fat content presented the highest percentages of total monounsaturated fatty acids and the lowest contents of dimethylacetal and polyunsaturated fatty acids (PUFA), while the opposite was found in the leanest samples. A high variability was observed in the muscle and subcutaneous n-3 PUFA content. Overall, total n-3 PUFA content ranged between 1.17% and 18.9% in muscle fat and between 1.52% and 27.9% in backfat. Interestingly, almost 5% of surveyed loins from horse carcasses (4 out of 82) contained over 300mg of linolenic acid per 100g of meat which could have been marketed as a "source" of n-3 FAs according to Commission Regulation (EU) No 116/2010. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Engineering Escherichia coli for Biodiesel Production Utilizing a Bacterial Fatty Acid Methyltransferase▿†

    PubMed Central

    Nawabi, Parwez; Bauer, Stefan; Kyrpides, Nikos; Lykidis, Athanasios

    2011-01-01

    The production of low-cost biofuels in engineered microorganisms is of great interest due to the continual increase in the world's energy demands. Biodiesel is a renewable fuel that can potentially be produced in microbes cost-effectively. Fatty acid methyl esters (FAMEs) are a common component of biodiesel and can be synthesized from either triacylglycerol or free fatty acids (FFAs). Here we report the identification of a novel bacterial fatty acid methyltransferase (FAMT) that catalyzes the formation of FAMEs and 3-hydroxyl fatty acid methyl esters (3-OH-FAMEs) from the respective free acids and S-adenosylmethionine (AdoMet). FAMT exhibits a higher specificity toward 3-hydroxy free fatty acids (3-OH-FFAs) than FFAs, synthesizing 3-hydroxy fatty acid methyl esters (3-OH-FAMEs) in vivo. We have also identified bacterial members of the fatty acyl-acyl carrier protein (ACP) thioesterase (FAT) enzyme family with distinct acyl chain specificities. These bacterial FATs exhibit increased specificity toward 3-hydroxyacyl-ACP, generating 3-OH-FFAs, which can subsequently be utilized by FAMTs to produce 3-OH-FAMEs. PhaG (3-hydroxyacyl ACP:coenzyme A [CoA] transacylase) constitutes an alternative route to 3-OH-FFA synthesis; the coexpression of PhaG with FAMT led to the highest level of accumulation of 3-OH-FAMEs and FAMEs. The availability of AdoMet, the second substrate for FAMT, is an important factor regulating the amount of methyl esters produced by bacterial cells. Our results indicate that the deletion of the global methionine regulator metJ and the overexpression of methionine adenosyltransferase result in increased methyl ester synthesis. PMID:21926202

  12. Fatty acids are required for epidermal permeability barrier function.

    PubMed

    Mao-Qiang, M; Elias, P M; Feingold, K R

    1993-08-01

    The permeability barrier is mediated by a mixture of ceramides, sterols, and free fatty acids arranged as extracellular lamellar bilayers in the stratum corneum. Whereas prior studies have shown that cholesterol and ceramides are required for normal barrier function, definitive evidence for the importance of nonessential fatty acids is not available. To determine whether epidermal fatty acid synthesis also is required for barrier homeostasis, we applied 5-(tetradecyloxy)-2-furancarboxylic acid (TOFA), an inhibitor of acetyl CoA carboxylase, after disruption of the barrier by acetone or tape stripping. TOFA inhibits epidermal fatty acid by approximately 50% and significantly delays barrier recovery. Moreover, coadministration of palmitate with TOFA normalizes barrier recovery, indicating that the delay is due to a deficiency in bulk fatty acids. Furthermore, TOFA treatment also delays the return of lipids to the stratum corneum and results in abnormalities in the structure of lamellar bodies, the organelle which delivers lipid to the stratum corneum. In addition, the organization of secreted lamellar body material into lamellar bilayers within the stratum corneum interstices is disrupted by TOFA treatment. Finally, these abnormalities in lamellar body and stratum corneum membrane structure are corrected by coapplication of palmitate with TOFA. These results demonstrate a requirement for bulk fatty acids in barrier homeostasis. Thus, inhibiting the epidermal synthesis of any of the three key lipids that form the extracellular, lipid-enriched membranes of the stratum corneum results in an impairment in barrier homeostasis.

  13. Fatty acids are required for epidermal permeability barrier function.

    PubMed Central

    Mao-Qiang, M; Elias, P M; Feingold, K R

    1993-01-01

    The permeability barrier is mediated by a mixture of ceramides, sterols, and free fatty acids arranged as extracellular lamellar bilayers in the stratum corneum. Whereas prior studies have shown that cholesterol and ceramides are required for normal barrier function, definitive evidence for the importance of nonessential fatty acids is not available. To determine whether epidermal fatty acid synthesis also is required for barrier homeostasis, we applied 5-(tetradecyloxy)-2-furancarboxylic acid (TOFA), an inhibitor of acetyl CoA carboxylase, after disruption of the barrier by acetone or tape stripping. TOFA inhibits epidermal fatty acid by approximately 50% and significantly delays barrier recovery. Moreover, coadministration of palmitate with TOFA normalizes barrier recovery, indicating that the delay is due to a deficiency in bulk fatty acids. Furthermore, TOFA treatment also delays the return of lipids to the stratum corneum and results in abnormalities in the structure of lamellar bodies, the organelle which delivers lipid to the stratum corneum. In addition, the organization of secreted lamellar body material into lamellar bilayers within the stratum corneum interstices is disrupted by TOFA treatment. Finally, these abnormalities in lamellar body and stratum corneum membrane structure are corrected by coapplication of palmitate with TOFA. These results demonstrate a requirement for bulk fatty acids in barrier homeostasis. Thus, inhibiting the epidermal synthesis of any of the three key lipids that form the extracellular, lipid-enriched membranes of the stratum corneum results in an impairment in barrier homeostasis. Images PMID:8102380

  14. Omega-3 Fatty Acid Formulations in Cardiovascular Disease: Dietary Supplements are Not Substitutes for Prescription Products.

    PubMed

    Fialkow, Jonathan

    2016-08-01

    Omega-3 fatty acid products are available as prescription formulations (icosapent ethyl, omega-3-acid ethyl esters, omega-3-acid ethyl esters A, omega-3-carboxylic acids) and dietary supplements (predominantly fish oils). Most dietary supplements and all but one prescription formulation contain mixtures of the omega-3 fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). Products containing both EPA and DHA may raise low-density lipoprotein cholesterol (LDL-C). In clinical trials, the EPA-only prescription product, icosapent ethyl, did not raise LDL-C compared with placebo. To correct a common misconception, it is important to note that omega-3 fatty acid dietary supplements are not US FDA-approved over-the-counter drugs and are not required to demonstrate safety and efficacy prior to marketing. Conversely, prescription products are supported by extensive clinical safety and efficacy investigations required for FDA approval and have active and ongoing safety monitoring programs. While omega-3 fatty acid dietary supplements may have a place in the supplementation of diet, they generally contain lower levels of EPA and DHA than prescription products and are not approved or intended to treat disease. Perhaps due to the lack of regulation of dietary supplements, EPA and DHA levels may vary widely within and between brands, and products may also contain unwanted cholesterol or fats or potentially harmful components, including toxins and oxidized fatty acids. Accordingly, omega-3 fatty acid dietary supplements should not be substituted for prescription products. Similarly, prescription products containing DHA and EPA should not be substituted for the EPA-only prescription product, as DHA may raise LDL-C and thereby complicate the management of patients with dyslipidemia.

  15. The Effects of Omega-3 Fatty Acids Supplementation on Gene Expression Involved in the Insulin and Lipid Signaling Pathway in Patients with Polycystic Ovary Syndrome.

    PubMed

    Nasri, Khadijeh; Hantoushzadeh, Sedigheh; Aghadavod, Esmat; Taghizadeh, Mohsen; Asemi, Zatollah

    2017-06-01

    Limited data are available evaluating the effects of omega-3 fatty acids supplementation on gene expression involved in the insulin and lipid-signaling pathway in women with polycystic ovary syndrome (PCOS). This study was conducted to evaluate the effects of omega-3 fatty acids supplementation on gene expression involved in the insulin and lipid signaling pathway in women with PCOS. This randomized double blind, placebo-controlled trial was done among 60 women aged 18-40 years old and diagnosed with PCOS according to the Rotterdam criteria. Participants were randomly assigned into 2 groups to receive either 1 000 mg omega-3 fatty acids from flaxseed oil containing 400 mg α-linolenic acid (n=30) or placebo (n=30) twice a day for 12 weeks. Gene expressions involved in the insulin and lipid-signaling pathway were quantified in blood samples of PCOS women with RT-PCR method. Quantitative results of RT-PCR demonstrated that compared with the placebo, omega-3 fatty acids supplementation upregulated peroxisome proliferator-activated receptor gamma (PPAR-γ) mRNA (p=0.005) in peripheral blood mononuclear cells of women with PCOS. In addition, compared to the placebo, omega-3 fatty acids supplementation downregulated expressed levels of oxidized low-density lipoprotein receptor (LDLR) mRNA (p=0.002) in peripheral blood mononuclear cells of women with PCOS. We did not observe any significant effect of omega-3 fatty acids supplementation on expressed levels of glucose transporter 1 (GLUT-1) and lipoprotein(a) [Lp(a)] genes in peripheral blood mononuclear cells. Overall, omega-3 fatty acids supplementation for 12 weeks in PCOS women significantly improved gene expression of PPAR-γ and LDLR. © Georg Thieme Verlag KG Stuttgart · New York.

  16. Modulation of tumor fatty acids, through overexpression or loss of thyroid hormone responsive protein spot 14 is associated with altered growth and metastasis.

    PubMed

    Wellberg, Elizabeth A; Rudolph, Michael C; Lewis, Andrew S; Padilla-Just, Nuria; Jedlicka, Paul; Anderson, Steven M

    2014-12-04

    Spot14 (S14), encoded by the THRSP gene, regulates de novo fatty acid synthesis in the liver, adipose, and lactating mammary gland. We recently showed that S14 stimulated fatty acid synthase (FASN) activity in vitro, and increased the synthesis of fatty acids in mammary epithelial cells in vivo. Elevated de novo fatty acid synthesis is a distinguishing feature of many solid tumors compared with adjacent normal tissue. This characteristic is thought to be acquired during tumor progression, as rapidly proliferating cells have a heightened requirement for membrane phospholipids. Further, overexpression of FASN is sufficient to stimulate cell proliferation. While many studies have focused on the FASN enzyme in cancer biology, few studies have addressed the roles of proteins that modify FASN activity, such as S14. Tumor fatty acids were modulated using two mouse models, mouse mammary tumor virus (MMTV)-neu mice overexpressing S14 and MMTV-polyomavirus middle T antigen (PyMT) mice lacking S14, and associations between elevated or impaired fatty acid synthesis on tumor latency, growth, metastasis, and signaling pathways were investigated. We evaluated S14-dependent gene expression profiles in mouse tumors by microarray and used publicly available microarray datasets of human breast tumors. S14 overexpression in the MMTV-Neu transgenic model is associated with elevated medium-chain fatty acids, increased proliferation and a shorter tumor latency, but reduced tumor metastasis compared to controls. Loss of S14 in the MMTV-PyMT model decreased FASN activity and the synthesis of medium-chain fatty acids but did not alter tumor latency. Impaired fatty acid synthesis was associated with reduced solid tumor cell proliferation, the formation of cystic lesions in some animals, and decreased phosphorylation of Src and protein kinase B (Akt). Analysis of gene expression in these mouse and human tumors revealed a relationship between S14 status and the expression of genes associated with luminal epithelial differentiation. This study demonstrates a potential role for S14 in regulating mammary tumor growth and fatty acid synthesis in vivo. Furthermore, these results suggest that modulating the amount of medium chain fatty acids, by changing the levels of S14, has the potential to impact malignant mammary tumor phenotypes.

  17. Meat fatty acid and cholesterol level of free-range broilers fed on grasshoppers on alpine rangeland in the Tibetan Plateau.

    PubMed

    Sun, Tao; Liu, Zhiyun; Qin, Liping; Long, Ruijun

    2012-08-30

    Meat safety and nutrition are major concerns of consumers. The development of distinctive poultry production methods based on locally available natural resources is important. Grasshoppers are rich in important nutrients and occur in dense concentrations in most rangelands of northern China. Foraging chickens could be used to suppress grasshopper infestations. However, knowledge of the fatty acid content of meat from free-range broilers reared on alpine rangeland is required. Rearing conditions and diet did not significantly (P > 0.05) affect concentrations of saturated fatty acid (SFA), arachidonic acid, docosahexaenoic acid or the ratio of total n-6 to total n-3 fatty acids. Breast muscle of chickens that had consumed grasshoppers contained significantly (P < 0.05) less monounsaturated fatty acid, but the ratio of polyunsaturated fatty acids (PUFA)/SFA and contents of total n-3, total n-6 and PUFA were significantly (P > 0.05) higher than intensively reared birds. Compared with meat from intensively reared birds, meat from free-range broilers had less cholesterol and higher concentrations of total lipid and phospholipids. Chickens eating grasshoppers in rangeland produce superior quality meat and reduce the grasshopper populations that damage the pastures. This provides an economic system of enhanced poultry-meat production, which derives benefits from natural resources rather than artificial additives. Copyright © 2012 Society of Chemical Industry.

  18. Transcutaneous application of oil and prevention of essential fatty acid deficiency in preterm infants.

    PubMed Central

    Lee, E J; Gibson, R A; Simmer, K

    1993-01-01

    The topical application of vegetable oil was assessed as an alternative means of providing essential fatty acids (EFA) to parentally fed preterm infants who were not receiving lipid. Three infant pairs ranging in gestational age from 26-32 weeks were studied. Safflower oil or safflower oil esters (1 g linoleic acid/kg/day) were applied to available areas daily. All infants rapidly developed biochemical EFA deficiency. The plasma fatty acid profiles were similar in infants with or without topical oil, and all returned to normal once parenteral lipid was introduced. We found no evidence to suggest that the transdermal route is of use in the nutritional management of preterm infants. PMID:8439192

  19. Risks and benefits of consumption of Great Lakes fish.

    PubMed

    Turyk, Mary E; Bhavsar, Satyendra P; Bowerman, William; Boysen, Eric; Clark, Milton; Diamond, Miriam; Mergler, Donna; Pantazopoulos, Peter; Schantz, Susan; Carpenter, David O

    2012-01-01

    Beneficial effects of fish consumption on early cognitive development and cardiovascular health have been attributed to the omega-3 fatty acids in fish and fish oils, but toxic chemicals in fish may adversely affect these health outcomes. Risk-benefit assessments of fish consumption have frequently focused on methylmercury and omega-3 fatty acids, not persistent pollutants such as polychlorinated biphenyls, and none have evaluated Great Lakes fish consumption. The risks and benefits of fish consumption have been established primarily for marine fish. Here, we examine whether sufficient data are available to evaluate the risks and benefits of eating freshwater fish from the Great Lakes. We used a scoping review to integrate information from multiple state, provincial, and federal agency sources regarding the contaminants and omega-3 fatty acids in Great Lakes fish and fish consumers, consumption rates and fish consumption advisories, and health effects of contaminants and omega-3 fatty acids. Great Lakes fish contain persistent contaminants--many of which have documented adverse health effects--that accumulate in humans consuming them. In contrast, data are sparse on omega-3 fatty acids in the fish and their consumers. Moreover, few studies have documented the social and cultural benefits of Great Lakes fish consumption, particularly for subsistence fishers and native communities. At this time, federal and state/provincial governments provide fish consumption advisories based solely on risk. Our knowledge of Great Lakes fish has critical gaps, particularly regarding the benefits of consumption. A risk-benefit analysis requires more information than is currently available on the concentration of omega-3 fatty acids in Great Lakes fish and their absorption by fish eaters in addition to more information on the social, cultural, and health consequences of changes in the amount of fish consumed.

  20. Risks and Benefits of Consumption of Great Lakes Fish

    PubMed Central

    Bhavsar, Satyendra P.; Bowerman, William; Boysen, Eric; Clark, Milton; Diamond, Miriam; Mergler, Donna; Pantazopoulos, Peter; Schantz, Susan; Carpenter, David O.

    2011-01-01

    Background: Beneficial effects of fish consumption on early cognitive development and cardiovascular health have been attributed to the omega-3 fatty acids in fish and fish oils, but toxic chemicals in fish may adversely affect these health outcomes. Risk–benefit assessments of fish consumption have frequently focused on methylmercury and omega-3 fatty acids, not persistent pollutants such as polychlorinated biphenyls, and none have evaluated Great Lakes fish consumption. Objectives: The risks and benefits of fish consumption have been established primarily for marine fish. Here, we examine whether sufficient data are available to evaluate the risks and benefits of eating freshwater fish from the Great Lakes. Methods: We used a scoping review to integrate information from multiple state, provincial, and federal agency sources regarding the contaminants and omega-3 fatty acids in Great Lakes fish and fish consumers, consumption rates and fish consumption advisories, and health effects of contaminants and omega-3 fatty acids. Data synthesis: Great Lakes fish contain persistent contaminants—many of which have documented adverse health effects —that accumulate in humans consuming them. In contrast, data are sparse on omega-3 fatty acids in the fish and their consumers. Moreover, few studies have documented the social and cultural benefits of Great Lakes fish consumption, particularly for subsistence fishers and native communities. At this time, federal and state/provincial governments provide fish consumption advisories based solely on risk. Conclusions: Our knowledge of Great Lakes fish has critical gaps, particularly regarding the benefits of consumption. A risk–benefit analysis requires more information than is currently available on the concentration of omega-3 fatty acids in Great Lakes fish and their absorption by fish eaters in addition to more information on the social, cultural, and health consequences of changes in the amount of fish consumed. PMID:21947562

  1. Skin Penetration Enhancement by Natural Oils for Dihydroquercetin Delivery.

    PubMed

    Čižinauskas, Vytis; Elie, Nicolas; Brunelle, Alain; Briedis, Vitalis

    2017-09-12

    Natural oils are commonly used in topical pharmaceutical formulations as emulsifiers, stabilizers or solubility enhancers. They are presented as safe and inert components, mainly used for formulation purposes. It is confirmed that natural oils can affect the skin penetration of various substances. Fatty acids are mainly responsible for this effect. Current understanding lacks reliable scientific data on penetration of natural oils into the skin and their skin penetration enhancement potential. In the current study, fatty acid content analysis was used to determine the principal fatty acids in soybean, olive, avocado, sea-buckthorn pulp, raspberry seed and coconut oils. Time of flight secondary ion mass spectrometry bioimaging was used to determine the distribution of these fatty acids in human skin ex vivo after application of the oils. Skin penetration enhancement ratios were determined for a perspective antioxidant compound dihydroquercetin. The results demonstrated skin penetration of fatty acids from all oils tested. Only soybean and olive oils significantly increased the skin distribution of dihydroquercetin and can be used as skin penetration enhancers. However, no correlation can be determined between the fatty acids' composition and skin penetration enhancement using currently available methodological approaches. This indicates that potential chemical penetration enhancement should be evaluated during formulation of topically applied products containing natural oils.

  2. Native UCP1 displays simple competitive kinetics between the regulators purine nucleotides and fatty acids.

    PubMed

    Shabalina, Irina G; Jacobsson, Anders; Cannon, Barbara; Nedergaard, Jan

    2004-09-10

    Elucidation of the regulation of uncoupling protein 1 (UCP1) activity in its native environment, i.e. the inner membrane of brown-fat mitochondria, has been hampered by the presence of UCP1-independent, quantitatively unresolved effects of investigated regulators on the brown-fat mitochondria themselves. Here we have utilized the availability of UCP1-ablated mice to dissect UCP1-dependent and UCP1-independent effects of regulators. Using a complex-I-linked substrate (pyruvate), we found that UCP1 can mediate a 4-fold increase in thermogenesis when stimulated with the classical positive regulator fatty acids (oleate). After demonstrating that the fatty acids act in their free form, we found that UCP1 increased fatty acid sensitivity approximately 30-fold (as compared with the 1.5-fold increase reported earlier based on nominal fatty acid values). By identifying the UCP1-mediated fraction of the response, we could conclude that the interaction between purine nucleotides (GDP) and fatty acids (oleate) unexpectedly displayed simple competitive kinetics. In GDP-inhibited mitochondria, oleate apparently acted as an activator. However, only a model in which UCP1 is inherently active (i.e."activating" fatty acids cannot be included in the model), where GDP functions as an inhibitor with a K(m) of 0.05 mm, and where oleate functions as a competitive antagonist for the GDP effect (with a K(i) of 5 nm) can fit all of the experimental data. We conclude that, when examined in its native environment, UCP1 functions as a proton (equivalent) carrier in the absence of exogenous or endogenous fatty acids.

  3. Inhibition of sarcolemmal FAT/CD36 by sulfo-N-succinimidyl oleate rapidly corrects metabolism and restores function in the diabetic heart following hypoxia/reoxygenation

    PubMed Central

    Mansor, Latt S.; Sousa Fialho, Maria da Luz; Yea, Georgina; Coumans, Will A.; West, James A.; Kerr, Matthew; Carr, Carolyn A.; Luiken, Joost J.F.P.; Glatz, Jan F.C.; Evans, Rhys D.; Griffin, Julian L.; Tyler, Damian J.; Clarke, Kieran

    2017-01-01

    Aims The type 2 diabetic heart oxidizes more fat and less glucose, which can impair metabolic flexibility and function. Increased sarcolemmal fatty acid translocase (FAT/CD36) imports more fatty acid into the diabetic myocardium, feeding increased fatty acid oxidation and elevated lipid deposition. Unlike other metabolic modulators that target mitochondrial fatty acid oxidation, we proposed that pharmacologically inhibiting fatty acid uptake, as the primary step in the pathway, would provide an alternative mechanism to rebalance metabolism and prevent lipid accumulation following hypoxic stress. Methods and results Hearts from type 2 diabetic and control male Wistar rats were perfused in normoxia, hypoxia and reoxygenation, with the FAT/CD36 inhibitor sulfo-N-succinimidyl oleate (SSO) infused 4 min before hypoxia. SSO infusion into diabetic hearts decreased the fatty acid oxidation rate by 29% and myocardial triglyceride concentration by 48% compared with untreated diabetic hearts, restoring fatty acid metabolism to control levels following hypoxia-reoxygenation. SSO infusion increased the glycolytic rate by 46% in diabetic hearts during hypoxia, increased pyruvate dehydrogenase activity by 53% and decreased lactate efflux rate by 56% compared with untreated diabetic hearts during reoxygenation. In addition, SSO treatment of diabetic hearts increased intermediates within the second span of the Krebs cycle, namely fumarate, oxaloacetate, and the FAD total pool. The cardiac dysfunction in diabetic hearts following decreased oxygen availability was prevented by SSO-infusion prior to the hypoxic stress. Infusing SSO into diabetic hearts increased rate pressure product by 60% during hypoxia and by 32% following reoxygenation, restoring function to control levels. Conclusions Diabetic hearts have limited metabolic flexibility and cardiac dysfunction when stressed, which can be rapidly rectified by reducing fatty acid uptake with the FAT/CD36 inhibitor, SSO. This novel therapeutic approach not only reduces fat oxidation but also lipotoxicity, by targeting the primary step in the fatty acid metabolism pathway. PMID:28419197

  4. Dietary fatty acids linking postprandial metabolic response and chronic diseases.

    PubMed

    Ortega, Almudena; Varela, Lourdes M; Bermudez, Beatriz; Lopez, Sergio; Abia, Rocio; Muriana, Francisco J G

    2012-01-01

    Chronic diseases are by far one of the main causes of mortality in the world. One of the current global recommendations to counteract disability and premature death resulting from chronic diseases is to decrease the consumption of energy-dense high-fat diets, particularly those rich in saturated fatty acids (SFA). The most effective replacement for SFA in terms of risk factor outcomes for chronic disease are polyunsaturated fatty acids (PUFA) and monounsaturated fatty acids (MUFA). The biochemical basis for healthy benefits of such a dietary pattern has been widely evaluated under fasting conditions. However, the increasing amount of data available from multiple studies suggest that the postprandial state, i.e., "the period that comprises and follows a meal", plays an important, yet underappreciated, role in the genesis of numerous pathological conditions. In this review, the potential of MUFA, PUFA, and SFA to postprandially affect selected metabolic abnormalities related to chronic diseases is discussed.

  5. Species identification of corynebacteria by cellular fatty acid analysis.

    PubMed

    Van den Velde, Sandra; Lagrou, Katrien; Desmet, Koen; Wauters, Georges; Verhaegen, Jan

    2006-02-01

    We evaluated the usefulness of cellular fatty acid analysis for the identification of corynebacteria. Therefore, 219 well-characterized strains belonging to 21 Corynebacterium species were analyzed with the Sherlock System of MIDI (Newark, DE). Most Corynebacterium species have a qualitative different fatty acid profile. Corynebacterium coyleae (subgroup 1), Corynebacterium riegelii, Corynebacterium simulans, and Corynebacterium imitans differ only quantitatively. Corynebacterium afermentans afermentans and C. coyleae (subgroup 2) have both a similar qualitative and quantitative profile. The commercially available database (CLIN 40, MIDI) identified only one third of the 219 strains correctly at the species level. We created a new database with these 219 strains. This new database was tested with 34 clinical isolates and could identify 29 strains correctly. Strains that remained unidentified were 2 Corynebacterium aurimucosum (not included in our database), 1 C. afermentans afermentans, and 2 Corynebacterium pseudodiphtheriticum. Cellular fatty acid analysis with a self-created database can be used for the identification and differentiation of corynebacteria.

  6. Interactions between prebiotics, probiotics, polyunsaturated fatty acids and polyphenols: diet or supplementation for metabolic syndrome prevention?

    PubMed

    Peluso, Ilaria; Romanelli, Luca; Palmery, Maura

    2014-05-01

    The metabolic syndrome can be prevented by the Mediterranean diet, characterized by fiber, omega-3 polyunsaturated fatty acids and polyphenols. However, the composition of the Mediterranean diet, which can be viewed as a natural multiple supplement, is poorly controlled, and its beneficial effects poorly predictable. The metabolic syndrome is associated with intestinal dysbiosis and the gut microbioma seems to be the main target and player in the interactions occurring between probiotics, prebiotics, omega 3 polyunsaturated fatty acids, and polyphenols. From the reviewed evidence, it is reasonable to manage growth and metabolism of gut microflora with specific prebiotics and polyphenols. Even though the healthy properties of functional foods and nutraceuticals still need to be fully elucidated, available data suggest that well-designed supplements, containing the better ratio of omega-3 polyunsaturated fatty acids and antioxidants, specific probiotic strains, and selected polyphenols and prebiotics, could be useful in metabolic syndrome prevention and treatment.

  7. Characterization of Armillaria spp. from peach orchards in the southeastern United States using fatty acid methyl ester profiling.

    PubMed

    Cox, K D; Scherm, H; Riley, M B

    2006-04-01

    Limited information is available regarding the composition of cellular fatty acids in Armillaria and the extent to which fatty acid profiles can be used to characterize species in this genus. Fatty acid methyl ester (FAME) profiles generated from cultures of A. tabescens, A. mellea, and A. gallica consisted of 16-18 fatty acids ranging from 12-24 carbons in length, although some of these were present only in trace amounts. Across the three species, 9-cis,12-cis-octadecadienoic acid (9,12-C18:2), hexadecanoic acid (16:0), heneicosanoic acid (21:0), 9-cis-octadecenoic acid (9-C18:1), and 2-hydroxy-docosanoic acid (OH-22:0) were the most abundant fatty acids. FAME profiles from different thallus morphologies (mycelium, sclerotial crust, or rhizomorphs) displayed by cultures of A. gallica showed that thallus type had no significant effect on cellular fatty acid composition (P > 0.05), suggesting that FAME profiling is sufficiently robust for species differentiation despite potential differences in thallus morphology within and among species. The three Armillaria species included in this study could be distinguished from other lignicolous basidiomycete species commonly occurring on peach (Schizophyllum commune, Ganoderma lucidum, Stereum hirsutum, and Trametes versicolor) on the basis of FAME profiles using stepwise discriminant analysis (average squared canonical correlation = 0.953), whereby 9-C18:1, 9,12-C18:2, and 10-cis-hexadecenoic acid (10-C16:1) were the three strongest contributors. In a separate stepwise discriminant analysis, A. tabescens, A. mellea, and A. gallica were separated from one another based on their fatty acid profiles (average squared canonical correlation = 0.924), with 11-cis-octadecenoic acid (11-C18:1), 9-C18:1, and 2-hydroxy-hexadecanoic acid (OH-16:0) being most important for species separation. When fatty acids were extracted directly from mycelium dissected from naturally infected host tissue, the FAME-based discriminant functions developed in the preceding experiments classified all samples (n = 16) as A. tabescens; when applied to cultures derived from the same naturally infected samples, all unknowns were similarly classified as A. tabescens. Thus, FAME species classification of Armillaria unknowns directly from infected tissues may be feasible. Species designation of unknown Armillaria cultures by FAME analysis was identical to that indicated by IGS-RFLP classification with AluI.

  8. Variation in amino acid and lipid composition of latent fingerprints.

    PubMed

    Croxton, Ruth S; Baron, Mark G; Butler, David; Kent, Terry; Sears, Vaughn G

    2010-06-15

    The enhancement of latent fingerprints, both at the crime scene and in the laboratory using an array of chemical, physical and optical techniques, permits their use for identification. Despite the plethora of techniques available, there are occasions when latent fingerprints are not successfully enhanced. An understanding of latent fingerprint chemistry and behaviour will aid the improvement of current techniques and the development of novel ones. In this study the amino acid and fatty acid content of 'real' latent fingerprints collected on a non-porous surface was analysed by gas chromatography-mass spectrometry. Squalene was also quantified in addition. Hexadecanoic acid, octadecanoic acid and cis-9-octadecenoic acid were the most abundant fatty acids in all samples. There was, however, wide variation in the relative amounts of each fatty acid in each sample. It was clearly demonstrated that touching sebum-rich areas of the face immediately prior to fingerprint deposition resulted in a significant increase in the amount of fatty acids and squalene deposited in the resulting 'groomed' fingerprints. Serine was the most abundant amino acid identified followed by glycine, alanine and aspartic acid. The significant quantitative differences between the 'natural' and 'groomed' fingerprint samples seen for fatty acids were not observed in the case of the amino acids. This study demonstrates the variation in latent fingerprint composition between individuals and the impact of the sampling protocol on the quantitative analysis of fingerprints. (c) 2010 Elsevier Ireland Ltd. All rights reserved.

  9. Modulation of FadR Binding Capacity for Acyl-CoA Fatty Acids Through Structure-Guided Mutagenesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bacik, John-Paul; Yeager, Chris M.; Twary, Scott N.

    FadR is a versatile global regulator in Escherichia coli that controls fatty acid metabolism and thereby modulates the ability of this bacterium to grow using fatty acids or acetate as the sole carbon source. FadR regulates fatty acid metabolism in response to intra-cellular concentrations of acyl-CoA lipids. The ability of FadR to bind acyl-CoA fatty acids is hence of significant interest for the engineering of biosynthetic pathways for the production of lipid-based biofuels and commodity chemicals. Based on the available crystal structure of E. coli bound to myristoyl- CoA, we predicted amino acid positions within the effector binding pocket thatmore » would alter the ability of FadR to bind acyl-CoA fatty acids without affecting DNA binding. We utilized fluorescence polarization to characterize the in-vitro binding properties of wild type and mutant FadR. We found that a Leu102Ala mutant enhanced binding of the effector, likely by increasing the size of the binding pocket for the acyl moiety of the molecule. Conversely, the elimination of the guanidine side chain (Arg213Ala and Arg213Met mutants) of the CoA moiety binding site severely diminished the ability of FadR to bind the acyl-CoA effector. These results demonstrate the ability to fine tune FadR binding capacity. The validation of an efficient method to fully characterize all the binding events involved in the specific activity (effector and DNA operator binding) of FadR has allowed us to increase our understanding of the role of specific amino acids in the binding and recognition of acyl-CoA fatty acids and will greatly facilitate efforts aimed at engineering tunable FadR regulators for synthetic biology.« less

  10. Supplementation with Omega-3 Fatty Acids in Psychiatric Disorders: A Review of Literature Data

    PubMed Central

    Bozzatello, Paola; Brignolo, Elena; De Grandi, Elisa; Bellino, Silvio

    2016-01-01

    A new application for omega-3 fatty acids has recently emerged, concerning the treatment of several mental disorders. This indication is supported by data of neurobiological research, as highly unsaturated fatty acids (HUFAs) are highly concentrated in neural phospholipids and are important components of the neuronal cell membrane. They modulate the mechanisms of brain cell signaling, including the dopaminergic and serotonergic pathways. The aim of this review is to provide a complete and updated account of the empirical evidence of the efficacy and safety that are currently available for omega-3 fatty acids in the treatment of psychiatric disorders. The main evidence for the effectiveness of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) has been obtained in mood disorders, in particular in the treatment of depressive symptoms in unipolar and bipolar depression. There is some evidence to support the use of omega-3 fatty acids in the treatment of conditions characterized by a high level of impulsivity and aggression and borderline personality disorders. In patients with attention deficit hyperactivity disorder, small-to-modest effects of omega-3 HUFAs have been found. The most promising results have been reported by studies using high doses of EPA or the association of omega-3 and omega-6 fatty acids. In schizophrenia, current data are not conclusive and do not allow us either to refuse or support the indication of omega-3 fatty acids. For the remaining psychiatric disturbances, including autism spectrum disorders, anxiety disorders, obsessive-compulsive disorder, eating disorders and substance use disorder, the data are too scarce to draw any conclusion. Concerning tolerability, several studies concluded that omega-3 can be considered safe and well tolerated at doses up to 5 g/day. PMID:27472373

  11. Modulation of FadR Binding Capacity for Acyl-CoA Fatty Acids Through Structure-Guided Mutagenesis

    DOE PAGES

    Bacik, John-Paul; Yeager, Chris M.; Twary, Scott N.; ...

    2015-09-18

    FadR is a versatile global regulator in Escherichia coli that controls fatty acid metabolism and thereby modulates the ability of this bacterium to grow using fatty acids or acetate as the sole carbon source. FadR regulates fatty acid metabolism in response to intra-cellular concentrations of acyl-CoA lipids. The ability of FadR to bind acyl-CoA fatty acids is hence of significant interest for the engineering of biosynthetic pathways for the production of lipid-based biofuels and commodity chemicals. Based on the available crystal structure of E. coli bound to myristoyl- CoA, we predicted amino acid positions within the effector binding pocket thatmore » would alter the ability of FadR to bind acyl-CoA fatty acids without affecting DNA binding. We utilized fluorescence polarization to characterize the in-vitro binding properties of wild type and mutant FadR. We found that a Leu102Ala mutant enhanced binding of the effector, likely by increasing the size of the binding pocket for the acyl moiety of the molecule. Conversely, the elimination of the guanidine side chain (Arg213Ala and Arg213Met mutants) of the CoA moiety binding site severely diminished the ability of FadR to bind the acyl-CoA effector. These results demonstrate the ability to fine tune FadR binding capacity. The validation of an efficient method to fully characterize all the binding events involved in the specific activity (effector and DNA operator binding) of FadR has allowed us to increase our understanding of the role of specific amino acids in the binding and recognition of acyl-CoA fatty acids and will greatly facilitate efforts aimed at engineering tunable FadR regulators for synthetic biology.« less

  12. The relation of red blood cell fatty acids with vascular stiffness, cardiac structure and left ventricular function: the Framingham Heart Study.

    PubMed

    Kaess, Bernhard M; Harris, William S; Lacey, Sean; Larson, Martin G; Hamburg, Naomi M; Vita, Joseph A; Robins, Sander J; Benjamin, Emelia J; Mitchell, Gary F; Vasan, Ramachandran S

    2015-02-01

    Polyunsaturated fatty acids have been associated with beneficial influences on cardiovascular health. However, the underlying mechanisms are not clear, and data on the relations of polyunsaturated fatty acids to subclinical disease measures such as vascular stiffness and cardiac function are sparse and inconclusive. In a large community-based cohort, we examined the relations of omega-3 and other fatty acids to a comprehensive panel of vascular function measures (assessing microvascular function and large artery stiffness), cardiac structure and left ventricular function. Red blood cell (RBC) membrane fatty acid composition, a measure of long-term fatty acid intake, was assessed in participants of the Framingham Offspring Study and Omni cohorts and related to tonometry-derived measures of vascular stiffness and to a panel of echocardiographic traits using partial correlations. Up to n=3055 individuals (56% women, mean age 66 years) were available for analyses. In age- and sex-adjusted models, higher RBC omega-3 content was moderately associated (p≤0.002) with several measures of vascular stiffness and function in a protective direction. However, after multivariable adjustment, only an association of higher RBC omega-3 content with lower carotid-femoral pulse wave velocity (a measure of aortic stiffness) remained significant (r = -0.06, p=0.002). In secondary analyses, higher linoleic acid, the major nutritional omega-6 fatty acid, was associated with smaller left atrial size, even after multivariable adjustment (r = -0.064, p<0.001). In conclusion, in our cross-sectional community-based study, we found several associations consistent with the notion of protective effects of omega-3 and linoleic acid. The clinical significance of these modest associations remains to be elucidated. © The Author(s) 2014.

  13. Translating plasma and whole blood fatty acid compositional data into the sum of eicosapentaenoic and docosahexaenoic acid in erythrocytes.

    PubMed

    Stark, Ken D; Aristizabal Henao, Juan J; Metherel, Adam H; Pilote, Louise

    2016-01-01

    Specific blood levels of eicosapentaenoic plus docosahexaenoic acid (EPA+DHA, wt% of total) in erythrocytes or "the omega-3 index" have been recommended for cardio-protection, but fatty acids are often measured in different blood fractions. The ability to estimate the % of EPA+DHA in erythrocytes from the fatty acid composition of other blood fractions would enable clinical assessments of omega-3 status when erythrocyte fractions are not available and increase the ability to compare blood levels of omega-3 fatty acids across clinical studies. The fatty acid composition of baseline plasma, erythrocytes and whole blood samples from participants (n=1104) in a prospective, multicenter study examining acute coronary syndrome were determined. The ability to predict the % of EPA+DHA in erythrocytes from other blood fractions were examined using bivariate and multiple linear regression modelling. Concordance analysis was also used to compare the actual erythrocytes EPA+DHA values to values estimated from other blood fractions. EPA+DHA in erythrocytes was significantly (p<0.001) correlated EPA+DHA in plasma (r(2)=0.54) and whole blood (r(2)=0.79). Using multiple linear regression to predict EPA+DHA in erythrocytes resulted in stronger coefficients of determination in both plasma (R(2)=0.70) and whole blood (R(2)=0.84). Concordance analyses indicated agreement between actual and estimated EPA+DHA in erythrocytes, although estimating from plasma fatty acids appears to require translation by categorization rather than by translation as continuous data. This study shows that the fatty acid composition of different blood fractions can be used to estimate erythrocyte EPA+DHA in a population with acute coronary syndrome. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Investigations of human platelet-type 12-lipoxygenase: role of lipoxygenase products in platelet activation1[S

    PubMed Central

    Ikei, Kenneth N.; Yeung, Jennifer; Apopa, Patrick L.; Ceja, Jesús; Vesci, Joanne; Holinstat, Michael

    2012-01-01

    Human platelet-type 12-lipoxygenase (12-LOX) has recently been shown to play an important role in regulation of human platelet function by reacting with arachidonic acid (AA). However, a number of other fatty acids are present on the platelet surface that, when cleaved from the phospholipid, can be oxidized by 12-LOX. We sought to characterize the substrate specificity of 12-LOX against six essential fatty acids: AA, dihomo-γ-linolenic acid (DGLA), eicosapentaenoic acid (EPA), α-linolenic acid (ALA), eicosadienoic acid (EDA), and linoleic acid (LA). Three fatty acids were comparable substrates (AA, DGLA, and EPA), one was 5-fold slower (ALA), and two showed no reactivity with 12-LOX (EDA and LA). The bioactive lipid products resulting from 12-LOX oxidation of DGLA, 12-(S)-hydroperoxy-8Z,10E,14Z-eicosatrienoic acid [12(S)-HPETrE], and its reduced product, 12(S)-HETrE, resulted in significant attenuation of agonist-mediated platelet aggregation, granule secretion, αIIbβ3 activation, Rap1 activation, and clot retraction. Treatment with DGLA similarly inhibited PAR1-mediated platelet activation as well as platelet clot retraction. These observations are in surprising contrast to our recent work showing 12(S)-HETE is a prothrombotic bioactive lipid and support our hypothesis that the overall effect of 12-LOX oxidation of fatty acids in the platelet is dependent on the fatty acid substrates available at the platelet membrane. PMID:22984144

  15. Manipulating Membrane Fatty Acid Compositions of Whole Plants with Tween-Fatty Acid Esters 1

    PubMed Central

    Terzaghi, William B.

    1989-01-01

    This paper describes a method for manipulating plant membrane fatty acid compositions without altering growth temperature or other conditions. Tween-fatty acid esters carrying specific fatty acids were synthesized and applied to various organs of plants growing axenically in glass jars. Treated plants incorporated large amounts of exogenous fatty acids into all acylated membrane lipids detected. Fatty acids were taken up by both roots and leaves. Fatty acids applied to roots were found in leaves, while fatty acids applied to leaves appeared in both leaves higher on the plant and in roots, indicating translocation (probably in the phloem). Foliar application was most effective; up to 20% of membrane fatty acids of leaves above the treated leaf and up to 40% of root membrane fatty acids were exogenously derived. Plants which took up exogenous fatty acids changed their patterns of fatty acid synthesis such that ratios of saturated to unsaturated fatty acids remained essentially unaltered. Fatty acid uptake was most extensively studied in soybean (Glycine max [L.] Merr.), but was also observed in other species, including maize (Zea mays L.), mung beans (Vigna radiata L.), peas (Pisum sativum L.), petunia (Petunia hybrida L.) and tomato (Lycopersicon esculentum Mill.). Potential applications of this system include studying internal transport of fatty acids, regulation of fatty acid and membrane synthesis, and influences of membrane fatty acid composition on plant physiology. Images Figure 2 PMID:16666997

  16. Homology modeling and docking studies of a Δ9-fatty acid desaturase from a Cold-tolerant Pseudomonas sp. AMS8

    PubMed Central

    Garba, Lawal; Mohamad Yussoff, Mohamad Ariff; Abd Halim, Khairul Bariyyah; Ishak, Siti Nor Hasmah; Mohamad Ali, Mohd Shukuri; Oslan, Siti Nurbaya

    2018-01-01

    Membrane-bound fatty acid desaturases perform oxygenated desaturation reactions to insert double bonds within fatty acyl chains in regioselective and stereoselective manners. The Δ9-fatty acid desaturase strictly creates the first double bond between C9 and 10 positions of most saturated substrates. As the three-dimensional structures of the bacterial membrane fatty acid desaturases are not available, relevant information about the enzymes are derived from their amino acid sequences, site-directed mutagenesis and domain swapping in similar membrane-bound desaturases. The cold-tolerant Pseudomonas sp. AMS8 was found to produce high amount of monounsaturated fatty acids at low temperature. Subsequently, an active Δ9-fatty acid desaturase was isolated and functionally expressed in Escherichia coli. In this paper we report homology modeling and docking studies of a Δ9-fatty acid desaturase from a Cold-tolerant Pseudomonas sp. AMS8 for the first time to the best of our knowledge. Three dimensional structure of the enzyme was built using MODELLER version 9.18 using a suitable template. The protein model contained the three conserved-histidine residues typical for all membrane-bound desaturase catalytic activity. The structure was subjected to energy minimization and checked for correctness using Ramachandran plots and ERRAT, which showed a good quality model of 91.6 and 65.0%, respectively. The protein model was used to preform MD simulation and docking of palmitic acid using CHARMM36 force field in GROMACS Version 5 and Autodock tool Version 4.2, respectively. The docking simulation with the lowest binding energy, −6.8 kcal/mol had a number of residues in close contact with the docked palmitic acid namely, Ile26, Tyr95, Val179, Gly180, Pro64, Glu203, His34, His206, His71, Arg182, Thr85, Lys98 and His177. Interestingly, among the binding residues are His34, His71 and His206 from the first, second, and third conserved histidine motif, respectively, which constitute the active site of the enzyme. The results obtained are in compliance with the in vivo activity of the Δ9-fatty acid desaturase on the membrane phospholipids. PMID:29576935

  17. Unsaturated fatty acids protect trophoblast cells from saturated fatty acid-induced autophagy defects.

    PubMed

    Hong, Ye-Ji; Ahn, Hyo-Ju; Shin, Jongdae; Lee, Joon H; Kim, Jin-Hoi; Park, Hwan-Woo; Lee, Sung Ki

    2018-02-01

    Dysregulated serum fatty acids are associated with a lipotoxic placental environment, which contributes to increased pregnancy complications via altered trophoblast invasion. However, the role of saturated and unsaturated fatty acids in trophoblastic autophagy has yet to be explored. Here, we demonstrated that prolonged exposure of saturated fatty acids interferes with the invasiveness of human extravillous trophoblasts. Saturated fatty acids (but not unsaturated fatty acids) inhibited the fusion of autophagosomes and lysosomes, resulting in the formation of intracellular protein aggregates. Furthermore, when the trophoblast cells were exposed to saturated fatty acids, unsaturated fatty acids counteracted the effects of saturated fatty acids by increasing degradation of autophagic vacuoles. Saturated fatty acids reduced the levels of the matrix metalloproteinases (MMP)-2 and MMP-9, while unsaturated fatty acids maintained their levels. In conclusion, saturated fatty acids induced decreased trophoblast invasion, of which autophagy dysfunction plays a major role. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Fatty acid intakes of children and adolescents are not in line with the dietary intake recommendations for future cardiovascular health: a systematic review of dietary intake data from thirty countries.

    PubMed

    Harika, Rajwinder K; Cosgrove, Maeve C; Osendarp, Saskia J M; Verhoef, Petra; Zock, Peter L

    2011-08-01

    Fatty acid composition of the diet may influence cardiovascular risk from early childhood onwards. The objective of the present study was to perform a systematic review of dietary fat and fatty acid intakes in children and adolescents from different countries around the world and compare these with the population nutrient intake goals for prevention of chronic diseases as defined by the WHO (2003). Data on fat and fatty acid intake were mainly collected from national dietary surveys and from population studies all published during or after 1995. These were identified by searching PubMed, and through nutritionists at local Unilever offices in different countries. Fatty acid intake data from thirty countries mainly from developed countries were included. In twenty-eight of the thirty countries, mean SFA intakes were higher than the recommended maximum of 10 % energy, whereas in twenty-one out of thirty countries mean PUFA intakes were below recommended (6-10 % energy). More and better intake data are needed, in particular for developing regions of the world, and future research should determine the extent to which improvement of dietary fatty acid intake in childhood translates into lower CHD risk in later life. Despite these limitations, the available data clearly indicate that in the majority of the countries providing data on fatty acid intake, less than half of the children and adolescents meet the SFA and PUFA intake goals that are recommended for the prevention of chronic diseases.

  19. Impact of fatty acid status on immune function of children in low-income countries.

    PubMed

    Prentice, Andrew M; van der Merwe, Liandré

    2011-04-01

    In vitro and animal studies point to numerous mechanisms by which fatty acids, especially long-chain polyunsaturated fatty acids (LCPUFA), can modulate the innate and adaptive arms of the immune system. These data strongly suggest that improving the fatty acid supply of young children in low-income countries might have immune benefits. Unfortunately, there have been virtually no studies of fatty acid/immune interactions in such settings. Clinical trial registers list over 150 randomized controlled trials (RCTs) involving PUFAs, only one in a low-income setting (the Gambia). We summarize those results here. There was evidence for improved growth and nutritional status, but the primary end point of chronic environmental enteropathy showed no benefit, possibly because the infants were still substantially breastfed. In high-income settings, there have been RCTs with fatty acids (usually LCPUFAs) in relation to 18 disease end points, for some of which there have been numerous trials (asthma, inflammatory bowel disease and rheumatoid arthritis). For these diseases, the evidence is judged reasonable for risk reduction for childhood asthma (but not in adults), as yielding possible benefit in Crohn's disease (insufficient evidence in ulcerative colitis) and for convincing evidence for rheumatoid arthritis at sufficient dose levels, though formal meta-analyses are not yet available. This analysis suggests that fatty acid interventions could yield immune benefits in children in poor settings, especially in non-breastfed children and in relation to inflammatory conditions such as persistent enteropathy. Benefits might include improved responses to enteric vaccines, which frequently perform poorly in low-income settings, and these questions merit randomized trials. © 2011 Blackwell Publishing Ltd.

  20. Time trend investigation of PCBs, PBDEs, and organochlorine pesticides in selected n-3 polyunsaturated fatty acid rich dietary fish oil and vegetable oil supplements; nutritional relevance for human essential n-3 fatty acid requirements.

    PubMed

    Jacobs, Miriam N; Covaci, Adrian; Gheorghe, Adriana; Schepens, Paul

    2004-03-24

    In addition to being used in the food and animal feed industry, fish oils have also been used traditionally as dietary supplements. Due to the presence of long-chain n-3 fatty acids, fish oils have therapeutic benefits in the prevention and treatment of cardiovascular, immunological, and arthritic diseases, as well as childhood deficiency diseases such as rickets, because of a high content of vitamin D. However, fish oils are also susceptible to contamination with lipophilic organic chemicals that are now ubiquitous contaminants of marine ecosystems. Many vegetable oils are sources of the shorter chain precursor forms of n-3 fatty acids, and in recent years the specialist dietary supplement market has expanded to include these oils in a variety of different formulations. This paper reports analytical results of selected contaminants, including polychlorinated biphenyls, organochlorine pesticides, and polybrominated diphenyl ethers, for a range of commercially available n-3 fatty acid rich fish and vegetable oil dietary supplements. Using principal component analysis, the values are compared with historic samples to elucidate time trends in contamination profiles. Levels of contaminants are discussed in relation to the nutritional benefits to the consumer of long- and short-chain forms of n-3 fatty acids.

  1. Long-chain n-3 polyunsaturated fatty acids in plasma in British meat-eating, vegetarian, and vegan men.

    PubMed

    Rosell, Magdalena S; Lloyd-Wright, Zouë; Appleby, Paul N; Sanders, Thomas A B; Allen, Naomi E; Key, Timothy J

    2005-08-01

    Plasma concentrations of long-chain n-3 polyunsaturated fatty acids are lower in vegetarians and in vegans than in omnivores. No data are available on whether these concentrations differ between long- and short-term vegetarians and vegans. We compared plasma fatty acid composition in meat-eaters, vegetarians, and vegans and examined whether the proportions of eicosapentaenoic acid (20:5n-3; EPA), docosapentaenoic acid (22:5n-3; DPA), and docosahexaenoic acid (22:6n-3; DHA) were related to the subjects' duration of adherence to their diets or to the proportions of plasma linoleic acid (18:2n-6; LA) and alpha-linolenic acid (18:3n-3; ALA). The present cross-sectional study included 196 meat-eating, 231 vegetarian, and 232 vegan men in the United Kingdom. Information on anthropometry, diet, and smoking habits was obtained through a questionnaire. Total fatty acid composition in plasma was measured. The proportions of plasma EPA and DHA were lower in the vegetarians and in the vegans than in the meat-eaters, whereas only small differences were seen for DPA. Plasma EPA, DPA, and DHA proportions were not significantly associated with the duration of time since the subjects became vegetarian or vegan, which ranged from <1 y to >20 y. In the vegetarians and the vegans, plasma DHA was inversely correlated with plasma LA. The proportions of plasma long-chain n-3 fatty acids were not significantly affected by the duration of adherence to a vegetarian or vegan diet. This finding suggests that when animal foods are wholly excluded from the diet, the endogenous production of EPA and DHA results in low but stable plasma concentrations of these fatty acids.

  2. n3- polyunsaturated Fat Acid Content of Some Edible Fish from Bahrain Waters

    NASA Astrophysics Data System (ADS)

    Al-Arrayedu, F. H.; Al Maskati, H. A.; Abdullah, F. J.

    1999-08-01

    This study was performed to determine the content of n3- polyunsaturated fatty acids in 10 fish species that are commonly consumed in Bahrain in addition to the main commercial shrimp species. White sardinella, which is a plankton feeder, had the highest content of n3- polyunsaturated fatty acids. It had the highest value of eicosapentaenoic acid (146.5 ± 20 mg 100 g-1) and linolenic acid (98.9±f 100 g-1) and the second highest value of docosahexaenoic acid at (133.7 ± 22 mg 100 g-1). Spanish mackerel which feeds mainly on sardinella was second with eicosapentaenoc acid at 55 ± 5.4 mg 100 g-1, docosahexaenoic acid at 161 ± 19.8 mg 100 g-1, linolenic acid at 16.4 mg 100 g-1 and docosapentaenoic acid at 25 ± 1.9 mg 100 g-1. Rabbitfish, the most popular edible fish in Bahrain which feeds mainly on benthic algae had the third highest content of n3- polyunsaturated fatty acids with eicosapentaenoic acid at 37.5 ± 3.9 mg 100 g-1, docosahexaenoic acid at 76 ± 6.7 mg 100 g-1, and docosapentaenoic acid at 85.8 ± 10 mg 100 g-1. The other fish and crustacean species studied were Arabian carpet shark, doublebar bream, grouper, gray grunt, golden travally, keeled mullet, spangled emperor and shrimp. The study explores the transfer of n3- polyunsaturated fatty acids through the food webs of the examined fish. It is apparent, generally, that plankton feeders displayed the highest content of n3- polyunsaturated fatty acids followed by seaweed and algae grazers, with benthic carnivores feeding on invertebrates displaying the poorest content. The values reported here, however, are much lower than those reported for fish available in American markets and in Mediterranean fish. Warm water temperature and high salinity which lead to lowering of the density of phytoplankton and phytoplankton content of n3- polyunsaturated fatty acids are suggested as the reason for the observed low values of n3- polyunsaturated fatty acids in Bahrain fish.

  3. Quality and fatty acid profile of the milk of indigenous goats subjected to different local diets in Tunisian arid lands.

    PubMed

    Ayeb, N; Addis, M; Fiori, M; Khorchani, S; Atigui, M; Khorchani, T

    2016-02-01

    The study tested the hypothesis that certain pastoral forages and olive by-products, available in arid areas, may positively influence fatty acid composition and physicochemical properties of goat's milk. Thirty indigenous goats (body weight = 25.2 kg; age = 4.1 years) were allocated to three groups. During 60 days, the goats received ad libitum either dried olive leaves + Stipa tenacissima (group OL), khortane grass hay (group Ko) or oat hay (control diet, group OH). Milk samples were collected and analysed for total solids, fat, protein, lactose and ash content and fatty acid profile. Average milk yield did not statistically differ among groups. Milk total solids from OL group were higher in comparison with Ko and C groups (15.3, 14.7 and 14.5%, respectively; p < 0.05). Fat content was also higher for the OL group as compared to the other groups (5.44 vs. 5.01 and 4.66%, respectively, for Ko and OH). No significant differences were observed for the milk content of lactose, protein and ash. The percentage of saturated fatty acids of total milk fat was higher in OL and Ko groups compared to the C group (p < 0.001); the milk whereof was characterized by the highest percentage of monounsaturated (p < 0.01) and total unsaturated fatty acids. Milk fat of Ko and C groups showed significantly higher proportions of rumenic (CLA cis-9 trans-11) and vaccenic acids (C18:1 trans-11) compared to OL milk. The feeding system based on Stipa tenacissima and dried olive leaves resulted in the milk lowest proportion of trans-fatty acids and the highest proportion of polyunsaturated ω3-fatty acids (p < 0.05). Journal of Animal Physiology and Animal Nutrition © 2015 Blackwell Verlag GmbH.

  4. Tracking of Drug Release and Material Fate for Naturally Derived Omega-3 Fatty Acid Biomaterials.

    PubMed

    Faucher, Keith M; Artzi, Natalie; Beck, Moshe; Beckerman, Rita; Moodie, Geoff; Albergo, Theresa; Conroy, Suzanne; Dale, Alicia; Corbeil, Scott; Martakos, Paul; Edelman, Elazer R

    2016-03-01

    In vitro and in vivo studies were conducted on omega-3 fatty acid-derived biomaterials to determine their utility as an implantable material for adhesion prevention following soft tissue hernia repair and as a means to allow for the local delivery of antimicrobial or antibiofilm agents. Naturally derived biomaterials offer several advantages over synthetic materials in the field of medical device development. These advantages include enhanced biocompatibility, elimination of risks posed by the presence of toxic catalysts and chemical crosslinking agents, and derivation from renewable resources. Omega-3 fatty acids are readily available from fish and plant sources and can be used to create implantable biomaterials either as a stand-alone device or as a device coating that can be utilized in local drug delivery applications. In-depth characterization of material erosion degradation over time using non-destructive imaging and chemical characterization techniques provided mechanistic insight into material structure: function relationship. This in turn guided rational tailoring of the material based on varying fatty acid composition to control material residence time and hence drug release. These studies demonstrate the utility of omega-3 fatty acid derived biomaterials as an absorbable material for soft tissue hernia repair and drug delivery applications.

  5. Probing fatty acid metabolism in bacteria, cyanobacteria, green microalgae and diatoms with natural and unnatural fatty acids.

    PubMed

    Beld, Joris; Abbriano, Raffaela; Finzel, Kara; Hildebrand, Mark; Burkart, Michael D

    2016-04-01

    In both eukaryotes and prokaryotes, fatty acid synthases are responsible for the biosynthesis of fatty acids in an iterative process, extending the fatty acid by two carbon units every cycle. Thus, odd numbered fatty acids are rarely found in nature. We tested whether representatives of diverse microbial phyla have the ability to incorporate odd-chain fatty acids as substrates for their fatty acid synthases and their downstream enzymes. We fed various odd and short chain fatty acids to the bacterium Escherichia coli, cyanobacterium Synechocystis sp. PCC 6803, green microalga Chlamydomonas reinhardtii and diatom Thalassiosira pseudonana. Major differences were observed, specifically in the ability among species to incorporate and elongate short chain fatty acids. We demonstrate that E. coli, C. reinhardtii, and T. pseudonana can produce longer fatty acid products from short chain precursors (C3 and C5), while Synechocystis sp. PCC 6803 lacks this ability. However, Synechocystis can incorporate and elongate longer chain fatty acids due to acyl-acyl carrier protein synthetase (AasS) activity, and knockout of this protein eliminates the ability to incorporate these fatty acids. In addition, expression of a characterized AasS from Vibrio harveyii confers a similar capability to E. coli. The ability to desaturate exogenously added fatty acids was only observed in Synechocystis and C. reinhardtii. We further probed fatty acid metabolism of these organisms by feeding desaturase inhibitors to test the specificity of long-chain fatty acid desaturases. In particular, supplementation with thia fatty acids can alter fatty acid profiles based on the location of the sulfur in the chain. We show that coupling sensitive gas chromatography mass spectrometry to supplementation of unnatural fatty acids can reveal major differences between fatty acid metabolism in various organisms. Often unnatural fatty acids have antibacterial or even therapeutic properties. Feeding of short precursors now gives us easy access to these extended molecules.

  6. Generation of volatile fatty acids by axillary bacteria.

    PubMed

    James, A G; Hyliands, D; Johnston, H

    2004-06-01

    It is generally accepted that short-chain (C(2)-C(5)) volatile fatty acids (VFAs) are among the causal molecules of axillary malodour. It is also widely acknowledged that malodour generation is attributable to the biotransformation of odourless natural secretions, into volatile odorous products, by axillary bacteria. However, little information is available on the biochemical origins of VFAs on axillary skin. In these studies, assay systems were developed to investigate the generation of VFAs from substrates readily available to the bacteria resident on axillary skin. Propionibacteria and staphylococci were shown to ferment glycerol and lactic acid to the short-chain (C(2)-C(3)) VFAs, acetic and propionic acid. Furthermore, staphylococci are capable of converting branched aliphatic amino acids, such as leucine, to highly odorous short-chain (C(4)-C(5)) methyl-branched VFAs, such as isovaleric acid, which are traditionally associated with the acidic note of axillary malodour. However, in vitro kinetic data indicates that these pathways contribute less to axillary VFA levels, than fatty acid biotransformations by a recently defined sub-group of the Corynebacterium genus, corynebacteria (A). The results of these studies provide new understanding on the biochemical origins of VFA-based axillary malodour which, in turn, should lead to the development of novel deodorant systems.

  7. Analysis of bacterial fatty acids by flow modulated comprehensive two-dimensional gas chromatography with parallel flame ionization detector/mass spectrometry.

    PubMed

    Gu, Qun; David, Frank; Lynen, Frédéric; Rumpel, Klaus; Xu, Guowang; De Vos, Paul; Sandra, Pat

    2010-06-25

    Comprehensive two-dimensional gas chromatography (GCxGC) offers an interesting tool for profiling bacterial fatty acids. Flow modulated GCxGC using a commercially available system was evaluated, different parameters such as column flows and modulation time were optimized. The method was tested on bacterial fatty acid methyl esters (BAMEs) from Stenotrophomonas maltophilia LMG 958T by using parallel flame ionization detector (FID)/mass spectrometry (MS). The results are compared to data obtained using a thermal modulated GCxGC system. The data show that flow modulated GCxGC-FID/MS method can be applied in a routine environment and offers interesting perspectives for chemotaxonomy of bacteria.

  8. Origin of fatty acid synthesis - Thermodynamics and kinetics of reaction pathways

    NASA Technical Reports Server (NTRS)

    Weber, Arthur L.

    1991-01-01

    The primitiveness of contemporary fatty acid biosynthesis was evaluated by using the thermodynamics and kinetics of its component reactions to estimate the extent of its dependence on powerful and selective catalysis by enzymes. Since this analysis indicated that the modern pathway is not primitive because it requires sophisticated enzymatic catalysis, an alternative pathway of primitive fatty acid synthesis is proposed that uses glycolaldehyde as a substrate. In contrast to the modern pathway, this primitive pathway is not dependent on an exogenous source of phosphoanhydride energy. Furthermore, the chemical spontaneity of its reactions suggests that it could have been readily catalyzed by the rudimentary biocatalysts available at an early stage in the origin of life.

  9. Biosynthetic production of universally (13)C-labelled polyunsaturated fatty acids as reference materials for natural health product research.

    PubMed

    Le, Phuong Mai; Fraser, Catherine; Gardner, Graeme; Liang, Wei-Wan; Kralovec, Jaroslav A; Cunnane, Stephen C; Windust, Anthony J

    2007-09-01

    Long-chain polyunsaturated fatty acids (LCPUFA) including eicosapentaenoic acid (EPA, 20:5n-3) and docosahexaenoic acid (DHA, 22:6n-3) have become important natural health products with numerous proven benefits related to brain function and cardiovascular health. Not only are omega-3 fatty acids available in a plethora of dietary supplements, but they are also increasingly being incorporated as triglycerides into conventional foods, including bread, milk, yoghurt and confectionaries. Recently, transgenic oil seed crops and livestock have been developed that enhance omega-3 fatty acid content. This diverse array of matrices presents a difficult analytical challenge and is compounded further by samples generated through clinical research. Stable isotope (13)C-labelled LCPUFA standards offer many advantages as research tools because they may be distinguished from their naturally abundant counterparts by mass spectrometry and directly incorporated as internal standards into analytical procedures. Further, (13)C-labelled LCPUFAs are safe to use as metabolic tracers to study uptake and metabolism in humans. Currently, (13)C-labelled LCPUFAs are expensive, available in limited supply and not in triglyceride form. To resolve these issues, marine heterotrophic microorganisms are being isolated and screened for LCPUFA production with a view to the efficient biosynthetic production of U-(13)C-labelled fatty acids using U-(13)C glucose as a carbon source. Of 37 isolates obtained, most were thraustochytrids, and either DHA or omega-6 docosapentaenoic acid (22:5n-6) were produced as the major LCPUFA. The marine protist Hyalochlorella marina was identified as a novel source of EPA and omega-3 docosapentaenoic acid (22:5n-3). As proof of principle, gram-level production of (13)C-labelled DHA has been achieved with high chemical purity ( >99%) and high (13)C incorporation levels (>90%), as confirmed by NMR and MS analyses. Finally, U-(13)C-DHA was enzymatically re-esterified to glycerol to yield a (13)C-labelled tridocosahexaenoin.

  10. Polyunsaturated fatty acids influence differential biosynthesis of oxylipids and other lipid mediators during bovine coliform mastitis.

    PubMed

    Mavangira, Vengai; Gandy, Jeffery C; Zhang, Chen; Ryman, Valerie E; Daniel Jones, A; Sordillo, Lorraine M

    2015-09-01

    Coliform mastitis is a severe and sometimes fatal disease characterized by an unregulated inflammatory response. The initiation, progression, and resolution of inflammatory responses are regulated, in part, by potent oxylipid metabolites derived from polyunsaturated fatty acids. The purpose of this study was to characterize the biosynthesis and diversity of oxylipid metabolites during acute bovine coliform mastitis. Eleven cows diagnosed with naturally occurring acute systemic coliform mastitis and 13 healthy control cows, matched for lactation number and days in milk, were selected for comparison of oxylipid and free fatty acid concentrations in both milk and plasma. Oxylipids and free fatty acids were quantified using liquid chromatography-tandem mass spectrometry. All polyunsaturated fatty acids quantified in milk were elevated during coliform mastitis with linoleic acid being the most abundant. Oxylipids synthesized through the lipoxygenase and cytochrome P450 pathways accounted for the majority of the oxylipid biosynthesis. This study demonstrated a complex and diverse oxylipid network, most pronounced at the level of the mammary gland. Substrate availability, biosynthetic pathways, and degree of metabolism influence the biosynthesis of oxylipids during bovine coliform mastitis. Further studies are required to identify targets for novel interventions that modulate oxylipid biosynthesis during coliform mastitis to optimize inflammation. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  11. Are fat acids of human milk impacted by pasteurization and freezing?

    PubMed

    Borgo, Luiz Antônio; Coelho Araújo, Wilma Maria; Conceição, Maria Hosana; Sabioni Resck, Inês; Mendonça, Márcio Antonio

    2014-10-03

    The Human Milk Bank undergo human milk to pasteurization, followed by storage in a freezer at -18° C for up to six months to thus keep available the stocks of this product in maternal and infant hospitals. The objective of this study was to evaluate the effects of processing on the lipid fraction of human milk. A sample of human milk was obtained from a donor and was subdivided into ten sub-samples that was subjected to the following treatments: LC = raw milk; T0 = milk after pasteurization; T30 = milk after pasteurization and freezing for 30 days; T60 = milk after pasteurization and freeze for 60 days, and so on every 30 days until T240 = milk after pasteurization and freezing for 240 days, with 3 repetitions for each treatment. Lipids were extracted, methylated and fatty acid profiles determined by gas chromatography. The fatty acids were characterized by nuclear magnetic resonance and functional groups were identified by infrared spectroscopy. There were variations in the concentration of fatty acids. For unsaturated fatty acids there was increasing trend in their concentrations. The IR and NMR analyze characterized and identified functional groups presents in fatty acids. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.

  12. Fatty Acid-Based Monomers as Styrene Replacements for Liquid Molding Resins

    DTIC Science & Technology

    2005-05-01

    fatty acid length and unsaturation level on resin and polymer properties. Fig. 2. The addition of fatty acids ( oleic acid ) to glycidyl methacylate to...the synthetic route used to form the methacrylated fatty acids (MFA). The carboxylic acid of fatty acids undergoes a simple addition reaction with... form methacrylated fatty acid monomer

  13. Tocopherol content and Fatty Acid profile of different Iranian date seed oils.

    PubMed

    Biglar, Mahmood; Khanavi, Mahnaz; Hajimahmoodi, Mannan; Hassani, Shokufeh; Moghaddam, Ghazaleh; Sadeghi, Naficeh; Oveisi, Mohammad Reza

    2012-01-01

    Date is one of the world's oldest food-producing plants wich has always played an important role in the economy and social life. Various researchers examined chemical composition and nutritional values of edible parts of dates while limited information about chemical composition and nutritional quality of date seed is available. In this study, fatty acid composition and total tocopherol content of 14 Iranian date seed oils were studied. Statistical analysis was performed through SPSS computing package. According to the fatty acid profiles, seven fatty acids were found through nearly 50% oleic acid in seeds. Shekar cultivar by 51.40% had the maximum amount and Lasht cultivar by 33.38% had the minimum amount of oleic acid. Tocopherol content in the samples varied between 33.86 μg vit E/g oil for Shahabi2 to 10.09 μg vit E/g oil for Shekar. Tocopherol content was 1.88 and 0.61 μg respectively in one-gram seed of these two cultivars. Iranian date seed oils classified as oleic-lauric oil, had a high amount of oleic acid and could serve as a profitable source of valuable oils for industrial applications.

  14. [CONTENT OF TRANS FATTY ACIDS IN FOOD PRODUCTS IN SPAIN].

    PubMed

    Robledo de Dios, Teresa; Dal Re Saavedra, M Ángeles; Villar Villalba, Carmen; Pérez-Farinós, Napoleón

    2015-09-01

    trans fatty acids are associated to several health disorders, as ischemic heart disease or diabetes mellitus. to assess the content of trans fatty acids in products in Spain, and the percentage of trans fatty acids respecting total fatty acids. 443 food products were acquired in Spain, and they were classified into groups. The content in fatty acids was analyzed using gas chromatography. Estimates of central tendency and variability of the content of trans fatty acids in each food group were computed (in g of trans fatty acids/100 g of product). The percentage of trans fatty acids respecting total fatty acids was calculated in each group. 443 products were grouped into 42 groups. Median of trans fatty acids was less than 0.55 g / 100 g of product in all groups except one. 83 % of groups had less than 2 % of trans fatty acids, and 71 % of groups had less than 1 %. the content of trans fatty acids in Spain is low, and it currently doesn't play a public health problem. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.

