Science.gov

Sample records for fatty acid fish

  1. Fish oil, essential fatty acids, and hypertension.

    PubMed

    Lee, R M

    1994-08-01

    A proper balance between the n-3 and n-6 series of essential fatty acids (EFAs) is essential for homeostasis and normal growth in humans. Dietary supplement with fish oil and related n-3 EFAs has been used to study their antihypertensive property in animals and humans with borderline and essential hypertension. In the animal models, chronic treatment of young animals generally only attenuated the development of hypertension. In animals with hypercholesterolemia, n-3 EFA supplement increased the incidence of atherosclerosis. In humans, chronic treatment with fish oil only produced a small reduction in blood pressure. The concerns are that the high dose of fish oil may interfere with the control of blood glucose in diabetic patients, and may cause prolonged bleeding in surgical patients. Studies on the animal models of hypertension showed that n-6 EFAs are more effective than n-3 EFAs in lowering and normalizing the blood pressure of these animals, probably through the production of tissue prostaglandins, which favour vasodilation. The antihypertensive effect of the n-6 EFAs in humans is not well known, because there are only a few studies, usually involving a very small number of patients. A possible side effects of n-6 EFAs for concern is that they might stimulate tumour development. A careful examination of these risk factors is needed before any recommendation can be made concerning the use of EFAs for the control of hypertension for humans.

  2. Incorporated Fish Oil Fatty Acids Prevent Action Potential Shortening Induced by Circulating Fish Oil Fatty Acids

    PubMed Central

    Ruijter, Hester M. Den; Verkerk, Arie O.; Coronel, Ruben

    2010-01-01

    Increased consumption of fatty fish, rich in omega-3-polyunsaturated fatty acids (ω3-PUFAs) reduces the severity and number of arrhythmias. Long-term ω3-PUFA-intake modulates the activity of several cardiac ion channels leading to cardiac action potential shortening. Circulating ω3-PUFAs in the bloodstream and incorporated ω3-PUFAs in the cardiac membrane have a different mechanism to shorten the action potential. It is, however, unknown whether circulating ω3-PUFAs in the bloodstream enhance or diminish the effects of incorporated ω3-PUFAs. In the present study, we address this issue. Rabbits were fed a diet rich in fish oil (ω3) or sunflower oil (ω9, as control) for 3 weeks. Ventricular myocytes were isolated by enzymatic dissociation and action potentials were measured using the perforated patch-clamp technique in the absence and presence of acutely administered ω3-PUFAs. Plasma of ω3 fed rabbits contained more free eicosapentaenoic acid (EPA) and isolated myocytes of ω3 fed rabbits contained higher amounts of both EPA and docosahexaenoic acid (DHA) in their sarcolemma compared to control. In the absence of acutely administered fatty acids, ω3 myocytes had a shorter action potential with a more negative plateau than ω9 myocytes. In the ω9 myocytes, but not in the ω3 myocytes, acute administration of a mixture of EPA + DHA shortened the action potential significantly. From these data we conclude that incorporated ω3-PUFAs into the sarcolemma and acutely administered ω3 fatty acids do not have a cumulative effect on action potential duration and morphology. As a consequence, patients with a high cardiac ω3-PUFA status will probably not benefit from short term ω3 supplementation as an antiarrhythmic therapy. PMID:21423389

  3. Fish Lipids as a Valuable Source of Polyunsaturated Fatty Acids

    NASA Astrophysics Data System (ADS)

    Merdzhanova, Albena; Ivanov, Ivaylo; Dobreva, Diana A.; Makedonski, Lyubomir

    2017-03-01

    This article presents information about omega-3 (h-3) and omega-6 (n-6) polyunsaturated fatty acid (PUFA) contents in a broad range of commercially important fish species available on Bulgarian fish markets. The aim is to raise consumers' awareness and encourage them to eat fish. Fish species from the Black Sea coast have relatively high proportion of n-3 PUFAs, of which more than 80% is by EPf (eicosapentaenoic acid, C 20:5 n-3) and DHA (docosahexaenoic acid, C 22:6 n-3). Extensive epidemiological studies show that fish consumption is inversely associated with the incidence of cardiovascular diseases (CVD), stroke and the functioning of the brain. About 0.5 g of omega-3 (EPA+DHA) a day or two savings of oily fish a week are required to reduce the risk of death from CVD. PUFAs needs should be satisfied not only with food additives but with fish lipids containing food.

  4. [Fatty acids in different edible fish species from Mexico].

    PubMed

    Castro González, María Isabel; Rodríguez, Ana Gabriela Maafs; Galindo Gómez, Carlos

    2013-12-01

    Different biotic and abiotic factors determine the fatty acid (FA) composition of fish tissues and organs. This information is useful for humans due to the fact that fish consumption is associated with health benefits. The aim of the present study was to identify the variation in the concentration of fatty acids, according to different factors, among ten edible marine fish species in Mexico, collected from June to December 2009 in the largest fish market in Mexico City: Euthynnus alletteratus, Sciaenops ocellatus, Bairdiella chrysoura, Sphyraena guachancho, Symphurus elongatus, Istiophorus platypterus, Ophichthus rex, Eugerres plumieri, Eucinostomus entomelas and Oreochromrnis mossambicus. Lipid content was gravimetrically quantified, the fatty acids were determined using a gas chromatograph and the results were statistically analyzed. Total lipid content ranged from 0.93 to 1.95 g/100 g in E. entomelas and O. urolepis hornorum, respectively. E. alletteratus, B. chrysoura, S. elongatus, I. platypterus, O. rex and E. plumieri presented the following order in FA concentration: Polyunsaturated FA (PUFA)>Saturated FA (SFA)>Monounsaturated FA (MUFA). S. ocellatus, S. guachancho and E. entomelas presented SFA>PUFA>MUFA; and only O. mossambicus presented SFA>MUFA>PUFA. O. mossambicus had the highest concentration (mg/100 g) of SFA (559.40) and MUFA (442.60), while B. chrysoura presented the highest content (mg/100 g) of PUFA (663.03), n-3 PUFA (514.03), EPA+DHA (506.10) and n-6 PUFA (145.80). Biotic and abiotic factors of the analyzed fish significantly influenced their FA concentration. Subtropical species presented 42.1% more EPA+DHA than tropical specie. Values presented here will vary according to the changes in the ecosystem and characteristics of each fish species, however the information generated in the present study is useful for improving fish consumption recommendations.

  5. Fish Oil Supplementation and Fatty Acid Synthase Expression in the Prostate: A Randomized Controlled Trial

    DTIC Science & Technology

    2007-03-01

    14. ABSTRACT: See next page. 15. SUBJECT TERMS Prostate Cancer; Lipid Medtabolism, Clinical Trial; Omega -3 Fatty Acids 16. SECURITY...AD_________________ Award Number: W81XWH-04-1-0296 TITLE: Fish Oil Supplementation and Fatty Acid ...SUBTITLE Fish Oil Supplementation and Fatty Acid Synthase Expression in the Prostate: A 5a. CONTRACT NUMBER Randomized

  6. Omega-3 fatty acids: proven benefit or just a "fish story"?

    PubMed

    Martin, Caren McHenry

    2008-03-01

    The potential health benefit of omega-3 fatty acids has been the focus of much research in the past decade. While the typical diet in the United States has a much greater ratio of omega-6 fatty acids compared with omega-3 fatty acids, research is showing that shifting this ratio-by increased consumption of fatty fish or fish oil supplements-may provide significant health benefits. Reductions in cardiovascular risk, depression, and rheumatoid arthritis symptoms have been correlated with omega-3 fatty acid intake, and there is increased interest in the use of omega-3 fatty acid supplementation for other psychiatric illnesses and prevention of Alzheimer's disease.

  7. Fish oil prevents essential fatty acid deficiency and enhances growth: clinical and biochemical implications.

    PubMed

    Strijbosch, Robert A M; Lee, Sang; Arsenault, Danielle A; Andersson, Charlotte; Gura, Kathleen M; Bistrian, Bruce R; Puder, Mark

    2008-05-01

    Fish oil, a rich source of omega-3 fatty acids, has never been used as the sole source of lipid in clinical practice for fear of development of essential fatty acid deficiency, as it lacks the believed requisite levels of linoleic acid, an omega-6 fatty acid. The objectives of this study were to establish biochemical standards for fish oil as the sole fat and to test the hypothesis that fish oil contains adequate amounts of omega-6 fatty acids to prevent essential fatty acid deficiency. Forty mice were divided into 2 groups that were either pair fed or allowed to eat ad libitum. In each group, 4 subgroups of 5 mice were fed 1%, 5%, and 10% fish oil diets by weight or a control soybean diet for 9 weeks. Blood was collected at 4 time points, and fatty acid analysis was performed. Food intake and weight status were monitored. All groups but the pair-fed 1% fish oil group gained weight, and the 5% fish oil group showed the highest caloric efficiency in both pair-fed and ad libitum groups. Fatty acid profiles for the 1% fish oil group displayed clear essential fatty acid deficiency, 5% fish oil appeared marginal, and 10% and soybean oil diets were found to prevent essential fatty acid deficiency. Fish oil enhances growth through higher caloric efficiency. We established a total omega-6 fatty acid requirement of between 0.30% and 0.56% of dietary energy, approximately half of the conventionally believed 1% as linoleic acid. This can presumably be attributed to the fact that fish oil contains not only a small amount of linoleic acid, but also arachidonic acid, which has greater efficiency to meet omega-6 fatty acid requirements.

  8. Enhanced absorption of n-3 fatty acids from emulsified compared with encapsulated fish oil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The omega-3 fatty acids, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) have important nutrition and disease management properties. Presently fish oil (FO) supplementation relies on capsular triglyceride. Flavored emulsified lipid preparations may provide an improved approach to FO del...

  9. Ocean acidification increases fatty acids levels of larval fish.

    PubMed

    Díaz-Gil, Carlos; Catalán, Ignacio A; Palmer, Miquel; Faulk, Cynthia K; Fuiman, Lee A

    2015-07-01

    Rising levels of anthropogenic carbon dioxide in the atmosphere are acidifying the oceans and producing diverse and important effects on marine ecosystems, including the production of fatty acids (FAs) by primary producers and their transfer through food webs. FAs, particularly essential FAs, are necessary for normal structure and function in animals and influence composition and trophic structure of marine food webs. To test the effect of ocean acidification (OA) on the FA composition of fish, we conducted a replicated experiment in which larvae of the marine fish red drum (Sciaenops ocellatus) were reared under a climate change scenario of elevated CO2 levels (2100 µatm) and under current control levels (400 µatm). We found significantly higher whole-body levels of FAs, including nine of the 11 essential FAs, and altered relative proportions of FAs in the larvae reared under higher levels of CO2. Consequences of this effect of OA could include alterations in performance and survival of fish larvae and transfer of FAs through food webs.

  10. Ocean acidification increases fatty acids levels of larval fish

    PubMed Central

    Díaz-Gil, Carlos; Catalán, Ignacio A.; Palmer, Miquel; Faulk, Cynthia K.; Fuiman, Lee A.

    2015-01-01

    Rising levels of anthropogenic carbon dioxide in the atmosphere are acidifying the oceans and producing diverse and important effects on marine ecosystems, including the production of fatty acids (FAs) by primary producers and their transfer through food webs. FAs, particularly essential FAs, are necessary for normal structure and function in animals and influence composition and trophic structure of marine food webs. To test the effect of ocean acidification (OA) on the FA composition of fish, we conducted a replicated experiment in which larvae of the marine fish red drum (Sciaenops ocellatus) were reared under a climate change scenario of elevated CO2 levels (2100 µatm) and under current control levels (400 µatm). We found significantly higher whole-body levels of FAs, including nine of the 11 essential FAs, and altered relative proportions of FAs in the larvae reared under higher levels of CO2. Consequences of this effect of OA could include alterations in performance and survival of fish larvae and transfer of FAs through food webs. PMID:26179801

  11. Comparison of natural antioxidants and their effects on omega-3 fatty acid oxidation in fish oil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Polyunsaturated fatty acids (PUFA), such as the omega-3 fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), have been found to offer a variety of health benefits including cardiovascular protection, anti-inflammatory effect and human development. It is known that fish and algae o...

  12. Fatty acid composition of freshwater wild fish in subalpine lakes: a comparative study.

    PubMed

    Vasconi, Mauro; Caprino, Fabio; Bellagamba, Federica; Busetto, Maria Letizia; Bernardi, Cristian; Puzzi, Cesare; Moretti, Vittorio Maria

    2015-03-01

    In this study, the proximate and fatty acid compositions of the muscle tissue of 186 samples of fish belonging to fifteen species of freshwater fish harvested in subalpine lakes (bleak, shad, crucian carp, whitefish, common carp, pike, black bullhead, burbot, perch, Italian roach, roach, rudd, wels catfish, chub and tench) were investigated. Most of the fish demonstrated a lipid content in the fillet lower than 2.0 g 100 g(-1) wet weight (range 0.6-9.7). A strong relationship between feeding behavior and fatty acid composition of the muscle lipids was observed. Planktivorous fish showed the lowest amounts of n-3 fatty acids (p < 0.05), but the highest monounsaturated fatty acid (MUFA) contents, in particular 18:1n-9. Conversely, carnivorous fish showed the highest amounts of saturated fatty acids and n-3 fatty acids (p < 0.05), but the lowest MUFA contents. Omnivorous fish showed substantial proportions of n-3 fatty acids and the highest contents of n-6 fatty acids. Principal component analysis showed a distinct separation between fish species according to their feeding habits and demonstrated that the most contributing trophic markers were 18:1n-9, 18:3n-3, 22:6n-3 and 20:4n-6. The quantitative amounts n-3 polyunsaturated fatty acid in muscle tissues varied depending on the fish species, the lipid content and the feeding habits. Some species were very lean, and therefore would be poor choices for human consumption to meet dietary n-3 fatty acid requirements. Nevertheless, the more frequently consumed and appreciated fish, shad and whitefish, had EPA and DHA contents in the range 900-1,000 mg 100 g(-1) fresh fillet.

  13. Plasma and neutrophil fatty acid composition in advanced cancer patients and response to fish oil supplementation.

    PubMed

    Pratt, V C; Watanabe, S; Bruera, E; Mackey, J; Clandinin, M T; Baracos, V E; Field, C J

    2002-12-02

    Metabolic demand and altered supply of essential nutrients is poorly characterised in patients with advanced cancer. A possible imbalance or deficiency of essential fatty acids is suggested by reported beneficial effects of fish oil supplementation. To assess fatty acid status (composition of plasma and neutrophil phospholipids) in advanced cancer patients before and after 14 days of supplementation (12+/-1 g day(-1)) with fish (eicosapentaenoic acid, and docosahexaenoic acid) or placebo (olive) oil. Blood was drawn from cancer patients experiencing weight loss of >5% body weight (n=23). Fatty acid composition of plasma phospholipids and the major phospholipid classes of isolated neutrophils were determined using gas liquid chromatography. At baseline, patients with advanced cancer exhibited low levels (<30% of normal values) of plasma phospholipids and constituent fatty acids and elevated 20 : 4 n-6 content in neutrophil phospholipids. High n-6/n-3 fatty acid ratios in neutrophil and plasma phospholipids were inversely related to body mass index. Fish oil supplementation raised eicosapentaenoic acid and docosahexaenoic acid content in plasma but not neutrophil phospholipids. 20 : 4 n-6 content was reduced in neutrophil PI following supplementation with fish oil. Change in body weight during the supplementation period related directly to increases in eicosapentaenoic acid in plasma. Advanced cancer patients have alterations in lipid metabolism potentially due to nutritional status and/or chemotherapy. Potential obstacles in fatty acid utilisation must be addressed in future trials aiming to improve outcomes using nutritional intervention with fish oils.

  14. Egg fatty acid composition from lake trout fed two Lake Michigan prey fish species.

    USGS Publications Warehouse

    Honeyfield, D.C.; Fitzsimons, J.D.; Tillitt, D.E.; Brown, S.B.

    2009-01-01

    We previously demonstrated that there were significant differences in the egg thiamine content in lake trout Salvelinus namaycush fed two Lake Michigan prey fish (alewife Alosa pseudoharengus and bloater Coregonus hoyi). Lake trout fed alewives produced eggs low in thiamine, but it was unknown whether the consumption of alewives affected other nutritionally important components. In this study we investigated the fatty acid composition of lake trout eggs when females were fed diets that resulted in different egg thiamine concentrations. For 2 years, adult lake trout were fed diets consisting of four combinations of captured alewives and bloaters (100% alewives; 65% alewives, 35% bloaters; 35% alewives, 65% bloaters; and 100% bloaters). The alewife fatty acid profile had higher concentrations of arachidonic acid and total omega-6 fatty acids than the bloater profile. The concentrations of four fatty acids (cis-13, 16-docosadienoic, eicosapentaenoic, docosapentaenoic, and docosahexaenoic acids) were higher in bloaters than in alewives. Although six fatty acid components were higher in lake trout eggs in 2001 than in 2000 and eight fatty acids were lower, diet had no effect on any fatty acid concentration measured in lake trout eggs in this study. Based on these results, it appears that egg fatty acid concentrations differ between years but that the egg fatty acid profile does not reflect the alewife-bloater mix in the diet of adults. The essential fatty acid content of lake trout eggs from females fed alewives and bloaters appears to be physiologically regulated and adequate to meet the requirements of developing embryos.

  15. Fatty acid clearance by isolated perfused hindquarters of rats fed fish oil

    SciTech Connect

    Herzberg, G.R.; MacCharles, G.; Rogerson, M. )

    1990-02-26

    The authors have previously shown that, compared to the dietary fatty acid composition, n-3 fatty acids are underrepresented in the adipose tissue of rats consuming fish oil diets. They have also shown that in rats fed fish oil diets, lipoprotein lipase is elevated in skeletal muscle and heart but not in adipose tissue. These two observations led us to hypothesize that n-3 enriched lipoproteins and n-3 fatty acids are preferentially utilized by muscle. Rats were fed diets containing 10% by weight corn oil (CO) or 2% CO + 8% fish oil (MaxEPA) for two weeks. Skinned hindquarters were perfused using a Krebs-Henselheit buffer containing 3% albumin, 5.5 mM glucose and 0.5 mM fatty acid. Muscle ATP was unaffected by previous diet or fatty acid perfused and was approximately 6 {mu}mol/g wet weight in each group. The rate of fatty acid removal was linear for 60 minutes by which time between 30 and 50% of the fatty acid in the perfusate had been removed. They determined the removal of either {sup 14}C EPA and {sup 14}C oleate. There was a significant effect of both the type of fatty acid and the previous diet of the rats from which the hindquarters were obtained. EPA was removed more rapidly by hindquarters from MaxEPA-fed rats than corn oil fed rats. These results support the hypothesis that enhanced utilization of fatty acids by muscle contributes to the hypotriglyceridemic effect of dietary fish oils. They also suggest that n-3 fatty acids are more rapidly utilized by skeletal muscle.

  16. Content of essential polyunsaturated fatty acids in three canned fish species.

    PubMed

    Gladyshev, Michail I; Sushchik, Nadezhda N; Makhutova, Olesia N; Kalachova, Galina S

    2009-05-01

    Three canned fish species--Pacific saury (Cololabis saira), Pacific herring (Clupea harengus) and Baltic sprat (Sprattus sprattus)--most common and popular in Russia, were analyzed for fatty acids. Special attention was paid to long-chain essential polyunsaturated fatty acids: eicosapentaenoic acid (20:5omega3) and docosahexaenoic acid (22:6omega3). Sums of eicosapentaenoic acid and docosahexaenoic acid in saury, herring and sprat were, on average, 2.42, 1.80 and 1.43 g/100 g product, respectively. Contents of these essential acids in all the canned fish species were found to be very high compared with many other fish reported in the available literature. All the canned fish appeared to be highly valuable products for human nutrition concerning the content of eicosapentaenoic and docosahexaenoic acids.

  17. Fish oil and inflammatory disease: is asthma the next target for n-3 fatty acid supplements?

    PubMed

    Stephensen, Charles B

    2004-12-01

    Eating fish or taking n-3 fatty acid supplements can decrease the risk and severity of cardiovascular disease. Such supplements also provide symptomatic relief for rheumatoid arthritis patients. Recent research suggests that asthma, another highly prevalent, chronic inflammatory disease, may also respond to fish oil supplements.

  18. Cultural symbolism of fish and the psychotropic properties of omega-3 fatty acids.

    PubMed

    Reis, L C; Hibbeln, J R

    2006-01-01

    Fish is a food with unique psychotropic properties. Consumption of long-chain omega-3 fatty acids, rich in seafood, reduces depression, aggression and anger while improving mental well-being. We posit that symbols of fish have become linked to the emotional states induced by long-chain fatty acid by associative pairings, both conscious and unconscious. The limbic and hippocampal activity necessary for memory formation containing emotional content and the labeling of social context by cortical processes appears to be optimized by diets rich in long-chain omega-3 fatty acid. In this critical literature survey, we find that fish have been culturally labeled as symbols of emotional well-being and social healing in religious and medical practices among independent cultures, for at least six millennia. This understanding of the perception of fish as a symbolically healing or purifying food can assist current messages improving public health.

  19. Fatty acid composition of 12 fish species from the Black Sea.

    PubMed

    Huang, L-T C; Bülbül, U; Wen, P-C; Glew, R H; Ayaz, F A

    2012-05-01

    The long-chain polyunsaturated fatty acids docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) are healthful to humans, particularly in promoting growth and cognitive development in infants and young children, and in reducing the risk of cardiovascular disease. Though the populations who inhabit the Trabzon province of Turkey include seafood from the Black Sea in their diet, knowledge of the fatty acid composition and content of these fish is scant. Fatty acid analysis was performed on freeze-dried muscle tissue of 12 species of fish purchased in markets in Trabzon. The fat content varied from 0.2% (garfish) to 12% (shad) of dry weight. The highest DHA and DHA plus EPA contents were found in horse mackerel 16.1 and 20.6 mg/g dry weight, respectively. Only in sea bass and sea bream did the essential fatty acid linoleic acid account for more than 10% of the fatty acid total. For all 12 species, arachidonic acid accounted for 0.09% to 7.64% of the fatty acid total. Oleic acid varied greatly from 0.14% (garfish) to 32.7% (shad). The omega-3/omega-6 fatty acid ratio ranged from 0.8 to 25. A 100 g serving of fresh horse mackerel would contribute 586 mg of DHA to the diet, which exceeds the recommended daily intake of 200 to 300 mg of DHA for pregnant and lactating women. These data indicate that some, but not all, of the 12 fish species from the Black Sea fish we studied could contribute significantly to satisfy the DHA and EPA needs of the inhabitants of the eastern Black Sea region of Turkey.

  20. [Recent biochemical nutrition knowledge in relation to metabolism and the significance of essential fatty acids and n-3-fatty acids contained in fish].

    PubMed

    Kolb, E

    1989-10-01

    A survey is given on some newer knowledge about metabolism and about the importance of the essential fatty acids and of the n-3 fatty acids (eicosapentaenic, docosapentaenic, docosahexaenic acids) which occur in fish oils. In the body the linoleic acid via intermediate steps can be transformed into the arachidonic acid, from which various prostaglandins and leucotriens as well as the thromboxane A2 can be formed. The transformation of the linolenic acid into the eicosapentaenic acid is slight in man. The docosahexaenic acid is necessary for the construction of phospholipids in the brain and in the retina. The uptake of fish fatty acids inhibits the formation of thromboxane A2 and of leukotriens from the arachidonic acid. The fish fatty acids further in the liver in the peroxisomas the activity of the enzymes for the beta-oxidation; the formation of lipoproteins of high density increases under their influence: the triacylglyceride content, the cholesterol as well as the lipoprotein content of very low and low density decreases, when there is an adequate part of fish fatty acids in the nutrition.

  1. Effects of quercetin and fish n-3 fatty acids on testicular injury induced by ethanol in rats.

    PubMed

    Uygur, R; Yagmurca, M; Alkoc, O A; Genc, A; Songur, A; Ucok, K; Ozen, O A

    2014-05-01

    The aim of this study was to investigate the effects of quercetin and fish n-3 fatty acids on the changes in testis induced by ethanol. Forty-five rats divided into five groups, control, ethanol, ethanol+quercetin, ethanol+fish n-3 fatty acids and ethanol+quercetin+fish n-3 fatty acids. At the end of 8 weeks, all the rats were sacrificed. Degenerative changes in histopathological analyses, the decreased body weight gain and seminiferous tubule diameters in ethanol group have been observed. TUNEL assay also showed an increase in apoptotic cell number. The activities of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px), xanthine oxidase (XO) and testosterone levels were decreased as well as the levels of malondialdehyde (MDA) and nitric oxide (NO) were increased in ethanol group. Histopathological changes caused by ethanol have been improved by quercetin and fish n-3 fatty acids. It was also found that protection was provided by increasing SOD, CAT and GSH-Px activities in groups administered quercetin, fish n-3 fatty acids and quercetin+fish n-3 fatty acids, and by decreasing the levels of MDA and NO in groups administered both quercetin and fish n-3 fatty acids together. These results suggest that quercetin and fish n-3 fatty acids are beneficial agents to reduce testicular injury induced by ethanol except for testosterone levels.

  2. A single dose of emulsified versus capsular fish oils has equivalent effects on chylomicron fatty acids over 8 hours

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Long chain omega-3 fatty acids are important in nutrition and disease management. Flavored emulsified fish oil supplements provide an alternative to encapsulated fish oils. Oil in water emulsions may offer an advantage in bio-availability of the fatty acids. Chylomicrons transport triglyceride from...

  3. Synthesis of glycerides containing n-3 fatty acids and conjugated linoleic acid by solvent-free acidolysis of fish oil.

    PubMed

    Garcia, H S; Arcos, J A; Ward, D J; Hill, C G

    2000-12-05

    Menhaden oil, a rich source of n-3 fatty acids, was interesterified with conjugated linoleic acid (CLA) in a reaction medium composed solely of substrates and either free or immobilized commercial lipase preparations. Of five lipases tested, an immobilized preparation from Mucor miehei provided the fastest rate of incorporation of CLA into fish oil acylglycerols; however, and as observed with most of the lipases utilized, a significant proportion of the n-3 fatty acid residues were liberated in the process. A soluble lipase from Candida rugosa converted free CLA to acylglycerol residues while leaving the n-3 fatty acid residues virtually untouched. Even though the reaction rate was slower for this enzyme than for the other four lipase preparations, the specificity of the free C. rugosa lipase gives it the greatest potential for commercial use in preparing fish oils enriched in CLA residues but still retaining their original n-3 fatty acid residues.

  4. Milk conjugated linoleic acid response to fish oil supplementation of diets differing in fatty acid profiles.

    PubMed

    AbuGhazaleh, A A; Schingoethe, D J; Hippen, A R; Kalscheur, K F

    2003-03-01

    The objective of this experiment was to examine the effect of feeding fish oil (FO) along with fat sources that varied in their fatty acid compositions (high stearic, high oleic, high linoleic, or high linolenic acids) to determine which combination would lead to maximum conjugated linoleic acid (cis-9,trans-11 CLA) and transvaccenic acid (TVA) concentrations in milk fat. Twelve Holstein cows (eight multiparous and four primiparous cows) at 73 (+/- 32) DIM were used in a 4 x 4 Latin square with 4-wk periods. Treatment diets were 1) 1% FO plus 2% fat source high in stearic acid (HS), 2) 1% FO plus 2% fat from high oleic acid sunflower seeds (HO), 3) 1% FO plus 2% fat from high linoleic acid sunflower seeds (HLO), and 4) 1% FO plus 2% fat from flax seeds (high linolenic; HLN). Diets formulated to contain 18% crude protein were composed of 50% (dry basis) concentrate mix, 25% corn silage, 12.5% alfalfa haylage, and 12.5% alfalfa hay. Milk production (35.8, 36.3, 34.9, and 35.0 kg/d for diets 1 to 4) was similar for all diets. Milk fat percentages (3.14, 2.81, 2.66, and 3.08) and yields (1.13, 1.02, 0.93, and 1.08 kg/d) for diets 1 to 4 were lowest for HLO. Milk protein percentages (3.04, 3.03, 3.10, and 3.08) and dry matter intake (DMI) (25.8, 26.0, 26.2, and 26.2 kg/d) for diets 1 to 4 were similar for all diets. Milk cis-9,trans-11 CLA concentrations (0.70, 1.04, 1.70, and 1.06 g/100 g fatty acids) for diet 1 to 4 and yields (7.7, 10.7, 15.8, and 11.3 g/d) for diets 1 to 4 were greatest with HLO and were least with HS. Milk cis-9,trans-11 CLA concentrations and yields were similar for cows fed the HO and the HLN diets. Similar to milk cis-9,trans-11 CLA, milk TVA concentration (1.64, 2.49, 3.74, and 2.41 g/100 g fatty acids) for diets 1 to 4 was greatest with the HLO diet and least with the HS diet. Feeding a high linoleic acid fat source with fish oil most effectively increased concentrations and yields of milk cis-9,trans-11 CLA and TVA.

  5. Comparative Analysis of Lipid Content and Fatty Acid Composition of Commercially Important Fish and Shellfish from Sri Lanka and Japan.

    PubMed

    Devadason, Chandravathany; Jayasinghe, Chamila; Sivakanesan, Ramiah; Senarath, Samanthika; Beppu, Fumiaki; Gotoh, Naohiro

    2016-01-01

    Sri Lanka is surrounded by the Indian Ocean, allowing plenty of fishes to be caught. Moreover, these fishes represent one of the undocumented fish resources in the world and their detailed lipid profiles have not been previously examined. In this study, the lipid content and fatty acid composition of 50 commercially important fishes from the Indian Ocean (Sri Lanka) and the Pacific Ocean (Japan) were compared. The total lipid content and fatty acid composition, including eicosapentaenoic acid (C20:5n-3, EPA) and docosahexaenoic acid (C22:6n-3, DHA), differed significantly among species. Fish from the Pacific Ocean had higher proportions of fatty acids, including EPA and DHA. Herrings and mackerels from both oceanic areas demonstrated high levels of EPA and DHA, and n-3/n-6 ratio. Brackish and freshwater fishes from both groups showed low levels of PUFAs. Fish from the Indian Ocean were high in n-6 fatty acids. Monounsaturated fatty acid levels were high in omnivorous fish from the Pacific Ocean, and saturated fatty acid levels were high in fish from the Indian Ocean. The results of this study will be of value in determining the dietary usefulness of fish caught in Sri Lanka.

  6. Fatty Acid and Cholesterol Concentrations in Usually Consumed Fish in Brazil

    PubMed Central

    Scherr, Carlos; Gagliardi, Ana Carolina Moron; Miname, Marcio Hiroshi; Santos, Raul Dias

    2015-01-01

    Background Several studies have demonstrated clinical benefits of fish consumption for the cardiovascular system. These effects are attributed to the increased amounts of polyunsaturated fatty acids in these foods. However, the concentrations of fatty acids may vary according to region. Objective The goal of this study was to determine the amount of,cholesterol and fatty acids in 10 Brazilian fishes and in a non-native farmed salmon usually consumed in Brazil. Methods The concentrations of cholesterol and fatty acids, especially omega-3, were determined in grilled fishes. Each fish sample was divided in 3 sub-samples (chops) and each one was extracted from the fish to minimize possible differences in muscle and fat contents. Results The largest cholesterol amount was found in white grouper (107.6 mg/100 g of fish) and the smallest in badejo (70 mg/100 g). Omega-3 amount varied from 0.01 g/100 g in badejo to 0.900 g/100 g in weakfish. Saturated fat varied from 0.687 g/100 g in seabass to 4.530 g/100 g in filhote. The salmon had the greatest concentration of polyunsaturated fats (3.29 g/100 g) and the highest content of monounsaturated was found in pescadinha (5.98 g/100 g). Whiting and boyfriend had the best omega-6/omega 3 ratios respectively 2.22 and 1.19, however these species showed very little amounts of omega-3. Conclusion All studied Brazilian fishes and imported salmon have low amounts of saturated fat and most of them also have low amounts of omega-3. PMID:25424160

  7. Rye polyphenols and the metabolism of n-3 fatty acids in rats: a dose dependent fatty fish-like effect.

    PubMed

    Ounnas, Fayçal; de Lorgeril, Michel; Salen, Patricia; Laporte, François; Calani, Luca; Mena, Pedro; Brighenti, Furio; Del Rio, Daniele; Demeilliers, Christine

    2017-01-10

    As long-chain fatty acids (LCFA) of the n-3 series are critically important for human health, fish consumption has considerably increased in recent decades, resulting in overfishing to respond to the worldwide demand, to an extent that is not sustainable for consumers' health, fisheries economy, and marine ecology. In a recent study, it has been shown that whole rye (WR) consumption improves blood and liver n-3 LCFA levels and gut microbiota composition in rats compared to refined rye. The present work demonstrates that specific colonic polyphenol metabolites may dose dependently stimulate the synthesis of n-3 LCFA, possibly through their microbial and hepatic metabolites in rats. The intake of plant n-3 alpha-linolenic acid and WR results in a sort of fatty fish-like effect, demonstrating that the n-3 LCFA levels in blood and tissues could be increased without eating marine foods, and therefore without promoting unsustainable overfishing, and without damaging marine ecology.

  8. Rye polyphenols and the metabolism of n-3 fatty acids in rats: a dose dependent fatty fish-like effect

    PubMed Central

    Ounnas, Fayçal; de Lorgeril, Michel; Salen, Patricia; Laporte, François; Calani, Luca; Mena, Pedro; Brighenti, Furio; Del Rio, Daniele; Demeilliers, Christine

    2017-01-01

    As long-chain fatty acids (LCFA) of the n-3 series are critically important for human health, fish consumption has considerably increased in recent decades, resulting in overfishing to respond to the worldwide demand, to an extent that is not sustainable for consumers’ health, fisheries economy, and marine ecology. In a recent study, it has been shown that whole rye (WR) consumption improves blood and liver n-3 LCFA levels and gut microbiota composition in rats compared to refined rye. The present work demonstrates that specific colonic polyphenol metabolites may dose dependently stimulate the synthesis of n-3 LCFA, possibly through their microbial and hepatic metabolites in rats. The intake of plant n-3 alpha-linolenic acid and WR results in a sort of fatty fish-like effect, demonstrating that the n-3 LCFA levels in blood and tissues could be increased without eating marine foods, and therefore without promoting unsustainable overfishing, and without damaging marine ecology. PMID:28071699

  9. Fish meal supplementation increases bovine plasma and luteal tissue omega-3 fatty acid composition.

    PubMed

    White, N R; Burns, P D; Cheatham, R D; Romero, R M; Nozykowski, J P; Bruemmer, J E; Engle, T E

    2012-03-01

    The objective of this experiment was to determine if dietary inclusion of fish meal would increase plasma and luteal tissue concentrations of eicosapentaenoic and docosahexaenoic acids. Seventeen nonlactating Angus cows (2 to 8 yr of age) were housed in individual pens and fed a corn silage-based diet for approximately 60 d. Diets were supplemented with fish meal at 5% DMI (a rich source of eicosapentaenoic acid and docosahexaenoic acid; n = 9 cows) or corn gluten meal at 6% DMI (n = 8 cows). Body weights and jugular blood samples were collected immediately before the initiation of supplementation and every 7 d thereafter for 56 d to monitor plasma n-3 fatty acid composition and BW. Estrous cycles were synchronized using 2 injections of PGF(2α) administered at 14-d intervals. The ovary bearing the corpus luteum was surgically removed at midcycle (between d 10 and 12) after estrus synchronization, which corresponded to approximately d 60 of supplementation. The ovary was transported to the laboratory, and approximately 1.5 g of luteal tissue was stored at -80°C until analyzed for n-3 fatty acid content. Initial and ending BW did not differ (P > 0.10) between cows supplemented with fish meal and those with corn gluten meal. Plasma eicosapentaenoic acid was greater (P < 0.05) beginning at d 7 of supplementation and docosahexaenoic was greater (P < 0.05) beginning at d 14 of supplementation for cows receiving fish meal. Luteal tissue collected from fish meal-supplemented cows had greater (P < 0.05) luteal n-3 fatty acids and reduced (P < 0.05) arachidonic acid and n-6 to n-3 ratio as compared with tissue obtained from cows supplemented with corn gluten meal. Our data show that fish meal supplementation increases luteal n-3 fatty acid content and reduces available arachidonic acid content, the precursor for PGF(2α). The increase in luteal n-3 fatty acids may reduce PGF(2α) intraluteal synthesis after breeding resulting in increased fertility in cattle.

  10. Fatty acids - trans fatty acids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The data supporting a negative effect of dietary trans fatty acids on cardiovascular disease risk is consistent. The primary dietary sources of trans fatty acids include partially hydrogenated fat and rudiment fat. The adverse effect of trans fatty acids on plasma lipoprotein profiles is consisten...

  11. Protective effects of fish omega-3 fatty acids on doxorubicin-induced testicular apoptosis and oxidative damage in rats.

    PubMed

    Uygur, R; Aktas, C; Tulubas, F; Uygur, E; Kanter, M; Erboga, M; Caglar, V; Topcu, B; Ozen, O A

    2014-10-01

    The aim of this study was to examine the protective effects of fish omega-3 (n-3) fatty acids on acute doxorubicin (DOX)-induced testicular apoptosis and oxidative damage. 24 male rats were divided into three groups: control, DOX-treated and DOX+fish n-3 fatty acids. Fish n-3 fatty acids (400 mg kg(-1) ) were given for 30 days by intragastric gavage. The rats received a single intraperitoneal injection of DOX (30 mg kg(-1) ) and were sacrificed after 48 h. The DOX+fish n-3 fatty acids group showed a decrease in malondialdehyde levels and increased activities of superoxide dismutase and glutathione peroxidase in comparison with the DOX-treated group. Acute DOX treatment caused severe damage such as disorganisation and separation of germ cells. The fish n-3 fatty acids-pretreated rats showed an improved histological appearance in the DOX-treated group. Our data indicate a reduction in the activity of terminal deoxynucleotidyl transferase mediated dUTP nick end labelling; there was a rise in the expression of proliferating cell nuclear antigen in testis tissues of the DOX+fish n-3 fatty acids group compared with DOX-treated group. These data suggested that fish n-3 fatty acids pre-treatment may be beneficial for spermatogenesis following acute DOX-induced testicular damage by decreasing germ cell apoptosis and oxidative stress.

  12. DHA and EPA Content and Fatty Acid Profile of 39 Food Fishes from India

    PubMed Central

    Mahanty, Arabinda; Sankar, T. V.; Anandan, R.; Paul, B. N.; Sarma, Debajit; Syama Dayal, J.; Venkateshwarlu, G.; Mathew, Suseela; Karunakaran, D.; Chanda, Soumen; Shahi, Neetu; Das, Puspita; Das, Partha; Akhtar, Md Shahbaz; Vijayagopal, P.; Sridhar, N.

    2016-01-01

    Docosahexaenoic acid (DHA) is the principal constituent of a variety of cells especially the brain neurons and retinal cells and plays important role in fetal brain development, development of motor skills, and visual acuity in infants, lipid metabolism, and cognitive support and along with eicosapentaenoic acid (EPA) it plays important role in preventing atherosclerosis, dementia, rheumatoid arthritis, Alzheimer's disease, and so forth. Being an essential nutrient, it is to be obtained through diet and therefore searching for affordable sources of these ω-3 polyunsaturated fatty acids (PUFA) is important for consumer guidance and dietary counseling. Fish is an important source of PUFA and has unique advantage that there are many food fish species available and consumers have a wide choice owing to availability and affordability. The Indian subcontinent harbors a rich fish biodiversity which markedly varies in their nutrient composition. Here we report the DHA and EPA content and fatty acid profile of 39 important food fishes (including finfishes, shellfishes, and edible molluscs from both marine water and freshwater) from India. The study showed that fishes Tenualosa ilisha, Sardinella longiceps, Nemipterus japonicus, and Anabas testudineus are rich sources of DHA and EPA. Promotion of these species as DHA rich species would enhance their utility in public health nutrition. PMID:27579313

  13. DHA and EPA Content and Fatty Acid Profile of 39 Food Fishes from India.

    PubMed

    Mohanty, Bimal Prasanna; Ganguly, Satabdi; Mahanty, Arabinda; Sankar, T V; Anandan, R; Chakraborty, Kajal; Paul, B N; Sarma, Debajit; Syama Dayal, J; Venkateshwarlu, G; Mathew, Suseela; Asha, K K; Karunakaran, D; Mitra, Tandrima; Chanda, Soumen; Shahi, Neetu; Das, Puspita; Das, Partha; Akhtar, Md Shahbaz; Vijayagopal, P; Sridhar, N

    2016-01-01

    Docosahexaenoic acid (DHA) is the principal constituent of a variety of cells especially the brain neurons and retinal cells and plays important role in fetal brain development, development of motor skills, and visual acuity in infants, lipid metabolism, and cognitive support and along with eicosapentaenoic acid (EPA) it plays important role in preventing atherosclerosis, dementia, rheumatoid arthritis, Alzheimer's disease, and so forth. Being an essential nutrient, it is to be obtained through diet and therefore searching for affordable sources of these ω-3 polyunsaturated fatty acids (PUFA) is important for consumer guidance and dietary counseling. Fish is an important source of PUFA and has unique advantage that there are many food fish species available and consumers have a wide choice owing to availability and affordability. The Indian subcontinent harbors a rich fish biodiversity which markedly varies in their nutrient composition. Here we report the DHA and EPA content and fatty acid profile of 39 important food fishes (including finfishes, shellfishes, and edible molluscs from both marine water and freshwater) from India. The study showed that fishes Tenualosa ilisha, Sardinella longiceps, Nemipterus japonicus, and Anabas testudineus are rich sources of DHA and EPA. Promotion of these species as DHA rich species would enhance their utility in public health nutrition.

  14. Fatty acid composition and biogenic amines in acidified and fermented fish silage: a comparison study.

    PubMed

    Özyurt, Gülsün; Gökdoğan, Saadet; Şimşek, Ayşe; Yuvka, Ilknur; Ergüven, Merve; Kuley Boga, Esmeray

    2016-01-01

    In the presented study, ensiling of discard fish by acidification or fermentation was evaluated. Klunzinger's ponyfish which is a discard fish was used for the production of fish silage by acidification (3% formic acid for Method FA; 1.5% formic and 1.5% sulphuric acid for Method FASA) and fermentation (Lactobacillus plantarum for Method LP and Streptococcus thermophilus for Method ST). The chemical, microbiological and nutritional properties of the differently preserved fish silages were estimated during a storage period of 60 d at ambient temperature. Compared to the raw material, a slight increase in saturated fatty acids and a slight decrease in polyunsaturated fatty acids were observed in all silages. At the end of the storage period, the aerobic bacteria counts after applying Methods FA, FASA, LP and ST amounted to 2.35, 2.39, 5.77 and 5.43 log cfu/g, respectively. The analysis of thiobarbituric acid revealed that acidification of silages accelerated the lipid oxidation. Nine biogenic amines were found in raw fish and different silages. The initial histamine concentration in raw fish was 0.17 mg/100 g and in all silages it remained at low levels during the storage period. The initial tyramine content was found to be 1.56 mg/100 g in raw fish and increased significantly in all silages. The increase of the tyramine content in fermented silages was considerably higher than in acidified silages (23-48 mg/100 g and 5-10 mg/100 g, respectively). It can be concluded that acidified or fermented fish silage should be considered as potential feed component for animals because of its high nutritional value and appropriate microbiological and chemical quality.

  15. A computational search for lipases that can preferentially hydrolyze long-chain omega-3 fatty acids from fish oil triacylglycerols.

    PubMed

    Kamal, Md Zahid; Barrow, Colin J; Rao, Nalam Madhusudhana

    2015-04-15

    Consumption of long-chain omega-3 fatty acids is known to decrease the risk of major cardiovascular events. Lipases, a class of triacylglycerol hydrolases, have been extensively tested to concentrate omega-3 fatty acids from fish oils, under mild enzymatic conditions. However, no lipases with preference for omega-3 fatty acids selectivity have yet been discovered or developed. In this study we performed an exhaustive computational study of substrate-lipase interactions by docking, both covalent and non-covalent, for 38 lipases with a large number of structured triacylglycerols containing omega-3 fatty acids. We identified some lipases that have potential to preferentially hydrolyze omega-3 fatty acids from structured triacylglycerols. However omega-3 fatty acid preferences were found to be modest. Our study provides an explanation for absence of reports of lipases with omega-3 fatty acid hydrolyzing ability and suggests methods for developing these selective lipases.

  16. Effect of a single dose of emulsified versus capsular fish oils on plasma phospholipid fatty acids over 48 hours

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Emulsified fish oil supplements provide an alternative to encapsulated fish oils. Oil-in-water emulsions may offer an advantage in digestion and absorption thereby increasing the bioavailability of fatty acids. We evaluated the effect of three oil-in-water emulsified fish oils (Emulsion B, Emulsion ...

  17. Effects of different cooking methods on fatty acid profiles in four freshwater fishes from the Laurentian Great Lakes region.

    PubMed

    Neff, Margaret R; Bhavsar, Satyendra P; Braekevelt, Eric; Arts, Michael T

    2014-12-01

    Fish is often promoted as a healthy part of the human diet due its high content of long chain n-3 polyunsaturated fatty acids (LC-PUFA). Previous studies have shown that cooked fish can have different fatty acid profiles than raw fillets, depending on the cooking method and fish species. In this study, the fatty acid content of broiled, baked or fried skinless, boneless fillets of four fish species from the tributaries of the Great Lakes, or connecting rivers, was compared to fatty acid profiles in raw sections from the same fillet. Cooking treatments had little effect on n-3 fatty acid content; however, fried treatments generally had higher n-6 and MUFA content, which is likely a result of the cooking oil used (canola). Broiling or baking is generally the most healthy option presented in this study, as these methods result in lower levels of less-favourable fatty acids; however, the choice of cooking oil may also influence the overall fatty acid content in cooked fish.

  18. Omega-3 fatty acids and the benefits of fish consumption: is all that glitters gold?

    PubMed

    Domingo, José L

    2007-10-01

    In recent years, a number of studies have clearly remarked the nutritional benefits of fish consumption: proteins, vitamins, minerals, and especially omega-3 polyunsaturated fatty acids (PUFAs), which may protect against several adverse health effects, including coronary heart disease mortality and stroke. However, some concerns about potential health risks derived from the environmental contaminants found in fish have been also raised. Therefore, balancing adequately the risks and benefits of fish consumption is currently a nutritional/environmental health key issue. In this paper, the most recent available scientific information concerning this issue is reviewed. It is concluded that although it seems evident that fish must be an important part of a balanced diet, to choose the most suitable species in terms of levels of PUFAs and pollutants, the frequency of consumption, and the meal size are essential aspects to balance benefits and risks of a regular consumption.

  19. Fish consumption and polyunsaturated fatty acids in relation to psychological distress

    PubMed Central

    Suominen-Taipale, Anna Liisa; Turunen, Anu W; Partonen, Timo; Kaprio, Jaakko; Männistö, Satu; Montonen, Jukka; Jula, Antti; Tiittanen, Pekka; Verkasalo, Pia K

    2010-01-01

    Background It has been suggested that high fish consumption improves mental well-being. The aim of this study was to assess whether high fish consumption or omega-3 polyunsaturated fatty acid (PUFA) intake was associated with reduced self-reported psychological distress. Methods We used three cross-sectional data sets, the nationwide Health 2000 Survey (n = 5840), the Fishermen Study on Finnish fishermen and their family members (n = 1282) and the Finntwin16 Study on young adults (n = 4986). Data were based on self-administered questionnaires, interviews, health examinations and blood samples. Psychological distress was measured using the 12-item and 21-item General Health Questionnaires (GHQs). Fish consumption was measured by a food frequency questionnaire (FFQ, g/day) and independent frequency questions (times/month). Dietary intake (g/day) and serum concentrations (% from fatty acids) of PUFAs were determined. Relationships were analysed using regression analysis. Results Regardless of the measure, fish consumption and omega-3 PUFA dietary intake were not associated with distress in any of the data sets. In contrast to the hypothesis, high serum docosahexaenoic acid was associated with high distress in the Fisherman Study men. Some non-linear associations were detected between serum omega-3 PUFAs or fish consumption (times/month) and distress. In the Fishermen Study, the associations were modified by alcohol consumption, smoking and physical activity. Conclusions Our results do not support the hypothesis that fish consumption or omega-3 PUFA intake are associated with reduced psychological distress in the general population or in a population with high fish consumption. PMID:20156998

  20. Biomarkers of fish oil omega-3 polyunsaturated fatty acids intake in humans.

    PubMed

    Silva, Veronica; Barazzoni, Rocco; Singer, Pierre

    2014-02-01

    A biomarker is a measured characteristic that may be used as an indicator of some biological state or condition. In health and disease, biomarkers have been used not only for clinical diagnosis purposes but also as tools to assess effectiveness of a nutrition or drug intervention. When considering nutrition studies, evaluating the appropriate biomarker is a useful tool to assess compliance and incidence of a particular dietary component in the biochemistry of the organism. Fish oil is rich in ω-3 fatty acids that have well-known beneficial effects on human health mainly through its anti-inflammatory properties. It has been widely use to improve health and as a nutrition supplement in different pathological conditions such as cardiovascular, neurological, and critically ill related diseases. Eicosapentaenoic acid and docosahexaenoic acid levels present in different biological moieties (plasma, cellular membranes, adipose tissue, etc) are the best biomarkers of fish oil intake. Each biological source of fatty acids has its own advantages and disadvantages, thus which biomarker to choose and where to measure it requires a comprehension of the objectives of the investigation. In this article we will review key facts about fish oil intake biomarkers to evaluate how components of a specific diet could be monitored and identified in biological samples. Having an accurate assessment of nutrition patterns could provide effective targets for intervention aimed at modifying eating habits and lifestyle towards the improvement of health.

  1. Fatty acid facts, Part III: Cardiovascular disease, or, a fish diet is not fishy.

    PubMed

    Pauwels, Ernest K J; Kostkiewicz, Magdalena

    2008-12-01

    Preclinical and clinical studies have demonstrated that omega-3 polyunsaturated fatty acids (n-3 PUFAs) play a significant role in the prevention of cardiovascular disease. These fatty acids are called essential fatty acids as they fulfil essential functions and the mammalian cell cannot synthesize them de novo. Dietary sources of n-3 PUFAs include fish oils rich in eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). The clinical relevance of these molecules is derived from the incorporation of EPA and DHA into cell membranes. The presence of EPA/DHA alters the physical characteristics of the membrane. Both these altered physicochemical membrane properties and the presence of n-3 PUFAs released by the action of phospholipid lipases (resulting in antiinflammatory eicosanoids) improve biological functions such as signal transduction, ion channelling and ligand binding to nuclear receptors. EPA/DHA also reduce or quench gene expression of cyclooxygenase-2 and other enzymes, thereby diminishing the formation of proinflammatory molecules. Increased EPA/DHA concentration also gives rise to antiinflammatory lipid mediators, called lipoxins, resolvins and protectins. Another important function of n-3 PUFAs is scavenging of free radicals, which diminishes inflammatory response and oxidation of lipoprotein particles, notably low density lipoproteins. The interplay of these molecular processes has distinct cardioprotective effects, which involve actions on lipid metabolism, lipoprotein particle size, blood pressure, vascular function, coagulation potential, inflammatory response, atheroma formation and antiarrhythmic. In view of these actions, fish oil preparations and/or intake of oily fish are recommended as primary and secondary prevention of cardiovascular disease and sudden cardiac death. Large, ongoing trials will further elucidate the presumed favorable effects of EPA/DHA in heart failure and diabetes. This review provides a summary of the physiological

  2. Fatty acid metabolism in fish species as a biomarker for environmental monitoring.

    PubMed

    Olivares-Rubio, Hugo F; Vega-López, Armando

    2016-11-01

    Pollution by Organic Contaminants (OC) in aquatic environments is a relevant issue at the global scale. Lipids comprised of Fatty Acids (FA) play many important roles in the physiology and life history of fishes. Toxic effects of OC are partly dependent on its bioaccumulation in the lipids of aquatic organisms due its physicochemical properties. Therefore, there is an increasing interest to investigate the gene expression as well as the presence and activity of proteins involved in FA metabolism. The attention on Peroxisome Proliferation Activate Receptors (PPARs) also prevails in fish species exposed to OC and in the transport, biosynthesis and β-oxidation of FA. Several studies have been conducted under controlled conditions to evaluate these biological aspects of fish species exposed to OC, as fibrates, endocrine disrupting compounds, perfluoroalkyl acids, flame retardants, metals and mixtures of organic compounds associated with a polluted area. However, only fibrates, which are agonists of PPARs, induce biological responses suitable to be considered as biomarkers of exposure to these pollutants. According to the documented findings on this topic, it is unlikely that these physiological aspects are suitable to be employed as biomarkers with some noticeable exceptions, which depend on experimental design. This emphasises the need to investigate the responses in fish treated with mixtures of OC and in wild fish species from polluted areas to validate or refute the suitability of these biomarkers for environmental or fish health monitoring.

  3. Fish oil at low dietary levels enhances physiological activity of sesamin to increase hepatic fatty acid oxidation in rats.

    PubMed

    Ide, Takashi

    2012-11-01

    We previously demonstrated that a diet containing fish oil at a level of 80 g/kg strongly stimulated the physiological activity of a sesame sesamin preparation containing sesamin and episesamin at equal amounts to increase hepatic fatty acid oxidation. This study was conducted to clarify whether fish oil at lower dietary levels enhances the physiological activity of sesamin to increase hepatic fatty acid oxidation. Rats were fed experimental diets supplemented with 0 or 2 g sesamin/kg, and containing 0, 15 or 30 g fish oil/kg for 15 days. Among rats fed sesamin-free diets, diets containing 15 and 30 g fish oil/kg slightly increased the activity of enzymes involved in hepatic fatty acid oxidation. Sesamin increased these values irrespective of the presence or absence of fish oil in diets; however, the extent of the increase of many parameters was much greater in rats given fish oil-containing diets than in those fed a fish oil-free diet. Diets simultaneously containing sesamin and fish oil increased the gene expression of various peroxisomal fatty acid oxidation enzymes in a synergistic manner; but they were ineffective in causing a synergistic increase in mRNA levels of mitochondrial fatty acid oxidation enzymes. The extent of the synergistic increase in the activity of hepatic fatty acid oxidation enzymes and mRNA levels of the peroxisomal enzymes was indistinguishable between diets containing 15 and 30 g fish oil/kg and appeared comparable to that observed previously with a diet containing 80 g fish oil/kg.

  4. Fatty acid transfer in the food web of a coastal Mediterranean lagoon: Evidence for high arachidonic acid retention in fish

    NASA Astrophysics Data System (ADS)

    Koussoroplis, Apostolos-Manuel; Bec, Alexandre; Perga, Marie-Elodie; Koutrakis, Emmanuil; Bourdier, Gilles; Desvilettes, Christian

    2011-02-01

    The transfer of fatty acids (FAs) in the food web of a Mediterranean lagoon was studied using FA compositional patterns across several trophic levels. The structure of the food web was inferred from C and N stable isotopes values and an isotope mixing model was used in order to estimate the relative contribution of the different potential food sources to the biomass of consumers. Bidimensional plots of FA composition of food web components against their δ 15N values indicated a general trend of increasing proportions of highly unsaturated fatty acids (HUFAs) with increasing trophic levels while the proportions of saturated fatty acids (SAFAs) and 18-carbon polyunsaturated fatty acids (PUFAs) decreased. Using the relative contributions of food sources to consumers and their FA compositions, a model was built in order to estimate the PUFA composition of consumer mixed diets which was compared to consumer PUFA profiles. The latter allowed the identification of the PUFAs which were mostly enriched/retained in consumer lipids. There was a surprisingly high retention of arachidonic acid (ARA), a trend which challenges the idea of low ARA needs in marine fish and suggests the important physiological role of this essential FA for fish in estuarine environments.

  5. Substituting fish oil with crude palm oil in the diet of Atlantic salmon (Salmo salar) affects muscle fatty acid composition and hepatic fatty acid metabolism.

    PubMed

    Bell, J Gordon; Henderson, R James; Tocher, Douglas R; McGhee, Fiona; Dick, James R; Porter, Allan; Smullen, Richard P; Sargent, John R

    2002-02-01

    Supplies of marine fish oils (FO) are limited and continued growth in aquaculture production dictates that substitutes must be found that do not compromise fish health and product quality. In this study the suitability of crude palm oil (PO) as a replacement for FO in diets of Atlantic salmon was investigated. Duplicate groups of Atlantic salmon post-smolts were fed four practical-type diets in which the added lipid was either 100% FO and 0% crude PO (0% PO); 75% FO and 25% PO (25% PO); 50% FO and 50% PO (50% PO); and 100% PO, for 30 wk. There were no effects of diet on growth rate or feed conversion ratio nor were any histopathological lesions found in liver, heart or muscle. Lipid deposition was greatest in fish fed 0% PO and was significantly greater than in fish fed 50% and 100% PO. Fatty acid compositions of muscle total lipid were correlated with dietary PO inclusion such that the concentrations of 16:0, 18:1(n-9), 18:2(n-6), total saturated fatty acids and total monoenoic fatty acids increased linearly with increasing dietary PO. The concentration of eicosapentaenoic acid [20:5(n-3)] was reduced significantly with increasing levels of dietary PO but the concentration of docosahexaenoic acid [22:6(n-3)] was significantly reduced only in fish fed 100% PO, compared with the other three treatments. Similar diet-induced changes were seen in liver total lipid fatty acid compositions. Hepatic fatty acid desaturation and elongation activities were approximately 10-fold greater in fish fed 100% PO than in those fed 0% PO. This study suggests that PO can be used successfully as a substitute for FO in the culture of Atlantic salmon in sea water. However, at levels of PO inclusion above 50% of dietary lipid, significant reductions in muscle 20:5(n-3), 22:6(n-3) and the (n-3):(n-6) PUFA ratio occur, resulting in reduced availability of these essential (n-3) highly unsaturated fatty acids to the consumer.

  6. Polychlorinated biphenyls and omega-3 fatty acid exposure from fish consumption, and thyroid cancer among New York anglers.

    PubMed

    Haslam, Alyson; Robb, Sara Wagner; Bonner, Matthew R; Lindblad, William; Allegra, Joey; Shen, Ye; Vena, John E

    2016-03-01

    Fish from the Great Lakes contain polychlorinated biphenyls (PCBs) which have been shown to disrupt endocrine function and mimic thyroid hormones, but they also contain beneficial omega-3 fatty acids that may offer protection against endocrine cancers. The purpose of this study was to examine the effects of Lake Ontario fish consumption and the estimated consumption of PCBs and omega-3 fatty acids on the risk of thyroid cancer in a group of sport fishermen. Anglers from the New York State Angler Cohort Study were followed for cancer incidence from 1991-2008. Twenty-seven cases of incident thyroid cancer and 108 controls were included in the analyses. Total estimated fish consumption, estimated omega-3 fatty acid consumption, and estimated PCB consumption from Lake Ontario fish were examined for an association with the incidence of thyroid cancer, while matching on sex, and controlling for age and smoking status. Results from logistic regression indicate no significant associations between fish consumption, short-term estimated omega-3 fatty acids, or estimated PCB consumption from Great Lakes fish and the development of thyroid cancer, but it was suggested that long-term omega-3 fatty acid from Great Lakes fish may be protective of the development of thyroid cancer. In conclusion, fish consumption, with the possible concomitant PCBs, from the Great Lakes does not appear to increase the risk of thyroid cancer in New York anglers. Further research is needed in order to separate the individual health effects of PCBs from omega-3 fatty acids contained within the fish.

  7. Algae in fish feed: performances and fatty acid metabolism in juvenile Atlantic Salmon.

    PubMed

    Norambuena, Fernando; Hermon, Karen; Skrzypczyk, Vanessa; Emery, James A; Sharon, Yoni; Beard, Alastair; Turchini, Giovanni M

    2015-01-01

    Algae are at the base of the aquatic food chain, producing the food resources that fish are adapted to consume. Previous studies have proven that the inclusion of small amounts (<10% of the diet) of algae in fish feed (aquafeed) resulted in positive effects in growth performance and feed utilisation efficiency. Marine algae have also been shown to possess functional activities, helping in the mediation of lipid metabolism, and therefore are increasingly studied in human and animal nutrition. The aim of this study was to assess the potentials of two commercially available algae derived products (dry algae meal), Verdemin (derived from Ulva ohnoi) and Rosamin (derived from diatom Entomoneis spp.) for their possible inclusion into diet of Atlantic Salmon (Salmo salar). Fish performances, feed efficiency, lipid metabolism and final product quality were assessed to investigated the potential of the two algae products (in isolation at two inclusion levels, 2.5% and 5%, or in combination), in experimental diets specifically formulated with low fish meal and fish oil content. The results indicate that inclusion of algae product Verdemin and Rosamin at level of 2.5 and 5.0% did not cause any major positive, nor negative, effect in Atlantic Salmon growth and feed efficiency. An increase in the omega-3 long-chain polyunsaturated fatty acid (n-3 LC-PUFA) content in whole body of fish fed 5% Rosamin was observed.

  8. Algae in Fish Feed: Performances and Fatty Acid Metabolism in Juvenile Atlantic Salmon

    PubMed Central

    Norambuena, Fernando; Hermon, Karen; Skrzypczyk, Vanessa; Emery, James A.; Sharon, Yoni; Beard, Alastair; Turchini, Giovanni M.

    2015-01-01

    Algae are at the base of the aquatic food chain, producing the food resources that fish are adapted to consume. Previous studies have proven that the inclusion of small amounts (<10% of the diet) of algae in fish feed (aquafeed) resulted in positive effects in growth performance and feed utilisation efficiency. Marine algae have also been shown to possess functional activities, helping in the mediation of lipid metabolism, and therefore are increasingly studied in human and animal nutrition. The aim of this study was to assess the potentials of two commercially available algae derived products (dry algae meal), Verdemin (derived from Ulva ohnoi) and Rosamin (derived from diatom Entomoneis spp.) for their possible inclusion into diet of Atlantic Salmon (Salmo salar). Fish performances, feed efficiency, lipid metabolism and final product quality were assessed to investigated the potential of the two algae products (in isolation at two inclusion levels, 2.5% and 5%, or in combination), in experimental diets specifically formulated with low fish meal and fish oil content. The results indicate that inclusion of algae product Verdemin and Rosamin at level of 2.5 and 5.0% did not cause any major positive, nor negative, effect in Atlantic Salmon growth and feed efficiency. An increase in the omega-3 long-chain polyunsaturated fatty acid (n-3 LC-PUFA) content in whole body of fish fed 5% Rosamin was observed. PMID:25875839

  9. Methylmercury and omega-3 fatty acids: co-occurrence of dietary sources with emphasis on fish and shellfish.

    PubMed

    Mahaffey, Kathryn R; Clickner, Robert P; Jeffries, Rebecca A

    2008-05-01

    Despite many claims of broad benefits, especially for in utero development, derived from the consumption of fish as a source of omega-3 fatty acids, individual species of fish and shellfish provide substantially varied levels of these fatty acids. Likewise, mean methylmercury (MeHg) concentrations for fish and shellfish species differ by greater than an order of magnitude. Consideration of within-species variability would increase this variation farther. Exposures to both MeHg and to the omega-3 fatty acids reflect dietary choices including species consumed, frequency of consumption, and portion size. In view of these sources of variability, data on dietary patterns and blood mercury (microg/L) among women of child-bearing age (e.g., 16-49 years) provided an indication of exposures in the United States. Utilizing data from the National Health and Nutrition Examination Survey (NHANES) for survey years 1999--2002, calculated consumption of MeHg and omega-3 fatty acids from fish and shellfish have been estimated based on results from 3614 women who provided 30-day dietary recall and 24-hours records. Statistics from NHANES when appropriately weighted are representative of the US population. The association between dietary MeHg from fish and shellfish and dietary fish intake yielded a Pearson correlation of 0.68. The Pearson correlation between estimated 30-day intake from fish/shellfish consumption for omega-3 fatty acids and MeHg was 0.66. Evaluation of the most commonly consumed fish and shellfish species as sources of MeHg and omega-3 fatty acids indicated that salmon followed by shrimp are principal sources of omega-3 fatty acids and are lesser sources of MeHg, in contrast with tuna which provides omega-3 fatty acids, but considerably higher levels of MeHg. These data can be used to guide selection of individual fish and shellfish species that are higher in omega-3 content and low in MeHg concentrations. This more refined dietary approach contrasts with generic

  10. Fish Oil Supplementation and Fatty Acid Synthase Expression in the Prostate: A Randomized Controlled Trial. Addendum

    DTIC Science & Technology

    2011-07-01

    acids ( PUFA ), particularly omega -3 fatty acids , inhibits SREBP-1 activation, resulting in a decreased transcription of FAS. 15. SUBJECT TERMS Prostate...Cancer; Lipid Metabolism; Clinical Trial; Omega -3 Fatty Acids 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER OF PAGES...controls, Menendez et al demonstrated that addition of omega -3 fatty acids (-3 FA), docosahexanoic acid (DHA), alpha- linolenic acid

  11. Immunomodulatory Effectiveness of Fish Oil and omega-3 Fatty Acids in Human Non-melanoma Skin Carcinoma Cells.

    PubMed

    Rehman, Khurram; Mohd Amin, Mohd Cairul Iqbal; Yuen, Ng Pei; Zulfakar, Mohd Hanif

    2016-01-01

    Fish oil is composed of various fatty acids among which omega-3 fatty acids are considered as most beneficial. The effects of fish oil on the activity of a topical anticancer drug, imiquimod, and the immunomodulatory activity of omega-3 fatty acids was investigated in human basal and squamous cell carcinoma cell lines. Imiquimod-fish oil mixture exhibited higher carcinoma cell growth inhibition and immunomodulatory activity than imiquimod alone, especially against squamous cell carcinoma cells. Omega-3 fatty acids exhibited growth inhibition of both basal cell and squamous cell carcinoma cell lines and modulated the immune response. Omega-3 fatty acids of fish oil serve as inducers of interleukin-10, an anti-inflammatory cytokine, and as suppressors of interleukin-6 and tumor necrosis factor-alpha, which not only depress tumor growth but also adequately control the inflammatory side effects of imiquimod. Thus, imiquimod administration with fish oil could be beneficial for inhibition of non-melanoma skin carcinoma cells but further in vivo studies are needed to understand their role in skin cancer.

  12. Fatty acid profile of colostrum and milk of ewes supplemented with fish meal and the subsequent plasma fatty acid status of their lambs.

    PubMed

    Or-Rashid, M M; Fisher, R; Karrow, N; Alzahal, O; McBride, B W

    2010-06-01

    The objectives of the current study were to 1) determine whether a fish-meal-supplemented diet fed to ewes during late gestation and early lactation would increase the proportion of docosahexaenoic acid (22:6n-3) in colostrum and milk and 2) examine the subsequent effect on the plasma fatty acid profile of nursing lambs. Eight gestating ewes (Rideau-Arcott; 97 +/- 5 kg of initial BW; 100 d of gestation) were used in a completely randomized design. Ewes were individually housed and fed a control diet (supplemented with soybean meal) or a fish-meal-supplemented diet for 6 wk before lambing and throughout 7 wk of lactation. Colostrum at d 0 and milk samples at d 36 and 49 of lactation were collected. Blood samples were collected from lambs throughout the preweaning period (at 0, 36, and 49 d of age). Fatty acids of the samples were analyzed by GLC. The ewes fed the fish-meal-supplemented diet had greater (P fatty acids) of eicosapentaenoic acid (20:5n-3, 0.16 vs. 0.08), docosahexaenoic acid (0.33 vs. 0.09), total n-3-PUFA (2.72 vs. 1.91), total CLA (0.83 vs. 0.64), and total very long chain n-3-PUFA (>C18, 0.70 vs. 0.38), in colostrum and milk compared with the ewes fed the control diet. However, these fatty acids, excluding total n-3-PUFA, did not change over time, nor was there an interaction between diet and time. The percentage of total SFA was increased (P = 0.012) linearly over time without having any diet effect. The ratio of n-6-PUFA to n-3-PUFA in colostrum and milk from the control group was greater (P = 0.003) than that of the fish-meal-supplemented group. This ratio was decreased over time (P = 0.001). At birth (d 0), lambs born to the fish-meal-supplemented ewes had greater (P = 0.001) plasma concentrations (g/100 g of total fatty acids) of eicosapentaenoic acid, docosahexaenoic acid, and total very long chain n-3-PUFA than the lambs born to the control ewes. The concentrations of these fatty acids were further

  13. Mercury concentrations and omega-3 fatty acids in fish and shrimp: Preferential consumption for maximum health benefits.

    PubMed

    Smith, Katrina L; Guentzel, Jane L

    2010-09-01

    The consumption of fish and shrimp containing omega-3 fatty acids can result in protective health effects including a reduced risk of cardiovascular disease, stroke, and diabetes. These protective effects may be decreased by the presence of mercury in the muscle tissue of fish and shellfish. Mercury can increase the risk of cardiovascular problems and impede neurological development. The objective of this project was to determine appropriate consumption amounts of selected fish species and shrimp based on mercury levels and recommended intake levels of omega-3 fatty acids. Species that are high in omega-3s and low in mercury include salmon, trout, and shrimp. Species with both high levels of mercury and omega-3 fatty acids include tuna, shark, and halibut, swordfish, and sea bass.

  14. ALA, fatty fish or marine n-3 fatty acids for preventing DM?: a systematic review and meta-analysis.

    PubMed

    Muley, Arti; Muley, Prasad; Shah, Monali

    2014-05-01

    Diabetes mellitus (T2DM) has become a global problem. Role of n-3 FA in its prevention is still not completely understood. We carried out this systematic review and meta-analysis to assess the relation of dietary intake of fish and n-3PUFA with risk of diabetes. We searched PUBMED, EMBASE and GOOGLE with cross references to identify relevant articles. Since no RCTs were available, we searched for prospective cohort studies. Sixteen studies with 6,79,763 participants which assessed the association of dietary intake of fish and n-3 PUFA (marine or alpha-linolenic acid) with incidence of T2DM in > 18 years population and provided relative risk (RR) or hazard ratio (HR) with the corresponding 95% confidence interval (CI) of T2DM for each category of fish or n-3 PUFA intake were included. Three independent reviewers reviewed all eligible studies and abstracted the relevant information from individual studies. Meta-analysis confirmed the previous finding that marine n-3 FA increased risk of T2DM in Americans but reduced the same in Asians. We observed that two and seven times increased intake of ALA and fatty fish respectively reduced the risk of T2DM significantly and ALA did not increase the risk in Americans. We concluded that ALA may have some role in preventing T2DM, but is not studied widely. Hence, it should be studied in greater details (with higher degrees of intake; more than two times) to aid in developing effective preventive strategies against diabetes.