  15. The response of gene expression associated with lipid metabolism, fat deposition and fatty acid profile in the longissimus dorsi muscle of Gannan yaks to different energy levels of diets

    PubMed Central

    Liu, Jianbin; Wu, Xiaoyun; Bao, Pengjia; Long, Ruijun; Guo, Xian; Ding, Xuezhi; Yan, Ping

    2017-01-01

    The energy available from the diet, which affects fat deposition in vivo, is a major factor in the expression of genes regulating fat deposition in the longissimus dorsi muscle. Providing high-energy diets to yaks might increase intramuscular fat deposition and fatty acid concentrations under a traditional grazing system in cold seasons. A total of fifteen adult castrated male yaks with an initial body weight 274.3 ± 3.14 kg were analyzed for intramuscular adipose deposition and fatty acid composition. The animals were divided into three groups and fed low-energy (LE: 5.5 MJ/kg), medium-energy (ME: 6.2 MJ/kg) and high-energy (HE: 6.9 MJ/kg) diets, respectively. All animals were fed ad libitum twice daily at 08:00–09:00 am and 17:00–18:00 pm and with free access to water for 74 days, including a 14-d period to adapt to the diets and the environment. Intramuscular fat (IMF) content, fatty acid profile and mRNA levels of genes involved in fatty acid synthesis were determined. The energy levels of the diets significantly (P<0.05) affected the content of IMF, total SFA, total MUFA and total PUFA. C16:0, C18:0 and C18:1n9c account for a large proportion of total fatty acids. Relative expression of acetyl-CoA carboxylase (ACACA), fatty acid synthase (FASN), stearoyl-CoA desaturase (SCD), sterol regulatory element-binding protein-1c (SREBP-1c), peroxisome proliferator-activated receptor γ (PPARγ) and fatty acid-binding protein 4 (FABP4) was greater in HE than in LE yaks (P<0.05). Moreover, ME yaks had higher (P<0.05) mRNA expression levels of PPARγ, ACACA, FASN, SCD and FABP4 than did the LE yaks. The results demonstrate that the higher energy level of the diets increased IMF deposition and fatty acid content as well as increased intramuscular lipogenic gene expression during the experimental period. PMID:29121115

  16. Fatty Acid Compositions of Six Wild Edible Mushroom Species

    PubMed Central

    Günç Ergönül, Pelin; Akata, Ilgaz; Kalyoncu, Fatih; Ergönül, Bülent

    2013-01-01

    The fatty acids of six wild edible mushroom species (Boletus reticulatus, Flammulina velutipes var. velutipes, Lactarius salmonicolor, Pleurotus ostreatus, Polyporus squamosus, and Russula anthracina) collected from different regions from Anatolia were determined. The fatty acids were identified and quantified by gas chromatography and studied using fruit bodies. Fatty acid composition varied among species. The dominant fatty acid in fruit bodies of all mushrooms was cis-linoleic acid (18 : 2). Percentage of cis-linoleic acid in species varied from 22.39% to 65.29%. The other major fatty acids were, respectively, cis-oleic, palmitic, and stearic acids. Fatty acids analysis of the mushrooms showed that the unsaturated fatty acids were at higher concentrations than saturated fatty acids. PMID:23844377

  17. Omega-3 fatty acid fish oil dietary supplements contain saturated fats and oxidized lipids that may interfere with their intended biological benefits.

    PubMed

    Mason, R Preston; Sherratt, Samuel C R

    2017-01-29

    Widely available fish oil dietary supplements (DS) may contain fats and oxidized lipids in addition to the beneficial omega-3 fatty acids (OM3FAs) for which they are purchased. Little is known about the potential biological effects of these oxidized lipids. The objective of this study was to assess the fatty acid content, oxidation products, and biological effects of leading fish oil DS available in the United States. Three top-selling fish oil DS in the US were included in this analysis. Fatty acid composition was measured using gas chromatography. Lipid oxidation (primary and secondary products) was measured by spectroscopy in both DS and a prescription OM3FA product. OM3FAs were also isolated and concentrated from DS and were tested for the ability to inhibit copper-induced oxidation of human small dense low-density lipoprotein particles (sdLDL) in vitro. Fish oil DS were found to contain more than 30 different fatty acids, including 10 to 14 different saturated species comprising up to 36% of the total fatty acid content. Levels of OM3FAs also varied widely among DS (33%-79%). Primary (peroxide), secondary (anisidine), and total oxidation products exceeded maximum levels established by international standards of quality in the DS but not the prescription OM3FA product. Oxidation of sdLDL was inhibited by >95% (P < 0.001) with non-oxidized forms of OM3FA but not with OM3FAs isolated from DS, which were a mixture of oxidized and non-oxidized OM3FAs. These data indicate that levels of saturated fat and oxidized OM3FAs found in common DS may interfere with their intended/potential biological benefits. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  18. The effect of fish oil supplementation on brain DHA and EPA content and fatty acid profile in mice.

    PubMed

    Valentini, Kelly J; Pickens, C Austin; Wiesinger, Jason A; Fenton, Jenifer I

    2017-12-18

    Supplementation with omega-3 (n-3) fatty acids may improve cognitive performance and protect against cognitive decline. However, changes in brain phospholipid fatty acid composition after supplementation with n-3 fatty acids are poorly described. The purpose of this study was to feed increasing n-3 fatty acids and characterise the changes in brain phospholipid fatty acid composition and correlate the changes with red blood cells (RBCs) and plasma in mice. Increasing dietary docosahexaenoic (DHA) and eicosapentaenoic acid (EPA) did not alter brain DHA. Brain EPA increased and total n-6 polyunsaturated fatty acids decreased across treatment groups, and correlated with fatty acid changes in the RBC (r > 0.7). Brain cis-monounsaturated fatty acids oleic and nervonic acid (p < .01) and saturated fatty acids arachidic, behenic, and lignoceric acid (p < .05) also increased. These brain fatty acid changes upon increasing n-3 intake should be further investigated to determine their effects on cognition and neurodegenerative disease.

  19. Lipid Metabolism during Infection and Endotoxemia

    DTIC Science & Technology

    1981-01-01

    containing 8- and 10-carbon fatty acids almost exclusively) have been used in certain therapeutic diets . In contrast to the long-chain triglycerides...increased utilization of ketone bodies. The major substrates for hepatic ketogenesis are long-chain fatty acids. The term ’ ketogenic capacity’ refers to the...bodies is influenced not only by substrate availability and enzyme activities, but also more directly by the dis- posal of acetyl-CoA through ketogenic

  20. Substrate utilization/insulin resistance in sepsis/trauma.

    PubMed

    Wolfe, R R

    1997-12-01

    Endogenous substrate metabolism is markedly altered in critically ill patients. Glucose production is elevated not only in the post-absorptive state, but the normal suppressive effect of exogenous glucose and glucose production is greatly diminished. In the post-absorptive state, glucose clearance is generally elevated, potentially causing hypoglycaemia in extreme cases. Somewhat paradoxically, the ability of insulin to stimulate glucose uptake is diminished, so that hyperglycaemia is often evident during nutritional intake. Lipolysis, the breakdown of peripheral fat, is accelerated, meaning that free fatty acids are released into plasma at a rate far exceeding their oxidation. Some of the excess fatty acids are re-esterified in the liver, leading to accelerated hepatic triglyceride formation. A large increase in hepatic triglyceride stores can ensue if the rate of excretion of triglycerides in very low density lipoproteins is not accelerated commensurately with the increased triglyceride production. Indirect calorimetry measurements support the notion that the large increase in availability of fatty acids may lead to a greater reliance on fatty acids as energy substrates. Nonetheless, carbohydrates should be the predominant source of non-protein calories, because the accompanying insulin response effectively enhances protein synthesis. There is already ample fat available via endogenous lipolysis, and more fat given exogenously provides little further benefit.

  1. Enterocyte-afferent nerve interactions in dietary fat sensing.

    PubMed

    Mansouri, A; Langhans, W

    2014-09-01

    The central nervous system (CNS) constantly monitors nutrient availability in the body and, in particular, in the gastrointestinal (GI) tract to regulate nutrient and energy homeostasis. Extrinsic parasympathetic and sympathetic nerves are crucial for CNS nutrient sensing in the GI tract. These extrinsic afferent nerves detect the nature and amount of nutrients present in the GI tract and relay the information to the brain, which controls energy intake and expenditure accordingly. Dietary fat and fatty acids are sensed through various direct and indirect mechanisms. These sensing processes involve the binding of fatty acids to specific G protein-coupled receptors expressed either on the afferent nerve fibres or on the surface of enteroendocrine cells that release gut peptides, which themselves can modulate afferent nerve activity through their cognate receptors or have endocrine effects directly on the brain. Further dietary fat sensing mechanisms that are related to enterocyte fat handling and metabolism involve the release of several possible chemical mediators such as fatty acid ethanolamides or apolipoprotein A-IV. We here present evidence for yet another mechanism that may be based on ketone bodies resulting from enterocyte oxidation of dietary fat-derived fatty acids. The presently available evidence suggests that sympathetic rather than vagal afferents are involved, but further experiments are necessary to critically examine this concept. © 2014 John Wiley & Sons Ltd.

  2. Essential role for uncoupling protein-3 in mitochondrial adaptation to fasting but not in fatty acid oxidation or fatty acid anion export.

    PubMed

    Seifert, Erin L; Bézaire, Véronic; Estey, Carmen; Harper, Mary-Ellen

    2008-09-12

    Uncoupling protein-3 (UCP3) is a mitochondrial inner membrane protein expressed most abundantly in skeletal muscle and to a lesser extent in heart and brown adipose tissue. Evidence supports a role for UCP3 in fatty acid oxidation (FAO); however, the underlying mechanism has not been explored. In 2001 we proposed a role for UCP3 in fatty acid export, leading to higher FAO rates (Himms-Hagen, J., and Harper, M. E. (2001) Exp. Biol. Med. (Maywood) 226, 78-84). Specifically, this widely held hypothesis states that during elevated FAO rates, UCP3 exports fatty acid anions, thereby maintaining mitochondrial co-enzyme A availability; reactivation of exported fatty acid anions would ultimately enable increased FAO. Here we tested mechanistic aspects of this hypothesis as well as its functional implications, namely increased FAO rates. Using complementary mechanistic approaches in mitochondria from wild-type and Ucp3(-/-) mice, we find that UCP3 is not required for FAO regardless of substrate type or supply rate covering a 20-fold range. Fatty acid anion export and reoxidation during elevated FAO, although present in skeletal muscle mitochondria, are independent of UCP3 abundance. Interestingly, UCP3 was found to be necessary for the fasting-induced enhancement of FAO rate and capacity, possibly via mitigated mitochondrial oxidative stress. Thus, although our observations indicate that UCP3 can impact FAO rates, the mechanistic basis is not via an integral function for UCP3 in the FAO machinery. Overall our data indicate a function for UCP3 in mitochondrial adaptation to perturbed cellular energy balance and integrate previous observations that have linked UCP3 to reduced oxidative stress and FAO.

  3. Enzymatic lipophilization of epicatechin with free fatty acids and its effect on antioxidative capacity in crude camellia seed oil.

    PubMed

    Chen, Sa-Sa; Luo, Shui-Zhong; Zheng, Zhi; Zhao, Yan-Yan; Pang, Min; Jiang, Shao-Tong

    2017-02-01

    Crude camellia seed oil is rich in free fatty acids, which must be removed to produce an oil of acceptable quality. In the present study, we reduced the free fatty acid content of crude camellia seed oil by lipophilization of epicatechin with these free fatty acids in the presence of Candida antarctica lipase B (Novozym 435), and this may enhance the oxidative stability of the oil at the same time. The acid value of crude camellia seed oil reduced from 3.7 to 2.5 mgKOH g -1 after lipophilization. Gas chomatography-mass spectrometry analysis revealed that epicatechin oleate and epicatechin palmitate were synthesized in the lipophilized oil. The peroxide, p-anisidine, and total oxidation values during heating of the lipophilized oil were much lower than that of the crude oil and commercially available camellia seed oil, suggesting that lipophilized epicatechin derivatives could help enhance the oxidative stability of edible oil. The enzymatic process to lipophilize epicatechin with the free fatty acids in crude camellia seed oil described in the present study could decrease the acid value to meet the quality standards for commercial camellia seed oil and, at the same time, obtain a new edible camellia seed oil product with good oxidative stability. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  4. Association between very long chain fatty acids in the meibomian gland and dry eye resulting from n-3 fatty acid deficiency.

    PubMed

    Tanaka, Hideko; Harauma, Akiko; Takimoto, Mao; Moriguchi, Toru

    2015-06-01

    In our previously study, we reported lower tear volume in with an n-3 fatty acid deficient mice and that the docosahexaenoic acid and total n-3 fatty acid levels in these mice are significantly reduced in the meibomian gland, which secretes an oily tear product. Furthermore, we noted very long chain fatty acids (≥25 carbons) in the meibomian gland. To verify the detailed mechanism of the low tear volume in the n-3 fatty acid-deficient mice, we identified the very long chain fatty acids in the meibomian gland, measured the fatty acid composition in the tear product. Very long chain fatty acids were found to exist as monoesters. In particular, very long chain fatty acids with 25-29 carbons existed for the most part as iso or anteiso branched-chain fatty acids. n-3 fatty acid deficiency was decreased the amount of meibum secretion from meibomian gland without change of fatty acid composition. These results suggest that the n-3 fatty acid deficiency causes the enhancement of evaporation of tear film by reducing oily tear secretion along with the decrease of meibomian gland function. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Use of radiolabeled substrates to determine the desaturase and elongase activities involved in eicosapentaenoic acid and docosahexaenoic acid biosynthesis in the marine microalga Pavlova lutheri.

    PubMed

    Guihéneuf, Freddy; Ulmann, Lionel; Mimouni, Virginie; Tremblin, Gérard

    2013-06-01

    The marine flagellate Pavlova lutheri is a microalga known to be rich in long-chain polyunsaturated fatty acids (LC-PUFAs) and able to produce large amounts of n-3 fatty acids, such as eicosapentaenoic acid (EPA, 20:5n-3) and docosahexaenoic acid (DHA, 22:6n-3). As no previous study had attempted to measure the metabolic step of fatty acid synthesis in this alga, we used radiolabeled precursors to explore the various desaturation and elongation steps involved in LC-PUFA biosynthesis pathways. The incorporation of (14)C-labeled palmitic ([1-(14)C] 16:0) and dihomo-γ-linolenic ([1-(14)C] 20:3n-6) acids as ammonium salts within the cells was monitored during incubation periods lasting 3, 10 or 24h. Total lipids and each of the fatty acids were also monitored during these incubation periods. A decrease in the availability and/or accessibility of the radiolabeled substrates was observed over the incubation time. This decrease with incubation time observed using [1-(14)C] 16:0 and [1-(14)C] 20:3n-6 as substrates was used to monitor the conversion of (14)C-labeled arachidonic acid ([1-(14)C] 20:4n-6) into longer and more unsaturated fatty acids, such as 20:5n-3 and 22:6n-3, over shorter incubation times (1 and 3h). A metabolic relationship between the n-6 and n-3 fatty acid series was demonstrated in P. lutheri by measuring the Δ17-desaturation activity involved in the conversion of eicosatetraenoic acid to 20:5n-3. Our findings suggest that the biosynthesis pathway leading to n-3 LC-PUFA involves fatty acids of the n-6 family, which act as precursors in the biosynthesis of 20:5n-3 and 22:6n-3. This preliminary work provides a method for studying microalgal LC-PUFA biosynthesis pathways and desaturase and elongase activities in vivo using externally-radiolabeled fatty acid precursors as substrates. The use of the [1-(14)C] 20:4n-6 substrate also highlighted the relationships between the n-6 and the n-3 fatty acid series (e.g. Δ17-desaturation), and the final elongation and desaturation steps required for n-3 LC-PUFA formation in P. lutheri. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Fatty Acids as Therapeutic Auxiliaries for Oral and Parenteral Formulations

    PubMed Central

    Hackett, Michael J.; Zaro, Jennica L.; Shen, Wei-Chiang; Guley, Patrick C.; Cho, Moo J.

    2012-01-01

    Many drugs have decreased therapeutic activity due to issues with absorption, distribution, metabolism and excretion. The co-formulation or covalent attachment of drugs with fatty acids has demonstrated some capacity to overcome these issues by improving intestinal permeability, slowing clearance and binding serum proteins for selective tissue uptake and metabolism. For orally administered drugs, albeit at low level of availability, the presence of fatty acids and triglycerides in the intestinal lumen may promote intestinal uptake of small hydrophilic molecules. Small lipophilic drugs or acylated hydrophilic drugs also show increased lymphatic uptake and enhanced passive diffusional uptake. Fatty acid conjugation of small and large proteins or peptides have exhibited protracted plasma half-lives, site-specific delivery and sustained release upon parenteral administration. These improvements are most likely due to associations with lipid-binding serum proteins, namely albumin, LDL and HDL. These molecular interactions, although not fully characterized, could provide the ability of using the endogenous carrier systems for improving therapeutic outcomes. PMID:22921839

  7. Variability in coconut (Cocos nucifera L.) germplasm and hybrids for fatty acid profile of oil.

    PubMed

    Kumar, S Naresh

    2011-12-28

    Coconut oil, the main product of coconut fruit, is the richest source of glycerol and lauric acid and hence is called lauric oil. This paper reports the fatty acid profile of oil from 60 Talls, 14 Dwarfs, and 34 hybrids. These include collections from 13 countries covering a large coconut-growing area of the world, apart from the indigenous ones. Capillary gas chromatography analysis of oil indicated a wider variation for the fatty acid profile than earlier reported. Apart from this, for the first time other fatty acids such as behenic and lignoceric acids were detected. Oil from cultivars and hybrids of coconut has significantly differed, particularly for commercially important fatty acids such as lauric acid and unsaturated fatty acids. However, coconut oil seems to have a conserved fatty acid profile, mainly because of low unsaturated fatty acids, indicating the possibility of grouping cultivars on the basis of their fatty acid profiles. The cluster analysis based on fatty acid profile indicated grouping together of geographically and typically closely related cultivars. Cultivars with high concentrations of specific fatty acids can be of potential use for industrial exploitation, whereas those with high concentrations of short- and medium-chain fatty acids and unsaturated fatty acids are more suitable for human consumption. Cultivars and hybrids with high and low values for each of the fatty acids are also identified.

  8. Factors affecting variations in the detailed fatty acid profile of Mediterranean buffalo milk determined by 2-dimensional gas chromatography.

    PubMed

    Pegolo, S; Stocco, G; Mele, M; Schiavon, S; Bittante, G; Cecchinato, A

    2017-04-01

    Buffalo milk is the world's second most widely produced milk, and increasing attention is being paid to its composition, particularly the fatty acid profile. The objectives of the present study were (1) to characterize the fatty acid composition of Mediterranean buffalo milk, and (2) to investigate potential sources of variation in the buffalo milk fatty acid profile. We determined the profile of 69 fatty acid traits in 272 individual samples of Mediterranean buffalo milk using gas chromatography. In total, 51 individual fatty acids were identified: 24 saturated fatty acids, 13 monounsaturated fatty acids, and 14 polyunsaturated fatty acids. The major individual fatty acids in buffalo milk were in the order 16:0, 18:1 cis-9, 14:0, and 18:0. Saturated fatty acids were the predominant fraction in buffalo milk fat (70.49%); monounsaturated and polyunsaturated fatty acids were at 25.95 and 3.54%, respectively. Adopting a classification based on carbon-chain length, we found that medium-chain fatty acids (11-16 carbons) represented the greater part (53.7%) of the fatty acid fraction of buffalo milk, whereas long-chain fatty acids (17-24 carbons) and short-chain fatty acids (4-10 carbons) accounted for 32.73 and 9.72%, respectively. The n-3 and n-6 fatty acids were 0.46 and 1.77%, respectively. The main conjugated linoleic acid, rumenic acid, represented 0.45% of total milk fatty acids. Herd/test date and stage of lactation were confirmed as important sources of variation in the fatty acid profile of buffalo milk. The percentages of short-chain and medium-chain fatty acids in buffalo milk increased in early lactation (+0.6 and +3.5%, respectively), whereas long-chain fatty acids decreased (-4.2%). The only exception to this pattern was butyric acid, which linearly decreased from the beginning of lactation, confirmation that its synthesis is independent of malonyl-CoA. These results seem to suggest that in early lactation the mobilization of energy reserves may have less influence on the fatty acid profile of buffalo milk than that of cow milk, probably due to a shorter and less severe period of negative energy balance. Parity affected the profiles of a few traits and had the most significant effects on branched-chain fatty acids. This work provided a detailed overview of the fatty acid profile in buffalo milk including also those fatty acids present in small concentrations, which may have beneficial effects for human health. Our results contributed also to increase the knowledge about the effects of some of the major factors affecting buffalo production traits and fatty acid concentrations in milk, and consequently its technological and nutritional properties. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  9. Erythrocyte fatty acids and risk of proliferative and nonproliferative fibrocystic disease in women in Shanghai, China123

    PubMed Central

    Shannon, Jackilen; King, Irena B; Lampe, Johanna W; Gao, Dao Li; Ray, Roberta M; Lin, Ming-Gang; Stalsberg, Helge; Thomas, David B

    2009-01-01

    Background: Although benign breast changes are more common than breast cancer, little evidence regarding risk factors for benign breast conditions is available. Omega-3 (n–3) fatty acids have antiinflammatory and antiproliferative actions and may be important in reducing the risk of benign conditions. There is a lack of research on the association of n–3 fatty acids with risk of benign fibrocystic breast changes. Objectives: The objectives of the study were to evaluate the role of n–3 and other fatty acids in the development of benign proliferative fibrocystic conditions (PFCs) and nonproliferative fibrocystic conditions (NPFCs) in the breast and to evaluate the progression of fibrocystic changes in breast cancer. Design: We conducted a case-control study to determine erythrocyte fatty acid concentrations in 155 women with NPFCs, 185 women with PFCs, 241 women with breast cancer (127 with nonproliferative and 114 with proliferative changes in the noncancerous extratumoral mammary epithelium), and 1030 control subjects. We estimated the relative risk of NPFCs, PFCs, and breast cancer with proliferative and nonproliferative changes in extratumoral tissue compared with the risk of these changes alone. Results: Women in the highest quartile of eicosapentaenoic acid concentrations were 67% less likely to have an NPFC alone or with breast cancer and 49% less likely to have breast cancer than were women with PFCs. γ-Linolenic acid (18:3n–6) was positively associated with all fibrocystic and cancerous conditions. Palmitic:palmitoleic acid (n–7 saturation index) was inversely associated with risk in all comparisons. Conclusion: Our results support a protective effects of n–3 fatty acid intake and the n–7 saturation index against benign fibrocystic breast changes and the progression of proliferative changes to breast cancer. PMID:19056601

  10. Quantitative analysis of fatty-acid-based biofuels produced by wild-type and genetically engineered cyanobacteria by gas chromatography-mass spectrometry.

    PubMed

    Guan, Wenna; Zhao, Hui; Lu, Xuefeng; Wang, Cong; Yang, Menglong; Bai, Fali

    2011-11-11

    Simple and rapid quantitative determination of fatty-acid-based biofuels is greatly important for the study of genetic engineering progress for biofuels production by microalgae. Ideal biofuels produced from biological systems should be chemically similar to petroleum, like fatty-acid-based molecules including free fatty acids, fatty acid methyl esters, fatty acid ethyl esters, fatty alcohols and fatty alkanes. This study founded a gas chromatography-mass spectrometry (GC-MS) method for simultaneous quantification of seven free fatty acids, nine fatty acid methyl esters, five fatty acid ethyl esters, five fatty alcohols and three fatty alkanes produced by wild-type Synechocystis PCC 6803 and its genetically engineered strain. Data obtained from GC-MS analyses were quantified using internal standard peak area comparisons. The linearity, limit of detection (LOD) and precision (RSD) of the method were evaluated. The results demonstrated that fatty-acid-based biofuels can be directly determined by GC-MS without derivation. Therefore, rapid and reliable quantitative analysis of fatty-acid-based biofuels produced by wild-type and genetically engineered cyanobacteria can be achieved using the GC-MS method founded in this work. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. Caveolin-1 is required for fatty acid translocase (FAT/CD36) localization and function at the plasma membrane of mouse embryonic fibroblasts.

    PubMed

    Ring, Axel; Le Lay, Soazig; Pohl, Juergen; Verkade, Paul; Stremmel, Wolfgang

    2006-04-01

    Several lines of evidence suggest that lipid rafts are involved in cellular fatty acid uptake and influence fatty acid translocase (FAT/CD36) function. However, it remains unknown whether caveolae, a specialized raft type, are required for this mechanism. Here, we show that wild-type (WT) mouse embryonic fibroblasts (MEFs) and caveolin-1 knockout (KO) MEFs, which are devoid of caveolae, have comparable overall expression of FAT/CD36 protein but altered subcellular FAT/CD36 localization and function. In WT MEFs, FAT/CD36 was isolated with both lipid raft enriched detergent-resistant membranes (DRMs) and detergent-soluble membranes (DSMs), whereas in cav-1 KO cells it was exclusively associated with DSMs. Subcellular fractionation demonstrated that FAT/CD36 in WT MEFs was localized intracellularly and at the plasma membrane level while in cav-1 KO MEFs it was absent from the plasma membrane. This mistargeting of FAT/CD36 in cav-1 KO cells resulted in reduced fatty acid uptake compared to WT controls. Adenoviral expression of caveolin-1 in KO MEFs induced caveolae formation, redirection of FAT/CD36 to the plasma membrane and rescue of fatty acid uptake. In conclusion, our data provide evidence that caveolin-1 is necessary to target FAT/CD36 to the plasma membrane. Caveolin-1 may influence fatty acid uptake by regulating surface availability of FAT/CD36.

  12. [Effect of Gram-negative bacteria on fatty acids].

    PubMed

    Vuillemin, N; Dupeyron, C; Leluan, G; Bory, J

    1981-01-01

    The gram-negative bacteria investigated exert various effects on fatty acids. P. aeruginosa and A. calcoaceticus catabolize any of the fatty acids tested. S. marcescens is effective upon all fatty acids excepting butyric acid. The long chain fatty acids only are degraded by E. coli, meanwhile the other fatty acids present a bacteriostatic or bactericidal activity on it. The authors propose a simple and original method for testing the capability of degradation of fatty acids by some bacterial species.

  13. Oleic acid-derived oleoylethanolamide: A nutritional science perspective.

    PubMed

    Bowen, Kate J; Kris-Etherton, Penny M; Shearer, Gregory C; West, Sheila G; Reddivari, Lavanya; Jones, Peter J H

    2017-07-01

    The fatty acid ethanolamide oleoylethanolamide (OEA) is an endogenous lipid mediator derived from the monounsaturated fatty acid, oleic acid. OEA is synthesized from membrane glycerophospholipids and is a high-affinity agonist of the nuclear transcription factor peroxisome proliferator-activated receptor α (PPAR-α). Dietary intake of oleic acid elevates circulating levels of OEA in humans by increasing substrate availability for OEA biosynthesis. Numerous clinical studies demonstrate a beneficial relationship between high-oleic acid diets and body composition, with emerging evidence to suggest OEA may mediate this response through modulation of lipid metabolism and energy intake. OEA exposure has been shown to stimulate fatty acid uptake, lipolysis, and β-oxidation, and also promote food intake control. Future research on high-oleic acid diets and body composition is warranted to confirm these outcomes and elucidate the underlying mechanisms by which oleic acid exerts its biological effects. These findings have significant practical implications, as the oleic acid-derived OEA molecule may be a promising therapeutic agent for weight management and obesity treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Kefir Grains Change Fatty Acid Profile of Milk during Fermentation and Storage

    PubMed Central

    Vieira, C. P.; Álvares, T. S.; Gomes, L. S.; Torres, A. G.; Paschoalin, V. M. F.; Conte-Junior, C. A.

    2015-01-01

    Several studies have reported that lactic acid bacteria may increase the production of free fatty acids by lipolysis of milk fat, though no studies have been found in the literature showing the effect of kefir grains on the composition of fatty acids in milk. In this study the influence of kefir grains from different origins [Rio de Janeiro (AR), Viçosa (AV) e Lavras (AD)], different time of storage, and different fat content on the fatty acid content of cow milk after fermentation was investigated. Fatty acid composition was determined by gas chromatography. Values were considered significantly different when p<0.05. The highest palmitic acid content, which is antimutagenic compost, was seen in AV grain (36.6g/100g fatty acids), which may have contributed to increasing the antimutagenic potential in fermented milk. Higher monounsaturated fatty acid (25.8g/100g fatty acids) and lower saturated fatty acid (72.7g/100g fatty acids) contents were observed in AV, when compared to other grains, due to higher Δ9-desaturase activity (0.31) that improves the nutritional quality of lipids. Higher oleic acid (25.0g/100g fatty acids) and monounsaturated fatty acid (28.2g/100g fatty acids) and lower saturated fatty acid (67.2g/100g fatty acids) contents were found in stored kefir relatively to fermented kefir leading to possible increase of antimutagenic and anticarcinogenic potential and improvement of nutritional quality of lipids in storage milk. Only high-lipidic matrix displayed increase polyunsaturated fatty acids after fermentation. These findings open up new areas of study related to optimizing desaturase activity during fermentation in order to obtaining a fermented product with higher nutritional lipid quality. PMID:26444286

  15. Kefir Grains Change Fatty Acid Profile of Milk during Fermentation and Storage.

    PubMed

    Vieira, C P; Álvares, T S; Gomes, L S; Torres, A G; Paschoalin, V M F; Conte-Junior, C A

    2015-01-01

    Several studies have reported that lactic acid bacteria may increase the production of free fatty acids by lipolysis of milk fat, though no studies have been found in the literature showing the effect of kefir grains on the composition of fatty acids in milk. In this study the influence of kefir grains from different origins [Rio de Janeiro (AR), Viçosa (AV) e Lavras (AD)], different time of storage, and different fat content on the fatty acid content of cow milk after fermentation was investigated. Fatty acid composition was determined by gas chromatography. Values were considered significantly different when p<0.05. The highest palmitic acid content, which is antimutagenic compost, was seen in AV grain (36.6g/100g fatty acids), which may have contributed to increasing the antimutagenic potential in fermented milk. Higher monounsaturated fatty acid (25.8 g/100g fatty acids) and lower saturated fatty acid (72.7 g/100g fatty acids) contents were observed in AV, when compared to other grains, due to higher Δ9-desaturase activity (0.31) that improves the nutritional quality of lipids. Higher oleic acid (25.0 g/100g fatty acids) and monounsaturated fatty acid (28.2g/100g fatty acids) and lower saturated fatty acid (67.2g/100g fatty acids) contents were found in stored kefir relatively to fermented kefir leading to possible increase of antimutagenic and anticarcinogenic potential and improvement of nutritional quality of lipids in storage milk. Only high-lipidic matrix displayed increase polyunsaturated fatty acids after fermentation. These findings open up new areas of study related to optimizing desaturase activity during fermentation in order to obtaining a fermented product with higher nutritional lipid quality.

  16. Overview of Omega-3 Fatty Acid Therapies

    PubMed Central

    Bradberry, J. Chris; Hilleman, Daniel E.

    2013-01-01

    The triglyceride (TG)-lowering benefits of the very-long-chain omega-3 fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are well documented. Available as prescription formulations and dietary supplements, EPA and DHA are recommended by the American Heart Association for patients with coronary heart disease and hypertriglyceridemia. Dietary supplements are not subject to the same government regulatory standards for safety, efficacy, and purity as prescription drugs are; moreover, supplements may contain variable concentrations of EPA and DHA and possibly other contaminants. Reducing low-density lipoprotein-cholesterol (LDL-C) levels remains the primary treatment goal in the management of dyslipidemia. Dietary supplements and prescription formulations that contain both EPA and DHA may lower TG levels, but they may also increase LDL-C levels. Two prescription formulations of long-chain omega-3 fatty acids are available in the U.S. Although prescription omega-3 acid ethyl esters (OM-3-A EEs, Lovaza) contain high-purity EPA and DHA, prescription icosapent ethyl (IPE, Vascepa) is a high-purity EPA agent. In clinical trials of statin-treated and non–statin-treated patients with hypertriglyceridemia, both OM-3-A EE and IPE lowered TG levels and other atherogenic markers; however, IPE did not increase LDL-C levels. Results of recent outcomes trials of long-chain omega-3 fatty acids, fibrates, and niacin have been disappointing, failing to show additional reductions in adverse cardiovascular events when combined with statins. Therefore, the REDUCE–IT study is being conducted to evaluate the effect of the combination of IPE and statins on cardiovascular outcomes in high-risk patients. The results of this trial are eagerly anticipated. PMID:24391388

  17. Diverse physiological effects of long-chain saturated fatty acids: implications for cardiovascular disease.

    PubMed

    Flock, Michael R; Kris-Etherton, Penny M

    2013-03-01

    The purpose of this review is to discuss the metabolism of long-chain saturated fatty acids and the ensuing effects on an array of metabolic events. Individual long-chain saturated fatty acids exhibit unique biological properties. Dietary saturated fat absorption varies depending on chain-length and the associated food matrix. The in-vivo metabolism of saturated fatty acids varies depending on the individual fatty acid and the nutritional state of the individual. A variety of fatty acid metabolites are formed, each with their own unique structure and properties that warrant further research. Replacing saturated fatty acids with unsaturated fatty acids improves the blood lipid profile and reduces cardiovascular disease risk, although the benefits depend on the specific saturated fatty acid(s) being replaced. Acknowledging the complexity of saturated fatty acid metabolism and associated metabolic events is important when assessing their effects on cardiovascular disease risk. Investigating the biological effects of saturated fatty acids will advance our understanding of how they affect cardiovascular disease risk.

  18. Omega-3 fatty acid supplementation and cardiovascular disease

    PubMed Central

    Jump, Donald B.; Depner, Christopher M.; Tripathy, Sasmita

    2012-01-01

    Epidemiological studies on Greenland Inuits in the 1970s and subsequent human studies have established an inverse relationship between the ingestion of omega-3 fatty acids [C20–22 ω 3 polyunsaturated fatty acids (PUFA)], blood levels of C20–22 ω 3 PUFA, and mortality associated with cardiovascular disease (CVD). C20–22 ω 3 PUFA have pleiotropic effects on cell function and regulate multiple pathways controlling blood lipids, inflammatory factors, and cellular events in cardiomyocytes and vascular endothelial cells. The hypolipemic, anti-inflammatory, anti-arrhythmic properties of these fatty acids confer cardioprotection. Accordingly, national heart associations and government agencies have recommended increased consumption of fatty fish or ω 3 PUFA supplements to prevent CVD. In addition to fatty fish, sources of ω 3 PUFA are available from plants, algae, and yeast. A key question examined in this review is whether nonfish sources of ω 3 PUFA are as effective as fatty fish-derived C20–22 ω 3 PUFA at managing risk factors linked to CVD. We focused on ω 3 PUFA metabolism and the capacity of ω 3 PUFA supplements to regulate key cellular events linked to CVD. The outcome of our analysis reveals that nonfish sources of ω 3 PUFA vary in their capacity to regulate blood levels of C20–22 ω 3 PUFA and CVD risk factors. PMID:22904344

  19. Symbiotic zooxanthellae provide the host-coral Montipora digitata with polyunsaturated fatty acids.

    PubMed

    Papina, M; Meziane, T; van Woesik, R

    2003-07-01

    We compared the fatty acid composition of the host-coral Montipora digitata with the fatty acid composition in the coral's endosymbiotic dinoflagellates (zooxanthellae). Fatty acids as methyl esters were determined using gas chromatography (GC) and verified by GC-mass spectrometry. We found the main difference between the fatty acids in the host and their symbionts were that zooxanthellae supported higher proportions of polyunsaturated fatty acids. The presence of fatty acids specific to dinoflagellates (i.e. 18:4omega3, 22:5omega3 and 22:6omega3) in the host tissue suggests that zooxanthellae provide the coral host not only with saturated fatty acids, but also with diverse polyunsaturated fatty acids.

  20. The fatty acid composition of a Vibrio alginolyticus associated with the alga Cladophora coelothrix. Identification of the novel 9-methyl-10-hexadecenoic acid.

    PubMed

    Carballeira, N M; Sostre, A; Stefanov, K; Popov, S; Kujumgiev, A; Dimitrova-Konaklieva, S; Tosteson, C G; Tosteson, T R

    1997-12-01

    The fatty acid composition of a new strain of Vibrio alginolyticus, found in the alga Cladophora coelothrix, was studied. Among 38 different fatty acids, a new fatty acid, 9-methyl-10-hexadecenoic acid and the unusual 11-methyl-12-octadecenoic acid, were identified. Linear alkylbenzene fatty acids, such as 10-phenyldecanoic acid, 12-phenyldodecanoic acid and 14-phenyltetradecanoic acid, were also found in V. alginolyticus. The alga contained 43% saturated fatty acids, and 28% C16-C20 polyunsaturated fatty acids of the n-3 and n-6 families.

  1. Genetic variation in polyunsaturated fatty acid metabolism and its potential relevance for human development and health.

    PubMed

    Glaser, Claudia; Lattka, Eva; Rzehak, Peter; Steer, Colin; Koletzko, Berthold

    2011-04-01

    Blood and tissue contents of polyunsaturated fatty acid (PUFA) and long-chain PUFA (LC-PUFA) are related to numerous health outcomes including cardiovascular health, allergies, mental health and cognitive development. Evidence has accumulated to show that in addition to diet, common polymorphisms in the fatty acid desaturase (FADS) gene cluster have very marked effects on human PUFA and LC-PUFA status. Recent results suggest that in addition to fatty acid desaturase 1 and fatty acid desaturase 2, the gene product of fatty acid desaturase 3 is associated with desaturating activity. New data have become available to show that FADS single nucleotide polymorphisms (SNPs) also modulate docosahexaenoic acid status in pregnancy as well as LC-PUFA levels in children and in human milk. There are indications that FADS SNPs modulate the risk for allergic disorders and eczema, and the effect of breastfeeding on later cognitive development. Mechanisms by which FADS SNPs modulate PUFA levels in blood, breast milk and tissues should be explored further. More studies are required to explore the effects of FADS gene variants in populations with different ethnic backgrounds, lifestyles and dietary habits, and to investigate in greater depth the interaction of gene variants, diet and clinical end points, including immune response and developmental outcomes. Analyses of FADS gene variants should be included into all sizeable cohort and intervention studies addressing biological effects of PUFA and LC-PUFA in order to consider these important confounders, and to enhance study sensitivity and precision. © 2011 Blackwell Publishing Ltd.

  2. The effects of season on fatty acid composition and ω3/ω6 ratios of northern pike ( Esox lucius L., 1758) muscle lipids

    NASA Astrophysics Data System (ADS)

    Mert, Ramazan; Bulut, Sait; Konuk, Muhsin

    2015-01-01

    In the present study, the effects of season on fatty acid composition, total lipids, and ω3/ω6 ratios of northern pike muscle lipids in Kizilirmak River (Kirikkale, Turkey) were investigated. A total of 35 different fatty acids were determined in gas chromatography. Among these, palmitic, oleic, and palmitoleic acids had the highest proportion. The main polyunsaturated fatty acids (PUFAs) were found to be docosahexaenoic acid, eicosapentaenoic acid, and arachidonic acid. There were more PUFAs than monounsaturated fatty acids (MUFA) in all seasons. Similarly, the percentages of ω3 fatty acids were higher than those of total ω6 fatty acids in the fatty acid composition. ω3/ω6 ratios were calculated as 1.53, 1.32, 1.97, and 1.71 in spring, summer, autumn and winter, respectively. Overall, we found that the fatty acid composition and ω3/ω6 fatty acid ratio in the muscle of northern pike were significantly influenced by season.

  3. 21 CFR 186.1551 - Hydrogenated fish oil.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... (reapproved 1973) or equivalent. The product has an approximate fatty acid composition of 30 to 45 percent saturated fatty acids, 40 to 55 percent monoenoic fatty acids, 7 to 15 percent dienoic fatty acids, 3 to 10 percent trienoic fatty acids, and less than 2 percent tetraenoic or higher polyenoic fatty acids. The...

  4. 21 CFR 172.856 - Propylene glycol mono- and diesters of fats and fatty acids.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... fatty acids. 172.856 Section 172.856 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH... diesters of fats and fatty acids. Propylene glycol mono- and diesters of fats and fatty acids may be safely... and/or fatty acids in compliance with § 172.860 and/or oleic acid derived from tall oil fatty acids in...

  5. 21 CFR 172.856 - Propylene glycol mono- and diesters of fats and fatty acids.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... fatty acids. 172.856 Section 172.856 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH... diesters of fats and fatty acids. Propylene glycol mono- and diesters of fats and fatty acids may be safely... and/or fatty acids in compliance with § 172.860 and/or oleic acid derived from tall oil fatty acids in...

  6. [Relationship between the culture medium and the fatty acid composition of diphtheria and non-pathogenic corynebacteria].

    PubMed

    Vasiurenko, Z P; Siniak, K M

    1977-04-01

    The gasochromatic method was applied to the study of the cellular fatty acids composition in diphtheria and nonpathogenic corynebacteria (diphtheroids and psendo diptheria bacillus). Marked differences in the content of unsaturated fatty acids were revealed in them. Thus, palmito leic acid served the preponderant unsaturated fatty acid in Corynebacteria diphtheriae, and unsaturated fatty acids with 18 carbon atoms (octadeconoic and linoleic)--in nonpathogenic corynebacteria. The mentioned changes permit use this sign as differential. When grown on Loeffler's medium all the corynebacteria under study had a similar fatty acid composition characterized by the prevalence of unsaturated fatty acids with 18 carbon atoms. On the basis of studying the fatty acid spectrum of the nutrient media used it is supposed that one of the factors determining the revealed dependence of the corynebacterial fatty acid composition on the culture medium was the fatty acid composition of the latter.

  7. The role of microbial amino acid metabolism in host metabolism.

    PubMed

    Neis, Evelien P J G; Dejong, Cornelis H C; Rensen, Sander S

    2015-04-16

    Disruptions in gut microbiota composition and function are increasingly implicated in the pathogenesis of obesity, insulin resistance, and type 2 diabetes mellitus. The functional output of the gut microbiota, including short-chain fatty acids and amino acids, are thought to be important modulators underlying the development of these disorders. Gut bacteria can alter the bioavailability of amino acids by utilization of several amino acids originating from both alimentary and endogenous proteins. In turn, gut bacteria also provide amino acids to the host. This could have significant implications in the context of insulin resistance and type 2 diabetes mellitus, conditions associated with elevated systemic concentrations of certain amino acids, in particular the aromatic and branched-chain amino acids. Moreover, several amino acids released by gut bacteria can serve as precursors for the synthesis of short-chain fatty acids, which also play a role in the development of obesity. In this review, we aim to compile the available evidence on the contribution of microbial amino acids to host amino acid homeostasis, and to assess the role of the gut microbiota as a determinant of amino acid and short-chain fatty acid perturbations in human obesity and type 2 diabetes mellitus.

  8. A metabolomic study of the PPARδ agonist GW501516 for enhancing running endurance in Kunming mice.

    PubMed

    Chen, Wei; Gao, Rong; Xie, Xinni; Zheng, Zhibing; Li, Haijing; Li, Song; Dong, Fangting; Wang, Lili

    2015-05-06

    Exercise can increase peroxisome proliferator-activated receptor-δ (PPARδ) expression in skeletal muscle. PPARδ regulates muscle metabolism and reprograms muscle fibre types to enhance running endurance. This study utilized metabolomic profiling to examine the effects of GW501516, a PPARδ agonist, on running endurance in mice. While training alone increased the exhaustive running performance, GW501516 treatment enhanced running endurance and the proportion of succinate dehydrogenase (SDH)-positive muscle fibres in both trained and untrained mice. Furthermore, increased levels of intermediate metabolites and key enzymes in fatty acid oxidation pathways were observed following training and/or treatment. Training alone increased serum inositol, glucogenic amino acids, and branch chain amino acids. However, GW501516 increased serum galactose and β-hydroxybutyrate, independent of training. Additionally, GW501516 alone raised serum unsaturated fatty acid levels, especially polyunsaturated fatty acids, but levels increased even more when combined with training. These findings suggest that mechanisms behind enhanced running capacity are not identical for GW501516 and training. Training increases energy availability by promoting catabolism of proteins, and gluconeogenesis, whereas GW501516 enhances specific consumption of fatty acids and reducing glucose utilization.

  9. A metabolomic study of the PPARδ agonist GW501516 for enhancing running endurance in Kunming mice

    PubMed Central

    Chen, Wei; Gao, Rong; Xie, Xinni; Zheng, Zhibing; Li, Haijing; Li, Song; Dong, Fangting; Wang, Lili

    2015-01-01

    Exercise can increase peroxisome proliferator-activated receptor-δ (PPARδ) expression in skeletal muscle. PPARδ regulates muscle metabolism and reprograms muscle fibre types to enhance running endurance. This study utilized metabolomic profiling to examine the effects of GW501516, a PPARδ agonist, on running endurance in mice. While training alone increased the exhaustive running performance, GW501516 treatment enhanced running endurance and the proportion of succinate dehydrogenase (SDH)-positive muscle fibres in both trained and untrained mice. Furthermore, increased levels of intermediate metabolites and key enzymes in fatty acid oxidation pathways were observed following training and/or treatment. Training alone increased serum inositol, glucogenic amino acids, and branch chain amino acids. However, GW501516 increased serum galactose and β-hydroxybutyrate, independent of training. Additionally, GW501516 alone raised serum unsaturated fatty acid levels, especially polyunsaturated fatty acids, but levels increased even more when combined with training. These findings suggest that mechanisms behind enhanced running capacity are not identical for GW501516 and training. Training increases energy availability by promoting catabolism of proteins, and gluconeogenesis, whereas GW501516 enhances specific consumption of fatty acids and reducing glucose utilization. PMID:25943561

  10. Enhancing Fatty Acid Production of Saccharomyces cerevisiae as an Animal Feed Supplement.

    PubMed

    You, Seung Kyou; Joo, Young-Chul; Kang, Dae Hee; Shin, Sang Kyu; Hyeon, Jeong Eun; Woo, Han Min; Um, Youngsoon; Park, Chulhwan; Han, Sung Ok

    2017-12-20

    Saccharomyces cerevisiae is used for edible purposes, such as human food or as an animal feed supplement. Fatty acids are also beneficial as feed supplements, but S. cerevisiae produces small amounts of fatty acids. In this study, we enhanced fatty acid production of S. cerevisiae by overexpressing acetyl-CoA carboxylase, thioesterase, and malic enzyme associated with fatty acid metabolism. The enhanced strain pAMT showed 2.4-fold higher fatty acids than the wild-type strain. To further increase the fatty acids, various nitrogen sources were analyzed and calcium nitrate was selected as an optimal nitrogen source for fatty acid production. By concentration optimization, 672 mg/L of fatty acids was produced, which was 4.7-fold higher than wild-type strain. These results complement the low level fatty acid production and make it possible to obtain the benefits of fatty acids as an animal feed supplement while, simultaneously, maintaining the advantages of S. cerevisiae.

  11. Identification of a two-component fatty acid kinase responsible for host fatty acid incorporation by Staphylococcus aureus

    PubMed Central

    Parsons, Joshua B.; Broussard, Tyler C.; Bose, Jeffrey L.; Rosch, Jason W.; Jackson, Pamela; Subramanian, Chitra; Rock, Charles O.

    2014-01-01

    Extracellular fatty acid incorporation into the phospholipids of Staphylococcus aureus occurs via fatty acid phosphorylation. We show that fatty acid kinase (Fak) is composed of two dissociable protein subunits encoded by separate genes. FakA provides the ATP binding domain and interacts with two distinct FakB proteins to produce acyl-phosphate. The FakBs are fatty acid binding proteins that exchange bound fatty acid/acyl-phosphate with fatty acid/acyl-phosphate presented in detergent micelles or liposomes. The ΔfakA and ΔfakB1 ΔfakB2 strains were unable to incorporate extracellular fatty acids into phospholipid. FakB1 selectively bound saturated fatty acids whereas FakB2 preferred unsaturated fatty acids. Affymetrix array showed a global perturbation in the expression of virulence genes in the ΔfakA strain. The severe deficiency in α-hemolysin protein secretion in ΔfakA and ΔfakB1 ΔfakB2 mutants coupled with quantitative mRNA measurements showed that fatty acid kinase activity was required to support virulence factor transcription. These data reveal the function of two conserved gene families, their essential role in the incorporation of host fatty acids by Gram-positive pathogens, and connects fatty acid kinase to the regulation of virulence factor transcription in S. aureus. PMID:25002480

  12. Determination of ether extract digestibility and energy content of specialty lipids with different fatty acid and free fatty acid content, and the effect of lecithin, for nursery pigs

    USDA-ARS?s Scientific Manuscript database

    Various specialty lipids are commercially available and used in nursery pig diets, but may have FA profiles and FFA content that affect their caloric value. In each of 2 experiments, 54 barrows (28-d of age) were fed a common diet for 7-d, allotted to dietary treatments and fed their respective expe...

  13. Enterococcus faecalis Responds to Individual Exogenous Fatty Acids Independently of Their Degree of Saturation or Chain Length

    PubMed Central

    2017-01-01

    ABSTRACT Enterococcus faecalis is a commensal of the human gastrointestinal tract that can persist in the external environment and is a leading cause of hospital-acquired infections. Given its diverse habitats, the organism has developed numerous strategies to survive a multitude of environmental conditions. Previous studies have demonstrated that E. faecalis will incorporate fatty acids from bile and serum into its membrane, resulting in an induced tolerance to membrane-damaging agents. To discern whether all fatty acids induce membrane stress protection, we examined how E. faecalis responded to individually supplied fatty acids. E. faecalis readily incorporated fatty acids 14 to 18 carbons in length into its membrane but poorly incorporated fatty acids shorter or longer than this length. Supplementation with saturated fatty acids tended to increase generation time and lead to altered cellular morphology in most cases. Further, exogenously supplied saturated fatty acids did not induce tolerance to the membrane-damaging antibiotic daptomycin. Supplementation with unsaturated fatty acids produced variable growth effects, with some impacting generation time and morphology. Exogenously supplied unsaturated fatty acids that are normally produced by E. faecalis and those that are found in bile or serum could restore growth in the presence of a fatty acid biosynthetic inhibitor. However, only the eukaryote-derived fatty acids oleic acid and linoleic acid provided protection from daptomycin. Thus, exogenous fatty acids do not lead to a common physiological effect on E. faecalis. The organism responds uniquely to each, and only host-derived fatty acids induce membrane protection. IMPORTANCE Enterococcus faecalis is a commonly acquired hospital infectious agent with resistance to many antibiotics, including those that target its cellular membrane. We previously demonstrated that E. faecalis will incorporate fatty acids found in human fluids, like serum, into its cellular membrane, thereby altering its membrane composition. In turn, the organism is better able to survive membrane-damaging agents, including the antibiotic daptomycin. We examined fatty acids commonly found in serum and those normally produced by E. faecalis to determine which fatty acids can induce protection from membrane damage. Supplementation with individual fatty acids produced a myriad of different effects on cellular growth, morphology, and stress response. However, only host-derived unsaturated fatty acids provided stress protection. Future studies are aimed at understanding how these specific fatty acids induce protection from membrane damage. PMID:29079613

  14. Effects of omega-3 fatty acids on bone turnover markers in postmenopausal women: systematic review and meta-analysis.

    PubMed

    Shen, D; Zhang, X; Li, Z; Bai, H; Chen, L

    2017-12-01

    There is conflicting evidence regarding the effects of omega-3 fatty acids on bone turnover markers in postmenopausal women. Thus, we systematically reviewed the efficacy of omega-3 fatty acids by conducting a meta-analysis of available randomized controlled trials. PubMed, Embase, Cochrane Library and Scopus were searched in December 2016. The standardized mean difference (SMD) or weighted mean difference (WMD) and the corresponding 95% confidence intervals (CIs) were calculated using a fixed-effects model. Eight trials were included in the present meta-analysis. The pooled findings did not identify significant decreases in bone-specific alkaline phosphatase (SMD -0.08, 95% CI -0.29 to 0.12, p = 0.429) and collagen type I cross-linked C-telopeptide (WMD 0 ng/ml, 95% CI -0.04 to 0.04, p = 0.899). There was a significant decrease in osteocalcin (WMD -0.86 ng/ml, 95% CI -1.68 to -0.04, p = 0.040) as compared with control. Omega-3 fatty acids reduced postmenopausal women's serum osteocalcin. Further well-designed studies are needed to verify the effects of omega-3 fatty acids on bone mass density and other bone turnover markers in postmenopausal women. CRD42016053219 ( https://www.crd.york.ac.uk/PROSPERO/ ).

  15. Reduction of hydrogen peroxide stress derived from fatty acid beta-oxidation improves fatty acid utilization in Escherichia coli.

    PubMed

    Doi, Hidetaka; Hoshino, Yasushi; Nakase, Kentaro; Usuda, Yoshihiro

    2014-01-01

    Fatty acids are a promising raw material for substance production because of their highly reduced and anhydrous nature, which can provide higher fermentation yields than sugars. However, they are insoluble in water and are poorly utilized by microbes in industrial fermentation production. We used fatty acids as raw materials for L-lysine fermentation by emulsification and improved the limited fatty acid-utilization ability of Escherichia coli. We obtained a fatty acid-utilizing mutant strain by laboratory evolution and demonstrated that it expressed lower levels of an oxidative-stress marker than wild type. The intracellular hydrogen peroxide (H₂O₂) concentration of a fatty acid-utilizing wild-type E. coli strain was higher than that of a glucose-utilizing wild-type E. coli strain. The novel mutation rpsA(D210Y) identified in our fatty acid-utilizing mutant strain enabled us to promote cell growth, fatty-acid utilization, and L-lysine production from fatty acid. Introduction of this rpsA(D210Y) mutation into a wild-type strain resulted in lower H₂O₂ concentrations. The overexpression of superoxide dismutase (sodA) increased intracellular H₂O₂ concentrations and inhibited E. coli fatty-acid utilization, whereas overexpression of an oxidative-stress regulator (oxyS) decreased intracellular H₂O₂ concentrations and promoted E. coli fatty acid utilization and L-lysine production. Addition of the reactive oxygen species (ROS) scavenger thiourea promoted L-lysine production from fatty acids and decreased intracellular H₂O₂ concentrations. Among the ROS generated by fatty-acid β-oxidation, H₂O₂ critically affected E. coli growth and L-lysine production. This indicates that the regression of ROS stress promotes fatty acid utilization, which is beneficial for fatty acids used as raw materials in industrial production.

  16. The influence of placental metabolism on fatty acid transfer to the fetus[S

    PubMed Central

    Perazzolo, Simone; Hirschmugl, Birgit; Wadsack, Christian; Desoye, Gernot; Lewis, Rohan M.; Sengers, Bram G.

    2017-01-01

    The factors determining fatty acid transfer across the placenta are not fully understood. This study used a combined experimental and computational modeling approach to explore placental transfer of nonesterified fatty acids and identify the rate-determining processes. Isolated perfused human placenta was used to study the uptake and transfer of 13C-fatty acids and the release of endogenous fatty acids. Only 6.2 ± 0.8% of the maternal 13C-fatty acids taken up by the placenta was delivered to the fetal circulation. Of the unlabeled fatty acids released from endogenous lipid pools, 78 ± 5% was recovered in the maternal circulation and 22 ± 5% in the fetal circulation. Computational modeling indicated that fatty acid metabolism was necessary to explain the discrepancy between uptake and delivery of 13C-fatty acids. Without metabolism, the model overpredicts the fetal delivery of 13C-fatty acids 15-fold. Metabolic rate was predicted to be the main determinant of uptake from the maternal circulation. The microvillous membrane had a greater fatty acid transport capacity than the basal membrane. This study suggests that incorporation of fatty acids into placental lipid pools may modulate their transfer to the fetus. Future work needs to focus on the factors regulating fatty acid incorporation into lipid pools. PMID:27913585

  17. Characterization and chemical composition of fatty acids content of watermelon and muskmelon cultivars in Saudi Arabia using gas chromatography/mass spectroscopy.

    PubMed

    Albishri, Hassan M; Almaghrabi, Omar A; Moussa, Tarek A A

    2013-01-01

    The growth in the production of biodiesel, which is principally fatty acid methyl esters (FAME), has been phenomenal in the last ten years because of the general desire to cut down on the release of greenhouse gases into the atmosphere, and also as a result of the increasing cost of fossil fuels. Establish whether there is any relationship between two different species (watermelon and muskmelon) within the same family (Cucurbitaceae) on fatty acid compositions and enumerate the different fatty acids in the two species. Extraction of fatty acids from the two species and preparation the extract to gas chromatography/mass spectroscopy analysis to determine the fatty acids compositions qualitatively and quantitatively. The analyzed plants (watermelon and muskmelon) contain five saturated fatty acids; tetrdecanoic acid, pentadecanoic acid, hexadecanoic acid, heptadecanoic acid and octadecanoic acid with different concentrations, while muskmelon contains an extra saturated fatty acid named eicosanoic acid. The watermelon plant contains five unsaturated fatty acids while muskmelon contains three only, the two plants share in two unsaturated fatty acids named 9-hexadecenoic acid and 9-octadecenoic acid, the muskmelon plant contains higher amounts of these two acids (2.04% and 10.12%, respectively) over watermelon plant (0.88% and 0.25%, respectively). The chemical analysis of watermelon and muskmelon revealed that they are similar in saturated fatty acids but differ in unsaturated fatty acids which may be a criterion of differentiation between the two plants.

  18. pH gradients across phospholipid membranes caused by fast flip-flop of un-ionized fatty acids.

    PubMed Central

    Kamp, F; Hamilton, J A

    1992-01-01

    A central, unresolved question in cell physiology is how fatty acids move across cell membranes and whether protein(s) are required to facilitate transbilayer movement. We have developed a method for monitoring movement of fatty acids across protein-free model membranes (phospholipid bilayers). Pyranin, a water-soluble, pH-sensitive fluorescent molecule, was trapped inside well-sealed phosphatidylcholine vesicles (with or without cholesterol) in Hepes buffer (pH 7.4). Upon addition of a long-chain fatty acid (e.g., oleic acid) to the external buffer (also Hepes, pH 7.4), a decrease in fluorescence of pyranin was observed immediately (within 10 sec). This acidification of the internal volume was the result of the "flip" of un-ionized fatty acids to the inner leaflet, followed by a release of protons from approximately 50% of these fatty acid molecules (apparent pKa in the bilayer = 7.6). The proton gradient thus generated dissipated slowly because of slow cyclic proton transfer by fatty acids. Addition of bovine serum albumin to vesicles with fatty acids instantly removed the pH gradient, indicating complete removal of fatty acids, which requires rapid "flop" of fatty acids from the inner to the outer monolayer layer. Using a four-state kinetic diagram of fatty acids in membranes, we conclude that un-ionized fatty acid flip-flops rapidly (t1/2 < or = 2 sec) whereas ionized fatty acid flip-flops slowly (t1/2 of minutes). Since fatty acids move across phosphatidylcholine bilayers spontaneously and rapidly, complex mechanisms (e.g., transport proteins) may not be required for translocation of fatty acids in biological membranes. The proton movement accompanying fatty acid flip-flop is an important consideration for fatty acid metabolism in normal physiology and in disease states such as cardiac ischemia. Images PMID:1454821

  19. Discovery of essential fatty acids

    PubMed Central

    Spector, Arthur A.; Kim, Hee-Yong

    2015-01-01

    Dietary fat was recognized as a good source of energy and fat-soluble vitamins by the first part of the 20th century, but fatty acids were not considered to be essential nutrients because they could be synthesized from dietary carbohydrate. This well-established view was challenged in 1929 by George and Mildred Burr who reported that dietary fatty acid was required to prevent a deficiency disease that occurred in rats fed a fat-free diet. They concluded that fatty acids were essential nutrients and showed that linoleic acid prevented the disease and is an essential fatty acid. The Burrs surmised that other unsaturated fatty acids were essential and subsequently demonstrated that linolenic acid, the omega-3 fatty acid analog of linoleic acid, is also an essential fatty acid. The discovery of essential fatty acids was a paradigm-changing finding, and it is now considered to be one of the landmark discoveries in lipid research. PMID:25339684

  20. New insights into the molecular mechanism of intestinal fatty acid absorption

    PubMed Central

    Wang, Tony Y.; Liu, Min; Portincasa, Piero; Wang, David Q.-H.

    2013-01-01

    Background Dietary fat is the most important energy source of all the nutrients. Fatty acids, stored as triacylglycerols in the body, are an important reservoir of stored energy and derive primarily from animal fats and vegetable oils. Design Although the molecular mechanisms for the transport of water-insoluble amphipathic fatty acids across cell membranes have been debated for many years, it is now believed that the dominant means for intestinal fatty acid uptake is via membrane-associated fatty acid-binding proteins, i.e., fatty acid transporters on the apical membrane of enterocytes. Results These findings indicate that intestinal fatty acid absorption is a multistep process that is regulated by multiple genes at the enterocyte level, and intestinal fatty acid absorption efficiency could be determined by factors influencing intraluminal fatty acid molecules across the brush border membrane of enterocytes. To facilitate research on intestinal, hepatic and plasma triacylglycerol metabolism, it is imperative to establish standard protocols for precisely and accurately measuring the efficiency of intestinal fatty acid absorption in humans and animal models. In this review, we will discuss the chemical structure and nomenclature of fatty acids and summarize recent progress in investigating the molecular mechanisms underlying the intestinal absorption of fatty acids, with a particular emphasis on the physical-chemistry of intestinal lipids and the molecular physiology of intestinal fatty acid transporters. Conclusions A better understanding of the molecular mechanism of intestinal fatty acid absorption should lead to novel approaches to the treatment and the prevention of fatty acid-related metabolic diseases that are prevalent worldwide. PMID:24102389

  1. Aspirin increases mitochondrial fatty acid oxidation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Uppala, Radha; Dudiak, Brianne; Beck, Megan E.

    The metabolic effects of salicylates are poorly understood. This study investigated the effects of aspirin on fatty acid oxidation. Aspirin increased mitochondrial long-chain fatty acid oxidation, but inhibited peroxisomal fatty acid oxidation, in two different cell lines. Aspirin increased mitochondrial protein acetylation and was found to be a stronger acetylating agent in vitro than acetyl-CoA. However, aspirin-induced acetylation did not alter the activity of fatty acid oxidation proteins, and knocking out the mitochondrial deacetylase SIRT3 did not affect the induction of long-chain fatty acid oxidation by aspirin. Aspirin did not change oxidation of medium-chain fatty acids, which can freely traverse themore » mitochondrial membrane. Together, these data indicate that aspirin does not directly alter mitochondrial matrix fatty acid oxidation enzymes, but most likely exerts its effects at the level of long-chain fatty acid transport into mitochondria. The drive on mitochondrial fatty acid oxidation may be a compensatory response to altered mitochondrial morphology and inhibited electron transport chain function, both of which were observed after 24 h incubation of cells with aspirin. These studies provide insight into the pathophysiology of Reye Syndrome, which is known to be triggered by aspirin ingestion in patients with fatty acid oxidation disorders. - Highlights: • Aspirin increases mitochondrial—but inhibits peroxisomal—fatty acid oxidation. • Aspirin acetylates mitochondrial proteins including fatty acid oxidation enzymes. • SIRT3 does not influence the effect of aspirin on fatty acid oxidation. • Increased fatty acid oxidation is likely due to altered mitochondrial morphology and respiration.« less

  2. Selective Enrichment of Omega-3 Fatty Acids in Oils by Phospholipase A1

    PubMed Central

    Puri, Munish; Barrow, Colin; Rao, Nalam Madhusudhana

    2016-01-01

    Omega fatty acids are recognized as key nutrients for healthier ageing. Lipases are used to release ω-3 fatty acids from oils for preparing enriched ω-3 fatty acid supplements. However, use of lipases in enrichment of ω-3 fatty acids is limited due to their insufficient specificity for ω-3 fatty acids. In this study use of phospholipase A1 (PLA1), which possesses both sn-1 specific activity on phospholipids and lipase activity, was explored for hydrolysis of ω-3 fatty acids from anchovy oil. Substrate specificity of PLA1 from Thermomyces lenuginosus was initially tested with synthetic p-nitrophenyl esters along with a lipase from Bacillus subtilis (BSL), as a lipase control. Gas chromatographic characterization of the hydrolysate obtained upon treatment of anchovy oil with these enzymes indicated a selective retention of ω-3 fatty acids in the triglyceride fraction by PLA1 and not by BSL. 13C NMR spectroscopy based position analysis of fatty acids in enzyme treated and untreated samples indicated that PLA1 preferably retained ω-3 fatty acids in oil, while saturated fatty acids were hydrolysed irrespective of their position. Hydrolysis of structured triglyceride,1,3-dioleoyl-2-palmitoylglycerol, suggested that both the enzymes hydrolyse the fatty acids at both the positions. The observed discrimination against ω-3 fatty acids by PLA1 appears to be due to its fatty acid selectivity rather than positional specificity. These studies suggest that PLA1 could be used as a potential enzyme for selective concentrationof ω-3 fatty acids. PMID:26978518

  3. Selective Enrichment of Omega-3 Fatty Acids in Oils by Phospholipase A1.

    PubMed

    Ranjan Moharana, Tushar; Byreddy, Avinesh R; Puri, Munish; Barrow, Colin; Rao, Nalam Madhusudhana

    2016-01-01

    Omega fatty acids are recognized as key nutrients for healthier ageing. Lipases are used to release ω-3 fatty acids from oils for preparing enriched ω-3 fatty acid supplements. However, use of lipases in enrichment of ω-3 fatty acids is limited due to their insufficient specificity for ω-3 fatty acids. In this study use of phospholipase A1 (PLA1), which possesses both sn-1 specific activity on phospholipids and lipase activity, was explored for hydrolysis of ω-3 fatty acids from anchovy oil. Substrate specificity of PLA1 from Thermomyces lenuginosus was initially tested with synthetic p-nitrophenyl esters along with a lipase from Bacillus subtilis (BSL), as a lipase control. Gas chromatographic characterization of the hydrolysate obtained upon treatment of anchovy oil with these enzymes indicated a selective retention of ω-3 fatty acids in the triglyceride fraction by PLA1 and not by BSL. 13C NMR spectroscopy based position analysis of fatty acids in enzyme treated and untreated samples indicated that PLA1 preferably retained ω-3 fatty acids in oil, while saturated fatty acids were hydrolysed irrespective of their position. Hydrolysis of structured triglyceride,1,3-dioleoyl-2-palmitoylglycerol, suggested that both the enzymes hydrolyse the fatty acids at both the positions. The observed discrimination against ω-3 fatty acids by PLA1 appears to be due to its fatty acid selectivity rather than positional specificity. These studies suggest that PLA1 could be used as a potential enzyme for selective concentrationof ω-3 fatty acids.

  4. Effects of dietary omega-3 and -6 supplementations on phospholipid fatty acid composition in mice uterus during window of pre-implantation.

    PubMed

    Fattahi, Amir; Darabi, Masoud; Farzadi, Laya; Salmassi, Ali; Latifi, Zeinab; Mehdizadeh, Amir; Shaaker, Maghsood; Ghasemnejad, Tohid; Roshangar, Leila; Nouri, Mohammad

    2018-03-01

    Since fatty acid composition of uterus phospholipids is likely to influence embryo implantation, this study was conducted to investigate the effects of dietary omega-3 and -6 fatty acids on implantation rate as well as uterine phospholipid fatty acids composition during mice pre-implantation period. Sixty female mice were randomly distributed into:1) control (standard pellet), 2) omega-3 (standard pellet + 10% w/w of omega-3 fatty acids) and 3) omega-6 (standard pellet + 10% w/w of omega-6 fatty acids). Uterine phospholipid fatty acid composition during the pre-implantation window (days 1-5 of pregnancy) was analyzed using gas-chromatography. The implantation rate on the fifth day of pregnancy was also determined. Our results showed that on days 1, 2 and 3 of pregnancy, the levels of arachidonic acid (ARA) as well as total omega-6 fatty acids were significantly higher and the levels of linolenic acid and total omega-3 fatty acids were statistically lower in the omega-6 group compared to the omega-3 group (p < 0.05). On the fourth day of pregnancy, only the ARA, total omega-6 fatty acids, and poly-unsaturated fatty acids levels were significantly different between the two dietary supplemented groups (p < 0.05). There were positive correlations between the levels of omega-6 fatty acids, especially ARA, with the implantation rate. The present study showed that diets rich in omega-3 and -6 fatty acids could differently modify uterine phospholipid fatty acid composition and uterine levels of phospholipid ARA, and that the total omega-6 fatty acids had a positive association with the implantation rate. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Dietary fatty acids modulate associations between genetic variants and circulating fatty acids in plasma and erythrocyte membranes: meta-analysis of nine studies in the CHARGE consortium

    USDA-ARS?s Scientific Manuscript database

    Scope: Tissue concentrations of omega-3 fatty acids may reduce cardiovascular disease risk, and genetic variants are associated with circulating fatty acids concentrations. Whether dietary fatty acids interact with genetic variants to modify circulating omega-3 fatty acids is unclear. We evaluated i...

  6. Potential for daily supplementation of n-3 fatty acids to reverse symptoms of dry eye in mice.

    PubMed

    Harauma, Akiko; Saito, Junpei; Watanabe, Yoshitake; Moriguchi, Toru

    2014-06-01

    The purpose of this study was to determine the change in tear volume, as a predominant symptom of dry eye syndrome, in dietary n-3 fatty acid deficient mice compared with n-3 fatty acid adequate mice. The tear volume in n-3 fatty acid deficient mice was significantly lower than that in n-3 fatty acid adequate mice. In addition, the concentration of n-3 fatty acid in the lacrimal and meibomian glands, which affects the production of tears, was markedly decreased compared with n-3 fatty acid adequate mice. However, the tear volume recovered almost completely after one week of continuous administration of fish oil containing EPA and DHA in n-3 fatty acid deficient mice. Also, the concentration of DHA in the meibomian gland of n-3 fatty acid deficient group recovered to approximately 80% more than that of n-3 fatty acid adequate group. These results suggested that dietary n-3 fatty acids deficiency showed reversible dry eye syndrome, and that n-3 fatty acids have an important role in the production of tears. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Activation of Exogenous Fatty Acids to Acyl-Acyl Carrier Protein Cannot Bypass FabI Inhibition in Neisseria*

    PubMed Central

    Yao, Jiangwei; Bruhn, David F.; Frank, Matthew W.; Lee, Richard E.; Rock, Charles O.

    2016-01-01

    Neisseria is a Gram-negative pathogen with phospholipids composed of straight chain saturated and monounsaturated fatty acids, the ability to incorporate exogenous fatty acids, and lipopolysaccharides that are not essential. The FabI inhibitor, AFN-1252, was deployed as a chemical biology tool to determine whether Neisseria can bypass the inhibition of fatty acid synthesis by incorporating exogenous fatty acids. Neisseria encodes a functional FabI that was potently inhibited by AFN-1252. AFN-1252 caused a dose-dependent inhibition of fatty acid synthesis in growing Neisseria, a delayed inhibition of growth phenotype, and minimal inhibition of DNA, RNA, and protein synthesis, showing that its mode of action is through inhibiting fatty acid synthesis. Isotopic fatty acid labeling experiments showed that Neisseria encodes the ability to incorporate exogenous fatty acids into its phospholipids by an acyl-acyl carrier protein-dependent pathway. However, AFN-1252 remained an effective antibacterial when Neisseria were supplemented with exogenous fatty acids. These results demonstrate that extracellular fatty acids are activated by an acyl-acyl carrier protein synthetase (AasN) and validate type II fatty acid synthesis (FabI) as a therapeutic target against Neisseria. PMID:26567338

  8. Short-chain free fatty acid receptors FFA2/GPR43 and FFA3/GPR41 as new potential therapeutic targets.

    PubMed

    Ulven, Trond

    2012-01-01

    The deorphanization of the free fatty acid (FFA) receptors FFA1 (GPR40), FFA2 (GPR43), FFA3 (GPR41), GPR84, and GPR120 has made clear that the body is capable of recognizing and responding directly to nonesterified fatty acid of virtually any chain length. Colonic fermentation of dietary fiber produces high concentrations of the short-chain fatty acids (SCFAs) acetate, propionate and butyrate, a process which is important to health. The phylogenetically related 7-transmembrane (7TM) receptors free fatty acid receptor 2 (FFA2) and FFA3 are activated by these SCFAs, and several lines of evidence indicate that FFA2 and FFA3 mediate beneficial effects associated with a fiber-rich diet, and that they may be of interest as targets for treatment of inflammatory and metabolic diseases. FFA2 is highly expressed on immune cells, in particular neutrophils, and several studies suggest that the receptor plays a role in diseases involving a dysfunctional neutrophil response, such as inflammatory bowel disease (IBD). Both FFA2 and FFA3 have been implicated in metabolic diseases such as type 2 diabetes and in regulation of appetite. More research is however required to clarify the potential of the receptors as drug targets and establish if activation or inhibition would be the preferred mode of action. The availability of potent and selective receptor modulators is a prerequisite for these studies. The few modulators of FFA2 or FFA3 that have been published hitherto in the peer-reviewed literature in general have properties that make them less than ideal as such tools, but published patent applications indicate that better tool compounds might soon become available which should enable studies critical to validate the receptors as new drug targets.

  9. Incorporation of Extracellular Fatty Acids by a Fatty Acid Kinase-Dependent Pathway in Staphylococcus aureus

    PubMed Central

    Parsons, Joshua B.; Frank, Matthew W.; Jackson, Pamela; Subramanian, Chitra; Rock, Charles O.

    2014-01-01

    Summary Acyl-CoA and acyl-acyl carrier protein (ACP) synthetases activate exogenous fatty acids for incorporation into phospholipids in Gram-negative bacteria. However, Gram-positive bacteria utilize an acyltransferase pathway for the biogenesis of phosphatidic acid that begins with the acylation of sn-glycerol-3-phosphate by PlsY using an acyl-phosphate (acyl-PO4) intermediate. PlsX generates acyl-PO4 from the acyl-ACP end-products of fatty acid synthesis. The plsX gene of Staphylococcus aureus was inactivated and the resulting strain was both a fatty acid auxotroph and required de novo fatty acid synthesis for growth. Exogenous fatty acids were only incorporated into the 1-position and endogenous acyl groups were channeled into the 2-position of the phospholipids in strain PDJ39 (ΔplsX). Extracellular fatty acids were not elongated. Removal of the exogenous fatty acid supplement led to the rapid accumulation of intracellular acyl-ACP and the abrupt cessation of fatty acid synthesis. Extracts from the ΔplsX strain exhibited an ATP-dependent fatty acid kinase activity, and the acyl-PO4 was converted to acyl-ACP when purified PlsX is added. These data reveal the existence of a novel fatty acid kinase pathway for the incorporation of exogenous fatty acids into S. aureus phospholipids. PMID:24673884

  10. [Fatty acids composition of cellular lipids of the collected and newly isolated Pseudomonas lupini strains].

    PubMed

    Hvozdiak, R I; Dankevych, L A; Votselko, S K; Holubets', O V

    2005-01-01

    Fatty acid composition of cellular lipids of 23 Pseudomonas lupini strains (Beltjukova et Koroljova 1968) has been investigated. Cellular fatty acids which contained from C10 to C19 carbon atoms have been identified. Basic fatty acid of those Pseudomonas cells are hexadecanoic, hexadecenoic and octadecanoic acids. The 3-hydroxydecanoic (C10:0 3OH), 3-hydroxydodecanoic (C12:0 3OH), 2-hydroxydodecanoic (C12:0 2OH) and cyclopropane fatty acids which contain 17 and 19 carbon atoms have been detected in cellular lipids. The cellular fatty acids spectra of 22 P. lupini strains are similar to cellular fatty acids spectrum of the type strain Pseudomonas syringae pv. syringae 8511. Pathogenic isolate 2, which fatty acid content of cell lipids significantly differ from lipids of cell fatty acids from P. lupini strains and cell lipids of fatty acids of typical strains Pseudomonas syringae pv. syringae 8511 and Pseudomonas savastanoi pv. phaseolicola 9066 is the exception.

  11. Nonessential fatty acids in formula fat blends influence essential fatty acid metabolism and composition in plasma and organ lipid classes in piglets.

    PubMed

    Wall, K M; Diersen-Schade, D; Innis, S M

    1992-12-01

    The n-6 and n-3 fatty acid status of developing organs is the cumulative result of the diet lipid composition and many complex events of lipid metabolism. Little information is available, however, on the potential effects of the saturated fatty acid chain length (8:0-16:0) or oleic acid (18:1) content of the diet on the subsequent metabolism of the essential fatty acids 18:2n-6 and 18:3n-3 and their elongated/desaturated products. The effects of feeding piglets formulas with fat blends containing either coconut oil (12:0 + 14:0) or medium chain triglycerides (MCT, 8:0 + 10:0) but similar levels of 18:1, 18:2n-6 and 18:3n-3, or MCT with high or low 18:1 but constant 18:2n-6 and 18:3n-3 on the fatty acid composition of plasma, liver and kidney triglycerides, phospholipids and cholesteryl esters, and of brain total lipid, were studied. Diet-induced changes in the fatty acid composition of lipid classes were generally similar for plasma, liver and kidney. Dietary 18:1 content was reflected in tissue lipids and was inversely associated with levels of 18:2n-6. Lower percentage of 18:2n-6, however, was not associated with lower levels of its elongated/desaturated product 20:4n-6 but was associated with higher levels of 22:6n-3. Feeding coconut oil vs. MCT resulted in lower 18:1 levels in all lipids, and higher percentages of 20:4n-6 in tissue phospholipid. Increasing the dietary n-6/n-3 ratio from 5 to 8 significantly increased tissue percentage of 18:2n-6 and decreased phospholipid 22:6n-3.(ABSTRACT TRUNCATED AT 250 WORDS)

  12. Lactational Stage of Pasteurized Human Donor Milk Contributes to Nutrient Limitations for Infants

    PubMed Central

    Valentine, Christina J.; Morrow, Georgia; Reisinger, Amanda; Dingess, Kelly A.; Morrow, Ardythe L.; Rogers, Lynette K.

    2017-01-01

    Background. Mother’s own milk is the first choice for feeding preterm infants, but when not available, pasteurized human donor milk (PDM) is often used. Infants fed PDM have difficulties maintaining appropriate growth velocities. To assess the most basic elements of nutrition, we tested the hypotheses that fatty acid and amino acid composition of PDM is highly variable and standard pooling practices attenuate variability; however, total nutrients may be limiting without supplementation due to late lactational stage of the milk. Methods. A prospective cross-sectional sampling of milk was obtained from five donor milk banks located in Ohio, Michigan, Colorado, Texas-Ft Worth, and California. Milk samples were collected after Institutional Review Board (#07-0035) approval and informed consent. Fatty acid and amino acid contents were measured in milk from individual donors and donor pools (pooled per Human Milk Banking Association of North America guidelines). Statistical comparisons were performed using Kruskal–Wallis, Spearman’s, or Multivariate Regression analyses with center as the fixed factor and lactational stage as co-variate. Results. Ten of the fourteen fatty acids and seventeen of the nineteen amino acids analyzed differed across Banks in the individual milk samples. Pooling minimized these differences in amino acid and fatty acid contents. Concentrations of lysine and docosahexaenoic acid (DHA) were not different across Banks, but concentrations were low compared to recommended levels. Conclusions. Individual donor milk fatty acid and amino acid contents are highly variable. Standardized pooling practice reduces this variability. Lysine and DHA concentrations were consistently low across geographic regions in North America due to lactational stage of the milk, and thus not adequately addressed by pooling. Targeted supplementation is needed to optimize PDM, especially for the preterm or volume restricted infant. PMID:28335478

  13. Omega-3 Polyunsaturated Fatty Acid (Fish Oil) Supplementation and the Prevention of Clinical Cardiovascular Disease: A Science Advisory From the American Heart Association.

    PubMed

    Siscovick, David S; Barringer, Thomas A; Fretts, Amanda M; Wu, Jason H Y; Lichtenstein, Alice H; Costello, Rebecca B; Kris-Etherton, Penny M; Jacobson, Terry A; Engler, Mary B; Alger, Heather M; Appel, Lawrence J; Mozaffarian, Dariush

    2017-04-11

    Multiple randomized controlled trials (RCTs) have assessed the effects of supplementation with eicosapentaenoic acid plus docosahexaenoic acid (omega-3 polyunsaturated fatty acids, commonly called fish oils) on the occurrence of clinical cardiovascular diseases. Although the effects of supplementation for the primary prevention of clinical cardiovascular events in the general population have not been examined, RCTs have assessed the role of supplementation in secondary prevention among patients with diabetes mellitus and prediabetes, patients at high risk of cardiovascular disease, and those with prevalent coronary heart disease. In this scientific advisory, we take a clinical approach and focus on common indications for omega-3 polyunsaturated fatty acid supplements related to the prevention of clinical cardiovascular events. We limited the scope of our review to large RCTs of supplementation with major clinical cardiovascular disease end points; meta-analyses were considered secondarily. We discuss the features of available RCTs and provide the rationale for our recommendations. We then use existing American Heart Association criteria to assess the strength of the recommendation and the level of evidence. On the basis of our review of the cumulative evidence from RCTs designed to assess the effect of omega-3 polyunsaturated fatty acid supplementation on clinical cardiovascular events, we update prior recommendations for patients with prevalent coronary heart disease, and we offer recommendations, when data are available, for patients with other clinical indications, including patients with diabetes mellitus and prediabetes and those with high risk of cardiovascular disease, stroke, heart failure, and atrial fibrillation. © 2017 American Heart Association, Inc.

  14. Characterization and chemical composition of fatty acids content of watermelon and muskmelon cultivars in Saudi Arabia using gas chromatography/mass spectroscopy

    PubMed Central

    Albishri, Hassan M.; Almaghrabi, Omar A.; Moussa, Tarek A. A.

    2013-01-01

    Background: The growth in the production of biodiesel, which is principally fatty acid methyl esters (FAME), has been phenomenal in the last ten years because of the general desire to cut down on the release of greenhouse gases into the atmosphere, and also as a result of the increasing cost of fossil fuels. Objective: Establish whether there is any relationship between two different species (watermelon and muskmelon) within the same family (Cucurbitaceae) on fatty acid compositions and enumerate the different fatty acids in the two species. Materials and Methods: Extraction of fatty acids from the two species and preparation the extract to gas chromatography/mass spectroscopy analysis to determine the fatty acids compositions qualitatively and quantitatively. Results: The analyzed plants (watermelon and muskmelon) contain five saturated fatty acids; tetrdecanoic acid, pentadecanoic acid, hexadecanoic acid, heptadecanoic acid and octadecanoic acid with different concentrations, while muskmelon contains an extra saturated fatty acid named eicosanoic acid. The watermelon plant contains five unsaturated fatty acids while muskmelon contains three only, the two plants share in two unsaturated fatty acids named 9-hexadecenoic acid and 9-octadecenoic acid, the muskmelon plant contains higher amounts of these two acids (2.04% and 10.12%, respectively) over watermelon plant (0.88% and 0.25%, respectively). Conclusion: The chemical analysis of watermelon and muskmelon revealed that they are similar in saturated fatty acids but differ in unsaturated fatty acids which may be a criterion of differentiation between the two plants. PMID:23661995

  15. Maternal long-chain polyunsaturated fatty acid status during early pregnancy and children's risk of problem behavior at age 5-6 years.

    PubMed

    Loomans, Eva M; Van den Bergh, Bea R H; Schelling, Maaike; Vrijkotte, Tanja G M; van Eijsden, Manon

    2014-04-01

    To prospectively investigate the association between maternal long-chain polyunsaturated fatty acid (LCPUFA) status and ratio during pregnancy and children's risk of problem behavior at 5 years of age. Maternal LCPUFA status in plasma phospholipids during pregnancy (M = 13.3, SD = 3 weeks) was available for 4336 women. Children's behavior was rated by their mother (n = 2502) and teacher (n = 2061). When using multivariate logistic regression analyses, we found that greater concentrations of omega-3 fatty acid docosahexaenoic acid (OR 0.75; 95% CI 0.56-0.99; P = .05) decreased children's risk for emotional symptoms. Although lower eicosapentaenoic acid and a greater omega-6:omega-3 LCPUFA (ie, arachidonic acid/[docosahexaenoic acid + eicosapentaenoic acid]) tended to increase the risk for emotional symptoms and the risk of hyperactivity/inattention problems for the omega-6:omega-3 LCPUFA, the results were nonsignificant (P = .07). No evidence was found for mediation by preterm birth and being small for gestational age. The child's sex and infant feeding pattern did not modify the associations. Our results suggest long-term developmental programming influences of maternal LCPUFA status during pregnancy and stress the importance of an adequate and balanced supply of fatty acids in pregnant women for optimal fetal brain development and subsequent long-term behavioral outcomes. Copyright © 2014 Mosby, Inc. All rights reserved.

  16. 21 CFR 172.848 - Lactylic esters of fatty acids.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Lactylic esters of fatty acids. 172.848 Section 172... CONSUMPTION Multipurpose Additives § 172.848 Lactylic esters of fatty acids. Lactylic esters of fatty acids... prepared from lactic acid and fatty acids meeting the requirements of § 172.860(b) and/or oleic acid...

  17. New insights into the molecular mechanism of intestinal fatty acid absorption.

    PubMed

    Wang, Tony Y; Liu, Min; Portincasa, Piero; Wang, David Q-H

    2013-11-01

    Dietary fat is one of the most important energy sources of all the nutrients. Fatty acids, stored as triacylglycerols (also called triglycerides) in the body, are an important reservoir of stored energy and derived primarily from animal fats and vegetable oils. Although the molecular mechanisms for the transport of water-insoluble amphipathic fatty acids across cell membranes have been debated for many years, it is now believed that the dominant means for intestinal fatty acid uptake is via membrane-associated fatty acid-binding proteins, that is, fatty acid transporters on the apical membrane of enterocytes. These findings indicate that intestinal fatty acid absorption is a multistep process that is regulated by multiple genes at the enterocyte level, and intestinal fatty acid absorption efficiency could be determined by factors influencing intraluminal fatty acid molecules across the brush border membrane of enterocytes. To facilitate research on intestinal, hepatic and plasma triacylglycerol metabolism, it is imperative to establish standard protocols for precisely and accurately measuring the efficiency of intestinal fatty acid absorption in humans and animal models. In this review, we will discuss the chemical structure and nomenclature of fatty acids and summarize recent progress in investigating the molecular mechanisms underlying the intestinal absorption of fatty acids, with a particular emphasis on the physical chemistry of intestinal lipids and the molecular physiology of intestinal fatty acid transporters. A better understanding of the molecular mechanism of intestinal fatty acid absorption should lead to novel approaches to the treatment and the prevention of fatty acid-related metabolic diseases that are prevalent worldwide. © 2013 Stichting European Society for Clinical Investigation Journal Foundation. Published by John Wiley & Sons Ltd.

  18. Comparative effects of high oleic acid vs high mixed saturated fatty acid obesogenic diets upon PUFA metabolism in mice

    USDA-ARS?s Scientific Manuscript database

    Emerging evidence indicates that the fatty acid composition of obesogenic diets influences physiologic outcomes. There are scant data regarding how the content of non-essential fatty acids like monounsaturated fatty acids (MUFA) and saturated fatty acids (SFAs) impact the metabolism of polyunsaturat...

  19. Fatty acid transfer between multilamellar liposomes and fatty acid-binding proteins.

    PubMed

    Brecher, P; Saouaf, R; Sugarman, J M; Eisenberg, D; LaRosa, K

    1984-11-10

    A simple experimental system was developed for studying the movement of long-chain fatty acids between multilamellar liposomes and soluble proteins capable of binding fatty acids. Oleic acid was incorporated into multilamellar liposomes containing cholesterol and egg yolk lecithin and incubated with albumin or hepatic fatty acid-binding protein. It was found that the fatty acid transferred from the liposomes to either protein rapidly and selectively under conditions where phospholipid and cholesterol transfer did not occur. More than 50% of the fatty acid contained within liposomes could become protein bound, suggesting that the fatty acid moved readily between and across phospholipid bilayers. Transfer was reduced at low pH, and this reduction appeared to result from decreased dissociation of the protonated fatty acid from the bilayer. Liposomes made with dimyristoyl or dipalmitoyl lecithin and containing 1 mol per cent palmitic acid were used to show the effect of temperature on fatty acid transfer. Transfer to either protein did not occur at temperatures where the liposomes were in a gel state but occurred rapidly at temperatures at or above the transition temperatures of the phospholipid used.

  20. Cadmium Alters the Concentration of Fatty Acids in THP-1 Macrophages.

    PubMed

    Olszowski, Tomasz; Gutowska, Izabela; Baranowska-Bosiacka, Irena; Łukomska, Agnieszka; Drozd, Arleta; Chlubek, Dariusz

    2018-03-01

    Fatty acid composition of human immune cells influences their function. The aim of this study was to evaluate the effects of known toxicant and immunomodulator, cadmium, at low concentrations on levels of selected fatty acids (FAs) in THP-1 macrophages. The differentiation of THP-1 monocytes into macrophages was achieved by administration of phorbol myristate acetate. Macrophages were incubated with various cadmium chloride (CdCl 2 ) solutions for 48 h at final concentrations of 5 nM, 20 nM, 200 nM, and 2 μM CdCl 2 . Fatty acids were extracted from samples according to the Folch method. The fatty acid levels were determined using gas chromatography. The following fatty acids were analyzed: long-chain saturated fatty acids (SFAs) palmitic acid and stearic acid, very long-chain saturated fatty acid (VLSFA) arachidic acid, monounsaturated fatty acids (MUFAs) palmitoleic acid, oleic acid and vaccenic acid, and n-6 polyunsaturated fatty acids (PUFAs) linoleic acid and arachidonic acid. Treatment of macrophages with very low concentrations of cadmium (5-200 nM) resulted in significant reduction in the levels of arachidic, palmitoleic, oleic, vaccenic, and linoleic acids and significant increase in arachidonic acid levels (following exposure to 5 nM Cd), without significant reduction of palmitic and stearic acid levels. Treatment of macrophages with the highest tested cadmium concentration (2 μM) produced significant reduction in the levels of all examined FAs: SFAs, VLSFA, MUFAs, and PUFAs. In conclusion, cadmium at tested concentrations caused significant alterations in THP-1 macrophage fatty acid levels, disrupting their composition, which might dysregulate fatty acid/lipid metabolism thus affecting macrophage behavior and inflammatory state.

  1. The influence of fatty acids on theophylline binding to human serum albumin. Comparative fluorescence study

    NASA Astrophysics Data System (ADS)

    Maciążek-Jurczyk, M.; Sułkowska, A.; Bojko, B.; Równicka-Zubik, J.; Szkudlarek-Haśnik, A.; Zubik-Skupień, I.; Góra, A.; Dubas, M.; Korzonek-Szlacheta, I.; Wielkoszyński, T.; Żurawiński, W.; Sosada, K.

    2012-04-01

    Theophylline, popular diuretic, is used to treat asthma and bronchospasm. In blood it forms complexes with albumin, which is also the main transporter of fatty acids. The aim of the present study was to describe the influence of fatty acids (FA) on binding of theophylline (Th) to human serum albumin (HSA) in the high affinity binding sites. Binding parameters have been obtained on the basis of the fluorescence analysis. The data obtained for the complex of Th and natural human serum albumin (nHSA) obtained from blood of obese patients qualified for surgical removal of stomach was compared with our previous studies on the influence of FA on the complex of Th and commercially available defatted human serum albumin (dHSA).

  2. Effects of bovine pregnancy on the fatty acid composition of milk: the significance for humans needs.

    PubMed

    Barreiro, R; Regal, P; Díaz-Bao, M; Vázquez, B I; Cepeda, A

    2017-04-01

    Milk from 40 Holstein dairy cows was collected from two different farms in Galicia (Spain). The differences in the fatty acid composition of two groups of cows, 20 pregnant and 20 non-pregnant, was studied to determine whether pregnancy status is a determinant factor that can alter the fatty acid profile of milk. Gas-chromatography (GC) coupled to flame ionisation detection (FID) was used for the determination of the fatty acids. Differences in the milk fatty acids between pregnant and non-pregnant cows were pronounced showing statistically significant differences for some fatty acids and the total saturated and monounsaturated fatty acids. Milk from non-pregnant cows was lower in saturated fatty acids and higher in monounsaturated fatty acids (unlike milk from pregnant cows). The effects of the consumption of bovine milk, particularly milk fat, on human health have been studied in depth and sometimes are associated with negative effects, but milk has also several beneficial characteristics linked to some fatty acids.

  3. Update on the management of severe hypertriglyceridemia--focus on free fatty acid forms of omega-3.

    PubMed

    Pirillo, Angela; Catapano, Alberico Luigi

    2015-01-01

    High levels of plasma triglycerides (TG) are a risk factor for cardiovascular diseases, often associated with anomalies in other lipids or lipoproteins. Hypertriglyceridemia (HTG), particularly at very high levels, significantly increases also the risk of acute pancreatitis. Thus, interventions to lower TG levels are required to reduce the risk of pancreatitis and cardiovascular disease. Several strategies may be adopted for TG reduction, including lifestyle changes and pharmacological interventions. Among the available drugs, the most commonly used for HTG are fibrates, nicotinic acid, and omega-3 polyunsaturated fatty acids (usually a mixture of eicosapentaenoic acid, or EPA, and docosahexaenoic acid, or DHA). These last are available under different concentrated formulations containing high amounts of omega-3 fatty acids, including a mixture of EPA and DHA or pure EPA. The most recent formulation contains a free fatty acid (FFA) form of EPA and DHA, and exhibits a significantly higher bioavailability compared with the ethyl ester forms contained in the other formulations. This is due to the fact that the ethyl ester forms, to be absorbed, need to be hydrolyzed by the pancreatic enzymes that are secreted in response to fat intake, while the FFA do not. This higher bioavailability translates into a higher TG-lowering efficacy compared with the ethyl ester forms at equivalent doses. Omega-3 FFA are effective in reducing TG levels and other lipids in hypertriglyceridemic patients as well as in high cardiovascular risk patients treated with statins and residual HTG. Currently, omega-3 FFA formulation is under evaluation to establish whether, in high cardiovascular risk subjects, the addition of omega-3 to statin therapy may prevent or reduce major cardiovascular events.

  4. Metabolism of fatty acids and lipid hydroperoxides in human body monitoring with Fourier transform Infrared Spectroscopy.

    PubMed

    Yoshida, Satoshi; Zhang, Qin-Zeng; Sakuyama, Shu; Matsushima, Satoshi

    2009-07-24

    The metabolism of dietary fatty acids in human has been measured so far using human blood cells and stable-isotope labeled fatty acids, however, no direct data was available for human peripheral tissues and other major organs. To realize the role of dietary fatty acids in human health and diseases, it would be eager to develop convenient and suitable method to monitor fatty acid metabolism in human. We have developed the measurement system in situ for human lip surface lipids using the Fourier transform infrared spectroscopy (FTIR) - attenuated total reflection (ATR) detection system with special adaptor to monitor metabolic changes of lipids in human body. As human lip surface lipids may not be much affected by skin sebum constituents and may be affected directly by the lipid constituents of diet, we could detect changes of FTIR-ATR spectra, especially at 3005 to approximately 3015 cm(-1), of lip surface polyunsaturated fatty acids in a duration time-dependent manner after intake of the docosahexaenoic acid (DHA)-containing triglyceride diet. The ingested DHA appeared on the lip surface and was detected by FTIR-ATR directly and non-invasively. It was found that the metabolic rates of DHA for male volunteer subjects with age 60s were much lower than those with age 20s. Lipid hydroperoxides were found in lip lipids which were extracted from the lip surface using a mixture of ethanol/ethylpropionate/iso-octane solvents, and were the highest in the content just before noon. The changes of lipid hydroperoxides were detected also in situ with FTIR-ATR at 968 cm(-1). The measurements of lip surface lipids with FTIR-ATR technique may advance the investigation of human lipid metabolism in situ non-invasively.

  5. Coping with sub-optimal water temperature: modifications in fatty acid profile of barramundi as influenced by dietary lipid.

    PubMed

    Alhazzaa, Ramez; Bridle, Andrew R; Nichols, Peter D; Carter, Chris G

    2013-06-01

    Metabolic responses to sub-optimal temperature deplete lipid depots, remodel membrane lipid and alter the fatty acid profile in the whole body and tissues of ectothermic vertebrates including fish. The magnitude of these changes may depend on dietary history including oil sources with different fatty acid compositions. Barramundi, Lates calcarifer (Perciformes, Latidae), a tropical ectothermic fish, was fed on diets either rich in dietary long-chain (≥C(20)) polyunsaturated fatty acids (LC-PUFA) from fish oil, rich in stearidonic and γ-linolenic acid (SDA and GLA, respectively) from Echium plantagineum, or rapeseed oil deficient in LC-PUFA. Following 5 weeks at the optimum temperature of 30 °C when growth rates were comparable amongst dietary treatments, water temperature was dropped to 20 °C for 1 week for half of the animals and maintained at 30 °C for the other half. Decreased temperature increased the liver and skeletal muscle content of LC-PUFA in fish fed on echium oil compared with rapeseed oil, while dietary LC-PUFA depots in fish oil fed-fish depleted rapidly in the week of sub-optimal temperature. The lipid unsaturation index of cellular membrane in the liver and muscle increased under low temperature at the same rate regardless of dietary oil. Therefore, rapid exposure of an ectothermic vertebrate to a lower and sub-optimal temperature caused significant modulation in fatty acid composition. We propose that the tolerance of barramundi, a representative of tropical farmed fish, to sub-optimal temperature will be enhanced when fatty acid substrates closer to the LC-PUFA are available in their diet. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. Development and application of a comparative fatty acid analysis method to investigate voriconazole-induced hepatotoxicity.

    PubMed

    Chen, Guan-yuan; Chiu, Huai-hsuan; Lin, Shu-wen; Tseng, Yufeng Jane; Tsai, Sung-jeng; Kuo, Ching-hua

    2015-01-01

    As fatty acids play an important role in biological regulation, the profiling of fatty acid expression has been used to discover various disease markers and to understand disease mechanisms. This study developed an effective and accurate comparative fatty acid analysis method using differential labeling to speed up the metabolic profiling of fatty acids. Fatty acids were derivatized with unlabeled (D0) or deuterated (D3) methanol, followed by GC-MS analysis. The comparative fatty acid analysis method was validated using a series of samples with different ratios of D0/D3-labeled fatty acid standards and with mouse liver extracts. Using a lipopolysaccharide (LPS)-treated mouse model, we found that the fatty acid profiles after LPS treatment were similar between the conventional single-sample analysis approach and the proposed comparative approach, with a Pearson's correlation coefficient of approximately 0.96. We applied the comparative method to investigate voriconazole-induced hepatotoxicity and revealed the toxicity mechanism as well as the potential of using fatty acids as toxicity markers. In conclusion, the comparative fatty acid profiling technique was determined to be fast and accurate and allowed the discovery of potential fatty acid biomarkers in a more economical and efficient manner. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Omega-3 fatty acids: new insights into the pharmacology and biology of docosahexaenoic acid, docosapentaenoic acid, and eicosapentaenoic acid.

    PubMed

    Davidson, Michael H

    2013-12-01

    Fish oil contains a complex mixture of omega-3 fatty acids, which are predominantly eicosapentaenoic acid (EPA), docosapentaenoic acid, and docosahexaenoic acid (DHA). Each of these omega-3 fatty acids has distinct biological effects that may have variable clinical effects. In addition, plasma levels of omega-3 fatty acids are affected not only by dietary intake, but also by the polymorphisms of coding genes fatty acid desaturase 1-3 for the desaturase enzymes that convert short-chain polyunsaturated fatty acids to long-chain polyunsaturated fatty acids. The clinical significance of this new understanding regarding the complexity of omega-3 fatty acid biology is the purpose of this review. FADS polymorphisms that result in either lower levels of long-chain omega-3 fatty acids or higher levels of long-chain omega-6 polyunsaturated fatty acids, such as arachidonic acid, are associated with dyslipidemia and other cardiovascular risk factors. EPA and DHA have differences in their effects on lipoprotein metabolism, in which EPA, with a more potent peroxisome proliferator-activated receptor-alpha effect, decreases hepatic lipogenesis, whereas DHA not only enhances VLDL lipolysis, resulting in greater conversion to LDL, but also increases HDL cholesterol and larger, more buoyant LDL particles. Overall, these results emphasize that blood concentrations of individual long-chain polyunsaturated fatty acids, which reflect both dietary intake and metabolic influences, may have independent, but also complementary- biological effects and reinforce the need to potentially provide a complex mixture of omega-3 fatty acids to maximize cardiovascular risk reduction.

  8. Changes in zooplankton community, and seston and zooplankton fatty acid profiles at the freshwater/saltwater interface of the Chowan River, North Carolina

    PubMed Central

    Rinchard, Jacques; Kimmel, David G.

    2017-01-01

    The variability in zooplankton fatty acid composition may be an indicator of larval fish habitat quality as fatty acids are linked to fish larval growth and survival. We sampled an anadromous fish nursery, the Chowan River, during spring of 2013 in order to determine how the seston fatty acid composition varied in comparison with the zooplankton community composition and fatty acid composition during the period of anadromous larval fish residency. The seston fatty acid profiles showed no distinct pattern in relation to sampling time or location. The mesozooplankton community composition varied spatially and the fatty acid profiles were typical of freshwater species in April. The Chowan River experienced a saltwater intrusion event during May, which resulted in brackish water species dominating the zooplankton community and the fatty acid profile showed an increase in polyunsaturated fatty acids (PUFA), in particular eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). The saltwater intrusion event was followed by an influx of freshwater due to high precipitation levels in June. The zooplankton community composition once again became dominated by freshwater species and the fatty acid profiles shifted to reflect this change; however, EPA levels remained high, particularly in the lower river. We found correlations between the seston, microzooplankton and mesozooplankton fatty acid compositions. Salinity was the main factor correlated to the observed pattern in species composition, and fatty acid changes in the mesozooplankton. These data suggest that anadromous fish nursery habitat likely experiences considerable spatial variability in fatty acid profiles of zooplankton prey and that are correlated to seston community composition and hydrodynamic changes. Our results also suggest that sufficient prey density as well as a diverse fatty acid composition is present in the Chowan River to support larval fish production. PMID:28828262

  9. 21 CFR 172.852 - Glyceryl-lacto esters of fatty acids.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... § 172.852 Glyceryl-lacto esters of fatty acids. Glyceryl-lacto esters of fatty acids (the lactic acid... conditions: (a) They are manufactured from glycerin, lactic acid, and fatty acids conforming with § 172.860...

  10. Sexually dimorphic brain fatty acid composition in low and high fat diet-fed mice.

    PubMed

    Rodriguez-Navas, Carlos; Morselli, Eugenia; Clegg, Deborah J

    2016-08-01

    In this study, we analyzed the fatty acid profile of brains and plasma from male and female mice fed chow or a western-style high fat diet (WD) for 16 weeks to determine if males and females process fatty acids differently. Based on the differences in fatty acids observed in vivo, we performed in vitro experiments on N43 hypothalamic neuronal cells to begin to elucidate how the fatty acid milieu may impact brain inflammation. Using a comprehensive mass spectrometry fatty acid analysis, which includes a profile for 52 different fatty acid isomers, we assayed the plasma and brain fatty acid composition of age-matched male and female mice maintained on chow or a WD. Additionally, using the same techniques, we determined the fatty acid composition of N43 hypothalamic cells following exposure to palmitic and linoleic acid, alone or in combination. Our data demonstrate there is a sexual dimorphism in brain fatty acid content both following the consumption of the chow diet, as well as the WD, with males having an increased percentage of saturated fatty acids and reductions in ω6-polyunsaturated fatty acids when compared to females. Interestingly, we did not observe a sexual dimorphism in fatty acid content in the plasma of the same mice. Furthermore, exposure of N43 cells to the ω6-PUFA linoleic acid, which is higher in female brains when compared to males, reduces palmitic acid-induced inflammation. Our data suggest male and female brains, and not plasma, differ in their fatty acid profile. This is the first time, to our knowledge, lipidomic analyses has been used to directly test the hypothesis there is a sexual dimorphism in brain and plasma fatty acid composition following consumption of the chow diet, as well as following exposure to the WD.

  11. Position of the American Dietetic Association and Dietitians of Canada: dietary fatty acids.

    PubMed

    Kris-Etherton, Penny M; Innis, Sheila; Ammerican Dietetic Assocition; Dietitians of Canada

    2007-09-01

    It is the position of the American Dietetic Association (ADA) and Dietitians of Canada (DC) that dietary fat for the adult population should provide 20% to 35% of energy and emphasize a reduction in saturated fatty acids and trans-fatty acids and an increase in n-3 polyunsaturated fatty acids. ADA and DC recommend a food-based approach for achieving these fatty acid recommendations; that is, a dietary pattern high in fruits and vegetables, whole grains, legumes, nuts and seeds, lean protein (ie, lean meats, poultry, and low-fat dairy products), fish (especially fatty fish high in n-3 fatty acids), and use of nonhydrogenated margarines and oils. Implicit to these recommendations for dietary fatty acids is that unsaturated fatty acids are the predominant fat source in the diet. These fatty acid recommendations are made in the context of a diet consistent with energy needs (ie, to promote a healthful body weight). ADA and DC recognize that scientific knowledge about the effects of dietary fats on human health is incomplete and take a prudent approach in recommending a reduction in those fatty acids that increase risk of disease, while promoting intake of those fatty acids that benefit health. Registered dietitians play a pivotal role in translating dietary recommendations for fat and fatty acids into healthful dietary patterns for different population groups.

  12. Intraspecies cellular fatty acids heterogeneity of Lactobacillus plantarum strains isolated from fermented foods in Ukraine.

    PubMed

    Garmasheva, I; Vasyliuk, O; Kovalenko, N; Ostapchuk, A; Oleschenko, L

    2015-09-01

    The intraspecies heterogeneity of cellular fatty acids composition of Lactobacillus plantarum strains isolated from Ukrainian traditional fermented foods was examined. Seven cellular fatty acids were identified. All Lact. plantarum strains investigated contained C16:0 (from 7·54 to 49·83% of total fatty acids), cC18:1 (3·23-38·67% of total fatty acids) and cycC19:0 acids (9·03-67·68% of total fatty acids) as the major fatty acids. The tC18:1 acid made up 1·47-22·0% of the total fatty acids. The C14:0 and C16:1 acids were present in small amounts (0·22-6·96% and 0·66-7·42% respectively) in most Lact. plantarum strains. Differences in relative contents of some fatty acids between Lact. plantarum strains depending on the source isolation were found. Isolates of dairy origin contained slightly greater levels of the C16:0 and tC18:1 fatty acids and lower levels of the cC18:1 than strains obtained from fermented vegetables. The origin of Lact. plantarum strains affects their fatty acids composition, which in turn, appears to be related to their ability to growth under stress factors. Cellular fatty acids composition is an important chemotaxonomic characteristic of bacterial cells. At the same time cellular fatty acids play a key role in maintaining the viability of micro-organisms in different environmental conditions. In this study, intraspecies heterogeneity of cellular fatty acids composition of Lactobacillus plantarum strains was examined. This work provides novel and important information about a relationship between cellular fatty acids composition of Lact. plantarum strains and source of isolation or stress resistance profile. Our results showed that cellular fatty acids composition is quite diverse among Lact. plantarum strains derived from different sources and may reflect previous cell's history. Our findings should be considered in chemotaxonomic studies of lactic acid bacteria and its ecology. © 2015 The Society for Applied Microbiology.

  13. Age dependence of plasma phospholipid fatty acid levels: potential role of linoleic acid in the age-associated increase in docosahexaenoic acid and eicosapentaenoic acid concentrations.

    PubMed

    de Groot, Renate H M; van Boxtel, Martin P J; Schiepers, Olga J G; Hornstra, Gerard; Jolles, Jelle

    2009-10-01

    Limited information is available with respect to the association between age and the plasma phospholipid fatty acid profile. Therefore we investigated the association between plasma phospholipid fatty acid status and age after correction for sex, smoking, alcohol use, BMI and fish intake. Plasma phospholipid fatty acid composition was measured and information on fish intake and other potential covariates was collected in 234 participants of the Maastricht Aging Study. The participants were healthy individuals of both sexes with an age range between 36 and 88 years. Hierarchical linear regression analyses were applied to study the relationship between age and fatty acid concentrations. After correction for fish consumption and other relevant covariates, a significant positive relationship was observed between age of the subjects and their plasma phospholipid concentrations of DHA (22 : 6n-3, P = 0.006) and EPA (20 : 5n-3; P = 0.001). Age contributed 2.3 and 3.9 % to the amount of explained variance, respectively. The higher n-3 long-chain PUFA status at advanced age was confirmed by lower concentrations of their putative 'shortage marker' Osbond acid (ObA, 22 : 5n-6; P = 0.022 for the relationship with age after correction for covariates and fish intake, R2 0.022). Concentrations of linoleic acid (LA; 18 : 2n-6) were negatively associated with age (P < 0.001; R2 0.061). In conclusion, DHA and EPA concentrations appeared to be higher in older age groups, partly because of a higher fish intake and partly because of another age-associated mechanism, possibly involving the well-known competition with LA.

  14. A Randomized Controlled Clinical Trial Investigating the Effects of Omega-3 Fatty Acids and Vitamin E Co-Supplementation on Biomarkers of Oxidative Stress, Inflammation and Pregnancy Outcomes in Gestational Diabetes.

    PubMed

    Jamilian, Mehri; Hashemi Dizaji, Shahrzad; Bahmani, Fereshteh; Taghizadeh, Mohsen; Memarzadeh, Mohammad Reza; Karamali, Maryam; Akbari, Maryam; Asemi, Zatollah

    2017-04-01

    Limited data are available for assessing the effects of omega-3 fatty acids and vitamin E co-supplementation on metabolic profiles and pregnancy outcomes in gestational diabetes (GDM). This study was designed to determine the effects of omega-3 fatty acids and vitamin E co-supplementation on biomarkers of oxidative stress, inflammation and pregnancy outcomes in women with GDM. This randomized, double-blind, placebo-controlled clinical trial was conducted in 60 patients with GDM who were not taking oral hypoglycemic agents. Patients were randomly allocated to intake either 1000 mg omega-3 fatty acids from flaxseed oil plus 400 IU vitamin E supplements (n=30) or placebo (n=30) for 6 weeks. Fasting blood samples were obtained from the women at the beginning of the study and after the 6-week intervention to quantify related markers. After 6 weeks of intervention, omega-3 fatty acids and vitamin E co-supplementation, compared with the placebo, resulted in a significant rise in total antioxidant capacity (TAC) (+187.5±224.9 vs. -32.5±136.1 mmol/L; p<0.001); nitric oxide (NO) (+5.0±7.7 vs. -12.0±28.0 µmol/L; p=0.002) and a significant decrease in plasma malondialdehyde (MDA) concentrations (-0.1±0.9 vs. +0.6±1.4 µmol/L; p=0.03). Co-supplementation with omega-3 fatty acids and vitamin E showed no detectable changes in plasma glutathione and serum high-sensitivity C-reactive protein levels. Joint omega-3 fatty acids and vitamin E supplementation resulted in lower incidences of hyperbilirubinemia in newborns (10.3% vs. 33.3%; p=0.03). Overall, omega-3 fatty acids and vitamin E co-supplementation for 6 weeks in women with GDM had beneficial effects on plasma TAC, MDA and NO and on the incidence of the newborns' hyperbilirubinemia. Copyright © 2016 Canadian Diabetes Association. Published by Elsevier Inc. All rights reserved.

  15. Fatty acids bound to recombinant tear lipocalin and their role in structural stabilization.

    PubMed

    Tsukamoto, Seiichi; Fujiwara, Kazuo; Ikeguchi, Masamichi

    2009-09-01

    A variant of human tear lipocalin was expressed in Escherichia coli, and the bound fatty acids were analysed by gas chromatography, mass spectroscopy and nuclear magnetic resonance spectroscopy. Five major fatty acids were identified as hexadecanoic acid (palmitic acid, PA), cis-9-hexadecenoic acid (palmitoleic acid), 9,10-methylenehexadecanoic acid, cis-11-octadecenoic acid (vaccenic acid) and 11,12-methyleneoctadecanoic acid (lactobacillic acid). The composition of the bound fatty acids was similar to the fatty acid composition of E. coli extract, suggesting that the binding affinities are similar for these fatty acids. The urea-induced and thermal-unfolding transitions of the holoprotein (nondelipidated), apoprotein (delipidated) and PA-bound protein were observed by circular dichroism. Holoproteins and PA-bound proteins showed the same stability against urea and heat, and were more stable than apoprotein. These results show that each bound fatty acid stabilizes recombinant tear lipocalin to a similar extent.

  16. Comprehensive genetic study of fatty acids helps explain the role of noncoding inflammatory bowel disease associated SNPs and fatty acid metabolism in disease pathogenesis.

    PubMed

    Jezernik, Gregor; Potočnik, Uroš

    2018-03-01

    Fatty acids and their derivatives play an important role in inflammation. Diet and genetics influence fatty acid profiles. Abnormalities of fatty acid profiles have been observed in inflammatory bowel diseases (IBD), a group of complex diseases defined by chronic gastrointestinal inflammation. IBD associated fatty acid profile abnormalities were observed independently of nutritional status or disease activity, suggesting a common genetic background. However, no study so far has attempted to look for overlap between IBD loci and fatty acid associated loci or investigate the genetics of fatty acid profiles in IBD. To this end, we conducted a comprehensive genetic study of fatty acid profiles in IBD using iCHIP, a custom microarray platform designed for deep sequencing of immune-mediated disease associated loci. This study identifies 10 loci associated with fatty acid profiles in IBD. The most significant associations were a locus near CBS (p = 7.62 × 10 -8 ) and a locus in LRRK2 (p = 1.4 × 10 -7 ). Of note, this study replicates the FADS gene cluster locus, previously associated with both fatty acid profiles and IBD pathogenesis. Furthermore, we identify 18 carbon chain trans-fatty acids (p = 1.12 × 10 -3 ), total trans-fatty acids (p = 4.49 × 10 -3 ), palmitic acid (p = 5.85 × 10 -3 ) and arachidonic acid (p = 8.58 × 10 -3 ) as significantly associated with IBD pathogenesis. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Detailed dimethylacetal and fatty acid composition of rumen content from lambs fed lucerne or concentrate supplemented with soybean oil.

    PubMed

    Alves, Susana P; Santos-Silva, José; Cabrita, Ana R J; Fonseca, António J M; Bessa, Rui J B

    2013-01-01

    Lipid metabolism in the rumen is responsible for the complex fatty acid profile of rumen outflow compared with the dietary fatty acid composition, contributing to the lipid profile of ruminant products. A method for the detailed dimethylacetal and fatty acid analysis of rumen contents was developed and applied to rumen content collected from lambs fed lucerne or concentrate based diets supplemented with soybean oil. The methodological approach developed consisted on a basic/acid direct transesterification followed by thin-layer chromatography to isolate fatty acid methyl esters from dimethylacetal, oxo- fatty acid and fatty acid dimethylesters. The dimethylacetal composition was quite similar to the fatty acid composition, presenting even-, odd- and branched-chain structures. Total and individual odd- and branched-chain dimethylacetals were mostly affected by basal diet. The presence of 18:1 dimethylacetals indicates that biohydrogenation intermediates might be incorporated in structural microbial lipids. Moreover, medium-chain fatty acid dimethylesters were identified for the first time in the rumen content despite their concentration being relatively low. The fatty acids containing 18 carbon-chain lengths comprise the majority of the fatty acids present in the rumen content, most of them being biohydrogenation intermediates of 18:2n-6 and 18:3n-3. Additionally, three oxo- fatty acids were identified in rumen samples, and 16-O-18:0 might be produced during biohydrogenation of the 18:3n-3.

  18. Fatty Acid Composition and Volatile Constituents of Protaetia brevitarsis Larvae.

    PubMed

    Yeo, Hyelim; Youn, Kumju; Kim, Minji; Yun, Eun-Young; Hwang, Jae-Sam; Jeong, Woo-Sik; Jun, Mira

    2013-06-01

    A total of 48 different volatile oils were identified form P. brevitarsis larvae by gas chromatography/mass spectrometry (GC/MS). Acids (48.67%) were detected as the major group in P. brevitarsis larvae comprising the largest proportion of the volatile compounds, followed by esters (19.84%), hydrocarbons (18.90%), alcohols (8.37%), miscellaneous (1.71%), aldehydes (1.35%) and terpenes (1.16%). The major volatile constituents were 9-hexadecenoic acid (16.75%), 6-octadecenoic acid (14.88%) and n-hexadecanoic acid (11.06%). The composition of fatty acid was also determined by GC analysis and 16 fatty acids were identified. The predominant fatty acids were oleic acid (C18:1, 64.24%) followed by palmitic acid (C16:0, 15.89%), palmitoleic acid (C16:1, 10.43%) and linoleic acid (C18:2, 4.69%) constituting more than 95% of total fatty acids. The distinguished characteristic of the fatty acid profile of P. brevitarsis larvae was the high proportion of unsaturated fatty acid (80.54% of total fatty acids) versus saturated fatty acids (19.46% of total fatty acids). Furthermore, small but significant amounts of linoleic, linolenic and γ-linolenic acids bestow P. brevitarsis larvae with considerable nutritional value. The novel findings of the present study provide a scientific basis for the comprehensive utilization of the insect as a nutritionally promising food source and a possibility for more effective utilization.

  19. Fatty Acid Composition and Volatile Constituents of Protaetia brevitarsis Larvae

    PubMed Central

    Yeo, Hyelim; Youn, Kumju; Kim, Minji; Yun, Eun-Young; Hwang, Jae-Sam; Jeong, Woo-Sik; Jun, Mira

    2013-01-01

    A total of 48 different volatile oils were identified form P. brevitarsis larvae by gas chromatography/mass spectrometry (GC/MS). Acids (48.67%) were detected as the major group in P. brevitarsis larvae comprising the largest proportion of the volatile compounds, followed by esters (19.84%), hydrocarbons (18.90%), alcohols (8.37%), miscellaneous (1.71%), aldehydes (1.35%) and terpenes (1.16%). The major volatile constituents were 9-hexadecenoic acid (16.75%), 6-octadecenoic acid (14.88%) and n-hexadecanoic acid (11.06%). The composition of fatty acid was also determined by GC analysis and 16 fatty acids were identified. The predominant fatty acids were oleic acid (C18:1, 64.24%) followed by palmitic acid (C16:0, 15.89%), palmitoleic acid (C16:1, 10.43%) and linoleic acid (C18:2, 4.69%) constituting more than 95% of total fatty acids. The distinguished characteristic of the fatty acid profile of P. brevitarsis larvae was the high proportion of unsaturated fatty acid (80.54% of total fatty acids) versus saturated fatty acids (19.46% of total fatty acids). Furthermore, small but significant amounts of linoleic, linolenic and γ-linolenic acids bestow P. brevitarsis larvae with considerable nutritional value. The novel findings of the present study provide a scientific basis for the comprehensive utilization of the insect as a nutritionally promising food source and a possibility for more effective utilization. PMID:24471125

  20. A combination of plasma phospholipid fatty acids and its association with incidence of type 2 diabetes: The EPIC-InterAct case-cohort study

    PubMed Central

    Sharp, Stephen J.; Kröger, Janine; Griffin, Julian L.; Sluijs, Ivonne; Agudo, Antonio; Ardanaz, Eva; Balkau, Beverley; Boeing, Heiner; Chajes, Veronique; Dow, Courtney; Fagherazzi, Guy; Feskens, Edith J. M.; Franks, Paul W.; Gavrila, Diana; Gunter, Marc; Kaaks, Rudolf; Key, Timothy J.; Khaw, Kay-Tee; Kühn, Tilman; Melander, Olle; Molina-Portillo, Elena; Nilsson, Peter M.; Olsen, Anja; Overvad, Kim; Palli, Domenico; Panico, Salvatore; Rolandsson, Olov; Sieri, Sabina; Slimani, Nadia; Spijkerman, Annemieke M. W.; Tjønneland, Anne; Langenberg, Claudia; Riboli, Elio

    2017-01-01

    Background Combinations of multiple fatty acids may influence cardiometabolic risk more than single fatty acids. The association of a combination of fatty acids with incident type 2 diabetes (T2D) has not been evaluated. Methods and findings We measured plasma phospholipid fatty acids by gas chromatography in 27,296 adults, including 12,132 incident cases of T2D, over the follow-up period between baseline (1991–1998) and 31 December 2007 in 8 European countries in EPIC-InterAct, a nested case-cohort study. The first principal component derived by principal component analysis of 27 individual fatty acids (mole percentage) was the main exposure (subsequently called the fatty acid pattern score [FA-pattern score]). The FA-pattern score was partly characterised by high concentrations of linoleic acid, stearic acid, odd-chain fatty acids, and very-long-chain saturated fatty acids and low concentrations of γ-linolenic acid, palmitic acid, and long-chain monounsaturated fatty acids, and it explained 16.1% of the overall variability of the 27 fatty acids. Based on country-specific Prentice-weighted Cox regression and random-effects meta-analysis, the FA-pattern score was associated with lower incident T2D. Comparing the top to the bottom fifth of the score, the hazard ratio of incident T2D was 0.23 (95% CI 0.19–0.29) adjusted for potential confounders and 0.37 (95% CI 0.27–0.50) further adjusted for metabolic risk factors. The association changed little after adjustment for individual fatty acids or fatty acid subclasses. In cross-sectional analyses relating the FA-pattern score to metabolic, genetic, and dietary factors, the FA-pattern score was inversely associated with adiposity, triglycerides, liver enzymes, C-reactive protein, a genetic score representing insulin resistance, and dietary intakes of soft drinks and alcohol and was positively associated with high-density-lipoprotein cholesterol and intakes of polyunsaturated fat, dietary fibre, and coffee (p < 0.05 each). Limitations include potential measurement error in the fatty acids and other model covariates and possible residual confounding. Conclusions A combination of individual fatty acids, characterised by high concentrations of linoleic acid, odd-chain fatty acids, and very long-chain fatty acids, was associated with lower incidence of T2D. The specific fatty acid pattern may be influenced by metabolic, genetic, and dietary factors. PMID:29020051

  1. Determination of selected fatty acids in dried sweat spot using gas chromatography with flame ionization detection.

    PubMed

    Kanďár, Roman; Drábková, Petra; Andrlová, Lenka; Kostelník, Adam; Čegan, Alexander

    2016-11-01

    A method is described for the determination of fatty acids in dried sweat spot and plasma samples using gas chromatography with flame ionization detection. Plasma and dried sweat spot samples were obtained from a group of blood donors. The sweat was collected from each volunteer during exercise. Sweat was spotted onto collection paper containing butylated hydroxytoluene. Fatty acids were derivatized with acetyl chloride in methanol to form methyl esters of fatty acids. The fatty acids in dried sweat spot samples treated with butylated hydroxytoluene and stored at -20°C were stable for 3 months. Our results indicate that sweat contains, among fatty acids with short chain, also fatty acids with long chain and unsaturated fatty acids. Linear relationships between percentage content of selected fatty acids in dried sweat spot and plasma were observed. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Using Caenorhabditis elegans to Uncover Conserved Functions of Omega-3 and Omega-6 Fatty Acids

    PubMed Central

    Watts, Jennifer L.

    2016-01-01

    The nematode Caenorhabditis elegans is a powerful model organism to study functions of polyunsaturated fatty acids. The ability to alter fatty acid composition with genetic manipulation and dietary supplementation permits the dissection of the roles of omega-3 and omega-6 fatty acids in many biological process including reproduction, aging and neurobiology. Studies in C. elegans to date have mostly identified overlapping functions of 20-carbon omega-6 and omega-3 fatty acids in reproduction and in neurons, however, specific roles for either omega-3 or omega-6 fatty acids are beginning to emerge. Recent findings with importance to human health include the identification of a conserved Cox-independent prostaglandin synthesis pathway, critical functions for cytochrome P450 derivatives of polyunsaturated fatty acids, the requirements for omega-6 and omega-3 fatty acids in sensory neurons, and the importance of fatty acid desaturation for long lifespan. Furthermore, the ability of C. elegans to interconvert omega-6 to omega-3 fatty acids using the FAT-1 omega-3 desaturase has been exploited in mammalian studies and biotechnology approaches to generate mammals capable of exogenous generation of omega-3 fatty acids. PMID:26848697

  3. Aspirin Increases Mitochondrial Fatty Acid Oxidation

    PubMed Central

    Uppala, Radha; Dudiak, Brianne; Beck, Megan E.; Bharathi, Sivakama S.; Zhang, Yuxun; Stolz, Donna B.; Goetzman, Eric S.

    2016-01-01

    The metabolic effects of salicylates are poorly understood. This study investigated the effects of aspirin on fatty acid oxidation. Aspirin increased mitochondrial long-chain fatty acid oxidation, but inhibited peroxisomal fatty acid oxidation, in two different cell lines. Aspirin increased mitochondrial protein acetylation and was found to be a stronger acetylating agent in vitro than acetyl-CoA. However, aspirin-induced acetylation did not alter the activity of fatty acid oxidation proteins, and knocking out the mitochondrial deacetylase SIRT3 did not affect the induction of long-chain fatty acid oxidation by aspirin. Aspirin did not change oxidation of medium-chain fatty acids, which can freely traverse the mitochondrial membrane. Together, these data indicate that aspirin does not directly alter mitochondrial matrix fatty acid oxidation enzymes, but most likely exerts its effects at the level of long-chain fatty acid transport into mitochondria. The drive on mitochondrial fatty acid oxidation may be a compensatory response to altered mitochondrial morphology and inhibited electron transport chain function, both of which were observed after 24 hr incubation of cells with aspirin. These studies provide insight into the pathophysiology of Reye Syndrome, which is known to be triggered by aspirin ingestion in patients with fatty acid oxidation disorders. PMID:27856258

  4. Metabolic basis for the differential susceptibility of Gram-positive pathogens to fatty acid synthesis inhibitors

    PubMed Central

    Parsons, Joshua B.; Frank, Matthew W.; Subramanian, Chitra; Saenkham, Panatda; Rock, Charles O.

    2011-01-01

    The rationale for the pursuit of bacterial type 2 fatty acid synthesis (FASII) as a target for antibacterial drug discovery in Gram-positive organisms is being debated vigorously based on their ability to incorporate extracellular fatty acids. The regulation of FASII by extracellular fatty acids was examined in Staphylococcus aureus and Streptococcus pneumoniae, representing two important groups of pathogens. Both bacteria use the same enzymatic tool kit for the conversion of extracellular fatty acids to acyl-acyl carrier protein, elongation, and incorporation into phospholipids. Exogenous fatty acids completely replace the endogenous fatty acids in S. pneumoniae but support only 50% of phospholipid synthesis in S. aureus. Fatty acids overcame FASII inhibition in S. pneumoniae but not in S. aureus. Extracellular fatty acids strongly suppress malonyl-CoA levels in S. pneumoniae but not in S. aureus, showing a feedback regulatory system in S. pneumoniae that is absent in S. aureus. Fatty acids overcame either a biochemical or a genetic block at acetyl-CoA carboxylase (ACC) in S. aureus, confirming that regulation at the ACC step is the key difference between these two species. Bacteria that possess a stringent biochemical feedback inhibition of ACC and malonyl-CoA formation triggered by environmental fatty acids are able to circumvent FASII inhibition. However, if exogenous fatty acids do not suppress malonyl-CoA formation, FASII inhibitors remain effective in the presence of fatty acid supplements. PMID:21876172

  5. Original Research: Effect of various dietary fats on fatty acid profile in duck liver: Efficient conversion of short-chain to long-chain omega-3 fatty acids

    PubMed Central

    Chen, Xi; Du, Xue; Shen, Jianliang; Wang, Weiqun

    2016-01-01

    Omega-3 fatty acids, especially long-chain omega-3 fatty acids, have been associated with potential health benefits for chronic disease prevention. Our previous studies found that dietary omega-3 fatty acids could accumulate in the meat and eggs in a duck model. This study was to reveal the effects of various dietary fats on fatty acid profile and conversion of omega-3 fatty acids in duck liver. Female Shan Partridge Ducks were randomly assigned to five dietary treatments, each consisting of 6 replicates of 30 birds. The experimental diets substituted the basal diet by 2% of flaxseed oil, rapeseed oil, beef tallow, or fish oil, respectively. In addition, a dose response study was further conducted for flaxseed and fish oil diets at 0.5%, 1%, and 2%, respectively. At the end of the five-week treatment, fatty acids were extracted from the liver samples and analyzed by GC-FID. As expected, the total omega-3 fatty acids and the ratio of total omega-3/omega-6 significantly increased in both flaxseed and fish oil groups when compared with the control diet. No significant change of total saturated fatty acids or omega-3 fatty acids was found in both rapeseed and beef tallow groups. The dose response study further indicated that 59–81% of the short-chain omega-3 ALA in flaxseed oil-fed group was efficiently converted to long-chain DHA in the duck liver, whereas 1% of dietary flaxseed oil could produce an equivalent level of DHA as 0.5% of dietary fish oil. The more omega-3 fatty acids, the less omega-6 fatty acids in the duck liver. Taken together, this study showed the fatty acid profiling in the duck liver after various dietary fat consumption, provided insight into a dose response change of omega-3 fatty acids, indicated an efficient conversion of short- to long-chain omega-3 fatty acid, and suggested alternative long-chain omega-3 fatty acid-enriched duck products for human health benefits. PMID:27510581

  6. Original Research: Effect of various dietary fats on fatty acid profile in duck liver: Efficient conversion of short-chain to long-chain omega-3 fatty acids.

    PubMed

    Chen, Xi; Du, Xue; Shen, Jianliang; Lu, Lizhi; Wang, Weiqun

    2017-01-01

    Omega-3 fatty acids, especially long-chain omega-3 fatty acids, have been associated with potential health benefits for chronic disease prevention. Our previous studies found that dietary omega-3 fatty acids could accumulate in the meat and eggs in a duck model. This study was to reveal the effects of various dietary fats on fatty acid profile and conversion of omega-3 fatty acids in duck liver. Female Shan Partridge Ducks were randomly assigned to five dietary treatments, each consisting of 6 replicates of 30 birds. The experimental diets substituted the basal diet by 2% of flaxseed oil, rapeseed oil, beef tallow, or fish oil, respectively. In addition, a dose response study was further conducted for flaxseed and fish oil diets at 0.5%, 1%, and 2%, respectively. At the end of the five-week treatment, fatty acids were extracted from the liver samples and analyzed by GC-FID. As expected, the total omega-3 fatty acids and the ratio of total omega-3/omega-6 significantly increased in both flaxseed and fish oil groups when compared with the control diet. No significant change of total saturated fatty acids or omega-3 fatty acids was found in both rapeseed and beef tallow groups. The dose response study further indicated that 59-81% of the short-chain omega-3 ALA in flaxseed oil-fed group was efficiently converted to long-chain DHA in the duck liver, whereas 1% of dietary flaxseed oil could produce an equivalent level of DHA as 0.5% of dietary fish oil. The more omega-3 fatty acids, the less omega-6 fatty acids in the duck liver. Taken together, this study showed the fatty acid profiling in the duck liver after various dietary fat consumption, provided insight into a dose response change of omega-3 fatty acids, indicated an efficient conversion of short- to long-chain omega-3 fatty acid, and suggested alternative long-chain omega-3 fatty acid-enriched duck products for human health benefits. © 2016 by the Society for Experimental Biology and Medicine.

  7. Proximate and fatty acid composition of some commercially important fish species from the Sinop region of the Black Sea.

    PubMed

    Kocatepe, Demet; Turan, Hülya

    2012-06-01

    The proximate and fatty acid compositions of the commercially important fish species (Engraulis encrasicolus, Alosa alosa, Belone belone, Scorpaena porcus, Pomatomus saltatrix, Mullus barbatus) from the Sinop region of the Black Sea were examined. The fat contents ranged from 1.26% (for scorpion fish) to 18.12% (for shad). The protein contents were min 14.54% (for red mullet) and maximum 20.26% (for belone). The fatty acid compositions of the fish ranged from 27.83 to 35.91% for saturated fatty acids, 19.50-33.80% for monounsaturated fatty acids and 15.25-40.02% for polyunsaturated fatty acids. Among the saturated fatty acids, palmitic acid (16:0) (17.75-22.20%) was the dominant fatty acid for all the fish species. As a second saturated fatty acid, myristic acid (14:0) was observed in four of the fish species and its content ranged from 4.72 to 7.31%. Whereas, for the other two fish species, the second saturated fatty acid was stearic acid (18:0) ranging between 4.54 and 10.64%. Among the monounsaturated fatty acids, those occurring in the highest proportions were oleic acid (18:1n-9c) (11.67-22.45%) and palmitoleic acid (16:1) (4.50-9.40%). Docosahexaenoic acid (22:6n-3) (5.41-28.52%), eicosapentaenoic acid (20:5n-3) (4.68-11.06) and linoleic acid (18:2n-6) (1.38-3.49%) were dominant polyunsaturated fatty acids, respectively. All the species, in particular the belone, the anchovy and the shad had high levels of the n-3 series.

  8. Diacylglycerol acyltransferase 2 of Mortierella alpina with specificity on long-chain polyunsaturated fatty acids: A potential tool for reconstituting lipids with nutritional value.

    PubMed

    Jeennor, Sukanya; Veerana, Mayura; Anantayanon, Jutamas; Panchanawaporn, Sarocha; Chutrakul, Chanikul; Laoteng, Kobkul

    2017-12-10

    Based on available genome sequences and bioinformatics tools, we searched for an uncharacterized open reading frame of Mortierella alpina (MaDGAT2) using diacylglycerol acyltransferase sequence (fungal DGAT type 2B) as a query. Functional characterization of the identified native and codon-optimized M. alpina genes were then performed by heterologous expression in Saccharomyces cerevisiae strain defective in synthesis of neutral lipid (NL). Lipid analysis of the yeast tranformant carrying MaDGAT2 showed that the NL biosynthesis and lipid particle formation were restored by the gene complementation. Substrate specificity study of the fungal enzyme by fatty acid supplementation in the transformant cultures showed that it had a broad specificity on saturated and unsaturated fatty acid substrates for esterification into triacylglycerol (TAG). The n-6 polyunsaturated fatty acids (PUFAs) with 18 and 20 carbon atoms, including linoleic acid, γ-linolenic acid, dihomo γ-linolenic and arachidonic acid could be incorporated into TAG fraction in the yeast cells. Interestingly, among n-3 PUFAs tested, the MaDGAT2 enzyme preferred eicosapentaenoic acid (EPA) substrate as its highly proportional constituent found in TAG fraction. This study provides a potential genetic tool for reconstituting oils rich in long-chain PUFAs with nutritional value. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Effects of dietary conjugated linoleic acid and linoleic:linolenic acid ratio on polyunsaturated fatty acid status in laying hens.

    PubMed

    Du, M; Ahn, D U; Sell, J L

    2000-12-01

    A study was conducted to determine the effects of dietary conjugated linoleic acid (CLA) and the ratio of linoleic:linolenic acid on long-chain polyunsaturated fatty acid status. Thirty-two 31-wk-old White Leghorn hens were randomly assigned to four diets containing 8.2% soy oil, 4.1% soy oil + 2.5% CLA (4.1% CLA source), 4.1% flax oil + 2.5% CLA, or 4.1% soy oil + 4.1% flax oil. Hens were fed the diets for 3 wk before eggs and tissues were collected for the study. Lipids were extracted from egg yolk and tissues, classes of egg yolk lipids were separated, and fatty acid concentrations of total lipids, triglyceride, phosphatidylethanolamine, and phosphatidylcholine were analyzed by gas chromatography. The concentrations of monounsaturated fatty acids and non-CLA polyunsaturated fatty acids were reduced after CLA feeding. The amount of arachidonic acid was decreased after CLA feeding in linoleic acid- and linolenic acid-rich diets, but amounts of eicosapentaenoic acid and docosahexaenoic acid were increased in the linolenic-rich diet, indicating that the synthesis or deposition of long-chain n-3 fatty acids was accelerated after CLA feeding. The increased docosahexaenoic acid and eicosapentaenoic acid contents in lipid may be compensation for the decreased arachidonic acid content. Dietary supplementation of linoleic acid increased n-6 fatty acid levels in lipids, whereas linolenic acid increased n-3 fatty acid levels. Results also suggest that CLA might not be elongated to synthesize long-chain fatty acids in significant amounts. The effect of CLA in reducing the level of n-6 fatty acids and promoting the level of n-3 fatty acids could be related to the biological effects of CLA.

  10. Effects of aerosol formulation to amino acids and fatty acids contents in Haruan extract.

    PubMed

    Febriyenti; Bai-Baie, Saringat Bin; Laila, Lia

    2012-01-01

    Haruan (Channa striatus) extract was formulated to aerosol for wound and burn treatment. Haruan extract is containing amino acids and fatty acids that important for wound healing process. The purpose of this study is to observe the effect of formulation and other excipients in the formula to amino acids and fatty acids content in Haruan extract before and after formulated into aerosol. Precolumn derivatization with 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate (AQC) method is used for amino acids analysis. Fatty acids in Haruan extract were esterified using transesterification method to form FAMEs before analyzed using GC. Boron trifluoride-methanol reagent is used for transesterification. Tyrosine and methionine concentrations were different after formulated. The concentrations were decrease. There are six fatty acids have amount that significantly different after formulated into concentrate and aerosol. Contents of these fatty acids were increase. Generally, fatty acids which had content increased after formulated were the long-chain fatty acids. This might be happen because of chain extension process. Saponification and decarboxylation would give the chain extended product. Therefore contents of long-chain fatty acids were increase. Generally, the aerosol formulation did not affect the amino acids concentrations in Haruan extract while some long-chain fatty acids concentrations were increase after formulated into concentrate and aerosol.

  11. A multicentre, double-masked, randomized, controlled trial assessing the effect of oral supplementation of omega-3 and omega-6 fatty acids on a conjunctival inflammatory marker in dry eye patients.

    PubMed

    Brignole-Baudouin, Françoise; Baudouin, Christophe; Aragona, Pasquale; Rolando, Maurizio; Labetoulle, Marc; Pisella, Pierre Jean; Barabino, Stefano; Siou-Mermet, Raphaele; Creuzot-Garcher, Catherine

    2011-11-01

    To determine whether oral supplementation with omega-3 and omega-6 fatty acids can reduce conjunctival epithelium expression of the inflammatory marker human leucocyte antigen-DR (HLA-DR) in patients with dry eye syndrome (DES). This 3-month, double-masked, parallel-group, controlled study was conducted in nine centres, in France and Italy. Eligible adult patients with mild to moderate DES were randomized to receive a placebo containing medium-chain triglycerides or treatment supplement containing omega-3 and omega-6 fatty acids, vitamins and zinc. Treatment regimen was three capsules daily. Impression cytology (IC) was performed at baseline and at month 3 to assess the percentage of cells expressing HLA-DR and to evaluate fluorescence intensity, an alternate measure of HLA-DR. Dry eye symptoms and objective signs were also evaluated. Analyses were performed on the full analysis set (FAS) and per-protocol set (PPS). In total, 138 patients were randomized; 121 patients with available IC were included in the FAS, and of these, 106 patients had no major protocol deviations (PPS). In the PPS, there was a significant reduction in the percentage of HLA-DR-positive cells in the fatty acids group (p = 0.021). Expression of HLA-DR as measured by fluorescence intensity quantification was also significantly reduced in the fatty acids group [FAS (p = 0.041); PPS (p = 0.017)]. No significant difference was found for the signs and symptoms, but there was a tendency for improvement in patients receiving the fatty acids treatment. This study demonstrates that supplementation with omega-3 and omega-6 fatty acids can reduce expression of HLA-DR conjunctival inflammatory marker and may help improve DES symptoms. © 2011 The Authors. Acta Ophthalmologica © 2011 Acta Ophthalmologica Scandinavica Foundation.

  12. Cardiorespiratory fitness modifies the association between dietary fat intake and plasma fatty acids.

    PubMed

    König, D; Väisänen, S B; Bouchard, C; Halle, M; Lakka, T A; Baumstark, M W; Alen, M; Berg, A; Rauramaa, R

    2003-07-01

    To investigate the relation between (1) cardiorespiratory fitness and plasma saturated, monounsaturated and polyunsaturated fatty acids and (2) the interactions between cardiorespiratory fitness, dietary fat intake and plasma fatty acid composition. Cross-sectional analysis. The subjects were randomly selected, 127 middle-aged Finnish men participating in the DNASCO exercise intervention study. Cardiorespiratory fitness was determined spiroergometrically, dietary intake of macro- and micronutrients by 4-day food records and plasma fatty acids by gas chromatography. The subjects were divided into tertiles of aerobic fitness. Differences between fitness tertiles were not observed for dietary intake of total fat, and saturated, monounsaturated or polyunsaturated fatty acids (percent of total energy). In contrast, plasma saturated fatty acids were significantly lower (P <0.01) and polyunsaturated fatty acids significantly higher (P <0.05) in the highest fitness tertile compared to the lowest tertile. Dietary saturated fat intake was positively associated with plasma saturated fatty acids (r=0.342; P <0.05) and inversely with plasma polyunsaturated fatty acids (r=-0.453; P <0.01) only in the lowest fitness tertile. In addition, a positive correlation between body mass index and plasma saturated fatty acids (r=0.516; P <0.01) as well as a negative correlation between body mass index and plasma polyunsaturated fatty acids (r=-0.516; P <0.01) was observed in the lowest tertile solely. Different levels in cardiorespiratory fitness are associated with different levels in plasma saturated and polyunsaturated fatty acids and lead to modifications in the association between dietary and plasma fatty acids. These findings can perhaps be explained by a reduced hepatic fatty acid and lipoprotein synthesis as well as by an enhanced muscular lipid utilization, which are commonly seen in those who are physically active and who exhibit a higher level of fitness.