  15. Selective transfer of polyunsaturated fatty acids from phytoplankton to planktivorous fish in large boreal lakes.

    PubMed

    Strandberg, Ursula; Hiltunen, Minna; Jelkänen, Elli; Taipale, Sami J; Kainz, Martin J; Brett, Michael T; Kankaala, Paula

    2015-12-01

    Lake size influences various hydrological parameters, such as water retention time, circulation patterns and thermal stratification that can consequently affect the plankton community composition, benthic-pelagic coupling and the function of aquatic food webs. Although the socio-economical (particularly commercial fisheries) and ecological importance of large lakes has been widely acknowledged, little is known about the availability and trophic transfer of polyunsaturated fatty (PUFA) in large lakes. The objective of this study was to investigate trophic trajectories of PUFA in the pelagic food web (seston, zooplankton, and planktivorous fish) of six large boreal lakes in the Finnish Lake District. Docosahexaenoic acid (DHA), eicosapentaenoic acid (EPA) and α-linolenic acid (ALA) were the most abundant PUFA in pelagic organisms, particularly in the zooplanktivorous fish. Our results show that PUFA from the n-3 family (PUFAn-3), often associated with marine food webs, are also abundant in large lakes. The proportion of DHA increased from ~4±3% in seston to ~32±6% in vendace (Coregonus albula) and smelt (Osmerus eperlanus), whereas ALA showed the opposite trophic transfer pattern with the highest values observed in seston (~11±2%) and the lowest in the opossum shrimp (Mysis relicta) and fish (~2±1%). The dominance of diatoms and cryptophytes at the base of the food web in the study lakes accounted for the high amount of PUFAn-3 in the planktonic consumers. Furthermore, the abundance of copepods in the large lakes explains the effective transfer of DHA to planktivorous fish. The plankton community composition in these lakes supports a fishery resource (vendace) that is very high nutritional quality (in terms of EPA and DHA contents) to humans.

  16. Intake of Fish and Omega-3 (n-3) Fatty Acids: Effect on Humans During Actual and Simulated Weightlessness

    NASA Technical Reports Server (NTRS)

    Smith, S. M.; Pierson, D. L.; Mehta, S. K.; Zwart, S. R.

    2011-01-01

    Space flight has many negative effects on human physiology, including bone and muscle loss. Bone and muscle are two systems that are positively affected by dietary intake of fish and n-3 fatty acids. The mechanism is likely to be related to inhibition by n-3 fatty acids of inflammatory cytokines (such as TNF) and thus inhibition of downstream NF-kB activation. We have documented this effect in a 3-dimensional cell culture model, where NF-kB activation in osteoclasts was inhibited by eicosapentaenoic acid, an n-3 fatty acid. We have also indentified that NF-kB activation in peripheral blood mononuclear cells of Space Shuttle crews. We found that after Shuttle flights of 2 wk, expression of the protein p65 (evidence of NF-kB activation) was increased at landing (P less than 0.001). When evaluating the effects of n-3 fatty acid intake on bone breakdown after 60 d of bed rest (a weightlessness analog). We found that after 60 d of bed rest, greater intake of n-3 fatty acids was associated with less N-telopeptide excretion (Pearson r = -0.62, P less than 0.05). We also evaluated the relationship of fish intake and bone loss in astronauts after 4 to 6 mo missions on the International Space Station. Higher consumption of fish during flight was associated with higher bone mineral density (Pearson r = 0.46, P less than 0.05). Together, these findings provide evidence of the cellular mechanism by which n-3 fatty acids can inhibit bone loss, and preliminary human evidence of the potential for n-3 fatty acids to counteract bone loss associated with space flight. This study was supported by the NASA Human Research Program.

  17. [Fatty acids in sardine canned in tomato sauce from different fishing areas of the Mexican Pacific].

    PubMed

    Castro Gónzalez, M I; Montaño Benavides, S; Pérez-Gil Romo, F

    2001-12-01

    Numerous investigations have pointed out the importance that the fatty acids have in the process health-illness, and that the marine resources are excellent sources of the series omega 3 and omega 6. In Mexico, the sardine is a product of marine origin of wide consumption due to its high readiness and low cost. The objective of the present study was to determine the fatty acids profile (FA) in sardine canned in tomato sauce coming from different fishing areas (A) of the Mexican Pacific. There were randomly obtained 8 commercial mark (5 cans of each mark) of sardine canned in tomato sauce; they were classified in sardine of South Baja California Sur (A1), Sonora (A2) and Sinaloa (A3). The samples without draining were liquified and thereafter were obtained the methyl esters of fatty acids that were analyzed by gas chromatography with a flame ionization detector. In all the areas they were identified and quantified as 3 FA omega 3 (linolenic, EPA and DHA) and 2 AG omega 6 (linoleic and arachidonic); this source is rich in FA monounsaturated and also presents a considerable quantity of trans FA (18:1n9t and 18:2n6t). The DHA was the most abundant AG in all the areas (3064-4704 mg/100 g); finally, the relationships omega 3/omega 6 were from 3.5 (A1) up to 8.9 (A3). In conclusion, sardine canned in tomato sauce of the mexican Pacific is a rich food in omega-3 and omega-6 FA, independently of the processing area.

  18. Fatty Acid Composition and Levels of Selected Polyunsaturated Fatty Acids in Four Commercial Important Freshwater Fish Species from Lake Victoria, Tanzania

    PubMed Central

    Robert, Agnes; Mfilinge, Prosper; Limbu, Samwel M.; Mwita, Chacha J.

    2014-01-01

    Fatty acids (FAs) particularly ω3 and ω6 polyunsaturated fatty acids (PUFAs) play important role in human health. This study aimed to investigate the composition and levels of selected ω3 PUFAs in four commercial fish species, Nile perch (Lates niloticus), Nile tilapia (Oreochromis niloticus), Tilapia zillii, and dagaa (Rastrineobola argentea) from Mwanza Gulf in Lake Victoria. The results indicated that 36 types of FAs with different saturation levels were detected. These FAs were dominated by docosahexaenoic (DHA), eicosapentaenoic (EPA), docosapentaenoic (DPA), and eicosatetraenoic acids. O. niloticus had the highest composition of FAs (34) compared to L. niloticus (27), T. zillii (26), and R. argentea (21). The levels of EPA differed significantly among the four commercial fish species (F = 6.19,  P = 0.001). The highest EPA levels were found in R. argentea followed by L. niloticus and O. niloticus and the lowest in T. zillii. The DPA levels showed no significant difference among the four fish species studied (F = 0.652,  P = 0.583). The study concluded that all four commercial species collected from Mwanza Gulf are good for human health, but R. argentea is the best for consumption because it contains higher levels of ω3 FAs, mainly EPA. PMID:25610654

  19. Modifying the acute phase response of Jersey calves by supplementing milk replacer with omega-3 fatty acids from fish oil.

    PubMed

    Ballou, M A; Cruz, G D; Pittroff, W; Keisler, D H; DePeters, E J

    2008-09-01

    Fifty-one Jersey bull calves (5 +/- 1 d old) were assigned to 1 of 3 milk replacers to determine the effects of increasing doses of n-3 fatty acids from fish oil on the acute phase response after an endotoxin challenge. All calves were fed a 22.5% crude protein and 18% lipid milk replacer (Calva Products, Acampo, CA) supplemented with an additional 2% fatty acids. Treatments differed only in the supplemental lipid source and included a 3:1 mix of corn and canola oils, a 1:1 blend of fish oil (Omega Proteins, Houston, TX) and the 3:1 mix of corn and canola oils, and fish oil only. On d 23, each calf was injected subcutaneously with 4 microg/kg of body weight of Salmonella Typhimurium endotoxin. Clinical, hematological, and biochemical parameters were measured at 0, 1, 2, 3, 4, 5, 6, 8, 10, 12, 15, 18, 24, and 72 h post endotoxin challenge. Endotoxin caused a dramatic rise in respiratory rate; feeding fish oil significantly attenuated the increase. Heart rate and rectal temperature were not affected by treatment. Feeding fish oil attenuated the change in serum iron concentration over time. Endotoxin caused severe hypoglycemia, reaching a nadir at 4 h. Calves supplemented with fish oil had reduced concentrations of serum glucose for 8 to 24 h. Furthermore, calves supplemented with fish oil alone had reduced serum insulin at 12, 28, and 24 h. In contrast, endotoxin caused an acute increase in blood urea nitrogen and nonesterified fatty acids; there were significant linear effects of fish oil on both blood urea nitrogen and nonesterified fatty acids. Serum triglycerides were elevated beginning at 12 h after the endotoxin challenge and returned to baseline values within 72 h. Fish oil suppressed the rise in triglycerides during this period, and the effect was linear with increasing fish oil. Serum concentrations of leptin decreased after the endotoxin challenge; however, the treatment did not influence the response. There was no treatment effect on serum aspartate

  20. A new method for the study of essential fatty acid requirements in fish larvae.

    PubMed

    Morais, Sofia; Conceição, Luís E C

    2009-05-01

    This study describes a methodology with potential application in the estimation of essential fatty acid (EFA) requirements of fish larvae. Senegalese sole (Solea senegalensis) larvae were fed, from 16 days after hatching (DAH), on Artemia enriched with different oils, inducing graded dietary concentrations of DHA: (1) soyabean oil, containing no measurable amounts of DHA (NDHA); (2) fish oil, inducing a medium DHA level (MDHA, 3 g DHA/100 g fatty acids); and (3) a mixture of Easy DHA Selco and Microfeed, resulting in high DHA content (HDHA, 8 g/100 g). At 28 DAH a metabolic trial was conducted where larvae were tube fed [1-(14) C]DHA, in order to determine its absorption, retention in the gut and body tissues, as well as its oxidation. At 23 DAH the HDHA treatment induced a significantly higher larval growth, while at 32 DAH significant differences were only found between the NDHA and HDHA treatments. The absorption of tube-fed [1-(14) C]DHA was extremely high (94-95 %) and independent of feeding regime. However, in larvae fed NDHA Artemia, a significantly higher amount of label was retained in the gut compartment and a concurrently lower retention was measured in the body. A significantly higher proportion of the absorbed DHA label was oxidized in larvae fed HDHA, compared to NDHA. Based on these results, we suggest that increasing dietary supply of DHA above the larval requirement level results in its increased oxidation for energy purposes and we propose potential applications of the tube feeding methodology using radiolabelled EFA in conjunction with dose-response studies.

  1. Identification and ruminal outflow of long-chain fatty acid biohydrogenation intermediates in cows fed diets containing fish oil.

    PubMed

    Kairenius, Piia; Toivonen, Vesa; Shingfield, Kevin J

    2011-07-01

    The abundance of 20- to 24-carbon fatty acids in omasal digesta of cows fed grass silage-based diets supplemented with 0 (Control) and 250 g/day of fish oil (FO) was examined to investigate the fate of long-chain unsaturated fatty acids in the rumen. Complimentary argentation thin-layer chromatography and gas-chromatography mass-spectrometry analysis of fatty acid methyl esters and corresponding 4,4-dimethyloxazoline derivatives prepared from fish oil and omasal digesta enabled the structure of novel 20- to 22-carbon fatty acids to be elucidated. Compared with the Control, the FO treatment resulted in the formation and accumulation of 27 novel 20- and 22-carbon biohydrogenation intermediates containing at least one trans double bond and the appearance of cis-14 20:1, 20:2n-3, 21:4n-3 and 22:3n-6 not contained in fish oil. No conjugated ≥ 20-carbon fatty acids were detected in Control or FO digesta. In conclusion, fish oil in the diet results in the formation of numerous long-chain biohydrogenation intermediates in the rumen of lactating cows. Comparison of the intake and flow of 20-, 21- and 22-carbon fatty acids at the omasum in cows fed the Control and FO treatments suggests that the first committed steps of 20:5n-3, 21:5n-3 and 22:6n-3 hydrogenation in the rumen involve the reduction and/or isomerisation of double bonds closest to the carboxyl group.

  2. Enhancing highly unsaturated omega-3 fatty acids in phase-fed rainbow trout (Oncorhynchus mykiss) using Alaskan fish oils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this research was to investigate differences in the kinetics of fatty acids (FA) deposition in fillets of market-sized (approximately 450g) rainbow trout (Oncorhynchus mykiss) fed diets containing commercial Alaskan fish oils versus menhaden oil. Comparisons were made with FA leve...

  3. Distribution of plasma phosphatidylcholine molecular species in rabbits fed fish oil is modulated by dietary n-6 fatty acids.

    PubMed

    Koba, K; Horrobin, D F; DeMarco, A C; Ni, I H; Huang, Y S

    1995-12-01

    The present study examined the distribution of plasma phosphatidylcholine (PC) molecular species in rabbits fed a chow diet supplemented with fish oil (FO) in combination with either hydrogenated coconut oil or the n-6 fatty acid-rich evening primrose oil (EPO) for 4 weeks. Significant proportions of plasma PC molecular species contained long-chain n-3 fatty acids. Addition of EPO to the FO supplemented diet increased the incorporation of n-6 fatty acids into plasma PC molecules; it also raised the proportions of 16:0-18:2, n-6, 18:1-18:2, n-6, 18:2, n-6-18:2, n-6, and 16:0-20:4, n-6. The increase of n-6 fatty acid-containing PC was at the expense of n-3 fatty acid containing PC species. However, feeding n-6 fatty acids did not affect the distribution of PC molecular species based on total carbon chain length. The most interesting observation was that dietary suplementation with EPO, raised the ratio of 22:6, n-3-containing to 20:5, n-3-containing molecular species, suggesting an enhanced conversion of 20:5, n-3 to 22:6, n-3.

  4. Dietary supplementation with fish oil rich in omega-3 polyunsaturated fatty acids in children with bronchial asthma.

    PubMed

    Nagakura, T; Matsuda, S; Shichijyo, K; Sugimoto, H; Hata, K

    2000-11-01

    Omega-3 polyunsaturated fatty acids have anti-inflammatory effects in vitro, and high dietary levels are associated with a lower incidence of inflammatory diseases. However, only limited effects have been demonstrated in asthma. The effects of dietary supplementation with fish oil for 10 months in 29 children with bronchial asthma was investigated in a randomized controlled fashion. In order to minimize the effects of environmental inhaled allergens and diet, this study was performed in a long-term treatment hospital. Subjects received fish oil capsules containing 84 mg eicosapentaenoic acid (EPA) and 36 mg docosahexaenoic acid (DHA) or control capsules containing 300 mg olive oil. The daily dosages of EPA and DHA were 17.0-26.8 and 7.3-11.5 mg x kg body weight(-1), respectively. Asthma symptom scores decreased and responsiveness to acetylcholine decreased in the fish oil group but not in the control group. In addition, plasma EPA levels increased significantly only in the fish oil group (p<0.0088). No significant side-effects were observed. The present results suggest that dietary supplementation with fish oil rich in the omega-3 polyunsaturated fatty acids eicosapentaenoic acid and docosahexaenoic acid is beneficial for children with bronchial asthma in a strictly controlled environment in terms of inhalant allergens and diet.

  5. Butter blend containing fish oil improves the level of n-3 fatty acids in biological tissues of hamster.

    PubMed

    Porsgaard, Trine; Overgaard, Julie; Krogh, Anne Louise; Jensen, Mette Behrmann; Guo, Zheng; Mu, Huiling

    2007-09-05

    Many studies have shown beneficial effects of long chain n-3 polyunsaturated fatty acids (PUFA) on human health. Regardless of the positive effects of n-3 PUFA, the intake of these fatty acids remains low. An approach to increase the intake of n-3 PUFA in the population is to incorporate fish oil into food. In the present study, fish oil was incorporated into butter blends by enzymatic interesterification. The aim of the study was to investigate the effects of this butter product in comparison with a commercial butter blend and a product produced by interesterification but without fish oil. Golden Syrian hamsters received hamster feed blended with one of the three butter products. After 6 weeks of feeding, the fatty acid compositions of plasma, erythrocytes, liver, brain, and visceral fat were determined. The intake of butter product with fish oil resulted in a higher level of n-3 PUFA in plasma, erythrocytes, and liver. The incorporation of n-3 PUFA was significantly higher in phospholipids than in triacylglycerols. The results suggest that enriching butter blends with small amounts of fish oil can be used as an alternative method for improving the level of n-3 PUFA in biological tissues.

  6. The Microbiota of Freshwater Fish and Freshwater Niches Contain Omega-3 Fatty Acid-Producing Shewanella Species

    PubMed Central

    McGraw, Joseph E.; Jensen, Brittany J.; Bishop, Sydney S.; Lokken, James P.; Dorff, Kellen J.; Ripley, Michael P.; Munro, James B.

    2015-01-01

    Approximately 30 years ago, it was discovered that free-living bacteria isolated from cold ocean depths could produce polyunsaturated fatty acids (PUFA) such as eicosapentaenoic acid (EPA) (20:5n-3) or docosahexaenoic acid (DHA) (22:6n-3), two PUFA essential for human health. Numerous laboratories have also discovered that EPA- and/or DHA-producing bacteria, many of them members of the Shewanella genus, could be isolated from the intestinal tracts of omega-3 fatty acid-rich marine fish. If bacteria contribute omega-3 fatty acids to the host fish in general or if they assist some bacterial species in adaptation to cold, then cold freshwater fish or habitats should also harbor these producers. Thus, we undertook a study to see if these niches also contained omega-3 fatty acid producers. We were successful in isolating and characterizing unique EPA-producing strains of Shewanella from three strictly freshwater native fish species, i.e., lake whitefish (Coregonus clupeaformis), lean lake trout (Salvelinus namaycush), and walleye (Sander vitreus), and from two other freshwater nonnative fish, i.e., coho salmon (Oncorhynchus kisutch) and seeforellen brown trout (Salmo trutta). We were also able to isolate four unique free-living strains of EPA-producing Shewanella from freshwater habitats. Phylogenetic and phenotypic analyses suggest that one producer is clearly a member of the Shewanella morhuae species and another is sister to members of the marine PUFA-producing Shewanella baltica species. However, the remaining isolates have more ambiguous relationships, sharing a common ancestor with non-PUFA-producing Shewanella putrefaciens isolates rather than marine S. baltica isolates despite having a phenotype more consistent with S. baltica strains. PMID:26497452

  7. The Microbiota of Freshwater Fish and Freshwater Niches Contain Omega-3 Fatty Acid-Producing Shewanella Species.

    PubMed

    Dailey, Frank E; McGraw, Joseph E; Jensen, Brittany J; Bishop, Sydney S; Lokken, James P; Dorff, Kellen J; Ripley, Michael P; Munro, James B

    2015-10-23

    Approximately 30 years ago, it was discovered that free-living bacteria isolated from cold ocean depths could produce polyunsaturated fatty acids (PUFA) such as eicosapentaenoic acid (EPA) (20:5n-3) or docosahexaenoic acid (DHA) (22:6n-3), two PUFA essential for human health. Numerous laboratories have also discovered that EPA- and/or DHA-producing bacteria, many of them members of the Shewanella genus, could be isolated from the intestinal tracts of omega-3 fatty acid-rich marine fish. If bacteria contribute omega-3 fatty acids to the host fish in general or if they assist some bacterial species in adaptation to cold, then cold freshwater fish or habitats should also harbor these producers. Thus, we undertook a study to see if these niches also contained omega-3 fatty acid producers. We were successful in isolating and characterizing unique EPA-producing strains of Shewanella from three strictly freshwater native fish species, i.e., lake whitefish (Coregonus clupeaformis), lean lake trout (Salvelinus namaycush), and walleye (Sander vitreus), and from two other freshwater nonnative fish, i.e., coho salmon (Oncorhynchus kisutch) and seeforellen brown trout (Salmo trutta). We were also able to isolate four unique free-living strains of EPA-producing Shewanella from freshwater habitats. Phylogenetic and phenotypic analyses suggest that one producer is clearly a member of the Shewanella morhuae species and another is sister to members of the marine PUFA-producing Shewanella baltica species. However, the remaining isolates have more ambiguous relationships, sharing a common ancestor with non-PUFA-producing Shewanella putrefaciens isolates rather than marine S. baltica isolates despite having a phenotype more consistent with S. baltica strains.

  8. [Lipidic pattern of 25 Mexican marine fishes with special emphasis in their n-3 fatty acids as nutraceuticals components].

    PubMed

    Castro-González, María Isabel; Ojeda, Anayté; Silencio, José Luis; Cassis, Lorena; Ledesma, Hector; Pérez-Gil, Fernando

    2004-09-01

    The aim of this study was to characterize and to evaluate the lipidic composition of mexican marine fishes with special emphasis in n-3 fatty acids as nutraceuticals. The edible portion of 25 species: humidity (H), crude protein (CP), total lipids (TL) and fatty acids (FA). The average content (g/100g edible portion) of H was 75.20, PC was 18.40, TL was 3.60. Four n-3 FA were identified in all the samples and they were found in the next abundance order (mg/100g edible portion): C22:6n-3 (DHA)(229.60), C20:5 n-3 (EPA)(52.10), C18:3 n-3 (ALA)(11.80) and C20:3 n-3 (2.25). By their origin and climate there were no difference. By their biologycal classification, n-3 FA content was higher in bony fishes than cartilaginous fishes. It was detected a proportional relation with the n-3 FA concentration and total lipid content. According to their ecotic distribution there were numerical differences in DHA content (mg/100g edible portion) between pelagics (420.70), benthopelagics (125.30) and demersals fishes (225.40). Fatty fishes had higher content of EPA and DHA (mg/100g edible portion) (109.27 and 552.72) than semifatty fishes (56.12 and 226.29) and leanness (15.95 and 96.52), respectively. Bony, fatty and pelagic fishes had a higher content of EPA+DHA. According with the international recommendation values (200 to 600 mg EPA+DHA/day) the 44% of the analyzed species could be considered as functional foods due to their high content of EPA + DHA in a range of 220 to 1300 mg/100g.

  9. Intake of Fish and Omega-3 (N-3) Fatty Acid: Effect on Humans during Actual and Simulated Weightlessness

    NASA Technical Reports Server (NTRS)

    Smith, Scott M.; Mehta, Satish K.; Pierson, Duane L.; Zwart, Sara R.

    2009-01-01

    Space flight has many negative effects on human physiology, including bone and muscle loss. These are some of the systems on which intakes of fish and n-3 fatty acids have positive effects. These effects are likely to occur through inhibition of inflammatory cytokines (such as TNFalpha) and thus inhibition of downstream NF-KB activation. We documented this effect in a 3D cell culture model, where NF-KB activation in osteoclasts was inhibited by eicosapentaenoic acid, an n-3 fatty acid. We have extended these studies and report here (a) NF-KB expression in peripheral blood mononuclear cells of Space Shuttle crews on 2-wk missions, (b) the effects of n-3 fatty acid intake after 60 d of bed rest (a weightlessness analog), and (c) the effects of fish intake in astronauts after 4 to 6 mo on the International Space Station. After Shuttle flights of 2 wk, NFKB p65 expression at landing was increased (P less than 0.001). After 60 d of bed rest, higher intake of n-3 fatty acids was associated with less N-telopeptide excretion (Pearson r = -0.62, P less than 0.05). Higher consumption of fish during flight was associated with higher bone mineral density (Pearson r = -0.46, P less than 0.05). Together with our earlier findings, these data provide mechanistic cellular and preliminary human evidence of the potential for n-3 fatty acids to counteract bone loss associated with spaceflight. This study was supported by the NASA Human Research Program.

  10. Butter composition and texture from cows with different milk fatty acid compositions fed fish oil or roasted soybeans.

    PubMed

    Bobe, G; Zimmerman, S; Hammond, E G; Freeman, A E; Porter, P A; Luhman, C M; Beitz, D C

    2007-06-01

    Changing the milk fatty acid composition can improve the nutritional and physical properties of dairy products and their acceptability to consumers. A more healthful milk fatty acid composition can be achieved by altering the cow's diet, for example, by feeding supplemental fish oil (FO) or roasted soybeans (RSB), or by selecting cows with a more unsaturated milk fatty acid composition. We examined whether feeding supplemental FO or RSB to cows that had a more unsaturated milk fatty acid composition acted additively to produce butter with improved fatty acid composition and texture. Using a 3 x 3 Latin square design with 2 replications, we fed diets to multiparous Holstein cows (60 to 200 DIM) chosen for producing either more or less unsaturated milk fatty acid composition (n = 6 for each group) for three 3-wk periods. The control diet contained 3.7% crude fat and the 2 experimental diets contained, on a dry matter basis, 0.8% of additional lipids in the form of 0.9% of FO or 5% of RSB. The milk, collected in the third week of feeding, was used to make butter, which was analyzed for its fatty acid composition and physical properties. Dry matter intake, milk yield, and milk composition were not significantly affected by cow diet or by cow selection. Cows that produced a more unsaturated and healthful milk fat prior to the feeding study, according to a "health-promoting index" [HPI = (sum of % of unsaturated fatty acids)/ (%12:0 + 4 x %14:0 + %16:0)], maintained a higher HPI in their butter during the feeding study than did cows with a low HPI. Milk from cows fed supplemental FO or RSB yielded more unsaturated butters with a higher HPI. This butter also was softer when the cows were fed RSB. Feeding RSB to cows chosen for their high milk HPI yielded the most unsaturated butter with the highest HPI and softest texture. Thus, selecting cows with a more health-promoting milk fatty acid composition and feeding supplemental RSB can be used in combination to produce butter

  11. Conjugated linoleic acid and vaccenic acid in rumen, plasma, and milk of cows fed fish oil and fats differing in saturation of 18 carbon fatty acids.

    PubMed

    AbuGhazaleh, A A; Schingoethe, D J; Hippen, A R; Kalscheur, K F

    2003-11-01

    The objective of this study was to examine the effect of feeding fish oil (FO) along with fat sources that varied in saturation of 18 carbon fatty acids (high stearic, high oleic, high linoleic, or high linolenic acids) on rumen, plasma, and milk fatty acid profiles. Four primiparous Holstein cows at 85 d in milk (+/- 40) were assigned to 4 x 4 Latin squares with 4-wk periods. Treatment diets were 1) 1% FO plus 2% commercial fat high in stearic acid (HS); 2) 1% FO plus 2% fat from high oleic acid sunflower seeds (HO); 3) 1% FO plus 2% fat from high linoleic acid sunflower seeds (HLO); and 4) 1% FO plus 2% fat from flax seeds (high linolenic; HLN). Diets were formulated to contain 18% crude protein and were composed of 50% (dry basis) concentrate mix, 25% corn silage, 12.5% alfalfa silage, and 12.5% alfalfa hay. Milk production, milk protein percentages and yields, and dry matter intake were similar across diets. Milk fat concentrations and yields were least for HO and HLO diets. The proportion of milk cis-9, trans-11 conjugated linoleic acid (CLA; 0.71, 0.99, 1.71, and 1.12 g/100 g fatty acids, respectively), and vaccenic acid (TVA; 1.85, 2.60, 4.14, and 2.16 g/100 g fatty acids, respectively) were greatest with the HLO diet. The proportions of ruminal cis-9, trans-11 CLA (0.09, 0.16, 0.18, and 0.16 g/100 g fatty acids, respectively) were similar for the HO, HLO, and HLN diets and all were higher than for the HS diet. The proportions of TVA (2.85, 4.36, 8.69, and 4.64 g/100 g fatty acids, respectively) increased with the HO, HLO, and HLN diets compared with the HS diets, and the increase was greatest with the HLO diet. The effects of fat supplements on ruminal TVA concentrations were also reflected in plasma triglycerides, (2.75, 4.64, 8.77, and 5.42 g/100 g fatty acids, respectively); however, there were no differences in the proportion of cis-9, trans-11 CLA (0.06, 0.07, 0.06, and 0.07 g/100 g fatty acids, respectively). This study further supports the

  12. Nutritional evaluation of microalgae oils rich in omega-3 long chain polyunsaturated fatty acids as an alternative for fish oil.

    PubMed

    Ryckebosch, Eline; Bruneel, Charlotte; Termote-Verhalle, Romina; Goiris, Koen; Muylaert, Koenraad; Foubert, Imogen

    2014-10-01

    The purpose of this work was to evaluate the nutritional value of the total lipid extract of different omega-3 long chain polyunsaturated fatty acids producing photoautotrophic microalgae in one study. It was shown that microalgae oils from Isochrysis, Nannochloropsis, Phaeodactylum, Pavlova and Thalassiosira contain sufficient omega-3 LC-PUFA to serve as an alternative for fish oil, which was used as the 'golden standard'. In the microalgae oils an important part of the omega-3 long chain polyunsaturated fatty acids are present in the polar lipid fraction, which may be favourable from a bioavailability and stability viewpoint. Consumption of microalgae oil ensures intake of sterols and carotenoids. The intake of sterols, including cholesterol and phytosterols, is probably not relevant. The intake of carotenoids is however definitely significant and could give the microalgae oils a nutritional added value compared to fish oil.

  13. Fatty Acid Oxidation Disorders

    MedlinePlus

    ... other health conditions > Fatty acid oxidation disorders Fatty acid oxidation disorders E-mail to a friend Please ... these disorders, go to genetests.org . What fatty acid oxidation disorders are tested for in newborn screening? ...

  14. Determination of omega-3 fatty acids in fish oil supplements using vibrational spectroscopy and chemometric methods.

    PubMed

    Bekhit, Michael Yemane; Grung, Bjørn; Mjøs, Svein Are

    2014-01-01

    The potential of Fourier transform infrared (FT-IR), near-infrared (NIR), and Raman spectroscopic techniques combined with partial least squares (PLS) regression (PLSR) to predict concentrations of eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), and total omega-3 fatty acids (n-3 FAs) in fish oil supplements was investigated. FT-IR spectroscopy predicted EPA (coefficient of determination (R(2)) of 0.994, standard error of cross-validation (SECV) of 2.90%, and standard error of prediction (SEP) of 2.49%) and DHA (R(2) = 0.983, SECV = 2.89%, and SEP = 2.55%) with six to seven PLS factors, whereas a simpler PLS model with two factors was obtained for total n-3 FAs (R(2) = 0.985, SECV = 2.73%, and SEP = 2.75%). Selected regions in the NIR spectra gave models with good performances and predicted EPA (R(2) = 0.979, SECV = 2.43%, and SEP = 3.11%) and DHA (R(2) = 0.972, SECV = 2.34%, and SEP = 2.60%) with four to six PLS factors. Both the whole and selected NIR regions gave simple models (two PLS factors) with similar results (R(2) = 0.997, SECV = 2.18%, and SEP = 1.60%) for total n-3 FAs. The whole and selected regions of Raman spectra provided models with comparable results and predicted EPA (R(2) = 0.977, SECV = 3.18%, and SEP = 2.73%) and DHA (R(2) = 0.966, SECV = 3.31%, and SEP = 2.56%) with seven to eight PLS factors, whereas a simpler model (three PLS factors) with R(2) = 0.993, SECV = 2.82%, and SEP = 3.27% was obtained for total n-3 FAs. The results demonstrated that FT-IR, NIR, and Raman spectroscopy combined with PLSR can be used as simple, fast, and nondestructive methods for quantitative analysis of EPA, DHA, and total n-3 FAs. FT-IR and NIR spectroscopy, in particular, have the potential to be applied in process industries during production of fish oil supplements.

  15. Cognitive performance in older adults is inversely associated with fish consumption but not erythrocyte membrane n-3 fatty acids.

    PubMed

    Danthiir, Vanessa; Hosking, Diane; Burns, Nicholas R; Wilson, Carlene; Nettelbeck, Ted; Calvaresi, Eva; Clifton, Peter; Wittert, Gary A

    2014-03-01

    Higher n-3 (ω-3) polyunsaturated fatty acids (PUFAs) and fish intake may help maintain cognitive function in older age. However, evidence is inconsistent; few studies have examined the relation in cognitively healthy individuals across numerous cognitive domains, and none to our knowledge have considered lifetime fish intake. We examined associations between multiple domains of cognition and erythrocyte membrane n-3 PUFA proportions and historical and contemporary fish intake in 390 normal older adults, analyzing baseline data from the Older People, Omega-3, and Cognitive Health trial. We measured n-3 PUFA in erythrocyte membranes, and we assessed historical and contemporary fish intake by food-frequency questionnaires. We assessed cognitive performance on reasoning, working memory, short-term memory, retrieval fluency, perceptual speed, simple/choice reaction time, speed of memory-scanning, reasoning speed, inhibition, and psychomotor speed. Cognitive outcomes for each construct were factor scores from confirmatory factor analysis. Multiple linear regression models controlled for a number of potential confounding factors, including age, education, sex, apolipoprotein E-ε 4 allele, physical activity, smoking, alcohol intake, socioeconomic variables, and other health-related variables. Higher erythrocyte membrane eicosapaentonoic acid proportions predicted slower perceptual and reasoning speed in females, which was attenuated once current fish intake was controlled. No other associations were present between n-3 PUFA proportions and cognitive performance. Higher current fish consumption predicted worse performance on several cognitive speed constructs. Greater fish consumption in childhood predicted slower perceptual speed and simple/choice reaction time. We found no evidence to support the hypothesis that higher proportions of long-chain n-3 fatty acids or fish intake benefits cognitive performance in normal older adults.

  16. Bioaccumulation patterns of methyl mercury and essential fatty acids in lacustrine planktonic food webs and fish.

    PubMed

    Kainz, Martin; Telmer, Kevin; Mazumder, Asit

    2006-09-01

    Organisms of the planktonic food web convey essential nutrients as well as contaminants to animals at higher trophic levels. We measured concentrations of methyl mercury (MeHg) and essential fatty acids (EFAs, key nutrients for aquatic food webs) in four size categories of planktonic organisms - seston (10-64 microm), micro-(100-200 microm), meso-(200-500 microm), and macrozooplankton (>500 microm) - as well as total mercury (THg) and EFAs in rainbow trout (Oncorhynchus mykiss) in coastal lakes. We demonstrate that, in all lakes during this summer sampling, MeHg concentrations of planktonic organisms increase significantly with plankton size, independent of their taxonomic composition, and that their MeHg accumulation patterns predict significantly THg concentrations in rainbow trout (R2=0.71, p<0.05). However, concentrations of total EFAs do not follow this pattern. Total EFAs increased from seston to mesozooplankton but decreased in the largest zooplankton size fraction. Moreover, concentrations of individual EFA compounds in rainbow trout are consistently lower, with the exception of docosahexaenoic acid, than those in macrozooplankton. The continuous increase of MeHg concentrations in aquatic organisms, therefore, differs from patterns of EFA accumulation in zooplankton and fish. We interpret these contrasting accumulation patterns of MeHg and EFA compounds as the inability of aquatic organisms to regulate the assimilation of dietary MeHg, whereas the rate of EFA retention may be controlled to optimize their physiological performance. Therefore, we conclude that bioaccumulation patterns of Hg in these aquatic food webs are not controlled by lipid solubility and/or the retention of EFA compounds.

  17. Monola oil versus canola oil as a fish oil replacer in rainbow trout feeds: effects on growth, fatty acid metabolism and final eating quality.

    PubMed

    Turchini, G M; Moretti, V M; Hermon, K; Caprino, F; Busetto, M L; Bellagamba, F; Rankin, T; Keast, R S J; Francis, D S

    2013-11-15

    Monola oil, a high oleic acid canola cultivar, and canola oil were evaluated as replacers of fish oil at three levels of inclusion (60%, 75% and 90%) in rainbow trout diets. After a 27-week grow-out cycle, the diet-induced effects on growth, fatty acid metabolism and final eating quality were assessed. Overall, no effects were noted for growth, feed utilisation or fish biometry, and the fatty acid composition of fish fillets mirrored that of the diets. Dietary treatments affected fillet lipid oxidation (free malondialdehyde), pigmentation and flavour volatile compounds, but only minor effects on sensorial attributes were detected. Ultimately, both oils were demonstrated to possess, to differing extents, suitable qualities to adequately replace fish oil from the perspective of fish performance and final product quality. However, further research is required to alleviate on-going issues associated with the loss of health promoting attributes (n-3 long chain polyunsaturated fatty acids) of final farmed products.

  18. The use of low-EPA fish oil for long-chain polyunsaturated fatty acid supplementation of preterm infants.

    PubMed

    Lapillonne, A; Picaud, J C; Chirouze, V; Goudable, J; Reygrobellet, B; Claris, O; Salle, B L

    2000-12-01

    Because docosahexaenoic acid (DHA) may be an essential nutrient for the visual and early cognitive development of preterm infants, DHA enrichment of preterm formulas has been recommended. This randomized trial was designed to study the n-6 and n-3 fatty acid status of healthy preterm infants fed a formula enriched with a low eicosapentaenoic-fish oil until 4 mo corrected age compared with that of infants fed a standard formula. A reference group of breast-fed infants was studied concurrently. The fatty acid content of red blood cell (RBC) phospholipid was assessed at enrollment, hospital discharge, expected term, and 3 and 6 mo postterm. The DHA content of RBC phospholipid was higher in infants fed the enriched versus the standard formula at hospital discharge, expected term, and 3 and 6 mo postterm. However, compared with infants fed the standard formula, infants fed the enriched formula had also higher RBC phospholipid eicosapentaenoic content (0.69 +/- 0.15% versus 0.25 +/- 0.12%, p < 0.001), and lower RBC phospholipid arachidonic acid content (15.1 +/- 0.93% versus 18.8 +/- 0.89%; p < 0.001). We conclude that supplementing preterm infants with low-eicosapentaenoic fish oil is effective in improving DHA status, but results in worsening of n-6 fatty acid status. We speculate that preterm infants may require a dietary supply of arachidonic acid as well as DHA if the same fatty acid status as that of breast-fed infants is to be achieved.

  19. Fish Consumption and Omega-3 Polyunsaturated Fatty Acids in Relation to Depressive Episodes: A Cross-Sectional Analysis

    PubMed Central

    Suominen-Taipale, Anna Liisa; Partonen, Timo; Turunen, Anu W.; Männistö, Satu; Jula, Antti; Verkasalo, Pia K.

    2010-01-01

    High fish consumption and omega-3 polyunsaturated fatty acid (PUFA) intake are suggested to benefit mental well-being but the current evidence is conflicting. Our aim was to evaluate whether a higher level of fish consumption, a higher intake of omega-3 PUFAs, and a higher serum concentration of omega-3 PUFAs link to a lower 12-month prevalence of depressive episodes. We used data from the nationwide Health 2000 Survey (n = 5492) and the Fishermen Study on Finnish professional fishermen and their family members (n = 1265). Data were based on questionnaires, interviews, health examinations, and blood samples. Depressive episodes were assessed with the M-CIDI (the Munich version of the Composite International Diagnostic Interview) and a self-report of two CIDI probe questions, respectively. Fish consumption was measured by a food frequency questionnaire (g/day) and independent frequency questions (times/month). Dietary intake (g/day) and serum concentrations (% from fatty acids) of PUFAs were determined. Fish consumption was associated with prevalence of depressive episodes in men but not in women. The prevalence of depressive episodes decreased from 9% to 5% across the quartiles of fish consumption (g/day) in men of the Health 2000 Survey (p for linear trend = 0.01), and from17% to 3% across the quartiles of fish consumption (times/month) in men of the Fishermen Study (p for linear trend = 0.05). This association was modified by lifestyle; in the Health 2000 Survey a higher level of fish consumption was related to a lower prevalence of depressive episodes in men who consumed the most alcohol, were occasional or former smokers, or had intermediate physical activity. The associations between depressive episodes and the intake or serum concentrations of omega-3 PUFAs were not consistent. In men, fish consumption appears as a surrogate for underlying but unidentified lifestyle factors that protect against depression. PMID:20479881

  20. Fatty acids from the cyanobacterium Microcystis aeruginosa with potent inhibitory effects on fish gill Na+/K+-ATPase activity.

    PubMed

    Bury, N R; Codd, G A; Wendelaaar Bonga, S E; Flik, G

    1998-01-01

    Fatty acids from two strains of the cyanobacterium Microcystis aeruginosa, PCC 7820 (a strain that produces the hepatotoxin microcystin-LR, MC-LR) and CYA 43 (a strain that produces only small quantities of MC-LR), were extracted, partially characterised and tested for their inhibitory effect on the K+-dependent p-nitrophenol phosphatase (pNPPase) activity of tilapia (Oreochromis mossambicus) gill basolateral membrane. Thin-layer chromatography of the lipids from dichloromethane:methanol extracts of M. aeruginosa PCC 7820 and CYA 43, using diethylether:isopropanol:formic acid (100:4.5:2.5) as solvent, yielded five inhibitory products from M. aeruginosa 7820 and six from M. aeruginosa CYA 43. None of these products could be related to MC-LR. The inhibitory behaviour of the products mimics that of a slow, tight-binding inhibitor. The inhibitory activity is removed by incubation of extracts with fatty-acid-free bovine serum albumin (FAF-BSA). However, FAF-BSA only partially reversed the inhibition of K+-dependent pNPPase on fish gills pre-exposed to the extracted products. We conclude that M. aeruginosa strains PCC 7820 and CYA 43 produce fatty acids with potent inhibitory effects on K+-dependent pNPPase. The release of these products following lysis of cyanobacterial blooms may help to explain fish kills through a disturbance of gill functioning.

  1. Fish Oil-Derived Fatty Acids in Pregnancy and Wheeze and Asthma in Offspring.

    PubMed

    Bisgaard, Hans; Stokholm, Jakob; Chawes, Bo L; Vissing, Nadja H; Bjarnadóttir, Elin; Schoos, Ann-Marie M; Wolsk, Helene M; Pedersen, Tine M; Vinding, Rebecca K; Thorsteinsdóttir, Sunna; Følsgaard, Nilofar V; Fink, Nadia R; Thorsen, Jonathan; Pedersen, Anders G; Waage, Johannes; Rasmussen, Morten A; Stark, Ken D; Olsen, Sjurdur F; Bønnelykke, Klaus

    2016-12-29

    Background Reduced intake of n-3 long-chain polyunsaturated fatty acids (LCPUFAs) may be a contributing factor to the increasing prevalence of wheezing disorders. We assessed the effect of supplementation with n-3 LCPUFAs in pregnant women on the risk of persistent wheeze and asthma in their offspring. Methods We randomly assigned 736 pregnant women at 24 weeks of gestation to receive 2.4 g of n-3 LCPUFA (fish oil) or placebo (olive oil) per day. Their children formed the Copenhagen Prospective Studies on Asthma in Childhood2010 (COPSAC2010) cohort and were followed prospectively with extensive clinical phenotyping. Neither the investigators nor the participants were aware of group assignments during follow-up for the first 3 years of the children's lives, after which there was a 2-year follow-up period during which only the investigators were unaware of group assignments. The primary end point was persistent wheeze or asthma, and the secondary end points included lower respiratory tract infections, asthma exacerbations, eczema, and allergic sensitization. Results A total of 695 children were included in the trial, and 95.5% completed the 3-year, double-blind follow-up period. The risk of persistent wheeze or asthma in the treatment group was 16.9%, versus 23.7% in the control group (hazard ratio, 0.69; 95% confidence interval [CI], 0.49 to 0.97; P=0.035), corresponding to a relative reduction of 30.7%. Prespecified subgroup analyses suggested that the effect was strongest in the children of women whose blood levels of eicosapentaenoic acid and docosahexaenoic acid were in the lowest third of the trial population at randomization: 17.5% versus 34.1% (hazard ratio, 0.46; 95% CI, 0.25 to 0.83; P=0.011). Analyses of secondary end points showed that supplementation with n-3 LCPUFA was associated with a reduced risk of infections of the lower respiratory tract (31.7% vs. 39.1%; hazard ratio, 0.75; 95% CI, 0.58 to 0.98; P=0.033), but there was no statistically

  2. [Fatty acids of the tuna of different fishing areas of the Mexican Pacific, canned in oil and water].

    PubMed

    Castro Gónzalez, M I; Montaño Benavides, S; Pérez-Gil Romo, F

    2001-12-01

    A direct relationship exists between the state of health and the diet, and inside this some components, such as the fatty acids (FA), influence mostly in the prevention of certain illnesses (coronary heart disease, hypertension, rheumatoid arthritis, inflammatory answer, and arterial pressure). One of the main sources of essential FA are the marine products; the tuna is a marine food of wide consumption in Mexico due its readiness and low cost. The objective of this work was to determine the profile of fatty acids (FA) in tuna canned in oil and in water coming from three fishing areas of the Mexican Pacific. There were randomly obtained 7 oil-tuna commercial marks (AA) and 5 water- tuna (AW) coming from the next fishery areas: Baja California Sur (L1), Colima (L2) and Mazatlán (L3). The samples without draining were liquefied and thereafter it was obtained the methyl esters of fatty acids that were analyzed by gas chromatography with a flame ionization detector. In all the areas were identified 20 FA (mg/100 g); three AG omega 3 (EPA, DHA and linolenic) and two omega 6 (linoleic and arachidonic). In the AA of the three areas the most abundant saturated FA were estearric and palmitic acids, the most abundant monounsaturated fatty acid was the cis-vaccenic, followed by the oleic acid. The behavior of those omega 3 in the AA of the three areas were similar: with the less quantity was the linolenic acid (447-755), continued by the EPA (979-1323) and finally high concentrations of DHA (1862-3327). In the AW the DHA was the most abundant fatty acid in all the areas (1086-4456), the most abundant monounsaturated fatty acid was the palmitic (640-3809). It was observed the presence of trans fatty acids in high quantities in AW: linolelaidic (1394-1495) and elaidic (377-1234). The relationship omega 3/omega 6 in the AA was similar in L1 and L2, and lower in L3; in AW was higher in L2 and L3. In conclusion, evident variation exists in the content of FA among areas; it could

  3. Hybrid striped bass feeds based on fish oil, beef tallow, and eicosapentaenoic acid/docosahexaenoic acid supplements: Insight regarding fish oil sparing and demand for -3 long-chain polyunsaturated fatty acids.

    PubMed

    Bowzer, J; Jackson, C; Trushenski, J

    2016-03-01

    Previous research suggests that saturated (SFA) and monounsaturated fatty acid (MUFA) rich lipids, including beef tallow, can make utilization or diet-to-tissue transfer of long-chain polyunsaturated fatty acids (LC-PUFA) more efficient. We hypothesized that using beef tallow as an alternative to fish oil may effectively reduce the LC-PUFA demand of hybrid striped bass × and allow for greater fish oil sparing. Accordingly, we evaluated growth performance and tissue fatty acid profiles of juvenile fish (23.7 ± 0.3 g) fed diets containing menhaden fish oil (considered an ideal source of LC-PUFA for this taxon), beef tallow (BEEF ONLY), or beef tallow amended with purified sources of eicosapentaenoic acid (EPA) and/or docosahexaenoic acid (DHA) to achieve levels corresponding to 50 or 100% of those observed in the FISH ONLY feed. Diets were randomly assigned to quadruplicate tanks of fish ( = 4; 10 fish/tank), and fish were fed assigned diets to apparent satiation once daily for 10 wk. Survival (98-100%) was equivalent among treatments, but weight gain (117-180%), specific growth rate (1.1-1.5% BW/d), feed intake (1.4-1.8% BW/d), thermal growth coefficient (0.50-0.70), and feed conversion ratio (FCR; 1.1-1.4, DM basis) varied. Except for FCR, no differences were observed between the FISH ONLY and BEEF ONLY treatments, but performance was generally numerically superior among fish fed the diets containing beef tallow supplemented with DHA at the 100% or both EPA and DHA at the 50% or 100% level. Tissue fatty acid composition was significantly distorted in favor among fish fed the beef tallow-based feeds; however, profile distortion was most overt in peripheral tissues. Results suggest that beef tallow may be used as a primary lipid source in practical diets for hybrid striped bass, but performance may be improved by supplementation with LC-PUFA, particularly DHA. Furthermore, our results suggest that -3 LC-PUFA requirements reported for hybrid striped bass may not be

  4. Plant fatty acid hydroxylases

    DOEpatents

    Somerville, Chris; Broun, Pierre; van de Loo, Frank

    2001-01-01

    This invention relates to plant fatty acyl hydroxylases. Methods to use conserved amino acid or nucleotide sequences to obtain plant fatty acyl hydroxylases are described. Also described is the use of cDNA clones encoding a plant hydroxylase to produce a family of hydroxylated fatty acids in transgenic plants. In addition, the use of genes encoding fatty acid hydroxylases or desaturases to alter the level of lipid fatty acid unsaturation in transgenic plants is described.

  5. Omega-3 fatty acids from fish, other nutrient intake, and lifestyle factors: exploring the relationship in children.

    PubMed

    Chung, Hai V; Iversen, Cara S; Lai, Morris; Saka, Susan; Mahabub-ul Anwar, Md; Nigg, Claudio R

    2014-09-01

    The omega-3 fatty acids found mostly in seafood are essential nutrients that may help prevent or control a number of diseases; however, the evidence for this is not conclusive. The positive effects may be because of other dietary and lifestyle factors. Therefore, we investigated the association between fish intake and other nutrition indicators and lifestyle and demographic factors among children. The study employed grade-4 student data of the 2000-2004 Hawaii Nutrition Education Needs Assessment Survey. In a sample 666 children (mean age = 9.57 ± 0.06 years, 55.6% female, 62.4% Asian/Pacific Islander), analysis indicated that fish consumption is positively associated with healthy lifestyle indicators, such as physical activity and a healthy body mass index. Fish consumption is also positively associated with protein and kilocalories intake but not with fruits and vegetables consumption. Findings suggest that the positive health behaviors linked to fish consumption may lie more in physical activity than in diet behaviors. Given that fish consumption is important for children, interventions promoting fish consumption in a balanced diet with fruit and vegetable, as well as other positive lifestyle behaviors are warranted.

  6. Gas chromatography-mass spectrometry analysis of effects of dietary fish oil on total fatty acid composition in mouse skin

    PubMed Central

    Wang, Peiru; Sun, Min; Ren, Jianwei; Djuric, Zora; Fisher, Gary J.; Wang, Xiuli; Li, Yong

    2017-01-01

    Altering the fatty acid (FA) composition in the skin by dietary fish oil could provide therapeutic benefits. Although it has been shown that fish oil supplementation enhances EPA (eicosapentaenoic acid) and DHA (docosahexaenoic acid) abundance in the skin, comprehensive skin FA profiling is needed. We established a gas chromatography-mass spectrometry method, which allows precise quantification of FA profile using small (<24 mm2 for mice and <12 mm2 for humans) skin specimens that can be readily obtained from live mice and humans. We determined mouse skin FA composition after 2, 4 and 8 weeks of consuming a control diet or a diet supplemented with fish oil. Fish oil markedly enhanced EPA and DHA in mouse skin within 2 weeks, and this increase plateaued after 4 weeks. The FA composition in mouse skin was different from that of serum, indicating that skin has homeostatic control of FA metabolism. Mice fed the control diet designed to simulate Western human diet displayed similar skin FA composition as that of humans. The present study presents a validated method for FA quantification that is needed to investigate the mechanisms of actions of dietary treatments in both mouse and human skin. PMID:28195161

  7. Supplementing milk replacer with omega-3 fatty acids from fish oil on immunocompetence and health of Jersey calves.

    PubMed

    Ballou, M A; DePeters, E J

    2008-09-01

    Fifty-one Jersey bull calves (5 +/- 1 d old) were assigned to 1 of 3 milk replacers to determine the effects of increasing doses of n-3 fatty acids from fish oil on immunocompetence and health. All calves were fed a 22.5% crude protein and 18% lipid industry standard milk replacer supplemented with an additional 2% fatty acids. The 3 treatments differed only in the supplemental lipid source and included a 3:1 mix of corn and canola oils; a 1:1 blend of fish oil and the 3:1 mix of corn and canola oils; and fish oil only. All treatments were supplemented with 150 mg of vitamin E/kg of milk replacer. Body weight, height at withers, and length between withers and pins were measured weekly. Fecal and respiratory scores were recorded multiple times daily, and peripheral blood samples were collected on d 0, 7, 14, 21, and 42 for hematologic and metabolic analyses. Immunocompetence of calves was evaluated in vitro by the ability of neutrophils and monocytes to phagocytose Escherichia coli and produce an oxidative burst and in vivo as the change in ear thickness after an intradermal injection of phytohemagglutinin-P, and the primary and secondary humoral responses to ovalbumin. Production and health parameters were unaffected by treatments. There were no significant treatment or treatment x time effects on phagocytosis; however, there was a significant quadratic response for the percentage of neutrophils producing an oxidative burst. Fish oil did not affect the change in ear thickness in response to phytohemagglutinin-P. There was also no treatment effect on the primary IgG humoral response to ovalbumin, but there was a significant quadratic treatment effect on the secondary IgG response. Adding fish oil to milk replacer altered various immune responses, and the effect was dose-dependent; however, neither production performance nor indices of health were altered when fish oil replaced 5 to 10% of the fatty acids in milk replacer.

  8. Time trend investigation of PCBs, PBDEs, and organochlorine pesticides in selected n-3 polyunsaturated fatty acid rich dietary fish oil and vegetable oil supplements; nutritional relevance for human essential n-3 fatty acid requirements.

    PubMed

    Jacobs, Miriam N; Covaci, Adrian; Gheorghe, Adriana; Schepens, Paul

    2004-03-24

    In addition to being used in the food and animal feed industry, fish oils have also been used traditionally as dietary supplements. Due to the presence of long-chain n-3 fatty acids, fish oils have therapeutic benefits in the prevention and treatment of cardiovascular, immunological, and arthritic diseases, as well as childhood deficiency diseases such as rickets, because of a high content of vitamin D. However, fish oils are also susceptible to contamination with lipophilic organic chemicals that are now ubiquitous contaminants of marine ecosystems. Many vegetable oils are sources of the shorter chain precursor forms of n-3 fatty acids, and in recent years the specialist dietary supplement market has expanded to include these oils in a variety of different formulations. This paper reports analytical results of selected contaminants, including polychlorinated biphenyls, organochlorine pesticides, and polybrominated diphenyl ethers, for a range of commercially available n-3 fatty acid rich fish and vegetable oil dietary supplements. Using principal component analysis, the values are compared with historic samples to elucidate time trends in contamination profiles. Levels of contaminants are discussed in relation to the nutritional benefits to the consumer of long- and short-chain forms of n-3 fatty acids.

  9. Analysis of certain fatty acids and toxic metal bioaccumulation in various tissues of three fish species that are consumed by Turkish people.

    PubMed

    Kaya, Gökçe; Türkoğlu, Semra

    2017-02-25

    Concentrations of toxic metals (Mn, Ni, Hg, Cd, Pb, Cr) in the muscle, skin, and liver of Mugil cephalus, Mullus barbatus, and Pagellus erythrinus which were purchased in large supermarkets of Elazig, and Mullus barbatus, which were caught on the sea of İskenderun Bay, Turkey, were analyzed. Fundamental analyses were carried out by inductively coupled plasma-mass spectrometry (ICP-MS) after samples were prepared by microwave digestion. Mean metal concentrations in different tissues were varied in the ranges of Cd 4-426, Cr 116-4458, Mn 141-24774, Hg 9-471, Pb 96-695, and Ni 68-6581 μg kg(-1), for wet weight. The investigated metal bioaccumulation in the muscles of fish species, in general, was lower than those in the liver and skin. This method was verified by NCS ZC73016 chicken trace element-certified reference material analysis. In addition, fatty acids in the muscles of three fish species were analyzed. According to the gas chromatography (GC) results of fatty acids, the monounsaturated fatty acids (MUFA) were found to be between 23.76 and 31.97%. The fatty acids' polyunsaturated fatty acids (PUFA) ratio was found to be between 13.67 and 30.71% and saturated fatty acids ratios were determined in the range of 24.06-32.30%. In all fish species, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) ratio, which increase the value of these fish species, were high. These results show that these three fish species are good sources of fatty acids.

  10. Effect of replacement of fish oil with camelina (Camelina sativa) oil on growth, lipid class and fatty acid composition of farmed juvenile Atlantic cod (Gadus morhua).

    PubMed

    Hixson, Stefanie M; Parrish, Christopher C; Anderson, Derek M

    2013-12-01

    Camelina (Camelina sativa) oil was tested as a replacement for fish oil in diets for farmed Atlantic cod (Gadus morhua). Camelina differs from other plant oilseeds previously used in aquaculture with high lipid (40 %), α-linolenic acid (40 %), antioxidants and low proportions of saturated fats. Dietary treatments were fed to cod (19 g fish⁻¹ initial weight) for 9 weeks and included a fish oil control (FO), 40 % (CO40) and 80 % (CO80) replacement of fish oil with camelina oil. There was no effect of replacing fish oil with camelina oil included at levels up to 80 % on the growth performance. Cod fed CO80 stored more lipid in the liver (p < 0.01), including more neutral lipid (p < 0.05) and triacylglycerol (p < 0.05). Cod fed CO80 decreased in total polyunsaturated fatty acids (PUFAs) in muscle compared to CO40 and FO (p < 0.05), increased in monounsaturated fatty acids (p < 0.01), decreased in total ω3 fatty acids (FO > CO40 > CO80; p < 0.01) and increased in total ω6 fatty acids (FO < CO40 < CO80; p < 0.01). In the liver, long-chain (LC) PUFA such as 20:4ω6, 20:5ω3, 22:5ω3 and 22:6ω3 decreased when fish oil was removed from the diet (p < 0.05), and increased in 18-carbon fatty acids (p < 0.01). Camelina oil can reduce the amount of fish oil needed to meet lipid requirements, although replacing 80 % of fish oil reduced LC PUFAs in both tissues. A comparison of BF₃ and H₂SO₄ as catalysts to transmethylate cod liver and muscle lipids revealed small but significant differences in some fatty acid proportions.

  11. Effect of heat treatment on the n-3/n-6 ratio and content of polyunsaturated fatty acids in fish tissues.

    PubMed

    Schneedorferová, Ivana; Tomčala, Aleš; Valterová, Irena

    2015-06-01

    The aim of this study was to compare the effect of different heat treatments (pan-frying, oven-baking, and grilling) on the contents of polyunsaturated fatty acids (PUFAs) in fish tissue. Four fish species were examined: pike, carp, cod, and herring. High performance liquid chromatography, coupled with electrospray ionization and mass spectrometric detection (HPLC/ESI/MS), was employed for determination of intact lipid molecules containing n-3 and n-6 PUFAs. Although mostly non-polar lipids (triacylglycerols, TGs) were present in the fish tissue, the PUFAs were present preferentially in the phospholipid fraction. Omnivorous fish species (carp, herring) contained more TGs than did predatory ones (pike, cod). Higher amounts of PUFAs were detected in the marine species than in the freshwater ones. The impact of heat treatments on the lipid composition in the fish tissue seems to be species-specific, as indicated by multivariate data analysis. Herring tissue is most heat-stable, and the mildest heat treatment for PUFA preservation was oven-baking.

  12. Fatty acid analogs

    DOEpatents

    Elmaleh, David R.; Livni, Eli

    1985-01-01

    In one aspect, a radioactively labeled analog of a fatty acid which is capable of being taken up by mammalian tissue and which exhibits an in vivo beta-oxidation rate below that with a corresponding radioactively labeled fatty acid.

  13. Omega-3 fatty acids

    PubMed Central

    Schwalfenberg, Gerry

    2006-01-01

    OBJECTIVE To examine evidence for the role of omega-3 fatty acids in cardiovascular disease. QUALITY OF EVIDENCE PubMed was searched for articles on the role of omega-3 fatty acids in cardiovascular disease. Level I and II evidence indicates that omega-3 fatty acids are beneficial in improving cardiovascular outcomes. MAIN MESSAGE Dietary intake of omega-3 fatty acids has declined by 80% during the last 100 years, while intake of omega-6 fatty acids has greatly increased. Omega-3 fatty acids are cardioprotective mainly due to beneficial effects on arrhythmias, atherosclerosis, inflammation, and thrombosis. There is also evidence that they improve endothelial function, lower blood pressure, and significantly lower triglycerides. CONCLUSION There is good evidence in the literature that increasing intake of omega-3 fatty acids improves cardiac outcomes. Physicians need to integrate dietary recommendations for consumption of omega-3 fatty acids into their usual cardiovascular care. PMID:16812965

  14. Omega-6 Fatty Acids

    MedlinePlus

    Omega-6 fatty acids are types of fats. Some types are found in vegetable oils, including corn, evening primrose seed, safflower, and soybean oils. Other types of omega-6 fatty acids are found in black currant seed, borage seed, ...

  15. Comparison of lipid content and Fatty Acid composition in the edible meat of wild and cultured freshwater and marine fish and shrimps from china.

    PubMed

    Li, Guipu; Sinclair, Andrew J; Li, Duo

    2011-03-09

    The lipid content and fatty acid composition in the edible meat of twenty-nine species of wild and cultured freshwater and marine fish and shrimps were investigated. Both the lipid content and fatty acid composition of the species were specified due to their unique food habits and trophic levels. Most of the marine fish demonstrated higher lipid content than the freshwater fish, whereas shrimps had the lowest lipid content. All the marine fish and shrimps had much higher total n-3 PUFA than n-6 PUFA, while most of the freshwater fish and shrimps demonstrated much lower total n-3 PUFA than n-6 PUFA. This may be the biggest difference in fatty acid composition between marine and freshwater species. The cultured freshwater fish demonstrated higher percentages of total PUFA, total n-3 PUFA, and EPA + DHA than the wild freshwater fish. Two freshwater fish, including bighead carp and silver carp, are comparable to the marine fish as sources of n-3 PUFA.

  16. Depressive symptoms during pregnancy in relation to fish consumption and intake of n-3 polyunsaturated fatty acids.

    PubMed

    Sontrop, Jessica; Avison, William R; Evers, Susan E; Speechley, Kathy N; Campbell, M Karen

    2008-07-01

    An inverse association between depression and the n-3 fatty acids, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), primarily obtained from fish consumption, is observed in both observational and experimental research and is biologically plausible. Study objectives were to examine whether prenatal depressive symptoms were associated with lower intakes of fish or EPA+DHA. Pregnant women (n = 2394) completed a telephone interview between 10 and 22 weeks' gestation in London, Ontario, 2002-05. Depressive symptoms were measured using the Center for Epidemiologic Studies - Depression Scale (CES-D). Intakes of fish and EPA+DHA were measured using a validated food-frequency questionnaire. Sequential multiple regression was used to examine associations of depressive symptoms with intake of fish and EPA+DHA, respectively, while controlling for sociodemographic, health and lifestyle variables. The mean CES-D score was 9.9 (SD 8.0). Intake of EPA+DHA was dichotomised at the median value of 85 mg/day. Fish consumption and intake of EPA+DHA were not associated with prenatal depressive symptoms after adjustment for confounders; however, depressive symptoms were significantly higher for lower intakes of EPA+DHA among current smokers and women of single/separated/divorced marital status. The adjusted difference in CES-D scores between intake categories of EPA+DHA was -2.4 [95% CI -4.2, -0.4] for current smokers and -2.8 [95% CI -5.2, -0.4] for women of single marital status. Although pregnant women may be at risk for low concentrations of EPA and DHA, an association between low intakes of EPA+DHA and increased depressive symptoms was only observed among current smokers and women of single marital status.

  17. Fatty Acid composition of the muscle lipids of five fish species in işıklı and karacaören dam lake, Turkey.

    PubMed

    Citil, Ozcan Baris; Kalyoncu, Leyla; Kahraman, Oguzhan

    2014-01-01

    Total fatty acid composition of muscle lipids in some fish species (Cyprinus carpio (Işıklı Dam Lake), Tinca tinca (Işıklı Dam Lake), Scardinius erythrophthalmus (Işıklı Dam Lake), Cyprinus carpio (Karacaören Dam Lake), and Carassius carassius (Karacaören Dam Lake)) was determined by gas chromatography. Polyunsaturated fatty acids (PUFAs) of Cyprinus carpio (Işıklı Dam Lake) were found higher than PUFA of other species. Palmitic acid was the highest saturated fatty acid (SFA) in Tinca tinca (24.64%). Oleic acid was the highest monounsaturated fatty acid (MUFAs) in Cyprinus carpio (Işıklı Dam Lake) (19.25%). The most abundant polyunsaturated fatty acid in Scardinius erythrophthalmus was docosahexaenoic acid (DHA) (17.94%). Total ω3 fatty acid composition was higher than the total ω6 fatty acids of Cyprinus carpio in both dam lakes. ω3/ω6 rates in Cyprinus carpio (Işıklı Dam Lake), Tinca tinca, Scardinius erythrophthalmus, Cyprinus carpio (Karacaören), and Carassius carassius were 2.12, 1.19, 2.15, 2.87, and 2.82, respectively.

  18. Fatty acids and lymphocyte functions.

    PubMed

    Calder, P C; Yaqoob, P; Thies, F; Wallace, F A; Miles, E A

    2002-01-01

    The immune system acts to protect the host against pathogenic invaders. However, components of the immune system can become dysregulated such that their activities are directed against host tissues, so causing damage. Lymphocytes are involved in both the beneficial and detrimental effects of the immune system. Both the level of fat and the types of fatty acid present in the diet can affect lymphocyte functions. The fatty acid composition of lymphocytes, and other immune cells, is altered according to the fatty acid composition of the diet and this alters the capacity of those cells to produce eicosanoids, such as prostaglandin E2, which are involved in immunoregulation. A high fat diet can impair lymphocyte function. Cell culture and animal feeding studies indicate that oleic, linoleic, conjugated linoleic, gamma-linolenic, dihomo-gamma-linolenic, arachidonic, alpha-linolenic, eicosapentaenoic and docosahexaenoic acids can all influence lymphocyte proliferation, the production of cytokines by lymphocytes, and natural killer cell activity. High intakes of some of these fatty acids are necessary to induce these effects. Among these fatty acids the long chain n-3 fatty acids, especially eicosapentaenoic acid, appear to be the most potent when included in the human diet. Although not all studies agree, it appears that fish oil, which contains eicosapentaenoic acid, down regulates the T-helper 1-type response which is associated with chronic inflammatory disease. There is evidence for beneficial effects of fish oil in such diseases; this evidence is strongest for rheumatoid arthritis. Since n-3 fatty acids also antagonise the production of inflammatory eicosanoid mediators from arachidonic acid, there is potential for benefit in asthma and related diseases. Recent evidence indicates that fish oil may be of benefit in some asthmatics but not others.

  19. The fatty acid compositions of erythrocyte and plasma polar lipids in children with autism, developmental delay or typically developing controls and the effect of fish oil intake.

    PubMed

    Bell, John Gordon; Miller, Deborah; MacDonald, Donald J; MacKinlay, Elizabeth E; Dick, James R; Cheseldine, Sally; Boyle, Rose M; Graham, Catriona; O'Hare, Anne E

    2010-04-01

    The erythrocyte and plasma fatty acid compositions of children with autism were compared in a case-control study with typically developing (TD) children and with children showing developmental delay (DD). Forty-five autism subjects were age-matched with TD controls and thirty-eight with DD controls. Fatty acid data were compared using paired t tests. In addition, blood fatty acids from treatment-naive autism subjects were compared with autism subjects who had consumed fish oil supplements by two-sample t tests. Relatively few differences were seen between erythrocyte fatty acids in autism and TD subjects although the former had an increased arachidonic acid (ARA):EPA ratio. This ratio was also increased in plasma samples from the same children. No changes in n-3 fatty acids or ARA:EPA ratio were seen when comparing autism with DD subjects but some SFA and MUFA were decreased in the DD subjects, most notably 24 : 0 and 24 : 1, which are essential components of axonal myelin sheaths. However, if multiple comparisons are taken into account, and a stricter level of significance applied, most of these values would not be significant. Autism subjects consuming fish oil showed reduced erythrocyte ARA, 22 : 4n-6, 22 : 5n-6 and total n-6 fatty acids and increased EPA, 22 : 5n-3, 22 : 6n-3 and total n-3 fatty acids along with reduced n-6:n-3 and ARA:EPA ratios. Collectively, the autism subjects did not have an underlying phospholipid disorder, based on erythrocyte fatty acid compositions, although the increased ARA:EPA ratio observed suggested that an imbalance of essential highly unsaturated fatty acids may be present in a cohort of autism subjects.

  20. Effects of a fish oil containing lipid emulsion on plasma phospholipid fatty acids, inflammatory markers, and clinical outcomes in septic patients: a randomized, controlled clinical trial

    PubMed Central

    2010-01-01

    Introduction The effect of parenteral fish oil in septic patients is not widely studied. This study investigated the effects of parenteral fish oil on plasma phospholipid fatty acids, inflammatory mediators, and clinical outcomes. Methods Twenty-five patients with systemic inflammatory response syndrome or sepsis, and predicted to need parenteral nutrition were randomized to receive either a 50:50 mixture of medium-chain fatty acids and soybean oil or a 50:40:10 mixture of medium-chain fatty acids, soybean oil and fish oil. Parenteral nutrition was administrated continuously for five days from admission. Cytokines and eicosanoids were measured in plasma and in lipopolysaccharide-stimulated whole blood culture supernatants. Fatty acids were measured in plasma phosphatidylcholine. Results Fish oil increased eicosapentaenoic acid in plasma phosphatidylcholine (P < 0.001). Plasma interleukin (IL)-6 concentration decreased significantly more, and IL-10 significantly less, in the fish oil group (both P < 0.001). At Day 6 the ratio PO2/FiO2 was significantly higher in the fish oil group (P = 0.047) and there were fewer patients with PO2/FiO2 <200 and <300 in the fish oil group (P = 0.001 and P = 0.015, respectively). Days of ventilation, length of intensive care unit (ICU) stay and mortality were not different between the two groups. The fish oil group tended to have a shorter length of hospital stay (22 ± 7 vs. 55 ± 16 days; P = 0.079) which became significant (28 ± 9 vs. 82 ± 19 days; P = 0.044) when only surviving patients were included. Conclusions Inclusion of fish oil in parenteral nutrition provided to septic ICU patients increases plasma eicosapentaenoic acid, modifies inflammatory cytokine concentrations and improves gas exchange. These changes are associated with a tendency towards shorter length of hospital stay. Trials Registration Clinical Trials Registration Number ISRCTN89432944 PMID:20085628

  1. Pharmacopeial compliance of fish oil-containing parenteral lipid emulsion mixtures: Globule size distribution (GSD) and fatty acid analyses.

    PubMed

    Driscoll, David F; Ling, Pei-Ra; Bistrian, Bruce R

    2009-09-08

    Recently, the United States Pharmacopeia (USP) has established Chapter 729 with GSD limits for all lipid emulsions where the mean droplet size (MDS) must be <500 nm and the percent of fat larger than 5 microm (PFAT(5)) must be <0.05%, irrespective of the final lipid concentration. As well, the European Pharmacopeia (EP) Monograph no. 1352 specifies n3-fatty acid (FA) limits (EPA+DHA> or =45%; total n3 or T-n3> or =60%) for fish oil. We assessed compliance with USP physical and EP chemical limits of two fish oil-containing lipid emulsion mixtures. All lipid emulsions passed USP 729 limits. No samples tested had an MDS >302 nm or a PFAT(5) value >0.011%. Only one product met EP limits while the other failed. All emulsions tested were extremely fine dispersions and easily met USP 729 GSD limits. The n3-FAs profiles were lower in one, despite being labeled to contain 50% more fish oil than the other product. This latter finding suggests the n3-FA content of the fish oil source and/or the applied manufacturing processes in these products is different.

  2. Atopy risk in infants and children in relation to early exposure to fish, oily fish, or long-chain omega-3 fatty acids: a systematic review.

    PubMed

    Kremmyda, Lefkothea-Stella; Vlachava, Maria; Noakes, Paul S; Diaper, Norma D; Miles, Elizabeth A; Calder, Philip C

    2011-08-01

    There are two main families of polyunsaturated fatty acids (PUFAs), the n-6 and the n-3 families. It has been suggested that there is a causal relationship between n-6 PUFA intake and allergic disease, and there are biologically plausible mechanisms, involving eicosanoid mediators of the n-6 PUFA arachidonic acid, that could explain this. Fish and fish oils are sources of long-chain n-3 PUFAs and these fatty acids act to oppose the actions of n-6 PUFAs. Thus, it is considered that n-3 PUFAs will protect against atopic sensitization and against the clinical manifestations of atopy. Evidence to examine this has been acquired from epidemiologic studies investigating associations between fish intake in pregnancy, lactation, infancy, and childhood, and atopic outcomes in infants and children and from intervention studies with fish oil supplements in pregnancy, lactation, infancy, and childhood, and atopic outcomes in infants and children. All five epidemiological studies investigating the effect of maternal fish intake during pregnancy on atopic or allergic outcomes in infants/children of those pregnancies concluded protective associations. One study investigating the effects of maternal fish intake during lactation did not observe any significant associations. The evidence from epidemiological studies investigating the effects of fish intake during infancy and childhood on atopic outcomes in those infants or children is inconsistent, although the majority of the studies (nine of 14) showed a protective effect of fish intake during infancy or childhood on atopic outcomes in those infants/children. Fish oil supplementation during pregnancy and lactation or during infancy or childhood results in a higher n-3 PUFA status in the infants or children. Fish oil provision to pregnant women is associated with immunologic changes in cord blood and such changes may persist. Studies performed to date indicate that provision of fish oil during pregnancy may reduce sensitization to

  3. Field trial evaluation of the accumulation of omega-3 long chain polyunsaturated fatty acids in transgenic Camelina sativa: Making fish oil substitutes in plants

    PubMed Central

    Usher, Sarah; Haslam, Richard P.; Ruiz-Lopez, Noemi; Sayanova, Olga; Napier, Johnathan A.

    2015-01-01

    The global consumption of fish oils currently exceeds one million tonnes, with the natural de novo source of these important fatty acids forming the base of marine foodwebs. Here we describe the first field-based evaluation of a terrestrial source of these essential nutrients, synthesised in the seeds of transgenic Camelina sativa plants via the heterologous reconstitution of the omega-3 long chain polyunsaturated fatty acid biosynthetic pathway. Our data demonstrate the robust nature of this novel trait, and the feasibility of making fish oils in genetically modified crops. Moreover, to our knowledge, this is the most complex example of plant genetic engineering to undergo environmental release and field evaluation. PMID:27066395

  4. The influence of dietary fish oil vs. sunflower oil on the fatty acid composition of plasma cholesteryl-esters in healthy, adult cats.

    PubMed

    Plantinga, E A; Beynen, A C

    2003-12-01

    The question addressed was whether the fatty acid composition of plasma cholesteryl esters (CEs) in cats reflects the intake of fatty acids. Diets containing either fish oil or sunflower oil were fed to six healthy, adult cats in a cross-over trial. The dry cat foods contained approximately 18.5% crude fat, of which two-third was in the form of the variable oil. Blood samples were collected at the end of each 4-week feeding period, and the fatty acid composition of plasma CEs and plasma concentrations of lipoproteins were determined. Consumption of the diet with fish oil was associated with significantly greater proportions of eicosapentaenoic acid, arachidonic acid, alpha-linolenic acid, oleic acid, palmitic acid and myristic acid in plasma CEs. The intake of fish oil instead of sunflower oil reduced the percentage of linoleic acid in CEs. The plasma concentrations of total cholesterol, high-density lipoprotein cholesterol, phospholipids and triglycerides were not affected by fish oil vs. sunflower oil feeding.

  5. Demersal fishes from the Antarctic shelf and deep sea: A diet study based on fatty acid patterns and gut content analyses

    NASA Astrophysics Data System (ADS)

    Würzberg, Laura; Peters, Janna; Flores, Hauke; Brandt, Angelika

    2011-10-01

    The gut contents and fatty acid composition of 49 fish belonging to five Antarctic demersal families (Nototheniidae, Macrouridae, Channichtyidae, Bathydraconidae and Artedidraconidae) sampled at two stations at the Southern Ocean shelf and deep sea (600 and 2150 m) were analysed in order to identify their main food resource by linking trophic biomarkers with the dietary items found in the fish guts. Main food items of most fish analysed were amphipod crustaceans (e.g. in 63% of Trematomus bernachii guts) and polychaetes (e.g. in 80% of Bathydraco sp. guts), but other food items including fish, other crustaceans and gastropods were also ingested. The most prominent fatty acids found were 20:5( n-3), 16:0, 22:6( n-3) and 18:1( n-9). The results of gut content and fatty acid analyses indicate that all fish except the Channichthyidae share similar food resources irrespective of their depth distribution, i.e. benthic amphipods and polychaetes. A difference of the dietary spectrum can be observed with ontogenetic phases rather than between species, as high values of typical calanoid copepod marker fatty acids as 22:1( n-11) indicate that younger (smaller) specimens include more zooplankton in their diet.

  6. Statistical evaluation of fatty acid profile and cholesterol content in fish (common carp) lipids obtained by different sample preparation procedures.

    PubMed

    Spiric, Aurelija; Trbovic, Dejana; Vranic, Danijela; Djinovic, Jasna; Petronijevic, Radivoj; Matekalo-Sverak, Vesna

    2010-07-05

    Studies performed on lipid extraction from animal and fish tissues do not provide information on its influence on fatty acid composition of the extracted lipids as well as on cholesterol content. Data presented in this paper indicate the impact of extraction procedures on fatty acid profile of fish lipids extracted by the modified Soxhlet and ASE (accelerated solvent extraction) procedure. Cholesterol was also determined by direct saponification method, too. Student's paired t-test used for comparison of the total fat content in carp fish population obtained by two extraction methods shows that differences between values of the total fat content determined by ASE and modified Soxhlet method are not statistically significant. Values obtained by three different methods (direct saponification, ASE and modified Soxhlet method), used for determination of cholesterol content in carp, were compared by one-way analysis of variance (ANOVA). The obtained results show that modified Soxhlet method gives results which differ significantly from the results obtained by direct saponification and ASE method. However the results obtained by direct saponification and ASE method do not differ significantly from each other. The highest quantities for cholesterol (37.65 to 65.44 mg/100 g) in the analyzed fish muscle were obtained by applying direct saponification method, as less destructive one, followed by ASE (34.16 to 52.60 mg/100 g) and modified Soxhlet extraction method (10.73 to 30.83 mg/100 g). Modified Soxhlet method for extraction of fish lipids gives higher values for n-6 fatty acids than ASE method (t(paired)=3.22 t(c)=2.36), while there is no statistically significant difference in the n-3 content levels between the methods (t(paired)=1.31). The UNSFA/SFA ratio obtained by using modified Soxhlet method is also higher than the ratio obtained using ASE method (t(paired)=4.88 t(c)=2.36). Results of Principal Component Analysis (PCA) showed that the highest positive impact to

  7. Progress in Understanding Algal Bloom-Mediated Fish Kills: The Role of Superoxide Radicals, Phycotoxins and Fatty Acids

    PubMed Central

    Dorantes-Aranda, Juan José; Seger, Andreas; Mardones, Jorge I.; Nichols, Peter D.; Hallegraeff, Gustaaf M.

    2015-01-01

    Quantification of the role of reactive oxygen species, phycotoxins and fatty acids in fish toxicity by harmful marine microalgae remains inconclusive. An in vitro fish gill (from rainbow trout Oncorhynchus mykiss) assay was used to simultaneously assess the effect in superoxide dismutase, catalase and lactate dehydrogenase enzymatic activities caused by seven species of ichthyotoxic microalgae (Chattonella marina, Fibrocapsa japonica, Heterosigma akashiwo, Karenia mikimotoi, Alexandrium catenella, Karlodinium veneficum, Prymnesium parvum). Quantification of superoxide production by these algae was also performed. The effect of purified phycotoxins and crude extracts was compared, and the effect of fatty acids is discussed. The raphidophyte Chattonella was the most ichthyotoxic (gill cell viability down to 35%) and also the major producer of superoxide radicals (14 pmol cell-1 hr-1) especially after cell lysis. The raphidophyte Heterosigma and dinoflagellate Alexandrium were the least toxic and had low superoxide production, except when A. catenella was lysed (5.6 pmol cell-1 hr-1). Catalase showed no changes in activity in all the treatments. Superoxide dismutase (SOD) and lactate dehydrogenase exhibited significant activity increases of ≤23% and 51.2% TCC (total cellular content), respectively, after exposure to C. marina, but SOD showed insignificant changes with remaining algal species. A strong relationship between gill cell viability and superoxide production or superoxide dismutase was not observed. Purified brevetoxins PbTx-2 and -3 (from Karenia brevis, LC50 of 22.1 versus 35.2 μg mL-1) and karlotoxin KmTx-2 (from Karlodinium; LC50 = 380 ng mL-1) could almost entirely account for the fish killing activity by those two dinoflagellates. However, the paralytic shellfish toxins (PST) GTX1&4, C1&C2, and STX did not account for Alexandrium ichthyotoxicity. Only aqueous extracts of Alexandrium were cytotoxic (≤65% decrease of viability), whereas crude

  8. Progress in Understanding Algal Bloom-Mediated Fish Kills: The Role of Superoxide Radicals, Phycotoxins and Fatty Acids.

    PubMed

    Dorantes-Aranda, Juan José; Seger, Andreas; Mardones, Jorge I; Nichols, Peter D; Hallegraeff, Gustaaf M

    2015-01-01

    Quantification of the role of reactive oxygen species, phycotoxins and fatty acids in fish toxicity by harmful marine microalgae remains inconclusive. An in vitro fish gill (from rainbow trout Oncorhynchus mykiss) assay was used to simultaneously assess the effect in superoxide dismutase, catalase and lactate dehydrogenase enzymatic activities caused by seven species of ichthyotoxic microalgae (Chattonella marina, Fibrocapsa japonica, Heterosigma akashiwo, Karenia mikimotoi, Alexandrium catenella, Karlodinium veneficum, Prymnesium parvum). Quantification of superoxide production by these algae was also performed. The effect of purified phycotoxins and crude extracts was compared, and the effect of fatty acids is discussed. The raphidophyte Chattonella was the most ichthyotoxic (gill cell viability down to 35%) and also the major producer of superoxide radicals (14 pmol cell-1 hr-1) especially after cell lysis. The raphidophyte Heterosigma and dinoflagellate Alexandrium were the least toxic and had low superoxide production, except when A. catenella was lysed (5.6 pmol cell-1 hr-1). Catalase showed no changes in activity in all the treatments. Superoxide dismutase (SOD) and lactate dehydrogenase exhibited significant activity increases of ≤23% and 51.2% TCC (total cellular content), respectively, after exposure to C. marina, but SOD showed insignificant changes with remaining algal species. A strong relationship between gill cell viability and superoxide production or superoxide dismutase was not observed. Purified brevetoxins PbTx-2 and -3 (from Karenia brevis, LC50 of 22.1 versus 35.2 μg mL-1) and karlotoxin KmTx-2 (from Karlodinium; LC50 = 380 ng mL-1) could almost entirely account for the fish killing activity by those two dinoflagellates. However, the paralytic shellfish toxins (PST) GTX1&4, C1&C2, and STX did not account for Alexandrium ichthyotoxicity. Only aqueous extracts of Alexandrium were cytotoxic (≤65% decrease of viability), whereas crude

  9. Fish oil and mental health: the role of n-3 long-chain polyunsaturated fatty acids in cognitive development and neurological disorders.

    PubMed

    Assisi, Alessandro; Banzi, Rita; Buonocore, Carmela; Capasso, Filippo; Di Muzio, Valeria; Michelacci, Francesca; Renzo, Danila; Tafuri, Giovanni; Trotta, Francesco; Vitocolonna, Maria; Garattini, Silvio

    2006-11-01

    Epidemiological and experimental studies have indicated that consumption of more n-3 long-chain polyunsaturated fatty acids may reduce the risk for a variety of diseases, including cardiovascular, neurological and immunological disorders, diabetes and cancer. This article focuses on the role of marine n-3 long-chain polyunsaturated fatty acids in brain functions, including the development of the central nervous system and neurological disorders. An overview of the major animal studies and clinical trials is provided here, focusing on fatty acid supplementation during pregnancy and infancy, and prevention and management of Alzheimer's disease, schizophrenia, depression and attention deficit hyperactive disorder. Although an optimal balance in n-3/n-6 long-chain polyunsaturated fatty acid ratio is important for proper neurodevelopment and cognitive functions, results from randomized controlled trials are controversial and do not confirm any useful effect of supplementation on development of preterm and term infants. The relationship between fatty acid status and mental disorders is confirmed by reduced levels of n-3 long-chain polyunsaturated fatty acids in erythrocyte membranes of patients with central nervous system disorders. Nevertheless, there are very little data supporting the use of fish oil in those patients. The only way to verify whether n-3 long-chain polyunsaturated fatty acids are a potential therapeutic option in the management and prevention of mental disorders is to conduct a large definitive randomized controlled trials similar to those required for the licensing of any new pharmacological treatment.

  10. Plasma fatty acids in premature infants with hyperbilirubinemia: before-and-after nutrition support with fish oil emulsion.

    PubMed

    Klein, Catherine J; Havranek, Thomas G; Revenis, Mary E; Hassanali, Zahra; Scavo, Louis M

    2013-02-01

    Infants who are dependent on parenteral nutrition (PN) sometimes develop PN-associated cholestasis (PNAC). A compassionate use protocol, approved by the U.S. Food and Drug Administration and the institutional review board, guided enrollment of hospitalized infants with PNAC (<1 year of age, PN dependence for >3 weeks). Plasma concentrations of essential fatty acids were monitored before and after a soybean-based PN lipid, infused at 3 g/kg body weight/d, was replaced by an experimental fish oil-based intravenous fat emulsion (FO-IVFE) at 1.0 g/kg/d. All participants were born premature (n = 10; 20% male). At enrollment, infants were (mean ± SD) 86.5 ± 53.5 days of life and weighed 2.24 ± 0.87 kg; direct bilirubin was 5.5 ± 1.3 mg/dL. After treatment, blood concentrations significantly increased from baseline (P < .017) for circulating eicosapentaenoic acid (6.3 ± 3.0 to 147.8 ± 53.1 µg/mL), docosahexaenoic acid (20.7 ± 6.5 to 163.7 ± 43.4 µg/mL), pristanic acid (0.01 ± 0.01 to 0.17 ± 0.03 µg/mL), and phytanic acid (0.06 ± 0.03 to 0.64 ± 0.15 µg/mL). In contrast, total plasma ω-6 fatty acids (including linoleic acid) decreased (P < .017). The triene/tetraene ratio remained below the threshold value of 0.2 that defines ω-6 deficiency. No adverse effects were observed attributable to FO-IVFE. Discontinuation of FO-IVFE was typically due to infants (body weight 3.76 ± 1.68 kg) transitioning to enteral feeding rather than for resolution of hyperbilirubinemia (direct bilirubin 7.9 ± 4.8 mg/dL). These exploratory results suggest that FO-IVFE raises circulating ω-3 fatty acids in premature infants without development of ω-6 deficiency in the 8.3 ± 5.8-week time frame of this study.

  11. Eicosapentaenoic and docosahexaenoic acids enriched polyunsaturated fatty acids from the coastal marine fish of Bay of Bengal and their therapeutic value.

    PubMed

    Bera, Rabindranath; Dhara, Tushar K; Bhadra, Ranjan; Majumder, Gopal C; Sen, Parimal C

    2010-12-01

    Eicosapentaenoic acid (EPA)/docosahexaenoic acid (DHA) enriched polyunsaturated fatty acids (PUFA) significantly present in marine fish oil emerge as preventive agents for combating many health problems specially in chronic or metabolic disorders. The fish in the coastal area of Bay of Bengal has remained unexplored with respect to EPA/DHA enriched PUFA content in its oils, although it may be a potential source in harnessing the health benefit. In this study, seven varieties of the coastal fish were analysed for the content of EPA/DHA. The one locally known as lotte, (Harpadon nehereus) though has low content of total lipids, was found to have high EPA/DHA in its oil. The phospholipids rich fraction was extracted from the total fish oil. The EPA/DHA enriched PUFA was isolated to investigate the potential use for health benefits. EPA/DHA is found to act as protective agent against mercury poisoning studied in cell culture as well as in animal mode. It is found to be highly preventive in diabetes. The lotte is available in the coastal area of Bay of Bengal adjoining West Bengal, India in large scale and it is the first report showing EPA/DHA enriched PUFA in these fish oil that can be availed to harness in important health benefits.

  12. Successful high-level accumulation of fish oil omega-3 long-chain polyunsaturated fatty acids in a transgenic oilseed crop.

    PubMed

    Ruiz-Lopez, Noemi; Haslam, Richard P; Napier, Johnathan A; Sayanova, Olga

    2014-01-01

    Omega-3 (also called n-3) long-chain polyunsaturated fatty acids (≥C20; LC-PUFAs) are of considerable interest, based on clear evidence of dietary health benefits and the concurrent decline of global sources (fish oils). Generating alternative transgenic plant sources of omega-3 LC-PUFAs, i.e. eicosapentaenoic acid (20:5 n-3, EPA) and docosahexaenoic acid (22:6 n-3, DHA) has previously proved problematic. Here we describe a set of heterologous genes capable of efficiently directing synthesis of these fatty acids in the seed oil of the crop Camelina sativa, while simultaneously avoiding accumulation of undesirable intermediate fatty acids. We describe two iterations: RRes_EPA in which seeds contain EPA levels of up to 31% (mean 24%), and RRes_DHA, in which seeds accumulate up to 12% EPA and 14% DHA (mean 11% EPA and 8% DHA). These omega-3 LC-PUFA levels are equivalent to those in fish oils, and represent a sustainable, terrestrial source of these fatty acids. We also describe the distribution of these non-native fatty acids within C. sativa seed lipids, and consider these data in the context of our current understanding of acyl exchange during seed oil synthesis.

  13. Hepatic role in the storage and utilization of fish oil fatty acids in humans: studies on liver surgery patients.

    PubMed

    Sekine, K

    1995-03-01

    Fish oil fatty acids (FOFA) were analyzed in fresh liver tissue and in subcutaneous and omental adipose tissue obtained from 5 patients who underwent partial hepatectomy. FOFA were also determined in plasma from 5 patients and in 10 healthy subjects. There was a high content of FOFA in the liver phospholipid (PL) fraction (twice that in our previous autopsy study) suggesting that these surgery patients had a hepatic FOFA content of at least 25g. In plasma, FOFA was predominantly found in the PL of high density lipoprotein (HDL) and partly in the PL of other lipoproteins. Since these lipoproteins are produced by the liver, the present findings indicate the role of the liver not only in storage but also in the utilization of FOFA to form the biologically important surface PL component of circulating lipoproteins.

  14. Proximate composition and fatty acid signatures of selected forage fish species in Prince William Sound, Alaska. Exxon Valdez Oil Spill Restoration Project 95121. Final report

    SciTech Connect

    Worth, G.A.J.; Miculka, T.A.

    1997-12-31

    The proximate composition and fatty acid signatures of several prey species, which are important for sea birds and marine mammals in Prince William Sound, Alaska, were determined. Fish were collected as part of the SEA cruises in the fall of 1995 and were frozen immediately and then shipped to Galveston for analysis. Fatty acid signatures of herring, pollock, and tomcod were consistent with previously reported data, Three different species of sole (English, rock, and flathead) were also consistent with previously reported data for yellowfin sole. Detailed analyses of individual rock fish suggest that this species may exhibit trends in some specific fatty acids (20:5 n-3, 22:6 n-3) which differ from herring or pollock.

  15. Quantitative Approach for Incorporating Methylmercury Risks and Omega-3 Fatty Acid Benefits in Developing Species-Specific Fish Consumption Advice

    PubMed Central

    Ginsberg, Gary L.; Toal, Brian F.

    2009-01-01

    Background Despite general agreement about the toxicity of methylmercury (MeHg), fish consumption advice remains controversial. Concerns have been raised that negative messages will steer people away from fish and omega-3 fatty acid (FA) benefits. One approach is to provide advice for individual species that highlights beneficial fish while cautioning against riskier fish. Objectives Our goal in this study was to develop a method to quantitatively analyze the net risk/benefit of individual fish species based on their MeHg and omega-3 FA content. Methods We identified dose–response relationships for MeHg and omega-3 FA effects on coronary heart disease (CHD) and neurodevelopment. We used the MeHg and omega-3 FA content of 16 commonly consumed species to calculate the net risk/benefit for each species. Results Estimated omega-3 FA benefits outweigh MeHg risks for some species (e.g., farmed salmon, herring, trout); however, the opposite was true for others (swordfish, shark). Other species were associated with a small net benefit (e.g., flounder, canned light tuna) or a small net risk (e.g., canned white tuna, halibut). These results were used to place fish into one of four meal frequency categories, with the advice tentative because of limitations in the underlying dose–response information. Separate advice appears warranted for the neurodevelopmental risk group versus the cardiovascular risk group because we found a greater net benefit from fish consumption for the cardiovascular risk group. Conclusions This research illustrates a framework for risk/benefit analysis that can be used to develop categories of consumption advice ranging from “do not eat” to “unlimited,” with the caveat that unlimited may need to be tempered for certain fish (e.g., farm-raised salmon) because of other contaminants and end points (e.g., cancer risk). Uncertainties exist in the underlying dose–response relationships, pointing in particular to the need for more research on

  16. Changes in milk and plasma fatty acid profile in response to fish and soybean oil supplementation in dairy sheep.

    PubMed

    Tsiplakou, Eleni; Zervas, George

    2013-05-01

    An effective strategy for enhancing the bioactive fatty acids (FA) in sheep milk could be dietary supplementation with a moderate level of a combination of soybean oil with fish oil (SFO) without negative effects on milk yield and its chemical composition. Thus, the objective of this study was to determine the effects of a moderate forage diet supplementation with SFO on milk chemical composition and FA profile, as well as on plasma FA. Twelve dairy sheep were assigned to two homogenous sub-groups. Treatments involved a control diet without added oil, and a diet supplemented with 23.6 g soybean oil and 4.7 g fish oil per kg dry matter (DM) of the total ration. The results showed that SFO diet had no effect on milk yield and chemical composition. In blood plasma the concentrations of trans-11 C(18:2) (VA), C(18:2n-6), C(20:5n-3) (EPA) and C(22:6n-3) (DHA) were significantly higher while those of C(14:0), C(16:0) and C(18:0) were lower in sheep fed with SFO diet compared with control. The SFO supplementation of sheep diet increased the concentrations of VA, cis-9, trans-11 C(18:2) CLA, trans-10, cis-12, C(18:2) CLA, EPA, DHA, monounsaturated FA (MUFA), polyusaturated fatty acids (PUFA) and n-3 FA and decreased those of short chain FA (SCFA), medium chain FA (MCFA), the saturated/unsaturated ratio and the atherogenicity index value in milk compared with the control. In conclussion, the SFO supplementation at the above levels in a sheep diet, with moderate forage to concentrate ratio, improved the milk FA profile from human health standpoint without negative effects on its chemical composition.

  17. Fatty acid profiles, growth, and immune responses of neonatal lambs fed milk replacer and supplemented with fish oil or safflower oil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Diets supplemented with long-chain, n-3 (e.g., marine fish oil) polyunsaturated fatty acids (PUFA) have improved the health and performance of neonatal and growing animals. This study was conducted with lambs that were orphaned at approximately 1 day of age to determine whether supplementing milk re...

  18. A fish protein hydrolysate alters fatty acid composition in liver and adipose tissue and increases plasma carnitine levels in a mouse model of chronic inflammation

    PubMed Central

    2013-01-01

    Background There is growing evidence that fish protein hydrolysate (FPH) diets affect mitochondrial fatty acid metabolism in animals. The aim of the study was to determine if FPH could influence fatty acid metabolism and inflammation in transgene mice expressing human tumor necrosis factor alpha (hTNFα). Methods hTNFα mice (C57BL/6 hTNFα) were given a high-fat (23%, w/w) diet containing 20% casein (control group) or 15% FPH and 5% casein (FPH group) for two weeks. After an overnight fast, blood, adipose tissue, and liver samples were collected. Gene expression and enzyme activity was analysed in liver, fatty acid composition was analyzed in liver and ovarian white adipose tissue, and inflammatory parameters, carnitine, and acylcarnitines were analyzed in plasma. Results The n-3/n-6 fatty acid ratio was higher in mice fed the FPH diet than in mice fed the control diet in both adipose tissue and liver, and the FPH diet affected the gene expression of ∆6 and ∆9 desaturases. Mice fed this diet also demonstrated lower hepatic activity of fatty acid synthase. Concomitantly, a lower plasma INF-γ level was observed. Plasma carnitine and the carnitine precursor γ-butyrobetaine was higher in the FPH-group compared to control, as was plasma short-chained and medium-chained acylcarnitine esters. The higher level of plasma acetylcarnitine may reflect a stimulated mitochondrial and peroxisomal β-oxidation of fatty acids, as the hepatic activities of peroxisomal acyl-CoA oxidase 1 and mitochondrial carnitine palmitoyltransferase-II were higher in the FPH-fed mice. Conclusions The FPH diet was shown to influence hepatic fatty acid metabolism and fatty acid composition. This indicates that effects on fatty acid metabolism are important for the bioactivity of protein hydrolysates of marine origin. PMID:24098955

  19. Improved utilization of fish waste by anaerobic digestion following omega-3 fatty acids extraction.

    PubMed

    Nges, Ivo Achu; Mbatia, Betty; Björnsson, Lovisa

    2012-11-15

    Fish waste is a potentially valuable resource from which high-value products can be obtained. Anaerobic digestion of the original fish waste and the fish sludge remaining after enzymatic pre-treatment to extract fish oil and fish protein hydrolysate was evaluated regarding the potential for methane production. The results showed high biodegradability of both fish sludge and fish waste, giving specific methane yields of 742 and 828 m(3)CH(4)/tons VS added, respectively. However, chemical analysis showed high concentrations of light metals which, together with high fat and protein contents, could be inhibitory to methanogenic bacteria. The feasibility of co-digesting the fish sludge with a carbohydrate-rich residue from crop production was thus investigated, and a full-scale process outlined for converting odorous fish waste to useful products.

  20. Omega-3 fatty acids (fish-oil) and depression-related cognition in healthy volunteers.

    PubMed

    Antypa, N; Van der Does, A J W; Smelt, A H M; Rogers, R D

    2009-09-01

    Omega-3 polyunsaturated fatty acid (n-3 PUFA) supplementation may be beneficial in the treatment of several psychiatric disorders, including depression. A small number of studies have suggested that there may also be cognitive and mood effects in healthy samples. The purpose of the present study was to investigate the effects of n-3 PUFA on depression-relevant cognitive functioning in healthy individuals. Fifty-four healthy university students were randomized to receive either n-3 PUFA supplements or placebo for 4 weeks in a double-blind design. The test battery included measures of cognitive reactivity, attention, response inhibition, facial emotion recognition, memory and risky decision-making. Results showed few effects of n-3 PUFAs on cognition and mood states. The n-3 PUFA group made fewer risk-averse decisions than the placebo group. This difference appeared only in non-normative trials of the decision-making test, and was not accompanied by increased impulsiveness. N-3 PUFAs improved scores on the control/perfectionism scale of the cognitive reactivity measure. No effects were found on the other cognitive tasks and no consistent effects on mood were observed. The present findings indicate that n-3 PUFA supplementation may have a selective effect on risky decision making in healthy volunteers, which is unrelated to impulsiveness.

  1. Variation in fatty acid composition in muscle and heart tissues among species and populations of tropical fish in Lakes Victoria and Kyoga.

    PubMed

    Kwetegyeka, Justus; Mpango, George; Grahl-Nielsen, Otto

    2008-11-01

    The composition of the fatty acids in muscle and heart tissue of seven fish species, Nile perch (Lates niloticus), Nile tilapia (Oreochromis niloticus), marbled lungfish (Protopterus aethiopicus), African catfish (Clarias gariepinus), Lake Victoria squeaker (Synodontis victoriae), Bagrus docmas, and Tilapia zilli, from two locations in Lake Kyoga and one location in Lake Victoria was chemometrically determined. The muscle tissue was very lean, with an average of 3.4 mg total fatty acids per g tissue. The lipid level in the heart tissue was approximately five times higher than in the muscle tissue, with an average of 15.5 mg total fatty acids per g tissue. The n-3/n-6 level in the muscles was 1.7 +/- 0.7 and in the heart tissue 1.0 +/- 0.4. The muscle tissue contained an average of 46 mg cholesterol per 100 g, and the heart tissue contained about five times as much. Plasmalogens were detected in 7-8% of the amounts of total fatty acids in both muscle and heart tissue. The seven species had large differences (P < 0.05) in the fatty acid composition for both muscle and heart tissue. Within the species there were differences between fish from the populations in the three locations, although the population differences were smaller than the species differences. These differences appear to be controlled more closely by genetics/transcriptomics than by the diet.

  2. Effect of Supplementation of Fish and Canola Oil in the Diet on Milk Fatty Acid Composition in Early Lactating Holstein Cows

    PubMed Central

    Vafa, Toktam S.; Naserian, Abbas A.; Heravi Moussavi, Ali R.; Valizadeh, Reza; Mesgaran, Mohsen Danesh

    2012-01-01

    This study examined the effects of supplementation of fish oil and canola oil in the diet on milk yield, milk components and fatty acid composition of Holstein dairy cows in early lactation. Eight multiparous early lactation Holstein cows (42±12 DIM, 40±6 kg daily milk yield) were fed a total mixed ration supplemented with either 0% oil (Control), 2% fish oil (FO), 1% canola oil +1% fish oil (FOCO), or 2% canola oil (CO) according to a double 4×4 Latin square design. Each period lasted 3 wk; experimental analyses were restricted to the last week of each period. Supplemental oils were added to a basal diet which was formulated according to NRC (2001) and consisted of 20% alfalfa, 20% corn silage and 60% concentrate. Milk yield was similar between diets (p>0.05), but dry matter intake (DMI) was lower (p<0.05) in cows fed FO diet compared to other diets. Milk fat percentage and daily yield decreased (p<0.01) with the supplementation of fish and canola oil. The daily yield and percentage of milk protein, lactose and solids-not-fat (SNF) were not affected by diets (p>0.05). The proportion (g/100 g fatty acids) of short chain fatty acids (SCFA) decreased and polyunsaturated fatty acids (PUFA) increased (p<0.05) in milk of all cows fed diets supplemented with oil. The proportions of 6:0, 8:0, 10:0 12:0 and 14:0 fatty acids in milk fat decreased (p<0.01) for all diets supplemented with oil, but the proportions of 14:1, 16:0 and 16:1 fatty acids were not affected by diets (p>0.05). The proportion of trans(t)-18:1 increased (p<0.01) in milk fat of cows fed FO and FOCO diets, but CO diet had the highest proportion of cis(c)-11 18:1 (p<0.01). The concentration of t-10, c-12 18:2, c-9 t-11 18:2, 18:3, eicosapentaenoic acid (EPA, 20:5) and docosahexaenoic acid (DHA, 22:6) increased (p<0.05) in FO and FOCO diets in comparison with the other two diets. These data indicate that including fish oil in combination with canola oil significantly modifies the fatty acid composition of

  3. The efficacy of n-3 fatty acids DHA and EPA (fish oil) for perinatal depression.

    PubMed

    Jans, Linda A W; Giltay, Erik J; Van der Does, A J Willem

    2010-12-01

    Depressive symptoms are common during pregnancy and the post-partum period. Although essential n-3 PUFA may have beneficial effects on depression, it remains unclear whether they are also effective for perinatal depression. The purpose of the present study was to assess the efficacy of n-3 supplementation for perinatal depression, by performing a meta-analysis on currently available data. After a thorough literature search, we included seven randomised controlled trials in the meta-analysis, all with EPA and/or DHA supplementation. Most studies were judged to be of low-to-moderate quality, mainly due to small sample sizes and failure to adhere to Consolidated Standards of Reporting Trials guidelines. Some studies were not primarily designed to address perinatal depression. A total of 309 women on n-3 fatty acid supplementation were compared with 303 women on placebo treatment. n-3 Supplementation was not found to be significantly more effective than placebo at post-treatment with a pooled effect size (Hedges's g) of - 0.03 (95 % CI - 0.18, 0.13; P = 0.76) using a fixed-effects model. Heterogeneity was low-to-moderate (I2 = 30 %). In a subgroup analysis of three small studies of pregnant women with major depression, there was some indication of effectiveness (effect size 0.17; 95 % CI - 0.21, 0.55). In conclusion, the question of whether EPA and DHA administration is effective in the prevention or treatment of perinatal depression cannot be answered yet. Future research should focus on women who are clinically depressed (or at risk). The quality of research in this area needs to improve.

  4. New Bioactive Fatty Acids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Many oxygenated fatty acids are bioactive compounds. Nocardia cholesterolicum and Flavobacterium DS5 convert oleic acid to 10 hydroxy stearic acid and linoleic acid to 10-hydroxy-12(Z)-octadecanoic acid. Pseudomonas aeruginosa PR3 converts oleic acid to new compounds, 7,10-dihydroxy-8(E)-octadecen...

  5. New bioactive fatty acids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Many oxygenated fatty acids are bioactive compounds. Nocardia cholesterolicum and Flavobacterium DS5 convert oleic acid to 10 hydroxy stearic acid and linoleic acid to 10-hydroxy-12(Z)-octadecanoic acid. Pseudomonas aeruginosa PR3 converts oleic acid to the new compounds, 7,10-dihydroxy-8(E)-octad...

  6. Omega-3 Fatty Acids

    MedlinePlus

    Omega-3 fatty acids are used together with lifestyle changes (diet, weight-loss, exercise) to reduce the amount of triglycerides (a fat-like ... people with very high triglycerides. Omega-3 fatty acids are in a class of medications called antilipemic ...

  7. Fish Oil Supplementation and Fatty Acid Synthase Expression in the Prostate: A Randomized Controlled Trial

    DTIC Science & Technology

    2009-03-01

    randomized to receive three months of either fish oil capsules (treatment 1) or olive oil (placebo) capsules (treatment 2). Potential...sensitivity to fish oil, olive oil or green tea • Subject reported history of hemophilia, van Willebrands disease or other bleeding disorder, except

  8. Omega-3 fatty acid fish oil dietary supplements contain saturated fats and oxidized lipids that may interfere with their intended biological benefits.

    PubMed

    Mason, R Preston; Sherratt, Samuel C R

    2017-01-29

    Widely available fish oil dietary supplements (DS) may contain fats and oxidized lipids in addition to the beneficial omega-3 fatty acids (OM3FAs) for which they are purchased. Little is known about the potential biological effects of these oxidized lipids. The objective of this study was to assess the fatty acid content, oxidation products, and biological effects of leading fish oil DS available in the United States. Three top-selling fish oil DS in the US were included in this analysis. Fatty acid composition was measured using gas chromatography. Lipid oxidation (primary and secondary products) was measured by spectroscopy in both DS and a prescription OM3FA product. OM3FAs were also isolated and concentrated from DS and were tested for the ability to inhibit copper-induced oxidation of human small dense low-density lipoprotein particles (sdLDL) in vitro. Fish oil DS were found to contain more than 30 different fatty acids, including 10 to 14 different saturated species comprising up to 36% of the total fatty acid content. Levels of OM3FAs also varied widely among DS (33%-79%). Primary (peroxide), secondary (anisidine), and total oxidation products exceeded maximum levels established by international standards of quality in the DS but not the prescription OM3FA product. Oxidation of sdLDL was inhibited by >95% (P < 0.001) with non-oxidized forms of OM3FA but not with OM3FAs isolated from DS, which were a mixture of oxidized and non-oxidized OM3FAs. These data indicate that levels of saturated fat and oxidized OM3FAs found in common DS may interfere with their intended/potential biological benefits.

  9. Neurophysiologic measures of auditory function in fish consumers: associations with long chain polyunsaturated fatty acids and methylmercury

    PubMed Central

    Dziorny, Adam C.; Orlando, Mark S.; Strain, J. J.; Davidson, Philip W.; Myers, Gary J.

    2012-01-01

    Background Determining if associations exist between child neurodevelopment and environmental exposures, especially low level or background ones, is challenging and dependent upon being able to measure specific and sensitive endpoints. Psychometric or behavioral measures of CNS function have traditionally been used in such studies, but do have some limitations. Auditory neurophysiologic measures examine different nervous system structures and mechanisms, have fewer limitations, can more easily by quantified, and might be helpful testing additions. To date, their use in human epidemiological studies has been limited. We reviewed the use of auditory brainstem responses (ABR) and otoacoustic emissions (OAE) in studies designed to determine the relationship of exposures to methyl mercury (MeHg) and nutrients from fish consumption with neurological development. We included studies of experimental animals and humans in an effort to better understand the possible benefits and risks of fish consumption. Objectives We reviewed the literature on the use of ABR and OAE to measure associations with environmental exposures that result from consuming a diet high in fish. We focused specifically on long chain polyunsaturated fatty acids (LCPUFA) and MeHg. Methods We performed a comprehensive review of relevant studies using web-based search tools and appropriate search terms. Results Gestational exposure to both LCPUFA and MeHg has been reported to influence the developing auditory system. In experimental studies supplemental LCPUFA is reported to prolong ABR latencies and human studies also suggest an association. Experimental studies of acute and gestational MeHg exposure are reported to prolong ABR latencies and impair hair cell function. In humans, MeHg exposure is reported to prolong ABR latencies, but the impact on hair cell function is unknown. Conclusion The auditory system can provide objective measures and may be useful in studying exposures to nutrients and toxicants

  10. Metabolic programming mediated by an essential fatty acid alters body composition and survival skills of a marine fish

    PubMed Central

    Fuiman, Lee A.; Perez, Kestrel O.

    2015-01-01

    Metabolic programming occurs when variations in nutrition during a specific developmental window result in long-term metabolic effects. It has been studied almost exclusively in humans and other mammals but never in an ecological context. Here, we report metabolic programming and its functional consequences in a marine fish, red drum. We demonstrate that maternal provisioning of eggs with an essential fatty acid, docosahexaenoic acid (DHA), varies with DHA content of the maternal diet. When offspring are reared on a DHA-replete diet, whole-body DHA content of offspring depends upon the amount of DHA that was in the egg. We further demonstrate that whole-body DHA content is correlated with traits related to offspring fitness (escape responses, routine swimming, growth, and survival). DHA content of red drum eggs produced in nature is in the range where the effects of metabolic programming are most pronounced. Our findings indicate that during a brief developmental window, DHA plays a role in establishing the metabolic capacity for its own uptake or storage, with protracted and possibly permanent effects on ecologically important survival skills of individuals and important implications for dynamics of populations and food webs. PMID:26582018

  11. Metabolic programming mediated by an essential fatty acid alters body composition and survival skills of a marine fish.

    PubMed

    Fuiman, Lee A; Perez, Kestrel O

    2015-11-22

    Metabolic programming occurs when variations in nutrition during a specific developmental window result in long-term metabolic effects. It has been studied almost exclusively in humans and other mammals but never in an ecological context. Here, we report metabolic programming and its functional consequences in a marine fish, red drum. We demonstrate that maternal provisioning of eggs with an essential fatty acid, docosahexaenoic acid (DHA), varies with DHA content of the maternal diet. When offspring are reared on a DHA-replete diet, whole-body DHA content of offspring depends upon the amount of DHA that was in the egg. We further demonstrate that whole-body DHA content is correlated with traits related to offspring fitness (escape responses, routine swimming, growth, and survival). DHA content of red drum eggs produced in nature is in the range where the effects of metabolic programming are most pronounced. Our findings indicate that during a brief developmental window, DHA plays a role in establishing the metabolic capacity for its own uptake or storage, with protracted and possibly permanent effects on ecologically important survival skills of individuals and important implications for dynamics of populations and food webs.

  12. Omega-3 fatty acids and neuropsychiatric disorders.

    PubMed

    Young, Genevieve; Conquer, Julie

    2005-01-01

    Epidemiological evidence suggests that dietary consumption of the long chain omega-3 fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), commonly found in fish or fish oil, may modify the risk for certain neuropsychiatric disorders. As evidence, decreased blood levels of omega-3 fatty acids have been associated with several neuropsychiatric conditions, including Attention Deficit (Hyperactivity) Disorder, Alzheimer's Disease, Schizophrenia and Depression. Supplementation studies, using individual or combination omega-3 fatty acids, suggest the possibility for decreased symptoms associated with some of these conditions. Thus far, however, the benefits of supplementation, in terms of decreasing disease risk and/or aiding in symptom management, are not clear and more research is needed. The reasons for blood fatty acid alterations in these disorders are not known, nor are the potential mechanisms by which omega-3 fatty acids may function in normal neuronal activity and neuropsychiatric disease prevention and/or treatment. It is clear, however, that DHA is the predominant n-3 fatty acid found in the brain and that EPA plays an important role as an anti-inflammatory precursor. Both DHA and EPA can be linked with many aspects of neural function, including neurotransmission, membrane fluidity, ion channel and enzyme regulation and gene expression. This review summarizes the knowledge in terms of dietary omega-3 fatty acid intake and metabolism, as well as evidence pointing to potential mechanisms of omega-3 fatty acids in normal brain functioning, development of neuropsychiatric disorders and efficacy of omega-3 fatty acid supplementation in terms of symptom management.

  13. Mutant fatty acid desaturase

    DOEpatents

    Shanklin, John; Cahoon, Edgar B.

    2004-02-03

    The present invention relates to a method for producing mutants of a fatty acid desaturase having a substantially increased activity towards fatty acid substrates with chains containing fewer than 18 carbons relative to an unmutagenized precursor desaturase having an 18 carbon atom chain length substrate specificity. The method involves inducing one or more mutations in the nucleic acid sequence encoding the precursor desaturase, transforming the mutated sequence into an unsaturated fatty acid auxotroph cell such as MH13 E. coli, culturing the cells in the absence of supplemental unsaturated fatty acids, thereby selecting for recipient cells which have received and which express a mutant fatty acid desaturase with an elevated specificity for fatty acid substrates having chain lengths of less than 18 carbon atoms. A variety of mutants having 16 or fewer carbon atom chain length substrate specificities are produced by this method. Mutant desaturases produced by this method can be introduced via expression vectors into prokaryotic and eukaryotic cells and can also be used in the production of transgenic plants which may be used to produce specific fatty acid products.

  14. Polymorphisms in Genes Involved in Fatty Acid β-Oxidation Interact with Dietary Fat Intakes to Modulate the Plasma TG Response to a Fish Oil Supplementation

    PubMed Central

    Bouchard-Mercier, Annie; Rudkowska, Iwona; Lemieux, Simone; Couture, Patrick; Vohl, Marie-Claude

    2014-01-01

    A large inter-individual variability in the plasma triglyceride (TG) response to an omega-3 polyunsaturated fatty acid (n-3 PUFA) supplementation has been observed. The objective was to examine gene-diet interaction effects on the plasma TG response after a fish oil supplementation, between single-nucleotide polymorphisms (SNPs) within genes involved in fatty acid β-oxidation and dietary fat intakes. Two hundred and eight (208) participants were recruited in the greater Quebec City area. The participants completed a six-week fish oil supplementation (5 g fish oil/day: 1.9–2.2 g EPA and 1.1 g DHA). Dietary fat intakes were measured using three-day food records. SNPs within RXRA, CPT1A, ACADVL, ACAA2, ABCD2, ACOX1 and ACAA1 genes were genotyped using TAQMAN methodology. Gene-diet interaction effects on the plasma TG response were observed for SNPs within RXRA (rs11185660, rs10881576 and rs12339187) and ACOX1 (rs17583163) genes. For rs11185660, fold changes in RXRA gene expression levels were different depending on SFA intakes for homozygotes T/T. Gene-diet interaction effects of SNPs within genes involved in fatty acid β-oxidation and dietary fat intakes may be important in understanding the inter-individual variability in plasma TG levels and in the plasma TG response to a fish oil supplementation. PMID:24647074

  15. Oxidative stability of fish and algae oils containing long-chain polyunsaturated fatty acids in bulk and in oil-in-water emulsions.

    PubMed

    Frankel, Edwin N; Satué-Gracia, Teresa; Meyer, Anne S; German, J Bruce

    2002-03-27

    The oxidative stability of long-chain polyunsaturated fatty acid (PUFA) and docosahexaenoic acid (DHA)-containing fish and algae oils varies widely according to their fatty acid composition, the physical and colloidal states of the lipids, the contents of tocopherols and other antioxidants, and the presence and activity of transition metals. Fish and algal oils were initially much more stable to oxidation in bulk systems than in the corresponding oil-in-water emulsions. The oxidative stability of emulsions cannot, therefore, be predicted on the basis of stability data obtained with bulk long-chain PUFA-containing fish oils and DHA-containing algal oils. The relatively high oxidative stability of an algal oil containing 42% DHA was completely lost after chromatographic purification to remove tocopherols and other antioxidants. Therefore, this evidence does not support the claim that DHA-rich oils from algae are unusually stable to oxidation. Addition of ethylenediaminetetraacetic acid (EDTA) prevented oxidation of both fish and algal oil emulsions without added iron and at low iron:EDTA molar concentrations. EDTA, however, promoted the oxidation of the corresponding emulsions that contained high iron:EDTA ratios. Therefore, to be effective as a metal chelator, EDTA must be added at molar concentrations higher than that of iron to inhibit oxidation of foods containing long-chain PUFA from either fish or algae and fortified with iron.

  16. Trans Fatty Acids

    NASA Astrophysics Data System (ADS)

    Doyle, Ellin

    1997-09-01

    Fats and their various fatty acid components seem to be a perennial concern of nutritionists and persons concerned with healthful diets. Advice on the consumption of saturated, polyunsaturated, monounsaturated, and total fat bombards us from magazines and newspapers. One of the newer players in this field is the group of trans fatty acids found predominantly in partially hydrogenated fats such as margarines and cooking fats. The controversy concerning dietary trans fatty acids was recently addressed in an American Heart Association (AHA) science advisory (1) and in a position paper from the American Society of Clinical Nutrition/American Institute of Nutrition (ASCN/AIN) (2). Both reports emphasize that the best preventive strategy for reducing risk for cardiovascular disease and some types of cancer is a reduction in total and saturated fats in the diet, but a reduction in the intake of trans fatty acids was also recommended. Although the actual health effects of trans fatty acids remain uncertain, experimental evidence indicates that consumption of trans fatty acids adversely affects serum lipid levels. Since elevated levels of serum cholesterol and triacylglycerols are associated with increased risk of cardiovascular disease, it follows that intake of trans fatty acids should be minimized.

  17. Fish Oil Supplementation and Fatty Acid Synthase Expression in the Prostate: A Randomized Controlled Trial

    DTIC Science & Technology

    2010-03-20

    olive oil (placebo) capsules (treatment 2). Potential confounding variables are assessed through completion of a comprehensive diet history...reported allergy or sensitivity to fish oil, olive oil or green tea • Subject reported history of hemophilia, van Willebrands disease or other

  18. Effects of new fish oil derivative on fatty acid phospholipid-membrane pattern in a group of Crohn's disease patients.

    PubMed

    Belluzzi, A; Brignola, C; Campieri, M; Camporesi, E P; Gionchetti, P; Rizzello, F; Belloli, C; De Simone, G; Boschi, S; Miglioli, M

    1994-12-01

    Fish oil has been recently proposed as a possible effective treatment in inflammatory bowel disease (IBD); however, a lot of annoying side effects (ie, belching, halitosis, diarrhea, etc) affect patient compliance. We carried out a study of patient tolerance in a group of Crohn's disease (CD) patients with a new fish oil derivative consisting of 500-mg capsules of eicosapentaenoic-docosahexaenoic (EPA 40%-DHA 20%), a free fatty acid mixture (Purepa), and we also evaluated its incorporation into phospholipids, both in plasma and in red cell membranes. Five groups of 10 CD patients in remission received nine Purepa capsules daily in four different preparations (A: uncoated, B: coated, pH 5.5; C: coated, pH 5.5, 60 min time release; D: coated, pH 6.9) and 12 x 1-g capsules daily of a triglyceride preparation (Max-EPA, EPA 18%-DHA 10%), respectively. We coated three of the four Purepa preparations in order to delay the release of contents in an attempt to minimize the side effects. After six weeks of treatment, the group taking Purepa capsules, coated, pH 5.5, 60 min time release (group C) showed the best incorporation of EPA and DHA in red blood cell phospholipid membranes (EPA from 0.2 to 4.4%, DHA from 3.7 to 6.3%), and no side effects were registered, whereas in all other groups side effects were experienced in 50% or more of subjects. This new preparation will make it possible to treat patients for long periods.

  19. Dietary Fish Oil Can Change Sperm Parameters and Fatty Acid Profiles of Ram Sperm during Oil Consumption Period and after Removal of Oil Source

    PubMed Central

    Alizadeh, AliReza; Esmaeili, Vahid; Shahverdi, Abdolhossein; Rashidi, Ladan

    2014-01-01

    Objective The effects of dietary fish oil on semen quality and sperm fatty acid profiles during consumption of n-3 fatty acids as well as the persistency of fatty acids in ram’s sperm after removing dietary oil from the diet were investigated. Materials and Methods In this experimental study, we randomly assigned 9 Zandi rams to two groups (isoenergetic and isonitrogenous diets): control (CTR; n=5) and fish oil (FO; n=4) for 70 days with a constant level of vitamin E in both groups. Semen was collected at the first week and at the last week of the feeding period (phase 1). After the feeding period, all rams were fed a conventional diet and semen samples were collected one and two months after removal of FO (phase 2). The sperm parameters and fatty acid profiles were measured by computer assisted semen analyzer (CASA) and gas chromatography (GC), respectively. The completely randomized design was used and data were analyzed with SPSS version 16. Results Dietary FO had significant positive effects on all sperm quality and quantity parameters compared with the CTR during the feeding period (p<0.05). The positive effects of FO on sperm concentration and total sperm output were observed at one and two months after removal of FO (p<0.05), whereas other sperm parameters were unaffected. Before feeding, C14 (myristic acid), C16 (palmitic acid), C18 (stearic acid), C18:1 (oleic acid) and C22:6 (docosahexaenoic acid: DHA) were the primary sperm FA. FO in the diet increased sperm DHA, C14:0 and C18:0 during the feeding period (p<0.05). Conclusion The present study showed not only manipulation of ram sperm fatty acid profiles by dietary FO and sperm parameters during the feeding period, but also the persistency of unique effects of dietary omega-3 fatty acids up to two months following its removal from the diet. Also, we recommend that sperm fatty acid profiles should be comprehensively analyzed and monitored. PMID:24611147

  20. Randomized controlled trial examining the effects of fish oil and multivitamin supplementation on the incorporation of n-3 and n-6 fatty acids into red blood cells.

    PubMed

    Pipingas, Andrew; Cockerell, Robyn; Grima, Natalie; Sinclair, Andrew; Stough, Con; Scholey, Andrew; Myers, Stephen; Croft, Kevin; Sali, Avni; Pase, Matthew P

    2014-05-14

    The present randomized, placebo-controlled, double-blind, parallel-groups clinical trial examined the effects of fish oil and multivitamin supplementation on the incorporation of n-3 and n-6 fatty acids into red blood cells. Healthy adult humans (n = 160) were randomized to receive 6 g of fish oil, 6 g of fish oil plus a multivitamin, 3 g of fish oil plus a multivitamin or a placebo daily for 16 weeks. Treatment with 6 g of fish oil, with or without a daily multivitamin, led to higher eicosapentaenoic acid (EPA) composition at endpoint. Docosahexaenoic acid (DHA) composition was unchanged following treatment. The long chain LC n-3 PUFA index was only higher, compared to placebo, in the group receiving the combination of 6 g of fish oil and the multivitamin. Analysis by gender revealed that all treatments increased EPA incorporation in females while, in males, EPA was only significantly increased by the 6 g fish oil multivitamin combination. There was considerable individual variability in the red blood cell incorporation of EPA and DHA at endpoint. Gender contributed to a large proportion of this variability with females generally showing higher LC n-3 PUFA composition at endpoint. In conclusion, the incorporation of LC n-3 PUFA into red blood cells was influenced by dosage, the concurrent intake of vitamin/minerals and gender.

  1. In vitro digestion of fish oils rich in n-3 polyunsaturated fatty acids studied in emulsion and at the oil-water interface.

    PubMed

    Marze, Sébastien; Meynier, Anne; Anton, Marc

    2013-02-01

    The in vitro digestion of β-lactoglobulin stabilized emulsions rich in the n-3 polyunsaturated fatty acids, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), was studied using several physicochemical techniques. Artificial media for the mouth, stomach and small intestine were used in a sequential static in vitro digestion method. Different sizing techniques were compared to follow the droplet size during the digestion steps, including diffusing wave spectroscopy (DWS) which allowed direct measurements on undiluted emulsions. Titration of fatty acids confirmed that the digestion of such emulsified fish oils is partial. The study of the digestion at the oil-water interface using tensiometry revealed specific affinities between lipids and proteins. These could explain the emulsion and the single droplet lipolysis. Nevertheless, by comparing our results to a previous study on fish oil lipolysis, we identified two other important factors. Those were the aqueous solubility and the rate of hydrolysis of the individual fatty acids, the emulsion with the most soluble and hydrolysable ones being digested more quickly.

  2. Effects of dietary linseed, evening primrose or fish oils on fatty acid and prostaglandin E2 contents in the rat livers and 7,12-dimethylbenz[a]anthracene-induced tumours.

    PubMed

    Jelińska, Małgorzata; Tokarz, Andrzej; Oledzka, Regina; Czorniuk-Sliwa, Alicja

    2003-04-17

    We examined the influence of diets supplemented with fish and vegetable oils on fatty acid and prostaglandin E2 (PGE2) contents in livers of non-7,12-dimethylbenz[a]anthracene (DMBA)- and DMBA-treated rats, and in DMBA-induced tumours. Decreased concentrations of saturated fatty acids and increased unsaturated fatty acid levels were observed in liver phospholipids of rats fed these oils. There was a marked difference in the concentrations of fatty acids found in the tumours and those present in liver lipids. Oleic acid was the main unsaturated fatty acid found in the tumour tissue. Both liver and tumour PGE2 contents were clearly correlated to the diet. The PGE2 concentrations were decreased in livers and tumours of rats fed fish (FO) and linseed oils (LO).

  3. Short communication: The effect of substituting fish oil in dairy cow diets with docosahexaenoic acid-micro algae on milk composition and fatty acids profile.

    PubMed

    Abughazaleh, A A; Potu, R B; Ibrahim, S

    2009-12-01

    The effects of substituting fish oil (FO) with docosahexaenoic acid (DHA)-micro algae on milk chemical and fatty acid composition were examined in this study. Twenty-four Holstein cows in mid lactation grazing on an alfalfa-grass based pasture were divided into 4 treatment groups (6 cows/treatment) and supplemented with 7 kg/d grain mix plus 350 g of soybean oil and one of the following: 1) 150 g of FO, 2) 100 g of FO plus 50 g of algae, 3) 50 g of FO plus 100 g of algae, or 4) 150 g of algae. Cows were fed treatment diets for 3 wk, and milk samples were collected from each cow during the last 3 d of the study. Milk production (17.96, 17.56, 17.55, and 19.26 kg/d for treatment diets 1 to 4, respectively), milk fat percentages (3.17, 3.49, 3.74, and 3.43%), and milk protein percentages (3.35, 3.50, 3.71, and 3.42%) were similar between treatment diets. Concentrations (g/100 g of fatty acids) of milk cis-9 trans-11 (c9t11) conjugated linoleic acid (CLA; 3.41, 3.69, 4.47, and 4.21 for treatment diets 1 to 4, respectively) and vaccenic acid (11.80, 12.83, 13.87, and 13.53) were similar between treatment diets. Results of this study suggest that DHA-micro algae can partially or fully substitute FO in a cow's diet without any adverse effects on milk production, milk composition, or milk c9t11 CLA content. The DHA-micro algae may be used as a viable alternative for FO in cow's diet to modify rumen biohydrogenation to increase milk c9t11 CLA content.

  4. Analysis of fatty acids in 12 Mediterranean fish species: advantages and limitations of a new GC-FID/GC-MS based technique.

    PubMed

    Nevigato, Teresina; Masci, Maurizio; Orban, Elena; Di Lena, Gabriella; Casini, Irene; Caproni, Roberto

    2012-07-01

    When fatty acids in fish are analyzed, results in percentage form (profile analysis) are mostly reported. However, the much more useful results expressed as mg/100 g (absolute analysis) is the main information required. Absolute methods based on calibration curves are of good accuracy but with a high degree of complexity if applied to a great number of analytes. Procedures based on the sequence profile analysis-total FA determination-absolute analysis may be suitable for routine use, but suffer from a number of uncertainties that have never been really resolved. These uncertainties are mainly related to the profile analysis. In fact, most profile analyses reported in the literature disagree about the number and type of fatty acids monitored as well as about the total percentage to assign to their sum so leading to possible inaccuracies; in addition the instrumental response factor for all FAME (fatty acid methyl esters) is often considered as a constant, but this is not exactly true. In this work, a set of 24 fatty acids was selected and studied on 12 fish species in the Mediterranean area (variable in lipid content and month of sampling): in our results, and in these species, this set constitutes, on average, 90 ± 3 % of the total fatty acid content. Moreover the error derived from the assumption of a unique response factor was investigated. Two different detection techniques (GC-FID and GC-MS) together with two capillary columns (different in length and polarity) were used in order to acquire complementary data on the same sample. With the protocol here proposed absolute analyses on the 12 cited species are easily achievable by the total FA determination procedure. The accuracy of this approach is good in general, but in some cases (DHA for example) is lower than the accuracy of calibration-based methods. The differences were evaluated on a case by case basis.

  5. THE COMPETITION BETWEEN METHYLMERCURY RISKS AND OMEGA-3 POLYUNSATURATED FATTY ACID BENEFITS: A REVIEW OF CONFLICTING EVIDENCE ON FISH CONSUMPTION AND CARDIOVASCULAR HEALTH.

    SciTech Connect

    LIPFERT, F.W.; SULLIVAN, T.M.

    2006-10-31

    The health concerns of methylmercury (MeHg) contamination of seafood have recently been extended to include cardiovascular effects, especially premature mortality. Although the fatty acids (fish oils) found in most species are thought to confer a wide range of health benefits, especially to the cardiovascular system, some epidemiological studies have suggested that such benefits may be offset by adverse effects of MeHg. This comprehensive review is based on searches of the NIH MEDLINE database and compares and contrasts 145 published studies involving cardiovascular effects and exposures to mercury and other fish contaminants, intake of fatty acids including dietary supplements of fish oils, and rates of seafood consumption. Since few of these studies include adequate simultaneous measurements of all of these potential predictor variables, we summarized their effects separately, across the available studies of each, and then drew conclusions based on the aggregated findings. It is important to realize that studies of seafood consumption encompass the net effects of all of these predictor variables, but that seafood intake studies are rarely supported by human biomarker measurements that reflect the actual uptake of harmful as well as beneficial fish ingredients. As a result, exposure measurement error is an issue when comparing studies and predictor variables. It is also possible that the observed benefits of eating fish may relate more to the characteristics of the consumers than to those of the fish. We found the evidence for adverse cardiovascular effects of MeHg to be sparse and unconvincing. Studies of cardiovascular mortality show net benefits, and the findings of adverse effects are mainly limited to studies Finland at high mercury exposure levels. By contrast, a very consistent picture of beneficial effects is seen for fatty acids, after recognizing the effects of exposure uncertainties and the presence of threshold effects. Studies based on measured

  6. A Comparative Assessment of Arsenic Risks and the Nutritional Benefits of Fish Consumption in Kuwait: Arsenic Versus Omega 3-Fatty Acids.

    PubMed

    Husain, Adnan; Kannan, Kurunthachalam; Chan, Hing Man; Laird, Brian; Al-Amiri, Hanan; Dashti, Basma; Sultan, Anwar; Al-Othman, Amani; Mandekar, Bedraya

    2017-01-01

    Inorganic and organic forms of arsenic (As), as well as omega-3 fatty acids were measured in 578 fish/seafood samples that belong to 15 species of commonly consumed seafood in Kuwait. Arsenic speciation data, with the toxicological profile of inorganic arsenic (iAs) and fish consumption rates were applied in a probabilistic risk assessment to estimate the risk from exposure to iAs. The nutritional benefits of omega-3-fatty acid levels in various species of fish were taken into consideration. Results showed that the mean daily intake of iAs through fish consumption among the Kuwaiti population was 0.058 µg/kg/day, and the 95th percentile was 0.15 µg/kg/day. Although the mean intake level did not exceed the incremental lifetime cancer risk (ILCR) at 1 × 10(-4), the 95th percentile of iAs intake showed an ILCR of 2.7 × 10(-4). Kuwaiti children (aged 6-12 years) were found to have a higher mean intake of iAs at 0.10 µg/kg/day with 68% of children in this category, exceeding the risk specific dose associated with an ILCR of 1 × 10(-4). The fish species, hammor (grouper; Epinephelus coioides), is the top contributor to iAs intake, and tuna is the major source of omega 3-fatty acids for the Kuwaiti population.

  7. Handling and Storage Procedures Have Variable Effects on Fatty Acid Content in Fishes with Different Lipid Quantities

    PubMed Central

    Rudy, Martina D.; Kainz, Martin J.; Graeve, Martin; Colombo, Stefanie M.

    2016-01-01

    It is commonly assumed that the most accurate data on fatty acid (FA) contents are obtained when samples are analyzed immediately after collection. For logistical reasons, however, this is not always feasible and samples are often kept on ice or frozen at various temperatures and for diverse time periods. We quantified temporal changes of selected FA (μg FAME per mg tissue dry weight) from 6 fish species subjected to 2 handling and 3 storage methods and compared them to FA contents from muscle tissue samples that were processed immediately. The following species were investigated: Common Carp (Cyprinus carpio), Freshwater Drum (Aplodinotus grunniens), Channel Catfish (Ictalurus punctatus), Antarctic Eelpout (Pachycara brachycephalum), Rainbow Trout (Oncorhynchus mykiss) and Arctic Charr (Salvelinus alpinus). The impact of storage method and duration of storage on FA contents were species-specific, but not FA-specific. There was no advantage in using nitrogen gas for tissue samples held on ice for 1 week; however, holding tissue samples on ice for 1 week resulted in a loss of FA in Charr. In addition, most FA in Trout and Charr decreased in quantity after being stored between 3 and 6 hours on ice. Freezer storage temperature (-80 or -20°C) also had a significant effect on FA contents in some species. Generally, we recommend that species with high total lipid content (e.g. Charr and Trout) should be treated with extra caution to avoid changes in FA contents, with time on ice and time spent in a freezer emerging as significant factors that changed FA contents. PMID:27479304

  8. Omega 3 fatty acids and the eye.

    PubMed

    Cakiner-Egilmez, Tulay

    2008-01-01

    The health benefits of fish oil have been known for decades. Most of the health benefits of fish oil can be attributed to the presence of omega-3 essential fatty acids such as docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA). Clinical studies have suggested that DHA and EPA lower triglycerides; slow the buildup of atherosclerotic plaques; lower blood pressure slightly; as well as reduce the risk of death, heart attack, and arrhythmias. Studies have also shown that omega-3 fatty acids may slow the progression of vision loss from AMD and reverse the signs of dry eye syndrome.

  9. Characterisation of hexane-degrading microorganisms in a biofilter by stable isotope-based fatty acid analysis, FISH and cultivation.

    PubMed

    Friedrich, Michèle M; Lipski, André

    2010-01-01

    The hexane-degrading bacterial community of a biofilter was characterised by a combination of stable isotope-based phospholipid fatty acid analyses, fluorescence in situ hybridisation and cultivation. About 70 bacterial strains were isolated from a full-scale biofilter used for treatment of hexane containing waste gas of an oil mill. The isolation approach led to 16 bacterial groups, which were identified as members of the Alpha-, Beta- and Gammaproteobacteria, Actinobacteria and Firmicutes. Three groups showed good growth on hexane as the sole source of carbon. These groups were allocated to the genera Gordonia and Sphingomonas and to the Nevskia-branch of the Gammaproteobacteria. Actively degrading populations in the filter material were characterised by incubation of filter material samples with deuterated hexane and subsequent phospholipid fatty acid analysis. Significant labelling of the fatty acids 16:1 cis10, 18:1 cis9 and 18:0 10methyl affiliated the hexane-degrading activity of the biofilter with the isolates of the genus Gordonia. In vitro growth on hexane and in situ labelling of characteristic fatty acids confirmed the central role of these organisms in the hexane degradation within the full-scale biofilter.

  10. Changes in tissue lipid and fatty acid composition of farmed rainbow trout in response to dietary camelina oil as a replacement of fish oil.

    PubMed

    Hixson, Stefanie M; Parrish, Christopher C; Anderson, Derek M

    2014-01-01

    Camelina oil (CO) replaced 50 and 100 % of fish oil (FO) in diets for farmed rainbow trout (initial weight 44 ± 3 g fish(-1)). The oilseed is particularly unique due to its high lipid content (40 %) and high amount of 18:3n-3 (α-linolenic acid, ALA) (30 %). Replacing 100 % of fish oil with camelina oil did not negatively affect growth of rainbow trout after a 12-week feeding trial (FO = 168 ± 32 g fish(-1); CO = 184 ± 35 g fish(-1)). Lipid and fatty acid profiles of muscle, viscera and skin were significantly affected by the addition of CO after 12 weeks of feeding. However, final 22:6n-3 [docosahexaenoic acid (DHA)] and 20:5n-3 [eicosapentaenoic acid (EPA)] amounts (563 mg) in a 75 g fillet (1 serving) were enough to satisfy daily DHA and EPA requirements (250 mg) set by the World Health Organization. Other health benefits include lower SFA and higher MUFA in filets fed CO versus FO. Compound-specific stable isotope analysis (CSIA) confirmed that the δ(13)C isotopic signature of DHA in CO fed trout shifted significantly compared to DHA in FO fed trout. The shift in DHA δ(13)C indicates mixing of a terrestrial isotopic signature compared to the isotopic signature of DHA in fish oil-fed tissue. These results suggest that ~27 % of DHA was synthesized from the terrestrial and isotopically lighter ALA in the CO diet rather than incorporation of DHA from fish meal in the CO diet. This was the first study to use CSIA in a feeding experiment to demonstrate synthesis of DHA in fish.

  11. Discovery of essential fatty acids

    PubMed Central

    Spector, Arthur A.; Kim, Hee-Yong

    2015-01-01

    Dietary fat was recognized as a good source of energy and fat-soluble vitamins by the first part of the 20th century, but fatty acids were not considered to be essential nutrients because they could be synthesized from dietary carbohydrate. This well-established view was challenged in 1929 by George and Mildred Burr who reported that dietary fatty acid was required to prevent a deficiency disease that occurred in rats fed a fat-free diet. They concluded that fatty acids were essential nutrients and showed that linoleic acid prevented the disease and is an essential fatty acid. The Burrs surmised that other unsaturated fatty acids were essential and subsequently demonstrated that linolenic acid, the omega-3 fatty acid analog of linoleic acid, is also an essential fatty acid. The discovery of essential fatty acids was a paradigm-changing finding, and it is now considered to be one of the landmark discoveries in lipid research. PMID:25339684

  12. Omega-3 Polyunsaturated Fatty Acid (Fish Oil) Supplementation and the Prevention of Clinical Cardiovascular Disease: A Science Advisory From the American Heart Association.

    PubMed

    Siscovick, David S; Barringer, Thomas A; Fretts, Amanda M; Wu, Jason H Y; Lichtenstein, Alice H; Costello, Rebecca B; Kris-Etherton, Penny M; Jacobson, Terry A; Engler, Mary B; Alger, Heather M; Appel, Lawrence J; Mozaffarian, Dariush

    2017-03-13

    Multiple randomized controlled trials (RCTs) have assessed the effects of supplementation with eicosapentaenoic acid plus docosahexaenoic acid (omega-3 polyunsaturated fatty acids, commonly called fish oils) on the occurrence of clinical cardiovascular diseases. Although the effects of supplementation for the primary prevention of clinical cardiovascular events in the general population have not been examined, RCTs have assessed the role of supplementation in secondary prevention among patients with diabetes mellitus and prediabetes, patients at high risk of cardiovascular disease, and those with prevalent coronary heart disease. In this scientific advisory, we take a clinical approach and focus on common indications for omega-3 polyunsaturated fatty acid supplements related to the prevention of clinical cardiovascular events. We limited the scope of our review to large RCTs of supplementation with major clinical cardiovascular disease end points; meta-analyses were considered secondarily. We discuss the features of available RCTs and provide the rationale for our recommendations. We then use existing American Heart Association criteria to assess the strength of the recommendation and the level of evidence. On the basis of our review of the cumulative evidence from RCTs designed to assess the effect of omega-3 polyunsaturated fatty acid supplementation on clinical cardiovascular events, we update prior recommendations for patients with prevalent coronary heart disease, and we offer recommendations, when data are available, for patients with other clinical indications, including patients with diabetes mellitus and prediabetes and those with high risk of cardiovascular disease, stroke, heart failure, and atrial fibrillation.

  13. Fish oil and 3-thia fatty acid have additive effects on lipid metabolism but antagonistic effects on oxidative damage when fed to rats for 50 weeks.

    PubMed

    Vigerust, Natalya Filipchuk; Cacabelos, Daniel; Burri, Lena; Berge, Kjetil; Wergedahl, Hege; Christensen, Bjørn; Portero-Otin, Manuel; Viste, Asgaut; Pamplona, Reinald; Berge, Rolf Kristian; Bjørndal, Bodil

    2012-11-01

    The 3-thia fatty acid tetradecylthioacetic acid (TTA) is a synthetic modified fatty acid, which, similar with dietary fish oil (FO), influences the regulation of lipid metabolism, the inflammatory response and redox status. This study was aimed to penetrate the difference in TTA's mode of action compared to FO in a long-term experiment (50 weeks of feeding). Male Wistar rats were fed a control, high-fat (25% w/v) diet or a high-fat diet supplemented with either TTA (0.375% w/v) or FO (10% w/v) or their combination. Plasma fatty acid composition, hepatic lipids and expression of relevant genes in the liver and biomarkers of oxidative damage to protein were assessed at the end point of the experiment. Both supplements given in combination demonstrated an additive effect on the decrease in plasma cholesterol levels. The FO diet alone led to removal of plasma cholesterol and a concurrent cholesterol accumulation in liver; however, with TTA cotreatment, the hepatic cholesterol level was significantly reduced. Dietary FO supplementation led to an increased oxidative damage, as seen by biomarkers of protein oxidation and lipoxidation. Tetradecylthioacetic acid administration reduced the levels of these biomarkers confirming its protective role against lipoxidation and protein oxidative damage. Our findings explore the lipid reducing effects of TTA and FO and demonstrate that these bioactive dietary compounds might act in a different manner. The experiment confirms the antioxidant capacity of TTA, showing an improvement in FO-induced oxidative stress.

  14. Benefits and risks of fish consumption Part I. A quantitative analysis of the intake of omega-3 fatty acids and chemical contaminants.