  13. Effect of liver fatty acid binding protein on fatty acid movement between liposomes and rat liver microsomes.

    PubMed

    McCormack, M; Brecher, P

    1987-06-15

    Although movement of fatty acids between bilayers can occur spontaneously, it has been postulated that intracellular movement is facilitated by a class of proteins named fatty acid binding proteins (FABP). In this study we have incorporated long chain fatty acids into multilamellar liposomes made of phosphatidylcholine, incubated them with rat liver microsomes containing an active acyl-CoA synthetase, and measured formation of acyl-CoA in the absence or presence of FABP purified from rat liver. FABP increased about 2-fold the accumulation of acyl-CoA when liposomes were the fatty acid donor. Using fatty acid incorporated into liposomes made either of egg yolk lecithin or of dipalmitoylphosphatidylcholine, it was found that the temperature dependence of acyl-CoA accumulation in the presence of FABP correlated with both the physical state of phospholipid molecules in the liposomes and the binding of fatty acid to FABP, suggesting that fatty acid must first desorb from the liposomes before FABP can have an effect. An FABP-fatty acid complex incubated with microsomes, in the absence of liposomes, resulted in greater acyl-CoA formation than when liposomes were present, suggesting that desorption of fatty acid from the membrane is rate-limiting in the accumulation of acyl-CoA by this system. Finally, an equilibrium dialysis cell separating liposomes from microsomes on opposite sides of a Nuclepore filter was used to show that liver FABP was required for the movement and activation of fatty acid between the compartments. These studies show that liver FABP interacts with fatty acid that desorbs from phospholipid bilayers, and promotes movement to a membrane-bound enzyme, suggesting that FABP may act intracellularly by increasing net desorption of fatty acid from cell membranes.

  14. DHA and EPA Content and Fatty Acid Profile of 39 Food Fishes from India

    PubMed Central

    Mahanty, Arabinda; Sankar, T. V.; Anandan, R.; Paul, B. N.; Sarma, Debajit; Syama Dayal, J.; Venkateshwarlu, G.; Mathew, Suseela; Karunakaran, D.; Chanda, Soumen; Shahi, Neetu; Das, Puspita; Das, Partha; Akhtar, Md Shahbaz; Vijayagopal, P.; Sridhar, N.

    2016-01-01

    Docosahexaenoic acid (DHA) is the principal constituent of a variety of cells especially the brain neurons and retinal cells and plays important role in fetal brain development, development of motor skills, and visual acuity in infants, lipid metabolism, and cognitive support and along with eicosapentaenoic acid (EPA) it plays important role in preventing atherosclerosis, dementia, rheumatoid arthritis, Alzheimer's disease, and so forth. Being an essential nutrient, it is to be obtained through diet and therefore searching for affordable sources of these ω-3 polyunsaturated fatty acids (PUFA) is important for consumer guidance and dietary counseling. Fish is an important source of PUFA and has unique advantage that there are many food fish species available and consumers have a wide choice owing to availability and affordability. The Indian subcontinent harbors a rich fish biodiversity which markedly varies in their nutrient composition. Here we report the DHA and EPA content and fatty acid profile of 39 important food fishes (including finfishes, shellfishes, and edible molluscs from both marine water and freshwater) from India. The study showed that fishes Tenualosa ilisha, Sardinella longiceps, Nemipterus japonicus, and Anabas testudineus are rich sources of DHA and EPA. Promotion of these species as DHA rich species would enhance their utility in public health nutrition. PMID:27579313

  15. DHA and EPA Content and Fatty Acid Profile of 39 Food Fishes from India.

    PubMed

    Mohanty, Bimal Prasanna; Ganguly, Satabdi; Mahanty, Arabinda; Sankar, T V; Anandan, R; Chakraborty, Kajal; Paul, B N; Sarma, Debajit; Syama Dayal, J; Venkateshwarlu, G; Mathew, Suseela; Asha, K K; Karunakaran, D; Mitra, Tandrima; Chanda, Soumen; Shahi, Neetu; Das, Puspita; Das, Partha; Akhtar, Md Shahbaz; Vijayagopal, P; Sridhar, N

    2016-01-01

    Docosahexaenoic acid (DHA) is the principal constituent of a variety of cells especially the brain neurons and retinal cells and plays important role in fetal brain development, development of motor skills, and visual acuity in infants, lipid metabolism, and cognitive support and along with eicosapentaenoic acid (EPA) it plays important role in preventing atherosclerosis, dementia, rheumatoid arthritis, Alzheimer's disease, and so forth. Being an essential nutrient, it is to be obtained through diet and therefore searching for affordable sources of these ω-3 polyunsaturated fatty acids (PUFA) is important for consumer guidance and dietary counseling. Fish is an important source of PUFA and has unique advantage that there are many food fish species available and consumers have a wide choice owing to availability and affordability. The Indian subcontinent harbors a rich fish biodiversity which markedly varies in their nutrient composition. Here we report the DHA and EPA content and fatty acid profile of 39 important food fishes (including finfishes, shellfishes, and edible molluscs from both marine water and freshwater) from India. The study showed that fishes Tenualosa ilisha, Sardinella longiceps, Nemipterus japonicus, and Anabas testudineus are rich sources of DHA and EPA. Promotion of these species as DHA rich species would enhance their utility in public health nutrition.

  16. The diet of free-roaming Australian Central Bearded Dragons (Pogona vitticeps).

    PubMed

    Oonincx, D G A B; van Leeuwen, J P; Hendriks, W H; van der Poel, A F B

    2015-01-01

    The central bearded dragon (Pogona vitticeps) is one of the most popular pet lizards. However, little is known regarding their nutrient requirement, or their natural diet. Therefore, the stomach contents of 14 free-roaming P. vitticeps were determined by flushing. These stomach contents were described taxonomically, and analyzed for crude protein content as well as fatty acid content and composition. Most of the dry matter intake was in the form of animal material (61%) stemming from nine arthropod orders. The most abundant were alates of the termite Drepanotermes sp., accounting for 95% of the total number of prey items and more than half of the total dry matter (DM) intake. Plant material contributed 16% of the total DM intake. The diets were high in crude protein (41-50% DM) and the total fatty acid content was 14-27% of the DM intake. The main fatty acid was C18:1n9c (51-56% of total fatty acids), and polyunsaturated fatty acids (n3 and n6) comprised 6-8% of the total fat intake. Our data suggest that P. vitticeps is an opportunistic predator, which exploits the seasonal availability of prey. Based on our data and other studies, a diet consisting of several insect species, supplemented with leafy vegetables, rich in n3 FA's, would best resemble the expected natural diet of P. vitticeps. © 2015 Wiley Periodicals, Inc.

  17. Evolutionary distinctiveness of fatty acid and polyketide synthesis in eukaryotes

    PubMed Central

    Kohli, Gurjeet S; John, Uwe; Van Dolah, Frances M; Murray, Shauna A

    2016-01-01

    Fatty acids, which are essential cell membrane constituents and fuel storage molecules, are thought to share a common evolutionary origin with polyketide toxins in eukaryotes. While fatty acids are primary metabolic products, polyketide toxins are secondary metabolites that are involved in ecologically relevant processes, such as chemical defence, and produce the adverse effects of harmful algal blooms. Selection pressures on such compounds may be different, resulting in differing evolutionary histories. Surprisingly, some studies of dinoflagellates have suggested that the same enzymes may catalyse these processes. Here we show the presence and evolutionary distinctiveness of genes encoding six key enzymes essential for fatty acid production in 13 eukaryotic lineages for which no previous sequence data were available (alveolates: dinoflagellates, Vitrella, Chromera; stramenopiles: bolidophytes, chrysophytes, pelagophytes, raphidophytes, dictyochophytes, pinguiophytes, xanthophytes; Rhizaria: chlorarachniophytes, haplosporida; euglenids) and 8 other lineages (apicomplexans, bacillariophytes, synurophytes, cryptophytes, haptophytes, chlorophyceans, prasinophytes, trebouxiophytes). The phylogeny of fatty acid synthase genes reflects the evolutionary history of the organism, indicating selection to maintain conserved functionality. In contrast, polyketide synthase gene families are highly expanded in dinoflagellates and haptophytes, suggesting relaxed constraints in their evolutionary history, while completely absent from some protist lineages. This demonstrates a vast potential for the production of bioactive polyketide compounds in some lineages of microbial eukaryotes, indicating that the evolution of these compounds may have played an important role in their ecological success. PMID:26784357

  18. Alteration of organic matter during infaunal polychaete gut passage and links to sediment organic geochemistry. Part II: Fatty acids and aldoses

    NASA Astrophysics Data System (ADS)

    Woulds, Clare; Middelburg, Jack J.; Cowie, Greg L.

    2014-07-01

    The activities of sediment-dwelling fauna are known to influence the rates of and pathways through which organic matter is cycled in marine sediments, and thus to influence eventual organic carbon burial or decay. However, due to methodological constraints, the role of faunal gut passage in determining the subsequent composition and thus degradability of organic matter is relatively little studied. Previous studies of organic matter digestion by benthic fauna have been unable to detect uptake and retention of specific biochemicals in faunal tissues, and have been of durations too short to fit digestion into the context of longer-term sedimentary degradation processes. Therefore this study aimed to investigate the aldose and fatty acid compositional alterations occurring to organic matter during gut passage by the abundant and ubiquitous polychaetes Hediste diversicolor and Arenicola marina, and to link these to longer-term changes typically observed during organic matter decay. This aim was approached through microcosm experiments in which selected polychaetes were fed with 13C-labelled algal detritus, and organisms, sediments, and faecal pellets were sampled at three timepoints over ∼6 weeks. Samples were analysed for their 13C-labelled aldose and fatty acid contents using GC-MS and GC-IRMS. Compound-selective net accumulation of biochemicals in polychaete tissues was observed for both aldoses and fatty acids, and the patterns of this were taxon-specific. The dominant patterns included an overall loss of glucose and polyunsaturated fatty acids; and preferential preservation or production of arabinose, microbial compounds (rhamnose, fucose and microbial fatty acids), and animal-synthesised fatty acids. These patterns may have been driven by fatty acid essentiality, preferential metabolism of glucose, and A. marina grazing on bacteria. Fatty acid suites in sediments from faunated microcosms showed greater proportions of saturated fatty acids and bacterial markers than those from afaunal controls. Aldose suite alterations were similar in faunated microcosms and afaunal controls, however the impact of faunal gut passage on sedimentary aldose compositions may be observable over longer timescales. Therefore this study provides direct evidence that polychaete gut passage influences OM composition both through taxon-specific selective assimilation and retention in polychaete tissues, and also through interactions with the microbial community. Polychaete gut passage will result in selective loss, preservation, and retention in polychaete tissues of specific aldoses and fatty acids. The pattern of selectivity will be taxon specific. Changes observed during gut passage will align with those commonly observed during OM decay, thus indicating that macrofaunal gut passage is one of the factors controlling sedimentary OM composition. Together with a previous publication reporting amino acid data from the same experiments (Woulds et al., 2012), this study represents the most complete description of OM alteration during gut passage that is available to date.

  19. Relating soil biochemistry to sustainable crop production

    USDA-ARS?s Scientific Manuscript database

    Amino acids, amino sugars, carbohydrates, phenols, and fatty acids together comprise appreciable proportions of soil organic matter (SOM). Their cycling contribute to soil processes, including nitrogen availability, carbon sequestration and aggregation. For example, soil accumulation of phenols has ...

  20. Changes in the fatty acid composition in bitter Lupinus species depend on the debittering process.

    PubMed

    Curti, Carolina A; Curti, Ramiro N; Bonini, Norberto; Ramón, Adriana N

    2018-10-15

    The evaluation of changes in the fatty acid composition in Lupinus species after the debittering process is crucial to determine their nutritional implications. The aim of this study was to evaluate changes in the fatty acid composition in Lupinus albus and L. mutabilis after the debittering process. Lupinus species showed different fatty acid compositions which changed depending on the debittering process applied. The debittering process changed the monounsaturated and polyunsaturated fatty acids in L. albus, whereas in L. mutabilis it changed the w-6/w-3 ratio. However, the total saturated fatty acid content remained stable in both species after the debittering process. The changes in L. albus were associated with the fatty acid desaturation and a conversion into unsaturated fatty acids, whereas in L. mutabilis with the lipid peroxidation by decreasing the linoleic acid content. Nutritional implications of these changes in the fatty acid composition are discussed. Copyright © 2018. Published by Elsevier Ltd.

  1. 21 CFR 172.854 - Polyglycerol esters of fatty acids.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Polyglycerol esters of fatty acids. 172.854... § 172.854 Polyglycerol esters of fatty acids. Polyglycerol esters of fatty acids, up to and including..., safflower oil, sesame oil, soybean oil, and tallow and the fatty acids derived from these substances...

  2. Loss of macrophage fatty acid oxidation does not potentiate systemic metabolic dysfunction

    PubMed Central

    Gonzalez-Hurtado, Elsie; Lee, Jieun; Choi, Joseph; Selen Alpergin, Ebru S.; Collins, Samuel L.; Horton, Maureen R.

    2017-01-01

    Fatty acid oxidation in macrophages has been suggested to play a causative role in high-fat diet-induced metabolic dysfunction, particularly in the etiology of adipose-driven insulin resistance. To understand the contribution of macrophage fatty acid oxidation directly to metabolic dysfunction in high-fat diet-induced obesity, we generated mice with a myeloid-specific knockout of carnitine palmitoyltransferase II (CPT2 Mϕ-KO), an obligate step in mitochondrial long-chain fatty acid oxidation. While fatty acid oxidation was clearly induced upon IL-4 stimulation, fatty acid oxidation-deficient CPT2 Mϕ-KO bone marrow-derived macrophages displayed canonical markers of M2 polarization following IL-4 stimulation in vitro. In addition, loss of macrophage fatty acid oxidation in vivo did not alter the progression of high-fat diet-induced obesity, inflammation, macrophage polarization, oxidative stress, or glucose intolerance. These data suggest that although IL-4-stimulated alternatively activated macrophages upregulate fatty acid oxidation, fatty acid oxidation is dispensable for macrophage polarization and high-fat diet-induced metabolic dysfunction. Macrophage fatty acid oxidation likely plays a correlative, rather than causative, role in systemic metabolic dysfunction. PMID:28223293

  3. Fatty Acids in Membranes as Homeostatic, Metabolic and Nutritional Biomarkers: Recent Advancements in Analytics and Diagnostics.

    PubMed

    Ferreri, Carla; Masi, Annalisa; Sansone, Anna; Giacometti, Giorgia; Larocca, Anna Vita; Menounou, Georgia; Scanferlato, Roberta; Tortorella, Silvia; Rota, Domenico; Conti, Marco; Deplano, Simone; Louka, Maria; Maranini, Anna Rosaria; Salati, Arianna; Sunda, Valentina; Chatgilialoglu, Chryssostomos

    2016-12-22

    Fatty acids, as structural components of membranes and inflammation/anti-inflammatory mediators, have well-known protective and regulatory effects. They are studied as biomarkers of pathological conditions, as well as saturated and unsaturated hydrophobic moieties in membrane phospholipids that contribute to homeostasis and physiological functions. Lifestyle, nutrition, metabolism and stress-with an excess of radical and oxidative processes-cause fatty acid changes that are examined in the human body using blood lipids. Fatty acid-based membrane lipidomics represents a powerful diagnostic tool for assessing the quantity and quality of fatty acid constituents and also for the follow-up of the membrane fatty acid remodeling that is associated with different physiological and pathological conditions. This review focuses on fatty acid biomarkers with two examples of recent lipidomic research and health applications: (i) monounsaturated fatty acids and the analytical challenge offered by hexadecenoic fatty acids (C16:1); and (ii) the cohort of 10 fatty acids in phospholipids of red blood cell membranes and its connections to metabolic and nutritional status in healthy and diseased subjects.

  4. Fatty Acids in Membranes as Homeostatic, Metabolic and Nutritional Biomarkers: Recent Advancements in Analytics and Diagnostics

    PubMed Central

    Ferreri, Carla; Masi, Annalisa; Sansone, Anna; Giacometti, Giorgia; Larocca, Anna Vita; Menounou, Georgia; Scanferlato, Roberta; Tortorella, Silvia; Rota, Domenico; Conti, Marco; Deplano, Simone; Louka, Maria; Maranini, Anna Rosaria; Salati, Arianna; Sunda, Valentina; Chatgilialoglu, Chryssostomos

    2016-01-01

    Fatty acids, as structural components of membranes and inflammation/anti-inflammatory mediators, have well-known protective and regulatory effects. They are studied as biomarkers of pathological conditions, as well as saturated and unsaturated hydrophobic moieties in membrane phospholipids that contribute to homeostasis and physiological functions. Lifestyle, nutrition, metabolism and stress—with an excess of radical and oxidative processes—cause fatty acid changes that are examined in the human body using blood lipids. Fatty acid-based membrane lipidomics represents a powerful diagnostic tool for assessing the quantity and quality of fatty acid constituents and also for the follow-up of the membrane fatty acid remodeling that is associated with different physiological and pathological conditions. This review focuses on fatty acid biomarkers with two examples of recent lipidomic research and health applications: (i) monounsaturated fatty acids and the analytical challenge offered by hexadecenoic fatty acids (C16:1); and (ii) the cohort of 10 fatty acids in phospholipids of red blood cell membranes and its connections to metabolic and nutritional status in healthy and diseased subjects. PMID:28025506

  5. Transformation with Oncogenic Ras and the Simian Virus 40 T Antigens Induces Caspase-Dependent Sensitivity to Fatty Acid Biosynthetic Inhibition

    PubMed Central

    Xu, Shihao; Spencer, Cody M.

    2015-01-01

    ABSTRACT Oncogenesis is frequently accompanied by the activation of specific metabolic pathways. One such pathway is fatty acid biosynthesis, whose induction is observed upon transformation of a wide variety of cell types. Here, we explored how defined oncogenic alleles, specifically the simian virus 40 (SV40) T antigens and oncogenic Ras12V, affect fatty acid metabolism. Our results indicate that SV40/Ras12V-mediated transformation of fibroblasts induces fatty acid biosynthesis in the absence of significant changes in the concentration of fatty acid biosynthetic enzymes. This oncogene-induced activation of fatty acid biosynthesis was found to be mammalian target of rapamycin (mTOR) dependent, as it was attenuated by rapamycin treatment. Furthermore, SV40/Ras12V-mediated transformation induced sensitivity to treatment with fatty acid biosynthetic inhibitors. Pharmaceutical inhibition of acetyl-coenzyme A (CoA) carboxylase (ACC), a key fatty acid biosynthetic enzyme, induced caspase-dependent cell death in oncogene-transduced cells. In contrast, isogenic nontransformed cells were resistant to fatty acid biosynthetic inhibition. This oncogene-induced sensitivity to fatty acid biosynthetic inhibition was independent of the cells' growth rates and could be attenuated by supplementing the medium with unsaturated fatty acids. Both the activation of fatty acid biosynthesis and the sensitivity to fatty acid biosynthetic inhibition could be conveyed to nontransformed breast epithelial cells through transduction with oncogenic Ras12V. Similar to what was observed in the transformed fibroblasts, the Ras12V-induced sensitivity to fatty acid biosynthetic inhibition was independent of the proliferative status and could be attenuated by supplementing the medium with unsaturated fatty acids. Combined, our results indicate that specific oncogenic alleles can directly confer sensitivity to inhibitors of fatty acid biosynthesis. IMPORTANCE Viral oncoproteins and cellular mutations drive the transformation of normal cells to the cancerous state. These oncogenic alterations induce metabolic changes and dependencies that can be targeted to kill cancerous cells. Here, we find that the cellular transformation resulting from combined expression of the SV40 early region with an oncogenic Ras allele is sufficient to induce cellular susceptibility to fatty acid biosynthetic inhibition. Inhibition of fatty acid biosynthesis in these cells resulted in programmed cell death, which could be rescued by supplementing the medium with nonsaturated fatty acids. Similar results were observed with the expression of oncogenic Ras in nontransformed breast epithelial cells. Combined, our results suggest that specific oncogenic alleles induce metabolic dependencies that can be exploited to selectively kill cancerous cells. PMID:25855740

  6. 40 CFR 721.3620 - Fatty acid amine condensate, polycarboxylic acid salts.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Fatty acid amine condensate... Specific Chemical Substances § 721.3620 Fatty acid amine condensate, polycarboxylic acid salts. (a... a fatty acid amine condensate, polycarboxylic acid salts. (PMN P-92-445) is subject to reporting...

  7. Improved zeolite regeneration processes for preparing saturated branched-chain fatty acids

    USDA-ARS?s Scientific Manuscript database

    Ferrierite zeolite solid is an excellent catalyst for the skeletal isomerization of unsaturated linear-chain fatty acids (i.e., oleic acid) to unsaturated branched-chain fatty acids (i.e., iso-oleic acid) follow by hydrogenation to give saturated branched-chain fatty acids (i.e., isostearic acid). ...

  8. 40 CFR 721.3620 - Fatty acid amine condensate, polycarboxylic acid salts.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Fatty acid amine condensate... Specific Chemical Substances § 721.3620 Fatty acid amine condensate, polycarboxylic acid salts. (a... a fatty acid amine condensate, polycarboxylic acid salts. (PMN P-92-445) is subject to reporting...

  9. Fatty acids composition of Spanish black (Morus nigra L.) and white (Morus alba L.) mulberries.

    PubMed

    Sánchez-Salcedo, Eva M; Sendra, Esther; Carbonell-Barrachina, Ángel A; Martínez, Juan José; Hernández, Francisca

    2016-01-01

    This research has determined qualitatively and quantitatively the fatty acids composition of white (Morus alba) and black (Morus nigra) fruits grown in Spain, in 2013 and 2014. Four clones of each species were studied. Fourteen fatty acids were identified and quantified in mulberry fruits. The most abundant fatty acids were linoleic (C18:2), palmitic (C16:0), oleic (C18:1), and stearic (C18:0) acids in both species. The main fatty acid in all clones was linoleic (C18:2), that ranged from 69.66% (MN2) to 78.02% (MA1) of the total fatty acid content; consequently Spanish mulberry fruits were found to be rich in linoleic acid, which is an essential fatty acid. The fatty acid composition of mulberries highlights the nutritional and health benefits of their consumption. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Total fatty acid content of the plasma membrane of Saccharomyces cerevisiae is more responsible for ethanol tolerance than the degree of unsaturation.

    PubMed

    Kim, Hyun-Soo; Kim, Na-Rae; Choi, Wonja

    2011-03-01

    The effect of change in unsaturated fatty acid composition on ethanol tolerance in Saccharomyces cerevisiae overexpressing ScOLE1 (∆9 fatty acid desaturase gene of S. cerevisiae), CaFAD2 (∆12 fatty acid desaturase gene of Candida albicans), or CaFAD3 (ω3 fatty acid desaturase gene of C. albicans) was examined. ScOLE1 over-expression increased the total unsaturated fatty acid content and enhanced ethanol tolerance, compared with a control strain. In contrast, overexpression of CaFAD2 and CaFAD3, which led to production of linoleic acid (18:2) and α-linolenic acid (18:3), respectively, neither changed total unsaturated fatty acids nor enhanced ethanol tolerance. The total unsaturated fatty acid content rather than the degree of unsaturation is thus an important factor for ethanol tolerance.

  11. Application of ethyl esters and d3-methyl esters as internal standards for the gas chromatographic quantification of transesterified fatty acid methyl esters in food.

    PubMed

    Thurnhofer, Saskia; Vetter, Walter

    2006-05-03

    Ethyl esters (FAEE) and trideuterium-labeled methyl esters (d3-FAME) of fatty acids were prepared and investigated regarding their suitability as internal standards (IS) for the determination of fatty acids as methyl esters (FAME). On CP-Sil 88, ethyl esters of odd-numbered fatty acids eluted approximately 0.5 min after the respective FAME, and only coelutions with minor FAME were observed. Depending on the problem, one or even many FAEE can be added as IS for the quantification of FAME by both GC-FID and GC-MS. By contrast, d3-FAME coeluted with FAME on the polar GC column, and the use of the former as IS requires application of GC-MS. In the SIM mode, m/z 77 and 90 are suggested for d3-methyl esters of saturated fatty acids, whereas m/z 88 and 101 are recommended for ethyl esters of saturated fatty acids. These m/z values give either no or very low response for FAME and can thus be used for the analysis of FAME in food by GC-MS in the SIM mode. Fatty acids in sunflower oil and mozzarella cheese were quantified using five saturated FAEE as IS. Gravimetric studies showed that the transesterification procedure could be carried out without of loss of fatty acids. GC-EI/MS full scan analysis was suitable for the quantitative determination of all unsaturated fatty acids in both food samples, whereas GC-EI/MS in the SIM mode was particularly valuable for quantifying minor fatty acids. The novel GC-EI/MS/SIM method using fatty acid ethyl esters as internal standards can be used to quantify individual fatty acids only, that is, without determination of all fatty acids (the common 100% method), although this is present. This was demonstrated by the exclusive quantification of selected fatty acids including methyl-branched fatty acids, erucic acid (18:1n-9trans), and polyunsaturated fatty acids in cod liver oil and goat's milk fat.

  12. 7 Things to Know about Omega-3 Fatty Acids

    MedlinePlus

    ... X Y Z 7 Things To Know About Omega-3 Fatty Acids Share: Omega-3 fatty acids are a group of polyunsaturated fatty ... a number of functions in the body. The omega-3 fatty acids EPA and DHA are found in ...

  13. A new leptin-mediated mechanism for stimulating fatty acid oxidation: a pivotal role for sarcolemmal FAT/CD36.

    PubMed

    Momken, Iman; Chabowski, Adrian; Dirkx, Ellen; Nabben, Miranda; Jain, Swati S; McFarlan, Jay T; Glatz, Jan F C; Luiken, Joost J F P; Bonen, Arend

    2017-01-01

    Leptin stimulates fatty acid oxidation in muscle and heart; but, the mechanism by which these tissues provide additional intracellular fatty acids for their oxidation remains unknown. We examined, in isolated muscle and cardiac myocytes, whether leptin, via AMP-activated protein kinase (AMPK) activation, stimulated fatty acid translocase (FAT/CD36)-mediated fatty acid uptake to enhance fatty acid oxidation. In both mouse skeletal muscle and rat cardiomyocytes, leptin increased fatty acid oxidation, an effect that was blocked when AMPK phosphorylation was inhibited by adenine 9-β-d-arabinofuranoside or Compound C. In wild-type mice, leptin induced the translocation of FAT/CD36 to the plasma membrane and increased fatty acid uptake into giant sarcolemmal vesicles and into cardiomyocytes. In muscles of FAT/CD36-KO mice, and in cardiomyocytes in which cell surface FAT/CD36 action was blocked by sulfo-N-succinimidyl oleate, the leptin-stimulated influx of fatty acids was inhibited; concomitantly, the normal leptin-stimulated increase in fatty acid oxidation was also prevented, despite the normal leptin-induced increase in AMPK phosphorylation. Conversely, in muscle of AMPK kinase-dead mice, leptin failed to induce the translocation of FAT/CD36, along with a failure to stimulate fatty acid uptake and oxidation. Similarly, when siRNA was used to reduce AMPK in HL-1 cardiomyocytes, leptin failed to induce the translocation of FAT/CD36. Our studies have revealed a novel mechanism of leptin-induced fatty acid oxidation in muscle tissue; namely, this process is dependent on the activation of AMPK to induce the translocation of FAT/CD36 to the plasma membrane, thereby stimulating fatty acid uptake. Without increasing this leptin-stimulated, FAT/CD36-dependent fatty acid uptake process, leptin-stimulated AMPK phosphorylation does not enhance fatty acid oxidation. © 2017 The Author(s); published by Portland Press Limited on behalf of the Biochemical Society.

  14. Plant fatty acid hydroxylases

    DOEpatents

    Somerville, Chris; Broun, Pierre; van de Loo, Frank

    2001-01-01

    This invention relates to plant fatty acyl hydroxylases. Methods to use conserved amino acid or nucleotide sequences to obtain plant fatty acyl hydroxylases are described. Also described is the use of cDNA clones encoding a plant hydroxylase to produce a family of hydroxylated fatty acids in transgenic plants. In addition, the use of genes encoding fatty acid hydroxylases or desaturases to alter the level of lipid fatty acid unsaturation in transgenic plants is described.

  15. Detailed Dimethylacetal and Fatty Acid Composition of Rumen Content from Lambs Fed Lucerne or Concentrate Supplemented with Soybean Oil

    PubMed Central

    Alves, Susana P.; Santos-Silva, José; Cabrita, Ana R. J.; Fonseca, António J. M.; Bessa, Rui J. B.

    2013-01-01

    Lipid metabolism in the rumen is responsible for the complex fatty acid profile of rumen outflow compared with the dietary fatty acid composition, contributing to the lipid profile of ruminant products. A method for the detailed dimethylacetal and fatty acid analysis of rumen contents was developed and applied to rumen content collected from lambs fed lucerne or concentrate based diets supplemented with soybean oil. The methodological approach developed consisted on a basic/acid direct transesterification followed by thin-layer chromatography to isolate fatty acid methyl esters from dimethylacetal, oxo- fatty acid and fatty acid dimethylesters. The dimethylacetal composition was quite similar to the fatty acid composition, presenting even-, odd- and branched-chain structures. Total and individual odd- and branched-chain dimethylacetals were mostly affected by basal diet. The presence of 18∶1 dimethylacetals indicates that biohydrogenation intermediates might be incorporated in structural microbial lipids. Moreover, medium-chain fatty acid dimethylesters were identified for the first time in the rumen content despite their concentration being relatively low. The fatty acids containing 18 carbon-chain lengths comprise the majority of the fatty acids present in the rumen content, most of them being biohydrogenation intermediates of 18∶2n−6 and 18∶3n−3. Additionally, three oxo- fatty acids were identified in rumen samples, and 16-O-18∶0 might be produced during biohydrogenation of the 18∶3n−3. PMID:23484024

  16. Fatty acid-induced mitochondrial uncoupling in adipocytes is not a promising target for treatment of insulin resistance unless adipocyte oxidative capacity is increased.

    PubMed

    Frayn, K N; Langin, D; Karpe, F

    2008-03-01

    The release of fatty acids from white adipose tissue is regulated at several levels. We have examined the suggestion that fatty acid release might be diminished by upregulation of mitochondrial fatty acid oxidation in the adipocyte, through increasing mitochondrial uncoupling. The intrinsic oxidative capacity of white adipose tissue is low, and older studies suggest that there is little fatty acid oxidation in white adipocytes, human or rodent. We have examined data on fatty acid metabolism and O(2) consumption in human white adipose tissue in vivo, and conclude that increasing fatty acid oxidation within the oxidative capacity of the tissue would produce only small changes (a few percent) in fatty acid release. The major locus of control of fatty acid release beyond the stimulation of lipolysis is the pathway of fatty acid esterification, already probably targeted by the thiazolidinedione insulin-sensitising agents. An alternative approach would be to upregulate the mitochondrial capacity of the adipocyte. We review proof-of-concept studies in which the phenotype of the white adipocyte has been changed to resemble that of the brown adipocyte by expression of peroxisome proliferator-activated receptor coactivator-1alpha. This increases oxidative capacity and also leads to fatty acid retention through upregulation of glycerol-3-phosphate production, and hence increased fatty acid re-esterification. We conclude that prevention or treatment of insulin resistance through alteration of adipocyte fatty acid handling will require more than a simple alteration of the activity of mitochondrial beta-oxidation within normal limits.

  17. Cold Shock Response of Bacillus subtilis: Isoleucine-Dependent Switch in the Fatty Acid Branching Pattern for Membrane Adaptation to Low Temperatures†

    PubMed Central

    Klein, Wolfgang; Weber, Michael H. W.; Marahiel, Mohamed A.

    1999-01-01

    Bacillus subtilis has developed sophisticated mechanisms to withstand fluctuations in temperature. Membrane fatty acids are the major determinants for a sufficiently fluid membrane state to ensure the membrane’s function at all temperatures. The fatty acid profile of B. subtilis is characterized by a high content of branched fatty acids irrespective of the growth medium. Here, we report on the importance of isoleucine for B. subtilis to survive cold shock from 37 to 15°C. Cold shock experiments with strain JH642 revealed a cold-protective function for all intermediates of anteiso-branched fatty acid biosynthesis. Metabolites related to iso-branched or straight-chain fatty acid biosynthesis were not protective. Fatty acid profiles of different B. subtilis wild-type strains proved the altered branching pattern by an increase in the anteiso-branched fatty acid content and a concomitant decrease of iso-branched species during cold shock. There were no significant changes in the fatty acid saturation or acyl chain length. The cold-sensitive phenotype of isoleucine-deficient strains in the absence of isoleucine correlated with their inability to synthesize more anteiso-branched fatty acids, as shown by the fatty acid profile. The switch to a fatty acid profile dominated by anteiso-C15:0 and C17:0 at low temperatures and the cold-sensitive phenotype of isoleucine-deficient strains in the absence of isoleucine focused our attention on the critical role of anteiso-branched fatty acids in the growth of B. subtilis in the cold. PMID:10464205

  18. Trans-Fats Inhibit Autophagy Induced by Saturated Fatty Acids.

    PubMed

    Sauvat, Allan; Chen, Guo; Müller, Kevin; Tong, Mingming; Aprahamian, Fanny; Durand, Sylvère; Cerrato, Giulia; Bezu, Lucillia; Leduc, Marion; Franz, Joakim; Rockenfeller, Patrick; Sadoshima, Junichi; Madeo, Frank; Kepp, Oliver; Kroemer, Guido

    2018-04-01

    Depending on the length of their carbon backbone and their saturation status, natural fatty acids have rather distinct biological effects. Thus, longevity of model organisms is increased by extra supply of the most abundant natural cis-unsaturated fatty acid, oleic acid, but not by that of the most abundant saturated fatty acid, palmitic acid. Here, we systematically compared the capacity of different saturated, cis-unsaturated and alien (industrial or ruminant) trans-unsaturated fatty acids to provoke cellular stress in vitro, on cultured human cells expressing a battery of distinct biosensors that detect signs of autophagy, Golgi stress and the unfolded protein response. In contrast to cis-unsaturated fatty acids, trans-unsaturated fatty acids failed to stimulate signs of autophagy including the formation of GFP-LC3B-positive puncta, production of phosphatidylinositol-3-phosphate, and activation of the transcription factor TFEB. When combined effects were assessed, several trans-unsaturated fatty acids including elaidic acid (the trans-isomer of oleate), linoelaidic acid, trans-vaccenic acid and palmitelaidic acid, were highly efficient in suppressing autophagy and endoplasmic reticulum stress induced by palmitic, but not by oleic acid. Elaidic acid also inhibited autophagy induction by palmitic acid in vivo, in mouse livers and hearts. We conclude that the well-established, though mechanistically enigmatic toxicity of trans-unsaturated fatty acids may reside in their capacity to abolish cytoprotective stress responses induced by saturated fatty acids. Copyright © 2018 German Center for Neurodegenerative Diseases (DZNE). Published by Elsevier B.V. All rights reserved.

  19. ω-3 Fatty acids reverse lipotoxity through induction of autophagy in nonalcoholic fatty liver disease.

    PubMed

    Chen, Yi; Xu, Chengfu; Yan, Tianlian; Yu, Chaohui; Li, Youming

    2015-01-01

    The aim of this study was to evaluate the effect of ω-3 fatty acids on nonalcoholic fatty liver disease concerning hepatocyte lipid accumulation as well as apoptosis induced by free fatty acids (FFAs) and to explore the underlying mechanism involving autophagy. Hepatocytes were incubated with a mixture of free fatty acids (FFAs) to mimic in vitro lipotoxicity in the pathogenesis of nonalcoholic fatty liver disease, presented by lipid accumulation and cellular apoptosis. Chemical inhibitor or inducer of autophagy and genetic deficit cells, as well as ω-3 fatty acids were used as intervention. The autophagic role of ω-3 fatty acids was investigated using Western blot and immunofluorescence. The underlying mechanism of ω-3 fatty acids involving autophagy was preliminarily explored by quantitative real-time polymerase chain reaction and Western blot. FFAs induce lipid accumulation and apoptosis in hepatocytes. Inhibition or genetic defect of autophagy increases lipid accumulation induced by FFA, whereas induction acts inversely. ω-3 Fatty acids reduced lipid accumulation and inhibited apoptosis induced by FFA. ω-3 Fatty acids induced autophagy by downregulating stearoyl-CoA desaturase 1 expression in hepatocytes. ω-3 Fatty acids exert protective effects on hepatocytes against lipotoxicity through induction of autophagy, as demonstrated by inhibition of lipid accumulation and apoptosis. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Unveiling of novel regio-selective fatty acid double bond hydratases from Lactobacillus acidophilus involved in the selective oxyfunctionalization of mono- and di-hydroxy fatty acids.

    PubMed

    Kim, Kyoung-Rok; Oh, Hye-Jin; Park, Chul-Soon; Hong, Seung-Hye; Park, Ji-Young; Oh, Deok-Kun

    2015-11-01

    The aim of this study is the first time demonstration of cis-12 regio-selective linoleate double-bond hydratase. Hydroxylation of fatty acids, abundant feedstock in nature, is an emerging alternative route for many petroleum replaceable products thorough hydroxy fatty acids, carboxylic acids, and lactones. However, chemical route for selective hydroxylation is still quite challenging owing to low selectivity and many environmental concerns. Hydroxylation of fatty acids by hydroxy fatty acid forming enzymes is an important route for selective biocatalytic oxyfunctionalization of fatty acids. Therefore, novel fatty acid hydroxylation enzymes should be discovered. The two hydratase genes of Lactobacillus acidophilus were identified by genomic analysis, and the expressed two recombinant hydratases were identified as cis-9 and cis-12 double-bond selective linoleate hydratases by in vitro functional validation, including the identification of products and the determination of regio-selectivity, substrate specificity, and kinetic parameters. The two different linoleate hydratases were the involved enzymes in the 10,13-dihydroxyoctadecanoic acid biosynthesis. Linoleate 13-hydratase (LHT-13) selectively converted 10 mM linoleic acid to 13S-hydroxy-9(Z)-octadecenoic acid with high titer (8.1 mM) and yield (81%). Our study will expand knowledge for microbial fatty acid-hydroxylation enzymes and facilitate the designed production of the regio-selective hydroxy fatty acids for useful chemicals from polyunsaturated fatty acid feedstocks. © 2015 Wiley Periodicals, Inc.

  1. Soybean Aphid Infestation Induces Changes in Fatty Acid Metabolism in Soybean

    PubMed Central

    Kanobe, Charles; McCarville, Michael T.; O’Neal, Matthew E.; Tylka, Gregory L.; MacIntosh, Gustavo C.

    2015-01-01

    The soybean aphid (Aphis glycines Matsumura) is one of the most important insect pests of soybeans in the North-central region of the US. It has been hypothesized that aphids avoid effective defenses by inhibition of jasmonate-regulated plant responses. Given the role fatty acids play in jasmonate-induced plant defenses, we analyzed the fatty acid profile of soybean leaves and seeds from aphid-infested plants. Aphid infestation reduced levels of polyunsaturated fatty acids in leaves with a concomitant increase in palmitic acid. In seeds, a reduction in polyunsaturated fatty acids was associated with an increase in stearic acid and oleic acid. Soybean plants challenged with the brown stem rot fungus or with soybean cyst nematodes did not present changes in fatty acid levels in leaves or seeds, indicating that the changes induced by aphids are not a general response to pests. One of the polyunsaturated fatty acids, linolenic acid, is the precursor of jasmonate; thus, these changes in fatty acid metabolism may be examples of “metabolic hijacking” by the aphid to avoid the induction of effective defenses. Based on the changes in fatty acid levels observed in seeds and leaves, we hypothesize that aphids potentially induce interference in the fatty acid desaturation pathway, likely reducing FAD2 and FAD6 activity that leads to a reduction in polyunsaturated fatty acids. Our data support the idea that aphids block jasmonate-dependent defenses by reduction of the hormone precursor. PMID:26684003

  2. Do fatty acids affect fetal programming?

    PubMed

    Kabaran, Seray; Besler, H Tanju

    2015-08-13

    In this study discussed the primary and regulatory roles of fatty acids, and investigated the affects of fatty acids on metabolic programming. Review of the literature was carried out on three electronic databases to assess the roles of fatty acids in metabolic programming. All abstracts and full-text articles were examined, and the most relevant articles were selected for screening and inclusion in this review. The mother's nutritional environment during fetal period has important effects on long term health. Fatty acids play a primary role in growth and development. Alterations in fatty acid intake in the fetal period may increase the risk of obesity and metabolic disorders in later life. Maternal fatty acid intakes during pregnancy and lactation are passed to the fetus and the newborn via the placenta and breast milk, respectively. Imbalances in fatty acid intake during the fetal period change the fatty acid composition of membrane phospholipids, which can cause structural and functional problems in cells. Additionally, the metabolic and neuroendocrine environments of the fetus and the newborn play key roles in the regulation of energy balance. Imbalances in fatty acid intake during pregnancy and lactation may result in permanent changes in appetite control, neuroendocrine function and energy metabolism in the fetus, leading to metabolic programming. Further studies are needed to determine the role of fatty acid intake in metabolic programming.

  3. [Interaction of free fatty acids with mitochondria during uncoupling of oxidative phosphorylation].

    PubMed

    Samartsev, V N; Rybakova, S R; Dubinin, M V

    2013-01-01

    The activity of free saturated fatty acids (caprylic, capric, lauric, myristic, palmitic and stearic) as inducers and regulators of uncoupling of oxidative phosphorylation with participation of ADP/ATP antiporter, aspartate/glutamate antiporter and cyclosporin A-sensitive structure was investigated in experiments on rat liver mitochondria. It is established that at equal uncoupling activity of fatty acids the regulatory effect is minimal for caprylic acid and raised with increasing the hydrophobicity of fatty acids reaching the maximum value for stearic acid. There exists the linear dependence of the regulatory effect value of fatty acids on fatty acids content in the hydrophobic region of the inner membrane. The model that describes the interaction of fatty acids with the hydrophobic region of the mitochondrial inner membrane preserving functional activity of organelles is developed. It is established that if molecules of various fatty acids being in the hydrophobic region of the membrane are equally effective as uncoupling regulators, their specific uncoupling activity is different. Caprylic acid, a short-chain fatty acid, possesses the highest uncoupling activity. As the acyl chain length increases, the specific uncoupling activity of fatty acids reduces exponentially. Under these conditions components of the uncoupling activity sensitive to glutamate and carboxyatractylate and glutamate and insensitive to these reagents (but sensitive to cyclosporin A) change approximately equally.

  4. Increased Production of Fatty Acids and Triglycerides in Aspergillus oryzae by Enhancing Expressions of Fatty Acid Synthesis-Related Genes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tamano, Koichi; Bruno, Kenneth S.; Karagiosis, Sue A.

    2013-01-01

    Microbial production of fats and oils is being developedas a means of converting biomass to biofuels. Here we investigate enhancing expression of enzymes involved in the production of fatty acids and triglycerides as a means to increase production of these compounds in Aspergillusoryzae. Examination of the A.oryzaegenome demonstrates that it contains twofatty acid synthases and several other genes that are predicted to be part of this biosynthetic pathway. We enhancedthe expressionof fatty acid synthesis-related genes by replacing their promoters with thepromoter fromthe constitutively highly expressedgene tef1. We demonstrate that by simply increasing the expression of the fatty acid synthasegenes wemore » successfullyincreasedtheproduction of fatty acids and triglyceridesby more than two fold. Enhancement of expression of the fatty acid pathway genes ATP-citrate lyase and palmitoyl-ACP thioesteraseincreasedproductivity to a lesser extent.Increasing expression ofacetyl-CoA carboxylase caused no detectable change in fatty acid levels. Increases in message level for each gene were monitored usingquantitative real-time RT-PCR. Our data demonstrates that a simple increase in the abundance of fatty acid synthase genes can increase the detectable amount of fatty acids.« less

  5. Oleic acid transfer from microsomes to egg lecithin liposomes: participation of fatty acid binding protein.

    PubMed

    Catalá, A; Avanzati, B

    1983-11-01

    Oleic acid transfer from microsomes or mitochondria to egg lecithin liposomes was stimulated by fatty acid binding protein. By gel filtration, it could be demonstrated that this protein incorporates oleic acid into liposomes. Fatty acid binding protein transfer activity was higher using microsomes rather than mitochondria, which suggests a selective interaction with different kinds of membranes. Transfer of oleic acid by this soluble protein is greater than that of stearic acid. The results indicate that fatty acid binding protein may participate in the intracellular transport of fatty acids.

  6. Modulation of ATP-induced inward currents by docosahexaenoic acid and other fatty acids in rat nodose ganglion neurons.

    PubMed

    Eto, Kei; Arimura, Yukiko; Mizuguchi, Hiroko; Nishikawa, Masazumi; Noda, Mami; Ishibashi, Hitoshi

    2006-11-01

    The effects of docosahexaenoic acid (DHA) and other fatty acids on P2X-receptor-mediated inward currents in rat nodose ganglion neurons were studied using the nystatin perforated patch-clamp technique. DHA accelerated the desensitization rate of the ATP-induced current. DHA showed use-dependent inhibition of the peak ATP-induced current. Other polyunsaturated fatty acids, such as arachidonic acid and eicosapentaenoic acid, displayed a similar use-dependent inhibition. The inhibitory effects of saturated fatty acids including palmitic acid and arachidic acid were weaker than those of polyunsaturated fatty acids. The results suggest that fatty acids may modulate the P2X receptor-mediated response when the channel is in the open-state.

  7. Short chain fatty acids (butyric acid) and intestinal diseases

    PubMed

    Manrique Vergara, David; González Sánchez, María Eugenia

    2017-10-15

    Short chain fatty acids contain up to 6 carbon atoms. Among them, butyric acid stands out for its key role in pathologies with intestinal affectation. Butyric acid is the main energetic substrate of the colonocyte, it stimulates the absorption of sodium and water in the colon, and presents trophic action on the intestinal cells. To review the clinical use of formulations for the oral use of butyric acid. Review of published articles on oral supplementation with butyric acid in intestinal pathologies. The publications mainly deal with the use of oral butyric acid in pathologies involving inflammation and / or alterations of intestinal motility. Highlighting the clinical potential in inflammatory bowel diseases and irritable bowel syndrome. The use of oral supplementation with butyric acid is a promising strategy in pathologies such as inflammatory bowel diseases and irritable bowel syndrome. Bio-available butyric acid formulations with acceptable organoleptic characteristics are being advanced.

  8. Interactions of Lipoidal Materials and a Pyridazinone Inhibitor of Chloroplast Development

    PubMed Central

    Hilton, J. L.; John, J. B. St.; Christiansen, M. N.; Norris, K. H.

    1971-01-01

    Formation of chloroplast pigments was inhibited, and free fatty acids accumulated in mustard (Brassica juncea [L.] Coss.) cotyledons and in barley (Hordeum vulgare L.) first leaves developed after treatment with 4-chloro-5- (dimethylamino)-2- (α, α, α-trifluoro-m-tolyl) -3 (2H) -pyridazinone. The inhibitor reduced the amount of fatty acids found in polar lipids (galactolipids) of barley chloroplasts and increased the amount in nonpolar lipids while having little effect on total content of bound fatty acids. The inhibition of chlorophyll formation was circumvented by D-α-tocopherol acetate, phytol, farnesol, and squalene, and by unsaturated fatty acids and their methyl esters. The protective action can be explained partially by an interaction external to the plant whereby 4-chloro-5- (dimethylamino) -2- (α, α, α-trifluoro-m-tolyl) -3 (2H) -pyridazinone partitioned out of the aqueous phase and into the lipid phase, thus limiting availability of the inhibitor to plants. However, the amount of inhibitor reaching the cotyledons of tocopherol-protected mustard seedlngs was still in excess of the amount necessary to cause white foliage, but it failed to produce the effect. Tocopherol treatment did not prevent the 4-chloro-5- (dimethylamino) -2- (α, α, α-trifluoro-m-tolyl) -3 (2H) -pyridazinone-induced buildup of fatty acids in mustard cotyledons but did partially circumvent the effect in barley leaves. The amount of linolenic acid relative to linoleic acid was reduced in barley leaves and chloroplasts by 4-chloro-5- (dimethylamino) -2- (α, α, α-trifluoro-m-tolyl) -3 (2H) -pyridazinone action and this effect was circumvented by tocopherol. PMID:16657757

  9. The antimicrobial efficacy and structure activity relationship of novel carbohydrate fatty acid derivatives against Listeria spp. and food spoilage microorganisms.

    PubMed

    Nobmann, Patricia; Smith, Aoife; Dunne, Julie; Henehan, Gary; Bourke, Paula

    2009-01-15

    Novel mono-substituted carbohydrate fatty acid (CFA) esters and ethers were investigated for their antibacterial activity against a range of pathogenic and spoilage bacteria focussing on Listeria monocytogenes. Carbohydrate derivatives with structural differences enable comparative studies on the structure/activity relationship for antimicrobial efficacy and mechanism of action. The antimicrobial efficacy of the synthesized compounds was compared with commercially available compounds such as monolaurin and monocaprylin, as well as the pure free fatty acids, lauric acid and caprylic acid, which have proven antimicrobial activity. Compound efficacy was compared using an absorbance based broth microdilution assay to determine the minimum inhibitory concentration (MIC), increase in lag phase and decrease in maximum growth rate. Among the carbohydrate derivatives synthesized, lauric ether of methyl alpha-d-glucopyranoside and lauric ester of methyl alpha-d-mannopyranoside showed the highest growth-inhibitory effect with MIC values of 0.04 mM, comparable to monolaurin. CFA derivatives were generally more active against Gram positive bacteria than Gram negative bacteria. The analysis of both ester and ether fatty acid derivatives of the same carbohydrate, in tandem with alpha and beta configuration of the carbohydrate moiety suggest that the carbohydrate moiety is involved in the antimicrobial activity of the fatty acid derivatives and that the nature of the bond also has a significant effect on efficacy, which requires further investigation. This class of CFA derivatives has great potential for developing antibacterial agents relevant to the food industry, particularly for control of Listeria or other Gram-positive pathogens.

  10. Fatty acid composition in serum correlates with that in the liver and non-alcoholic fatty liver disease activity scores in mice fed a high-fat diet.

    PubMed

    Wang, Xing-He; Li, Chun-Yan; Muhammad, Ishfaq; Zhang, Xiu-Ying

    2016-06-01

    In this study, we investigated the correlation between the serum fatty acid composition and hepatic steatosis, inflammation, hepatocellular ballooning scores, and liver fatty acids composition in mice fed a high-fat diet. Livers were collected for non-alcoholic fatty liver disease score analysis. Fatty acid compositions were analysed by gas chromatography. Correlations were determined by Pearson correlation coefficient. Exposed to a high-fat diet, mice developed fatty liver disease with varying severity without fibrosis. The serum fatty acid variation became more severe with prolonged exposure to a high-fat diet. This variation also correlated significantly with the variation in livers, with the types of fatty acids corresponding to liver steatosis, inflammation, and hepatocellular ballooning scores. Results of this study lead to the following hypothesis: the extent of serum fatty acid variation may be a preliminary biomarker of fatty liver disease caused by high-fat intake. Copyright © 2016. Published by Elsevier B.V.

  11. Fatty acid biosynthesis revisited: Structure elucidation and metabolic engineering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beld, Joris; Lee, D. John; Burkart, Michael D.

    Fatty acids are primary metabolites synthesized by complex, elegant, and essential biosynthetic machinery. Fatty acid synthases resemble an iterative assembly line, with an acyl carrier protein conveying the growing fatty acid to necessary enzymatic domains for modification. Each catalytic domain is a unique enzyme spanning a wide range of folds and structures. Although they harbor the same enzymatic activities, two different types of fatty acid synthase architectures are observed in nature. During recent years, strained petroleum supplies have driven interest in engineering organisms to either produce more fatty acids or specific high value products. Such efforts require a fundamental understandingmore » of the enzymatic activities and regulation of fatty acid synthases. Despite more than one hundred years of research, we continue to learn new lessons about fatty acid synthases' many intricate structural and regulatory elements. Lastly, in this review, we summarize each enzymatic domain and discuss efforts to engineer fatty acid synthases, providing some clues to important challenges and opportunities in the field.« less

  12. Fatty acid compositions of triglycerides and free fatty acids in sebum depend on amount of triglycerides, and do not differ in presence or absence of acne vulgaris.

    PubMed

    Akaza, Narifumi; Akamatsu, Hirohiko; Numata, Shigeki; Matsusue, Miyuki; Mashima, Yasuo; Miyawaki, Masaaki; Yamada, Shunji; Yagami, Akiko; Nakata, Satoru; Matsunaga, Kayoko

    2014-12-01

    To clarify the influence of the fatty acid composition of sebum in acne vulgaris, we investigated the amounts and fatty acid compositions of triglycerides (TG) and free fatty acids (FFA), and the amounts of cutaneous superficial Propionibacterium acnes in acne patients and healthy subjects. The foreheads of 18 female patients, 10 male patients, 10 healthy females and 10 healthy males were studied in a Japanese population. There were significant differences in the amounts of sebum, TG and cutaneous superficial P. acnes, as well as the fatty acid compositions of TG and FFA between acne patients and healthy subjects in females. Their fatty acid compositions were correlated with the amount of TG with or without acne. It was clarified that the fatty acid compositions of TG and FFA depended on the amount of TG, and there were no differences in the fatty acid composition in the presence and absence of acne. © 2014 Japanese Dermatological Association.

  13. Fatty acid biosynthesis revisited: Structure elucidation and metabolic engineering

    DOE PAGES

    Beld, Joris; Lee, D. John; Burkart, Michael D.

    2014-10-20

    Fatty acids are primary metabolites synthesized by complex, elegant, and essential biosynthetic machinery. Fatty acid synthases resemble an iterative assembly line, with an acyl carrier protein conveying the growing fatty acid to necessary enzymatic domains for modification. Each catalytic domain is a unique enzyme spanning a wide range of folds and structures. Although they harbor the same enzymatic activities, two different types of fatty acid synthase architectures are observed in nature. During recent years, strained petroleum supplies have driven interest in engineering organisms to either produce more fatty acids or specific high value products. Such efforts require a fundamental understandingmore » of the enzymatic activities and regulation of fatty acid synthases. Despite more than one hundred years of research, we continue to learn new lessons about fatty acid synthases' many intricate structural and regulatory elements. Lastly, in this review, we summarize each enzymatic domain and discuss efforts to engineer fatty acid synthases, providing some clues to important challenges and opportunities in the field.« less

  14. Effect of DHA on plasma fatty acid availability and oxidative stress during training season and football exercise.

    PubMed

    Martorell, Miquel; Capó, Xavier; Sureda, Antoni; Batle, Joan M; Llompart, Isabel; Argelich, Emma; Tur, Josep A; Pons, Antoni

    2014-08-01

    The aim was to determine the effects of a diet supplemented with 1.14 g per day of docosahexaenoic acid (DHA) for eight weeks on the plasma oxidative balance and anti-inflammatory markers after training and acute exercise. Fifteen volunteer male football players were randomly assigned to placebo or experimental and supplemented groups. Blood samples were taken under resting conditions at the beginning and after eight weeks of training under resting and post-exercise conditions. The experimental beverage increased the plasma DHA availability in non-esterified fatty acids (NEFAs) and triglyceride fatty acids (TGFAs) and increased the polyunsaturated fatty acid (PUFA) fraction of NEFAs but had no effects on the biomarkers for oxidative balance in plasma. During training, plasma protein markers of oxidative damage, the haemolysis degree and the antioxidant enzyme activities increased, but did not affect lipid oxidative damage. Training season and DHA influenced the circulating levels of prostaglandin E2 (PGE2). Acute exercise did not alter the basal levels of plasma markers for oxidative and nitrosative damage of proteins and lipids, and the antioxidant enzyme activities, although DHA-diet supplementation significantly increased the PGE2 in plasma after acute exercise. In conclusion, the training season and acute exercise, but not the DHA diet supplementation, altered the pattern of plasma oxidative damage, as the antioxidant system proved sufficient to prevent the oxidative damage induced by the acute exercise in well-trained footballers. The DHA-diet supplementation increased the prostaglandin PGE2 plasma evidencing anti-inflammatory effects of DHA to control inflammation after acute exercise.

  15. Dietary n-3 fatty acid restriction during gestation in rats: neuronal cell body and growth-cone fatty acids.

    PubMed

    Auestad, N; Innis, S M

    2000-01-01

    Growth cones are membrane-rich structures found at the distal end of growing axons and are the predecessors of the synaptic membranes of nerve endings. This study examined whether n-3 fatty acid restriction during gestation in rats alters the composition of growth cone and neuronal cell body membrane fatty acids in newborns. Female rats were fed a standard control diet containing soy oil (8% of fatty acids as 18:3n-3 by wt) or a semisynthetic n-3 fatty acid-deficient diet with safflower oil (0.3% of fatty acids as 18:3n-3 by wt) throughout normal pregnancy. Experiments were conducted on postnatal day 2 to minimize the potential for contamination from synaptic membranes and glial cells. Dietary n-3 fatty acid restriction resulted in lower docosahexaenoic acid (DHA) concentrations and a corresponding higher docosapentaenoic acid concentration in neuronal growth cones, but had no effects on neuronal cell body fatty acid concentrations. These studies suggest that accretion of DHA in growth cones, but not neuronal cell bodies, is affected by n-3 fatty acid restriction during gestation. Differences in other fatty acids or components between the semisynthetic and the standard diet, however, could have been involved in the effects on growth-cone DHA content. The results also provide evidence to suggest that the addition of new membrane fatty acids to neurons during development occurs along the shaft of the axon or at the growth cone, rather than originating at the cell body.

  16. Induction of cardiac Angptl4 by dietary fatty acids is mediated by peroxisome proliferator-activated receptor beta/delta and protects against fatty acid-induced oxidative stress.

    PubMed

    Georgiadi, Anastasia; Lichtenstein, Laeticia; Degenhardt, Tatjana; Boekschoten, Mark V; van Bilsen, Marc; Desvergne, Beatrice; Müller, Michael; Kersten, Sander

    2010-06-11

    Although dietary fatty acids are a major fuel for the heart, little is known about the direct effects of dietary fatty acids on gene regulation in the intact heart. To study the effect of dietary fatty acids on cardiac gene expression and explore the functional consequences. Oral administration of synthetic triglycerides composed of one single fatty acid altered cardiac expression of numerous genes, many of which are involved in the oxidative stress response. The gene most significantly and consistently upregulated by dietary fatty acids encoded Angiopoietin-like protein (Angptl)4, a circulating inhibitor of lipoprotein lipase expressed by cardiomyocytes. Induction of Angptl4 by the fatty acid linolenic acid was specifically abolished in peroxisome proliferator-activated receptor (PPAR)beta/delta(-/-) and not PPARalpha(-/-) mice and was blunted on siRNA-mediated PPARbeta/delta knockdown in cultured cardiomyocytes. Consistent with these data, linolenic acid stimulated binding of PPARbeta/delta but not PPARalpha to the Angptl4 gene. Upregulation of Angptl4 resulted in decreased cardiac uptake of plasma triglyceride-derived fatty acids and decreased fatty acid-induced oxidative stress and lipid peroxidation. In contrast, Angptl4 deletion led to enhanced oxidative stress in the heart, both after an acute oral fat load and after prolonged high fat feeding. Stimulation of cardiac Angptl4 gene expression by dietary fatty acids and via PPARbeta/delta is part of a feedback mechanism aimed at protecting the heart against lipid overload and consequently fatty acid-induced oxidative stress.

  17. In chronic fatigue syndrome, the decreased levels of omega-3 poly-unsaturated fatty acids are related to lowered serum zinc and defects in T cell activation.

    PubMed

    Maes, Michael; Mihaylova, Ivana; Leunis, Jean-Claude

    2005-12-01

    There is now evidence that major depression is accompanied by decreased levels of omega3 poly-unsaturated fatty acids (PUFA), such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). There is a strong comorbidity between major depression and chronic fatigue syndrome (CFS). The present study has been carried out in order to examine PUFA levels in CFS. In twenty-two CFS patients and 12 normal controls we measured serum PUFA levels using gas chromatography and mass spectrometry. We found that CFS was accompanied by increased levels of omega6 PUFAs, i.e. linoleic acid and arachidonic acid (AA), and mono-unsaturated fatty acids (MUFAs), i.e. oleic acid. The EPA/AA and total omega3/omega6 ratios were significantly lower in CFS patients than in normal controls. The omega3/omega6 ratio was significantly and negatively correlated to the severity of illness and some items of the FibroFatigue scale, i.e. aches and pain, fatigue and failing memory. The severity of illness was significantly and positively correlated to linoleic and arachidonic acid, oleic acid, omega9 fatty acids and one of the saturated fatty acids, i.e. palmitic acid. In CFS subjects, we found significant positive correlations between the omega3/omega6 ratio and lowered serum zinc levels and the lowered mitogen-stimulated CD69 expression on CD3+, CD3+ CD4+, and CD3+ CD8+ T cells, which indicate defects in early T cell activation. The results of this study show that a decreased availability of omega3 PUFAs plays a role in the pathophysiology of CFS and is related to the immune pathophysiology of CFS. The results suggest that patients with CFS should respond favourably to treatment with--amongst other things--omega3 PUFAs, such as EPA and DHA.

  18. Layered double hydroxide catalyst for the conversion of crude vegetable oils to a sustainable biofuel

    NASA Astrophysics Data System (ADS)

    Mollaeian, Keyvan

    Over the last two decades, the U.S. has developed the production of biodiesel, a mixture of fatty acid methyl esters, using chiefly vegetable oils as feedstocks. However, there is much concern about the availability of high-quality vegetable oils for longterm biodiesel production. Problems have also risen due to the production of glycerol, an unwanted byproduct, as well as the need for process wash water. Therefore, this study was initiated to produce not only fatty acid methyl esters (FAMEs) but also fatty acid glycerol carbonates (FAGCs) by replacing methanol with dimethyl carbonate (DMC). The process would have no unnecessary byproducts and would be a simplified process compared to traditional biodiesel. In addition, this altering of the methylating agent could convert triglycerides, free fatty acids, and phospholipids to a sustainable biofuel. In this project, Mg-Al Layered Double Hydroxide (LDH) was optimized by calcination in different temperature varied from 250°C to 450°C. The gallery between layers was increased by intercalating sodium dodecylsulfate (SDS). During catalyst preparation, the pH was controlled ~10. In our experiment, triazabicyclodecene (TBD) was attached with trimethoxysilane (3GPS) as a coupling agent, and N-cetyl-N,N,N-trimethylammonium bromide (CTAB) was added to remove SDS from the catalyst. The catalyst was characterized by XRD, FTIR, and Raman spectroscopy. The effect of the heterogeneous catalyst on the conversion of canola oil, corn oil, and free fatty acids was investigated. To analyze the conversion of lipid oils to biofuel an in situ Raman spectroscopic method was developed. Catalyst synthesis methods and a proposed mechanism for converting triglycerides and free fatty acids to biofuel will be presented.

  19. Can polymorphisms in the fatty acid desaturase (FADS) gene cluster alter the effects of fish oil supplementation on plasma and erythrocyte fatty acid profiles? An exploratory study.

    PubMed

    Meldrum, Suzanne J; Li, Yuchun; Zhang, Guicheng; Heaton, Alexandra E M; D'Vaz, Nina; Manz, Judith; Reischl, Eva; Koletzko, Berthold V; Prescott, Susan L; Simmer, Karen

    2017-09-19

    The enzymes encoded by fatty acid desaturases (FADS) genes determine the desaturation of long-chain polyunsaturated fatty acids (LCPUFA). We investigated if haplotype and single nucleotide polymorphisms (SNPs) in FADS gene cluster can influence LCPUFA status in infants who received either fish oil or placebo supplementation. Children enrolled in the Infant Fish Oil Supplementation Study (IFOS) were randomly allocated to receive either fish oil or placebo from birth to 6 months of age. Blood was collected at 6 months of age for the measurement of fatty acids and for DNA extraction. A total of 276 participant DNA samples underwent genotyping, and 126 erythrocyte and 133 plasma fatty acid measurements were available for analysis. Twenty-two FADS SNPs were selected on the basis of literature and linkage disequilibrium patterns identified from the HapMap data. Haplotype construction was completed using PHASE. For participants allocated to the fish oil group who had two copies of the FADS1 haplotype consisting of SNP minor alleles, DHA levels were significantly higher compared to other haplotypes. This finding was not observed for the placebo group. Furthermore, for members of the fish oil group only, the minor homozygous carriers of all the FADS1 SNPs investigated had significantly higher DHA than other genotypes (rs174545, rs174546, rs174548, rs174553, rs174556, rs174537, rs174448, and rs174455). Overall results of this preliminary study suggest that supplementation with fish oil may only significantly increase DHA in minor allele carriers of FADS1 SNPs. Further research is required to confirm this novel finding.

  20. The role of chicken ovalbumin upstream promoter transcription factor II in the regulation of hepatic fatty acid oxidation and gluconeogenesis in newborn mice.

    PubMed

    Planchais, Julien; Boutant, Marie; Fauveau, Véronique; Qing, Lou Dan; Sabra-Makke, Lina; Bossard, Pascale; Vasseur-Cognet, Mireille; Pégorier, Jean-Paul

    2015-05-15

    Chicken ovalbumin upstream promoter transcription factor II (COUP-TFII) is an orphan nuclear receptor involved in the control of numerous functions in various organs (organogenesis, differentiation, metabolic homeostasis, etc.). The aim of the present work was to characterize the regulation and contribution of COUP-TFII in the control of hepatic fatty acid and glucose metabolisms in newborn mice. Our data show that postnatal increase in COUP-TFII mRNA levels is enhanced by glucagon (via cAMP) and PPARα. To characterize COUP-TFII function in the liver of suckling mice, we used a functional (dominant negative form; COUP-TFII-DN) and a genetic (shRNA) approach. Adenoviral COUP-TFII-DN injection induces a profound hypoglycemia due to the inhibition of gluconeogenesis and fatty acid oxidation secondarily to reduced PEPCK, Gl-6-Pase, CPT I, and mHMG-CoA synthase gene expression. Using the crossover plot technique, we show that gluconeogenesis is inhibited at two different levels: 1) pyruvate carboxylation and 2) trioses phosphate synthesis. This could result from a decreased availability in fatty acid oxidation arising cofactors such as acetyl-CoA and reduced equivalents. Similar results are observed using the shRNA approach. Indeed, when fatty acid oxidation is rescued in response to Wy-14643-induced PPARα target genes (CPT I and mHMG-CoA synthase), blood glucose is normalized in COUP-TFII-DN mice. In conclusion, this work demonstrates that postnatal increase in hepatic COUP-TFII gene expression is involved in the regulation of liver fatty acid oxidation, which in turn sustains an active hepatic gluconeogenesis that is essential to maintain an appropriate blood glucose level required for newborn mice survival. Copyright © 2015 the American Physiological Society.

  1. Host cells and methods for producing diacid compounds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steen, Eric J.; Fortman, Jeffrey L.; Dietrich, Jeffrey A.

    The present invention provides for a method of producing one or more fatty acid derived dicarboxylic acids in a genetically modified host cell which does not naturally produce the one or more derived fatty acid derived dicarboxylic acids. The invention provides for the biosynthesis of dicarboxylic acid ranging in length from C3 to C26. The host cell can be further modified to increase fatty acid production or export of the desired fatty acid derived compound, and/or decrease fatty acid storage or metabolism.

  2. Fatty acids of pulmonary surfactant phosphatidylcholine from fetal rabbit lung tissue in culture. Biosynthesis of n-10 monoenoic fatty acids.

    PubMed

    Longmuir, K J; Resele-Tiden, C; Rossi, M E

    1988-08-01

    We have previously reported that fetal rabbit lung tissue in organ culture produces a lamellar body material (pulmonary surfactant) with a lower percentage of disaturated phosphatidylcholine than is typically found in rabbit lung in vivo (Longmuir, K.J., C. Resele-Tiden, and L. Sykes. 1985. Biochim. Biophys. Acta. 833: 135-143). This investigation was conducted to identify all fatty acids present in the lamellar body phosphatidylcholine, and to determine whether the low level of disaturated phosphatidylcholine is due to excessive unsaturated fatty acid at position sn-1, sn-2, or both. Fetal rabbit lung tissue, 23 days gestation, was maintained in culture for 7 days in defined (serum-free) medium. Phospholipids were labeled in culture with [1-14C]acetate or [U-14C]glycerol (to follow de novo fatty acid biosynthesis), or with [1-14C]palmitic acid (to follow incorporation of exogenously supplied fatty acid). Radiolabeled fatty acid methyl esters obtained from lamellar body phosphatidylcholine were first separated by reverse-phase thin-layer chromatography (TLC) into two fractions of 1) 14:0 + 16:1 and 2) 16:0 + 18:1. Complete separation of the individual saturated and monoenoic fatty acids was achieved by silver nitrate TLC of the two fractions. Monoenoic fatty acid double bond position was determined by permanganate-periodate oxidation followed by HPLC of the carboxylic acid phenacyl esters. Lamellar body phosphatidylcholine contained four monoenoic fatty acids: 1) palmitoleic acid, 16:1 cis-9; 2) oleic acid, 18:1 cis-9; 3) cis-vaccenic acid, 18:1 cis-11; and 4) 6-hexadecenoic acid, 16:1 cis-6. In addition, 8-octadecenoic acid, 18:1 cis-8, was found in the fatty acids of the tissue homogenate. The abnormally low disaturated phosphatidylcholine content in lamellar body material was the result of abnormally high levels of monoenoic fatty acid (principally 16:1 cis-9) found at position sn-2. Position sn-1 contained normal levels of saturated fatty acid. The biosynthesis of the unusual n-10 fatty acids was observed from the start of culture throughout the entire 7-day culture period, and was observed in incubations of tissue slices of day 23 fetal rabbit lung. This is the first report of the biosynthesis of n-10 fatty acids (16:1 cis-6 and 18:1 cis-8) in a mammalian tissue other than skin, where these fatty acids are found in the secretory product (sebum) of sebaceous glands.

  3. Fatty Acid Profiles of Stipe and Blade from the Norwegian Brown Macroalgae Laminaria hyperborea with Special Reference to Acyl Glycerides, Polar Lipids, and Free Fatty Acids.

    PubMed

    Foseid, Lena; Devle, Hanne; Stenstrøm, Yngve; Naess-Andresen, Carl Fredrik; Ekeberg, Dag

    2017-01-01

    A thorough analysis of the fatty acid profiles of stipe and blade from the kelp species Laminaria hyperborea is presented. Lipid extracts were fractionated into neutral lipids, free fatty acids, and polar lipids, prior to derivatization and GC-MS analysis. A total of 42 fatty acids were identified and quantified, including the n -3 fatty acids α -linolenic acid, stearidonic acid, and eicosapentaenoic acid. The fatty acid amounts are higher in blade than in stipe (7.42 mg/g dry weight and 2.57 mg/g dry weight, resp.). The highest amounts of n -3 fatty acids are found within the neutral lipid fractions with 590.6 ug/g dry weight and 100.9 ug/g dry weight for blade and stipe, respectively. The amounts of polyunsaturated fatty acids are 3.4 times higher in blade than stipe. The blade had the highest PUFA/SFA ratio compared to stipe (1.02 versus 0.76) and the lowest n -6/ n -3 ratio (0.8 versus 3.5). This study highlights the compositional differences between the lipid fractions of stipe and blade from L. hyperborea . The amount of polyunsaturated fatty acids compared to saturated- and monounsaturated fatty acids is known to influence human health. In the pharmaceutical, food, and feed industries, this can be of importance for production of different health products.

  4. Fatty Acid Profiles of Stipe and Blade from the Norwegian Brown Macroalgae Laminaria hyperborea with Special Reference to Acyl Glycerides, Polar Lipids, and Free Fatty Acids

    PubMed Central

    Foseid, Lena; Stenstrøm, Yngve; Naess-Andresen, Carl Fredrik; Ekeberg, Dag

    2017-01-01

    A thorough analysis of the fatty acid profiles of stipe and blade from the kelp species Laminaria hyperborea is presented. Lipid extracts were fractionated into neutral lipids, free fatty acids, and polar lipids, prior to derivatization and GC-MS analysis. A total of 42 fatty acids were identified and quantified, including the n-3 fatty acids α-linolenic acid, stearidonic acid, and eicosapentaenoic acid. The fatty acid amounts are higher in blade than in stipe (7.42 mg/g dry weight and 2.57 mg/g dry weight, resp.). The highest amounts of n-3 fatty acids are found within the neutral lipid fractions with 590.6 ug/g dry weight and 100.9 ug/g dry weight for blade and stipe, respectively. The amounts of polyunsaturated fatty acids are 3.4 times higher in blade than stipe. The blade had the highest PUFA/SFA ratio compared to stipe (1.02 versus 0.76) and the lowest n-6/n-3 ratio (0.8 versus 3.5). This study highlights the compositional differences between the lipid fractions of stipe and blade from L. hyperborea. The amount of polyunsaturated fatty acids compared to saturated- and monounsaturated fatty acids is known to influence human health. In the pharmaceutical, food, and feed industries, this can be of importance for production of different health products. PMID:28713595

  5. ω3 fatty acid desaturases from microorganisms: structure, function, evolution, and biotechnological use.

    PubMed

    Wang, Mingxuan; Chen, Haiqin; Gu, Zhennan; Zhang, Hao; Chen, Wei; Chen, Yong Q

    2013-12-01

    The biosynthesis of very-long-chain polyunsaturated fatty acids involves an alternating process of fatty acid desaturation and elongation catalyzed by complex series of enzymes. ω3 desaturase plays an important role in converting ω6 fatty acids into ω3 fatty acids. Genes for this desaturase have been identified and characterized in a wide range of microorganisms, including cyanobacteria, yeasts, molds, and microalgae. Like all fatty acid desaturases, ω3 desaturase is structurally characterized by the presence of three highly conserved histidine-rich motifs; however, unlike some desaturases, it lacks a cytochrome b5-like domain. Understanding the structure, function, and evolution of ω3 desaturases, particularly their substrate specificities in the biosynthesis of very-long-chain polyunsaturated fatty acids, lays the foundation for potential production of various ω3 fatty acids in transgenic microorganisms.

  6. Accurate Molecular Dimensions from Stearic Acid Monolayers.

    ERIC Educational Resources Information Center

    Lane, Charles A.; And Others

    1984-01-01

    Discusses modifications in the fatty acid monolayer experiment to reduce the inaccurate moleculary data students usually obtain. Copies of the experimental procedure used and a Pascal computer program to work up the data are available from the authors. (JN)

  7. [Fatty acid of Rkatsiteli grape seed oil, Phellodendron lavallei oil and Amaranthus seeds oil and its comparative byological activity].

    PubMed

    Kikalishvili, B Iu; Zurabashvili, D Z; Zurabashvili, Z A; Turabelidze, D G; Shanidze, L A

    2012-11-01

    The aim of the study is individual qualitively and quantitatively identification of fatty acids in Pkatsiteli grape seed oil, Phellodendron lavallei oil and Amaranthus seed oil and prediction of its biological activity. Using high-effective liquid chromatogramphy fatty acids were franctionated. Their relative concentrations are expressed as percentages of the total fatty acid component. Identification of the fatty acids consituents is based on comparison of their retention time with that of known standards. The predominant fatty acids in the oils were palmitic, oleic and stearic acids. The investigation demonstrated that fatty acids composition takes marked part in lipid metabolism of biological necessary components. The most interesting result of the investigation was the detection of unusual for the essentain oil begenic acid.

  8. Foliar Fatty Acids and Sterols of Soybean Field Fumigated with SO2

    PubMed Central

    Grunwald, Claus

    1981-01-01

    Sixty-day-old soybean plants were exposed in the field to 78.7 parts per one-hundred million of SO2 in an open-air fumigation system for 20 days. Leaves from the top one-fourth and bottom one-fourth of the plants were analyzed for chlorophyll, free fatty acids, fatty acid esters, polar lipid fatty acids, and sterols. Fumigated plants had a lower chlorophyll, free fatty acid, and polar lipid content, but a higher fatty acid ester content. Of the individual fatty acids, linoleic and linolenic acid increased with SO2 fumigation while palmitic acid decreased. SO2 fumigations had only a minor effect on leaf sterols. In general, the lower, more mature leaves showed a greater response to SO2 exposure. PMID:16662015

  9. Cellular and lipopolysaccharide fatty acid composition of the type strains of Klebsiella pneumoniae, Klebsiella oxytoca, and Klebsiella nonpathogenic species.

    PubMed

    Vasyurenko, Z P; Opanasenko, L S; Koval', G M; Turyanitsa, A I; Ruban, N M

    2001-01-01

    The cellular and lipopolysaccharide (LPS) fatty acid compositions of the type strains of Klebsiella pneumoniae, K. oxytoca, K. terrigena, K. planticola, and "K. trevisanii" were studied. The cellular fatty acids of klebsiellae were presented by straight-chain saturated and monounsaturated, cyclopropane, and hydroxy fatty acids. Hexadecanoic, methylenehexadecanoic, octadecenoic and hexadecenoic acids prevailed. The K. pneumoniae strain mainly differed from the strains of other species by two and more times lower level of dodecanoic acid in cells. Variations of cyclopropane and unsaturated fatty acid contents in cells were observed. LPS fatty acids profiles of klebsiellae mainly consisted of straight-chain saturated and hydroxy fatty acids with predominance of tetradecanoic and 3-hydroxytetradecanoic acids. LPS fatty acids profiles of K. oxytoca, K. terrigena, K. planticola, and "K. trevisanii" strains were very similar and differed from that of the K. pneumoniae strain by higher levels of dodecanoic acid (approximately 5-6 times) and absence of 2-hydroxytetradecanoic acid. The obtained data indicated more close relatedness of K. oxytoca, K. terrigena, and K. planticola and some their remoteness from K. pneumoniae.

  10. Determination of fatty acid composition of γ-irradiated hazelnuts, walnuts, almonds, and pistachios

    NASA Astrophysics Data System (ADS)

    Gecgel, Umit; Gumus, Tuncay; Tasan, Murat; Daglioglu, Orhan; Arici, Muhammet

    2011-04-01

    Hazelnut, walnut, almonds, and pistachio nuts were treated with 1, 3, 5, and 7 kGy of gamma irradiation, respectively. Oil content, free fatty acid, peroxide value, and fatty acid composition of the nuts were investigated immediately after irradiation. The data obtained from the experiments indicated that gamma irradiation did not cause any significant change in the oil content of nuts. In contrast, free fatty acid and peroxide value of the nuts increased proportionally to the dose (p<0.05). Among the fatty acids determined, the concentration of total saturated fatty acids increased while total monounsaturated and total polyunsaturated fatty acids decreased with the irradiation dose (p<0.05 and <0.01).

  11. Comparative fatty acid composition of four Sargassum species (Fucales, Phaeophyta)

    NASA Astrophysics Data System (ADS)

    Wu, Xiang-Chun; Lu, Bao-Ren; Tseng, C. K.

    1995-12-01

    Fatty acid composition of four Sargassum species from Qingdao and Shidao, Shandong Province was investigated. 16:0 (palmitic acid) was the major saturated fatty acid. C18 and C20 were the main polyunsaturated fatty acids (PUFAs). Arachidonic acid and eicosapentaenoic acid predominated among polyenoic acids in all the algal species examined, except for Sargassum sp. which had low concentration of eicosapentaenoic acid.

  12. 21 CFR 172.862 - Oleic acid derived from tall oil fatty acids.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Oleic acid derived from tall oil fatty acids. 172... FOOD FOR HUMAN CONSUMPTION Multipurpose Additives § 172.862 Oleic acid derived from tall oil fatty acids. The food additive oleic acid derived from tall oil fatty acids may be safely used in food and as...

  13. 21 CFR 172.862 - Oleic acid derived from tall oil fatty acids.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Oleic acid derived from tall oil fatty acids. 172... FOOD FOR HUMAN CONSUMPTION Multipurpose Additives § 172.862 Oleic acid derived from tall oil fatty acids. The food additive oleic acid derived from tall oil fatty acids may be safely used in food and as...

  14. The ability of walnut extract and fatty acids to protect against the deleterious effects of oxidative stress and inflammation in hippocampal cells

    USDA-ARS?s Scientific Manuscript database

    Walnuts contain polyunsaturated fatty acids (PUFAs), specifically the omega-6 fatty acid linoleic acid (LA) as well as the omega-3 fatty acid, alpha-linolenic acid (ALA), which can be metabolized to generate eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). Previous research from our lab h...

  15. Seasonal patterns in stream periphyton fatty acids and community benthic algal composition in six high quality headwater streams

    USGS Publications Warehouse

    Honeyfield, Dale C.; Maloney, Kelly O.

    2015-01-01

    Fatty acids are integral components of periphyton and differ among algal taxa. We examined seasonal patterns in periphyton fatty acids in six minimally disturbed headwater streams in Pennsylvania’s Appalachian Mountains, USA. Environmental data and periphyton were collected across four seasons for fatty acid and algal taxa content. Non-metric multidimensional scaling ordination suggested significant seasonal differences in fatty acids; an ordination on algal composition revealed similar seasonal patterns, but with slightly weaker separation of summer and fall. Summer and fall fatty acid profiles were driven by temperature, overstory cover, and conductivity and winter profiles by measures of stream size. Ordination on algal composition suggested that summer and fall communities were driven by overstory and temperature, whereas winter communities were driven by velocity. The physiologically important fatty acid 18:3ω6 was highest in summer and fall. Winter samples had the highest 20:3ω3. Six saturated fatty acids differed among the seasons. Periphyton fatty acids profiles appeared to reflect benthic algal species composition. This suggests that periphyton fatty acid composition can be useful in characterizing basal food resources and stream water quality.

  16. [Overexpression of four fatty acid synthase genes elevated the efficiency of long-chain polyunsaturated fatty acids biosynthesis in mammalian cells].

    PubMed

    Zhu, Guiming; Saleh, Abdulmomen Ali Mohammed; Bahwal, Said Ahmed; Wang, Kunfu; Wang, Mingfu; Wang, Didi; Ge, Tangdong; Sun, Jie

    2014-09-01

    Three long-chain polyunsaturated fatty acids, docosahexaenoic acid (DHA, 22:6n-3), eicosapentaenoic acid (EPA, 20:5n-3) and arachidonic acid (ARA, 20:4n-6), are the most biologically active polyunsaturated fatty acids in the body. They are important in developing and maintaining the brain function, and in preventing and treating many diseases such as cardiovascular disease, inflammation and cancer. Although mammals can biosynthesize these long-chain polyunsaturated fatty acids, the efficiency is very low and dietary intake is needed to meet the requirement. In this study, a multiple-genes expression vector carrying mammalian A6/A5 fatty acid desaturases and multiple-genes expression vector carrying mammalian Δ6/Δ5 fatty acid desaturases and Δ6/Δ5 fatty acid elongases coding genes was used to transfect HEK293T cells, then the overexpression of the target genes was detected. GC-MS analysis shows that the biosynthesis efficiency and level of DHA, EPA and ARA were significantly increased in cells transfected with the multiple-genes expression vector. Particularly, DHA level in these cells was 2.5 times higher than in the control cells. This study indicates mammal possess a certain mechanism for suppression of high level of biosynthesis of long chain polyunsaturated fatty acids, and the overexpression of Δ6/Δ5 fatty acid desaturases and Δ6/Δ5 fatty acid elongases broke this suppression mechanism so that the level of DHA, EPA and ARA was significantly increased. This study also provides a basis for potential applications of this gene construct in transgenic animal to produce high level of these long-chain polyunsaturated fatty acid.

  17. 6-methyl-8-hexadecenoic acid: A novel fatty acid from the marine spongeDesmapsama anchorata.

    PubMed

    Carballeira, N M; Maldonado, M E

    1988-07-01

    The novel fatty acid 7-methyl-8-hexadecenoic (1) was identified in the marine spongeDesmapsama anchorata. Other interesting fatty acids identified were 14-methyl-8-hexadecenoic (2), better known through its methyl ester as one of the components of the sex attractant of the female dermestid beetle, and the saturated fatty acid 3-methylheptadecanoic (3), known to possess larvicidal activity. The main phospholipid fatty acids encountered inD. anchorata were palmitic (16∶0), behenic (22∶0) and 5,9-hexacosadienoic acid (26∶2), which together accounted for 50% of the total phospholipid fatty acid mixture.

  18. Fatty Acid Composition of Novel Host Jack Pine Do Not Prevent Host Acceptance and Colonization by the Invasive Mountain Pine Beetle and Its Symbiotic Fungus

    PubMed Central

    Ishangulyyeva, Guncha; Najar, Ahmed; Curtis, Jonathan M.

    2016-01-01

    Fatty acids are major components of plant lipids and can affect growth and development of insect herbivores. Despite a large literature examining the roles of fatty acids in conifers, relatively few studies have tested the effects of fatty acids on insect herbivores and their microbial symbionts. Particularly, whether fatty acids can affect the suitability of conifers for insect herbivores has never been studied before. Thus, we evaluated if composition of fatty acids impede or facilitate colonization of jack pine (Pinus banksiana) by the invasive mountain pine beetle (Dendroctonus ponderosae) and its symbiotic fungus (Grosmannia clavigera). This is the first study to examine the effects of tree fatty acids on any bark beetle species and its symbiotic fungus. In a novel bioassay, we found that plant tissues (hosts and non-host) amended with synthetic fatty acids at concentrations representative of jack pine were compatible with beetle larvae. Likewise, G. clavigera grew in media amended with lipid fractions or synthetic fatty acids at concentrations present in jack pine. In contrast, fatty acids and lipid composition of a non-host were not suitable for the beetle larvae or the fungus. Apparently, concentrations of individual, rather than total, fatty acids determined the suitability of jack pine. Furthermore, sampling of host and non-host tree species across Canada demonstrated that the composition of jack pine fatty acids was similar to the different populations of beetle’s historical hosts. These results demonstrate that fatty acids composition compatible with insect herbivores and their microbial symbionts can be important factor defining host suitability to invasive insects. PMID:27583820

  19. Exogenous fatty acid metabolism in bacteria.

    PubMed

    Yao, Jiangwei; Rock, Charles O

    2017-10-01

    Bacterial type II fatty acid synthesis (FASII) is a target for novel antibiotic development. All bacteria encode for mechanisms to incorporate exogenous fatty acids, and some bacteria can use exogenous fatty acids to bypass FASII inhibition. Bacteria encode three different mechanisms for activating exogenous fatty acids for incorporation into phospholipid synthesis. Exogenous fatty acids are converted into acyl-CoA in Gammaproteobacteria such as E. coli. Acyl-CoA molecules constitute a separate pool from endogenously synthesized acyl-ACP. Acyl-CoA can be used for phospholipid synthesis or broken down by β-oxidation, but cannot be used for lipopolysaccharide synthesis. Exogenous fatty acids are converted into acyl-ACP in some Gram-negative bacteria. The resulting acyl-ACP undergoes the same fates as endogenously synthesized acyl-ACP. Exogenous fatty acids are converted into acyl-phosphates in Gram-positive bacteria, and can be used for phospholipid synthesis or become acyl-ACP. Only the order Lactobacillales can use exogenous fatty acids to bypass FASII inhibition. FASII shuts down completely in presence of exogenous fatty acids in Lactobacillales, allowing Lactobacillales to synthesize phospholipids entirely from exogenous fatty acids. Inhibition of FASII cannot be bypassed in other bacteria because FASII is only partially down-regulated in presence of exogenous fatty acid or FASII is required to synthesize essential metabolites such as β-hydroxyacyl-ACP. Certain selective pressures such as FASII inhibition or growth in biofilms can select for naturally occurring one step mutations that attenuate endogenous fatty acid synthesis. Although attempts have been made to estimate the natural prevalence of these mutants, culture-independent metagenomic methods would provide a better estimate. Copyright © 2017 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  20. Treatment of Fatty Acid Oxidation Disorders

    MedlinePlus

    ... Treatment of fatty acid oxidation disorders Treatment of fatty acid oxidation disorders E-mail to a friend Please ... this page It's been added to your dashboard . Fatty acid oxidation disorders are rare health conditions that affect ...

  1. Novel Mechanism of Fatty Acid Sensing in Enteroendocrine Cells: Specific Structures in Oxo-Fatty Acids Produced by Gut Bacteria are Responsible for CCK Secretion in STC-1 Cells via GPR40.

    PubMed

    Hira, Tohru; Ogasawara, Shono; Yahagi, Asuka; Kamachi, Minami; Li, Jiaxin; Nishimura, Saki; Sakaino, Masayoshi; Yamashita, Takatoshi; Kishino, Shigenobu; Ogawa, Jun; Hara, Hiroshi

    2018-06-25

    The secretion of gut hormones, such as cholecystokinin (CCK) is stimulated by fatty acids. Although a chain length-dependent mechanism has been proposed, other structural relationships to releasing activity remain unclear. We aimed to elucidate specific structures in fatty acids that are responsible for their CCK-releasing activity, and related sensing mechanisms in enteroendocrine cells. We examined CCK secretory activities in a murine CCK-producing cell line STC-1 by exposing the cells to various modified fatty acids produced by gut lactic acid bacteria. The effects of fatty acids on gastric emptying rate as a CCK-mediated function were examined using acetaminophen- and phenol red-methods in rats. Out of more than thirty octadecanoic (C18)-derived fatty acids tested, five oxo-fatty acids potently stimulated CCK secretion without cytotoxic effects in STC-1 cells. Three fatty acids had a distinct specific structure containing one double-bond, whereas the other two had two double-bonds, nearby an oxo residue. CCK secretion induced by representative fatty acids (10-oxo-trans-11-18:1 and 13-oxo-cis-9,cis-15-18:2) was attenuated by a fatty acid-receptor GPR40 antagonist. Oral administration of 13-oxo-cis-9,cis-15-18:2 lowered the gastric emptying rate in rats in a dose- and structure-dependent manner. These results revealed a novel fatty acid-sensing mechanism in enteroendocrine cells. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  2. Production of hydroxylated fatty acids in genetically modified plants

    DOEpatents

    Somerville, Chris [Portola Valley, CA; Broun, Pierre [Burlingame, CA; van de Loo, Frank [Weston, AU; Boddupalli, Sekhar S [Manchester, MI

    2011-08-23

    This invention relates to plant fatty acyl hydroxylases. Methods to use conserved amino acid or nucleotide sequences to obtain plant fatty acyl hydroxylases are described. Also described is the use of cDNA clones encoding a plant hydroxylase to produce a family of hydroxylated fatty acids in transgenic plants. In addition, the use of genes encoding fatty acid hydroxylases or desaturases to alter the level of lipid fatty acid unsaturation in transgenic plants is described.

  3. Production of hydroxylated fatty acids in genetically modified plants

    DOEpatents

    Somerville, Chris; Broun, Pierre; van de Loo, Frank; Boddupalli, Sekhar S.

    2005-08-30

    This invention relates to plant fatty acyl hydroxylases. Methods to use conserved amino acid or nucleotide sequences to obtain plant fatty acyl hydroxylases are described. Also described is the use of cDNA clones encoding a plant hydroxylase to produce a family of hydroxylated fatty acids in transgenic plants. In addition, the use of genes encoding fatty acid hydroxylases or desaturases to alter the level of lipid fatty acid unsaturation in transgenic plants is described.

  4. PlsX deletion impacts fatty acid synthesis and acid adaptation in Streptococcus mutans.

    PubMed

    Cross, Benjamin; Garcia, Ariana; Faustoferri, Roberta; Quivey, Robert G

    2016-04-01

    Streptococcus mutans, one of the primary causative agents of dental caries in humans, ferments dietary sugars in the mouth to produce organic acids. These acids lower local pH values, resulting in demineralization of the tooth enamel, leading to caries. To survive acidic environments, Strep. mutans employs several adaptive mechanisms, including a shift from saturated to unsaturated fatty acids in membrane phospholipids. PlsX is an acyl-ACP : phosphate transacylase that links the fatty acid synthase II (FASII) pathway to the phospholipid synthesis pathway, and is therefore central to the movement of unsaturated fatty acids into the membrane. Recently, we discovered that plsX is not essential in Strep. mutans. A plsX deletion mutant was not a fatty acid or phospholipid auxotroph. Gas chromatography of fatty acid methyl esters indicated that membrane fatty acid chain length in the plsX deletion strain differed from those detected in the parent strain, UA159. The deletion strain displayed a fatty acid shift similar to WT, but had a higher percentage of unsaturated fatty acids at low pH. The deletion strain survived significantly longer than the parent strain when cultures were subjected to an acid challenge of pH 2.5.The ΔplsX strain also exhibited elevated F-ATPase activity at pH 5.2, compared with the parent. These results indicate that the loss of plsX affects both the fatty acid synthesis pathway and the acid-adaptive response of Strep. mutans.

  5. Oxidation of linoleic and palmitic acid in pre-hibernating and hibernating common noctule bats revealed by 13C breath testing.

    PubMed

    Rosner, Elisabeth; Voigt, Christian C

    2018-02-19

    Mammals fuel hibernation by oxidizing saturated and unsaturated fatty acids from triacylglycerols in adipocytes, yet the relative importance of these two categories as an oxidative fuel may change during hibernation. We studied the selective use of fatty acids as an oxidative fuel in noctule bats ( Nyctalus noctula ). Pre-hibernating noctule bats that were fed 13 C-enriched linoleic acid (LA) showed 12 times higher tracer oxidation rates compared with conspecifics fed 13 C-enriched palmitic acid (PA). After this experiment, we supplemented the diet of bats with the same fatty acids on five subsequent days to enrich their fat depots with the respective tracer. We then compared the excess 13 C enrichment (excess atom percentage, APE) in breath of bats for torpor and arousal events during early and late hibernation. We observed higher APE values in breath of bats fed 13 C-enriched LA than in bats fed 13 C-enriched PA for both states (torpor and arousal), and also for both periods. Thus, hibernating bats selectively oxidized endogenous LA instead of PA, probably because of faster transportation rates of polyunsaturated fatty acids compared with saturated fatty acids. We did not observe changes in APE values in the breath of torpid animals between early and late hibernation. Skin temperature of torpid animals increased by 0.7°C between early and late hibernation in bats fed PA, whereas it decreased by -0.8°C in bats fed LA, highlighting that endogenous LA may fulfil two functions when available in excess: serving as an oxidative fuel and supporting cell membrane functionality. © 2018. Published by The Company of Biologists Ltd.

  6. Fatty Acid–Regulated Transcription Factors in the Liver

    PubMed Central

    Jump, Donald B.; Tripathy, Sasmita; Depner, Christopher M.

    2014-01-01

    Fatty acid regulation of hepatic gene transcription was first reported in the early 1990s. Several transcription factors have been identified as targets of fatty acid regulation. This regulation is achieved by direct fatty acid binding to the transcription factor or by indirect mechanisms where fatty acids regulate signaling pathways controlling the expression of transcription factors or the phosphorylation, ubiquitination, or proteolytic cleavage of the transcription factor. Although dietary fatty acids are well-established regulators of hepatic transcription factors, emerging evidence indicates that endogenously generated fatty acids are equally important in controlling transcription factors in the context of glucose and lipid homeostasis. Our first goal in this review is to provide an up-to-date examination of the molecular and metabolic bases of fatty acid regulation of key transcription factors controlling hepatic metabolism. Our second goal is to link these mechanisms to nonalcoholic fatty liver disease (NAFLD), a growing health concern in the obese population. PMID:23528177

  7. Mapping of QTL associated with seed amino acids content in MD96-5722 by "Spencer" RIL population of soybean using SNP markers

    USDA-ARS?s Scientific Manuscript database

    Soybean seeds are major sources of essential amino acids, protein, and fatty acids. Limited information is available on the genetic analysis of amino acid composition in soybean. Therefore, the objective of this study was to identify genomic regions containing quantitative trait loci (QTL) controlli...

  8. The interaction of albumin and fatty-acid-binding protein with membranes: oleic acid dissociation.

    PubMed

    Catalá, A

    1984-10-01

    Bovine serum albumin or fatty-acid-binding protein rapidly lose oleic acid when incubated in the presence of dimyristoyl lecithin liposomes. The phenomenon is dependent on vesicle concentration and no measurable quantities of protein are found associated with liposomes. Upon gel filtration on Sepharose CL-2B of incubated mixtures of microsomes containing [1-14C] oleic acid and albumin or fatty-acid-binding protein, association of fatty acid with the soluble proteins could be demonstrated. Both albumin and fatty-acid-binding protein stimulated the transfer of oleic acid from rat liver microsomes to egg lecithin liposomes. These results indicate that albumin is more effective in the binding of oleic acid than fatty-acid-binding protein, which allows a selective oleic acid dissociation during its interaction with membranes.

  9. Effects of oral sea buckthorn oil on tear film Fatty acids in individuals with dry eye.

    PubMed

    Järvinen, Riikka L; Larmo, Petra S; Setälä, Niko L; Yang, Baoru; Engblom, Janne Rk; Viitanen, Matti H; Kallio, Heikki P

    2011-09-01

    Evaporative dry eye is associated with meibomian gland dysfunction and abnormalities of the tear film lipids. Dry eye is known to be affected positively by intake of linoleic and γ-linolenic acids and n-3 fatty acids. Oral sea buckthorn (Hippophaë rhamnoides) (SB) oil, which contains linoleic and α-linolenic acids and antioxidants, has shown beneficial effects on dry eye. The objective was to investigate whether supplementation with SB oil affects the composition of the tear film fatty acids in individuals reporting dry eye. One hundred participants were randomized to this parallel, double-blind, placebo-controlled study, which 86 of them completed. The participants daily consumed 2 g of SB or placebo oil for 3 months. Tear film samples were collected at the beginning, during, and at the end of the intervention and 1 to 2 months later. Tear film fatty acids were analyzed as methyl esters by gas chromatography. There were no group differences in the changes in fatty acid proportions during the intervention (branched-chain fatty acids: P = 0.49, saturated fatty acids: P = 0.59, monounsaturated fatty acids: P = 0.53, and polyunsaturated fatty acids: P = 0.16). The results indicate that the positive effects of SB oil on dry eye are not mediated through direct effects on the tear film fatty acids. Carotenoids and tocopherols in the oil or eicosanoids produced from the fatty acids of the oil may have a positive effect on inflammation and differentiation of the meibomian gland cells.

  10. 40 CFR 721.6200 - Fatty acid polyamine condensate, phosphoric acid ester salts.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Fatty acid polyamine condensate... New Uses for Specific Chemical Substances § 721.6200 Fatty acid polyamine condensate, phosphoric acid... substances identified as fatty acid polyamine condensate, phosphate ester salts (PMNs P-90-1984 and P-90-1985...

  11. 40 CFR 721.6200 - Fatty acid polyamine condensate, phosphoric acid ester salts.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Fatty acid polyamine condensate... New Uses for Specific Chemical Substances § 721.6200 Fatty acid polyamine condensate, phosphoric acid... substances identified as fatty acid polyamine condensate, phosphate ester salts (PMNs P-90-1984 and P-90-1985...

  12. Fatty acid composition from the marine red algae Pterocladiella capillacea (S. G. Gmelin) Santelices & Hommersand 1997 and Osmundaria obtusiloba (C. Agardh) R. E. Norris 1991 and its antioxidant activity.

    PubMed

    Alencar, Daniel B DE; Diniz, Jaécio C; Rocha, Simone A S; Pires-Cavalcante, Kelma M S; Lima, Rebeca L DE; Sousa, Karolina C DE; Freitas, Jefferson O; Bezerra, Rayssa M; Baracho, Bárbara M; Sampaio, Alexandre H; Viana, Francisco A; Saker-Sampaio, Silvana

    2018-01-01

    This study evaluated the chemical composition and antioxidant activity of fatty acids from the marine red algae Pterocladiella capillacea (S. G. Gmelin) Santelices & Hommersand 1997 and Osmundaria obtusiloba (C. Agardh) R. E. Norris 1991. The gas chromatography mass spectrometry (GC-MS) identified nine fatty acids in the two species. The major fatty acids of P. capillacea and O. obtusiloba were palmitic acid, oleic acid, arachidonic acid and eicosapentaenoic acid. The DPPH radical scavenging capacity of fatty acids was moderate ranging from 25.90% to 29.97%. Fatty acids from P. capillacea (31.18%) had a moderate ferrous ions chelating activity (FIC), while in O. obtusiloba (17.17%), was weak. The ferric reducing antioxidant power (FRAP) of fatty acids from P. capillacea and O. obtusiloba was low. As for β-carotene bleaching (BCB), P. capillacea and O. obtusiloba showed a good activity. This is the first report of the antioxidant activities of fatty acids from the marine red algae P. capillacea and O. obtusiloba.

  13. Why does brain metabolism not favor burning of fatty acids to provide energy? - Reflections on disadvantages of the use of free fatty acids as fuel for brain

    PubMed Central

    Schönfeld, Peter; Reiser, Georg

    2013-01-01

    It is puzzling that hydrogen-rich fatty acids are used only poorly as fuel in the brain. The long-standing belief that a slow passage of fatty acids across the blood–brain barrier might be the reason. However, this has been corrected by experimental results. Otherwise, accumulated nonesterified fatty acids or their activated derivatives could exert detrimental activities on mitochondria, which might trigger the mitochondrial route of apoptosis. Here, we draw attention to three particular problems: (1) ATP generation linked to β-oxidation of fatty acids demands more oxygen than glucose, thereby enhancing the risk for neurons to become hypoxic; (2) β-oxidation of fatty acids generates superoxide, which, taken together with the poor anti-oxidative defense in neurons, causes severe oxidative stress; (3) the rate of ATP generation based on adipose tissue-derived fatty acids is slower than that using blood glucose as fuel. Thus, in periods of extended continuous and rapid neuronal firing, fatty acid oxidation cannot guarantee rapid ATP generation in neurons. We conjecture that the disadvantages connected with using fatty acids as fuel have created evolutionary pressure on lowering the expression of the β-oxidation enzyme equipment in brain mitochondria to avoid extensive fatty acid oxidation and to favor glucose oxidation in brain. PMID:23921897

  14. Erythrocyte fatty acid status in a convenience sample of residents of the Guatemalan Pacific coastal plain.

    PubMed

    Solomons, Noel W; Bailey, Eileen; Soto Méndéz, María José; Campos, Raquel; Kraemer, Klaus; Salem, Norman

    2015-07-01

    We report the fatty acid composition, and in particular, the n-3 and n-6 long-chain polyunsaturated fatty acids (LCPUFA), in erythrocytes from a convenience sample of 158 women and 135 schoolchildren residing in the southern Pacific Coast of Guatemala. Erythrocyte fatty acids were analyzed by gas-liquid chromatography with flame ionization detection and the profiles were expressed as a weight percent; the Omega-3 Index values were also determined. Schoolchildren had significantly higher mean ARA and total n-6 fatty acid levels than the women. Women had significantly higher EPA fatty acid levels than schoolchildren, but the reverse was true for DHA. For mean total n-3 fatty acid concentration, women and schoolchildren had similar values. The red cell weight percentages of selected fatty acids were also similar in women and schoolchildren. As compared with erythrocyte fatty acid data from developed countries, Guatemalan women and schoolchildren had consistently lower LCPUFA values. The traditional diet of Guatemalans living in the Pacific coastal region provided a worse erythrocyte fatty acid profile than that typically obtained from a Western diet. Additional fatty acid composition studies with associated dietary intake data in other inland locations may be useful for the interpretation of the nutritional status of Guatemalan children and adults. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Why does brain metabolism not favor burning of fatty acids to provide energy? Reflections on disadvantages of the use of free fatty acids as fuel for brain.

    PubMed

    Schönfeld, Peter; Reiser, Georg

    2013-10-01

    It is puzzling that hydrogen-rich fatty acids are used only poorly as fuel in the brain. The long-standing belief that a slow passage of fatty acids across the blood-brain barrier might be the reason. However, this has been corrected by experimental results. Otherwise, accumulated nonesterified fatty acids or their activated derivatives could exert detrimental activities on mitochondria, which might trigger the mitochondrial route of apoptosis. Here, we draw attention to three particular problems: (1) ATP generation linked to β-oxidation of fatty acids demands more oxygen than glucose, thereby enhancing the risk for neurons to become hypoxic; (2) β-oxidation of fatty acids generates superoxide, which, taken together with the poor anti-oxidative defense in neurons, causes severe oxidative stress; (3) the rate of ATP generation based on adipose tissue-derived fatty acids is slower than that using blood glucose as fuel. Thus, in periods of extended continuous and rapid neuronal firing, fatty acid oxidation cannot guarantee rapid ATP generation in neurons. We conjecture that the disadvantages connected with using fatty acids as fuel have created evolutionary pressure on lowering the expression of the β-oxidation enzyme equipment in brain mitochondria to avoid extensive fatty acid oxidation and to favor glucose oxidation in brain.

  16. Separation of the fatty acids in menhaden oil as methyl esters with a highly polar ionic liquid gas chromatographic column and identification by time of flight mass spectrometry.

    PubMed

    Fardin-Kia, Ali Reza; Delmonte, Pierluigi; Kramer, John K G; Jahreis, Gerhard; Kuhnt, Katrin; Santercole, Viviana; Rader, Jeanne I

    2013-12-01

    The fatty acids contained in marine oils or products are traditionally analyzed by gas chromatography using capillary columns coated with polyethylene glycol phases. Recent reports indicate that 100 % cyanopropyl siloxane phases should also be used when the analyzed samples contain trans fatty acids. We investigated the separation of the fatty acid methyl esters prepared from menhaden oil using the more polar SLB-IL111 (200 m × 0.25 mm) ionic liquid capillary column and the chromatographic conditions previously optimized for the separation of the complex mixture of fatty acid methyl esters prepared from milk fat. Identifications of fatty acids were achieved by applying Ag(+)-HPLC fractionation and GC-TOF/MS analysis in CI(+) mode with isobutane as the ionization reagent. Calculation of equivalent chain lengths confirmed the assignment of double bond positions. This methodology allowed the identification of 125 fatty acids in menhaden oil, including isoprenoid and furanoid fatty acids, and the novel 7-methyl-6-hexadecenoic and 7-methyl-6-octadecenoic fatty acids. The chromatographic conditions applied in this study showed the potential of separating in a single 90-min analysis, among others, the short chain and trans fatty acids contained in dairy products, and the polyunsaturated fatty acids contained in marine products.

  17. Cod Liver Oil

    MedlinePlus

    Cod liver oil contains certain "fatty acids" that prevent the blood from clotting easily. These fatty acids also reduce pain and swelling. ... Morue, Huile de Poisson, Liver Oil, N-3 Fatty Acids, Omega 3, Oméga 3, Omega 3 Fatty Acids, ...

  18. Effects of Fatty Acid Addition to Oil-in-water Emulsions Stabilized with Sucrose Fatty Acid Ester.

    PubMed

    Watanabe, Takamasa; Kawai, Takahiro; Nonomura, Yoshimune

    2018-03-01

    Adding fatty acids to an oil-in-water (O/W) emulsion changes the stability of the emulsion. In this study, we prepared a series of O/W emulsions consisting of oil (triolein/fatty acid mixture), water and a range of surfactants (sucrose fatty acid esters) with varying hydrophilic-lipophilic balance (HLB) in order to determine the effects of alkyl chain length and the degree of unsaturation of the fatty acid molecules on the stability of the emulsions. As a result, sucrose fatty acid esters with HLB = 5-7 were suitable for obtaining O/W emulsions. In addition, the creaming phenomenon was inhibited for 30 days or more when fatty acids having a linear saturated alkyl chain with 14 or more carbon atoms were added. These findings are useful for designing stable O/W emulsions for food and cosmetic products.

  19. Medium-chain fatty acid synthesis in lactating-rabbit mammary gland. Intracellular concentration and specificity of medium-chain acyl thioester hydrolase.

    PubMed Central

    Knudsen, J

    1979-01-01

    The concentration of medium-chain acyl thioester hydrolase and of fatty acid synthetase was determined by rocket immunoelectrophoresis in nine different particle-free supernatant fractions from lactating-rabbit mammary gland. The molar ratio of the hydrolase to fatty acid synthetase was 1.99 +/- 0.66 (mean +/- S.D.). A rate-limiting concentration of malonyl-CoA was required to ensure the predominant synthesis of medium-chain fatty acids when 2 mol of the hydrolase was added per mol of fatty acid synthetase. The interaction of the hydrolase with fatty acid synthetase was concentration-dependent, though an optimum concentration of hydrolase to synthetase could not be obtained. The lactating-rabbit mammary gland hydrolase altered the pattern of fatty acids synthesized by fatty acid synthetases prepared from cow, goat, sheep and rabbit lactating mammary glands, rabbit liver and cow adipose tissue. PMID:574008

  20. APPLICATION OF RADIOISOTOPES TO THE QUANTITATIVE CHROMATOGRAPHY OF FATTY ACIDS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Budzynski, A.Z.; Zubrzycki, Z.J.; Campbell, I.G.

    1959-10-31

    The paper reports work done on the use of I/sup 131/, Zn/sup 65/, Sr/sup 90/, Zr/sup 95/, Ce/sup 144/ for the quantitative estimation of fatty acids on paper chromatograms, and for determination of the degree of usaturation of components of resolved fatty acid mixtures. I/sup 131/ is used to iodinate unsaturated fatty acids, and the amount of such acids is determined from the radiochromatogram. The degree of unsaturation of fatty acids is determined by estimation of the specific activiiy of spots. The other isotopes have been examined from the point of view of their suitability for estimation of total amountsmore » of fatty acids by formation of insoluble radioactive soaps held on the chromatogram. In particular, work is reported on the quantitative estimation of saturated fatty acids by measurement of the activity of their insoluble soaps with radioactive metals. Various quantitative relationships are described between amount of fatty acid in spot and such parameters as radiometrically estimated spot length, width, maximum intensity, and integrated spot activity. A convenient detection apparatus for taking radiochromatograms is also described. In conjunction with conventional chromatographic methods for resolving fatty acids the method permits the estimation of composition of fatty acid mixtures obtained from biological material. (auth)« less

  1. Blood fatty acid changes in healthy young Americans in response to a 10-week diet that increased n-3 and reduced n-6 fatty acid consumption: a randomised controlled trial.

    PubMed

    Young, Andrew J; Marriott, Bernadette P; Champagne, Catherine M; Hawes, Michael R; Montain, Scott J; Johannsen, Neil M; Berry, Kevin; Hibbeln, Joseph R

    2017-05-01

    Military personnel generally under-consume n-3 fatty acids and overconsume n-6 fatty acids. In a placebo-controlled, double-blinded study, we investigated whether a diet suitable for implementation in military dining facilities and civilian cafeterias could benefit n-3/n-6 fatty acid status of consumers. Three volunteer groups were provided different diets for 10 weeks. Control (CON) participants consumed meals from the US Military's Standard Garrison Dining Facility Menu. Experimental, moderate (EXP-Mod) and experimental-high (EXP-High) participants consumed the same meals, but high n-6 fatty acid and low n-3 fatty acid containing chicken, egg, oils and food ingredients were replaced with products having less n-6 fatty acids and more n-3 fatty acids. The EXP-High participants also consumed smoothies containing 1000 mg n-3 fatty acids per serving, whereas other participants received placebo smoothies. Plasma and erythrocyte EPA and DHA in CON group remained unchanged throughout, whereas EPA, DHA and Omega-3 Index increased in EXP-Mod and EXP-High groups, and were higher than in CON group after 5 weeks. After 10 weeks, Omega-3 Index in EXP-High group had increased further. No participants exhibited changes in fasting plasma TAG, total cholesterol, LDL, HDL, mood or emotional reactivity. Replacing high linoleic acid (LA) containing foods in dining facility menus with similar high oleic acid/low LA and high n-3 fatty acid foods can improve n-6/n-3 blood fatty acid status after 5 weeks. The diets were well accepted and suitable for implementation in group feeding settings like military dining facilities and civilian cafeterias.

  2. Synthesis of fatty acids from [1-14C]acetylcoenzyme A in subcellular particles of rat epididymal adipose tissue

    PubMed Central

    Kanoh, H.; Lindsay, D. B.

    1972-01-01

    1. Mitochondrial and microsomal fractions of rat epididymal adipose tissue incorporated [1-14C]acetyl-CoA equally well into various fatty acids by a chain-elongation mechanism. C18 and C20 fatty acids were the two major products, and comprised about 80% of the total fatty acids synthesized in both particles. 2. When incubated in air, mitochondria synthesized stearic acid, octadecenoic acid and eicosamonoenoic acid in almost equal amounts (about 20% each), whereas in microsomal fractions, the synthesis of octadecenoic acid was more than fivefold the stearic acid formation. In both fractions, major components of synthesized monoenoic fatty acids were the Δ11:12 isomers. Hexadecenoic acid and octadecenoic acid from whole adipose tissue contained approx. 11 and 14% of the Δ11:12 isomer respectively. 3. When mitochondria or microsomal fractions were incubated in nitrogen, there was increased synthesis of stearic acid and palmitic acid and less of C16 and C18 monoenoic acids; synthesis of C20 acids remained predominantly of the monoenoic acids. Determination of the position of the double bond in the monoenoic acids supported the view that the synthesis of hexadecenoic acid and octadecenoic acid involves a desaturase activity, whereas eicosamonoenoic acid and eicosadienoic acid are formed only by elongation of endogenous fatty acids. 4. Most of the radioactivity was found in free fatty acids (63%) and the phospholipid (26%) fraction. In phospholipids, phosphatidylcholine and phosphatidylethanolamine were the two major components. 5. Most of the fatty acids synthesized, including those not normally found in particle lipids (arachidic acid, eicosamonoenoic acid and eicosadienoic acid) were distributed fairly evenly in the phospholipid and free fatty acid fractions. However, stearic acid was found predominantly in the phospholipid fraction. PMID:4638795

  3. Overexpression of human fatty acid transport protein 2/very long chain acyl-CoA synthetase 1 (FATP2/Acsvl1) reveals distinct patterns of trafficking of exogenous fatty acids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Melton, Elaina M.; Center for Cardiovascular Sciences, Albany Medical College, Albany, NY; Cerny, Ronald L.

    Highlights: •Roles of FATP2 in fatty acid transport/activation contribute to lipid homeostasis. •Use of 13C- and D-labeled fatty acids provide novel insights into FATP2 function. •FATP2-dependent trafficking of FA into phospholipids results in distinctive profiles. •FATP2 functions in the transport and activation pathways for exogenous fatty acids. -- Abstract: In mammals, the fatty acid transport proteins (FATP1 through FATP6) are members of a highly conserved family of proteins, which function in fatty acid transport proceeding through vectorial acylation and in the activation of very long chain fatty acids, branched chain fatty acids and secondary bile acids. FATP1, 2 and 4,more » for example directly function in fatty acid transport and very long chain fatty acids activation while FATP5 does not function in fatty acid transport but activates secondary bile acids. In the present work, we have used stable isotopically labeled fatty acids differing in carbon length and saturation in cells expressing FATP2 to gain further insights into how this protein functions in fatty acid transport and intracellular fatty acid trafficking. Our previous studies showed the expression of FATP2 modestly increased C16:0-CoA and C20:4-CoA and significantly increased C18:3-CoA and C22:6-CoA after 4 h. The increases in C16:0-CoA and C18:3-CoA suggest FATP2 must necessarily partner with a long chain acyl CoA synthetase (Acsl) to generate C16:0-CoA and C18:3-CoA through vectorial acylation. The very long chain acyl CoA synthetase activity of FATP2 is consistent in the generation of C20:4-CoA and C22:6-CoA coincident with transport from their respective exogenous fatty acids. The trafficking of exogenous fatty acids into phosphatidic acid (PA) and into the major classes of phospholipids (phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylinositol (PI), and phosphatidyserine (PS)) resulted in distinctive profiles, which changed with the expression of FATP2. The trafficking of exogenous C16:0 and C22:6 into PA was significant where there was 6.9- and 5.3-fold increased incorporation, respectively, over the control; C18:3 and C20:4 also trended to increase in the PA pool while there were no changes for C18:1 and C18:2. The trafficking of C18:3 into PC and PI trended higher and approached significance. In the case of C20:4, expression of FATP2 resulted in increases in all four classes of phospholipid, indicating little selectivity. In the case of C22:6, there were significant increases of this exogenous fatty acids being trafficking into PC and PI. Collectively, these data support the conclusion that FATP2 has a dual function in the pathways linking the transport and activation of exogenous fatty acids. We discuss the differential roles of FATP2 and its role in both fatty acid transport and fatty acid activation in the context of lipid homeostasis.« less

  4. Inhibition of hepatic lipogenesis by 2-tetradecylglycidic acid.

    PubMed

    McCune, S A; Nomura, T; Harris, R A

    1979-10-01

    2-Tetradecylglycidic acid (TDGA), a hypoglycemic agent, has been found to be a very effective inhibitor of de novo fatty acid synthesis by isolated hepatocytes. A comparison was made between the effectiveness of TDGA and 5-(tetradecyloxy)-2-furoic acid (TOFA), a hypolipidemic agent, on the metabolic processes of isolated hepatocytes. These compounds are structurally related and both inhibit fatty acid synthesis; however, they have opposite effects from each other on the oxidation and esterification of fatty acids. TDGA inhibits whereas TOFA stimulates fatty acid oxidation. TDGA stimulates whereas TOFA inhibits fatty acid esterification.

  5. Bioengineered Plants Can Be a Useful Source of Omega-3 Fatty Acids

    PubMed Central

    Lyu, Shan-Wu

    2017-01-01

    Omega-3 fatty acids have proven to be very essential for human health due to their multiple health benefits. These essential fatty acids (EFAs) need to be uptaken through diet because they are unable to be produced by the human body. These are important for skin and hair growth as well as for proper visual, neural, and reproductive functions of the body. These fatty acids are proven to be extremely vital for normal tissue development during pregnancy and infancy. Omega-3 fatty acids can be obtained mainly from two dietary sources: marine and plant oils. Eicosapentaenoic acid (EPA; C20:5 n-3) and docosahexaenoic acid (DHA; C22:6 n-3) are the primary marine-derived omega-3 fatty acids. Marine fishes are high in omega-3 fatty acids, yet high consumption of those fishes will cause a shortage of fish stocks existing naturally in the oceans. An alternative source to achieve the recommended daily intake of EFAs is the demand of today. In this review article, an attempt has, therefore, been made to discuss the importance of omega-3 fatty acids and the recent developments in order to produce these fatty acids by the genetic modifications of the plants. PMID:28316988

  6. Bioengineered Plants Can Be a Useful Source of Omega-3 Fatty Acids.

    PubMed

    Amjad Khan, Waleed; Chun-Mei, Hu; Khan, Nadeem; Iqbal, Amjad; Lyu, Shan-Wu; Shah, Farooq

    2017-01-01

    Omega-3 fatty acids have proven to be very essential for human health due to their multiple health benefits. These essential fatty acids (EFAs) need to be uptaken through diet because they are unable to be produced by the human body. These are important for skin and hair growth as well as for proper visual, neural, and reproductive functions of the body. These fatty acids are proven to be extremely vital for normal tissue development during pregnancy and infancy. Omega-3 fatty acids can be obtained mainly from two dietary sources: marine and plant oils. Eicosapentaenoic acid (EPA; C20:5 n-3) and docosahexaenoic acid (DHA; C22:6 n-3) are the primary marine-derived omega-3 fatty acids. Marine fishes are high in omega-3 fatty acids, yet high consumption of those fishes will cause a shortage of fish stocks existing naturally in the oceans. An alternative source to achieve the recommended daily intake of EFAs is the demand of today. In this review article, an attempt has, therefore, been made to discuss the importance of omega-3 fatty acids and the recent developments in order to produce these fatty acids by the genetic modifications of the plants.

  7. A study of bone marrow and subcutaneous fatty acid composition in subjects of varying bone mineral density.

    PubMed

    Griffith, James F; Yeung, David K W; Ahuja, Anil T; Choy, Carol W Y; Mei, Wong Yin; Lam, Sherlock S L; Lam, T P; Chen, Zhen-Yu; Leung, Ping C

    2009-06-01

    Osteoporosis is associated with an increase in marrow fat. Fats, particularly polyunsaturated fats, either in co-cultures or diet, have been shown to significantly influence bone remodeling. Whether the increase in marrow fat seen in osteoporosis is also associated with a change in fatty acid composition is not known. This study was undertaken to investigate the fatty acid composition in subjects of varying bone mineral density (BMD). Samples of marrow fat and subcutaneous fat from 126 subjects (98 females, 34 males, mean age 69.7+/-10.5 years) undergoing orthopedic surgery were analyzed for fatty acid composition by gas chromatography. These results were correlated with BMD assessed by DXA. A total of 22 fatty acids were identified in marrow and subcutaneous fat. Significant differences in fatty acid composition existed between marrow and subcutaneous fat as well as between marrow fat samples obtained from the proximal femur and proximal tibia. Other than cis-7-hexadecenoic acid [C16:1 (n=9)] and docosanoic acid [C22:0], no difference in marrow fatty acid composition was evident between subject groups of varying BMD (normal, low bone mass, and osteoporosis). In conclusion, there exists a wide range of individual fatty acids in marrow fat. Marrow fatty acid composition differs from that of subcutaneous fat and varies between predominantly erythropoetic and fatty marrow sites. Other than cis-7-hexadecenoic acid [C16:1 (n=9)] and docosanoic acid [C22:0], no difference in marrow fatty acid composition was evident between subjects of varying BMD.

  8. The effect of pH on the toxicity of fatty acids and fatty acid amides to rainbow trout gill cells.

    PubMed

    Bertin, Matthew J; Voronca, Delia C; Chapman, Robert W; Moeller, Peter D R

    2014-01-01

    Harmful algal blooms (HABs) expose aquatic organisms to multiple physical and chemical stressors during an acute time period. Algal toxins themselves may be altered by water chemistry parameters affecting their bioavailability and resultant toxicity. The purpose of this study was to determine the effects of two abiotic parameters (pH, inorganic metal salts) on the toxicity of fatty acid amides and fatty acids, two classes of lipids produced by harmful algae, including the golden alga, Prymnesium parvum, that are toxic to aquatic organisms. Rainbow trout gill cells were used as a model of the fish gill and exposed to single compounds and mixtures of compounds along with variations in pH level and concentration of inorganic metal salts. We employed artificial neural networks (ANNs) and standard ANOVA statistical analysis to examine and predict the effects of these abiotic parameters on the toxicity of fatty acid amides and fatty acids. Our results demonstrate that increasing pH levels increases the toxicity of fatty acid amides and inhibits the toxicity of fatty acids. This phenomenon is reversed at lower pH levels. Exposing gill cells to complex mixtures of chemical factors resulted in dramatic increases in toxicity compared to tests of single compounds for both the fatty acid amides and fatty acids. These findings highlight the potential of physicochemical factors to affect the toxicity of chemicals released during algal blooms and demonstrate drastic differences in the effect of pH on fatty acid amides and fatty acids. Published by Elsevier B.V.

  9. Apicoplast and Endoplasmic Reticulum Cooperate in Fatty Acid Biosynthesis in Apicomplexan Parasite Toxoplasma gondii*

    PubMed Central

    Ramakrishnan, Srinivasan; Docampo, Melissa D.; MacRae, James I.; Pujol, François M.; Brooks, Carrie F.; van Dooren, Giel G.; Hiltunen, J. Kalervo; Kastaniotis, Alexander J.; McConville, Malcolm J.; Striepen, Boris

    2012-01-01

    Apicomplexan parasites are responsible for high impact human diseases such as malaria, toxoplasmosis, and cryptosporidiosis. These obligate intracellular pathogens are dependent on both de novo lipid biosynthesis as well as the uptake of host lipids for biogenesis of parasite membranes. Genome annotations and biochemical studies indicate that apicomplexan parasites can synthesize fatty acids via a number of different biosynthetic pathways that are differentially compartmentalized. However, the relative contribution of each of these biosynthetic pathways to total fatty acid composition of intracellular parasite stages remains poorly defined. Here, we use a combination of genetic, biochemical, and metabolomic approaches to delineate the contribution of fatty acid biosynthetic pathways in Toxoplasma gondii. Metabolic labeling studies with [13C]glucose showed that intracellular tachyzoites synthesized a range of long and very long chain fatty acids (C14:0–26:1). Genetic disruption of the apicoplast-localized type II fatty-acid synthase resulted in greatly reduced synthesis of saturated fatty acids up to 18 carbons long. Ablation of type II fatty-acid synthase activity resulted in reduced intracellular growth that was partially restored by addition of long chain fatty acids. In contrast, synthesis of very long chain fatty acids was primarily dependent on a fatty acid elongation system comprising three elongases, two reductases, and a dehydratase that were localized to the endoplasmic reticulum. The function of these enzymes was confirmed by heterologous expression in yeast. This elongase pathway appears to have a unique role in generating very long unsaturated fatty acids (C26:1) that cannot be salvaged from the host. PMID:22179608

  10. FadD Is Required for Utilization of Endogenous Fatty Acids Released from Membrane Lipids ▿ †

    PubMed Central

    Pech-Canul, Ángel; Nogales, Joaquina; Miranda-Molina, Alfonso; Álvarez, Laura; Geiger, Otto; Soto, María José; López-Lara, Isabel M.

    2011-01-01

    FadD is an acyl coenzyme A (CoA) synthetase responsible for the activation of exogenous long-chain fatty acids (LCFA) into acyl-CoAs. Mutation of fadD in the symbiotic nitrogen-fixing bacterium Sinorhizobium meliloti promotes swarming motility and leads to defects in nodulation of alfalfa plants. In this study, we found that S. meliloti fadD mutants accumulated a mixture of free fatty acids during the stationary phase of growth. The composition of the free fatty acid pool and the results obtained after specific labeling of esterified fatty acids with a Δ5-desaturase (Δ5-Des) were in agreement with membrane phospholipids being the origin of the released fatty acids. Escherichia coli fadD mutants also accumulated free fatty acids released from membrane lipids in the stationary phase. This phenomenon did not occur in a mutant of E. coli with a deficient FadL fatty acid transporter, suggesting that the accumulation of fatty acids in fadD mutants occurs inside the cell. Our results indicate that, besides the activation of exogenous LCFA, in bacteria FadD plays a major role in the activation of endogenous fatty acids released from membrane lipids. Furthermore, expression analysis performed with S. meliloti revealed that a functional FadD is required for the upregulation of genes involved in fatty acid degradation and suggested that in the wild-type strain, the fatty acids released from membrane lipids are degraded by β-oxidation in the stationary phase of growth. PMID:21926226

  11. Four Trypanosoma brucei fatty acyl-CoA synthetases: fatty acid specificity of the recombinant proteins.

    PubMed Central

    Jiang, D W; Englund, P T

    2001-01-01

    As part of our investigation of fatty acid metabolism in Trypanosoma brucei, we have expressed four acyl-CoA synthetase (TbACS) genes in Esherichia coli. The recombinant proteins, with His-tags on their C-termini, were purified to near homogeneity using nickel-chelate affinity chromatography. Although these enzymes are highly homologous, they have distinct specificities for fatty acid chain length. TbACS1 prefers saturated fatty acids in the range C(11:0) to C(14:0) and TbACS2 prefers shorter fatty acids, mainly C(10:0). TbACS3 and 4, which have 95% sequence identity, have similar specificities, favouring fatty acids between C(14:0) and C(17:0). In addition, TbACS1, 3 and 4 function well with a variety of unsaturated fatty acids. PMID:11535136

  12. The effects of n-3 fatty acid deficiency and repletion upon the fatty acid composition and function of the brain and retina.

    PubMed

    Connor, W E; Neuringer, M

    1988-01-01

    It is now apparent that both n-6 and n-3 fatty acids are essential for normal development in mammals, and that each has specific functions in the body. N-6 fatty acids are necessary primarily for growth, reproduction, and the maintenance of skin integrity, whereas n-3 fatty acids are involved in the development and function of the retina and cerebral cortex and perhaps other organs such as the testes. Fetal life and infancy are particularly critical for the nervous tissue development. Therefore, with respect to human nutrition, adequate amounts of omega-3 fatty acids should be provided during pregnancy, lactation and infancy, but probably throughout life. We estimate that adequate levels are provided by diets containing 6-8% kcals from linoleic acid and 1% from n-3 fatty acids (alpha-linolenic acid, EPA and DHA), resulting in a ratio of n-6 to n-3 fatty acids of 4:1 to 10:1. The essentiality of n-3 fatty acids resides in their presence as DHA in vital membranes of the photoreceptors of the retina and the synaptosomes and other subcellular membranes of the brain. The replacement of DHA in deficient animals by the n-6 fatty acid, 22:5, results in abnormal functioning of the membranes for reasons as yet to be ascertained. Most significant is the lability of fatty acid composition in the retinal and brain of deficient animals. Dietary fish oil, which contains EPA and DHA, will readily lead to a change in the composition of the membrane of retina and brain, fatty acids, with DHA replacing the n-6 fatty acid, 22:5. The interrelationships between the chemistry of neural and retinal membranes as affected by diet and their biological functioning provides an exciting prospect for future investigations.

  13. A Thioesterase Bypasses the Requirement for Exogenous Fatty Acids in the plsX Deletion of Streptococcus pneumoniae

    PubMed Central

    Parsons, Joshua B.; Frank, Matthew W.; Eleveld, Marc J.; Schalkwijk, Joost; Broussard, Tyler C.; de Jonge, Marien I.; Rock, Charles O.

    2015-01-01

    Summary PlsX is an acyl-acyl carrier protein (ACP):phosphate transacylase that interconverts the two acyl donors in Gram-positive bacterial phospholipid synthesis. The deletion of plsX in Staphylococcus aureus results in a requirement for both exogenous fatty acids and de novo type II fatty acid biosynthesis. Deletion of plsX (SP0037) in Streptococcus pneumoniae did not result in an auxotrophic phenotype. The ΔplsX S. pneumoniae strain was refractory to myristic acid-dependent growth arrest, and unlike the wild-type strain, was susceptible to fatty acid synthesis inhibitors in the presence of exogenous oleate. The ΔplsX strain contained longer-chain saturated fatty acids imparting a distinctly altered phospholipid molecular species profile. An elevated pool of 18- and 20-carbon saturated fatty acids was detected in the ΔplsX strain. A S. pneumoniae thioesterase (TesS, SP1408) hydrolyzed acyl-ACP in vitro, and the ΔtesS ΔplsX double knockout strain was a fatty acid auxotroph. Thus, the TesS thioesterase hydrolyzed the accumulating acyl-ACP in the ΔplsX strain to liberate fatty acids that were activated by fatty acid kinase to bypass a requirement for extracellular fatty acid. This work identifies tesS as the gene responsible for the difference in exogenous fatty acid growth requirement of the ΔplsX strains of S. aureus and S. pneumoniae. PMID:25534847

  14. The influence of major dietary fatty acids on insulin secretion and action.

    PubMed

    López, Sergio; Bermúdez, Beatriz; Abia, Rocío; Muriana, Francisco J G

    2010-02-01

    To briefly summarize recent advances towards understanding the influence of major dietary fatty acids on beta-cell function and evaluate their implications for insulin resistance. Studies in humans have shown that beta-cell function and insulin sensitivity improve progressively in the postprandial period as the proportion of monounsaturated fatty acids (MUFAs) with respect to saturated fatty acids (SFAs) in dietary fats increases. However, cell-culture experiments have revealed a dichotomy in the ability of fatty acids to moderate hyperactivity of, and induce lipotoxicity in, beta-cells. There are also some novel findings regarding the ability of HDL to protect beta-cells against oxidized LDL-induced apoptosis in vitro and of reconstituted HDL to attenuate insulin resistance in vivo. These findings raise new questions regarding the contribution of dietary fatty acids to insulin secretion and action. These new findings point to a critical role for major dietary fatty acids in the etiology and pathogenesis of diabetes, which appears to be of particular relevance during postprandial periods and mainly depends on the fatty acid type. This underscores the importance of dietary fatty acids in standard diabetes management.

  15. Fatty acid composition of Swedish bakery products, with emphasis on trans-fatty acids.

    PubMed

    Trattner, Sofia; Becker, Wulf; Wretling, Sören; Öhrvik, Veronica; Mattisson, Irene

    2015-05-15

    Trans-fatty acids (TFA) have been associated with increased risk of coronary heart disease, by affecting blood lipids and inflammation factors. Current nutrition recommendations emphasise a limitation of dietary TFA intake. The aim of this study was to investigate fatty acid composition in sweet bakery products, with emphasis on TFA, on the Swedish market and compare fatty acid composition over time. Products were sampled in 2001, 2006 and 2007 and analysed for fatty acid composition by using GC. Mean TFA levels were 0.7% in 2007 and 5.9% in 2001 of total fatty acids. In 1995-97, mean TFA level was 14.3%. In 2007, 3 of 41 products had TFA levels above 2% of total fatty acids. TFA content had decreased in this product category, while the proportion of saturated (SFA) and polyunsaturated (PUFA) fatty acids had increased, mostly through increased levels of 16:0 and 18:2 n-6, respectively. The total fat content remained largely unchanged. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  16. Lipid and fatty acid analysis of the Plodia interpunctella granulosis virus (PiGV) envelope

    NASA Technical Reports Server (NTRS)

    Shastri-Bhalla, K.; Funk, C. J.; Consigli, R. A.; Spooner, B. S. (Principal Investigator)

    1993-01-01

    Virus envelope was isolated from Plodia interpunctella granulosis virus, produced in early fourth-instar larvae. Both polar and neutral lipids were analyzed by two-dimensional thin-layer chromatography. Fatty acid composition of various individual neutral and polar lipids was determined by gas-liquid chromatography. The major components of envelope neutral lipid were diacylglycerols. Palmitic acid and stearic acid were the major saturated fatty acids in both polar and neutral lipids. Whereas palmitoleic acid was the major unsaturated fatty acids in neutral lipids, oleic acid was the major unsaturated fatty acid in the polar lipids.

  17. DBDA as a Novel Matrix for the Analyses of Small Molecules and Quantification of Fatty Acids by Negative Ion MALDI-TOF MS

    NASA Astrophysics Data System (ADS)

    Ling, Ling; Li, Ying; Wang, Sheng; Guo, Liming; Xiao, Chunsheng; Chen, Xuesi; Guo, Xinhua

    2018-01-01

    Matrix interference ions in low mass range has always been a concern when using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) to analyze small molecules (<500 Da). In this work, a novel matrix, N1,N4-dibenzylidenebenzene-1,4-diamine (DBDA) was synthesized for the analyses of small molecules by negative ion MALDI-TOF MS. Notably, only neat ions ([M-H]-) of fatty acids without matrix interference appeared in the mass spectra and the limit of detection (LOD) reached 0.3 fmol. DBDA also has great performance towards other small molecules such as amino acids, peptides, and nucleotide. Furthermore, with this novel matrix, the free fatty acids in serum were quantitatively analyzed based on the correlation curves with correlation coefficient of 0.99. In addition, UV-Vis experiments and molecular orbital calculations were performed to explore mechanism about DBDA used as matrix in the negative ion mode. The present work shows that the DBDA matrix is a highly sensitive matrix with few interference ions for analysis of small molecules. Meanwhile, DBDA is able to precisely quantify the fatty acids in real biological samples. [Figure not available: see fulltext.

  18. Growth effect on liver fatty acid composition of damselfishes genus Abudefduf collected in coral reef habitats of the Malaysian South China Sea.

    PubMed

    Arai, Takaomi; Amalina, Razikin; Bachok, Zainudin

    2015-01-01

    In order to understand feeding ecology, habitat use and migration of coral reef fish, fatty acid composition was examined in damselfish species Abudefduf bengalensis and A. sexfasciatus collected in the Malaysian South China Sea. Proportions of saturated fatty acids (SAFA) ranged from 49.5% to 74.2%, with the highest proportions in fatty acids, the second highest was monounsaturated fatty acids (MUFA) ranged from 21.4% to 47.4% and the proportion of polyunsaturated fatty acids (PUFA) was the lowest ranged from 3.1% to 6.0%. Palmitic acid (16:0) was the most common in SAFA, oleic acid (C18:1ω9c) was the dominant in MUFA and linolenic acid (C18:3n3) showed the highest proportion in PUFA. Fatty acid concentrations, especially in SAFA and MUFA, could be related to physiological condition, sexual development, and recent feeding events. The diet shift revealed by the fatty acid composition suggests changes in habitat use and migration scale in coral reef environment of genus Abudefduf.

  19. ω-Alkynyl lipid surrogates for polyunsaturated fatty acids: free radical and enzymatic oxidations.

    PubMed

    Beavers, William N; Serwa, Remigiusz; Shimozu, Yuki; Tallman, Keri A; Vaught, Melissa; Dalvie, Esha D; Marnett, Lawrence J; Porter, Ned A

    2014-08-13

    Lipid and lipid metabolite profiling are important parameters in understanding the pathogenesis of many diseases. Alkynylated polyunsaturated fatty acids are potentially useful probes for tracking the fate of fatty acid metabolites. The nonenzymatic and enzymatic oxidations of ω-alkynyl linoleic acid and ω-alkynyl arachidonic acid were compared to that of linoleic and arachidonic acid. There was no detectable difference in the primary products of nonenzymatic oxidation, which comprised cis,trans-hydroxy fatty acids. Similar hydroxy fatty acid products were formed when ω-alkynyl linoleic acid and ω-alkynyl arachidonic acid were reacted with lipoxygenase enzymes that introduce oxygen at different positions in the carbon chains. The rates of oxidation of ω-alkynylated fatty acids were reduced compared to those of the natural fatty acids. Cyclooxygenase-1 and -2 did not oxidize alkynyl linoleic but efficiently oxidized alkynyl arachidonic acid. The products were identified as alkynyl 11-hydroxy-eicosatetraenoic acid, alkynyl 11-hydroxy-8,9-epoxy-eicosatrienoic acid, and alkynyl prostaglandins. This deviation from the metabolic profile of arachidonic acid may limit the utility of alkynyl arachidonic acid in the tracking of cyclooxygenase-based lipid oxidation. The formation of alkynyl 11-hydroxy-8,9-epoxy-eicosatrienoic acid compared to alkynyl prostaglandins suggests that the ω-alkyne group causes a conformational change in the fatty acid bound to the enzyme, which reduces the efficiency of cyclization of dioxalanyl intermediates to endoperoxide intermediates. Overall, ω-alkynyl linoleic acid and ω-alkynyl arachidonic acid appear to be metabolically competent surrogates for tracking the fate of polyunsaturated fatty acids when looking at models involving autoxidation and oxidation by lipoxygenases.

  20. Efficient enzymatic production of hydroxy fatty acids by linoleic acid Δ9 hydratase from Lactobacillus plantarum AKU 1009a.

    PubMed

    Takeuchi, M; Kishino, S; Park, S-B; Hirata, A; Kitamura, N; Saika, A; Ogawa, J

    2016-05-01

    This study aims to produce hydroxy fatty acids efficiently. Escherichia coli overexpressing linoleic acid Δ9 hydratase from Lactobacillus plantarum AKU 1009a was employed to produce hydroxy fatty acids with industrial potential. We found that 280 g l(-1) of linoleic acid (1 mol l(-1)) was converted into (S)-10-hydoxy-cis-12-octadecenoic acid (HYA) with a high conversion rate of 98% (mol/mol) and more than 99·9% enantiomeric excess (e.e.) by recombinant E. coli cells in the presence of FAD and NADH. In the same way, many kinds of C18 unsaturated fatty acids with Δ9 carbon double bond (280 g l(-1)) were converted into corresponding 10-hydroxy fatty acids with the conversion rates over 95% (mol/mol). We also produced HYA at a high rate of accumulation (289 g l(-1) ) with a high yield (97 mol%) in a reaction mixture that contained glucose instead of NADH. We developed a process for producing several types of hydroxy fatty acids with high accumulation rates and high yields. Hydroxy fatty acids are important materials for the chemical, food, cosmetic and pharmaceutical industries, and thus they have recently attracted much interest in a variety of research fields. However, the mass production of hydroxy fatty acids has been limited. This method of hydroxy fatty acids production will facilitate the widespread application of hydroxy fatty acids in various industries. © 2016 The Society for Applied Microbiology.

  1. Effect of fatty acids on self-assembly of soybean lecithin systems.

    PubMed

    Godoy, C A; Valiente, M; Pons, R; Montalvo, G

    2015-07-01

    With the increasing interest in natural formulations for drug administration and functional foods, it is desirable a good knowledge of the phase behavior of lecithin/fatty acid formulations. Phase structure and properties of ternary lecithin/fatty acids/water systems are studied at 37°C, making emphasis in regions with relatively low water and fatty acid content. The effect of fatty acid saturation degree on the phase microstructure is studied by comparing a fully saturated (palmitic acid, C16:0), monounsaturated (oleic acid, C18:1), and diunsaturated (linoleic acid, C18:2) fatty acids. Phase determinations are based on a combination of polarized light microscopy and small-angle X-ray scattering measurements. Interestingly, unsaturated (oleic acid and linoleic acid) fatty acid destabilizes the lamellar bilayer. Slight differences are observed between the phase diagrams produced by the unsaturated ones: small lamellar, medium cubic and large hexagonal regions. A narrow isotropic fluid region also appears on the lecithin-fatty acid axis, up to 8wt% water. In contrast, a marked difference in phase microsctructure was observed between unsaturated and saturated systems in which the cubic and isotropic fluid phases are not formed. These differences are, probably, a consequence of the high Krafft point of the C16 saturated chains that imply rather rigid chains. However, unsaturated fatty acids result in more flexible tails. The frequent presence of, at least, one unsaturated chain in phospholipids makes it very likely a better mixing situation than in the case of more rigid chains. This swelling potential favors the formation of reverse hexagonal, cubic, and micellar phases. Both unsaturated fatty acid systems evolve by aging, with a reduction of the extension of reverse hexagonal phase and migration of the cubic phase to lower fatty acid and water contents. The kinetic stability of the systems seems to be controlled by the unsaturation of fatty acids. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. [Bibliometric and thematic analysis of the scientific literature about omega-3 fatty acids indexed in international databases on health sciences].

    PubMed

    Sanz-Valero, J; Gil, Á; Wanden-Berghe, C; Martínez de Victoria, E

    2012-11-01

    To evaluate by bibliometric and thematic analysis the scientific literature on omega-3 fatty acids indexed in international databases on health sciences and to establish a comparative base for future analysis. Searches were conducted with the descriptor (MeSH, as Major Topic) "Fatty Acids, Omega-3" from the first date available until December 31, 2010. Databases consulted: MEDLINE (via PubMed), EMBASE, ISI Web of Knowledge, CINAHL and LILACS. The most common type of document was originals articles. Obsolescence was set at 5 years. The geographical distribution of authors who appear as first author was EEUU and the articles were written predominantly in English. The study population was 90.98% (95% CI 89.25 to 92.71) adult humans. The documents were classified into 59 subject areas and the most studied topic 16.24% (95% CI 14.4 to 18.04) associated with omega-3, was cardiovascular disease. This study indicates that the scientific literature on omega-3 fatty acids is a full force area of knowledge. The Anglo-Saxon institutions dominate the scientific production and it is mainly oriented to the study of cardiovascular disease.