    PubMed

    Domingo, José L; Bocio, Ana; Falcó, Gemma; Llobet, Juan M

    2007-02-12

    In recent years, and based on the importance of fish as a part of a healthy diet, there has been a notable promotion of fish consumption. However, the balance between health benefits and risks, due to the intake of chemical contaminants, is not well characterized. In the present study, edible samples of 14 marine species were analyzed for the concentrations of omega-3 fatty acids, as well as a number of metals and organic pollutants. Daily intakes were specifically determined for a standard adult of 70kg, and compared with the tolerable/admissible intakes of the pollutants, if available. Salmon, mackerel, and red mullet were the species showing the highest content of omega-3 fatty acids. The daily intakes of cadmium, lead, and mercury through fish consumption were 1.1, 2.0, and 9.9microg, respectively. Dioxins and furans plus dioxin-like polychlorinated biphenyls (PCBs) intake was 38.0pg WHO-TEQ/day, whereas those of polybrominated diphenyl ethers (PBDEs), polychlorinated diphenyl ethers (PCDEs), polychlorinated naphthalenes (PCNs) and hexachlorobenzene (HCB) were 20.8, 39.4, 1.53, and 1.50ng/day, respectively. In turn, the total intake of 16 analyzed polycyclic aromatic hydrocarbons (PAHs) was 268ng/day. The monthly fish consumption limits for human health endpoints based on the intake of these chemical contaminants were calculated for a 70 years exposure. In general terms, most marine species here analyzed should not mean adverse health effects for the consumers. However, the type of fish, the frequency of consumption, and the meal size are essential issues for the balance of the health benefits and risks of regular fish consumption.

  15. Omega-3 fatty acids and cardiovascular disease.

    PubMed

    Jain, A P; Aggarwal, K K; Zhang, P-Y

    2015-01-01

    Cardioceuticals are nutritional supplements that contain all the essential nutrients including vitamins, minerals, omega-3-fatty acids and other antioxidants like a-lipoic acid and coenzyme Q10 in the right proportion that provide all round protection to the heart by reducing the most common risks associated with the cardiovascular disease including high low-density lipoprotein cholesterol and triglyceride levels and factors that contribute to coagulation of blood. Omega-3 fatty acids have been shown to significantly reduce the risk for sudden death caused by cardiac arrhythmias and all-cause mortality in patients with known coronary heart disease. Omega-3 fatty acids are also used to treat hyperlipidemia and hypertension. There are no significant drug interactions with omega-3 fatty acids. The American Heart Association recommends consumption of two servings of fish per week for persons with no history of coronary heart disease and at least one serving of fish daily for those with known coronary heart disease. Approximately 1 g/day of eicosapentaenoic acid plus docosahexaenoic acid is recommended for cardio protection. Higher dosages of omega-3 fatty acids are required to reduce elevated triglyceride levels (2-4 g/day). Modest decreases in blood pressure occur with significantly higher dosages of omega-3 fatty acids.

  16. Comparison of separations of fatty acids from fish products using a 30-m Supelcowax-10 and a 100-m SP-2560 column.

    PubMed

    Santercole, Viviana; Delmonte, Pierluigi; Kramer, John K G

    2012-03-01

    Commercial fish oils and foods containing fish may contain trans and/or isomerized fatty acids (FA) produced during processing or as part of prepared foods. The current American Oil Chemists' Society (AOCS) official method for marine oils (method Ce 1i-07) is based on separation by use of poly(ethylene glycol) (PEG) columns, for example Supelcowax-10 or equivalent, which do not resolve most unsaturated FA geometric isomers. Highly polar 100-m cyanopropyl siloxane (CPS) columns, for example SP-2560 and CP Sil 88 are recommended for separation of geometric FA isomers. Complementary separations were achieved by use of two different elution temperature programs with the same CPS column. This study is the first direct comparison of the separations achieved by use of 30-m Supelcowax-10 and 100-m SP-2560 columns for fatty acid methyl esters (FAME) prepared from the same fish oil and fish muscle sample. To simplify the identification of the FA in these fish samples, FA were fractionated on the basis of the number and type of double bonds by silver-ion solid-phase extraction (Ag⁺-SPE) before GC analysis. The results showed that a combination of the three GC separations was necessary to resolve and identify most of the unsaturated FA, FA isomers, and other components of fish products, for example phytanic and phytenic acids. Equivalent chain length (ECL) values of most FAME in fish were calculated from the separations achieved by use of both GC columns; the values obtained were shown to be consistent with previously reported values for the Supelcowax-10 column. ECL values were also calculated for the FA separated on the SP-2560 column. The calculated ECL values were equally valid under isothermal and temperature-programmed elution GC conditions, and were valuable for confirmation of the identity of several unsaturated FAME in the fish samples. When analyzing commercially prepared fish foods, deodorized marine oils, or foods fortified with marine oils it is strongly

  17. Omega-3 fatty acids (image)

    MedlinePlus

    Omega-3 fatty acids are a form of polyunsaturated fat that the body derives from food. Omega-3s (and omega-6s) are known as essential fatty acids (EFAs) because they are important for good health. ...

  18. Performance, carcass traits, muscle fatty acid composition and meat sensory properties of male Mahabadi goat kids fed palm oil, soybean oil or fish oil.

    PubMed

    Najafi, M H; Zeinoaldini, S; Ganjkhanlou, M; Mohammadi, H; Hopkins, D L; Ponnampalam, E N

    2012-12-01

    This study examined the effect of palm, soybean or fish oils on the performance, muscle fatty acid composition and meat quality of goat kids. Twenty-four male Mahabadi kids (BW=19.4±1.2 kg) were divided into three groups according to liveweight and randomly allocated to one of three diets. Animals were fed ad libitum for 84 days. Different dietary fat sources had no effect on performance and/or carcass quality attributes. The soybean oil diet decreased 16:0 and 18:0 concentrations and increased 18:2 and 18:3 and the ratio of PUFA/SFA in the muscle compared with other treatments. Fish oil feeding increased 20:5 n-3 and 22:6 n-3 concentrations and decreased the ratio of n-6/n-3 in the muscle. The results demonstrate that the use of fish oil is a nutritional strategy to improve the health claimable long-chain omega-3 fatty acid content and n-6/n-3 ratio in goat meat without changing the sensory properties or colour of meat.

  19. Fish, n - 3 polyunsaturated fatty acids and n - 6 polyunsaturated fatty acids intake and breast cancer risk: The Japan Public Health Center-based prospective study.

    PubMed

    Kiyabu, Grace Y; Inoue, Manami; Saito, Eiko; Abe, Sarah K; Sawada, Norie; Ishihara, Junko; Iwasaki, Motoki; Yamaji, Taiki; Shimazu, Taichi; Sasazuki, Shizuka; Shibuya, Kenji; Tsugane, Shoichiro

    2015-12-15

    Limited and inconsistent studies exist on the association between the intake of fish, n - 3 polyunsaturated fatty acids (PUFA) and n - 6 PUFA and breast cancer. Fish and n - 3 PUFA support various body functions and are thought to reduce the carcinogenesis risk while n - 6 PUFA may have a positive association with cancer risk. We examined the association between intake of fish, n - 3 PUFA [including eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), docosapentaenoic acid (DPA) and alpha-linolenic acid (ALA)] and n - 6 PUFA and breast cancer with subanalyses on estrogen (ER) and progesterone receptor (PR) status. We investigated 38,234 Japanese women aged 45-74 years from the Japan Public Health Center-based prospective study (JPHC study), and during 14.1 years of follow-up time, 556 breast cancer cases were newly diagnosed. Breast cancer risk was not associated with the intake of total fish, n - 3 PUFA and n - 6 PUFA when analyzed in totality through multivariable Cox proportional hazards regression models with age as the time scale. Intake of total n - 6 was positively associated with the development of ER+PR+ tumors [multivariable-adjusted HR Q4 vs. Q1  = 2.94 (95% CI: 1.26-6.89; ptrend  = 0.02)]. Intake of EPA was associated with a decreased breast cancer risk for ER+PR+ tumors [multivariable-adjusted HR Q2 vs. Q1  = 0.47 (95% CI: 0.25-0.89; ptrend =0.47)]. While the overall association between the intake of total fish, n - 3 PUFA and n - 6 PUFA and breast cancer risk is null, for ER+PR+ tumors, a positive association was seen between n - 6 intake and breast cancer, and a marginally significant inverse association was observed for EPA intake.

  20. Effect of Dietary Combination of Methionine and Fish Oil on Cellular Immunity and Plasma Fatty Acids in Infectious Bursal Disease Challenged Chickens

    PubMed Central

    Kasim, Azhar; Yong Meng, Goh; Teck Chwen, Loh; Kamalidehghan, Behnam; Soleimani Farjam, Abdoreza

    2013-01-01

    This study was carried out to investigate the modulatory effects of dietary methionine and fish oil on immune response, plasma fatty acid profile, and blood parameters of infectious bursal disease (IBD) challenged broiler chickens. A total of 300 one-day-old male broiler chicks were assigned to one of six dietary treatment groups in a 3 × 2 factorial arrangement. There were three levels of fish oil (0, 2.5 and 5.5%), and two levels of methionine (NRC recommendation and twice NRC recommendation). The results showed that the birds fed with 5.5% fish oil had higher total protein, white blood cell count, and IL-2 concentration than those of other groups at 7 days after IBD challenge. Inclusion of fish oil in diet had no effect on IFN-γ concentration. However, supplementation of methionine twice the recommendation enhanced the serum IFN-γ and globulin concentration. Neither of fish oil nor methionine supplementation affected the liver enzymes concentration. It can be suggested that a balance of moderate level of fish oil (2.5%) and methionine level (twice NRC recommendation) might enhance immune response in IBD challenged broiler chickens. PMID:24198724

  1. Effect of dietary combination of methionine and fish oil on cellular immunity and plasma fatty acids in infectious bursal disease challenged chickens.

    PubMed

    Maroufyan, Elham; Kasim, Azhar; Yong Meng, Goh; Ebrahimi, Mahdi; Teck Chwen, Loh; Mehrbod, Parvaneh; Kamalidehghan, Behnam; Soleimani Farjam, Abdoreza

    2013-01-01

    This study was carried out to investigate the modulatory effects of dietary methionine and fish oil on immune response, plasma fatty acid profile, and blood parameters of infectious bursal disease (IBD) challenged broiler chickens. A total of 300 one-day-old male broiler chicks were assigned to one of six dietary treatment groups in a 3 × 2 factorial arrangement. There were three levels of fish oil (0, 2.5 and 5.5%), and two levels of methionine (NRC recommendation and twice NRC recommendation). The results showed that the birds fed with 5.5% fish oil had higher total protein, white blood cell count, and IL-2 concentration than those of other groups at 7 days after IBD challenge. Inclusion of fish oil in diet had no effect on IFN- γ concentration. However, supplementation of methionine twice the recommendation enhanced the serum IFN- γ and globulin concentration. Neither of fish oil nor methionine supplementation affected the liver enzymes concentration. It can be suggested that a balance of moderate level of fish oil (2.5%) and methionine level (twice NRC recommendation) might enhance immune response in IBD challenged broiler chickens.

  2. Potential for proteomic approaches in determining efficacy biomarkers following administration of fish oils rich in omega-3 fatty acids: application in pancreatic cancers.

    PubMed

    Runau, Franscois; Arshad, Ali; Isherwood, John; Norris, Leonie; Howells, Lynne; Metcalfe, Matthew; Dennison, Ashley

    2015-06-01

    Pancreatic cancer is a disease with a significantly poor prognosis. Despite modern advances in other medical, surgical, and oncologic therapy, the outcome from pancreatic cancer has improved little over the last 40 years. To improve the management of this difficult disease, trials investigating the use of dietary and parenteral fish oils rich in omega-3 (ω-3) fatty acids, exhibiting proven anti-inflammatory and anticarcinogenic properties, have revealed favorable results in pancreatic cancers. Proteomics is the large-scale study of proteins that attempts to characterize the complete set of proteins encoded by the genome of an organism and that, with the use of sensitive mass spectrometric-based techniques, has allowed high-throughput analysis of the proteome to aid identification of putative biomarkers pertinent to given disease states. These biomarkers provide useful insight into potentially discovering new markers for early detection or elucidating the efficacy of treatment on pancreatic cancers. Here, our review identifies potential proteomic-based biomarkers in pancreatic cancer relating to apoptosis, cell proliferation, angiogenesis, and metabolic regulation in clinical studies. We also reviewed proteomic biomarkers from the administration of ω-3 fatty acids that act on similar anticarcinogenic pathways as above and reflect that proteomic studies on the effect of ω-3 fatty acids in pancreatic cancer will yield favorable results.

  3. Serum fatty acid composition in normal Japanese and its relationship with dietary fish and vegetable oil contents and blood lipid levels.

    PubMed

    Nakamura, T; Takebe, K; Tando, Y; Arai, Y; Yamada, N; Ishii, M; Kikuchi, H; Machida, K; Imamura, K; Terada, A

    1995-01-01

    A survey was conducted on 110 normal Japanese adults (55 men and 55 women) to determine their caloric intake, dietary fat content and its origin (animal, plant, or marine). In addition, their blood lipid levels and fatty acid compositions were examined. Men in their 30s-50s consumed 2,600-2,800 calories and 60 g of fats, while women in the same age range consumed 2,000-2,200 calories and 52-58 g of fats. In both sexes, caloric, fat, and cholesterol intakes were lower for those in their 60s but protein and crude fiber consumption remained generally unchanged. When the dietary fats were classified according to origin, men and women in their 30s were found to consume less oil of marine origin. This appeared to be the result of a western style diet for Japanese adults in their 30s. Compared with men, women exhibited lower blood lipid levels. As age increased, the total cholesterol level of the blood rose in women. Thus the blood lipid level was generally equal in the two groups in their 60s. There was a positive correlation between the blood eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) levels and dietary consumption of fish oil. The marine/plant lipid ratio was positively correlated with the blood EPA/arachidonic acid ratio. Therefore, it was believed that the origin of the dietary fats consumed is a factor in determining the blood fatty acid profile. The linoleic acid (18:2), arachidonic acid (20:4), and 18:2 + 20:4 contents were negatively correlated to the total cholesterol level in the blood but positively correlated to the HDL-cholesterol level. Polyunsaturated fatty acids (18:2 + 20:4 + 20:5 + 22:6) were negatively correlated with the blood triglyceride level. From the findings presented above, we concluded that dietary fats not derived from animal sources should be classified into fish and vegetable oils to evaluate their dietary significance. We also noted that Japanese in their 30s consume less fish oil, indicating the western trend in their

  4. Conjugated fatty acids and methane production by rumen microbes when incubated with linseed oil alone or mixed with fish oil and/or malate.

    PubMed

    Li, Xiang Z; Gao, Qing S; Yan, Chang G; Choi, Seong H; Shin, Jong S; Song, Man K

    2015-08-01

    We hypothesized that manipulating metabolism with fish oil and malate as a hydrogen acceptor would affect the biohydrogenation process of α-linolenic acid by rumen microbes. This study was to examine the effect of fish oil and/or malate on the production of conjugated fatty acids and methane (CH4 ) by rumen microbes when incubated with linseed oil. Linseed oil (LO), LO with fish oil (LO-FO), LO with malate (LO-MA), or LO with fish oil and malate (LO-FO-MA) was added to diluted rumen fluid, respectively. The LO-MA and LO-FO-MA increased pH and propionate concentration compared to the other treatments. LO-MA and LO-FO-MA reduced CH4 production compared to LO. LO-MA and LO-FO-MA increased the contents of c9,t11-conjugated linoleic acid (CLA) and c9,t11,c15-conjugated linolenic acid (CLnA) compared to LO. The content of malate was rapidly reduced while that of lactate was reduced in LO-MA and LO-FO-MA from 3 h incubation time. The fold change of the quantity of methanogen related to total bacteria was decreased at both 3 h and 6 h incubation times in all treatments compared to the control. Overall data indicate that supplementation of combined malate and/or fish oil when incubated with linseed oil, could depress methane generation and increase production of propionate, CLA and CLnA under the conditions of the current in vitro study.

  5. Comparison of supplementation of n-3 fatty acids from fish and flax oil on cytokine gene expression and growth of milk-fed Holstein calves.

    PubMed

    Karcher, E L; Hill, T M; Bateman, H G; Schlotterbeck, R L; Vito, N; Sordillo, L M; Vandehaar, M J

    2014-01-01

    The ability to reduce incidence of disease in calves and improve early vaccination strategies is of particular interest for dairy producers. The n-3 fatty acids have been reported to reduce inflammatory diseases in humans but limited research has been done in calves. The objective of this study was to compare supplementation of n-3 fatty acids from fish and flax oil on gene expression of whole blood cells and growth of milk-fed Holstein calves. Forty-eight Holstein bull calves from a commercial dairy were randomly assigned to 1 of 3 diets beginning at 4d old: (1) control milk replacer (MR) with all pork fat, (2) MR with 2% flax oil, and (3) MR with 2% fish oil. All MR were 17% fat, 27% crude protein on a dry matter (DM) basis, with all protein from whey sources. Calves were each fed 654g DM of MR daily for the first 25d and then 327g/d for d26, 27, and 28. On d28, calves were challenged with a Pasteurella vaccine and the temperature response to the vaccine was recorded. Milk and feed intake and fecal scores were recorded daily, and body weight and hip width were recorded weekly. Blood was collected from all calves on d25. One tube of collected blood was incubated with endotoxin (lipopolysaccharide; LPS) for 2h and frozen with a second tube of control blood. Quantitative real-time PCR was used to assess the effects of LPS stimulation on cytokine gene expression. During the 28 d, calves supplemented with flax oil had a greater growth rate and feed efficiency than calves fed fish oil (0.52±0.02 vs. 0.48±0.02g of gain:g of feed). Fish oil tended to decrease LPS stimulation of tumor necrosis factor-α expression. Flax oil, but not fish oil, decreased the expression of IL-4 and tended to decrease expression of osteopontin and IL-8. Flax oil tended to reduce the increase in rectal temperature in response to a Pasteurella vaccine. In conclusion, our data support the idea that supplementation with n-3 fatty acids affects cytokine gene expression.

  6. Dietary fish oil supplements increase tissue n-3 fatty acid composition and expression of delta-6 desaturase and elongase-2 in Jade Tiger hybrid abalone.

    PubMed

    Mateos, Hintsa T; Lewandowski, Paul A; Su, Xiao Q

    2011-08-01

    This study was conducted to investigate the effects of fish oil (FO) supplements on fatty acid composition and the expression of ∆6 desaturase and elongase 2 genes in Jade Tiger abalone. Five test diets were formulated to contain 0.5, 1.0, 1.5, 2.0 and 2.5% of FO respectively, and the control diet was the normal commercial abalone diet with no additional FO supplement. The muscle, gonad and digestive glands (DG) of abalone fed with all of the five test diets showed significantly high levels of total n-3 polyunsaturated fatty acid (PUFA), eicosapentaenoic acid (EPA), docosapentaenoic acid n-3 (DPAn-3), and docosahexaenoic acid (DHA) than the control group. In all three types of tissue, abalone fed diet supplemented with 1.5% FO showed the highest level of these fatty acids (P < 0.05). For DPAn-3 the higher level was also found in muscle and gonad of abalone fed diet supplemented with 2% FO (P < 0.05). Elongase 2 expression was markedly higher in the muscle of abalone fed diet supplemented with 1.5% FO (P < 0.05), followed by the diet containing 2% FO supplement. For ∆6 desaturase, significantly higher expression was observed in muscle of abalone fed with diet containing 0.5% FO supplement (P < 0.05). Supplementation with FO in the normal commercial diet can significantly improve long chain n-3 PUFA level in cultured abalone, with 1.5% being the most effective supplementation level.

  7. Relationship of estimated dietary intake of n-3 polyunsaturated fatty acids from fish with peripheral nerve function after adjusting for mercury exposure

    PubMed Central

    Wang, Yi; Goodrich, Jaclyn M.; Werner, Robert; Gillespie, Brenda; Basu, Niladri; Franzblau, Alfred

    2013-01-01

    Background Some clinical studies have suggested that ingestion of n-3 polyunsaturated fatty acids (PUFA) has neuroprotective effects on peripheral nerve function. However, few epidemiological studies have examined the effect of dietary n-3 PUFA intake from fish consumption on peripheral nerve function, and none have controlled for co-occurrence of methylmercury exposure from fish consumption. Objectives We evaluated the effect of estimated dietary n-3 PUFA intake on peripheral nerve function after adjusting for biomarkers of methylmercury and elemental mercury in a convenience sample of 515 dental professionals. Methods We measured sensory nerve conduction (peak latency and amplitude) of the median, ulnar and sural nerves and total mercury concentrations in hair and urine samples. We estimated daily intake (mg/day) of the total n-3 PUFA, n-3 docosahexaenoic acid (DHA), and n-3 eicosapentaenoic acid (EPA) based on a self-administrated fish consumption frequency questionnaire. We also collected information on mercury exposure, demographics and other covariates. Results The estimated median intakes of total n-3 PUFA, n-3 EPA, and n-3 DHA were 447, 105, and 179 mg/day, respectively. The mean mercury concentrations in urine (1.05μg/L) and hair (0.49μg/g) were not significantly different from the US general population. We found no consistent association between n-3 PUFA intake and sensory nerve conduction after adjusting for mercury concentrations in hair and urine although some positive associations were observed with the sural nerve. Conclusions In a convenience sample of dental professionals, we found little evidence suggesting that dietary intake of n-3 PUFAs from fish has any impact on peripheral nerve function after adjustment for methylmercury exposure from fish and elemental mercury exposure from dental amalgam. PMID:23538138

  8. Medium-chain triglycerides and monounsaturated fatty acids potentiate the beneficial effects of fish oil on selected cardiovascular risk factors in rats.

    PubMed

    Kondreddy, Vijay Kumar Reddy; Anikisetty, Maheswaraiah; Naidu, Kamatham Akhilender

    2016-02-01

    Fish oil (FO) rich in eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) is known to reduce the risk of cardiovascular diseases (CVDs). Little information is known regarding the influence of lipid composition in the background diet on the modulatory effect of FO supplementation on CVDs. The present study was designed to investigate the influence of various background dietary lipids and FO on selected cardiovascular risk factors in rats. Adult Wistar rats were fed semisynthetic diet with FO at 1.0% or 2.0% along with other lipids, namely, medium-chain triacylglycerols (MCTs), monounsaturated fatty acids (MUFAs), n-6 polyunsaturated fatty acids (PUFAs) and n-3 PUFAs, for 5 weeks. Some of the potent CVD risk factors were estimated in the rats. FO at 1.0% and 2.0% has significantly reduced serum lipid peroxides, total cholesterol, triglycerides (TAGs), tumor necrosis factor-α, interleukin-6 and C-reactive protein; liver and adipose TAG and cholesterol levels in MCT, MUFA and n-6 PUFA diet groups. Notably, these alterations were comparatively higher in 1.0% FO-substituted MCT and MUFA diet groups. Interestingly, feeding of FO along with n-3 PUFAs did not show additive effect in attenuation of these factors. Serum liver EPA and DHA levels were remarkably elevated in rats fed FO-enriched MCT or MUFA diets. Our results suggest that MCTs or MUFAs in the background diet might promote the beneficial effects of FO on CVDs.

  9. What Is the Most Effective Way of Increasing the Bioavailability of Dietary Long Chain Omega-3 Fatty Acids--Daily vs. Weekly Administration of Fish Oil?

    PubMed

    Ghasemifard, Samaneh; Sinclair, Andrew J; Kaur, Gunveen; Lewandowski, Paul; Turchini, Giovanni M

    2015-07-10

    The recommendations on the intake of long chain omega-3 polyunsaturated fatty acids (n-3 LC-PUFA) vary from eating oily fish ("once to twice per week") to consuming specified daily amounts of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) ("250-500 mg per day"). It is not known if there is a difference in the uptake/bioavailability between regular daily consumption of supplementsvs. consuming fish once or twice per week. In this study, the bioavailability of a daily dose of n-3 LC-PUFA (Constant treatment), representing supplements, vs. a large weekly dose of n-3 LC-PUFA (Spike treatment), representing consuming once or twice per week, was assessed. Six-week old healthy male Sprague-Dawley rats were fed either a Constant treatment, a Spike treatment or Control treatment (no n-3 LC-PUFA), for six weeks. The whole body, tissues and faeces were analysed for fatty acid content. The results showed that the major metabolic fate of the n-3 LC-PUFA (EPA+docosapentaenoic acid (DPA) + DHA) was towards catabolism (β-oxidation) accounting for over 70% of total dietary intake, whereas deposition accounted less than 25% of total dietary intake. It was found that significantly more n-3 LC-PUFA were β-oxidised when originating from the Constant treatment (84% of dose), compared with the Spike treatment (75% of dose). Conversely, it was found that significantly more n-3 LC-PUFA were deposited when originating from the Spike treatment (23% of dose), than from the Constant treatment (15% of dose). These unexpected findings show that a large dose of n-3 LC-PUFA once per week is more effective in increasing whole body n-3 LC-PUFA content in rats compared with a smaller dose delivered daily.

  10. Effect of dietary fish oil on fatty acid deposition and expression of cholesterol homeostasis controlling genes in the liver and plasma lipid profile: comparison of two animal models.

    PubMed

    Komprda, T; Rozíková, V; Zamazalová, N; Škultéty, O; Vícenová, M; Trčková, M; Faldyna, M

    2016-10-16

    The objective of the present study was to compare hepatic fatty acid deposition, plasma lipid level and expression of cholesterol homeostasis controlling genes in the liver of rats (Wistar Albino; n = 32) and pigs (Large White × Landrace; n = 32) randomly assigned into two groups of 16 animals each and fed 10 weeks the diet with either 2.5% of fish oil (F; source of eicosapentaenoic and docosahexaenoic acid, EPA+DHA) or 2.5% of palm oil (P; high content of saturated fatty acids; control). F-rats deposited in the liver three times less EPA, but 1.3 times more DHA than F-pigs (p < 0.05). Dietary fish oil relative to palm oil increased PPARα and SREBP-2 gene expression much strongly (p < 0.01) in the pig liver in comparison with the rat liver, but expression of Insig-1 and Hmgcr genes in the liver of the F-pigs relative to the expression of these genes in the liver of the P-pigs was substantially lower (p < 0.01 and p < 0.05 respectively) as compared to rats. When plasma lipid concentration in the F-animals was expressed as a ratio of the plasma concentration in the P-counterparts, dietary fish oil decreased HDL cholesterol less (p < 0.01), but LDL cholesterol and triacylglycerols more (p < 0.05 and p < 0.001 respectively) in rats than in pigs: more favourable effect of fish oil on rat plasma lipids in comparison with pigs can therefore be concluded. Concentration of total cholesterol and both its fractions in the rat plasma was negatively correlated (p < 0.01) with hepatic DHA, but also with unsaturated myristic and palmitic acid respectively. It has been concluded that regarding the similarity of the plasma lipid levels to humans, porcine model can be considered superior; however, using this model, dietary fish oil at the tested amount (2.5%) was not able to improve plasma lipid markers in comparison with saturated palm oil.

  11. Pattern of omega-3 polyunsaturated fatty acid intake and fish consumption and retinal vascular caliber in children and adolescents: A cohort study

    PubMed Central

    Moshtaghian, Hanieh; Flood, Victoria M.; Louie, Jimmy C. Y.; Liew, Gerald; Burlutsky, George; Mitchell, Paul

    2017-01-01

    We aimed to investigate whether fish and long chain omega-3 polyunsaturated fatty acid (LCn-3 PUFA) consumption changed appreciably during adolescence. We also assessed whether these dietary variables are associated with retinal microvascular signs (possible markers of future cardiovascular disease risk). 633 children had dietary data at ages 12 and 17. Fish and LCn-3 PUFA [eicosapentaenoic acid (EPA), docosapentaenoic acid (DPA) and docosahexaenoic acid (DHA)] intake was assessed by a food frequency questionnaire. Retinal vessel caliber was quantified from digital photographs using computer software. Mean energy-adjusted intakes (mg/day) of total LCn-3 PUFA, EPA, and DHA at age 12 were 297.1±261.1; 102.5±106.9; and 129.7±137.7, respectively; and this increased significantly at age 17 to: 347.0±324.0 (p<0.0001); 122.5±132.7 (p = 0.0001); and 160.3±171.4 (p <0.0001), respectively. Increasing quartiles of LCn-3PUFA intake were associated with widening of mean retinal arteriolar caliber among 17-year old girls ~3.9 μm (multivariable-adjusted P-trend = 0.001). Girls who consumed ≥2 serves of fish/week versus those who did not had ~2.1 μm wider retinal arterioles (p = 0.03). No associations were observed among boys or with retinal venules. Mean dietary intakes of LCn-3 PUFA increased during adolescence, but are still below recommended levels of consumption. These results suggest that LCn-3 PUFA and fish intake might have a beneficial influence. PMID:28192538

  12. Changes in milk fatty acid profile and animal performance in response to fish oil supplementation, alone or in combination with sunflower oil, in dairy ewes.

    PubMed

    Toral, P G; Frutos, P; Hervás, G; Gómez-Cortés, P; Juárez, M; de la Fuente, M A

    2010-04-01

    Ruminant diet supplementation with sunflower oil (SO) and fish oil (FO) has been reported as a good strategy for enhancing some milk fat compounds such as conjugated linoleic acid (CLA) and n-3 polyunsaturated fatty acids in dairy cows, but no information is available regarding dairy sheep. In this work, ewe diet was supplemented with FO, alone or in combination with SO, with the aim of improving milk nutritional value and evaluating its effect on animal performance. Sixty-four Assaf ewes in mid lactation, fed a high-concentrate diet, were distributed in 8 lots of 8 animals each and assigned to 4 treatments (2 lots/treatment): no lipid supplementation (control) or supplementation with 20 g of SO/kg (SO), 10 g of FO/kg (FO), or 20 g of SO plus 10 g of FO/kg (SOFO). Milk production and composition, including a complete fatty acid profile, were analyzed on d 0, 3, 7, 14, 21, and 28 of treatments. Supplementation with FO tended to reduce dry matter intake compared with the control treatment (-15%), and its use in combination with SO (SOFO) resulted in a significant decrease in milk yield as well (-13%). All lipid supplements reduced milk protein content, and FO also reduced milk fat content by up to 21% alone (FO) and 27% in combination with SO (SOFO). Although the mechanisms involved in FO-induced milk fat depression are not yet well established, the observed increase in some milk trans-FA that are putative inhibitors of milk fat synthesis, such as trans-9,cis-11 CLA, and the 63% decrease in C18:0 (consistent with the theory of reduced milk fat fluidity) may be involved. When compared with the control, lipid supplementation remarkably improved the milk content of rumenic acid (cis-9,trans-11 CLA; up to 4-fold increases with SO and SOFO diets), whereas FO-containing diets also increased milk n-3 polyunsaturated fatty acids, mainly docosahexaenoic acid (with mean contents of 0.29 and 0.38% of total fatty acids for SOFO and FO, respectively), and reduced the n-6:n-3 FA

  13. Positional Distribution of Fatty Acids in Triacylglycerols and Phospholipids from Fillets of Atlantic Salmon (Salmo Salar) Fed Vegetable and Fish Oil Blends.

    PubMed

    Ruiz-Lopez, Noemi; Stubhaug, Ingunn; Ipharraguerre, Ignacio; Rimbach, Gerald; Menoyo, David

    2015-07-10

    The nutritional and functional characteristics of dietary fat are related to the fatty acid (FA) composition and its positional distribution in the triacylglycerol (TAG) fraction. Atlantic salmon is an important source of healthy long chain omega 3 FA (particularly, eicosapentaenoic (EPA) and docoxahexaenoic (DHA) acids). However, the impact of lipid sources in salmon feeds on the regiospecificity of FA in the fish TAG remains to be explored. The present study determines the effect of feeding salmon with blends of palm, rapeseed, and fish oil, providing two different EPA + DHA concentrations (high: H-ED 10.3% and low: L-ED 4.6%) on the fillet lipid class composition and the positional distribution of FA in TAG and phospholipids. The regiospecific analysis of fillet TAG showed that around 50% of the EPA and around 80% of DHA was located in the sn-2 position. The positional distribution of FA in phosphatidylcholine (PC), showed that around 80% of the EPA and around 90% of DHA were located in the sn-2. Fish fed the vegetable-rich diets showed higher EPA in the sn-2 position in PC (77% vs. 83% in the H-ED and L-ED diets, respectively) but similar DHA concentrations. It is concluded that feeding salmon with different EPA + DHA concentrations does not affect their positional distribution in the fillet TAG.

  14. Effects of feeding fish meal and n-3 fatty acids on milk yield and metabolic responses in early lactating dairy cows.

    PubMed

    Moussavi, A R Heravi; Gilbert, R O; Overton, T R; Bauman, D E; Butler, W R

    2007-01-01

    The study was designed to test the effects of feeding fish meal (FM) and specific n-3 fatty acids on milk yield and composition, dry matter intake, plasma concentrations of metabolic hormones and metabolites, and liver triglyceride accumulation in early lactating cows. From 5 to 50 d in milk (DIM), cows were fed diets that were isonitrogenous, isoenergetic, and isolipidic containing none (control), 1.25, 2.5, or 5% menhaden FM or 2.3% Ca salts of fish oil fatty acids (CaFOFA). Milk yield (48.2, 49.8, 48.6, 53.5, and 52.2 +/- 1.0 kg/d, respectively) and dry matter intake (22.7, 22.8, 23.0, 23.8, and 24.7 +/- 0.5 kg/d, respectively) differed among diets. Average daily plasma glucose concentration (53.4, 55.3, 51.1, 57.6, and 57.3 +/- 1.3 mg/dL, respectively) was also affected by diet, and plasma insulin concentration was increased by 5% FM and 2.3% Ca-FOFA. At 25 and 50 DIM, blood was collected before feeding and hourly for 11 h after feeding. Plasma glucose concentrations in cows during the day were similar among diets at 25 DIM, but differed at 50 DIM (54.6, 54.4, 52.4, 60.5, and 58.3 +/- 1.4 mg/dL for 0, 1.25, 2.5, and 5% FM or 2.3% CaFOFA, respectively). Plasma insulin was increased in cows fed 5% FM and 2.3% CaFOFA at 25 DIM and was similar among diets at 50 DIM. Dietary treatments had no significant effect on milk composition, energy balance, or on daily plasma concentrations of nonesterified fatty acids, beta-hydroxybutyrate, and urea. Plasma aspartate aminotransferase and hepatic triglyceride concentration in cows did not differ among diets at 21 DIM. Results from this experiment demonstrate that dietary supplementation with FM or n-3 polyunsaturated fatty acids in early lactating dairy cows significantly increased milk yield and DMI with no change in milk composition.

  15. Biological mechanism of antidepressant effect of omega-3 fatty acids: how does fish oil act as a 'mind-body interface'?

    PubMed

    Su, Kuan-Pin

    2009-01-01

    The unsatisfactory results of monoamine-based antidepressant therapy and the high occurrence of somatic symptoms and physical illness in patients with depression imply that the serotonin hypothesis is insufficient to approach the aetiology of depression. Depressive disorders with somatic presentation are the most common form of depression. Somatization, the bodily symptoms without organic explanation, is similar to cytokine-induced sickness behaviour. Based on recent evidence, omega-3 polyunsaturated fatty acids (n-3 PUFAs, or n-3 fatty acids) are enlightening a promising path to discover the unsolved of depression, sickness behaviour and to link the connection of mind and body. The PUFAs are classified into n-3 (or omega-3) and n-6 (or omega-6) groups. Eicosapentaenoic acid and docosahexaenoic acid, the major bioactive components of n-3 PUFAs, are not efficiently synthesized in humans and should therefore be obtained directly from the diet, particularly by consuming fish. Docosahexaenoic acid deficiency is associated with dysfunctions of neuronal membrane stability and transmission of serotonin, norepinephrine and dopamine, which might connect to the aetiology of mood and cognitive dysfunction of depression. Likewise, eicosapentaenoic acid is important in balancing the immune function and physical health by reducing membrane arachidonic acid (an n-6 PUFA) and prostaglandin E(2) synthesis, which might be linked to the somatic manifestations and physical comorbidity in depression. The role of n-3 PUFAs in immunity and mood function supports the promising hypothesis of psychoneuroimmunology of depression and provides an excellent interface between 'mind' and 'body'. This review is to provide an overview of the evidence about the role of n-3 PUFAs in depression and its common comorbid physical conditions and to propose mechanisms by which they may modulate molecular and cellular functions.

  16. The effect of different concentrations of linseed oil or fish oil in the maternal diet on the fatty acid composition and oxidative status of sows and piglets.

    PubMed

    Tanghe, S; Missotten, J; Raes, K; De Smet, S

    2015-10-01

    N-3 polyunsaturated fatty acids (PUFA) are essential for foetal development. Hence, including n-3 PUFA in the sow diet can be beneficial for reproduction. Both the amount and form (precursor fatty acids vs. long chain PUFA) of supplementation are important in this respect. Furthermore, including n-3 PUFA in the diet can have negative effects, such as decreased arachidonic acid (ARA) concentration and increased oxidative stress. This study aimed to compare the efficacy to increase eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) concentrations in the piglet, when different concentrations of linseed oil (LO, source of precursor α-linolenic acid) or fish oil (FO, source of EPA and DHA) were included in the maternal diet. Sows were fed a palm oil diet or a diet including 0.5% or 2% LO or FO from day 45 of gestation until weaning. Linoleic acid (LA) was kept constant in the diets to prevent a decrease in ARA, and all diets were supplemented with α-tocopherol acetate (150 mg/kg) and organic selenium (0.4 mg/kg) to prevent oxidative stress. Feeding 0.5% LO or 0.5% FO to the sows resulted in comparable EPA concentrations in the 5-day old piglet liver, but both diets resulted in lower EPA concentrations than when 2% LO was fed. The highest EPA concentration was obtained when 2% FO was fed. The DHA level in the piglet liver could only be increased when FO, but not LO, was fed to the sows. The 2% FO diet had no advantage over the 0.5% FO diet to increase DHA in the piglet. Despite the constant LA concentration in the sow diet, a decrease in ARA could not be avoided when LO or FO were included in the diet. Feeding 2% FO to the sows increased the malondialdehyde concentration (marker for lipid peroxidation) in sow plasma, but not in piglets.

  17. Echium oil and linseed oil as alternatives for fish oil in the maternal diet: Blood fatty acid profiles and oxidative status of sows and piglets.

    PubMed

    Tanghe, S; Millet, S; De Smet, S

    2013-07-01

    Echium oil (source of stearidonic acid) and linseed oil (source of α-linolenic acid) were evaluated as alternatives for fish oil in the diet of sows to increase the docosahexaenoic acid (DHA) status of the offspring. The hypothesis was that echium oil would be more efficient than linseed oil to increase the DHA concentration, as it bypasses the enzyme Δ6-desaturase. In addition, it was determined whether adding PUFA to the diet affected the plasma oxidative status. Sows were fed either a palm oil diet or a diet containing 1% linseed oil, echium oil, or fish oil from d 73 of gestation and during lactation (n = 16 per dietary treatment). Total oil concentrations in the diets were similar among dietary treatments. Blood samples were taken for fatty acid analysis and oxidative status of sows on d 73 and 93 of gestation and at parturition and the lightest and heaviest piglet per litter at birth and weaning. Colostrum was also sampled. No effect of diet was observed on total number of piglets born (13.7 ± 0.4), number of weaned piglets (10.8 ± 0.4), and gestation length (114.8 ± 0.2 d). Piglets from sows fed fish oil had lighter birth weights (1.41 ± 0.03 kg) than piglets from the linseed oil diet (1.54 ± 0.03 kg; P = 0.006), with no difference between the palm oil (1.45 ± 0.03 kg) and echium oil diet (1.49 ± 0.03 kg). Daily BW gain until weaning was less for piglets from sows fed the fish oil diet (214 ± 5 g) compared with piglets from sows fed the echium oil (240 ± 5 g; P < 0.001) or linseed oil diet (234 ± 5 g; P = 0.02). Compared with the palm oil diet, echium and linseed oil in the maternal diet increased the DHA concentration in the colostrum and the sow and piglet plasma to the same extent (1.1 to 1.4-fold; P < 0.001). On the fish oil diet, 20.7-fold, 10-fold, and 2.4-fold increases in DHA in colostrum, sow, and piglet plasma, respectively, were observed (P < 0.001). At 1% in the maternal diet, echium oil had, thus, no benefit over linseed oil and

  18. Fatty acid-producing hosts

    DOEpatents

    Pfleger, Brian F; Lennen, Rebecca M

    2013-12-31

    Described are hosts for overproducing a fatty acid product such as a fatty acid. The hosts include an exogenous nucleic acid encoding a thioesterase and, optionally, an exogenous nucleic acid encoding an acetyl-CoA carboxylase, wherein an acyl-CoA synthetase in the hosts are functionally delected. The hosts prefereably include the nucleic acid encoding the thioesterase at an intermediate copy number. The hosts are preferably recominantly stable and growth-competent at 37.degree. C. Methods of producing a fatty acid product comprising culturing such hosts at 37.degree. C. are also described.

  19. Fish oil omega-3 fatty acids partially prevent lipid-induced insulin resistance in human skeletal muscle without limiting acylcarnitine accumulation.

    PubMed

    Stephens, Francis B; Mendis, Buddhike; Shannon, Chris E; Cooper, Scott; Ortori, Catharine A; Barrett, David A; Mansell, Peter; Tsintzas, Kostas

    2014-09-01

    Acylcarnitine accumulation in skeletal muscle and plasma has been observed in numerous models of mitochondrial lipid overload and insulin resistance. Fish oil n3PUFA (omega-3 polyunsaturated fatty acids) are thought to protect against lipid-induced insulin resistance. The present study tested the hypothesis that the addition of n3PUFA to an intravenous lipid emulsion would limit muscle acylcarnitine accumulation and reduce the inhibitory effect of lipid overload on insulin action. On three occasions, six healthy young men underwent a 6-h euglycaemic-hyperinsulinaemic clamp accompanied by intravenous infusion of saline (Control), 10% Intralipid® [n6PUFA (omega-6 polyunsaturated fatty acids)] or 10% Intralipid®+10% Omegaven® (2:1; n3PUFA). The decline in insulin-stimulated whole-body glucose infusion rate, muscle PDCa (pyruvate dehydrogenase complex activation) and glycogen storage associated with n6PUFA compared with Control was prevented with n3PUFA. Muscle acetyl-CoA accumulation was greater following n6PUFA compared with Control and n3PUFA, suggesting that mitochondrial lipid overload was responsible for the lower insulin action observed. Despite these favourable metabolic effects of n3PUFA, accumulation of total muscle acylcarnitine was not attenuated when compared with n6PUFA. These findings demonstrate that n3PUFA exert beneficial effects on insulin-stimulated skeletal muscle glucose storage and oxidation independently of total acylcarnitine accumulation, which does not always reflect mitochondrial lipid overload.

  20. Suicide mortality in relation to dietary intake of n-3 and n-6 polyunsaturated fatty acids and fish: equivocal findings from 3 large US cohort studies.

    PubMed

    Tsai, Alexander C; Lucas, Michel; Okereke, Olivia I; O'Reilly, Eilis J; Mirzaei, Fariba; Kawachi, Ichiro; Ascherio, Alberto; Willett, Walter C

    2014-06-15

    Intake of n-3 and n-6 polyunsaturated fatty acids (PUFAs) has been implicated in the pathogenesis of depression. We sought to estimate the association between intake of fish and n-3 and n-6 PUFAs and suicide mortality over the course of long-term follow-up. In this prospective cohort study, biennial questionnaires were administered to 42,290 men enrolled in the Health Professionals Follow-up Study (1988-2008), 72,231 women enrolled in the Nurses' Health Study (1986-2008), and 90,836 women enrolled in Nurses' Health Study II (1993-2007). Dietary fish and n-3 and n-6 PUFA intakes were assessed every 4 years using a validated food-frequency questionnaire. Suicide mortality was ascertained through blind physician review of death certificates and hospital or pathology reports. Adjusted relative risks of suicide mortality were estimated with multivariable Cox proportional hazards models and pooled across cohorts using random-effects meta-analysis. The pooled multivariable relative risks for suicide among persons in the highest quartile of intake of n-3 or n-6 PUFAs, relative to the lowest quartile, ranged from 1.08 to 1.46 for n-3 PUFAs (Ptrend = 0.11-0.52) and from 0.68 to 1.19 for n-6 PUFAs (Ptrend = 0.09-0.54). We did not find evidence that intake of n-3 PUFAs or fish lowered the risk of completed suicide.

  1. Associations between omega-3 fatty acids, selenium content, and mercury levels in wild-harvested fish from the Dehcho Region, Northwest Territories, Canada.

    PubMed

    Reyes, Ellen S; Aristizabal Henao, Juan J; Kornobis, Katherine M; Hanning, Rhona M; Majowicz, Shannon E; Liber, Karsten; Stark, Ken D; Low, George; Swanson, Heidi K; Laird, Brian D

    2017-01-01

    To better understand the risks and benefits of eating wild-harvested fish from the Northwest Territories, Canada, levels of total mercury (HgT) and selenium (Se) and composition of omega-3 fatty acid (n-3 FA) were measured in muscle tissue of fish harvested from lakes in the Dehcho Region, Northwest Territories, Canada. Average HgT levels ranged from 0.057 mg/kg (cisco) to 0.551 mg/kg (northern pike), while average n-3 FA concentrations ranged from 101 mg/100 g (burbot) to 1,689 mg/100 g (lake trout). In contrast to HgT and n-3 FA, mean Se concentrations were relatively similar among species. Consequently, species such as lake whitefish, cisco, and longnose sucker displayed the highest nutrient levels relative to HgT content. Levels of HgT tended to increase with fish size, while Se and n-3 FA levels were typically not associated with fork length or fish weight. Interestingly, HgT concentration was occasionally inversely related to tissue nutrient content. Significant negative correlations were observed between Hg and n-3 FA for lake trout, northern pike, and walleye. There were also significant negative correlations between Hg and Se noted for lake whitefish, cisco, and northern pike. Samples with the highest nutritional content displayed, on occasion, lower levels of HgT. This study provides valuable information for the design of probabilistic models capable of refining public health messaging related to minimizing Hg risks and maximizing nutrient levels in wild-harvested fish in the Canadian subarctic.

  2. Dietary intake of fish, ω-3 and ω-6 fatty acids and risk of colorectal cancer: A prospective study in U.S. men and women.

    PubMed

    Song, Mingyang; Chan, Andrew T; Fuchs, Charles S; Ogino, Shuji; Hu, Frank B; Mozaffarian, Dariush; Ma, Jing; Willett, Walter C; Giovannucci, Edward L; Wu, Kana

    2014-11-15

    The association between fish, ω-3 and ω-6 polyunsaturated fatty acid (PUFA) intake and risk of colorectal cancer (CRC) remains inconclusive. Recent prospective studies suggest that the relationship may vary by gender, subsite and duration of follow-up. We followed 123,529 US adults (76,386 women and 47,143 men) without a history of cancer at baseline for 24 to 26 years. Fish and PUFA intake was assessed at baseline and updated every 4 years by using a validated food-frequency questionnaire. We found no overall association between fish, ω-3 and ω-6 PUFA intake and CRC risk with hazard ratio (HR) of 1.03 [95% confidence interval (CI): 0.89-1.20] comparing marine ω-3 intake of ≥ 0.30 g/d versus <0.15 g/d among women and 1.05 (95% CI: 0.85-1.30) comparing intake of ≥ 0.41 g/d versus <0.16 g/d among men. However, fish and marine ω-3 PUFA intake appeared to be positively associated with risk of distal colon cancer in both men and women and inversely with risk of rectal cancer in men. In an analysis based on a limited number of cases, marine ω-3 PUFA intake assessed 12-16 years before diagnosis tended to be inversely associated with CRC risk in men (HR: 0.76; 95% CI: 0.52-1.10). In conclusion, although no overall association between fish, ω-3 or ω-6 PUFA intake was observed with CRC risk, marine ω-3 PUFA may be differentially associated with risk of distal colon and rectal cancers and a long latency may be needed for its protection against CRC in men.

  3. Chitosan-whey protein isolate composite films for encapsulation and stabilization of fish oil containing ultra pure omega-3 fatty acids.

    PubMed

    Duan, Jingyun; Jiang, Yan; Zhao, Yanyun

    2011-01-01

    Chitosan (1.5%, w/v)-whey protein isolate (WPI, 5% w/v) composite films were developed for encapsulating and stabilizing fish oil (FO) containing 93.7% eicosapentaenoic acid (EPA). Chitosan-WPI film-forming solutions (FFS) were incorporated with 1.5% or 2% FO (w/v), 2% (w/v) glycerol, Tween 80 (3 times weight of FO), and 0.5% (w/v) oregano or rosemary essential oil (EO), and cast for films at room conditions. Dried films were stored at 2 °C for 30 d for evaluating encapsulation efficiency (EE), lipid stability, and film functionality. Total oil contents in films from FFS incorporating 1.5% or 2% FO were 28.1% to 32.5% and 33.4% to 37.3%, respectively, and free oil contents were 13.5% to 14.7% and 15.5% to 16.3%, respectively. EE, moisture content, and water activity of the films were 47.8% to 66%, 18.7% to 24.9%, and 0.42% to 0.50%, respectively, without significant difference among differently formulated films. Increasing FO concentration from 1.5% to 2% in FFS decreased tensile strength of the films from 0.57-0.73 to 0.34-0.44 MPa, but not the film elongation. Addition of oregano EO in FFS retarded lipid oxidation of the fish oil encapsulated in the films, in which a 43% to 53% reduction in thiobarbituric acid-reactive substances value and 39% to 51% reduction in peroxide value were achieved. Chitosan-WPI composite films with incorporation of oregano essential oil could be applied as a simple and economic means for encapsulating and stabilizing fish oil for fortifying omega-3 fatty acids in various applications.

  4. Comparison of algal and fish sources on the oxidative stability of poultry meat and its enrichment with omega-3 polyunsaturated fatty acids.

    PubMed

    Rymer, C; Gibbs, R A; Givens, D I

    2010-01-01

    Human consumption of long-chain n-3 polyunsaturated fatty acids (LC n-3 PUFA) is below recommendations, and enriching chicken meat (by incorporating LC n-3 PUFA into broiler diets) is a viable means of increasing consumption. Fish oil is the most common LC n-3 PUFA supplement used but is unsustainable and reduces the oxidative stability of the mat. The objective of this experiment was to compare fresh fish oil (FFO) with fish oil encapsulated (EFO) in a gelatin matrix (to maintain its oxidative stability) and algal biomass at a low (LAG, 11), medium (MAG, 22), or high (HAG, 33 g/kg of diet) level of inclusion. The C22:6n-3 contents of the FFO, EFO, and MAG diets were equal. A control (CON) diet using blended vegetable oil was also made. As-hatched 1-d-old Ross 308 broilers (144) were reared (21 d) on a common starter diet then allocated to treatment pens (4 pens per treatment, 6 birds per pen) and fed treatment diets for 21 d before being slaughtered. Breast and leg meat was analyzed (per pen) for fatty acids, and cooked samples (2 pens per treatment) were analyzed for volatile aldehydes. Concentrations (mg/100 g of meat) of C20:5n-3, C22:5n-3, and C22:6n-3 were (respectively) CON: 4, 15, 24; FFO: 31, 46, 129; EFO: 18, 27, 122; LAG: 9, 19, 111; MAG: 6, 16, 147; and HAG: 9, 14, 187 (SEM: 2.4, 3.6, 13.1) in breast meat and CON: 4, 12, 9; FFO: 58, 56, 132; EFO: 63, 49, 153; LAG: 13, 14, 101; MAG: 11, 15, 102; HAG: 37, 37, 203 (SEM: 7.8, 6.7, 14.4) in leg meat. Cooked EFO and HAG leg meat was more oxidized (5.2 mg of hexanal/kg of meat) than the other meats (mean 2.2 mg/kg, SEM 0.63). It is concluded that algal biomass is as effective as fish oil at enriching broiler diets with C22:6 LC n-3 PUFA, and at equal C22:6n-3 contents, there is no significant difference between these 2 supplements on the oxidative stability of the meat that is produced.

  5. Treatment of Fatty Acid Oxidation Disorders

    MedlinePlus

    ... of fatty acid oxidation disorders Treatment of fatty acid oxidation disorders E-mail to a friend Please ... page It's been added to your dashboard . Fatty acid oxidation disorders are rare health conditions that affect ...

  6. Prenatal omega-3 fatty acids: review and recommendations.

    PubMed

    Jordan, Robin G

    2010-01-01

    The influence of dietary omega-3 fatty acids on health outcomes is widely recognized. The adequate intake of omega-3 fatty acids docasahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) in particular can increase gestation length and improve infant cognitive and visual performance. Adequate levels of omega-3 fatty acids have also been shown to reduce the incidence of preterm birth in some populations. Research on prenatal omega-3 intake and other outcomes, such as preeclampsia and fetal growth restriction, is inconclusive. Women in the United States consume low levels of omega-3 fatty acids compared to omega-6 fatty acids; this dietary pattern is associated with poor health outcomes. Omega-3 fatty acids are found primarily in fish, yet many pregnant women avoid fish because of concerns about potential mercury and polychlorinated biphenyl contamination. It is important for prenatal care providers to assess women's diets for omega-3 fatty acid intake and ensure that pregnant women are consuming between 200 and 300 mg daily from safe food sources. Purified fish, algal oil supplements, and DHA-enriched eggs are alternative sources for pregnant women who do not eat fish.

  7. Blood and tissue fatty acid compositions, lipoprotein levels, performance and meat flavor of broilers fed fish oil: changes in the pre- and post-withdrawal design.

    PubMed

    Aghaei, N; Safamehr, A; Mehmannavaz, Y; Chekaniazar, S

    2012-12-01

    Administration of fish oil (FO) in broiler diets can elevate α-linolenic acid (ALA), eicosapentanoic acid (EPA) and docosahexanoic acid (DHA) levels, which are protective against cardiovascular disease. However, optimization based solely on n-3 polyunsaturated fatty acid (n-3 PUFA) enrichment in chicken meat could lead to lower meat quality, unless the withdrawal period (plan) is applied for 1 week. The present study investigated whether the incorporation of FO in the diet for 32 days followed by its withdrawal for 1 week affected blood lipid profiles, lipoprotein particles, performance and meat flavor in male broiler chickens. Two hundred and forty birds (1-day-old, Ross 308) were assigned to 1 of 4 dietary groups: 0%, 1%, 2% or 3% FO with four replicates. Broilers were fed for 49 days according to a 4-phase feeding program. The experimental phase comprised day 11 to 42, and FO was removed on day 42. Blood samples were collected during the pre- and post-withdrawal period after the recordings before slaughter. The FO groups demonstrated decreased low-density lipoprotein (LDL) and increased high-density lipoprotein levels on day 42 (P < 0.01); however, these values were not significant after design withdrawal. Diet supplementation with FO elevated the blood levels of palmitic acid (C16:0) and n-3 PUFAs, especially long-chain (LC) PUFAs (EPA, C20:5n-3 and DHA, C22:6n-3), and caused a decline in the level of arachidonic acid (AA, C20:4n-6; P < 0.05). Application of a one-week withdrawal period resulted in a decrease in (P < 0.05) linoleic acid (C18:2n-6) and an increase in the level of AA, unlike their amounts on day 42. Although blood and tissue LC n-3 PUFA levels on day 49 were significantly higher in the FO groups compared with the control, they demonstrated a substantial decrease on day 49 compared with day 42. The best results, mainly the lowest n-6/n-3 fatty acids (FAs) and feed conversion ratio (FCRs), were observed for 3% FO (group T4), even after institution

  8. Fatty Acid Desaturases, Polyunsaturated Fatty Acid Regulation, and Biotechnological Advances

    PubMed Central

    Lee, Je Min; Lee, Hyungjae; Kang, SeokBeom; Park, Woo Jung

    2016-01-01

    Polyunsaturated fatty acids (PUFAs) are considered to be critical nutrients to regulate human health and development, and numerous fatty acid desaturases play key roles in synthesizing PUFAs. Given the lack of delta-12 and -15 desaturases and the low levels of conversion to PUFAs, humans must consume some omega-3 and omega-6 fatty acids in their diet. Many studies on fatty acid desaturases as well as PUFAs have shown that fatty acid desaturase genes are closely related to different human physiological conditions. Since the first front-end desaturases from cyanobacteria were cloned, numerous desaturase genes have been identified and animals and plants have been genetically engineered to produce PUFAs such as eicosapentaenoic acid and docosahexaenoic acid. Recently, a biotechnological approach has been used to develop clinical treatments for human physiological conditions, including cancers and neurogenetic disorders. Thus, understanding the functions and regulation of PUFAs associated with human health and development by using biotechnology may facilitate the engineering of more advanced PUFA production and provide new insights into the complexity of fatty acid metabolism. PMID:26742061

  9. Fatty Acid Desaturases, Polyunsaturated Fatty Acid Regulation, and Biotechnological Advances.

    PubMed

    Lee, Je Min; Lee, Hyungjae; Kang, SeokBeom; Park, Woo Jung

    2016-01-04

    Polyunsaturated fatty acids (PUFAs) are considered to be critical nutrients to regulate human health and development, and numerous fatty acid desaturases play key roles in synthesizing PUFAs. Given the lack of delta-12 and -15 desaturases and the low levels of conversion to PUFAs, humans must consume some omega-3 and omega-6 fatty acids in their diet. Many studies on fatty acid desaturases as well as PUFAs have shown that fatty acid desaturase genes are closely related to different human physiological conditions. Since the first front-end desaturases from cyanobacteria were cloned, numerous desaturase genes have been identified and animals and plants have been genetically engineered to produce PUFAs such as eicosapentaenoic acid and docosahexaenoic acid. Recently, a biotechnological approach has been used to develop clinical treatments for human physiological conditions, including cancers and neurogenetic disorders. Thus, understanding the functions and regulation of PUFAs associated with human health and development by using biotechnology may facilitate the engineering of more advanced PUFA production and provide new insights into the complexity of fatty acid metabolism.

  10. Modulation of C-reactive protein and plasma omega-6 fatty acid levels by phospholipase A2 gene polymorphisms following a 6-week supplementation with fish oil.

    PubMed

    Tremblay, B L; Rudkowska, I; Couture, P; Lemieux, S; Julien, P; Vohl, M C

    2015-12-01

    This clinical trial investigated the impact of a six-week supplementation with fish oil and single nucleotide polymorphisms (SNPs) in PLA2G4A and PLA2G6 genes on total omega-6 fatty acid (n-6 FA) levels in plasma phospholipids (PL) and plasma C-reactive protein (CRP) levels in 191 subjects. Interaction effects between SNPs and supplementation modulated total n-6 FAs and CRP levels in both men and women. Associations between SNPs and total n-6 FA levels and between SNPs and CRP levels were identified in men, independently of supplementation. Supplementation decreased total n-6 FAs without affecting plasma CRP levels. Changes in CRP levels correlated positively with changes in total n-6 FAs in men (r=0.25 p=0.01), but not in women. In conclusion, total n-6 FA levels in plasma PL and plasma CRP levels are modulated by SNPs within PLA2G4A and PLA2G6 genes alone or in combination with fish oil supplementation.

  11. Role of bioactive fatty acids in nonalcoholic fatty liver disease.

    PubMed

    Juárez-Hernández, Eva; Chávez-Tapia, Norberto C; Uribe, Misael; Barbero-Becerra, Varenka J

    2016-08-02

    Nonalcoholic fatty liver disease (NAFLD) is characterized by fat deposition in hepatocytes, and a strong association with nutritional factors. Dietary fatty acids are classified according to their biochemical properties, which confer their bioactive roles. Monounsaturated fatty acids have a dual role in various human and murine models. In contrast, polyunsaturated fatty acids exhibit antiobesity, anti steatosic and anti-inflammatory effects. The combination of these forms of fatty acids-according to dietary type, daily intake and the proportion of n-6 to n-3 fats-can compromise hepatic lipid metabolism. A chemosensory rather than a nutritional role makes bioactive fatty acids possible biomarkers for NAFLD. Bioactive fatty acids provide health benefits through modification of fatty acid composition and modulating the activity of liver cells during liver fibrosis. More and better evidence is necessary to elucidate the role of bioactive fatty acids in nutritional and clinical treatment strategies for patients with NAFLD.

  12. Substitution of fish oil with camelina oil and inclusion of camelina meal in diets fed to Atlantic cod (Gadus morhua) and their effects on growth, tissue lipid classes, and fatty acids.

    PubMed

    Hixson, S M; Parrish, C C

    2014-03-01

    Developing a commercially relevant Atlantic cod aquaculture industry will require improvements in feed sustainability. Camelina oil and meal are potential replacements of fish oil and fish meal in aquaculture feeds. Camelina oil is high in 18:3ω3 (30%), with an ω3/ω6 ratio > 1. Camelina meal has a considerable crude protein level (38%), which includes significant amounts of methionine and phenylalanine. Four diets were tested; each diet was fed to triplicate tanks (3 tanks per diet) of Atlantic cod (14.4 g/fish; 70 fish per tank) for 13 wk. The diets included a fish oil/fish meal control (FO) and three diets which replaced 100% of fish oil with camelina oil: one diet contained fish meal (100CO), another solvent extracted fish meal (100COSEFM), and another had fish meal partially reduced by 15% inclusion of camelina meal (100CO15CM). Growth was measured (length and weight) and tissue samples were collected for lipid analysis (muscle, liver, brain, gut, spleen, skin, and carcass) at wk 0 (before feeding the experimental diet) and at wk 13. Cod fed camelina oil had a lower (P < 0.001) final weight than cod fed the FO diet (50.8 ± 10.3 g/fish). Cod fed 100CO15CM had a lower (P < 0.001) final weight (35.0 ± 8.0 g) than those fed 100CO (43.6 ± 8.9 g) and 100COSEFM (46.7 ± 10.7 g). Cod tissues in the 100COSEFM treatment were most impacted by dietary fatty acid profile. Multivariate statistics revealed that FO and 100COSEFM tissue fatty acid profiles were 21 to 31% different, depending on tissue type. The full replacement of fish oil with camelina oil, plus solvent extracted fish meal had an overarching effect on the entire fatty acid profile of the whole animal. Fatty acid mass balance calculations indicated that cod fed 100COSEFM elongated 13% of 18:3ω3 to 20:3ω3 and oxidized the remaining 87%, whereas cod fed fish oil showed a much lower (P < 0.001) elongation of 18:3ω3 of 1.6%. These results suggest that excess 18:3ω3 from camelina oil caused some fatty acid

  13. Abiotic synthesis of fatty acids

    NASA Technical Reports Server (NTRS)

    Leach, W. W.; Nooner, D. W.; Oro, J.

    1978-01-01

    The formation of fatty acids by Fischer-Tropsch-type synthesis was investigated with ferric oxide, ammonium carbonate, potassium carbonate, powdered Pueblito de Allende carbonaceous chondrite, and filings from the Canyon Diablo meteorite used as catalysts. Products were separated and identified by gas chromatography and mass spectrometry. Iron oxide, Pueblito de Allende chondrite, and Canyon Diablo filings in an oxidized catalyst form yielded no fatty acids. Canyon Diablo filings heated overnight at 500 C while undergoing slow purging by deuterium produced fatty acids only when potassium carbonate was admixed; potassium carbonate alone also produced these compounds. The active catalytic combinations gave relatively high yields of aliphatic and aromatic hydrocarbons; substantial amounts of n-alkenes were almost invariably observed when fatty acids were produced; the latter were in the range C6 to C18, with maximum yield in C9 or 10.

  14. Omega-3 fatty acids: cardiovascular benefits, sources and sustainability.

    PubMed

    Lee, John H; O'Keefe, James H; Lavie, Carl J; Harris, William S

    2009-12-01

    The evidence for the cardioprotective nature of omega-3 fatty acids is abundant, and currently available data indicate that patients with known coronary heart disease should consume at least 1 g daily of long-chain omega-3 fatty acids from either oily fish or fish-oil supplements, and that individuals without disease should consume at least 250-500 mg daily. However, this area of research poses two questions. Firstly, which is the best source of omega-3 fatty acids-fish or fish-oil supplements? Secondly, are recommendations for omega-3 supplementation warranted in view of the rapid depletion of world fish stocks? The argument that eating fish is better than taking fish-oil supplements stems from the fact that several important nutrients, such as vitamin D, selenium, and antioxidants, are missing from the supplements. However, three major prevention trials have clearly indicated that omega-3 fatty acid capsules confer cardiovascular benefits and, therefore, that both are cardioprotective. Sustainable sources of omega-3 fatty acids will need to be identified if long-term cardiovascular risk reduction is to be achieved at the population level.

  15. Effect of Dietary Levels of Menhaden Fish Oil and Feeding Duration on Growth Performance, and Proximate and Fatty Acid Composition of Channel Catfish, Ictalurus punctatus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Omega-3 highly unsaturated fatty acids (HUFA n-3), which consist mainly of eicosapentaenoic acid (EPA, 20:5 n-3) and docosahexaenoic acid (DHA, 22:6 n-3), plays vital roles in human nutrition, disease prevention and health promotion. As the general public becomes aware of the health benefits of cons...

  16. Dietary supplementation of omega-3 fatty acid-containing fish oil suppresses F2-isoprostanes but enhances inflammatory cytokine response in a mouse model of ovalbumin-induced allergic lung inflammation.

    PubMed

    Yin, Huiyong; Liu, Wei; Goleniewska, Kasia; Porter, Ned A; Morrow, Jason D; Peebles, R Stokes

    2009-09-01

    Epidemiological and clinical evidence has suggested that increased dietary intake of fish oil containing omega-3 fatty acids including eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) may be associated with a reduced risk of asthma. However, interventional studies on these effects have been equivocal and controversial. Free radical oxidation products of lipids and cyclooxygenases-derived prostaglandins are believed to play an important role in asthma, and fish oil supplementation may modulate the levels of these critical lipid mediators. We employed a murine model of allergic inflammation produced by sensitization to ovalbumin (OVA) to study the effects of fish oil supplementation on airway inflammation. Our studies demonstrated that omega-3 fatty acids were dose dependently incorporated into mouse lung tissue after dietary supplementation. We examined the oxidative stress status by measuring the levels of isoprostanes (IsoPs), the gold standard for oxidative stress in vivo. OVA challenge caused significant increase of F(2)-IsoPs in mouse lung, suggesting an elevated level of oxidative stress. Compared to the control group, fish oil supplementation led to a significant reduction of F(2)-IsoP (from arachidonic acid) with a concomitant increase of F(3)-IsoPs (from EPA) and F(4)-IsoPs (from DHA). Surprisingly, however, fish oil supplementation enhanced production of proinflammatory cytokine IL-5 and IL-13. Furthermore, fish oil supplementation suppressed the production of pulmonary protective PGE(2) in the bronchoalveolar lavage (BAL) while the level of urinary metabolites of the PGE(2) was increased. Our data suggest that augmented lung inflammation after fish oil supplementation may be due to the reduction of PGE(2) production in the lung and these dichotomous results bring into question the role of fish oil supplementation in the treatment of asthma.

  17. Effectiveness of omega-3 polysaturated fatty acids (fish oil) supplementation for treating hypertriglyceridemia in children and adolescents.

    PubMed

    Chahal, Nita; Manlhiot, Cedric; Wong, Helen; McCrindle, Brian W

    2014-06-01

    Limited pharmacological options are available for management pediatric hypertriglyceridemia. We examined the effectiveness of dietary fish oil supplementation as a means to reduce triglyceride levels in pediatric patients. We reviewed 111 children aged 8 to 18 years with hypertriglyceridemia (≥1.5 mmol/L) undergoing treatment in a specialized dyslipidemia clinic. At the treating cardiologist's discretion, 60 subjects received nonprescription fish oil supplementation (500-1000 mg/d), while the remaining patients did not. Initially there were no baseline differences between groups, including the use of concomitant lipid-lowering medication. Treatment with fish oil was associated with a potential clinically relevant but non-statistically significant decrease in triglycerides and triglyceride-to-high-density lipoprotein (HDL) ratio. Fish oil had no effect on HDL-cholesterol, non-HDL-cholesterol, or total cholesterol. All associations remained unchanged when adjusted for body mass index z score, nutrition, physical activity, and screen time. Fish oil supplementation was not significantly effective in treating hypertriglyceridemia in pediatric patients.

  18. Effect of fish oil on ruminal biohydrogenation of C18 unsaturated fatty acids in steers fed grass or red clover silages.

    PubMed

    Lee, M R F; Shingfield, K J; Tweed, J K S; Toivonen, V; Huws, S A; Scollan, N D

    2008-12-01

    Red clover and fish oil (FO) are known to alter ruminal lipid biohydrogenation leading to an increase in the polyunsaturated fatty acid (PUFA) and conjugated linoleic acid (CLA) content of ruminant-derived foods, respectively. The potential to exploit these beneficial effects were examined using eight Hereford × Friesian steers fitted with rumen and duodenal cannulae. Treatments consisted of grass silage or red clover silage fed at 90% of ad libitum intake and FO supplementation at 0, 10, 20 or 30 g/kg diet dry matter (DM). The experiment was conducted with two animals per FO level and treatments formed extra-period Latin squares. Flows of fatty acids at the duodenum were assessed using ytterbium acetate and chromium ethylene diamine tetra-acetic acid as indigestible markers. Intakes of DM were higher (P < 0.001) for red clover silage than grass silage (5.98 v. 5.09 kg/day). There was a linear interaction effect (P = 0.004) to FO with a reduction in DM intake in steers fed red clover silage supplemented with 30 g FO/kg diet DM. Apparent ruminal biohydrogenation of C18:2n-6 and C18:3n-3 were lower (P < 0.001) for red clover silage than grass silage (0.83 and 0.79 v. 0.87 and 0.87, respectively), whilst FO increased the extent of biohydrogenation on both diets. Ruminal biohydrogenation of C20:5n-3 and C22:6n-3 was extensive on both silage diets, averaging 0.94 and 0.97, respectively. Inclusion of FO in the diet enhanced the flow of total CLA leaving the rumen with an average across silages of 0.22, 0.31, 0.41 and 0.44 g/day for 0, 10, 20 or 30 g FO/kg, respectively, with a linear interaction effect between the two silages (P = 0.03). FO also showed a dose-dependent increase in the flow of trans-C18:1 intermediates at the duodenum from 4.6 to 15.0 g/day on grass silage and from 9.4 to 22.5 g/day for red clover silage. Concentrations of trans-C18:1 with double bonds from Δ4-16 in duodenal digesta were all elevated in response to FO in both diets, with trans-11 being

  19. Fatty acid biosynthesis in actinomycetes

    PubMed Central

    Gago, Gabriela; Diacovich, Lautaro; Arabolaza, Ana; Tsai, Shiou-Chuan; Gramajo, Hugo

    2011-01-01

    All organisms that produce fatty acids do so via a repeated cycle of reactions. In mammals and other animals, these reactions are catalyzed by a type I fatty acid synthase (FAS), a large multifunctional protein to which the growing chain is covalently attached. In contrast, most bacteria (and plants) contain a type II system in which each reaction is catalyzed by a discrete protein. The pathway of fatty acid biosynthesis in Escherichia coli is well established and has provided a foundation for elucidating the type II FAS pathways in other bacteria (White et al., 2005). However, fatty acid biosynthesis is more diverse in the phylum Actinobacteria: Mycobacterium, possess both FAS systems while Streptomyces species have only the multi-enzyme FAS II system and Corynebacterium species exclusively FAS I. In this review we present an overview of the genome organization, biochemical properties and physiological relevance of the two FAS systems in the three genera of actinomycetes mentioned above. We also address in detail the biochemical and structural properties of the acyl-CoA carboxylases (ACCases) that catalyzes the first committed step of fatty acid synthesis in actinomycetes, and discuss the molecular bases of their substrate specificity and the structure-based identification of new ACCase inhibitors with anti-mycobacterial properties. PMID:21204864

  20. U.S. adults are not meeting recommended levels for fish and omega-3 fatty acid intake: results of an analysis using observational data from NHANES 2003–2008

    PubMed Central

    2014-01-01

    Background The American Heart Association’s Strategic Impact Goal Through 2020 and Beyond recommends ≥ two 3.5-oz fish servings per week (preferably oily fish) partly to increase intake of omega-3 fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). We examined the intake of total fish, fish high in omega-3 fatty acids, α-linolenic acid, EPA, and DHA in U.S. adults (19 + years) using data from the National Health and Nutrition Examination Survey, 2003–2008. Methods Usual intakes from foods alone and from foods plus dietary supplements were determined using the methods from the National Cancer Institute. Results Mean usual intake of total fish and fish high in omega-3 fatty acids was 0.61 ± 0.03 and 0.15 ± 0.03 oz/day, 0.43 and 0.07 respectively. Total fish and fish high in omega-3 fatty acids median intake was 0.43 and 0.07 oz/day, respectively. Intake from foods alone for ALA, EPA and DHA was 1.5 ± 0.01 g/d, 23 ± 7 mg/d and 63 ± 2 mg/d, respectively. ALA, EPA and DHA from food only median intakes were 1.4 g/d, 18 mg/d and 50 mg/d, respectively. Intake of ALA, EPA and DHA from foods and dietary supplements was 1.6 ± 0.04 g/d, 41 ± 4 mg/d and 72 ± 4 mg/d, respectively. While intakes of fish high in omega-3 fatty acids were higher in older adults (0.13 ± 0.01 oz/d for those 19–50 yrs and 0.19 ± 0.02 oz/d for those 51+ year; p < 0.01) and in males as compared to females (0.18 ± 0.02 vs 0.13 ± 0.01 oz/d, respectively; p < 0.05), few consumed recommended levels. Males also had higher (p < 0.05) intake of EPA and DHA from foods and dietary supplements relative to females (44 ± 6 vs 39 ± 4 and 90 ± 7 vs 59 ± 4 mg/d, respectively) and older adults had higher intakes of EPA, but not DHA compared to younger adults (EPA: 34 ± 3 vs 58 ± 9, p < 0.05; DHA: 68 ± 4 vs 81 ± 6, p < 0.05). Conclusions As omega-3 fatty

  1. Feeding healthy beagles medium-chain triglycerides, fish oil, and carnitine offsets age-related changes in serum fatty acids and carnitine metabolites.

    PubMed

    Hall, Jean A; Jewell, Dennis E

    2012-01-01

    The purpose of this study was to determine if feeding dogs medium-chain triglycerides (MCT), fish oil, and L-carnitine enriched foods offsets age-associated changes in serum fatty acids (FA) and carnitine metabolites. Forty-one healthy Beagles, mean age 9.9 years (range 3.1 to 14.8), were fed control or one of two treatment foods for 6 months. All foods were complete and balanced and met the nutrient requirements for adult dogs, and had similar concentrations of moisture, protein, and fat (approx. 7.4%, 14.0%, and 18.1%, respectively). The treatment diets both contained added L-carnitine (300 mg/kg) and 0.6% (treatment food 1) or 1.5% (treatment food 2) added fish oil. Treatment food 2 also had increased MCT from coconut oil, added corn oil, and reduced animal fat. Composition of serum FA was determined by gas chromatography of FA methyl esters. Metabolomic profiles of serum samples were determined from extracted supernatants that were split and run on GC/MS and LC/MS/MS platforms, for identification and relative quantification of small metabolites. Body composition was determined by dual energy x-ray absorptiometry. Among dog groups, there was no change in total-lean-body weight, or in serum total protein and serum albumin concentrations, based on time or dietary treatment. Serum concentrations of carnitine metabolites were decreased in geriatric (>7 years) vs. mature adult (≤ 7 years) dogs, and supplementation with L-carnitine attenuated the effects of aging. The ratio of PUFA to SFA was significantly greater in mature dogs at baseline (P ≤ 0.05). Serum concentrations of eicosapentaenoic and docosahexaenoic FA increased in a dose-dependent manner. Dogs consuming treatment food 2 also had increased serum concentrations of lauric and myristic FA, and decreased concentrations of SFA, MUFA, and arachidonate (all P ≤ 0.05) and their PUFA to SFA ratio increased. In summary, dietary MCT, fish oil, and L-carnitine counterbalanced the effects of aging on circulating

  2. Quantification of fatty acids in the muscle of Antarctic fish Trematomus bernacchii by gas chromatography-mass spectrometry: Optimization of the analytical methodology.

    PubMed

    Truzzi, C; Illuminati, S; Annibaldi, A; Antonucci, M; Scarponi, G

    2017-04-01

    This work presents data on the quantification of fatty acids (FAs, in terms of mass unit per tissue weight) in the muscle of Trematomus bernacchii, a key species in Antarctica, often used as bioindicator for contamination studies. Modifications in fatty acids content should be considered a useful biomarker to study how contaminants affect Antarctic biota. Until now, very few studies quantified fatty acids of muscle of T. bernacchii, and only as percentage of a single fatty acid on total lipids. To perform the quantification of fatty acids, we used an analytical method based on a fast microwave-assisted extraction of lipids from a lyophilized sample, a base-catalyzed trans-esterification of lipid extract to obtain Fatty Acids Methyl Esters (FAMEs), and a separation and identification of FAMEs by gas chromatography-mass spectrometry. With the optimized and validated method, a fast and accurate separation of Fatty Acids Methyl Esters was performed in 43 min. The linearity was checked up to about 320 μg mL(-1); limit of detection and limit of quantification are in the range 4-22 μg mL(-1) and 13-66 μg mL(-1), respectively. The optimized method showed a good accuracy and precision. Major fatty acids were 14:0, 16:0, 16:1n7, 18:1n9, 18:1n7, 20:1n9, 20:5n3 and 22:6n3. Quantified FAs compute for about 47 mg g(-1) tissue dry weight (dw), with 9.1 ± 0.1 mg g(-1) dw of saturated FAs, 25.5 ± 0.1 mg g(-1) dw of mono-unsaturated FAs, and 12.2 ± 0.1 mg g(-1) dw of poly-unsaturated FAs.

  3. Fish Oil Attenuates Omega-6 Polyunsaturated Fatty Acid-Induced Dysbiosis and Infectious Colitis but Impairs LPS Dephosphorylation Activity Causing Sepsis

    PubMed Central

    Brown, Kirsty; Rajendiran, Ethendhar; Estaki, Mehrbod; Dai, Chuanbin; Yip, Ashley; Gibson, Deanna L.

    2013-01-01

    Clinically, excessive ω-6 polyunsaturated fatty acid (PUFA) and inadequate ω-3 PUFA have been associated with enhanced risks for developing ulcerative colitis. In rodent models, ω-3 PUFAs have been shown to either attenuate or exacerbate colitis in different studies. We hypothesized that a high ω-6: ω-3 PUFA ratio would increase colitis susceptibility through the microbe-immunity nexus. To address this, we fed post-weaned mice diets rich in ω-6 PUFA (corn oil) and diets supplemented with ω-3 PUFA (corn oil+fish oil) for 5 weeks. We evaluated the intestinal microbiota, induced colitis with Citrobacter rodentium and followed disease progression. We found that ω-6 PUFA enriched the microbiota with Enterobacteriaceae, Segmented Filamentous Bacteria and Clostridia spp., all known to induce inflammation. During infection-induced colitis, ω-6 PUFA fed mice had exacerbated intestinal damage, immune cell infiltration, prostaglandin E2 expression and C. rodentium translocation across the intestinal mucosae. Addition of ω-3 PUFA on a high ω-6 PUFA diet, reversed inflammatory-inducing microbial blooms and enriched beneficial microbes like Lactobacillus and Bifidobacteria, reduced immune cell infiltration and impaired cytokine/chemokine induction during infection. While, ω-3 PUFA supplementation protected against severe colitis, these mice suffered greater mortality associated with sepsis-related serum factors such as LPS binding protein, IL-15 and TNF-α. These mice also demonstrated decreased expression of intestinal alkaline phosphatase and an inability to dephosphorylate LPS. Thus, the colonic microbiota is altered differentially through varying PUFA composition, conferring altered susceptibility to colitis. Overall, ω-6 PUFA enriches pro-inflammatory microbes and augments colitis; but prevents infection-induced systemic inflammation. In contrast, ω-3 PUFA supplementation reverses the effects of the ω-6 PUFA diet but impairs infection-induced responses

  4. Influence of the dietary protein:lipid ratio and fish oil substitution on fatty acid composition and metabolism of Atlantic salmon (Salmo salar) reared at high water temperatures.

    PubMed

    Karalazos, Vasileios; Bendiksen, Eldar Å; Dick, James R; Tocher, Douglas R; Bell, John Gordon

    2011-04-01

    A factorial, two-way, experimental design was used for this 10-week nutritional trial, aiming to elucidate the interactive effects of decreasing dietary protein:lipid level and substitution of fish oil (FO) with rapeseed oil (RO) on tissue fatty acid (FA) composition and metabolism of large Atlantic salmon (Salmo salar L.) reared at high water temperatures (sub-optimal, summer temperatures: 11·6°C). The six experimental diets were isoenergetic and formulated to include either FO or RO (60 % of the added oil) at three dietary protein:lipid levels, specifically (1) 350 g/kg protein and 350 g/kg lipid, (2) 330 g/kg protein and 360 g/kg lipid, (3) 290 g/kg protein and 380 g/kg lipid. Final weight, specific growth rate and thermal growth coefficient were positively affected by the dietary RO inclusion at the expense of FO, while no significant effects were seen on growth due to the decreasing protein level. The oil source had a significant effect on muscle and liver FA composition. However, the changes in muscle and liver FA indicate selective utilisation or retention of individual FA and moderate reductions in tissue EPA and DHA. Pyloric caeca phospholipid FA composition was significantly affected by the two factors and, in some cases, significant interactions were also revealed. Liver and red muscle β-oxidation capacities were significantly increased due to RO inclusion, while an interactive effect of protein level and oil source was shown for white muscle β-oxidation capacity. The results could explain, at least partially, the better performance that was shown for the RO groups and the enhanced protein-sparing effect.

  5. Fish oil attenuates omega-6 polyunsaturated fatty acid-induced dysbiosis and infectious colitis but impairs LPS dephosphorylation activity causing sepsis.

    PubMed

    Ghosh, Sanjoy; DeCoffe, Daniella; Brown, Kirsty; Rajendiran, Ethendhar; Estaki, Mehrbod; Dai, Chuanbin; Yip, Ashley; Gibson, Deanna L

    2013-01-01

    Clinically, excessive ω-6 polyunsaturated fatty acid (PUFA) and inadequate ω-3 PUFA have been associated with enhanced risks for developing ulcerative colitis. In rodent models, ω-3 PUFAs have been shown to either attenuate or exacerbate colitis in different studies. We hypothesized that a high ω-6: ω-3 PUFA ratio would increase colitis susceptibility through the microbe-immunity nexus. To address this, we fed post-weaned mice diets rich in ω-6 PUFA (corn oil) and diets supplemented with ω-3 PUFA (corn oil+fish oil) for 5 weeks. We evaluated the intestinal microbiota, induced colitis with Citrobacter rodentium and followed disease progression. We found that ω-6 PUFA enriched the microbiota with Enterobacteriaceae, Segmented Filamentous Bacteria and Clostridia spp., all known to induce inflammation. During infection-induced colitis, ω-6 PUFA fed mice had exacerbated intestinal damage, immune cell infiltration, prostaglandin E2 expression and C. rodentium translocation across the intestinal mucosae. Addition of ω-3 PUFA on a high ω-6 PUFA diet, reversed inflammatory-inducing microbial blooms and enriched beneficial microbes like Lactobacillus and Bifidobacteria, reduced immune cell infiltration and impaired cytokine/chemokine induction during infection. While, ω-3 PUFA supplementation protected against severe colitis, these mice suffered greater mortality associated with sepsis-related serum factors such as LPS binding protein, IL-15 and TNF-α. These mice also demonstrated decreased expression of intestinal alkaline phosphatase and an inability to dephosphorylate LPS. Thus, the colonic microbiota is altered differentially through varying PUFA composition, conferring altered susceptibility to colitis. Overall, ω-6 PUFA enriches pro-inflammatory microbes and augments colitis; but prevents infection-induced systemic inflammation. In contrast, ω-3 PUFA supplementation reverses the effects of the ω-6 PUFA diet but impairs infection-induced responses

  6. Effect of type and level of fish oil supplementation on yolk fat composition and n-3 fatty acids retention efficiency in laying hens.

    PubMed

    Cachaldora, P; García-Rebollar, P; Alvarez, C; De Blas, J C; Méndez, J

    2006-02-01

    1. Laying hen performance and yolk fat fatty acid (FA) concentrations were evaluated with respect to the inclusion in the diet of different sources and levels of marine fish oil (MFO). 2. Twelve diets were arranged factorially, with three sources (MFO1, MFO2_EPA, MFO3_DHA) and four levels of inclusion (15, 30, 45 and 60 g/kg) of MFO. 3. Type of diet had little effect on egg production traits, although laying rate and shell thickness slightly decreased at the highest level of MFO supplementation. 4. An increase in level of inclusion of MFO from 15 to 60 g/kg linearly increased concentrations of C20:5 n-3, C22:5 n-3, C22:6 n-3 and total n-3 FA in yolk fat, but greatly impaired their efficiencies of deposition (g retained/g ingested). 5. An interaction between type and dietary concentration of MFO was found, as the reduction in efficiency of retention of n-3 FA in egg fat with level of MFO was less when the proportion of n-3 in total FA decreased or when that of DHA in total n-3 FA increased. 6. MFO3_ DHA was more efficiently used for total n-3 FA yolk deposition than MFO2_EPA at a similar total n-3 FA intake. 7. Dietary inclusion of MFO reduced LC n-6 FA yolk fat content, which additionally decreased the ratio between total n-6 and total n-3 FA in egg fat. 8. Regression equations were calculated in order to predict efficiency of retention and n-3 FA concentration of yolk fat in the range of diets studied.

  7. Effects of olive and fish oil Ca soaps in ewe diets on milk fat and muscle and subcutaneous tissue fatty-acid profiles of suckling lambs.

    PubMed

    Gallardo, B; Gómez-Cortés, P; Mantecón, A R; Juárez, M; Manso, T; de la Fuente, M A

    2014-07-01

    Enhancing healthy fatty acids (FAs) in ewe milk fat and suckling lamb tissues is an important objective in terms of improving the nutritional value of these foods for the consumer. The present study examined the effects of feeding-protected lipid supplements rich in unsaturated FAs on the lipid composition of ewe milk, and subsequently in the muscle and subcutaneous adipose tissues of lambs suckling such milk. Thirty-six pregnant Churra ewes with their new-born lambs were assigned to one of three experimental diets (forage/concentrate ratio 50 : 50), each supplemented with either 3% Ca soap FAs of palm (Control), olive (OLI) or fish (FO) oil. The lambs were nourished exclusively by suckling for the whole experimental period. When the lambs reached 11 kg BW, they were slaughtered and samples were taken from the Longissimus dorsi and subcutaneous fat depots. Although milk production was not affected by lipid supplementation, the FO diet decreased fat content (P0.05) and other trans-FAs between Control and FO treatments would indicate that FO treatment does not alter rumen biohydrogenation pathways under the assayed conditions. Changes in dam milk FA composition induced differences in the FA profiles of meat and fat depots of lambs, preferentially incorporated polyunsaturated FAs into the muscle rather than storing them in the adipose tissue. In the intramuscular fat of the FO treatment, all the n-3 FAs reached their highest concentrations: 0.97 (18:3 n-3), 2.72 (20:5 n-3), 2.21 (22:5 n-3) and 1.53% (22:6 n-3). In addition, not only did FO intramuscular fat have the most cis-9, trans-11 18:2 (1.66%) and trans-11 18:1 (3.75%), but also the lowest n-6/n-3 ratio (1.80) and saturated FA content were not affected. Therefore, FO exhibited the best FA profile from a nutritional point of view.

  8. Apple flavonols and n-3 polyunsaturated fatty acid-rich fish oil lowers blood C-reactive protein in rats with hypercholesterolemia and acute inflammation.

    PubMed

    Sekhon-Loodu, Satvir; Catalli, Adriana; Kulka, Marianna; Wang, Yanwen; Shahidi, Fereidoon; Rupasinghe, H P Vasantha

    2014-06-01

    Both quercetin glycosides and omega-3 polyunsaturated fatty acids (n-3 PUFA) are well established for their individual health benefits in ameliorating metabolic disease. However, their combined effects are not well documented. It was hypothesized that the beneficial properties of quercetin glycosides can be enhanced when provided in combination with n-3 PUFA. Therefore, the aim of the present study was to investigate the effects of apple flavonols (AF) and fish oil (FO), alone and in combination, on proinflammatory biomarkers and lipid profiles in rats fed a high-fat diet. Sixty male Wistar rats were randomly divided into 5 groups (n = 12) and fed a high-fat diet for 4 weeks. One of the 5 groups of rats was used as the high-fat control. The other 4 groups of rats were injected with lipopolysaccharide (LPS) (5 mg/kg body weight) intraperitoneally, 5 hours before euthanization. One of these 4 groups was used as the hypercholerolemic and inflammatory control (high-fat with lipopolysaccharide [HFL]), and the other 3 received AF (HFL + 25 mg/kg per day AF), FO (HFL + 1 g/kg per day FO), or the combination (HFL + AF + FO). Compared to the HFL group, the AF, FO, and AF + FO groups showed lower serum concentrations of interleukin-6 and C-reactive protein (CRP) levels. The AF, FO, and AF + FO also had lowered serum triacylglycerol and non-high-density lipoprotein cholesterol (HDL-C) concentrations, but higher HDL-C levels relative to the HFL group. An additive effect was observed on serum CRP in the AF + FO group as compared with the AF or FO groups. The results demonstrated that AF and FO inhibited the production of proinflammatory mediators and showed an improved efficacy to lower serum CRP when administered in combination, and they significantly improved blood lipid profiles in rats with diet-induced hyperlipidemia and LPS-induced acute inflammation.

  9. Tissue and size-related changes in the fatty acid and stable isotope signatures of the deep sea grenadier fish Coryphaenoides armatus from the Charlie-Gibbs Fracture Zone region of the Mid-Atlantic Ridge

    NASA Astrophysics Data System (ADS)

    Mayor, Daniel J.; Sharples, Caroline J.; Webster, Lynda; Walsham, Pamela; Lacaze, Jean-Pierre; Cousins, Nicola J.

    2013-12-01

    Coryphaenoides armatus is a cosmopolitan deep-sea fish that plays a major role in the ecology of abyssal ecosystems. We investigated the trophic ecology and physiology of this species by determining the δ13C, δ15N and fatty acid signatures of muscle, liver and ovary tissues of individuals collected from ∼2700 m to the north and south of the Charlie-Gibbs Fracture Zone (CGFZ) of the Mid-Atlantic Ridge, NE Atlantic. Fatty acid and δ13C data both suggested that C. armatus shows an ontogenetic dietary shift, with the relative contributions of benthic and pelagic prey decreasing and increasing respectively as the animals grow. They also indicated that dietary overlap between animals living to the north and south of the CGFZ increases as they grow, suggesting that larger animals forage over greater distances and are not hindered by the presence of the CGFZ. Comparison of tissue-specific fatty acid signatures with previously published data suggests compositional homeostasis of the fatty acids 20:5(n-3) and 22:6(n-3) in the muscle, and 18:1(n-9) in the liver tissues. We ascribe this primarily to strict physiological requirements for these compounds, rather than simply to their abundance in the diet. We pose several speculative mechanisms to explain the observed trends in tissue-specific δ13C and δ15N values, illustrating some of the numerous processes that can influence the isotopic signatures of bulk tissues.

  10. Influence of changes in dietary fatty acids during pregnancy on placental and fetal fatty acid profile in the rat.

    PubMed

    Amusquivar, Encarnación; Herrera, Emilio

    2003-01-01

    To determine whether the composition of long-chain polyunsaturated fatty acids (PUFA) could be modified in the fetus by maternal dietary fatty acids, pregnant Sprague-Dawley rats were fed semipurified diets that differed only in the non-vitamin lipid component. The diets contained either 10 g palm, sunflower, olive or fish oil (FOD)/100 g diet. A total of 5-6 rats were studied in each group. At day 20 of gestation, corresponding to 1.5 days prior parturition, the fatty acids in maternal adipose tissue were closely related to the fatty acid composition in the corresponding diet. An important proportion of arachidonic acid (AA) appeared in maternal liver and plasma, although it was lower in the FOD than in the other groups. Except for saturated fatty acids, the proportion of individual fatty acids in the placenta correlated linearly with that in maternal plasma. Also, PUFA in fetal plasma and liver showed significant correlations with PUFA in maternal plasma. Again, AA showed the lowest proportion in the plasma and liver of the FOD group. Therefore, the maternal dietary fatty acid composition influences maternal and fetal plasma and tissue composition, and an increase in dietary omega-3 fatty acids decreases the amount of AA in maternal and fetal tissues.

  11. Dietary α-linolenic acid from flaxseed oil or eicosapentaenoic and docosahexaenoic acids from fish oil differentially alter fatty acid composition and characteristics of fresh and frozen-thawed bull semen.

    PubMed

    Moallem, Uzi; Neta, Noam; Zeron, Yoel; Zachut, Maya; Roth, Zvi

    2015-04-15

    Incorporation rates of dietary omega-3 (n-3) fatty acids (FAs) from different sources into bull plasma and sperm and the effects on physiological characteristics of fresh and frozen-thawed semen were determined. Fifteen fertile bulls were assigned to three treatment groups and supplemented for 13 weeks with encapsulated fat: (1) SFA-360 g/d per bull saturated FA; (2) FLX-450 g/d per bull providing 84.2 g/d C18:3n-3 (α-linolenic acid) from flaxseed oil; and (3) FO-450 g/d per bull providing 8.7 g/d C20:5n-3 (eicosapentaenoic acid) and 6.5 g/d C22:6n-3 (docosahexaenoic acid, DHA) from fish oil. Blood samples were taken every 2 weeks and semen was collected weekly. With respect to the FA supplements, the proportion of α-linolenic acid in plasma increased in the FLX bulls, whereas that of DHA was increased in the FO bulls, within 2 weeks. However, changes in the sperm FA fraction were first expressed in the sixth week of supplementation: in the FO and FLX bulls the DHA proportion increased (P < 0.001), whereas that of C22:5n-6 FAs (docosapentaenoic acid [DPA] n-6) decreased (P < 0.001). Sperm motility and progressive motility in fresh semen were higher (P < 0.05), and the fading rate tended to be lower in the FLX than in FO bulls (P < 0.06). Furthermore, sperm motility, progressive motility, and velocity in frozen-thawed semen were higher in FLX than in the other groups (P < 0.008). These findings indicate that the proportion of DHA in sperm can be increased at the expense of DPAn-6 by either FO or FLX supplementation, indicating de novo elongation and desaturation of short- into longer-chain n-3 FAs in testes. Furthermore, the moderate exchange of DHA and DPAn-6 in the FLX group's sperm was associated with changes in the characteristics of both fresh and frozen-thawed semen, suggesting the importance of the ratio between these two FAs for sperm structure and function.

  12. Effects of partial substitution of dietary fish oil with blends of vegetable oils, on blood leucocyte fatty acid compositions, immune function and histology in European sea bass (Dicentrarchus labrax L).

    PubMed

    Mourente, Gabriel; Good, Joanne E; Thompson, Kim D; Bell, J Gordon

    2007-10-01

    Within a decade or so insufficient fish oil (FO) will be available to meet the requirements for aquaculture growth. Consequently, alternative sources are being investigated to reduce reliance on wild fish as a source of FO. Vegetable oils (VO) are a feasible alternative to FO. However, it is important to establish that alternative dietary lipids are not only supplied in the correct quantities and balance for optimal growth, but can maintain immune function and prevent infection, since it is known that the nutritional state of the fish can influence their immune function and disease resistance. A way of maintaining immune function, while replacing dietary FO, is by using a blend of VO rather than a single oil. In this study, juvenile European sea bass (Dicentrarchus labrax) were fed diets with a 60 % substitution of FO with a blend of rapeseed, linseed and palm oils. Two oil blends were used to achieve a fatty acid composition similar to FO, in terms of energy content, and provide a similar balance of SFA, MUFA and PUFA. Fish were fed the diets for 64 weeks, after which time growth and fatty acid compositions of liver and blood leucocytes were monitored. The impact of the dietary blends on selected innate immune responses and histopathology were also assessed, together with levels of plasma prostaglandin E2. The results suggest that potential exists for replacing FO with a VO blend in farmed sea bass feeds without compromising growth, non-specific immune function or histology.

  13. Omega-3 Fatty Acids during Pregnancy

    MedlinePlus

    OMEGA-3 FATTY ACIDS DURING PREGNANCY S HARE W ITH W OMEN OMEGA-3 FATTY ACIDS DURING PREGNANCY During pregnancy, your baby gets most ... eat and vitamins you take. Omega-3 fatty acids (omega-3s) are an important family of building ...

  14. Plant fatty acid hydroxylase

    DOEpatents

    Somerville, Chris; van de Loo, Frank

    2000-01-01

    The present invention relates to the identification of nucleic acid sequences and constructs, and methods related thereto, and the use of these sequences and constructs to produce genetically modified plants for the purpose of altering the composition of plant oils, waxes and related compounds.

  15. Nitrated fatty acids: synthesis and measurement.

    PubMed

    Woodcock, Steven R; Bonacci, Gustavo; Gelhaus, Stacy L; Schopfer, Francisco J

    2013-06-01

    Nitrated fatty acids are the product of nitrogen dioxide reaction with unsaturated fatty acids. The discovery of peroxynitrite and peroxidase-induced nitration of biomolecules led to the initial reports of endogenous nitrated fatty acids. These species increase during ischemia/reperfusion, but concentrations are often at or near the limits of detection. Here, we describe multiple methods for nitrated fatty acid synthesis and sample extraction from complex biological matrices and a rigorous method of qualitative and quantitative detection of nitrated fatty acids by liquid chromatography-mass spectrometry. In addition, optimized instrument conditions and caveats regarding data interpretation are discussed.

  16. Nitrated fatty acids: Synthesis and measurement

    PubMed Central

    Woodcock, Steven R.; Bonacci, Gustavo; Gelhaus, Stacy L.; Schopfer, Francisco J.

    2012-01-01

    Nitrated fatty acids are the product of nitrogen dioxide reaction with unsaturated fatty acids. The discovery of peroxynitrite and peroxidase-induced nitration of biomolecules led to the initial reports of endogenous nitrated fatty acids. These species increase during ischemia reperfusion, but concentrations are often at or near the limits of detection. Here, we describe multiple methods for nitrated fatty acid synthesis, sample extraction from complex biological matrices, and a rigorous method of qualitative and quantitative detection of nitrated fatty acids by LC-MS. In addition, optimized instrument conditions and caveats regarding data interpretation are discussed. PMID:23200809

  17. Effect of supplementation with fish oil or microalgae on fatty acid composition of milk from cows managed in confinement or pasture systems.

    PubMed

    Vahmani, P; Fredeen, A H; Glover, K E

    2013-10-01

    The objective of this study was to examine the interaction between lipid supplement (LS) and management system (MS) on fatty acid (FA) composition of milk that could affect its healthfulness as a human food. Forty-eight prepartal Holstein cows were blocked by parity and predicted calving date and deployed across pasture (PAS; n=23) or confinement (CONF; n=25) systems. Cows within each system were assigned randomly to a control (no marine oil supplement) or to 1 of 2 isolipidic (200 g/d) marine oil supplements: fish oil (FO) or microalgae (MA) for 125 ± 5 d starting 30 d precalving. The experiment was conducted as a split-plot design, with MS being the whole-plot treatment and LS as the subplot treatment. Cows were housed in a tie-stall barn from -30 until 28 ± 10 d in milk (DIM) and were fed total mixed rations with similar formulations. The PAS group was then adapted to pasture and rotationally grazed on a perennial sward until the end of the experiment (95 ± 5 DIM). Milk samples were collected at 60 and 90 DIM for major components and FA analyses. Milk yield (kg/d) was lower in PAS (34.0) compared with CONF (40.1) cows. Milk fat percentage was reduced with MA compared with FO (3.00 vs. 3.40) and the control (3.56) cows. However, milk fat yield (kg/d) was not affected by lipid supplements. Compared with CONF, PAS cows produced milk fat with a lower content of 12:0 (-38%), 14:0 (-28%), and 16:0 (-17%), and more cis-9 18:1 (+32%), 18:3 n-3 (+30%), conjugated linoleic acid (CLA; +70%) and trans 18:1 (+34%). Both supplements, regardless of MS, reduced similarly the milk fat content of 16:0 (-12%) and increased CLA (+28%) and n-3 long-chain polyunsaturated FA (n-3 LC-PUFA; +150%). Milk fat content of trans 18:1 (trans-6 to trans-16) was increased with FO or MA, although the effect was greater with MA (+81%) than with FO (+42%). The interaction between MS and LS was significant only for trans-11 18:1 (vaccenic acid, VA) and cis-9,trans-11 CLA (rumenic acid). In

  18. Dietary fish oil supplements depress milk fat yield and alter milk fatty acid composition in lactating cows fed grass silage-based diets.

    PubMed

    Kairenius, P; Ärölä, A; Leskinen, H; Toivonen, V; Ahvenjärvi, S; Vanhatalo, A; Huhtanen, P; Hurme, T; Griinari, J M; Shingfield, K J

    2015-08-01

    The potential of dietary fish oil (FO) supplements to increase milk 20:5n-3 and 22:6n-3 concentrations and the associated effects on milk fatty acid (FA) composition, intake, and milk production were examined. Four multiparous lactating cows offered a grass silage-based diet (forage:concentrate ratio 58:42, on a dry matter basis) supplemented with 0, 75, 150, or 300g of FO/d (FO0, FO75, FO150, and FO300, respectively) were used in a 4×4 Latin square with 28-d experimental periods. Milk FA composition was analyzed by complementary silver-ion thin-layer chromatography, gas chromatography-mass spectrometry, and silver-ion HPLC. Supplements of FO decreased linearly dry matter intake, yields of energy-corrected milk, milk fat and protein, and milk fat content. Compared with FO0, milk fat content and yield were decreased by 30.1 and 40.6%, respectively, on the FO300 treatment. Supplements of FO linearly increased milk 20:5n-3 and 22:6n-3 concentrations from 0.07 to 0.18 and 0.03 to 0.10g/100g of FA, respectively. Enrichment of 20:5n-3 and 22:6n-3 was accompanied by decreases in 4- to 18-carbon saturated FA and increases in total conjugated linoleic acid (CLA), trans FA, and polyunsaturated FA concentrations. Fish oil elevated milk fat cis-9,trans-11 CLA content in a quadratic manner, reaching a maximum on FO150 (from 0.61 to 2.15g/100g of FA), whereas further amounts of FO increased trans-10 18:1 with no change in trans-11 18:1 concentration. Supplements of FO also resulted in a dose-dependent appearance of 37 unique 20- and 22-carbon intermediates in milk fat. Concentrations of 16-, 18-, 20-, and 22-carbon trans FA were all increased by FO, with enrichment of trans 18:1 and trans 18:2 being quantitatively the most important. Decreases in milk fat yield to FO were not related to changes in milk trans-10,cis-12 CLA concentration or estimated milk fat melting point. Partial least square regression analysis indicated that FO-induced milk fat depression was associated with

  19. New radiohalogenated alkenyl tellurium fatty acids

    SciTech Connect

    Srivastava, P.C.; Knapp, F.F. Jr.; Kabalka, G.W.

    1987-01-01

    Radiolabeled long-chain fatty acids have diagnostic value as radiopharmaceutical tools in myocardial imaging. Some applications of these fatty acids are limited due to their natural metabolic degradation in vivo with subsequent washout of the radioactivity from the myocardium. The identification of structural features that will increase the myocardial residence time without decreasing the heart uptake of long-chain fatty acids is of interest. Fatty acids containing the tellurium heteroatom were the first modified fatty acids developed that show unique prolonged myocardial retention and low blood levels. Our detailed studies with radioiodinated vinyliodide substituted tellurium fatty acids demonstrate that heart uptake is a function of the tellurium position. New techniques of tellurium and organoborane chemistry have been developed for the synthesis of a variety of radioiodinated iodoalkenyl tellurium fatty acids. 9 refs., 3 figs., 2 tabs.

  20. Transport of fatty acids within plasma lipoproteins in lactating and non-lactating cows fed on fish oil and hydrogenated palm oil.

    PubMed

    Vargas-Bello-Pérez, E; Íñiguez-González, G; Garnsworthy, P C; Loor, J J

    2017-04-01

    The aim of this study was to elucidate the effect of dietary fish oil (FO) and a blend of FO and hydrogenated palm oil (FOPO) on transport of fatty acids (FA) within plasma lipoproteins in lactating and non-lactating cows. Two trials were conducted (one with lactating and another with non-lactating dairy cows) in two 3 × 3 Latin squares that included three periods of 21 days. Dietary treatments for lactating cows consisted of a basal diet (Control; no fat supplement), and fat-supplemented diets containing FO (500 g/day/cow) and FOPO (250 FO + 250 g/day/cow hydrogenated palm oil). For non-lactating cows, dietary treatments consisted of a basal diet (Control; no fat supplement), and fat-supplemented diets containing FO (170 g/day/cow) and FOPO (85 FO + 85 hydrogenated palm oil g/day/cow). In lactating cows, compared with control and FOPO, FO increased C16:0, C18:3 cis-9, 12, 15, C18:2 cis-9, trans-11 and total saturated and polyunsaturated FA in plasma and increased C16:0, C18:2 cis-9, trans-11, total polyunsaturated and total polyunsaturated n-6 in high-density lipoprotein (HDL), whereas in non-lactating cows, compared with control and FOPO, FO increased C16:0, C18:1 trans-11, C18:2 trans-9, 12, C18:2 cis-9, trans-11, C20:5 n-3 and total saturated and polyunsaturated FA in plasma; C16:0, C18:1 trans-11, C18:1 cis-9, C18:2 trans-9, 12, C20:5 n-3 and total monounsaturated FA in HDL; and C18:1 trans-6-8, C18:1 trans-9, C18:1 trans-10, C18:1 trans-11, C18:3 cis-9, 12, 15 and C20:5 n-3 in low-density lipoprotein (LDL). FO increased C20:5 n-3 in plasma and lipoproteins in non-lactating cows and increased C18:3 cis-9, 12, 15 in plasma (in lactating cows) and LDL (in non-lactating cows). We concluded from results of this study that in bovine plasma, the LDL fraction appears to be the main lipoprotein transporting C18:1 trans isomers and is more responsive than other lipoprotein fractions to variation in supply of dietary lipids.

  1. Replacement of fish oil with a DHA-rich algal meal derived from Schizochytrium sp. on the fatty acid and persistent organic pollutant levels in diets and flesh of Atlantic salmon (Salmo salar, L.) post-smolts.

    PubMed

    Sprague, M; Walton, J; Campbell, P J; Strachan, F; Dick, J R; Bell, J G

    2015-10-15

    The replacement of fish oil (FO) with a DHA-rich Schizochytrium sp. algal meal (AM) at two inclusion levels (11% and 5.5% of diet) was tested in Atlantic salmon post-smolts compared to fish fed a FO diet of northern (NFO) or southern hemisphere (SFO) origin. Fish were preconditioned prior to the 19-week experimental feeding period to reduce long-chain polyunsaturated fatty acid (LC-PUFA) and persistent organic pollutant levels (POPs). Dietary POP levels differed significantly between treatments in the order of NFO>SFO>11 AM/5.5 AM and were subsequently reflected in the flesh. Fish fed the 11 AM diet contained similar DHA levels (g 100 g(-1) flesh) to FO-fed fish, despite percentage differences. However, the low levels of EPA in the diets and flesh of algal-fed fish compromised the overall nutritional value to the final consumer. Nevertheless, further developments in microalgae culture offer a promising alternative lipid source of LC-PUFA to FO in salmon feeds that warrants further investigation.

  2. Thiamine and fatty acid content of Lake Michigan Chinook salmon

    USGS Publications Warehouse

    Honeyfield, D.C.; Peters, A.K.; Jones, M.L.

    2008-01-01

    Nutritional status of Lake Michigan Chinook salmon (Oncorhynchus tshawytscha) is inadequately documented. An investigation was conducted to determine muscle and liver thiamine content and whole body fatty acid composition in small, medium and large Chinook salmon. Muscle and liver thiamine concentrations were highest in small salmon, and tended to decrease with increasing fish size. Muscle thiamine was higher in fall than spring in large salmon. The high percentage of Chinook salmon (24-32% in fall and 58-71% in spring) with muscle thiamine concentration below 500 pmol/g, which has been associated with loss of equilibrium and death in other Great Lake salmonines, suggest that Chinook appear to rely less on thiamine than other Great Lakes species for which such low concentrations would be associated with thiamine deficiency (Brown et al. 2005b). A positive correlation was observed between liver total thiamine and percent liver lipids (r = 0.53, P < 0.0001, n = 119). In medium and large salmon, liver lipids were observed to be low in fish with less than 4,000 pmol/g liver total thiamine. In individuals with greater than 4,000 pmol/g liver thiamine, liver lipid increased with thiamine concentration. Individual fatty acids declined between fall and spring. Essential omega-3 fatty acids appear to be conserved as lipid content declined. Arachidonic acid (C20:4n6), an essential omega-6 fatty acid was not different between fall and spring, although the sum of omega-6 (Sw6) fatty acids declined over winter. Elevated concentrations of saturated fatty acids (sum) were observed in whole body tissue lipid. In summary, thiamine, a dietary essential vitamin, and individual fatty acids were found to vary in Lake Michigan Chinook salmon by fish size and season of the year.

  3. Omega-3 fatty acids in major depressive disorder.

    PubMed

    Freeman, Marlene P

    2009-01-01

    Patients with major depressive disorder have high rates of cardiovascular disease and other medical comorbidity. Omega-3 fatty acids, particularly those found in fish and seafood, have cardiovascular health benefits and may play an adjunctive role in the treatment of mood disorders. However, existing studies on omega-3 fatty acids in depression have limitations such as small sample sizes and a wide variance in study design, and results regarding efficacy are mixed. The preponderance of data from placebo-controlled treatment studies suggests that omega-3 fatty acids are a reasonable augmentation strategy for the treatment of major depressive disorder. More research is necessary before omega-3 supplements can be recommended as monotherapy for the treatment of depression. For many individuals with major depressive disorder, augmentation with omega-3 fatty acids should be considered, as general health benefits are well established and adjunctive use is low risk.

  4. Omega-3 fatty acid supplementation and cardiovascular disease

    PubMed Central

    Jump, Donald B.; Depner, Christopher M.; Tripathy, Sasmita

    2012-01-01

    Epidemiological studies on Greenland Inuits in the 1970s and subsequent human studies have established an inverse relationship between the ingestion of omega-3 fatty acids [C20–22 ω 3 polyunsaturated fatty acids (PUFA)], blood levels of C20–22 ω 3 PUFA, and mortality associated with cardiovascular disease (CVD). C20–22 ω 3 PUFA have pleiotropic effects on cell function and regulate multiple pathways controlling blood lipids, inflammatory factors, and cellular events in cardiomyocytes and vascular endothelial cells. The hypolipemic, anti-inflammatory, anti-arrhythmic properties of these fatty acids confer cardioprotection. Accordingly, national heart associations and government agencies have recommended increased consumption of fatty fish or ω 3 PUFA supplements to prevent CVD. In addition to fatty fish, sources of ω 3 PUFA are available from plants, algae, and yeast. A key question examined in this review is whether nonfish sources of ω 3 PUFA are as effective as fatty fish-derived C20–22 ω 3 PUFA at managing risk factors linked to CVD. We focused on ω 3 PUFA metabolism and the capacity of ω 3 PUFA supplements to regulate key cellular events linked to CVD. The outcome of our analysis reveals that nonfish sources of ω 3 PUFA vary in their capacity to regulate blood levels of C20–22 ω 3 PUFA and CVD risk factors. PMID:22904344

  5. Essential fatty acids in health and chronic disease.

    PubMed

    Simopoulos, A P

    1999-09-01

    Human beings evolved consuming a diet that contained about equal amounts of n-3 and n-6 essential fatty acids. Over the past 100-150 y there has been an enormous increase in the consumption of n-6 fatty acids due to the increased intake of vegetable oils from corn, sunflower seeds, safflower seeds, cottonseed, and soybeans. Today, in Western diets, the ratio of n-6 to n-3 fatty acids ranges from approximately 20-30:1 instead of the traditional range of 1-2:1. Studies indicate that a high intake of n-6 fatty acids shifts the physiologic state to one that is prothrombotic and proaggregatory, characterized by increases in blood viscosity, vasospasm, and vasoconstriction and decreases in bleeding time. n-3 Fatty acids, however, have antiinflammatory, antithrombotic, antiarrhythmic, hypolipidemic, and vasodilatory properties. These beneficial effects of n-3 fatty acids have been shown in the secondary prevention of coronary heart disease, hypertension, type 2 diabetes, and, in some patients with renal disease, rheumatoid arthritis, ulcerative colitis, Crohn disease, and chronic obstructive pulmonary disease. Most of the studies were carried out with fish oils [eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA)]. However, alpha-linolenic acid, found in green leafy vegetables, flaxseed, rapeseed, and walnuts, desaturates and elongates in the human body to EPA and DHA and by itself may have beneficial effects in health and in the control of chronic diseases.

  6. Fish Oil and Post-Operative Atrial Fibrillation – Results of the Omega-3 Fatty Acids for Prevention of Post-Operative Atrial Fibrillation (OPERA) Trial

    PubMed Central

    Mozaffarian, Dariush; Marchioli, Roberto; Macchia, Alejandro; Silletta, Maria G.; Ferrazzi, Paolo; Gardner, Timothy J.; Latini, Roberto; Libby, Peter; Lombardi, Federico; O’Gara, Patrick T.; Page, Richard L.; Tavazzi, Luigi; Tognoni, Gianni

    2013-01-01

    Context Post-operative atrial fibrillation/flutter (AF) is one of the most common complications of cardiac surgery and significantly increases morbidity and healthcare utilization. A few small trials have evaluated whether long-chain n-3-polyunsaturated fatty acids (PUFA) reduce post-op AF, with mixed results. Objective To determine whether peri-operative n-3-PUFA supplementation reduces post-op AF. Design Randomized, double-blind, placebo-controlled, multinational, clinical trial. Patients A total of 1,516 patients scheduled for cardiac surgery across 28 centers in the US, Italy, and Argentina, enrolled between Aug 2010 and Jun 2012. Inclusion criteria were broad; the main exclusions were regular use of fish oil or absence of sinus rhythm at enrollment. Forty-eight percent of screened patients and 94% of eligible patients were enrolled. Intervention Patients were randomized to receive fish oil (1 g capsules containing ≥840 mg n-3-PUFA as ethyl esters) or placebo, with pre-operative loading of 10g over 3-5 days (or 8g over 2 days) followed post-operatively by 2g/d until hospital discharge or post-op day10, whichever first. Main Outcome Measures The primary endpoint was occurrence of post-op AF >30 sec. We also evaluated post-op AF lasting >1hr, resulting in symptoms, or treated with cardioversion; other secondary post-op AF endpoints; other tachyarrhythmias; hospital utilization; and major adverse cardiovascular events, 30-day mortality, bleeding, and other adverse events. All endpoints and analyses plans were prespecified. Results At enrollment, mean±SD age was 64±13 years, 72.2% were male, and 51.8% had planned valvular surgery. The primary endpoint occurred in 233 (30.7%) and 227 (30.0%) patients assigned to placebo and n-3-PUFA, respectively (OR=0.96, 95%CI=0.77-1.20; P=0.74). None of the secondary endpoints were significantly different, including post-op AF that was sustained, symptomatic, or treated (n=231 [30.5%] vs. n=224 [29.6%], P=0.70) or number of

  7. Omega-3 fatty acids in inflammation and autoimmune diseases.

    PubMed

    Simopoulos, Artemis P

    2002-12-01

    Among the fatty acids, it is the omega-3 polyunsaturated fatty acids (PUFA) which possess the most potent immunomodulatory activities, and among the omega-3 PUFA, those from fish oil-eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA)--are more biologically potent than alpha-linolenic acid (ALA). Some of the effects of omega-3 PUFA are brought about by modulation of the amount and types of eicosanoids made, and other effects are elicited by eicosanoid-independent mechanisms, including actions upon intracellular signaling pathways, transcription factor activity and gene expression. Animal experiments and clinical intervention studies indicate that omega-3 fatty acids have anti-inflammatory properties and, therefore, might be useful in the management of inflammatory and autoimmune diseases. Coronary heart disease, major depression, aging and cancer are characterized by an increased level of interleukin 1 (IL-1), a proinflammatory cytokine. Similarly, arthritis, Crohn's disease, ulcerative colitis and lupus erythematosis are autoimmune diseases characterized by a high level of IL-1 and the proinflammatory leukotriene LTB(4) produced by omega-6 fatty acids. There have been a number of clinical trials assessing the benefits of dietary supplementation with fish oils in several inflammatory and autoimmune diseases in humans, including rheumatoid arthritis, Crohn's disease, ulcerative colitis, psoriasis, lupus erythematosus, multiple sclerosis and migraine headaches. Many of the placebo-controlled trials of fish oil in chronic inflammatory diseases reveal significant benefit, including decreased disease activity and a lowered use of anti-inflammatory drugs.

  8. Fatty acid composition of selected prosthecate bacteria.

    PubMed

    Carter, R N; Schmidt, J M

    1976-10-11

    The cellular fatty acid composition of 14 strains of Caulobacter speices and types, two species of Prosthecomicrobium, and two species of Asticcacaulis was determined by gas-liquid chromatography. In most of these bacteria, the major fatty acids were octadecenoic acid (C18:1), hexadecenoic acid (C16:1) and hexadecanoic acid (C16:0). Some cyclopropane and branched chain fatty acids were detected in addition to the straight chained acids. Hydroxytetradecanoic acid was an important component of P.enhydrum but significant amounts of hydroxy acids were not detected in other prosthecate bacteria examined.

  9. Dietary n-3 polyunsaturated fatty acids modify fatty acid composition in hepatic and abdominal adipose tissue of sucrose-induced obese rats.

    PubMed

    Alexander-Aguilera, Alfonso; Berruezo, Silvia; Hernández-Diaz, Guillermo; Angulo, Ofelia; Oliart-Ros, Rosamaria

    2011-12-01

    The fatty acid profile of hepatocytes and adipocytes is determined by the composition of the dietary lipids. It remains unclear which fatty acid components contribute to the development or reduction of insulin resistance. The present work examined the fatty acid composition of both tissues in sucrose-induced obese rats receiving fish oil to determine whether the effect of dietary (n-3) polyunsaturated fatty acids (PUFAs) on the reversion of metabolic syndrome in these rats is associated to changes in the fatty acid composition of hepatocyte and adipocyte membrane lipids. Animals with metabolic syndrome were divided into a corn-canola oil diet group and a fish oil diet group, and tissues fatty acids composition were analyzed after 6 weeks of dietary treatment. Fatty acid profiles of the total membrane lipids were modified by the fatty acid composition of the diets fed to rats. N-3 PUFAs levels in animals receiving the fish oil diet plus sucrose in drinking water were significantly higher than in animals under corn-canola oil diets. It is concluded that in sucrose-induced obese rats, consumption of dietary fish oil had beneficial effects on the metabolic syndrome and that such effects would be conditioned by the changes in the n-3 PUFAs composition in hepatic and adipose tissues because they alter membrane properties and modify the type of substrates available for the production of active lipid metabolites acting on insulin resistance and obesity.

  10. The influence of dietary essential fatty acids on uterine C20 and C22 fatty acid composition.

    PubMed

    Howie, A; Leaver, H A; Wilson, N H; Yap, P L; Aitken, I D

    1992-06-01

    The effect of dietary fatty acids on uterine fatty acid composition was studied in rats fed control diet or semi-synthetic diet supplemented with 1.5 microliter/g/day evening primrose oil (EPO) or fish oil (FO). Diet-related changes in uterine lipid were detected within 21 days. Changes of 2- to 20-fold were detected in the uterine n-6 and n-3 essential fatty acids (EFA) and in certain saturated and monounsaturated fatty acids. The FO diet was associated with higher uterine C20 and C22 n-3, and the EPO diet, with higher uterine n-6 fatty acid. High uterine C18:2 n-6 was detected in neutral lipid (NL) of rats fed high concentrations of this fatty acid, but there was little evidence of selective incorporation or retention of C18:2 n-6 by uterine NL. The incorporation of EFA into uterine phospholipids (PL) was greater than NL EFA incorporation, and uterine PL n-3/n-6 ratios showed greater diet dependence. Tissue/diet fatty acid ratios in NL and PL also indicated preferential incorporation/synthesis of C16:1 n-9, and C16:0, and there was greater incorporation of C12:0 and C14:0 into uteri of rats fed EPO and FO. Replacement of 50-60% of arachidonate with n-3 EFA in uterine PL may inhibit n-6 EFA metabolism necessary for uterine function at parturition.

  11. Aspirin increases mitochondrial fatty acid oxidation.

    PubMed

    Uppala, Radha; Dudiak, Brianne; Beck, Megan E; Bharathi, Sivakama S; Zhang, Yuxun; Stolz, Donna B; Goetzman, Eric S

    2017-01-08

    The metabolic effects of salicylates are poorly understood. This study investigated the effects of aspirin on fatty acid oxidation. Aspirin increased mitochondrial long-chain fatty acid oxidation, but inhibited peroxisomal fatty acid oxidation, in two different cell lines. Aspirin increased mitochondrial protein acetylation and was found to be a stronger acetylating agent in vitro than acetyl-CoA. However, aspirin-induced acetylation did not alter the activity of fatty acid oxidation proteins, and knocking out the mitochondrial deacetylase SIRT3 did not affect the induction of long-chain fatty acid oxidation by aspirin. Aspirin did not change oxidation of medium-chain fatty acids, which can freely traverse the mitochondrial membrane. Together, these data indicate that aspirin does not directly alter mitochondrial matrix fatty acid oxidation enzymes, but most likely exerts its effects at the level of long-chain fatty acid transport into mitochondria. The drive on mitochondrial fatty acid oxidation may be a compensatory response to altered mitochondrial morphology and inhibited electron transport chain function, both of which were observed after 24 h incubation of cells with aspirin. These studies provide insight into the pathophysiology of Reye Syndrome, which is known to be triggered by aspirin ingestion in patients with fatty acid oxidation disorders.

  12. Saturated Fatty Acid Requirer of Neurospora crassa

    PubMed Central

    Henry, Susan A.; Keith, Alec D.

    1971-01-01

    Dietary saturated fatty acids containing 12- to 18-carbon atoms satisfy growth requirements of Neurospora crassa mutant cel (previously named ol; Perkins et al., reference 11); unsaturated fatty acids are synthesized by direct desaturation when an appropriate saturate is available. Odd-chain saturates, 15 carbons and 17 carbons long, satisfy the requirement, and elaidic acid (18:1 Δ9trans) results in slow growth. Oleic acid and other cis-unsaturated fatty acids do not satisfy growth requirements; however, oleic acid plus elaidic acid result in growth at a faster rate than elaidate alone. The use of a spin-label fatty acid reveals that hyphae produced by cel during a slow basal level of growth have lipids that reflect a relatively rigid state of viscosity compared to wild type. cel Supplemented with fatty acids and wild type supplemented in the same way have lipids of the same viscosities as reflected by electron spin resonance. PMID:4323964

  13. [Role of omega-3 fatty acids in cardiovascular disease prevention].

    PubMed

    Piñeiro-Corrales, Guadalupe; Lago Rivero, N; Culebras-Fernández, Jesús M

    2013-01-01

    Fatty acids, in addition to its known energy value and its structural function, have other beneficial properties. In particular, the polyunsaturated fatty acids omega-3 acting on the cardiovascular apparatus through many channels exerting a protective effect against cardiovascular risk. The benefits associated with the reduction in cardiac mortality and sudden death particular, are related to the incorporation of EPA and DHA in phospholipid membrane of cardiomyocytes. An index is established that relates the percentage of EPA + DHA of total fatty acids in erythrocytes and risk of death from cardiovascular disease may layering in different degrees. Therefore, the primary source of fatty fish w-3 PUFA, behaves like a reference food in cardiosaludables diets.

  14. Benefits and risks of fish consumption Part II. RIBEPEIX, a computer program to optimize the balance between the intake of omega-3 fatty acids and chemical contaminants.

    PubMed

    Domingo, José L; Bocio, Ana; Martí-Cid, Roser; Llobet, Juan M

    2007-02-12

    In recent years, and based on the importance of fish as a part of a healthy diet, there has been a notable promotion of fish and seafood consumption. However, a number of recent studies have shown that fish may be a potential source of exposure to chemical pollutants, some of them with well known adverse effects on human health. Recently, we determined in 14 edible marine species the concentrations of eicosapentaenoic acid (EPA) and docosohexaenoic acid (DHA), as well as those of a number of chemical contaminants: Cd, Hg, Pb, polychlorinated dibenzo-p-dioxins and furans, polychlorinated biphenyls, hexachlorobenzene, polycyclic aromatic hydrocarbons, polychlorinated naphthalenes, polybrominated diphenylethers and polychlorinated diphenylethers. To quantitative establish the intake of these pollutants (risks) versus that of EPA+DHA (benefits), we designed a simple computer program, RIBEPEIX. The concentrations of EPA, DHA, and the chemical pollutants were introduced into the program. We here present how RIBEPEIX may be used as an easy tool to optimize fish consumption: most suitable species, frequency of consumption, and size of meals. RIBEPEIX can be useful not only for professionals (cardiologists, general physicians, nutritionists, toxicologists, etc.), but also for the general population. It is available at: .

  15. Spatial variability of mercury and polyunsaturated fatty acids in the European perch (Perca fluviatilis) - Implications for risk-benefit analyses of fish consumption.

    PubMed

    Strandberg, Ursula; Palviainen, Marjo; Eronen, Aslak; Piirainen, Sirpa; Laurén, Ari; Akkanen, Jarkko; Kankaala, Paula

    2016-12-01

    This study evaluated the spatial variability of risks and benefits of consuming fish from humic and clear lakes. Mercury in fish is a potential risk for human health, but risk assessment may be confounded by selenium, which has been suggested to counterbalance mercury toxicity. In addition to the risks, fish are also rich in eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), which are known to be beneficial for cardiovascular health and brain cognitive function in humans. We found that the concentrations of EPA + DHA and mercury in European perch (Perca fluviatilis) vary spatially and are connected with lake water chemistry and catchment characteristics. The highest mercury concentrations and the lowest EPA + DHA concentrations were found in perch from humic lakes with high proportion of peatland (30-50%) in the catchment. In addition, the ratio of selenium to mercury in perch muscle was ≥1 suggesting that selenium may counterbalance mercury toxicity. The observed variation in mercury and EPA + DHA content in perch from different lakes indicate that the risks and benefits of fish consumption vary spatially, and are connected with lake water chemistry and catchment characteristics. In general, consumption of perch from humic lakes exposed humans to greater risks (higher concentrations of mercury), but provided less benefits (lower concentrations of EPA + DHA) than consumption of perch from clear lakes.

  16. Essential fatty acid requirement of juvenile red drum (Sciaenops ocellatus).

    PubMed

    Lochmann, R T; Gatlin, D M

    1993-10-01

    Feeding experiments and laboratory analyses were conducted to establish the essential fatty acid (EFA) requirement of red drum (Sciaenops ocellatus). Juvenile red drum were maintained in aquaria containing brackish water (5 ± 2‰ total dissolved solids) for two 6-week experiments. Semipurified diets contained a total of 70% lipid consisting of different combinations of tristearin [predominantly 18:0] and the following fatty acid ethyl esters: oleate, linoleate, linolenate, and a mixture of highly unsaturated fatty acids (HUFA) containing approximately 60% eicosapentaenoate plus docosahexaenoate. EFA-deficient diets (containing only tristearin or oleate) rapidly reduced fish growth and feed efficiency, and increased mortality. Fin erosion and a "shock syndrome" also occurred in association with EFA deficiency. Of the diets containing fatty acid ethyl esters, those with 0.5-1% (n-3) HUFA (0.3-0.6% eicosapentaenoate plus docosahexaenoate) promoted the best growth, survival, and feed efficiency; however, the control diet containing 7% menhaden fish oil provided the best performance. Excess (n-3) HUFA suppressed fish weight gain; suppression became evident at 1.5% (n-3) HUFA, and was pronounced at 2.5%. Fatty acid compositions of whole-body, muscle and liver tissues from red drum fed the various diets generally reflected dietary fatty acids, but modifications of these patterns also were evident. Levels of saturated fatty acids appeared to be regulated independent of diet. In fish fed EFA-deficient diets (containing only tristearin or oleate), monoenes increased and (n-3) HUFA were preferentially conserved in polar lipid fractions. Eicosatrienoic acid [20:3(n-9)] was not elevated in EFA-deficient red drum, apparently due to their limited ability to transform fatty acids. Red drum exhibited some limited ability to elongate and desaturate linoleic acid [18:2(n-6)] and linolenic acid [18:3(n-3)]; however, metabolism of 18:3(n-3) did not generally result in increased

  17. Fatty acids of Pinus elliottii tissues.

    NASA Technical Reports Server (NTRS)

    Laseter, J. L.; Lawler, G. C.; Walkinshaw, C. H.; Weete, J. D.

    1973-01-01

    The total fatty constituents of slash pine (Pinus elliottii) tissue cultures, seeds, and seedlings were examined by GLC and MS. Qualitatively, the fatty acid composition of these tissues was found to be very similar to that reported for other pine species. The fatty acid contents of the tissue cultures resembled that of the seedling tissues. The branched-chain C(sub 17) acid reported for several other Pinus species was confirmed as the anteiso isomer.

  18. Fatty acid profile of kenaf seed oil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The fatty acid profile of kenaf (Hibiscus cannabinus L.) seed oil has been the subject of several previous reports in the literature. These reports vary considerably regarding the presence and amounts of specific fatty acids, notably epoxyoleic acid but also cyclic (cyclopropene and cyclopropane) fa...

  19. A Randomized, Double-Blinded, Placebo-Controlled Study of the Effect of a Combination of Lemon Verbena Extract and Fish Oil Omega-3 Fatty Acid on Joint Management

    PubMed Central

    Caturla, Nuria; Funes, Lorena; Pérez-Fons, Laura

    2011-01-01

    Abstract Objectives The aim of this study was to test the efficacy of an antioxidant/anti-inflammatory supplement containing standardized lemon verbena (Aloysia triphylla, Lippia citriodora) extract and fish oil omega-3 fatty acid in a human pilot trial as an alternative treatment for joint management. Methods and design First, antioxidant activity of the supplement was determined through an oxygen radical absorbance capacity (ORAC) assay. In a randomized, double-blinded placebo-controlled trial, 45 subjects with pain discomfort received the nutritional supplement or placebo for 9 weeks. Western Ontario MacMaster (WOMAC) and Lequesne's questionnaires, which are disease-specific measurements validated to measure joint dysfunction and pain, were administered and evaluated once per week in the placebo and intervention groups. Outcome measures Pain and stiffness symptoms, and joint function were determined once per week through recording their respective WOMAC and Lequesne's scores in the placebo and intervention groups. Statistically significant differences were determined at every measurement point between the two groups. Results Lemon verbena extract showed strong antioxidant properties as measured by the ORAC assay. The nutritional supplement containing standardized lemon verbena extract (14% verbascoside, w/w) and fish oil omega-3 fatty acid reduced symptoms of pain and stiffness significantly, and improved physical function as shown by WOMAC and Lequesne's scores after 9 weeks of treatment. WOMAC and Lequesne's total scores decreased 53% and 78%, respectively, at the end of the study compared to initial conditions. Onset of the effect was observed at the third and fourth weeks, when statistically significant differences were detected, compared to placebo. Conclusions This pilot study reveals that supplementation with lemon verbena combined with omega-3 fatty acids may be considered for further investigation as a complementary and alternative treatment for

  20. The linoleic acid and trans fatty acids of margarines.

    PubMed

    Beare-Rogers, J L; Gray, L M; Hollywood, R

    1979-09-01

    Fifty brands of margarine were analysed for cis-polyunsaturated acids by lipoxidase, for trans fatty acid by infared spectroscopy, and for fatty acid composition by gas-liquid chromatography. High concentrations of trans fatty acids tended to be associated with low concentrations of linoleic acid. Later analyses on eight of the brands, respresenting various proportions of linoleic to trans fatty acids, indicated that two of them contained still higher levels of trans fatty acids (greater than 60%) and negligible amounts of linoleic acid. It is proposed that margarine could be a vehicle for the distribution of some dietary linoleic acid and that the level of linoleic acid and the summation of the saturated plus trans fatty acids be known to ascertain nutritional characteristics.

  1. [Omega-3 fatty acids: the science and the beliefs].

    PubMed

    Ginsberg, Avidor; Stahl, Ziva; Leventhal, Alex

    2009-02-01

    The importance of Omega-3 fatty acids intake from dietary supplements or from food sources (mainly fish) has recently become "common knowledge" in the mass media as well as in popular science magazines and advertisements. Therefore, the authors wish to review the updated evidence-based literature regarding the relationship between Omega-3 fatty acid intake and morbidity and its preventative effects in cardiovascular, bone, kidney autoimmune, GI tract diseases, CNS and mental diseases, cancer, diabetes, asthma, ophthalmological health, organ transplants and child and maternal health. Recommendations regarding optimal intake of these fatty acids throughout the lifecycle by various health authorities are cited. The conclusion presents the authors' recommendations for optimal Omega-3 intake in Israel: Recommendations for the general population is to consume at least two weekly portions of fatty fish. For patients with hypertriglyceridemia, dietary supplements containing fish oil, in addition to the above diet, can be considered to be part of the complete medical treatment and follow-up. Limiting fish consumption in risk group populations, such as pregnant women, will also be considered.

  2. Effect of extruded linseeds alone or in combination with fish oil on intake, milk production, plasma metabolite concentrations and milk fatty acid composition in lactating goats.

    PubMed

    Bernard, L; Leroux, C; Rouel, J; Delavaud, C; Shingfield, K J; Chilliard, Y

    2015-05-01

    Based on the potential benefits for long-term human health, there is interest in developing sustainable nutritional strategies for lowering medium-chain saturated fatty acids (FA) and increasing specific unsaturated FA in ruminant milk. Dietary supplements of extruded linseeds (EL), fish oil (FO) or a mixture of EL and FO increase cis-9,trans-11 CLA and long-chain n-3 polyunsaturated FA in bovine milk. Supplements of FO cause milk fat depression in lactating cows, but information for dairy goats is limited. A total of 14 Alpine goats were used in a replicated 3×3 Latin square with 28-days experimental periods to examine the effects of EL alone or in combination with FO on animal performance, milk fat synthesis and milk FA composition. Treatments comprised diets based on natural grassland hay supplemented with no additional oil (control), 530 of EL or 340 g/day of EL and 39 g/day of FO (ELFO). Compared with the control, ELFO tended (P=0.08) to lower milk fat yield, whereas EL increased (P<0.01) milk fat content and yield (15% and 10%, respectively). Relative to EL, ELFO decreased (P<0.01) milk fat content and yield (19% and 17%, respectively). Relative to the control and ELFO, EL decreased (P<0.05) milk 10:0 to 16:0 and odd- and branched-chain FA content and increased 18:0, cis-18:1, trans-13 18:1 (and their corresponding ∆-9 (desaturase products), trans-12,cis-14 CLA, cis-13,trans-15 CLA, cis-12,trans-14 CLA and trans-11,cis-13 CLA and 18:3n-3 concentrations. ELFO was more effective for enriching (P<0.05) milk cis-9, trans-11 CLA and trans-11 18:1 concentrations (up to 5.4- and 7.1-fold compared with the control) than EL (up to 1.7- and 2.5-fold increases). Furthermore, ELFO resulted in a substantial increase in milk trans-10 18:1 concentration (5.4% total FA), with considerable variation between individual animals. Relative to the control and EL, milk fat responses to ELFO were characterized by increases (P<0.05) in milk trans-16:1 (Δ9 to 11), trans-18:1 (Δ6

  3. 21 CFR 172.859 - Sucrose fatty acid esters.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Sucrose fatty acid esters. 172.859 Section 172.859... CONSUMPTION Multipurpose Additives § 172.859 Sucrose fatty acid esters. Sucrose fatty acid esters identified...) Sucrose fatty acid esters are the mono-, di-, and tri-esters of sucrose with fatty acids and are...

  4. 21 CFR 172.859 - Sucrose fatty acid esters.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Sucrose fatty acid esters. 172.859 Section 172.859... CONSUMPTION Multipurpose Additives § 172.859 Sucrose fatty acid esters. Sucrose fatty acid esters identified...) Sucrose fatty acid esters are the mono-, di-, and tri-esters of sucrose with fatty acids and are...

  5. 21 CFR 172.859 - Sucrose fatty acid esters.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Sucrose fatty acid esters. 172.859 Section 172.859... CONSUMPTION Multipurpose Additives § 172.859 Sucrose fatty acid esters. Sucrose fatty acid esters identified...) Sucrose fatty acid esters are the mono-, di-, and tri-esters of sucrose with fatty acids and are...

  6. 21 CFR 862.1290 - Fatty acids test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Fatty acids test system. 862.1290 Section 862.1290....1290 Fatty acids test system. (a) Identification. A fatty acids test system is a device intended to measure fatty acids in plasma and serum. Measurements of fatty acids are used in the diagnosis...

  7. 21 CFR 862.1290 - Fatty acids test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Fatty acids test system. 862.1290 Section 862.1290....1290 Fatty acids test system. (a) Identification. A fatty acids test system is a device intended to measure fatty acids in plasma and serum. Measurements of fatty acids are used in the diagnosis...

  8. 21 CFR 172.859 - Sucrose fatty acid esters.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Sucrose fatty acid esters. 172.859 Section 172.859... CONSUMPTION Multipurpose Additives § 172.859 Sucrose fatty acid esters. Sucrose fatty acid esters identified...) Sucrose fatty acid esters are the mono-, di-, and tri-esters of sucrose with fatty acids and are...

  9. Long-Chain Omega-3 fatty acids associated with better cognitive function and less depressive symptoms in a population of Puerto Rican adults in Boston, MA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The omega-3 fatty acids docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) found in fatty fish are increasingly recommended for promoting brain health with aging. Studies have reported protective associations between dietary DHA/EPA or fatty fish and incident dementia, but few have reported ...

  10. Original Research: Effect of various dietary fats on fatty acid profile in duck liver: Efficient conversion of short-chain to long-chain omega-3 fatty acids.

    PubMed

    Chen, Xi; Du, Xue; Shen, Jianliang; Lu, Lizhi; Wang, Weiqun

    2017-01-01

    Omega-3 fatty acids, especially long-chain omega-3 fatty acids, have been associated with potential health benefits for chronic disease prevention. Our previous studies found that dietary omega-3 fatty acids could accumulate in the meat and eggs in a duck model. This study was to reveal the effects of various dietary fats on fatty acid profile and conversion of omega-3 fatty acids in duck liver. Female Shan Partridge Ducks were randomly assigned to five dietary treatments, each consisting of 6 replicates of 30 birds. The experimental diets substituted the basal diet by 2% of flaxseed oil, rapeseed oil, beef tallow, or fish oil, respectively. In addition, a dose response study was further conducted for flaxseed and fish oil diets at 0.5%, 1%, and 2%, respectively. At the end of the five-week treatment, fatty acids were extracted from the liver samples and analyzed by GC-FID. As expected, the total omega-3 fatty acids and the ratio of total omega-3/omega-6 significantly increased in both flaxseed and fish oil groups when compared with the control diet. No significant change of total saturated fatty acids or omega-3 fatty acids was found in both rapeseed and beef tallow groups. The dose response study further indicated that 59-81% of the short-chain omega-3 ALA in flaxseed oil-fed group was efficiently converted to long-chain DHA in the duck liver, whereas 1% of dietary flaxseed oil could produce an equivalent level of DHA as 0.5% of dietary fish oil. The more omega-3 fatty acids, the less omega-6 fatty acids in the duck liver. Taken together, this study showed the fatty acid profiling in the duck liver after various dietary fat consumption, provided insight into a dose response change of omega-3 fatty acids, indicated an efficient conversion of short- to long-chain omega-3 fatty acid, and suggested alternative long-chain omega-3 fatty acid-enriched duck products for human health benefits.

  11. Cellular Effects of Perfluorinated Fatty Acids.

    DTIC Science & Technology

    1985-01-01

    TCDD appeared to interfere with fatty acid metabolism leading to an increase in unsaturation. Furthermore, Andersen et al. (2) proposed that such an...increase in cellular unsaturated fatty acids may lead-to excessive membrane fluidity (as indicated by induced changes in red blood cell fragility) and...TASK WORK UNITELEMENT NO. NO. NO. NO. 11. TITLE (include Security Claificati on) ~/~. Cellular Effects of Perfluorinated Fatty Ac ds 12. PERSONAL

  12. The effect of pH on the toxicity of fatty acids and fatty acid amides to rainbow trout gill cells.

    PubMed

    Bertin, Matthew J; Voronca, Delia C; Chapman, Robert W; Moeller, Peter D R

    2014-01-01

    Harmful algal blooms (HABs) expose aquatic organisms to multiple physical and chemical stressors during an acute time period. Algal toxins themselves may be altered by water chemistry parameters affecting their bioavailability and resultant toxicity. The purpose of this study was to determine the effects of two abiotic parameters (pH, inorganic metal salts) on the toxicity of fatty acid amides and fatty acids, two classes of lipids produced by harmful algae, including the golden alga, Prymnesium parvum, that are toxic to aquatic organisms. Rainbow trout gill cells were used as a model of the fish gill and exposed to single compounds and mixtures of compounds along with variations in pH level and concentration of inorganic metal salts. We employed artificial neural networks (ANNs) and standard ANOVA statistical analysis to examine and predict the effects of these abiotic parameters on the toxicity of fatty acid amides and fatty acids. Our results demonstrate that increasing pH levels increases the toxicity of fatty acid amides and inhibits the toxicity of fatty acids. This phenomenon is reversed at lower pH levels. Exposing gill cells to complex mixtures of chemical factors resulted in dramatic increases in toxicity compared to tests of single compounds for both the fatty acid amides and fatty acids. These findings highlight the potential of physicochemical factors to affect the toxicity of chemicals released during algal blooms and demonstrate drastic differences in the effect of pH on fatty acid amides and fatty acids.

  13. 40 CFR 721.10629 - Fatty acids, tall-oil, reaction products with modified fatty acids and polyalkanolamines (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Fatty acids, tall-oil, reaction... Fatty acids, tall-oil, reaction products with modified fatty acids and polyalkanolamines (generic). (a... generically as fatty acids, tall-oil, reaction products with modified fatty acids and polyalkanolamines (PMN...

  14. 40 CFR 721.10629 - Fatty acids, tall-oil, reaction products with modified fatty acids and polyalkanolamines (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Fatty acids, tall-oil, reaction... Fatty acids, tall-oil, reaction products with modified fatty acids and polyalkanolamines (generic). (a... generically as fatty acids, tall-oil, reaction products with modified fatty acids and polyalkanolamines (PMN...