  3. Effects of canola and corn oil mimetic on Jurkat cells

    PubMed Central

    2011-01-01

    Background The Western diet is high in omega-6 fatty acids and low in omega-3 fatty acids. Canola oil contains a healthier omega 3 to omega 6 ratio than corn oil. Jurkat T leukemia cells were treated with free fatty acids mixtures in ratios mimicking that found in commercially available canola oil (7% α-linolenic, 30% linoleic, 54% oleic) or corn oil (59% linoleic, 24% oleic) to determine the cell survival or cell death and changes in expression levels of inflammatory cytokines and receptors following oil treatment. Methods Fatty acid uptake was assessed by gas chromatography. Cell survival and cell death were evaluated by cell cycle analyses, propidium-iodide staining, trypan blue exclusion and phosphatidylserine externalization. mRNA levels of inflammatory cytokines and receptors were assessed by RT-PCR. Results There was a significant difference in the lipid profiles of the cells after treatment. Differential action of the oils on inflammatory molecules, following treatment at non-cytotoxic levels, indicated that canola oil mimetic was anti-inflammatory whereas corn oil mimetic was pro-inflammatory. Significance These results indicate that use of canola oil in the diet instead of corn oil might be beneficial for diseases promoted by inflammation. PMID:21631947

  4. Fatty acids composition of Caenorhabditis elegans using accurate mass GCMS-QTOF

    PubMed Central

    Henry, Parise; Owopetu, Olufunmilayo; Adisa, Demilade; Nguyen, Thao; Anthony, Kevin; Ijoni-Animadu, David; Jamadar, Sakha; Abdel-Rahman, Fawzia; Saleh, Mahmoud A.

    2016-01-01

    The free living nematode Caenorhabditis elegans is a proven model organism for lipid metabolism research. Total lipids of C. elegans were extracted using chloroform, methanol 2:1(v/v). Fatty acids composition of the extracted total lipids were converted to their corresponding methyl esters (FAMEs) and analyzed by gas chromatography/accurate mass quadrupole time of flight mass spectrometry (GCMS-QTOF) using both electron ionization (EI) and chemical ionization (CI) techniques. 28 fatty acids consisting of 12 to 22 carbon atoms were identified, 65% of them were unsaturated. Fatty acids containing 12 to 17 carbons were mostly saturated with stearic acid (18:0) as the major constituent. Several branched-chain fatty acids were identified. Methyl-14-methylhexadecanoate (iso-17:0) was the major identified branched fatty acid. This is the first report to detect the intact molecular parent ions of the identified fatty acids using chemical ionization compared to electron ionization which produced fragmentations of the fatty acids methyl esters (FAMEs). PMID:27166662

  5. Proximate composition, fatty acid analysis and protein digestibility-corrected amino acid score of three Mediterranean cephalopods.

    PubMed

    Zlatanos, Spiros; Laskaridis, Kostas; Feist, Christian; Sagredos, Angelos

    2006-10-01

    Proximate composition, fatty acid analysis and protein digestibility-corrected amino acid score (PDCAAS) in three commercially important cephalopods of the Mediterranean sea (cuttlefish, octopus and squid) were determined. The results of the proximate analysis showed that these species had very high protein:fat ratios similar to lean beef. Docosahexaenoic, palmitic and eicosipentaenoic acid were the most abundant fatty acids among analyzed species. The amount of n-3 fatty acids was higher than that of saturated, monounsaturated and n-6 fatty acids. Despite the fact that cephalopods contain small amounts of fat they were found quite rich in n-3 fatty acids. Finally, PDCAAS indicated that these organisms had a very good protein quality.

  6. Fatty Acids Present in the Lipopolysaccharide of Rhizobium trifolii

    PubMed Central

    Russa, R.; Lorkiewicz, Z.

    1974-01-01

    Approximately 70% of the fatty acids recovered after acid or alkaline hydrolysis of the lipopolysaccharide of Rhizobium trifolii were hydroxy fatty acids identified as hydroxymyristic and hydroxypalmitic acids. Palmitic acid was the only saturated fatty acid found in the lipopolysaccharide of R. trifolii. Octadecenoic and a small amount of hexadecenoic acids were also identified. The results of BF3 methanolysis and hydroxylaminolysis suggest that hydroxypalmitic acid is N-acyl bound. PMID:4852028

  7. 10-oxo-12(Z)-octadecenoic acid, a linoleic acid metabolite produced by gut lactic acid bacteria, potently activates PPARγ and stimulates adipogenesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goto, Tsuyoshi, E-mail: tgoto@kais.kyoto-u.ac.jp; Research Unit for Physiological Chemistry, The Center for the Promotion of Interdisciplinary Education and Research, Kyoto University; Kim, Young-Il

    2015-04-17

    Our previous study has shown that gut lactic acid bacteria generate various kinds of fatty acids from polyunsaturated fatty acids such as linoleic acid (LA). In this study, we investigated the effects of LA and LA-derived fatty acids on the activation of peroxisome proliferator-activated receptors (PPARs) which regulate whole-body energy metabolism. None of the fatty acids activated PPARδ, whereas almost all activated PPARα in luciferase assays. Two fatty acids potently activated PPARγ, a master regulator of adipocyte differentiation, with 10-oxo-12(Z)-octadecenoic acid (KetoA) having the most potency. In 3T3-L1 cells, KetoA induced adipocyte differentiation via the activation of PPARγ, and increasedmore » adiponectin production and insulin-stimulated glucose uptake. These findings suggest that fatty acids, including KetoA, generated in gut by lactic acid bacteria may be involved in the regulation of host energy metabolism. - Highlights: • Most LA-derived fatty acids from gut lactic acid bacteria potently activated PPARα. • Among tested fatty acids, KetoA and KetoC significantly activated PPARγ. • KetoA induced adipocyte differentiation via the activation of PPARγ. • KetoA enhanced adiponectin production and glucose uptake during adipogenesis.« less

  8. Fatty acid composition of spermatozoa is associated with BMI and with semen quality.

    PubMed

    Andersen, J M; Rønning, P O; Herning, H; Bekken, S D; Haugen, T B; Witczak, O

    2016-09-01

    High body mass index (BMI) is negatively associated with semen quality. In addition, the composition of fatty acids of spermatozoa has been shown to be important for their function. The aim of the study was to examine the association between BMI and the composition of spermatozoa fatty acids in men spanning a broad BMI range. We also analysed the relation between fatty acid composition of spermatozoa and semen characteristics, and the relationship between serum fatty acids and spermatozoa fatty acids. One hundred forty-four men with unknown fertility status were recruited from the general population, from couples with identified female infertility and from morbid obesity centres. Standard semen analysis (WHO) and sperm DNA integrity (DFI) analysis were performed. Fatty acid compositions were assessed by gas chromatography. When adjusted for possible confounders, BMI was negatively associated with levels of sperm docosahexaenoic acid (DHA) (p < 0.001) and palmitic acid (p < 0.001). The amount of sperm DHA correlated positively with total sperm count (r = 0.482), sperm concentration (r = 0.469), sperm vitality (r = 0.354), progressive sperm motility (r = 0.431) and normal sperm morphology (r = 0.265). A negative association was seen between DHA levels and DNA fragmentation index (r = -0.247). Levels of spermatozoa palmitic acid correlated positively with total sperm count (r = 0.227), while levels of linoleic acid correlated negatively (r = -0.254). When adjusted for possible confounders, only the levels of arachidonic acid showed positive correlation between spermatozoa and serum phospholipids (r = 0.262). Changes in the fatty acid composition of spermatozoa could be one of the mechanisms underlying the negative association between BMI and semen quality. The relationship between fatty acids of spermatozoa and serum phospholipids was minor, which indicates that BMI affects fatty acid composition of spermatozoa through regulation of fatty acid metabolism in the testis. The role of dietary intake of fatty acids on the spermatozoa fatty acid composition remains to be elucidated. © 2016 American Society of Andrology and European Academy of Andrology.

  9. Dietary ALA, EPA and DHA have distinct effects on oxylipin profiles in female and male rat kidney, liver and serum.

    PubMed

    Leng, Shan; Winter, Tanja; Aukema, Harold M

    2018-04-18

    There is much data on the effects of dietary n-3 fatty acids on tissue fatty acid compositions, but comparable comprehensive data on their oxygenated metabolites (oxylipins) is limited. The effects of providing female and male rats with diets high in α-linolenic acid (ALA), EPA or DHA for 6 weeks on oxylipins and fatty acids in kidney, liver and serum were therefore examined. The oxylipin profile generally reflected fatty acids, but it also revealed unique effects of individual n-3 fatty acids that were not apparent from fatty acid data alone. Dietary ALA increased renal and serum DHA oxylipins even though DHA itself did not increase, while dietary EPA did not increase DHA oxylipins in kidney or liver, suggesting that high EPA may inhibit this conversion. Oxylipin data generally corroborated fatty acid data that indicated that DHA can be retroconverted to EPA and that further retroconversion to ALA is limited. Dietary n-3 fatty acids decreased n-6 fatty acids and their oxylipins (except linoleic acid and its oxylipins), in order of effectiveness of DHA > EPA > ALA, with some exceptions: several arachidonic acid oxylipins modified at carbon 15 were not lower in all three sites, and EPA had a greater effect on 12-hydroxy-eicosatetraenoic acid and its metabolites in the liver. Oxylipins were predominantly higher in males, which was not reflective of fatty acids. Tissue-specific oxylipin profiles, therefore, provide further information on individual dietary n-3 fatty acid and sex effects that may help explain their unique physiological effects and have implications for dietary recommendations. Copyright © 2018 Elsevier Inc. All rights reserved.

  10. Stable-isotope-based labeling of styrene-degrading microorganisms in biofilters.

    PubMed

    Alexandrino, M; Knief, C; Lipski, A

    2001-10-01

    Deuterated styrene ([(2)H(8)]styrene) was used as a tracer in combination with phospholipid fatty acid (PLFA) analysis for characterization of styrene-degrading microbial populations of biofilters used for treatment of waste gases. Deuterated fatty acids were detected and quantified by gas chromatography-mass spectrometry. The method was evaluated with pure cultures of styrene-degrading bacteria and defined mixed cultures of styrene degraders and non-styrene-degrading organisms. Incubation of styrene degraders for 3 days with [(2)H(8)]styrene led to fatty acids consisting of up to 90% deuterated molecules. Mixed-culture experiments showed that specific labeling of styrene-degrading strains and only weak labeling of fatty acids of non-styrene-degrading organisms occurred after incubation with [(2)H(8)]styrene for up to 7 days. Analysis of actively degrading filter material from an experimental biofilter and a full-scale biofilter by this method showed that there were differences in the patterns of labeled fatty acids. For the experimental biofilter the fatty acids with largest amounts of labeled molecules were palmitic acid (16:0), 9,10-methylenehexadecanoic acid (17:0 cyclo9-10), and vaccenic acid (18:1 cis11). These lipid markers indicated that styrene was degraded by organisms with a Pseudomonas-like fatty acid profile. In contrast, the most intensively labeled fatty acids of the full-scale biofilter sample were palmitic acid and cis-11-hexadecenoic acid (16:1 cis11), indicating that an unknown styrene-degrading taxon was present. Iso-, anteiso-, and 10-methyl-branched fatty acids showed no or weak labeling. Therefore, we found no indication that styrene was degraded by organisms with methyl-branched fatty fatty acids, such as Xanthomonas, Bacillus, Streptomyces, or Gordonia spp.

  11. Pyridoxine and its relation to lipids. Studies with pyridoxineless mutants of Aspergillus nidulans.

    PubMed

    Mohana, K; Shanmugasundaram, E R

    1978-01-01

    The effect of pyridoxine deficiency on fat metabolism was studied using mutant strains of Aspergillus nidulans requiring pyridoxine for growth. Under pyridoxine deficiency the mutants exhibited increased levels of total lipid, sterols, phospholipids, and triacylglycerols. Total fatty acids were found to decrease with pyridoxine deficiency. An increase in saturated fatty acids and decrease in unsaturated fatty acids were seen with deficiency. Pyridoxine deficiency also increased lower carbon chain fatty acids. A possible involvement of pyridoxine in the elongation of fatty acid chain and in the desaturation of fatty acids in Aspergillus nidulans is suggested.

  12. SCD1 inhibition causes cancer cell death by depleting mono-unsaturated fatty acids.

    PubMed

    Mason, Paul; Liang, Beirong; Li, Lingyun; Fremgen, Trisha; Murphy, Erin; Quinn, Angela; Madden, Stephen L; Biemann, Hans-Peter; Wang, Bing; Cohen, Aharon; Komarnitsky, Svetlana; Jancsics, Kate; Hirth, Brad; Cooper, Christopher G F; Lee, Edward; Wilson, Sean; Krumbholz, Roy; Schmid, Steven; Xiang, Yibin; Booker, Michael; Lillie, James; Carter, Kara

    2012-01-01

    Increased metabolism is a requirement for tumor cell proliferation. To understand the dependence of tumor cells on fatty acid metabolism, we evaluated various nodes of the fatty acid synthesis pathway. Using RNAi we have demonstrated that depletion of fatty-acid synthesis pathway enzymes SCD1, FASN, or ACC1 in HCT116 colon cancer cells results in cytotoxicity that is reversible by addition of exogenous fatty acids. This conditional phenotype is most pronounced when SCD1 is depleted. We used this fatty-acid rescue strategy to characterize several small-molecule inhibitors of fatty acid synthesis, including identification of TOFA as a potent SCD1 inhibitor, representing a previously undescribed activity for this compound. Reference FASN and ACC inhibitors show cytotoxicity that is less pronounced than that of TOFA, and fatty-acid rescue profiles consistent with their proposed enzyme targets. Two reference SCD1 inhibitors show low-nanomolar cytotoxicity that is offset by at least two orders of magnitude by exogenous oleate. One of these inhibitors slows growth of HCT116 xenograft tumors. Our data outline an effective strategy for interrogation of on-mechanism potency and pathway-node-specificity of fatty acid synthesis inhibitors, establish an unambiguous link between fatty acid synthesis and cancer cell survival, and point toward SCD1 as a key target in this pathway.

  13. [Effect of pregnancy and lactation on the nutritional status of essential fatty acids in rat].

    PubMed

    Araya, J; Barriga, C

    1996-08-01

    Pregnancy and lactation could be high risk situations for the development of essential fatty acid deficiencies. To study the effect of pregnancy and lactation on red blood cell phospholipids percentual fatty acid composition of virgin, pregnant and lactating rats. Twenty four pregnant rats of 50 +/- 1 days of age were supplement with soy and 24 with fish oil during 21 days. Twelve rats of each group were sacrificed after 18 days of lactation, twenty four non pregnant rats received soy oil and acted as controls of pregnant and lactating rats. Red blood cell phospholipid fatty acid composition was analyzed by gas chromatography. The percentage of total omega-6 fatty acids of red blood cell phospholipid was 37.8 +/- 5.9, 32.6 +/- 0.6 and 38.3 +/- 3.5% in non pregnant, pregnant and lactating rats respectively (p < 0.001). The figures for total omega-3 fatty acids were 6.33 +/- 1.52, 4.31 +/- 0.39 and 2.7 +/- 0.46 respectively (p < 0.001). There was no change in eicosatrienoic fatty acid percentage. Supplementation with fish oil reverted the decrease in omega-6 and omega-3 fatty acid percentage of pregnant and lactating rats. Pregnancy and lactation decrease the capacity to transform precursors of essential fatty acids in long chain polyunsaturated fatty acids.

  14. Sugar fatty acid esters inhibit biofilm formation by food-borne pathogenic bacteria

    PubMed Central

    Furukawa, Soichi; Akiyoshi, Yuko; O’Toole, George A.; Ogihara, Hirokazu; Morinaga, Yasushi

    2010-01-01

    Effects of food additives on biofilm formation by food-borne pathogenic bacteria were investigated. Thirty-three potential food additives and 3 related compounds were added to the culture medium at concentrations from 0.001 to 0.1% (w/w), followed by inoculation and cultivation of five biofilm-forming bacterial strains for the evaluation of biofilm formation. Among the tested food additives, 21 showed inhibitory effects of biofilm formation by Staphylococcus aureus and Escherichia coli, and in particular, sugar fatty acid esters showed significant anti-biofilm activity. Sugar fatty acid esters with long chain fatty acid residues (C14-16) exerted their inhibitory effect at the concentration of 0.001%(w/w), but bacterial growth was not affected at this low concentration. Activities of the sugar fatty acid esters positively correlated with the increase of the chain length of the fatty acid residues. Sugar fatty acid esters inhibited the initial attachment of the Staphylococcus aureus cells to the abiotic surface. Sugar fatty acid esters with long chain fatty acid residues (C14-16) also inhibited biofilm formation by Streptococcus mutans and Listeria monocytogenes at 0.01%(w/w), while the inhibition of biofilm formation by Pseudomonas aeruginosa required the addition of a far higher concentration (0.1%(w/w)) of the sugar fatty acid esters. PMID:20089325

  15. Egg fatty acid composition from lake trout fed two Lake Michigan prey fish species.

    USGS Publications Warehouse

    Honeyfield, D.C.; Fitzsimons, J.D.; Tillitt, D.E.; Brown, S.B.

    2009-01-01

    We previously demonstrated that there were significant differences in the egg thiamine content in lake trout Salvelinus namaycush fed two Lake Michigan prey fish (alewife Alosa pseudoharengus and bloater Coregonus hoyi). Lake trout fed alewives produced eggs low in thiamine, but it was unknown whether the consumption of alewives affected other nutritionally important components. In this study we investigated the fatty acid composition of lake trout eggs when females were fed diets that resulted in different egg thiamine concentrations. For 2 years, adult lake trout were fed diets consisting of four combinations of captured alewives and bloaters (100% alewives; 65% alewives, 35% bloaters; 35% alewives, 65% bloaters; and 100% bloaters). The alewife fatty acid profile had higher concentrations of arachidonic acid and total omega-6 fatty acids than the bloater profile. The concentrations of four fatty acids (cis-13, 16-docosadienoic, eicosapentaenoic, docosapentaenoic, and docosahexaenoic acids) were higher in bloaters than in alewives. Although six fatty acid components were higher in lake trout eggs in 2001 than in 2000 and eight fatty acids were lower, diet had no effect on any fatty acid concentration measured in lake trout eggs in this study. Based on these results, it appears that egg fatty acid concentrations differ between years but that the egg fatty acid profile does not reflect the alewife-bloater mix in the diet of adults. The essential fatty acid content of lake trout eggs from females fed alewives and bloaters appears to be physiologically regulated and adequate to meet the requirements of developing embryos.

  16. Long-chain n-3 and n-6 polyunsaturated fatty acids and risk of atrial fibrillation: Results from a Danish cohort study.

    PubMed

    Mortensen, Lotte Maxild; Lundbye-Christensen, Søren; Schmidt, Erik Berg; Calder, Philip C; Schierup, Mikkel Heide; Tjønneland, Anne; Parner, Erik T; Overvad, Kim

    2017-01-01

    Studies of the relation between polyunsaturated fatty acids and risk of atrial fibrillation have been inconclusive. The risk of atrial fibrillation may depend on the interaction between n-3 and n-6 polyunsaturated fatty acids as both types of fatty acids are involved in the regulation of systemic inflammation. We investigated the association between dietary intake of long chain polyunsaturated fatty acids (individually and in combination) and the risk of atrial fibrillation with focus on potential interaction between the two types of polyunsaturated fatty acids. The risk of atrial fibrillation in the Diet, Cancer and Health Cohort was analyzed using the pseudo-observation method to explore cumulative risks on an additive scale providing risk differences. Dietary intake of long chain polyunsaturated fatty acids was assessed by food frequency questionnaires. The main analyses were adjusted for the dietary intake of n-3 α-linolenic acid and n-6 linoleic acid to account for endogenous synthesis of long chain polyunsaturated fatty acids. Interaction was assessed as deviation from additivity of absolute association measures (risk differences). Cumulative risks in 15-year age periods were estimated in three strata of the cohort (N = 54,737). No associations between intake of n-3 or n-6 long chain polyunsaturated fatty acids and atrial fibrillation were found, neither when analyzed separately as primary exposures nor when interaction between n-3 and n-6 long chain polyunsaturated fatty acids was explored. This study suggests no association between intake of long chain polyunsaturated fatty acids and risk of atrial fibrillation.

  17. Identification and geochemical significance of sulphurized fatty acids in sedimentary organic matter from the Lorca Basin, SE Spain

    NASA Astrophysics Data System (ADS)

    Russell, Marie; Hartgers, Walter A.; Grimalt, Joan O.

    2000-11-01

    The presence of free sulphurized fatty acids in various sediment types (carbonates, marls, organic-rich shales) of the Messinian of the Lorca Basin, SE Spain, is reported. These compounds are found in the majority, but not all, of the samples from this basin which also contain sulphur-bound hydrocarbons. They constitute mixtures of C 16-C 26 linear fatty acids predominated by the C 18 homologues with thiophene, thiolane, and thiane rings attached at various chain positions, with the most abundant isomers being those with ring substitution at position C-9. The dominance of these isomers points to an early sulphurization process involving octadec-9,12-dienoic acid and/or octadeca-9-enoic acid, major lipid constituents of algae. In general, the alkylthiophene fatty acids are more abundant than the alkylthiolane or alkylthiane fatty acids. The presence of the sulphur moiety and structural identification was confirmed by GC-HRMS and by desulphurization of the fatty acid fraction. Desulphurization also showed that a portion of the sulphur containing fatty acids is intermolecularly bound to the polymeric organic matter. The samples exhibiting higher proportions of macromolecularly bound fatty acids were also those showing higher abundances of alkylthiolane or alkylthiane fatty acids. The identification of these compounds shows that the original algal lipids, including the fatty acid pool, can be effectively preserved in sedimentary samples by sulphurization. However, sulphur-bonding only occurs by addition to the unsaturated carbons. Thus, only unsaturated fatty acids are preserved, constituting a major bias in terms of the original sedimentary distributions.

  18. Saturated fats: a perspective from lactation and milk composition.

    PubMed

    German, J Bruce; Dillard, Cora J

    2010-10-01

    For recommendations of specific targets for the absolute amount of saturated fat intake, we need to know what dietary intake is most appropriate? Changing agricultural production and processing to lower the relative quantities of macronutrients requires years to accomplish. Changes can have unintended consequences on diets and the health of subsets of the population. Hence, what are the appropriate absolute amounts of saturated fat in our diets? Is the scientific evidence consistent with an optimal intake of zero? If not, is it also possible that a finite intake of saturated fats is beneficial to overall health, at least to a subset of the population? Conclusive evidence from prospective human trials is not available, hence other sources of information must be considered. One approach is to examine the evolution of lactation, and the composition of milks that developed through millennia of natural selective pressure and natural selection processes. Mammalian milks, including human milk, contain 50% of their total fatty acids as saturated fatty acids. The biochemical formation of a single double bond converting a saturated to a monounsaturated fatty acid is a pathway that exists in all eukaryotic organisms and is active within the mammary gland. In the face of selective pressure, mammary lipid synthesis in all mammals continues to release a significant content of saturated fatty acids into milk. Is it possible that evolution of the mammary gland reveals benefits to saturated fatty acids that current recommendations do not consider?

  19. Omega-3 fatty acids in baked freshwater fish from south of Brazil.

    PubMed

    Andrade, A D; Visentainer, J V; Matsushita, M; de Souza, N E

    1997-03-01

    Lipid and fatty acid levels in the edible flesh of 17 baked freshwater fish from Brazil's southern region were determined. Analyses of fatty acids methyl esters were performed by gas chromatography. Palmitic acid (C16:0) was the predominant saturated fatty acid, accouting for 50-70% of total saturated acids. Linoleic acid (C18:2 omega 6), linolenic acid (C18:3 omega 3), and docosahexaenoic acid (C22:6 omega 3) were the predominant polyunsatured fatty acids (PUFA). The data revealed that species such as barbado, corvina, pintado, and truta were good sources of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), and that most freshwater fish examined were good sources of PUFA-omega 3.

  20. Dietary protein deficiency affects n-3 and n-6 polyunsaturated fatty acids hepatic storage and very low density lipoprotein transport in rats on different diets.

    PubMed

    Bouziane, M; Prost, J; Belleville, J

    1994-04-01

    Fatty livers and the similarity between the skin lesions in kwashiorkor and those described in experimental essential fatty acid (EFA) deficiency have led to the hypothesis that protein and EFA deficiencies may both occur in chronic malnutrition. The relationship between serum very low density lipoprotein (VLDL) and hepatic lipid composition was studied after 28 d of protein depletion to determine the interactions between dietary protein levels and EFA availability. Rats were fed purified diets containing 20 or 2% casein and 5% fat as either soybean oil rich in EFA, or salmon oil rich in eicosapentaenoic (EPA) and docosahexaenoic (DHA) acids, or hydrogenated coconut oil poor in EFA. Animals were divided into six groups, SOC (20% casein + 5% soybean oil), SOd (2% casein + 5% soybean oil), COC (20% casein + 5% hydrogenated coconut oil), COd (2% casein + 5% hydrogenated coconut oil), SAC (20% casein + 5% salmon oil) and SAd (2% casein + 5% salmon oil). After 28 d, liver steatosis and reduced VLDL-phospholipid contents (P < 0.001) were observed in protein-deficient rats. In protein deficiency, triacylglycerol and phospholipid fatty acid compositions in both liver and VLDL showed a decreased polyunsaturated-to-saturated fatty acid ratio. This ratio was higher with the salmon oil diets and lower with the hydrogenated coconut oil diets. Furthermore, independent of the oil in the diet, protein deficiency decreased linoleic and arachidonic acids in VLDL phospholipids. Conversely, despite decreased proportions of EPA at low protein levels, DHA levels remained higher in rats fed salmon oil diets.(ABSTRACT TRUNCATED AT 250 WORDS)

  1. Short-chain free fatty acid receptors FFA2/GPR43 and FFA3/GPR41 as new potential therapeutic targets

    PubMed Central

    Ulven, Trond

    2012-01-01

    The deorphanization of the free fatty acid (FFA) receptors FFA1 (GPR40), FFA2 (GPR43), FFA3 (GPR41), GPR84, and GPR120 has made clear that the body is capable of recognizing and responding directly to nonesterified fatty acid of virtually any chain length. Colonic fermentation of dietary fiber produces high concentrations of the short-chain fatty acids (SCFAs) acetate, propionate and butyrate, a process which is important to health. The phylogenetically related 7-transmembrane (7TM) receptors free fatty acid receptor 2 (FFA2) and FFA3 are activated by these SCFAs, and several lines of evidence indicate that FFA2 and FFA3 mediate beneficial effects associated with a fiber-rich diet, and that they may be of interest as targets for treatment of inflammatory and metabolic diseases. FFA2 is highly expressed on immune cells, in particular neutrophils, and several studies suggest that the receptor plays a role in diseases involving a dysfunctional neutrophil response, such as inflammatory bowel disease (IBD). Both FFA2 and FFA3 have been implicated in metabolic diseases such as type 2 diabetes and in regulation of appetite. More research is however required to clarify the potential of the receptors as drug targets and establish if activation or inhibition would be the preferred mode of action. The availability of potent and selective receptor modulators is a prerequisite for these studies. The few modulators of FFA2 or FFA3 that have been published hitherto in the peer-reviewed literature in general have properties that make them less than ideal as such tools, but published patent applications indicate that better tool compounds might soon become available which should enable studies critical to validate the receptors as new drug targets. PMID:23060857

  2. Preventing AVF thrombosis: the rationale and design of the Omega-3 fatty acids (Fish Oils) and Aspirin in Vascular access OUtcomes in REnal Disease (FAVOURED) study.

    PubMed

    Irish, Ashley; Dogra, Gursharan; Mori, Trevor; Beller, Elaine; Heritier, Stephane; Hawley, Carmel; Kerr, Peter; Robertson, Amanda; Rosman, Johan; Paul-Brent, Peta-Anne; Starfield, Melissa; Polkinghorne, Kevan; Cass, Alan

    2009-01-21

    Haemodialysis (HD) is critically dependent on the availability of adequate access to the systemic circulation, ideally via a native arteriovenous fistula (AVF). The Primary failure rate of an AVF ranges between 20-54%, due to thrombosis or failure of maturation. There remains limited evidence for the use of anti-platelet agents and uncertainty as to choice of agent(s) for the prevention of AVF thrombosis. We present the study protocol for a randomised, double-blind, placebo-controlled, clinical trial examining whether the use of the anti-platelet agents, aspirin and omega-3 fatty acids, either alone or in combination, will effectively reduce the risk of early thrombosis in de novo AVF. The study population is adult patients with stage IV or V chronic kidney disease (CKD) currently on HD or where HD is planned to start within 6 months in whom a planned upper or lower arm AVF is to be the primary HD access. Using a factorial-design trial, patients will be randomised to aspirin or matching placebo, and also to omega-3 fatty acids or matching placebo, resulting in four treatment groups (aspirin placebo/omega-3 fatty acid placebo, aspirin/omega-3 fatty acid placebo, aspirin placebo/omega-3 fatty acid, aspirin/omega-3 fatty acid). Randomisation will be achieved using a dynamic balancing method over the two stratification factors of study site and upper versus lower arm AVF. The medication will be commenced pre-operatively and continued for 3 months post surgery. The primary outcome is patency of the AVF at three months after randomisation. Secondary outcome measures will include functional patency at six and twelve months, primary patency time, secondary (assisted) patency time, and adverse events, particularly bleeding. This multicentre Australian and New Zealand study has been designed to determine whether the outcome of surgery to create de novo AVF can be improved by the use of aspirin and/or omega-3 fatty acids. Recently a placebo-controlled trial has shown that clopidogrel is effective in safely preventing primary AVF thrombosis, but ineffective at increasing functional patency. Our study presents significant differences in the anti-platelet agents used, the study design, and surgical and patient demographics that should contribute further evidence regarding the efficacy of anti-platelet agents. Australia & New Zealand Clinical Trials Register (ACTRN12607000569404).

  3. Overexpression of Human Fatty Acid Transport Protein 2/Very Long Chain Acyl-CoA Synthetase 1 (FATP2/Acsvl1) Reveals Distinct Patterns of Trafficking of Exogenous Fatty Acids

    PubMed Central

    Melton, Elaina M.; Cerny, Ronald L.; DiRusso, Concetta C.; Black, Paul N.

    2014-01-01

    In mammals, the fatty acid transport proteins (FATP1 through FATP6) are members of a highly conserved family of proteins, which function in fatty acid transport proceeding through vectorial acylation and in the activation of very long chain fatty acids, branched chain fatty acids and secondary bile acids. FATP1, 2 and 4, for example directly function in fatty acid transport and very long chain fatty acids activation while FATP5 does not function in fatty acid transport but activates secondary bile acids. In the present work, we have used stable isotopically labeled fatty acids differing in carbon length and saturation in cells expressing FATP2 to gain further insights into how this protein functions in fatty acid transport and intracellular fatty acid trafficking. Our previous studies showed the expression of FATP2 modestly increased C16:0-CoA and C20:4-CoA and significantly increased C18:3-CoA and C22:6-CoA after 4hr. The increases in C16:0-CoA and C18:3-CoA suggest FATP2 must necessarily partner with a long chain acyl CoA synthetase (Acsl) to generate C16:0-CoA and C18:3-CoA through vectorial acylation. The very long chain acyl CoA synthetase activity of FATP2 is consistent in the generation of C20:4-CoA and C22:6-CoA coincident with transport from their respective exogenous fatty acids. The trafficking of exogenous fatty acids into phosphatidic acid (PA) and into the major classes of phospholipids (phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylinositol (PI), and phosphatidyserine (PS)) resulted in distinctive profiles, which changed with the expression of FATP2. The trafficking of exogenous C16:0 and C22:6 into PA was significant where there was 6.9- and 5.3-fold increased incorporation, respectively, over the control; C18:3 and C20:4 also trended to increase in the PA pool while there were no changes for C18:1 and C18:2. The trafficking of C18:3 into PC and PI trended higher and approached significance. In the case of C20:4, expression of FATP2 resulted in increases in all four classes of phospholipid, indicating little selectivity. In the case of C22:6, there were significant increases of this exogenous fatty acids being trafficking into PC and PI. Collectively, these data support the conclusion that FATP2 has a dual function in the pathways linking the transport and activation of exogenous fatty acids. We discuss the differential roles of FATP2 and its role in both fatty acid transport and fatty acid activation in the context of lipid homeostasis. PMID:24113382

  4. Overexpression of human fatty acid transport protein 2/very long chain acyl-CoA synthetase 1 (FATP2/Acsvl1) reveals distinct patterns of trafficking of exogenous fatty acids.

    PubMed

    Melton, Elaina M; Cerny, Ronald L; DiRusso, Concetta C; Black, Paul N

    2013-11-01

    In mammals, the fatty acid transport proteins (FATP1 through FATP6) are members of a highly conserved family of proteins, which function in fatty acid transport proceeding through vectorial acylation and in the activation of very long chain fatty acids, branched chain fatty acids and secondary bile acids. FATP1, 2 and 4, for example directly function in fatty acid transport and very long chain fatty acids activation while FATP5 does not function in fatty acid transport but activates secondary bile acids. In the present work, we have used stable isotopically labeled fatty acids differing in carbon length and saturation in cells expressing FATP2 to gain further insights into how this protein functions in fatty acid transport and intracellular fatty acid trafficking. Our previous studies showed the expression of FATP2 modestly increased C16:0-CoA and C20:4-CoA and significantly increased C18:3-CoA and C22:6-CoA after 4h. The increases in C16:0-CoA and C18:3-CoA suggest FATP2 must necessarily partner with a long chain acyl CoA synthetase (Acsl) to generate C16:0-CoA and C18:3-CoA through vectorial acylation. The very long chain acyl CoA synthetase activity of FATP2 is consistent in the generation of C20:4-CoA and C22:6-CoA coincident with transport from their respective exogenous fatty acids. The trafficking of exogenous fatty acids into phosphatidic acid (PA) and into the major classes of phospholipids (phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylinositol (PI), and phosphatidyserine (PS)) resulted in distinctive profiles, which changed with the expression of FATP2. The trafficking of exogenous C16:0 and C22:6 into PA was significant where there was 6.9- and 5.3-fold increased incorporation, respectively, over the control; C18:3 and C20:4 also trended to increase in the PA pool while there were no changes for C18:1 and C18:2. The trafficking of C18:3 into PC and PI trended higher and approached significance. In the case of C20:4, expression of FATP2 resulted in increases in all four classes of phospholipid, indicating little selectivity. In the case of C22:6, there were significant increases of this exogenous fatty acids being trafficking into PC and PI. Collectively, these data support the conclusion that FATP2 has a dual function in the pathways linking the transport and activation of exogenous fatty acids. We discuss the differential roles of FATP2 and its role in both fatty acid transport and fatty acid activation in the context of lipid homeostasis. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. Composition of fatty acids in the Varroa destructor mites and their hosts, Apis mellifera drone-prepupae.

    PubMed

    Dmitryjuk, Małgorzata; Zalewski, Kazimierz; Raczkowski, Marek; Żółtowska, Krystyna

    2015-01-01

    The fatty acid (FA) profile of lipids extracted from the Varroa destructor parasitic mite and its host, drone-prepupae of Apis mellifera, was determined by gas chromatography (GC). The percentages of saturated fatty acids (SFAs), monounsaturated fatty acids (MUFAs) and polyunsaturated fatty acids (PUFAs) were generally similar in parasites and their hosts. Fatty acids were arranged in the following descending order based on their content: MUFAs (ca. 52-55%), SFAs (ca. 41%) and PUFAs (ca. 3%). The predominant fatty acids were oleic acid (46% in mites, 44% in prepupae) and palmitic acid (23% and 30%, respectively). Varroa parasites differed from their hosts in the quantity of individual FAs and in their FA profiles. Three PUFAs noted in the host were not observed in parasitic mites, whereas the presence of C21:0, C24:0 and C22:1 FAs was reported in mites, but not in drones.

  6. Sensitive change of iso-branched fatty acid (iso-15:0) in Bacillus pumilus PAMC 23174 in response to environmental changes.

    PubMed

    Yi, Da-Hye; Sathiyanarayanan, Ganesan; Seo, Hyung Min; Kim, Jung-Ho; Bhatia, Shashi Kant; Kim, Yun-Gon; Park, Sung-Hee; Jung, Ji-Young; Lee, Yoo Kyung; Yang, Yung-Hun

    2016-01-01

    In this study, the environmental adaptive metabolic processes were investigated using a psychrotrophic polar bacterium Bacillus pumilus PAMC 23174 in response to various temperatures and nutrients, especially in regard to the synthesis of fatty acids. Fatty acid methyl ester analysis was performed using gas chromatography-mass spectrometry and we found that a sensitive changes in iso-branched fatty acid (iso-15:0) synthesis occurred when adjusting the nutritional ratio of branched chain fatty acids (anteiso/iso) with different temperatures, resulting in a change in the balance of anteiso- and iso-form fatty acids. We also observed that this Arctic bacterium preferred amino acid leucine for the synthesis of fatty acids. The increased and decreased synthesis of iso-form fatty acids in response to different temperatures and leucine preference, changes the fatty acid ratio in bacteria, which further affects the membrane fluidity and it is also directly correlated with survival of bacteria in an extreme environment. Hence, this study suggests that B. pumilus PAMC 23174 is a potential model organism for the analysis of the unique ecological adaptations of polar bacteria in changing and the extreme environments.

  7. Short branched-chain C6 carboxylic acids result in increased growth, novel 'unnatural' fatty acids and increased membrane fluidity in a Listeria monocytogenes branched-chain fatty acid-deficient mutant.

    PubMed

    Sen, Suranjana; Sirobhushanam, Sirisha; Hantak, Michael P; Lawrence, Peter; Brenna, J Thomas; Gatto, Craig; Wilkinson, Brian J

    2015-10-01

    Listeria monocytogenes is a psychrotolerant food borne pathogen, responsible for the high fatality disease listeriosis, and expensive food product recalls. Branched-chain fatty acids (BCFAs) of the membrane play a critical role in providing appropriate membrane fluidity and optimum membrane biophysics. The fatty acid composition of a BCFA-deficient mutant is characterized by high amounts of straight-chain fatty acids and even-numbered iso fatty acids, in contrast to the parent strain where odd-numbered anteiso fatty acids predominate. The presence of 2-methylbutyrate (C5) stimulated growth of the mutant at 37°C and restored growth at 10°C along with the content of odd-numbered anteiso fatty acids. The C6 branched-chain carboxylic acids 2-ethylbutyrate and 2-methylpentanoate also stimulated growth to a similar extent as 2-methylbutyrate. However, 3-methylpentanoate was ineffective in rescuing growth. 2-Ethylbutyrate and 2-methylpentanoate led to novel major fatty acids in the lipid profile of the membrane that were identified as 12-ethyltetradecanoic acid and 12-methylpentadecanoic acid respectively. Membrane anisotropy studies indicated that growth of strain MOR401 in the presence of these precursors increased its membrane fluidity to levels of the wild type. Cells supplemented with 2-methylpentanoate or 2-ethylbutyrate at 10°C shortened the chain length of novel fatty acids, thus showing homeoviscous adaptation. These experiments use the mutant as a tool to modulate the membrane fatty acid compositions through synthetic precursor supplementation, and show how existing enzymes in L. monocytogenes adapt to exhibit non-native activity yielding unique 'unnatural' fatty acid molecules, which nevertheless possess the correct biophysical properties for proper membrane function in the BCFA-deficient mutant. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Comparative proteomic analysis provides insight into 10-hydroxy-2-decenoic acid biosynthesis in honey bee workers.

    PubMed

    Yang, Xiao-Hui; Yang, Shi-Fa; Wang, Rui-Ming

    2017-07-01

    10-Hydroxy-2-decenoic acid (10-HDA) is the major compound produced from the mandibular glands (MGs) of honey bee workers. However, little information is available on the molecular mechanisms of 10-HDA biosynthesis. In our study, based on investigating the 10-HDA secretion pattern and the morphological characteristics of MGs from honey bee workers of different ages, a comparative proteomic analysis was performed in the MGs of workers with different 10-HDA production. In total, 59 up-regulated protein species representing 45 unique proteins were identified in high 10-HDA-producing workers by 2-DE-MALDI-TOF/TOF MS. These proteins were involved in carbohydrate/energy metabolism, fatty acid metabolism, protein metabolism and folding, antioxidation, cytoskeleton, development and cell signaling. Proteins related to fatty acid metabolism, including fatty acid synthase and β-oxidation enzymes, are potentially crucial proteins involved in 10-HDA biosynthesis pathway. And RNA interference (RNAi) results demonstrated that knockdown of electron transfer flavoprotein subunit beta (ETF-β), one of the protein related to fatty acid metabolism, decreased 10-HDA production of worker bees, suggesting that ETF-β was necessary for 10-HDA biosynthesis. This study reveals the characteristics of MGs of worker bees at different developmental stages and proteins associated with 10-HDA biosynthesis, which provides the first insight into the molecular mechanism of 10-HDA biosynthesis.

  9. Soraphen A, an inhibitor of acetyl CoA carboxylase activity, interferes with fatty acid elongation

    PubMed Central

    Jump, Donald B.; Torres-Gonzalez, Moises; Olson, L. Karl

    2010-01-01

    Acetyl CoA carboxylase (ACC1 & ACC2) generates malonyl CoA, a substrate for de novo lipogenesis (DNL) and an inhibitor of mitochondrial fatty acid β-oxidation (FAO). Malonyl CoA is also a substrate for microsomal fatty acid elongation, an important pathway for saturated (SFA), mono- (MUFA) and polyunsaturated fatty acid (PUFA) synthesis. Despite the interest in ACC as a target for obesity and cancer therapy, little attention has been given to the role ACC plays in long chain fatty acid synthesis. This report examines the effect of pharmacological inhibition of ACC on DNL & palmitate (16:0) and linoleate (18:2,n-6) metabolism in HepG2 and LnCap cells. The ACC inhibitor, soraphen A, lowers cellular malonyl CoA, attenuates DNL and the formation of fatty acid elongation products derived from exogenous fatty acids, i.e., 16:0 & 18:2,n-6; IC50 ~ 5 nM. Elevated expression of fatty acid elongases (Elovl5, Elovl6) or desaturases (FADS1, FADS2) failed to override the soraphen A effect on SFA, MUFA or PUFA synthesis. Inhibition of fatty acid elongation leads to the accumulation of 16- and 18-carbon unsaturated fatty acids derived from 16:0 and 18:2,n-6, respectively. Pharmacological inhibition of ACC activity will not only attenuate DNL and induce FAO, but will also attenuate the synthesis of very long chain saturated, mono- and polyunsaturated fatty acids. PMID:21184748

  10. Circulating B-vitamins and smoking habits are associated with serum polyunsaturated Fatty acids in patients with suspected coronary heart disease: a cross-sectional study.

    PubMed

    Skeie, Eli; Strand, Elin; Pedersen, Eva R; Bjørndal, Bodil; Bohov, Pavol; Berge, Rolf K; Svingen, Gard F T; Seifert, Reinhard; Ueland, Per M; Midttun, Øivind; Ulvik, Arve; Hustad, Steinar; Drevon, Christian A; Gregory, Jesse F; Nygård, Ottar

    2015-01-01

    The long-chain polyunsaturated fatty acids are considered to be of major health importance, and recent studies indicate that their endogenous metabolism is influenced by B-vitamin status and smoking habits. We investigated the associations of circulating B-vitamins and smoking habits with serum polyunsaturated fatty acids among 1,366 patients who underwent coronary angiography due to suspected coronary heart disease at Haukeland University Hospital, Norway. Of these, 52% provided information on dietary habits by a food frequency questionnaire. Associations were assessed using partial correlation (Spearman's rho). In the total population, the concentrations of most circulating B-vitamins were positively associated with serum n-3 polyunsaturated fatty acids, but negatively with serum n-6 polyunsaturated fatty acids. However, the associations between B-vitamins and polyunsaturated fatty acids tended to be weaker in smokers. This could not be solely explained by differences in dietary intake. Furthermore, plasma cotinine, a marker of recent nicotine exposure, showed a negative relationship with serum n-3 polyunsaturated fatty acids, but a positive relationship with serum n-6 polyunsaturated fatty acids. In conclusion, circulating B-vitamins are, in contrast to plasma cotinine, generally positively associated with serum n-3 polyunsaturated fatty acids and negatively with serum n-6 polyunsaturated fatty acids in patients with suspected coronary heart disease. Further studies should investigate whether B-vitamin status and smoking habits may modify the clinical effects of polyunsaturated fatty acid intake.

  11. Tuning of acyl-ACP thioesterase activity directed for tailored fatty acid synthesis.

    PubMed

    Feng, Yanbin; Zhang, Yunxiu; Wang, Yayue; Liu, Jiao; Liu, Yinghui; Cao, Xupeng; Xue, Song

    2018-04-01

    Medium-chain fatty acids have attracted significant attention as sources of biofuels in recent years. Acyl-ACP thioesterase, which is considered as the key enzyme to determine the carbon chain length, catalyzes the termination of de novo fatty acid synthesis. Although recombinant medium-chain acyl-ACP thioesterase (TE) affects the fatty acid profile in heterologous cells, tailoring of the fatty acid composition merely by engineering a specific TE is still intractable. In this study, the activity of a C8-C10-specific thioesterase FatB2 from Cuphea hookeriana on C10-ACP was quantified twice as high as that on C8-ACP based on a synthetic C8-C16 acyl-ACP pool in vitro. Whereas in vivo, it was demonstrated that ChFatB2 preferred to accumulate C8 fatty acids with 84.9% composition in the ChFatB2-engineered E. coli strain. To achieve C10 fatty acid production, ChFatB2 was rationally tuned based on structural investigation and enzymatic analysis. An I198E mutant was identified to redistribute the C8-ACP flow, resulting in C10 fatty acid being produced as the principal component at 57.6% of total fatty acids in vivo. It was demonstrated that the activity of TE relative to β-ketoacyl-ACP synthases (KAS) directly determined the fatty acid composition. Our results provide a prospective strategy in tailoring fatty acid synthesis by tuning of TE activities based on TE-ACP interaction.

  12. Synthesis of medium-chain fatty acids and their incorporation into triacylglycerols by cell-free fractions from Cuphea embryos.

    PubMed

    Deerberg, S; von Twickel, J; Förster, H H; Cole, T; Fuhrmann, J; Heise, K P

    1990-02-01

    During their rapid maturation period, seeds of Cuphea wrightii A. Gray mainly accumulate medium-chain fatty acids (C8 to C14) in their storage lipids. The rate of lipid deposition (40-50 mg·d(-1)·(g fresh weight)(-1)) is fourfold higher than in seeds of Cuphea racemosa (L. f.) Spreng, which accumulate long-chain fatty acids (C16 to C18). Measurements of the key enzymes of fatty-acid synthesis in cell-free extracts of seeds of different maturities from Cuphea wrightii show that malonyl-CoA synthesis may be a triggering factor for the observed high capacity for fatty-acid synthesis. Experiments on the incorporation of [1-(14)C]acetate into fatty acids by purified plastid preparations from embryos of Cuphea wrightii have demonstrated that the biosynthesis of medium-chain fatty acids (C8 to C14) is localized in the plastid. Thus, in the presence of cofactors for lipid synthesis (ATP, NADPH, NADH, acyl carrier protein, and sn-glycerol-3-phosphate), purified plastid fractions predominantly synthesized free fatty acids, 30% of which were of medium chain length. Transesterification of the freshly synthesized fatty acids to coenzyme A and recombination with the microsomal fraction of the embryo homogenate induced triacylglycerol synthesis. It also stimulated fatty-acid synthesis by a factor 2-3 and increased the relative amount of medium-chain fatty acids bound to triacylglycerols, which corresponded to about 60-80% in this lipid fraction.

  13. Determination of fatty acid methyl esters derived from algae Scenedesmus dimorphus biomass by GC-MS with one-step esterification of free fatty acids and transesterification of glycerolipids.

    PubMed

    Avula, Satya Girish Chandra; Belovich, Joanne M; Xu, Yan

    2017-05-01

    Algae can synthesize, accumulate and store large amounts of lipids in its cells, which holds immense potential as a renewable source of biodiesel. In this work, we have developed and validated a GC-MS method for quantitation of fatty acids and glycerolipids in forms of fatty acid methyl esters derived from algae biomass. Algae Scenedesmus dimorphus dry mass was pulverized by mortar and pestle, then extracted by the modified Folch method and fractionated into free fatty acids and glycerolipids on aminopropyl solid-phase extraction cartridges. Fatty acid methyl esters were produced by an optimized one-step esterification of fatty acids and transesterification of glycerolipids with boron trichloride/methanol. The matrix effect, recoveries and stability of fatty acids and glycerolipids in algal matrix were first evaluated by spiking stable isotopes of pentadecanoic-2,2-d 2 acid and glyceryl tri(hexadecanoate-2,2-d 2 ) as surrogate analytes and tridecanoic-2,2-d 2 acid as internal standard into algal matrix prior to sample extraction. Later, the method was validated in terms of lower limits of quantitation, linear calibration ranges, intra- and inter-assay precision and accuracy using tridecanoic-2,2-d 2 acid as internal standard. The method developed has been applied to the quantitation of fatty acid methyl esters from free fatty acid and glycerolipid fractions of algae Scenedesmus dimorphus. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Relationship of the Reported Intakes of Fat and Fatty Acids to Body Weight in US Adults.

    PubMed

    Raatz, Susan K; Conrad, Zach; Johnson, LuAnn K; Picklo, Matthew J; Jahns, Lisa

    2017-04-28

    Dietary fat composition may modulate energy expenditure and body weight. Little is known about the relationship between fatty acid intake and body weight at a population level. The purposes of this study were to compare intakes of energy, macronutrients, and individual fatty acids across BMI categories (1) for the US adult population and, (2) by sociodemographic groups. Reported dietary intake data from the National Health and Nutrition Examination Survey (NHANES) and What We Eat in America (WWEIA) surveys in the years 2005-2012 were analyzed. Overall, we found that the reported intake of carbohydrate, protein, total fat, total saturated fat (as well as long-chain saturated fatty acids 14:0-18:0), and monounsaturated fatty acids (MUFAs) were positively associated with BMI; while lauric acid (a medium-chain saturated fatty acid, 12:0) and total polyunsaturated fatty acids (PUFAs) (as well as all individual PUFAs) were not associated with BMI. Non-Hispanic black individuals demonstrated a negative association between BMI and energy intake and a positive association between total PUFAs, linoleic acid (LA), α-linolenic acid (ALA) and BMI. Individuals with less than a high school education showed a negative association between BMI and DHA. Mexican-Americans reported intakes with no association between BMI and energy, any macronutrient, or individual fatty acids. These findings support those of experimental studies demonstrating fatty acid-dependent associations between dietary fatty acid composition and body weight. Notably, we observed divergent results for some sociodemographic groups which warrant further investigation.

  15. Defining the Molecular Actions of Dietary Fatty Acids in Breast Cancer: Selective Modulation of Peroxisome Proliferator-Activated Receptor Gamma

    DTIC Science & Technology

    2005-05-01

    Maximum 200 Words) Stark differences in the actions of lenoleic acid (LAA), an omega-6 fatty acid , and eicosapentaenoic acid (EPA), an omega-3 fatty acid ...AD_ Award Number: W81XWH-04-1-0532 TITLE: Defining the Molecular Actions of Dietary Fatty acids in Breast Cancer: Selective Modulation of Peroxisome...TITLE AND SUBTITLE 5. FUNDING NUMBERS Defining the Molecular Actions of Dietary Fatty acids in W81XWH-04-1-0532 Breast Cancer: Selective Modulation of

  16. Serum levels of marine-derived n-3 fatty acids in Icelanders, Japanese, Koreans, and Americans - A descriptive epidemiologic study

    PubMed Central

    Sekikawa, Akira; Steingrimsdottir, Laufey; Ueshima, Hirotsugu; Shin, Chol; Curb, J. David; Evans, Rhobert W.; Hauksdottir, Alda M.; Kadota, Aya; Choo, Jina; Masaki, Kamal; Thorsson, Bolli; Launer, Lenore J.; Garcia, Melisa E.; Maegawa, Hiroshi; Willcox, Bradley J.; Eiriksdottir, Gudny; Fujiyoshi, Akira; Miura, Katsuyuki; Harris, Tamara B.; Kuller, Lewis H.; Gudnason, Vilmundur

    2012-01-01

    Summary In the 1990’s Iceland and Japan were known as countries with high fish consumption whereas coronary heart disease (CHD) mortality in Iceland was high and that in Japan was low among developed countries. We described recent data fish consumption and CHD mortality from publicly available data. We also measured CHD risk factors and serum levels of marine-derived n-3 and other fatty acids from population-based samples of 1,324 men in Iceland, Japan, South Korea, and the US. CHD mortality in men in Iceland was almost 3 times as high as that in Japan and South Korea. Generally a profile of CHD risk factors in Icelanders compared to Japanese was more favorable. Serum marine-derived n-3 fatty acids in Iceland were significantly lower than in Japan and South Korea but significantly higher than in the US. PMID:22658580

  17. The Impact of Carnitine on Dietary Fiber and Gut Bacteria Metabolism and Their Mutual Interaction in Monogastrics

    PubMed Central

    Ghonimy, Abdallah; Zhang, Dong Ming; Farouk, Mohammed Hamdy; Wang, Qiuju

    2018-01-01

    Carnitine has vital roles in the endogenous metabolism of short chain fatty acids. It can protect and support gut microbial species, and some dietary fibers can reduce the available iron involved in the bioactivity of carnitine. There is also an antagonistic relationship between high microbial populations and carnitine bioavailability. This review shows the interactions between carnitine and gut microbial composition. It also elucidates the role of carnitine bacterial metabolism, mitochondrial function, fiber fermentability, and short chain fatty acids (SCFAs). PMID:29597260

  18. [Quality of shortenings available on the home market].

    PubMed

    Zbikowska, Anna; Rutkowska, Jarosława; Krygier, Krzysztof

    2006-01-01

    The aim of this work was to examine the quality of shortenings available on Polish market, produced home or imported. The quality of twelve 100% vegetable fats and lard was estimated. Both chemical (fatty acids composition, especially trans isomers content, acid value, peroxide value, anisidine value, Totox, iodine value and oxidative stability--Rancimat test) and physical (melting point, solid fat content--at temperatures from 5 to 50 degrees C) properties were measured. The fats were subject to sensoric examination. The parameters defining the freshness of examined fats and their shelf life for all examined samples were good and proved the good quality. Induction time (150 degrees C) for examined fats varied from 1,79 to 4,29h. Examined fats differed significantly in saturated fatty acids content (from 14,0 do 60,2%) and trans isomers (from 0,1 to 56,6%). Fats produced from palm oil are also present and there are fats with smaller trans fat acids content. Examined shortenings contained very small content of essential fatty acids (from 0,5 to 10,4), and they showed very different melting points (from 19,6 to 42,1 degrees C) and solid phase contents. In general the examined fats were of good sensoric value. Summing up the received results, it should be underlined that large disparity in the content of trans isomers in analysed samples was observed and definitely TFA content should be lowered.

  19. Reducing isozyme competition increases target fatty acid accumulation in seed triacylglycerols of transgenic Arabidopsis

    USDA-ARS?s Scientific Manuscript database

    One goal of green chemistry is the production of industrially useful fatty acids (FAs) in crop plants. We focus on the engineering of industrial FAs, specifically hydroxy fatty acids (HFA) and conjugated polyenoic fatty acids (a-eleostearic acid, ESA), using Arabidopsis (Arabidopsis thaliana) as a m...

  20. High-Throughput Quantitative Lipidomics Analysis of Nonesterified Fatty Acids in Plasma by LC-MS.

    PubMed

    Christinat, Nicolas; Morin-Rivron, Delphine; Masoodi, Mojgan

    2017-01-01

    Nonesterified fatty acids are important biological molecules which have multiple functions such as energy storage, gene regulation, or cell signaling. Comprehensive profiling of nonesterified fatty acids in biofluids can facilitate studying and understanding their roles in biological systems. For these reasons, we have developed and validated a high-throughput, nontargeted lipidomics method coupling liquid chromatography to high-resolution mass spectrometry for quantitative analysis of nonesterified fatty acids. Sufficient chromatographic separation is achieved to separate positional isomers such as polyunsaturated and branched-chain species and quantify a wide range of nonesterified fatty acids in human plasma samples. However, this method is not limited only to these fatty acid species and offers the possibility to perform untargeted screening of additional nonesterified fatty acid species.

  1. Fatty Acid Desaturases, Polyunsaturated Fatty Acid Regulation, and Biotechnological Advances

    PubMed Central

    Lee, Je Min; Lee, Hyungjae; Kang, SeokBeom; Park, Woo Jung

    2016-01-01

    Polyunsaturated fatty acids (PUFAs) are considered to be critical nutrients to regulate human health and development, and numerous fatty acid desaturases play key roles in synthesizing PUFAs. Given the lack of delta-12 and -15 desaturases and the low levels of conversion to PUFAs, humans must consume some omega-3 and omega-6 fatty acids in their diet. Many studies on fatty acid desaturases as well as PUFAs have shown that fatty acid desaturase genes are closely related to different human physiological conditions. Since the first front-end desaturases from cyanobacteria were cloned, numerous desaturase genes have been identified and animals and plants have been genetically engineered to produce PUFAs such as eicosapentaenoic acid and docosahexaenoic acid. Recently, a biotechnological approach has been used to develop clinical treatments for human physiological conditions, including cancers and neurogenetic disorders. Thus, understanding the functions and regulation of PUFAs associated with human health and development by using biotechnology may facilitate the engineering of more advanced PUFA production and provide new insights into the complexity of fatty acid metabolism. PMID:26742061

  2. Fatty acid constituents of Peganum harmala plant using Gas Chromatography-Mass Spectroscopy.

    PubMed

    Moussa, Tarek A A; Almaghrabi, Omar A

    2016-05-01

    Fatty acid contents of the Peganum harmala plant as a result of hexane extraction were analyzed using GC-MS. The saturated fatty acid composition of the harmal plant was tetradecanoic, pentadecanoic, tridecanoic, hexadecanoic, heptadecanoic and octadecanoic acids, while the saturated fatty acid derivatives were 12-methyl tetradecanoic, 5,9,13-trimethyl tetradecanoic and 2-methyl octadecanoic acids. The most abundant fatty acid was hexadecanoic with concentration 48.13% followed by octadecanoic with concentration 13.80%. There are four unsaturated fatty acids called (E)-9-dodecenoic, (Z)-9-hexadecenoic, (Z,Z)-9,12-octadecadienoic and (Z,Z,Z)-9,12,15-octadecatrienoic. The most abundant unsaturated fatty acid was (Z,Z,Z)-9,12,15-octadecatrienoic with concentration 14.79% followed by (Z,Z)-9,12-octadecadienoic with concentration 10.61%. Also, there are eight non-fatty acid compounds 1-octadecene, 6,10,14-trimethyl-2-pentadecanone, (E)-15-heptadecenal, oxacyclohexadecan-2 one, 1,2,2,6,8-pentamethyl-7-oxabicyclo[4.3.1]dec-8-en-10-one, hexadecane-1,2-diol, n-heneicosane and eicosan-3-ol.

  3. Fatty acid constituents of Peganum harmala plant using Gas Chromatography–Mass Spectroscopy

    PubMed Central

    Moussa, Tarek A.A.; Almaghrabi, Omar A.

    2015-01-01

    Fatty acid contents of the Peganum harmala plant as a result of hexane extraction were analyzed using GC–MS. The saturated fatty acid composition of the harmal plant was tetradecanoic, pentadecanoic, tridecanoic, hexadecanoic, heptadecanoic and octadecanoic acids, while the saturated fatty acid derivatives were 12-methyl tetradecanoic, 5,9,13-trimethyl tetradecanoic and 2-methyl octadecanoic acids. The most abundant fatty acid was hexadecanoic with concentration 48.13% followed by octadecanoic with concentration 13.80%. There are four unsaturated fatty acids called (E)-9-dodecenoic, (Z)-9-hexadecenoic, (Z,Z)-9,12-octadecadienoic and (Z,Z,Z)-9,12,15-octadecatrienoic. The most abundant unsaturated fatty acid was (Z,Z,Z)-9,12,15-octadecatrienoic with concentration 14.79% followed by (Z,Z)-9,12-octadecadienoic with concentration 10.61%. Also, there are eight non-fatty acid compounds 1-octadecene, 6,10,14-trimethyl-2-pentadecanone, (E)-15-heptadecenal, oxacyclohexadecan-2 one, 1,2,2,6,8-pentamethyl-7-oxabicyclo[4.3.1]dec-8-en-10-one, hexadecane-1,2-diol, n-heneicosane and eicosan-3-ol. PMID:27081366

  4. Dose-dependent consumption of farmed Atlantic salmon (Salmo salar) increases plasma phospholipid n-3 fatty acids differentially

    PubMed Central

    Raatz, Susan K.; Rosenberger, Thad A.; Johnson, LuAnn K.; Wolters, William W.; Burr, Gary S; Picklo, Matthew J.

    2013-01-01

    Enhanced omega-3 fatty acid (n-3) intake benefits cardiovascular disease (CVD) risk reduction. Increasing consumption at a population level may be better addressed by diet than through supplementation. However, limited data are available on the effect of the dose response to fish intake on plasma levels of n-3 fatty acids. To compare the effects of different doses of farmed Atlantic salmon on plasma phospholipid fatty acid (PLFA) proportions and CVD risk biomarkers (glucose, insulin, HOMAIR, hsCRP, and IL-6) in healthy subjects we performed a randomized 3-period cross-over designed trial (4 wk treatment, 4-8 wk washout) to compare the effects of twice/wk consumption of farmed Atlantic salmon at doses of 90, 180, and 270 g in 19 apparently healthy men and women with a mean age of aged 40-65 years and a BMI between 25-34.9 kg/m2. All study visits were conducted at the USDA, ARS Grand Forks Human Nutrition Research Center. EPA and total n-3 were increased (p<0.05) by all treatments in a dose response manner, with total n-3 of 8.03 ± 0.26 and 9.21 ± 0.26 % for 180 and 270 g doses, respectively. Linoleic acid did not change in response to treatment while arachidonic acid (P<0.05) and total omega-6 fatty acids (n-6) decreased dose dependently (<0.0001). The addition of farmed Atlantic salmon to the diet twice/wk for 4 wk at portions of 180g and 270g modifies PLFA proportions of n-3 and n-6 in a level associated with decreased risk for CVD. PMID:23351633

  5. Effect of storage time, temperature, antioxidant and thawing on fatty acid composition of plasma, serum and red blood cells - A pilot biobank study.

    PubMed

    Araujo, Pedro; Bjørkkjær, Tormod; Frøyland, Livar; Waagbø, Rune

    2018-02-01

    It studies on the factors that affect the stability of fatty acid profiles from human blood specimens are generally performed by evaluating the effect of a single factor on an individual fatty acid and excluding a considerable amount of data from the total fatty acid profiles. The stability of fatty acids from plasma, serum and red blood cells (RBC) was evaluated in terms of time, temperature, antioxidant and thawing. The fatty acids were methylated and analyzed by gas chromatography. The large volume of data is evaluated simultaneously and automatically by observing an Excel-based colour scale that indicates whether the fatty acid profiles have changed significantly as a result of the storage time (0-52weeks), temperature (-20°C/-80°C), butylated hydroxytoluene (BHT) antioxidant (presence/absence) or thawing (single/multiple). Fatty acids from plasma were stable at both temperatures (-20°C/-80°C) regardless of BHT. Fatty acids from serum without BHT degrades faster at -80°C than -20°C and fatty acids from RBC without BHT degrades faster at -20°C than -80°C. Addition of BHT inhibits this effect in serum and RBC. Multiple thawing of RBC without BHT demonstrated that polyunsaturated fatty acids were generally more susceptible for changes at -80°C than at -20°C while BHT prevents partially this effect. This study draws attention to the importance of pre-analytical considerations when storing blood samples in biobanks and the need of careful judgments when analyzing fatty acids profiles. Copyright © 2017 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  6. Genome wide association study and genomic prediction for fatty acid composition in Chinese Simmental beef cattle using high density SNP array.

    PubMed

    Zhu, Bo; Niu, Hong; Zhang, Wengang; Wang, Zezhao; Liang, Yonghu; Guan, Long; Guo, Peng; Chen, Yan; Zhang, Lupei; Guo, Yong; Ni, Heming; Gao, Xue; Gao, Huijiang; Xu, Lingyang; Li, Junya

    2017-06-14

    Fatty acid composition of muscle is an important trait contributing to meat quality. Recently, genome-wide association study (GWAS) has been extensively used to explore the molecular mechanism underlying important traits in cattle. In this study, we performed GWAS using high density SNP array to analyze the association between SNPs and fatty acids and evaluated the accuracy of genomic prediction for fatty acids in Chinese Simmental cattle. Using the BayesB method, we identified 35 and 7 regions in Chinese Simmental cattle that displayed significant associations with individual fatty acids and fatty acid groups, respectively. We further obtained several candidate genes which may be involved in fatty acid biosynthesis including elongation of very long chain fatty acids protein 5 (ELOVL5), fatty acid synthase (FASN), caspase 2 (CASP2) and thyroglobulin (TG). Specifically, we obtained strong evidence of association signals for one SNP located at 51.3 Mb for FASN using Genome-wide Rapid Association Mixed Model and Regression-Genomic Control (GRAMMAR-GC) approaches. Also, region-based association test identified multiple SNPs within FASN and ELOVL5 for C14:0. In addition, our result revealed that the effectiveness of genomic prediction for fatty acid composition using BayesB was slightly superior over GBLUP in Chinese Simmental cattle. We identified several significantly associated regions and loci which can be considered as potential candidate markers for genomics-assisted breeding programs. Using multiple methods, our results revealed that FASN and ELOVL5 are associated with fatty acids with strong evidence. Our finding also suggested that it is feasible to perform genomic selection for fatty acids in Chinese Simmental cattle.

  7. Chemotaxonomy of heterocystous cyanobacteria using FAME profiling as species markers.

    PubMed

    Shukla, Ekta; Singh, Satya Shila; Singh, Prashant; Mishra, Arun Kumar

    2012-07-01

    The fatty acid methyl ester (FAME) analysis of the 12 heterocystous cyanobacterial strains showed different fatty acid profiling based on the presence/absence and the percentage of 13 different types of fatty acids. The major fatty acids viz. palmitic acid (16:0), hexadecadienoic acid (16:2), stearic acid (18:0), oleic acid (18:1), linoleic (18:2), and linolenic acid (18:3) were present among all the strains except Cylindrospermum musicola where oleic acid (18:1) was absent. All the strains showed high levels of polyunsaturated fatty acid (PUFAs; 41-68.35%) followed by saturated fatty acid (SAFAs; 1.82-40.66%) and monounsaturated fatty acid (0.85-24.98%). Highest percentage of PUFAs and essential fatty acid (linolenic acid; 18:3) was reported in Scytonema bohnerii which can be used as fatty acid supplement in medical and biotechnological purpose. The cluster analysis based on FAME profiling suggests the presence of two distinct clusters with Euclidean distance ranging from 0 to 25. S. bohnerii of cluster I was distantly related to the other strains of cluster II. The genotypes of cluster II were further divided into two subclusters, i.e., IIa with C. musicola showing great divergence with the other genotypes of IIb which was further subdivided into two groups. Subsubcluster IIb(1) was represented by a genotype, Anabaena sp. whereas subsubcluster IIb(2) was distinguished by two groups, i.e., one group having significant similarity among their three genotypes showed distant relation with the other group having closely related six genotypes. To test the validity of the fatty acid profiles as a marker, cluster analysis has also been generated on the basis of morphological attributes. Our results suggest that FAME profiling might be used as species markers in the study of polyphasic approach based taxonomy and phylogenetic relationship.

  8. Trophic links and nutritional condition of fish early life stages in a temperate estuary.

    PubMed

    Primo, Ana Lígia; Correia, Catarina; Marques, Sónia Cotrim; Martinho, Filipe; Leandro, Sérgio; Pardal, Miguel

    2018-02-01

    The physiological and nutritional condition of fish larvae affect their survival and thus, the success of estuaries as nursery areas. Fatty acid composition has been useful to determine fish nutritional condition, as well as trophic relationships in marine organisms. The present study analyses the fatty acid (FA) composition of fish larvae during spring and summer in the Mondego estuary, Portugal. FA composition, trophic markers (FATM) and fish nutritional condition was analysed for Gobiidae and Sardina pilchardus larvae and the relationships with the local environment evaluated. Results showed that both taxa differed mainly in the stearic acid (C18:0) and eicosapentaenoic acid (EPA) content, with important amounts in Gobiidae and S. pilchardus, respectively. Gobiidae larvae presenting high nutritional condition and omnivore FATM. Fatty acid composition seems to be related with their natural habitat selection and food availability, while fish larvae nutritional condition also showed a strong link with the water temperature and presence of potential predators. This study suggests that FA composition can be a useful tool in assessing planktonic trophic relationships and in identifying species natural habitat. Copyright © 2017. Published by Elsevier Ltd.

  9. [THE OPTIMIZATION OF NUTRITION FUNCTION UNDER SYNDROME OF RESISTANCE TO INSULIN, DISORDER OF FATTY ACIDS' METABOLISM AND ABSORPTION OF GLUCOSE BY CELLS (A LECTURE)].

    PubMed

    Titov, V N

    2016-01-01

    The phylogenetic processes continue to proceed in Homo Sapiens. At the very early stages ofphylogenesis, the ancient Archaea that formed mitochondria under symbiotic interaction with later bacterial cells conjointly formed yet another system. In this system, there are no cells' absorption of glucose if it is possible to absorb fatty acids from intercellular medium in the form of unesterfied fatty acids or ketonic bodies--metabolites of fatty acids. This is caused by objectively existed conditions and subsequent availability of substrates at the stages ofphylogenesis: acetate, ketonic bodies, fatty acids and only later glucose. The phylogenetically late insulin used after billions years the same dependencies at formation of regulation ofmetabolism offatty acids and cells' absorption of glucose. In order that syndrome ofresistance ceased to exist as afoundation of metabolic pandemic Homo Sapiens has to understand the following. After successful function ofArchaea+bacterial cells and considered by biology action of insulin for the third time in phylogenesis and using biological function of intelligence the content ofphylogenetically earlier palmitic saturated fatty acid infood can't to exceed possibilities of phylogenetically late lipoproteins to transfer it in intercellular medium and blood and cells to absorb it. It is supposed that at early stages of phylogenesis biological function of intelligence is primarily formed to bring into line "unconformities" of regulation of metabolism against the background of seeming relative biological "perfection". These unconformities were subsequently and separately formed at the level of cells in paracrin regulated cenosises of cells and organs and at the level of organism. The prevention of resistance to insulin basically requires biological function of intelligence, principle of self-restraint, bringing into line multiple desires of Homo Sapiens with much less extensive biological possibilities. The "unconformities" of regulation of metabolism in vivo are etiological factors of all metabolic pandemics including atherosclerosis, metabolic arterial hypertension, obesity and metabolic syndrome Tertiannondatum.