  15. Nickel inhibits mitochondrial fatty acid oxidation.

    PubMed

    Uppala, Radha; McKinney, Richard W; Brant, Kelly A; Fabisiak, James P; Goetzman, Eric S

    2015-08-07

    Nickel exposure is associated with changes in cellular energy metabolism which may contribute to its carcinogenic properties. Here, we demonstrate that nickel strongly represses mitochondrial fatty acid oxidation-the pathway by which fatty acids are catabolized for energy-in both primary human lung fibroblasts and mouse embryonic fibroblasts. At the concentrations used, nickel suppresses fatty acid oxidation without globally suppressing mitochondrial function as evidenced by increased glucose oxidation to CO2. Pre-treatment with l-carnitine, previously shown to prevent nickel-induced mitochondrial dysfunction in neuroblastoma cells, did not prevent the inhibition of fatty acid oxidation. The effect of nickel on fatty acid oxidation occurred only with prolonged exposure (>5 h), suggesting that direct inhibition of the active sites of metabolic enzymes is not the mechanism of action. Nickel is a known hypoxia-mimetic that activates hypoxia inducible factor-1α (HIF1α). Nickel-induced inhibition of fatty acid oxidation was blunted in HIF1α knockout fibroblasts, implicating HIF1α as one contributor to the mechanism. Additionally, nickel down-regulated the protein levels of the key fatty acid oxidation enzyme very long-chain acyl-CoA dehydrogenase (VLCAD) in a dose-dependent fashion. In conclusion, inhibition of fatty acid oxidation by nickel, concurrent with increased glucose metabolism, represents a form of metabolic reprogramming that may contribute to nickel-induced carcinogenesis.

  16. Physiological activities of hydroxyl fatty acids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the search of value-added products from surplus soybean oil, we produced many new hydroxy fatty acids through microbial bioconversion. Hydroxy fatty acids are used in a wide range of industrial products, such as resins, waxes, nylons plastics, lubricants, cosmetics, and additives in coatings and...

  17. Nickel Inhibits Mitochondrial Fatty Acid Oxidation

    PubMed Central

    Uppala, Radha; McKinney, Richard W.; Brant, Kelly A.; Fabisiak, James P.; Goetzman, Eric S.

    2015-01-01

    Nickel exposure is associated with changes in cellular energy metabolism which may contribute to its carcinogenic properties. Here, we demonstrate that nickel strongly represses mitochondrial fatty acid oxidation—the pathway by which fatty acids are catabolized for energy—in both primary human lung fibroblasts and mouse embryonic fibroblasts. At the concentrations used, nickel suppresses fatty acid oxidation without globally suppressing mitochondrial function as evidenced by increased glucose oxidation to CO2. Pre-treatment with L-carnitine, previously shown to prevent nickel-induced mitochondrial dysfunction in neuroblastoma cells, did not prevent the inhibition of fatty acid oxidation. The effect of nickel on fatty acid oxidation occurred only with prolonged exposure (>5 hr), suggesting that direct inhibition of the active sites of metabolic enzymes is not the mechanism of action. Nickel is a known hypoxia-mimetic that activates hypoxia inducible factor-1α (HIF1α). Nickel-induced inhibition of fatty acid oxidation was blunted in HIF1α knockout fibroblasts, implicating HIF1α as one contributor to the mechanism. Additionally, nickel down-regulated the protein levels of the key fatty acid oxidation enzyme very long-chain acyl-CoA dehydrogenase (VLCAD) in a dose-dependent fashion. In conclusion, inhibition of fatty acid oxidation by nickel, concurrent with increased glucose metabolism, represents a form of metabolic reprogramming that may contribute to nickel-induced carcinogenesis. PMID:26051273

  18. Historical perspectives on fatty acid chemistry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fatty acids are basic renewable chemical building blocks that can be used as intermediates for a multitude of products. Today the global value of fatty acids exceeds 18 billion dollars and is expected to increase to nearly 26 billion over the period from 2014-2019. From it auspicious beginnings, the...

  19. Consequences of Essential Fatty Acids

    PubMed Central

    Lands, Bill

    2012-01-01

    Essential fatty acids (EFA) are nutrients that form an amazingly large array of bioactive mediators that act on a large family of selective receptors. Nearly every cell and tissue in the human body expresses at least one of these receptors, allowing EFA-based signaling to influence nearly every aspect of human physiology. In this way, the health consequences of specific gene-environment interactions with these nutrients are more extensive than often recognized. The metabolic transformations have similar competitive dynamics for the n-3 and n-6 homologs when converting dietary EFA from the external environment of foods into the highly unsaturated fatty acid (HUFA) esters that accumulate in the internal environment of cells and tissues. In contrast, the formation and action of bioactive mediators during tissue responses to stimuli tend to selectively create more intense consequences for n-6 than n-3 homologs. Both n-3 and n-6 nutrients have beneficial actions, but many common health disorders are undesired consequences of excessive actions of tissue n-6 HUFA which are preventable. This review considers the possibility of preventing imbalances in dietary n-3 and n-6 nutrients with informed voluntary food choices. That action may prevent the unintended consequences that come from eating imbalanced diets which support excessive chronic actions of n-6 mediators that harm human health. The consequences from preventing n-3 and n-6 nutrient imbalances on a nationwide scale may be very large, and they need careful evaluation and implementation to avoid further harmful consequences for the national economy. PMID:23112921

  20. Relative irritancy of free fatty acids of different chain length.

    PubMed

    Stillman, M A; Maibach, H I; Shalita, A R

    1975-01-01

    Free fatty acids of human skin surface lipids have previously been implicated in the pathogenesis of acne vulgaris because of their apparent irritant and comedogenic properties. Prior studies on the relative irritancy of free fatty acids revealed the saturated C8 to C14 fatty acids and a C18 dienoic unsaturated fatty acid (linoleic) to be most irritating. Saturated free fatty acids from C3 to C18, and unsaturated C18 free fatty acids were applied daily under occlusive patch tests to human skin until detectable erythema appeared. The most irritating fatty acids were C8 through C12. Of the unsaturated fatty acids tested, only linoleic acid produced irritation.

  1. Towards sustainable sources for omega-3 fatty acids production.

    PubMed

    Adarme-Vega, T Catalina; Thomas-Hall, Skye R; Schenk, Peer M

    2014-04-01

    Omega-3 fatty acids eicosapentaenoic acid (EPA) and docohexaenoic acid (DHA), provide significant health benefits for brain function/development and cardiovascular conditions. However, most EPA and DHA for human consumption is sourced from small fatty fish caught in coastal waters and, with depleting global fish stocks, recent research has been directed towards more sustainable sources. These include aquaculture with plant-based feeds, krill, marine microalgae, microalgae-like protists and genetically-modified plants. To meet the increasing demand for EPA and DHA, further developments are needed towards land-based sources. In particular large-scale cultivation of microalgae and plants is likely to become a reality with expected reductions in production costs, yield increasese and the adequate addressing of genetically modified food acceptance issues.

  2. Fish, docosahexaenoic acid and Alzheimer's disease.

    PubMed

    Cunnane, S C; Plourde, M; Pifferi, F; Bégin, M; Féart, C; Barberger-Gateau, P

    2009-09-01

    Cognitive decline in the elderly, particularly Alzheimer's disease (AD), is a major socio-economic and healthcare concern. We review here the literature on one specific aspect of diet affecting AD, that of the omega3 fatty acids, particularly the brain's principle omega3 fatty acid - docosahexaenoic acid (DHA). DHA has deservedly received wide attention as a nutrient supporting both optimal brain development and for cardiovascular health. Our aim here is to critically assess the quality of the present literature as well as the potential of omega3 fatty acids to treat or delay the onset of AD. We start with a brief description of cognitive decline in the elderly, followed by an overview of well recognized biological functions of DHA. We then turn to epidemiological studies, which are largely supportive of protective effects of fish and DHA against risk of AD. However, biological studies, including blood and brain DHA analyses need careful interpretation and further investigation, without which the success of clinical trials with DHA may continue to struggle. We draw attention to some of the methodological issues that need resolution as well as an emerging mechanism that may explain how DHA could be linked to protecting brain function in the elderly.

  3. Rapid lipid enrichment in omega3 fatty acids: liver data.

    PubMed

    Carpentier, Yvon A; Peltier, Sebastien; Portois, Laurence; Sener, Abdullah; Malaisse, Willy J

    2008-03-01

    The bolus intravenous injection of a novel medium-chain triglyceride:fish oil emulsion to normal subjects was recently reported to enrich within 60 min the phospholipid content of leucocytes and platelets in long-chain polyunsaturated omega3 fatty acids. The present study, conducted in second generation omega3-depleted rats, aims at investigating whether such a procedure may also increase within 60 min the phospholipid content of omega3 fatty acids in cells located outwards of the bloodstream, in this case liver cells, and whether this coincides with correction of the perturbation in the liver triglyceride fatty acid content and profile otherwise prevailing in these rats. The results indicate that such is indeed the case and further suggest a cause-to-effect relationship between the two events.

  4. Bioengineered Plants Can Be a Useful Source of Omega-3 Fatty Acids.

    PubMed

    Amjad Khan, Waleed; Chun-Mei, Hu; Khan, Nadeem; Iqbal, Amjad; Lyu, Shan-Wu; Shah, Farooq

    2017-01-01

    Omega-3 fatty acids have proven to be very essential for human health due to their multiple health benefits. These essential fatty acids (EFAs) need to be uptaken through diet because they are unable to be produced by the human body. These are important for skin and hair growth as well as for proper visual, neural, and reproductive functions of the body. These fatty acids are proven to be extremely vital for normal tissue development during pregnancy and infancy. Omega-3 fatty acids can be obtained mainly from two dietary sources: marine and plant oils. Eicosapentaenoic acid (EPA; C20:5 n-3) and docosahexaenoic acid (DHA; C22:6 n-3) are the primary marine-derived omega-3 fatty acids. Marine fishes are high in omega-3 fatty acids, yet high consumption of those fishes will cause a shortage of fish stocks existing naturally in the oceans. An alternative source to achieve the recommended daily intake of EFAs is the demand of today. In this review article, an attempt has, therefore, been made to discuss the importance of omega-3 fatty acids and the recent developments in order to produce these fatty acids by the genetic modifications of the plants.

  5. Bioengineered Plants Can Be a Useful Source of Omega-3 Fatty Acids

    PubMed Central

    Lyu, Shan-Wu

    2017-01-01

    Omega-3 fatty acids have proven to be very essential for human health due to their multiple health benefits. These essential fatty acids (EFAs) need to be uptaken through diet because they are unable to be produced by the human body. These are important for skin and hair growth as well as for proper visual, neural, and reproductive functions of the body. These fatty acids are proven to be extremely vital for normal tissue development during pregnancy and infancy. Omega-3 fatty acids can be obtained mainly from two dietary sources: marine and plant oils. Eicosapentaenoic acid (EPA; C20:5 n-3) and docosahexaenoic acid (DHA; C22:6 n-3) are the primary marine-derived omega-3 fatty acids. Marine fishes are high in omega-3 fatty acids, yet high consumption of those fishes will cause a shortage of fish stocks existing naturally in the oceans. An alternative source to achieve the recommended daily intake of EFAs is the demand of today. In this review article, an attempt has, therefore, been made to discuss the importance of omega-3 fatty acids and the recent developments in order to produce these fatty acids by the genetic modifications of the plants. PMID:28316988

  6. Historical overview of n-3 fatty acids and coronary heart disease.

    PubMed

    Leaf, Alexander

    2008-06-01

    The first evidence that fish oil fatty acids might have a beneficial effect on coronary heart disease came from the discovery that Greenland Eskimos, who have a diet high in n-3 fatty acids, have a lower mortality from coronary heart disease than do Danes and Americans. Long-chain polyunsaturated fatty acids are essential in our diets and can be classified in 2 groups: n-6 fatty acids found in plant seeds and n-3 fatty acids found in marine vertebrates. Further evidence of n-3 benefits to human health include a 1989 study demonstrating a 29% reduction in fatal cardiac arrhythmias among subjects with a recent myocardial infarction who had been advised to consume fish oil. The GISSI-Prevenzione Trial found a significant reduction in relative reduction of death, cardiac death, nonfatal myocardial infarction, and stroke in subjects consuming n-3 fatty acids. In a recent study, subjects with implanted cardiac defibrillators (ICDs) at high risk for fatal ventricular arrhythmias were randomly assigned to four 1-g capsules of either an ethyl ester concentrate of n-3 fatty acids or olive oil daily for 12 mo. Subjects receiving n-3 who thus had significantly higher levels of eicosapentaenoic acid and docosahexaenoic acid in their red blood cell membranes showed a longer time to first ICD events and had a significantly lower relative risk of having an ICD event or probable event (P = 0.033). These studies demonstrate that fish oil fatty acids have beneficial effects on coronary heart disease.

  7. Efficacy of ω-3 polyunsaturated fatty acids for the treatment of refractory hydroa vacciniforme.

    PubMed

    Durbec, Frédérique; Reguiaï, Ziad; Léonard, Fabienne; Pluot, Michel; Bernard, Philippe

    2012-01-01

    Hydroa vacciniforme (HV) is a rare photodermatosis. Several therapies, with sometimes severe side effects, have been used in isolated cases. We report a case of refractory HV successfully treated with dietary fish oil rich in ω-3 polyunsaturated fatty acids.

  8. Redox Status and Neuro Inflammation Indexes in Cerebellum and Motor Cortex of Wistar Rats Supplemented with Natural Sources of Omega-3 Fatty Acids and Astaxanthin: Fish Oil, Krill Oil, and Algal Biomass

    PubMed Central

    Polotow, Tatiana G.; Poppe, Sandra C.; Vardaris, Cristina V.; Ganini, Douglas; Guariroba, Maísa; Mattei, Rita; Hatanaka, Elaine; Martins, Maria F.; Bondan, Eduardo F.; Barros, Marcelo P.

    2015-01-01

    Health authorities worldwide have consistently recommended the regular consumption of marine fishes and seafood to preserve memory, sustain cognitive functions, and prevent neurodegenerative processes in humans. Shrimp, crabs, lobster, and salmon are of particular interest in the human diet due to their substantial provision of omega-3 fatty acids (n-3/PUFAs) and the antioxidant carotenoid astaxanthin (ASTA). However, the optimal ratio between these nutraceuticals in natural sources is apparently the key factor for maximum protection against most neuro-motor disorders. Therefore, we aimed here to investigate the effects of a long-term supplementation with (n-3)/PUFAs-rich fish oil, ASTA-rich algal biomass, the combination of them, or krill oil (a natural combination of both nutrients) on baseline redox balance and neuro-inflammation indexes in cerebellum and motor cortex of Wistar rats. Significant changes in redox metabolism were only observed upon ASTA supplementation, which reinforce its antioxidant properties with a putative mitochondrial-centered action in rat brain. Krill oil imposed mild astrocyte activation in motor cortex of Wistar rats, although no redox or inflammatory index was concomitantly altered. In summary, there is no experimental evidence that krill oil, fish oil, oralgal biomass (minor variation), drastically change the baseline oxidative conditions or the neuro-inflammatory scenario in neuromotor-associated rat brain regions. PMID:26426026

  9. Redox Status and Neuro Inflammation Indexes in Cerebellum and Motor Cortex of Wistar Rats Supplemented with Natural Sources of Omega-3 Fatty Acids and Astaxanthin: Fish Oil, Krill Oil, and Algal Biomass.

    PubMed

    Polotow, Tatiana G; Poppe, Sandra C; Vardaris, Cristina V; Ganini, Douglas; Guariroba, Maísa; Mattei, Rita; Hatanaka, Elaine; Martins, Maria F; Bondan, Eduardo F; Barros, Marcelo P

    2015-09-28

    Health authorities worldwide have consistently recommended the regular consumption of marine fishes and seafood to preserve memory, sustain cognitive functions, and prevent neurodegenerative processes in humans. Shrimp, crabs, lobster, and salmon are of particular interest in the human diet due to their substantial provision of omega-3 fatty acids (n-3/PUFAs) and the antioxidant carotenoid astaxanthin (ASTA). However, the optimal ratio between these nutraceuticals in natural sources is apparently the key factor for maximum protection against most neuro-motor disorders. Therefore, we aimed here to investigate the effects of a long-term supplementation with (n-3)/PUFAs-rich fish oil, ASTA-rich algal biomass, the combination of them, or krill oil (a natural combination of both nutrients) on baseline redox balance and neuro-inflammation indexes in cerebellum and motor cortex of Wistar rats. Significant changes in redox metabolism were only observed upon ASTA supplementation, which reinforce its antioxidant properties with a putative mitochondrial-centered action in rat brain. Krill oil imposed mild astrocyte activation in motor cortex of Wistar rats, although no redox or inflammatory index was concomitantly altered. In summary, there is no experimental evidence that krill oil, fish oil, oralgal biomass (minor variation), drastically change the baseline oxidative conditions or the neuro-inflammatory scenario in neuromotor-associated rat brain regions.

  10. Rapid lipid enrichment in omega3 fatty acids: cause-to-effect relationships.

    PubMed

    Carpentier, Yvon A; Peltier, Sebastien; Portois, Laurence; Sener, Abdullah; Malaisse, Willy J

    2008-03-01

    The bolus intravenous administration of a novel medium-chain triglyceride:fish oil emulsion to second generation rats depleted in long-chain polyunsaturated omega3 fatty acids was recently found to enrich within 60 min the content of both plasma and liver lipids in such omega3 fatty acids, this coinciding with correction of the perturbation in liver triglyceride fatty acid content and profile otherwise prevailing in these rats. The present report draws attention to cause-to-effect relationships between changes in liver phospholipid and triglyceride fatty acid content and/or pattern operative under these experimental conditions.

  11. Fatty acid mobilization and comparison to milk fatty acid content in northern elephant seals.

    PubMed

    Fowler, Melinda A; Debier, Cathy; Mignolet, Eric; Linard, Clementine; Crocker, Daniel E; Costa, Daniel P

    2014-01-01

    A fundamental feature of the life history of true seals, bears and baleen whales is lactation while fasting. This study examined the mobilization of fatty acids from blubber and their subsequent partitioning into maternal metabolism and milk production in northern elephant seals (Mirounga angustirostris). The fatty acid composition of blubber and milk was measured in both early and late lactation. Proportions of fatty acids in milk and blubber were found to display a high degree of similarity both early and late in lactation. Seals mobilized an enormous amount of lipid (~66 kg in 17 days), but thermoregulatory fatty acids, those that remain fluid at low temperatures, were relatively conserved in the outer blubber layer. Despite the stratification, the pattern of mobilization of specific fatty acids conforms to biochemical predictions. Long chain (>20C) monounsaturated fatty acids (MUFAs) were the least mobilized from blubber and the only class of fatty acids that showed a proportional increase in milk in late lactation. Polyunsaturated fatty acids (PUFAs) and saturated fatty acids (SFAs) were more mobilized from the blubber, but neither proportion increased in milk at late lactation. These data suggest that of the long chain MUFA mobilized, the majority is directed to milk synthesis. The mother may preferentially use PUFA and SFA for her own metabolism, decreasing the availability for deposition into milk. The potential impacts of milk fatty acid delivery on pup diving development and thermoregulation are exciting avenues for exploration.

  12. Fatty acid synthesis is inhibited by inefficient utilization of unusual fatty acids for glycerolipid assembly

    PubMed Central

    Bates, Philip D.; Johnson, Sean R.; Cao, Xia; Li, Jia; Nam, Jeong-Won; Jaworski, Jan G.; Ohlrogge, John B.; Browse, John

    2014-01-01

    Degradation of unusual fatty acids through β-oxidation within transgenic plants has long been hypothesized as a major factor limiting the production of industrially useful unusual fatty acids in seed oils. Arabidopsis seeds expressing the castor fatty acid hydroxylase accumulate hydroxylated fatty acids up to 17% of total fatty acids in seed triacylglycerols; however, total seed oil is also reduced up to 50%. Investigations into the cause of the reduced oil phenotype through in vivo [14C]acetate and [3H]2O metabolic labeling of developing seeds surprisingly revealed that the rate of de novo fatty acid synthesis within the transgenic seeds was approximately half that of control seeds. RNAseq analysis indicated no changes in expression of fatty acid synthesis genes in hydroxylase-expressing plants. However, differential [14C]acetate and [14C]malonate metabolic labeling of hydroxylase-expressing seeds indicated the in vivo acetyl–CoA carboxylase activity was reduced to approximately half that of control seeds. Therefore, the reduction of oil content in the transgenic seeds is consistent with reduced de novo fatty acid synthesis in the plastid rather than fatty acid degradation. Intriguingly, the coexpression of triacylglycerol synthesis isozymes from castor along with the fatty acid hydroxylase alleviated the reduced acetyl–CoA carboxylase activity, restored the rate of fatty acid synthesis, and the accumulation of seed oil was substantially recovered. Together these results suggest a previously unidentified mechanism that detects inefficient utilization of unusual fatty acids within the endoplasmic reticulum and activates an endogenous pathway for posttranslational reduction of fatty acid synthesis within the plastid. PMID:24398521

  13. Polyunsaturated fatty acid supplementation reverses cystic fibrosis-related fatty acid abnormalities in CFTR-/- mice by suppressing fatty acid desaturases.

    PubMed

    Njoroge, Sarah W; Laposata, Michael; Boyd, Kelli L; Seegmiller, Adam C

    2015-01-01

    Cystic fibrosis patients and model systems exhibit consistent abnormalities in metabolism of polyunsaturated fatty acids that appear to play a role in disease pathophysiology. Recent in vitro studies have suggested that these changes are due to overexpression of fatty acid desaturases that can be reversed by supplementation with the long-chain polyunsaturated fatty acids docosahexaenoate and eicosapentaenoate. However, these findings have not been tested in vivo. The current study aimed to test these results in an in vivo model system, the CFTR(-/-) knockout mouse. When compared with wild-type mice, the knockout mice exhibited fatty acid abnormalities similar to those seen in cystic fibrosis patients and other model systems. The abnormalities were confined to lung, ileum and pancreas, tissues that are affected by the disease. Similar to in vitro models, these fatty acid changes correlated with increased expression of Δ5- and Δ6-desaturases and elongase 5. Dietary supplementation with high-dose free docosahexaenoate or a combination of lower-dose docosahexaenoate and eicosapentaenoate in triglyceride form corrected the fatty acid abnormalities and reduced expression of the desaturase and elongase genes in the ileum and liver of knockout mice. Only the high-dose docosahexaenoate reduced histologic evidence of disease, reducing mucus accumulation in ileal sections. These results provide in vivo support for the hypothesis that fatty acid abnormalities in cystic fibrosis result from abnormal expression and activity of metabolic enzymes in affected cell types. They further demonstrate that these changes can be reversed by dietary n-3 fatty acid supplementation, highlighting the potential therapeutic benefit for cystic fibrosis patients.

  14. Plasma and brain fatty acid profiles in mild cognitive impairment and Alzheimer's disease.

    PubMed

    Cunnane, Stephen C; Schneider, Julie A; Tangney, Christine; Tremblay-Mercier, Jennifer; Fortier, Mélanie; Bennett, David A; Morris, Martha Clare

    2012-01-01

    Alzheimer's disease (AD) is generally associated with lower omega-3 fatty acid intake from fish but despite numerous studies, it is still unclear whether there are differences in omega-3 fatty acids in plasma or brain. In matched plasma and brain samples provided by the Memory and Aging Project, fatty acid profiles were quantified in several plasma lipid classes and in three brain cortical regions. Fatty acid data were expressed as % composition and as concentrations (mg/dL for plasma or mg/g for brain). Differences in plasma fatty acid profiles between AD, mild cognitive impairment (MCI), and those with no cognitive impairment (NCI) were most apparent in the plasma free fatty acids (lower oleic acid isomers and omega-6 fatty acids in AD) and phospholipids (lower omega-3 fatty acids in AD). In brain, % DHA was lower only in phosphatidylserine of mid-frontal cortex and superior temporal cortex in AD compared to NCI (-14% and -12%, respectively; both p < 0.05). The only significant correlation between plasma and brain fatty acids was between % DHA in plasma total lipids and % DHA in phosphatidylethanolamine of the angular gyrus, but only in the NCI group (+0.77, p < 0.05). We conclude that AD is associated with altered plasma status of both DHA and other fatty acids unrelated to DHA, and that the lipid class-dependent nature of these differences reflects a combination of differences in intake and metabolism.

  15. A randomized controlled study of the efficacy of six-month supplementation with concentrated fish oil rich in omega-3 polyunsaturated fatty acids in first episode schizophrenia.

    PubMed

    Pawełczyk, Tomasz; Grancow-Grabka, Marta; Kotlicka-Antczak, Magdalena; Trafalska, Elżbieta; Pawełczyk, Agnieszka

    2016-02-01

    Short-term clinical trials of omega-3 polyunsaturated fatty acids (n-3 PUFA) as add-on therapy in patients with schizophrenia revealed mixed results. The majority of these studies used an 8- to 12-week intervention based on ethyl-eicosapentaenoic acid. A randomized placebo-controlled trial was designed to compare the efficacy of 26-week intervention, composed of either 2.2 g/day of n-3 PUFA, or olive oil placebo, with regard to symptom severity in first-episode schizophrenia patients. Seventy-one patients (aged 16-35) were enrolled in the study and randomly assigned to the study arms. The primary outcome measure of the clinical evaluation was schizophrenia symptom severity change measured by the Positive and Negative Syndrome Scale (PANSS). Mixed models repeated measures analysis revealed significant differences between the study arms regarding total PANSS score change favouring n-3 PUFA (p = 0.016; effect size (ES) = 0.29). A fifty-percent improvement in symptom severity was achieved significantly more frequently in the n-3 PUFA group than in the placebo group (69.4 vs 40.0%; p = 0.017). N-3 PUFA intervention was also associated with an improvement in general psychopathology, measured by means of PANSS (p = 0.009; ES = 0.32), depressive symptoms (p = 0.006; ES = 0.34), the level of functioning (p = 0.01; ES = 0.31) and clinical global impression (p = 0.046; ES = 0.29). The findings suggest that 6-month intervention with n-3 PUFA may be a valuable add-on therapy able to decrease the intensity of symptoms and improve the level of functioning in first-episode schizophrenia patients.

  16. Introduction to fatty acids and lipids.

    PubMed

    Burdge, Graham C; Calder, Philip C

    2015-01-01

    The purpose of this article is to describe the structure, function and metabolism of fatty acids and lipids that are of particular importance in the context of parenteral nutrition. Lipids are a heterogeneous group of molecules that share the common property of hydrophobicity. Lipids range in structure from simple short hydrocarbon chains to more complex molecules, including triacylglycerols, phospholipids and sterols and their esters. Lipids within each class may differ structurally. Fatty acids are common components of complex lipids, and these differ according to chain length and the presence, number and position of double bonds in the hydrocarbon chain. Structural variation among complex lipids and among fatty acids gives rise to functional differences that result in different impacts upon metabolism and upon cell and tissue responses. Fatty acids and complex lipids exhibit a variety of structural variations that influence their metabolism and their functional effects.

  17. Fatty acid oxidation and ketogenesis in astrocytes

    SciTech Connect

    Auestad, N.

    1988-01-01

    Astrocytes were derived from cortex of two-day-old rat brain and grown in primary culture to confluence. The metabolism of the fatty acids, octanoate and palmitate, to CO{sub 2} in oxidative respiration and to the formation of ketone bodies was examined by radiolabeled tracer methodology. The net production of acetoacetate was also determined by measurement of its mass. The enzymes in the ketogenic pathway were examined by measuring enzymic activity and/or by immunoblot analyses. Labeled CO{sub 2} and labeled ketone bodies were produced from the oxidation of fatty acids labeled at carboxy- and {omega}-terminal carbons, indicating that fatty acids were oxidized by {beta}-oxidation. The results from the radiolabeled tracer studies also indicated that a substantial proportion of the {omega}-terminal 4-carbon unit of the fatty acids bypassed the {beta}-ketothiolase step of the {beta}-oxidation pathway. The ({sup 14}C)acetoacetate formed from the (1-{sup 14}C)labeled fatty acids, obligated to pass through the acetyl-CoA pool, contained 50% of the label at carbon 3 and 50% at carbon 1. In contrast, the ({sup 14}C)acetoacetate formed from the ({omega}-1)labeled fatty acids contained 90% of the label at carbon 3 and 10% at carbon 1.

  18. 21 CFR 172.859 - Sucrose fatty acid esters.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Sucrose fatty acid esters. 172.859 Section 172.859... Sucrose fatty acid esters. Sucrose fatty acid esters identified in this section may be safely used in accordance with the following prescribed conditions: (a) Sucrose fatty acid esters are the mono-, di-,...

  19. Effects of supplementation with fish oil and barium selenate on performance, carcass characteristics and muscle fatty acid composition of late season lamb finished on grass-based or concentrate-based diets.

    PubMed

    Annett, R W; Carson, A F; Fearon, A M; Kilpatrick, D J

    2011-12-01

    The objectives of this study were to investigate the effects of fish oil supplementation on performance and muscle fatty acid composition of hill lambs finished on grass-based or concentrate-based diets, and to examine the interaction with selenium (Se) status. In September 2006, 180 entire male lambs of mixed breeds were sourced from six hill farms after weaning and finished on five dietary treatments: grazed grass (GG), grass +0.4 kg/day cereal-based concentrate (GC), grass +0.4 kg/day cereal-based concentrate enriched with fish oil (GF), ad libitum cereal-based concentrate (HC) and ad libitum fish oil-enriched concentrate (HF). Within each treatment, half of the lambs were also supplemented with barium selenate by subcutaneous injection. At the start of the trial, the proportion of lambs with a marginal (<0.76 μmol/l) or deficient (<0.38 μmol/l) plasma Se status was 0.84 and 0.39, respectively. Compared with control lambs, GG lambs treated with Se had higher (P < 0.01) plasma Se levels, whereas erythrocyte glutathione peroxidase activity was higher (P < 0.01) for Se-supplemented lambs fed diets GG and GF. However, Se supplementation had no effects on any aspect of animal performance. Fish oil increased (P < 0.05) levels of 22:5n-3 and 22:6n-3 in the Longissimus dorsi of HF lambs but otherwise had no effect on the health attributes of lamb meat. There were no significant effects of fish oil on dry matter intake, animal performance or lamb carcass characteristics. Daily carcass weight gain (CWG; P < 0.001), carcass weight (P < 0.01) and conformation score (P < 0.01) increased with increasing concentrate inputs. Lambs fed concentrate-based diets achieved a higher mean CWG (P < 0.001), dressing proportion (P < 0.001) and carcass weight (P < 0.011), and were slaughtered up to 8.3 days earlier (P < 0.05) and at 1.2 kg lower (P < 0.05) live weight than pasture-fed lambs. However, carcasses from grass-fed lambs contained lower levels of perinephric and retroperitoneal

  20. High transcript level of fatty acid-binding protein 11 but not of very low-density lipoprotein receptor is correlated to ovarian follicle atresia in a teleost fish (Solea senegalensis).

    PubMed

    Agulleiro, Maria J; André, Michèle; Morais, Sofia; Cerdà, Joan; Babin, Patrick J

    2007-09-01

    Transcripts encoding a fatty acid-binding protein (FABP), Fabp11, and two isoforms of very low-density lipoprotein receptor (Vldlr; vitellogenin receptor) were characterized from the ovary of Senegalese sole (Solea senegalensis). Phylogenetic analyses of vertebrate FABPs demonstrated that Senegalese sole Fabp11, as zebrafish (Danio rerio) homologous sequences, is part of a newly defined teleost fish FABP subfamily that is a sister clade of tetrapod FABP4/FABP5/FABP8/FABP9. RT-PCR revealed high levels of vldlr transcript splicing variants in the ovaries and, to a lesser extent, in somatic tissues, whereas fabp11 was highly expressed in the ovaries, liver, and adipose tissue. In situ hybridization analysis showed vldlr and fabp11 mRNAs in previtellogenic oocytes, whereas no hybridization signals were detected in the larger vitellogenic oocytes. Transcript expression of fabp11 was strongly upregulated in somatic cells surrounding atretic follicles. Real-time quantitative RT-PCR demonstrated that ovarian transcript levels of vldlr and fabp11 had a significant positive correlation with the percentage of follicles in previtellogenesis and atresia, respectively. These results suggest that the expression level of vldlr transcripts may be used as a precocious functional marker to quantify the number of oocytes recruited for vitellogenesis and that fabp11 mRNA may be a very useful molecular marker for determining cellular events and environmental factors that regulate follicular atresia in fish.

  1. Position of the academy of nutrition and dietetics: dietary fatty acids for healthy adults.

    PubMed

    Vannice, Gretchen; Rasmussen, Heather

    2014-01-01

    It is the position of the Academy of Nutrition and Dietetics (the Academy) that dietary fat for the healthy adult population should provide 20% to 35% of energy, with an increased consumption of n-3 polyunsaturated fatty acids and limited intake of saturated and trans fats. The Academy recommends a food-based approach through a diet that includes regular consumption of fatty fish, nuts and seeds, lean meats and poultry, low-fat dairy products, vegetables, fruits, whole grains, and legumes. These recommendations are made within the context of rapidly evolving science delineating the influence of dietary fat and specific fatty acids on human health. In addition to fat as a valuable and calorically dense macronutrient with a central role in supplying essential nutrition and supporting healthy body weight, evidence on individual fatty acids and fatty acid groups is emerging as a key factor in nutrition and health. Small variations in the structure of fatty acids within broader categories of fatty acids, such as polyunsaturated and saturated, appear to elicit different physiological functions. The Academy recognizes that scientific knowledge about the effects of dietary fats on human health is young and takes a prudent approach in recommending an increase in fatty acids that benefit health and a reduction in fatty acids shown to increase risk of disease. Registered dietitian nutritionists are uniquely positioned to translate fat and fatty acid research into practical and effective dietary recommendations.

  2. Negative Confounding by Essential Fatty Acids in Methylmercury Neurotoxicity Associations

    PubMed Central

    Choi, Anna L; Mogensen, Ulla B.; Bjerve, Kristian S.; Debes, Frodi; Weihe, Pal; Grandjean, Philippe; Budtz-Jørgensen, Esben

    2014-01-01

    Background Methylmercury, a worldwide contaminant of fish and seafood, can cause adverse effects on the developing nervous system. However, long-chain n-3 polyunsaturated fatty acids in seafood provide beneficial effects on brain development. Negative confounding will likely result in underestimation of both mercury toxicity and nutrient benefits unless mutual adjustment is included in the analysis. Methods We examined these associations in 176 Faroese children, in whom prenatal methylmercury exposure was assessed from mercury concentrations in cord blood and maternal hair. The relative concentrations of fatty acids were determined in cord serum phospholipids. Neuropsychological performance in verbal, motor, attention, spatial, and memory functions was assessed at 7 years of age. Multiple regression and structural equation models (SEMs) were carried out to determine the confounder-adjusted associations with methylmercury exposure. Results A short delay recall (in percent change) in the California Verbal Learning Test (CVLT) was associated with a doubling of cord blood methylmercury (−18.9, 95% confidence interval [CI] = −36.3, −1.51). The association became stronger after the inclusion of fatty acid concentrations in the analysis (−22.0, 95% confidence interval [CI] = −39.4, −4.62). In structural equation models, poorer memory function (corresponding to a lower score in the learning trials and short delay recall in CVLT) was associated with a doubling of prenatal exposure to methylmercury after the inclusion of fatty acid concentrations in the analysis (−1.94, 95% CI = −3.39, −0.49). Conclusions Associations between prenatal exposure to methylmercury and neurobehavioral deficits in memory function at school age were strengthened after fatty acid adjustment, thus suggesting that n-3 fatty acids need to be included in analysis of similar studies to avoid underestimation of the associations with methylmercury exposure. PMID:24561639

  3. Expression of fatty acid synthase in nonalcoholic fatty liver disease.

    PubMed

    Dorn, Christoph; Riener, Marc-Oliver; Kirovski, Georgi; Saugspier, Michael; Steib, Kathrin; Weiss, Thomas S; Gäbele, Erwin; Kristiansen, Glen; Hartmann, Arndt; Hellerbrand, Claus

    2010-03-25

    Nonalcoholic fatty liver disease (NAFLD) is characterized by hepatic lipid accumulation which starts with simple hepatic steatosis and may progress toward inflammation (nonalcoholic steatohepatitis [NASH]). Fatty acid synthase (FASN) catalyzes the last step in fatty acid biosynthesis, and thus, it is believed to be a major determinant of the maximal hepatic capacity to generate fatty acids by de novo lipogenesis. The aim of this study was to analyze the correlation between hepatic steatosis and inflammation with FASN expression. In vitro incubation of primary human hepatocytes with fatty acids dose-dependently induced cellular lipid-accumulation and FASN expression, while stimulation with TNF did not affect FASN levels. Further, hepatic FASN expression was significantly increased in vivo in a murine model of hepatic steatosis without significant inflammation but not in a murine NASH model as compared to control mice. Also, FASN expression was not increased in mice subjected to bile duct ligation, an experimental model characterized by severe hepatocellular damage and inflammation. Furthermore, FASN expression was analyzed in 102 human control or NAFLD livers applying tissue micro array technology and immunohistochemistry, and correlated significantly with the degree of hepatic steatosis, but not with inflammation or ballooning of hepatocytes. Quantification of FASN mRNA expression in human liver samples confirmed significantly higher FASN levels in hepatic steatosis but not in NASH, and expression of SREBP1, which is the main transcriptional regulator of FASN, paralleled FASN expression levels in human and experimental NAFLD. In conclusion, the transcriptional induction of FASN expression in hepatic steatosis is impaired in NASH, while hepatic inflammation in the absence of steatosis does not affect FASN expression, suggesting that FASN may serve as a new diagnostic marker or therapeutic target for the progression of NAFLD.

  4. Ferritin couples iron and fatty acid metabolism.

    PubMed

    Bu, Weiming; Liu, Renyu; Cheung-Lau, Jasmina C; Dmochowski, Ivan J; Loll, Patrick J; Eckenhoff, Roderic G

    2012-06-01

    A physiological relationship between iron, oxidative injury, and fatty acid metabolism exists, but transduction mechanisms are unclear. We propose that the iron storage protein ferritin contains fatty acid binding sites whose occupancy modulates iron uptake and release. Using isothermal microcalorimetry, we found that arachidonic acid binds ferritin specifically and with 60 μM affinity. Arachidonate binding by ferritin enhanced iron mineralization, decreased iron release, and protected the fatty acid from oxidation. Cocrystals of arachidonic acid and horse spleen apoferritin diffracted to 2.18 Å and revealed specific binding to the 2-fold intersubunit pocket. This pocket shields most of the fatty acid and its double bonds from solvent but allows the arachidonate tail to project well into the ferrihydrite mineralization site on the ferritin L-subunit, a structural feature that we implicate in the effects on mineralization by demonstrating that the much shorter saturated fatty acid, caprylate, has no significant effects on mineralization. These combined effects of arachidonate binding by ferritin are expected to lower both intracellular free iron and free arachidonate, thereby providing a previously unrecognized mechanism for limiting lipid peroxidation, free radical damage, and proinflammatory cascades during times of cellular stress.

  5. Control of bovine hepatic fatty acid oxidation

    SciTech Connect

    Jesse, B.W.; Emery, R.S.; Thomas, J.W.

    1986-09-01

    Fatty acid oxidation by bovine liver slices and mitochondria was examined to determine potential regulatory sites of fatty acid oxidation. Conversion of 1-(/sup 14/C)palmitate to /sup 14/CO/sub 2/ and total (/sup 14/C)acid-soluble metabolites was used to measure fatty acid oxidation. Oxidation of palmitate (1 mM) was linear in both liver slice weight and incubation time. Carnitine stimulated palmitate oxidation; 2 mM dl-carnitine produced maximal stimulation of palmitate oxidation to both CO/sup 2/ and acid-soluble metabolites. Propionate (10 mM) inhibited palmitate oxidation by bovine liver slices. Propionate (.5 to 10 mM) had no effect on palmitate oxidation by mitochondria, but malonyl Coenzyme A, the first committed intermediate of fatty acid synthesis, inhibited mitochondrial palmitate oxidation (inhibition constant = .3 ..mu..M). Liver mitochonndrial carnitine palmitoyltransferase exhibited Michaelis constants for palmitoyl Coenzyme A and l-carnitine of 11.5 ..mu..M and .59 mM, respectively. Long-chain fatty acid oxidation in bovine liver is regulated by mechanisms similar to those in rats but adapted to the unique digestive physiology of the bovine.

  6. 21 CFR 172.863 - Salts of fatty acids.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Salts of fatty acids. 172.863 Section 172.863 Food... of fatty acids. The food additive salts of fatty acids may be safely used in food and in the... salts of the fatty acids conforming with § 172.860 and/or oleic acid derived from tall oil fatty...

  7. The Association of Fatty Acids With Breast Cancer.

    DTIC Science & Technology

    1995-08-09

    Experimental studies have shown that omega-6 fatty acids enhance and omega - 3 fatty acids suppress oncogenesis. Correlational studies also indicate...that breast cancer incidence is positively linked to omega-6 consumption but is negatively related to intake of omega - 3 fatty acids, derived mainly from...arachidonic acid), and omega - 3 fatty acids (20:5n3, eicosapentaenoic acid; 22:6n-3, docosahexaenoic acid) were similar in cases and controls

  8. Amino and fatty acids in carbonaceous meteorites

    NASA Technical Reports Server (NTRS)

    Kvenvolden, K. A.

    1974-01-01

    Analyses of two carbonaceous meteorites have provided much of the latest evidence which seems to support Oparin's theory on the origin of life. The meteorites involved are the Murray meteorite, which fell in 1950, and the Murchison meteorite, which fell in 1969. The amino acids in the two meteorites are similar in composition. Eight of the twenty amino acids found belong to amino acids present in proteins. A number of monocarboxylic and dicarboxylic fatty acids were also found in the meteorites.

  9. Specific bile acids inhibit hepatic fatty acid uptake

    PubMed Central

    Nie, Biao; Park, Hyo Min; Kazantzis, Melissa; Lin, Min; Henkin, Amy; Ng, Stephanie; Song, Sujin; Chen, Yuli; Tran, Heather; Lai, Robin; Her, Chris; Maher, Jacquelyn J.; Forman, Barry M.; Stahl, Andreas

    2012-01-01

    Bile acids are known to play important roles as detergents in the absorption of hydrophobic nutrients and as signaling molecules in the regulation of metabolism. Here we tested the novel hypothesis that naturally occurring bile acids interfere with protein-mediated hepatic long chain free fatty acid (LCFA) uptake. To this end stable cell lines expressing fatty acid transporters as well as primary hepatocytes from mouse and human livers were incubated with primary and secondary bile acids to determine their effects on LCFA uptake rates. We identified ursodeoxycholic acid (UDCA) and deoxycholic acid (DCA) as the two most potent inhibitors of the liver-specific fatty acid transport protein 5 (FATP5). Both UDCA and DCA were able to inhibit LCFA uptake by primary hepatocytes in a FATP5-dependent manner. Subsequently, mice were treated with these secondary bile acids in vivo to assess their ability to inhibit diet-induced hepatic triglyceride accumulation. Administration of DCA in vivo via injection or as part of a high-fat diet significantly inhibited hepatic fatty acid uptake and reduced liver triglycerides by more than 50%. In summary, the data demonstrate a novel role for specific bile acids, and the secondary bile acid DCA in particular, in the regulation of hepatic LCFA uptake. The results illuminate a previously unappreciated means by which specific bile acids, such as UDCA and DCA, can impact hepatic triglyceride metabolism and may lead to novel approaches to combat obesity-associated fatty liver disease. PMID:22531947

  10. Long-chain polyunsaturated fatty acid sources and evaluation of their nutritional and functional properties

    PubMed Central

    Abedi, Elahe; Sahari, Mohammad Ali

    2014-01-01

    Recent studies have clearly shown the importance of polyunsaturated fatty acids (as essential fatty acids) and their nutritional value for human health. In this review, various sources, nutritional properties, and metabolism routes of long-chain polyunsaturated fatty acids (LC-PUFA) are introduced. Since the conversion efficiency of linoleic acid (LA) to arachidonic acid (AA) and also α-linolenic acid (ALA) to docosahexaenoic acid (DHA) and eicosatetraenoic acid (EPA) is low in humans, looking for the numerous sources of AA, EPA and EPA fatty acids. The sources include aquatic (fish, crustaceans, and mollusks), animal sources (meat, egg, and milk), plant sources including 20 plants, most of which were weeds having a good amount of LC-PUFA, fruits, herbs, and seeds; cyanobacteria; and microorganisms (bacteria, fungi, microalgae, and diatoms). PMID:25473503

  11. Fatty Acid Synthetase of Saccharomyces cerevisiae

    PubMed Central

    Klein, Harold P.; Volkmann, Carol M.; Chao, Fu-Chuan

    1967-01-01

    A light particle fraction of Saccharomyces cerevisiae, obtained from the crude ribosomal material, and containing the fatty acid synthetase, consisted primarily of 27S and 47S components. This fraction has a protein-ribonucleic acid ratio of about 13. Electron micrographs showed particles ranging in diameter between 100 and 300 A in this material. By use of density gradient analysis, the fatty acid synthetase was found in the 47S component. This component contained particles which were predominantly 300 A in diameter and which were considerably flatter than ribosomes, and it consisted almost entirely of protein. Images PMID:6025308

  12. Production of hydroxylated fatty acids in genetically modified plants

    DOEpatents

    Somerville, Chris; Broun, Pierre; van de Loo, Frank; Boddupalli, Sekhar S.

    2011-08-23

    This invention relates to plant fatty acyl hydroxylases. Methods to use conserved amino acid or nucleotide sequences to obtain plant fatty acyl hydroxylases are described. Also described is the use of cDNA clones encoding a plant hydroxylase to produce a family of hydroxylated fatty acids in transgenic plants. In addition, the use of genes encoding fatty acid hydroxylases or desaturases to alter the level of lipid fatty acid unsaturation in transgenic plants is described.

  13. Production of hydroxylated fatty acids in genetically modified plants

    DOEpatents

    Somerville, Chris; Broun, Pierre; van de Loo, Frank; Boddupalli, Sekhar S.

    2005-08-30

    This invention relates to plant fatty acyl hydroxylases. Methods to use conserved amino acid or nucleotide sequences to obtain plant fatty acyl hydroxylases are described. Also described is the use of cDNA clones encoding a plant hydroxylase to produce a family of hydroxylated fatty acids in transgenic plants. In addition, the use of genes encoding fatty acid hydroxylases or desaturases to alter the level of lipid fatty acid unsaturation in transgenic plants is described.

  14. Towards Sustainable Aquafeeds: Complete Substitution of Fish Oil with Marine Microalga Schizochytrium sp. Improves Growth and Fatty Acid Deposition in Juvenile Nile Tilapia (Oreochromis niloticus)

    PubMed Central

    Sarker, Pallab K.; Kapuscinski, Anne R.; Lanois, Alison J.; Livesey, Erin D.; Bernhard, Katie P.; Coley, Mariah L.

    2016-01-01

    We conducted a 84-day nutritional feeding experiment with dried whole cells of DHA-rich marine microalga Schizochytrium sp. (Sc) to determine the optimum level of fish-oil substitution (partial or complete) for maximum growth of Nile tilapia. When we fully replaced fish oil with Schizochytrium (Sc100 diet), we found significantly higher weight gain and protein efficiency ratio (PER), and lower (improved) feed conversion ratio (FCR) and feed intake compared to a control diet containing fish oil (Sc0); and no significant change in SGR and survival rate among all diets. The Sc100 diet had the highest contents of 22:6n3 DHA, led to the highest DHA content in fillets, and consequently led to the highest DHA:EPA ratios in tilapia fillets. Schizochytrium sp. is a high quality candidate for complete substitution of fish oil in juvenile Nile tilapia feeds, providing an innovative means to formulate and optimize the composition of tilapia juvenile feed while simultaneously raising feed efficiency of tilapia aquaculture and to further develop environmentally and socially sustainable aquafeeds. Results show that replacing fish oil with DHA-rich marine Sc improves the deposition of n3 LC PUFA levels in tilapia fillet. These results support further studies to lower Schizochytrium production costs and to combine different marine microalgae to replace fish oil and fishmeal into aquafeeds. PMID:27258552

  15. Towards Sustainable Aquafeeds: Complete Substitution of Fish Oil with Marine Microalga Schizochytrium sp. Improves Growth and Fatty Acid Deposition in Juvenile Nile Tilapia (Oreochromis niloticus).

    PubMed

    Sarker, Pallab K; Kapuscinski, Anne R; Lanois, Alison J; Livesey, Erin D; Bernhard, Katie P; Coley, Mariah L

    2016-01-01

    We conducted a 84-day nutritional feeding experiment with dried whole cells of DHA-rich marine microalga Schizochytrium sp. (Sc) to determine the optimum level of fish-oil substitution (partial or complete) for maximum growth of Nile tilapia. When we fully replaced fish oil with Schizochytrium (Sc100 diet), we found significantly higher weight gain and protein efficiency ratio (PER), and lower (improved) feed conversion ratio (FCR) and feed intake compared to a control diet containing fish oil (Sc0); and no significant change in SGR and survival rate among all diets. The Sc100 diet had the highest contents of 22:6n3 DHA, led to the highest DHA content in fillets, and consequently led to the highest DHA:EPA ratios in tilapia fillets. Schizochytrium sp. is a high quality candidate for complete substitution of fish oil in juvenile Nile tilapia feeds, providing an innovative means to formulate and optimize the composition of tilapia juvenile feed while simultaneously raising feed efficiency of tilapia aquaculture and to further develop environmentally and socially sustainable aquafeeds. Results show that replacing fish oil with DHA-rich marine Sc improves the deposition of n3 LC PUFA levels in tilapia fillet. These results support further studies to lower Schizochytrium production costs and to combine different marine microalgae to replace fish oil and fishmeal into aquafeeds.

  16. Probing fatty acid metabolism in bacteria, cyanobacteria, green microalgae and diatoms with natural and unnatural fatty acids.

    PubMed

    Beld, Joris; Abbriano, Raffaela; Finzel, Kara; Hildebrand, Mark; Burkart, Michael D

    2016-04-01

    In both eukaryotes and prokaryotes, fatty acid synthases are responsible for the biosynthesis of fatty acids in an iterative process, extending the fatty acid by two carbon units every cycle. Thus, odd numbered fatty acids are rarely found in nature. We tested whether representatives of diverse microbial phyla have the ability to incorporate odd-chain fatty acids as substrates for their fatty acid synthases and their downstream enzymes. We fed various odd and short chain fatty acids to the bacterium Escherichia coli, cyanobacterium Synechocystis sp. PCC 6803, green microalga Chlamydomonas reinhardtii and diatom Thalassiosira pseudonana. Major differences were observed, specifically in the ability among species to incorporate and elongate short chain fatty acids. We demonstrate that E. coli, C. reinhardtii, and T. pseudonana can produce longer fatty acid products from short chain precursors (C3 and C5), while Synechocystis sp. PCC 6803 lacks this ability. However, Synechocystis can incorporate and elongate longer chain fatty acids due to acyl-acyl carrier protein synthetase (AasS) activity, and knockout of this protein eliminates the ability to incorporate these fatty acids. In addition, expression of a characterized AasS from Vibrio harveyii confers a similar capability to E. coli. The ability to desaturate exogenously added fatty acids was only observed in Synechocystis and C. reinhardtii. We further probed fatty acid metabolism of these organisms by feeding desaturase inhibitors to test the specificity of long-chain fatty acid desaturases. In particular, supplementation with thia fatty acids can alter fatty acid profiles based on the location of the sulfur in the chain. We show that coupling sensitive gas chromatography mass spectrometry to supplementation of unnatural fatty acids can reveal major differences between fatty acid metabolism in various organisms. Often unnatural fatty acids have antibacterial or even therapeutic properties. Feeding of short

  17. Fatty Acid Compositions of Six Wild Edible Mushroom Species

    PubMed Central

    Günç Ergönül, Pelin; Akata, Ilgaz; Kalyoncu, Fatih; Ergönül, Bülent

    2013-01-01

    The fatty acids of six wild edible mushroom species (Boletus reticulatus, Flammulina velutipes var. velutipes, Lactarius salmonicolor, Pleurotus ostreatus, Polyporus squamosus, and Russula anthracina) collected from different regions from Anatolia were determined. The fatty acids were identified and quantified by gas chromatography and studied using fruit bodies. Fatty acid composition varied among species. The dominant fatty acid in fruit bodies of all mushrooms was cis-linoleic acid (18 : 2). Percentage of cis-linoleic acid in species varied from 22.39% to 65.29%. The other major fatty acids were, respectively, cis-oleic, palmitic, and stearic acids. Fatty acids analysis of the mushrooms showed that the unsaturated fatty acids were at higher concentrations than saturated fatty acids. PMID:23844377

  18. Effects of abomasal infusion of conjugated linoleic acids, Sterculia foetida oil, and fish oil on production performance and the extent of fatty acid Δ⁹-desaturation in dairy cows.

    PubMed

    Dallaire, M P; Taga, H; Ma, L; Corl, B A; Gervais, R; Lebeuf, Y; Richard, F J; Chouinard, P Y

    2014-10-01

    The purpose of this study was to determine the effects of conjugated linoleic acid (CLA), Sterculia foetida oil (STO), and fish oil (FO) on milk yield and composition, milk FA profile, Δ(9)-desaturation activity, and mammary expression of 2 isoforms of stearoyl-coenzyme A desaturase (SCD-1 and SCD-5) in lactating dairy cows. Eight multiparous Holstein cows (69 ± 13 d postpartum) were used in a double 4 × 4 Latin square design with 28-d periods. For the first 14 d of each period, cows received an abomasal infusion of (1) 406 g of a saturated fatty acid (SFA) supplement (112 g of 16:0 + 230 g of 18:0) used as a control (CTL), (2) 36 g of a CLA supplement (13.9 g of trans-10,cis-12 18:2) + 370 g of SFA, (3) 7 g of STO (3.1g of 19:1 cyclo) + 399 g of SFA, or (4) 406 g of FO (55.2 g of cis-5,-8,-11,-14,-17 20:5 + 59.3 g of cis-4,-7,-10,-13,-16,-19 22:6). Infusions were followed by a 14-d washout interval. Compared with CTL, STO decreased milk yield from 38.0 to 33.0 kg/d, and increased milk fat concentration from 3.79 to 4.45%. Milk fat concentration was also decreased by CLA (2.23%) and FO (3.34%). Milk fat yield was not affected by STO (1,475 g/d) compared with CTL (1,431 g/d), but was decreased by CLA (774 g/d) and FO (1,186 g/d). Desaturase indices for 10:0, 12:0, and 20:0 were decreased, whereas the extent of desaturation of 14:0, 16:0, 17:0, and 18:0 was not affected by CLA treatment compared with CTL. Infusion of STO significantly decreased all calculated desaturase indices compared with CTL; the 14:0 index was reduced by 80.7%. Infusion of FO decreased the desaturase indices for 10:0, 14:0, 20:0, trans-11 18:1, and 18:0. The effect of FO on the 14:0 index indicates a decrease in apparent Δ(9)-desaturase activity of 30.2%. Compared with CTL, mammary mRNA abundance of SCD-1 was increased by STO (+30%) and decreased by CLA (-24%), whereas FO had no effect. No effect was observed on mRNA abundance of SCD-5. In conclusion, abomasal infusion of CLA, STO, and FO

  19. Fatty acid production in genetically modified cyanobacteria

    PubMed Central

    Liu, Xinyao; Sheng, Jie; Curtiss III, Roy

    2011-01-01

    To avoid costly biomass recovery in photosynthetic microbial biofuel production, we genetically modified cyanobacteria to produce and secrete fatty acids. Starting with introducing an acyl–acyl carrier protein thioesterase gene, we made six successive generations of genetic modifications of cyanobacterium Synechocystis sp. PCC6803 wild type (SD100). The fatty acid secretion yield was increased to 197 ± 14 mg/L of culture in one improved strain at a cell density of 1.0 × 109 cells/mL by adding codon-optimized thioesterase genes and weakening polar cell wall layers. Although these strains exhibited damaged cell membranes at low cell densities, they grew more rapidly at high cell densities in late exponential and stationary phase and exhibited less cell damage than cells in wild-type cultures. Our results suggest that fatty acid secreting cyanobacteria are a promising technology for renewable biofuel production. PMID:21482809

  20. Dietary sources of omega 3 fatty acids: public health risks and benefits.

    PubMed

    Tur, J A; Bibiloni, M M; Sureda, A; Pons, A

    2012-06-01

    Omega 3 fatty acids can be obtained from several sources, and should be added to the daily diet to enjoy a good health and to prevent many diseases. Worldwide, general population use omega-3 fatty acid supplements and enriched foods to get and maintain adequate amounts of these fatty acids. The aim of this paper was to review main scientific evidence regarding the public health risks and benefits of the dietary sources of omega-3 fatty acids. A systematic literature search was performed, and one hundred and forty-five articles were included in the results for their methodological quality. The literature described benefits and risks of algal, fish oil, plant, enriched dairy products, animal-derived food, krill oil, and seal oil omega-3 fatty acids.

  1. Microalgal biofactories: a promising approach towards sustainable omega-3 fatty acid production.

    PubMed

    Adarme-Vega, T Catalina; Lim, David K Y; Timmins, Matthew; Vernen, Felicitas; Li, Yan; Schenk, Peer M

    2012-07-25

    Omega-3 fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) provide significant health benefits and this has led to an increased consumption as dietary supplements. Omega-3 fatty acids EPA and DHA are found in animals, transgenic plants, fungi and many microorganisms but are typically extracted from fatty fish, putting additional pressures on global fish stocks. As primary producers, many marine microalgae are rich in EPA (C20:5) and DHA (C22:6) and present a promising source of omega-3 fatty acids. Several heterotrophic microalgae have been used as biofactories for omega-3 fatty acids commercially, but a strong interest in autotrophic microalgae has emerged in recent years as microalgae are being developed as biofuel crops. This paper provides an overview of microalgal biotechnology and production platforms for the development of omega-3 fatty acids EPA and DHA. It refers to implications in current biotechnological uses of microalgae as aquaculture feed and future biofuel crops and explores potential applications of metabolic engineering and selective breeding to accumulate large amounts of omega-3 fatty acids in autotrophic microalgae.

  2. SLC27 fatty acid transport proteins.

    PubMed

    Anderson, Courtney M; Stahl, Andreas

    2013-01-01

    The uptake and metabolism of long chain fatty acids (LCFA) are critical to many physiological and cellular processes. Aberrant accumulation or depletion of LCFA underlie the pathology of numerous metabolic diseases. Protein-mediated transport of LCFA has been proposed as the major mode of LCFA uptake and activation. Several proteins have been identified to be involved in LCFA uptake. This review focuses on the SLC27 family of fatty acid transport proteins, also known as FATPs, with an emphasis on the gain- and loss-of-function animal models that elucidate the functions of FATPs in vivo and how these transport proteins play a role in physiological and pathological situations.

  3. Trans fatty acids and fatty acid composition of mature breast milk in turkish women and their association with maternal diet's.

    PubMed

    Samur, Gülhan; Topcu, Ali; Turan, Semra

    2009-05-01

    The aim of this study was to determine the fatty acid composition and trans fatty acid and fatty acid contents of breast milk in Turkish women and to find the effect of breastfeeding mothers' diet on trans fatty acid and fatty acid composition. Mature milk samples obtained from 50 Turkish nursing women were analyzed. Total milk lipids extracts were transmethylated and analyzed by using gas liquid chromatography to determine fatty acids contents. A questionnaire was applied to observe eating habits and 3 days dietary records from mothers were obtained. Daily dietary intake of total energy and nutrients were estimated by using nutrient database. The mean total trans fatty acids contents was 2.13 +/- 1.03%. The major sources of trans fatty acids in mothers' diets were margarines-butter (37.0%), bakery products and confectionery (29.6%). Mothers who had high level of trans isomers in their milk consumed significantly higher amounts of these products. Saturated fatty acids, polyunsaturated fatty acids and monounsaturated fatty acids of human milk constituted 40.7 +/- 4.7%, 26.9 +/- 4.2% and 30.8 +/- 0.6% of the total fatty acids, respectively. The levels of fatty acids in human milk may reflect the current diet of the mother as well as the diet consumed early in pregnancy. Margarines, bakery products and confectionery are a major source of trans fatty acids in maternal diet in Turkey.

  4. Effects of therapeutic lifestyle change diets high and low in dietary fish-derived fatty acids on lipoprotein metabolism in middle-aged and elderly subjects

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effects of Therapeutic Lifestyle Change (TLC) diets, low and high in dietary fish on apolipoprotein metabolism were examined. Subjects were provided with a Western diet for 6-weeks followed by 24-weeks of either of two TLC diets (10/group). Apolipoprotein kinetics were determined in the fed stat...

  5. Growth and fatty acid composition of two strains of Arctic charr (Salvelinus alpinus) on diets formulated with low fish oil inclusion in a recirculating aquaculture system

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Arctic charr (Salvelinus alpinus) is a highly desirable species to culture due to their fast growth, culture conditions and reputation as a sustainably produced fish due to closed containment culture. A study was conducted to evaluate two Arctic charr stocks (one commercial stock and one from the ...

  6. Lipid Classes and Fatty Acids in Ophryotrocha cyclops, a Dorvilleid from Newfoundland Aquaculture Sites.

    PubMed

    Salvo, Flora; Dufour, Suzanne C; Hamoutene, Dounia; Parrish, Christopher C

    2015-01-01

    A new opportunistic annelid (Ophryotrocha cyclops) discovered on benthic substrates underneath finfish aquaculture sites in Newfoundland (NL) may be involved in the remediation of organic wastes. At those aquaculture sites, bacterial mats and O. cyclops often coexist and are used as indicators of organic enrichment. Little is known on the trophic strategies used by these annelids, including whether they might consume bacteria or other aquaculture-derived wastes. We studied the lipid and fatty acid composition of the annelids and their potential food sources (degraded flocculent organic matter, fresh fish pellets and bacterial mats) to investigate feeding relationships in these habitats and compared the lipid and fatty acid composition of annelids before and after starvation. Fish pellets were rich in lipids, mainly terrestrially derived C18 fatty acids (18:1ω9, 18:2ω6, 18:3ω3), while bacterial samples were mainly composed of ω7 fatty acids, and flocculent matter appeared to be a mixture of fresh and degrading fish pellets, feces and bacteria. Ophryotrocha cyclops did not appear to store excessive amounts of lipids (13%) but showed a high concentration of ω3 and ω6 fatty acids, as well as a high proportion of the main fatty acids contained in fresh fish pellets and bacterial mats. The dorvilleids and all potential food sources differed significantly in their lipid and fatty acid composition. Interestingly, while all food sources contained low proportions of 20:5ω3 and 20:2ω6, the annelids showed high concentrations of these two fatty acids, along with 20:4ω6. A starvation period of 13 days did not result in a major decrease in total lipid content; however, microscopic observations revealed that very few visible lipid droplets remained in the gut epithelium after three months of starvation. Ophryotrocha cyclops appears well adapted to extreme environments and may rely on lipid-rich organic matter for survival and dispersal in cold environments.

  7. Fatty Acids as Surfactants on Aerosol Particles

    NASA Astrophysics Data System (ADS)

    Tervahattu, H.; Juhanoja, J.; Niemi, J.

    2003-12-01

    Fatty acids (n-alcanoic acids) are common compounds in numerous anthropogenic and natural emissions. According to Rogge et al. (1993), catalyst-equipped automobiles emitted more than 600 μg km-1 of fatty acids which was over 50% of all identified organics in fine aerosol emissions. Coal burning produces fatty acids ranging from about 1700 mg kg-1 for bituminous coal to over 10000 mg kg-1 for lignite (Oros and Simoneit, 2000). Similarly, biomass burning is an important source for aerosol fatty acids. They are the major identified compound group in deciduous tree smoke, their total emission factor being measured as 1589 mg kg-1 which was 56% of all identified organic compounds (Oros and Simoneit, 2001a). Large amounts of fatty acid are also emitted from burning of conifer trees and grass (Oros and Simoneit, 2001a; Simoneit, 2002). Fatty acids have been reported to be major constituents of marine aerosols in many investigations (Barger and Garrett, 1976; Gagosian et. al, 1981; Sicre et al., 1990; Stephanou, 1992). It has been suggested that as the marine aerosol particles form, they acquire a coating of organic surfactants (Blanchard, 1964; Gill et al., 1983; Middlebrook et al., 1998; Ellison et al., 1999). Amphiphilic molecules, including lipids, can be assembled as monomolecular layers at air/water interfaces as well as transported to a solid support. Recently, we could show by time-of-flight secondary ion mass spectrometry that fatty acids are important ingredients of the outermost surface layer of the sea-salt aerosol particles (Tervahattu et al., 2002). In their TOF-SIMS studies on the surface composition of atmospheric aerosols, Peterson and Tyler (2002) found fatty acids on the surface of Montana forest fire particles. In this work we have studied by TOF-SIMS the surface chemical composition of aerosol particles emitted from field fires in the Baltic and other East European countries and transported to Finland as well as aerosol particles transported from

  8. Acute effects of dietary fatty acids on the fatty acids of human milk.

    PubMed

    Francois, C A; Connor, S L; Wander, R C; Connor, W E

    1998-02-01

    Although it is known that the fatty acid profile of human milk is altered by diet, the rapidity with which this occurs has not been addressed. We hypothesized that after absorption the fatty acids of a given meal would be transferred rapidly from the chylomicrons of the blood into human milk. Fourteen lactating women drank six test formulas, each containing a different fat: menhaden oil, herring oil, safflower oil, canola oil, coconut oil, or cocoa butter. The subjects collected a midfeeding milk sample before consuming the breakfast test formula and additional samples at 6, 10, 14, and 24 h and then once daily for 4-7 d. Fatty acids of special interest included eicosapentaenoic and docosahexaenoic acids from menhaden oil, cetoleic acid from herring oil, linoleic acid from safflower oil, linolenic acid from canola oil, lauric acid from coconut oil, and palmitic and stearic acids from cocoa butter. Each of these fatty acids increased significantly in human milk within 6 h of consumption of the test formulas (P < 0.001). Maximum increases occurred 10 h after safflower oil; 14 h after cocoa utter, coconut oil, canola oil, and menhaden oil (eicosapentaenoic acid); and 24 h after herring oil and menhaden oil (docosahexaenoic acid). All of these fatty acids remained significantly elevated in milk (P < 0.05) for 10-24 h, except for docosahexaenoic acid, which remained significantly elevated for 2 d, and eicosapentaenoic acid, which remained elevated for 3 d. These data support the hypothesis that there is a rapid transfer of dietary fatty acids from chylomicrons into human milk.

  9. Fatty Acid and Lipid Profiles with Emphasis on n-3 Fatty Acids and Phospholipids from Ciona intestinalis.

    PubMed

    Zhao, Yadong; Wang, Miao; Lindström, Mikael E; Li, Jiebing

    2015-10-01

    In order to establish Ciona intestinalis as a new bioresource for n-3 fatty acids-rich marine lipids, the animal was fractionated into tunic and inner body tissues prior to lipid extraction. The lipids obtained were further classified into neutral lipids (NL), glycolipids (GL) and phospholipids (PL) followed by qualitative and quantitative analysis using GC-FID, GC-MS, (1)H NMR, 2D NMR, MALDI-TOF-MS and LC-ESI-MS methods. It was found that the tunic and inner body tissues contained 3.42-4.08% and 15.9-23.4% of lipids respectively. PL was the dominant lipid class (42-60%) irrespective of the anatomic fractions. From all lipid fractions and classes, the major fatty acids were 16:0, 18:1n-9, C20:1n-9, C20:5n-3 (EPA) and C22:6n-3 (DHA). The highest amounts of long chain n-3 fatty acids, mainly EPA and DHA, were located in PL from both body fractions. Cholestanol and cholesterol were the dominant sterols together with noticeable amounts of stellasterol, 22 (Z)-dehydrocholesterol and lathosterol. Several other identified and two yet unidentified sterols were observed for the first time from C. intestinalis. Different molecular species of phosphatidylcholine (34 species), sphingomyelin (2 species), phosphatidylethanolamine (2 species), phosphatidylserine (10 species), phosphatidylglycerol (9 species), ceramide (38 species) and lysophospholipid (5 species) were identified, representing the most systematic PL profiling knowledge so far for the animal. It could be concluded that C. intestinalis lipids should be a good alternative for fish oil with high contents of n-3 fatty acids. The lipids would be more bioavailable due to the presence of the fatty acids being mainly in the form of PL.

  10. [THE FATTY ACIDS AND RELATIONSHIP WITH HEALTH].

    PubMed

    Sanhueza Catalán, Julio; Durán Agüero, Samuel; Torres García, Jairo

    2015-09-01

    The functionality of the eukaryotic cell depends on the cell membrane, the genetic information and action of different organelles with or without the presence of membranes. The functionality of the cell membrane and organelles containing it depends primarily on the type and location of fatty acids in the phospholipids and the type of enzymes associated with them, this allows the fatty acids to be metabolized to new species that exert various functions. From this perspective, some essential fatty acids (EFAs) that produce metabolites that exert health benefits are identified, (for example antiinflammatory, neuroprotection, etc) and exert negative effects metabolites (eg inflammation, necrosis promoters, atheroma, etc.) are also generated. In general, these adverse or beneficial effects depend on the ratio of omega-6/omega-3 obtained in the diet. Thus, the higher this ratio is more negative effect; therefore the challenge of the current supply is obtained through food consumption, lower ratios in these fatty acids. The present review aims to present recent evidence on the effects of some AGEs, and the role of diet in maintaining health.

  11. Fatty acid biosynthesis in pea root plastids

    SciTech Connect

    Stahl, R.J.; Sparace, S.A. )

    1989-04-01

    Fatty acid biosynthesis from (1-{sup 14}C)acetate was optimized in plastids isolated from primary root tips of 7-day-old germinating pea seeds. Fatty acid synthesis was maximum at approximately 80 nmoles/hr/mg protein in the presence of 200 {mu}M acetate, 0.5 mM each of NADH, NADPH and CoA, 6 mM each of ATP and MgCl{sub 2}, 1 mM each of the MnCl{sub 2} and glycerol-3-phosphate, 15 mM KHCO{sub 3}, and 0.1M Bis-tris-propane, pH 8.0 incubated at 35C. At the standard incubation temperature of 25C, fatty acid synthesis was linear from up to 6 hours with 80 to 100 {mu}g/mL plastid protein. ATP and CoA were absolute requirements, whereas KHCO{sub 3}, divalent cations and reduced nucleotides all improved activity by 80 to 85%. Mg{sup 2+} and NADH were the preferred cation and nucleotide, respectively. Dithiothreitol and detergents were generally inhibitory. The radioactive products of fatty acid biosynthesis were approximately 33% 16:0, 10% 18:0 and 56% 18:1 and generally did not vary with increasing concentrations of each cofactor.

  12. Melting of saturated fatty acid zinc soaps.

    PubMed

    Barman, S; Vasudevan, S

    2006-11-16

    The melting of alkyl chains in the saturated fatty acid zinc soaps of different chain lengths, Zn(C(n)H(2n+1)COO)(2); n = 11, 13, 15, and 17, have been investigated by powder X-ray diffraction, differential scanning calorimetry, and vibrational spectroscopy. These compounds have a layer structure with the alkyl chains arranged as tilted bilayers and with all methylene chains adopting a planar, all-trans conformation at room temperature. The saturated fatty acid zinc soaps exhibit a single reversible melting transition with the associated enthalpy change varying linearly with alkyl chain length, but surprisingly, the melting temperature remaining constant. Melting is associated with changes in the conformation of the alkyl chains and in the nature of coordination of the fatty acid to zinc. By monitoring features in the infrared spectra that are characteristic of the global conformation of the alkyl chains, a quantitative relation between conformational disorder and melting is established. It is found that, irrespective of the alkyl chain length, melting occurs when 30% of the chains in the soap are disordered. These results highlight the universal nature of the melting of saturated fatty acid zinc soaps and provide a simple explanation for the observed phenomena.