  10. Interactions between fatty acid synthesis, oxidation, and esterification in the production of triglyceride-rich lipoproteins by the liver.

    PubMed

    Fukuda, N; Ontko, J A

    1984-08-01

    In a series of experiments with male rat livers perfused with or without 5-tetradecyloxy-2-furoic acid (TOFA) in the presence and absence of oleate, the relationships between fatty acid synthesis, oxidation, and esterification from newly synthesized and exogenous fatty acid substrates have been examined. When livers from fed rats were perfused without exogenous fatty acid substrate, 20% of the triglyceride secreted was derived from de novo fatty acid synthesis. Addition of TOFA caused immediate and nearly complete inhibition of fatty acid synthesis, measured by incorporation of 3H2O into fatty acids. Concurrently, ketone body production increased 140% and triglyceride secretion decreased 84%. These marked reciprocal alterations in fatty acid synthesis and oxidation in the liver almost completely abolished the production of very low density lipoproteins (VLDL). Cholesterol synthesis was also depressed by TOFA, suggesting that this drug also inhibited lipid synthesis at a site other than acetyl-CoA carboxylase. When livers from fed rats were supplied with a continuous infusion of [1-14C]oleate as exogenous substrate, similar proportions, about 45-47%, of both ketone bodies and triglyceride in the perfusate were derived from the infused [1-14C]oleate. The production of ketone bodies was markedly increased by TOFA; the secretion of triglyceride and cholesterol were decreased. Altered conversion of [1-14C]oleate into these products occurred in parallel. While TOFA decreased esterification of oleate into triglyceride, incorporation of [1-14C]oleate into liver phospholipid was increased, indicating that TOFA also affected glycerolipid synthesis at the stage of diglyceride processing. The decreased secretion of triglyceride and cholesterol following TOFA treatment was localized almost exclusively in VLDL. The specific activities of 3H and of 14C fatty acids in triglyceride of the perfusate were greater than those of liver triglyceride, indicating preferential secretion of triglyceride produced from both de novo fatty acid synthesis and from infused free fatty acid substrate. These observations suggest the following chain of events in the liver following TOFA treatment: inhibition of fatty acid and cholesterol synthesis; increased fatty acid oxidation and ketogenesis; decreased triglyceride synthesis as a result of inhibition of fatty acid synthesis, stimulation of fatty acid oxidation, and altered partition of diglyceride between triglyceride and phospholipid synthesis; and decreased production of VLDL. These comparative rat liver perfusion experiments indicate that free fatty acids provide the major source of substrate for the hepatic production of triglyceri

  11. Experimental study on thermal storage performance of binary mixtures of fatty acids

    NASA Astrophysics Data System (ADS)

    Yan, Quanying; Zhang, Jing; Liu, Chao; Liu, Sha; Sun, Xiangyu

    2018-02-01

    We selected five kinds of fatty acids including the capric acid, stearic acid, lauric acid, palmitic acid and myristic acid and mixed them to prepare10 kinds of binary mixtures of fatty acids according to the predetermined proportion,tested the phase change temperature and latent heat of mixtures by differential scanning calorimetry(DSC). In order to find the fatty acid mixture which has suitable phase change temperature, the larger phase change latent heat and can be used for phase change wall. The results showed that the phase change temperature and latent heats of the binary mixtures of fatty acids decreased compared with the single component;The phase change temperature of the binary mixtures of fatty acids containing capric acid were lower, the range was roughly 20∼30°C,and latent heat is large,which are ideal phase change materials for phase change wall energy storage;The phase change temperature of the binary mixtures consisting of other fatty acids were still high,didn’t meet the temperature requirements of the wall energy storage.

  12. Correlations between FAS elongation cycle genes expression and fatty acid production for improvement of long-chain fatty acids in Escherichia coli.

    PubMed

    Lee, Sunhee; Jung, Yeontae; Lee, Seunghan; Lee, Jinwon

    2013-03-01

    Microorganisms have been used for biodiesel (fatty acid methyl ester) production due to their significant environmental and economic benefits. The aim of the present research was to develop new strains of Escherichia coli K-12 MG1655 and to increase the content of long-chain fatty acids by overexpressing essential enzymes that are involved in the fatty acid synthase elongation cycle. In addition, the relationship of β-ketoacyl-acyl carrier protein (ACP) synthase (fabH), β-ketoacyl-ACP reductase (fabG), β-hydroxyacyl-ACP dehydrase (fabZ), and β-enoyl-ACP reductase (fabI) with respect to fatty acid production was investigated. The four enzymes play a unique role in fatty acid biosynthesis and elongation processes. We report the generation of recombinant E. coli strains that produced long-chain fatty acids to amounts twofold over wild type. To verify the results, NAD(+)/NADH ratios and glucose analyses were performed. We also confirmed that FabZ plays an important role in producing unsaturated fatty acids (UFAs) as E. coli SGJS25 (overexpressing the fabZ gene) produced the highest percentage of UFAs (35 % of total long-chain fatty acids), over wild type and other recombinants. Indeed, cis-9-hexadecenoic acid, a major UFA in E. coli SGJS25, was produced at levels 20-fold higher than in wild type after 20 h in culture. The biochemically engineered E. coli presented in this study is expected to be more economical for producing long-chain fatty acids in quality biodiesel production processes.

  13. Influence of pumpkin seed cake and extruded linseed on milk production and milk fatty acid profile in Alpine goats.

    PubMed

    Klir, Z; Castro-Montoya, J M; Novoselec, J; Molkentin, J; Domacinovic, M; Mioc, B; Dickhoefer, U; Antunovic, Z

    2017-10-01

    The aim was to determine the effect of substituting pumpkin seed cake (PSC) or extruded linseed (ELS) for soya bean meal in goats' diets on milk yield, milk composition and fatty acids profile of milk fat. In total, 28 dairy goats were divided into three groups. They were fed with concentrate mixtures containing soya bean meal (Control; n=9), ELS (n=10) or PSC (n=9) as main protein sources in the trial lasting 75 days. Addition of ELS or PSC did not influence milk yield and milk gross composition in contrast to fatty acid profile compared with Control. Supplementation of ELS resulted in greater branched-chain fatty acids (BCFA) and total n-3 fatty acids compared with Control and PSC (P<0.05). Total n-3 fatty acids were accompanied by increased α-linolenic acid (ALA, C18:3n-3; 0.56 g/100 g fatty acids) and EPA (C20:5n-3; 0.12 g/100 g fatty acids) proportions in milk of the ELS group. In contrast, ELS and PSC resulted in lower linoleic acid (LA, C18:2n-6; 2.10 and 2.28 g/100 g fatty acids, respectively) proportions compared with Control (2.80 g/100 g fatty acids; P<0.05). Abovementioned resulted in lower LA/ALA ratio (3.81 v. 7.44 or 6.92, respectively; P<0.05) with supplementation of ELS compared with Control or PSC. The PSC diet decreased total n-6 fatty acids compared with the Control (2.96 v. 3.54 g/100 g fatty acids, P<0.05). Oleic acid (c9-C18:1), CLA (c9,t11-18:2) and t10-,t11-C18:1 did not differ between treatments (P⩾0.08), although stearic acid (C18:0) increased in ELS diets compared with Control (12.7 v. 10.2 g/100 g fatty acids, P<0.05). Partially substituted soya bean meal with ELS in hay-based diets may increase beneficial n-3 fatty acids and BCFA accompanied by lowering LA/ALA ratio and increased C18:0. Pumpkin seed cake completely substituted soya bean meal in the diet of dairy goats without any decrease in milk production or sharp changes in fatty acid profile that may have a commercial or a human health relevancy.

  14. Incorporation of Exogenous Fatty Acids Protects Enterococcus faecalis from Membrane-Damaging Agents

    PubMed Central

    Saito, Holly E.; Harp, John R.

    2014-01-01

    Enterococcus faecalis is a commensal bacterium of the mammalian intestine that can persist in soil and aquatic systems and can be a nosocomial pathogen to humans. It employs multiple stress adaptation strategies in order to survive such a wide range of environments. Within this study, we sought to elucidate whether membrane fatty acid composition changes are an important component for stress adaptation. We noted that E. faecalis OG1RF was capable of changing its membrane composition depending upon growth phase and temperature. The organism also readily incorporated fatty acids from bile, serum, and medium supplemented with individual fatty acids, often dramatically changing the membrane composition such that a single fatty acid was predominant. Growth in either low levels of bile or specific individual fatty acids was found to protect the organism from membrane challenges such as high bile exposure. In particular, we observed that when grown in low levels of bile, serum, or the host-derived fatty acids oleic acid and linoleic acid, E. faecalis was better able to survive the antibiotic daptomycin. Interestingly, the degree of membrane saturation did not appear to be important for protection from the stressors examined here; instead, it appears that a specific fatty acid or combination of fatty acids is critical for stress resistance. PMID:25128342

  15. Detailed faecal fat analysis using Fourier transform infrared spectroscopy: Exploring the possibilities.

    PubMed

    De Koninck, Anne-Sophie; Nys, Karen; Vandenheede, Brent; Van Biervliet, Stephanie; Speeckaert, Marijn M; Delanghe, Joris R

    2016-11-01

    Fourier transform infrared (FTIR) spectroscopic determination of faecal fat is a simple and elegant alternative for the classical Van De Kamer approach. Besides quantification of the total amount of fat, analysis of the lipase hydrolysis efficiency (fatty acid/triglyceride ratio), fatty acid chain length and trans-unsaturated fatty acids could provide a better monitoring of dietary treatment. Stool samples (26 routine samples and 36 cystic fibrosis patients) were analysed with the Perkin Elmer Spectrum Two® spectrometer (3500-450cm -1 ). Fatty acid/triglyceride ratio was calculated using the absorbance ratio at 2855:1746cm -1 . To estimate lipase hydrolysis efficiency, sample ratios were compared with the ratio of butter and pure free fatty acids. Mean fatty acid chain length was calculated using the absorbance ratio at 2855:1709cm -1 . The absorbance at 966cm -1 was used to trace the presence of trans-type unsaturated fatty acids. Butter showed a low fatty acid/triglyceride ratio (1.21) and pure free fatty acids a high fatty acid/triglyceride ratio (6.76). Mean fatty acid/triglyceride ratio of routine stool samples was 4.16±1.01. The applicability of fatty acid/triglyceride ratios was also tested in cystic fibrosis patients under treatment with a mean of 4.92±0.98. Relative absorbance contribution per carbon atom was 0.06 (ratio 1.06 for C18 standard, 0.91 for C16 standard). The mean ratio of the stool samples was 1.12 (mean acyl chain length of C19), with values ranging from 0.73 (C12) to 1.68 (C28). The presence of traceable amounts of trans-unsaturated fatty acids was also demonstrated. For the analysis of faecal material, FTIR provides unique information, difficult to obtain using other techniques. These findings offer perspectives for diet monitoring in patients with (non-)pancreatic malabsorption. Copyright © 2016 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  16. Long-chain polyunsaturated fatty acids and the preterm infant: a case study in developmentally sensitive nutrient needs in the United States1234

    PubMed Central

    2016-01-01

    The vast majority of infant formulas in the United States contain the long-chain polyunsaturated fatty acids (PUFAs) docosahexaenoic acid (22:6n–3) and arachidonic acid (20:4n–6), which were first permitted by the US Food and Drug Administration in 2001. As a scientific case study, preclinical animal studies of these nutrients definitively influenced the design and interpretation of human clinical studies. Early studies were tied to the availability of test substances, and in hindsight suggest re-evaluation of the essential fatty acid concept in light of the totality of available evidence. Research in the 1950s established the essentiality of n–6 PUFAs for skin integrity; however, widespread recognition of the essentiality of n–3 PUFAs came decades later despite compelling evidence of their significance. Barriers to an understanding of the essentiality of n–3 PUFAs were as follows: 1) their role is in neural function, which is measured only with difficulty compared with skin lesions and growth faltering that are apparent for n–6 PUFAs; 2) the experimental use of vegetable oils as PUFA sources that contain the inefficiently used C18 PUFAs rather than the operative C20 and C22 PUFAs; 3) the shift from reliance on high-quality animal studies to define mechanisms that established the required nutrients in the first part of the 20th century to inherently challenging human studies. Advances in nutrition of premature infants require the best practices and opinions available, taking into account the totality of preclinical and clinical evidence. PMID:26791188

  17. Trans fatty acids enhance amyloidogenic processing of the Alzheimer amyloid precursor protein (APP).

    PubMed

    Grimm, Marcus O W; Rothhaar, Tatjana L; Grösgen, Sven; Burg, Verena K; Hundsdörfer, Benjamin; Haupenthal, Viola J; Friess, Petra; Kins, Stefan; Grimm, Heike S; Hartmann, Tobias

    2012-10-01

    Hydrogenation of oils and diary products of ruminant animals leads to an increasing amount of trans fatty acids in the human diet. Trans fatty acids are incorporated in several lipids and accumulate in the membrane of cells. Here we systematically investigate whether the regulated intramembrane proteolysis of the amyloid precursor protein (APP) is affected by trans fatty acids compared to the cis conformation. Our experiments clearly show that trans fatty acids compared to cis fatty acids increase amyloidogenic and decrease nonamyloidogenic processing of APP, resulting in an increased production of amyloid beta (Aβ) peptides, main components of senile plaques, which are a characteristic neuropathological hallmark for Alzheimer's disease (AD). Moreover, our results show that oligomerization and aggregation of Aβ are increased by trans fatty acids. The mechanisms identified by this in vitro study suggest that the intake of trans fatty acids potentially increases the AD risk or causes an earlier onset of the disease. Copyright © 2012 Elsevier Inc. All rights reserved.

  18. Clinical Relevance of Type II Fatty Acid Synthesis Bypass in Staphylococcus aureus

    PubMed Central

    Guillemet, Mélanie; Soler, Charles; Morvan, Claire; Halpern, David; Pourcel, Christine; Vu Thien, Hoang; Lamberet, Gilles

    2017-01-01

    ABSTRACT The need for new antimicrobials to treat bacterial infections has led to the use of type II fatty acid synthesis (FASII) enzymes as front-line targets. However, recent studies suggest that FASII inhibitors may not work against the opportunist pathogen Staphylococcus aureus, as environmental fatty acids favor emergence of multi-anti-FASII resistance. As fatty acids are abundant in the host and one FASII inhibitor, triclosan, is widespread, we investigated whether fatty acid pools impact resistance in clinical and veterinary S. aureus isolates. Simple addition of fatty acids to the screening medium led to a 50% increase in triclosan resistance, as tested in 700 isolates. Moreover, nonculturable triclosan-resistant fatty acid auxotrophs, which escape detection under routine conditions, were uncovered in primary patient samples. FASII bypass in selected isolates correlated with polymorphisms in the acc and fabD loci. We conclude that fatty-acid-dependent strategies to escape FASII inhibition are common among S. aureus isolates and correlate with anti-FASII resistance and emergence of nonculturable variants. PMID:28193654

  19. Fatty acid transport and transporters in muscle are critically regulated by Akt2.

    PubMed

    Jain, Swati S; Luiken, Joost J F P; Snook, Laelie A; Han, Xiao Xia; Holloway, Graham P; Glatz, Jan F C; Bonen, Arend

    2015-09-14

    Muscle contains various fatty acid transporters (CD36, FABPpm, FATP1, FATP4). Physiological stimuli (insulin, contraction) induce the translocation of all four transporters to the sarcolemma to enhance fatty acid uptake similarly to glucose uptake stimulation via glucose transporter-4 (GLUT4) translocation. Akt2 mediates insulin-induced, but not contraction-induced, GLUT4 translocation, but its role in muscle fatty acid transporter translocation is unknown. In muscle from Akt2-knockout mice, we observed that Akt2 is critically involved in both insulin-induced and contraction-induced fatty acid transport and translocation of fatty acid translocase/CD36 (CD36) and FATP1, but not of translocation of fatty acid-binding protein (FABPpm) and FATP4. Instead, Akt2 mediates intracellular retention of both latter transporters. Collectively, our observations reveal novel complexities in signaling mechanisms regulating the translocation of fatty acid transporters in muscle. Copyright © 2015 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  20. A computational search for lipases that can preferentially hydrolyze long-chain omega-3 fatty acids from fish oil triacylglycerols.

    PubMed

    Kamal, Md Zahid; Barrow, Colin J; Rao, Nalam Madhusudhana

    2015-04-15

    Consumption of long-chain omega-3 fatty acids is known to decrease the risk of major cardiovascular events. Lipases, a class of triacylglycerol hydrolases, have been extensively tested to concentrate omega-3 fatty acids from fish oils, under mild enzymatic conditions. However, no lipases with preference for omega-3 fatty acids selectivity have yet been discovered or developed. In this study we performed an exhaustive computational study of substrate-lipase interactions by docking, both covalent and non-covalent, for 38 lipases with a large number of structured triacylglycerols containing omega-3 fatty acids. We identified some lipases that have potential to preferentially hydrolyze omega-3 fatty acids from structured triacylglycerols. However omega-3 fatty acid preferences were found to be modest. Our study provides an explanation for absence of reports of lipases with omega-3 fatty acid hydrolyzing ability and suggests methods for developing these selective lipases. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Environmental fatty acids enable emergence of infectious Staphylococcus aureus resistant to FASII-targeted antimicrobials

    PubMed Central

    Morvan, Claire; Halpern, David; Kénanian, Gérald; Hays, Constantin; Anba-Mondoloni, Jamila; Brinster, Sophie; Kennedy, Sean; Trieu-Cuot, Patrick; Poyart, Claire; Lamberet, Gilles; Gloux, Karine; Gruss, Alexandra

    2016-01-01

    The bacterial pathway for fatty acid biosynthesis, FASII, is a target for development of new anti-staphylococcal drugs. This strategy is based on previous reports indicating that self-synthesized fatty acids appear to be indispensable for Staphylococcus aureus growth and virulence, although other bacteria can use exogenous fatty acids to compensate FASII inhibition. Here we report that staphylococci can become resistant to the FASII-targeted inhibitor triclosan via high frequency mutations in fabD, one of the FASII genes. The fabD mutants can be conditional for FASII and not require exogenous fatty acids for normal growth, and can use diverse fatty acid combinations (including host fatty acids) when FASII is blocked. These mutants show cross-resistance to inhibitors of other FASII enzymes and are infectious in mice. Clinical isolates bearing fabD polymorphisms also bypass FASII inhibition. We propose that fatty acid-rich environments within the host, in the presence of FASII inhibitors, might favour the emergence of staphylococcal strains displaying resistance to multiple FASII inhibitors. PMID:27703138

  2. Fatty acid composition indicating diverse habitat use in coral reef fishes in the Malaysian South China Sea.

    PubMed

    Arai, Takaomi; Amalina, Razikin; Bachok, Zainudin

    2015-02-22

    In order to understand feeding ecology and habitat use of coral reef fish, fatty acid composition was examined in five coral reef fishes, Thalassoma lunare, Lutjanus lutjanus, Abudefduf bengalensis, Scarus rivulatus and Scolopsis affinis collected in the Bidong Island of Malaysian South China Sea. Proportions of saturated fatty acids (SAFA) ranged 57.2% 74.2%, with the highest proportions in fatty acids, the second highest was monounsaturated fatty acids (MUFA) ranged from 21.4% to 39.0% and the proportion of polyunsaturated fatty acids (PUFA) was the lowest ranged from 2.8% to 14.1%. Each fatty acid composition differed among fishes, suggesting diverse feeding ecology, habitat use and migration during the fishes' life history in the coral reef habitats. Diets of the coral fish species might vary among species in spite of that each species are living sympatrically. Differences in fatty acid profiles might not just be considered with respect to the diets, but might be based on the habitat and migration.

  3. Anti-allergic Hydroxy Fatty Acids from Typhonium blumei Explored through ChemGPS-NP

    PubMed Central

    Korinek, Michal; Tsai, Yi-Hong; El-Shazly, Mohamed; Lai, Kuei-Hung; Backlund, Anders; Wu, Shou-Fang; Lai, Wan-Chun; Wu, Tung-Ying; Chen, Shu-Li; Wu, Yang-Chang; Cheng, Yuan-Bin; Hwang, Tsong-Long; Chen, Bing-Hung; Chang, Fang-Rong

    2017-01-01

    Increasing prevalence of allergic diseases with an inadequate variety of treatment drives forward search for new alternative drugs. Fatty acids, abundant in nature, are regarded as important bioactive compounds and powerful nutrients playing an important role in lipid homeostasis and inflammation. Phytochemical study on Typhonium blumei Nicolson and Sivadasan (Araceae), a folk anti-cancer and anti-inflammatory medicine, yielded four oxygenated fatty acids, 12R-hydroxyoctadec-9Z,13E-dienoic acid methyl ester (1) and 10R-hydroxyoctadec-8E,12Z-dienoic acid methyl ester (2), 9R-hydroxy-10E-octadecenoic acid methyl ester (3), and 12R*-hydroxy-10E-octadecenoic acid methyl ester (4). Isolated compounds were identified by spectroscopic methods along with GC-MS analysis. Isolated fatty acids together with a series of saturated, unsaturated and oxygenated fatty acids were evaluated for their anti-inflammatory and anti-allergic activities in vitro. Unsaturated (including docosahexaenoic and eicosapentaenoic acids) as well as hydroxylated unsaturated fatty acids exerted strong anti-inflammatory activity in superoxide anion generation (IC50 2.14–3.73 μM) and elastase release (IC50 1.26–4.57 μM) assays. On the other hand, in the anti-allergic assays, the unsaturated fatty acids were inactive, while hydroxylated fatty acids showed promising inhibitory activity in A23187- and antigen-induced degranulation assays (e.g., 9S-hydroxy-10E,12Z-octadecadienoic acid, IC50 92.4 and 49.7 μM, respectively). According to our results, the presence of a hydroxy group in the long chain did not influence the potent anti-inflammatory activity of free unsaturated acids. Nevertheless, hydroxylation of fatty acids (or their methyl esters) seems to be a key factor for the anti-allergic activity observed in the current study. Moreover, ChemGPS-NP was explored to predict the structure-activity relationship of fatty acids. The anti-allergic fatty acids formed different cluster distant from clinically used drugs. The bioactivity of T. blumei, which is historically utilized in folk medicine, might be related to the content of fatty acids and their metabolites. PMID:28674495

  4. Serum trans-fatty acids level are positively associated with lower food security among american adults.

    PubMed

    Mazidi, Mohsen; Vatanparast, Hassan

    2018-03-07

    In the current study we aimed to assess whether the food security is associated with serum trans-fatty acids (TFAs) and dietary fat. Analyses were restricted to participants (from the US National Health and Nutrition Examination Survey) with data available on serum and diet TFAs and food security status from 2009 to 2010. All statistical analyses (analysis of covariance and linear regression) accounted for the survey design and sample weights. We included 3876 participants, overall (48.6%) participants were men, and (51.4%) were women, generally (69.0%) had high food security. Subjects with higher food security had a higher level of education as well (p < 0.001). Age-adjusted, sex-adjusted, race-adjusted, education-adjusted mean of trans 9-octadecenoic acid and trans-9, trans-12-octadecadienoic acid were higher in plasma of participants with lower food security (all p < 0.001), moreover in same model there was a significant positive association between plasma level of trans-11-octadecenoic acid, trans-9-octadecenoic acid and trans-9, trans-12-octadecadienoic acid and score of food security. Further, age, sex, race, education, and energy intake adjusted mean of dietary fatty acids show that total polyunsaturated fatty acids are higher in subjects with higher food security (p = 0.026) while, cholesterol consumption is higher in subjects with lower food security (p = 0.039). Our findings provide more evidence on the association between food insecurity and the higher level of TFAs in serum and different type of fat in the diet.

  5. Synthesis and release of fatty acids by human trophoblast cells in culture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coleman, R.A.; Haynes, E.B.

    1987-11-01

    In order to determine whether placental cells can synthesize and release fatty acids, trophoblast cells from term human placentas were established in monolayer culture. The cells continued to secrete placental lactogen and progesterone and maintained specific activities of critical enzymes of triacylglycerol and phosphatidylcholine biosynthesis for 24 to 72 hr in culture. Fatty acid was rapidly synthesized from (/sup 14/C)acetate and released by the cells. Palmitoleic, palmitic, and oleic acids were the major fatty acids synthesized from (/sup 14/C)acetate and released. Small amounts of lauric, myristic, and stearic acids were also identified. (/sup 14/C)acetate was also incorporated into cellular triacylglycerol,more » phospholipid, and cholesterol, but radiolabeled free fatty acid did not accumulate intracellularly. In a pulse-chase experiment, cellular glycerolipids were labeled with (1-/sup 14/C)oleate; trophoblast cells then released /sup 14/C-labeled fatty acid into the media as the cellular content of labeled phospholipid and triacylglycerol decreased without intracellular accumulation of free fatty acid. Twenty percent of the /sup 14/C-label lost from cellular glycerolipid could not be recovered as a chloroform-extractable product, suggesting that some of the hydrolyzed fatty acid had been oxidized. These data indicate that cultured placenta trophoblast cells can release fatty acids that have either been synthesized de novo or that have been hydrolyzed from cellular glycerolipids. Trophoblast cells in monolayer culture should provide an excellent model for molecular studies of placental fatty acid metabolism and release.« less

  6. Dietary n-6 and n-3 fatty acids in immunity and autoimmune disease.

    PubMed

    Harbige, L S

    1998-11-01

    Clearly there is much evidence to show that under well-controlled laboratory and dietary conditions fatty acid intake can have profound effects on animal models of autoimmune disease. Studies in human autoimmune disease have been less dramatic; however, human trials have been subject to uncontrolled dietary and genetic backgrounds, infection and other environmental influences, and basic trial designs have been inadequate. The impact of dietary fatty acids on animal autoimmune disease models appears to depend on the animal model and the type and amount of fatty acids fed. Diets low in fat, essential fatty acid-deficient, or high in n-3 fatty acids from fish oils increase the survival and reduce disease severity in spontaneous autoantibody-mediated disease, whilst linoleic acid-rich diets appear to increase disease severity. In experimentally-induced T-cell-mediated autoimmune disease, essential fatty acid-deficient diets or diets supplemented with n-3 fatty acids appear to augment disease, whereas n-6 fatty acids prevent or reduce the severity. In contrast, in both T-cell and antibody-mediated auto-immune disease the desaturated and elongated metabolites of linoleic acid are protective. Suppression of autoantibody and T lymphocyte proliferation, apoptosis of autoreactive lymphocytes, and reduced pro-inflammatory cytokine production by high-dose fish oils are all likely mechanisms by which n-3 fatty acids ameliorate autoimmune disease. However, these could be undesirable long-term effects of high-dose fish oil which may compromise host immunity. The protective mechanism(s) of n-6 fatty acids in T-cell- mediated autoimmune disease are less clear, but may include dihomo-gamma-linolenic acid- and arachidonic acid-sensitive immunoregulatory circuits such as Th1 responses, TGF beta 1-mediated effects and Th3-like responses. It is often claimed that n-6 fatty acids promote autoimmune and inflammatory disease based on results obtained with linoleic acid only. It should be appreciated that linoleic acid does not reflect the functions of dihomo-gamma-linolenic and arachidonic acid, and that the endogenous rate of conversion of linoleic to arachidonic acid is slow (Hassam et al. 1975, 1977; Phylactos et al. 1994; Harbige et al. 1995). In addition to effects of dietary fatty acids on immunoregulation, inflammation as a consequence of immune activation in autoimmune disease may also be an important mechanism of action whereby dietary fatty acids modulate disease activity. In conclusion, regulation of gene expression, signal transduction pathways, production of eicosanoids and cytokines, and the action of antioxidant enzymes are all mechanisms by which dietary n-6 and n-3 fatty acids may exert effects on the immune system and autoimmune disease. Probably the most significant of these mechanisms in relation to our current understanding of immunoregulation and inflammation would appear to be via fatty acid effects on cytokines. The amount, type and balance of dietary fatty acids and associated antioxidant nutrients appear to impact on the immune system to produce immune-deviation or immunosuppressive effects, and to reduce immune-mediated inflammation which will in turn affect the susceptibility to, or severity of, autoimmune disease.

  7. Precipitation of free fatty acids generated by Malassezia - a possible explanation for the positive effects of lithium succinate in seborrhoeic dermatitis.

    PubMed

    Mayser, P; Schulz, S

    2016-08-01

    Lithium succinate and gluconate are effective alternative options licensed for the topical treatment of seborrhoeic dermatitis (SD). Their mode of action is not fully elucidated. Minimal inhibitory concentrations against Malassezia (M.) yeasts, which play an important role in SD, are very high. An assay based on the hydrolysis of ethyl octanoate enables us to test the hydrolytic activity of reference strains of the species M. globosa, M. sympodialis and M. furfur solely without interference by fungal growth as the free octanoic acid generated has antifungal activity. In this assay the presence of alkali salts (lithium, sodium and potassium succinate resp.) in concentrations of 2%, 4% and 8% does not influence hydrolytic activity but the availability of the generated free fatty acid in a dose-dependent manner which was analysed by means of high-performance thin layer chromatography and densitometry. This was best effected with the lithium, followed by the sodium and only to a low degree by the potassium salt. As shown by attenuated total reflection Fourier transform infrared spectroscopy the free fatty acid reacted to the respective alkali soap and precipitate from solution. The alkali soaps could not be utilized by the M. spp. as shown in a modified Tween auxanogram and in lack of fungal growth by ethyl oleate in the presence of 8% lithium succinate. The effect of lithium succinate on growth of M. yeasts and presumably in SD can be explained by a precipitation of free fatty acids as alkali soaps limiting their availability for the growth of these lipid-dependent yeasts. © 2016 European Academy of Dermatology and Venereology.

  8. Assessment of storage lipid accumulation patterns in eucalanoid copepods from the eastern tropical Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Cass, Christine J.; Daly, Kendra L.; Wakeham, Stuart G.

    2014-11-01

    Members of the copepod family Eucalanidae are widely distributed throughout the world's oceans and have been noted for their accumulation of storage lipids in high- and low-latitude environments. However, little is known about the lipid composition of eucalanoid copepods in low-latitude environments. The purpose of this study was to examine fatty acid and alcohol profiles in the storage lipids (wax esters and triacylglycerols) of Eucalanus inermis, Rhincalanus rostrifrons, R. nasutus, Pareucalanus attenuatus, and Subeucalanus subtenuis, collected primarily in the eastern tropical north Pacific near the Tehuantepec Bowl and Costa Rica Dome regions, noted for its oxygen minimum zone, during fall 2007 and winter 2008/2009. Adult copepods and particulate material were collected in the upper 50 m and from 200 to 300 m in the upper oxycline. Lipid profiles of particulate matter were generated to help ascertain information on ecological strategies of these species and on differential accumulation of dietary and modified fatty acids in the wax ester and triacylglycerol storage lipid components of these copepods in relation to their vertical distributions around the oxygen minimum zone. Additional data on phospholipid fatty acid and sterol/fatty alcohol fractions were also generated to obtain a comprehensive lipid data set for each sample. Rhincalanus spp. accumulated relatively large amounts of storage lipids (31-80% of dry mass (DM)), while E. inermis had moderate amounts (2-9% DM), and P. attenuatus and S. subtenuis had low quantities of storage lipid (0-1% DM). E. inermis and S. subtenuis primarily accumulated triacylglycerols (>90% of storage lipids), while P. attenuatus and Rhincalanus spp. primarily accumulated wax esters (>84% of storage lipids). Based on previously generated molecular phylogenies of the Eucalanidae family, these results appear to support genetic predisposition as a major factor explaining why a given species accumulates primarily triacylglycerols or wax esters, and also potentially dictating major fatty acid and alcohol accumulation patterns within the more highly modified wax ester fraction. Comparisons of fatty acid profiles between triacylglycerol and wax ester components in copepods with that in available prey suggested that copepod triacylglycerols were more reflective of dietary fatty acids, while wax esters contained a higher proportion of modified or de novo synthesized forms. Sterols and phospholipid fatty acids were similar between species, confirming high levels of regulation within these components. Similarities between triacylglycerol fatty acid profiles of E. inermis collected in surface waters and at >200 m depth indicate little to no feeding during their ontogenetic migration to deeper, low-oxygen waters.

  9. Atherogenicity index and health-related fatty acids in different stages of lactation from Friesian, Jersey and Friesian×Jersey cross cow milk under a pasture-based dairy system.

    PubMed

    Nantapo, C T W; Muchenje, V; Hugo, A

    2014-03-01

    The objective of the study was to investigate the effect of stage of lactation on the fatty acid profiles of milk from Friesian, Jersey and Friesian×Jersey cows. Linoleic acid in pastures was highest in the second phase which coincided with mid-lactation days (p<0.05). Highest milk moisture content and lowest fat free dry matter content was seen in early lactation (p<0.05). Higher fat content was observed in late lactation than early lactation. Highest butyric, caproic, linoleic, omega-6 and polyunsaturated fatty acids were observed for milk from Friesian cows. Highest conjugated fatty acids, α-linolenic acid, linoleic acid, saturated fatty acids, polyunsaturated fatty acids, omega-6, and omega-3 were observed in early lactation. Atherogenicity index and desaturase activity indices were highest in late lactation. In conclusion, stage of lactation and genotype affected milk health-related fatty acid profiles. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Effect of growing area on tocopherols, carotenoids and fatty acid composition of Pistacia lentiscus edible oil.

    PubMed

    Mezni, F; Khouja, M L; Gregoire, S; Martine, L; Khaldi, A; Berdeaux, O

    2014-01-01

    In this investigation, we aim to study, for the first time, the effect of the growing area on tocopherols, carotenoids and fatty acid content of Pistacia lentiscus fixed oil. Fruits were harvested from eight different sites located in the north and the centre of Tunisia. Tocopherols, carotenoids and fatty acid content of the fixed oils were determined. The highest carotenoid content was exhibited by Feija oil (10.57 mg/kg of oil). Oueslatia and Tabarka oils displayed the highest α-tocopherol content (96.79 and 92.79 mg/kg of oil, respectively). Three major fatty acids were determined: oleic, palmitic and linoleic acids. Oleic acid was the main fatty acid presenting more than 50% of the total fatty acid content. Kebouche oil presented the highest oleic acid content (55.66%). All these results highlight the richness of carotenoids, tocopherols and unsaturated fatty acids in P. lentiscus seed oil and underscore the nutritional value of this natural product.

  11. Hepatic Steatosis as a Marker of Metabolic Dysfunction

    PubMed Central

    Fabbrini, Elisa; Magkos, Faidon

    2015-01-01

    Nonalcoholic fatty liver disease (NAFLD) is the liver manifestation of the complex metabolic derangements associated with obesity. NAFLD is characterized by excessive deposition of fat in the liver (steatosis) and develops when hepatic fatty acid availability from plasma and de novo synthesis exceeds hepatic fatty acid disposal by oxidation and triglyceride export. Hepatic steatosis is therefore the biochemical result of an imbalance between complex pathways of lipid metabolism, and is associated with an array of adverse changes in glucose, fatty acid, and lipoprotein metabolism across all tissues of the body. Intrahepatic triglyceride (IHTG) content is therefore a very good marker (and in some cases may be the cause) of the presence and the degree of multiple-organ metabolic dysfunction. These metabolic abnormalities are likely responsible for many cardiometabolic risk factors associated with NAFLD, such as insulin resistance, type 2 diabetes mellitus, and dyslipidemia. Understanding the factors involved in the pathogenesis and pathophysiology of NAFLD will lead to a better understanding of the mechanisms responsible for the metabolic complications of obesity, and hopefully to the discovery of novel effective treatments for their reversal. PMID:26102213

  12. Polyunsaturated fatty acids are potent openers of human M-channels expressed in Xenopus laevis oocytes.

    PubMed

    Liin, S I; Karlsson, U; Bentzen, B H; Schmitt, N; Elinder, F

    2016-09-01

    Polyunsaturated fatty acids have been reported to reduce neuronal excitability, in part by promoting inactivation of voltage-gated sodium and calcium channels. Effects on neuronal potassium channels are less explored and experimental data ambiguous. The aim of this study was to investigate anti-excitable effects of polyunsaturated fatty acids on the neuronal M-channel, important for setting the resting membrane potential in hippocampal and dorsal root ganglion neurones. Effects of fatty acids and fatty acid analogues on mouse dorsal root ganglion neurones and on the human KV 7.2/3 channel expressed in Xenopus laevis oocytes were studied using electrophysiology. Extracellular application of physiologically relevant concentrations of the polyunsaturated fatty acid docosahexaenoic acid hyperpolarized the resting membrane potential (-2.4 mV by 30 μm) and increased the threshold current to evoke action potentials in dorsal root ganglion neurones. The polyunsaturated fatty acids docosahexaenoic acid, α-linolenic acid and eicosapentaenoic acid facilitated opening of the human M-channel, comprised of the heteromeric human KV 7.2/3 channel expressed in Xenopus oocytes, by shifting the conductance-vs.-voltage curve towards more negative voltages (by -7.4 to -11.3 mV by 70 μm). Uncharged docosahexaenoic acid methyl ester and monounsaturated oleic acid did not facilitate opening of the human KV 7.2/3 channel. These findings suggest that circulating polyunsaturated fatty acids, with a minimum requirement of multiple double bonds and a charged carboxyl group, dampen excitability by opening neuronal M-channels. Collectively, our data bring light to the molecular targets of polyunsaturated fatty acids and thus a possible mechanism by which polyunsaturated fatty acids reduce neuronal excitability. © 2016 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd.

  13. How Bacterial Pathogens Eat Host Lipids: Implications for the Development of Fatty Acid Synthesis Therapeutics*

    PubMed Central

    Yao, Jiangwei; Rock, Charles O.

    2015-01-01

    Bacterial type II fatty acid synthesis (FASII) is a target for the development of novel therapeutics. Bacteria incorporate extracellular fatty acids into membrane lipids, raising the question of whether pathogens use host fatty acids to bypass FASII and defeat FASII therapeutics. Some pathogens suppress FASII when exogenous fatty acids are present to bypass FASII therapeutics. FASII inhibition cannot be bypassed in many bacteria because essential fatty acids cannot be obtained from the host. FASII antibiotics may not be effective against all bacteria, but a broad spectrum of Gram-negative and -positive pathogens can be effectively treated with FASII inhibitors. PMID:25648887

  14. Fatty acid synthase plays a role in cancer metabolism beyond providing fatty acids for phospholipid synthesis or sustaining elevations in glycolytic activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hopperton, Kathryn E., E-mail: kathryn.hopperton@mail.utoronto.ca; Duncan, Robin E., E-mail: robin.duncan@uwaterloo.ca; Bazinet, Richard P., E-mail: richard.bazinet@utoronto.ca

    Fatty acid synthase is over-expressed in many cancers and its activity is required for cancer cell survival, but the role of endogenously synthesized fatty acids in cancer is unknown. It has been suggested that endogenous fatty acid synthesis is either needed to support the growth of rapidly dividing cells, or to maintain elevated glycolysis (the Warburg effect) that is characteristic of cancer cells. Here, we investigate both hypotheses. First, we compared utilization of fatty acids synthesized endogenously from {sup 14}C-labeled acetate to those supplied exogenously as {sup 14}C-labeled palmitate in the culture medium in human breast cancer (MCF-7 and MDA-MB-231)more » and untransformed breast epithelial cells (MCF-10A). We found that cancer cells do not produce fatty acids that are different from those derived from exogenous palmitate, that these fatty acids are esterified to the same lipid and phospholipid classes in the same proportions, and that their distribution within neutral lipids is not different from untransformed cells. These results suggest that endogenously synthesized fatty acids do not fulfill a specific function in cancer cells. Furthermore, we observed that cancer cells excrete endogenously synthesized fatty acids, suggesting that they are produced in excess of requirements. We next investigated whether lipogenic activity is involved in the maintenance of high glycolytic activity by culturing both cancer and non-transformed cells under anoxic conditions. Although anoxia increased glycolysis 2–3 fold, we observed no concomitant increase in lipogenesis. Our results indicate that breast cancer cells do not have a specific qualitative or quantitative requirement for endogenously synthesized fatty acids and that increased de novo lipogenesis is not required to sustain elevations in glycolytic activity induced by anoxia in these cells. - Highlights: • Fatty acid synthase (FASN) is over-expressed in cancer but its function is unknown. • We compare utilization of fatty acids produced by FASN to those derived exogenously. • Cancer cells do not have a specific requirement for fatty acids produced by FASN. • Fatty acids produced by FASN are in excess of cell requirements and are excreted. • Increased FASN activity is not required to sustain elevations in glycolysis.« less

  15. Method of making alkyl esters

    DOEpatents

    Elliott, Brian

    2010-09-14

    Methods of making alkyl esters are described herein. The methods are capable of using raw, unprocessed, low-cost feedstocks and waste grease. Generally, the method involves converting a glyceride source to a fatty acid composition and esterifying the fatty acid composition to make alkyl esters. In an embodiment, a method of making alkyl esters comprises providing a glyceride source. The method further comprises converting the glyceride source to a fatty acid composition comprising free fatty acids and less than about 1% glyceride by mass. Moreover, the method comprises esterifying the fatty acid composition in the presence of a solid acid catalyst at a temperature ranging firm about 70.degree. C. to about 120.degree. C. to produce alkyl esters, such that at least 85% of the free fatty acids are converted to alkyl esters. The method also incorporates the use of packed bed reactors for glyceride conversion and/or fatty acid esterification to make alkyl esters.

  16. Comparative Study of Fatty Acids Profile in Eleven Wild Mushrooms of Boletacea and Russulaceae Families.

    PubMed

    Dimitrijevic, Marija V; Mitic, Violeta D; Jovanovic, Olga P; Stankov Jovanovic, Vesna P; Nikolic, Jelena S; Petrovic, Goran M; Stojanovic, Gordana S

    2018-01-01

    Eleven species of wild mushrooms which belong to Boletaceae and Russulaceae families were examined by gas chromatography (GC) and gas chromatography-mass spectrometry (GC/MS) analysis for the presence of fatty acids. As far as we know, the fatty acid profiles of B. purpureus and B. rhodoxanthus were described for the first time. Twenty-six fatty acids were determined. Linoleic (19.5 - 72%), oleic (0.11 - 64%), palmitic (5.9 - 22%) and stearic acids (0.81 - 57%) were present in the highest contents. In all samples, unsaturated fatty acids dominate. Agglomerative hierarchical clustering was used to display the correlation between the fatty acids and their relationships with the mushroom species. Based on the fatty acids profile in the samples, the mushrooms can be divided into two families: Boletaceae and Russulaceae families, using cluster analysis. © 2018 Wiley-VHCA AG, Zurich, Switzerland.

  17. Effect of short-chain fatty acids on the formation of amylose microparticles by amylosucrase.

    PubMed

    Lim, Min-Cheol; Park, Kyu-Hwan; Choi, Jong-Hyun; Lee, Da-Hee; Letona, Carlos Andres Morales; Baik, Moo-Yeol; Park, Cheon-Seok; Kim, Young-Rok

    2016-10-20

    Amylose microparticles can be produced by self-assembly of amylose molecules through an amylosucrase-mediated synthesis. Here we investigated the role of short-chain fatty acids in the formation of amylose microparticles and the fate of these fatty acids at the end of the reaction. The rate of self-assembly and production yields of amylose microparticles were significantly enhanced in the presence of fatty acids. The effect was dependent on the length of the fatty acid carbon tail; butanoic acid (C4) was the most effective, followed by hexanoic acid (C6) and octanoic acid (C8). The amylose microparticles were investigated by carrying out SEM, XRD, Raman, NMR, FT-IR and DSC analysis. The size, morphology and crystal structure of the resulting amylose microparticles were comparable with those of amylose microparticles produced without fatty acids. The results indicated the carboxyl group of the fatty acid to be responsible for promoting the self-assembly of amylose chains to form microparticles. The fatty acids were eventually removed from the microstructure through the tight association of amylose double helices to form the amylose microparticles. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. 21 CFR 172.852 - Glyceryl-lacto esters of fatty acids.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Glyceryl-lacto esters of fatty acids. 172.852... HUMAN CONSUMPTION Multipurpose Additives § 172.852 Glyceryl-lacto esters of fatty acids. Glyceryl-lacto esters of fatty acids (the lactic acid esters of mono- and diglycerides) may be safely used in food in...

  19. 40 CFR 721.3627 - Branched synthetic fatty acid.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Branched synthetic fatty acid. 721... Substances § 721.3627 Branched synthetic fatty acid. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a branched synthetic fatty acid...

  20. Drought and heat stress effects on soybean fatty acid composition and oil stability

    USDA-ARS?s Scientific Manuscript database

    Previous studies have shown that oil concentration and fatty acid profile (composition) change with genotype, environment (mainly heat and drought), and geographical location. The changes in fatty acid composition under these conditions affect fatty acid stability, creating a challenge to oil proces...

  1. Naturally occurring fatty acids: Source, chemistry, and uses

    USDA-ARS?s Scientific Manuscript database

    Natural occurring fatty acids are a large and complex class of compounds found in plants and animals. Fatty acids are abundant and of interest because of their renewability, biodegradability, biocompatibility, low cost, and fascinating chemistry. Of the many fatty acids, only 20-25 of them are widel...

  2. 40 CFR 721.3800 - Formaldehyde, condensated polyoxyethylene fatty acid, ester with styrenated phenol, ethylene...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... polyoxyethylene fatty acid, ester with styrenated phenol, ethylene oxide adduct. 721.3800 Section 721.3800... Formaldehyde, condensated polyoxyethylene fatty acid, ester with styrenated phenol, ethylene oxide adduct. (a... generically as formaldehyde, condensated polyoxyethylene fatty acid, ester with styrenated phenol, ethylene...

  3. 40 CFR 721.3627 - Branched synthetic fatty acid.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Branched synthetic fatty acid. 721... Substances § 721.3627 Branched synthetic fatty acid. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a branched synthetic fatty acid...

  4. Potential Approach of Microbial Conversion to Develop New Antifungal Products of Omega-3 Fatty Acids

    USDA-ARS?s Scientific Manuscript database

    Omega-3/('-3) or n-3 fatty acids are a family of unsaturated fatty acids that have in common a final carbon-carbon double bond in the n-3 position. n-3 Fatty acids which are important in human nutrition are: a-linolenic acid (18:3, n-3; ALA), eicosapentaenoic acid (20:5, n-3; EPA), and docosahexaen...

  5. [Fatty acids in confectionery products].

    PubMed

    Daniewski, M; Mielniczuk, E; Jacórzyński, B; Pawlicka, M; Balas, J; Filipek, A; Górnicka, M

    2000-01-01

    The content of fat and fatty acids in 144 different confectionery products purchased on the market in Warsaw region during 1997-1999 have been investigated. In examined confectionery products considerable variability of both fat and fatty acids content have been found. The content of fat varied from 6.6% (coconut cookies) up to 40% (chocolate wafers). Saturated fatty acids were present in both cis and trans form. Especially trans fatty acids reach (above 50%) were fats extracted from nut wafers, coconuts wafers.

  6. SCD1 Inhibition Causes Cancer Cell Death by Depleting Mono-Unsaturated Fatty Acids

    PubMed Central

    Mason, Paul; Liang, Beirong; Li, Lingyun; Fremgen, Trisha; Murphy, Erin; Quinn, Angela; Madden, Stephen L.; Biemann, Hans-Peter; Wang, Bing; Cohen, Aharon; Komarnitsky, Svetlana; Jancsics, Kate; Hirth, Brad; Cooper, Christopher G. F.; Lee, Edward; Wilson, Sean; Krumbholz, Roy; Schmid, Steven; Xiang, Yibin; Booker, Michael; Lillie, James; Carter, Kara

    2012-01-01

    Increased metabolism is a requirement for tumor cell proliferation. To understand the dependence of tumor cells on fatty acid metabolism, we evaluated various nodes of the fatty acid synthesis pathway. Using RNAi we have demonstrated that depletion of fatty-acid synthesis pathway enzymes SCD1, FASN, or ACC1 in HCT116 colon cancer cells results in cytotoxicity that is reversible by addition of exogenous fatty acids. This conditional phenotype is most pronounced when SCD1 is depleted. We used this fatty-acid rescue strategy to characterize several small-molecule inhibitors of fatty acid synthesis, including identification of TOFA as a potent SCD1 inhibitor, representing a previously undescribed activity for this compound. Reference FASN and ACC inhibitors show cytotoxicity that is less pronounced than that of TOFA, and fatty-acid rescue profiles consistent with their proposed enzyme targets. Two reference SCD1 inhibitors show low-nanomolar cytotoxicity that is offset by at least two orders of magnitude by exogenous oleate. One of these inhibitors slows growth of HCT116 xenograft tumors. Our data outline an effective strategy for interrogation of on-mechanism potency and pathway-node-specificity of fatty acid synthesis inhibitors, establish an unambiguous link between fatty acid synthesis and cancer cell survival, and point toward SCD1 as a key target in this pathway. PMID:22457791

  7. Interrelationships between Fatty Acid Composition, Staphyloxanthin Content, Fluidity, and Carbon Flow in the Staphylococcus aureus Membrane.

    PubMed

    Tiwari, Kiran B; Gatto, Craig; Wilkinson, Brian J

    2018-05-17

    Fatty acids play a major role in determining membrane biophysical properties. Staphylococcus aureus produces branched-chain fatty acids (BCFAs) and straight-chain saturated fatty acids (SCSFAs), and can directly incorporate exogenous SCSFAs and straight-chain unsaturated fatty acids (SCUFAs). Many S. aureus strains produce the triterpenoid pigment staphyloxanthin, and the balance of BCFAs, SCSFAs and staphyloxanthin determines membrane fluidity. Here, we investigated the relationship of fatty acid and carotenoid production in S. aureus using a pigmented strain (Pig1), its carotenoid-deficient mutant (Pig1Δ crtM ) and the naturally non-pigmented Staphylococcus argenteus that lacks carotenoid biosynthesis genes and is closely related to S. aureus . Fatty acid compositions in all strains were similar under a given culture condition indicating that staphyloxanthin does not influence fatty acid composition. Strain Pig1 had decreased membrane fluidity as measured by fluorescence anisotropy compared to the other strains under all conditions indicating that staphyloxanthin helps maintain membrane rigidity. We could find no evidence for correlation of expression of crtM and fatty acid biosynthesis genes. Supplementation of medium with glucose increased SCSFA production and decreased BCFA and staphyloxanthin production, whereas acetate-supplementation also decreased BCFAs but increased staphyloxanthin production. We believe that staphyloxanthin levels are influenced more through metabolic regulation than responding to fatty acids incorporated into the membrane.

  8. Can long chain n-3 fatty acids from feed be converted into very long chain n-3 fatty acids in fillets from farmed rainbow trout (Oncorhynchus mykiss)?

    NASA Astrophysics Data System (ADS)

    Lušnic Polak, M.; Demšar, L.; Luzar, U.; Polak, T.

    2017-09-01

    The link between the basic chemical and fatty acid composition of trout feed on one hand and trout (Oncorhynchus mykiss) meat (fillet) was investigated.. The content of 52 fatty acids from feed and trout meat lipids was determined by in-situ transesterification and capillary column gas-liquid chromatography. On average, 100 g of trout feed contained 7.4 g of moisture, 47.7 g of proteins, 6.09 g of ash, 21.4 g of fat, and as for fatty acid composition, 47.8 wt. % were monounsaturated, 34.0 wt. % were polyunsaturated and 18.1 wt. % were saturated fatty acids, with the PS ratio 1.88, n-6/n-3 ratio 1.74, 0.80 wt. % of trans and 3.28 wt. % of very long chain n-3 fatty acids. On average, 100 g of trout meat contained 76.1 g of moisture, 21.4 g of proteins, 1.34 g of ash, 2.52 g of fat, and in the fatty acid composition 42.1 wt. % were monounsaturated, 38.2 wt. % were polyunsaturated and 18.9 wt. % were saturated fatty acids, with the PS ratio 2.02, n-6/n-3 ratio 0.98, 0.95 wt. % of trans and 13.25 wt. % of very long chain n-3 fatty acids.

  9. Acid Response of Bifidobacterium longum subsp. longum BBMN68 Is Accompanied by Modification of the Cell Membrane Fatty Acid Composition.

    PubMed

    Liu, Songling; Ren, Fazheng; Jiang, Jingli; Zhao, Liang

    2016-07-28

    The acid response of Bifidobacterium longum subsp. longum BBMN68 has been studied in our previous study. The fab gene, which is supposed to be involved in membrane fatty acid biosynthesis, was demonstrated to be induced in acid response. In order to investigate the relationship between acid response and cell membrane fatty acid composition, the acid adaptation of BBMN68 was assessed and the membrane fatty acid composition at different adaptation conditions was identified. Indeed, the fatty acid composition was influenced by acid adaptation. Our results showed that the effective acid adaptations were accompanied with decrease in the unsaturated to saturated fatty acids ratio (UFA/SFA) and increase in cyclopropane fatty acid (CFA) content, which corresponded to previous studies. Moreover, both effective and non-effective acid adaptation conditions resulted in decrease in the C18:1 cis-9/C18:1 trans-9 ratio, indicating that the C18:1 cis-9/C18:1 trans-9 ratio is associated with acid tolerance response but not with acid adaptation response. Taken together, this study indicated that the UFA/SFA and CFA content of BBMN68 were involved in acid adaptation and the C18:1 cis-9/C18:1 trans-9 ratio was involved in acid tolerance response.

  10. Production and identification of a novel compound, 7,10-dihydroxy-8(E)-hexadecenoic acid from palmitoleic acid by Pseudomonas aeruginosa PR3.

    PubMed

    Bae, Jae-Han; Kim, Deuk-Soo; Suh, Min-Jung; Oh, Sei-Ryang; Lee, In-Jung; Kang, Sun-Chul; Hou, Ching T; Kim, Hak-Ryul

    2007-05-01

    Hydroxy fatty acids are considered as important value-added product for industrial application because of their special properties such as higher viscosity and reactivity. Microbial production of the hydroxy fatty acids from various fatty acid substrates have been actively studied using several microorganisms. The new bacterial isolate Pseudomonas aeruginosa (PR3) had been reported to produce mono-, di-, and tri-hydroxy fatty acids from different unsaturated fatty acids. Of those, 7,10-dihydroxy-8(E)-octadecenoic acid (DOD) and 7,10,12-trihydroxy-8(E)-octadecenoic acid (TOD) were produced from oleic acid and ricinoleic acid, respectively. Based on the postulated common metabolic pathway involved in DOD and TOD formation by PR3, it was assumed that palmitoleic acid containing a singular 9-cis double bond, common structural property sharing with oleic acid and ricinoleic acid, could be utilized by PR3 to produce hydroxy fatty acid. In this study, we tried to use palmitoleic acid as substrate for production of hydroxy fatty acid by PR3 and firstly confirmed that PR3 could produce 7,10-dihydroxy-8(E)-hexadecenoic acid (DHD) with 23% yield from palmitoleic acid. DHD production was peaked at 72 h after the substrate was added to the 24-h-culture.

  11. The impact of omega-3 fatty acids on osteoporosis.

    PubMed

    Maggio, M; Artoni, A; Lauretani, F; Borghi, L; Nouvenne, A; Valenti, G; Ceda, G P

    2009-01-01

    The essential polyunsaturated fatty acids (PUFAs) comprise 2 main classes: n-6 and n-3 fatty acids. The most common source of n-6 fatty acids is linoleic acid (LA) which is found in high concentrations in various vegetable oils. Arachidonic acid (AA), the 20-carbon n-6 fatty acid, is obtained largely by synthesis from LA in the body. The n-3 fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic (DHA) are found in fish and fish oils. Long-Chain polyunsaturated fatty acids (LCPUFAs) and lipid mediators derived from LCPUFAs have critical roles in the regulation of a variety of biological processes including bone metabolism. There are different mechanisms by which dietary fatty acids affect bone: effect on calcium balance, effect on osteoblastogenesis and osteoblast activity, change of membrane function, decrease in inflammatory cytokines such as interleukin-1 (IL-1), interleukin-6 (IL-6), and tumor necrosis factor alpha (TNF-alpha), modulation of peroxisome proliferators-activated receptor gamma (PPARgamma). Animal studies have shown that a higher dietary omega-3/omega-6 fatty acids ratio is associated with beneficial effects on bone health. In spite of increasing evidence of the positive effects of dietary fats on bone metabolism from animal and in vitro studies, the few studies conducted in humans do not allow us to draw a definitive conclusion on their usefulness in clinical practice.

  12. Determination of fatty acid profile in ram spermatozoa and seminal plasma.

    PubMed

    Díaz, R; Torres, M A; Bravo, S; Sanchez, R; Sepúlveda, N

    2016-08-01

    Fatty acids are important in male reproductive function because they are associated with membrane fluidity, acrosome reaction, sperm motility and viability, but limited information exists about the fatty acid profile of ram semen. Our aim was to determine the fatty acid composition in ram spermatozoa and seminal plasma. Sixty ejaculates were obtained from three ram (20 ejaculates/ram) using artificial vagina. Ram spermatozoa (RS) and seminal plasma (SP) were separated using centrifugation, and the fatty acids were analysed by gas chromatography. Total lipids obtained in ram spermatozoa were 1.8% and 1.6% in seminal plasma. Saturated fatty acid (SFA) was proportionally major in SP (66.6%) that RS (49.9%). The highest proportions of SFA corresponded to C4:0 (RS = 16.3% and SP = 28.8%) and C16:0 (RS = 16.3% and PS = 20%). The most important unsaturated fatty acid (UFA) was docosahexaenoic acid (DHA), 44.9% in RS and 31.5% in SP. The profile of fatty acid and their proportions showed differences between spermatozoa and seminal plasma. © 2015 Blackwell Verlag GmbH.

  13. LED power efficiency of biomass, fatty acid, and carotenoid production in Nannochloropsis microalgae.

    PubMed

    Ma, Ruijuan; Thomas-Hall, Skye R; Chua, Elvis T; Eltanahy, Eladl; Netzel, Michael E; Netzel, Gabriele; Lu, Yinghua; Schenk, Peer M

    2018-03-01

    The microalga Nannochloropsis produces high-value omega-3-rich fatty acids and carotenoids. In this study the effects of light intensity and wavelength on biomass, fatty acid, and carotenoid production with respect to light output efficiency were investigated. Similar biomass and fatty acid yields were obtained at high light intensity (150 μmol m -2  s -1 ) LEDs on day 7 and low light intensity (50 μmol m -2  s -1 ) LEDs on day 11 during cultivation, but the power efficiencies of biomass and fatty acid (specifically eicosapentaenoic acid) production were higher for low light intensity. Interestingly, low light intensity enhanced both, carotenoid power efficiency of carotenoid biosynthesis and yield. White LEDs were neither advantageous for biomass and fatty acid yields, nor the power efficiency of biomass, fatty acid, and carotenoid production. Noticeably, red LED resulted in the highest biomass and fatty acid power efficiency, suggesting that LEDs can be fine-tuned to grow Nannochloropsis algae more energy-efficiently. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Microalgal biofactories: a promising approach towards sustainable omega-3 fatty acid production

    PubMed Central

    2012-01-01

    Omega-3 fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) provide significant health benefits and this has led to an increased consumption as dietary supplements. Omega-3 fatty acids EPA and DHA are found in animals, transgenic plants, fungi and many microorganisms but are typically extracted from fatty fish, putting additional pressures on global fish stocks. As primary producers, many marine microalgae are rich in EPA (C20:5) and DHA (C22:6) and present a promising source of omega-3 fatty acids. Several heterotrophic microalgae have been used as biofactories for omega-3 fatty acids commercially, but a strong interest in autotrophic microalgae has emerged in recent years as microalgae are being developed as biofuel crops. This paper provides an overview of microalgal biotechnology and production platforms for the development of omega-3 fatty acids EPA and DHA. It refers to implications in current biotechnological uses of microalgae as aquaculture feed and future biofuel crops and explores potential applications of metabolic engineering and selective breeding to accumulate large amounts of omega-3 fatty acids in autotrophic microalgae. PMID:22830315

  15. Mutant fatty acid desaturase

    DOEpatents

    Shanklin, John; Cahoon, Edgar B.

    2004-02-03

    The present invention relates to a method for producing mutants of a fatty acid desaturase having a substantially increased activity towards fatty acid substrates with chains containing fewer than 18 carbons relative to an unmutagenized precursor desaturase having an 18 carbon atom chain length substrate specificity. The method involves inducing one or more mutations in the nucleic acid sequence encoding the precursor desaturase, transforming the mutated sequence into an unsaturated fatty acid auxotroph cell such as MH13 E. coli, culturing the cells in the absence of supplemental unsaturated fatty acids, thereby selecting for recipient cells which have received and which express a mutant fatty acid desaturase with an elevated specificity for fatty acid substrates having chain lengths of less than 18 carbon atoms. A variety of mutants having 16 or fewer carbon atom chain length substrate specificities are produced by this method. Mutant desaturases produced by this method can be introduced via expression vectors into prokaryotic and eukaryotic cells and can also be used in the production of transgenic plants which may be used to produce specific fatty acid products.

  16. CO2-limitation-inducible Green Recovery of fatty acids from cyanobacterial biomass

    PubMed Central

    Liu, Xinyao; Fallon, Sarah; Sheng, Jie; Curtiss, Roy

    2011-01-01

    Using genetically modified cyanobacterial strains, we engineered a Green Recovery strategy to convert membrane lipids into fatty acids for economical and environmentally sustainable biofuel production. The Green Recovery strategy utilizes lipolytic enzymes under the control of promoters induced by CO2 limitation. Data indicate that strains of the cyanobacterium Synechocystis sp. PCC6803 engineered for Green Recovery underwent degradation of membrane diacylglycerols upon CO2 limitation, leading to release of fatty acids into the culture medium. Recovered fatty acid yields of 36.1 × 10-12 mg/cell were measured in one of the engineered strains (SD239). Green Recovery can be incorporated into previously constructed fatty-acid-secretion strains, enabling fatty acid recovery from the remaining cyanobacterial biomass that will be generated during fatty acid biofuel production in photobioreactors. PMID:21482802

  17. Stearoyl-CoA desaturase activity in bovine cumulus cells protects the oocyte against saturated fatty acid stress

    PubMed Central

    Aardema, Hilde; van Tol, Helena T. A.; Wubbolts, Richard W.; Brouwers, Jos F. H. M.; Gadella, Bart M.; Roelen, Bernard A. J.

    2017-01-01

    Abstract Metabolic rich and poor conditions are both characterized by elevated free fatty acid levels and have been associated with impaired female fertility. In particular, saturated free fatty acids have a dose-dependent negative impact on oocyte developmental competence, while monounsaturated free fatty acids appear less harmful. Cumulus cells seem to protect the oocyte against free fatty acids, and the aim of this study was to determine the mechanism behind this protection In particular, the role of the enzyme stearoyl-CoA desaturase (SCD) that converts saturated into monounsaturated fatty acids was investigated. SCD gene and protein were abundantly expressed in cumulus cells, but expression was low in oocytes. The level of SCD protein expression in cumulus cells did not change when COCs were exposed to saturated stearic acid during maturation. SCD inhibition in the presence of stearic acid significantly reduced the developmental competence of oocytes and increased the incidence of apoptosis in cumulus cells. The esterified oleic/stearic acid ratio of the neutral lipid fraction in cumulus cells decreased in the presence of SCD inhibitors when COCs were exposed to saturated free fatty acids during maturation, indicating the SCD-specific conversion of saturated fatty acids under noninhibiting conditions. The observation that cumulus cells can desaturate the potentially toxic stearic acid into oleic acid via SCD activity provides a mechanistic insight into how the cumulus cells protect the oocyte against toxicity by saturated fatty acid. PMID:28486699

  18. Insights into the structure of covalently bound fatty acid monolayers on a simplified model of the hair epicuticle from molecular dynamics simulations.

    PubMed

    Cheong, Daniel W; Lim, Freda C H; Zhang, Liping

    2012-09-11

    The epicuticle is the outermost layer of the human hair, and consists of a monolayer of fatty acids that is predominantly 18-methyleicosanoic acid (18-MEA) covalently bound to a protein matrix. Surprisingly, despite the clear scientific and industrial importance, the detailed molecular structure of this fatty acid layer is still poorly understood. In this work, we aim to gain insight into the structure of this so-called F-layer by performing molecular dynamics simulations on a simplified hair surface model consisting of a monolayer of 18-MEA covalently attached to graphene sheets at various separation distances. The relative free energy of the fatty acid layer was calculated as a function of separation distance in order to obtain the optimal packing density of the fatty acids. Conformational properties such as the thickness, tilt angle, and order parameter of the fatty acid layers were also calculated to characterize the structure of the F-layer. Simulations of the structurally similar eicosanoic acid (EA) were also performed as a comparison and to investigate the role of the anteiso-methyl side chain at the 18th position of 18-MEA. The degree of water penetration into the fatty acid layer at the various separation distances was also investigated. Our simulations suggest that the optimal spacing for the fatty acids is between 0.492 and 0.651 nm, in contrast to the generally accepted literature value of around 0.9-1.0 nm. This results in a packing density of between 0.21 and 0.37 nm(2) per fatty acid molecule and a thickness of around 2.01-2.64 nm. We also show that, at larger separation distances, the 18-MEA fatty acid provides a slightly better hydrophobic layer than the EA fatty acid, suggesting that the 18-MEA fatty acid may have been naturally selected to provide better protection for the hair when it loses some of the fatty acids due to daily wear and tear. To our knowledge, this is the first attempt to systematically investigate the hair surface structure and properties with molecular simulations.

  19. [Lipoproteins as a specific circulatory transport system].

    PubMed

    Titov, V N

    1998-01-01

    In accordance with the systemic approach, each circulatory transport system is highly specific and transports an elementary substance from cell to cell in the hydrated medium. In the author's opinion, the lipoprotein system has also a functional specificity and carries the elementary substance fatty acid in the blood stream. A great variety of fatty acids, the individuality of their physicochemical properties, great stereochemic differences of saturated and polyenic fatty acids make their transport virtually impossible. The steric individuality of fatty acids can be reduced if the acids are covalently bonded by a matrix as complex lipids. For formation of complex lipids, nature prefers esterification of fatty acids with alcohols which have a varying hydrophoby, such as glycerol, sphingosine, cholesterol, cetyl alcohol. The steric differences of saturated and polyenic fatty acids form a basis for their being structurized in different lipids. Triacyl glycerides are a transport form of saturated, monounsaturated fatty acids and their transforms and give rise to a crystalline phase. Phospholipids and cholesterol esters are a transport form of mainly polyunsaturated fatty acids in the polar phase in the former case and in the crystalline phase in the latter one. The individual apolipoproteins structure complex lipids into individual lipoprotein particles and transport them in the hydrated medium of blood flow. Saturated fatty acids chiefly transport lipoprotein particles formed by apoB-48- and apoB-100-isoproteins. Polyenic acids transport mainly high-density apoA-1-lipoprotein particles, which makes up a main physiological function of the latter. Cholesterol is nothing more than a matrix; it reesterifies polyenic fatty acids from the polar transport form of phospholipids into the unpolar transport form of cholesterol esters. Cholesterol esterification of polyenic fatty acids may structure complex lipid in the unpolar phase and transport it to the cells via apoB-100-ligand-receptor interaction, which is considered to be a key stage in the multistage process of active transport to the cells of polyenic fatty acids. However, the significant differences of active and inactive transport of polyenic fatty acids in the blood stream await a separate consideration.

  20. In vivo and in vitro binding of fatty acids to genetic variants of human serum albumin.

    PubMed

    Kragh-Hansen, U; Nielsen, H; Pedersen, A O

    1995-01-01

    The effect of genetic variation on the fatty-acid binding properties of human serum albumin was studied by two methods involving the use of sequenced albumin variants isolated from bisalbuminaemic persons. First, the amount of total fatty acid and of several individuals fatty acids bound to eighteen different variants and to their normal counterpart (Alb A) were determined by a gas-chromatographic micromethod. Pronounced effects on total fatty acid binding were found for the glycosylated variants Alb Redhill (modified in domain II) and Alb Casebrook (domain III) in which cases a 1.7- and 8.6-fold increment, respectively, was found. By contrast, Alb Malm0 (glycosylated in domain I) carried the same amount of fatty acid as Alb A. The fatty acid loads on three chain-termination variants were normal. Finally, eight albumins with single amino-acid substitutions bound normal amounts of fatty acid, whereas one bound increased (1.7-fold) and three albumins bound diminished amounts (0.5-0.6-fold). Information on nineteen individual fatty acids was also obtained. It was possible, based on the type of changes in their relative amounts, to group the fatty acids as follows: (a) = C6:0 - C14:0, (b) = C15:0 - C18:0, (c) = C16:1 - C18:1, and (d) a group composed of essential and conditionally essential fatty acids. For nine variants, in most cases modified in domain III, large changes in one or more of these groups were observed. The changes were not related to any changes in total fatty acid load. Second, the binding of laurate, as a representative of the group (a) fatty acids, to delipidated albumin preparations was studied at pH 7.4 by a kinetic dialysis technique. The first stoichiometric association constant for binding to Alb Redhill (0.7-fold) and Alb Casebrook (0.6-fold) was diminished as compared with binding to their corresponding Alb A, whereas binding to one chain-termination variant and three single amino-acid substitutions were all unaffected by the mutation.

  1. delta 13C analyses of vegetable oil fatty acid components, determined by gas chromatography--combustion--isotope ratio mass spectrometry, after saponification or regiospecific hydrolysis.

    PubMed

    Woodbury, S E; Evershed, R P; Rossell, J B

    1998-05-01

    The delta 13C values of the major fatty acids of several different commercially important vegetable oils were measured by gas chromatography--combustion--isotope ratio mass spectrometry. The delta 13C values obtained were found to fall into two distinct groups, representing the C3 and C4 plants classes from which the oils were derived. The delta 13C values of the oils were measured by continuous flow elemental isotope ratio mass spectrometry and were found to be similar to their fatty acids, with slight differences between individual fatty acids. Investigations were then made into the influence on the delta 13C values of fatty acids of the position occupied on the glycerol backbone. Pancreatic lipase was employed to selectively hydrolyse fatty acids from the 1- and 3-positions with the progress of the reaction being followed by high-temperature gas chromatography in order to determine the optimum incubation time. The 2-monoacylglycerols were then isolated by thin-layer chromatography and fatty acid methyl esters prepared. The delta 13C values obtained indicate that fatty acids from any position on the glycerol backbone are isotopically identical. Thus, whilst quantification of fatty acid composition at the 2-position and measurement of delta 13C values of oils and their major fatty acids are useful criteria in edible oil purity assessment, measurement of delta 13C values of fatty acids from the 2-position does not assist with oil purity assignments.