  13. n-3 Fatty acids and asthma.

    PubMed

    Kumar, Aishwarya; Mastana, Sarabjit S; Lindley, Martin R

    2016-06-01

    Asthma is one of the most common and prevalent problems worldwide affecting over 300 million individuals. There is some evidence from observational and intervention studies to suggest a beneficial effect of n-3 PUFA in inflammatory diseases, specifically asthma. Marine-based n-3 PUFA have therefore been proposed as a possible complementary/alternative therapy for asthma. The proposed anti-inflammatory effects of n-3 fatty acids may be linked to a change in cell membrane composition. This altered membrane composition following n-3 fatty acid supplementation (primarily EPA and DHA) can modify lipid mediator generation via the production of eicosanoids with a reduced inflammatory potential/impact. A recently identified group of lipid mediators derived from EPA including E-series resolvins are proposed to be important in the resolution of inflammation. Reduced inflammation attenuates the severity of asthma including symptoms (dyspnoea) and exerts a bronchodilatory effect. There have been no major health side effects reported with the dietary supplementation of n-3 fatty acids or their mediators; consequently supplementing with n-3 fatty acids is an attractive non-pharmacological intervention which may benefit asthma.

  14. Polyunsaturated fatty acids in emerging psychosis.

    PubMed

    Mossaheb, Nilufar; Schloegelhofer, Monika; Schaefer, Miriam R; Fusar-Poli, Paolo; Smesny, Stefan; McGorry, Pat; Berger, Gregor; Amminger, G Paul

    2012-01-01

    The role of polyunsaturated fatty acids and their metabolites for the cause and treatment of psychotic disorders are widely discussed. The efficacy as an augmenting agent in chronic schizophrenia seems to be small or not present, however epidemiological data, as well as some recent controlled studies in emerging psychosis point towards possible preventive effects of long-chain polyunsaturated fatty acids in early and very early stages of psychotic disorders and some potential secondary or tertiary beneficial long-term effects in later, more chronic stages, in particular for metabolic or extra-pyramidal side effects. In this comprehensive review, we describe the physiology and metabolism of polyunsaturated fatty acids, phospholipases, epidemiological evidence and the effect of these fatty acids on the brain and neurodevelopment. Furthermore, we examine the available evidence in indicated prevention in emerging psychosis, monotherapy, add-on therapy and tolerability. The neuroprotective potential of n-3 LC-PUFAs for indicated prevention, i.e. delaying transition to psychosis in high-risk populations needs to be further explored.

  15. Fatty acid composition of California grown almonds.

    PubMed

    Sathe, S K; Seeram, N P; Kshirsagar, H H; Heber, D; Lapsley, K A

    2008-11-01

    Eight almond (Prunus dulcis L.) cultivars from 12 different California counties, collected during crop years 2004 to 2005 and 2005 to 2006, were extracted with petroleum ether. The extracts were subjected to GC-MS analyses to determine fatty acid composition of soluble lipids. Results indicated palmitic (C16:0), oleic (C18:1), linoleic (C18:2), and alpha-linolenic (C18:3) acid, respectively, accounted for 5.07% to 6.78%, 57.54% to 73.94%, 19.32% to 35.18%, and 0.04% to 0.10%; of the total lipids. Oleic and linoleic acid were inversely correlated (r=-0.99, P= 0.05) and together accounted for 91.16% to 94.29% of the total soluble lipids. Statistically, fatty acid composition was significantly affected by cultivar and county.

  16. Effects of pyrazinamide on fatty acid synthesis by whole mycobacterial cells and purified fatty acid synthase I.

    PubMed

    Boshoff, Helena I; Mizrahi, Valerie; Barry, Clifton E

    2002-04-01

    The effects of low extracellular pH and intracellular accumulation of weak organic acids were compared with respect to fatty acid synthesis by whole cells of Mycobacterium tuberculosis and Mycobacterium smegmatis. The profile of fatty acids synthesized during exposure to benzoic, nicotinic, or pyrazinoic acids, as well as that observed during intracellular hydrolysis of the corresponding amides, was not a direct consequence of modulation of fatty acid synthesis by these compounds but reflected the response to inorganic acid stress. Analysis of fatty acid synthesis in crude mycobacterial cell extracts demonstrated that pyrazinoic acid failed to directly modulate the fatty acid synthase activity catalyzed by fatty acid synthase I (FAS-I). However, fatty acid synthesis was irreversibly inhibited by 5-chloro-pyrazinamide in a time-dependent fashion. Moreover, we demonstrate that pyrazinoic acid does not inhibit purified mycobacterial FAS-I, suggesting that this enzyme is not the immediate target of pyrazinamide.

  17. Methods of refining and producing isomerized fatty acid esters and fatty acids from natural oil feedstocks

    DOEpatents

    Snead, Thomas E.; Cohen, Steven A.; Gildon, Demond L.; Beltran, Leslie V.; Kunz, Linda A.; Pals, Tessa M.; Quinn, Jordan R; Behrends, Jr., Raymond T.; Bernhardt, Randal J.

    2016-07-05

    Methods are provided for refining natural oil feedstocks and producing isomerized esters and acids. The methods comprise providing a C4-C18 unsaturated fatty ester or acid, and isomerizing the fatty acid ester or acid in the presence of heat or an isomerization catalyst to form an isomerized fatty ester or acid. In some embodiments, the methods comprise forming a dibasic ester or dibasic acid prior to the isomerizing step. In certain embodiments, the methods further comprise hydrolyzing the dibasic ester to form a dibasic acid. In certain embodiments, the olefin is formed by reacting the feedstock in the presence of a metathesis catalyst under conditions sufficient to form a metathesized product comprising olefins and esters, separating the olefins from the esters in the metathesized product, and transesterifying the esters in the presence of an alcohol to form a transesterified product having unsaturated esters.

  18. Fatty acid biosynthesis revisited: structure elucidation and metabolic engineering.

    PubMed

    Beld, Joris; Lee, D John; Burkart, Michael D

    2015-01-01

    Fatty acids are primary metabolites synthesized by complex, elegant, and essential biosynthetic machinery. Fatty acid synthases resemble an iterative assembly line, with an acyl carrier protein conveying the growing fatty acid to necessary enzymatic domains for modification. Each catalytic domain is a unique enzyme spanning a wide range of folds and structures. Although they harbor the same enzymatic activities, two different types of fatty acid synthase architectures are observed in nature. During recent years, strained petroleum supplies have driven interest in engineering organisms to either produce more fatty acids or specific high value products. Such efforts require a fundamental understanding of the enzymatic activities and regulation of fatty acid synthases. Despite more than one hundred years of research, we continue to learn new lessons about fatty acid synthases' many intricate structural and regulatory elements. In this review, we summarize each enzymatic domain and discuss efforts to engineer fatty acid synthases, providing some clues to important challenges and opportunities in the field.

  19. Fatty acid biosynthesis revisited: Structure elucidation and metabolic engineering

    SciTech Connect

    Beld, Joris; Lee, D. John; Burkart, Michael D.

    2014-10-20

    Fatty acids are primary metabolites synthesized by complex, elegant, and essential biosynthetic machinery. Fatty acid synthases resemble an iterative assembly line, with an acyl carrier protein conveying the growing fatty acid to necessary enzymatic domains for modification. Each catalytic domain is a unique enzyme spanning a wide range of folds and structures. Although they harbor the same enzymatic activities, two different types of fatty acid synthase architectures are observed in nature. During recent years, strained petroleum supplies have driven interest in engineering organisms to either produce more fatty acids or specific high value products. Such efforts require a fundamental understanding of the enzymatic activities and regulation of fatty acid synthases. Despite more than one hundred years of research, we continue to learn new lessons about fatty acid synthases' many intricate structural and regulatory elements. Lastly, in this review, we summarize each enzymatic domain and discuss efforts to engineer fatty acid synthases, providing some clues to important challenges and opportunities in the field.

  20. Fatty Acid Biosynthesis Revisited: Structure Elucidation and Metabolic Engineering

    PubMed Central

    Beld, Joris; Lee, D. John

    2014-01-01

    Fatty acids are primary metabolites synthesized by complex, elegant, and essential biosynthetic machinery. Fatty acid synthases resemble an iterative assembly line, with an acyl carrier protein conveying the growing fatty acid to necessary enzymatic domains for modification. Each catalytic domain is a unique enzyme spanning a wide range of folds and structures. Although they harbor the same enzymatic activities, two different types of fatty acid synthase architectures are observed in nature. During recent years, strained petroleum supplies have driven interest in engineering organisms to either produce more fatty acids or specific high value products. Such efforts require a fundamental understanding of the enzymatic activities and regulation of fatty acid synthases. Despite more than one hundred years of research, we continue to learn new lessons about fatty acid synthases’ many intricate structural and regulatory elements. In this review, we summarize each enzymatic domain and discuss efforts to engineer fatty acid synthases, providing some clues to important challenges and opportunities in the field. PMID:25360565

  1. An investigation into the fatty acid content of selected fish-based commercial infant foods in the UK and the impact of commonly practiced re-heating treatments used by parents for the preparation of infant formula milks.

    PubMed

    Loughrill, Emma; Zand, Nazanin

    2016-04-15

    The importance of dietary lipids during infancy is paramount for rapid growth and development. Linoleic acid (LA), α-linolenic acid (ALA), eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA) and arachidonic acid (AA) were quantified using RP-HPLC with charged aerosol detection in a range of complementary infant foods and formula milk. Total daily intake of fatty acids for infants aged 6-9 months was calculated based on the consumption of complementary infant foods and formula milk. Total daily intakes of ALA, AA and DHA were below, whereas LA was above the recommended intake. This provides scope for product optimisation, to improve the nutritive value of commercial infant food products. The impact of re-heating treatments by parents on fatty acid content of formula milk was investigated and statistically significant changes were observed. Furthermore, the transparency of the labelling information declared by the manufacturers was within recommendations despite a degree of significant variation.

  2. Fatty Acids Found in Dairy, Protein, and Unsaturated Fatty Acids Are Associated with Risk of Pancreatic Cancer in a Case-Control Study

    PubMed Central

    Jansen, Rick J.; Robinson, Dennis P.; Frank, Ryan D.; Anderson, Kristin E.; Bamlet, William R.; Oberg, Ann L.; Rabe, Kari G.; Olson, Janet E.; Sinha, Rashmi; Petersen, Gloria M.; Stolzenberg-Solomon, Rachael Z.

    2013-01-01

    Although many studies have investigated meat and total fat in relation to pancreatic cancer risk, few have investigated dairy, fish and specific fatty acids. We evaluated the association between intake of meat, fish, dairy, specific fatty acids and related nutrients and pancreatic cancer. In our American-based Mayo Clinic case-control study 384 cases and 983 controls frequency matched on recruitment age, race, sex, and residence area (Minnesota, Wisconsin, or Iowa, United States) between 2004 and 2009. All subjects provided demographic information and completed 144-item food frequency questionnaire. Logistic regression calculated odds ratios (OR) and 95% confidence intervals (95% CI) were adjusted for age, sex, cigarette smoking, body mass index, and diabetes mellitus. Significant inverse association (trend p-value < 0.05) between pancreatic cancer and the groupings (highest vs. lowest consumption quintile OR [95% CI]): meat replacement (0.67 [0.43–1.02]), total protein (0.58 [0.39–0.86]), vitamin B12 (0.67 [0.44, 1.01]), zinc (0.48 [0.32, 0.71]), phosphorus (0.62 [0.41, 0.93]), vitamin E (0.51 [0.33, 0.78]), polyunsaturated fatty acids (0.64 [0.42, 0.98]), and Linoleic Acid (fatty acid 18:2) (0.62 [0.40–0.95]). Increased risk associations were observed for saturated fatty acids (1.48 [0.97–2.23]), Butyric Acid (fatty acid 4:0) (1.77 [1.19–2.64]), Caproic Acid (fatty acid 6:0) (2.15 [1.42–3.27]), Caprylic Acid (fatty acid 8:0) (1.87 [1.27–2.76]), and Capric Acid (fatty acid 10:0) (1.83 [1.23–2.74]). Our study suggests that eating a diet high in total protein and certain unsaturated fatty acids is associated with decreased risk of developing pancreatic cancer in a dose dependent manner whereas fats found in dairy increase risk. PMID:24590454

  3. Manipulation of Galactolipid Fatty Acid Composition with Substituted Pyridazinones

    PubMed Central

    John, Judith B. St.

    1976-01-01

    The fatty acid composition of the major lipids of the chloroplast membranes, the mono- and digalactosyl diglycerides, can be definably altered with various substituted pyridazinones. Galactolipid fatty acid composition of wheat (Triticum aestivum L.) can be altered so that there is a decrease in linolenic acid accompanied by an increase in linoleic acid without a shift in the relative proportion of saturated to unsaturated fatty acids; the fatty acid composition can be shifted toward a higher proportion of saturated fatty acids; or the fatty acid composition of the monogalactosyl diglycerides can be altered in preference to the digalactosyl diglycerides. Also, the light-mediated parallel accumulation of chlorophyll and linolenic acid can be separated with a substituted pyridazinone. The substituted pyridazinones may be useful tools in clarifying the role the galactolipids and their component fatty acids play in the structure and function of chloroplast membranes in higher plants. PMID:16659420

  4. Fatty acid production from amino acids and alpha-keto acids by Brevibacterium linens BL2.

    PubMed

    Ganesan, Balasubramanian; Seefeldt, Kimberly; Weimer, Bart C

    2004-11-01

    Low concentrations of branched-chain fatty acids, such as isobutyric and isovaleric acids, develop during the ripening of hard cheeses and contribute to the beneficial flavor profile. Catabolism of amino acids, such as branched-chain amino acids, by bacteria via aminotransferase reactions and alpha-keto acids is one mechanism to generate these flavorful compounds; however, metabolism of alpha-keto acids to flavor-associated compounds is controversial. The objective of this study was to determine the ability of Brevibacterium linens BL2 to produce fatty acids from amino acids and alpha-keto acids and determine the occurrence of the likely genes in the draft genome sequence. BL2 catabolized amino acids to fatty acids only under carbohydrate starvation conditions. The primary fatty acid end products from leucine were isovaleric acid, acetic acid, and propionic acid. In contrast, logarithmic-phase cells of BL2 produced fatty acids from alpha-keto acids only. BL2 also converted alpha-keto acids to branched-chain fatty acids after carbohydrate starvation was achieved. At least 100 genes are potentially involved in five different metabolic pathways. The genome of B. linens ATCC 9174 contained these genes for production and degradation of fatty acids. These data indicate that brevibacteria have the ability to produce fatty acids from amino and alpha-keto acids and that carbon metabolism is important in regulating this event.

  5. 21 CFR 172.863 - Salts of fatty acids.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Salts of fatty acids. 172.863 Section 172.863 Food... Multipurpose Additives § 172.863 Salts of fatty acids. The food additive salts of fatty acids may be safely..., magnesium, potassium, and sodium salts of the fatty acids conforming with § 172.860 and/or oleic...

  6. 21 CFR 172.863 - Salts of fatty acids.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Salts of fatty acids. 172.863 Section 172.863 Food... Multipurpose Additives § 172.863 Salts of fatty acids. The food additive salts of fatty acids may be safely..., magnesium, potassium, and sodium salts of the fatty acids conforming with § 172.860 and/or oleic...

  7. 21 CFR 172.863 - Salts of fatty acids.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Salts of fatty acids. 172.863 Section 172.863 Food... Multipurpose Additives § 172.863 Salts of fatty acids. The food additive salts of fatty acids may be safely..., magnesium, potassium, and sodium salts of the fatty acids conforming with § 172.860 and/or oleic...

  8. 21 CFR 172.863 - Salts of fatty acids.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Salts of fatty acids. 172.863 Section 172.863 Food... Multipurpose Additives § 172.863 Salts of fatty acids. The food additive salts of fatty acids may be safely..., magnesium, potassium, and sodium salts of the fatty acids conforming with § 172.860 and/or oleic...

  9. Parenteral lipid fatty acid composition directly determines the fatty acid composition of red blood cell and brain lipids in preterm pigs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Studies in enterally-fed infants have shown a positive effect of n-3 long-chain polyunsaturated fatty acid (LCPUFA) supplementatin on neurodevelopment. The effect of n-3 LCPUFA in fish oil-based parenteral (PN) lipid emulsions on neuronal tissues of PN-fed preterm infants is unknown. The objective ...

  10. [Evaluation of ten fish species to be included as part of renal diet, due to their protein, phosphorus and fatty acids content].

    PubMed

    Castro-González, Maria Isabel; Maafs-Rodríguez, Ana Gabriela; Pérez-Gil Romo, Fernando

    2012-06-01

    Because renal disease is highly complex, its nutritional treatment is complicated and many foods are restricted, including fish because its phosphorus content. The aim of the present study was to analyze ten fillet fish species, commonly consumed in Mexico (Cyprinus carpio carpio, Ophichthus rex, Symphurus elongatus, Eucinostomus entomelas, Chirostoma patzcuaro, Bairdiella chrysoura, Salmo salar Oreochromis urolepis hornorum, Sphyraena guachancho, Istiophorus albicans), to determine their phosphorus (P), protein (Pr), cholesterol, sodium, potassium, vitamins D3 and E, and n-3 PUFA (EPA+DHA) according to the AOAC techniques, in order to identify which species could be included in renal diet; particularly because of their risk:benefit relations (calculated with those results). Protein values ranged from 16.5 to 33.5g/100 g of fillet; the specie with the highest phosphorus contest was Salmo salar, and with the lowest, Symphurus elongatus. EPA+DHA quantity ranged from 79.64 mg/100 g to 1,381.53 mg/100 g. Considering de P/Pr relation recommended to renal patients, all analyzed species (except Salmo salar, Ophichthus rex and Istiophorus albicans) could be included in their diet. As for the P/EPA+DHA relation, the species most recommended to renal patients are Symphurus elongatus, Bairdiella chrysoura and Sphyraena guachancho.

  11. 21 CFR 172.848 - Lactylic esters of fatty acids.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Lactylic esters of fatty acids. 172.848 Section 172.848 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... § 172.848 Lactylic esters of fatty acids. Lactylic esters of fatty acids may be safely used in food...

  12. 40 CFR 721.10691 - Fatty acid amide (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Fatty acid amide (generic). 721.10691... Substances § 721.10691 Fatty acid amide (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as fatty acid amide (PMN P-13-267) is...

  13. 40 CFR 721.10320 - Fatty acid amide (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Fatty acid amide (generic). 721.10320... Substances § 721.10320 Fatty acid amide (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as fatty acid amide (PMN P-03-186) is...

  14. 40 CFR 721.10520 - Acetylated fatty acid glycerides (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Acetylated fatty acid glycerides... Specific Chemical Substances § 721.10520 Acetylated fatty acid glycerides (generic). (a) Chemical substance... acetylated fatty acid glycerides (PMN P-11-160) is subject to reporting under this section for...

  15. 40 CFR 721.10520 - Acetylated fatty acid glycerides (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Acetylated fatty acid glycerides... Specific Chemical Substances § 721.10520 Acetylated fatty acid glycerides (generic). (a) Chemical substance... acetylated fatty acid glycerides (PMN P-11-160) is subject to reporting under this section for...

  16. 40 CFR 721.3710 - Polyether modified fatty acids (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Polyether modified fatty acids... Specific Chemical Substances § 721.3710 Polyether modified fatty acids (generic). (a) Chemical substance... Polyether modified fatty acids (PMN P-99-0435) is subject to reporting under this section for...

  17. 40 CFR 721.3710 - Polyether modified fatty acids (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Polyether modified fatty acids... Specific Chemical Substances § 721.3710 Polyether modified fatty acids (generic). (a) Chemical substance... Polyether modified fatty acids (PMN P-99-0435) is subject to reporting under this section for...

  18. 40 CFR 721.3710 - Polyether modified fatty acids (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Polyether modified fatty acids... Specific Chemical Substances § 721.3710 Polyether modified fatty acids (generic). (a) Chemical substance... Polyether modified fatty acids (PMN P-99-0435) is subject to reporting under this section for...

  19. 40 CFR 721.10463 - Fatty acid amides (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Fatty acid amides (generic). 721.10463... Substances § 721.10463 Fatty acid amides (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as fatty acid amides (PMN...

  20. 40 CFR 721.10687 - Fatty acid amide hydrochlorides (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Fatty acid amide hydrochlorides... Specific Chemical Substances § 721.10687 Fatty acid amide hydrochlorides (generic). (a) Chemical substance... fatty acid amide hydrochlorides (PMNs P-13-201, P-13-203, P-13-204, P-13-205, P-13-206, P-13-207,...

  1. 40 CFR 721.10680 - Fatty acid amides (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Fatty acid amides (generic). 721.10680... Substances § 721.10680 Fatty acid amides (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substances identified generically as fatty acid amides (PMNs...

  2. 40 CFR 721.10320 - Fatty acid amide (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Fatty acid amide (generic). 721.10320... Substances § 721.10320 Fatty acid amide (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as fatty acid amide (PMN P-03-186) is...

  3. 40 CFR 721.3710 - Polyether modified fatty acids (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Polyether modified fatty acids... Specific Chemical Substances § 721.3710 Polyether modified fatty acids (generic). (a) Chemical substance... Polyether modified fatty acids (PMN P-99-0435) is subject to reporting under this section for...

  4. 40 CFR 721.3710 - Polyether modified fatty acids (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Polyether modified fatty acids... Specific Chemical Substances § 721.3710 Polyether modified fatty acids (generic). (a) Chemical substance... Polyether modified fatty acids (PMN P-99-0435) is subject to reporting under this section for...

  5. 75 FR 71556 - Polyoxyalkylated Glycerol Fatty Acid Esters; Tolerance Exemption

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-24

    ... AGENCY 40 CFR Part 180 Polyoxyalkylated Glycerol Fatty Acid Esters; Tolerance Exemption AGENCY... from the requirement of a tolerance for residues of polyoxyalkylated glycerol fatty acid esters; the... unsaturated, fatty acids containing up to 15% water by weight reacted with a minimum of three moles of...

  6. 75 FR 14082 - Ammonium Salts of Fatty Acids (C8

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-24

    ... AGENCY 40 CFR Part 180 Ammonium Salts of Fatty Acids (C 8 -C 18 Saturated); Exemption from the... fatty acids (C 8 -C 18 saturated) applied pre- and post-harvest on all raw agricultural commodities when... eliminates the need to establish a maximum permissible level for residues of ammonium salts of fatty acids...

  7. 40 CFR 721.10320 - Fatty acid amide (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Fatty acid amide (generic). 721.10320... Substances § 721.10320 Fatty acid amide (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as fatty acid amide (PMN P-03-186) is...

  8. Naturally occurring fatty acids: source, chemistry and uses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Natural occurring fatty acids are a large and complex class of compounds found in plants and animals. Fatty acids are abundant and of interest because of their renewability, biodegradability, biocompatibility, low cost, and fascinating chemistry. Of the many fatty acids, only 20-25 of them are widel...

  9. 40 CFR 721.10463 - Fatty acid amides (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Fatty acid amides (generic). 721.10463... Substances § 721.10463 Fatty acid amides (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as fatty acid amides (PMN...

  10. Consumption of aquaculture waste affects the fatty acid metabolism of a benthic invertebrate.

    PubMed

    White, Camille A; Bannister, Raymond J; Dworjanyn, Symon A; Husa, Vivian; Nichols, Peter D; Kutti, Tina; Dempster, Tim

    2017-02-17

    Trophic subsidies can drive widespread ecological change, thus knowledge of how keystone species respond to subsidies is important. Aquaculture of large carnivorous fish generates substantial waste as faeces and lost feed, providing a food source to mobile benthic invertebrates. We used a controlled feeding study combined with a field survey to better understand the interaction between salmon aquaculture and the sea urchin, Echinus acutus, a dominant mobile invertebrate in Norwegian fjords. We tested if diets affected urchin fatty acid composition by feeding them one of three diet treatments ("aquafeed", "composite" and "natural") for 10weeks. To test if proximity to fish farms altered E. acutus fatty acid composition, populations were sampled at 10 locations in Hardangerfjord and Masfjord (Western Norway) from directly adjacent and up to 12km from farms. Fatty acids were measured in gonads and eggs in the diet experiment and in gonads and gut contents from wild animals. Urchins directly assimilated aquaculture waste at farm sites, as evidenced by elevated linoleic acid (LA), oleic acid (OA) and ∑LA, OA in their tissues. The diet experiment highlighted the biosynthetic and selective dietary sparing capacity of E. acutus in both gonads and eggs, with evidence for the elongation and desaturation of eicosapentaenoic acid (EPA) and arachidonic acid (ARA) from C18 fatty acid precursors. Elevated biosynthesis of non-methylene interrupted (NMI) fatty acids, in particular 20:3Δ7,11,14 and 20:2 Δ5,11, were also linked to a high C18 fatty acid, low ≥C20 long-chain polyunsaturated fatty acid (LC-PUFA) diet. Fatty acid composition of gonads of wild urchins indicated a highly variable diet. The study indicates that the generalist feeding ecology of E. acutus, coupled with extensive biosynthetic capacity, enables it to exploit aquaculture waste as an energy-rich trophic subsidy.

  11. Conjugated linoleic acid alters growth performance, tissue lipid deposition, and fatty acid composition of darkbarbel catfish (Pelteobagrus vachelli).

    PubMed

    Dong, Gui-Fang; Liu, Wen-Zuo; Wu, Lin-Zhou; Yu, Deng-Hang; Huang, Feng; Li, Peng-Cheng; Yang, Yan-Ou

    2015-02-01

    Fatty liver syndrome is a prevalent problem of farmed fish. Conjugated linoleic acid (CLA) has received increased attention recently as a fat-reducing fatty acid to control fat deposition in mammals. Therefore, the aim of the present study was to determine whether dietary CLA can reduce tissue lipid content of darkbarbel catfish (Pelteobagrus vachelli) and whether decreased lipid content is partially due to alterations in lipid metabolism enzyme activities and fatty acid profiles. A 76-day feeding trial was conducted to investigate the effect of dietary CLA on the growth, tissue lipid deposition, and fatty acid composition of darkbarbel catfish. Five diets containing 0 % (control), 0.5 % (CLA0.5), 1 % (CLA1), 2 % (CLA2), and 3 % (CLA3) CLA levels were evaluated. Results showed that fish fed with 2-3 % CLA diets showed a significantly lower specific growth rate and feed conversion efficiency than those fed with the control diet. Dietary CLA decreased the lipid contents in the liver and intraperitoneal fat with the CLA levels from 1 to 3 %. Fish fed with 2-3 % CLA diets showed significantly higher lipoprotein lipase and hepatic triacylglycerol lipase activities in liver than those of fish fed with the control, and fish fed with 1-3 % CLA diets had significantly higher pancreatic triacylglycerol lipase activities in liver than those of fish fed with the control. Dietary CLA was incorporated into liver, intraperitoneal fat, and muscle lipids, with higher percentages observed in liver compared with other tissues. Liver CLA deposition was at the expense of monounsaturated fatty acids (MUFA). In contrast, CLA deposition appeared to be primarily at the expense of MUFA and n-3 polyunsaturated fatty acids (PUFA) in the intraperitoneal fat, whereas in muscle it was at the expense of n-3 PUFA. Our results suggested that CLA at a 1 % dose can reduce liver lipid content without eliciting any negative effect on growth rate in darkbarbel catfish. This lipid-lowering effect could

  12. Gas chromatographic analysis of infant formulas for total fatty acids, including trans fatty acids.

    PubMed

    Satchithanandam, Subramaniam; Fritsche, Jan; Rader, Jeanne I

    2002-01-01

    Twelve powdered and 13 liquid infant formulas were analyzed by using an extension of AOAC Official Method 996.01 for fat analysis in cereal products. Samples were hydrolyzed with 8 N HCl and extracted with ethyl and petroleum ethers. Fatty acid methyl esters were prepared by refluxing the mixed ether extracts with methanolic sodium hydroxide in the presence of 14% boron trifluoride in methanol. The extracts were analyzed by gas chromatography. In powdered formulas, saturated fatty acid (SFA) content (mean +/- SD; n = 12) was 41.05 +/- 3.94%, monounsaturated fatty acid (MUFA) content was 36.97 +/- 3.38%, polyunsaturated fatty acid (PUFA) content was 20.07 +/- 3.08%, and total trans fatty acid content was 1.30 +/- 1.27%. In liquid formulas, SFA content (mean +/- SD; n = 13) was 42.29 +/- 2.98%, MUFA content was 36.05 +/- 2.47%, PUFA content was 20.65 +/- 2.40%, and total trans fatty acid content was 0.88 +/- 0.54%. Total fat content in powdered formulas ranged from 4.4 to 5.5 g/100 kcal and linoleic acid content ranged from 868 to 1166 mg/100 kcal. In liquid formulas, total fat content ranged from 4.1 to 5.1 g/100 kcal and linoleic acid content ranged from 820 to 1100 mg/100 kcal. There were no significant differences between powdered and liquid infant formulas in concentrations of total fat, SFA, MUFA, PUFA, or trans fatty acids.

  13. Fatty acid facts, Part I. Essential fatty acids as treatment for depression, or food for mood?

    PubMed

    Pawels, E K J; Volterrani, D

    2008-10-01

    The epidemic character of depressive disorders has prompted further research into dietary habits that could make an etiological contribution. One clear change in the diet of the population in developed countries has been the replacement of omega-3 polyunsaturated fatty acids by saturated fats and trans-fats as well as by omega-6 polyunsaturated fatty acids. Omega-3 and omega-6 fatty acids are essential fatty acids, and the members of the -3 and -6 series are crucial for human health. In biochemical processes there is a competition between these two series. A higher dietary intake of omega-6 results in the excessive incorporation of these molecules in the cell membrane with numerous pathological consequences, presumably due to the formation of proinflammatory eicosanoids. Members of the omega-3 family and their derivatives modulate the inflammatory action. Essential fatty acids play a major role in brain development and brain functioning. The omega-3 series members docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) provide fluidity to the cell membrane, facilitating certain processes including neurotransmission and ion channel flow. It is thought that omega-3 deficiency during the fetal and postnatal period may have a long-term effect at various levels. Epidemiological studies have demonstrated a positive association between omega-3 deficits and mood disorders. As for treatment, there is convincing evidence that add-on omega-3 fatty acids to standard antidepressant pharmacotherapy results in improved mood. There is no evidence that fatty acid monotherapy has a mood-elevating effect, with a possible exception for childhood depression. There are indications that omega-3 has a prophylactic effect on perinatal depression and has a negative effect on natural killer cell activity and T-lymphocyte function. These observations need further study in view of the popularity of self-medication.

  14. Fatty acid-amino acid conjugates diversification in Lepidopteran caterpillars

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fatty acid amino acid conjugates (FACs) have been found in Noctuid as well as Sphingid caterpillar oral secretions and especially volicitin [N-(17-hydroxylinolenoyl)-L-Glutamine] and its biochemical precursor, N-linolenoyl-L-glutamine, are known elicitors of induced volatile emissions in corn plants...

  15. [An imbalance in the natural cation ratio in the water as a factor affecting the synthesis of lipids and fatty acids in fish eggs].

    PubMed

    Regerand, T I; Fedorova, N V

    2000-01-01

    The effects on the lipid status of developing embryos of a disturbed natural ratio of cations in water as a result of the pollution of water bodies by waste with a high potassium content (130-140 mg/I) were studied in the laboratory. The results obtained confirm the indication of reduced lipid synthesis and altered formation of phospholipids in embryos developing in a medium with a disturbed natural ratio of cations. In addition, the lysophospholipid fraction increased in these embryos, which indicates activation of phospholipid hydrolysis. It was also found that changes in the salt regime lead to a decreased content of cholesterol, the main membrane thickener. It was proposed that the changes discovered lead to disturbed stability and permeability of the membranes of fish eggs, with the subsequent death of embryos.

  16. Metabolic diversity in biohydrogenation of polyunsaturated fatty acids by lactic acid bacteria involving conjugated fatty acid production.

    PubMed

    Kishino, Shigenobu; Ogawa, Jun; Yokozeki, Kenzo; Shimizu, Sakayu

    2009-08-01

    Lactobacillus plantarum AKU 1009a effectively transforms linoleic acid to conjugated linoleic acids of cis-9,trans-11-octadecadienoic acid (18:2) and trans-9,trans-11-18:2. The transformation of various polyunsaturated fatty acids by washed cells of L. plantarum AKU 1009a was investigated. Besides linoleic acid, alpha-linolenic acid [cis-9,cis-12,cis-15-octadecatrienoic acid (18:3)], gamma-linolenic acid (cis-6,cis-9,cis-12-18:3), columbinic acid (trans-5,cis-9,cis-12-18:3), and stearidonic acid [cis-6,cis-9,cis-12,cis-15-octadecatetraenoic acid (18:4)] were found to be transformed. The fatty acids transformed by the strain had the common structure of a C18 fatty acid with the cis-9,cis-12 diene system. Three major fatty acids were produced from alpha-linolenic acid, which were identified as cis-9,trans-11,cis-15-18:3, trans-9,trans-11,cis-15-18:3, and trans-10,cis-15-18:2. Four major fatty acids were produced from gamma-linolenic acid, which were identified as cis-6,cis-9,trans-11-18:3, cis-6,trans-9,trans-11-18:3, cis-6,trans-10-18:2, and trans-10-octadecenoic acid. The strain transformed the cis-9,cis-12 diene system of C18 fatty acids into conjugated diene systems of cis-9,trans-11 and trans-9,trans-11. These conjugated dienes were further saturated into the trans-10 monoene system by the strain. The results provide valuable information for understanding the pathway of biohydrogenation by anaerobic bacteria and for establishing microbial processes for the practical production of conjugated fatty acids, especially those produced from alpha-linolenic acid and gamma-linolenic acid.

  17. Omega-3 fatty acids and cardiovascular disease: epidemiology and effects on cardiometabolic risk factors.

    PubMed

    Mori, Trevor A

    2014-09-01

    Clinical and epidemiological studies provide support that the polyunsaturated omega-3 fatty acids eicosapentaenoic acid and docosahexaenoic acid from fish and fish oils are cardioprotective, particularly in the setting of secondary prevention. Omega-3 fatty acids benefit multiple cardiometabolic risk factors including lipids, blood pressure, vascular reactivity and cardiac function, as well as having antithrombotic, anti-inflammatory and anti-oxidative actions. Omega-3 fatty acids do not associate with any adverse effects and do not adversely interact with prescriptive drugs such as lipid-lowering, antihypertensive or hypoglycaemic medications. Clinical studies suggest that doses up to 4 g daily when prescribed with anticoagulant or antiplatelet drugs do not associate with increased risk of major bleeding episodes. Omega-3 fatty acids have gained widespread usage by general practitioners and clinicians in clinical settings such as pregnancy and infant development, secondary prevention in coronary heart disease patients and treatment of dyslipidaemias. Health authorities currently recommend an intake of at least two oily fish meals per week for the general population which equates to approximately 500 mg per day of eicosapentaenoic acid and docosahexaenoic acid. In patients with coronary heart disease the guidelines recommend 1 g daily supplements and in hypertriglyceridaemic patients up to 4 g per day. These doses are now achievable with readily available purified encapsulated preparations of omega-3 fatty acids. However, a more practical recommendation for increasing omega-3 fatty acid intake in the general population is to incorporate fish as part of a healthy diet that includes increased consumption of fruits and vegetables, and moderation of salt intake.

  18. Omega-3 polyunsaturated fatty acids and inflammatory processes: nutrition or pharmacology?

    PubMed

    Calder, Philip C

    2013-03-01

    Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are n-3 fatty acids found in oily fish and fish oil supplements. These fatty acids are able to inhibit partly a number of aspects of inflammation including leucocyte chemotaxis, adhesion molecule expression and leucocyte-endothelial adhesive interactions, production of eicosanoids like prostaglandins and leukotrienes from the n-6 fatty acid arachidonic acid, production of inflammatory cytokines and T cell reactivity. In parallel, EPA gives rise to eicosanoids that often have lower biological potency than those produced from arachidonioc acid and EPA and DHA give rise to anti-inflammatory and inflammation resolving resolvins and protectins. Mechanisms underlying the anti-inflammatory actions of n-3 fatty acids include altered cell membrane phospholipid fatty acid composition, disruption of lipid rafts, inhibition of activation of the pro-inflammatory transcription factor nuclear factor kappa B so reducing expression of inflammatory genes, activation of the anti-inflammatory transcription factor NR1C3 (i.e. peroxisome proliferator activated receptor γ) and binding to the G protein coupled receptor GPR120. These mechanisms are interlinked. In adult humans, an EPA plus DHA intake greater than 2 g day⁻¹ seems to be required to elicit anti-inflammatory actions, but few dose finding studies have been performed. Animal models demonstrate benefit from n-3 fatty acids in rheumatoid arthritis (RA), inflammatory bowel disease (IBD) and asthma. Clinical trials of fish oil in patients with RA demonstrate benefit supported by meta-analyses of the data. Clinical trails of fish oil in patients with IBD and asthma are inconsistent with no overall clear evidence of efficacy.

  19. Marine omega-3 fatty acids and inflammatory processes: Effects, mechanisms and clinical relevance.

    PubMed

    Calder, Philip C

    2015-04-01

    Inflammation is a condition which contributes to a range of human diseases. It involves a multitude of cell types, chemical mediators, and interactions. Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are omega-3 (n-3) fatty acids found in oily fish and fish oil supplements. These fatty acids are able to partly inhibit a number of aspects of inflammation including leukocyte chemotaxis, adhesion molecule expression and leukocyte-endothelial adhesive interactions, production of eicosanoids like prostaglandins and leukotrienes from the n-6 fatty acid arachidonic acid, production of inflammatory cytokines, and T-helper 1 lymphocyte reactivity. In addition, EPA gives rise to eicosanoids that often have lower biological potency than those produced from arachidonic acid and EPA and DHA give rise to anti-inflammatory and inflammation resolving mediators called resolvins, protectins and maresins. Mechanisms underlying the anti-inflammatory actions of marine n-3 fatty acids include altered cell membrane phospholipid fatty acid composition, disruption of lipid rafts, inhibition of activation of the pro-inflammatory transcription factor nuclear factor kappa B so reducing expression of inflammatory genes, activation of the anti-inflammatory transcription factor peroxisome proliferator activated receptor γ and binding to the G protein coupled receptor GPR120. These mechanisms are interlinked, although the full extent of this is not yet elucidated. Animal experiments demonstrate benefit from marine n-3 fatty acids in models of rheumatoid arthritis (RA), inflammatory bowel disease (IBD) and asthma. Clinical trials of fish oil in RA demonstrate benefit, but clinical trials of fish oil in IBD and asthma are inconsistent with no overall clear evidence of efficacy. This article is part of a Special Issue entitled "Oxygenated metabolism of PUFA: analysis and biological relevance".

  20. Lipase-catalyzed synthesis of fatty acid amide (erucamide) using fatty acid and urea.

    PubMed

    Awasthi, Neeraj Praphulla; Singh, R P

    2007-01-01

    Ammonolysis of fatty acids to the corresponding fatty acid amides is efficiently catalysed by Candida antartica lipase (Novozym 435). In the present paper lipase-catalysed synthesis of erucamide by ammonolysis of erucic acid and urea in organic solvent medium was studied and optimal conditions for fatty amides synthesis were established. In this process erucic acid gave 88.74 % pure erucamide after 48 hour and 250 rpm at 60 degrees C with 1:4 molar ratio of erucic acid and urea, the organic solvent media is 50 ml tert-butyl alcohol (2-methyl-2-propanol). This process for synthesis is economical as we used urea in place of ammonia or other amidation reactant at atmospheric pressure. The amount of catalyst used is 3 %.

  1. Research on food and nutrition characteristics of conjugated fatty acids.

    PubMed

    Tsuduki, Tsuyoshi

    2015-01-01

    In this study, the physiological effects of fatty acids with conjugated double bonds were widely examined in vitro and in vivo. Initially, a method for determination of conjugated fatty acids in food and biological samples was established. I then clarified that the oxidative stability of conjugated fatty acids was improved by the form of triacylglycerol and addition of an antioxidant, and the influence of this effect on the metabolism and pharmacokinetics of conjugated fatty acids was clarified in vivo. In addition, antitumor, anti-angiogenesis, and antiobesity effects of conjugated fatty acids were found for the first time, thus demonstrating the usefulness of conjugated fatty acids. This communication mainly outlines the data obtained for conjugated linolenic acid. In addition, this review summarizes my research on conjugated fatty acid.

  2. Rationale and use of n-3 fatty acids in artificial nutrition.

    PubMed

    Calder, Philip C

    2010-11-01

    Lipids traditionally used in artificial nutrition are based on n-6 fatty acid-rich vegetable oils like soyabean oil. This may not be optimal because it may present an excessive supply of linoleic acid. One alternative to the use of soyabean oil is its partial replacement by fish oil, which contains n-3 fatty acids. These fatty acids influence inflammatory and immune responses and so may be useful in particular situations where those responses are not optimal. Fish oil-containing lipid emulsions have been used in parenteral nutrition in adult patients post-surgery (mainly gastrointestinal). This has been associated with alterations in patterns of inflammatory mediators and in immune function and, in some studies, a reduction in length of intensive care unit (ICU) and hospital stay. Perioperative administration of fish oil may be superior to post-operative. Parenteral fish oil has been used in critically ill adults. Here the influence on inflammatory processes, immune function and clinical endpoints is not clear, since there are too few studies and those that are available report contradictory findings. Fish oil is included in combination with other nutrients in various enteral formulas. In post-surgical patients and in those with mild sepsis or trauma, there is clinical benefit from a formula including fish oil and arginine. A formula including fish oil, borage oil and antioxidants has demonstrated marked benefits on gas exchange, ventilation requirement, new organ failures, ICU stay and mortality in patients with acute respiratory distress syndrome, acute lung injury or severe sepsis.

  3. Potential role of dietary n-3 fatty acids in the prevention of dementia and macular degeneration.

    PubMed

    Johnson, Elizabeth J; Schaefer, Ernst J

    2006-06-01

    Dementia and age-related macular degeneration (AMD) are major causes of disability in the elderly. n-3 Fatty acids, particularly docosahexaenoic acid (DHA), are highly concentrated in brain and retinal tissue and may prevent or delay the progression of dementia and AMD. Low dietary intakes and plasma concentrations have been reported to be associated with dementia, cognitive decline, and AMD risk. The major dietary sources of DHA are fish and fish oils, although dietary supplements are available. At this point, it is not possible to make firm recommendations regarding n-3 fatty acids and the prevention of dementia and AMD. Our own unpublished observations from the Framingham Heart Study suggest that > or =180 mg/d of dietary DHA (approximately 2.7 fish servings/wk) is associated with an approximately 50% reduction in dementia risk. At least this amount of DHA is generally found in one commercially available 1-g fish oil capsule given daily.

  4. The Role of Omega-3 Polyunsaturated Fatty Acids in Stroke

    PubMed Central

    Bu, Jiyuan; Dou, Yang; Tian, Xiaodi; Wang, Zhong

    2016-01-01

    Stroke is the third commonest cause of death following cardiovascular diseases and cancer. In particular, in recent years, the morbidity and mortality of stroke keep remarkable growing. However, stroke still captures people attention far less than cardiovascular diseases and cancer. Past studies have shown that oxidative stress and inflammation play crucial roles in the progress of cerebral injury induced by stroke. Evidence is accumulating that the dietary supplementation of fish oil exhibits beneficial effects on several diseases, such as cardiovascular diseases, metabolic diseases, and cancer. Omega-3 polyunsaturated fatty acids (n-3 PUFAs), the major component of fish oil, have been found against oxidative stress and inflammation in cardiovascular diseases. And the potential of n-3 PUFAs in stroke treatment is attracting more and more attention. In this review, we will review the effects of n-3 PUFAs on stroke and mainly focus on the antioxidant and anti-inflammatory effects of n-3 PUFAs. PMID:27433289

  5. Inhibition of Ileal Water Absorption by Intraluminal Fatty Acids INFLUENCE OF CHAIN LENGTH, HYDROXYLATION, AND CONJUGATION OF FATTY ACIDS

    PubMed Central

    Ammon, Helmut V.; Phillips, Sidney F.

    1974-01-01

    The influence of fatty acids on ileal absorption of water, electrolytes, glucose, and taurocholate was examined in Thirty-Vella fistulas in five mongrel dogs. Fatty acid absorption also was measured. Segments of terminal ileum were perfused at steady state with isotonic electrolyte solutions containing 11.2 mM glucose, 4.5 mM taurocholate, and 0.1-5.0 mM fatty acid. Three C18 fatty acids, oleic acid, 10(9)-hydroxystearic acid, and ricinoleic acid, completely inhibited water absorption at 5 mM. Sodium, chloride, and potassium absorptions were inhibited in parallel with absorption of water. Differences between the potencies of C18 fatty acids were apparent when lesser concentrations were perfused. Dodecanoic and decanoic acids were as effective as C18 fatty acids at 5 mM but octanoic and hexanoic acids were ineffective. The polar group of C18 fatty acids was modified by conjugating oleic and ricinoleic acids with taurine. When these compounds and a substituted C18 fatty acid, p-n-decylbenzenesulfonate, were perfused, water absorption was also inhibited. Short-chain fatty acids (C3 and C4) and their hydroxylated derivatives were ineffective at 5 mM. When water absorption was inhibited, absorption of glucose and taurocholate was decreased. We speculate that the phenomenon of inhibition of water and electrolyte absorption by fatty acids may be relevant to steatorrhea and diarrhea in man. Images PMID:4808636

  6. Lymphatic transport of fat in rats with normal- and malabsorption following intake of fats made from fish oil and decanoic acid. Effects of triacylglycerol structure.

    PubMed

    Straarup, E M.; Høy, C -E.

    2001-07-01

    Fish oils contain essential polyunsaturated fatty acids of the n-3 family. In fat malabsorption the n-3 fatty acids are poorly absorbed. Absorption may be improved by modifying the fatty acid profile of fish oil through interesterification with medium chain fatty acids. We examined the absorption of fish oil interesterified with decanoic acid in rats with normal- and malabsorption compared to a physical mixture and the fish oil itself. The interesterified fats were: 1) a regiospecific fat with decanoic acid located mainly in the sn1/3-positions and a long chain fatty acid from fish oil in the sn2-position, 2) a fat with a random distribution of fatty acids in all positions of the triacylglycerol. The main mesenteric lymph duct was cannulated for collection of lymph. In the malabsorbing rats the common bile duct was cannulated as well to divert both pancreatic juice and bile. The fatty acid composition in lymph samples collected for 24 hours was determined. Accumulated transport of n-3 fatty acids from fish oil was improved in malabsorbing rats and recoveries of fatty acids after 24 hours were improved in both rats with normal- and malabsorption administered the randomized fat compared to fish oil.

  7. Identification of fatty acids in canine seminal plasma.

    PubMed

    Díaz, R; Inostroza, K; Risopatrón, J; Sanchez, R; Sepúlveda, N

    2014-03-01

    Seminal plasma contains various biochemical components associated with sperm function. However, there is limited information regarding the fatty acid composition of seminal plasma and their effect on sperm. The aim of this study was to identify the fatty acid content in canine seminal plasma using gas chromatography. Twelve ejaculates were studied, the seminal plasma was obtained by centrifugation and then the lipids were extracted, methylated and analysed by chromatography. The total lipids in the seminal plasma were 2.5 ± 0.3%, corresponding to 85% saturated fatty acids (SFA) and 15% unsaturated fatty acids (UFA). The greatest proportions of SFA were palmitic acid (30.4%), stearic acid (23.4%) and myristic acid (5.3%) and of UFA oleic acid (9.0%). Therefore, the protocols and techniques used enabled the identification of 18 different fatty acids in canine seminal plasma, which constitutes a good method to evaluate and quantify the fatty acid profile in this species.

  8. Modulation of enzymatic activities by n-3 polyunsaturated fatty acids to support cardiovascular health.

    PubMed

    Siddiqui, Rafat A; Harvey, Kevin A; Zaloga, Gary P

    2008-07-01

    Epidemiological evidence from Greenland Eskimos and Japanese fishing villages suggests that eating fish oil and marine animals can prevent coronary heart disease. Dietary studies from various laboratories have similarly indicated that regular fish oil intake affects several humoral and cellular factors involved in atherogenesis and may prevent atherosclerosis, arrhythmia, thrombosis, cardiac hypertrophy and sudden cardiac death. The beneficial effects of fish oil are attributed to their n-3 polyunsaturated fatty acid (PUFA; also known as omega-3 fatty acids) content, particularly eicosapentaenoic acid (EPA; 20:5, n-3) and docosahexaenoic acid (DHA; 22:6, n-3). Dietary supplementation of DHA and EPA influences the fatty acid composition of plasma phospholipids that, in turn, may affect cardiac cell functions in vivo. Recent studies have demonstrated that long-chain omega-3 fatty acids may exert beneficial effects by affecting a wide variety of cellular signaling mechanisms. Pathways involved in calcium homeostasis in the heart may be of particular importance. L-type calcium channels, the Na+-Ca2+ exchanger and mobilization of calcium from intracellular stores are the most obvious key signaling pathways affecting the cardiovascular system; however, recent studies now suggest that other signaling pathways involving activation of phospholipases, synthesis of eicosanoids, regulation of receptor-associated enzymes and protein kinases also play very important roles in mediating n-3 PUFA effects on cardiovascular health. This review is therefore focused on the molecular targets and signaling pathways that are regulated by n-3 PUFAs in relation to their cardioprotective effects.

  9. Fatty acid profile of unconventional oilseeds.

    PubMed

    Sabikhi, Latha; Sathish Kumar, M H

    2012-01-01

    The continued increase in human population has resulted in the rise in the demand as well as the price of edible oils, leading to the search for alternative unconventional sources of oils, particularly in the developing countries. There are hundreds of un- or underexplored plant seeds rich in oil suitable for edible or industrial purposes. Many of them are rich in polyunsaturated essential fatty acids, which establish their utility as "healthy oils." Some agrowaste products such as rice bran have gained importance as a potential source of edible oil. Genetic modification has paved the way for increasing the oil yields and improving the fatty acid profiles of traditional as well as unconventional oilseeds. Single cell oils are also novel sources of edible oil. Some of these unconventional oils may have excellent potential for medicinal and therapeutic uses, even if their low oil contents do not promote commercial production as edible oils.

  10. Inhibition of Cholesterol and Polyunsaturated Fatty Acids Oxidation through the Use of Annatto and Bixin in High-Pressure Processed Fish.

    PubMed

    Figueirêdo, Bruno C; Bragagnolo, Neura; Skibsted, Leif H; Orlien, Vibeke

    2015-08-01

    Annatto and bixin, the main carotenoid of annatto seeds, were both found to inhibit cholesterol oxidation in minced herring (Clupea harengus) and minced mackerel (Scomber scombrus) during high pressure processing (600 MPa for 10 min) and subsequent chilled storage for 2 wk, a treatment which otherwise increased the content of cholesterol oxidation products above a critical limit for human consumption. Annatto but not bixin reduced the loss of docosahexaenoic acid caused by high pressure processing of herring from 12% to 7%, an effect assigned to antioxidative effects of phenolic compounds in annatto, while bixin as a carotenoid binds to membranes protecting membrane cholesterol.

  11. Fatty acid effects on fibroblast cholesterol synthesis

    SciTech Connect

    Shireman, R.B.; Muth, J.; Lopez, C.

    1987-05-01

    Two cell lines of normal (CRL 1475, GM5565) and of familial hypercholesterolemia (FH) (CM 486,488) fibroblasts were preincubated with medium containing the growth factor ITS, 2.5 mg/ml fatty acid-free BSA, or 35.2 ..mu..mol/ml of these fatty acids complexed with 2.5 mg BSA/ml: stearic (18:0), caprylic (8:0), oleic (18:1;9), linoleic (18:2;9,12), linolenic (18:3;9,12,15), docosahexaenoic (22:6;4,7,10,13,16,19)(DHA) or eicosapentaenoic (20:5;5,8,11,14,17)(EPA). After 20 h, cells were incubated for 2 h with 0.2 ..mu..Ci (/sup 14/C)acetate/ml. Cells were hydrolyzed; an aliquot was quantitated for radioactivity and protein. After saponification and extraction with hexane, radioactivity in the aqueous and organic phases was determined. The FH cells always incorporated 30-90% more acetate/mg protein than normal cells but the pattern of the fatty acid effects was similar in both types. When the values were normalized to 1 for the BSA-only group, cells with ITS had the greatest (/sup 14/C)acetate incorporation (1.45) followed by the caprylic group (1.14). Cells incubated with 18:3, 20:6 or 22:6 incorporated about the same amount as BSA-only. Those preincubated with 18:2, 18:1, 18:0 showed the least acetate incorporation (0.87, 0.59 and 0.52, respectively). The percentage of total /sup 14/C counts which extracted into hexane was much greater in FH cells; however, these values varied with the fatty acid, e.g., 1.31(18:0) and 0.84(8:0) relative to 1(BSA).

  12. Omega-3 fatty acids as adjunctive therapy in Crohns disease.

    PubMed

    Macdonald, Angie

    2006-01-01

    Crohns disease is an inflammatory bowel disease that can have a significant impact on the health of those afflicted. The etiology of the disease is unknown, but genetic, environmental, dietary, and immunological factors are thought to be involved. Multiple nutrients can become depleted during active disease due to inadequate intake or malabsorption. Preventing these deficiencies is paramount in the care of those suffering from Crohns disease. Often the traditional treatments (medications) have limited effectiveness and negative side effects that inhibit their use. Enteral nutrition has promising therapeutic benefits, but its use is often limited to the pediatric population due to poor patient acceptability. Omega-3 fatty acids have been investigated for their anti-inflammatory properties as an alternative to traditional care. This article reviews the etiology of Crohns disease, nutritional deficiencies, traditional treatments, and the use of omega-3 fatty acids in the prevention of Crohns recurrence. The results from clinical trials have been conflicting, but a new fish oil preparation that limits the side effects of traditional fish oil therapy shows promise as an adjunctive treatment for Crohns disease. Continued research is needed to validate these findings.

  13. 21 CFR 172.862 - Oleic acid derived from tall oil fatty acids.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Oleic acid derived from tall oil fatty acids. 172... FOOD FOR HUMAN CONSUMPTION Multipurpose Additives § 172.862 Oleic acid derived from tall oil fatty acids. The food additive oleic acid derived from tall oil fatty acids may be safely used in food and...

  14. 21 CFR 172.862 - Oleic acid derived from tall oil fatty acids.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Oleic acid derived from tall oil fatty acids. 172... FOOD FOR HUMAN CONSUMPTION Multipurpose Additives § 172.862 Oleic acid derived from tall oil fatty acids. The food additive oleic acid derived from tall oil fatty acids may be safely used in food and...

  15. 21 CFR 172.862 - Oleic acid derived from tall oil fatty acids.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Oleic acid derived from tall oil fatty acids. 172... FOOD FOR HUMAN CONSUMPTION Multipurpose Additives § 172.862 Oleic acid derived from tall oil fatty acids. The food additive oleic acid derived from tall oil fatty acids may be safely used in food and...

  16. 21 CFR 172.862 - Oleic acid derived from tall oil fatty acids.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Oleic acid derived from tall oil fatty acids. 172... Multipurpose Additives § 172.862 Oleic acid derived from tall oil fatty acids. The food additive oleic acid derived from tall oil fatty acids may be safely used in food and as a component in the manufacture of...

  17. 40 CFR 721.10512 - Fatty acid maleic acid amides (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Fatty acid maleic acid amides (generic... Specific Chemical Substances § 721.10512 Fatty acid maleic acid amides (generic). (a) Chemical substance... fatty acid maleic acid amides (PMNs P-07-563 and P-07-564) are subject to reporting under this...

  18. 21 CFR 172.862 - Oleic acid derived from tall oil fatty acids.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Oleic acid derived from tall oil fatty acids. 172... FOOD FOR HUMAN CONSUMPTION Multipurpose Additives § 172.862 Oleic acid derived from tall oil fatty acids. The food additive oleic acid derived from tall oil fatty acids may be safely used in food and...

  19. 40 CFR 721.10512 - Fatty acid maleic acid amides (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Fatty acid maleic acid amides (generic... Specific Chemical Substances § 721.10512 Fatty acid maleic acid amides (generic). (a) Chemical substance... fatty acid maleic acid amides (PMNs P-07-563 and P-07-564) are subject to reporting under this...

  20. Modulation of Nitro-fatty Acid Signaling

    PubMed Central

    Vitturi, Dario A.; Chen, Chen-Shan; Woodcock, Steven R.; Salvatore, Sonia R.; Bonacci, Gustavo; Koenitzer, Jeffrey R.; Stewart, Nicolas A.; Wakabayashi, Nobunao; Kensler, Thomas W.; Freeman, Bruce A.; Schopfer, Francisco J.

    2013-01-01

    Inflammation, characterized by the activation of both resident and infiltrated immune cells, is accompanied by increased production of oxidizing and nitrating species. Nitrogen dioxide, the proximal nitrating species formed under these conditions, reacts with unsaturated fatty acids to yield nitroalkene derivatives. These electrophilic products modulate protein function via post-translational modification of susceptible nucleophilic amino acids. Nitroalkenes react with Keap1 to instigate Nrf2 signaling, activate heat shock response gene expression, and inhibit NF-κB-mediated signaling, inducing net anti-inflammatory and tissue-protective metabolic responses. We report the purification and characterization of a NADPH-dependent liver enzyme that reduces the nitroalkene moiety of nitro-oleic acid, yielding the inactive product nitro-stearic acid. Prostaglandin reductase-1 (PtGR-1) was identified as a nitroalkene reductase by protein purification and proteomic studies. Kinetic measurements, inhibition studies, immunological and molecular biology approaches as well as clinical analyses confirmed this identification. Overexpression of PtGR-1 in HEK293T cells promoted nitroalkene metabolism to inactive nitroalkanes, an effect that abrogated the Nrf2-dependent induction of heme oxygenase-1 expression by nitro-oleic acid. These results situate PtGR-1 as a critical modulator of both the steady state levels and signaling activities of fatty acid nitroalkenes in vivo. PMID:23878198

  1. Ageing, adipose tissue, fatty acids and inflammation.

    PubMed

    Pararasa, Chathyan; Bailey, Clifford J; Griffiths, Helen R

    2015-04-01

    A common feature of ageing is the alteration in tissue distribution and composition, with a shift in fat away from lower body and subcutaneous depots to visceral and ectopic sites. Redistribution of adipose tissue towards an ectopic site can have dramatic effects on metabolic function. In skeletal muscle, increased ectopic adiposity is linked to insulin resistance through lipid mediators such as ceramide or DAG, inhibiting the insulin receptor signalling pathway. Additionally, the risk of developing cardiovascular disease is increased with elevated visceral adipose distribution. In ageing, adipose tissue becomes dysfunctional, with the pathway of differentiation of preadipocytes to mature adipocytes becoming impaired; this results in dysfunctional adipocytes less able to store fat and subsequent fat redistribution to ectopic sites. Low grade systemic inflammation is commonly observed in ageing, and may drive the adipose tissue dysfunction, as proinflammatory cytokines are capable of inhibiting adipocyte differentiation. Beyond increased ectopic adiposity, the effect of impaired adipose tissue function is an elevation in systemic free fatty acids (FFA), a common feature of many metabolic disorders. Saturated fatty acids can be regarded as the most detrimental of FFA, being capable of inducing insulin resistance and inflammation through lipid mediators such as ceramide, which can increase risk of developing atherosclerosis. Elevated FFA, in particular saturated fatty acids, maybe a driving factor for both the increased insulin resistance, cardiovascular disease risk and inflammation in older adults.

  2. Fatty acid oxidation and ketogenesis during development.

    PubMed

    Girard, J; Duée, P H; Ferré, P; Pégorier, J P; Escriva, F; Decaux, J F

    1985-01-01

    Fatty acids are the preferred oxidative substrates of the heart, skeletal muscles, kidney cortex and liver in adult mammals. They are supplied to these tissues either as nonesterified fatty acids (NEFA), or as triglycerides after hydrolysis by lipoprotein lipase. During fetal life, tissue capacity to oxidize NEFA is very low, even in species in which the placental transfer of NEFA and carnitine is high. At birth, the ability to oxidize NEFA from endogenous sources or from milk (a high-fat diet) develops rapidly in various tissues and remains very high throughout the suckling period. Ketogenesis appears in the liver by 6 to 12 hrs after birth, and the ketone bodies are used as oxidative fuels by various tissues during the suckling period. At the time of weaning, the transition from a high-fat to a high-carbohydrate diet is attended by a progressive decrease in the ketogenic capacity of the liver, whereas other tissues (skeletal muscle, heart, kidney) maintain a high capacity for NEFA oxidation. The nutritional and hormonal factors involved in changes in fatty acid oxidation during development are discussed.

  3. Unsaturated fatty acids, desaturases, and human health.

    PubMed

    Lee, Hyungjae; Park, Woo Jung

    2014-02-01

    With the increasing concern for health and nutrition, dietary fat has attracted considerable attention. The composition of fatty acids in a diet is important since they are associated with major diseases, such as cancers, diabetes, and cardiovascular disease. The biosynthesis of unsaturated fatty acids (UFA) requires the expression of dietary fat-associated genes, such as SCD, FADS1, FADS2, and FADS3, which encode a variety of desaturases, to catalyze the addition of a double bond in a fatty acid chain. Recent studies using new molecular techniques and genomics, as well as clinical trials have shown that these genes and UFA are closely related to physiological conditions and chronic diseases; it was found that the existence of alternative transcripts of the desaturase genes and desaturase isoforms might affect human health and lipid metabolism in different ways. In this review, we provide an overview of UFA and desaturases associated with human health and nutrition. Moreover, recent findings of UFA, desaturases, and their associated genes in human systems are discussed. Consequently, this review may help elucidate the complicated physiology of UFA in human health and diseases.

  4. Rapid effects of essential fatty acid deficiency on growth and development parameters and transcription of key fatty acid metabolism genes in juvenile barramundi (Lates calcarifer).

    PubMed

    Salini, Michael J; Turchini, Giovanni M; Wade, Nicholas M; Glencross, Brett D

    2015-12-14

    Barramundi (Lates calcarifer), a catadromous teleost of significant and growing commercial importance, are reported to have limited fatty acid bioconversion capability and therefore require preformed long-chain PUFA (LC-PUFA) as dietary essential fatty acid (EFA). In this study, the response of juvenile barramundi (47·0 g/fish initial weight) fed isolipidic and isoenergetic diets with 8·2% added oil was tested. The experimental test diets were either devoid of fish oil (FO), and thus with no n-3 LC-PUFA (FO FREE diet), or with a low inclusion of FO (FO LOW diet). These were compared against a control diet containing only FO (FO CTRL diet) as the added lipid source, over an 8-week period. Interim samples and measurements were taken fortnightly during the trial in order to define the aetiology of the onset and progression of EFA deficiency. After 2 weeks, the fish fed the FO FREE and FO LOW diets had significantly lower live-weights, and after 8 weeks significant differences were detected for all performance parameters. The fish fed the FO FREE diet also had a significantly higher incidence of external abnormalities. The transcription of several genes involved in fatty acid metabolism was affected after 2 weeks of feeding, showing a rapid nutritional regulation. This experiment documents the aetiology of the onset and the progression of EFA deficiency in juvenile barramundi and demonstrates that such deficiencies can be detected within 2 weeks in juvenile fish.

  5. Fatty acids of Thespesia populnea: Mass spectrometry of picolinyl esters of cyclopropene fatty acids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Thespesia populnea belongs to the plant family of Malvaceae which contain cyclopropane and cyclopropene fatty acids. However, previous literature reports vary regarding the content of these compounds in Thespesia populnea seed oil. In this work, the content of malvalic acid (8,9-methylene-9-heptade...

  6. Effects of feed access after hatch and inclusion of fish oil and medium chain fatty acids in a pre-starter diet on broiler chicken growth performance and humoral immunity.

    PubMed

    Lamot, D M; van der Klein, S A S; van de Linde, I B; Wijtten, P J A; Kemp, B; van den Brand, H; Lammers, A

    2016-09-01

    Delayed feed and water access is known to impair growth performance of day old broiler chickens. Although effects of feed access on growth performance and immune function of broilers have been examined before, effects of dietary composition and its potential interaction with feed access are hardly investigated. This experiment aimed to determine whether moment of first feed and water access after hatch and pre-starter composition (0 to 7 days) affect growth rate and humoral immune function in broiler chickens. Direct fed chickens received feed and water directly after placement in the grow-out facility, whilst delayed fed chickens only after 48 h. Direct and delayed fed chickens received a control pre-starter diet, or a diet containing medium chain fatty acids (MCFA) or fish oil. At 21 days, chickens were immunized by injection of sheep red blood cells. The mortality rate depended on an interaction between feed access and pre-starter composition (P=0.014). Chickens with direct feed access fed the control pre-starter diet had a higher risk for mortality than chickens with delayed feed access fed the control pre-starter diet (16.4% v. 4.2%) whereas the other treatment groups were in-between. BW gain and feed intake till 25 days in direct fed chickens were higher compared with delayed fed chickens, whilst gain to feed ratio was lower. Within the direct fed chickens, the control pre-starter diet resulted in the highest BW at 28 days and the MCFA pre-starter diet the lowest (Δ=2.4%), whereas this was opposite for delayed fed chickens (Δ=3.0%; P=0.033). Provision of MCFA resulted in a 4.6% higher BW gain and a higher gain to feed ratio compared with other pre-starter diets, but only during the period it was provided (2 to 7 days). Minor treatment effects were found for humoral immune response by measuring immunoglobulins, agglutination titers, interferon gamma (IFN- γ ), and complement activity. Concluding, current inclusion levels of fish oil (5 g/kg) and MCFA (30 g

  7. Analysis of intact cholesteryl esters of furan fatty acids in cod liver.

    PubMed

    Hammann, Simon; Wendlinger, Christine; Vetter, Walter

    2015-06-01

    Furan fatty acids (F-acids) are a class of natural antioxidants with a furan moiety in the acyl chain. These minor fatty acids have been reported to occur with high proportions in the cholesteryl ester fraction of fish livers. Here we present a method for the direct analysis of intact cholesteryl esters with F-acids and other fatty acids in cod liver lipids. For this purpose, the cholesteryl ester fraction was isolated by solid phase extraction (SPE) and subsequently analyzed by gas chromatography with mass spectrometry (GC/MS) using a cool-on-column inlet. Pentadecanoic acid esterified with cholesterol was used as an internal standard. GC/MS spectra of F-acid cholesteryl esters featured the molecular ion along with characteristic fragment ions for both the cholesterol and the F-acid moiety. All investigated cod liver samples (n = 8) showed cholesteryl esters of F-acids and, to a lower degree, of conventional fatty acids. By means of GC/MS-SIM up to ten F-acid cholesteryl esters could be determined in the samples. The concentrations of cholesteryl esters with conventional fatty acids amounted to 78-140 mg/100 g lipids (mean 97 mg/100 g lipids), while F-acid cholesteryl esters were present at 47-270 mg/100 g lipids (mean 130 mg/100 g lipids).

  8. Retinal pigment epithelial acid lipase activity and lipoprotein receptors: effects of dietary omega-3 fatty acids.

    PubMed Central

    Elner, Victor M

    2002-01-01

    PURPOSE: To show that fish oil-derived omega-3 polyunsaturated fatty acids, delivered to the retinal pigment epithelium (RPE) by circulating low-density lipoproteins (LDL), enhance already considerable RPE lysosomal acid lipase activity, providing for more efficient hydrolysis of intralysosomal RPE lipids, an effect that may help prevent development of age-related macular degeneration (ARMD). METHODS: Colorimetric biochemical and histochemical techniques were used to demonstrate RPE acid lipase in situ, in vitro, and after challenge with phagocytic stimuli. Receptor-mediated RPE uptake of fluorescently labeled native, aceto-acetylated, and oxidized LDL was studied in vitro and in vivo. LDL effects on RPE lysosomal enzymes were assessed. Lysosomal enzyme activity was compared in RPE cells from monkeys fed diets rich in fish oil to those from control animals and in cultured RPE cells exposed to sera from these monkeys. RESULTS: RPE acid lipase activity was substantial and comparable to that of mononuclear phagocytes. Acid lipase activity increased significantly following phagocytic challenge with photoreceptor outer segment (POS) membranes. Receptor-mediated RPE uptake of labeled lipoproteins was determined in vitro. Distinctive uptake of labeled lipoproteins occurred in RPE cells and mononuclear phagocytes in vivo. Native LDL enhanced RPE lysosomal enzyme activity. RPE lysosomal enzymes increased significantly in RPE cells from monkeys fed fish oil-rich diets and in cultured RPE cells exposed to their sera. CONCLUSIONS: RPE cells contain substantial acid lipase for efficient metabolism of lipids imbibed by POS phagocytosis and LDL uptake. Diets rich in fish oil-derived omega-3 fatty acids, by enhancing acid lipase, may reduce RPE lipofuscin accumulation, RPE oxidative damage, and the development of ARMD. PMID:12545699

  9. Fatty acid transport and activation and the expression patterns of genes involved in fatty acid trafficking.

    PubMed

    Sandoval, Angel; Fraisl, Peter; Arias-Barrau, Elsa; Dirusso, Concetta C; Singer, Diane; Sealls, Whitney; Black, Paul N

    2008-09-15

    These studies defined the expression patterns of genes involved in fatty acid transport, activation and trafficking using quantitative PCR (qPCR) and established the kinetic constants of fatty acid transport in an effort to define whether vectorial acylation represents a common mechanism in different cell types (3T3-L1 fibroblasts and adipocytes, Caco-2 and HepG2 cells and three endothelial cell lines (b-END3, HAEC, and HMEC)). As expected, fatty acid transport protein (FATP)1 and long-chain acyl CoA synthetase (Acsl)1 were the predominant isoforms expressed in adipocytes consistent with their roles in the transport and activation of exogenous fatty acids destined for storage in the form of triglycerides. In cells involved in fatty acid processing including Caco-2 (intestinal-like) and HepG2 (liver-like), FATP2 was the predominant isoform. The patterns of Acsl expression were distinct between these two cell types with Acsl3 and Acsl5 being predominant in Caco-2 cells and Acsl4 in HepG2 cells. In the endothelial lines, FATP1 and FATP4 were the most highly expressed isoforms; the expression patterns for the different Acsl isoforms were highly variable between the different endothelial cell lines. The transport of the fluorescent long-chain fatty acid C(1)-BODIPY-C(12) in 3T3-L1 fibroblasts and 3T3-L1 adipocytes followed typical Michaelis-Menten kinetics; the apparent efficiency (k(cat)/K(T)) of this process increases over 2-fold (2.1 x 10(6)-4.5 x 10(6)s(-1)M(-1)) upon adipocyte differentiation. The V(max) values for fatty acid transport in Caco-2 and HepG2 cells were essentially the same, yet the efficiency was 55% higher in Caco-2 cells (2.3 x 10(6)s(-1)M(-1) versus 1.5 x 10(6)s(-1)M(-1)). The kinetic parameters for fatty acid transport in three endothelial cell types demonstrated they were the least efficient cell types for this process giving V(max) values that were nearly 4-fold lower than those defined form 3T3-L1 adipocytes, Caco-2 cells and HepG2 cells. The

  10. 21 CFR 172.848 - Lactylic esters of fatty acids.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Lactylic esters of fatty acids. 172.848 Section 172.848 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... CONSUMPTION Multipurpose Additives § 172.848 Lactylic esters of fatty acids. Lactylic esters of fatty...