  2. [The isozymes of stearil-coenzymeA-desaturase and insulin activity in the light of phylogenetic theory of pathology. Oleic fatty acid and realization of biologic functions of trophology and locomotion].

    PubMed

    2013-11-01

    The formation of function of isozymes of stearil-coenzymeA-desaturases occured at the different stages of phylogeny under realization of biologic function of trophology (stearil-coenzymeA-desaturase 1) and biologic function of locomotion, insulin system (stearil-coenzymeA-desaturase 2) billions years later. The stearil-coenzymeA-desaturase 1 transforms in C 18:1 oleic fatty acid only exogenous C 16:0 palmitinic saturated fatty acid. The stearil-coenzymeA-desaturase 2 transforms only endogenic palmitinic saturated fatty acid, synthesized form glucose. The biologic role of insulin is in energy support of biologic function of locomotion. Insulin through expressing stearil-coenzymeA-desaturase 2 transforms energetically non-optimal palmitinic variation of metabolism of substrates into highly effective oleic variation for cells' groundwork of energy (saturated fatty acid and mono fatty acid). The surplus of palmitinic saturated fatty acid in food is enabled in pathogenesis of resistance to insulin and derangement of synthesis of hormone by beta-cells of islets. The resistance to insulin and diabetes mellitus are primarily the derangement of metabolism of saturated fatty acids with mono fatty acids, energy problems of organism and only afterwards the derangement of metabolism of carbohydrates. It is desirable to restrict food intake of exogenous palmitinic saturated fatty acid. The reasons are low expression of independent of insulin stearil-coenzymeA-desaturase 2, marked lipotoxicity of polar form of palmitinic saturated fatty acid and synthesis of non-optimal palmitinic triglycerides instead of physiologic and more energetically more effective oleic triglycerides.

  3. Polyunsaturated fatty acids balance affects platelet NOX2 activity in patients with liver cirrhosis.

    PubMed

    Basili, Stefania; Raparelli, Valeria; Napoleone, Laura; Del Ben, Maria; Merli, Manuela; Riggio, Oliviero; Nocella, Cristina; Carnevale, Roberto; Pignatelli, Pasquale; Violi, Francesco

    2014-07-01

    NADPH-oxidase-2 up-regulation has been suggested in liver damage perpetuation via an oxidative stress-mediated mechanism. n-6/n-3 polyunsaturated fatty acids ratio derangement has been reported in liver disease. To explore polyunsaturated fatty acids balance and its interplay with platelet oxidative stress in liver cirrhosis. A cross-sectional study in 51 cirrhotic patients and sex- and age-matched controls was performed. Serum polyunsaturated fatty acids and oxidative stress markers (urinary isoprostanes and serum soluble NADPH-oxidase-2-derived peptide) were measured. The effect on platelet oxidative stress of n-6/n-3 polyunsaturated fatty acids ratio in vitro and in vivo (1-week supplementation with 3g/daily n-3-polyunsaturated fatty acids) was tested. Compared to controls, cirrhotic patients had significantly higher n-6/n-3 polyunsaturated fatty acids ratio. n-6/n-3 polyunsaturated fatty acids ratio correlated significantly with disease severity and oxidative stress markers. In vitro experiments showed that in Child-Pugh C patients' platelets incubation with low n-6/n-3 polyunsaturated fatty acids ratio resulted in dose-dependent decrease of radical oxigen species (-39%), isoprostanes (-25%) and NADPH-oxidase-2 regulation (-51%). n-3 polyunsaturated fatty acids supplemented patients showed significant oxidative stress indexes reduction. In cirrhosis, n-6/n-3 polyunsaturated fatty acids imbalance up-regulates platelet NADPH-oxidase-2 with ensuing oxidative stress. Further study to evaluate if n-3 supplementation may reduce disease progression is warranted. Copyright © 2014 Editrice Gastroenterologica Italiana S.r.l. Published by Elsevier Ltd. All rights reserved.

  4. Relationship of the Reported Intakes of Fat and Fatty Acids to Body Weight in US Adults

    PubMed Central

    Raatz, Susan K; Conrad, Zach; Johnson, LuAnn K; Picklo, Matthew J; Jahns, Lisa

    2017-01-01

    Dietary fat composition may modulate energy expenditure and body weight. Little is known about the relationship between fatty acid intake and body weight at a population level. The purposes of this study were to compare intakes of energy, macronutrients, and individual fatty acids across BMI categories (1) for the US adult population and, (2) by sociodemographic groups. Reported dietary intake data from the National Health and Nutrition Examination Survey (NHANES) and What We Eat in America (WWEIA) surveys in the years 2005–2012 were analyzed. Overall, we found that the reported intake of carbohydrate, protein, total fat, total saturated fat (as well as long-chain saturated fatty acids 14:0–18:0), and monounsaturated fatty acids (MUFAs) were positively associated with BMI; while lauric acid (a medium-chain saturated fatty acid, 12:0) and total polyunsaturated fatty acids (PUFAs) (as well as all individual PUFAs) were not associated with BMI. Non-Hispanic black individuals demonstrated a negative association between BMI and energy intake and a positive association between total PUFAs, linoleic acid (LA), α-linolenic acid (ALA) and BMI. Individuals with less than a high school education showed a negative association between BMI and DHA. Mexican-Americans reported intakes with no association between BMI and energy, any macronutrient, or individual fatty acids. These findings support those of experimental studies demonstrating fatty acid-dependent associations between dietary fatty acid composition and body weight. Notably, we observed divergent results for some sociodemographic groups which warrant further investigation. PMID:28452961

  5. Metabolic engineering of Saccharomyces cerevisiae for production of fatty acid short- and branched-chain alkyl esters biodiesel.

    PubMed

    Teo, Wei Suong; Ling, Hua; Yu, Ai-Qun; Chang, Matthew Wook

    2015-01-01

    Biodiesel is a mixture of fatty acid short-chain alkyl esters of different fatty acid carbon chain lengths. However, while fatty acid methyl or ethyl esters are useful biodiesel produced commercially, fatty acid esters with branched-chain alcohol moieties have superior fuel properties. Crucially, this includes improved cold flow characteristics, as one of the major problems associated with biodiesel use is poor low-temperature flow properties. Hence, microbial production as a renewable, nontoxic and scalable method to produce fatty acid esters with branched-chain alcohol moieties from biomass is critical. We engineered Saccharomyces cerevisiae to produce fatty acid short- and branched-chain alkyl esters, including ethyl, isobutyl, isoamyl and active amyl esters using endogenously synthesized fatty acids and alcohols. Two wax ester synthase genes (ws2 and Maqu_0168 from Marinobacter sp.) were cloned and expressed. Both enzymes were found to catalyze the formation of fatty acid esters, with different alcohol preferences. To boost the ability of S. cerevisiae to produce the aforementioned esters, negative regulators of the INO1 gene in phospholipid metabolism, Rpd3 and Opi1, were deleted to increase flux towards fatty acyl-CoAs. In addition, five isobutanol pathway enzymes (Ilv2, Ilv5, Ilv3, Aro10, and Adh7) targeted into the mitochondria were overexpressed to enhance production of alcohol precursors. By combining these engineering strategies with high-cell-density fermentation, over 230 mg/L fatty acid short- and branched-chain alkyl esters were produced, which is the highest titer reported in yeast to date. In this work, we engineered the metabolism of S. cerevisiae to produce biodiesels in the form of fatty acid short- and branched-chain alkyl esters, including ethyl, isobutyl, isoamyl and active amyl esters. To our knowledge, this is the first report of the production of fatty acid isobutyl and active amyl esters in S. cerevisiae. Our findings will be useful for engineering S. cerevisiae strains toward high-level and sustainable biodiesel production.

  6. Influence of chain length and unsaturation on the effects of fatty acids on phosphoglyceride biosynthesis in isolated rat and pig hepatocytes.

    PubMed

    Akesson, B; Sundler, R; Nilsson, A

    1976-03-16

    Hepatocytes isolated from rat or pig by collagenase perfusion were incubated with [3H]glcyerol and different albumin-bount fatty acids. Among C22 fatty acids docosahexaenoic acid stimulated phosphatidylethanolamine synthesis in rat hepatocytes most effectively. Addition of docosahexaenoic acid plus either palmitic or stearic acid resulted almost in the same stimulation whereas combinations of this acid with lauric or myristic acid had no effect. Lauric acid and myristic acid alone inhibited phosphatidylethanolamine synthesis. The chain length specificity for monoenoic fatty acids was similar, the hexadecenoic and octadecenoic acids (both cis and trans) being most stimulatory. The addition of 0.2 mM ethanolamine markedly stimulated phosphatidylethanolamine synthesis, but most effects of fatty acids were similar in its presence or absence.

  7. Iso-branched 2- and 3-hydroxy fatty acids as characteristic lipid constituents of some gliding bacteria.

    PubMed Central

    Fautz, E; Rosenfelder, G; Grotjahn, L

    1979-01-01

    The fatty acids present in the total hydrolysates of several gliding bacteria (Myxococcus fulvus, Stigmatella aurantiaca, Cytophaga johnsonae, Cytophaga sp. strain samoa and Flexibacter elegans) were analyzed by combined gas-liquid chromatography and mass spectrometry. In addition to 13-methyl-tetradecanoic acid, 15-methyl-hexadecanoic acid, hexadecanoic acid, and hexadecenoic acid, 2- and 3-hydroxy fatty acids comprised up to 50% of the total fatty acids. The majority was odd-numbered and iso-branched. Small amounts of even-numbered and unbranched fatty acids were also present. Whereas 2-hydroxy-15-methyl hexadecanoic acid was characteristic for myxobacteria, 2-hydroxy-13-methyl-tetradecanoic acid, 3-hydroxy-13-methyl-tetradecanoic acid, and 3-hydroxy-15-methyl-hexadecanoic acid were dominant in the Cytophaga-Flexibacter group. PMID:118159

  8. Camelina sativa cake improved unsaturated fatty acids in ewe's milk.

    PubMed

    Szumacher-Strabel, Malgorzata; Cieślak, Adam; Zmora, Pawel; Pers-Kamczyc, Emilia; Bielińska, Sylwia; Stanisz, Marek; Wójtowski, Jacek

    2011-08-30

    Camelina sativa cake (CSC), a rich source of unsaturated fatty acids, in the case of ruminants, may improve the energy value of a diet and also increase the unsaturated fatty acid content in milk. Effects of basal diet (control), basal diet plus 30 g kg(-1) of CSC in dietary dry matter (DM), basal diet plus 60 g kg(-1) of CSC in dietary dry matter on milk production and the fatty acid composition of ewe's milk with particular emphasis on the monoenes and conjugated isomers of linoleic acid content were examined. Elevated concentration of total monounsaturated fatty acids, the effect of an increase in monounsaturated fatty acids in the trans configuration, as well as the increased content of total polyunsaturated fatty acids, resulted from CSC supplementation. Total saturated fatty acid concentration was decreased. Milk from CSC-supplemented ewes was characterized by increased levels of beneficial nutritional factors, including mono- and n-3 polyunsaturated fatty acids, and was also by lower atherogenic and thrombogenic indices. Taking into consideration all the obtained results and recommended fat concentrations in a daily ruminant ration, we recommend supplementing a dairy ewe's diet with 30 g kg(-1) DM of CSC cake in practice. Copyright © 2011 Society of Chemical Industry.

  9. Plasma total and free fatty acids composition in human non-alcoholic steatohepatitis.

    PubMed

    de Almeida, I Tavares; Cortez-Pinto, H; Fidalgo, G; Rodrigues, D; Camilo, M E

    2002-06-01

    Non-alcoholic steatohepatitis (NASH), the association of steatosis with an inflammatory response, is a novel liver disease of unknown pathogenesis and prognosis. Triacylglycerols and their precursors, the fatty acids, are the likely candidates to accumulate in the hepatocyte. Disturbed fatty acid metabolism can be involved in the pathogenesis of NASH but there is no information concerning its plasma fatty acid profile. The aim of this study was to evaluate plasma total (esterified plus free) and free fatty acids concentrations to assess the association of NASH with plasma fatty acid accumulation. Overnight fasting blood samples from 22 biopsy-proven NASH patients and of 6 matched age healthy controls were studied. NASH patients had significantly higher concentration of total and free fatty acids than controls (P<0.05), higher total saturated and monounsaturated levels in both studied lipid fractions (P<0.05), mainly due to the increase of hexadecanoic, hexadecenoic and octadecenoic acids. Absolute polyunsaturated fatty acids (PUFA) concentrations were similar in both groups. The C20:4/C18:2 and the C18:1/C18:0 ratios as well as the peroxidability index were not significantly different. In overweight/obese patients NASH is associated with deranged fatty acid metabolism which may be involved in its pathogenesis and/or progression.

  10. The time course of erythrocyte membrane fatty acid concentrations during and after treatment of non-human primates with increasing doses of an omega-3 rich phospholipid preparation derived from krill-oil.

    PubMed

    Hals, Petter-Arnt; Wang, Xiaoli; Piscitelli, Fabiana; Di Marzo, Vincenzo; Xiao, Yong-Fu

    2017-01-21

    A commonly used measure to reflect the intake of the long-chain omega-3 fatty acids EPA and DHA is the omega-3 index, defined as the sum of EPA + DHA as % of total fatty acids in erythrocyte membrane. When the omega-3 index changes it follows that the relative fractions of other fatty acids in the membrane are also changed. In the present study, increasing doses of a preparation of omega-3 rich phospholipids extracted from krill oil were administered orally to non-human primates for 12 weeks and the time course of EPA, DHA and 22 other fatty acids in erythrocytes was determined bi-weekly during treatment and for 8 weeks after cessation of treatment. Plasma concentrations of six endocannabinoid-type mediators being downstream metabolites of some fatty acids analyzed in erythrocytes were also determined. Six diabetic, dyslipidemic non-human primates were included, three in a vehicle control group and three being treated with the omega-3 rich phospholipid preparation. The vehicle control and test items were given daily by gavage and the test item doses were 50, 150 and 450 mg phospholipids/kg/day. Each dose level was given for four weeks. Blood was sampled at baseline and thereafter bi-weekly. Fatty acids were determined in erythrocytes by methylation followed by gas-chromatography. Endocannabinoids and endocannabinoid-like mediators were analyzed in plasma by liquid chromatography-atmospheric pressure chemical ionization-mass spectrometry. The treatment resulted in a dose-related increase in the fraction of EPA and DHA in erythrocyte membranes and a dose-related decrease of other poly-unsaturated fatty acids, in particular omega-6 polyunsaturated fatty acids. Erythrocyte concentrations of saturated fatty acids remained unchanged throughout the experiment. Plasma concentrations of endocannabinoids and endocannabinoid-like mediators changed accordingly as those being downstream arachidonic acid decreased, downstream of the saturated palmitic and oleic acids remained unchanged while a downstream EPA metabolite increased. Increasing the omega-3 index by administering an omega-3 rich phospholipid extracted from krill oil did not alter the ratio of unsaturated vs. saturated fatty acids in the erythrocyte membranes but only the relative concentrations of unsaturated fatty acids, in particular unsaturated omega-6 fatty acids. Concentrations of saturated fatty acids remained unchanged.

  11. 40 CFR 417.30 - Applicability; description of the soap manufacturing by fatty acid neutralization subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... manufacturing by fatty acid neutralization subcategory. 417.30 Section 417.30 Protection of Environment... POINT SOURCE CATEGORY Soap Manufacturing by Fatty Acid Neutralization Subcategory § 417.30 Applicability; description of the soap manufacturing by fatty acid neutralization subcategory. The provisions of this subpart...

  12. 40 CFR 721.3710 - Polyether modified fatty acids (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Polyether modified fatty acids... Specific Chemical Substances § 721.3710 Polyether modified fatty acids (generic). (a) Chemical substance... Polyether modified fatty acids (PMN P-99-0435) is subject to reporting under this section for the...

  13. 40 CFR 721.720 - Alkoxylated fatty acid amide, alkylsulfate salt.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Alkoxylated fatty acid amide... Specific Chemical Substances § 721.720 Alkoxylated fatty acid amide, alkylsulfate salt. (a) Chemical... as an alkoxylated fatty acid amide, alkylsulfate salt (PMN P-97-136) is subject to reporting under...

  14. 21 CFR 184.1555 - Rapeseed oil.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... hydrogenated rapeseed oil is a mixture of triglycerides in which the fatty acid composition is a mixture of saturated fatty acids. The fatty acids are present in the same porportions which result from the full hydrogenation of fatty acids occurring in natural rapeseed oil. The rapeseed oil is obtained from the napus and...

  15. 21 CFR 172.854 - Polyglycerol esters of fatty acids.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Polyglycerol esters of fatty acids. 172.854... HUMAN CONSUMPTION Multipurpose Additives § 172.854 Polyglycerol esters of fatty acids. Polyglycerol esters of fatty acids, up to and including the decaglycerol esters, may be safely used in food in...

  16. Engineering the production of conjugated fatty acids in Arabidopsis thaliana leaves

    USDA-ARS?s Scientific Manuscript database

    The seeds of many non-domesticated plant species synthesize oils containing high amounts of a single unusual fatty acid, many of which have potential usage in industry. Despite the identification of enzymes for unusual oxidized fatty acid synthesis, the production of these fatty acids in engineered ...

  17. 76 FR 8895 - Polymerized Fatty Acid Esters With Aminoalcohol Alkoxylates; Exemption From the Requirement of a...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-16

    ..., reaction products with fatty acid dimers (CAS Reg. No. 1173188-38-9); dimethylaminoethanol, ethoxylated, propoxylated, reaction products with fatty acid dimers (CAS Reg. No. 1173188-42-5 diethylaminoethanol, ethoxylated, reaction product with fatty acid dimers (CAS Reg. No. 1173188-72-1); diethylaminoethanol...

  18. 21 CFR 172.854 - Polyglycerol esters of fatty acids.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... approved emulsifiers in dry, whipped topping base. The fatty acids used in the production of the... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Polyglycerol esters of fatty acids. 172.854... HUMAN CONSUMPTION Multipurpose Additives § 172.854 Polyglycerol esters of fatty acids. Polyglycerol...

  19. 21 CFR 172.854 - Polyglycerol esters of fatty acids.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... approved emulsifiers in dry, whipped topping base. The fatty acids used in the production of the... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Polyglycerol esters of fatty acids. 172.854... HUMAN CONSUMPTION Multipurpose Additives § 172.854 Polyglycerol esters of fatty acids. Polyglycerol...

  20. 40 CFR 721.3710 - Polyether modified fatty acids (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Polyether modified fatty acids... Specific Chemical Substances § 721.3710 Polyether modified fatty acids (generic). (a) Chemical substance... Polyether modified fatty acids (PMN P-99-0435) is subject to reporting under this section for the...

  1. 40 CFR 721.720 - Alkoxylated fatty acid amide, alkylsulfate salt.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Alkoxylated fatty acid amide... Specific Chemical Substances § 721.720 Alkoxylated fatty acid amide, alkylsulfate salt. (a) Chemical... as an alkoxylated fatty acid amide, alkylsulfate salt (PMN P-97-136) is subject to reporting under...

  2. Tall oil precursors and turpentine in Jack and Eastern White Pine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Conner, A.H.; Diehl, M.A.; Rowe, J.W.

    1980-04-01

    The tall oil precursors and turpentine from jack pine (Pinus banksiana Lamb.) and eastern white pine (Pinus strobus L.) were investigated. The tall oil precursors (resin acids, fatty acids, and unsaponifiables were determined by chemical fractionation of the nonvolatile diethyl ether extractives (NVEE) of these speices: (approximate % resin acids, % fatty acids, % unsaponifiables, and % acids other that fatty and resin acids) - jack pine sapwood (10, 60, 10, 20%), heartwood (38, 12, 6, 44%); eastern white pine sapwood (11, 57, 9, 22%), and heartwood (11, 18, 10, 62%). The resin acids were a mixture of the pimaricmore » and abietic acids common to pines. In addition, eastern white pine contained major amounts of the resin acid, anticopalic acid. The fatty acids were predominately oleic, linoleic, and 5, 9, 12-octadecatrienoic acids. The unsaponsiables were a complex mixture of diterpenes and sterols (mainly campesterol and sitosterol). On treating these species with paraquat, lightwood occurred in the sapwood but not in the heartwood areas as we have oberved with other pines. The NVEE of the lightwood areas contained increased amounts of resin acids, unsaponifiables, and acids other than fatty and resin acids. The total fatty acid content was essentially unchanged. Since fatty acid components are preferentially lost by esterification with neutral alcoholic constituents in the unsaponifiables during the distillation refining of crude tall oil, the increased unsaponifiables relative to the constant fatty acid content might result in a net reduction in fatty acid recovery from lightered trees. The turpentine content of both jack and eastern white pine increased on lightering and was primarily a mixture of ..cap alpha..- and ..beta..-pinene.« less

  3. [Fatty acids composition of the marine snails Phyllonotus pomum and Chicoreus brevifrons (Muricidae)].

    PubMed

    D'Armas, Haydelba; Yáñez, Dayanis; Reyes, Dilia; Salazar, Gabriel

    2010-06-01

    Muricid species of P. pomum and C. brevifrons are of economic importance in the Caribbean. This study includes a comparative evaluation of fatty acid content in the total lipid composition of Phyllonotus pomum and Chicoreus brevifrons. Snail samples were collected during the rainy, dry and transition seasons, in Punta Arena, Sucre (Venezuela). Total lipids were extracted and the specific fatty acid contents were analyzed by gas chromatography. Lipid concentrations varied between 0.87 and 1.85%, with minimum and maximum values corresponding to C. brevifrons collected during rainy and dry seasons, respectively. In the case of total lipids, a high concentration of unsaturated fatty acids (57.21-70.05%) was observed followed by saturated fatty acids (20.33-31.94%), during all seasons. The polyunsaturated occurred in higher proportion among the unsaturated fatty acids, except for P. pomum which showed higher proportion of monounsaturated fatty acids (38.95%) during the transition season. The prevailing fatty acids were: C14:0, C16:0, C18:0, C20:1, C22:1 omega-11, C22:1 omega-9, C18:3 omega-3, C20:5 omega-3 and C22:6 omega-3, among which docosahexaenoic acid was the predominant polyunsaturated fatty acid, showing values between 4.62 and 33.11%. The presence of high concentrations of polyunsaturated fatty acids found in P. Pomum and C. brevifrons allow their recommendation for human consumption with appropriate resource utilization.

  4. Tall oil precursors in three western pines: ponderosa, lodgepole, and limber pine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Conner, A.H.; Diehl, M.A.; Rowe, J.W.

    1980-01-01

    The nonvolatile diethyl ether extracts (NVEE) from ponderosa, lodgepole, and limber pines were analyzed to determine the amounts and chemical composition of the tall oil precursors (resin acids, fatty acids, and nonsaponifiables) and turpentine precursors available from these species. The results showed that crude tall oil compositions would be approximately as follows (% resin acids, % fatty acids, % nonsaponifiables); ponderosa pine - sapwood (15, 75, 10), heartwood (78, 7, 15); lodgepole pine - sapwood (24, 57, 19), heartwood (51, 26, 23); limber pine - sapwood (10, 82, 8), heartwood (23, 60, 17). The larger nonsaponifiables content, as compared tomore » southern pines, is the major factor in explaining the greater difficulty in the distillative refining of tall oil from these western species. Eight resin acids were found in ponderosa and lodgepole pine: palustric, isopimaric, abietic, dehydroabietic, and neoabietic acids predominated. Seven resin acids were identified from limber pine: anticopalic, isopimaric, abietic, and dehydroabietic acids predominated. The free and esterfied fatty acids from these species contained predominantly oleic and linoleic acids. In addition limber pine contained major amounts of 5, 9, 12-octadecatrienoic acid. The nonsaponifiables contained mostly diterpenes and the sterols, sitosterol and campesterol. The major turpentine components were: ponderosa pine - ..beta..-pinene and 3-carene; lodgepole pine - ..beta..-phellandrene; and limber pine - 3-carene, ..beta..-phellandrene, ..cap alpha..-piene, and ..beta..-pinene.« less

  5. Lipid and fatty acid composition microalgae Chlorella vulgaris using photobioreactor and open pond

    NASA Astrophysics Data System (ADS)

    Jay, M. I.; Kawaroe, M.; Effendi, H.

    2018-03-01

    Microalgae contain lipids and fatty acids that can be the raw materials of biofuel. Previous studies have been known of using cultivation systems to obtain biomass of C. vulgaris which can be extracted to obtain lipid and fatty acid content. The observational step was observed ten days in photobioreactor and open pond for harvesting biomass using NaOH, lipid extraction using hexane and methanol, and fatty acid analysis using Gas Chromatography. Lipid content of microalgae biomass in photobioreactor and open pond was 2.26 ± 0.51% and 3.18 ± 0.80%, respectively. Fatty acid content ranged between 0.7-22.8% and 0.9-22.6% and the dominant fatty acids in both cultivating system was palmitic acid.

  6. Does proximity to urban centres affect the dietary regime of marine benthic filter feeders?

    NASA Astrophysics Data System (ADS)

    Puccinelli, Eleonora; Noyon, Margaux; McQuaid, Christopher D.

    2016-02-01

    Threats to marine ecosystems include habitat destruction and degradation of water quality, resulting from land- and ocean-based human activities. Anthropogenic input causing modification of water quality, can affect primary productivity and thus food availability and quality for higher trophic levels. This is especially important for sedentary benthic intertidal communities, which rely on local food availability. We investigated the effect of urbanization on the dietary regime of four species of intertidal filter feeders (three barnacles and one mussel) at sites close to high-density cities and at sites far from heavily urbanized areas using fatty acid and stable isotope techniques. δ15N was significantly higher at urbanized sites compared to their corresponding control sites for all species with few exceptions, while no effect on δ13C was recorded. Barnacle fatty acid profiles were not affected by cities, while mussels from sites close to cities had fatty acid signatures with a higher proportion of polyunsaturated fatty acids (PUFA). We suggest that the enrichment in δ15N at urbanised sites reflects the influence of anthropogenically derived nitrogen directly linked to wastewater input from domestic and industrial sewage. Linked to this, the high proportion of PUFA in mussels at urbanized sites may reflect the influence of increased nitrogen concentrations on primary production and enhanced growth of large phytoplankton cells. The results indicate that anthropogenic effects can strongly influence the diets of benthic organisms, but these effects differ among taxa. Changes in the diet of such habitat forming species can affect their fitness and survival with potential effects on the populations associated with them.

  7. Analysis of Chemical Signatures of Alkaliphiles using Fatty Acid Methyl Ester Analysis

    PubMed Central

    Sreenivasulu, Basha; Paramageetham, Chinthala; Sreenivasulu, Dasari; Suman, Bukke; Umamahesh, Katike; Babu, Gundala Prasada

    2017-01-01

    Background: Fatty acids occur in nearly all living organisms as the important predominant constituents of lipids. While all fatty acids have essentially the same chemical nature, they are an extremely diverse group of compounds. Materials and Methods: To test the hypothesis, fatty acids of alkaliphiles isolates, Bacillus subtilis SVUNM4, Bacillus licheniformis SVUNM8, Bacillus methylotrohicus SVUNM9, and Paenibacillus dendritiformis SVUNM11, were characterized compared using gas chromatography-mass spectrometry (GC-MS) analysis. Results: The content of investigated ten fatty acids, 1, 2-benzenedicarboxylic acid butyl 2-methylpropyl ester, phthalic acid, isobutyl 2-pentyl ester, dibutyl phthalate, cyclotrisiloxane, hexamethyl, cyclotetrasiloxane, octamethyl, dodecamethyl, heptasiloxane 1,1,3,3,5,5,7,7,9,9,11,11,13,13-etradecamethyl, 7,15-dihydroxydehydroabietic acid, methyl ester, di (trimethylsilyl) ether, hentriacontane, 2-thiopheneacetic acid, undec-2-enyl ester, obviously varied among four species, suggesting each species has its own fatty acid pattern. Conclusions: These findings demonstrated that GC-MS-based fatty acid profiling analysis provides the reliable platform to classify these four species, which is helpful for ensuring their biotechnological interest and novel chemotaxonomic. PMID:28717333

  8. Acculturation and Plasma Fatty Acid Concentrations in Hispanic and Chinese-American Adults: The Multi-Ethnic Study of Atherosclerosis.

    PubMed

    Diep, Cassandra S; Lemaitre, Rozenn N; Chen, Tzu-An; Baranowski, Tom; Lutsey, Pamela L; Manichaikul, Ani W; Rich, Stephen S; St-Jules, David E; Steffen, Brian T; Tsai, Michael Y; Siscovick, David S; Frazier-Wood, Alexis C

    2016-01-01

    Acculturation to the U.S. is associated with increased risk of cardiovascular disease, but the etiologic pathways are not fully understood. Plasma fatty acid levels exhibit ethnic differences and are emerging as biomarkers and predictors of cardiovascular disease risk. Thus, plasma fatty acids may represent one pathway underlying the association between acculturation and cardiovascular disease. We investigated the cross-sectional relationship between acculturation and plasma phospholipid fatty acids in a diverse sample of Hispanic- and Chinese-American adults. Participants included 377 Mexican, 320 non-Mexican Hispanic, and 712 Chinese adults from the Multi-Ethnic Study of Atherosclerosis, who had full plasma phospholipid assays and acculturation information. Acculturation was determined from three proxy measures: nativity, language spoken at home, and years in the U.S., with possible scores ranging from 0 (least acculturated) to 5 (most acculturated) points. α-Linolenic acid, linoleic acid, eicosapentaenoic acid, docosahexaenoic acid, and arachidonic acid were measured in fasting plasma. Linear regression models were conducted in race/ethnicity-stratified analyses, with acculturation as the predictor and plasma phospholipid fatty acids as the outcome variables. We ran secondary analyses to examine associations between acculturation and dietary fatty acids for comparison. Covariates included age, gender, education, and income. Contrary to our hypothesis, no statistically significant associations were detected between acculturation and plasma phospholipid fatty acids for Chinese, non-Mexican Hispanic, or Mexican participants. However, acculturation was related to dietary total n-6 fatty acids and dietary n-3/n-6 ratios in expected directions for Mexican, non-Mexican Hispanic, and combined Hispanic participants. In Chinese individuals, acculturation was unexpectedly associated with lower arachidonic acid intake. Absence of associations between acculturation and plasma phospholipid fatty acids suggests that changes in the plasma phospholipid fatty acids studied do not account for the observed associations of acculturation to the U.S. and cardiovascular disease risk. Similar findings were observed for eicosapentaenoic acid and docosahexaenoic acid, when using dietary intake. However, the observed associations between dietary n-6 fatty acids and acculturation in Hispanic individuals suggest that dietary intake may be more informative than phospholipids when investigating acculturation effects. In Chinese individuals, acculturation may have a possible protective effect through decreased arachidonic acid intake. Further research on dietary fatty acids and other cardiovascular disease biomarkers is needed to identify possible etiologic mechanisms between acculturation and cardiovascular disease.

  9. Sources and Bioactive Properties of Conjugated Dietary Fatty Acids.

    PubMed

    Hennessy, Alan A; Ross, Paul R; Fitzgerald, Gerald F; Stanton, Catherine

    2016-04-01

    The group of conjugated fatty acids known as conjugated linoleic acid (CLA) isomers have been extensively studied with regard to their bioactive potential in treating some of the most prominent human health malignancies. However, CLA isomers are not the only group of potentially bioactive conjugated fatty acids currently undergoing study. In this regard, isomers of conjugated α-linolenic acid, conjugated nonadecadienoic acid and conjugated eicosapentaenoic acid, to name but a few, have undergone experimental assessment. These studies have indicated many of these conjugated fatty acid isomers commonly possess anti-carcinogenic, anti-adipogenic, anti-inflammatory and immune modulating properties, a number of which will be discussed in this review. The mechanisms through which these bioactivities are mediated have not yet been fully elucidated. However, existing evidence indicates that these fatty acids may play a role in modulating the expression of several oncogenes, cell cycle regulators, and genes associated with energy metabolism. Despite such bioactive potential, interest in these conjugated fatty acids has remained low relative to the CLA isomers. This may be partly attributed to the relatively recent emergence of these fatty acids as bioactives, but also due to a lack of awareness regarding sources from which they can be produced. In this review, we will also highlight the common sources of these conjugated fatty acids, including plants, algae, microbes and chemosynthesis.

  10. EFFECT OF TEMPERATURE ON THE COMPOSITION OF FATTY ACIDS IN ESCHERICHIA COLI

    PubMed Central

    Marr, Allen G.; Ingraham, John L.

    1962-01-01

    Marr, Allen G. (University of California, Davis) and John L. Ingraham. Effect of temperature on composition of fatty acids in Escherichia coli. J. Bacteriol. 84:1260–1267. 1962.—Variations in the temperature of growth and in the composition of the medium alter the proportions of individual fatty acids in the lipids of Escherichia coli. As the temperature of growth is lowered, the proportion of unsaturated fatty acids (hexadecenoic and octadecenoic acids) increases. The increase in content of unsaturated acids with a decrease in temperature of growth occurs in both minimal and complex media. Cells harvested in the stationary phase contained large amounts of cyclopropane fatty acids (methylenehexadecanoic and methylene octadecanoic acids) in comparison with cells harvested during exponential growth. Cells grown in a chemostat, limited by the concentration of ammonium salts, show a much higher content of saturated fatty acids (principally palmitic acid) than do cells harvested from an exponentially-growing batch culture in the same medium. Cells grown in a chemostat, limited by the concentration of glucose, show a slightly higher content of unsaturated fatty acids than cells from the corresponding batch culture. The results do not indicate a direct relation between fatty acid composition and minimal growth temperature. PMID:16561982

  11. A review of the possible role of the essential fatty acids and fish oils in the aetiology, prevention or pharmacotherapy of schizophrenia.

    PubMed

    Akter, K; Gallo, D A; Martin, S A; Myronyuk, N; Roberts, R T; Stercula, K; Raffa, R B

    2012-04-01

    Fish oils and other essential fatty acids have been purported to ameliorate the symptoms of schizophrenia or the adverse effects of the drugs that are used to manage it. Our objective is to review the basic and clinical evidence regarding replenishment of the reported decreased levels of polyunsaturated essential fatty acids, such as the omega-3 docosahexaenoic acid, the omega-6 linoleic and arachidonic acids, in brains of patients with schizophrenia. We summarize the literature related to the postulated mechanistic connection between essential fatty acids and schizophrenia and the clinical trials testing fatty acids in patients with schizophrenia. Fatty acids play critical roles in cell membranes of neurons, and certain fatty acids appear to be abnormally low in brains of patients with schizophrenia. The attempt to enhance endogenous levels thus seems a rational and worthwhile goal. The value of such intervention awaits the results of ongoing trials. Despite the limited evidence that supplements ameliorate symptoms of schizophrenia, given the low risk of harm, some clinicians might opt to add omega-3 polyunsaturated fatty acid to current drug regimens in hope of better symptomatic control in schizophrenia. © 2011 Blackwell Publishing Ltd.

  12. Genetic mapping of QTLs controlling fatty acids provided insights into the genetic control of fatty acid synthesis pathway in peanut (Arachis hypogaea L.).

    PubMed

    Wang, Ming Li; Khera, Pawan; Pandey, Manish K; Wang, Hui; Qiao, Lixian; Feng, Suping; Tonnis, Brandon; Barkley, Noelle A; Pinnow, David; Holbrook, Corley C; Culbreath, Albert K; Varshney, Rajeev K; Guo, Baozhu

    2015-01-01

    Peanut, a high-oil crop with about 50% oil content, is either crushed for oil or used as edible products. Fatty acid composition determines the oil quality which has high relevance to consumer health, flavor, and shelf life of commercial products. In addition to the major fatty acids, oleic acid (C18:1) and linoleic acid (C18:2) accounting for about 80% of peanut oil, the six other fatty acids namely palmitic acid (C16:0), stearic acid (C18:0), arachidic acid (C20:0), gadoleic acid (C20:1), behenic acid (C22:0), and lignoceric acid (C24:0) are accounted for the rest 20%. To determine the genetic basis and to improve further understanding on effect of FAD2 genes on these fatty acids, two recombinant inbred line (RIL) populations namely S-population (high oleic line 'SunOleic 97R' × low oleic line 'NC94022') and T-population (normal oleic line 'Tifrunner' × low oleic line 'GT-C20') were developed. Genetic maps with 206 and 378 marker loci for the S- and the T-population, respectively were used for quantitative trait locus (QTL) analysis. As a result, a total of 164 main-effect (M-QTLs) and 27 epistatic (E-QTLs) QTLs associated with the minor fatty acids were identified with 0.16% to 40.56% phenotypic variation explained (PVE). Thirty four major QTLs (>10% of PVE) mapped on five linkage groups and 28 clusters containing more than three QTLs were also identified. These results suggest that the major QTLs with large additive effects would play an important role in controlling composition of these minor fatty acids in addition to the oleic and linoleic acids in peanut oil. The interrelationship among these fatty acids should be considered while breeding for improved peanut genotypes with good oil quality and desired fatty acid composition.

  13. Genetic Mapping of QTLs Controlling Fatty Acids Provided Insights into the Genetic Control of Fatty Acid Synthesis Pathway in Peanut (Arachis hypogaea L.)

    PubMed Central

    Wang, Hui; Qiao, Lixian; Feng, Suping; Tonnis, Brandon; Barkley, Noelle A.; Pinnow, David; Holbrook, Corley C.; Culbreath, Albert K.; Varshney, Rajeev K.; Guo, Baozhu

    2015-01-01

    Peanut, a high-oil crop with about 50% oil content, is either crushed for oil or used as edible products. Fatty acid composition determines the oil quality which has high relevance to consumer health, flavor, and shelf life of commercial products. In addition to the major fatty acids, oleic acid (C18:1) and linoleic acid (C18:2) accounting for about 80% of peanut oil, the six other fatty acids namely palmitic acid (C16:0), stearic acid (C18:0), arachidic acid (C20:0), gadoleic acid (C20:1), behenic acid (C22:0), and lignoceric acid (C24:0) are accounted for the rest 20%. To determine the genetic basis and to improve further understanding on effect of FAD2 genes on these fatty acids, two recombinant inbred line (RIL) populations namely S-population (high oleic line ‘SunOleic 97R’ × low oleic line ‘NC94022’) and T-population (normal oleic line ‘Tifrunner’ × low oleic line ‘GT-C20’) were developed. Genetic maps with 206 and 378 marker loci for the S- and the T-population, respectively were used for quantitative trait locus (QTL) analysis. As a result, a total of 164 main-effect (M-QTLs) and 27 epistatic (E-QTLs) QTLs associated with the minor fatty acids were identified with 0.16% to 40.56% phenotypic variation explained (PVE). Thirty four major QTLs (>10% of PVE) mapped on five linkage groups and 28 clusters containing more than three QTLs were also identified. These results suggest that the major QTLs with large additive effects would play an important role in controlling composition of these minor fatty acids in addition to the oleic and linoleic acids in peanut oil. The interrelationship among these fatty acids should be considered while breeding for improved peanut genotypes with good oil quality and desired fatty acid composition. PMID:25849082

  14. Effects of Light and Temperature on Fatty Acid Production in Nannochloropsis Salina

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Wagenen, Jonathan M.; Miller, Tyler W.; Hobbs, Samuel J.

    2012-03-12

    Accurate prediction of algal biofuel yield will require empirical determination of physiological responses to the climate, particularly light and temperature. One strain of interest, Nannochloropsis salina, was subjected to ranges of light intensity (5-850 {mu}mol m{sup -2} s{sup -1}) and temperature (13-40 C); exponential growth rate, total fatty acids (TFA) and fatty acid composition were measured. The maximum acclimated growth rate was 1.3 day{sup -1} at 23 C and 250 {mu}mol m{sup -2} s{sup -1}. Fatty acids were detected by gas chromatography with flame ionization detection (GC-FID) after transesterification to corresponding fatty acid methyl esters (FAME). A sharp increase inmore » TFA containing elevated palmitic acid (C16:0) and palmitoleic acid (C16:1) during exponential growth at high light was observed, indicating likely triacylglycerol accumulation due to photo-oxidative stress. Lower light resulted in increases in the relative abundance of unsaturated fatty acids; in thin cultures, increases were observed in palmitoleic and eicosapentaenoeic acids (C20:5{omega}3). As cultures aged and the effective light intensity per cell converged to very low levels, fatty acid profiles became more similar and there was a notable increase of oleic acid (C18:1{omega}9). The amount of unsaturated fatty acids was inversely proportional to temperature, demonstrating physiological adaptations to increase membrane fluidity. This data will improve prediction of fatty acid characteristics and yields relevant to biofuel production.« less

  15. Fatty acid supply with complementary foods and LC-PUFA status in healthy infants: results of a randomised controlled trial.

    PubMed

    Libuda, Lars; Mesch, Christina M; Stimming, Madlen; Demmelmair, Hans; Koletzko, Berthold; Warschburger, Petra; Blanke, Katharina; Reischl, Eva; Kalhoff, Hermann; Kersting, Mathilde

    2016-06-01

    Introduction of complementary food usually leads to decreasing intakes of long-chain n-3 polyunsaturated fatty acids (n-3 LC-PUFA), compared to full breastfeeding. In the randomised controlled PINGU intervention trial, we tested the effects of complementary foods with different contents of alpha-linolenic acid (ALA) and docosahexaenoic acid (DHA) on term infant LC-PUFA status. Healthy infants born at term were randomised to receive from the introduction of complementary feeding at the age of 4 to 6 months until age of 10 months ready-made complementary meals either with ALA-rich rapeseed oil (intervention group (IG)-R), with salmon twice weekly to provide preformed DHA (IG-F), or with linoleic acid-rich corn oil (control group, CG). Fatty acid composition was assessed in erythrocyte (RBC) and plasma glycerophospholipids. Complete data of fatty acids in RBC (plasma) were available from 158 (155) infants. After intervention, infants assigned to IG-F showed higher RBC and plasma percentages of eicosapentaenoic acid (EPA), DHA, and total n-3 LC-PUFA than CG (each p < 0.001). In IG-R, levels of ALA and the ratio of ALA to LA in plasma and RBC (all p < 0.0001) as well as RBC-EPA (p < 0.0001) were higher than in CG, while DHA levels did not differ between IG-R and CG. Regular fish consumption during complementary feeding enhances infant EPA and DHA status. The usage of rapeseed oil in small amounts concordant with EU-law for commercial meals enhances endogenic EPA-synthesis, but does not affect DHA status. Provision of oily fish with complementary feeds is advisable to prevent a decline of DHA status. www.clinicaltrials.gov , identifier: NCT01487889, title: Polyunsaturated fatty acids in child nutrition-a German multimodal optimisation study (PINGU).

  16. n-3 fatty acids reduce plasma 20-hydroxyeicosatetraenoic acid and blood pressure in patients with chronic kidney disease.

    PubMed

    Barden, Anne E; Burke, Valerie; Mas, Emilie; Beilin, Lawrence J; Puddey, Ian B; Watts, Gerald F; Irish, Ashley B; Mori, Trevor A

    2015-09-01

    Metabolism of arachidonic acid by cytochrome P450 ω-hydroxylase leads to the formation of 20-hydroxyeicosatetraenoic acid (20-HETE) that regulates vascular function, sodium homeostasis and blood pressure (BP). Supplementation with n-3 fatty acids is known to alter arachidonic acid metabolism and reduce the formation of the lipid peroxidation products F2-isoprostanes, but the effect of n-3 fatty acids on 20-HETE has not been studied. We previously reported a significant effect of n-3 fatty acids but not coenzyme Q10 (CoQ) to reduce BP in a double-blind, placebo-controlled intervention, wherein patients with chronic kidney disease (CKD) were randomized to n-3 fatty acids (4 g), CoQ (200 mg), both supplements or control (4 g olive oil), daily for 8 weeks. This study examined the effect of n-3 fatty acids on plasma and urinary 20-HETE in the same study, as well as plasma and urinary F2-isoprostanes, and relate these to changes in BP. Seventy-four patients completed the 8-week intervention. n-3 fatty acids but not CoQ significantly reduced plasma 20-HETE (P = 0.001) and F2-isoprostanes (P < 0.001). In regression models adjusted for BP at baseline, postintervention plasma 20-HETE was a significant predictor of the fall in SBP (P < 0.0001) and DBP (P < 0.0001) after n-3 fatty acids. This is the first report that n-3 fatty acid supplementation reduces plasma 20-HETE in humans and that this associates with reduced BP. These results provide a plausible mechanism for the reduction in BP observed in patients with CKD following n-3 fatty acid supplementation.

  17. Engineering acyl carrier protein to enhance production of shortened fatty acids.

    PubMed

    Liu, Xueliang; Hicks, Wade M; Silver, Pamela A; Way, Jeffrey C

    2016-01-01

    The acyl carrier protein (ACP) is an essential and ubiquitous component of microbial synthesis of fatty acids, the natural precursor to biofuels. Natural fatty acids usually contain long chains of 16 or more carbon atoms. Shorter carbon chains, with increased fuel volatility, are desired for internal combustion engines. Engineering the length specificity of key proteins in fatty acid metabolism, such as ACP, may enable microbial synthesis of these shorter chain fatty acids. We constructed a homology model of the Synechococcus elongatus ACP, showing a hydrophobic pocket harboring the growing acyl chain. Amino acids within the pocket were mutated to increase steric hindrance to the acyl chain. Certain mutant ACPs, when over-expressed in Escherichia coli, increased the proportion of shorter chain lipids; I75 W and I75Y showed the strongest effects. Expression of I75 W and I75Y mutant ACPs also increased production of lauric acid in E. coli that expressed the C12-specific acyl-ACP thioesterase from Cuphea palustris. We engineered the specificity of the ACP, an essential protein of fatty acid metabolism, to alter the E. coli lipid pool and enhance production of medium-chain fatty acids as biofuel precursors. These results indicate that modification of ACP itself could be combined with enzymes affecting length specificity in fatty acid synthesis to enhance production of commodity chemicals based on fatty acids.

  18. Genome-Wide Association Study of Genetic Control of Seed Fatty Acid Biosynthesis in Brassica napus

    PubMed Central

    Gacek, Katarzyna; Bayer, Philipp E.; Bartkowiak-Broda, Iwona; Szala, Laurencja; Bocianowski, Jan; Edwards, David; Batley, Jacqueline

    2017-01-01

    Fatty acids and their composition in seeds determine oil value for nutritional or industrial purposes and also affect seed germination as well as seedling establishment. To better understand the genetic basis of seed fatty acid biosynthesis in oilseed rape (Brassica napus L.) we applied a genome-wide association study, using 91,205 single nucleotide polymorphisms (SNPs) characterized across a mapping population with high-resolution skim genotyping by sequencing (SkimGBS). We identified a cluster of loci on chromosome A05 associated with oleic and linoleic seed fatty acids. The delineated genomic region contained orthologs of the Arabidopsis thaliana genes known to play a role in regulation of seed fatty acid biosynthesis such as Fatty acyl-ACP thioesterase B (FATB) and Fatty Acid Desaturase (FAD5). This approach allowed us to identify potential functional genes regulating fatty acid composition in this important oil producing crop and demonstrates that this approach can be used as a powerful tool for dissecting complex traits for B. napus improvement programs. PMID:28163710

  19. De novo fatty acid biosynthesis and elongation in very long-chain acyl-CoA dehydrogenase-deficient mice supplemented with odd or even medium-chain fatty acids.

    PubMed

    Tucci, Sara; Behringer, Sidney; Spiekerkoetter, Ute

    2015-11-01

    An even medium-chain triglyceride (MCT)-based diet is the mainstay of treatment in very long-chain acyl-CoA dehydrogenase (VLCAD) deficiency (VLCADD). Previous studies with magnetic resonance spectroscopy have shown an impact of MCT on the average fatty acid chain length in abdominal fat. We therefore assume that medium-chain fatty acids (MCFAs) are elongated and accumulate in tissue as long-chain fatty acids. In this study, we explored the hepatic effects of long-term supplementation with MCT or triheptanoin, an odd-chain C7-based triglyceride, in wild-type and VLCAD-deficient (VLCAD(-/-) ) mice after 1 year of supplementation as compared with a control diet. The de novo biosynthesis and elongation of fatty acids, and peroxisomal β-oxidation, were quantified by RT-PCR. This was followed by a comprehensive analysis of hepatic and cardiac fatty acid profiles by GC-MS. Long-term application of even and odd MCFAs strongly induced de novo biosynthesis and elongation of fatty acids in both wild-type and VLCAD(-/-) mice, leading to an alteration of the hepatic fatty acid profiles. We detected de novo-synthesized and elongated fatty acids, such as heptadecenoic acid (C17:1n9), eicosanoic acid (C20:1n9), erucic acid (C22:1n9), and mead acid (C20:3n9), that were otherwise completely absent in mice under control conditions. In parallel, the content of monounsaturated fatty acids was massively increased. Furthermore, we observed strong upregulation of peroxisomal β-oxidation in VLCAD(-/-) mice, especially when they were fed an MCT diet. Our data raise the question of whether long-term MCFA supplementation represents the most efficient treatment in the long term. Studies on the hepatic toxicity of triheptanoin are still ongoing. © 2015 FEBS.

  20. Docosahexaenoic acid synthesis from n-3 fatty acid precursors in rat hippocampal neurons.

    PubMed

    Kaduce, Terry L; Chen, Yucui; Hell, Johannes W; Spector, Arthur A

    2008-05-01

    Docosahexaenoic acid (DHA), the most abundant n-3 polyunsaturated fatty acid in the brain, has important functions in the hippocampus. To better understand essential fatty acid homeostasis in this region of the brain, we investigated the contributions of n-3 fatty acid precursors in supplying hippocampal neurons with DHA. Primary cultures of rat hippocampal neurons incorporated radiolabeled 18-, 20-, 22-, and 24-carbon n-3 fatty acid and converted some of the uptake to DHA, but the amounts produced from either [1-14C]alpha-linolenic or [1-14C]eicosapentaenoic acid were considerably less than the amounts incorporated when the cultures were incubated with [1-14C]22:6n-3. Most of the [1-14C]22:6n-3 uptake was incorporated into phospholipids, primarily ethanolamine phosphoglycerides. Additional studies demonstrated that the neurons converted [1-14C]linoleic acid to arachidonic acid, the main n-6 fatty acid in the brain. These findings differ from previous results indicating that cerebral and cerebellar neurons cannot convert polyunsaturated fatty acid precursors to DHA or arachidonic acid. Fatty acid compositional analysis demonstrated that the hippocampal neurons contained only 1.1-2.5 mol% DHA under the usual low-DHA culture conditions. The relatively low-DHA content suggests that some responses obtained with these cultures may not be representative of neuronal function in the brain.

  1. Characteristic lipids of Bordetella pertussis: simple fatty acid composition, hydroxy fatty acids, and an ornithine-containing lipid.

    PubMed Central

    Kawai, Y; Moribayashi, A

    1982-01-01

    The lipids and fatty acids of Bordetella pertussis (phases I to IV) were analyzed by thin-layer chromatography, gas-liquid chromatography, and mass spectrometry and compared with those of B. parapertussis and B. bronchiseptica. The major lipid components of the three species were phosphatidylethanolamine, cardiolipin, phosphatidylglycerol, lysophosphatidylethanolamine, and an ornithine-containing lipid. The ornithine-containing lipid was characteristic of the genus Bordetella. The fatty acid composition of the total extractable cellular lipids of B. pertussis was mostly hexadecanoic and hexadecenoic acids (90%) in a ratio of about 1:1. The hexadecenoic acid of B. pertussis was in the cis-9 form. The fatty acid composition of the residual bound lipids was distinctly different from that of the extractable lipids, and residual bound lipids being mainly 3-hydroxytetradecanoic, tetradecanoic, and 3-hydroxydecanoic acids, with 3-hydroxydodecanoic acid occurring in some strains. It was determined that the 3-hydroxy fatty acids were derived from lipid A. The fatty acid composition of the total extractable cellular lipids of B. parapertussis and B. bronchiseptica, mainly composed of hexadecanoic and heptadecacyclopropanoic acid, differed from that of B. pertussis. Although the fatty acid composition of the residual bound lipids of B. parapertussis was similar to that of the residual bound lipids of B. pertussis, 2-hydroxydodecanoic acid was detected only in the bound lipids of B. bronchiseptica. Images PMID:6284719

  2. Characteristic lipids of Bordetella pertussis: simple fatty acid composition, hydroxy fatty acids, and an ornithine-containing lipid.

    PubMed

    Kawai, Y; Moribayashi, A

    1982-08-01

    The lipids and fatty acids of Bordetella pertussis (phases I to IV) were analyzed by thin-layer chromatography, gas-liquid chromatography, and mass spectrometry and compared with those of B. parapertussis and B. bronchiseptica. The major lipid components of the three species were phosphatidylethanolamine, cardiolipin, phosphatidylglycerol, lysophosphatidylethanolamine, and an ornithine-containing lipid. The ornithine-containing lipid was characteristic of the genus Bordetella. The fatty acid composition of the total extractable cellular lipids of B. pertussis was mostly hexadecanoic and hexadecenoic acids (90%) in a ratio of about 1:1. The hexadecenoic acid of B. pertussis was in the cis-9 form. The fatty acid composition of the residual bound lipids was distinctly different from that of the extractable lipids, and residual bound lipids being mainly 3-hydroxytetradecanoic, tetradecanoic, and 3-hydroxydecanoic acids, with 3-hydroxydodecanoic acid occurring in some strains. It was determined that the 3-hydroxy fatty acids were derived from lipid A. The fatty acid composition of the total extractable cellular lipids of B. parapertussis and B. bronchiseptica, mainly composed of hexadecanoic and heptadecacyclopropanoic acid, differed from that of B. pertussis. Although the fatty acid composition of the residual bound lipids of B. parapertussis was similar to that of the residual bound lipids of B. pertussis, 2-hydroxydodecanoic acid was detected only in the bound lipids of B. bronchiseptica.

  3. Identification of novel alpha-methoxylated phospholipid fatty acids in the Caribbean sponge Erylus goffrilleri.

    PubMed

    Carballeira, Néstor M; Oyola, Delise; Vicente, Jan; Rodriguez, Abimael D

    2007-11-01

    The phospholipid fatty acid composition of the Caribbean sponge Erylus goffrilleri is described for the first time. A total of 70 fatty acids with chain lengths between 13 and 29 carbons were identified in the sponge. Methyl-branched fatty acids predominated in E. goffrilleri suggesting the presence of a considerable number of bacterial symbionts. The novel fatty acids (5Z,9Z)-2-methoxy-5,9-hexadecadienoic acid, (5Z,9Z)-2-methoxy-5,9-octadecadienoic acid, (5Z,9Z)-2-methoxy-5,9-nonadecadienoic acid, and (5Z,9Z)-2-methoxy-5,9-eicosadienoic acid are described for the first time in the literature. In addition, the iso-methyl-branched fatty acids (9Z)-2-methoxy-15-methyl-9-hexadecenoic acid and (5Z,9Z)-2-methoxy-15-methyl-5,9-hexadecadienoic acid, also identified in E. goffrilleri, were identified for the first time in nature. Based on the identified metabolites it is proposed that the unprecedented biosynthetic sequence: i-17:1Delta9 --> 2-OMe-i-17:1Delta9 --> 2-OMe-i-17:2Delta5,9 might be responsible for the biosynthesis of the novel iso-alpha-methoxylated fatty acids in E. goffrilleri.

  4. Effect of Eicosapentaenoic Acid and Docosahexaenoic Acid on Myogenesis and Mitochondrial Biosynthesis during Murine Skeletal Muscle Cell Differentiation.

    PubMed

    Hsueh, Tun-Yun; Baum, Jamie I; Huang, Yan

    2018-01-01

    Polyunsaturated fatty acids are important nutrients for human health, especially omega-3 fatty acids such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), which have been found to play positive roles in the prevention of various diseases. However, previous studies have reported that excessive omega-3 fatty acids supplement during pregnancy caused side effects such as slower neural transmission times and postnatal growth restriction. In this study, we investigated the effect of EPA and DHA on mitochondrial function and gene expression in C2C12 myoblasts during skeletal muscle differentiation. C2C12 myoblasts were cultured to confluency and then treated with differentiation medium that contained fatty acids (50-µM EPA and DHA). After 72 h of myogenic differentiation, mRNA was collected, and gene expression was analyzed by real-time PCR. Microscopy was used to examine cell morphology following treatment with fatty acids. The effect of EPA and DHA on cellular oxygen consumption was measured using a Seahorse XF24 Analyzer. Cells treated with fatty acids had fewer myotubes formed ( P ≤ 0.05) compared with control cells. The expression of the genes related to myogenesis was significantly lower ( P ≤ 0.05) in cells treated with fatty acids, compared with control cells. Genes associated with adipogenesis had higher ( P ≤ 0.05) expression after treatment with fatty acids. Also, the mitochondrial biogenesis decreased with lower ( P ≤ 0.05) gene expression and lower ( P ≤ 0.05) mtDNA/nDNA ratio in cells treated with fatty acids compared with control cells. However, the expression of genes related to peroxisome biosynthesis was higher ( P ≤ 0.05) in cells treated with fatty acids. Moreover, fatty-acid treatment reduced ( P ≤ 0.05) oxygen consumption rate under oligomycin-inhibited (reflecting proton leak) and uncoupled conditions. Our data imply that fatty acids might reduce myogenesis and increase adipogenesis in myotube formation. Fatty acids may also decrease cell metabolism by reducing mitochondrial biogenesis as well as respiration rate. This study suggests that the maternal overdosage of EPA and DHA may influence fetal muscle development, increase intramuscular adipose tissue deposition in offspring, and have a long-term effect on the development of metabolic diseases such as obesity and diabetes in adult offspring.

  5. Effect of Eicosapentaenoic Acid and Docosahexaenoic Acid on Myogenesis and Mitochondrial Biosynthesis during Murine Skeletal Muscle Cell Differentiation

    PubMed Central

    Hsueh, Tun-Yun; Baum, Jamie I.; Huang, Yan

    2018-01-01

    Polyunsaturated fatty acids are important nutrients for human health, especially omega-3 fatty acids such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), which have been found to play positive roles in the prevention of various diseases. However, previous studies have reported that excessive omega-3 fatty acids supplement during pregnancy caused side effects such as slower neural transmission times and postnatal growth restriction. In this study, we investigated the effect of EPA and DHA on mitochondrial function and gene expression in C2C12 myoblasts during skeletal muscle differentiation. C2C12 myoblasts were cultured to confluency and then treated with differentiation medium that contained fatty acids (50-µM EPA and DHA). After 72 h of myogenic differentiation, mRNA was collected, and gene expression was analyzed by real-time PCR. Microscopy was used to examine cell morphology following treatment with fatty acids. The effect of EPA and DHA on cellular oxygen consumption was measured using a Seahorse XF24 Analyzer. Cells treated with fatty acids had fewer myotubes formed (P ≤ 0.05) compared with control cells. The expression of the genes related to myogenesis was significantly lower (P ≤ 0.05) in cells treated with fatty acids, compared with control cells. Genes associated with adipogenesis had higher (P ≤ 0.05) expression after treatment with fatty acids. Also, the mitochondrial biogenesis decreased with lower (P ≤ 0.05) gene expression and lower (P ≤ 0.05) mtDNA/nDNA ratio in cells treated with fatty acids compared with control cells. However, the expression of genes related to peroxisome biosynthesis was higher (P ≤ 0.05) in cells treated with fatty acids. Moreover, fatty-acid treatment reduced (P ≤ 0.05) oxygen consumption rate under oligomycin-inhibited (reflecting proton leak) and uncoupled conditions. Our data imply that fatty acids might reduce myogenesis and increase adipogenesis in myotube formation. Fatty acids may also decrease cell metabolism by reducing mitochondrial biogenesis as well as respiration rate. This study suggests that the maternal overdosage of EPA and DHA may influence fetal muscle development, increase intramuscular adipose tissue deposition in offspring, and have a long-term effect on the development of metabolic diseases such as obesity and diabetes in adult offspring. PMID:29594127

  6. Chemical composition and antimicrobial activity of fatty acid methyl ester of Quercus leucotrichophora fruits.

    PubMed

    Sati, Ankita; Sati, Sushil Chandra; Sati, Nitin; Sati, O P

    2017-03-01

    Natural fats and dietary oils are chief source of fatty acids and are well known to have antimicrobial activities against various microbes. The chemical composition and antimicrobial activities of fatty acids from fruits of white Oak (Quercus leucotrichophora) are yet unexplored and therefore the present study for the first time determines the fatty acid composition, and the antibacterial and antifungal activities of fatty acid methyl esters (FAME) of the white Oak plant found along the Himalayan region of Uttarakhand, India. The GCMS analysis revealed the presence of higher amount of saturated fatty acids than unsaturated fatty acids. FAME extract of fruits of Q. leucotrichophora demonstrated better antibacterial activity against Gram-positive bacteria than the Gram-negative bacteria. The present studies clearly establish the potential of the fruits of Q. leucotrichophora for use in soap, cosmetics and pharmaceutical industries.

  7. Lipid and fatty acid analysis of uninfected and granulosis virus-infected Plodia interpunctella larvae

    NASA Technical Reports Server (NTRS)

    Shastri-Bhalla, K.; Consigli, R. A.; Spooner, B. S. (Principal Investigator)

    1994-01-01

    A comparative study on the lipid and fatty acid composition of the uninfected and GV-infected Plodia interpunctella larvae was performed. Higher levels of free fatty acids were found in GV-infected larvae compared to those of the uninfected larvae, while the latter had more triacylglycerol compared to the former. The known identified phospholipids were fewer in the GV-infected larvae compared to those in the uninfected larvae. However, an unidentified phospholipid was found to be approximately two times higher in GV-infected larvae. The total lipid of both larvae had palmitic, oleic, and linoleic as the major fatty acids. The fatty acid composition of the GV-infected larval phospholipid differed considerably compared to that of the uninfected larvae, in that the ratio of unsaturated fatty acid to saturated fatty acid was 3.5 times less in the GV-infected larvae.

  8. Fatty acid and sterol composition of three phytomonas species.

    PubMed

    Nakamura, C V; Waldow, L; Pelegrinello, S R; Ueda-Nakamura, T; Filho, B A; Filho, B P

    1999-01-01

    Fatty acid and sterol analysis were performed on Phytomonas serpens and Phytomonas sp. grown in chemically defined and complex medium, and P. françai cultivated in complex medium. The three species of the genus Phytomonas had qualitatively identical fatty acid patterns. Oleic, linoleic, and linolenic were the major unsaturated fatty acids. Miristic and stearic were the major saturated fatty acids. Ergosterol was the only sterol isolated from Phytmonas sp. and P. serpens grown in a sterol-free medium, indicating that it was synthesized de novo. When P. françai that does not grow in defined medium was cultivated in a complex medium, cholesterol was the only sterol detected. The fatty acids and sterol isolated from Phytomonas sp. and P. serpens grown in a chemically defined lipid-free medium indicated that they were able to biosynthesize fatty acids and ergosterol from acetate or from acetate precursors such as glucose or threonine.

  9. Can the fatty acid selectivity of plant lipases be predicted from the composition of the seed triglyceride?

    PubMed

    Hellyer, S A; Chandler, I C; Bosley, J A

    1999-09-22

    To address the question can the fatty acid selectivity of plant lipases be predicted from the composition of the seed triglyceride, we have characterised the selectivity of lipases from a wide range of oilseeds with diverse fatty acid compositions. For this study, a novel hydrolysis assay using a fully randomised oil, was developed. From some seed sources (e.g. Cinnamomum camphora), lipases show high preference for particular fatty acids, whilst from others (e.g. Brassica napus, Theobroma cacao80% saturated or 'unusual' fatty acids may contain lipases which exhibit selectivity. It therefore follows that since the majority of seeds are composed of unsaturated fatty acids, that highly selective lipases will be unusual in nature. However lipases from some species of the Cuphea genera show exceptionally high preference for particular fatty acids. For example, lipase from seeds of Cuphea procumbans has over 20-fold selectivity for C10:0.

  10. Very Long Chain Fatty Acids Are Functionally Involved in Necroptosis.

    PubMed

    Parisi, Laura R; Li, Nasi; Atilla-Gokcumen, G Ekin

    2017-12-21

    Necroptosis is a form of regulated cell death that is linked to various human diseases. Distinct membrane-related, thus lipid-dependent, alterations take place during necroptosis. However, little is known about the roles of specific lipids in this process. We used an untargeted LC-MS-based approach to reveal that distinct lipid species are regulated at the molecular level during necroptosis. We found that ceramides and very long chain fatty acids accumulate during this process. Intrigued by the specificity of very long chain fatty acid accumulation, we focused on characterizing their involvement during necroptosis. Biochemical characterizations suggested that activated fatty acid biosynthesis and elongation could be responsible for these accumulations. We further showed that inhibition of fatty acid biosynthesis and depletion of very long chain fatty acids prevented loss of plasma membrane integrity and cell death, strongly suggesting that very long chain fatty acids are functionally involved in necroptosis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Heterologous co-expression of accA, fabD, and thioesterase genes for improving long-chain fatty acid production in Pseudomonas aeruginosa and Escherichia coli.

    PubMed

    Lee, Sunhee; Jeon, Eunyoung; Jung, Yeontae; Lee, Jinwon

    2012-05-01

    The goal of the present study was to increase the content of intracellular long-chain fatty acids in two bacterial strains, Pseudomonas aeruginosa PA14 and Escherichia coli K-12 MG1655, by co-overexpressing essential enzymes that are involved in the fatty acid synthesis metabolic pathway. Recently, microbial fatty acids and their derivatives have been receiving increasing attention as an alternative source of fuel. By introducing two genes (accA and fabD) of P. aeruginosa into the two bacterial strains and by co-expressing with them the fatty acyl-acyl carrier protein thioesterase gene of Streptococcus pyogenes (strain MGAS10270), we have engineered recombinant strains that are efficient producers of long-chain fatty acids (C16 and C18). The recombinant strains exhibit a 1.3-1.7-fold increase in the production of long-chain fatty acids over the wild-type strains. To enhance the production of total long-chain fatty acids, we researched the carbon sources for optimized culture conditions and results were used for post-culture incubation period. E. coli SGJS17 (containing the accA, fabD, and thioesterase genes) produced the highest content of intracellular total fatty acids; in particular, the unsaturated fatty acid content was about 20-fold higher than that in the wild-type E. coli.

  12. Effect of three edible oils on the intestinal absorption of caffeic acid: An in vivo and in vitro study

    PubMed Central

    Prasadani, W. Chaturi; Senanayake, Chaturi M.; Jayathilaka, Nimanthi; Ekanayake, Sagarika

    2017-01-01

    Polyphenolic antioxidants are mainly absorbed through passive paracellular permeation regulated by tight junctions. Some fatty acids are known to modulate tight junctions. Fatty acids resulting from the digestion of edible oils may improve the absorption of polyphenolic antioxidants. Therefore, we explored the effect of three edible oils on the intestinal absorption of caffeic acid. Rats were fed with soybean oil and caffeic acid dissolved in distilled water. Caffeic acid contents in the plasma collected up to 1 hr were quantified. The experiment was repeated with coconut oil and olive oil. Component fatty acids of the oils were individually tested in vitro for their effect on permeability of caffeic acid using Caco-2 cell monolayers. Highest absorption of caffeic acid was observed in animals fed with coconut oil. In vitro transport percentages of caffeic acid in 2.5 mmol/L solutions of fatty acids were 22.01±0.12 (lauric), 15.30 ± 0.25 (myristic acid), 13.59 ± 0.35 (linoleic acid), 3.70 ± 0.09 (oleic acid) and 0.10–2.0 (all other fatty acids). Lauric acid and myristic acid are the two major fatty acids present in coconut oil. Therefore, these fatty acids may contribute to the higher absorption of caffeic acid in the presence of coconut oil. PMID:28617858

  13. 21 CFR 172.854 - Polyglycerol esters of fatty acids.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Polyglycerol esters of fatty acids. 172.854 Section... HUMAN CONSUMPTION Multipurpose Additives § 172.854 Polyglycerol esters of fatty acids. Polyglycerol esters of fatty acids, up to and including the decaglycerol esters, may be safely used in food in...

  14. 40 CFR 721.3625 - Fatty acid amine salt (generic name).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Fatty acid amine salt (generic name... Substances § 721.3625 Fatty acid amine salt (generic name). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as fatty acid amine salt (PMN P-88...

  15. 40 CFR 417.20 - Applicability; description of the fatty acid manufacturing by fat splitting subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... POINT SOURCE CATEGORY Fatty Acid Manufacturing by Fat Splitting Subcategory § 417.20 Applicability; description of the fatty acid manufacturing by fat splitting subcategory. The provisions of this subpart are applicable to discharges resulting from the splitting of fats to fatty acids by hydrolysis and the subsequent...

  16. 21 CFR 172.850 - Lactylated fatty acid esters of glycerol and propylene glycol.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Lactylated fatty acid esters of glycerol and... DIRECT ADDITION TO FOOD FOR HUMAN CONSUMPTION Multipurpose Additives § 172.850 Lactylated fatty acid esters of glycerol and propylene glycol. The food additive lactylated fatty acid esters of glycerol and...

  17. 75 FR 70254 - Typographical Error in Summary Notice of Filing in Docket for Polymerized Fatty Acid Esters With...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-17

    ... Notice of Filing in Docket for Polymerized Fatty Acid Esters With Aminoalcohol Alkoxylates; Correction... (NOF) for Pesticide Petition (PP) 0E7699 for polymerized fatty acid esters with aminoalcohol... Pesticide Petition (PP) 0E7699 for polymerized fatty acid esters with aminoalcohol alkoxylates submitted by...

  18. Identification of acylglycerols containing dihydroxy fatty acids in castor oil by mass spectrometry

    USDA-ARS?s Scientific Manuscript database

    Ricinoleate, a monohydroxy fatty acid, in castor oil has many industrial uses. Dihydroxy fatty acids can also be used in industry. The C18 HPLC fractions of castor oil were used for mass spectrometry of lithium addicts to identify the acylglycerols containing dihydroxy fatty acids. Four diacylglycer...

  19. 40 CFR 721.10189 - Fatty acids, tall-oil, reaction products with (butoxymethyl) oxirane formaldehyde-phenol polymer...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Fatty acids, tall-oil, reaction... Substances § 721.10189 Fatty acids, tall-oil, reaction products with (butoxymethyl) oxirane formaldehyde... to reporting. (1) The chemical substance identified generically as fatty acids, tall-oil, reaction...

  20. 40 CFR 721.6181 - Fatty acid, reaction product with substituted oxirane, formaldehyde-phenol polymer glycidyl ether...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Fatty acid, reaction product with... Specific Chemical Substances § 721.6181 Fatty acid, reaction product with substituted oxirane, formaldehyde... as fatty acid, reaction product with substituted oxirane, formaldehyde-phenol polymer glycidyl ether...

Top