  11. Fatty acid profiles of some Fabaceae seed oils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The fatty acid profiles of six seed oils of the Fabaceae (Leguminosae) family are reported and discussed. These are the seed oils of Centrosema pubescens, Clitoria ternatea, Crotalaria mucronata, Macroptilium lathyroides, Pachyrhizus erosus, and Senna alata. The most common fatty acid in the fatty a...

  12. 40 CFR 721.3627 - Branched synthetic fatty acid.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Branched synthetic fatty acid. 721... Substances § 721.3627 Branched synthetic fatty acid. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a branched synthetic fatty...

  13. 40 CFR 721.3627 - Branched synthetic fatty acid.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Branched synthetic fatty acid. 721... Substances § 721.3627 Branched synthetic fatty acid. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a branched synthetic fatty...

  14. 40 CFR 721.3627 - Branched synthetic fatty acid.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Branched synthetic fatty acid. 721... Substances § 721.3627 Branched synthetic fatty acid. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a branched synthetic fatty...

  15. 40 CFR 721.3627 - Branched synthetic fatty acid.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Branched synthetic fatty acid. 721... Substances § 721.3627 Branched synthetic fatty acid. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a branched synthetic fatty...

  16. Production of hydroxylated fatty acids in genetically modified plants

    DOEpatents

    Somerville, Chris; Broun, Pierre; van de Loo, Frank

    2001-01-01

    This invention relates to plant fatty acyl hydroxylases. Methods to use conserved amino acid or nucleotide sequences to obtain plant fatty acyl hydroxylases are described. Also described is the use of cDNA clones encoding a plant hydroxylase to produce a family of hydroxylated fatty acids in transgenic plants.

  17. 40 CFR 721.3627 - Branched synthetic fatty acid.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Branched synthetic fatty acid. 721... Substances § 721.3627 Branched synthetic fatty acid. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a branched synthetic fatty...

  18. Temperature Affects Fatty Acids In Methylococcus Capsulatus

    NASA Technical Reports Server (NTRS)

    Jahnke, Linda L.

    1993-01-01

    According to report, temperature of growth of thermotolerant, methane-oxidizing bacterium Methylococcus capsulatus (Bath) affects both proportion of monounsaturated fatty acids and cis/trans ratio of these acids in cell membrane. Because suboptimum growth temperature is potential stress factor, it may be possible to use such cis/trans ratios as indices of stresses upon methane-oxidizing microbial communities. Research in microbiology of methanotrophs increasing because of possible commercial exploitation of these organisms as biocatalysts or as sources of useful polymers; knowledge of effect of temperature on ability of methanotrophs to utilize methane useful in optimization of conditions of growth.

  19. Engineered Production of Short Chain Fatty Acid in Escherichia coli Using Fatty Acid Synthesis Pathway

    PubMed Central

    Jawed, Kamran; Mattam, Anu Jose; Fatma, Zia; Wajid, Saima; Abdin, Malik Z.; Yazdani, Syed Shams

    2016-01-01

    Short-chain fatty acids (SCFAs), such as butyric acid, have a broad range of applications in chemical and fuel industries. Worldwide demand of sustainable fuels and chemicals has encouraged researchers for microbial synthesis of SCFAs. In this study we compared three thioesterases, i.e., TesAT from Anaerococcus tetradius, TesBF from Bryantella formatexigens and TesBT from Bacteroides thetaiotaomicron, for production of SCFAs in Escherichia coli utilizing native fatty acid synthesis (FASII) pathway and modulated the genetic and bioprocess parameters to improve its yield and productivity. E. coli strain expressing tesBT gene yielded maximum butyric acid titer at 1.46 g L-1, followed by tesBF at 0.85 g L-1 and tesAT at 0.12 g L-1. The titer of butyric acid varied significantly depending upon the plasmid copy number and strain genotype. The modulation of genetic factors that are known to influence long chain fatty acid production, such as deletion of the fadD and fadE that initiates the fatty acid degradation cycle and overexpression of fadR that is a global transcriptional activator of fatty acid biosynthesis and repressor of degradation cycle, did not improve the butyric acid titer significantly. Use of chemical inhibitor cerulenin, which restricts the fatty acid elongation cycle, increased the butyric acid titer by 1.7-fold in case of TesBF, while it had adverse impact in case of TesBT. In vitro enzyme assay indicated that cerulenin also inhibited short chain specific thioesterase, though inhibitory concentration varied according to the type of thioesterase used. Further process optimization followed by fed-batch cultivation under phosphorous limited condition led to production of 14.3 g L-1 butyric acid and 17.5 g L-1 total free fatty acid at 28% of theoretical yield. This study expands our understanding of SCFAs production in E. coli through FASII pathway and highlights role of genetic and process optimization to enhance the desired product. PMID:27466817

  20. Epoxygenated Fatty Acids Inhibit Retinal Vascular Inflammation

    PubMed Central

    Capozzi, Megan E.; Hammer, Sandra S.; McCollum, Gary W.; Penn, John S.

    2016-01-01

    The objective of the present study was to assess the effect of elevating epoxygenated fatty acids on retinal vascular inflammation. To stimulate inflammation we utilized TNFα, a potent pro-inflammatory mediator that is elevated in the serum and vitreous of diabetic patients. In TNFα-stimulated primary human retinal microvascular endothelial cells, total levels of epoxyeicosatrienoic acids (EETs), but not epoxydocosapentaenoic acids (EDPs), were significantly decreased. Exogenous addition of 11,12-EET or 19,20-EDP when combined with 12-(3-adamantane-1-yl-ureido)-dodecanoic acid (AUDA), an inhibitor of epoxide hydrolysis, inhibited VCAM-1 and ICAM-1 expression and protein levels; conversely the diol product of 19,20-EDP hydrolysis, 19,20-DHDP, induced VCAM1 and ICAM1 expression. 11,12-EET and 19,20-EDP also inhibited leukocyte adherence to human retinal microvascular endothelial cell monolayers and leukostasis in an acute mouse model of retinal inflammation. Our results indicate that this inhibition may be mediated through an indirect effect on NFκB activation. This is the first study demonstrating a direct comparison of EET and EDP on vascular inflammatory endpoints, and we have confirmed a comparable efficacy from each isomer, suggesting a similar mechanism of action. Taken together, these data establish that epoxygenated fatty acid elevation will inhibit early pathology related to TNFα-induced inflammation in retinal vascular diseases. PMID:27966642

  1. Near Infrared Spectrometry of Clinically Significant Fatty Acids Using Multicomponent Regression

    NASA Astrophysics Data System (ADS)

    Kalinin, A. V.; Krasheninnikov, V. N.; Sviridov, A. P.; Titov, V. N.

    2016-11-01

    We have developed methods for determining the content of clinically important fatty acids (FAs), primarily saturated palmitic acid, monounsaturated oleic acid, and the sum of polyenoic fatty acids (eicosapentaenoic + docosahexaenoic), in oily media (food products and supplements, fish oils) using different types of near infrared (NIR) spectrometers: Fourier-transform, linear photodiode array, and Raman. Based on a calibration method (regression) by means of projections to latent structures, using standard samples of oil and fat mixtures, we have confirmed the feasibility of reliable and selective quantitative analysis of the above-indicated fatty acids. As a result of comparing the calibration models for Fourier-transform spectrometers in different parts of the NIR range (based on different overtones and combinations of fatty acid absorption), we have provided a basis for selection of the spectral range for a portable linear InGaAs-photodiode array spectrometer. In testing the calibrations of a linear InGaAs-photodiode array spectrometer which is a prototype for a portable instrument, for palmitic and oleic acids and also the sum of the polyenoic fatty acids we have achieved a multiple correlation coefficient of 0.89, 0.85, and 0.96 and a standard error of 0.53%, 1.43%, and 0.39% respectively. We have confirmed the feasibility of using Raman spectra to determine the content of the above-indicated fatty acids in media where water is present.

  2. Bioavailability of long-chain omega-3 fatty acids.

    PubMed

    Schuchardt, Jan Philipp; Hahn, Andreas

    2013-07-01

    Supplements have reached a prominent role in improving the supply of long-chain omega-3 fatty acids, such as Eicosapentaenoic acid (EPA 20:5n-3) and Docosahexaenoic acid (DHA 22:6n-3). Similar to other nutrients, the availability of omega-3 fatty acids is highly variable and determined by numerous factors. However, the question of omega-3 fatty acids bioavailability has long been disregarded, which may have contributed to the neutral or negative results concerning their effects in several studies. This review provides an overview of the influence of chemical binding form (free fatty acids bound in ethylesters, triacylglycerides or phospholipids), matrix effects (capsule ingestion with concomitant intake of food, fat content in food) or galenic form (i.e. microencapsulation, emulsification) on the bioavailability of omega-3 fatty acids. There is a need to systematically investigate the bioavailability of omega-3 fatty acids formulations, which might be a key to designing more effective studies in the future.

  3. Is the fatty acid composition of freshwater zoobenthic invertebrates controlled by phylogenetic or trophic factors?

    PubMed

    Makhutova, Olesia N; Sushchik, Nadezhda N; Gladyshev, Michail I; Ageev, Alexander V; Pryanichnikova, Ekaterina G; Kalachova, Galina S

    2011-08-01

    We studied the fatty acid (FA) content and composition of ten zoobenthic species of several taxonomic groups from different freshwater bodies. Special attention was paid to essential polyunsaturated fatty acids, eicosapentaenoic acid (EPA, 20:5n-3), docosahexaenoic acid (DHA, 22:6n-3), and arachidonic acid (ARA, 20:4n-6); and the n-3/n-6 and DHA/ARA ratios, which are important for consumers of higher trophic levels, i.e., fish. The content and ratios of these FA varied significantly in the studied zoobenthic species, consequently, the invertebrates were of different nutritional quality for fish. Eulimnogammarus viridis (Crustacea) and Dendrocoelopsis sp. (Turbellaria) had the highest nutrition value for fish concerning the content of EPA and DHA and n-3/n-6 and DHA/ARA ratios. Using canonical correspondence analysis we compared the FA profiles of species of the studied taxa taking into account their feeding strategies and habitats. We gained evidence that feeding strategy is of importance to determine fatty acid profiles of zoobenthic species. However, the phylogenetic position of the zoobenthic species is also responsible and may result in a similar fatty acid composition even if species or populations inhabit different water bodies or have different feeding strategies.

  4. Alternative Sources of n-3 Long-Chain Polyunsaturated Fatty Acids in Marine Microalgae

    PubMed Central

    Martins, Dulce Alves; Custódio, Luísa; Barreira, Luísa; Pereira, Hugo; Ben-Hamadou, Radhouan; Varela, João; Abu-Salah, Khalid M.

    2013-01-01

    The main source of n-3 long-chain polyunsaturated fatty acids (LC-PUFA) in human nutrition is currently seafood, especially oily fish. Nonetheless, due to cultural or individual preferences, convenience, geographic location, or awareness of risks associated to fatty fish consumption, the intake of fatty fish is far from supplying the recommended dietary levels. The end result observed in most western countries is not only a low supply of n-3 LC-PUFA, but also an unbalance towards the intake of n-6 fatty acids, resulting mostly from the consumption of vegetable oils. Awareness of the benefits of LC-PUFA in human health has led to the use of fish oils as food supplements. However, there is a need to explore alternatives sources of LC-PUFA, especially those of microbial origin. Microalgae species with potential to accumulate lipids in high amounts and to present elevated levels of n-3 LC-PUFA are known in marine phytoplankton. This review focuses on sources of n-3 LC-PUFA, namely eicosapentaenoic and docosahexaenoic acids, in marine microalgae, as alternatives to fish oils. Based on current literature, examples of marketed products and potentially new species for commercial exploitation are presented. PMID:23807546

  5. Topical Formulation Comprising Fatty Acid Extract from Cod Liver Oil: Development, Evaluation and Stability Studies

    PubMed Central

    Ilievska, Biljana; Loftsson, Thorsteinn; Hjalmarsdottir, Martha Asdis; Asgrimsdottir, Gudrun Marta

    2016-01-01

    The purpose of this study was to develop a pharmaceutical formulation containing fatty acid extract rich in free omega-3 fatty acids such as eicosapentaenoic acid and docosahexaenoic acid for topical use. Although the health benefits of cod liver oil and other fish oils taken orally as a dietary supplement have been acknowledged and exploited, it is clear that their use can be extended further to cover their antibacterial properties. In vitro evaluation showed that 20% (v/v) fatty acid extract exhibits good activity against strains of the Gram-positive bacteria Staphylococcus aureus, Enterococcus faecalis, Streptoccoccus pyogenes and Streptoccoccus pneumonia. Therefore, free polyunsaturated fatty acids from cod liver oil or other fish oils can be used as safe and natural antibacterial agents. In this study, ointment compositions containing free fatty acids as active antibacterial agents were prepared by using various natural waxes and characterized. The effects of different waxes, such as carnauba wax, ozokerite wax, laurel wax, beeswax, rice bran wax, candelilla wax and microcrystalline wax, in the concentration range of 1% to 5% (w/w) on the ointment texture, consistency and stability were evaluated. The results showed significant variations in texture, sensory and rheological profiles. This was attributed to the wax’s nature and chain composition. Microcrystalline wax gave the best results but laurel wax, beeswax and rice bran wax exhibited excellent texturing, similar sensory profiles and well-balanced rheological properties. PMID:27258290

  6. Fatty acid alcohol ester-synthesizing activity of lipoprotein lipase.

    PubMed

    Tsujita, T; Sumiyoshi, M; Okuda, H

    1999-12-01

    The fatty acid alcohol ester-synthesizing activity of lipoprotein lipase (LPL) was characterized using bovine milk LPL. Synthesizing activities were determined in an aqueous medium using oleic acid or trioleylglycerol as the acyl donor and equimolar amounts of long-chain alcohols as the acyl acceptor. When oleic acid and hexadecanol emulsified with gum arabic were incubated with LPL, palmityl oleate was synthesized, in a time- and dose-dependent manner. Apo-very low density lipoprotein (apoVLDL) stimulated LPL-catalyzed palmityl oleate synthesis. The apparent equilibrium ratio of fatty acid alcohol ester/oleic acid was estimated using a high concentration of LPL and a long (20 h) incubation period. The equilibrium ratio was affected by the incubation pH and the alcohol chain length. When the incubation pH was below pH 7.0 and long chain fatty acyl alcohols were used as substrates, the fatty acid alcohol ester/free fatty acid equilibrium ratio favored ester formation, with an apparent equilibrium ratio of fatty acid alcohol ester/fatty acid of about 0.9/0.1. The equilibrium ratio decreased sharply at alkaline pH (above pH 8.0). The ratio also decreased when fatty alcohols with acyl chains shorter than dodecanol were used. When a trioleoylglycerol/fatty acyl alcohol emulsion was incubated with LPL, fatty acid alcohol esters were synthesized in a dose- and time-dependent fashion. Fatty acid alcohol esters were easily synthesized from trioleoylglycerol when fatty alcohols with acyl chains longer than dodecanol were used, but synthesis was decreased with fatty alcohols with acyl chain lengths shorter than decanol, and little synthesizing activity was detected with shorter-chain fatty alcohols such as butanol or ethanol.

  7. Neurological benefits of omega-3 fatty acids.

    PubMed

    Dyall, S C; Michael-Titus, A T

    2008-01-01

    The central nervous system is highly enriched in long-chain polyunsaturated fatty acid (PUFA) of the omega-6 and omega-3 series. The presence of these fatty acids as structural components of neuronal membranes influences cellular function both directly, through effects on membrane properties, and also by acting as a precursor pool for lipid-derived messengers. An adequate intake of omega-3 PUFA is essential for optimal visual function and neural development. Furthermore, there is increasing evidence that increased intake of the long-chain omega-3 PUFA, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), may confer benefits in a variety of psychiatric and neurological disorders, and in particular neurodegenerative conditions. However, the mechanisms underlying these beneficial effects are still poorly understood. Recent evidence also indicates that in addition to the positive effects seen in chronic neurodegenerative conditions, omega-3 PUFA may also have significant neuroprotective potential in acute neurological injury. Thus, these compounds offer an intriguing prospect as potentially new therapeutic approaches in both chronic and acute conditions. The purpose of this article is to review the current evidence of the neurological benefits of omega-3 PUFA, looking specifically at neurodegenerative conditions and acute neurological injury.

  8. Effects of omega-3 fatty acids on serum markers of cardiovascular disease risk: A systematic review

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Greater fish oil consumption has been associated with reduced CVD risk, although the mechanisms are unclear. Plant-source oil omega-3 fatty acids (ALA) have also been studied regarding their cardiovascular effect. We conducted a systematic review of randomized controlled trials that evaluated the ef...

  9. Higher Intakes of Antioxidants and Unsaturated Fatty Acid Reduce the Cardiac Autonomic Effects of Particles

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Higher intakes of antioxidants (vitamins C and E, carotene) found in foods such as cruciferous vegetables, and unsaturated fatty acids, including omega-3 from fish and monounsaturated fats from nuts and seeds, may prevent cardiovascular disease. We examined whether higher intake of such antioxidants...

  10. Metabolomics of Dietary Fatty Acid Restriction in Patients with Phenylketonuria

    PubMed Central

    Mütze, Ulrike; Beblo, Skadi; Kortz, Linda; Matthies, Claudia; Koletzko, Berthold; Bruegel, Mathias; Rohde, Carmen; Thiery, Joachim; Kiess, Wieland; Ceglarek, Uta

    2012-01-01

    Background Patients with phenylketonuria (PKU) have to follow a lifelong phenylalanine restricted diet. This type of diet markedly reduces the intake of saturated and unsaturated fatty acids especially long chain polyunsaturated fatty acids (LC-PUFA). Long-chain saturated fatty acids are substrates of mitochondrial fatty acid oxidation for acetyl-CoA production. LC-PUFA are discussed to affect inflammatory and haemostaseological processes in health and disease. The influence of the long term PKU diet on fatty acid metabolism with a special focus on platelet eicosanoid metabolism has been investigated in the study presented here. Methodology/Principal Findings 12 children with PKU under good metabolic control and 8 healthy controls were included. Activated fatty acids (acylcarnitines C6–C18) in dried blood and the cholesterol metabolism in serum were analyzed by liquid chromatographic tandem mass spectrometry (LC-MS/MS). Fatty acid composition of plasma glycerophospholipids was determined by gas chromatography. LC-PUFA metabolites were analyzed in supernatants by LC-MS/MS before and after platelet activation and aggregation using a standardized protocol. Patients with PKU had significantly lower free carnitine and lower activated fatty acids in dried blood compared to controls. Phytosterols as marker of cholesterol (re-) absorption were not influenced by the dietary fatty acid restriction. Fatty acid composition in glycerophospholipids was comparable to that of healthy controls. However, patients with PKU showed significantly increased concentrations of y-linolenic acid (C18:3n-6) a precursor of arachidonic acid. In the PKU patients significantly higher platelet counts were observed. After activation with collagen platelet aggregation and thromboxane B2 and thromboxane B3 release did not differ from that of healthy controls. Conclusion/Significance Long-term dietary fatty acid restriction influenced the intermediates of mitochondrial beta-oxidation. No functional

  11. Role of omega-3 fatty acids and their metabolites in asthma and allergic diseases.

    PubMed

    Miyata, Jun; Arita, Makoto

    2015-01-01

    Omega-3 fatty acids, docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), are found naturally in fish oil and are commonly thought to be anti-inflammatory nutrients, with protective effects in inflammatory diseases including asthma and allergies. The mechanisms of these effects remain mostly unknown but are of great interest for their potential therapeutic applications. Large numbers of epidemiological and observational studies investigating the effect of fish intake or omega-3 fatty acid supplementation during pregnancy, lactation, infancy, childhood, and adulthood on asthmatic and allergic outcomes have been conducted. They mostly indicate protective effects and suggest a causal relationship between decreased intake of fish oil in modernized diets and an increasing number of individuals with asthma or other allergic diseases. Specialized pro-resolving mediators (SPM: protectins, resolvins, and maresins) are generated from omega-3 fatty acids such as EPA and DHA via several enzymatic reactions. These mediators counter-regulate airway eosinophilic inflammation and promote the resolution of inflammation in vivo. Several reports have indicated that the biosynthesis of SPM is impaired, especially in severe asthma, which suggests that chronic inflammation in the lung might result from a resolution defect. This article focuses on the beneficial aspects of omega-3 fatty acids and offers recent insights into their bioactive metabolites including resolvins and protectins.

  12. Effect of pollution on DNA damage and essential fatty acid profile in Cirrhinus mrigala from River Chenab

    NASA Astrophysics Data System (ADS)

    Hussain, Bilal; Sultana, Tayyaba; Sultana, Salma; Al-Ghanim, K. A.; Mahboob, Shahid

    2016-05-01

    The objective of this study was to evaluate the effect of anthropogenic pollution on DNA damage and the fatty acid profile of the bottom dweller fish (Cirrhinus mrigala), collected from the River Chenab, in order to assess the effect of the toxicants on the quality of the fish meat. The levels of Cd, Hg, Cu, Mn, Zn, Pb, Cr and Sn and of phenols from this river were significantly higher than the permissible limits set by the USEPA. Comet assays showed DNA damage in Cirrhinus mrigala collected from three different sampling sites in the polluted area of the river. Significant differences were observed for DNA damage through comet assay in fish collected from polluted compared to control sites. No significant differences were observed for DNA damage between farmed and fish collected from upstream. The micronucleus assay showed similar trends. Fish from the highly polluted sites showed less number of fatty acids and more saturated fatty acids in their meat compared to fish from less polluted areas. Several fatty acids were missing in fish with higher levels of DNA in comet tail and micronucleus induction. Long-chain polyunsaturated fatty acids, eicosapentaenoic acid (20:5n-3) was found missing in the fish from polluted environment while it was found in considerable amount in farmed fish 7.8±0.4%. Docosahexaenoic acid (22:6n-3) also showed significant differences as 0.1±0.0 and 7.0±0.1% respectively, in wild polluted and farmed fishes.

  13. Identification of Characteristic Fatty Acids to Quantify Triacylglycerols in Microalgae

    PubMed Central

    Shen, Pei-Li; Wang, Hai-Tao; Pan, Yan-Fei; Meng, Ying-Ying; Wu, Pei-Chun; Xue, Song

    2016-01-01

    The fatty acid profiles of lipids from microalgae are unique. Polyunsaturated fatty acids are generally enriched in polar lipids, whereas saturated and monounsaturated fatty acids constitute the majority of fatty acids in triacylglycerols (TAG). Each species has characteristic fatty acids, and their content is positively or negatively correlated with TAGs. The marine oleaginous diatom Phaeodactylum tricornutum was used as the paradigm to determine the quantitative relationship between TAG and characteristic fatty acid content. Fatty acid profiles and TAG content of Phaeodactylum tricornutum were determined in a time course. C16:0/C16:1 and eicosapentaenoic acid (EPA, C20:5n3) were identified as characteristic fatty acids in TAGs and polar lipids, respectively. The percentage of those characteristic fatty acids in total fatty acids had a significant linear relationship with TAG content, and thus, the correlation coefficient presenting r2 were 0.96, 0.94, and 0.97, respectively. The fatty acid-based method for TAG quantification could also be applied to other microalgae such as Nannochloropsis oceanica in which the r2 of C16:0 and EPA were 0.94 and 0.97, respectively, and in Chlorella pyrenoidosa r2-values for C18:1 and C18:3 with TAG content were 0.91 and 0.99, repectively. This characteristic fatty acid-based method provided a distinct way to quantify TAGs in microalgae, by which TAGs could be measured precisely by immediate transesterification from wet biomass rather than using conventional methods. This procedure simplified the operation and required smaller samples than conventional methods. PMID:26941747

  14. Applications of cellular fatty acid analysis.

    PubMed Central

    Welch, D F

    1991-01-01

    More than ever, new technology is having an impact on the tools of clinical microbiologists. The analysis of cellular fatty acids by gas-liquid chromatography (GLC) has become markedly more practical with the advent of the fused-silica capillary column, computer-controlled chromatography and data analysis, simplified sample preparation, and a commercially available GLC system dedicated to microbiological applications. Experience with applications in diagnostic microbiology ranges from substantial success in work with mycobacteria, legionellae, and nonfermentative gram-negative bacilli to minimal involvement with fungi and other nonbacterial agents. GLC is a good alternative to other means for the identification of mycobacteria or legionellae because it is rapid, specific, and independent of other specialized testing, e.g., DNA hybridization. Nonfermenters show features in their cellular fatty acid content that are useful in identifying species and, in some cases, subspecies. Less frequently encountered nonfermenters, including those belonging to unclassified groups, can ideally be characterized by GLC. Information is just beginning to materialize on the usefulness of cellular fatty acids for the identification of gram-positive bacteria and anaerobes, despite the traditional role of GLC in detecting metabolic products as an aid to identification of anaerobes. When species identification of coagulase-negative staphylococci is called for, GLC may offer an alternative to biochemical testing. Methods for direct analysis of clinical material have been developed, but in practical and economic terms they are not yet ready for use in the clinical laboratory. Direct analysis holds promise for detecting markers of infection due to an uncultivable agent or in clinical specimens that presently require cultures and prolonged incubation to yield an etiologic agent. PMID:1747860

  15. Metabolism of fatty acids in rat brain in microsomal membranes

    SciTech Connect

    Aeberhard, E.E.; Gan-Elepano, M.; Mead, J.F.

    1980-01-01

    Using a technique in which substrate fatty acids are incorporated into microsomal membranes followd by comparison of their rates of desaturation or elongation with those of exogenous added fatty acids it has been found that the desaturation rate is more rapid for the membrane-bound substrate than for the added fatty acid. Moreover, the product of the membrane-bound substrate is incorporated into membrane phospholipid whereas the product of the exogenous substrate is found in di- and triacyl glycerols and in free fatty acids as well. These and other findings point to a normal sequence of reaction of membrane liqids with membrane-bound substrates involving transfer of fatty acid from phospholipid to the coupled enzyme systems without ready equilibration with the free fatty acid pool.

  16. n3- polyunsaturated Fat Acid Content of Some Edible Fish from Bahrain Waters

    NASA Astrophysics Data System (ADS)

    Al-Arrayedu, F. H.; Al Maskati, H. A.; Abdullah, F. J.

    1999-08-01

    This study was performed to determine the content of n3- polyunsaturated fatty acids in 10 fish species that are commonly consumed in Bahrain in addition to the main commercial shrimp species. White sardinella, which is a plankton feeder, had the highest content of n3- polyunsaturated fatty acids. It had the highest value of eicosapentaenoic acid (146.5 ± 20 mg 100 g-1) and linolenic acid (98.9±f 100 g-1) and the second highest value of docosahexaenoic acid at (133.7 ± 22 mg 100 g-1). Spanish mackerel which feeds mainly on sardinella was second with eicosapentaenoc acid at 55 ± 5.4 mg 100 g-1, docosahexaenoic acid at 161 ± 19.8 mg 100 g-1, linolenic acid at 16.4 mg 100 g-1 and docosapentaenoic acid at 25 ± 1.9 mg 100 g-1. Rabbitfish, the most popular edible fish in Bahrain which feeds mainly on benthic algae had the third highest content of n3- polyunsaturated fatty acids with eicosapentaenoic acid at 37.5 ± 3.9 mg 100 g-1, docosahexaenoic acid at 76 ± 6.7 mg 100 g-1, and docosapentaenoic acid at 85.8 ± 10 mg 100 g-1. The other fish and crustacean species studied were Arabian carpet shark, doublebar bream, grouper, gray grunt, golden travally, keeled mullet, spangled emperor and shrimp. The study explores the transfer of n3- polyunsaturated fatty acids through the food webs of the examined fish. It is apparent, generally, that plankton feeders displayed the highest content of n3- polyunsaturated fatty acids followed by seaweed and algae grazers, with benthic carnivores feeding on invertebrates displaying the poorest content. The values reported here, however, are much lower than those reported for fish available in American markets and in Mediterranean fish. Warm water temperature and high salinity which lead to lowering of the density of phytoplankton and phytoplankton content of n3- polyunsaturated fatty acids are suggested as the reason for the observed low values of n3- polyunsaturated fatty acids in Bahrain fish.

  17. Hyperinsulinemia and skeletal muscle fatty acid trafficking

    PubMed Central

    Kanaley, Jill A.; Shadid, Samyah; Sheehan, Michael T.; Guo, ZengKui

    2013-01-01

    We hypothesized that insulin alters plasma free fatty acid (FFA) trafficking into intramyocellular (im) long-chain acylcarnitines (imLCAC) and triglycerides (imTG). Overnight-fasted adults (n = 41) received intravenous infusions of [U-13C]palmitate (0400–0900 h) and [U-13C]oleate (0800–1400 h) to label imTG and imLCAC. A euglycemic-hyperinsulinemic (1.0 mU·kg fat-free mass−1·min−1) clamp (0800–1400 h) and two muscle biopsies (0900 h, 1400 h) were performed. The patterns of [U-13C]palmitate incorporation into imTG-palmitate and palmitoylcarnitine were similar to those we reported in overnight postabsorptive adults (saline control); the intramyocellular palmitoylcarnitine enrichment was not different from and correlated with imTG-palmitate enrichment for both the morning (r = 0.38, P = 0.02) and afternoon (r = 0.44, P = 0.006) biopsy samples. Plasma FFA concentrations, flux, and the incorporation of plasma oleate into imTG-oleate during hyperinsulinemia were ∼1/10th of that observed in the previous saline control studies (P < 0.001). At the time of the second biopsy, the enrichment in oleoylcarnitine was <25% of that in imTG-oleate and was not correlated with imTG-oleate enrichment. The intramyocellular nonesterified fatty acid-palmitate-to-imTG-palmitate enrichment ratio was greater (P < 0.05) in women than men, suggesting that sex differences in intramyocellular palmitate trafficking may occur under hyperinsulinemic conditions. We conclude that plasma FFA trafficking into imTG during hyperinsulinemia is markedly suppressed, and these newly incorporated FFA fatty acids do not readily enter the LCAC preoxidative pools. Hyperinsulinemia does not seem to inhibit the entry of fatty acids from imTG pools that were labeled under fasting conditions, possibly reflecting the presence of two distinct imTG pools that are differentially regulated by insulin. PMID:23820622

  18. 21 CFR 172.856 - Propylene glycol mono- and diesters of fats and fatty acids.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... fatty acids. 172.856 Section 172.856 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH... diesters of fats and fatty acids. Propylene glycol mono- and diesters of fats and fatty acids may be safely... and/or fatty acids in compliance with § 172.860 and/or oleic acid derived from tall oil fatty acids...

  19. 21 CFR 172.856 - Propylene glycol mono- and diesters of fats and fatty acids.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... and/or fatty acids in compliance with § 172.860 and/or oleic acid derived from tall oil fatty acids in... fatty acids. 172.856 Section 172.856 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH... diesters of fats and fatty acids. Propylene glycol mono- and diesters of fats and fatty acids may be...

  20. 21 CFR 172.856 - Propylene glycol mono- and diesters of fats and fatty acids.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... and/or fatty acids in compliance with § 172.860 and/or oleic acid derived from tall oil fatty acids in... fatty acids. 172.856 Section 172.856 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH... diesters of fats and fatty acids. Propylene glycol mono- and diesters of fats and fatty acids may be...

  1. 21 CFR 172.856 - Propylene glycol mono- and diesters of fats and fatty acids.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... and/or fatty acids in compliance with § 172.860 and/or oleic acid derived from tall oil fatty acids in... fatty acids. 172.856 Section 172.856 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH... diesters of fats and fatty acids. Propylene glycol mono- and diesters of fats and fatty acids may be...

  2. 40 CFR 721.10682 - Fatty acid amide hydrochlorides (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Fatty acid amide hydrochlorides... Specific Chemical Substances § 721.10682 Fatty acid amide hydrochlorides (generic). (a) Chemical substances... fatty acid amide hydrochlorides (PMNs P-13-63, P-13-64, P-13-65, P-13-69, P-13-70, P-13-71, P-13-72,...

  3. Fatty acid biosynthesis in novel ufa mutants of Neurospora crassa.

    PubMed

    Goodrich-Tanrikulu, M; Stafford, A E; Lin, J T; Makapugay, M I; Fuller, G; McKeon, T A

    1994-10-01

    New mutants of Neurospora crassa having the ufa phenotype have been isolated. Two of these mutants, like previously identified ufa mutants, require an unsaturated fatty acid for growth and are almost completely blocked in the de novo synthesis of unsaturated fatty acids. The new mutations map to a different chromosomal location than previously characterized ufa mutations. This implies that at least one additional genetic locus controls the synthesis of unsaturated fatty acids in Neurospora.

  4. 21 CFR 573.914 - Salts of volatile fatty acids.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Salts of volatile fatty acids. 573.914 Section 573... Food Additive Listing § 573.914 Salts of volatile fatty acids. (a) Identity. The food additive is a blend containing the ammonium or calcium salt of isobutyric acid and the ammonium or calcium salts of...

  5. 21 CFR 573.914 - Salts of volatile fatty acids.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Salts of volatile fatty acids. 573.914 Section 573... Food Additive Listing § 573.914 Salts of volatile fatty acids. (a) Identity. The food additive is a blend containing the ammonium or calcium salt of isobutyric acid and the ammonium or calcium salts of...

  6. 40 CFR 721.10323 - Glycerol fatty acid ester (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Glycerol fatty acid ester (generic... Specific Chemical Substances § 721.10323 Glycerol fatty acid ester (generic). (a) Chemical substance and... acid ester (PMN P-03-248) is subject to reporting under this section for the significant new...

  7. 40 CFR 721.10323 - Glycerol fatty acid ester (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Glycerol fatty acid ester (generic... Specific Chemical Substances § 721.10323 Glycerol fatty acid ester (generic). (a) Chemical substance and... acid ester (PMN P-03-248) is subject to reporting under this section for the significant new...

  8. 40 CFR 721.10323 - Glycerol fatty acid ester (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Glycerol fatty acid ester (generic... Specific Chemical Substances § 721.10323 Glycerol fatty acid ester (generic). (a) Chemical substance and... acid ester (PMN P-03-248) is subject to reporting under this section for the significant new...

  9. 21 CFR 573.914 - Salts of volatile fatty acids.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Salts of volatile fatty acids. 573.914 Section 573... Food Additive Listing § 573.914 Salts of volatile fatty acids. (a) Identity. The food additive is a blend containing the ammonium or calcium salt of isobutyric acid and the ammonium or calcium salts of...

  10. 21 CFR 573.914 - Salts of volatile fatty acids.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Salts of volatile fatty acids. 573.914 Section 573... Food Additive Listing § 573.914 Salts of volatile fatty acids. (a) Identity. The food additive is a blend containing the ammonium or calcium salt of isobutyric acid and the ammonium or calcium salts of...

  11. Cellular fatty acid composition of Actinobacillus actinomycetemcomitans and Haemophilus aphrophilus.

    PubMed Central

    Braunthal, S D; Holt, S C; Tanner, A C; Socransky, S S

    1980-01-01

    Strains of Actinobacillus actinomycetemcomitans isolated from deep pockets of patients with juvenile periodontitis were analyzed for their content of cellular fatty acids. Oral Haemophilus strains, morphologically and biochemically similar to Haemophilus aphrophilus, were also examined for their content of cellular fatty acids. The extractable lipids of the actinobacilli represented approximately 10% of the cell dry weight, with the bound lipids representing 2 to 5%. The major fatty acids consisted of myristic (C14:0) and palmitic (C16:0) acids and a C16:1 acid, possibly palmitoleic acid, accounting for 21, 35, and 31% of the total extractable fatty acids, respectively. Haemophilus strains had a similar cellular fatty acid content. PMID:7430333

  12. Polyunsaturated fatty acid inhibition of fatty acid synthase transcription is independent of PPAR activation.

    PubMed

    Clarke, S D; Turini, M; Jump, D B; Abraham, S; Reedy, M

    1998-01-01

    Polyunsaturated fatty acids (PUFA) of the (n-6) and (n-3) families inhibit the rate of gene transcription for a number of hepatic lipogenic and glycolytic genes, e.g., fatty acid synthase (FAS). In contrast, saturated and monounsaturated fatty acids have no inhibitory capability. The suppression of gene transcription resulting from the addition of PUFA to a high carbohydrate diet: occurs quickly (< 3 h) after its addition to a high glucose diet; can be recreated with hepatocytes cultured in a serum-free medium containing insulin and glucocorticoids; can be demonstrated in diabetic rats fed fructose; and is independent of glucagon. While the nature of the intracellular PUFA inhibitor is unclear, it appears that delta-6 desaturation is a required step in the process. Recently, the fatty acid activated nuclear factor, peroxisome-proliferator activated receptor (PPAR) was suggested to be the PUFA-response factor. However, the potent PPAR activators ETYA and Wy-14643 did not suppress hepatic expression of FAS, but did induce the PPAR-responsive gene, acyl-CoA oxidase (AOX). Similarly, treating rat hepatocytes with 20:4 (n-6) suppressed FAS expression but had no effect on AOX. Thus, it appears that the PUFA regulation of gene transcription involves a PUFA-response factor that is independent from PPAR.

  13. Fish Oil-Derived Long-Chain n-3 Polyunsaturated Fatty Acids Reduce Expression of M1-Associated Macrophage Markers in an ex vivo Adipose Tissue Culture Model, in Part through Adiponectin.

    PubMed

    De Boer, Anna A; Monk, Jennifer M; Liddle, Danyelle M; Power, Krista A; Ma, David W L; Robinson, Lindsay E

    2015-01-01

    Adipose tissue (AT) macrophages (ATM) play a key role in obesity-associated pathologies, and their phenotype can be influenced by the local tissue microenvironment. Interestingly, long-chain n-3 polyunsaturated fatty acids (LC n-3 PUFA) and the LC n-3 PUFA-upregulated adipokine, adiponectin (Ad), may mitigate excessive ATM inflammatory M1-polarization responses. However, to what extent LC n-3 PUFA and Ad work in concert to affect macrophage phenotype has not been examined. Thus, we used an established ex vivo AT organ culture model using visceral AT from mice fed a control (CON; 10% w/w safflower oil) n-6 PUFA-rich diet or an isocaloric fish oil (FO; 3% w/w menhaden oil + 7% w/w safflower oil)-derived LC n-3 PUFA-rich diet to generate AT conditioned media (ACM). We then evaluated if CON or FO ACM affected macrophage polarization markers in a model designed to mimic acute [18 h ACM plus lipopolysaccharide (LPS) for the last 6 h] or chronic (macrophages treated with LPS-challenged CON or FO ACM for 24 h) inflammation ± Ad-neutralizing antibody and the LPS-neutralizing agent, polymyxin B. In the acute inflammation model, macrophages treated with FO ACM had decreased lipid uptake and mRNA expression of M1 markers (Nos2, Nfκb, Il6, Il18, Ccl2, and Ccl5) compared with CON ACM (p ≤ 0.05); however, these effects were largely attenuated when Ad was neutralized (p > 0.05). Furthermore, in the chronic inflammation model, macrophages treated with FO ACM had decreased mRNA expression of M1 markers (Nos2, Tnfα, Ccl2, and Il1β) and IL-6 and CCL2 secretion (p ≤ 0.05); however, some of these effects were lost when Ad was neutralized, and were further exacerbated when both Ad and LPS were neutralized. Taken together, this work shows that LC n-3 PUFA and Ad work in concert to suppress certain M1 macrophage responses. Thus, future strategies to modulate the ATM phenotype should consider the role of both LC n-3 PUFA and Ad in mitigating obese AT

  14. Engineering fungal de novo fatty acid synthesis for short chain fatty acid production

    PubMed Central

    Gajewski, Jan; Pavlovic, Renata; Fischer, Manuel; Boles, Eckhard; Grininger, Martin

    2017-01-01

    Fatty acids (FAs) are considered strategically important platform compounds that can be accessed by sustainable microbial approaches. Here we report the reprogramming of chain-length control of Saccharomyces cerevisiae fatty acid synthase (FAS). Aiming for short-chain FAs (SCFAs) producing baker's yeast, we perform a highly rational and minimally invasive protein engineering approach that leaves the molecular mechanisms of FASs unchanged. Finally, we identify five mutations that can turn baker's yeast into a SCFA producing system. Without any further pathway engineering, we achieve yields in extracellular concentrations of SCFAs, mainly hexanoic acid (C6-FA) and octanoic acid (C8-FA), of 464 mg l−1 in total. Furthermore, we succeed in the specific production of C6- or C8-FA in extracellular concentrations of 72 and 245 mg l−1, respectively. The presented technology is applicable far beyond baker's yeast, and can be plugged into essentially all currently available FA overproducing microorganisms. PMID:28281527

  15. Effects of fish oil and starch added to a diet containing sunflower-seed oil on dairy goat performance, milk fatty acid composition and in vivo delta9-desaturation of [13C]vaccenic acid.

    PubMed

    Bernard, Laurence; Mouriot, Julien; Rouel, Jacques; Glasser, Frédéric; Capitan, Pierre; Pujos-Guillot, Estelle; Chardigny, Jean-Michel; Chilliard, Yves

    2010-08-01

    The potential benefits on human health have prompted an interest in developing nutritional strategies for specifically increasing rumenic acid (RA) in ruminant milk. The aims of the present study were to (i) compare two dietary treatments with lipid supplements on milk yield and composition, (ii) measure the in vivo delta9-desaturation of vaccenic acid (VA) to RA using 13C-labelled VA and (iii) determine the effect of the dietary treatments on this variable. Treatments were 90 g sunflower-seed oil (SO) per d or 60 g sunflower-seed oil and 30 g fish oil per d plus additional starch (SFO), in a grassland hay-based diet given to eight Alpine goats in a 2 x 2 cross-over design with 21 d experimental periods. Milk yield and composition were similar between treatments. Goats fed SFO had higher milk 6 : 0-16 : 0 concentration, lower milk sigmaC18 concentrations and showed no effect on milk VA and RA, compared with SO. At the end of the experiment, intravenous injection of 1.5 g [13C]VA followed by measurements of milk lipid 13C enrichment showed that in vivo 31.7 and 31.6 % of VA was delta9-desaturated into milk RA in the caprine with the SO and SFO treatments, respectively. The expression of genes encoding for delta9-desaturase (or stearoyl-CoA desaturase; SCD1, SCD5) in mammary tissues and four milk delta9-desaturation ratios were similar between treatments. In conclusion, the present study provides the first estimates of in vivo endogenous synthesis of RA (63-73 % of milk RA) from VA in goats, and shows no difference between the two lipid supplements compared.

  16. The role of omega-3 fatty acids in mood disorders.

    PubMed

    Stahl, Lauren A; Begg, Denovan P; Weisinger, Richard S; Sinclair, Andrew J

    2008-01-01

    Research has established that docosahexaenoic acid (DHA), a long-chain omega-3 polyunsaturated fatty acid (PUFA), plays a fundamental role in brain structure and function. Epidemiological and cross-sectional studies have also identified a role for long-chain omega-3 PUFA, which includes DHA, eicosapentaenoic acid, and docosapentaenoic acid, in the etiology of depression. In the past ten years, there have been 12 intervention studies conducted using various preparations of longchain omega-3 PUFA in unipolar and bipolar depression. The majority of these studies administered long-chain omega-3 PUFA as an adjunct therapy. The studies have been conducted over 4 to 16 weeks of intervention and have often included small cohorts. In four out of the seven studies conducted in depressed individuals and in two out of the five studies in bipolar patients, individuals have reported a positive outcome following supplementation with ethyl-eicosapentaenoic acid or fish oil containing long-chain omega-3 PUFA. In the three trials that researched the influence of DHA-rich preparations, no significant effects were reported. The mechanisms that have been invoked to account for the benefits of long-chain omega-3 PUFA in depression include reductions in prostaglandins derived from arachidonic acid, which lead to decreased brain-derived neurotrophic factor levels and/or alterations in blood flow to the brain.

  17. Whole body cholesterol, fat, and fatty acid concentrations of mice (Mus domesticus) used as a food source.

    PubMed

    Crissey, S D; Slifka, K A; Lintzenich, B A

    1999-06-01

    The concentrations of dry matter, cholesterol, saturated fat, monounsaturated fat, and 29 fatty acids were measured in four size categories of whole mice (Mus domesticus) that are commonly fed to zoo animals. Dry matter increased with age/size of mice, whereas cholesterol decreased with age/size. Significant differences in fatty acid content were found among mice categories with capric, lauric, and myristic acids. Mice categories had similar levels of palmitic, palmitoleic, heptadecenoic, stearic, oleic, linoleic, gamma linolenic, alpha linolenic, eicosenoic, eicosadienoic, arachidonic, docosahexaenoic, and lignoceric acids. Analyzed lipid content of mice exceeded domestic carnivorous animal requirements for linoleic and arachidonic acids. The fatty acid levels in mice were high, falling between published values in beef and fish. Generally, mice contained higher levels of polyunsaturated fatty acids, including the omega-3 fatty acids, and lower levels of saturated fatty acids than beef. Although fatty acid levels met or exceeded some dietary requirements for carnivores and omnivores, a possibility of excessive levels exists that could lead to eye and tissue abnormalities. Furthermore, as the intake of dietary polyunsaturated fatty acids increases, the dietary requirement for vitamin E increases. Thus, it is important that lipid profiles of feeder mice be known and considered when examining captive animal diets.

  18. Algal swimming velocities signal fatty acid accumulation.

    PubMed

    Hansen, Travis J; Hondzo, Miki; Mashek, Mara T; Mashek, Douglas G; Lefebvre, Paul A

    2013-01-01

    The use of microalgae for biofuel production will be beneficial to society if we can produce biofuels at large scales with minimal mechanical energy input in the production process. Understanding micro-algal physiological responses under variable environmental conditions in bioreactors is essential for the optimization of biofuel production. We demonstrate that measuring micro-algal swimming speed provides information on culture health and total fatty acid accumulation. Three strains of Chlamydomonas reinhardtii were grown heterotrophically on acetate and subjected to various levels of nitrogen starvation. Other nutrient levels were explored to determine their effect on micro-algal kinetics. Swimming velocities were measured with two-dimensional micro-particle tracking velocimetry. The results show an inverse linear relationship between normalized total fatty acid mass versus swimming speed of micro-algal cells. Analysis of RNA sequencing data confirms these results by demonstrating that the biological processes of cell motion and the generation of energy precursors are significantly down-regulated. Experiments demonstrate that changes in nutrient concentration in the surrounding media also affect swimming speed. The findings have the potential for the in situ and indirect assessment of lipid content by measuring micro-algal swimming kinetics.

  19. Effects of fatty acid activation on photosynthetic production of fatty acid-based biofuels in Synechocystis sp. PCC6803

    PubMed Central

    2012-01-01

    Background Direct conversion of solar energy and carbon dioxide to drop in fuel molecules in a single biological system can be achieved from fatty acid-based biofuels such as fatty alcohols and alkanes. These molecules have similar properties to fossil fuels but can be produced by photosynthetic cyanobacteria. Results Synechocystis sp. PCC6803 mutant strains containing either overexpression or deletion of the slr1609 gene, which encodes an acyl-ACP synthetase (AAS), have been constructed. The complete segregation and deletion in all mutant strains was confirmed by PCR analysis. Blocking fatty acid activation by deleting slr1609 gene in wild-type Synechocystis sp. PCC6803 led to a doubling of the amount of free fatty acids and a decrease of alkane production by up to 90 percent. Overexpression of slr1609 gene in the wild-type Synechocystis sp. PCC6803 had no effect on the production of either free fatty acids or alkanes. Overexpression or deletion of slr1609 gene in the Synechocystis sp. PCC6803 mutant strain with the capability of making fatty alcohols by genetically introducing fatty acyl-CoA reductase respectively enhanced or reduced fatty alcohol production by 60 percent. Conclusions Fatty acid activation functionalized by the slr1609 gene is metabolically crucial for biosynthesis of fatty acid derivatives in Synechocystis sp. PCC6803. It is necessary but not sufficient for efficient production of alkanes. Fatty alcohol production can be significantly improved by the overexpression of slr1609 gene. PMID:22433663

  20. Fatty acids profiling reveals potential candidate markers of semen quality.

    PubMed

    Zerbinati, C; Caponecchia, L; Rago, R; Leoncini, E; Bottaccioli, A G; Ciacciarelli, M; Pacelli, A; Salacone, P; Sebastianelli, A; Pastore, A; Palleschi, G; Boccia, S; Carbone, A; Iuliano, L

    2016-11-01

    Previous reports showed altered fatty acid content in subjects with altered sperm parameters compared to normozoospermic individuals. However, these studies focused on a limited number of fatty acids, included a short number of subjects and results varied widely. We conducted a case-control study involving 155 patients allocated into four groups, including normozoospermia (n = 33), oligoasthenoteratozoospermia (n = 32), asthenozoospermia (n = 25), and varicocoele (n = 44). Fatty acid profiling, including 30 species, was analyzed by a validated gas chromatography (GC) method on the whole seminal fluid sample. Multinomial logistic regression modeling was used to identify the associations between fatty acids and the four groups. Specimens from 15 normozoospermic subjects were also analyzed for fatty acids content in the seminal plasma and spermatozoa to study the distribution in the two compartments. Fatty acids lipidome varied markedly between the four groups. Multinomial logistic regression modeling revealed that high levels of palmitic acid, behenic acid, oleic acid, and docosahexaenoic acid (DHA) confer a low risk to stay out of the normozoospermic group. In the whole population, seminal fluid stearic acid was negatively correlated (r = -0.53), and DHA was positively correlated (r = 0.65) with sperm motility. Some fatty acids were preferentially accumulated in spermatozoa and the highest difference was observed for DHA, which was 6.2 times higher in spermatozoa than in seminal plasma. The results of this study highlight complete fatty acids profile in patients with different semen parameters. Given the easy-to-follow and rapid method of analysis, fatty acid profiling by GC method can be used for therapeutic purposes and to measure compliance in infertility trials using fatty acids supplements.

  1. [Raman spectrometry of several saturated fatty acids and their salts].

    PubMed

    Luo, Man; Guan, Ping; Liu, Wen-hui; Liu, Yan

    2006-11-01

    Saturated fatty acids and their salts widely exist in the nature, and they are well known as important chemical materials. Their infrared spectra have been studied in detail. Nevertheless, few works on the Raman spectra characteristics of saturated fatty acids and their salts have been published before. Man-made crystals of acetic acid, stearic acid, calcium acetate, magnesium acetate, calcium stearate and magnesium stearate were investigated by means of Fourier transform Raman spectrometry for purpose of realizing their Raman spectra. Positive ions can cause the distinctions between the spectra of saturated fatty acids and their salts. The differences in mass and configuration between Ca2+ and Mg2+ result in the Raman spectra's diversity between calcium and magnesium salts of saturated fatty acids. Meanwhile, it is considered that the long carbon chain weakened the influence of different positive ions on the salts of saturated fatty acids.

  2. Resolution and quantification of isomeric fatty acids by silver ion HPLC: fatty acid composition of aniseed oil (Pimpinella anisum, Apiaceae).

    PubMed

    Denev, Roumen V; Kuzmanova, Ivalina S; Momchilova, Svetlana M; Nikolova-Damyanova, Boryana M

    2011-01-01

    A silver ion HPLC procedure is described that is suitable to determine the fatty acid composition of plant seed oils. After conversion of fatty acids to p-methoxyphenacyl derivatives, it was possible to achieve baseline resolution of all fatty acid components with 0 to 3 double bonds, including the positionally isomeric 18:1 fatty acids oleic acid (cis 9-18:1), petroselinic acid (cis 6-18:1), and cis-vaccenic acid (cis 11-18:1), in aniseed oil (Pimpinella anisum, Apiaceae) by a single gradient run on a single cation exchange column laboratory converted to the silver ion form. The UV detector response (280 nm) was linearly related to the fatty acid concentration in the range 0.01 to 3.5 mg/mL.

  3. Overproduction of fatty acids in engineered Saccharomyces cerevisiae.

    PubMed

    Li, Xiaowei; Guo, Daoyi; Cheng, Yongbo; Zhu, Fayin; Deng, Zixin; Liu, Tiangang

    2014-09-01

    The long hydrocarbon fatty acyl chain is energy rich, making it an ideal precursor for liquid transportation fuels and high-value oleo chemicals. As Saccharomyces cerevisiae has many advantages for industrial production compared to Escherichia coli. Here, we attempted to engineer Saccharomyces cerevisiae for overproduction of fatty acids. First, disruption of the beta-oxidation pathway, elimination of the acyl-CoA synthetases, overexpression of different thioesterases and acetyl-CoA carboxylase ACC1, and engineering the supply of precursor acetyl-CoA. The engineered strain XL122 produced more than 120 mg/L of fatty acids. In parallel, we inactivated ADH1, the dominant gene for ethanol production, to redirect the metabolic flux to fatty acids synthesis. The engineered strain DG005 produced about 140 mg/L fatty acids. Additionally, Acetyl-CoA carboxylase was identified as a critical bottleneck of fatty acids synthesis in S. cerevisiae with a cell-free system. However, overexpression of ACC1 has little effect on fatty acids biosynthesis. As it has been reported that phosphorylation of ACC1 may influent its activity, so phosphorylation sites of ACC1 were further identified. Although the regulatory mechanisms remain unclear, our results provide rationale for future studies to target this critical step. All these efforts, particularly the discovery of the limiting step are critical for developing a "cell factory" for the overproduction of fatty acids by using type I fatty acids synthase in yeast or other fungi.

  4. Egg boons: central components of marine fatty acid food webs.

    PubMed

    Fuiman, Lee A; Connelly, Tara L; Lowerre-Barbieri, Susan K; McClelland, James W

    2015-02-01

    Food web relationships are traditionally defined in terms of the flow of key elements, such as carbon, nitrogen, and phosphorus, and their role in limiting production. There is growing recognition that availability of important biomolecules, such as fatty acids, may exert controls on secondary production that are not easily explained by traditional element-oriented models. Essential fatty acids (EFAs) are required by most organisms for proper physiological function but are manufactured almost entirely by primary producers. Therefore, the flow of EFAs, especially docosahexaenoic acid (DHA), eicosapentaenoic acid (EPA), and arachidonic acid (ARA), through aquatic food webs is critical for ecosystem functioning. A meta-analysis of data on the EFA content of marine organisms reveals that individual eggs of marine animals have exceptionally high concentrations of EFAs, and that superabundances of eggs released in temporally and spatially discrete patches create rich, but temporary, nutritional resources for egg predators, called "egg boons." Mortality rates of fish eggs are disproportionately higher than animals of similar size, and those eggs are consumed by predators, both larger and smaller than the adults that produce the eggs. Thus, egg boons are a major trophic pathway through which EFAs are repackaged and redistributed, and they are among the few pathways that run counter to the main direction of trophic flow. Egg boons can transport EFAs across ecosystems through advection of patches of eggs and spawning migrations of adults. Recognizing the significance of egg boons to aquatic food webs reveals linkages and feedbacks between organisms and environments that have important implications for understanding how food webs vary in time and space. Examples are given of top-down, bottom-up, and lateral control mechanisms that could significantly alter food webs through their effects on eggs. Our results suggest that trophodynamic food web models should include EFAs

  5. Omega-6 and omega-3 polyunsaturated fatty acids and allergic diseases in infancy and childhood.

    PubMed

    Miles, Elizabeth A; Calder, Philip C

    2014-01-01

    There may be a causal relationship between intake of n-6 polyunsaturated fatty acids (PUFAs) and childhood allergic diseases. This can be explained by plausible biological mechanisms involving eicosanoid mediators produced from the n-6 PUFA arachidonic acid. Long chain n-3 PUFAs are found in fish and fish oils. These fatty acids act to oppose the actions of n-6 PUFAs. Thus, it is considered that n-3 PUFAs will lower the risk of developing allergic diseases. In support of this, protective associations have been reported between maternal fish intake during pregnancy and allergic outcomes in infants and children from those pregnancies. However, studies of fish intake during infancy and childhood and allergic outcomes in those infants or children are inconsistent, although some reported a protective association. Supplementing pregnant women with fish oil can induce immunologic changes in cord blood. This supplementation has been reported in some studies to decrease sensitisation to common food allergens and to lower the prevalence and severity of atopic dermatitis in the first year of life. The protective effect of maternal n-3 PUFAs may last until adolescence of the offspring. Fish oil supplementation in infancy may decrease the risk of developing some manifestations of allergic disease, although this benefit may not persist. Whether fish oil is a useful therapy in children with asthma receiving standard therapy is not clear from studies performed to date and this requires further exploration.

  6. Omega-3 fatty acids: a comprehensive review of their role in health and disease.

    PubMed

    Yashodhara, B M; Umakanth, S; Pappachan, J M; Bhat, S K; Kamath, R; Choo, B H

    2009-02-01

    Omega-3 fatty acids (omega-3 FAs) are essential fatty acids with diverse biological effects in human health and disease. Reduced cardiovascular morbidity and mortality is a well-established benefit of their intake. Dietary supplementation may also benefit patients with dyslipidaemia, atherosclerosis, hypertension, diabetes mellitus, metabolic syndrome, obesity, inflammatory diseases, neurological/ neuropsychiatric disorders and eye diseases. Consumption of omega-3 FAs during pregnancy reduces the risk of premature birth and improves intellectual development of the fetus. Fish, fish oils and some vegetable oils are rich sources of omega-3 FAs. According to the UK Scientific Advisory Committee on Nutrition guidelines (2004), a healthy adult should consume a minimum of two portions of fish a week to obtain the health benefit. This review outlines the health implications, dietary sources, deficiency states and recommended allowances of omega-3 FAs in relation to human nutrition.

  7. [Possible route for thiamine participation in fatty acid synthesis].

    PubMed

    Buko, V U; Larin, F S

    1976-01-01

    The possibility of thiamine partaking in the synthesis of fatty acids through the functions unrelated to the catalytic properties of thiamine-diphosphate was studied. Rats kept on a fat-free ration devoid of thiamine were given thiamine of thiochrome with no vitaminic properties. The total fatty acids content in different tissues and incorporation therein of tagged acetate and pyruvate was determined, while the fatty acids composition of the liver was investigated by using gas chromatography. Thiamine and thiochrome produced a similar effect on a number of the study factors, i.e. they forced down the total acids level in the spleen, intensified incorporation of tagged acetate and pyruvate in fatty acids of the heart and uniformly changed the fatty acids composition in the liver. It is suggested that the unindirectional effects of thiamine and thiochrome is due to the oxidative transformation of thiamine into thiochrome.

  8. Escherichia coli Unsaturated Fatty Acid Synthesis

    PubMed Central

    Feng, Youjun; Cronan, John E.

    2009-01-01

    Although the unsaturated fatty acid (UFA) synthetic pathway of Escherichia coli is the prototype of such pathways, several unresolved issues have accumulated over the years. The key players are the fabA and fabB genes. Earlier studies of fabA transcription showed that the gene was transcribed from two promoters, with one being positively regulated by the FadR protein. The other weaker promoter (which could not be mapped with the technology then available) was considered constitutive because its function was independent of FadR. However, the FabR negative regulator was recently shown to represses fabA transcription. We report that the weak promoter overlaps the FadR-dependent promoter and is regulated by FabR. This promoter is strictly conserved in all E. coli and Salmonella enterica genomes sequenced to date and is thought to provide insurance against inappropriate regulation of fabA transcription by exogenous saturated fatty acids. Also, the fabAup promoter, a mutant promoter previously isolated by selection for increased FabA activity, was shown to be a promoter created de novo by a four-base deletion within the gene located immediately upstream of fabA. Demonstration of the key UFA synthetic reaction catalyzed by FabB has been elusive, although it was known to catalyze an elongation reaction. Strains lacking FabB are UFA auxotrophs indicating that the enzyme catalyzes an essential step in UFA synthesis. Using thioesterases specific for hydrolysis of short chain acyl-ACPs, the intermediates of the UFA synthetic pathway have been followed in vivo for the first time. These experiments showed that a fabB mutant strain accumulated less cis-5-dodecenoic acid than the parental wild-type strain. These data indicate that the key reaction in UFA synthesis catalyzed by FabB is elongation of the cis-3-decenoyl-ACP produced by FabA. PMID:19679654

  9. Altered erythrocyte membrane fatty acid profile in typical Rett syndrome: effects of omega-3 polyunsaturated fatty acid supplementation.

    PubMed

    Signorini, Cinzia; De Felice, Claudio; Leoncini, Silvia; Durand, Thierry; Galano, Jean-Marie; Cortelazzo, Alessio; Zollo, Gloria; Guerranti, Roberto; Gonnelli, Stefano; Caffarelli, Carla; Rossi, Marcello; Pecorelli, Alessandra; Valacchi, Giuseppe; Ciccoli, Lucia; Hayek, Joussef

    2014-11-01

    This study mainly aims at examining the erythrocyte membrane fatty acid (FAs) profile in Rett syndrome (RTT), a genetically determined neurodevelopmental disease. Early reports suggest a beneficial effects of omega-3 polyunsaturated fatty acids (ω-3 PUFAs) on disease severity in RTT. A total of 24 RTT patients were assigned to ω-3 PUFAs-containing fish oil for 12 months in a randomized controlled study (average DHA and EPA doses of 72.9, and 117.1mg/kgb.w./day, respectively). A distinctly altered FAs profile was detectable in RTT, with deficient ω-6 PUFAs, increased saturated FAs and reduced trans 20:4 FAs. FAs changes were found to be related to redox imbalance, subclinical inflammation, and decreased bone density. Supplementation with ω-3 PUFAs led to improved ω-6/ω-3 ratio and serum plasma lipid profile, decreased PUFAs peroxidation end-products, normalization of biochemical markers of inflammation, and reduction of bone hypodensity as compared to the untreated RTT group. Our data indicate that a significant FAs abnormality is detectable in the RTT erythrocyte membranes and is partially rescued by ω-3 PUFAs.

  10. 'Designer oils' low in n-6:n-3 fatty acid ratio beneficially modifies cardiovascular risks in mice.

    PubMed

    Riediger, Natalie D; Azordegan, Nazila; Harris-Janz, Sydney; Ma, David W L; Suh, Miyoung; Moghadasian, Mohammed H

    2009-08-01

    Cardiovascular benefits of dietary n-3 fatty acids have been shown. However, benefits of n-3 fatty acids as part of a high fat, low n-6:n-3 fatty acid ratio diet has not been fully characterized. Aim of this study is to investigate cardiovascular and metabolic benefits of 'designer oils' containing a low ratio of n-6:n-3 fatty acids in C57BL/6 mice. Three groups of C57BL/6 mice were fed an atherogenic diet supplemented with either a fish oil- or flaxseed oil-based 'designer oil' with an approximate n-6:n-3 fatty acid ratio of 2:1 (treated groups, n = 6 each) or with a safflower oil-based formulation with a high ratio (25:1) of n-6:n-3 fatty acids (control group, n = 6) for 6 weeks. Food intake, body weight, and blood lipid levels were monitored regularly. Fatty acid profile of the heart tissues was assessed. Histological assessment of liver samples was conducted. At the end of the study body weight and food intake was significantly higher in the flax group compared to control. The levels of 20:5n-3 and 22:6n-3 was significantly increased in the heart phospholipids in both flax and fish groups compared to control; tissue 20:4n-6 was significantly reduced in the fish group compared to control. Significant liver pathology was observed in the control group only. Lowering dietary ratio of n-6:n-3 fatty acids may significantly reduce cardiovascular and metabolic risks in mice regardless of the source of n-3 fatty acids.

  11. Polyunsaturated fatty acids and inflammatory diseases.

    PubMed

    Gil, A

    2002-10-01

    Inflammation is overall a protective response, whose main goal is to liberate the human being of cellular lesions caused by micro-organisms, toxins, allergens, etc., as well as its consequences, and of death cells and necrotic tissues. Chronic inflammation, which is detrimental to tissues, is the basic pathogenic mechanism of hypersensitivity reactions against xenobiotics. Other frequent pathologies, for instance atherosclerosis, chronic hepatitis, inflammatory bowel disease (IBD), liver cirrhosis, lung fibrosis, psoriasis, and rheumatoid arthritis are also chronic inflammatory diseases. Chemical mediators of inflammation are derived from blood plasma or different cell-type activity. Biogenic amines, eicosanoids and cytokines are within the most important mediators of inflammatory processes. The different activities of eicosanoids derived from arachidonic acid (20:4 n-6) versus those derived from eicosapentaenoic acid (20:5 n-3) are one of the most important mechanisms to explain why n-3, or omega-3, polyunsaturated fatty acids (PUFA) exhibit anti-inflammatory properties in many inflammatory diseases. Dietary supplements ranging 1-8 g per day of n-3 PUFA have been reportedly beneficial in the treatment of IBD, eczema, psoriasis and rheumatoid arthritis. In addition, recent experimental studies in rats with experimental ulcerative colitis, induced by intrarectal injection of trinitrobenzene sulphonic acid, have documented that treatment with n-3 long-chain PUFA reduces mucosal damage as assessed by biochemical and histological markers of inflammation. Moreover, the defence antioxidant system in this model is enhanced in treated animals, provided that the n-3 PUFA supply is adequately preserved from oxidation.

  12. Sex Steroid Modulation of Fatty Acid Utilization and Fatty Acid Binding Protein Concentration in Rat Liver

    PubMed Central

    Ockner, Robert K.; Lysenko, Nina; Manning, Joan A.; Monroe, Scott E.; Burnett, David A.

    1980-01-01

    The mechanism by which sex steroids influence very low density hepatic lipoprotein triglyceride production has not been fully elucidated. In previous studies we showed that [14C]oleate utilization and incorporation into triglycerides were greater in hepatocyte suspensions from adult female rats than from males. The sex differences were not related to activities of the enzymes of triglyceride biosynthesis, whereas fatty acid binding protein (FABP) concentration in liver cytosol was greater in females. These findings suggested that sex differences in lipoprotein could reflect a sex steroid influence on the availability of fatty acids for hepatocellular triglyceride biosynthesis. In the present studies, sex steroid effects on hepatocyte [14C]oleate utilization and FABP concentration were investigated directly. Hepatocytes from immature (30-d-old) rats exhibited no sex differences in [14C]oleate utilization. With maturation, total [14C]oleate utilization and triglyceride biosynthesis increased moderately in female cells and decreased markedly in male cells; the profound sex differences in adults were maximal by age 60 d. Fatty acid oxidation was little affected. Rats were castrated at age 30 d, and received estradiol, testosterone, or no hormone until age 60 d, when hepatocyte [14C]oleate utilization was studied. Castration virtually eliminated maturational changes and blunted the sex differences in adults. Estradiol or testosterone largely reproduced the appropriate adult pattern of [14C]oleate utilization regardless of the genotypic sex of the treated animal. In immature females and males, total cytosolic FABP concentrations were similar. In 60-d-old animals, there was a striking correlation among all groups (females, males, castrates, and hormone-treated) between mean cytosolic FABP concentration on the one hand, and mean total [14C]oleate utilization (r = 0.91) and incorporation into triglycerides (r = 0.94) on the other. In 30-d-old animals rates of [14C

  13. Site-selective Alkane Dehydrogenation of Fatty Acids

    DTIC Science & Technology

    2011-12-14

    dehydrogenation of fatty acids Contract/Grant#: FA9550-10-1-0532 Final Reporting Period: 15 September 2011 to 14 September 2011...directly incorporate fatty acids into the ligand. The preparation of the acyl phosphines (1-5) was easily accomplished starting from the corresponding...AFOSR Final Report Final Report 
 The proposed research examines the site-selective dehydrogenation of alkanes. The alkanes employed were fatty

  14. Fatty acid composition of two Tunisian pine seed oils.

    PubMed

    Nasri, Nizar; Khaldi, Abdelhamid; Hammami, Mohamed; Triki, Saida

    2005-01-01

    Oils were extracted from fully ripen Pinus pinea L. and Pinus halepensis Mill seeds and fatty acid composition has been established by capillary gas chromatography. Seeds are rich in lipids, 34.63-48.12% on a dry weight basis. Qualitatively, fatty acid composition of both species is identical. For P. halepensis linoleic acid is the major fatty acid (56.06% of total fatty acids) followed by oleic (24.03%) and palmitic (5.23%) acids. For P. pinea, the same fatty acids are found with the proportions 47.28%, 36.56%, and 6.67%, respectively. Extracted fatty acids from both species are mainly unsaturated, respectively, 89.87% and 88.01%. Pinus halepensis cis-5 olefinic acids are more abundant (7.84% compared to 2.24%). Results will be important as a good indication of the potential nutraceutical value of Pinus seeds as new sources of fruit oils rich in polyunsaturated fatty acids and cis-5 olefinic acids.

  15. Sources and Bioactive Properties of Conjugated Dietary Fatty Acids.

    PubMed

    Hennessy, Alan A; Ross, Paul R; Fitzgerald, Gerald F; Stanton, Catherine

    2016-04-01

    The group of conjugated fatty acids known as conjugated linoleic acid (CLA) isomers have been extensively studied with regard to their bioactive potential in treating some of the most prominent human health malignancies. However, CLA isomers are not the only group of potentially bioactive conjugated fatty acids currently undergoing study. In this regard, isomers of conjugated α-linolenic acid, conjugated nonadecadienoic acid and conjugated eicosapentaenoic acid, to name but a few, have undergone experimental assessment. These studies have indicated many of these conjugated fatty acid isomers commonly possess anti-carcinogenic, anti-adipogenic, anti-inflammatory and immune modulating properties, a number of which will be discussed in this review. The mechanisms through which these bioactivities are mediated have not yet been fully elucidated. However, existing evidence indicates that these fatty acids may play a role in modulating the expression of several oncogenes, cell cycle regulators, and genes associated with energy metabolism. Despite such bioactive potential, interest in these conjugated fatty acids has remained low relative to the CLA isomers. This may be partly attributed to the relatively recent emergence of these fatty acids as bioactives, but also due to a lack of awareness regarding sources from which they can be produced. In this review, we will also highlight the common sources of these conjugated fatty acids, including plants, algae, microbes and chemosynthesis.

  16. Omega-3 Fatty Acids in the Management of Epilepsy.

    PubMed

    Tejada, Silvia; Martorell, Miquel; Capó, Xavier; Tur, Josep A; Pons, Antoni; Sureda, Antoni

    2016-01-01

    Omega-3 and omega-6 fatty acids are polyunsaturated fatty acids (PUFAs) with multiple double bonds. Linolenic and alpha-linolenic acids are omega-6 and omega-3 PUFAs, precursors for the synthesis of long-chain PUFAs (LC-PUFAs), such as arachidonic acid (omega-6 PUFA), and eicosapentaenoic and docosahexaenoic acids (omega-3 PUFAs). The three most important omega-3 fatty acids are alpha-linolenic, eicosapentaenoic and docosahexaenoic acids, which cannot be synthesized in enough amounts by the body, and therefore they must be supplied by the diet. Omega-3 fatty acids are essential for the correct functioning of the organism and participate in many physiological processes in the brain. Epilepsy is a common and heteroge